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Résumé

Résumé

Une premiére théorie consacrée a I’'optimisation des problemes dynamiques est le Calcul
des Variations. Les mathématiciens qui ont créé cette théorie sont: Jean BERNOULLI
(1667-1748), Leonhard EULER (1707-1793), Joseph Louis LAGRANGE (1736-1813),
Adrien LEGENDRE (1752-1833), Carl JACOBI (1804-1851), William HAMILTON (1805-
1865), Karl WEIERSTRASS (1815-1897), Adolph MAYER (1819-1904) et Oscar BOLZA
(1857-1942). Dans les problemes de Calcul des Variations, I’observateur n’intervient pas
sur le probléme. Aujourd’hui, le Calcul des Variations est encore un champ de recherche
tres actif.

Pour répondre a des questions technologiques, issues de diverses industries, une seconde
théorie, consacrée a I'optimisation des problemes dynamiques, nait au milieu du vingtiéme
siecle: la théorie du Controle Optimal. Dans cette théorie, I'observateur agit sur le
probleme. Outre la "variable d’état" qui décrit le comportement du systeme dynamique,
il y a une "variable de controle" qui est pilotée par ’observateur.

Historiquement, il y a deux grands points de vue en théorie du Contréle Optimal: le
point de vue de Lev Pontryagin (Principe du Maximum) et le point de vue de Richard
Bellman (Programmation Dynamique).

Le premier cadre qui fut utilisé en Controle Optimal est celui du temps continu en
horizon fini. Plus tard le cadre du temps discret fut aussi étudié. Le développement de
I'utilisation des ordinateurs pour faire des calculs approchés ou des simulations constitue
une motivation supplémentaire pour étudier le cadre du temps discret en Controle Optimal.

A propos de I'horizon infini en Calcul des Variations et en Controle Optimal, des
motivations importantes et historiques viennent de la théorie économique: les travaux de
F. P. Ramsey (1928), de H. Hotelling (1931), de C. C. von Weizsacker (1965). Plus tard,
des modeles de développement durable, par exemple la gestion optimale des foréts et des
pécheries, ont été traités par la théorie du Controle Optimal en horizon infini.

Cette theése contient des contributions originales a la théorie du Controle Optimal
en temps discret et en horizon infini du point de vue de Pontryagin. Le point de vue
de Pontryagin fournit des conditions nécessaires d’optimalité. De telles conditions ont du
sens dans les problémes considérés; ce sont des lois de comportement. De plus, I'utilisation
de telles conditions nécessaires d’optimalité peut permettre d’améliorer la modélisation du
phénomene étudié, par exemple en montrant que les seuls candidats possibles a 'optimalité
sont inadaptés au probleme. Dans certain cas, il est possible d’établir des théoremes de
condition suffisante dans le point de vue de Pontryagin.

Nous décrivons maintenant le contenu de cette these.

Dans le chapitre 1, nous rappelons des résultats sur les espaces de suites a valeur
dans R*. Nous rappelons aussi des résultats de Calcul Différentiel: sur la dérivabilité
directionnelle, sur la Gateaux différentiabilité, sur la Fréchet-différentiabilité et sur la
stricte différentiabilité.



Dans le chapitre 2, nous étudions le probléme

Maximiser K (y,u) := Z;;Oa’ Btiﬁ(yt, ut)
quand ¥ = (y¢)ren € R™MN | w = (ug)en € UN
Yo =1, limy s 400 Yt = Yoo,
u est bornée,

VteN, yip1 = g(ys, ue),

ol Yoo est donné. En utilisant la structure d’espace affine de Banach de I’ensemble des
suites convergentes vers 3o, et la structure d’espace vectoriel de Banach de ’ensemble des
suites bornées, nous traduisons ce probleme en un probleme d’optimisation statique dans
des espaces de Banach. Apres avoir établi des résultats originaux sur les opérateurs de
Nemytskii sur les espaces de suites et aprés avoir adapté a notre probleme un théoréme
d’existence de multiplicateurs (au sens de Fritz John et au sens de Karush-Kuhn-Tucker),
nous établissons un nouveau principe de Pontryagin faible pour notre probléme.

Dans le chapitre 3, nous établissons un principe de Pontryagin fort pour les problémes
considérés au chapitre 2 en utilisant un résultat de Ioffe-Tihomirov. Nous établissons
aussi un théoreme de conditions suffisantes qui est nouveau, sous des conditions adaptées
de concavité.

Le chapitre 4 est consacré aux problemes de Controle Optimal, en temps discret et en
horizon infini, generaux avec plusieurs criteres différents, sans condition de borne ou de
comportement asymptotique sur la variable d’état et la variable de contrdle. La méthode
utilisée est celle de la réduction a I’horizon fini, initiée par J. Blot et H. Chebbi en 2000. Les
problemes considérés sont gouvernés par des équations aux différences ou des inéquations
aux différences. Un nouveau principe de Pontryagin faible est établi en utilisant un résultat
récent de J. Blot sur les multiplicateurs a la Fritz John.

Le chapitre 5 est consacré aux problemes multicriteres de Contréle Optimal en temps
discret et en horizon infini. De nouveaux principes de Pontryagin faibles et forts sont
établis, la-aussi en utilisant des résultats récents d’optimisation, sous des hypotheses plus
faibles que celles des résultats existants. FEn corollaires de nouveaux résultats sur les
problémes multicritéres, on obtient de nouveaux résultats sur les probléemes avec un seul
critere.

Mots-clefs

Controle Optimal, temps discret, horizon infini, principe de Pontryagin, systéeme
dynamique
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Introduction

A first theory which is devoted to the optimization of dynamical problems is the theory
of Calculus of Variations, a field of mathematical analysis that deals with maximizing or
minimizing functionals. The first mathematicians who gave contribution to the theory
of Calculus of Variations are Johann Bernoulli (1667-1748), Leonhard Euler (1707-1793),
Joseph-Louis Lagrange (1736-1813), Andrien Legendre (1752-1833), Carl Jacobi (1804-
1851), William Hamilton (1805-1865), Karl Weierstrass (1815-1897), Adolph Mayer (1839-
1907), and Oskar Bolza (1857-1942). Today it is ever an important field of research. In
theory of Calculus of Variations, the researcher does not take action on the considered
problem but to play the role of an observer. He only acknowledges the behaviour of
system and understands it through the observations.

Along with the development of technology, there was a need to answer the technological
problem of finding a control law for a given system such that a certain optimality criterion
is achieved. Then a second theory devoted to the optimization of dynamical problems was
born in the middle of twentieth century: the Optimal Control Theory, a mathematical
optimization method for deriving control policies. Beside the so-called "state variable"
which represents the behaviour of the dynamical system, there is also a so-called "control
variable", which is chosen by the researcher over the time. Now not only that the researcher
observes, but he also takes action on the dynamical system over the time and plays the
role of a controller. By this theory, studying the optimization of a dynamical problems
becomes more interactive.

Historically, there exist two great methods in Optimal Control Theory, which are
due to the work of Lev Pontryagin (1908-1988) and Richard Bellman (1920-1984) in the
1950s: The minimum (maximum) principle of Pontryagin and the dynamic programming
of Bellman.

Optimal Control Theory has found applications in many different fields of science,
including aerospace, process control, robotics, bioengineering, economics, finance, and
management science, and it continues to be an active research area within control theory.
The first framework which was used in Optimal Control Theory is the continuous-time
framework. Later, the discrete-time framework was also studied. The reason is that
while theory of differential equations in continuous-time models is not well known by
all the scientists, except for mathematicians and physicists, the equations of a discrete-
time dynamical system do not require sophisticated mathematical tools. Thus, discrete-
time models can simplify the communication between mathematicians and the researchers
of other scientific fields. Besides, studying the same phenomenon using both discrete-
time model and continuous-time model can lead to a comparison between their respective
results and can provide interesting consequences. Moreover, the development of the use of
electronic computers to calculate approximations or to realize simulations of the optimal
solutions is an additional motivation to study the discrete-time framework in Optimal
Control Theory. In fact, contemporary control theory is now primarily concerned with
discrete-time systems and their solutions.
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A historical motivation for infinite-horizon variational problems and infinite-horizon
optimal control problems is found in the macroeconomic optimal growth theory in the
works of Ramsey [50], Hotelling [35], von Weizsécker [62] and Brock [20]. In such a theory,
an agent represents itself and all its progeny, and the infinite horizon avoids to deal with
the problems of the end of the world. Another important field of knowledge which uses
the infinite-horizon optimal control is the management of natural resources as forests
and fisheries, which are introduced in [22]. More generally, the study of some aspect of
sustainable development naturally leads to a framework where a final time does not exist.

Those are the reasons for the author to choose infinite-horizon discrete-time optimal
control problems to be the studied object of the thesis.

In finite-horizon continuous-time optimal control theory, there exists two main
historical approaches: Pontryagin’s approach and Bellman’s approach. In infinite-horizon
discrete-time optimal control problems, the dynamic programming of Bellman is currently
used. In this thesis, we follow the other approach: the viewpoint of Pontryagin.

Pontryagin’s viewpoint provides necessary conditions of optimality which are principles
that the optimal solutions ought to satisfy, and these principles possess a meaning in the
considered phenomenon. Moreover, the role of necessary conditions of optimality is to
narrow the set of all processes which are candidates to be solutions of the problem, and
this can also improve the modeling. In some cases, it is also possible to formulate sufficient
conditions of optimality in the spirit of the conditions initiated by Seierstad and Sydsaeter
for the continuous-time problems. During the process of establishing Pontryagin principles
for discrete-time optimal control problems in infinite horizon, in some cases, we can also
establish those for such problems in finite horizon.

The structure of this thesis is as follows. In Chapter 1, firstly, we recall preliminary
basis of sequence spaces. In this part, we introduce some classical sequence spaces in
(R¥)N. Then we study their norms, their dualities and their completeness. In second part,
we recall some basic results on differential calculus in normed linear space, particularly,
the various types of differential in normed linear space, their properties, the Mean Value
Theorem and the differential in product space. Those are the fundamental mathematical
tools that we use throughout the thesis.

Chapters 2-5 are the main chapters of this thesis which contain new results on
Pontryagin principles for infinite-horizon discrete-time optimal control problems. There
are several ways to establish Pontryagin principles for our considered problems. The first
method is to translate the original problem into an optimization problem that defined
in Banach spaces; then use an appropriate multiplier rule in Banach spaces to obtain
Pontryagin princiles. This method is direct and it requires the considered problems to
have the capability of being translated into an optimization problem in Banach spaces. It
is used in Chapter 2 and Chapter 3. The second method, which is first proposed by Blot
and Chebbi in 2000, is to reduce the infinite-horizon problems into families of finite-horizon
problems; then use an appropriate multiplier rule to obtain Pontryagin principle for the
finite-horizon problem; and finally, extend that result to the infinite-horizon case by using
some additional assumptions. Chapter 4 and Chapter 5 follow the second method.

In Chapter 2, we study the following problem:

Maximize K(y,u) := ;05’ ﬁt¢(yt, ut)
when  y = (ye)ien € (R™)N, w = (ut)ren € UY,
Yo =1, liMy—00 Yt = Yoo,
w is bounded,
Vt €N, yer1 = g(ye, ur).
This problem is a special case of single-objective optimal control problem with bounded
processes which was studied in by Blot and Hayek in [14] and [15]. The difference is that
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now the problem contains an asymptotic constraint at infinity on the state variable. We
will use an approach of functional analytic for this problem after translating it into the
form of an optimization problem in Banach (sequence) spaces. Then a weak Pontyagin
principle is established for this problem by using a classical multiplier rule in Banach
spaces. Some new properties of Nemytskii operators are also studied in this chapter.

In Chapter 3, we establish a strong Pontryagin principle and a sufficient condition for
the considered problems in Chapter 2. To obtain the strong principle, we use the non
linear functional analytic approach as in Chapter 2 and apply a multiplier rule of Ioffe and
Tihomirov in which a convexity condition is necessary. Sufficient condition is obtained by
using the weak Pontryagin principle’s conclusions as assumptions and an assumption of
concavity of the Hamiltonian.

In Chapter 4, we study the infinite-horizon discrete-time single-objective optimal
control problem, which is more general than the problem considered in Chapter 2 and
Chapter 3. For such problems, we consider the dynamical system with difference equation
and with difference inequation and in the presence of the constraints on optimal control
at each period of time. There exists several results on Pontryagin principles for such
problems which are established in Blot and Hayek [15]. However, some require the
Lipschitzian conditions to use Clarke’s calculus, while others require the smoothness or
at least, the Fréchet differentiability and the continuity on a neighborhood of the optimal
solution of the functions, which are present in the problem. The aim of this chapter is
to establish Pontryagin maximum principle under the weak form for such problems using
lighter assumptions than the usual ones by applying recent result of Blot on the multiplier
rule in [10].

In Chapter 5, necessary conditions of Pareto optimality under the form of Pontryagin
principles for finite-horizon and infinite-horizon multiobjective optimal control problems
in discrete-time framework are studied. The considered problems in this chapter are
similar to the ones in Chapter 4 but with multicriteria objective function. The aim
of this chapter is to establish weak and strong maximum principles of Pontryagin for
problems in the presence of constraints and under assumptions which are weaker than
the usual ones. In this way, this chapter generalizes existing results for single-objective
optimal control problems and for multiobjective optimal control problems with or without
constraints. To establish weak principles of Pontryagin, we provide new multiplier rules
for static multiobjective optimization problems, which are in the spirit of the multiplier
rule for static single-objective optimization problems of Blot in [10]. The strong principles
of Pontryagin are established relied on the multiplier rule of Khanh and Nuong in [39].
Sufficient conditions of optimality for the considered problems are also provided in the
end of this chapter by using the weighting method.






Chapter 1

Preliminary on Sequence Spaces
and Differential Calculus in
Normed Spaces

1.1 Sequence Spaces

In this section we provide elements on sequence spaces, essentially on the space
(N, R¥) of the bounded sequences in R* and the space co(N, R¥) of bounded sequences
in R* which converge to 0. Firstly, we define our notation and we recall some basic facts.
Then we provide some basic analyses on sequence spaces in R¥ and recall the results on the
dual spaces of ¢o(N, RF) and ¢>°(N, R¥) which are useful in the establishment of Pontryagin
principles for optimal control problems with processes from these spaces. Finally we prove
the completeness of the classical sequence spaces in RF.

The main references that we use on the sequence spaces are Chapter 16 in Aliprantis
and Border [2], Section 31 in Kothe [40] and Appendix A in Blot and Hayek [15].

1.1.1 Notation and Recall

Notation 1.1. (Basic sets and spaces)
— N is the set of all nonnegative integers. N, = N\{0} = {1,2,...}.
— R is the set of all real numbers.
— When k € N,, RF is the space of all k-dimensional real vectors. If v € R¥ then

v = (vh,v?,... vF) where v' € R, i € {1,...,k}. The canonical basis of R¥ is
denoted by (e;)1<j<k where e;'» = 5; for all 4, j € {1,...,k}. (5; is the Kronecker
symbol).

— R** denotes the dual space of RF which is the space of all linear functionals from
R* into R.

Let E be a set. Then EVN denotes the set of all sequences in E. For EN, z =
(z¢)ten denotes its element. Here, z; € F for each ¢t € N.
— Let M be a finite set. |M| denotes the number of elements of M.

Definition 1.2. (Norm and normed space)
Given a vector space E over the field R. A norm on E is a map [|-|| : E — R that
satisfies the following conditions:

(N1) |[Az]| = A ||z|| for all A € R, = € E;
(N2) ||z|| = 0 if and only if = = 0;
(N3) [z +yll < =[] + [lyll -
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The pair (E, ||-]|) is then called a normed space.

Definition 1.3. (Banach space)

A Banach space is a vector space E over the field R which is equipped with a norm
||I-|| and which is complete with respect to that norm. That is to say, for every Cauchy
sequence (Zp)nen in E, there exists an element = in E such that

lim =z, =z,
n—-+00
or equivalently:
li —z|| =0.
Jm flzg —2f| =0
Notation 1.4. (norm and norm dual on R¥)
— When k£ € N,, on R* we consider the norm

lv]| := max{’vj’ RS {1,...,k}},

where v = (v!,...,v*) € R¥. For simplicity, from now on we denote the norm on

R* by |-|.
— The canonical norm on the dual R** is

Ipl, = sup{|(p,v)| : v € R¥, |v] < 1}

where (p,v) := p(v) is the duality bracket. Note that when R* is endowed with the
norm ||’ |p‘* = Z_l;:l |p]| ) where by = <p7 €j> .

When E = R¥, (E,|-|) is a finite-dimensional normed real vector space, we consider
EN. the set of all sequences in E. This set can be turned into a vector space by defining
vector addition as follows

(7¢)ten + (Yt)ten = (2 + yt)ren for all z,y € EN
and the scalar multiplication as follows

oxy)sen = (axy)en for all z € BN,

There are some basic sequence spaces which are subspaces of EN and are defined as
follows:

Definition 1.5. (Basic sequence spaces)
— Space ?(N,E) :
For all p € [1,4+00), P(N,E) := {z € EN : Y% |24/’ < +oc}. Endowed with the

norm ||zl|, := ( % |:1;t\p) l/p, it is a Banach space.

— Space (*(N,E) :
(>®°(N,E) := {z € EY : sup;ey|2t| < +00}. Endowed with the norm ||z :=
Sup;en |24/ , it is Banach space.

— Space ¢(N, E) :
c(N,E) := {z € BN : limy_, y oo 24 exists in £}. Endowed with the norm ||z||
a Banach subspace of />°(N, E).

— Space (N, E) :
co(N,E) := {z € EN : limy_, ;oo x; = 0}. Endowed with the norm llz| . , it is a
Banach subspace of (*°(N, E).

oo 1818
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— Space cp(N, E) :
coo(N,E) := {z € EN : 2; = 0 except for finitely many indexes ¢}. It is a subspace
of (P(N, E) for all p > 1.

By direct verification, it is evident that ||-||, satisfies all conditions (N1), (N2), (N3)
of the definition of norm. Hence, {*°(N, E), ¢(N,E) and ¢o(N, E) are normed spaces.
We will show that |-, also satisfies the definition of a norm in next subsection. The
completeness of space (P(N, E), (*°(N, E), ¢(N, E) and ¢y(N, E) will be proven in the end
of this section.

For the above-mentioned sequence spaces, we have the following theorem:

Theorem 1.6. For all p,q € [1,4+00) such that p < q, the following inclusions hold:
coo(N,E) CP(N,E) CUI(N,E) C eo(N,E) Ce(N,E) C £*°(N, E).

Proof. We will prove the above-mentioned inclusions by the inverse order.

— Prove ¢(N,E) C {>*(N,E) : let x = (z¢)1en € ¢(N, E) then (x4)ien is convergent. A
convergent sequence is clearly bounded. So z € (> (N, E).

— Prove ¢o(N, E) C ¢(N, E) : it is clear from the definition of these two spaces.

— Prove (N, E) C ¢o(N, E) with ¢ > 1: let z = (2;)eny € L4(N, E) then Yo 7|7 <
+00. From this we deduce that lim;—,  |2¢|? = 0 and hence lim;, oo 2 = 0. And
so, z € ¢o(N, E).

— Prove P(N, E) C t4(N, E) for all p,q € [1,+00) such that p < ¢:

Let z = (2¢)ieny € (N, E). From the above-mentioned inclusion, we know that
limy 400 2 = 0. Then there exists T" € N, big enough such that when ¢ > T we
have |x¢| < 1. Now we consider the series

T 00
Szt = fw T+ D |l
=0

teN t=T+1
T 00
< w0 |l
t=0 t=T+41

T
<D Jad? 3 lal”
t=0

teN

It is obvious that Ztho |z|?7 < 400 as it is a finite sum of positive numbers. Besides,
Sien 2P < 400 since = (z4)eny € P(N,E). Hence, Y ey |2¢|? < 400 which
means that z € (4(N, E).

— Prove coo(N, E) C P(N,E) : Let z = (2¢)ten € coo(N, E). We denote NZ = {t € N :
xy # 0}. From the definition of space coo(N, E) we know that |[NZ| < 4o00. Now,

consider the series
Z|$t|p: Z |lz¢|P < 4o00.
teN teNZ

Then z € (P(N, E).

1.1.2 Some Basic Analyses on Sequence Spaces

In this subsection, we will provide some basic analyses on sequence spaces. For
simplicity, we set by default F = R* where k € N,.
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Definition 1.7. (real convex function)
A map f:R™ — R is called convex if for all z, y € R™ and for all « € [0, 1] we have:

fletaly—2) < f(z)+a(f(y) - f(2)).
For the convexity of real function we have the following theorem:

Theorem 1.8. Let f be a real function which is differentiable on the open interval
(a,b).Then f is convex on (a,b) if and only if its derivative f' is increasing on (a,b).

Example 1.9. After the previous theorem, the exponential function e® is convex since
(") =€® > 0 for all z € R. From the definition of convex function we have the following
inequality

eBJra(AfB) < eB + a(eA N GB)

for all A, B € R and for all « € [0, 1].

Proposition 1.10. (Hélder inequality)
Let p, q € (1,00) with 1% + % = 1. Then for x € (’(N,E) and y € {4(N, E*) one has
Sen szl <z, [1yllg-

Proof. For a,b > 0, set A := plna, B := ¢glnb. The exponential function e® is convex,
thus:

Then after substituting A = plna and B = ¢In b, we have

1 1
ab < —aP + =b1.
p q

It is obvious that when z = 0 or y = 0, the Holder inequality holds.
Now, for z = (zt)ien € (P(N,E) and y = (yt)ten € (9(N, E*) such that [[z|, =1 =
llyllg, from the above-mentioned result one has

VEEN, [(gead)] < ool lurl, < Ll + 1yl

> Sl < Iienlo + Il = +3 =1

For z € //(N,E), z # 0 and y € ¢4(N, E*), y # 0, using the above-mentioned result

for 2’ := 0 f” and 3/ := ﬁ we come to the following inequality:
=1p - q
Yi Ty
Suaelh ] < 16 Toa|( )| < 1
lyllg Nz,
1
& T 2ten [y o) < 1
lzll, lyllq =*

Multiply both sides of the last inequality with |[z|, [|y[l; we obtain the result of this
proposition. ]
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Lemma 1.11. (Supremum formula)
Let p,q € (1,4+00) with % + % = 1. Then for allz € EN we have

lll, = sup { IS een (e )|+ y € coo (N, EY), Ilyllg < 1},
whereas, equality is meant in [0, +o0].

Proof. Let z € EN and let p,q € (1,400) with % + % = 1. We denote

C = sup {[Syens (v 20)| : y € coo(N, BY), Ilyllg < 1}

— Prove that [jz|, > C':
If [z, = +oo then ||z[|, > C is true. Now we assume that |z, < +oc. Following
Holder inequality:

2ten (e 2| < Xgen Ky, )| < |z,

for all y € £4(N, E) (including y € coo(N, £7) ) with |[y[q < 1. And so, C < |[|z|,,.
— Prove that [z, < C':
It is obviously that when ||z[|, = 0 we have C'= 0. So the inequality is satisfied

for this case. If ||z[|, # O then z # 0. Choose A = (A\t)ien € (E*)N such that
|Atl, = 1 and (A, z) = || for all t € N. For sufficient big N € N, we know that

-1
A= (th\io |xt‘p> /a exists and A > 0. Define y = (y¢)en € coo(N, E*) as follows:
Y= A |xt|§ At for 0 <t < N and gy := 0 for t > N. Then we have:

lylla = (Zt O‘A)‘t‘xt‘q ) A(Zt o [zel” [l )%
[Ael 1

= (Zt olze”)" =
Now with this y € coo(N, E*) we have
2
C> ‘Zi\io <yt,$t)‘ = ‘Zivzo <A|$t’q )\t737t>‘
P A ,a: T
= AN foel s )] T A

1-1
= AN ool = ASY il = (Solarl?) (zt olzil”)” .

3 =

1
The last inequality: C > (Zi\;o |xt|p> " is satisfied for all N € N, hence C > |[z]|,,-

From the above-mentioned arguments, we have ||z, = C. O

Proposition 1.12. For 1 <p < +oo, P(N, E) is a normed sequence space.

Proof. We will prove this statement for the case p = 1 and for the case p €
(1, 400) individually.
— Casep=1:
We have ({(N,E) := {z € EN : |z|l; = Sienloel, < +oo}. It is clear that
||, satisfies all the properties (N1), (N2) and (N3) of a norm, hence /}(N, E) is a
normed space.
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— Case 1 < p < +o0:
Obviously, |-[|,, satisfies properties (N1) and (N2). Now let ¢ = £¢, thus %4—% =1.
Then, for any z, y € /°(N, E) and for all z € EN (including all z € coo(N, E*)) such
that ||z|| <1 the following triangle inequality takes place:

VN eN, | XX (2,2 + yt)‘ < ’Zi\io <Zt7l“t>’ + ‘Zfio <Ztayt>’ .

Let N — +o00 and using supremum formula, we have:

Do ten (2t T+ ye)| < [Den (2t 2| + [Xien (26,90 | < llzll, + [[yllp-
= |Xten 2tz +yn)| < llzll, + llyllp

Take supremum both sides of the last inequality and using the supremum formula
we obtain the property (N2) of ||| :

1z +yll, < llzll, + lyllp-

Hence ¢P(N, E) is a normed space.

Lemma 1.13. (Convergence of norm)
Let z € (P(N, E) where p € [1,+00) . Then |z|, p2pe 2]l o -

1
P
] < | D0
teN

for all k € N and p > 1. So we have ||z|lo < ||z||p. Thus, in particular

Proof. Since

s
lzlloo < lim inf[|z]p.

On the other hand, we know that

1 1
3 P p=gq P 1-4 a
lzllp = | D lwelP= -zl | < lallod - | Do fael? ) = llzlloo ™ - Jlllf

teN teN

for all ¢ < p where we used |7¢| < [|z]|c for all ¢ € N. Therefore, we arrive at

1—-4 aq
lim sup ||, < lim sup (uxnoo v \xllé’> = [zfoo - 1.
p——+00 p——+00

We conclude
li < ||z < lim inf ||z||,.
;)msup Hfl’Hp >~ H,Hoo = il H ||P

This shows that lim,_, ||z||, exists and equals ||2||oo- O

Corollary 1.14. (Extended supremum formula)
The supremum formula is also true for p =00 and p =1:

lzlle = sup {[Srer (weo @)+ g € coo(N, BY), [yl < 1}

and
lzlly = sup {|Sen (ver w0} = 3 € coo(N. EY), Jlglloe <1}

Proof. In supremum formula we let p — 400 with g = ]% and ¢ — +oo with p =

q
-1
respectively. O
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1.1.3 Duality of Sequence Spaces
Definition 1.15. (Dual space of a sequence space)
When P and () are sequence spaces, () is called the dual space of P if

(D1) For each y € @ the series Y ;o (4, 2¢) =: y(z) is convergent for all 2 € P and
defines an element y(.) in P*, with |[y(.)[|p+ = [lyll;

(D2) For each n(.) € P*, an element y € @ exists with y(.) = n(.).

and we can write P* = Q.

So the notation P* = @ means that the map y — y(.) from @ into P* is an isometric
isomorphism between () and P*.
We also recall that norm of a bounded linear operator is defined as follows.

ly)llpe = sup{ly(z) -z € P, [lz]p <1}

Proposition 1.16. Let p,q € (1,400) such that % —1—5 =1, then (?(N, E)* = ¢4(N, E*).
Furthermore, co(N, E)* = (1(N, E*) and (*(N, E)* = (*(N, E*).

Proof. Let p,q € (1,400) and % + % = 1. For simplicity, in this proof we denote the norm
on dual space by |[|-]],.
— Prove P(N, E)* = (9(N, E*):
— (D1) For each y € (¢4(N,E*) the series Y,y (y,2¢) =: y(x) is absolutely
convergent (from Holder inequality) for all z € (?(N, E) and hence it defines
an element y(.) in ¢P(N, E)*. Using Holder inequality we have:

(@) = Xien ezl < llzll, lyllq-

Therefore, from the definition of norm of linear operator, we obtain ||y(.)||, < [lyll¢.
Now, using supremum formula with interchange x and y, p and ¢, we have:

lylly = sup {[Soen (z,90)] = 2 € coo(, (B, |z, <1}

E=RF
=" sup {[Yren (2t,90)| : 2 € coo(N, B), Ilzll, < 1}

< sup {[Cien (o)l : z € (N, E), Jal, <1}
=sup {|y(z)| - z € (N E), |lz]], <1}
= lyOll.

Then, we have proven [|y(.)||, = |lyll¢-

- (D2) Let n(.) € PINJEY. If v, : E — R defined by y(z;) =
n(0,0,...,24,0,0,...) for all t € N then y, € E* and y = (y)een € (E*)N.
Now, for all € /P(N, E) we have

n(z) = n(z1, z2,...) :ZU(0,0,...,xt,0,0,...)
teN

= ye(@) = Ypen W we) -

teN

From here, using supremum formula as before we obtain [y[, < [n()], <
+00 hence y € (9(N, E*). Therefore, if from y we define y(.) € ¢’(N,E)* by
setting y(z) := > ey (Ut, x¢) then n(.) = y(.). And so (D2) is satisfied.
From the above-mentioned arguments, we can conclude that ¢P(N, E)* = ¢4(N, E).
— Prove ¢o(N, E)* = (X(N, E*):
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— (D1) For each y € /}(N, E*), we consider series Y,y (Y1, 7) where 2 = (2¢)1en €
co(N, E) arbitrary. We have

|ZteN <ytaxt>’ < ZteN |<yta]9\5[t>|
= hffrl PN 0|<Z/t733t>’

< 1
< cdim T lyl, |z

< sup \$t| lim tho |yt
teN —Foo

= [/l o 'ZtEN el
= [lzlloo-llyll1 < +-o00.

And so, for each y € ('(N,E*) the series Y ,cn (yt,2:) =: y(z) is absolutely
convergent for all x € c¢o(N, E) and hence, we can define an element y(.) €
co(N, E)*. Moreover, from the previous inequality we have |ly(.)|, < |ly|l1. Now,
using the extended supremum formula

sup {|2 e (W 2e)| + x € coo(N, E), [z, < 1}
sup {2 en (e )|+ z € (N, E), [lz|l <1}
sup {ly(z)|: z € co(N,R), [lz[|, <1}

=yl -
Then, we have proven ||y(.)||, = ||ly|l1- And so condition (D1) is satisfied.
- (D2) Let () € cN,E) If yy : E — R defined by y(z) =
n(0,0,...,240,0,...) for all t € N then y, € E* and y = (y)eny € (E*)N.
Now, for all z € ¢o(N, E) we have -

n(z) = n(r1, z2,...) :ZT](0,0,...,th,0,0,...)
teN

= Z?h(%) = D ten (Y, T1) -

teN

”y‘h

IA -l

From here, using supremum formula as before we obtain |yli < ||n(.)]], <
+00 hence y € (Y(N, E*). Therefore, if from y we define y(.) € ¢1(N, E)* by
setting y(z) == ey (W, 2¢) then 7(.) = y(.). And so (D2) is satisfied.
From the above-mentioned arguments, we can conclude that co(N, E)* = ¢1(N, E*).
— Prove (1(N, E)* = (*(N, E*):
— (D1) For each y € £*°(N, E*), we consider series Y,y (yt, 1) where = (2¢)ten €
(Y(N, E) arbitrary. We have

|ZteN (Y, r)| < D oteN |(ye, 7¢) |

pu— 1. ]V;
N*lfiloo Zt—o ’ <yt7 $t> ‘

< i N
< Jhm Yoo |yely 7]

< sup [yl lim 30 [a

= llylloo-2ten 2l

= [lylloo llzll, < +o0.
And so, for each y € (*°(N,E*) the series > ;o (v, %) =: y(x) is absolutely
convergent for all z € (*(N,E) and hence, we can define an element y(.) €

co(N, E)*. Moreover, from the previous inequality we have [[y(.)[|, < [|y[|oc. Now,
using the extended supremum formula, we have

sup {2 sen (Y, 20)| = z € con(N, E), |zl <1}
sup {[Xsen (e, )| - z € fl(N E), llzll, <1}
sup {|y(z)| : z € (YN, E), [|z||; <1}

Iy (1l -

9o

A I
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Then, we have proven ||y(.)[|« = [|y[l1. And so condition (D1) is satisfied.

~ (D2) Let n(.) € MANE)* If y, : E — R defined by wy(z;) =
n(0,0,...,240,0,...) for all t € N then y; € E* and hence, y = (y¢)ien € (E*)N.
Now, for all z € £}(N, E) we have

n(z) = n(zo, z1,...) :Zn(0,0,...,xt,0,0,...)
teN

= Z?Jt(fct) = 2 ten (Y, Tt) -

teN

From here, using supremum formula as before we obtain |yl < [In(.)|l+ <
+00 hence y € (Y(N, E*). Therefore, if from y we define y(.) € ¢*(N, E)* by

setting y(z) := Yyen (U, 24) then 1(.) = y(.). And so (D2) is satisfied.
From the above-mentioned arguments, we can conclude that ¢1(N, E)* = (>(N, E*).
O

The dual space of (> (N, R¥):
In [2] the following space is defined

Definition 1.17. ¢}(N,R) is the set of all linear functionals § € />°(N,R)* such that there
exists £ € R satisfying (0, z) = £ lim;_, 1 24 for all z € ¢(N,R). Its elements are called the
singular functionals of />°(N, R)*.

In [2] the following result is established.
Theorem 1.18. (*°(N,R)* = /}(N,R) & ¢}(N,R).

The meaning of this equality is the following: for all A € ¢*°(N,R)* there exists a
unique (g, 0) € £1(N,R) x £4(N, R) such that (A,z) = (z,q) + (0, ) for all 2 € £<(N, R).

Now we extend this space and the previous description to sequences in R¥.

Definition 1.19. ¢}(N,R¥) is the set of all linear functionals 6 € ¢*°(N, R¥*) such that
there exists ¢ € R** satisfying (0, z) = (¢,lim;_, ;o0 2¢) for all z € ¢(N,RF). Its elements
are call the singular functionals of £°°(N, R¥)*.

Proposition 1.20. (*(N,R*)* = (}(N,RF*) @ ¢}(N, RF).

Proof. Let A € (*°(N,R¥)*. When z € (N, R¥), we can identify it with (2!, z2,...,2"%) €
(£°(N,R))*. And we can write (A, z) = S5, (A;, %) where

<Azgl> - <A, (Q,...,Q,gi,g,...,g)>.

Note that A; € ¢*°(N,R)* and then, using Theorem 1.18, we know that there exist
q' € (N, R) and 0 € £3(N,R) such that (A;,r) = (r,q') + (¢,7) for all r € (N, R).

Denoting by (ef)i<i<r the dual basis of the canonical basis of RF, we set ¢ =

?:1 q}:e;‘. Since |q¢|, = Zle |q§| we obtain that ¢ = (qt)ten € fl(N,Rk*).

We set (0, z) := S2F ; (6%, 2%) . We sce that 6 is a linear functional from ¢°(N, R¥) into
R. Since the projection m; : ¢*°(N,RF) — ¢>*(N,R), m;(z) := 2!, are continuous,
0 =S¥ 6 om; is continuous as a finite sum of compositions of continuous functions.
And so we obtain § € ¢*°(N,R¥)*. When z € ¢(N,R¥) we have 2! € ¢(N,R) and since
0" € £4(N,R) there exists & € R such that (%, 2) = & limy_, oo z. Weset & := S8 | gef €
R**.and then we have (0,z) = Zi?:l (0',2") = Zle Elimy s oo 7t = (€, 1imy 400 ) .
Hence, 6 € ¢}(N,R¥). The existence is proven.
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To check the uniqueness we assume that there exist p € (}(N,R**) and p € }(N,RF)

such that <g, g> +(0,z) = <L g> + <B? g> for all € £°(N,R¥). When z € ¢o(N, R¥), this
equality becomes <§, g> = <g, £> , and since ¢! (N, R**) is the dual space of co(N,R*) we
obtain ¢ = p, from which we deduce 6 = p. O

1.1.4 Completeness of Sequence Spaces

In this subsection, we will show that (’(N, E) with p € [1,4+00), (>*(N, E), ¢(N, E)
and ¢o(N, E) are Banach spaces.

Theorem 1.21. (P(N, E) where p € [1,+00] is a Banach space.

Proof. We will prove this theorem for the cases p € (1,+o0), p = 1 and p = +©
individually.
— Case p € (1, +00):
Let (zm)meN = (29 2 ... 2", ...) be a Cauchy sequence in ¢?(N, E). Here, for
each n € N, 2" = (27)eny € P(N, E). Now, since (z™)™€N is a Cauchy sequence
then for all € > 0 small enough, there exists M € N, such that when m,n > M we
have

1/p
lz™ — ", <e e | Y lait —af |  <e
teN
<:>Z|:U;nfx?|p<6p<s.

teN

Then for every t € N we have |z]* —z}|’ < e and it means that for each
t € N sequence (:U?L)meN is a Cauchy sequence in space E = R¥. Since R” is a Banach
space we deduce that lim,, 4 2" = ; for each t € N. We set z = (2¢)en. For any
N > 1 and n,m > M we have:

N
Sla —afP <Y |t — 2P <P <e.
=0 teN

Let n — 400 in the previous inequality, we obtain the following:

N
Z|x§”—xt|p<5p<€
t=0

This inequality holds for all N > 1. Then we can take the limit as N — +o0 :

+oo
Dolaf —mfP <P <ee [z —zf|, <e.
=0

And so, 2™ — z € (P(N,E) hence z € (P(N, E) since 2" € (P(N, E). Moreover,
2™ — |, < e for all m > M then we deduce that limp, ;2™ =z € P(N, E).
Hence, (P(N, E') is a Banach space.

— Casep=1:
Let (z™)™N = (20, 2!,...,2",...) be a Cauchy sequence in ¢}(N, E). Here, for
each n € N, 2" = (2P)en € £1(N, E). Now, since (z™)™N is a Cauchy sequence
then for all £ > 0, there exists M € N, such that when m,n > M we have

la™ — 2", <& Y laf —af| <.
teN
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Then for every ¢t € N we have |z} — x}’| < € and it means that for each ¢t € N sequence
(x7)mEN is a Cauchy sequence in space E = RF. Since RF is a Banach space we
deduce that lim,, 1 2" = 24 for each t € N. We set & = (x4)¢en. For any N > 1
and n,m > M we have:

N
Sl — o < 3 fap — af| <.
t=0 teN

Let n — 400 in the previous inequality, we obtain the following:

N
Z |zt — 24| < e.
t=0

This inequality holds for all N > 1. Then we can take the limit as N — 400 :

+0o0
Sl —ml’ <e o 2" —zll, <e.
t=0

And so, 2™ — z € ¢*(N,E) hence z € (}(N, E) since 2™ € ¢}(N, E). Moreover,
|2™ — z||; < e for all m > M then we deduce that lim,,—, 1o 2™ =z € (1(N,E).
Hence, /!(N, E) is a Banach space.

— Case p=+00:
Let (zm)meN = (20, 2!,... 2", ...) be a Cauchy sequence in ¢*°(N, E). Here, for
each n € N, 2" = (21)ien € £°(N, E). Now, since (z™)™N is a Cauchy sequence
then for all € > 0, there exists M € N, such that when m,n > M we have

|z™ — 2" <€ e suplzft — x| <e.
teN
Then for every ¢t € N we have |z} — z}'| < € and it means that for each ¢ € N sequence
(x%n)mEN is a Cauchy sequence in space E = R¥. Since R* is a Banach space we
deduce that lim,, 4.z} = x; for each t € N. We set z = (x¢)en. For any N > 1
and n,m > M we have:

m _ n < mo_ n .
Jpax |oi" — 7| _ilelglwt x| <e

Let n — 400 in the previous inequality, we obtain the following:

max _|zy" — x| < €.
0<t<N

This inequality holds for all N > 1. Then we can take the limit as N — +o0 :

sup [zf" — x| < e & [z — 2], <e.
teN

And so, 2™ —z € {*°(N, E) hence z € {*°(N, E) since z™ € (*°(N, E'). Moreover,
|z — z||, < € for all m > M then we deduce that limp, 4o 2™ =2z € {*(N, E).
Hence, (*°(N, E) is a Banach space.

O

Lemma 1.22. ¢(N, E) and ¢o(N, E) are closed subspace of {*°(N, E).
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Proof. — Prove ¢p(N, E) is a closed subspace of />*°(N, E) :
Let (gm)mEN = (go,gl,...,gn,...) be a convergent sequence of elements from
co(N, E) and let lim,, 100 2™ = z. Since *°(N, E) is a Banach space, we know
that z € (>°(N, E').Now we need to prove z € ¢o(N, E). From lim,,_, . 2™ = z, for
all € > 0 there exists N; € N, such that when m > Ny we have:
l™ 2l < = & suplaf — | < =
2 teN 2
From this we deduce that |z}" — x| < § for each t € N when m > Nj.
Now, 2™ € ¢o(N, E) for all m € N, hence lim;_, o " = 0. It means that for all
€ > 0, there exists Na € N, such that when ¢t > Ny we have |z}"| < § for all m € N.
And so, when m > N7 and t > Ny we have

2| = | — 2" + 2| < e — 27| + |27
<€—|—€_6
-2 2 7

The last inequality holds for all ¢ > Ns, hence we can conclude that lim; 400z =
0 and z € ¢o(N, E). Then we obtain ¢y(N, E) is closed subspace of {*°(N, E).

— Prove ¢(N, E) is a closed subspace of /*°(N, E) :
Let (2™)™N = (202!, ...,2" ...) be a convergent sequence of elements from
¢(N,E) and let limy, 400 2™ = z. We know that z € ¢>°(N, E) and we need to
prove z € ¢(N, E). From lim,, 4o 2™ = z, for all £ > 0 there exists N7 € N, such
that when m > N; we have:

9

3

¢
3

2™ =zl < 5 & sup " — 2] <
teN

From this we deduce that |z}" — 2| < § for each ¢ € N when m > Nj.

Now, 2™ € ¢(N, F) for all m € N, hence lim;_, { c " exists for all m € N and from
this we obtain (x}")en is a Cauchy sequence. Therefore, for all € > 0 there exists
Ny € N, such that when t, t > N5 we have:

& — | <

W m

Notice that the previous inequality holds for each m € N.
Now consider
|2 — | = |oe — 2 + 2" — 2 + i — x|

< e — 2| + |2 — 2| + [ — 2y
In the previous inequality, we take t,¢' > Ny and m > N; then:

|z — @ |<§+§—|—§—5
e I T
It means that 2 = (2¢)sen is a Cauchy sequence of element from E = R¥. Since
R* is complete, we deduce that x = (z¢)sen is convergent. Hence, z € ¢(N, E) and
therefore, ¢(N, F) is closed subspace of ¢*°(N, E).

[

Lemma 1.23. A closed subspace of a Banach space is also a Banach space.
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Proof. Let P be a Banach space and () is a closed subspace of P. Consider an arbitrary
Cauchy sequence (zp)peny in @ then (x,), is a Cauchy sequence in P as well since
@ C P. Now P is Banach, hence, (), is convergent and lim,,,~ ©, = x € P. Since Q
is closed then if lim, 1 x, exists, it must belongs to Q. Hence, z € Q. And so, every
Cauchy sequence in @ is convergent within ). It means that @) is a Banach space. O

Corollary 1.24. ¢(N, E) and co(N, E) are Banach spaces.

Proof. ¢(N, E) and ¢(N, E) are closed subspaces of £*°(N, E); hence, they are also Banach
spaces since (*°(N, F) is a Banach space. O

1.2 Recall of Differential Calculus in Normed Linear Spaces

In this section, we recall the basis of differential calculus in normed linear spaces,
especially on diverse kinds of differentials and their properties which will be useful for the
proofs in later chapters. The main references for this section are Chapter XIII in Lang
[41] and Section 2.2 in Alekseev-Tihomirov-Fomin [1].

1.2.1 Directional Derivative, Gateaux and Fréchet Differentials and
Strict Differentiability

Let X and Y be normed linear spaces, let U be a neighborhood of a point & in X, and
let F' be a mapping from U into Y. The directional derivative is usually defined as follows

Definition 1.25. Let h € X. If the limit

1y F(@+AR) — F(#)
A—07F A

exists, it is called the directional derivative of F' at the point Z in the direction h and it is
denoted by DF(Z;h).

(1.1)

Definition 1.26. Let us suppose that for any h € X there exists the directional
derivative DF(#; h) and there exists a continuous linear operator A € £(X,Y) such that
DF (Z;h) = Ah. Then the operator A is called the Gateaux differential of the mapping
F' at the point Z and is denoted by DgF(Z).

Thus, DgF (%) is an element of £(X,Y") such that, given any h € X, the relation

F(i + Mh) = F(2) + ADGF (&) - h+ X - pp(\) (1.2)

holds when A is positive and small enough. Here p; : R — Y is a mapping satisfying
limy_,o+ pn(N\) = 0. It readily follows that the Gateaux differential is determined uniquely
since the directional derivatives are determined uniquely.

Definition 1.27. Let it be possible to represent a mapping F in a neighborhood of a
point Z in the form
F(@E+h)=F(z)+Ah+alh). A, (1.3)

where A € £(X,Y) and o : X — Y is a mapping which is defined for all sufficient small
h in X and such that
lim a(h) = 0. (1.4)

h—0
Then the mapping F'(-) is said to be Fréchet differentiable at the point Z. The operator A
is called the Fréchet differential of the mapping F' at the point & and is denoted by DF(Z).
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From this definition, DF (%) = A is a continuous linear function which belongs to
L(X,Y). Relations (1.3) and (1.4) can also be written thus:

F(i + h) = F(&) + DF(&)-h + o(||h]]), (1.5)

It readily follows that the Fréchet differential is determined uniquely because if A1 and
As from L(X,Y) simultaneously satisfy relation (1.5) then |[[A1h — Agh|| = o(]|h]]). Tt is
only possible when A; = As. Moreover, if a mapping is Fréchet differentiable at a point
then it is also Gateaux differentiable at that point and DF(Z) = DgF(2). This assertion
is easily verified by setting h = Av in the definition of Fréchet differential. Finally, in the
term of the ¢, ¢ formalism the relations Relations (1.3) and (1.4) are stated thus: given
an arbitrary € > 0, there is § > 0 for which the inequality

[1F(& + h) = F(2) = Ahl| < el (1.6)
holds for all h such that ||h|| < d. This naturally leads to a further strengthening:

Definition 1.28. A mapping F is said to be strictly differentiable at a point & if there is
an operator A € £(X,Y) such that for any € > 0 there is 6 > 0 such that for all y and z
satisfying the inequalities ||y — Z|| < 6 and ||z — Z|| < ¢ the inequality

[F(y) — F(z) = Ay —2)| <elly— = (L.7)
holds.

Putting z = # and y = £+ h in (1.7) we obtain (1.6), and hence a strictly differentiable
mapping is Fréchet differentiable and A = DF(%) .

Example 1.29. A mapping 4 : X — Y of one linear space into another is said to be
affine if there exists a linear mapping A : X — Y and a constant « € Y such that
A(z) = Ax+ . If X and Y are normed spaces and A € L(X,Y), then the mapping A is
strictly differentiable at any point z, and, moreover, DA(x) = A.

This assertion can be verified directly. Indeed, we have:

[A(y) — A(z) = A(y — 2)[| = [[Ay — Az — A(y — 2)
=0<elly—~|

for any € > 0 and for all y, z € X (in particular, including y, z € X such that ||y — z| < ¢
and ||z — z|| < § where ¢ is some sufficient small positive number). Hence, A is strictly
differentiable at any point = € X.

When o = 0 the mapping A degrades into a continuous linear mapping A € £(X,Y).
And from the above-mentioned argument, we can deduce that a mapping A € L(X,Y) is
also a strictly differentiable at any point x € X and DA(x) = A.

For Fréchet differentiable mapping, we have the following well-known property:

Theorem 1.30. If F is Fréchet differentiable at the point x then F is continuous at x.
Now with strictly differentiable mapping, we have a similar but stronger result:

Theorem 1.31. If F is strictly differentiable at the point x then F' is continuous on a
neighborhood of x.
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Proof. Let F' be a mapping which is strictly differentiable at the point . Then for any
e > 0 there exists § > 0 such that for all z; and z satisfying the inequalities ||z1 — x| < ¢
and ||z2 — z|| < & we have the inequality

[F(z1) — F(z2) — A2 — 22)[| < elflz — a2 .

Let z be a point in a g - neighborhood of x.We will show that F' is continuous at z. We
set y = z + h where h € X and ||h|| < §. Then
0

o
ly =zl =lz+h -zl <z =zl +]hl < 5+ 5 =4

From this we deduce that both y and z belongs to § - neighborhood of z, hence:

[1F(y) — F(2) = Ay —2)[| < elly — 2]
& ||F(z+h) - F(z) — Ah|| <e||h].

The last inequality shows that F' is Fréchet differentiable at z and hence, continuous at

that point. Since taking z is arbitrary in g - neighborhood of x, then one can conclude

that F'is continuous on this neighborhood of x. O

Definition 1.32. If F' is (Gateaux or Fréchet or strictly) differentiable at every point x
of U, then we say that F' is ( Gateaux or Fréchet or strictly) differentiable on U. In that
case, the differential DF (DF can be DF or DgF) is a mapping

DF :U — L(X,Y)

from U into the space of continuous linear maps £(X,Y’), and thus to each x € U, we
have associated the linear map DF(z) € L(X,Y). If DF is continuous, we say that F' is
continuously differentiable or simply, F is of class C'.

Since DF maps U into the Banach space £(X,Y), we can define inductively F' to be
of class CP if all the differentials DFF exist and are continuous for 1 < k < p.

When a mapping F is Fréchet differentiable on an open set, the following theorem
shows the necessary and sufficient condition for F' to be strictly differentiable:

Theorem 1.33. If F' is Fréchet differentiable on an open set, then F is continuously
differentiable if and only if ' is strictly differentiable on the same set.

The proof of this theorem can be found in [55], page 682.

1.2.2 Subgradient and subdifferential

Let X be a normed linear space, F' : X — R is a functional and = € X.

Definition 1.34. An element ¢ of X* is called a subgradient of F' at x (in the sense of
convex analysis) if it satisfies the following subgradient inequality:

F(y) — F(z) > (C,y — x),y € X.

The set of all subgradients of F' at x is called the subdifferential of F' at x and is denoted
by OF (x). When X = X; x Xo, x = (x1,x2), the partial subdifferential of F' with respect
to x1 (respectively, x2) at (z1,x2) is denoted by 01 F(x1,x2) (respectively, 02 F (x1, z2)).

The following properties of subdifferential are taken from [1] and [24].
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(i) The subdifferential OF (z) is a closed convex set (possibly empty).

(ii) If F' is convex then
OF (z) = {C € X*: DF(x;h) > (¢,h),Vh € X}.

(iii) If F' is convex and it is Gateaux differentiable at = then 0F(x) = {DgF(z)}.

(iv) If F is convex and continuous at x then OF(z) is nonempty closed convex. When
X = R", then for any z € R", 0F(x) is a non empty convex compact set.

1.2.3 Properties of Differentials

We recall some basic properties of differentials.

Sum: Let X, Y be normed vector spaces, and let U be openin X. Let f, g: U — Y be
maps which are differentiable (in the sense of Gateaux or Fréchet or strict differentiability)
at x € U. Then f + g is differentiable at = and

D(f +9)(x) = Df(x) + Dy(x).

If ¢ is a real number, then

D(cf)(x) = cDf ().

Product: Let X be a normed vector space. Let Y, Z and W be complete normed
vector spaces, and let Y x Z — W be a continuous bilinear map. Let U be open in X and
let f:U—Y,and g:U — Z be maps differentiable at € U. Then the product map fg
is differentiable at x and for all h € X, one has

D(fg)(z) - h = (Df(z)-h)g(x) + f(x)(Dg(z) - h).

Chain rule: Let X, Y, Z be normed vector spaces, let U be open in X and let V' be
openin Y,let f: U — V and g: V — Z be mappings and let h =go f : U — Z be the
composition of the mapping f and g. Let & € U and § = f(2) € V.

Assume that f is differentiable (in Gateaux or Fréchet’s sense) at & and g is Fréchet
differentiable at . Then h is differentiable (in the same sense of f) at & and for all h € X,

D(go f)(2)-h = Dg(§)(Df(Z) - h). (1.8)

If f is strictly differentiable at Z and g is strictly differentiable at §j then A is strictly
differentiable at Z.

Those are well-known properties of differentiable mapping in normed space. The proofs
for them can be found for instance in [1] or [41].

Example 1.35. Let f: U — Y be a (Gateaux or Fréchet or strictly) differentiable map,

and let A : Y — Z be a continuous linear map. Then for each x € U, Ao f is differentiable
in the same sense of f at x, and for every v € U we have

D(Ao f)(x)-v = A(Df(x) -v).

This result follows directly from Example 1.29 and chain rule.
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1.2.4 Mean Value Theorem

Let X be normed space and let a,b € X. We denote closed line segment which connects
a and b as follows:

[a,b] ={x:z=a+tla—0b), 0<t <1},
and the open line segment (a, b) is defined as folows:
(a,b)={z:x=a+tla—0b), 0 <t <1}

Theorem 1.36. (Mean Value Theorem) Let X and Y be normed linear spaces, and
let an open set U C X contains a closed line segment [a,b]. If f : U — Y is a Gateauz
differentiable function at each point x € [a,b], then

1F(0) = f(@)ll < sup [[Daf(e)] [|Ib—al.

c€lab
Proof. Let us take an arbitrary y* € Y* and consider the function ® : R — R defined by
O(t) == (y", fla+t(b—a))).
This function possesses derivatives at each point of the closed interval [0, 1]:

/(1) - lim <I>(t+A))\—<I>(t) _ <y lim f(a—l—(t—l—)\)(b—a))\) —f(a+t(b—a))>

_ <y* lim f(a+t(b—a)+)\(b—a))—f(a+t(b—a))>
’ A—0 A
= (", Dgf(a+t(b—a)).(b—a)).

Hence, function @ is differentiable (in the ordinary sense) on the closed interval [0, 1]
and therefore it is continuous on this interval. By Lagrange’s formula, there exists 6 € (0, 1)
such that

(", f(0) = f(a)) = 2(1) — 2(0) = ¥'(0) = (y", Daf(a+0(b—a))-(b—a)).

Now we shall make use of Corollary 1 of the Hahn-Banach Theorem in [1] (page 76),
according to which, for any element y € Y, there is a linear functional y* € Y* such that
ly*[| =1 and (y*,y) = ||y||. Taking this functional y* for the element y = f(b) — f(a), we
obtain

I£(b) — f(a)|l = (v*, f(b) — f(a)) = (y*, Daf(a+6(b—a)).(b—a))
< ly*[[1Dcf(a+0(b—a))l [l(b—a)ll
= |Daf(a+6(b—a))|[|(b—a)l
< sup [[Daf(e)| b —all.

c€la,b

O

Corollary 1.37. Let all the conditions of the Mean Value Theorem be fulfilled, and let
A e L(X,Y). Then

17(b) = f(a) = A(b = a)|| < sup [|[Daf(c) = Al [|b = all.

c€la,b]

Proof. The proof reduces to the application of the Mean Value Theorem to the mapping
g(@) = f(z) — A . O
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Corollary 1.38. Let X and Y be normed spaces, let U be a neighborhood of a point &
in X, and let a mapping f : U — Y be Gateaux differentiable at each point x € U. If
the mapping x — Dgf(x) is continuous at the point &, then the mapping f is strictly
differentiable at & (and consequently it is Fréchet differentiable at that point).

Proof. Given ¢ > 0, there is & > 0 such that the relation
|z — 2| <6 = |Daf(z) — Daf(2)ll <e (1.9)

holds. If ||z1 — Z|| < ¢ and |lzg — &|| < 0, then for any x = x1 + t(z2 — z1) € [x1, 2],
0 <t <1, we have

|z —2[| = [lz1 + t(ze — 21) — 2| = [[t(z2 — ) + (1 = t)(21 — 2)|
<tllws — &)+ (1 —t) oy — 2| < 6+ (1 — )6 =4,

and therefore, by virtue of (1.9), we have | Dgf(z) — Daf(2)|| < e.
Applying Corollary 1.37 to A = D¢ f(Z), we obtain

1f(z1) = f(22) = Daf(2) - (x1 —22)l| < Subrefy, a) 1Paf (x) — Do f(2)] Iz — 22|
< eller — a2
which implies the strict differentiability of f at Z. O

1.2.5 Differentiation in a Product Space. Partial Derivatives. Theorem
on The Total Differential.

In this subsection X,Y and Z are normed spaces. We shall begin with the case of a
mapping whose values belong to the product space Y x Z,ie., F:U —Y x Z, U C X.
Since a point of Y x Z is a pair (y, z), the mapping F' also consists of two components:
F(z) = (G(z),H(z)), where G : U — Y and H : U — Z. The corresponding definitions
immediately imply:

Proposition 1.39. Let X,Y and Z be normed spaces, let U be a neighborhood of a point
zimmX,andletG:U—Y and H:U — Z.

For the mapping F = (G,H) : U — Y x Z to be differentiable at the point x in the
sense of Gateaux or Fréchet or strict differentiability, it is necessary and sufficient that G
and H possess the same property. Moreover, in this case

DF(z) = (DG(x), DH(x)),
or for all h € X, we have
DF(x)-h=(DG(x)-h, DH(x) - h).

Now we turn to the case when the domain of the mapping F' : U — Z belongs to the
product space: U C X x Y.

Definition 1.40. Let X,Y and Z be normed spaces, let U be a neighborhood of a point
(Z,9) in X x Y, and let F': U — Z. If the mapping x — F'(x,7) is (Gateaux or Fréchet
or strictly) differentiable at the point &, its differential is called the partial differantial of
the mapping F' with respect to = at the point (2, §) and is denoted D1 F'(Z,¢). The partial
differential Dy F'(Z,¢) with respect to y is defined in an analogous manner.
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Theorem 1.41. (Theorem on the Total Differential) Let X,Y and Z be normed
spaces, let U be a neighborhood of a point (&,79) in X XY and let F : U — Z be a mapping
possessing the partial derivatives D1 F(x,y) and DoF (z,y) in Gdteaux’ sense at each point
(z,y) €U.

If the mappings (z,y) — D1F(x,y) and (x,y) — DoF(x,y) are continuous at a point
(Z,9) € U in the uniform topology of operators, then F' is strictly differentiable at that
point, and moreover,

DF(,9).(§,n) = D1F(2,9).§ + D2F(2,9).m
forall (§,n) € X x Y.

Proof. Given an arbitrary ¢ > 0, let us choose é > 0 small enough so that the neighborhood
V=A{(zy): llz =2l <6, [ly -l <o}
of the point (Z, ) is contained in U and the inequalities
ID1F (2, y) = DiF(2,9)| <e, [P2F(z,y) = DoF(2,9) <e (1.10)
hold in that neighborhood. Now we have

A = F(z1,y1) — F(22,y2) — D1F(2,9) (21 — 22) — D2F(2,9)(y1 — y2)
= (F(z1,51) — F(z1,92) — D1F(2,9) (71 — 22))
+ (F(z1,y2) — F(z2,92) — D2F(2,9)(y1 — y2))-

It can readily be seen that if the points (21, 1), (z2,y2) belong to V, then (z2, y1)
€ V, and moreover the line segments [(x1,y1), (z2, y1)] and [(z2,y1), (z2,y2)] are contained
in V.C U . Therefore, the functions z — F(x,y1) and y — F(x2,y) are Gateaux
differentiable: the first of them possesses the differential D F' on [z1, 2] and the other
possesses the differential Do F' on [y1,y2]. Applying the Mean Value Theorem to these
functions we obtain, by virtue of (1.10), the relations

(x1,91), (x2,92) €V =

[Al < sup [|D1F(z,51) — DiF(Z, 9)| lz1 — 22

z€[x1, 2]

+ sup  [|DaF(z2,w) — D2F(2,9)| [[y1 — w2l
wely1, Yol

e(llzr = all + llyr = w2l))-

And so, F is strictly differentiable at (Z,9). O






Chapter 2

Infinite-Horizon Optimal Control
Problem in Presence of
Asymptotical Constraint and a
Weak Pontryagin Principle

2.1 Introduction

The aim of this chapter is to introduce the infinite-horizon optimal control problem
in discrete time framework with asymptotical constraint and to establish for it necessary
condition of optimality in the form of weak Pontryagin principle. We consider the following
optimal control problem

Maximize K(y,u) := Zf:"(‘f ﬂtw(yt, ut)
when  y = (ye)ten € (RN, w = (up)ten € UV,
Yo =1, imysyo0 Yt = Yoo, (Pm)
w is bounded,
Vt €N, yrr1 = g(ye, ur),

where U C R? is nonempty; 8 € (0,1); 1, yoo € R" fixed; function ¢ : R® x U —
R and function g : R® x U — R", and (R™)N (respectively UY) denotes the set of the
sequences in R" (respectively U). In comparison with existing results on bounded processes
like [14] and [16], the specificness of the present work is the presence of the asymptotical
constraint on the state variable limy—, oo ¥+ = Yoo. Its meaning is that the optimal state
of the problem stays near a "good" or "expected" value on the long run.

The approach to this problem is functional analytic; we translate our problem into static
form of optimization in suitable Banach sequence spaces. We describe the content of this
chapter as follows.

- In Section 2.2 we introduce a problem of optimal control which is equivalent to the
initial problem and is defined in the following classical sequence spaces: co(N,R™) the
space of all sequences in (R™)N which converge to zero at infinity, and £>°(N, U) the space
of all sequences in UN which are bounded.

- In Section 2.3 we study the properties of operators and functionals on sequence spaces.
A first novelty is a characterization of the operators which send co(N, R™) x £*°(N, U) into
co(N,R™) (Theorem 2.2). The other results use this characterization and existing results
on Nemytskii operators from ¢>°(N,R") x ¢>*°(N, U) into ¢>°(N,R™).
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- Section 2.4 is devoted to the solutions which converge toward zero of a linear difference
equation. These results are useful to establish regularity properties of the differential
of operators formalizing the nonlinear difference equation which governs the dynamical
system.

- In Section 2.5 we establish a variation of a Karush-Kuhn-Tucker theorem which is
useful for weak Pontryagin principles in later subsections.

- In Section 2.6 and Section 2.7 we establish weak Pontryagin principles for the
considered problems.

2.2 The Supporting Problem

In this section we introduce a supporting problem which can be translated equivalently
into the form of Problem (P,,). The purpose of this is that with the supporting problem,
we can work in classical Banach sequence spaces. We consider the following optimal control
problem:

Maximize J(z,u) = >, ﬁtqﬁ(ajt, ut)
when z = (2¢)ten € co(N,R"™),
u = (ut)en € L*°(N,U), (Ps)
To =1,
vVt € N, T4l = f(a:t,ut).

Here U, g and 7 are exactly the same like those in the main problem. Functions ¢ and
f are defined like functions ¢ and g, respectively. Notice that Problem (FP,,) can be
translated into the form of Problem (P;) by using the following transformation

- Let for all t € N, 2z := ¥ — Yoo. Then z = (2t)teny € co(N,R™) since
limy 400 2t = limy s 4 oo (Yt — Yoo) = 0.

- Now K(y,u) = 2“:(’8 ﬁtw(yt,ut) = Z;o(‘f Btw(zt + Yoo, ut). We set N(z,u) :=

pFiing Btgo(zt,ut) where ¢(z,u) 1= (2 + Yoo, u) for all (z,u) € R" x U then K(y,u) =

N(z,u).

- Finally, we set £(z,u) := g(2 + Yoo, U) — Yoo for all (z,u) € R™ x U then for all
t € N, from y;+1 = g(y¢, ur) we obtain the equivalent equation zy11 = £(z¢, uy).
After these settings, Problem (P,,) becomes:

Maximize N(z,u):= > % Btgo(zt, ut)
when 2z = (2¢)en € co(N,R"™),
u = (ut)tEN S EOO(N, U), (Pl)
20 =1 — Yoo,

Vt € N, Zt+1 = f(zt,ut).

This problem has precisely the form of Problem (Ps).

2.3 Some Useful Properties of Nemytskii Operators

This section is devoted to the study of several operators between sequence spaces;
notably the Nemytskii operators, and to the study of functionals and the mappings which
define the criterion and the dynamical system of our maximization problems. We also
establish results of continuity and Fréchet differentiability for those operators.
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Lemma 2.1. Let ( be a mapping from X x V into Y where X, V and Y are normed
spaces and U be a nonempty subset of V.. Then from

(i) For all B bounded, nonempty in U: lim,_,o(sup,cp ||((z, u)||) =0,
we obtain

(i) For all z € co(N,X), for all u € (*N,U) : ({(xt,u))ten € co(N,Y) or

equivalently, limy_, 1 oo ((x¢, uy) = 0.

Proof. Let z € ¢o(N, X) and u € ¢*°(N,U). Take B = {u, t € N}, then B is bounded
since (u¢)y € ¢°°(N,U). Using the hypothesis (i) of this lemma, we know that for this
set B, lim,_o(sup,ep [|¢(z,u)||) = 0. It means that with ¢ > 0 arbitrarily, there exists
d: > 0 such that for all x € X, sup,cp||¢(z,u)|| < € when ||z|| < J. which also means
that for all t € N, ||{(x,us)|| < € when |z|| < .. From (x¢): € co(N,X) we obtain
limy 400 2 = 0. It means that with J. > 0 above, there exists T" € Ry such that for all
t € N, when ¢t > T we have ||z]| < d..

From these arguments, we derive that with € > 0 arbitrarily, there exists T' € R such
that for all ¢ € N, when ¢ > T we have ||z;|| < - and hence, ||((z¢,us)|| < €. And so, we
have proven lim;_, o ((x¢,u;) = 0 and we obtain ({(x¢, ut))ien € co(N,Y). d

Theorem 2.2. Let X, V, Y be three normed spaces, U be a nonempty subset of V and
(: X xU =Y be a mapping such that, for all x € X, the partial mapping u — ((x, u)
transforms the bounded subsets of U into bounded subsets of Y. Then the assertions (i)
and (ii) of Lemma 2.1 are equivalent.

Proof. Using Lemma 2.1 we have (i) = (ii). Now we prove the converse implication
(ii) = (i). Let B be nonempty bounded subset of U. Let z € ¢y(N, X). From the
assumption on ¢, we know that, for all t € N, we have sup,cp [|((z¢, v)|| < +00. Therefore,
for all ¢ € N, there exists u; € B such that

0 < sup ¢, )l < 1€t un) | + -

ueB t+1
Note that for all t € N, w, € B, then u = (u)tey € (*°(N,U). Using
(ii), we obtain lim; ;o ||¢(zs,u)]| = 0 and from previous inequality we obtain
limy 4 o0 SUP,ep [|€(24, w)|| = 0, and since we work in normed spaces we can use the
sequential characterization of the limit (which will be proven in Remark 2.6) and assert
that we obtain (i). O

Remark 2.3. Assertion (ii) of Lemma 2.1 permits to define the Nemytskii operator
Ne 2 co(N, X) x L2(N,U) = co(N,Y), Ne(z, u) == (((@¢, ut))sen.

Proof. Let x € ¢y(N, X) and u € ¢*°(N,U). From assertion (ii) of Lemma 2.1 we have
limy— 400 C(2¢,ur) = 0. It means that Ne(z,u) = (¢(z¢, us))en € co(N,Y). Hence, N¢ is
well defined. O

Remark 2.4. Let Br :={v €V : |jv]| < R} when R € (0,+00). We have the following
statements:

1. In the setting of Theorem 2.2, the assumption on ( is equivalent to the following
condition:

Ve X, VR € (0,+00), sup |[((z,u)| < +oc.
UGUQBR



CHAPTER 2. INFINITE-HORIZON OPTIMAL CONTROL PROBLEM IN PRESENCE OF
38 ASYMPTOTICAL CONSTRAINT AND A WEAK PONTRYAGIN PRINCIPLE

2. The assertion (i) of Lemma 2.1 is equivalent to

VR € (0, +00), glcin%< sup HC(w,u)O =0

—Y \ueUNBgr

3. It is also noticed that assertion (i) of Lemma 2.1 and the continuity of [x — ((z,u)]
for all w € U imply ¢(0,u) =0 for all u € U.

Proof. We will prove these assertions one after another.

1. Let ¢ is a function that satisfies the assumption of Theorem 2.2. It is obvious that
Br :={veV: |v|| <R} is bounded for all R € (0,400). Then B := U N By is
a bounded subset of U and hence, for all z € X, ((z,.) transforms B into bounded
subset of Y which means that for all x € X, sup,cynp, [I((z,u)]| < +oo. On the
contrary, let B be a bounded subset of U then there exists R € (0,+00) such
that B C (Bg NU). Hence, from (Vac € X, supueynpg IC(z,u)|| < —i—oo) we obtain
(Vx € X, sup,cp [|¢(z,u)|| < +00). Therefore, for all z € X, the partial mapping
u — ((z, u) transforms the bounded subsets of U into bounded subsets of Y.

2. The reasoning is similar to 1.

3. Since B = {u} is a bounded set for all w € U, we obtain |{(0,u)||
limg 0 [|C(, u)[| = limg—0(Supye gy [IC(@, u)[]) = 0. Hence, for all u € U, ((0,u) =

O <=

Remark 2.5. In the setting of Theorem 2.2, if in addition, we assume that dim V' < 400
and U is closed then if ((x,.) € C°(U,Y), ¢ (z,.) transforms the bounded subsets of U
into bounded subsets of Y.

Proof. Let B be a bounded subset of U. Since U is closed, B, the closure of B, is also a
subset of U and since B is bounded, B is compact. Now if ((z,.) € C°(U,Y), then ((x,.)
is continuous on B. Using Theorem 4.14 on page 89 of [53], we obtain {{(z,u), u € B} is
also compact in Y. Therefore, its subset {((x,u), u € B} is bounded. O

Remark 2.6. Let ( € C%X x V,Y) where X, V and Y are finite-dimensional Banach
spaces and U be a nonempty closed subset of V. Then the following statement are
equivalent:

(i) For all B bounded, nonempty in U, limy,_,o(sup,ep ||{(z, u)|) = 0.
(11) For all (ut)t S KOO(N, U), For all (xt)t S C()(N,X), limt_H_oo C(mt,ut) =0.
(iii) For all B bounded, nonempty in U, for all (x¢); € co(N, X),

li =0.
t_gnoo(zlelg 1C(xe,w)])

(iv) For all K compact in U, limg ,o(sup,cx [|¢(z,w)]]) = 0.

Proof. We will prove the equivalent of (i) and (ii), then we will prove that (i) <= (iii)
and finally, (i) < (iv).
— Prove (i) <= (ii): it is a direct consequence of Remark 2.5 and Theorem 2.2.
— Prove (i) <= (iii)
— (i) = (iii): suppose that we have (i). Let B be some bounded nonempty set in
U and sequence (x¢): € co(N, X). Now lim,_,o(sup,ep ||¢(z,u)||) = 0 means that
for all € > 0, there exists 6 > 0 such that sup,cp ||((z,u)|| < e when ||z| < 4.
Now since (x¢): € co(N, X) then with ¢ above there exists T € Ry such that
when ¢t > T, t € N we have [|z¢]| < § and hence, sup,cp ||((zt, )| < € from the
above-mentioned argument. And so limy_, 4o (sup,ep ||¢(z¢, v)||) = 0.
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— (iii) == (i): Let B be a bounded nonempty set in space U. For all z € X, we
set S(x) := sup,ep ||¢(z,u)||. Obviously, S(z) > 0 on X. Now we can rewrite (iii)
= (i) as follows

V(xe)e € CO(N’X)’tEeroo S(ze) =0 = }31_% S(z) =0.

We will prove this implication by contradiction. Suppose that we have (ii) and
not (i). We have

not (i) < not[Ve >0, 3. >0, Vz € X, ||z| <. = S(z) < €]
& [Fe >0, V0 >0, Jzs € X, ||xs]| <0 and S(zs) > ¢].

We take § = % when n € N,. Then from the meaning of not (i), the following
statement holds

1
[Fe >0, Vn € Ny, 3z, ;=21 € X, ||z,]] < — and S(z,) > €].
n n

Then there exists (zn)nen, € co(N, X) such that S(z,) > € for all n € N,.. It means
that limy, 100 S(2n) > € > 0. Using (ii), since (zn)nen, € co(N, X), we have
limy,—, 400 S(z,) = 0. Hence, we obtain the contradiction and so the implication
(iii) = (i) is proven.

— Prove (i) < (iv):

— First, we prove that (i) = (iv). Let K be some compact set in U. Then K is
bounded. From (i) we immediately obtain the result of (iv).

— Now on the other hand, suppose that, for all K compact in U,
lim,_,o(sup,ex [|[((x,u)|]) = 0. Let B be some bounded nonempty subset of U.
Then its closure B is compact and B C U since dimV < 400 and U is closed.
From (iv) we know that lim, ,o(sup,cz [|(z,u)|) = 0. Hence, we only need to
prove that for all x € X, sup, 3 ||((z,u)|| = sup,ep ||{(2,u)].

When =z € X, we set 9¥(u) := |[[{(x,u)|| then 1 is continuous on
U since || and ((z,.) are continuous. It is known that supy(B) =
Py G2 0] < sup,e 5 1IC(x, )| = supw(B). ]

Now B is compact and then from Weierstrass theorem there exists 4 € B such
that () = sup+(B). Since 4 € B, there exists a sequence (uy), € BY such that
limy,— 4 o0 Uy, = @. Since 1 is continuous, we deduce that lim, oo ¥(u,) = ().
Hence, for all ¢ > 0, there exists n € N such that () < (up)+e < supy(B)+e.
Then for all € > 0, sup?(B) < supy)(B) +e. Let ¢ — 0, we have sup(B) <

sup(B). _
From the above arguments, we can conclude that sup¢(B) = sup(B) which
means that for all € X, sup,.5l/((z,u)|| = sup,ep ||¢(x,u)||. Hence, from

, U
hmx—m(supueg ||<(.’L', U)H) = 0 we have limmﬁﬂ(supueB Hg(xa 'U,)H) = O
O

Let U be a nonempty closed subset of R%. Let us call
(a.l) ¢ € C°(R™ x U,R™) ;
(«.2) For all B bounded, nonempty in U: lim,_,o(sup,ep |[{(z, u)|) = 0.

Now we introduce some important facts before proving the continuity of N¢. Let us fix
an arbitrary point (z,u) € co(N,R™) x ¢*°(N,U). Since z € ¢o(N,R"™) C ¢*°(N,R") and
u € (*(N,U) we can assert that {(x¢,u;) : t € N} is bounded. Moreover, since
dim(R™ x U) < +oo then K = {(x¢,us) : t € N}, the closure of {(x¢,u) : t € N}, is
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compact and K C R” x U since U is closed. Using a property of locally compact
metric spaces, we know that since dimR"™ x U < 400, there exists p € (0,400) such
that L := {v = (z,u) e R* x U : d(v, K) < p}, the closure of {v = (z,u) € R" x U :
d(v, K) < p}, is also a compact set (see [26], page 65) and it is contained in R™ x U since
U is closed. Here d(v, K) is the distance from a point v to set K which is defined by
div, K) :=inf e |lv —V| .

Remark 2.7. Let U be a nonempty closed subset of R?. Under condition (a.1), ¢ is
uniformly continuous from L into R™ where L is defined as above.

Proof. We recall Heine - Cantor’s theorem: if ( : M — N is a continuous mapping between
two metric spaces and M is compact then ( is uniformly continuous on M (see Theorem
4.19, page 91 of [53]). Under (c.1) we have ¢ : L — R™ is a continuous mapping. Besides,
L is compact as already proven above. Hence, apply Theorem Heine - Cantor for our case,
we deduce that that ¢ is uniformly continuous from L into R™. It means that

Ve >0, 30. >0, Vv, € L, |[v—V| < b = |[C(v) — (V)| < e

We will use these facts to prove the continuity of operator N¢ in the following lemma.

Theorem 2.8. Let U be a nonempty closed subset of R and let ¢ : R® x U — R™ be
a mapping that satisfies conditions (o.1) and (.2). Then the Nemytskii operator N¢
is well defined and is continuous on co(N,R") x (*(N,U), i.e. N¢ € C%co(N,R")
X L°(N,U); co(N,R™)).

Proof. Tt can be seen that condition («.1) is the condition on ¢ and condition (a.2) is
the assertion (i) in Remark 2.6. Then using Remark 2.6 we can deduce that N¢ is well
defined. Now we prove its continuity. Take (z,u) € co(N,R™) x ¢>°(N,U) arbitrarily.
Then K = {(x,u;):t € N} is compact and there exists p € (0,+00) such that L =
{v=(z,u) e R" x U : d(v,K) < p} is also compact. From Remark 2.7 we know that ( is
uniformly continuous on L. Then for any € > 0, there exists 6. > 0 such that for
all v,/ € L, if |lv — V|| < dc then ||((v) — (V)| < e.

Let (z/,u) € ¢o(N,R™) x ¢°(N,U) such that ||z — 2/|| + ||lu — ¥/|| < ¢ := min{d., p}.
From this we obtain for all t € N, ||lz; — 2}|| + [Jur — uj|]| < p . Hence, for all t € N,
if we set vy := (x4,u) and v, := (2}, u}) then from the definition of set L we see that
for all ¢ € N, 1 and v, belong to L (because d(vy, K) = 0 and d(v;, K) < d(v,v;) =
e = 2yl + [lue — wil] < p)-

On the other hand, since for all ¢t € N, v, and v; belong to L and |v; — || =
|lzr — 2} + |lur — up]] < e then [|[((v:) — ((v})|| < e. This inequality is satisfied for all ¢ €
N, then sup;cy [|C (@, ue) — ((x}, up)|| < € or equivalently, || N¢(z,u) — Ne(2/, /)| < e. The
last inequality holds for all (z/,u/) € co(N,R™) x £*°(N, U) satisfying ||z — 2/||+|Ju — /|| <
0 and it means that operator N¢ is continuous at (z,u). From the arbitrary choice of
(z,u) in cp(N,R") x £>°(N,U) we obtain N¢ € C%(co(N,R") x (*°(N,U); co(N,R™)). O

Remark 2.9. Let X, V, W be real Banach spaces, and U be a nonempty subset of V. Let
F: X xU — W be a mapping. We say that F is of class C! at (x,u) € X x U when there
exist an open neighborhood N, of (z,u) in X x V and a mapping Fy € C'(Ny, W)
such that Fy Na, In finite dimension, it is showed that if F' is of

class C' at each point of X x U, then there exist an open subset G of V and a mapping
F e CYX x G,W) such that U C G and F|, , = F (see [46], page 7).

WNXxU F]NxﬂﬁXxU'
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Remark 2.10. Recall that U is star-shaped with respect to u” means that, for all v € U,
the segment [u’,u] is included in U (see page 93 of [58]). It is also noticed that if U is
convex then U is star-shaped with respect to all of its elements.

Remark 2.11. When Fy, Fy € CY(X x G, W) such that Fy, , = Fy .y = F, when U
is star-shaped with respect to u?, when u, u® € U and 2° € X, note that, for all § € (0, 1),
we have Fy (2%, (1 —0)u® +0u) = Fa(2°, (1 — 0)u® + 0u) = F(2°, (1 — 0)u’ 4 0u). Therefore
we have Do Fy (20, u®) (u—u®) = d%‘G_OFl(a:O, (1-0)u’+0u) = %‘O_OFQ(«TO, (1—0)u’+0u) =
Do Fy (2%, u®) (u — uY), and so Do F (2, u®)(u — u°) does not depend of extension of F.

To treat the differentiability of Nemytskii operator N¢, we introduce the two following
conditions:

(a.3) For all x € R™ and for all u € U, the Fréchet differential D((x,u) exists and D( is
of class C% on R™ x U;

(a.4) For all B bounded, nonempty in U: lim,_,o(sup,ecp [|[D¢(z,u)||) = 0.

Under (a.1), («.3) and («.4), condition (a.2) can be lightened into a weaker one which is
shown in the following remark.

Remark 2.12. Let U be a nonempty closed subset of R% and let ¢ : R™ x U —R™ be a
mapping which belongs to class C*(R™ x U, R™). Consider the following assumptions.

(i) limgy—o(supyep || D¢(x,u)||) = 0 for all B bounded, nonempty in U.
(ii) There exists u® € U such that ¢(0,u") = 0 and U is star-shaped with respect to u?.

If (i) and (ii) hold, then we obtain lim, ,o(sup,cp ||((x,u)|]) = 0 for all B bounded,
nonempty in U.

Proof. Let ¢ be a mapping which satisfies all the assumptions of this remark. It is noticed
that in this remark, assumption ¢ € C}(R" x U, R™) is equivalent to ¢ satisfies (a.1)
and (a.3); assumption (i) is (a.4); and the conclusion is (a.2). Let B be a nonempty
bounded set in U then there exists R € (0,+o0c) such that (BU{u}) C Bg where
Br = {u € R?: ||u|]| < R}. Using Mean Value Theorem, for all v € B and for all z € R",
we have

¢, u)ll = |6 u®)| < ||, w) = ()|

< sup ||Dol(x,w)]| Hu — uOH <2R. sup | D{(z,w)||
we [ud,u] wEBRNU

since SUPywelu,ul] HDQC(JJ’ w)” < SUPywe[u,u0) HDC(.T, U))H < SUPyweBrNU ”DC(SE, w)” Here we
notice that U contains segment [u", u] since U is star-shaped with respect to u” and hence,
for all x € R™, D((z,.) exists at any w € [u’,u]. Besides, Bg N U is nonempty bounded

subset of U since it contains ©® and Br N U is a subset of Br. The last inequality is
equivalent to the following

[, w)l < ||, u)|| + 2R, sup || D¢, )]

weBRrNU
This inequality holds for all u € B, hence
sup [|¢(z, w)l| < |[¢(z,u®)|| + 2R, sup_|ID¢(,w)]. (2.1)
ueB weBRrNU

Using continuity of ¢ and assumption (ii) of this remark, we obtain

lim ¢(z,u’) = ¢(0,u°) =0,

z—0
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and using assumption (i), since (BrpNU) is a nonempty bounded subset of U, we
obtain limg 0(sup,ecp,nv [[D¢(z, w)||) = 0. Hence, if we take limit when z — 0 on
both sides of (2.1), we obtain

lim (222 HC(%MH) = 0.

We will call the weaker condition as follows.

(@.2") There exists u® € U such that ¢(0,4") = 0 and U is star-shaped with respect to

u?.

From these conditions, we have following theorem on the differentiability of Nemytskii
operator.

Theorem 2.13. Let U be a nonempty closed subset of R% and let ¢ : R™ x U =R™ be a
mapping which satisfies conditions (a.1), (a.2'), (a.3) and (a.4). Then N¢ € C'(co(N,R")
X L°(N,U);co(N,R™)).  Moreover, for all (x,u) € co(N,R™) x (*(N,U) and for all
(0zx,0u) € co(N,R™) x (>*°(N,U), we have

DNC(£> @)(5733) @) = (DC(xtv ut)'((sxh 6ut))t€N
= (D1 (4, up). 0 + Dol (e, ue).0ug)ten

where D1 and Dy denote the partial Fréchet differentiations.

Proof. Under (a.l), («.2'), (a.3) and («.4), after Remark 2.12, we can assert that ¢
satisfies condition («.2). Under conditions (c.1) and («.2), using Theorem 2.8, we obtain
N¢ € C%co(N,R™) x £2°(N,U); co(N,R™)). Now we define a new Nemytskii operator Np¢
on ¢o(N,R"™) x £>°(N,U) by setting Np¢(z,u) := (D{(x¢,ur))sen for all (z,u) € co(N,R")
x ¢>°(N,U). Under conditions («.3) and («.4), by realizing a similar interpretation as in
the proof of Theorem 2.8, we obtain Np¢ is of class C° on ¢o(N,R™) x (*°(N,U).

Take (z,u) € co(N,R™) x £>°(N,U) and € > 0 arbitrarily. Since Np, is continuous at
(z,u), there exists 6. > 0 such that for all (z/,u/) € ¢o(N,R™) x (*°(N,U) satisfying
|z" —z|| + [|&' — u|| < d, the following inequality holds |[Np¢(z,u) — Npe(2/,o')|| < e.
That means for all ¢ € N, | D¢ (x¢, us) — DC(2), u})|| < e.

Now we consider the following expression

G: = HC(ﬂC;,U;) — (@, ur) — DC(w, up)- (v — @, up — Ut)” .
For all ¢t € N, using Corollary 1.37 in Chapter 1, we know that

Gy < sup |1D¢ (21, we) — DC(xg, ue) || [| (9, 0w

(zt,we) €[(we,ue), (2] u))]

where 6z := z} — 1y € R™; Suy == v} —uy € RE For all (24, wy) € [(we, ur), (z},u})], we have
120 = @ill + lwe = well < o — il + [lue — will < 6, hence [|D¢(z1, we) — DC(e, ur)|| < e
Therefore, we obtain

sup 1DC(z¢, we) — DC(xe,ue)|| < e.

(zt,we) €[(we,ut),(x,u})]

Thus, we have

Vt €N, Gy < e|(0xe, dup) || = e(f|wr — || + [Jue — wil]),
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which can be rewritten as follows

sup Gy < e[z’ — | + lu” — uf) = e.(llozl] + [|ull
S

= (b)) e — (Gl u))en — (DC(we,w). (521, 0u) e | < 2. (102l] + [1du])
= [INe(e', ) = Ne(z,w) = Nig(z, w).(3z, 8u)|| < e(]az| + [|dul)).

The last inequality means that N¢ is Fréchet differentiable at the point (z,u). Since
the choice of (z,u) € c¢o(N,R™) x ¢£*°(N,U) is arbitrary, N¢ is Fréchet differentiable on
co(N,R™) x ¢>°(N,U) and moreover, for all (z,u) € ¢o(N,R") x ¢*(N,U) and for all
(dz,0u) € co(N,R") x £>(N,R?) we have

DNC(% w).(0z,du) = NDg(& u).(0z, 0u) = (DC(ws, ur). (62, 0us) ) e
= (D1¢ (¢, ug).0z¢ + DaC(xs, ug).0us)sen.

It is noticed that DN¢(z,u) and Np¢(z,u) are equal so DN¢(z,u) is continuous on
co(N,R") x ¢>*(N,U) from the continuity of Np¢(z,u). Hence, N; € Cl(co(N,R")
X (N, U); co(N,R™)). O

Finally, we introduce a theorem which relates to the functionals in the criterion of Problem
(Ps).

Theorem 2.14. Let U be a nonempty closed subset of R and let ¢ : R" x U — R be a
mapping. If ¢ € CL(R™ x U,R) then the following assertions hold

(i) Ny : co(N,R™) x (*(N,U) — (*°(N,R) is well defined where Ng(z,u) :=
(¢(@t, ut))ten.

(ii) Ny is continuous on co(N,R"™) x £>*(N,U).

(iii) For all (z,u) € co(N,R™) x £*(N,U), DNy(z,u) exists and DNy is continuous
on co(N,R™) x £°(N,U). Moreover, for all (z,u) € co(N,R"™) x £*(N,U) and for
all (dz,0u) € co(N,R?) x (N, R?) we have

DNg(z,u).(dz, 6u) = (D1d(t, ur).021 + Dag (s, ur).6us)ien-

Proof. (i) Let (z,u) € co(N,R™) x £°(N,U). Let V = {& = (2, w) : t € N}. Then
V CR"™ x U and V is bounded since

Sup [|§¢ | oo = sup [[(zs, wr)llog < sup [l + sup fJuefl
teN teN teN teN
= [zl + [lu] < +o0.

Since ¢ is continuous on V, ¢(V) is bounded in R, ie. sup,cy|o(&)| =
sUpsen |@(2e, )| < 400 = (d(x¢, ue))ren € €°(N,R). Hence, Ny is well defined
and (i) holds.

(ii) After (i) we know that Ny : ¢o(N,R") x £*°(N,U) — ¢*°(N,R) is well defined. By
a similar proceeding like in the proof of Theorem 2.8 we obtain the continuity of
Ny on ¢g(N,R™) x (N, U).

(iii) We know that ¢ € C'(R™ x U, R) then D¢ is of class C° on R" x U. We define
new Nemytskii operator D® : co(N,R?) x (*(N,U) — (°(N, L(R" x R? R)),
where D®(z,u) := (D¢(xs,us)),cy. Proceeding like in (i) and (ii), we obtain D®
is well defined and is continuous on ¢o(N,R"™) x ¢*°(N,U). Then using a similar
interpretation like the proof of Theorem 2.13, we obtain assertion (iii), in which
DNy coincides with D®.

After (i), (ii) and (iii) we can assert that Ny € C(co(N,R") x £>*(N,U); ¢(*(N,R)).
0



CHAPTER 2. INFINITE-HORIZON OPTIMAL CONTROL PROBLEM IN PRESENCE OF
44 ASYMPTOTICAL CONSTRAINT AND A WEAK PONTRYAGIN PRINCIPLE

2.4 Linear Difference Equations

We will establish a result on the existence of a solution of a nonhomogeneous
linear equation which belongs to c¢o(N,R™) when the second member belongs to
co(N,R™). L(R™,R"™) denotes the space of linear mappings from R" into R", and ||A]|, :=
sup{||Az| : x € R", ||z|| < 1} is the norm on L(R™ R").

Proposition 2.15. Let (A;)ien be a sequence in L(R™,R™), 2z € co(N,R") and w € R™.
We consider the following Cauchy problem

b1 = Agly + }

60 = w. (DE)

We assume that sup;cy || A¢ll, < 1. Then the solution of (DE) belongs to co(N,R™).

Proof. We denotes by £ = (¢;)en the solution of (DE). We need to prove that £ exists and
L € co(N,R™). Obviously, for any z = (zt)ieny € co(N,R"™) this system of difference
equations has an unique solution which can be generalized by induction as follows

by = w;

ly = Agly + 20 = Agw + 20;

by = A1l + 21 = A1 Agw + Az + 215

b3 = Agly + 29 = Ao A1 Agw + A A12g + Aoz + 29;

b1 = (TTizoAs)w + (TTi=1 Ai) 20
+ (HE:QAi)Zl + o+ Az + 2

Now we prove that £ = ({;)ien € £°°(N,R™). From the last equality, we have:

[€eall < ( EztollAillg) lwll + (TTiza 143l 2) [l 2o
H(Tim 1Aill o) 120l + - -+ Al 2 [zl + (22

Let r = max{||z| ., |w[|} < +00 and M = sup,y [|A¢|| < 1. Then we have

<r ( f;:o 1 4ill ) + TTi=y |4l
- iz [Aill + -+ (| Al +1
<r(L+M+4+ M2+ 4 M)

= supyey [l < rEESME=riy < 4oo.

[1€e+1]]

And so, (4;)ien € °(N,R"™).
Finally, we prove that £ = (¢¢)ien € co(N,R™). We have:

Vit € N, €t+1 == Atgt + Zt
= VEEN, [[bepall < (Al 16l + Nlzell < MG+ [l2]] -

Since (4;)ien € £°(N,R™), limsup,_,, . ||¢|| exists and it is finite. Take limsup,_, ., of
both sides of last inequation and notice that limsup,_, o [[i+1] = limsup,_ ., o ||¢| and
limsup; ., o [|2¢|| = 0 (since (z¢)¢ € co(N,R™)) then we obtain the following inequality

limsup ||| < M limsup ||¢:]| < (1 — M) limsup ||¢]| < 0.
t—+4o0 t——+o00 t—+o0

From this we obtain limsup,_, ., [|[¢|| = 0 because M < 1. Now since limsup;_, . ||| =
0 we obtain lim;_, 4 ||¢]] = 0. Therefore, (¢;)ien € co(N,R™). O
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Corollary 2.16. Let (B:)ien be a sequence in L(R™,R™), d € co(N,R") and e € R". We
consider the following Cauchy problem

kiy1 = Biky + dy,
ko = e. } (DE1)

We assume that there exists t. € N such that sup;s, || Bill, < 1. Then the solution of
(DE1) belongs to co(N,R™).

Proof. For all t € N, we set A; := By, € L(R",R") and 2; := diy4,. Then we have
supsey [|A¢ell, < 1 and z € ¢o(N,R™). We denote by k the solution of (DE1). We set
by := kyyy, for all t € N. Then we have €411 = krys, 41 = Brye kire, + diar, = Aly + 24 for
all ¢ € N and ¢y = k;, € R". Using Proposition 2.15 we obtain lim;, ¢ = 0, i.e.
limy—y 400 kt4t, = 0 which implies lim;_, 4 o0 bt = 0. O]

2.5 Static Optimization - a Result in Abstract Banach
Spaces

In this section we establish a result in the form of Karush-Kuhn-Tucker theorem in
abstract Banach spaces. It will be useful for the proof of weak Pontryagin principles in
next sections.

Lemma 2.17. Let X, V, W be real Banach spaces, and U be a nonempty subset of V.
Let J € CHX xU,R) and T € CHX xU,W). Let (£,1) be a solution of the following

optimization problem

Maximize J(x,u)
when xe€ X, uel, I'(z,u)=0.

We assume that D1T'(2, 1) is invertible and that U is star-shaped with respect to 4. Then
there exists M € W* which satisfies the following conditions.

(i) DvJ(&,a) + M o DiT'(2,4) = 0.

(ii) Yu e U, (D2 J(&,0) + M o DoT'(2,14),u — 4y < 0.

Proof. Let U; be an open subset of V such that &Y C U; and such that there exists
Iy € CYX x Uy, W) such that I'y), ,, =T. Since DiT'1(,4) = D1I'(2, ) is invertible, we
can use Implicit Function Theorem and assert that there exist Nz an open neighborhood
of # in X, N an open convex neighborhood of @ in U7, and a mapping 7 € C'(Ng, Nz)
such that

{(z,u) € Nz x Ng : T1(z,u) = 0} = {(m(u),u) : u € Ny}

Differentiating I'y (7(u), w) = 0 at @ we obtain D1I'1(Z,4) o Dr(4) 4+ D2I'1 (&, @) = 0 which
implies
Dr(a) = —(D1T(z,4)) "t o DoT (2, 40). (2.2)

Since (&, 1) is a solution of the initial problem, @ is a solution of the following problem

Maximize B(u)
when uweN;NU
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where B(u) = J(mw(u),u). Since B is differentiable (as a composition of differentiable
mappings) and Ny NU is also star-shaped with respect to i, a necessary condition of
optimality for the last problem is

Vu € Ng NU, (DB(4),u —a) <0, (2.3)

since 0 > limg_,o1 (B(@ +0(u — @) — B(@)) = (DB(@),u — 4). When u € U, there exists
6, € (0,1) such that (1 — 6,)4 + 6,u € Ny NU. Using (2.3) we obtain

Oy - (DB(1),u —4)) = (DB(1), 0, (u —0)) = (DB(4), [(1 — 0,)4 + O,u] — 4y <0,

and so we obtain
Vu e U, (DB(1),u — ) < 0. (2.4)

Using the chain rule we obtain

DB() = D1J(&,4) o Dr() + Do J (2, 1). (2.5)
We define
M := —D1J(&,4) o (DiD(&,4))"! € W (2.6)
From (2.6) we obtain
D1 J(&,0) + M o DiI'(&, 1) = 0. (2.7)

Using (2.5) and (2.2) we have

DB(t) = —D1J(&, )0 (DiT(2,4))" o DoT(2,4) + Do J (2, 1)
= Mo Do'(#,4) + DoJ (4, 0)

and therefore, from (2.4) we obtain
Yu e U, (D2 J(2,0) + M o DoI'(Z,4),u — 4) <O0. (2.8)
O

Remark 2.18. There exist several results like this one in the books [25] and [64] which
use the convexity of U. In the necessary conditions of optimality we prefer to avoid the
convexity of the sets; it is why we have established this lemma.

2.6 Weak Pontryagin Principle for Problem (Ps)

We start by a translation of Problem (Ps) into a simpler abstract optimization
problem in Banach spaces. Let T : ¢o(N,R") x {*°(N,U) — ¢o(N,R") x R" where
T(z,u) = (F(z,u), h(z,u)). Here F(z,u) := (f(2s, ut) — Te41)ten and h(z, u) := xo — 1.
Then we can translate Problem (Ps) into the following problem.

Maximize J(z,u)
(P2) when z € ¢o(N,R"),u € (*°(N,U)
T(z,u) = 0.

We consider the following list of assumptions:
(A1) U is a nonempty closed subset of R?.
(A2) ¢ € CY(R" x U,R) and f € C*(R™ x U,R").
(A3) There exists u’ € U such that f(0,u’) = 0 and U is star-shaped with respect to

ul.
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(A4) limgo(supyep |Df(x,u)|¢) = 0 for all nonempty bounded subset B C U.

Lemma 2.19. Under condition (A2), the functional J is of class C* on co(N,R")
x (>*(N,U) and moreover, the following formula holds for all (z,u), (dz,0u) € co(N,R™)
x (N, U)

DJ(z,u).(dz, du) = :g::ﬁtDW(iBt, ug) 0y + :g::ﬁtDﬁ(fﬁt, U)oy,

Proof. Under condition (A2), the Nemytskii operator Ny : ¢o(N,R") x (*(N,U) —
(*(N,R) defined by Ny(z,u) := (¢(z,ur))ten is of class C1 on ¢o(N,R") x (*°(N,U)
using Theorem 2.14. Moreover, for all (z,u) € ¢o(N,R") x (*(N,U) and for all
(8, 6u) € co(N,R™) x £*°(N,R%), we have

DNgy(z,u).(6x, du) = (D1¢(x¢, us)dxs)ten + (D20 (¢, ug)dus)ten.

Consider the functional S : (*°(N,R) — R defined by S(r) := S/ 584 Tt is easy to
verify that S(airi + agra) = a1 S(r1) + a2S(rg) for all a1, az € R and for all r1, rp €
(>°(N,R). Hence, S is linear. Besides, |S(r)| < (Z£%58Y) |Irll, = ﬁ 7]l < 400 so
S is bounded and consequently, continuous. From Example 1.29 in Chapter 2, we
obtain S is of class C'! and moreover, for all r, dr € (*°(N,R), we have DS(r).0r =
S(r) = S5 Bt6rt. We see that J = S o Ny is of class C! as a composition of two C! -
mappings. Using the chain rule we obtain for all (z,u) € c¢o(N,R") x ¢>°(N,U) and for
all (z,0u) € co(N,R") x ¢°(N,R%) we have

D.J(z,w).(6z,u) = DS(Ny(z,u)) 0 DNy(z, u).(6z, 6u)
= S(DNy(z, u).(6z, 6u))

—+o00 —+o0
= tgoﬁtDléb(ﬂft, ug) 0y + tzoﬁtDM(ﬂft, ug)duy.

O]

Lemma 2.20. Under conditions (A1-A}), the Nemuytskii
operator Ny : co(N,R™) x £>°(N,U) — co(N,R") defined by N¢(z,u) := (f(z¢,u¢))en and
the operator F defined before (F(z,u) = (f(z¢,us) — Ti11)ten) are of class C* on
co(N,R™) x £°(N,U) and moreover, the following formulas hold for all (z,u) € co(N,R")
x (2(N,U) and for all (dz,6u) € co(N,R") x (N, R%):

1. DNy (z,u).(0z, du) = (D1f (e, ue)6xe)r + (Dof (e, u)Oue)s;
2. DF(&, Q)(@, (5716) = (le((l?t, ut)éxt — (5.%'t+1)t + (Dgf(l't, Ut)(gut)t.

Proof. Under conditions (A2-A4), we can assert that the mapping f satisfies all the
conditions (a.1), (a.2"), (a.3) and (a.4) (by replacing ¢ by f). Then using condition (A1)
and Theorem 2.13, we know that Ny € C'(co(N,R") x ¢*(N,U); co(N,R™). Moreover,
for all (z,u) € co(N,R") x ¢*(N,U) and for all (dz,du) € co(N,R?) x (=°(N,R%), we
have

DNy (z,u).(0x, 0u) = (D1 f(xe, us)0xs)ien + (Do f (x4, us)dug)ren.

So conclusion 1 is proven.

Now we consider operator A(z,u) := (—zty1)teny from co(N,R™) x ¢>°(N,U) into
co(N,R™). Obviously, A is linear and from ||A(z, u)|| < ||z|l, < ||1z]lo + U/l < 400, we
obtain A is bounded and hence, continuous. So A is of class C! and for all (z,u) €
co(N,R™) x (N, U), for all (dz,du) € co(N,R") x £>°(N,R%) we have

DA(z, u).(6z,6u) = A(dz, 6u) = (—67141)ren.
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We see that F' = Ny + A then F' is of class C' as a sum of two C''- mappings. Moreover,
for all (z,u) € co(N,R") x £*°(N,U) and for all (dz,u) € co(N,R?) x £>°(N,R?%) we have

DF(z,u).(0z,6u) = DNy(z,u).(dz, du) + DA(z, u).(dz, du)
= (D1 f (e, ur)0xe)e + (D2 f (@4, ur)our)e + (=024 41):
= (_le(.’Et, ’U,t)(SZIIt — 5$t+1)t + (Dgf(w‘t, ut)éut)t.

Hence, conclusion 2 is proven. ]

Under conditions (A1l-A4), using Lemma 2.19 and Lemma 2.20 we obtain J and
F are continuously differentiable on ¢o(N,R™) x ¢*°(N,U). Now we consider T (z,u) =
(F(z,u), h(z,u)) where F(z,u) = (f(x,ur) — T4+1)ten and h(z,u) = xo —n as they were
defined before. The operator h is obviously an affine continuous mapping since we can
consider h as a sum of linear continuous mapping Prg (projection with respect to the
O-coordinate of z) and a constant —n. Here Prg : ¢o(N,R") x ¢*°(N,U) — R" defined by
Pro(z,u) := x9. We know that mapping Prg is of class C! on cg(N,R") x ¢*°(N, U) and
for all (z,u) € co(N,R") x £*(N,U), for all (dz,du) € co(N,R?) x ¢*°(N,R?), we have

D Pro(z,u).(0z, du) = Pro(dz, du) = dzo.

In addition, a constant —n is continuously differentiable on ¢o(N,R™) x ¢*°(N,U) and its
differential is null function. Therefore, h is of class C! on ¢o(N,R") x ¢*°(N,U) and for
all (z,u) € co(N,R") x £*(N,U), for all (z,0u) € co(N,R") x ¢°(N,R%) we have

Dh(£7 Q)((LE’ @) = (D Prg _H))(lv Q) ) (571‘? @)
= Pro(dz, du) = dxy.

More specifically, Dh(z,u).(0x,du) = Dih(z,u).0x + Doh(z,u).du and from the above-
mentioned arguments, we obtain Dih(z,u).dz = dzg and Doh(z,u).0u = 0. From this
assertion, we obtain 7 is of class C! on ¢o(N,R") x ¢*°(N,U) since each of its element
mappings F' and h are of class C! on (N, R") x (N, U).

Lemma 2.21. We assume assumptions (A1-A4) fulfilled. Let (£,4) € co(N,R")
x (®(N,U) be a solution of (P2) and assume that for all t € N, U is star-shaped with
respect to . Then there exists (q, ) € €1(N,R™) x R™ which satisfies the two following
conditions.

(ii) For all u € (>°(N,U), <D2J@, @) + (g, 1) 0 DT (2, 1), u — g> <0.

Proof. Under conditions (A1-A4), after Lemma 2.19 and Lemma 2.20 we know that the
mappings J and T are of class C' on cg(N,R") x ¢*°(N,U). Hence, the partial Fréchet
differential with respect to z of mapping T exists at the optimal solution (Z,4). We
will prove that D7 (Z,4) is invertible. Let d = (di)ien € co(N,R") and e € R”
arbitrarily. We need to show that there exists an unique k = (k¢):en € co(N, R™) such that
DT (z,4).k = (—d,e). Since

DT (2,4).k = (D1F(Z,4).k, Dih(2,4).k),
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the problem is equivalent to the following one

DiF(2,0).k = —
Dih(2,d)k = e

- { D1F(,0)-k = —d,
]{0 = €.

d,

Now using Lemma 2.20, we know that D1F(&,4).k = (D1f(Z4, )kt — ki41)ten then
system above can be translated into the following problem of solutions in space ¢o(N,R")
of difference equations

ki1 = Biky +dy, t € N,
ko = e,

where By = Dy f(#,1:) € L(R™,R™). We will prove that sequence (By)icn satisfies the
property mentioned in Corollary 2.16. Set B := {4, : t € N} then B is nonempty bounded
set in U since 4 € (*°(N,U). For all ¢t € N, we have

0 <|Billz = ID1f (@ ae)ll o < [[Df(E, )l o < sup |Df(&e, u)
ueB

and therefore, using (A4) and Remark 2.6 we obtain lim;, | B:|, = 0. Hence,
there exists t, € N such that when sup,s; ||B:|, < 1. Finally, using Corollary 2.16
we obtain the unique solution k& = (k;)iey of the above system belongs to co(N,R™).
And so, we have proven that for any d = (di)ien € ¢o(N,R?) and e € R" the
equation D17 (Z,0).k = (—d,e) always has an unique solution (k¢);en that belongs to
co(N,R™). It means that operator D17 (&, ) is bijective, hence D17 (Z,4) is invertible.

Now take w in ¢*°(N, U) and take a € (0, 1) arbitrarily. From the boudedness of & and
u we obtain at+ (1 — a)u is bounded. Moreover, for all ¢ € N, since U is star-shaped with
respect to Uy we have atiy+(1—a)uy € U. Hence, we deduce that i+ (1—a)u € (°(N,U). It
means that ¢°>°(N, U) is star-shaped with respect to .

Recall that in Chapter 1, we have proven that ¢!(N,R™*) can be assimilated to the
dual topological space of co(N,R"), i.e. an element of ¢!(N,R™) can be considered
as a continuous linear functional on co(N,R™). Now all the assumptions of Lemma
2.17 are fulfilled and we can use Lemma 2.17 and assert that there exists Lagrange
multiplier (¢,p) € (co(N,R") x R")* = ¢}(N,R™) xR"™ which satisfies the announced
conclusions. O

Theorem 2.22. We assume assumptions (A1-A4) fulfilled. Let (Z,4) € co(N,R™) x
(*(N,U) be a solution of Problem (Ps) and assume that for all t € N, U is star-shaped
with respect to 4. Then there exists p € (' (N,, R™) such that

(AE].) Pt = Pt+1 © le(.f‘t,ﬂt) + ,Bt.Dl(ﬁ(.%t,’at) fOT’ all t e N*,
(WM1) (pes1 0 Daf(Z¢,0:) + BE.Dagp(Ze, G ), u — Gy) <0 for all t €N, for all u € U.

Proof. Since (Z,4) € co(N,R™)x£>°(N, U) is a solution of Problem (Ps), it is also a solution
of Problem (P2). Then Lemma 2.21 provides (g, u) € ¢(N,R™) xR™ such that

Dy J(&,2) + (g, 1) o DT (&,4) =0, } (2.9)

(D2J(2,8) + (¢, 1) 0 DaT (& @) u—1) <0

for all uw € *°(N,U). In (2.9), the equation can be rewritten equivalently as follows

D1J(2,2) + g0 D1 F(2,4) + po Dih(2,4) = 0.
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Then for all §z € ¢o(N,R"™) such that dxg = 0 we have

(DrJ(2,8) + g o DyF(&,) + o Dih(#,0)) oz = 0. (2.10)

Using results of Lemma 2.19 and Lemma 2.20, we know that D;J(Z,4).0z =
“+o00

t;)ﬁtDlﬁb(@t,@t)(sﬂft, DiF(z,4).0x = (D1f(z¢,us)dxs — 02441),ey and Dih(Z,4).0z =
dzg = 0. Hence, equation (2.10) becomes

+oo ' R +o0 R
t;)ﬁ Dip(&y, U)oy + t;) (qt, D1 f (¢, 0)0xs — 6x441) = 0

+oo 400
= > B'D1(dy, i)dzs + tzl (g, D1 f (&4, 04) 02 — dx441) — (g0, 01) = 0. (2.11)
=1 =

We fix t € N, arbitrarily. Take dz = (0xs)sen+ such that when s # ¢, dxs = 0 and
0x; varies in R™. Then the last equation becomes

B D1¢(E¢, 4y )dxs + (qr © Dy f (8¢, 0)) - 62y — qr—1 - 6 =0

& (B'D1¢(84,0t) + qi © D1 f (&4, 0t) — g1, 0¢) = 0.
This equality is verified for all dz; € R™ and for all ¢ € N,. And so we have

Vt € Ni, i1 = g1 © D1 f (&4, Gs) + ' D16p(E4, Gir). (2.12)
Now in (2.9), the inequation can be rewritten equivalently as follows
(DyJ(&,0) + go DyF(&,0) + o Doh(#, ), u — ) <0 for all u € (*(N,U).

Using results of Lemma 2.19 and Lemma 2.20, we know that DoJ(Z,4).(u —
“+oo

) = ZoﬂtDW(fCt,ﬁt)(ut — ), DoF'(2,4).(u — @) = (Daf(we,ur)-(ur — Ut))ey and
t_

Doh(Z, Q_)(@ —a) = 0. Hence, the last inequation becomes
“+o00 —+o00
Zﬂth(ﬁ(JAJt, ﬁt)(ut - ﬁt) + Z <Qt o DQf(i‘t, ﬁt), (ut - ﬁt» <0 for all (ut)teN S KOO(N, U)

t=0 t=0

(2.13)
Fix t € N arbitrarily. Take u = (us)sen such that when s # ¢, us = 45 and u; varies in
U. Then from equation (2.12) we have

B Da(dy, ) (us — tie) + (g © Do f (B¢, ), (uy — ) <0

— <qt o _sz(iﬁt, ’at) + ,Bt.DQd)(i‘t, at), Ut — ’LALt> < 0.

This inequation is verified for all u; € U and for all ¢ € N. Hence, we have

VteN, Yue U, <qt o Do f (&4, i) + B'.Docp(2y, ), ue — at> <0. (2.14)
In (2.12) and (2.14), by setting pyy1 := ¢ for all ¢ € N, we obtain p = (piy1)ien €
/1 (N,,R™) such that the following statements hold
(i) Pt = Pt+1 © le(i‘t, IALt) + 5t.D1¢(i‘t,’&t) for all t € N*
(11) <pt+1 e} Dgf(.’f’}t, at) + 6t.D2¢(i‘t,ﬁt), u — ﬁt> S 0 for all ¢ € N, for all u e U.
These statements are conclusions (AE1) and (WM1). The proof is complete. O
Remark 2.23. In Theorem 2.22, (AE1) means Adjoint Equation, (WM1) means weak

Maximum Principle. Since p = (pi41)ten € €'(N,,R™), note that the transversality
condition at infinity for Problem (Ps), lim_, 1 p; = 0, is satisfied.
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2.7 Weak Pontryagin Principle for Main Problem

So far in Section 1 we have introduced the main problem as follows:

Maximize K (y,u) := E;"S ,Btw(yt, u)
when y = (yt)ien € (RN, w= (u)en € UY
Yo =1, My o0 Yt = Yoos (Pn)
u is bounded,
Vt €N, yir1 = g(ye, ue)-

By setting 2; := y; — Yoo for all t € N, N(z,u) := 3L 5t<p(zt,ut) where ¢(z,u) =
(24 Yoo, u) for all (z,u) € R" x U and £(z,u) := g(z+ Yoo, U) — Yoo for all (z,u) € R" x U,
we can translate Problem (P,,) into Problem (P1) which has the form of Problem (Ps)

Maximize N(z,u):= 2;08 6tg0(zt,ut)
when 2z = (2¢)en € co(N,R"),
u = (up)ien € L°(N,U), (P1)
20 = 1 — Yoo,

Vit e N, 211 = 0z, uy).

Let (2, 1) be a solution of Problem (P1) and assume that for all t € N, U is star-shaped with
respect to @;. Then by the inverse transformation, (¢,4) is a solution of Problem (P,).
Apply Theorem 2.22 to Problem (P1) we know that if in Problem (P1) the following
conditions

(1) U is a nonempty closed subset of R

(2) ¢ € CYR" x U, R), £ € CYR" x U, R"),

(3) There exists u® € U such that ¢ (0,u°) = 0 and U is star-shaped with respect to u?,
(4) limg_o(sup,ep [|Dl(2,u)||) = 0 for all nonempty bounded subset B C U

are fulfilled then there exists (ps11)ien € £' (N4, R™) such that

(i) pt = pey1 0 D1l(%,0t) + BL.D1p(%, 4) for all t € N,.

(i1) (pit1 0 D2l(2, 1) + B1.Dap(2, ), u — ) < 0 for all ¢ € N, for all u € U.

Now we will study the statement of weak Pontryagin principle for our main problem based
on that for Problem (P1).
— Study the assumptions
- The assumption on U and assumption (1) remain unchanged.
- Because of the definitions of functions v, g, ¢ and ¢, it is evident that the
assumption (2) above is equivalent to following condition.

(2) <= e CYR" x U, R)and g € CY(R™ x U, R").
- From assumption (3) above, we make the equivalent changes as follows:
00,u”) =0 <= g(0 4 Yoo, u°) = Yoo = 0 = (Yoo, u’) = Yoo-
And finally, we translate assumption (4) as follows.

Hmz%O(SupueB HDE(Z,U)H) =0
VAN lim,_,o(sup,ep | D(9(2 + Yoo, 4) — Yoo)||) =0

=24+Yoo .
YEEYS imy sy (supuep [ D(9(ys u) — yoo)|)) = 0
s limyy. (supyep [ Da(y, uw)])) = 0.



CHAPTER 2. INFINITE-HORIZON OPTIMAL CONTROL PROBLEM IN PRESENCE OF
52 ASYMPTOTICAL CONSTRAINT AND A WEAK PONTRYAGIN PRINCIPLE

— Study the conclusions
We can easily rewrite conclusions (i) and (ii) for Problem (P,,) as follows

(i) Pt = Pt+1 © D1g(?§/t7ﬁt) + ﬁt.Dﬂ/)(gt,@t) for all t € N*,
(ii) <pt+1 o DQQ(Qt’ﬂt) + Bt.DQQIZ)(Qt,’&t),U — ﬂt> < 0 for all t € N, for all u € U.

Here we notice that

D1g(9t, 6t) = D1€(Ze, 1t ); Divp(Ge, e) = Drop(Ze, Ge);
Dag(9e,tt) = Dal(Z, 1) and Do) (i, Ge) = Daw (2, G).
The reasoning is like what we did when studying assumption (4).
Finally, we can state the weak Pontryagin principle for main problem.
Theorem 2.24. Assume that the following conditions are fulfilled
(B1) U is a nonempty closed subset of RY.
(B2) v € C}R*"x U, R), g € CL{R" x U, R").
(B3) There exists u’ € U such that g(Yoo,u’) = yoo and U is star-shaped with respect to
0
u’.
(B4) limy .y, (supyep [[Dg(y, u)l]) = 0.

Let (§,4) in co(N,R™) x £2°(N,U) be a solution of Problem (Pp,) and assume that for all
t € N, U is star-shaped with respect to ;. Then there exists (pii1)ten € €1 (Ny, R™) such
that

(AE) Pt = P41 © D1g<ﬁt, ﬁt) + IBt.Dlw(gt,ﬁt) fOT‘ all t € N,.
(WM) (pi+1© Dag(Ge, ) + B Do) (G, g), u — Gt) <0 for allt € N, for allu € U.



Chapter 3

Strong Pontryagin Principle for
Infinite-Horizon Optimal Control
Problem in Presence of
Asymptotical Constraint and a
Sufficient Condition of Optimality

3.1 Introduction

This chapter is devoted to establish strong Pontryagin principles and sufficient
conditions of optimality for the problems introduced in Chapter 2. The content of this
chapter is as follows:

- In Section 3.2, we recall the main problem and the supporting problem which were
introduced in Chapter 2.

- In Section 3.3, by fixing the sequence of control variable, we study the properties
of Nemytskii operator from co(N,R") into ¢o(N,R™) and of Nemystskii operator from
co(N,R™) into ¢*°(N,R).

- In Section 3.4, we recall a result on static optimization in Banach spaces which is
useful for establishing strong Pontryagin principles.

- In Section 3.5 and 3.6, we establish strong Pontryagin principles for the supporting
problem and the main problem.

- In Section 3.7 and 3.8, we establish results on sufficient condition of optimality for
them.

3.2 Recall of the Main Problem and the Supporting
Problem

Let U be nonempty subset of R%. We consider the same problem like in Chapter 2.

Maximize K (y,u) := Z:‘ZOS ,Bt1/1(yt, ut)
when y= (Yt)ten € (Rn)N , u= (ut)ten € uN

Yo =1, lim¢s 400 Yt = Yoo, (Pm)
u is bounded,

Vi eN, yrr1 = g(ys, ue).
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Here functional K, functions 1, g, real number 5 and elements 7, Y., were already defined
in Chapter 2. For this problem, we have introduced its supporting problem in previous
chapter as follows

Maximize J(z,u) = > 1% Btgb(xt,ut)
when z = (2¢)ien € co(N,R"),
u = (ut)ren € L°(N,U), (Ps)
Lo =1,

Vt €N, i1 = f(xe,ur).

Functional J, functions ¢, f, real number 8 and element n were defined in Chapter 2. We
knew that Problem (P,,) can be translated into the form of Problem (Ps) by the following
transformation:

- Forallt € N| z; := yt — yoo. Then z = (2¢)1en € co(N,R").

- Set N(z,u) == 3% Btgo(zt, ut) where o(z,u) := Y (2+ Yoo, u) for all (z,u) € R" xU then
K(y,u) = N(z,u).

- Set l(z,u) := g(2 + Yoo, U) — Yoo for all (z,u) € R™ x U then from y; 11 = g(ys, ur) we
get the equivalent equation z;41 = £(z¢, uy).

Now the main problem becomes the following one

Maximize N(z,u) := > ,Btgo(zt,ut)

when 2 = (2t)ien € co(N,R"),
u= (ut)tEN € eoo(N7 U)? (Pl)
20 =1 — Yoo,

Vi eN, zip1 =z, w),

which has the form of supporting problem.

3.3 Some Useful Properties of Nemytskii Operators

Let U be nonempty subset of R?. We recall the conditions (a.1) and (a.2) in Chapter
2. For the sake of consistence, in this chapter, we will call those conditions by (5.1) and

(5.2).
(8.1) Ce C°(R" x U,R™) .
(5.2) For all B bounded, nonempty in U, lim,_o(sup,cp [|¢(z,u)]]) = 0.

Now to deal with partial Fréchet differential of Nemytskii operator, we introduce the
following conditions.

(8.3) For all (z,u) € R"™ x U, Di((x,u) exists and, for all u € U, Di((.,u) €
CO(R", L(R™,R™)).

(8.4) For all B bounded nonempty in U, lim,_,o(sup,ep |[|D1¢(z,u)||) = 0.

(8.5) D;( transforms the nonempty bounded subsets of R™ x U into bounded subsets of
R™.

(8.6) For all u € U, ¢(0,u)=0.

Remark 3.1. Under conditions (5.3), (8.5) and (3.6), condition (3.2) holds.
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Proof. Let B be a nonempty bounded subset of U. We fix R € (0,400). For all z € R"
such that ||z|| < R, using (5.3) and the Mean Value Theorem we have

1€ (2, w)[| = [[€(0, w)|| < [I¢(2, u) = ¢(0,u)|
< sup |[Di¢(z, u)|| [[zf} < fl=]]. sup [[Di(z )l

z€[0,7] lzll<R

Then using (5.6) we have

1€ (z, w)|| < (0, w)| + =] - sup. [1D1¢(z, )|

=<k

<l sup [[D1¢(z,u)ll-

|2[I<

Take supremum when v € B on both sides of the last inequality, we obtain

sup 1¢(z; w)l] < [l . sup sup. 1D1¢(z, w)][ - (3.1)

ueB ||z||<R

Let V. ={z € R": |z|| < R} x B. Then V is nonempty bounded subset of R" x U. Using
(8.5) we obtain sup,epsup|.|<g [1D1¢(2,u)|| = sup(, ey [[D1¢(2;u)|| < +oo. Finally,
take limit when = — 0 on both sides of (3.1) we have

tim sup ()] < Jim (uwu sup sup D1z u>||)

u€B ||z[|<

= sup sup [[Di¢(z, u)]f ling ]
u€B |z|[<R

= 0.
The final expression indicates that condition (5.2) holds. O

Theorem 3.2. Let U be nonempty subset of R? and let ¢ : R x U — R™ be a mapping.
Under conditions (8.1), (8.3 - 5.6), the following assertions hold.

1. NC S CO(C()(N,R") X €OO(N, U); Co(N,Rm)).
2. For all (z,u) € co(N,R") x £*°(N,U), D1 N¢ (z,u) exists.

3. For all u € A®(N,U), the partial differential DiN¢(.,u) belongs
to C%co(N,R™); L(co(N,R"), co(N,R™))). Moreover, for all z € co(N,R™) and for
all 0z € co(N,R™) we have

D1 N¢(z,u).0z = (D1¢(w¢, ut).02¢)ten-

Proof. Under conditions (5.1), (8.3), (8.5) and (5.6), using Remark 3.1 we obtain ¢
satisfies property (5.2). Then under (8.1) and (3.2), using Theorem 2.8 we deduce
that Ne € C%co(N,R™) x (°(N,U); co(N,R™)). Let DIN : ¢o(N,R") x (*(N,U) —
co(N, L(R™ R™)) defined by D1N (z,u) := (D1¢(@s, ut)) ey Under (5.4) and (5.5), after
Theorem 2.2, DN is well defined.

Now we fix u € (®(N,U). We take = (2¢)ien € co(N,R™) arbitrarily. Let
K = {(x¢) : t € N} - the closure of the bounded set {(x;) : ¢ € N} then K is compact
since {(x;) : t € N} is a bounded subset of R". Let L = {x € R*:d(z,K) < p}. By
the analogous argument as in Chapter 2, we obtain that L is also compact. Under
(8.3), by fixing u and proceeding as in the proof of Theorem 2.8 we deduce that
for all t € N, Di((.,us) is uniformly continuous on L and hence, D1N(., u) is of
class C° on cy(N,R"). That means for all ¢ > 0, there exists d. € (0,p) such that
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| DN (z, u) — DIN (2, w)|| < € for all 2/ € ¢o(N,R") satisfying ||z — 2'|| < .. Then

we deduce that, for all t € N, ||D1((z¢,ur) — Di¢(x}, ut)|| < & whenever ||z — z}|| < 0e.
Let us consider the following expression

Gy = ||¢(x}, ue) — (¢, ue) — D1 (e, up)- () — a1)|| where t € N.
For all t € N, using Corollary 1.37 in Chapter 1, we have

Gy < sup || D1C(2e, ur) — Di¢(xe, u)|| [0

zt €[xy,a)]

where 0x; = x; — x¢. Now for all ¢t € N, for all z; € [x4,2}] , we have||z; — 2] <
|z —z}]] < 0 and hence |[D1((zt,ur) — DiC(xt,ut)|| < €, which implies that
SUD., c[eq,2)] |D1¢ (2, ut) — D1C(x,up)|| < €. So we have

YVt € N, Gt <e ||5$t|| .
Hence,

sup Gy < e.||dz|| where dz = (dz¢)en
teN

= (€@ ue)) e = (Cweue)en — (D1 (@t ue) ey (e ren | <  loz]

= ||Ne(2,u) — Ne(z,u) — DIN (z,u) .0z < el|dz]|.

The last inequality means that N¢ is partial Fréchet differentiable with respect to z at point
(z,u). Since the choice of z € ¢o(N,R") is arbitrary, N¢ is partially Fréchet differentiable
with respect to z on ¢o(N, R™). Moreover, for all z € ¢o(N,R™) and for all 0z € ¢o(N,R"™) we
have

DyN¢(z,u).00 = DIN (z,u).0z = (D1¢(@, ur).02¢)ten-

Therefore, D1 N¢(.,u), and DiN(.,u) are equal. And so, DiN¢(.,u) is continuous on
co(N,R™) from the continuity of DiN(.,u). Hence, for all u € ¢(*(N,U), D1N¢(.,u) €
C%co(N,R™); L(co(N,R™), co(N,R™))). O

Theorem 3.3. Let U be nonempty subset of R and let ¢ : R x U — R be a mapping
which satisfies conditions (5.1) and (8.3) with m = 1. Then the following assertions hold

(i) Ng:co(N;R™) x £2°(N,U) = £°(N,R) is well defined.

(ii) Ny is continuous on co(N,R"™) x £>(N,U).

(iii) For all (z,u) € co(N,R") x (*(N,U), DiNy(z,u) exists and for all u €
(>®(N,U), D1Ny(.,u) is continuous on co(N,R™). Moreover, for all x € co(N,R")
and for all dz € co(N,R™) we have

D1N¢($7 Q)(dlv 67’“) = (D1¢(xt7 Ut).5$t)teN.

Proof. The assertions (i) and (ii) are directly derived from (i) and (ii) of Theorem 2.14. Now
we prove the assertion (iii). Under (3.3) we know that for all (z,u) € R™ x U, Di¢(z,u)
exists and, for all u € U, D1¢(.,u) € C°(R", L(R™, R)). We fix u € {*°(N,U) and we
set D1®(.,u) : co(N,R") — (N, L(R",R)) where D1®(z,u) := (D1¢(x¢,us)),en- Let
z € co(N,R") arbitrarily and let V. = {z; : t € N}. Then V C R"™ and V is
bounded since sup;cy ||t = ||z < +o00. Since for all ¢ € N, D1¢(.,us) is continuous
on V then for all ¢ € N, the image of V under the mapping Dq¢(.,us) is bounded
in L(R™,R). Then sup,ey ||D1¢(xt,ut)|| < +00 = D1®(z,u) € (N, L(R",R)).
Hence, D1 ®(.,u) : co(N,R") — (N, L(R",R)) is well-defined. By an analogous argument
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like that in Theorem 3.2, we obtain D1®(.,u) is of class CY on ¢o(N,R") and assertion
(iii) holds with D1 Ny(.,u) coincides with D;®(.,w). Moreover, for all z € co(N,R™) and
for all dz € c¢p(N,R™) we have

DiNy(z, u).(0z, 0u) = (D1d(x1, ur).02¢ )ten.
L]

3.4 Static Optimization - a Result in Abstract Banach
Spaces

In this section we recall a result issued from the book of Ioffe and Tihomirov [36]. As
a corollary of the extremal principle in mixed problems (Theorem 3, page 71 in [36]), we
obtain the following lemma.

Lemma 3.4. Let X, V, W be real Banach spaces and U be a nonempty set in V. Let
J: X xU =R - a functional and T : X xU — W - a mapping. Let (£,4) € X xU be a
solution of the following optimization problem

Mazimize J(x,u) } (P)

when (z,u) € X xU, T'(z,u) =0.
We assume that the following conditions are fulfilled.

(a) Forallue€U, [x— T(z,u)] and [z — J(z,u)] are of class C' at #;

(b) There exists a neighborhood N of & in X such that for allx € N, for allu',u" € U and
for all 6 € ]0,1] there exists u € U satisfying

I'(z,u) = (1—0)(z,u) + 0T (x,u”),
J(x,u) > (1—0)J(z,u')+ 0J(x,u").
(c) The codimension of D1T'(&,4) is finite.
(d) The set {DiI'(z,0).x+1'(Z,u) : x € X, u € U} contains a neighborhood of the origin
of W.
Then there exists M € W* such that the following assertions hold.
(i) D1J(&,4)+ M o DiT(2,4) = 0.
(ii) For alluelU, J(z,a)+ (M,T(z,10)) > T (Z,u) + (M,T(Z,u)).

3.5 Strong Pontryagin Principle for Problem (Ps)

First we introduce the Hamiltonian of Pontryagin which is defined, for all ¢ € N, as
follows

Hy:R" x U x R™ = R, Hy(z,u,p) := B'¢(x,u) + (p, f(z,u)). (3.2)

Note that the condition (WM1) of Theorem 2.22 in Chapter 2 is equivalent to the following
condition
Vu € U,Vt € N, (Do Hy (¢, G, pry1), u — tg) < 0.

In this section, we will replace (WM1) by the strengthened condition Hy(Zy, g, pr4+1) =
maxycy Hi(Zt, u, pr41) for all t € N. Note that (WM1) can be considered as a first-order
necessary condition of the optimality of Hy(Z¢,.,pi+1) at 4 on U.



CHAPTER 3. STRONG PONTRYAGIN PRINCIPLE FOR INFINITE-HORIZON OPTIMAL
CONTROL PROBLEM IN PRESENCE OF ASYMPTOTICAL CONSTRAINT AND A
58 SUFFICIENT CONDITION OF OPTIMALITY

We consider the following conditions:

(C1) U is a nonempty compact subset of RZ.

(C2) ¢ € COR™ x U, R) and f € CO(R™ x U, R").

(C3) Forallue U, f(0,u)=0.

(C4) For all u € U, D1¢(x,u) and D;f(x,u) exist for all z € R™, and Dyé(.,u) €
CO(R", R™), and Dy f(.,u) € CO(R™, L(R",R")).

(C5) D, f transforms the nonempty bounded subsets of R” x U into bounded subsets of
L(R",RM).

(C6) For all B bounded, nonempty set in U we have

lim (sup 1Dy £z, w)]) = 0.
=0 yeB

(C7) For all t € N, for all z; € R™, for all uj, uj € U and for all § € (0,1) there exists
u; € U such that

¢(th’ ut) > (1 - 9)(;5(%5,114) + 9¢(xtvu:f,)v
f(@e,ur) = (1= 0) f (x4, uy) + O f (w4, u).

Using these conditions, we will prove the smoothness properties of the criterion J and
the Nemytskii operator F' in the following lemmas.

Lemma 3.5. Under the conditions (C1), (C2) and (C4), for all u € (>*(N,U) the
functional x — J(z,u) is of class Cton co(N,R™) and moreover, for all (z,u) € co(N,R™)
x (>*(N,U) and for all 6x € co(N,R™) the following formula holds

+oo
DlJ(L M)‘Lﬂf = > /8tD1¢(93t, ut)5$t~
t=0

Proof. Under the condition (C1), U is closed. Under conditions (C2) and (C4), the
Nemytskii operator Ny : co(N,R") x (*°(N,U) — (*°(N,R) defined by Ng(z,u) :=
((e, ur))sen is of class CP on co(N, R™) x £°°(N, U) using assertions (i) and (ii) of Theorem
3.3. Besides, from assertion (iii) of Theorem 3.3, we know that for all (z,u) € ¢o(N,R")
X L2(N,U), DiNy(z,u) exists; for all u € £°(N,U), D1Ng(.,u) is continuous on ¢o(N,R")
and moreover, for all € ¢o(N,R™) and for all dz € ¢o(N,R") we have

DiN¢(z,u).(dz, 6u) = (D1((xt, ut) .02t )en-

Consider the functional S : £°(N,R) — R defined by S(r) := 3.5 8!, In Chapter 2, we
have proven that S is of class C! and for all r, dr € ¢*°(N,R), we have DS(r).0r =
S(or) = S5 BMrt. We knew that J = S o Ny. Since S is of class C! and for all
u € £°(N,U), Ny(.,u) is of class C! then for all u € (*°(N,U),[ z + J(z,u)] is of class
Clon cp(N,R") as a composition of two C'! - mappings. Using the chain rule we obtain
that for all u € ¢*°(N,U), for all z, dz € co(N,R"™) we have

DyJ(z,u).0z = DS(Ng(z,u)) o D1Ng(z,u).0x
= S(D1Ng(z,u)).0z

“+o00

= tEOBtDl(b(xt’ Ut)5$t~
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Lemma 3.6. Under the conditions (C1-C6), for all u € (>*(N,U) the mapping
[z F(z,u)] are of class Clon co(N,R™) and moreover, for all (z,u) € co(N,R")
x (>*°(N,U) and for all dx € co(N,R™) the following formula holds

D1 F(z,u).0z = (D1f(2t, us)0xs — 0211)sen. (3.3)

Proof. Under conditions (C1-C6), we can assert that U is closed and that the mapping
f satisfies all the conditions (5.1), (8.3 — (.6) (by replacing ¢ by f). Using
Theorem 3.2, we obtain Ny € C%co(N,R") x ¢*(N,U); co(N,R")); for all (z,u) €
co(N,R™) x €°(N,U), DiNy (z,u) exists; and for all u € (*(N,U), DiNy (.,,u) €
C%co(N,R™); L(co(N,R™), co(N,R"™))). Moreover, for all z € co(N,R") and for all
dz € ¢o(N,R™) we have

DiNy(z,u).0x = (D1f(x¢, up).0xs)ren.

Now we set A(z,u) := (—x¢11). As we knew before, A is a bounded linear operator from
co(N,R™) x £>°(N,U) into ¢o(N,R™); operator A is Fréchet differentiable and its partial
differential with respect to z is D1A(z,u) - dx = A(dx,u) = (—06x¢+1)ten. Obviously,
for all uw € ¢*°(N,U), D1 A(.,u) is continuous on c¢o(N,R™). In Chapter 2, we knew that
F(z,u) = Ny(z,u) + A(z,u) is a mapping from co(N,R") x ¢*°(N,U) into co(N,R").
Using this fact we can easily obtain these following results when we fix u € ¢>°(N, U).
— F(.,u) is a mapping from cy(N,R"™) into itself.
~ x — F(z,u) is of class C? on ¢o(N,R") because F = Ny + A is of class C° on
co(N,R™) x (N, U) as a sum of two C%- mappings on cg(N,R") x /*(N,U).
-z +— F(z,u) is Fréchet differentiable on ¢o(N,R™). This is a consequence of
the existence of D1 Ny and DA on ¢y(N,R") x (>*(N,U). Moreover, for all
(z,u) € co(N,R™) x £*°(N,U) and for all dz € ¢o(N,R™) we have

Dy F(z,u).02 = DiNy(z,u).0x + DAz, u).0x

= (D1f(@4,us)0m¢ — d2¢41)1en-

— x> D1F(z,u) is continuous on ¢o(N,R™) as a sum of two continuous mappings on
C()(N,Rn) (D1F<.,g), = Dle(,Q) + DlA(,g))

And so, for all u € ¢*°(N,U) the mapping z — F(z,u) are of class Clon (N, R") and

formula (3.3) holds. O

Now for T(z,u) = (F(z,u), h(z,u)), from above-mentioned argument we already
know that for all u € ¢*°(N,U) the mapping x + F(z,u) is of class C! on co(N,R").
In Chapter 2, we have proven that h is of class C' on cg(N,R") x ¢*°(N,U). Hence,
it is trivial that for all u € ¢>°(N,U), the mapping = + h(z,u) is of class C' on
co(N,R™) and moreover, for all (z,u) € c¢o(N,R") x ¢*(N,U), for all dz € ¢o(N,R")
we have Dih(z,u) - 0z = dzg. Then for all u € ¢*°(N,U), the mapping = — T (z,u) is
of class C! on ¢o(N,R"™) and moreover, for all (z,u) € co(N,R"?) x ¢*°(N,U), for all
6z € co(N,R™), the following formula holds.

DiT(z,u).0z = (D1F(z,u).0z, Dih(z,u).0z)
= ((D1f (¢, ug)dxs — 0T441)ten, 020).
In Chapter 2, we have translated Problem (Ps) into the following form

Maximize J(z,u)
(P2) when z € ¢o(N,R"?),u € {*°(N,U)
T(z,u) =0,
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where T : ¢o(N,R™) x {*°(N,U) — co(N,R") x R™ and T (z,u) = (F(z,u), h(z,u)). Recall

that F'(z,u) := (f(x¢,ur) — x441)ten and h(z,u) := zo — 7. We will make use of Lemma
3.4 and these above-mentioned lemmas to prove the following result.

Lemma 3.7. Under assumptions (C1-C7), let (z,4) € co(N,R"™) x £>°(N,U) be a solution
of Problem (P2). Then there exists (q, ) € £1(N,R™) x R™ which satisfies the following
properties.

1. D1J(&,4) + (g, p) o D1 T(2,2) = 0.
2. 7@ @) + (4, 1), T(&, 0)) = maxyepmeuoy (@) + ((g0), T(20)))

Proof. We want to apply Lemma 3.4 with J = J and I' = 7. Under assumptions (C1-
C6), after Lemma 3.5 and Lemma 3.6 we know that for all u € ¢*°(N,U), the mappings
z + T(z,u) and z — J(z,u) are of class C! on co(N,R"). Hence, assumption (a) of
Lemma 3.4 is fulfilled.

Let z = (2¢)ten € co(N,R"™), ' = (up)teny € (°(N,U), u” = (u])ten € £°(N,U) and
0 € [0, 1] arbitrarily. Using condition (C7), we know that for each ¢ € N, there exists an
element u; € U such that

A, up) > (1= 0)d(ay, up) + Od (g, uf), (3.4)

and
flae,up) = (1= 0)f (e, up) + 0f (v, 1) (3.5)

We set u = (ut)ten then u € £°°(N, U) since U is compact (condition (C1)). From equation
(3.4), for any 8 € [0, 1] we have:

Bl (e, ur) 2 (1= 0)8d(ze, wp) + 08 ¢(xe, uy), (3.6)

Take sum both sides of equation (3.6) for all ¢ in N we have:

> B'o(ziu) > (1= 0)> Bl up) + 0 Bo(we, uy),

teN teN teN

or equivalently,
J(z,u) > (1—0)J(z,u) +0J(z,u").

Now, equation (3.5) holds for all t € N, hence

(f(@e,ur))een = (1= 0)(f (e, up))een + O(f (@, uf))ren,

or equivalently,
F(z,u) = (1-0)F(z,u) + 0F (z,u").

Besides, by the virtue of the definition of h, we always have
hz,u) = (1 - 0)h(z,u) + Oh(z, u").
From the last two equations, we obtain
T(z,u) = (1-0)T(z, 1) + 0T (z,u").
And so assumption (b) of Lemma 3.4 is fulfilled.

To verify assumption (c) of Lemma 3.4, we see that under conditions (C1-C6), after
Lemma 3.6 we know that the for all u € ¢*°(N,U), the mapping z — T (z,u) is
of class C! on cy(N,R™). Hence, the partial Fréchet differential with respect to x
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of mapping T exists at the optimal solution (Z,2). We set B := {@; : t € N} then
B is nonempty bounded set in U since 4 € ¢>°(N,U). For all t € N, we have

0 < |[[D1f (e, a0)ll e < sup [[Dif (2w,
ueb

and therefore, using (C6) and Remark 2.6 we obtain lim; 1 || D1 f(&¢,4t)|| = 0. Hence,
there exists ¢, € N such that sup;s,, ||D1f(#:,0)|, < 1. Then proceeding as in Corollary
2.16, and using Lemma 2.21, we deduce that Im D7 (&, @) = co(N, R™) x R”. That means
the codimension of D7 (&,4) is finite. Hence, assumption (c) of Lemma 3.4 is fulfilled.

Finally, after assumption (c), Im D17 (2,4) = co(N,R™) x R™ then it is clear that the
set {D1T(2,4).x + T(Z,u) : z € co(N,R"), w € (*°(N,U)} = Im D17 (2,0) + T({Z} x
(N, U)) contains Im DT (&, @), and consequently, contains a neighborhood of the origin
of co(N,R™) x R"™. Hence, assumption (d) of Lemma 3.4 is fulfilled.

Now we can use Lemma 3.4 and we obtain (q, ) € (co(N,R") x R"?)* = ¢}(N,R™) x
R™ that satisfied the announced conclusions. O

We will prove the following theorem which is called strong Pontryagin principle for Problem
(Ps).

Theorem 3.8. Assume that conditions (C1)-(C7) are fulfilled. Let (Z,4) € co(N,R"™) x
(®(N,U) be a solution of Problem (Ps). Then there exists (pt)en, € ¢*(Ni, R™) such that
the following statements hold:

(AE].) Pt = P41 © D1f<.ii't,ﬁt) + 5t.D1¢(.’f3t,ﬁt) fO?" all t € N,.

(MP1) B'¢(24, 1) + pry1, £ (2, 1) = maxyer (B°0(2e, u) + (prs1, f (&1, 1)) for allt € N.
Proof. Let (&,4) € co(N,R"™) x £>°(N,U) be a solution of Problem (P;) then (£, 4) is also

a solution of Problem (P2). Under conditions (C1-C7), after Lemma 3.7 we obtain the
existence of (g, 1) € (co(N,R") x R")" = ¢1(N,R™) x R™ such that

Dy J(2,4) + (g, ) o D1 T (Z,4) = 0, } (3.7)
J(@,a)+ (g, 1), T (& )>:maxgee°°(N,U> (7@ w) + (@), T(E,u))) .

Then from first equality of (3.7), proceeding like in the proof of Theorem 2.22 in Chapter
2, we obtain (AE1). We rewrite the second equality of (3.7) as follows

J(@, @) + (g, F(&,@)) + (p, h(z, @)

= omax (2 u) + (g P(2,u) + (. b, w))

(3.8)

Since for all u € (*°(N,U), h(Z,u) = 29 —n = h(&,4) then we have
(88) & J(@&@) + (¢.F(&,2)) = max (J(&u)+ (g F(&w)).
That means for all u € /*°(N,U),
X a +00 IS .
t;)ﬁ A( B, W) + D200 (e, [ (B, W) — Tg1)
+oo
> t;oﬂ%(@t? ug) + 0% (ae, [ (& ue) — Zg1)
+00 -
g tgjoﬁtqs(jt’ ﬁt) + Z;_:O(C)’ <Qt, f(i‘tv at))
“+oo
> t;)ﬁ%(ft, ) + 2055 (ae, [ (&, ur)) -
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Now we arbitrarily fix t € N. Take u = (us)sen € £>°(N, U) such that when s # ¢, us = U,
and wu; varies in U. Then from the last inequality we have

Vug € U, B (&4, ) + (pr, f(Ze, ) > BPd( 24, wr) + (qe, [(E4, )
& Bro(Ey, b)) + (g, f(Be, W)) = max (B D(Ze, ur) + (qr, [ (T4, ur))) -

This expression is satisfied for all ¢ € N. So we have
Vt €N, B'G(2t,0t) + (qr, f(#1, 1)) = max (5%(@7 u) + (G, f(@tau») : (3.9)

From (3.9), by setting p;41 := ¢; for all t € N, we obtain p = (pi+1)ien € £!(Ny, R™) such
that (SM1) holds. The proof is complete. O

Remark 3.9. In Theorem 3.8, (SM1) means Strong Maximum principle.

3.6 Strong Pontryagin Principle for Main Problem

In previous section, we already proven the strong Pontryagin principle for supporting
problem. Now we study that for main problem. Notice that main problem can be
translated into a problem in the form of supporting problem and we named it by (P1) as
follows

Maximize N(z,u) := ;08 ,Btgo(zt,ut)
when 2z = (2¢)en € co(N,R"),
u = (ut)en € L°(N,U), (P1)
20 = 7 — Yoo,

Vt €N, zpp1 = (2, up).

Apply Theorem 3.8 to Problem (P1), we obtain the following statement.
Let (2,4) € ¢o(N,R™) x £*°(N,U) be a solution of Problem (P,,). Assume that these
following conditions hold.

(1) U is a nonempty compact subset of R,
(2) ¢ € C°(R" x U, R) and £ € C°(R" x U, R").
(3) Forallu e U, £(0,u) = 0.

(4) For all u € U, Dip(z,u) and Dql(z,u) exist for all z € R™ and Dyjp(.,u) €
CO(R", R™), and D1{(.,u) € CO(R", L(R",R")).

(5) D/ transforms the nonempty bounded subsets of R™ x U into bounded subsets of
L(R™ R™).

(6) For all B bounded, nonempty set in U we have

ll_r)%(ilelg [ D1€(z,u)|]) = 0.

(7) For all t € N, for all z; € R™, for all u}, uj € U and for all # € [0, 1] there exists
uy € U such that

p(z,u) 2 (1= 0)p(z1, up) + Oo(z, ut),
= (1= 0)l(z¢,u}) + Ol(2¢,uf).

Then there exists (p;)ien, € 1 (Ni, R™) such that
(i) For all t € Ny, py = prr1 0 Dil(Z, ) + B1.Dip(Ze, )
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(ii) Forall t e N, for all uw € U,
B'o(2e, 1) + (prers €2, 1)) = B (2, 1) + (Pran, (2, w)) -

We study the statement of strong Pontryagin principle for main problem based on the
statement above. We know that if (Z,4) is a solution of Problem (P1) then (§,4) is a
solution of Problem (P,,) where §; = 2; + Yoo, for all ¢ € N. a

Study the assumptions: similar to what we did in Chapter 2, the assumptions (1-7)
for Problem (P1) can be rewritten equivalently for Problem (P,,) as follows.

(D1) U is a nonempty compact subset of R

(D2) ¢ € CO(R™ x U, R) and g € CO(R" x U, R").

(D3) For all u € U, g(yoo,u) =0.

(D4) For all u € U, Di19(y,u) and Dyg(y,u) exist for all y € R™, and Di¢(.,u) €
CO(R", R™), and Dig(.,u) € C°(R", L(R",R")).

(D5) D;g transforms the nonempty bounded subsets of R x U into bounded subsets of
L(R™ R™).

(D6) For all B bounded, nonempty set in U we have

yggl (sup | D1g(y, w)||) =

For assumption (7), using the definition of mappings ¢ and ¢ (as we know before,
o(z,u) = V(2 + Yoo, u); £(z,u) = g(2 + Yoo, ) — Yoo for all (z,u) € R™ x U) and recall that
Z =Y — Yoo for all z € R™, we have the following equivalent transformations

(2t ur) > (1= 0)p(ze, up) + Op(zt, uy)
& V(2 + Yoo, ut) > (1 —0)1) (zt+yoo,ut)+9¢(2t+yoo, t)
~ w(ybut)z( ) (yt7ut)+0w(yt7ut)7

and

K(Zt, ut) = (1 — Q)E(Zt, U%) + Qh(zt, U;’)
< g(zt + yomut) — Yoo = (1 - 9) (Q(Zt + Yoo U%) - yoo)
+ 0 (9(2 + Yoo, u) — Yoo)

& g(2t + Yoo, ut) = (L = 0)g(2t + Yoo, uy) + 09(2 + Yoo, uy)

< gy, ur) = (1= 0)g(ye, up) + 0g(ye, uy).
Then we obtain assumption (D7) as follows
(D7) For all t € N, for all y, € R", for all v}, uj € U and for all € [0,1] there exists

uy € U such that

Yy, ug) > (1= 0)(ys, up) + 0U(ye, uf),
9(ye, ue) = (1= 0)g(ye, up) + 0g(ye, uy).

Study the conclusions: By the same reasoning as in Chapter 2, conclusion (i) can
be rewritten as follows.

(i) For all t € N*, Pt = Pt41 © Dlg(@t,ﬁt) + Bt.D1¢(gt,ﬁt).
For conclusion (ii), we make the following equivalent transformations:

Bro(Ze, @) + (pra1, €2, ) > Bro(2e,w) + (pra, £(2e, )
< Btd}(gtaﬂt) + <pt+1ag(gt7at) - yoo> Z ﬁt¢(gtau) + <pt+1ag(gt7u) - yoo>
< B (G, ) + (per1, 9(De, 1)) > B (e, w) + (prr1, 9(Gt, w)) -

Then we can rewrite (ii) as follows
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(ii) Forallt € N, for all u € U: B (G, G¢) + (Dea1, 9(0t, Ue)) > B0 (G, u) + (prs1, 9(Ge, u)) -

Finally, we state the strong Pontryagin principle for Problem (P,,):

Theorem 3.10. Let (§,1) € co(N,R"™)xl>°(N,U) be a solution of Problem (Py,). Assume
that the assumptions (D1-D7) are fulfilled then there exists (pi11)ien € £1(Ni, R™)  such
that the following assertions hold.

(AE) pr = pev1 0 Dig(9s, ) + B*.D19(§e, Gt) for all t € N,.
(SM) B'Y(Gr, @) + (P41, 9(O¢, ) = maxyuer (B (9, w) + (pes1, 9(Ge,w))) for all t € N.

3.7 Sufficient Condition for Problem (P1)

In this section we establish a result of sufficient condition of optimality which uses the
adjoint equation, the weak maximum principle and the concavity of the Hamiltonian with
respect to the state variable and the control variable.

Theorem 3.11. Let U be a nonempty convex subset of R?, B € (0,1), 1, yoo € R™ and
two mappings ¢ : R" x U — R and £ : R" x U — R". Let (2,4) € co(N,R") x {>*(N,U)
and p € (N, R™). Assume that the following conditions hold.

(1) 2141 =L, 0y) for allt €N, and 20 =N — Yoo-

(ii) ¢ € CY(R" x U,R) and £ € CY(R" x U,R"™).

(iii) ¢ transforms bounded subsets of R™ x U into bounded subsets of R.

(iv) pr = prr1 o D1l(3, 0p) + BED1p(3, 4y) for all t € N,.

(V) (P41 0 Dol(Z4, 1s) + Dap(s, 1), u — ) <0 for allu € U, for all t € N.

(vi) The function [(z,u) — (pir1,€(z,u)) + Blo(z,u))] is concave on R" x U for all t € N.

Then (2,4) is a solution of (P1).

Proof. Let (z,u) be an admissible process for (P1), i.e. z € ¢o(N,R"), u € ¢*(N,U),
zi+1 = l(z,uy) for all t € N, and 29 = 7 — yoo. From (iii), since {p(z¢,u¢) : t € N} is
bounded, N (z,u) = ;5% 840 (21, ut) exists in R. From (ii) and (iv) and from the definition
of Hamiltonian of Pontryagin (3.2) we obtain

D1 Hy (2, Gy, pry1) = pr- (3.10)
From (vi) we obtain, for all ¢t € N,

Ht(5t7ﬁt,pt+1) - Ht(2t7ut7pt+1) - <D1Ht(2t7at7pt+1)a 2 — Zt> (3 11)
—(DoHy (%, Ug, pey1), g — ug) > 0. .

From (v) the following relation holds for all ¢ € N
(DaHy(Ze, U, pr1), G — ug) > 0. (3.12)
For all t € N we have
ﬁt¢(5t,ﬁt) - 5t<ﬂ(2’t,ut) = Ht(ﬁt,ﬁt,ptﬂ) - <pt+1,£(5t,ﬁt)>
—Hi(2t, ut, p+1) + (Det1, €(ze, ue)

= Hy(Z, 0, pry1) — Hy(2e, u, pry1)
—(Pe11, Ber1 — Zit1)-
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Then, using (3.10) and (3.12) we obtain

Blo(Ze,de) — Bro(ze,wr) > Hy(2e, Gy prsr) — He(ze, e, pra)
—(DoHy (2, Ug, prs1), U — ug)
—(D1H1(Ze41, Uit 1, Di2)s Ze41 — 2i41)s

which implies

Blo(2e, ty) — Blo(ze, up) >

Hy (2, G, pre1) — He(2e, ug, pes)
(D1Hy(2¢, 0, pry1), 2t — 2t)

—(DaHy (2, U, pra1), Gy — ug)]
+[(D1Hy (%, g, pe1), 2 — 21)
—(D1Hyp1(Ze41, Qg1 Deg2), 21 — 2e41)),

and using (3.11) we obtain

Bro(zr, i) — Bro(zi,ue) > [(D1Hy(Ze, G, pesr), 2t — 21
—(D1H1(Ze41, U1, Pet2) s 21 — 2e41)]-

Therefore, using (3.10), we obtain, for all T € N,,

S0 Ble(ze ) — o Ble(zur) = (D1Ho(n — Yoos tio, P1), 1 — Yoo — (1 — Yoo))
—(pr+1, Er41 — 2r41)

T T
= > Bz, i) =Y B'e(zt,ut) > — (pri1, 2r1 — 2r4a) - (3.13)

t=0 t=0
Since p € Y (N4, R™), we have lim7_, o pri1 = 0, and since 2,z € co(N,R") we have
limy 4 o0 (2741 — 2741) = 0 which implies limp_, 4 oo (—(pr41, 2141 — 274+1)) = 0, and then,
from (3.13), doing T" — +o00 we obtain N(Z,4) — N(z,u) > 0. And so we have proven
that (Z,4) is a solution of (P1). O

Remark 3.12. The structure of the previous proof is inspired by the proof of Theorem
5.1 in [15]. Note that our assumption (iii) permits to avoid to assume that U is compact.
Moreover, note that we can replace the assumption (iii) by the condition: U is closed.

Remark 3.13. Note that under our assumptions, the process (2, ) is also solution of the
following problem

Maximize 2,255 Blp(w¢, ur)
when  z € (°(N,R"),u € (*(N,U),
and vt € N) 2t+1 = g(zh Ut), 20 = 1 — Yoo

since, in the previous proof, when we obtain (3.13), having Z and z bounded is sufficient
to obtain limz_4oo(—(Pr41, 2741 — 2741)) = 0 and consequently to have the optimality
of (2,u) for the last problem.

3.8 Sufficient Condition for Main Problem

This section is devoted to the translation of the result of sufficient condition of
optimality for (P1) into an analogous result for (P,,). When y» € R", we denote by
Cyoo (N,R™), the set of the sequences y in R™ such that lim;—, o0 ¥ = yoo. It is a complete
affine subset of ¢>*°(N,R"). -
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Theorem 3.14. Let U be a nonempty convex subset of R%, 5 € (0,1), n,Ys0 € R™, and

two mappings ¢ : R" x U = R and g : R" x U = R". Let (§,1) € ¢y (N,R") x £*(N,U)
and p € (Y(N,,R™) which satisfy the following conditions. a

(i) Forallt €N, gry1 = g(9t,Ut), and Go = 1.

(ii) v € CY(R" x U,R) and g € CH(R™ x U,R").

(iii) v transforms bounded subsets of R™ x U into bounded subsets of R.

(iv) pt = peg1 © D1g(Ge, @) + B D19(Ge, @) for all t € N,.

(v) (pt+1 0 Dag(9s,0z) + B Db (G, Gir),u — ) < 0 for all uw € U, for all t € N.

(vi) The function [(y,u) — (pr+1, 9(y,u)) + B (y, u)] is concave on R x U for all t € N.
Then (§,@) is a solution of (Py,).

Proof. We set 2 = §; — Yoo for all t € N. We see that (2,4) € co(N,R") x¢>°(N, U) satisfies

all the assumptions of Theorem 3.11. And so (Z,4) is a solution of (P1) which implies
that (§,a) is a solution of (Pp,). O



Chapter 4

Lightenings of Assumptions for
Pontryagin Principles in Finite
Horizon and Discrete Time

4.1 Introduction

In this chapter, we will establish maximum principles of Pontryagin under assumptions
which are weaker than those of existing results for the infinite horizon optimal control
problems in discrete time framework. The considered problems is stated as follows.

The discrete time is denoted by the letter ¢ € N. For all t € N, X; is a nonempty
open subset of R”, U; is a nonempty subset of R%, and f; : X;x Uy — X;41 is a mapping
where n and d are fixed positive integers. The usual order of R” is z = (2!, 22,...,2") <
(yt, 9%, ..., y") =y defined by 2* <y for alli € {1,...,n}. And = < y means that z < y
and x # y. To abridge the writing we use the notation z := (x;)en € [[;en X+ and also
w = (us)ten € [l;enUr where [[,enX: and [[;enU; are the Cartesian products. We work
with two families of controlled dynamical systems: difference equations and difference
inequations. They are

(De)  x441 = fi(we, wp)

and
(Di) 2441 < filmg, u).

The variable x; is called the state variable and the variable u; is called the control
variable. When we fix an initial state n € Xy, we denote by Adm, the set of all processes
(z,u) € [T;enXt X [TienUe which satisfy (De) at each time ¢ € N and such that zo = 7.
These processes are called the admissible for (De) and 7. The letter e as lower index means
equation. Similarly, we denote by Adm; the set of all processes (z,u) € [T,enXt X [TenUt
which satisfy (Di) at each time ¢ € N and such that g = n. The letter i as lower index
means inequation.

For all ¢t € N, we consider a function ¢; : Xy x Uy — R. When k € {i,e}, we define
Domy, as the set of the (z,u) € Admy, such that the series >;°% ¢+ (x4, ut) is convergent in
R. We define the functional J : Domy, — R by setting J(z,u) := 3,25 ¢ (e, ur)-

When k € {i, e}, we consider the following list of problems.

(P{) Maximize J(z,u) when (z,u) € Domy.
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(P2) Find (£,4) € Admy such that, for all (z,u) € Admy

h
lim sup(z ¢t({i‘t, ﬁt) - Z ¢t($t7 Ut)) > 0.

h—=+o0o -9 t=0

(P$) Find (£,4) € Admy such that, for all (z,u) € Admy

h

h
lim 1nf(z (ﬁt({i‘t, IALt) - Z ¢t($t, Ut)) Z 0.
=0

h—+o0 i =0

Now we describe the content of this chapter.

- In Section 4.2, we recall the method of reduction to finite horizon (Theorem 4.1).

- In Section 4.3, firstly, we recall the Multiplier Rule of Halkin. Then we introduce
the New Multiplier Rules of Blot for maximization static problems with only inequality
constraints and with both equality and inequality constraints. After that, we apply the
New Multiplier Rules to obtain weak Pontryagin principles for the reduced problems in
Section 4.2.

- In Section 4.4, at first, we establish weak maximum principles where the values
of the optimal control belong to the interior of the sets of controls for systems which
governed by difference inequations (Theorem 4.14 and Theorem 4.16). These results are
new and only use the Gateaux differentiability of the criterion, of the vector field and of
the inequality constraints. Neither continuity on a neighborhood of optimal solution nor
Fréchet differentiability is necessary. In the end of this section, we state a a similar result
for problem in which the system is governed by difference equations.

- In Section 4.5, firstly, we establish a weak maximum principle when the sets of controls
are defined by inequalities (Theorem 4.21) and when the system is governed by a difference
inequations. This result also only uses the Gateaux differentiability of the criterion, of the
vector field and of the inequality constraints and a condition of separation of the origin
and of the convex hull of the Gateaux differentials of the inequelities constraints in the
spirit of the Mangarasian-Fromowitz condition. Secondly, we establish a weak maximum
principle when the sets of controls are defined by equalities and inequalities (Theorem
4.25) when the system is governed by a difference inequation. Such a case is treated in [7]
(Theorem 3.1 and Theorem 3.2). In comparison with the result of [7], the improvements
are the following ones: we avoid a condition of continuity for the saturated inequality
constraints and for the vector field, we avoid a condition of linear independence of all the
differentials of the constraints. A similar result is Theorem 4.26 for which the system is
governed by a difference equation.

4.2 Reduction to Finite Horizon

The general principle is the following one: when a process is optimal on N (until
infinity), then for all 7' € N* its restriction to [0,7] N N is optimal by fixing the final
condition at T

Theorem 4.1. The two assertions hold.

(a) Let (z,4) be a solution of (P?) and let T € N* when j € {1,2,3}. Then the restriction

((Zo,...,Z741), (Ug,...,47)) is an optimal solution of the following finite-horizon



4.2. REDUCTION TO FINITE HORIZON 69

problem:

Magimize  Fr((zi)o<t<t i1, (ue)o<i<r) i= Simo@t(@t, us)
when vVt e {0,....,T+1}, z, € Xy
vt €{0,...,T}, u € Uy (F1)
Vit € {0, R ,T}, Tiy1 = ft(.f(}t, ut)
o =1, Tr41 = TT41-

b) Let (z,4) be a solution o PJ) let T € N* when j € {1,2,3}. Then the restriction
7
((Zo,...,Z741), (Ug,...,4r)) is an optimal solution of the following finite-horizon
problem:

Magzimize  Fr((xi)o<t<r+1, (w)o<i<r) = Yimo®t (e, 1¢)
when Vte{0,....,T+1}, z; € Xy
VtE{O,...,T}, up € Uy (P;T)
vVt e {0,..., T}, 1 < fe(we, up)
To =1, Try1 = Tr41.

Proof. For the (De) case: We will prove for each case of (P/) where j € {1,2,3}.

- For (P!): Let (2,4) be a solution of (P!). We proceed by contradiction. Assume
that ((Zo,...,2741), (flo,..., 7)) is not optimal for (FL). Then there exists
((20,...,2741), (wo, ..., wr)) which is admissible for (F) such that

T T
Z¢t(2t7wt) > Z¢t(§7t7ﬁt)~
t=0 t=0

When ¢t > T 4+ 1, we set z; := I3 and when t > T + 1, we set w; := ;. From the
admissibility and this setting, it is obvious that z € [[;cnyX: and w € [[,cnUs. Also,
Zir1 = Ter1 = fi(@,0:) = fi(z,wy) when ¢ > T + 1. It implies that (z,w) belongs to
Adm,, the admissible set of (P!). Now, we have

“+o00 —+o0 R “+o0
Yo Ge(z,we) = Y0 Gy(@y,1g) < +oo then Y ¢z, wy) < +oo.
t=T+1 t=T+1 =0

It implies that (z,w) € Dom,. Then

+00 T +o0o T +o00o
t§)¢t(Zt’wt) = t§O¢t(zt7wt) + 2 Pz wy) = tgoﬂ%(zt,wt) + > bu(@y, )

t=T+1 t=T+1
T R +oo A +oo .
> Y 0i(E, ) + 2 Ge( By, ) = 3 de( T, Ug)
=0 t=T41 =0

This is contradiction since (£,4) is the optimal solution for Problem (P!). Hence,
((Zo,...,2741), (@0, - - ., &) must be optimal for (F7).
- For (P3): Let (2,4) be a solution of (P3). By an analogous proceed like in the

T T
previous case, we obtain (z,w) € Adm, such that > ¢ (2, we) > > (24, 0¢). Then we
= =0

have when h > T, -
h h T T

lim inf(z Gt(zt, we) — Z Gt(24,1t)) = Z¢t(zt,wt) - Z¢t(i’t7at) >0,

h=too 45 =0 =0 =0

which is a contradiction.
- For (P?): Let (2,14) be a solution of (P?). It is clear that it is also a solution of (P2)
and hence, its restriction ((Zq,...,%741), (@0, ..., %7)) is an optimal solution for (F1).
For the (Di) case: the proof is completely similar to the (DE) case. O
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4.3 The New Multiplier Rule

4.3.1 Recall of the Multiplier Rule of Halkin

We consider two nonnegative integer numbers n; and ng, a nonempty open subset €2 in
R”, and functions ¢°, ¢',..., ¢™, h', h?,..., R"E from Q into R. With these elements
we formulate the following maximization problem:

Maximize ¢°(z)
when Vae{l1,2,...,n1}, g%(2) >0 (M)
VB e{l1,2,...,ng}, hP(z) =0.

The conditions g®(z) > 0 are called the inequality constraints, the conditions h®(z) =
0 are called the equality constraints, and g%(2) is called the criterion. A point z €  which
satisfies all the inequality constraints and all the equality constraints is called admissible

for (M).

Definition 4.2. The function £:Q x R™ x R™® — R defined by
0 ny ng P
2(27 )\17 R )‘TLU Hiseeey MHE) =g (Z) + ZlAaga(Z) =+ ﬂzlliﬂh (Z)
a= =

is called the Lagrangian of (M).
The function & : 2 x R x R™ x R"2 — R defined by

nr ng
6(27 )‘01 )\la sy Anp Hi, - .- 7,UTLE) = )\Ogo(z) + z_:lAaga(Z) + ﬁz_:lﬂﬁhﬁ(z)
nr a ng 5
= g+ )

is called the generalized Lagrangian of (M). Note that the difference between & and £ is
the presence of a scalar Ay associated to the criterion.

The following theorem is established in the paper of Halkin [31]. In [45], Michel
provides a proof which is different from this one of Halkin.

Theorem 4.3. Let z. be a solution of (M). We assume that the functions
¢, gt ....g™ and K, R2,..., RW"F are continuous on a mneighborhood of z
and that they are Fréchet differentiable at z. Then there exist real numbers
A0s - Mgy 1, - - 5 fng Which satisfy the following conditions:

(&) A0, A1,-oy Angs s - oy ing are not simultaneously equal to zero.
(b) For allVa € {0,1,...,n1}, Ay > 0.
(c) ForallVa e {l,...,nr}, Xag®(z«) =0.

(d) Di®(z4, A0y A1y Angs o1y« -5 bng) = O where Dy denotes the partial differential
with respect to the first variable z.

The real numbers of the conclusion of the theorem are called the multipliers associated
to zx. Ag is called the multiplier associated to the criterion; when o € {1,...,ns}, Ay is
called the multiplier associated to the inequality constraint ¢®(z) > 0; and when § €
{1,2,...,ng}, pg is called the multiplier associated to the equality constraint hP(z) = 0.
About the conclusion (a), it is easy to see that when all the multipliers are zero then all
the conclusions hold even if z, is not a solution of the problem. The conclusion (c) is called
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the slackness condition; it means that when g“(z.) > 0 then the associated multiplier is
zero and consequently we can delete it. Conclusion (d) can be translated as follows.

nr ng
S AaDg%(2) + ﬁzlugDh’B(z*) =0

a=0

Note that when (Ao, A1,. .., Anss f1, - - -, iny ) satisfies (a—d), for all real number r > 0,
the new list (7o, 7A1,...,7An,, "1, ..., Tl ) also satisfies (a—d) (this is a property of

cones). Consequently it is possible to normalize a list (Ao, A1,..., An;s (1, - -, fhny) Which
satisfies (a—d): choosing a norm |.|| on R x R™ x R™?  we can choose a suitable
list such that |Ao,...,An;, M1, pngl|=1.  Also note that the set of all lists
(Ags--sAnys By - -+ M) which satisfy (a—d) is a convex subset of RIMmr+ne,

4.3.2 New Multiplier Rules

Let © be a nonempty open subset of R", let f; : & — R (when i € {0,...,m}) be
functions, let g; : @ — R (when i € {0,...,p}) and h; : @ — R (when i € {1,...,q}) be
functions. With these elements, we consider the two following problems:

Maximize fo(x)
when z € Q (Z)
and when Vie {1,...,m}, fi(x) >0,

and

Maximize go(z)
when z€Q
when Vie{l,...,p}, gi(x) >0

and when Vj e {1,...,q}, hj(z)=0.

(M)

For Problem (Z), the conditions f;(z) > 0 are called the inequality constraints and
fo(x) is called the criterion. A point = € 2 which satisfies all the inequality constraints is
called admissible for (Z).

Similarly, for Problem (M), the conditions g;(z) > 0 are called the inequality
constraints, the conditions hj;(xz) = 0 are called the equality constraints, and go(z) is
called the criterion. A point z €  which satisfies all the inequality constraints and all
the equality constraints is called admissible for (M).

Recently, Blot has improved the Multiplier Rule of Halkin by the following theorems.
Their statements and proofs are taken from [10].

Theorem 4.4. Let & be a solution of (Z). We assume that the following assumptions are
fulfilled.

(i) For alli€{0,...,m}, fi is Gateauz differentiable at &.

(ii) For alli € {1,...,m}, f; is lower semicontinuous at & when f;(&) > 0.
Then there exist \°, ..., \™ € R, such that the following conditions hold.
(a) (\°..., \™) #£(0,...,0).

(b) Forallie{l,...,m}, X'fi(&) =0.

(c) Zogigm )\iDsz‘(fﬁ) =0.

If, in addition, we assume that the following assumption is fulfilled,

(iii) There exists w € R™ such that, for alli € {1,...,m}, Dgfi().w > 0 when f;(Z) =0,
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then we can take
(d) \°=1.

Theorem 4.5. (New Multiplier Rule) Let & be a solution of (M). We assume that
the following assumptions are fulfilled.

(i) go is Fréchet differentiable at z.
(ii) For alli € {1,...,p}, gi is Fréchet differentiable at & when g;(&) = 0.

(iii) For alli e {1,...,p}, gi is Gateauzx differentiable at & and lower semicontinuous at
& when g;(&) > 0.

(iv) For all i € {1,...,q}, h; is continuous on a neighborhood of & and Fréchet
differentiable at Z.

Then there exist \°,..., \? € Ry and p',..., p? € R such that the following conditions
are satisfied.

(a) (A°..., AP, put, ..., pd) #(0,...,0).

(b) For allie {1,...,p}, Nigi(2) = 0.

(€) XDao() + X 1<icp N Dagi(2) + X1<icq W Dahi(2) = 0.
Moreover, under the additional assumption

(v) Dhy(Z),..., Dhy(Z) are linearly independent,

we can take

(d) (A\%,..., »)#(0,...,0).
Furthermore, under (v) and under the additional assumption

(vi) There exists w € (N1<j<,KerDhj(2) such that, for alli € {1,...,p}, Dgi(Z).w > 0
when g;(&) =0,
we can take

(e) \0=1.

In comparison with the Halkin’s Multiplier Rule, for Problem (Z), the assumptions of
local continuity on a neighborhood of Z of the f;, i € {0,...,m} have been deleted and
their Fréchet differentiability has been replaced by their Gateaux differentiability, and for
Problem (M), the assumptions of local continuity on gy and on the g;, i € {1,...,p}
have been deleted. In comparison with the result of [49] for Problem (Z), the Fréchet
differentiability of the f; has been replaced by their Gateaux differentiability. Note that
the Gateaux differentiability of a mapping at a point does not imply the continuity of this
mapping at this point.

4.3.3 Proof of Theorem 4.4

Some fundamental tools

Before proving Theorem 4.4, we recall the following well-known results.
Theorem 4.6. Let m, n € Ny, ¢1,...,0m € R™, and a € R™. The two following
assertions are equivalent.
(i) Forallz e R™, (Vi€ {l,...,m}, ¢;.x >0) = (a.x > 0).
(ii) There exists \',...,\™ € Ry such that a = Y <<, Ngi
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A complete proof of this result is given in [61] (Chapter 4, Sections 4.14 - 4.19) and in
[38] (Chapter 2, Sections 2.5, 2.6). This result is presented in many books (for example,
in [4] page 164 and in [60] page 176 ).

A second fundamental tool that we recall is the Implicit Function Theorem of Halkin
for the Fréchet differentiable mappings which are not necessarily continuously Fréchet
differentiable.

Theorem 4.7. Let X, Y, Z be three real finite-dimensional normed vector spaces. Let
A C X XY be a nonempty open subset, let f : A — Z be a mapping, and let (z,y) € A.
We assume that the following conditions are fulfilled.

(i) f(z,y)=0.
(ii) f is continuous on a neighborhood of (Z,7y).

(iii) f is Fréchet differentiable at (z,y) and the partial Fréchet differential Do f(Z,y) is
bijective.

Then there exist a neighborhood U of  in X, a neighborhood V of y in'Y such that
UxV CA, and a mapping ¢ : U — V which satisfy the following conditions.

(a) ¥(z)=y.
(b) Forallxz €U, f(z,¢¥(x))=0.
(c) v is Fréchet differentiable at & and Dy(z) = —Dof (Z,4) " o D1 f(Z,%).

This result is proven in [31]. Its proof uses the Fixed Point Theorem of Brouwer. The
assumptions of this theorem are well explained by the electronic paper of Border [19].
Halkin does not use an open subset A. His function is defined on X x Y but it is easy to
adapt his result. Since v is Fréchet differentiable at z, 1) is continuous at & and then we
can consider a neighborhood V' of y and a neighborhood U of Z such that ¢)(U) C V and
such that U x V C A.

Now we will prove Theorem 4.4. Let & be a solution of Problem (7). Doing a change
of index, we can assume that I := {1,...,e} ={i € {1,...,m} : fi(2) = 0}. If fi(Z) >0
for all i € {1,...,m} then I = (or equivalently, e = 0). Using the lower semicontinuity
of (ii), there exists an open neighborhood © of & on which f;(#) > 0 for all ¢ € {1,...,m}.
Hence, Z maximizes fy (without constraints) on open set ©. Then using (i) and the
definition of Géateaux differential, we obtain D¢ fo(Z) = 0, and we conclude by taking
A0 :=1and A :=0forallic{l,...,m}. And so, for sequel of the proof we assume that
1<e<m.

Proof of (a), (b), (c)

Ever using (ii), when e < m we can assert that there exists an open neighborhood
Oy C Q of Z such that, for all x € Q; and for all i € {e +1,...,m}, fi(x) > 0. When
e = m we simply take 1 := €). Then for all case of e, & is a solution of the following
problem.

Maximize fo(z)
when =€ (P)
and when Vie {1,...,e}, fi(x) >0.

For all k € {0,...,e}, we introduce the set

A ={veR":Vie{k,...,e}, Dgfi(z).v >0} (4.1)
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We will prove that Ay = (). To realize that, we proceed by contradiction; we assume
that Ag # (), and so there exists w € R™ such that Dgf;(Z).w > 0 for all i € {0,...,e}.
Since ; is open, there exists 0, € (0,400) such that 24+ fw € Q for all € [0, 0,]. After
(i), for all i € {0,...,e}, the function o; : [0, 6,] — R, defined by 0;(8) := fi(Z+ Ow), is
differentiable at 0, and its derivative is 0}(0) = D¢ fi(#).w as follows

oi(0) = lim M — lim fi(® +tw) — fi(2)
’ =0 t =0 t

= Df(#,w) = D¢ fi(&).w

The differentiability of at 0 implies the existence of a function p; : [0,6,] — R such
that limg_,0 p;(6) = 0 and such that o;(0) = 0;(0) + 0.(0)8 + p;(0)6 for all 6 € [0,6,] and
for all ¢ € {0,...,e}. Translating this last equality we obtain for all § € [0, 6.] and for all
i €0,...,e},

fi( + 0w) = fi(2) + 0(Dg fi(2).w + pi(0)).

Since D¢ fi(Z).w > 0 and since limg_,g p;(6) = 0, we obtain the existence of 0; €
(0,0) such that D¢ fi(#).w + pi(0) > 0 for all & € (0,0;]. Setting  := min{f; : i €
{0,...,e}} we obtain that f;(Z 4+ 6w) < fi(z) for all § € (0,6] and for all i € {0,...,e}.
Then using i € {1,..., e}, this last relation ensures that &+ 6w is admissible for (P) when
S (O,él, and using this last relation when i = 0 we obtain fo(Z + Ow) > fo(&) when

6 € (0,0], that is impossible since # is a solution of (P). And so the reasoning by
contradiction is complete, and we have proven

Ap = 0. (4.2)

When A. = 0 there is not any v € R™ such that Dgfe(2).0 > 0. This implies
that Dgf.(£) = 0 since it belongs to R™. Then taking A\° := 1 and A\’ := 0 when
i€{0,---,}\{e}, we obtain the conclusions (a), (b), (c). And so we have proven

A, =0 = ((a), (b), (c) hold). (4.3)

Now we assume that A, # (). Since we have Ay = ) after (4.2) and A; C A; 1 we can
define

k:=min{i € {1,...,e}: A; # 0}. (4.4)
Note that Ay # 0 and that Ax_; = (). We consider the following problem

Maximize D¢ fr—1(Z).v
when v eR" (Q)
and when Vi€ {k,...,e}, Dafi(Z).v>0.

We want to prove that 0 is a solution of (Q). To do that, we proceed by contradiction.
We assume that there exists y € R™ such that (Vi € {k,...,e}, Dgfi(Z).y > 0) and
Dafi-1(2)y > 0 = Dgfr-1(2).0. Since Ap # 0, there exists z € R" such that
D¢ fi(2).z > 0 when ¢ € {k,...,e}. We can not have D¢ fr_1(&).2 > 0 since Ap_1 = 0.
Therefore we have Dg fr—1(2).2 < 0. If Dg fr—1(2).2 < 0 we can choose € > 0 such that

Dgfr1(2).y + eDafi1()2 > 0 (e 0 < & < ety 1§ Do fy 4(2).2 = 0 we
arbitrarily choose ¢ € (0,400) and we also have Dg fr_1(2).y + eDg fr—1(%).2 > 0. We
set u; := y + €z, and we note that D¢ fr_1(2).ue = Dgfr-1(2).y + eDg fr—1(2).z > 0.

Furthermore, when i € {k,... e}, we have Dqfi(2).uc = Dqgfi(2).y + eDgfi(2).z > 0
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since the three terms are positive. Therefore we have u. € A;_; that is impossible since
Ai_1 =0 . And so the reasoning by contradiction is complete, and we have proven

A #0 = (0 solves (Q)). (4.5)

Since 0 solves (Q), we have, for all v € R",

(Vi € {k,...,e}, Dgfi(2).v > 0) = (Dgfr-1(2).v <0)
— (Vie{k,...,e}, Dafi()w>0) = (—=Dgfr-1(2).v >0).
Then we use Theorem 4.6 that ensures the existence of o*,..., a® € R, such that

oD fr(2) + - -+ a®De fe(2) = —Dg fr—1(%) or equivalently, D¢ fr—1(£) + a*De fi(£) +
-+ a®Dgfe(2) = 0. We set

0 ifi<k—1,
N 1 ifi=k-1,
T o ifie k... el
0 ifie{e+1,...,m},
and we obtain
Ae 0 = ((a),(b), (c) hold). (4.6)

Then with (4.3) and (4.6) the conclusions (a), (b), (c¢) are proven.

Proof of (d)

The assumption (iii) means that A; # () and by (4.2) we know that Ay = (). Proceeding
like in the proof of (4.5) we can prove that 0 is a solution of the following problem

Maximize Dgfo(Z).v
when v e R"”
and when Vie {1,...,e}, Dgfi(&).v > 0.

Then using Theorem 4.6, there exist a',..., a® € Ry such that
Defo(2) + o' Dafi(2) + -+ + a®Dafe(2) = 0.
Then we conclude by setting
' 1 ifi=0,
No=< af ifie{l,... e},
0 ifie{e+1,...,m}.
And so the proof of Theorem is complete.

Remark 4.8. The use of the sets A; comes from the book of Alekseev-Tihomirov-Fomin
[1], and the proof of formula (4.6) is similar to their proof (p. 247-248). The use of the
set A is yet done in [31].

4.3.4 Proof of Theorem 4.5

First step - a simple case

For a simple case, if Dhi(Z),..., Dhgy(Z) are linearly dependent, there exist 1, ..., fiq
such that (u1,...,uq) # (0,...,0) and such that 3>, ;< uiDhi(2) = 0. Then it suffices
to take A\* =0 for all i € {0,...,p} to obtain the conclusions (a), (b), (c).

Now in the remaining of the proof we assume that the assumption (v) is fulfilled.
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Second step - deleting the non satured inequality constraints

We will delete the non satured inequality constraints. Doing a change of index, we can
assume that {1,...,e} = {i € {1,...,p} : gi(&) = 0}. Using the lower semicontinuity at
& of the g; when ¢ € {e +1,...,p}, we can say that there exists an open neighborhood
0 of & in Q such that g;(z) > 0} when x € Q; and when i € {e 4+ 1,...,p}. And so & is
a solution of the following problem

Maximize go(z)

when =z € Oy

when Vie{l,...,e}, gi(z) >0
and when Vie {1,...,q}, hi(x) =0

Third step - deleting the equality constraints

We consider the mapping h : ©; — RY defined by h(z) := (hi(x),..., hg(z)). Under
(iv) and (v), h is continuous on a neighborhood of Z, and it is Fréchet differentiable at &
with Dh(Z) onto.

We set By :=KerDh(&) and we take a vector subspace E9 of R" such that & FEy = R™.
Since Dh(#) € L(R",R?) and it is onto hence, dim F; = n — ¢ and dim F2 = q. And we
can do the assimilation R" = E; x Ey. We set (21, Z2) := 2 € Ej x Ey. Then the partial
differential Doh(Z) is an isomorphism from F5 onto R?. Now we can use Theorem 4.7 and
assert that there exist a neighborhood Uy of Z1 in Fy, a neighborhood Us of &5 in Fo, and
a mapping ¢ : Uy — Uj such that ¥(21) = &2, h(x1,9(x1)) = 0 for all z; € Uj, and such
that ¢ is Fréchet differentiable at #; with Di(21) = — (D2h(2) )™ o D1h(#) = 0 since
Dyh(2) = Dh(2)|g, = 0.

We define f; : Uy — R by setting fi(z1) := gi(x1,v(z1)) for all i € {0,..., e}. Since &
is a solution of (M), Z; is a solution of the following problem without equality constraints

Maximize  fo(x1)
when z1 € U; (R)
when Vie{l,...,e}, fi(z1)>0.

Fourth step: using Theorem 4.4

Since 1 is Fréchet differentiable at #;, the mapping (z; — (z1,%(x1)) is Fréchet
differentiable at 21, and using (i) and (ii), we obtain that f; is Fréchet differentiable (and

therefore Gateaux differentiable) at 21, for all i € {0,..., e}. Note that f;(Z1) = 0 for all

i € {1,..., e}. Consequently we can use Theorem 4.4 on (R) that permits us to ensure
the existence of A, A!,..., A\® € R, such that

(A0 AL X9 £ (0,0,...,0), (4.7)

Vie{l,...,e}, ANifi(#1) =0, (4.8)

> X'Dgfi(#1) =0. (4.9)

0<i<e
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The proof of (a), (b), (c)

We have for all i € {0,...,e}, Dqgfi(#1) = Dfi(Z1) = Dgi(21,9(21)) =
D1gi(21,(21)) + D2gi(21,9(21)) o D1p(21) = D1gi(%) since D13p(21) = 0. The formula
(4.9) implies

> X'Digi(#) =0. (4.10)
0<i<e
We will find operator M € R?* such that
> X'Dagi(#) + M o Dyh(&) = 0.
0<i<e

Since Dah(Z) is invertible, M is easily found as follows

M=|- 3" NDyg(#) | o(Doh(2))". (4.11)
0<i<e
Denoting by u',..., u? the coordinates of M in the canonical basis of R?*, we obtain
> NDagi(8)+ Y 1 Dahj(2) =0. (4.12)
0<i<e 1<j<q

Since Ey :=KerDh(#) = (,<;<,KerDh;(2), we have D1h;(2) = Dh;(2)|g, = 0 for all
je{l,...,q}, from (4.10) we obtain

> XNDigi(#)+ Y @/ Dihj(2) =0. (4.13)
0<i<e 1<5<q
From (4.12) and (4.13) we obtain
> XNDgi(2)+ > W Dhy(d) =0. (4.14)
0<i<e 1<j<q
We set A\ := 0 wheni € {e+1,...,p}, and so (4.14) implies (c). With (4.7) we obtain
(a) and with (4.8) we obtain (b). And so the proof of (a), (b), (c) is complete.
The proof of (d)

The relation (4.7) provides the conclusion (d).

The proof of (e)
When i € {1,...,e}, we have yet seen that Df;(21) = D1gi(Z) = Dgi(Z)|g,.- And so
the translation of the assumption (vi) gives
Jw € E; such that Vi € {1,...,e}, Dfi(&1).w > 0.

That permits us to use the last assertion of Theorem 4.4 on (R) to ensure that we can
choose \Y = 1.

Then the proof of Theorem 4.5 is complete.
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Remark 4.9. We see that in this proof, the assumption of Fréchet differentiability of the
hj is used in order to apply the Implicit Function Theorem of Halkin. The assumption of
Fréchet differentiability of g9 and of the g; for which the associated constraint is satured
is used to obtain the differentiability when we compose them with h; (to obtain the
differentiability of the f;). The Hadamard differentiability is sufficient to do that, but
in finite-dimensional spaces, the Hadamard differentiability coincides with the Fréchet
differentiability (][23], page 266).

4.3.5 Weak Pontryagin Principles for The Reduced Problems

We will apply New Multiplier Rule for the reduced to finite-horizon problems (F.')
and (FT). To do it, we will translate these problems into static optimization problems.
Note that, in the reduced problems, xy and xp are fixed and so they are not unknown
variables. Like in [15], page 11, we will assume that for all ¢ € N, X, is open and the sets
of admissible controls Uy, with ¢ € N are defined by equalities and inequalities

U = (ﬁ{u e R?: gi(u) > 0) N (Fﬁ{u eR?: ef(u) = 0) ) (4.15)
i=1 k=1

where for all i € {1,...,m;}, for all k € {1,...,m.}, for all t € N, g¢ : R — R and
ef . R? — R. We also assume that U; # () for all ¢ € N.

For Problem (F[)
We arbitrarily fix T' € N,. Let 7 and #7,1 be given. We rewrite Problem (F) under
model of (M).

T T
Let Q = J] X; x (Rd) , then  is open as a finite product topology of open sets and
t=1

the element z from 2 has the form z = (z1, 9, ..., 27, up, u1,...,ur). We set:

go(xlv ce e, IT,UQ, - - - 7'LLT) = ¢0(777 U’O) + Z$=1¢t(mt7 Ut),

and for all i € {1,...,m;}, for all t € {0,...,T'}, we set

gll/"(xh sy T UQ, -y ’LLT) = gz(ut)v

and for all k € {1,...,me}, for all t € {0,...,T}, we set

éf(azl,...,xT,uo, N ef(ut);

and for all « € {1,...,n},

w(OX('rlw-'axTvu(]a"qu) = f()a(n>u0) _33(117

and for all « € {1,...,n}, forallt € {1,...,T — 1}

wta(xla cee sy T, UQy - 7UT) = fta(wbut) - i.ta+1;

and for all @ € {1,...,n},

Yr(xe, ..., 27, U0, .. ., ur) = fr(ar,ur) — 2544.
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So we have translated Problem (F) into this form:

L ~0 .
Maximize ¢°(z1,...,z7,Ug,...,ur);

when Vte{l,...,T}, z; € Xy,
vte{0,...,T}, u € RY,
Vie{l,...,mi},Vte{0,...,T}, gi(ajl,...,xT,uo,...,uT) >0
Vk e {l,...,m.},vt €{0,...,T}, é¥(xy,...,27,up,...,ur) =0,
Vae{l,...,n}, Vt €{0,...,T}, v¥(x1,...,27,u0,...,ur) =0.

This is equivalent to:

Maximize §°(2);
when 2z € Q;
Vie{l,...,m;},vt €{0,...,T},gi(z) >0,
Vi€ {1,...,m.},vt €{0,..., T}, ék(z) =0,
Vae{l,...,n}, Vt€{0,...,T}, ¥3(z) =0.

Now we see that the Problem (R!) has the form of Problem (M). Let 2 =
(Z1,...,27,1g,...,Ur) be a solution of the problem above. If all the above-mentioned
functions (functions §°, g ,éf and v¢') satisfy all the assumptions of the New Multiplier
Rule then we can apply Theorem 4.5 to obtain the multiplier AI' € R, for the criterion
function §°(z), multipliers )\;f':t € R, for inequality constraints §i(z) > 0, multipliers
,uf,t € R for equality constraints éi(z) = 0 and multipliers ptTH,a € R for the equality
constraints 1f(z) = 0 where t € {0,..., 7}, ¢ € {1,...,m;}, a« € {1,...,n} and
ke {1,...,m.} such that all the conclusions of Theorem 4.5 are satisfied.

From conclusion (a) of Theorem 4.5, we know that the multipliers are not
simultaneously equal to zero.

From conclusion (b) of Theorem 4.5, we have

Vie{l,...,mi},vt€{0,....T}, AL,gi(2) =0
i.e.

Vie{l,...,m},Vt € {0,...,T}, A, gi(0s) = 0.

2y

n
We set p\; = 2_: Piiiach € R™ where (€},)1<a<n is the dual basis of the canonical

a=
basis of R™. Then the generalized Lagrangian of this problem is:

[,(Z, )\5, )\{0, ceey AﬁhT’ M{Oa s 7:“’%57T7p,{,17 tee 7p%+1,n)
T -0 L%r Lo v Lo r o
=X5-07(2) + 22 NG (2) + 20 2 i €i(2) + 3 X Py oV (2)
t=0i=1 {=0k=1 t=0a=1

T m; 3 T me .
= A2 (b0, u0) + {1 b(e, ur)) + t;);/\ftgi(ut) + t;)g_:luf,t@i(ut)

+> <ptT+1a Je(xe, ue) — $t+1> .
=0

As preliminary calculations, since all the functions in £ are Gateaux differentiable, the
differential of the generalized Lagrangian with respect to x; (in the Gateaux’ sense) is
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oL T . T T T T
a—wt(z, Ao Pl s Pims s PTi1as--- ,pT+1,n)
_ T T T T
= D¢ 2, L(2, A, sPias- s Pimsee s DTyt 1se - ,pTJrl’n)

= M D 1de(ze, w) + iy 0 Dan fi(@e, w) — pf
forall t € {1,...,T}.

and the differential of the generalized Lagrangian with respect to u; is

oL
67%(27 )‘Zapflv e )p’{,n) e 7p%+1,17 e 7]7%4.1@)
= DG,ut‘C('za Agvpfl, e 7pcll:na e 7p§+1717 v 7p%+1,n)
mg . Me .
= )\Z-DG,zqﬁt(xt, ut) +p?+1 o Dg o fi(e, us) + Zl/\z:tDGgi(Ut) + kE u%tDGei(ut),
1= =1
for all t € {0,...,T}.

From the conclusion (c) of Theorem of New Multiplier Rule, the Gateaux differential
of £ with respect to z vanishes at 2. It means that

{Vt €e{1,....T}, DG L(2, Ag,pfl, . ,p{n, . ,p%_l’l, e 7p%:+1,n) =0,
vVt €{0,...,T}, Dgu,L(2, /\oT,plTJ, .. ,p{n, . 7p%:+1,17 . ,p%_l’n) =0
<~

Vt S {17 cee 7T}7 p’ibr = AZ°DG,1¢t(£taﬂt) +p?+1 o DG,ltft(L%t)at)u

vt €{0,..., T}, Al.Dgadi(de, 0) + piyy © Daafe(®e, i) (4.16)

ms . me .
+ X%AZtDGg%(ﬁt) + kz uf Daei(iy) = 0
i= =1

And so, we can state the following result which is called weak Pontryagin principle for
the finite-horizon (reduced) problem (FI).

Proposition 4.10. Let (2,4) be a solution of (PJ) where j € {1,2,3}. We assume that
X are open for all t € N and Uy is defined by (4.15). We also assume that the following
assumptions are fulfilled:

(i) Vt € N, ¢ is Fréchet differentiable at (&4, 0y).

(ii) Foralli € {1,...,m;}, forallt € N, g is Fréchet differentiable at 1y when gi(1;) = 0.

(iii) For alli € {1,...,m;}, for allt € N, g is Gateauz differentiable at @; and lower
semicontinuous at Uy when gi(G;) > 0.

(iv) For allk € {1,...,m.}, for allt € N, el is continuous on a neighborhood of @y and
Fréchet differentiable at .

For allt € N, f; is continuous on a neighborhood of (&, 1) and Fréchet differentiable
at (.ﬁ't, at)

Then for all T € N, there exist AL, )\Zt € Ry, u;‘gt € R and pl,, € R™ where t €
{0,...,7}, i € {1,....,m;} and k € {1,...,me} such that the following conditions are
satisfied.

(a) The multipliers are not simultaneously equal to zero.

(b) Vie{l,...,m},vt €{0,...,T}, Al gi(d)=0.

(C) vt € {]-a s ’T}a pg = )‘Z'qubt(jtﬂat) +p?+1 0 let(jtvat)'
(d) vte{o,...,T},

mg . Me .
A Doty (e, ) + plyy 0 Do fy(de, 1) + ZlkftDGg%(ﬁt) + kE Ky Dhi(ti) = 0.
1= =1
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Proof. Let (Z,4) be a solution of (PJ) where j € {1,2,3}. Using Theorem 4.1, the
restriction 2 = ((2o,...,47), (4, . .., %7r_1)) is an optimal solution of Problem (F[), and
then it is a solution of Problem (R.). Under (i), (ii), (iii) and (iv) we obtain the following
assertions in turn:

Function §° is Fréchet differentiable at 2 as a sum of T Fréchet differentiable functions.

For all i € {1,...,m;}, for all t € {0,...,T}, functions §i is Fréchet differentiable at
2 when gi(2) = 0.

For all i € {1,...,m;}, for all t € {0,..., T}, functions §i is Gateaux differentiable at
Z and lower semicontinuous at 2 when g;(2) > 0.

For all k € {1,...,m.}, for all t € {0,...,T}, & is continuous on a neighborhood of
2 and Fréchet differentiable at 2. For all « € {1,...,n}, for all t € {0,..., T}, ¢ is
continuous on a neighborhood of Z and Fréchet differentiable at 2.

Then using Theorem of New Multiplier Rule for Problem (RI) as we did before the
statement of this proposition, we easily obtain the multipliers AT, )‘Zt eRy, u;‘gt € R and
pii1 € R™ where t € {0,...,T}, i € {1,...,m;} and k € {1,...,m.} that satisfy results
(a) and (b). Results (c¢) and (d) are obtained after identifying Gateaux differential with
Fréchet differential of Fréchet differentiable functions in (4.16). O

In the special case when for all t € N, U, is an arbitrary subset of R? and @; belongs
the interior of U;, Problem (R!) now contains only phase constraints an can be rewritten
as follows.

Maximize §°(z);
when 2z € () (int])
Vae{l,...,n}, Vt €{0,...,T}, ¥f(2) = 0.

Then applying Theorem of New Multiplier Rule, we obtain the following simpler
statement.

Corollary 4.11. Let (2,4) be a solution of (P?) where j € {1,2,3}. We assume that X; is
open and Gy € int(Uy) for allt € N . We also assume that the following assumptions are
fulfilled:

(i) Yt € N, ¢, is Fréchet differentiable at (T, Uy).
(ii) Forallt € N, f; are continuous on a neighborhood of (&, 1) and Fréchet differentiable
at (i‘t, at)
Then for all T € N, there exist \I € Ry and pf,, € R™ where t € {0,...,T} such
that the following conditions are satisfied.
(@) Al ply, t€{0,...,T} are not all zeros.
(b) Vte{1,....,T}, p{ = A .Di¢e(2t, 0) + piyq © Difi(e, Gr).
(c) Vt€{0,...,T}, 0= A Dagy(&s,0¢) + plyy © Dafi(Bs, Q).

For Problem (F!): the way we treat it is almost similar to what we did with
the (De) case. The different point is just the following: In (RI) the equal sign in
(1, ...,z U, - .., ur) = 0 will be replaced by the greater or equal sign (>) because
here the phase constraint has the form z;11 < fi(a¢, us). And then, we obtain following
problem
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L ~0 .
Maximize §°(z1,..., 27, Ug,...,Uur);

when Vie{l,...,T}, =€ Xy,
vte{0,...,T}, us € RY,
Vie{l,...,mi},vt€{0,...,T},Gi(x1,. .., 27, U0, ..., ur) >0,
Vke{1,...,me},Vt€{O,...,T},éf(xl,...,xT,uo,...,uT):O,
Vae{l,...,n}Vt € {0,..., T} ¢v¥(x1,...,27,u0,...,ur) >0,

(RT)
Apply the Theorem 4.5 for this problem with a notice that now the inequality

constraints group includes functions g and ¥ and the equality constraints group includes

only functions e¥, we receive the weak Pontryagin principle like before but with a slight

difference for the inequalities 1{*(z) > 0. The whole new proposition is presented here:

Proposition 4.12. Let (&,4) be a solution of (PZ]) when j € {1,2,3}. We assume that
X are open for allt € N and Uy is defined by (4.15). We also assume that the following
assumptions are fulfilled:

(i) Vt € N, ¢, is Fréchet differentiable at (T, Uy).

(ii) Foralli € {1,...,m;}, for allt €N, gi is Fréchet differentiable at @i, when gi(;) = 0.
For all o € {1,...,n}, for all t € N, ff is Fréchet differentiable at (&,u;) when
S @) = 274

(iii) For all i € {1,...,m;}, for all t € N, gt is Gateauz differentiable at 4y and lower

semicontinuous at Uy when g;(d;) > 0.

For all a € {1,...,n}, for allt € N, ff is Gdteauzr differentiable and and lower
semicontinuous at (&4, 1y) when f&(Z¢, ) = T, 4.

(iv) Forallk € {1,...,m.}, for allt € N, el is continuous on a neighborhood of @y and

Fréchet differentiable at .

Then for all T € N, there exist AL, )‘Zt € Ry, U%,t € R and pl,, € R where t €
{0,....,7}, i € {1,...,m;} and k € {1,...,me} such that the following conditions are
satisfied.

(a) The multipliers are not simultaneously equal to zero.

(b) Forallie{1,...,m;}, for allt € {0,..., T}, X gi(d;) = 0.
For allt € {0,...,T}, <p$+1, Fi(@e, ) — a§t+1> —0.
(c) Vte{l,...,T}, pf = A.Di¢u(d4, ) + ptyy © D1 fi(@e, ).
(d) vte{o,..., T},
ML Do (i, ) + plys © Dol ) + XN, Dagi(in) + i Dei(i) = 0.
In the special case when for all t € N, U; is an arbitrary subset of R? and ; belongs

the interior of Uz, Problem (R}) now contains only phase constraints an can be rewritten
as follows.

Maximize §°(z);
when 2z € () (int])
Va e {l,...,n}, Vt €{0,...,T}, ¥f(2z) > 0.

This has the form of Problem (Z). Then we obtain the following corollary after applying
Theorem 4.4.
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Corollary 4.13. Let (Z,4) be a solution of (PZJ) when j € {1,2,3}. We assume that for
allt € N, X; are open and 4, € int(Uy). We also assume that the following assumptions
are fulfilled:

(i) Vt €N, ¢, fi is Gateaux differentiable at (&4, Uy).
(ii) For all « € {1,...,n}, for all t € N, f is lower semicontinuous at (&, 0;) when
JE (@, ) > 284
Then for all T € N, there exist \I € Ry and pl,; € R where t € {0,...,T} such
that the following conditions are satisfied.

(@) AL, pl,, t€{0,....T} are not all zeros.
(b) Forallt €{0,....T}, (pLy, filde, @) = &s1) =0.

(c) Vte{l,...,T}, pf = AL.D1¢(&1, i) + iy 0 Dy fi(e, ).
(d) Vt€{0,...,T}, 0= A.Dogy(24, 1) + pliq © Dofe(Be, ).

4.4 Weak Pontryagin Principles for Infinite-Horizon
Problems with Interior Optimal Controls

In this section we consider the case where values of the optimal control sequence belong
to the topological interior of the set U; of the considered controls at each time ¢, and where
the system is governed by the difference inequation (Di).

Theorem 4.14. Let (2,4) be a solution of (P’) when j € {1,2,3}. We assume that the
following assumptions are fulfilled.

(i) Forallt e N, Gy € intUs.
(ii) For allt € N, ¢y and f; are Gateauz differentiable at (&4, 1y).
(iii) For allt € N, for all « € {1,...,n}, f& is lower semicontinuous at (Z¢,0;) when
[ (Ze, ) > 2841
(iv) For allt € Ny, Dg 1 fi(&¢,0) is invertible.
Then there exist A\g € R and (p¢)ien, € (R™)N+ which satisfy the following properties.
(NN) (Ao, p1) # (0,0).
(Si) Mo >0 and, for allt € N, py > 0.
(Sf) Forallt €N, forall o€ {1,...,n}, pf i - (ff (24, 0) — 281) = 0.
(AE) For allt € Ny, pt = pry1 0 Da i fe(2e,0e) + MoDaide (24, Ur).
(WM) For allt € N, pey1 0 Dgafe(&e, ) + MoDaoade(Et, Gr) = 0.
Proof. Our assumptions (i, ii, iii) imply that the assumptions of Corollary 4.13 in previous

section are fulfilled and so we know that, for all T' € N,, there exists ()\OT, pl .., p% 41) €
R x (R™)T+1 which satisfies the following conditions.

(AL, o, phiy) #(0,0,...,0). (4.17)
M'>0and Vte {1,...,T+1}, pl >0. (4.18)

vt e {0, T}, (phors il @) — 2101 ) = 0. (4.19)

Ve {1,...,TY, pi = AL.Dygy(d4, @) + piq o D1 fe(e, ). (4.20)
vt € {0,...,T}, 0=\ .Dagy (3, 1t) + pliy © Dafe(dr, ). (4.21)
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Using assumption (iv) we can formulate (4.20) as follows.

Vte{1,...,T}, plyy =pf o [Dife(@e, 00)] 7" — AL.D1¢py(84, i) 0 [D1 fo(@, )] . (4.22)

From this last equation we casily see that (A\J,p{) = (0,0) = (\{.p{,....p71) =
(0,0,...,0) and then from (4.17) we have a contradiction. Therefore we can assert that
(A0 p1) # (0,0). (4.23)

Since the set of the lists of multipliers of Problem (int!) is a cone, we can normalize the
multipliers by setting

082D = ] + [l ] =1 (424

Since the values of the sequence (AL, pT)ren, belong to the unit sphere of R x R™ which
is compact, using the Bolzano-Weierstrass theorem we can say that there exist an
increasing function ¢ : Ny, — N, and (Aog,p1) € R x R™ such that |Xo| + [[p1]] = 1,
limy_, 400 )\g(T) = Ao and lim7_, 4 o pf D _ P1-
Note that pf™) = (pPD) — NeD) D11 (31, 41)) 0 D fi(d1, )~ for all T > ¢ — 1,
which implies that
o(T) _

pe= lim pd"’ = (p1 — Xo-Dg161(21,71)) 0 D1 fi(d1, 1)
T—~+o00

Proceeding recursively we define, for all ¢ € N,,

. T . T T . N
DPty1 = lefoopﬁl) = TEIEOO(pf( ) — A(f( )DG,1<Z5t(l‘t,Ut)) o D fo(de, )

= (pt — AoDg,101(4, 1)) © D frl@e, i)

And so we have built g € R and a sequence (p;)ten, € (R™)N+ which satisfies (AE). We
have yet seen that (NN) is satisfied. From (4.18) we obtain (Si). From (4.19) we obtain
(S¢). From (4.21) we obtain (WM). O

Notation 4.15. Note that, for all ¢t € N, | D fi(Z4, 4y) belongs to L(R™,R™), the space of
all continuous linear operators from R into R™. It can be represented by a n x n Jacobian
Off (2, )

axf

matrix. We will denote the element at position («a, ) of this matrix by where

a,fe{l,...,n}.

In the next theorem, we will replace the assumption of invertibility (assumption (iv))
in previous theorem by another one, which is called positivity assumption. The theorem
is stated as follows.

Theorem 4.16. Let (Z,4) be a solution of (Pf) when j € {1,2,3}. We assume that the
following assumptions (i,ii,iii) of Theorem 4.1/ are fulfilled. Moreover we assume that the
following assumption is fulfilled.

Off (2, Ut

(v) Forallt € Ny, for all a, € {1,...,n}, 5
Oz}

>0 an

ofi (%
d E > 0.

t7at)
a
t

Then the conclusions of Theorem 4.14 hold.

Before proving this theorem, we recall the following useful lemma which related to
condition (v).
Off (&4, 1
Lemma 4.17. Under assumption (v) of Theorem 4.16, setting p; := min M -
1<a<n ox§
a real positive number. Then the following assertions hold:
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(i) For ally € R, D1fe(2¢,0t).y > pry-
(ii) For all m € RY*, 7o Dy fi(&4,0s) > py.r.

Proof. (i) Let y € R"} arbitrary. For all o € {1,...,n} we have

Off (%, Uit) yﬁ Off (%, Uit
=1 0d? - Oxp

(67

y* > pry®.

That means D1 f(Z¢, Ut).y > pe.y.
)

(ii) Let 7 € R"*. Using (i) we know for all y € R}, Dy fi(&4,1¢).y > pe.y. Then we have

7o Dy fi(Z¢, ).y = 7(D1 fi(&4,0e).y) = m(2 + pr.y) where z € R}
m(z) + m(pe-y)
m(p-y) = pe-m(y).

Y

We have the change above because 7 is linear. The last inequality means
70 Dy fe(&¢,0y) > pp..
O

Now we move to the proof of Theorem 4.16.

Pmof Proceeding as in the proof of Theorem 4.14we obtain for all T' € N,, there exists
(Mot o phyy) € R x (RY)TH! which satisfies the conditions (4.17-4.21). We have

Vt S {17 v 7T}7 p,f = AZ‘DG71¢t(§:t7ﬁt) +ptT+1 o DG,lft(‘%tyat)

=Vt e {17 s 7T}7 p;‘;—l © DG,lft(i.taﬁt) :p:{ - )‘Z'DGJ(bt('%tuat)'

Since pf,; > 0, using Lemma 4.17 we have:
T A T
vt e {1,...,T}, pry1 o Do fi(@e,4t) > pr-priy

Df9 (3, iy
where p; := min Off (&, )
1<a<n ox§

. Then

vt e {1,..., T}, 0< pepfer <o — A -Da (@, @)

, (since AL > 0)

= ot [Pl | = eepfia]) < |pF]| + A7 1DG a1, a0))

= Vte{l,...,T}, Hp;‘FHH < k= (prTH + T HDGJ@(@t,ﬁt)H) ;

which implies that if (A\l,p?) = (0,0) then (\J,pT,... ,p%:ﬂ) = (0,0,...,0) which is a
contradiction with condition (4.17). Then condition (4.23) holds and by normalizing we
obtain (4.24). Then 0 < A" < 1 and the following relation holds for all ¢ € N, and for all
T>t-1.

[pfa]| < (Hpt |+ 1De i, anl) (4.25)

Now we want to prove the followmg assertion:

Vt € N,, 3¢ € (0,+00),¥T >t — 1, TH <G (4.26)
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We proceed by induction. When ¢ = 1, from (4.24), we know that Hp{H < 1. And so it

suffices to take (; := 1. Assume that (4.26) holds for ¢, then for ¢ 4+ 1, from (4.25) we
obtain
1 I
[t < 2 G+ IDGa01 G Al = Guta
Hence, assertion (4.26) is proven.

Using (4.26) and the diagonal process of Cantor as it is formulated in [15] (Theorem
A1, p.94), we can assert that there exist an increasing function ¢ : N, — N,, a real
number A, > 0 and a sequence (p;)ien, € (R7)M such that limp_, o )\g(T) = )Xo and
lim7_ 400 pf (1) _ pe for all t € N, . Now we conclude as in the proof of Theorem 4.14. [

4.5 Weak Pontryagin Principles for Infinite-Horizon
Problems with Constrained Controls

In this section we first consider the case where the sets of controls are defined by
inequalities for each ¢t € N.

U = ﬂ {fueR:: gF(u) >0} (4.27)

1<k<m

where gF : R? — R and we assume that Uy # () for all t € N.
In this subsection, we use the following notations for linear span and convex hull of a
finite set of vectors in real normed vector space.

Notation 4.18. Let .S be a finite subset of a normed vector space X. We denote the
linear span of S by span(S) and the convex hull of S by conv(S5).

Lemma 4.19. Let E be a finite-dimensional real normed vector space and I be a nonempty
finite set. Let (@;)icr € (E*)L. The three following assertions are equivalent.

(i) 0 ¢ conv{p; i€ l}.
(if) For all (\i)ier € (Ry)!, Sier Nipi =0 = X\; =0 for alli € I.
(iii) There exists w € E such that, (@;,w) >0 for alli € I.

Proof. Firstly, we prove that non(ii) implies non(i). From non(ii) we deduce that there

exists (A\;)'€ € (R;)! such that (X\;)’€! # 0 and Eie[(ﬁ)% = 0 which implies non(i).
JjerI

Secondly, we prove that non(i) implies non(ii). From non(i) there exists (av;)ie; € (Ry)!

such that >,y = 1 and 0 = Y, a4, and since (;);er is non zero, non(ii) is fulfilled.

And so we have proven that non(i) and non(ii) are equivalent.

To prove that (i) implies (iii), note that 0 ¢ conv{p; : i € I} = K, and K is a
nonempty convex compact set. Using the theorem of separation of Hahn-Banach, we can
assert that there exist £ € R™ and a € (0,400) such that (¢,¢) > a for all ¢ € K,
and (£,0) = 0 < a. Since R" is reflexive, there exists w € R™ such (£, ¢) = (p,w) for all
¢ € R™. Therefore for all i € I, we have (p;, w) > a > 0 that is (iii).

To prove that (iii) implies (i) we set v := min;er(pi, w) > 0. When ¢ € conv{y; :
i € I}, there exists (a;)ie;r € (Ry)! such that Yeri = land ¢ = Y ;cra;p;. Then
we have (p,w) = > ;e i{pi, w) > > ey iy = v > 0 which implies ¢ # 0, and so (i) is
satisfied. O
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Lemma 4.20. Let E be a finite-dimensional real normed vector space and I be a nonempty
finite set. Let (¢;)icr € (E*)! such that 0 ¢ conv{p; : i € I}. For all i € I, let
(rMnen, € Rﬁ*. We assume that the sequence (Yp)pen, = (X icr rhoi)hen, is bounded

in B*. Then there exists an increasing function p : N, — N, such that, for all i € I, the
p(h)

sequence (15" )hen, 1s convergent in R .

Proof. Firstly, we prove that iminfy,_, > ic; rlh < 400. We proceed by contradiction:
we assume that liminfy, > ;e T‘Z}-L = +o00. Therefore we have limy, o0 D ;s T‘lh = +o00.

h
T

We set sl := ST € Ry. We have 3,c; 8% = 1 and so Y,c; styi € conv{p; : i € I}.
J

Note that || > c; stil| = 5 ! — [¥nll converges to 0 when h — +oo since (Yp)nen,
JET ' J

is bounded. Thus, we have limj,_ o > ic; shp; = 0 which implies that 0 € conv{yp; :
i € I} and that is a contradiction with one assumption. And so we have proven that
s:=liminfy 10> s rlh < +o0.

Now we can assert that there exists an increasing function 7 : Ny — N, such that

lmpy—sqo0 D ier rz(h) = 5. Therefore there exists M € Ry such that 0 < >, rz(h) <M

for all h € N,. Since for all 7 € I, we have 0 < r;r(h) < Zje[ r;(h) < M, i.e. the sequence
T(h))

(r;"")hen, is bounded in Ry. Using several times the Bolzano-Weierstrass theorem we

can assert that there exist an increasing function 71 : Ny, — N, and r} € Ry for all ¢ € I,
ToT1(h)

such that limp_, 4o 7; = r;. It suffices to take p := 7o 7. ]

Theorem 4.21. Let (Z,4) be a solution of (PZJ) where j € {1,2,3} and where the sets Uy
are defined by (4.27). We assume that the following assumptions are fulfilled.

(i) For allt € N, ¢ and f; are Gateaux differentiable at (I, Uz).
(ii) For allt €N, for all k € {1,...,m}, gF is Gateauz differentiable at ;.

(iii) For allt € N, for all « € {1,...,n}, f is lower semicontinuous at (Z+,0) when
fta(ii't,ﬂt) > j?—i—l'
(iv) For all t € N, for all k € {1,...,m}, gF is lower semicontinuous at t; when

gt (i) > 0.
(v) Forallt € N, 0 ¢ conv{Dggl(is) : k € I} where I} .= {k € {1,...,m} : gF(t;) =
0}.

(vi) For allt € Ny, D1 fi(2¢,0) is invertible.

(vii) For allt € Ny, for all o, € {1,...,n}, W >0 and for all « € {1,...,n},
o5t o)
Then, under (i-vi) or under (i-v) and (vii), there exist \g € R, (p)ien, € (R™)Nx,
(Ateny € RN, .. and (N ien € RY which satisfy the following conditions.
(NN) (Ao, p1) # (0,0).
(Si) Ao >0, , p; >0 for allt € N,, and \F >0 for allt € N and for all k € {1,...,m}.

(S¢) For allt € N, for all « € {1,...,n}, p? | - (ff (&4, %) — 2¢1) = 0, and for all
ke{l,...,m}, \NgF(i,) = 0.

(AE) For allt € Ny, pr = prg1 0 Da1 fe(@e, @) + Mo D¢ (2, ).
(WM) For allt € N, pyi1 0 Dgofi(de, @) + NoDa2de (24, 1) + Yjey AfDagf (@) = 0.
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Proof. From Theorem 4.1 (b) we know that, for all " € N,, (Zo,...,Z74+1, o, ..., 0r) is a
solution of the following finite-horizon problem.

Maximize J(zg,...,T741,U0,...,UT) = ZZ:O de(e, ug)
when Vit € {0, . ,T}, ft(xt, ut) — 2441 >0
vte {0,..., T +1},2, € Xy
o =1, T4l = Trya
vte{0,...,T},Vk € {1,...,m}, gF(u;) > 0.

From Theorem 4.4 we can assert that there exists
A\, pt, . ,p%Jrl,/\%’T, .. .,)\?’T) € R x (R™)T 41 x R™ which satisfies the following
assertions.

Aol i AT ART) £ 0. (4.28)
M >0vte{l,...,T+1},p; >0,
kot (4.29)
and Vt € {0,...,T},VE e {1,...,m},\;”" > 0.
vt e {0,..., T} Va e {l,... ,n},pfﬂrl (R (&, ) — i’f‘H) =0, (4.30)
and vt € {0,..., T}, vk € {1,...,m}, APT . gk(a,) = 0. '
vte{1,...,T}, (4.31)
pi =pti 0 Daafu(de,u) + N Daagu(de, ).
vt e {0,...,T}, L (4.32)
pie1 © Do fi(@e, @) + A Daage(E, ) + peq A" Dagl (i) = 0.

Using (4.31) under (vi) or (vii) and working as in the proof of Theorem 4.14 or Theorem
4.16, we obtain

(A, p1) = (0,0) = (\{,p1,...,phi1) = (0,0,...,0).

Proceeding by contradiction, assuming that (A\J,pl) = (0,0), from the previous
implication and (4.32) we obtain 37", AT DggF () = 0, and then using Lemma 4.19
we obtain the )\f’T = 0. Therefore, we obtain a contradiction with (4.28). And so we have
proven that (A}, pl) # (0,0). Under (vi), proceeding as in the proof of Theorem 4.14
and under (vii), proceeding as in the proof of Theorem 4.16 we obtain the existence of
an increasing function p : N, — N, and of A\g € Ry and of (py)en, € (R7)N* such that
Ao = limy s y00 NP = limg oo o0, (Ao, p1) # (0,0), and pf- (f& (&4, @) —£8,1) = 0
for all t € N, and for all a € {1,...,n}.

We fix t € N and we consider, for all T' € Ny,

or = Trer M Dagh(in) = T, AP Dagh ()
= —(pf+T1) o Da o fi(@, ) + AS(T)DGQ@(@, Uy)).
Therefore, we have limp o pr = —(pir1 © Daafe(Ze,1t) + XoDa2¢i(8, 1)), and
consequently the sequence (¢7)ren, is bounded in R™. Using Lemma 4.20 we can assert
that there exist an increasing function p; : N, — N, and )\,}, ..., Ay € Ry such that
limy 4 o0 /\f’pom(T) = A\ € R;. And then the assertions (NN), (Si), (S¢), (AE) and (WM)
are satisfied. ]

Now we consider the case where the sets of controls are defined by equalities and
inequalities for each ¢t € N as in (4.15),

Ut:( ﬂ {ueRd:gf(u)ZO})ﬂ( ﬂ {ueRd:ef(u):O}). (4.33)

1<k<m; 1<k<me
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The following lemmas are useful for the proofs of the weak Pontryagin principles for
problems with constraints on control sets defined as above.

Lemma 4.22. Let E be a real finite-dimensional normed vector space; let J and K be
two monempty finite sets, and let (7)jc; and (p*)rex be two families of elements of the
dual E*. Then the two following assertions are equivalent.

(i) span{y’ : j € J}Nconv{e® : k € K} = 0.
(ii) There exists w € E such that (7, w) = 0 for all j € J and (p*,w) >0 for all k € K.

Proof. We set S := span{y? : j € J} and C := conv{¢" : k € K}.

[i = 4i] Under (i) using the theorem of separation of Hahn-Banach, there exist £ € E**
and a € (0,+00) such that ({,¢) < a for all v € S, and (£, ) > a for all p € C. When
1 € S is non zero, we have |(£, )| < a since —p € S, and therefore, for all A € R, we have
IA| - 1{€,¥)| < a which impossible if [(£,1)| # 0, therefore we have (£,v) = 0 for all ¢ € S.
Since E** is isomorphic to E there exists w € F such (£, x) = (x,w) for all x € E*, and
then we obtain (ii).

[ii = i] Under (ii) we define a := mingeg(¢*,w) > 0. When ¢ € C there
exists (O)rerx € RIE such that Ypcx 0 = 1 and Ypcx Ok’ = . Then (p,w) =
Sker Oe{eF, w) > Sk Ok -a > 0. When ¢ € S there exists (¢;)jes € R’ such that
>jed ¢j1? = 1. Therefore we have (1, w) = > jed ¢j{¢7, w) = 0. We have proven that
(,w) =0 for all ¢ € S and (p,w) > 0 for all ¢ € C, which implies (i). O

Lemma 4.23. In the framework of Lemma 4.22, under condition (i) of Lemma /.22,
when (u;)jes € R? and (\p)rerx € RE, we have

STt + > Mt =0 = (Vk € K, \, = 0).
jeJ keK

Proof. We proceed by contraposition, we assume that there exists k& € K such that
A # 0. Then A := YA > 0 and so D o %cpk € conv{p® : k € K} and
D okek ’\T’Cgok = —YjeJs %QN € span{y? : j € J} which provides a contradiction with
condition (i). O

Lemma 4.24. Let E be a real finite-dimensional normed vector space; let J and K be
two nonempty finite sets, and let (7)jc; and (¢*)rex be two families of elements of the
dual E*. We assume that the following assumptions are fulfilled.

(a) The family (V) ;e is linearly independent.
(b) span{y’ : j € J}Nconv{pF: ke K} =0.

Let (M?)jgj € R and (A\!)kex € RE for all h € N, such that the sequence
(X"hen, = (Xjes M?’lbj + Sker NP hen, is bounded in E*. Then there exists an
p(h ))

increasing function p : Ny — N, such that the sequences (u heN, are convergent in

R for all j € J and the sequences and (/\Z(h))heN* are convergent in Ry for all k € K.
Proof. We set S := span{¢’ : j € J} and C := conv{p® : k € K}. Firstly, we

prove that liminf, o> ek )\Z < 400. We proceed by contradiction, we assume that
lim infh_>+oo Skek A = +0o. Therefore we have s := limp_, 4 oo EkeK )\Z = +00. We set
h

=y on € Ry. We have » 7@ = 1, and therefore dokeK 7P € C. Note that

€K k!

1
b zk,eKAh TR IR T I S N B

jeJ keK 2KeK
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when h — 400, therefore

h
I J — 0.
i (Z = K)‘]g/¢ + Y T )

keK

Since C' is compact there exists an increasing function 7 : N, — N, and ¢, € C such that

(), "
jed z T(h>¢ = (4. Since a
Zk’eK K/

finite-dimensional normed vector space is complete, S is closed in E*, and consequently
we have ¢, € S, and then ¢, € SN C which is a contradiction with assumption (b). And
so we have proven that iminfy,_, o> pcx AZ < +00.

Now, the previous result implies that there exists an increasing function r

N, — N, such that limj_, 0> rex /\;(h) = liminfy 4 0> her )\k Thus, the sequence

Orer )\Z(h))heN*)heN* is bounded in R;. Since 0 < )\r(h < Yrek Ak r(h ), we obtain
(Az(h))heN* is bounded in R4 for all k& € K. Therefore (3 ,cx )\k( ) Mhen, is bounded
in B*. Consequently, (3¢, u;(h)wj)heN* = ("™ - Yiek A;(h)gok)heN* is bounded as a
difference of two bounded sequences. Under assumption (a) we can use Lemma 5.5 in [7]

and assert that there exists an increasing function r; : N — N such (g, ne Tl(h))heN* is

convergent in R for all j € J. Using |K| times the Bolzano-Weierstrass theorem, there
h)

limy, 400D ker TI'k = 4. Consequently limy,_, 4o >

exists an increasing function ro : N, — N, such that )\Zohom( heN, is convergent in R,.
Taking p := r orj ory we have proven the lemma. O

Theorem 4.25. Let (2,4) be a solution of (P}) where j € {1,2,3} and where the sets U,

are defined in (4.33). We assume that the following assumptions are fulfilled for allt € N.

(1) ¢+ is Fréchet differentiable at (I, Gy).

(ii) For all € {1,...,n}, fi* is Fréchet differentiable at (&¢,7:) when
S (e, ) = gy

(iii) For all a € {1,...,n}, f is lower semicontinuous and Gateaux differentiable at
(T4, 1) when fE(Z¢, ) > .

(iv) Forall k € {1,...,m;}, gF is Fréchet differentiable at 4y when gF (i) = 0.

(v) Forallk € {1,...,m;}, gF is lower semicontinuous and Gateauz differentiable at i
when gk (ti) > 0.

(vi) For all j € {1,...,m.}, e{ is continuous on a mneighborhood of u; and Fréchet
differentiable at Uy.

(vii) span{Del(a;): j € {1,...,me}} Nconv{Dggl(iy) : k € If} = 0, where
Ip={kec{l,...,m;}: gF(a;) = 0}.

(viii) De} (1), ..., De™e () are linearly independent.

(ix) For allt € Ny, Dg 1 fi(Z¢, 1) is invertible.

(x) For allt € Ny, for all a,p € {1,...,n}, % > 0 and for all o € {1,...,n},

Off (24,at)
AUiEem) 5 0,

Then under (i-iz) or under (i-viii) and (z) there exist Ao € R, (pi)ien, € (R™)Nx,
(p1,0)een € RN, o) (e t)ien € RY, (M )ien € RN, Lo (Anst)ten € RY which satisfy
the following conditions.

(NN) (Ao, p1) # (0,0).
(Si) Mo>0, p >0 forallt € Ny, Ayt >0 for allt € N and for all k € {1,...,m;}.
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(S¢) For allt € N, for all a € {1,...,n}, piy - (ff (&, 0) — 2fq) = 0, and for all
Ee{l,...,m}, Ape- gf(@t) =0.

(AE) For allt € Ny, pt = pey1 0 Da 1 fe(8e, Ur) + Mo D1de (T, Gt).

(WM) Forallt €N,

m; Me
Pei1 0 Daafi(@e, ) + MoDage(&e, @) + Y MeaDagt (i) + Y pjeDe (1) = 0.
k=1 j=1

Proof. Under assumptions (i-vi), using Proposition 4.12 we obtain the existence of real
numbers AJ, pf,, (for t € {1,..., T+ 1} and a € {1,...,n}), uf; (for t € {0,...,T} and
je{l,...,m.}), )\Zk, (for t € {0,...,T} and k € {1,...,m;}) which satisfy the following
conditions:

S DL s Pt BL0s - s i 75 AL 05 - - s M) # 0 (4.34)
M >0,(vte{l,..., T +1},Va e {1,.. n}pmzo) (4.35)
(vt e {0,...,T}HVk e {1,... mz})\7 >0) '
vt € {0,...., THVa € {1,....,n}, Py o (fO (8, G) — 28) =0 (4.36)
vte{0,...,THVk € {1,...,mi}, N g/ () = 0 (4.37)
Vi€ {1,..., T}, N Di¢u(dr, tt) + piiy o Do fe(de, @) = pi - (4.38)
N Do (24, i) +Pt+1 o Dg o fi(&, 1) (4.39)
+ ZJ 1 ut]Det (Gg) + > )\kaggf(th) =0. '

Using (ix) and working as in the proof of Theorem 4.14 or using (x) and working as in the
proof of Theorem 4.16 , from (4.38) we obtain the following condition.

(AG.p1) = (0,0) = (AT, p1 .-, P111) = (0,0,...,0). (4.40)

If (AL, pT) = (0,0), using (4.39), (4.40) implies

Me . mg
Z “ZjDeg () + Z )‘ZkDGgf(at) =0,
Jj=1 k=1

and using (4.37) we obtain )\tTk = 0if & ¢ I}, and so we obtain the following
relation > 7 1,u,t]Det (U) + Prers /\t wDcgF(i:) = 0. Then using (vii) and Lemma
4.23 we obtain )\ = 0 for all k¥ € I7, and consequently we have )‘Zk = 0 for all
E e {1,...,m;}. Therefore we have 3T 1utjDet(ut) = 0. Using (viii) we obtain
,ufj =0 for all j € {1,...,m¢}. And so we have proven that (A\},p!) = (0,0) implies
()\OT,pfl, e ,pgﬂyn,ufo, e ,,umeyT,)\LO, .. ")\%'MT) = (0,...,0) which is a contradiction
with (4.34). And so we have proven the following condition.

(A0,p1) # (0,0). (4.41)

From (4.41) under (ix) proceeding as in the proof of Theorem 4.14 or, under (x) proceeding
as in the proof of Theorem 4.16 we obtain the existence of an increasing function
r: N, = N,, of \g € R and of (p;)ien, € (R™)N such that

Jim 30 =, (vt € Mo, Tim ™ = pr), (Ao, 1) # (0,0). (4.42)
—+00
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From (4.42) we see that the sequences ()\S(T))TGN* and (pI(T)

using (4.39), we deduce that the sequence

)ren, are bounded and then,

Oyt Nt(y 'Del (i) + PP T)Dth( t))TeN, =
(i /’[’t(j )Det(ﬁ )+ Xkers )\t(k D¢yl (i) ren,

is bounded for all ¢ € N. Using (vii), (viii) and Lemma 4.24 we can assert that there exist
an increasing function 7 : Ny — Ny, g ; € R (for all t € N and for all j € {1,...,m.}),
Atk € R (for all t € N and for all k € {1,...,m;}) such that

_ : ory(T) _
= Mt,j,TLHJIrlOO A;k” = At k- (4.43)

Finally (4.42) implies (NN), (4.42), (4.43) and (4.35) imply (Si),(4.42), (4.43), (4.36)
and (4.37) imply (S¢), (4.42), (4.38) imply (AE), and (4.42), (4.43) and (4.39) imply
(WM). 0

Theorem 4.26. Let (&,1) be a solution of (PJ) where j € {1,2,3} and where the sets Uy
are defined in (4.27). We assume that the following assumptions are fulfilled for allt € N.

(1) ¢¢ is Fréchet differentiable at (I, Gy).

(ii) fi is continuous on a neighborhood of (&,1;) and Fréchet differentiable at (&4, ;).

(iii) For allk € {1,...,m;}, gF is Fréchet differentiable at @y when g (i) = 0.

(iv) For all k € {1,...,m;}, gF is lower semicontinuous and Gdteaux differentiable at i
when gk (ti) > 0.

(v) For all j € {1,...,m.}, e{ is continuous on a neighborhood of u; and Fréchet
differentiable at Uy.

(vi) span{Déel(a;) : j € {1,...,me}} N conv{Dggk(iy) : k € If} = 0, where I} := {k €
{1,...,m;} : gF(0y) = 0}.

(vii) De} (i), ..., Del* () are linearly independent.

(viii) For allt € Ny, Dga fe(Ze,Ur) is invertible.

Then under (i-viii) there exist A\ € R, (pi)ien, € (R™)N, (ue1)ien € RY, ...,
(teme)ien € RY, (Ma)ien € RN, ) (Aum)ien € RY which satisfy the following
conditions.

(NN) (Ao, p1) # (0,0).
(Si) Ao >0, Agt >0 for allt € N and for all k € {1,...,m;}.
(S¢) Forallt €N, forallk € {1,...,m;}, My - g () = 0.
(AE) For allt € Ny, pt = pey1 0 Da1 fe(8e, Ur) + Mo D1de (T, ).
(WM) Forallt €N,
Pe+1 © Da o fe(Ze, tr) + NoDagy (&, Ur) + Z )\t,kDGQf(th) + Z Ht,jDej(ﬂt) =0.
P =1

The proof of this theorem is similar to the one of Theorem 4.25. The difference is the
replacement of inequality constraints by equality constraints in the problem issued from
the reduction to finite horizon. The consequence of this difference is the lost of the sign
of the adjoint variable py.



Chapter 5

Pontryagin Principles for
Infinite-Horizon Discrete-Time
Multiobjective Optimal Control
Problems

5.1 Introduction

Multiobjective optimal control is an important branch of Optimal Control Theory.
Multiobjective optimal control problems naturally arise, for example, in economics
([27, 29, 57] and references therein), in aerospace, mechanical and chemical engineering
([5, 6] and references therein), in multiobjective control design ([63] and references therein),
in environmental studies ([28] and references therein)...

Multiobjective optimal control was first studied by Zadeh [67]. Some works followed
like Salukvadze [54], Yu and Leitmann [66], Toivonen [59], Ishizuka and Shimizu [37],
Khanh and Nuong [39], Yang and Teo [65], Giannessi et al. [30] and references therein who
developed necessary and sufficient conditions as well as various methods for multiobjective
optimal control. Multiple linear quadratic control problems can be found in Li [42], Liao
and Li [43], Liu [44].

The first works on infinite-horizon single-objective optimal control problems are due
to Pontryagin and his school [48] and Halkin [32]. Other works followed as Carlson et al.
[21], Zaslavski [68, 70, 69], Blot and Chebbi [11], Blot and Hayek [13, 14, 15], Blot [8, 9],
Blot et al. [16], Blot and Ngo [17, 18].

Infinite-horizon multiobjective optimal control problems in the continuous-time
framework can be found in Bellaassali and Jourani [3], in Zhu [71] and in Reddy and
Engwerda [51] and references therein.

Infinite-horizon multiobjective optimal control problems in the discrete-time framework
can be found in Hayek [34, 33] and in Blot and Hayek [15] and in references therein.

In this chapter, necessary conditions of Pareto optimaltity under the form of Pontryagin
principles for finite horizon and infinite-horizon multiobjective optimal control problems
in discrete-time framework are studied. The aim of this chapter is to establish weak
and strong maximum principles of Pontryagin for problems in the presence of constraints
and under assumptions which are weaker than the usual ones. In this way, this
chapter generalizes existing results for single-objective optimal control problems and for
multiobjective optimal control problems with or without constraints. The general method
we follow is to reduce the infinite-horizon problems into finite-horizon problems and



CHAPTER 5. PONTRYAGIN PRINCIPLES FOR INFINITE-HORIZON DISCRETE-TIME
94 MULTIOBJECTIVE OPTIMAL CONTROL PROBLEMS

then to translate the finite-horizon multiobjective optimal control problems into static
multiobjective optimization problems, then use an appropriate multiplier rule for such
problems. However, many existing multiplier rules require the smoothness or at least, the
Fréchet differentiability at the optimal solution and the continuity on a neighborhood of
the optimal solution of the functions issued in the problem. To establish weak maximum
principles, we provide new multiplier rules for static multiobjective optimization problems,
which are built in the spirit of the single-objective static optimization rules that Blot
presents in [10]. In these rules, in some places, instead of the usual Fréchet differentiability
at the optimal solution we use Gateaux differentiability at it and we replace the continuity
on a neighborhood of the optimal solution by lower semicontinuity at the optimal solution.
To establish strong maximum principles, we rely on a multiplier rule of Khanh and Nuong
[39]. So in some places, instead of the usual C! differentiability with respect to the
optimal state variable, we use the directional differentiability with respect to the optimal
state variable with a concavity property, and the continuity at the optimal state variable.
Since we study multiobjective optimal control problems in the presence of constraints, this
chapter generalizes to the multiobjective case some results of Blot [9] and Blot and Hayek
[13, 15], where infinite-horizon single-objective optimal control problems under constraints
were studied. It also generalizes some results of strong Pontryagin principles and results of
weak Pontryagin principles when replacing weak Pareto optimality by Pareto optimality
from Hayek [34], where infinite-horizon multiobjective optimal control problems in the
discrete time framework are studied. In this chapter, we provide weaker smoothness
assumptions and moreover, we study problems under constraints. Sufficient conditions of
optimality for considered problems are also studied in this chapter, in which, similar to
the one in Chapter 3, concavity assumption on the Hamiltonian is required.

The structure of this chapter is as follows: After the introduction, the infinite-horizon
multiobjective optimal control problems are presented in Section 5.2 and Theorem of
Reduction to finite horizon is provided in Section 5.3. In Section 5.4, New Multiplier
Rules for multiobjective static optimization problems are established. Then, in Section
5.5, weak and strong Pontryagin principles for the multiobjective optimal control problems
in the finite-horizon setting are given where the weak ones rely on the New Multiplier
Rules for static multiobjective optimization problems. In Section 5.6, weak and strong
Pontryagin principles for multiobjective optimal control problems in infinite horizon are
provided. Moreover, using weak principles, by adding additional condition, a transversality
condition is achieved. Finally, in Section 5.7, we provide sufficient conditions of optimality.

5.2 The Multiobjective Optimal Control Problems

In previous chapter, we have established weak Pontryagin principles for the single-
objective optimal control problems (P}) where k € {i,e} and j € {1,2,3}. It is worth to
recall that in these problems, there are two families of controlled dynamical systems that
governed by difference equations (De) and by difference inequations (Di).

In this chapter, we will study Pontryagin principles and sufficient condition of
optimality for the very same problems but with multiobjective criterion. All the settings
remain the same like those of single-objective problems, except for the criterion and their
domain. Recall that when k € {i,e}, Adm;, is the set of all processes (z,u) € [[,enXt X
[I,enU: which satisfy (Dk) at each time ¢t € N and such that xy = 1. These processes
are called admissible for (Dk) and n. For all ¢ € N, for all j € {1,...,¢}, we consider a
functional gb{ : Xy x Uy — R. For each j € {1,...,0}, we set J;(z,u) := ZLOqu{(mt,ut)
and we also denote by Domy(J;) as the set of the (z,u) € Admy such that the series

£ qbg (¢, u¢) is convergent in R. The optimality criterion that we consider here is
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defined by using the vector-function (multiobjective) J(z,u) := (J1,. .., J¢). The order for
criterion is the usual order in R’. Now, we introduce the domain for the multiobjective

optimal control problems with criterion J, denoted by DOMy/(J) := (ﬂﬁleomk Jj> where
k € {e,i}. We define the following multiobjective problem when k € {e,i} :

(PM}.) Maximize J(z,u) when (z,u) € DOM(J).

Definition 5.1. A process (z,4) € DOMg(J) is called a Pareto optimal solution of
Problem (PM}), if there does not exist a process (z,u) € DOMy(J) such that for
all j € {1,...,¢}, Jj(z,u) > J;(Z,4) and for some i € {1,...,0}, Ji(z,u) > Ji(Z,0).

A process (Z,4) € DOMy(J) is called a weak Pareto optimal solution of Problem
(PMy}), if there does not exist a process (z,u) € DOMy(J) such that for all
jedl, b Jila,u) > Ji(2,a).

It is obvious that a Pareto optimal solution of Problem (PM}) is a weak Pareto optimal
solution of Problem (PM}).

Consider now the following problems for the cases where the infinite series does not
necessarily converge:

PM?2) Find (£,4) € Admy, such that, there does not exist a process (z,u) € Admy, such
k ;
that for all j € {1,...,¢},limsup(X1g @7 (¢, us) — S0 &1 (&4, 4¢)) > 0 and for some
h—+oc0

1€ {13 s 7£}a thUPh—woo(Z?:o gbé(l‘ta ’LLt) - Z?:O Qﬁ(i’t, ﬂt)) > 0.
(PM') Find (£,2) € Admy such that, there does not exist a process (z,u) € Admy such
that for all j € {1,..., ¢}, limsup(X{_g & (ze,ur) — Sfg &1 (24, @) > 0.
h——+o00

(PM3) Find (£,4) € Admy such that, there does not exist a process (z,u) € Admy, such
that for all j € {1,...,¢}, }liminf(zgzo & (4, us) — 0o &1 (24, 1)) > 0 and for some
—+00

i€ {1, 0}, tminfp oo (Sfg ¢ (e w) — Sio ¢4 (Ee, @) > 0.
(PM{') Find (z,4) € Admy, such that, there does not exist a process (z,u) € Admy, such
that for all j € {1,... ,g},gminf(zﬁzo & (4, up) — 0o 1 (84, 1)) > 0.
—+00

Since for all j € {1,...,¢}, limsup(Zfzong{(xt,ut) — Z?:(]qﬁg(ﬁ;t,ﬁt)) >

h——4o00

}LimJirnf(Zfzo &l (x,us) — 1o &1 (2¢,7)), then a solution of Problem (PM}) is also a
— 400

solution of Problem (PM}?). Besides, it is obvious that a solution of Problem (PM g/)
is also a solution of Problem (PMj) when j € {2,3}.

5.3 Reduction to Finite Horizon

Let T be a fixed number in N,. We set JJT((ZITO, ceos 1), (U, - ur)) =
T .
S ¢t (wy,ue) and JT = (JE,...,JF). Consider the following reduced problems when
t=0
ke {e i}
Maximize JT((:I;t)OStST-‘rlv(ut)OStST)
when Vte{0,...,T+1}, =, € X,
vt €10,...,T}, us € Uy (FMD)
vt € {0,...,T}, (Dg) holds
To =1, Tr41 = Tr41-
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Definition 5.2. ((Zo,...,Z7+1), (lo,...,ur)) is called a Pareto optimal solution
of Problem (FMF) where k € {e i}, if there does mnot exist any
((x0,---,@141), (uo, ..., ur)) admissible for Problem (FM}!) such that for all j €

{17 cee )g}a JJ'T((SUm cee ,-TT+1), (Uo, L ,UT)) > JJT((CﬁQ, .. ,:i‘T+1), (fLo, . ,ﬂT)) and
for ~ some i € {1,..., 0}, I ((zo, - .., 2741), (w0, - - ., ur)) >
JZT((J’.07 7j7T+1)7 (fLU, ,QT))

((Zo,...,&741), (o, . .., Ur)) is called a weak

Pareto optimal solution of Problem (FM[') where k € {e, i}, if there does not exist
any ((xo,...,27+1), (0, -..,ur)) admissible for Problem (FM}) such that for all

j e {1, - ,6}, JJT((:L’(), ce ,:cT+1), (UU, ... ,uT)) > JJT((fQ, R 7:,%T+1), (ﬂo, .. .,’LALT)).

Here admissibility means that all the constraints, including the dynamical system, the
initial and final conditions, are satisfied. Then we have the following theorem.

Theorem 5.3. The two following assertions hold.

(i) Let (2,4) be a Pareto optimal solution of Problem (PM}) (respectively, solution
of (PM?), (PM})) where k € {e,i} and let T € N*. Then the restriction
((Zoy ..., &741), (G0, ...,07)) is a Pareto optimal solution of the finite-horizon
problem (FMFT).

(ii) Let (2,4) be a weak Pareto optimal solution of Problem (PM}) (respectively, solution
of (PM?), (PM})) where k € {e,i} and let T € N*. Then the restriction
((Zo,...,Z741), (U, ..., 47)) is a weak Pareto optimal solution of the finite-horizon
problem (FMF).

Proof. We will prove assertion (i) first.
(De) case: We will prove for each case of (PMJ) where j € {1,2,3}.

- For (PML): We  proceed by  contradiction. Assume
that ((£o,...,27+1), (G0, ..,@r)) is not Pareto optimal for (FM]'). Then there exists
((zoy - --sx7+41), (U0, - - -, ur)) Which is admissible for (FM[') such that

I ((xe)o<t<rrts (ueosi<r) > JT ((Be)o<t<rst, (G)o<e<r)

This inequality means that for all j € {1,...,¢}, J]-T((a;t)ogthH, (ut)o<t<T)
J]T((ﬁt)ogtgjq_l, (’LALt)()StST) and fOI‘ some k‘ S {1, “e ,f}, le((xt)OStST-i-h (ut)OStST)
JE((&¢)o<t<r, (i) o<e<r—1).-

=
>

~

When ¢t > T + 1, we set z; := I3 and when ¢t > T + 1, we set u; := 4. From
the admissibility and this setting, it is obvious that z € [[;cnX: and u € J[;enUs.
AISO, T4l = i'tJrl = ft(jt,ﬂt) = ft(ZEt,’LLt) when ¢ Z T + 1. It implies that (@,Q)
belongs to the admissible set of (PM]}) ie. (z,u) € Adm,. Now we have for all

“+o0 . —+o00 .
j S {17"')£}a ; ng(xtaut) - ; Q#(jtaat) < 400 then Z¢t($t7Ut) < 400 or
t=T-+1 t=T+1
Jj(z,u) < 4+o00. And so, (z,u) € Dom.(J;) for all j € {1,.. E} which implies that
(z,u) € (Nf—yDom,.J;) = DOM.(J).
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Now, for all j € {1,...,¢}, we have

400

400 . T . .
Ji(z,u) = Y ¢l (w,u) = Yol (@e,u) + X o (e, uy)
=0 =0 t=T+1
—+o00 .
= J] (@)osi<rs1, (wosir) + 2 61(&1, )
t=T+1
T (A . R P
> J; ((#)o<e<rtr, (@)o<e<r) + 25 & (2, W)
t=T+1
T . +oo S o
= >0 (x,w) + Y Ol (8, U)=J;(2, Q).
=0 t=T41

Besides, for some k € {1,...,¢}, we have

+o00 T +o0o
Jp(z,u) = tgo(bf(mtaut) = tgoﬁ(xt,ut) + t:;+1¢f($t7ut)

“+oo

= J} ((me)o<e<r+1, (ur)o<e<r) + ; 1¢f(50taﬁt)
=T+

T((a . 2 ka4
> Ji ((&)o<e<r1, (U)o<i<r) + 2 0F (&4, Ty)

t=T+1

T kin o +oo P A

= 2O (B, ) + Do OF (B, ) =T (2, ).
t=0 t=T+1

And so, J(z,u) > J(Z,u). This is contradiction since (Z, ) is the Pareto optimal solution

for Problem (PM}). Hence, ((Zo,...,%741), (fio,-..,%7)) must be Pareto optimal for
(FME).

- For (PM3): Let (&,4) be a solution of (PM?). Assume that
((Z0y---27+41), (U0, - .., 4r)) is not Pareto optimal for (FM]). By realizing analogous

proceedings like in the previous case, we can build a process (z,u) € Adm. such

T . T .
that for all j € {1,...,4}, S ol(xs,wr) > > &l(2, 1) and for some k € {1,...,0},
t=0 =0

T T
S oF (z,ug) > S dF (24, 4¢). Then we have when h > T + 1,
t=0 t=0

h h T T
Lim inf (> ¢t (ze, ur) — Y 61 (24, 00)) = Y df (@, ue) — D¢t (21, 1) > 0,
e 0 t=0 t=0 t=0
for all j € {1,...,¢} and
h h T T
lgm inf(> o) (e, u) — Y dF (e, 1) =D _dF (@, ue) — > ¢ (3, ) > 0,
=0 =0 =0 =0
for some k € {1,...,¢} which is a contradiction since (&,%) is a solution of (PM}).
- For (PM32): Let (£,4) be a solution of (PM2). Tt is clear that (&,4) is also a
solution of (PM?) and hence, its restriction ((Zo,...,&741), (tlo,...,07)) is a Pareto

optimal solution for (FM}L).
(Di) case: the proof is completely similar. Assertion (i) is proven.
The proof of assertion (ii) is analogous to the one for assertion (i). O
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5.4 New Multiplier Rules for Multiobjective Problem

Let Q be a nonempty open subset of R™, let ¢ : @ — Rf |, 9 : Q — R’ be mappings,
let fi : @ — R (when i € {1,...,m}) be functions, let g; : & — R (when i € {0,...,p})
and h; : Q@ — R (when i € {1,...,q}) be functions. With these elements, we consider the
two following problems:

Maximize ¢(z) = (¢1(x),. .., de(x))
when x € Q (Zim)
and when Vi€ {1,...,m}, fi(x) >0,

and

Maximize ¢(z) = (91(z),..., % (x
when z €
when Vie{l,...,p}, gi(x) >
and when Vi€ {1,...,q}, hi(z) =

~—

)
0 (M)
0.

Notice that Problem (Z,,) is a special case of Problem (M,,) when the equality
constraints are omitted. The Pareto optimal solutions the above-mentioned problems
are understood under the same meaning like those in the previous sections.

Before stating New Multiplier Rules for those multiobjective static optimization
problems, we introduce the following lemmas:

Lemma 5.4. If & is a Pareto optimal solution of Problem (Z,,) then it is also a solution
of the following problem

Maximize ¢ ()

when x € )

when Vi€ {l,.... 0}, i #k, ¢pi(z) > ¢i(2)
and when Vi€ {l,...,m}, fi(x) >0,

(5.1)

for any given k € {1,... (}.

Proof. Let & be a Pareto optimal solution of Problem (Z,,,) and let k € {1,..., ¢} be given.
We will prove that Z is also a solution of Problem (5.1) by contradiction.

If # is not a solution of Problem (5.1) then there exists z which is admissible
for Problem (5.1) and ¢x(z) > ¢x(Z). From the admissibility of z we know that
Vi € {1,...,m}, fi(x) > 0. Hence, = is admissible for Problem (Z,,). Besides, for
all i € {1,...,0}, i # k, we have ¢;(Z) > ¢i(2) (from the admissibility of Z) and
¢r(Z) > ¢r(2). Therefore, we can conclude that z is admissible for Problem (Z,,) and
¢(z) > ¢(&) which is a contradiction. And so, & is an optimal solution of (5.1) for any
given k € {1,...,(}. O

By a similar argument, we obtain the following lemma.

Lemma 5.5. If & is a Pareto optimal solution of Problem (M,,) then it is also a solution
of the following problem

Mazimize Uy (x)
when x € Q
when Vi€ {l,.... 0}, i #k, 0;(z) > V(%) (5.2)
when Vi€ {l,...,p}, gi(z) >0,

and when Vi e {l,...,q}, hi(z) =0.

for any given k € {1,...,(}.
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Now we introduce the New Multiplier Rules based on the ones for single-objective
static optimization problems of Blot that were introduced in previous chapter.

Theorem 5.6. Let & be a Pareto optimal solution of (Z,,). We assume that the following
assumptions are fulfilled.

(i) Forallie{1,...,0}, ¢; is Gateaux differentiable at &.
For alli e {1,...,m}, f;is Gateaux differentiable at z.
(i) For alli e {1,...,m}, f; is lower semicontinuous at & when f;(&) > 0.
Then there exist 01,..., 05 A, ..., X™ € Ry such that the following conditions hold.
(a) (0%,...,65 X, ..., A™) #(0,...,0).
(b) Forallie {1,...,m}, Nfi(2) = 0.
(€) Xie1 0'Dai(#) + XLy N Da fi(#) = 0.
Proof. Let & be a Pareto optimal solution of (Z,,). Using Lemma 5.4, & is also an optimal

solution of Problem (5.1) for any given k € {1,...,¢}. Let k = 1 then & solves following
problem.

Maximize ¢1(z)

when z €

when Vi e {2,...,0}, ¢i(x) > ¢i(2)
and when Vi€ {1,...,m}, fi(x) >0.

We set a; () = ¢i(z) — ¢i(2) for all ¢ € {2,...,¢}. Then the above-mentioned
problem is rewritten as follows.

(5.3)

Maximize ¢1(z)
when x€Q
when Vie{2,...,¢0}, aj(z) >0

S (5.4)
and when Vi€ {1,...,m}, fi(x) >0

which has the same form of Problem (Z) in Chapter 4. The assumptions of this theorem
can be rewritten as follows.

(i) ¢1 is Gateaux differentiable at .
For all i € {2,...,¢}, «; is Gateaux differentiable at Z.
For alli € {1,...,m}, f; is Gateaux differentiable at 2.
(ii) For alli € {1,...,m}, f;is lower semicontinuous at & when f;(Z) > 0.

Now, all the assumptions of Theorem 4.4 are fulfilled (Here, notice that for i €

{2,...,¢} we do not care about the lower semicontinuity of «; at & because a;(Z) =
$i(2) — ¢i(#) = 0). Then we can apply Theorem 4.4 to obtain the multipliers 8! € R for
the objective function ¢1(z) and 62,...,0¢ X, ..., \™ € R, for the inequality constraints

which satisfy the following results.
(a) (0%,...,05 ..., A™) £ (0,...,0).
(b) Foralli € {1,...,m}, Xfi(2) = 0.
For all i € {2,...,¢}, 0°a;(2) = 0 (this is obvious since a;(%) = 0).
(€) Xit0'Da¢i(#) + Ly X' D fi(#) = 0.

Hence, we have obtained the desired results. O
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Theorem 5.7. Let & be a solution of (M,,). We assume that the following assumptions
are fulfilled.

(i) Forallie{1,...,L}, ¥; is Fréchet differentiable at z.
(ii) For alli € {1,...,p}, gi is Fréchet differentiable at & when g;(z) = 0.

(iii) For alli € {1,...,p}, g;i is Gateauz differentiable at & and lower semicontinuous at
& when g;(%) > 0.

(iv) For all i € {1,...,q}, h; is continuous on a neighborhood of & and Fréchet
differentiable at .

Then there exist 0, ..., 05 A1, ..., AP e R and ', ..., p9 € R such that the following
conditions are satisfied.

(a) (0%,...,05 X ..., Xt .o p9) #(0,...,0).

(b) Forallie€ {1,...,p}, Ngi(2) =0.

(€) Siz1 0'Da 9i(2) + 0y N Dagi(®) + iy 4 Dahi(#) = 0.
Moreover, under the additional assumption

(v) Dhi(Z),..., Dhy(Z) are linearly independent,
we can take

(d) (%,...,0° 0 ..., N) #(0,...,0).

Proof. Let & be a solution of (M,,). Using Lemma 5.5, Z is also an optimal solution of
Problem (5.2) for any given k € {1,...,¢}. Let kK =1 then & solves following problem.

Maximize 91 (x)
when z €
when Vie{2,...,¢}, 9;(x)
when Vie{l,...,p}, gi(x)
and when Vie {1,...,q}, hi(z)

(2) (5.5)

1V Iv

¥
0,
0.
Wesset f5; (z) := 0;(x)—9;(z) for alli € {2,...,¢}. Then the above-mentioned problem

is rewritten as follows.

Maximize 91 (x)
when z €

when Vie{2,...,¢}, Bi(z) >0 (5.6)
when Vie {l,...,p}, gi(xz) >0,
and when Vi€ {1,...,q}, hi(x) =0.

which has the same form of Problem (M). Under the assumptions of this theorem, we
will verify that all the assumptions of Theorem 4.5 are fulfilled.
(i) Under assumption (i), ¥; is Fréchet differentiable at Z.

(ii) Under assumption (i) and (ii), for all i € {2,...,¢}, B; is Fréchet differentiable at
% when f;(2) = 0 and for all i € {1,...,p}, g; is Fréchet differentiable at & when

(iii) Under assumption (iii), for all ¢ € {1,...,p}, ¢; is Gateaux differentiable at & and
lower semicontinuous at & when g;(#) > 0. (Here, notice that for i € {2,...,¢} we

do not care about the Gateaux differentiability and lower semicontinuity of §; at
& because (3;(%) = 9;(2) — 9;(2) = 0).
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(iv) Under assumption (iv), for all i € {1,...,q}, h; is continuous on a neighborhood of
Z and Fréchet differentiable at 2.

Then we can apply Theorem of New Multiplier Rule in previous chapter (Theorem
4.5) to obtain the existence of 6%, ... JOEN, . N eRy and pl, ..., pd € R such that
the following conditions are satisfied.

(a) (O%,..., 05X ..., Nt pd) £ (0,...,0).
(b) For alli € {1,...,p}, \ig;(2) = 0.
For all i € {2,...,¢}, 0'3;(2) = 0 (this is obvious since 3;(#) = 0).
(€) XL, 0°Dg 9i(2) + X8, XDggi(#) + XL, ' Dghi(z) = 0.
Then conclusions (a), (b) and (c) of this theorem hold. Now, under the additional

assumption (v) which assumes that Dhy(Z),..., Dhy(Z) are linearly independent, we can
choose (01,...,0° AL, ..., AP) # (0,...,0). This is easily verified using results (a), (c) and
by contradiction and we obtain conclusion (d). The proof is complete. O

5.5 New Pontryagin Principles for Multiobjective Optimal
Control Problems in Finite-Horizon Setting

In this section, we present Pontryagin principles in both weak and strong forms for
multiobjective optimal control problems in a finite horizon framework, namely problems
(FMF) when k € {e,i}. They differ from the existing results since they use lighter
smoothness assumptions.

5.5.1 Weak Pontryagin Principles

To obtain weak Pontryagin principles for multiobjective optimal control problems in
finite-horizon framework (FM) when k € {e,i}, we will rely on New multiplier Rules
established in Section 5.3. To do this, we will translate these problems into static
optimization problems and we will apply New Multiplier Rules. Note that, in these
problems, xg and x4 are fixed and so they are not unknown variables. Assume that for
all t € N, X is open and the sets of admissible controls U,;, with ¢ € N are defined by
equalities and inequalities as follows

U(zy) = <ﬁ{u e R : gi(xy,u) > 0) N (Fﬁ {u e R:: hF(x,u) = ()) (5.7)

i=1 k=1
and we also assume that for all ¢t € N, Uy(x;) # 0.

For Problem (FM!), we have the following theorem:

Theorem 5.8. Let T € N, be given and (%o, ...,&7r+1,00,...,0r) be a Pareto optimal

solution of Problem (FM!) when n and 2711 are fived vectors in R™. We assume that

forallt € {0,...,T}, Xy is open and Uy(xy) is defined by (5.7). We also assume that the

following conditions are fulfilled.

(i) Forall j€{1,...,¢}, for allt €{0,..., T}, ¢] is Fréchet differentiable at (&, ;).

(ii) For all i € {1,...,m;}, for all t € {0,...,T}, gi is Fréchet differentiable at
(ifnﬁt) when gi(ﬂ/\?t,@t) =0.

For all j € {1,...,n}, for all t € {0,...,T}, ft] is Fréchet differentiable at
(%4, ) when ftj (&4, 1) = jgﬂ‘
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(iii) For all i € {1,...,m;}, for all t € {0,...,T}, gi is Gateaur differentiable at
(£¢,17¢) and lower semicontinuous at (2, 7;) when gt (&4, 7;) > 0.

For all j € {1,...,n}, for allt € {0,...,T}, ft] is Gateauz differentiable and and
lower semicontinuous at (&, Gy) when f{ (&, Gy) > &,4.
(iv) For allk € {1,...,m}, for allt € {0,..., T}, h¥ is continuous on a neighborhood
of (Z¢,14) and Fréchet differentiable at (I, Uy).

Then there exist HlT,...,GET € Ry, )\z:t € Ry, :“%,t € R and ptTH € RV where t €
{0,...,7}, i € {1,...,m;} and k € {1,...,me} such that the following conditions are
satisfied.

(a) The multipliers are not simultaneously equal to zero.
(b) Forallie{1,...,m}, for allt €{0,..., T}, X ,gi(&,0) = 0.
For allt € {0,...,T}, <ptT+1, Fi(@e, ) — :@t+1> — 0.

(© vt € {1,....7} pf = X0 (07.Die(a, ) + ply o Danfi(n,in) +
%AT Dl (B, ) + glugtDlhf(ft, ).

(d) vt € {0,...,T}, Z§:1 (QJ'T-DW{(@,%)) + pl1 o Daafi(®, ) +
%AT DG .2 (s, ) + :flu;g Dohl (i, ) = 0.

Proof. We arbitrarily fix T' € N,. Let (Zo,...,274+1,do,...,0r) be a solution of Problem

(FMT) where n and #7,1 be given.

Step 1: We rewrite Problem (FM!) under model of (M,,). Let Q = tﬁlXt X

T+1

(Rd) , then Q is open. Let z = (x1,...,27,u0,...,ur) € Q. We set ¢(z) =
(¢1(2), .-, ¢e(2)) where for all j € {1,..., £}, ¢;(2) := = ¢ (n, u0) + S, &1 (1, ug); and for
alli € {1,...,m;}, forallt € {0,...,T},G;(z) :== gt(azt,ut)' and for all k € {1,...,m.}, for
all t € {0,...,T}, hi(z) := hi(z,w); and for all jeA{l,...,nhYi(z) == fé(n,uo) —
z1; and forall j € {1,...,n}, forall t € {1,. T —1}9{(2) = fl(ze,w) — x1,q; and,
finally, for all j € {1,.. n} Yh(z) = fh (27, uT) &7, 1. So we have translated Problem
(FM}) into this form

Maximize ¢(z) = ¢(z1,...,T7,U0,...,Ur);

when 2z € Q,
Vie{l,...,m;},Vt €{0,..., T}, gi(z) 20 (FMT)
Vk e {1,...,me},Vt €{0,...,T}, hf(z) =

Vie{l,...,n}, Vte€{0,...,T}, ¢t(2’)20,

which has the same form of Problem (M,,).
Step 2: We will prove that with this problem, all conditions of Theorem 5.7 are

fulfilled. It is obvious that 2 = (&i,...,&7p,70,...,0r) is a Pareto optimal solution
of the above-mentioned problem. Under (i), (ii), (iii) and (iv) we obtain the following
statements: For all j € {1,...,¢} function ¢; is Fréchet differentiable at 2 as a sum of T’

Fréchet differentiable functions; For all ¢ € {1,...,m;}, for all t € {0,...,T}, functions
gi is Fréchet differentiable at 2 when §i(2) = 0; For all i € {1,...,m;}, for all t €
{0,...,T}, functions §i is Gateaux differentiable at 2 and lower semicontinuous at
2 when gi(2) > 0; For all k € {1,...,m.}, for all t € {0,...,T}, hi is continuous
on a neighborhood of 2 and Fréchet differentiable at 2; For all j € {1,...,n}, for all
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t €{0,...,T}, ] is Fréchet differentiable at Z when Yl (2) =0; Forall j € {1,...,n}, for
all t € {0,...,T}, functions v is Gateaux differentiable at 2 and lower semicontinuous at
2 when 9 (2) > 0.

Step 3: Application of Theorem 5.7. Now for Problem (FMj), all the conditions of
Theorem 5.7 are satisfied, by applying it, we obtain the multiplier §7 = (67, .. 9( ) €
R for the criterion function ¢(z), multipliers A7, € Ry for inequality constraints gt( ) >
0, multipliers u;‘gt € R for equality constraints h%( ) = 0 and multipliers p7, +1,; € Ry for the
equality constraints ¢7(z) > 0 where t € {0,...,T}, i € {1,...,m;}, j € {1,...,n} and
k € {1,...,m.} such that all the conclusions of Theorem 5.7 hold. From conclusion
(a) of Theorem 5.7, we know that the multipliers are not simultaneously equal to

n
zero. We set pl, = > pl, je; € R™. From conclusion (b) of Theorem 5.7, we
=1
have: Vi € {1,...,m;}, V¢t € {0,...,T}, M gi(2) = 0 ie Vi € {1,...,m},Vt €
{0,...,T}, )\g:tg,f(ﬁﬁt,ﬁt) = 0; and Vt € {0,...,T},Vj € {1,...,n}, ptT+17jz/;§(2)

pE;(fl(Eeae) — #],,) = 0. ie. Yt € {0,...,T}, <ptT+1, JACRD) —i“t+1> = 0. Then
the generalized Lagrangian of this problem is

L(z,0T,... 94 ,)\10,... )\% T,ufo,...,u%ﬁT,p{l,...,p%Hn)
T me .
=551 07 .0(2) + z D%%( >+t20kzlu£,th;< z) + z me]wt( 2)
= Z_ = = = ]_

= 5o (676000 + S u) + & %A-Ttgz@:t,ut)

+t¥ kZ M tht (w¢,ug) + Z <pt+17 Je(xe, ug) — $t+1>

As preliminary calculations, since all the functions in £ are Gateaux differentiable, then
for all t € {1,...,T}, the partial Gateaux differential of the generalized Lagrangian with
respect to x; is

oL T T T T
a9z (A0, D1 17“'vanv'--’PTH,l’-"aPT+1,n)
T T T T
= D¢ 1, L(2, onpl,lv--"pl,m-"apT+1,1a"'va+1,n)

. m; . Me
= S5 (0] Daadl (e w) + 3N Daagileew) + X Dol (e, w)
i= —1
+PtT+1 o D1 fe(xe, ug) — ptT,

and for all ¢ € {0,...,T} the partial Gateaux differential of the generalized Lagrangian
with respect to u; is

T T T
8uﬁ(z AT 1,...,p1’n,...,pT+171,...,pT_H’n)
T T T T
= D¢, L(2, AL sPLis s Plpse s DTi11s s PTy1n)

= Z§:1 (HJ'T-DG,W{(%’W)) +ptT+1 o Do fi(wt, ut)
m; ) Me
+ Zl)\ZtDGQQ%(%, ut) + kZ M;‘gtDG,zhf(»’Et, ut).
i= =1

From the conclusion (c¢) of Theorem 5.7, the partial Giteaux differential of £ with respect
to z vanishes at 2. That means

Vte{l,...,T}Y, Dgue L2, AL, P11, Plys DTyt Pog1n) = 0,
vt € {0,...,T}, DG,utL(é,)\oT,plT,l,...,p{n,...,p%+171,...,pTHn) =0.
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<
vie{l,....,T}, pf = X,y (aj.T.Dg,lqs{(gt«t,at)) + L1 0 Dan, fil @, )
+ ZgAZth,l Gi(3e, @) + :zzflﬂgtpalhf(@, i),
vie{o,...,.T—1}, i, (Qf'DG,Mt(ft’@t)) +piiq 0 Do fi(Ze, i),

mg . Me
+2 M D 2gi (&, ) + X 1 D ol (&4, ) = 0.
i= =1

We have yet seen that conclusions (a) and (b) are satisfied. Conclusions (c¢) and
(d) are obtained after identifying Gateaux differential with Fréchet differential of Fréchet
differentiable functions in (5.8). O

In the special case where for every t € N, U, is an arbitrary subset of R? and u; belongs
to the interior of Uy, Problem (FM™) now contains only inequality constraints as follows

Maximize ¢(z);
when 2z € Q; '
Vje{l,...,n}, Ve €{0,...,T}, i (z) > 0.

This problem has the form of Problem (Z,,). Then we obtain the following corollary after
applying Theorem 5.6.

Corollary 5.9. Let T € N, be given and (Zo,...,Z7+1,70,...,Ur) be a Pareto optimal
solution of Problem (FM}) when n and Zr41 are fized vectors in R™. We assume that
for allt € {0,...,T}, X; are open and u; € int(Uy). We also assume that the following
assumptions are fulfilled

(i) Forall j€{1,....0}, for allt €{0,..., T}, ¢ is Gateauz differentiable at (2, 0y).
For allt € {0,...,T}, fi is Gateaux differentiable at (2, 0y).
(ii) For all j € {1,...,n}, for all t € {0,...,T}, fi is lower semicontinuous at
(&4, @) when f7(&y,17) > &,
Then there exist 67 ,...,07 € Ry and pl,, € R™ where t € {0,...,T} such that the

following conditions are satisfied

(a) of,....0F, pli, t€{0,...,T} are not all zeros.

(b) Forallt € {0,...,T}, (pliy, fulds, i) = du41) = 0.

() Vte{l,...T}, pf = X4y (67 -Daad] (@) + pliy 0 Dan fild, ).
(d) vt €{0,..., T}, 0=, (07-Dgod] (@0, ) + pliy 0 Daafildn, ).

For Problem (FM!): the way we treat it is almost similar to what we did
with Problem (F MT) case. The difference is that the greater or equal sign in
¥l (1, ..., o7, u0,...,ur) > 0 will be replaced by the equal sign since now the phase
constraint has the form of (De). Apply Theorem 5.7 for this problem with a notice that
now the inequality constraints group includes only functions §i and the equality constraints
group includes functions Bf and zbf, we obtain the weak Pontryagin principle for finite
horizon problem with (De) as follows.

Theorem 5.10. Let T € N, be given and (Zo,...,Z1+1,Uo,-..,Ur) be a Pareto optimal
solution of Problem (FMZI) when n and 2711 are fived vectors in R™. We assume that
forallt € {0,..., T}, Xy is open and Uy(xy) is defined by (5.7). We also assume that the
following conditions are fulfilled.
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(i) Forall j€{1,...,¢}, for allt €{0,..., T}, ¢] is Fréchet differentiable at (&, ;).

(ii) For alli € {1,...,m;}, for allt € {0,..., T}, gi is Fréchet differentiable at (¢, ;)
when g (&4, 1) = 0.

(iii) For all i € {1,...,m;}, for all t € {0,...,T}, gi is Gateaur differentiable at
(#¢,74) and lower semicontinuous at iy when gi(Zy, 1) > 0.

(iv) For allk € {1,...,m.}, for allt € {0,..., T}, h¥ is continuous on a neighborhood
of (Z¢,1) and Fréchet differentiable at (T, Uy).

For allt € {0,...,T}, ft is continuous on a neighborhood of (&,u:) and Fréchet
differentiable at (&4, 7y).

Then there exist 9{,...,9{ € Ry, )\;{t € Ry, ,ug’t € R and pf_i_l € R™ where t €
{0,...,7}, i € {1,....m;} and k € {1,...,me} such that conclusions (a), (c), (d)
of Theorem 5.8 are satisfied (in which, Dg o fi(Z¢,0:) is replaced by De fi(Z¢,0:) where
a € {1,2}) together with the following one:

(b) Vie{l,...,m},vt €{0,..., T}, N ,g{(&s, 1) = 0.

In the special case where for every t € N, U, is an arbitrary subset of R¢ and u; belongs
to the interior of U;, Problem (FMT) is reduced to the following simpler form of Problem
(Mop):

Maximize ¢(z);
when 2z € €;
Vie{l,...,n}, Vt€{0,...,T}, ¢(z) = 0.

Then applying Theorem 5.7, we obtain the following simpler statement

Corollary 5.11. Let T € N, be given and (%o, ...,Z741,00,...,0r) be a Pareto optimal
solution of Problem (FMZI) when n and 2711 are fived vectors in R™. We assume that
for allt € {0,...,T}, X} are open and Uy € int(Uy). We also assume that the following
conditions are fulfilled:

(i) Forall j€{1,...,¢}, for allt €{0,..., T}, ¢] is Fréchet differentiable at (&y,1;).

(ii) For allt € {0,...,T}, ft are continuous on a neighborhood of (&+,4:) and Fréchet
differentiable at (&4, 0y).

Then there exist 01,...,0F € Ry and pﬂ_l € R™ where t € {0,...,T} such that the
conclusions (a), (c), (d) of Corollary 5.9 are satisfied in which Dg o ft(Z+,0:) s replaced
by Do ft(Z¢,0r) where oo € {1,2}.

Remark 5.12. Notice that in the absence of constraints, one can weaken the assumptions
on objective functions ¢ and on f; as can be seen in the above-mentioned corollaries.

Remark 5.13. When all the sets of state and control variables are convex and when all the
functions are convex (or concave), Gateaux differentiability and Fréchet differentiability
are identified.

Remark 5.14. One can obtain analogous results with the assumption of weak Pareto
optimality by applying other multiplier rules (for instance, multiplier rule of Novo
and Jimenez (see Theorem 3.10 in [47])). However, the required assumptions for the
multiobjective optimal control problems will become very difficult to write due to the
complication of qualification constraints needed in such rules to obtain a Fritz John like
multiplier rule when the functions are not Fréchet differentiable.
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5.5.2 Strong Pontryagin Principles

In this section, firstly, we recall a theorem which provides a necessary condition
of optimality in a strong form for multiobjective static optimization problems. Let
X, Y, Z, W be Banach spaces. Let Y and Z be ordered by cones K and M, respectively.
Let U be a set equipped with the trivial topology (containing only U and &), so that X xU
is a topological space. Let mappings J : X xU =Y, F: X xU —-Z, H: X xU —- W
be given. Consider the following problem of vector optimization:

Maximize J(z,u)
F(xz,u) >0,
H(z,u) =0,

re X, uel.

Let us define the following generalized Lagrangian of Problem (5.9):
Lz, u, A pyv) = (A J (2, u) + (s, F(z,w) + (v, H(z, u))

We introduce the multiplier rule for this problem which is proven by Khanh and Nuong
in [39] and is described in the following theorem

Theorem 5.15. Assume that Problem (5.9) satisfies the following conditions:
(i) intK # 0 and intM # 0.

(ii) For each uw € U, H(.,u) is continuously differentiable at &.

(iii) J(.,a) and F(.,4) have directional derivatives at & which are concave.

(iv) For each u € U, J(.,u) and F(.,u) are continuous at & in any direction h, in the
sense that J(& + Ah,u) and F (& + Ah,u) tend to J(&,u) and F(&,u), respectively,
as A — 0F.

(v) For each x in a neighborhood V' of z, the following convezity condition is satisfied: if
u' e U, v €U, 0 < a <1, one can find u € U such that

J(x,u) > ad(z,ub) + (1 —a)J(z,u?),
F(z,u) > oF (z,u') + (1 — a)F(x,u?),
H(z,u) = oH(z,u') + (1 — a)H(z,u?).

(vi) codimD;H (&, 1) is finite.

Then, if (,1) is a weak Pareto optimal solution of Problem (5.9), there exist A €
K* pe M*, veW*, not all zero, such that

(a) <)\,51J(i",ﬁ; h)> T <u, Dy F (3,4 h)> + (v, D1H(%,0).h) > 0, for all h € X, i.c.
0 € NL(Z,hy N, p,v).

(b) L(Z,0,\, p,v) = maxyey L(&, u, A, i, v).
(¢) ( F(d,a)) = 0.

We will use this theorem to establish a strong Pontryagin principles for finite-horizon
multiobjective optimal control problems (FM}).

To obtain strong Pontryagin principles for multiobjective optimal control problems
in finite horizon framework (FM]) when k € {e,i}, we will rely on the above-
mentioned multiplier rule for multiobjective static optimization problems. To do this,
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we will translate the multiobjective optimal control problems into multiobjective static
optimization problems as we did for the weak principles. In this section we will consider
Problems (FM') when k € {e,i} in the case where there exist inequality constraints on
the optimal solution. Assume that for each ¢ € N, the sets of controls are defined by
inequalities as follows

Wi(z,) = ﬂ {fueR?: gF(xy,u) > 0} (5.10)
1<k<m

where gf : R" x RY — R.

Let T € N, be a fixed number. Assume that (Zo,...2741,%0,...U7) is a weak Pareto
optimal solution of Problem (FM') when k € {e,i}. In this problem, zy and 74, are
given so we can rewrite (FM]) as follows

Maximize JT (2T, uT)
FT(2T uT) > 0 when k = i,
(or FT(27,u”) = 0 when k = ¢) (5.11)
GT (2", u") > 0,
v e X(T), uT e U(T) = (RH)T+1,

where:

- X(T) =Xy x - x Xp, 27 = (21,...,27), ul = (ug,...,ur);

- JT@T W) = (J (2T ul),. .. I (2T, ul)) where for all j € {1,...,¢}, JjT(xT,uT) =
#(m,w0) + S0y & (w4, wr);

- FT (2T oty = (FF (2T, u?), ..., FE (T uT)) where Ff (27, u) = fo(n,uo) — z1, for all
te{l,...,T—1}, FF(zT,u") = fi(ze,ur) — 21, FE (2L ul) = fr(er,ur) —dr41;

- GT (2T ul) = (GE (2T, uT),...,GE(xT,uT)) where for all t € {1,..., T}, G (2T, u?) =

(gtl(xta ut)7 R 79%71(*%157 ut)) and Gg(xTv UT) = (gé (777 U()), v 796n(777 UO))

We can see that X(T) is an open subset of (R™)T, U(T) is the whole space (RY)7+!,
The vector function J7 : X(T) x (RY)T+! — R’ is ordered by the cone R’ ; the mapping
FT + X(T) x (RHTHL — (R")T+! is ordered by the cone (R7)T*!; and the mapping
GT : X(T) x (RY)T+L — (R™)T+1 is ordered by the cone (R7)T+1. Obviously, intR4 # @,
int(R7)T+ £ g and int(R7T)T # @. The generalized Lagrangian of this problem has
this form

Lt al 67 " ") = (67, T @) 4+ (B T ) 4 (6T ),
where 07 = (07,...,0]) e RY, pT = (p],...,pL, 1) € ®R™) T and p = (..., u}) €

(R™)T+L " Now, all the elements depend on 7. The augmented Hamiltonian is now
defined for all ¢ € {0,...,T} as follows

T T T T T g T mo kT k
H (e, u, 07, pf 0, 1) = i1 Y o1 (e, ue) + <pt+17ft(xtuut)> + oy Mt g5 (T, ug),
laT m7T 3 T mex*
where p,",...,puy ~ are the coordinates of vector p; in R™*.

(Di) case

We present a strong Pontryagin principle for the multiobjective optimal control
problems with (Di) in finite horizon as follows.
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Theorem 5.16. Let T' € N, be given and (Zo,...,Z7+1,Uo,-..,0r) be a weak Pareto
optimal solution of Problem (FM]) where n and 2741 are fized vectors in R"™. Assume
that for allt € {0,...,T}, the control sets are defined as in (5.10) and that the following
conditions are fulfilled

(i) For all t € {1,...,T}, for all j € {1,...,4} and for all k € {1,...,m},
o1 (., a), il @) and gF (., 1) have directional derivatives at &y which are concave.
(ii) For all t € {1,...,T}, for all j € {1,....4}, for all k € {1,...,m}, for all

u € Wi(zy), #1(,u) , fi(-,u) and gF(.,u) are continuous at &; in any direction
h.

(iii) For allt € {0,...,T'}, for each x; in a neighborhood Vi of & such that xo =n, the
following convexity condition is satisfied: if u' € Wi(xy), u” € Wi(zy), 0 < a <
1, one can find u € Wi(z¢) such that

Vj € {17 cee 76}7 QZ)g( ) > a¢t(mtv ) + (1 - O‘)ng(ztau//)’
fe(e,u) = aft(xt, )+ (1= a)fe(z, u”),
Ve {L,...,m}, gh(en,u) > agh(au) + (1 — a)g(ar, u).

Then there exist 07 = (0T,...,0F) € Rﬂ, pl = (pf,... ,p%_ﬂ) € (IR{T)TH and
pt = (ud, ... ph) € (RT*)TTL not all zero which satisfy the following conclusions:

(@) For all t € {0,...,T}, for all k € {1,...,m}, <ptT+1,ft(§:t,ﬁt) - i‘t+1> =0
and g g¢ (&1, @) = 0.

(b) Forallte{1,...,T}, pl € OHE (07, 2, 4, pl 1y, 1f)-

(c) Forallte€{0,....T}, HE (&, 4,07, pl, pl) = max,cpa HE (24,u, 07, pl 1, pud).

Firstly, we introduce the following lemmas:

Lemma 5.17. Let T € N, be given and (Zo,...,Z74+1,00,...,Ur) be a weak Pareto
optimal solution of Problem (FMkT) wheren and 141 are fized vectors in R™. Assume that
condition (i) in Theorem 5.16 is fulfilled. Then, for all KT € (RM)T, JT(.,aT), FT(.,aT)
and G (., ") have directional derivatives at &7 in the direction h™, which are concave.

Proof. We will prove the existence of Dy JT (2T, aT; k1), i.e. the existence of the following
limit

JT@" + X n",a") — JT (", a")

lim

A—0t A ’
where hT = (hy,..., hr) is an arbitrary vector from (R™)T. Since J7 is a vector mapping,
it is equivalent to prove the existence of each element of the above-mentioned limit. For
each j € {1,...,¢}, we consider the following relation:

T (AT T AT T(AT AT
Ji (@ + AR A0) = Ji (87,00

A . .
_ % (0, Gi0) + 1y @1 (B¢ + Ny, @) — ($h(n, o) + S1-y 81 (84, )

>

ZT ¢J (&4 4+ Ahy, Q) — ¢z(ft,ﬁt)
— 3 .

Using the hypothesis of this lemma, it is obvious that

T ¢{(@t+xht,at)¢{(@t,at)> = 57 (timy ¢{(ﬁt+Aht,ﬁ;)¢{(@t,at)>

1im,\—>o+< =1 X
T B s A
= >i—1 D1¢l (&4, Qs he).
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And so, for all j € {1,...,/}, J]-T (.,a’) has directional derivative at #7 and it is concave
since it is a sum of T' concave mappings. Thus, DyJ T(zT, 4T, hT) exists for all BT € (R™)T
and it is concave.

Now, we do the similar process for FT(.,a7) = (FL'(.,aT),...,FL(.,aT)), i.e. we will
prove the existence of Dy FT (#7,47;hT) where h” is an arbitrary vector in (R")T and
where ¢t € {0,...,T}. When t = 0, consider the following relation:

Fy @'+ a0t al) — Fy @t at) o fo(n,do) — (&1 + M) — (fo(n, @o) — 21)
) )
— Ay
= = —hy.
2 1

Since the result does not depend on A, we obtain

lim FOT(:%T + )\hT,ﬁT) — Fg(ﬁ:T,ﬁT) _
A—0F A N !

Therefore, FOT (.,47) has directional derivatives at #7 in the direction h” and obviously,
it is linear and thus, concave. Now for ¢t € {1,...,T — 1}, we have

FF(@T + AnT,a") — T (@7, ")

A
_ fi(@e + Ahg, Gy) — (Zpr1 + MNgrr) — (fe(2e,00) — Tg1)
A
fi(&e 4+ Mgy Gy) — fu(Ze, 0)

= —hi1 + 3 .

Using hypothesis of the lemma, we know that

. (@ Ahg, Uy) — (B, 0)
lim

Jim, \ = D1 fi(Z¢, U3 he).

Therefore, we can assert that

FtT(iiT + AhT? ,&T) — FtT(i'Ta aT)

lim = —her1 + D1 fi(Eg, @ by).
)\im b\ t+1 1fe(Zt, At Bt
Then for t € {1,...,T—1}, F'(.,,a") has directional derivatives at #7 in the direction A’

and it is concave since it is a sum of a linear mapping and a concave mapping. Finally,
when ¢ = T, we have

FL@ET +anT o) — FL (T, al)

A
fr(&r + My, Gr) — 2141 — (fr(@r, ) — B741)
N A
_ fr(&r + Ahp,Gr) — fr(Zr,ar)
3 )
Since ) N o

lim fr(@r + M, ir) = frlr, o) _ Di fr(2r, ir; hr),
A—0T A

we can assert that F (.,47) has directional derivatives at #7 in the direction A’ and it is
concave since Dy fr(Z7,tr; hr) is concave. And so, all the element mappings of F'7(.,a7)
have directional derivatives at #7 in the direction h” which are concave. Therefore,
FT(.,4T) has directional derivative at £ in the direction A’ and it is concave.
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Finally, we prove the existence of ﬁlGT(ﬁT,ﬁT;hT), where hT = (hy,...,h7) is
an arbitrary vector from (R™)7. Since GT(.,u”) is a vector mapping which contains T
elements, we will prove the existence of ﬁthT(ﬁT,ﬁT;hT) where ¢t € {0,...,T}. Now,
each element G is a m-dimensional vector mappings and each of its element g, where
k € {1,...,m}, has directional derivative and it is concave. Therefore, ﬁle(iT, o’ T
exists for all ¢ € {0,...,T} and it is concave. Thus, ﬁlGT(iT,ﬁT;hT) exists for all

hT € (R™)T and it is concave. The lemma is proven. O

Lemma 5.18. Let T € N, be given and (Zo,...,T74+1,00,...,07) be a weak Pareto
optimal solution of Problem (FM,CT) where n and Try1 are fixed vectors in R™.
Assume that condition (ii) in Theorem 5.16 is fulfilled.  Then, for each u' ¢
u(r), JU(,u?), F(.,u") and G(.,u") are continuous at 2T in any direction h.

Proof. Let T € N, and vI € U(T). We know that JT(.,uT), F(.,u’) and
G(.,uT) are vector mappings. Their elements are elementary expressions that relate to
#1(.,u) , fi(,,u) and gF(.,u) where t € {0,...,T}, j € {1,...,4} and k € {1,...,m}
which were defined before in Problem (5.11). Using the hypothesis of this lemma the
following facts: (1) The composition of continuous mappings are continuous; (2) Linear
mappings are continuous; (3) Bilinear mappings are continuous and (4) Classical functions
of one variable are continuous, we can assert that J7(.,u?), FT(.,u”) and GT(.,u’) are
continuous at #7 in any direction h. O

Lemma 5.19. Let T € N, be given and (Zo,...,Z7+1,4U0,...,Ur) be a weak Pareto
solution of Problem (FMT) where n and 2741 are fized vectors in R™. Assume that
condition (iii) in Theorem 5.16 is fulfilled when k =i or condition (iii) in Theorem 5.20
is fulfilled when k = e. Then, for each x' in a neighborhood VT of &7, the following
convexity condition is satisfied: if uT € U(T), u>T € U(T), 0 < a < 1, one can find
ul € U(T) such that

JE@T Wby > ad (T ubT) + (1 — a)JT (2T, u?T),

GT (2t uly > aGT (27, u ") + (1 — )GT (2T, u>7T),

FT@t Yy > aFT (@t uT) + (1 — ) FT (27, u*T) when k =i
or FT (2T ul) = aFT (2T, urT) + (1 — a)FT (2T, u>T) when k = e.

Proof. Let T € Ny, v'T = (u},...,ut) € UT), v*T = (u3,...,u2) € U(T) and
0 < a < 1. Let 27 be in a neighborhood V7 of 7. Then using (C3), for all ¢ € {0,...,T},
one can find us € Up such that the following convexity condition is satisfied.

Vj e {17 s 7€}> QS{(l't, Ut) < OLQﬁ{(l’t, u%) + (1 - a)gbg(wtau?)a
ft(whut) < Oéft(.’lft,utl) + (1 - a)ft($,’u%),
Vke{1,....m}, gF(xy,u) < aglf(zg,u) + (1 —a)gF (g, u”).
We set ul := (uo, . ..,ur) € U(T). The first inequality implies that for all j € {1,...,¢},
. T .
J]T(xT? uT) = ¢(J)(777U0) + Zt:l (Z)g (l’t,Ut)
< a(@hnuh) + 37 dl(enub)

(1= )@ (nud) + 3 G (e ud),

= on]T(xT,ul’T) + (11— a)J]T(:BT,uz’T).

Thus, JT (27, u?) < aJT (27, ubT) + (1 — o) JT (2T, u?7T).
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When k = 4, the second inequality implies

Fy (27, u”) = fo(n,uo) — 21
< alfo(n,ug) — x1) + (1 — @) (fo(n, ug) — 1)
= OéF(;‘F(CCT,ul’T) +(1- a)FO (:c u® T)

and when ¢t € {1,...,T — 1},

Ft ( T T) ft(:EtauO)_xtJrl
< a(ft(‘rtau%) —xpq1) + (1 — Oé)(ft(l’t,ug) — Ti41)
= aF{ (@ u") + (1= @) Ff (2", u?");

and,

Ff(z",u") = fr(zr,ur) — 141
< alfr(zr,up) — dr41) + (1= o) (fr(zr, uf) — dr41)
=aFf (2", W) + (1 — @) Ff (2, u®7).

Thus, FT (27, u”) < aFT (27, ubT) + (1 — a)FT (27, u?>T).
When k = e by doing similarly, we obtain

FT(zT uT) = aFT (27, ubT) + (1 — ) FT (2T, u>T).
Finally, the third inequality implies that for all ¢t € {1,...,T},
GtT(l'TaUT) = (gtl(xtvut) 98 (@, u)
< (ag; (zr,up) + (1 — @)g) (@r,u7), - gl (@, uy) + (1 — @)g" (1, 47))
a(gt (lit’ u%)v s ’gln(xt’u%)) + (1 - O‘)(gtl(xtauz%)7 cee ag;n(xt’ u%))
= oGl (", uT) + (1 — a)GT (27, u>7).
This inequality holds for each ¢ € {1,...,T}, thus,
GT( T T) < aGT( ul’T) +(1- oz)GT(:UT,UQ’T).
The lemma, is proven. ]
Now we move to the proof of Theorem 5.16.

Proof. Let T € N, be given and (Zo,...,274+1,%0,...,0r) be a weak Pareto optimal
solution of Problem (FM), then (#7,47) = (#1,...,27,40,...,4r) is a weak Pareto
optimal solution of Problem (5.11) with k& = ¢. Now, since conditions (i-iii) are fulfilled,
after Lemma 5.17, Lemma 5.18 and Lemma 5.19, all the conditions of Theorem 5.15 are
satisfied. Then, there exist 67 = (01,...,07) € Rﬂ, pl =, ... ,pgﬂ) S (Rfﬁ"‘)r‘mr1 and
pt = (ud,...,pt) € (R7*)T! not all zero, such that the conclusions of Theorem 5.15
hold and thus, we obtain the following statements

vaT € (R, <9T D JT(:e T 7)) + (o7, ﬁlFT(ch,aT;hT)>
(5.12)
< T D,GT (2T, 4T, >2 0ie 00 LT, al, 67, pT, u7).

cit ot 607 ph uh) = max £@1, W, 07, pt, ul). (5.13)
uTeU(T)
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<pT,FT(55T,aT)> — 0 and <NT,GT(33T,aT)> =0 (5.14)

Using the result on directional derivatives of J7'(.,a”), FT(.,a") and GT(.,a") at 27 which
are proven in Lemma 5.17, we can rewrite (a) as follows
vl € (R™)T,
o105 S Dao (i he) — (T, b ) + 05 (Fr, D ful@e, s he) = has )
= T m =
+ <pT+1;D1fT(5%T7aT;hT)> + 21 > gy -Dugf (&4, s he) > 0
t=1k=1

Now, we consecutively choose h’ = (0,... hs,...,0), in which all the elements are
zero except for the ¢-th position to obtain the following:
- When t = 1, BT = (h,0,...,0), i 07 D] aim) — (o, m) +

<Pg,51f1(3§“1,ﬁ1;h1)> + Z pk.Dgh(@1, ;) > 0.
-Fort e {2,...,T - 1} R = (0,.,0,h,0,...,0), i.e. hy # 0 at the t-th position,
Sty 07 Drg (&, i ht> (PEers Dufies s b)) = (pF he) + 32 kD s s ) 2 0.
- When t = T, h" = (0,...,0,hy), i, 9T51¢§(£;,aT;hT) - <p§£,hT> +
<p%+1’51fT(£TaﬁT§hT)> + Z pk Drgh (&, i hr) > 0.

And so, forall t € {1,...,T } and for all hy € R™, the following condition holds:
?:1 0;‘-FD1¢>§ (l‘t, Uy he) + <pt+17 let(l”t, Ut; ht)>
+ kZI pf Digf (e, ;s he) > <PtT, ht>
<~ -ﬁlHtT(gTa jta ﬂtvpf+17 M?v h’t) > <pg17 h’t> )

ie. pl' € 0uHI (07,4, 0, pl 1, pf) and (b) holds. Now we expand the formula of
LT uT 0T pT, ul) as follows:

L(AT T QT’pT) <9T JT(AT T)> < FT( 2T T) ,u GT(AT T)>
= Y51 07 (@, u0) + 1o ] ey we) ) + (T s foln,uo) = 21) +
+Y <pf+1, Je(Z,ue) — éﬁt+1> +> ];::1 Mf’T-gf(fﬁt, ut)

= Etho (HtT(i"t,Ut, 9T7ptT+1aMtT) - <ptT+1afi’t+1>) .
From (5.13), we have

T
ZHtT(fct,ﬂt, aPt+1Nt = max (ZHt By, ug, 0 aptT+1MtT)>-

uwTeU(T
For this equality, for each ¢t € {0,...,7}, we consecutively choose u! =
(tig, ..., Ug—1,Ut, Ugt1,-..,07), i.e. only at t-th position, u; # Uy, and we obtain

HE (&, 4,07, ply 1, 1) = max,,, cpa HY (2¢,u4,07,pf 1, 1 ). So we have proven (c).
Finally, from (5.14), we imply that <ptT+1,ft(§;t,ﬁt) - uﬁt+1> = 0 and pf.gf (2, 0;) =

0 for all ¢t € {0,...,T} and for all k € {1,...,m} which gives (a). Thus, the theorem is

proven. O

(De) case

Now we state a strong Pontryagin principle for the multiobjective optimal control
problems with (De) in finite horizon as follows

Theorem 5.20. Let T € N, be given and (Zo,...,2&74+1, 4o, ..., 0r) be a weak Pareto
optimal solution of Problem (FMZT) where n and &7y, are fived vectors in R™. Assume
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that for all t € {0,...,T}, the control sets are defined as in (5.10). We also assume

that conditions (i,ii) in Theorem 5.16 hold for ng and gf and moreover, assume that the

following conditions holds:

(iii’) For allt € {0,...,T}, for each x; in a neighborhood V; of &+ such that xo =1, the
following convezity condition is satisfied: if u' € Wi(xzy), v’ € Wi(ay), 0 < a < 1,
one can find u € Wy(xz¢) such that

V.] € {17 s 76}7 ¢g(xt7 u) > O“Z){('rh u/) + (1 - Oé)@ﬁ{(.%’t, ull)a
ft(‘rhu) = aft(‘rhu,) + (1 - a)ft(‘rtau”)a
VEe{l,...,m}, gFf(ze,u) > agf(z,u) + (1 — a)gf (z,u”).
(iv) Forallt € {1,...,T}, for all uy € Uy, fi(.,ut) is continuously differentiable at ;.
Then for all T € N,, there exist 07 = (0] ,...,07) € RY and p" = (p],....pt,,) €
(R™)T+1 not all zero which satisfy the conclusions (b,c) in Theorem 5.16 and the following
one

(%) Forallt€{0,...,T}, for allk € {1,...,m}, uf.gf (&, 0;) = 0.
Before proving this theorem, we introduce the following lemma.

Lemma 5.21. Let T € N, be given and (Zo,...,T7+1,00,-..,07) be a weak Pareto
optimal solution of Problem (FMZT) where n and &7y, are fived vectors in R™. Assume
that condition (iv) in Theorem 5.20 is fulfilled. Then, for each u’ € U(T), FT(.,u") is
continuously differentiable at &7 .

Proof. Let T € N, and u? € U(T). We know that FT(.,ul) = (F'(.,uT),...,, F¥ (., uT)).
And so, to prove that FT(.,uT) is of class C' at 27, it is equivalent to prove that for all
t=0,..,7T, FI'(.,u?)is of class C! at #7. Following the definition of F'(.,u’) in Problem
(5.11), we have that forall t = 1,..., T—1, FL (., ul) = [2T = (24, m41) = fi(ze, us) —2141)-
Thus, for all t = 1,...,T — 1, FI'(.,,u”) is continuously differentiable at #7 since it is a
composition of C'' mappings under hypothesis (iv) of Theorem 4.9. A similar argument
is used for F{(,ul) = [#7 — x1 — fo(n,uo) — z1] and Ff(.,ul) = [T — 210 —
fr(zr,ur) — xpy1]. Thus, FT(.,u”) is continuously differentiable at 27

O

Now we prove the theorem.

Proof. Let T" € N, be given and (Zo,...,274+1,%0,...,0r) be a weak Pareto optimal
solution of Problem (FMZT), then (z7,4%) = (21,...,27,00,...,07) is a weak Pareto
optimal solution of Problem (5.11) with & = e. Now, under the assumptions of this
theorem, all the conditions of Theorem 5.15 are fulfilled. Therefore, we can apply it to
obtain 67 = (67,...,07) € Rﬂ, pl =t ... ,pgﬂ) € R™)TH and p?' = (..., uk) €
(R7*)T+1 not all zero, such that conclusions (1,2) in the proof of Theorem 5.16 and the
following one are fulfilled

(u",GT@",a")) =o. (5.15)
The rest of the proof goes like in proof of Theorem 5.16 with only a small change that
now, Dy fi(&,Gy; hye) is replaced by Dy fi (&4, 4y) - hy. d

5.6 New Pontryagin Principles for Multiobjective Optimal
Control Problems in Infinite-Horizon Setting
5.6.1 Weak Pontryagin Principles

In this section, we give weak Pontryagin principles for the considered problems with an
infinite-horizon setting. The difficulty is in the extraction of subsequences of multipliers
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having non-zero limit. We will use some particular assumptions like an invertibility
assumption or a positivity assumption used by Blot for single-objective optimal control
to overcome this difficulty. The control sets are considered in some specific cases: the
ones with both inequality and equality constraints, the special case when control sets are
independent with state variables and the case of interior optimal controls.

Control sets with both inequality and equality constraints

Consider Problem (PM; ,g ) where k € {i,e} and where the control sets are defined as
in (5.7), i.e. the control sets are defined by inequalities and equalities and for each ¢t € N,
U; depends on x;. We will establish weak Pontryagin principles for such problems. Notice
that in the next theorems and corollaries, we will use the notations span for linear span
and conv for convex hull of a set of vectors, which were introduced in previous chapter.

Theorem 5.22. Let (2,4) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM3)) where the control sets are defined in (5.7). For allt € N, we
assume that the following conditions are fulfilled:
(i) For allj e {1,...,0}, ¢! is Fréchet differentiable at (&, 0y).
(ii) For alla € {1,...,n}, f{ is Fréchet differentiable at (&,7;) when
[t (&, ) = 284
(iii) For all a € {1,...,n}, f is lower semicontinuous and Gdteaux differentiable at
(itvﬂt) when ff‘(:f:t,ﬂt) > i‘?—&-l'
(iv) For all k € {1,...,m;}, gF is Fréchet differentiable at (&,4;) when gF (&, 4) = 0.
(v) For all k € {1,...,m;}, gF is lower semicontinuous and Gateauz differentiable at
(£¢,7¢) when gF(2¢,4t) > 0.
(vi) For alli € {1,...,m¢}, h% is continuous on a neighborhood of (31,7:) and Fréchet
differentiable at (&, ;).
We set Dg.odf = Da.agf (&1, 04), Daaft:= Daafi(@e, ), Dahi:= Dahi(d1,i) for
each o € {1,2}. Assume that the following conditions are fulfilled for all t € N,:
(vii) Dg.f; is invertible.
(viii) Let vf = Dg1gf o Dgifi ' o Daafi — Dgagl for all k € {1,...,m;} and
wi = D1h¥ o D(;,lfg1 o Dgafi — Dohf for alli € {1,...,m¢}. Then span{w: :
i€ {l,...,mi}} Nconv{vf 1 k€ I}} =0, where I} :== {k € {1,...,m;} : vf = 0}.
(ix) The family (wi)i1<i<m, defined in (viii) is linearly independent.
Then there exist 01,....,0p € R, (p)ien, € (R™)Nx, (11,¢)teN € RN ..., (Hme t)ten €
RN (A14)ien € RY ..o (Amyt)ien € RY which satisfy the following conditions.

(@) (O1,...,00,p1, 20, NG pds o ug) # (0,...,0).
(b) 0; >0 forallje{1,...,4}, pr >0 for allt € Ny, A\t >0 for allt € N and for all
/ﬁE{l,...,mi}.

(c) For allt € N, for all « € {1,...,n}, pfyy - (ff (2, 0¢) — 22, 1) = 0, and for all
S {17 e ami}7 )‘k,t . gf(i‘t,at) =0.

m; Me
(d) Forallt € N, pr = piy10Dafe+ 521 0,D101+ > MeyDaagf + . pie Dihi, where
k=1 =1
D¢} = D16 (&4, 0g).
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(e) Forallt €N,
. . mg Me .. .
P10 Daafi + X521 0,D20] + > MeuDa gl + > pigDohiy = 0, where Dygi =
i=1

Do (&4, tir).

Proof. Let (Z, 1) be a Pareto optimal solution of Problem (PMZ]) when j € {1,2,3}. Using
Theorem 5.3, the restriction ((Zo,...,%7+1), (do,-..,0r)) is a Pareto optimal solution of
the finite-horizon problem (FM]). Our assumptions (i-vi) imply that the assumptions
of Theorem 5.8 in Section 5.4 are fulfilled and so we know that, for all T' € N,, there
exist 07,...,0] € R, \], € R, H;}F,t € R and pf,, € R™ where t € {0,...,T}, k €
{1,...,m;} and i € {1, ..., m.} which satisfy the following conditions.

All the multipliers are not simultaneously equal to zero. (5.16)
Vie{l,....0}, 0] >0,vte{0,...,T}, Vie {l,...,m;}, p{y; = 0and A, > 0. (5.17)

Vte{0,...,T}, Yk e {1,...,m;}, <ptT+1, Fi(e, ) — :%t+1> =0, N gF (&4, 14) = 0.
(5.18)

l m; Me
Ve {l,...,T}, pf =3 07.D1¢] +pli o Daafe+ > N Daagr +> plyDihi. (5.19)
j=1 k=1 i=1

vte{0,...,T}, O—ZHT Dg(ﬁ]+pt+1oD(;2ft+Z)\ktDGQgt +ZM”D2M. (5.20)
7j=1 = =1

. 1,7 A 1,7 e,

We will prove that (07,...,07,pT, A", . A0 1o »- -+ 110" Ty £ (0,...,0) by
contradiction. Notice that here, for the multipliers associated with the constraints, only
the 0-indexed ones appear. Assume that (67,...,607 p? ,)\[1) .. )\g”’T, u(l)’T, . ,MS%’T) =
(0,...,0). When ¢t =1, using assumption (v11), we can formulate (5.19) as follows

—p§ = (=pT + 251 07.D1] + 3%, ML, Daagh + Xt wIyDihi) o D fi~!
= (Z;n:il MaDaagt + 30 N21D1h1i> oDgafi”t,

(5.21)
and using (5.20), we have
A A me Fal
—p3 © Dapfi = Y521 0 Do + 32 N Da2df + ) iy Dah
i=1 (5.22)

Me
= Yty MaDa2dt + ) i Dahi.
1=1

Using (5.21) and (5.22), we have
(ZZ”:H MeaDaagt + 7 ] I\Dibg ) o Dgifi™' o Daafi — Y[ M,Da2dt —

Me ..
> piiDahli =0,
i=1
which can be rewritten as follows
S Ay (DG,1§’f oDgifi~t o Daafi — DG,2§]f)
+ 300 iy (lelzi oDgifi" Vo Dgafi — DQifi) =0

mg Me
T .k T, _
< Z )\k71711 + Z’uiylwl =0.
=1
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Using assumption (viii) and (ix), after Lemma 4.23, we obtain that )‘;}FJ = 0 for all
k € I}, and consequently we have Af’l =0forall k € {1,...,m;}. Then, using assumption
(ix), we obtain /%1:1 = 0 for all i € {1,...,m.} and thus, using (5.21) again, we have
pg = 0. Repeat this procedure for each ¢t € {2,...,T}, we obtain pal = 0, /\at =0
and MZt =0 forall t € {0....,7}, k € {1,...,m;} and @ € {1,...,m.}. Thus,
all the multipliers are zero which is a contradiction. And so, we have proven that
0f,....0F pl, )\(l)’T, . )\Sni’T, ,ué’T, e ,,ugLG’T) # (0,...,0). Since the set of the lists of
multipliers of Problem is a cone, we can normalize the multipliers by setting

T T T T T T T
H(@l yee ey 03 7p1 7)\1’07 e /\mi,07/1*1,07 e ,Mme,o)H

= Zg‘:l 9;[ =+ HP{H + 22’21 )‘;}F,O + 2261 N;’Co =1

Since the values of the sequence (67 ,...,07, pT, Xfo, e A%,Ov ,ulTp, .. 7M%S,O)T€N* belong

(5.23)

to the unit sphere of Rf x R™ which is compact, using the Bolzano-Weierstrass
theorem we can say that there exist an increasing function ¢ : N, — N, and

((91, cey 9@,])1, )\1’0, - Ami’o,,uLo, . 7Mm5,0) S Re x R™ x R™i x R™e such that Z?:l 9]' +

||p1|| + Zzlzll)‘k,o + E$1|/M,O| = 1’ hmT—H-OOH;’O( ) = 9] for all J € {17"'75}7

limy 100 pf(T) =p1, limp_ 400 )\f(OT) = Ao forall ke {1,...,m;} and limp_,; o uf(()T) =
pio for all i € {1,...,me}. 7 7

Now we will prove that for all ¢ € N,, the sequences T — ptTH, T — Agt and
T — pl, are bounded for all k € {1,...,m;} and for all i € {1,...,mc}. After
(5.23), it is clear that the sequences (Hf)T, (1), ()‘;EF,O)T and (,uZO)T are bounded for
all j € {1,...,0},k € {1,...,m;} and ¢ € {1,...,mc}. When ¢t = 1, using (5.21) and
(5.22), we have

(—p] + X, 07 D16]) o Dgafi™ o Daafi — X5y 07 Do
+ 20 Mg (Da,ﬁlf oDg1fi ' o Dgafi — DG,QQ%)
+ Z?;el ,u;{l (Dlilll e} DGJfl_l o DG,2f1 — DQ]Afi) =0.

Since all the elements in the first line of the last equation are bounded, we can assert that

S Mea (Dc,ﬁlf o Dg1fi~t o Daafi — DG,zﬁlf)
+ 30 udy (Dliﬂi o Dgifi~t o Dgafi — Dzﬁi)

is also bounded. Using Lemma 4.24, we obtain ()\;‘QI)T is bounded in Ry for all k£ €
{1,...,m;} and (H%)T is bounded in R for all ¢ € {1,...,m.}. Using (5.20) with ¢ = 1,
we obtain that (pl)r is bounded in R™. Repeat this procedure, for each t = 2,3,..., by
induction, we obtain that for all t € N, ()‘;}F,t)TZt is bounded in R, for all & € {1,...,m;},
(:“Zt)TZt is bounded in R for all i € {1,...,mc} and (p/,;)r>t4+1 is bounded in R™.
Then using diagonal process of Cantor which is formulated in [15] (Theorem A.1, p.94),
we know that there exist an increasing function ¢ : N, — N, and sequences (pi+1)ien, €

(Rn*)N*, (Al,t)tEN*y ce (Ami,t)tEN* S RI_TI_*, (Ml,t)tEN*a ey (/Lme,t)tEN* € RN* SUCh that fOI‘

all t € Ny, imyo oo ppyy) = pert, Wmroioo Ay = A for all k € {1,...,m;} and

limp 4 o0 M?,(tT) =i foralli € {1,...,me}.

And so we have built (4y,..., ;) € R’ sequences (p;)en, € (R™)N, (Akt)ten € RN
for all & € {1,...,m;} and (wit)ien € RN for all 4 € {1,...,m.} such that when
T — +oo, from (5.23), (5.17), (5.18), (5.19) and (5.20) we obtain conclusions (a), (b),
(c), (d) and (e), respectively (notice that for all the multipliers in these relations, we
replace their upper index 7" by ¢ 0 6(T)). O
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By a similar realization, we can propose a weak Pontryagin principle for Problem
(PM?) when j € {1,2,3}. The differences in assumptions and conclusions compared to
the previous theorem are showed in the following theorem.

Theorem 5.23. Let (&,4) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?2), (PM2)) where the control sets are defined in (5.7). We assume that
assumptions (i,iv-iz) of Theorem 5.22 are satisfied for allt € N together with the following
one.

(ii’) fi is continuous on a neighborhood of (%4, 0;) and Fréchet differentiable at (Zy,0y).
Then there exist 01,...,0; € R, (p)en, € (RN, (pe1)eny € RN, (1tem, )ten €

RN, (At1)ten € RN ..., (At;m;)ten € RN which satisfy conclusions (a,d,e) of Theorem

5.22 and the following conditions

(b) 6; >0 forallje{1,...,0}, \gy >0 for allt € N and for all k € {1,...,m;}.

(c) Forallt €N, forallk € {1,...,m;}, My - 95 (34, 74) = 0.

Proof. Let (£, 1) be a Pareto optimal solution of Problem (PM?) when j € {1,2,3}. Using
Theorem 5.3, the restriction ((Zo,...,Z7r+1), (do,...,Ur)) is a Pareto optimal solution of
Problem (FMZ). Our assumptions imply that the assumptions of Theorem 5.10 in Section
4 are fulfilled and so we know that, for all T € N,, there exist 67 ,... ,GZT € R, )\;!:t € R,

ugt € R and pl,; € R™ where t € {0,...,T}, k€ {l,...,m;} and i € {1,...,m.} which
satisfy conditions (5.16,5.19,5.20) and the following ones:

Vie{l,....0}, 6] >0,vt€{0,..., T}, Vie {1,....mi}, A}, > 0. (5.24)

vt e {0,...,T}, Ve {1,...,m;}, N gF (&, 1) = 0. (5.25)

The rest of this proof goes completely like that of the previous one in which relations
(5.17) and (5.18) are replaced by relations (5.24) and (5.25), respectively. O

Control sets that are independent of state variables

In this subsection, we will provide weak Pontryagin principles for the problems in
which the control sets are independent of the state variable. Although these results are
the corollaries of the theorems in Section 5.6.1, we give here simpler proofs for some of
them thanks to the similar results for single-objective optimal control problems in infinite
horizon setting in [17].

Firstly, we consider the case when both inequality and equality constraints appear in
the problem as follows.

U = ﬂ {fueR?: gF(u) >0} N( ﬂ {u e R%: hF(u) = 0}) (5.26)

1<k<m; 1<k<me

Then we have the following corollaries for multiobjective optimal control problems with
(Di).

Corollary 5.24. Let (2,4) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM?)) where the sets Uy are defined in (5.26). For allt € N, we
assume that the following assumptions are fulfilled
(i) For allj € {1,...,0}, ¢! is Fréchet differentiable at (&, 0;).
(ii) For alla € {1,...,n}, f{ is Fréchet differentiable at (&, 1) when

[ (&g, ) = 2844 -
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(iii) For all a € {1,...,n}, ff is lower semicontinuous and Gateauz differentiable at
(¢, ) when f(Z¢, ) > 2.

(iv) For all k € {1,...,m;}, gF is Fréchet differentiable at @y when g (i) = 0.

(v) Forallk € {1,...,m;}, gF is lower semicontinuous and Gateauz differentiable at i
when gk (i) > 0.

(vi) For all i € {1,...,m.}, hi is continuous on a neighborhood of t; and Fréchet
differentiable at Uy.

(vii) span{Dhi(i):i € {1,...,m}} Nconv{Dggk(is) : k € I}} = 0, where
Ii= (k€ (L. ...mi) - gh(i) = 0}.
(viii) Dh}(t),...., Dh™e(d;) are linearly independent.
(ix) For allt € Ny, Dg 1 fi(Z¢, 1) is invertible.
Then there exist 01,...,0p € R, (p)en, € (R™)N+, (H1,¢)teN € RN ..., (me.t)ten €
RY (A t)ien € RY ... (Amyt)ten € RY which satisfy the following conditions.
(a) (91,.. . ,95,])1) 75 (0, ,0,0).

(b) 6; >0 forallj € {1,...,£},, pr >0 for allt € Ny, Ay > 0 for allt € N and for all
k€ {1,,m,,}

(c) For allt € N, for all a € {1,...,n}, p¥ - (ff (2, 0) — 23 1) = 0, and for all
ke {1, .. ,mi}, )\k,t . gf(at) =0.

(d) For allt € Ny, py = pra1 0 D1 filde, @) + 25—y 0; D107 (8¢, ).

(e) ForallteN,
Prr10 Daafi(@e, i) + 351 0,D207 (&, ) + > Mo Dagr (i) + > pie DR (i) = 0.

k=1 i=1
Corollary 5.25. In the setting of Corollary 5.24, assume that conditions (i-viii) of
Corollary 5.24 and the following one are fulfilled

(ix’) For all t € Ny, for all a, 8 € {1,...,n}, L8 > 0 and for all a € {1,...,n},
Off axi)

Then all the conclusions of Corollary 5.24 hold.
We will prove Corollaries 5.24 and 5.25 simultaneously as follows.

Proof. Proceeding as in the proof of Theorem 4.25, with a notice that now there are /¢
multipliers for multiobjective criterion instead of one multiplier in that theorem, we obtain
the proof for these corollaries. O

Now, we state a weak maximum principle for multiobjective optimal control problems
with (De) and with the control sets defined by both inequality and equality constraints.

Corollary 5.26. Let (2,4) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?2), (PM3)) where the sets U; are defined in (5.26). We assume that the
following assumptions are fulfilled for all t € N.

(i) Forallj e {1,...,0}, ¢! is Fréchet differentiable at (&, 0).
(ii) fi is continuous on a neighborhood of (&4, 1) and Fréchet differentiable at (&, 4y).
(iii) For allk € {1,...,m;}, gF is Fréchet differentiable at @iy when g (i) = 0.

(iv) For all k € {1,...,m;}, gF is lower semicontinuous and Gdteauz differentiable at i
when gF(ty) > 0.
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(v) For all i € {1,...,m¢}, hi is continuous on a neighborhood of @; and Fréchet
differentiable at ;.

(vi) span{Dhi(is) :i € {1,...,mc}} Nconv{Dggl(iz) : k € I}} = 0, where I} := {k €
{1,...,m} : gF(a;) = 0}.

(vii) Dhi(4y),...., Dhi* (@) are linearly independent.

(viii) For allt € Ny, D¢ fi(Z4,0) is invertible.

Then there exist 01,...,0p € R, (p)ien, € (R™)Nx, (pe1)ten € RN ..., (et me )ten €
RY (Mea)ien € RN, (Aem, ten € RY which satisfy conclusions (a,d,e) of Theorem
5.24 and the following conditions
(b) 0; >0 forallje{l,...,0}, Ayt >0 for allt € N and for all k € {1,...,m;}.

(c) Forallt €N, forallk € {1,...,m;}, Ay - g (dy) = 0.

The difference is the replacement of inequality constraints by equality constraints in
the problem issued from the reduction to finite horizon, the consequence of this difference
is the lost of the sign of the adjoint variable p;.

Remark 5.27. In Theorems 5.22, if control sets are independent of state variables then
its assumptions (viii,ix) are reduced to assumptions (vii,viii) of Corollary 5.24.

Finally, we consider the case when the control sets are described for each t € N as
follows
U= () {ueR’:g/(u) >0} (5.27)
1<k<m;
Then, for multiobjective optimal control problems with (Di), we have the following
corollaries in which, the assumptions are only related to Gateaux differentiability and
lower semicontinuity.

Corollary 5.28. Let (£,1) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM}3)) where the sets Uy are defined by (5.27). We assume that the
following assumptions are fulfilled

(i) Forallt €N, forall j€{1,...,¢}, ¢{ and fy are Gateauzx differentiable at (4, 0y).
(ii) For allt €N, for all k € {1,...,m;}, gF is Gaiteaux differentiable at .

(iii) For allt € N, for all o € {1,...,n}, f& is lower semicontinuous at (%, 0;) when
JE (@) > 28,
(iv) For allt € N, for all k € {1,...,m;}, gF is lower semicontinuous at iy when

gt () > 0.
(v) Forallt € N, 0 ¢ conv{Dggk(i) : k € I}} where I} := {k € {1,...,m;} : gF () =
0}.
(vi) For allt € Ny, Dg 1 fi(Z¢, 1) is invertible.
Then, under (i-vi) there exist 01,...,0; € R, (pr)ien, € (RN, (A)en € RN, .,
and (\)sen € RY which satisfy the following conditions.
(a) (017 s 79€7p1) 75 (Oa 0)

(b) 6; >0 forallje{1,...,0} , pr >0 for allt € N,, and \f >0 for all t € N and for
all ke {1,...,m;}.

(c) For allt € N, for all « € {1,...,n}, pfrq - (ff (& 0) — 22,) = 0, and for all
ke {1,...,mi}, )\fgf(ﬁt) =0.

(d) For allt € Ny, py = pr1 0 Da i filde, ) + Y5—y 0. Do (34, ).
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(e) Forallt €N, pri10 Dgafi(de,l) + Z§:1 0; Da ¢l (e, ) + Yy MFDagf () = 0.

Corollary 5.29. In the setting of Corollary 5.28, assume that assumptions (i-v) of
Corollary 5.28 and the following assumption are fulfilled

(vi’) For allt € Ny, for all o, € {1,...,n}, % >0 and for all « € {1,...,n},

Off (&¢,0¢)
]

Then, all the conclusions of Corollary 5.28 hold.

The proof for Corollary 5.28 can be realized as in Theorem 5.22. However, in this case,
by using an existing result in Chapter 4, we can prove Corollaries 5.28 and 5.29 as follows

Proof. Proceeding as in the proof of Theorem 4.21, with the same notice as in previous
corollaries’ proofs, we obtain the proof for Corollaries 5.28 and 5.29. O

The case of interior optimal controls

In this subsection, we consider the case where for every ¢ € N, U, is an arbitrary
subset of R? and wu; belongs to the interior of U; and where the system is governed by
the difference inequation (Di). For such problems, we can lighten the assumption of
smoothness and continuity of the objective functions ¢} and functions f;. This will be
shown in the following corollaries:

Corollary 5.30. Let (£,1) be a Pareto optimal solution of Problem (PM}) (respectively,

solution of (PM?), (PM3)). We also assume that the following assumptions are fulfilled:

(i) Forallt e N, 1 € intU,.

(ii) Forall j€{1,...,0}, for allt €N, ¢! and f, are Gateauz differentiable at (2, 0y).

(iii) For allt € N, for all a € {1,...,n}, f& is lower semicontinuous at (&, 0;) when
JE (@, ) > 284

(iv) For allt € Ny, Dg 1 fe(2¢,0) is invertible.

Then there exist 1, ...,0, € Ry and pyy1 € R wheret € N which satisfy the following
conclusions:

(@) (61,.--, 0p, p1) #(0,...,0).
(b) Forallt € N, (pry1, fe(&¢, Q) — T441) = 0.

() Forallt € N, pr =1 (0, D16} (&1,i)) + prer 0 Do fild, ).
(d) Forallt €N, Y | (0;.Dga¢(2¢, 1)) + prs1 0 Daafe(dy, iig) = 0.

Proof. Although this is a corollary of Theorem 5.22, however, in this case we can realize
a much simpler proof. By proceeding as in the proof of Theorem 4.14, with a notice that
now there are ¢ multipliers for multiobjective criterion instead of one multiplier in that
theorem, we obtain the proof for this corollary. ]

Corollary 5.31. Let (£,1) be a Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM?)). We assume that the assumptions (i,i,iii) of Corollary 5.30
are fulfilled. Moreover, we assume that the following assumption is fulfilled

Offan i) _ o OFf (@)

> 0.
81:;3 dug!

(iv’) Forallt € Ny, forall o, € {1,...,n},

Then the conclusions of Corollary 5.30 hold.
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Proof. The proof is obtained by proceeding as in the proof of Theorem 4.16, with the same
notice as in previous corollary’s proof. O

Remark 5.32. All the results in Section 5.1 can be considered as generalizations of
Theorem 3.1, Theorem 3.2 and Theorem 3.3 in [34] if we replace weak Pareto optimality
in those theorems by Pareto optimality. Generalization here can be understood under two
meanings: using lighter smoothness assumptions and considering multiobjective optimal
control problems in the presence of constraints.

5.6.2 Strong Pontryagin Principles

In this section, we will establish strong Pontryagin principles for the considered
problems with infinite-horizon settings. To do that, we will use the existing results in
finite horizon case, which are presented in Section 4, and add some particular assumptions
beside the invertibility assumption to assure that all the multipliers are not simultaneously
equal to zero. We recall the definition of control sets:

Wilw) = () {u€R: g/ (z,u) 2 0} (5.28)
1<k<m

(Di) with inequality constraints

Firstly, we state the theorem for multiobjective optimal control problems with (Di)
and with control sets defined by inequality constraints.

Theorem 5.33. Let (2,4) be a weak Pareto optimal solution of Problem (PM})
(respectively, solution of (PM?), (PM?")) where the control sets are defined as in (5.28).
We assume that the following conditions are fulfilled

(i) Forallt € N,, for all j € {1,...,0} and for all k € {1,...,m}, ¢}(., %) and gF(., ;)
have directional derivatives at Ty which are concave.

(ii) For all t € N, for all j € {1,...,¢}, for all k € {1,...,m}, for all u <
Wi(z4), ¢1(,u) , fi(.,u) and gF(.,u) are continuous at &y in any direction h.

(iii) For allt € N, for each z; in a neighborhood V; of & such that xy =1, the following
converity condition is satisfied: if u' € Wi(z), v’ € Wi(xy), 0 < a < 1, one can
find uw € Wi(z) such that

Vie{l,..., 0}, ¢l(x,u) > adl (z,u) + (1 — )¢l (z, u),
fe(ze,u) > afi(xg,u) + (1 — ) fr(2, u),
Vk € {]-7 s 7m}7 gf(xhu) > agf(xhu,) + (1 - a)gf(xta U”).

(iv) Forallt € Ny, fi(., 1) is Gateauz differentiable at &; and Dg 1 fi(Z, Uy) is invertible.
(v) For all t € N, there exists u, € Wy(zy) such that fi(Z,U) = fi(Ze,0y) and
gF (&4, 1;) >0 for all k € {1,...,m}.

Then there exist @ = (01,...,0;) € Rﬁ, Pi+1 € RY and py € R where t € N which
satisfy the following conclusions:

(@) (61,..., o, p1) #(0,...,0).

(b) Forallt € N, (pis1, fe(Ze,Ut) — Te1) = 0 and (u, g1(24, 4t)) = 0.
(c) For allt € Ny, p € O1Hy (&4, Ut, 0, prs1, ).

(d) Forallt e N, Hy(&,0,0,piy1, t) = max,cpa Hi(Zy,u, 0, pryq, ).
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Proof. Let (&,4) be a weak Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM?)). Using Theorem 5.3, for all T € N,, we know that

(%0, ..., &741, 10, - - -, Try1) is a weak Pareto optimal solution of Problem (FMJ). Under
conditions (i-iv), after Theorem 5.16, for each T' € N, there exist 1 = (0],...,0}) €
RY, pT = (],...,p5. ) € R)TH and pf = (uf,...,pF) € (RT)THL not all zero

which satisfy the conclusions (a-c) of Theorem 5.16. From (b) of Theorem 5.16, using
the assumption (iv), we know that for all t € {1,...,T}, for all j € {1,...,¢} and for all

ke {l,...,m}, there exist cpt"T € 016 (24, 0) and YT € O1gF (24, 04) such that

kT
=" 9]‘ +Pt+1 o Da fil@, i) + Shy pp " g

kT kT (5.29)
— pha =0l - i QJT Prt = iy b ) 0 D fol@e, @) T

Assume that (07,...,07,pT) = (0,...,0,0) then from conclusion (c) of Theorem 5.16,
for all t € {0, ... ,T}, we have:

<P?+17ft(ft,@t)> + Z: 1 Mf Tgf(xt,ut) <pt+17ft Ty, u > + Zk 1 Mf Tgf (B¢, u)

for all w € U;. Now for each t € {0,...,T}, take u = 4, satisfying (v) then we have
Iy uf’Tgf(i’t, ) > > ey uf’Tgf(a%t, ut). Using (a) of Theorem 5.16, we can assert that
for all t € {0,...,T}, 0 > 7, ubTgk(&, 1) but from (i), since gF(&¢, 1) > 0, we
must have ,uf’T =0 for all t € {0,...,T} and for all £ € {1,...,m}. Now apply those
into the backward recursive equation (5.29), we have pal = pl' o Dg 1 fi(2, 1)~ for all
t € {1,...,T} with the initial condition p? = 0. Therefore, it is obvious that pf = 0 for
allt € {1,..., T+ 1} and thus all the multipliers are zero which is a contradiction. Hence,
or,...,0F ,pl) # (0,...,0,0). Since the set of the lists of multipliers is a cone, we can
normahze the multipliers by setting

|@F,....o7 D) _Z‘HT‘Jerl | =1 (5.30)

Since the values of the sequence (07,...,0F pT)ren, belong to the unit sphere of
R x R™ which is compact, using the Bolzano-Weierstrass theorem we can say that there
exist an increasing function 7' : N, — N, and (61,..., ;,p1) € RY x R™ such that
S 1851+ Ipr ]l = 1, limgos oo 0 7 = 6; for all j € {1,..., €} and limp— 1o P} ) = p1.
Since for all ¢t € {1,...,T}, for all j € {1,...,¢} and for all &k € {1,...,m}, cpg’T €
A1 (24, 1;) and wf T € 81gF(#1,1y), then they are compact. Using Theorem A.l in
the appendix A of [15], there exist an increasing function r? : N, — N,, mappings
ol € 6] (2, 0) and YF € O1gF(d4,0y) such that Limp_, e gp{’ﬁ(T) = ¢ for all
je{1,..., 0 and limp_y oo o@D = 4y for all k € {1,...,m}. We set r = 2 o L.
We have

4 . m
pg(T) = (pI(T) - 9§(T)<Pj1’r(T) -y MT’T(T)-U}I;’T(T)) o D1 fi(d1,a1) 7",
j=1

k=1

which implies that

m
k 1k A oA N—1
pZZTl_lﬂloop? = 291% ];M-%)ODG,lfl(m,ul)

Proceeding recursively we define, for all ¢ € N,
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Di+1 _hmT%+OOpt+1
T) k (T) N A
= limr oo (pr ) — iy 0, " - il "y Y o Dy fiay, )

(Pt 1050l — SR ufwF) o DG,lft(ﬂﬂt, )"

Then, for all t € N,, we have proven that there exist go{ € ﬁlgbg (Z¢,0y) for all j € {1,..., ¢}
and ¥f € 01gF (2, 14) for all k € {1,...,m} such that

Pt = Pt © D fulde, @) + S50 0500 + S5y b,

ie. for all t € Ny, py € 01 Hy(Z4, Uy, 0, pry1, pt) which gives (c). We have yet seen that (a)
is satisfied. It is obvious that 6 € RY, (p)ten, € (R¥)N+ and py € R since they are the
limits of 7, pI and u], respectively, when T' — co. From conclusion (a) of Theorem 5.16
we obtain (b). From conclusion (c) of Theorem 5.16 we obtain (d). O

Remark 5.34. Condition (v) is taken from Theorem 4.1 in [33] and it is useful to prove
that all the multipliers are not simultaneously equal to zero.

In the previous result, we use the additional condition (iv) on f; in order to obtain the
backward recursive equation which expresses py41 through p;. In fact, we can lighten the
assumption on f; from Géateaux differentiable down to directional differentiable. However,
by doing that, it will be necessary to have the invertibility of all the mappings belonging
to the partial subdifferential of f; with respect to ;. The next theorem will clarify this
point.

and (v) of Theorem 5.33 hold together with the followmg assumption
(") Forallt € N,, forallj e {1,...,0} and for allk € {1,...,m}, &) (., %), gF(., %) and
fi(., i) have directional derivatives at &y which are concave.

(iv’) For allt € Ny, if ¢ € O1fi(&,Ty) then it is invertible.

Then there exist @ = (01,...,60;) € Rﬂ, pey1 € R and py € RT™ where t € N such
that all the conclusions of Theorem 5.33 hold.

Proof. Let (&,4) be a weak Pareto optimal solution of Problem (PM}) (respectively,
solution of (PM?), (PM?")). Using an analogous argument like in previous theorem, for

each T € N,, there exist 67 = (07,...,07) e RY, p* = (pf,....pL.,) € (R¥)TH! and
pt = (ud, ..., pk) € (R™*)TH not all zero which satisfy the conclusions (a-c) of Theorem
5.16.

From conclusion (b) of Theorem 5.16 we know that for all ¢ € {1,...,T}, for all
je{l,....0andforallk € {1,...,m}, there exist i € &1 (24, ), VFT € O1gF (&4, 0y
and (! € 01 f;(2¢, 1) such that

kT kT
Ze 19T +Pt+1°Ct "’Zk 1R

k T
g Pt+1 (f Z;: — ke Mt % )o (¢t
By doing an similar procedure like the previous proof, we obtain (67,...,07, pl) #
(0,...,0,0) and we can normalize it as in (5.30). Now using the same argument like before,
there exist an increasing function r : N, — Ny, vector (01,..., 0s,p1) € RY x R™, mappings
QO‘Z S 81(;5%(@15,’&75) ¢f S algf(i’t,’&t) and Ct € alft(.’%t,at) SuCh that 25:1 |9]‘ + ||p1H = 1
hmT%H)oO Ak g; for all j € {1 SO limyp oo pq(T) = p1, limp_ 4 cpi’T(T) = cpt for
all 7 € {1,..., ¢} limp o0 ’(/Jt =y for all k € {1,...,m} and lim7_, o0 ¢/ T _ Gt

Then by recursively using the backward equation and by taking the limit when T — +o0,
we have
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Pra1 = (pe — Y=y 0500 — iy b apf) o (G)7?
for all t € N, or equivalently,

Pe= 2510507 + prr1o G+ Sy b pf
= pr € O1H (&4, U, 0, pri1, fie)-

The rest of the proof goes like that of the previous one. O

Remark 5.36. Notice that when n = 1, i.e. the space of state variables is identified
with R, then condition (iv’) in the previous theorem can be rewritten as follows: For all
t € N,,0 ¢ 0y fy(&, ;). This implies for all t € N, &; is not an extremum of fi(., ;).

In the special case when the sets of controls are defined by inequalities but only depend
on control variables: Wy = Ny<pemiu € RY : gF(u) > 0}, we can take advantage of special
assumption of Corollary 5.30 to state a strong principle for multiobjective optimal control
problems with (Di) as in the following corollary.

Corollary 5.37. Let (2,4) be a weak Pareto optimal solution of Problem (PM})
(respectively, solutlon of (PM?), (PM?)) when the contml sets are deﬁned as above.

the following additional assumptzons are fulﬁlled

(i?) For allt € N,, for all j € {1,...,0}, ¢} has directional derivative at (&,70;) and it
18 concave.

(iv”) Forallt € N, fi is Gateaux differentiable at (Z¢,7:) and Dg 1 fi(Z¢, Gr) is invertible.

(V') For all t € N, for all k € {1,...,m}, gF is Gateauz differentiable at 4; and
moreover, 0 ¢ conv{Dagk(ty) : k € I} where I} := {k € {1,...,m} : gF(i;) = 0}.

Then there exist 0 = (01,...,0y) € Rﬂ, pir1 € R and py € R, where t € N, such
that all the conclusions of Theorem 5.33 hold.

Proof. The proof of this corollary is almost the same like that of Theorem 5.33, except
for the step of proving (67,... He ,p1) # (0,...,0,0). By contradiction, assume that
0F,...,0F7,pT) = (0,...,0,0) then from conclusion (b) of Theorem 5.16, using assumption
(iv”), we know that for all ¢ € {1,...,T}, for all j € {1,...,/}, there exists @?’T €
0107 (24, 0y) such that

p? 9T +pt+1 o Dg, Lfe(Ze, Uy) (5.31)
= ptT+1 ( Z]: 9] vy )ODGth(ﬂUt,Ut) !

Then, since (67,...,0F,pT) = (0,...,0,0), pI = 0 for all t € {1,...,T + 1}. From
conclusion (c) of Theorem 5.16, we have 0e aQHt(iEt, ut, 0, D41, 1) Wthh means that for
all t € {0,...,T}, for all j € {1,...,0}, there exists of" € 92! (24, ) such that

l
Z 9;[ AR Pt+1 o Do fy(2¢, Gt) + Z My DGQf(ﬁtl- (5.32)
]:1 k=1
From this equation we obtain Y7, u¥" . Dagl(d;) = 0. By the same argument as in the
proof of Corollary 5.28, we have pi"" = 0 for all t € {0,...,T}, for all k € {1,...,m}.
Thus, all the multipliers are zero which is a contradiction. Then (67,... dg , pl) =+
0,...,0,0). O

Remark 5.38. Theorem 5.33, Theorem 5.35 and Corollary 5.37 can be considered as
generalizations of Theorem 4.3 in [34] since now there exist the inequality constraints in
the control sets. Besides, in these results, we use weaker assumptions compared to the
condition of partial continuous differentiability in Theorem 4.3 in [34].
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(De) with inequality constraints

Now we consider the multiobjective optimal control problems with (De) and with
control sets defined by inequality constraints. For these problems, we have the following
strong Pontryagin principles which provide a necessary condition of optimality in strong
form.

Theorem 5.39. Let (&,4) be a weak Pareto optimal solution of Problem (PM})
(respectively, solution of (PMZ2'), (PM2")) when the control sets are defined as in (5.28).

We assume that conditions (i,ii,v) in Theorem 5.33 hold and the following conditions are
fulfilled

(iii) For allt € N, for each xz; in a neighborhood V; of & such that xo =1, the following
convexity condition is satisfied: if u' € Wi(zy), v’ € Wi(xy), 0 < a < 1, one can
find w € Wi(z) such that

Vj € {17 s 76}7 ¢g(l’t,U) Z Oé(lﬁ'(fﬂtvul) + (1 - a)ﬁbg(l‘ta UH),
ft(whu) - ()th(l't,ul) + (1 - Ck)ft(ﬂ?t,’u//),
Vk € {1’ s 7m}7 gf(xtvu) > agzlfg(‘rt)u,) + (1 - a)gf(l‘ta U”)'

(iv) For allt € Ny, for all uy € Wi(2), fi(.,us) is continuously differentiable at &y and
moreover, D1 fi(Z,Uy) s invertible.

Then there exist = (01, ...,0;) € Rﬂ and pi+1 € R™, t € N which satisfy conclusions
(a,c,d) of Theorem 5.33 and the following one

(b) Forallt €N, for all k € {1,...,m}, uf.gf (&, ;) = 0.

The proof of this theorem is similar to the proof of Theorem 5.33. The difference is
the lost of sign of p;11 since now the dynamical system is defined by difference equations.

In the special case when the sets of controls are defined by inequalities but only depend
on control variable, we can state a corollary as follows.

Corollary 5.40. Let (2,4) be a weak Pareto optimal solution of Problem (PM})
(respectively, solution of (PMZ), (PM?)) when the control sets are defined as in
Corollary 5.87. We assume that condition (ii) in Theorem 5.33 and conditions (iii,iv)
in Theorem 5.39 are fulfilled. Moreover, assume that the additional assumptions (v’,vi)
in Corollary 5.87 are fulfilled. Then there exist 0 = (01,...,0;) € Rf_, per1 € R™ and
pe € R where t € N such that all the conclusions of Theorem 5.39 hold.

The proof for this theorem is similar to that of Corollary 5.37.

Remark 5.41. Theorem 5.39 and Corollary 5.40 can be considered as generalizations of
Theorem 4.1 in [34] since now there exist the inequality constraints in the control sets.
Besides, in these results, we use weaker assumptions compared to the condition of partially
continuous differentiability of Theorem 4.1 in [34].

Remark 5.42. All the results for multiobjective problems in this chapter become
Pontryagin principles for single-objective optimal control problems in Chapter 4 when
¢ = 1. Therefore, we also obtain strong Pontryagin principles and more general weak
Pontryagin principles for single-objective optimal control problems in finite or infinite
horizon.
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5.6.3 Transversality Condition as a Necessary Condition of Optimality

Using Corollary 5.30 and Corollary 5.31, we analyse the transversality condition in the
form
lim p; =0

t——+0o0
in two cases: with invertibility condition and with positivity condition. In each case, we
will add more assumptions in order to obtain the transversaltity condition.

The transversality condition for the problem with invertibility assumption

From Corollary 5.30, we know that there exist 1,...,0, € Ry and p;41 € R} wheret €
N which satisfy conclusions (a-d) of this corollary. Using conclusion (c) of Corollary 5.30,
we have:

¢
VEeEN, pr=> (f)j-DG,lﬁbg (fﬁt,@t)) + P10 Da o fe(@e, Uy).
=1
z .
=Vt € N*, pry1 = (pr — Z 0,D¢ 107 (&4, 0)) © D fo(de, @)
=1

From this, we can assert that, for all ¢ € N*,
g .
Ipeeall < lpell | Desfel@es @) 7| + 32 65 | Dead] e, )| | Da fel@e ) || (5:33)
j=1
We set for all t € N, Ay = Dagifi(2, ), A7' = (Dgifi(de,0e))"" and b =
DGJgZ)z (Z¢,U¢). Then, we have for all t € N, Ay, b{ are bounded linear operators. Since
Ay L exists for all t € N, (from the invertibility assumption), we can assert that, for all

t € N, A;7! is also a bounded linear operator (because A;.A;' = E,,, the unit matrix
in R™*™). We will find an expression that describes p;y1 by p; and 6y,...,6; (notice

that (917"'79€7p1) 7& (077()?0))
W N, Tyl <l 472 + 3205 o] (5.34)
j=1

While ¢ > 1 we have:

VA
el < (upt_lu 424+ 3205 | HAzaH) 47|
j=1

¢
200wl 4]
j=1

¢
& lpesall < Il A4 | [l + 205 (il [lacta] o] + ) 4:])-
j=1
By induction we obtain

Ilpesall < llpal |47 |47

14 ' ' |
+ 320 (Al ] )+ Dol 2]l -+ ] )
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t ¢ t
& pee | < lpl T[4 + D205 3 (|fez]| 11 {45t
s=1 j=1 s=1 k=s
Recall that Z;:l 6; + |lp1|l = 1, then
* ¢ -1 -1
vt e N, [lpe | < HIHAS -

s=
Let oy = H | Ay 1” > 0 and 5; = Hb7H H | Ay 1) > 0. We make an assumption

= k=
that sup;en- ‘A 1H = M < 1 and for all t €N, forall j € {1,...,¢}, < 7t where
(7¢)ten = v € co(N,R). From this, we have

t
0< lim ap= lim HA /< tim IIM = lim M'=0 (since 0 < M < 1).
t—+o00 t—+00 g9 t—+00 g1 t—+o00

That means lim;_, ;o &y = 0. Thus, (o)ien is bounded. For f3;, we have

b=
s=1

o 1142
k=s

< Zi: ,YSMtsz < HlH th—sH

— 141 o] Yoare - HvHMl‘fﬁ

= HZH 1 ST

Then, (B;)en is also bounded. Therefore, (p;)en, is bounded i.e. limsup; ., |lp¢]| <
+o0o. Take limsup both side of (5.34) with a notice that limsup, ., |pi]| =

limsup; o ||[pe41]| and for all j € {1,...,¢}, limsup;_,, HbZH < limsup;_, o || =0 to
obtain

Hm SUp, 4o [P < limsupy, o0 [Ipe]l || 47|

= limsup,, ;o |Ipe]l < M limsup;_, ;o |||l
== (1 = M)limsup;_,;  |lpe]| < 0.

From this, we can assert that limsup,_, . [|p¢]| = 0 since M < 1. Thus, limy—, 1 [|p¢]] =0
i.e. limt_>+oo Pt = 0.
And so, we have proven the following corollary

Corollary 5.43. If (Z,4) satisfies all hypotheses of Corollary 5.30 and the following
condition

(vi) supsen, HAt_lH =M <1 and HDGJ#(@,at)H < || for all j € {1,...,¢}, for all
t € N where (7)ien = 7 € co(N,R).

Then, all the conclusions of Corollary 5.30 hold and moreover, lim;_, 4o pr = 0.
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Now we consider the special case when (v¢)ien = 7 € H(N,R), ie. Y5 || < 4o0.

This case is usual in Macroeconomic Theory. For example, gf){ (x,u) = Btwf (z,u) for
all t € N and for all j € {1,...,¢} where 8 € (0,1) and ] is a mapping satisfying
supteNHDqlng(:%t,at)H ;= K < 4oo for all j € {1,...,¢}. Here we can define v, :=
BIK for all t € N and then, > % |v| = KXY 56 = 1_—K6t Another example is
¢l (we,up) = ae" Y] (x4, uz) for all ¢ € N and for all j € {1,...,¢} where a,c¢ > 0 and
@] is a same mapping in the previous example. Here we can define v; := acKe ™ for
all t € N and then, > £% |v| = acK >[5 e = 1’icelfc. For this case, we will provide

another condition which assures the validation of transversality condition. We have the
following corollary

Corollary 5.44. If (&,4) satisfies all hypotheses of Corollary 5.30 together with the
following condition

(vii) supyen, [|Dafil@n i)l = M < 1 and |[Deadf(@n )| < |l for all j €
{1,...,4}, for all t € N where (v)ien = 7 € (N, R).

Then, all the conclusions of Corollary 5.30 hold and moreover, lim;_, oo pr = 0.

Proof. From Corollary 5.30, we know that there exist 61,...,0;, € R4 and py1 €
R™* where t € N which satisfy conclusions (a-d) of this corollary. Using conclusion (c) of
Corollary 5.30, we have:

¢

VteN., pr=) (9j~DG,1¢g(i“t,@t)) + pes1 © Da 1 fi(E, Ge).
=1

Then, we can assert that for all ¢ € N,

lpell < Sy (65 | Deadi(@e ) |) + Ipesall - |1 D fol@es )|

= |[|pel| < |% 2521 0; + M ||pss1]|
= |lpell < %l + M [|pe+a |

since Z§:1 #; < 1. Thus,

ST el < S5 Il + MO lpeall < 3505 Il + MOEZT (e
= (1= M) llpell < 05 e

+oo Z:r—ofh”
- =1 |lpell < === < +oo.
From the last inequality, we obtain (p;)ien, € £1(N,, R™*) which assures that lim;_, o0 pr =
0. O
The transversality condition for the problem with positivity assumption

From the proof of Corollary 5.31, the following condition holds for all ¢ € N, and for
all T >t

it < 1 (szu > HDGJW,MH) ,
j=1

Of (24,
where py = min M

> 0. In this inequality, we let T' — 400 and obtain
1<a<n Oz

1 ‘ :
Ipesall < - (Hptu + HDG,mi(azt,anH) : (5.35)

=1
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By induction, we have

0
[Pe4all < Hi:ll p 1]l + (Zil (Hiispt zzjl HDG,1¢g(@t,ﬁt)H))
S (zf (Ht 3 oot H))

= 0y + /8t7
t .
where oy := Z 1 ?:1 ||DG,1¢§(£taat)|| > 0.
Hps s=1 Hpk
Now we make an assumption that 0 = tirg pr > 1 and for all t € N, for all
6 *
jef{1,....0}, ‘D071¢§(@t,ﬁt)” - Hb{” < 4 where (Y)ien = 7 € co(N,R). From here,
we have
1 1 1
0< lim ¢ = lim — < lim — = lim — =0
t—+o00 t—+oo t t—+oo t t—4o00 Ot
Ps 0
s=1 s=1
= lim o =0.
t——+o0
Then (ay)ten is bounded. For f;, we have
t 1 .
B = 1 :L"t,Ut)H ; — > _ |
- prl ~ I o 7=
k=s k=s
1 _ 4]
<€H’YHZ t <£H H — t—stl T §ttl 2158
UTT ok =
k::s
< Hv” —— < +o0.

o—1
Then, (B¢)ien is also bounded. Thus, (pi)ien, is bounded i.e. limsup, . ||p¢|
+o00. Take limsup both side of (5.35) with a notice that limsup, ., . [|pf] =

lim sup;_, [|[Pe+1] and for all j € {1,...,¢}, limsup; ., Hb{H < limsup; ;7 = 0 to
obtain

lim sup;_, | oo [|pt]] < limsup,_, o + o e

= lim supt_>+oo lpe]| < 1 5 limsup,_, | o [[pe]
— (1- *) lim Supt—>+oo [pe]] < 0.

Since § > 1 then (1 — %) > 0 and from the last inequality, we can assert that

limsup,_, o |[p¢]| = 0 since M < 1. Thus, limio0 [[pe]| = 0 ie. limyioopr = 0.
We have proven the following corollary:

Corollary 5.45. If (Z,4) satisfies all hypotheses of Corollary 5.31 and the following
condition

(viii) 0 := tian pt > 1 and HDGJ#(@,QQH < forallj e {l,... L}, for allt € N where
eN.
(7t)ten = v € co(N,R).

Then, all the conclusions of Corollary 5.31 hold and moreover, lim;_, 1, py = 0.
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5.7 Sufficient Condition for Multiobjective Optimal Control
Problem

In this section we establish results of sufficient condition of optimality which uses
the adjoint equation and the maximum principles. All the results will use the concavity
assumption on the Hamiltonian. Some results need its concavity with respect to both
state variable and control variable. Others need its concavity with respect to only state
variable.

Firstly, we introduce the scalarization technique, namely the weighting method. For
k € {e,i}, consider the following single-objective control problems

4
(Qg) Maximize Y 0;J;(x,u) when (z,u) € Domyg(J).
j=1
(Q}) Find (2,4) € Admy such that, there does not exist a process (z,u) € Admy,
satisfying

hoot ,
limsupz Z 0; (7 (e, ut) — dj(&4, 1)) > 0.

h—+00 =0 j=1

(Q}) Find (2,4) € Admy, such that, there does not exist a process (z,u) € Admy, satisfying

hool ,
Hminf > Y " 0;(¢] (e, ue) — ¢j4(8¢, 0)) > 0.

h——+o00 =0 j=1

We have the following lemma

Lemma 5.46. If (Z,4) is a solution of Problem (Qz) then it is also a solution of Problem

(@F) -

Proof. We prove this lemma by contradiction. Suppose that (&,4) is a solution of
Problem (Q?) but not a solution of Problem (Q3}). Then there exists (z,u) € Admy

h .
such that liminf > ng 0,;(¢7 (z¢,ur) — ¢j4(24,0)) > 0. This inequality implies that
h—+o00 =0

h : .
limsup > Zle 0;(d7 (z¢,ur) — ¢} (&, 4¢)) > 0 and this contradicts to the fact that (&,4)
h—+o00 t=0

is a solution of Problem (Q%). The lemma is proven. O

Now we introduce the lemmas that show the relationship between the solutions of
the single-objective weighted problems <Q{C>and multiobjective optimal control problems

(PM,g) where k € {e,i} and j € {1,3}. The following lemmas are taken from [34].

Lemma 5.47. Assume that (&,4) is a solution of Problem (Qi). The two following
assertions hold:

- If0; > 0 for all j € {1,...,¢} then (&,4) is a Pareto optimal solution of Problem
()

- If0; >0 forall j € {1,...,4} and 6 = (01,...,0¢) # 0 then (Z,4) is a weak Pareto
optimal solution of Problem (PM,%)

Proof. If §; > 0 for all j € {1,...,¢} and (Z,4) is not a Pareto optimal solution
of Problem (PM}); thus there exists a process (z,u) € Domy(J) such that for all
je{l,.... ¢}, Ji(z,u) > Jj(2,4) and for some i € {1,...,¢}, Ji(z,u) > J;i(Z,4). And so
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L 4
S 0;Ji(z,u) > 3 0;J;(2,4) which is a contradiction since (£, 4) is the solution of (Q}).
j=1 j=1
Hence, (2, 4) is a Pareto optimal solution of Problem (PM}).
Now if §; > 0 for all j € {1,...,¢} and § # 0. Assume that (Z,4) is not a weak

Pareto optimal solution of Problem (PM}). Thus there exists a process (z,u) € Domy(J)
¢
such that for all j € {1,...,¢}, Jj(z,u) > J;(&,4). And so, since 0 # 0, Y 6;J;(z,u) >
j=1

Z 0;J;(2, @) which is a contradiction since (£,4) is the solution of (Q}). Hence, (Z,4) is
=
a weak Pareto optimal solution of Problem (PM}). O

Lemma 5.48. Assume that (&,4) is a solution of Problem (Q3). The two following
assertions hold.

- If0; >0 for all j € {1,...,£} then (2,4) is a solution of Problem (PM}).

- If0; >0 forall j € {1,...,¢} and 0 # 0 then (,4) is a solution of Problem (PM}).

Proof. 1f 0; > 0 for all j € {1,...,¢} and (&,4) is not a solution of Problem (PM}Q); thus
there exists a process (z,u) € Admy, such that for all j € {1,...,¢},

h h
- j
}nglfg( & (e, ue) Z@f) ¢, 1))
t=0 t=0
and for some i € {1,..., ¢},
h h
liminfp 400 (Z Gt (T, ur) — Z Gt (e, 0)) >0
t=0 t=0
So we have
. ‘ ho ho
hmmf Z Z 0;( (0] (e, us) — B (4, 0)) > Hjliminf(z &1 (x4, up) — Z &1 (2¢, 1)) > 0,
—0j=1 =0 hmtee D =0

which contradicts the assumption that (£, ) is a solution of Problem (Q3). Hence, (&, @) is
a solution of Problem (PM}).

If ; > 0 for all j € {1,...,¢} and # # 0. Assume that (Z,4) is not a solution
of Problem (PMk/); thus there exists a process (z,u) € Admy such that for all j €

{1,...,¢}, hmmf(zt Ogt](xt,ut) S O¢t(:1;t,ut)) > 0 . So we have

L h

liminf 0;( I 1)) > S 0;liminf
1m1n ;)2—:1 ¢>t Ty, up) — O (&g, Ug)) _j:0 yhlglféo(t

h
&7 (¢, ur) ZCb By, 1)) > 0,
0 t=0

which contradicts the assumption that (£, ) is a solution of Problem (Q3). Hence, (2, @) is
a solution of Problem (PM}). O

Now we provide a theorem which uses the concavity assumption to establish sufficient
condition for multiobjective problems.

Theorem 5.49. Let (z,04) € Dome(J). Assume that there exist 6 = (61,...,0) €
(RY), p = (pt)ten, € (R™)N=, not all zero such that the following conditions hold.

(i) Forallt € N, Xy x Uy is conves.
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(i) Vi = 1,....4, Vt € N, (z,u) — ¢ (z,u) and (z,u) — fi(z,u) are Fréchet
differentiable at (¢, 0y).

(iii) hmt*proo <pt7 Tt — i‘t) = 0.

¢ .
(iv) pt = pev1 0 D1 fi(2,0r) + '21 0;.D1¢7 (&, 1) for all t € N,.
‘7:

¢ .
(v) (pt410 Dafe(Ze,0y) + 3 0Dl (24, 0)),u — te) <0 for allu € U, for all t € N.
=1

J:
4 .
(vi) The function [(x,u) — (pit1, fr(z,u)) + 3 0;.¢](z,u))] is concave on X; x Uy for
j=1
allt € N.
Then

- If0; > 0 for all j € {1,...,4} then (&,4) is a Pareto optimal solution of Problem

(PMel)

- If0; >0 forall j € {1,...,4} and § = (01,...,0¢) # 0 then (Z,4) is a weak Pareto
optimal solution of Problem (PM}).

Proof. Let (i,@), (g,g) S Dome(J), ie. Ty, v € Xy, Uy, up € Uy, jt-i—l' = ft(ft,'llt), T4l =
fi(xe,uy) for all t € N, 29 = 29 = n and Jj(Z,4) = Z;Og gbi(:ﬁt,ﬂt), Jj(z,u) =

90 8 (14, uz) exist in R for all j € {1,...,£}. From (ii) and (iv) and from the definition
of Hamiltonian of Pontryagin we obtain

D1Hy(0, 24, g, pry1) = Dt (5.36)
From (vi) we obtain, for all (x4, u;) € X; x U and for all t € N,

Hy(0, 24, Uy, pry1) — Hi(0, 4, ug, prg1) — (D1He(0, T4, Uy, ey ), T — x¢)

—(DoHy(0, ¢, g, pry1), g — ug) > 0. (5:37)

From (v) the relation
(DoHy(0, 24, U, prg1), Ug — ug) >0 (5.38)

holds for all u; € Uy and for all t € N. For all t € N we have

¢ . ‘
'21 0;. (Qﬂ (¢, ) — ¢g($t,ut)) = Hy(0, 3,01, prv1) — (Pes1, fr(Be, Gr))
j:

—Hy(0, 2, up, pea1) + (pevas fe(xe, ue)
= H(0, 2, U, pry1) — He(0, 2, ug, pey1)
—(Pt41, Te41 — Tey1)-
Then, using (5.36) and (5.38) we obtain
¢ . .
0;. (‘ﬁi(it,ﬁt) — ¢ (fUt,Ut)) > Hy(0, 2,0, pre1) — He(0, 24, us, Dis1)

—(DoHy(0, &4, U, pri1), Ur — ug)
—(D1H1 (Z441, Ug 1, De42), Top1 — 1)

7j=1

which implies

¢ . .
> 0. (¢§ (T4, Tg) — ¢¥(9Ct,ut)> > [Hy(0, 24,0, pry1) — Hi(0, ¢, ug, pesa)

=1
—(D1H(0, ¢, g, pry1), Tt — 24)
—(DoHy(0, T4, g, pry1), Ug — ug))
+[(D1H (0, ¢, Uy, 1), T — 4)
—(D1Hp1(®t41, U1, Pre2)s Tev1 — Tt1)],
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and using (5.37) we obtain

¢ . .
193‘- (¢§ (&4, G) — @7 (l“t»ut)> > [(D1H(0, &4, Ug, i1 ), Tt — x¢)
]:

—(D1H1(Zt41, Upgr, Pey2), Bep1 — Teg1)]-

Therefore, using (5.36), we obtain, for all T € N,,

T .
> % 05 (@@ ) — ¢l (xe,w)) > (DiHo(n, o, pr),n — 1))
t=0j=1

—(pr41, Er41 — TT41)

T ¢

T
= > 05.054(80, 1) = Y0507 (w,ue) = — (pro1, v — Tr1) - (5.39)

t=0j=1 t=0 j=1
Using (iii), we have limp_, oo (—(pr+1, 27+1 — 741)) = 0, and then, from (5.39), doing
l 4
T — +o00 we obtain Y 60;J;(z,4) — > 0;J(x,u)) > 0 which implies (Z, %) is a solution
j=1 J=1
of Problem (Qi) . Finally, using Lemma 5.47 obtain the conclusion of this theorem. [

One can weaken the hypothesis of concavity of Hy with respect to x; and u; and replace
it by the concavity of H; with respect to z; as the following theorem shows. Let U; be
compact for all t € N and let H; (0, x4, piy+1) = maxy,cv, Hi (0, ¢, ut, pry1). The maximum
is atteined since U, is compact. The following lemma is useful before stating the sufficient
condition with the concavity of H;.

Lemma 5.50. Let A be a convex subset of R™ and v a real concave function defined on

A

A. Let (z) be an interior point of A. Let ¢ be a real function defined on a ball B(Z,0)
such that ¢ is differentiable at Z, ¢(2) = v(2) and ¢(z) < v(2) for all z € B(%,9).
Then for all z € B(2,9), v(2) —v(2) > D¢(2)(2 — z).

The proof of this lemma can be found in Chapter 5, §23 of [52].

Theorem 5.51. Let (z,4) € Dome(J). Assume that there exist 6 = (01,...,0)) €
RY), p = (p)ien, € (R™)N+, not all zero such that the conditions (iii) and (iv) of
Theorem 5.49 hold together with the following hypotheses

(i’) Vt e N, X;is convex and Uy is compact.

(i) Vj = 1,...,0, Vt € N, Yu € Uy, © — ¢l(z,u) and © — fy(x,u) are Fréchet
differentiable at Zy.

(V) Vt € N, Hy(0, 24, U, pr1) = maxy,ev, Hi(0, z¢, ur, peir)-
(vi’) The function Hf is concave with respect to xy on X for allt € N.
Then the conclusion of Theorem 5.49 holds.
Proof. Let (@,Q), (@,Q) S Dome(J), ie. Xy, oy € Xy, Uy, ug € Uy, i't-i-l = ft(i't,ﬁt), Tiy1 =

ft(a:t,ut') for all t € N, 29 = 29 = n and J;(2,0) = ;L;ggé{(:ﬁt,at), Ji(z,u) =
SO &7 (24, ur) exist in R for all j € {1,...,¢}. For all t € N, we have

l . .
% 05 (9]0, ) = 6 @) = Hy(O, 31, 60, psn) = (pev, folde, )
]:

—Hy(0, 24, ut, pry1) + (Pea1s fe(we, ug) (5.40)
H (0,24, pe1) — H{ (0, 24, piv1)
—<Pt+1,i“t+1 - 1't+1>

Y
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by the definition of H; and noticing that
Hy(0, ¢, Uy, pr1) = H{ (0, 8¢, pes1),
then we have
—Hy(0, 2, ut, prv1) = —Hy(0, 04, U, pre1) = —H{ (0, 24, pre1).-
Take T' € N,.. From (5.40), one has

g Joa j
2. Z 93" <¢t (@4, 0p) — on (4, Ut))
t=07=1
T
> Z (Hf (0,24, pig1) — HE (0,24, pe41) — Peg1, T — Teg1)) -

The right hand side of this inequation can be written as

T

RHS = Hg(i“ovpl) - Hf)k(xoapl) + Z (H{ (0,24, per1) — HE (0,4, per1) — (pe, Tt — 24))
t=1

— (Pr+1, Tr41 — TT41)

£ (0,24, pry1) — Hi (0,24, pey1) — (D1H (0, 24, Ut pri1), Tt — o))

Mﬂ

t:1
- (pT+1>9€T+1 - 37T+1>-

Now using the assumptions on H; and Lemma 5.50, for all ¢t € {1,...,T}, one can obtain
Hy (0,24, pr1) — Hi (0, x¢, pr1) — (D1He(0, 84, g, pry1), B¢ — 1) > 0.

Thus, we have

T 4
ZZ (¢t Ty, Uy) — ¢t($t7ut)) (pT41, 741 — TT41)-
:O =1

The end of this proof goes like that of the previous theorem. O

Corollary 5.52. If (Z,4) satisfies all hypotheses of Theorem 5.49 or Theorem 5.51 except

for hypothesis (iii), which is replaced by (vii) limsup (py,xy — &) = 0 or (viii)
t——+oo

liminf (py, xy — &) = 0, then

h——+o00
- If0; > 0 for all j € {1,...,£} then (&,4) is a solution of Problem (PM?).
- If0; >0 forall j € {1,...,¢} and 0 # 0 then (&,4) is a solution of Problem (PMS’/).

Proof. 1t is analogous to that of Theorem 5.49 or Theorem 5.51 until we obtain

hmsupzz J¢t (B, Q) — g¢t($taut)) >0

t—4o00 =0

using (vii), or equivalently,

T
fmint 3257, (650 ar,w) — 564(21,2) <0,
And so, (2,4) is a solution of (Q2) then using Lemma 5.48, we obtain the announced
conclusion.

Now under (viii), by analogous realization, we obtain (&,4) is a solution of (Q?) and
therefore, of (Q‘z) also. Then using Lemma 5.48 again to obtain the conclusion of this
corollary. O
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Theorem 5.53. Let (2,1) € Dom;(J). Assume that there exist § = (01,...,0;) € R, p =
(pt)ien, € (R™)N<, not all zero such that the conditions (i-vi) of Theorem 5.49 and
moreover, the following conditions hold.
(ix) For allt € Ny, p > 0.
(x) Forallt € N, (pet1, fe(Zt, ) — Tp41) = 0.
Then
- If60; > 0 for all j € {1,...,4} then (Z,4) is a Pareto optimal solution of Problem
(PM).
- If0; >0 forall j € {1,...,4} and 6 = (01,...,0¢) # 0 then (Z,4) is a weak Pareto
optimal solution of Problem (PM}).

Proof. Let (2,1), (z,u) € Dom;(J), i.e. &4, x¢ € Xy, Gy, up € Uy, B4 < fo(E4, ), 241 <
fi(zy,ug) for all t € N, 29 = 29 = n and J;(Z,4) = ;05’ AGTRINN Ji(z,u) =
ppiing ¢{($t,ut) converge in R for all j € {1,...,¢}. By doing like in Theorem 5.49, we
obtain (5.36), (5.37) and (5.38) hold.
For all ¢t € N, we have
¢ . .
0;. ((ﬁ{(@t,ﬁt) - ¢g(9€t,ut)) = Hy(0, 2,0, per1) — (Pea1, f1(Ze, Ue))
—Hi(0, x4, ug, pry1) + (Deg1, fe(we, ug)
= Hy(0, 24,0, pey1) — He(0, 24, us, pei1)
—(Pea1, fe(®e, W) — Te1) — (Pey1s Teg1)
Hpry1, fe(xe, ue)).

Notice that (pit1, fe(Z, G) — Z441) = 0 from (x). Moreover, since fi(x¢, ur) — i1 >
0, from (ix) we obtain (pii1, fe(t,ut) — x141) > 0, or equivalently, (pey1, fr(we,ut) >
(Pt+1, Te+1). Hence, we have

j=1

¢ . .
'21 0;. (flﬁ (24, ) — ¢§(9€t,ut)) > Hi(0, 24, G, peer) — He(0, 2, ue, pri)
]:

—(De41, Te41 — Teg1)-

Now by a similar interpretation as in Theorem 5.49 and using Lemma 5.47, we obtain
the announced conclusion. d

Theorem 5.54. Let (z,4) € Dom;(J). Assume that there exist 6 = (61,...,0;) €
(R, P = (Pt)en, € (R™)N« " not all zero and such that all the hypotheses of Theorem
5.51 together with hypotheses (ix) and (x). Then the conclusion of Theorem 5.53 hold.

Proof. The proof is similar to that of Theorem 5.51. 0

Corollary 5.55. If (,4) satisfies all hypotheses of Theorem 5.53 or Theorem 5.54 except

for hypothesis (iii), which is replaced by (vii) or (viii), then

- If0; >0 for all j € {1,...,4} then (&,4) is a solution of Problem (PM?).

-1If0; >0 forall j € {1,...,4} and 0 = (61,...,6;) # 0 then (Z,4) is a solution of
Problem (PMf’).

Proof. The proof is similar to the proof of Corollary 5.52. O

Remark 5.56. In case of bounded sequences, i.e. z € ¢*(N,R") and u € ¢*(N,R%),
it is clear that (z; — &¢)en is a bounded sequence. Moreover, under the setting and
hypotheses showed in [15],[14], (p;)ien € 1 (N, R™) and then the condition lim;_, ;o p; = 0
automatically holds.






Notations

V universal quantifier, "for every"

3 existential quantifier, "there exists"

= sign of implication, "... implies ..."

& sign of equivalence

:= by definition, is equal to

x € X the element x belongs to the set X

x ¢ X the element x does not belong to the set X

| X | the cardinality of set X when it is a finite set, i.e. the number its elements

() empty set

AU B the union of the sets A and B

AN B the intersection of the sets A and B

A\ B the difference of the sets A and B, i.e., the set of elements that belong to the set
A but do not belong to the set B

A C B the set A is contained in the set B

A x B the Cartesian product of the sets A and B

{z : P(x)} the set of those elements x that possess the property P(.)

{z1,..., Ty, ...} the set which consists of elements z1, ..., zp, ...

F : X — Y the mapping F' of the set X into the set Y; the function F' with domain
X whose values belong to the set Y

x +— F(z) the mapping (function) F assigns the element F(x) to an element x; the
notation of the mapping (function) F' in the case when it is desirable to indicate the
notation of its argument

F(.) the notation which stresses that F' is a mapping (function)

F(A) the image of the set A under the mapping F'

imF ={y:y= F(z),x € X} the image of the mapping F': X — Y

F~1(A) the inverse image of the set A under the mapping F

F 4 the restriction of the mapping F' to the set A

F o G the composition of the mappings G and F: (F o G)(z) = F(G(x))

R the set of all real numbers

N the set of all nonnegative integers; N, = N\{0}

inf A (sup A) the infimum (supremum) of the numbers which belong to the set A € R

R”™ the arithmetical n-dimensional space endowed with the standard Euclidean
structure

R? = {z = (z1,...,2,) € R" : ; > 0} the nonnegative orthant of R"

€1, ..., en the vectors of the standard orthonormal basis in R"; e; = (1,0, ...,0), ...,e, =
(0,...,0,1)

[,y ={z:z2=azx+ (1 —a)y,0 < o < 1} the line segment joining the points x and y

R™ the arithmetical n-dimensional space conjugate to R"

pr = (p,x) = Y. iry pix; for all p € R™ and for all x € R”

lz|| the norm of element x in normed space
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z the sequence (z4)ien

¢P(N,U),p > 1 space of all sequences x from U satisfying 3% |24” < +o0

¢>(N, U) space of all sequences z from U™ satisfying >;°% |z¢| < 400

¢(N, U) space of all sequences z from UN which converge in U

co(N, U) space of all sequences z from U™ which converge to 0

coo(N, U) space of all sequences z from UN satisfying z; = 0 except for finitely many
indexes t

A the closure of the set A

intA the interior of the set A

spanA the linear span of the vectors of set A

convA the convex hull of the set A

X* the conjugate space of X

x* an element of the conjugate X*

(x*,z) the value of the linear functional z* € X* on the element z € X

dimL the dimension of the space L

L(X,Y) the space of continuous linear mappings of the space X into the space Y.
When X = R"™, Y = R™ the mappings belonging to the space L(R"™,R™) can be identified
with their matrices relative to the standard bases in R™ and R™.

KerA = {z : Ax = 0} the kernel of the linear operator A

ImA = {y : y = Az} the image of the linear operator A

F(x;h) the directional derivative of the function F' at the point x in the direction

of the vector h

D¢ F(x) the Gateaux differential of the mapping F' at the point x

DF(x) the Fréchet differential of the mapping F' at the point x

OF (z) the subdifferential of the function F' at the point z

D1 F(z1,z9; h) (DoF (1, 22; b)) the partial directional derivative of F w.r.t 1 (z2) at
(1, x2) in the direction of h

Dg1F(x1,22) (Dg2F(x1,22)) the partial Gateaux differential of F' w.r.t x; (x2) at
(21, 22)

D1 F(x1,x2) (DoF(x1,x2)) the partial Fréchet differential of F' w.r.t 21 (x2) at (x1,x2)

O F(z1,x2) (02F (x1,22)) the partial subdifferential of F' w.r.t z1 (x2) at (z1,z2)
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