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Je me suis interrogé un certain temps pour savoir dans quelle langue j’allais rédiger ces remer-
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Filippou et Pierre Léger pour avoir pu se libérer et pour être venus d’outre-Atlantique. Je leur
en suis sincèrement reconnaissant. J’aimerais également remercier Christian Laborderie pour les
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ailleurs.

4



5



Abstract

This memoir is the synthesis of research activities I have conducted over the past decade aiming
at improving the numerical description of some dissipative mechanisms at the material scale
and quantifying the vulnerability of reinforced concrete structures. The main objectives of the
research presented in this dissertation are: (i) to improve both the predictive capabilities and
the numerical robustness of the time integration strategies of the continuous constitutive model
when dealing with the cyclic behavior of quasi-brittle materials subjected to either long-term or
short-term loadings, (ii) to improve numerical techniques capable of describing the discontinuous
nature of cracking and related local dissipative phenomena, and (iii) to contribute to the defi-
nition of large-scale experimental campaigns and to organize international workshops aiming to
better understand the complex behavior of reinforced concrete structures when subjected to ex-
treme loadings, such as earthquakes. In the first part, we focus on the development and validation
of a continuous constitutive model to describe the mechanical behavior of quasi-brittle materials
subjected to cyclic loadings. Simplified strategies are also derived from full three-dimensional
approaches to serve probabilistic techniques aiming at taking into account uncertainties and up-
dating mechanical models. In the second part, some light is shed on some developments aiming
at better quantifying the cracking features. Then, the results of experiments designed to assess
the dynamic response of strongly asymmetric reinforced concrete structures are presented. The
experimental data have led to numerical studies shared with the international scientific com-
munity. The lessons learned from this research is then employed to design research projects we
plan to work on over the next few years.

Keywords: constitutive model, quasi-brittle materials, steel/concrete interface, discrete ele-
ment approach, strong discontinuities, earthquake engineering, seismic margins
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Forwords

In this memoir, a summary of my research activities carried out between 2007 and 2016 is given.
The contributions reported in this document could not have been reached without the existence
of stimulating joint project frameworks, several fruitful scientific collaborations with other re-
search teams, as well as with Masters and Ph.D. students whom I have advised. For the sake of
conciseness, the collaborative frameworks within which I have been working for the past decade
are summed up hereafter. This report is outlined in two main parts, in which the main results
are described and discussed.

The first part is devoted to the numerical description of some dissipative mechanisms char-
acterizing the cyclic response of quasi-brittle materials when subjected to cyclic loading. The
scale of the representative volume element is mainly considered. In addition, some light is shed
on the development of nonlinear computational strategies, low in time consumption, that serve
a probabilistic analysis to quantify the probability of exceeding a given limit state. The ma-
jor part of the contributions presented in this section were obtained within the framework of
my Ph.D. thesis at LCPC and was supported by the ANR-APPLET project. The most recent
developments, in which the concept of a regularized unilateral effect is introduced, have been
carried out in the context of Maxime Vassaux’s Ph.D. (in collaboration with ENS Cachan) the-
sis, supported by the FUI-ILMAB research project.

In the second part, the results presented aim at better quantifying the vulnerability of both
existing and new reinforced concrete structures when subjected to different types of loadings.
The developments in connection with the estimation of the cracking features have been carried
out within the framework of Maxime Vassaux’s Ph.D., in the case of the discrete elements strat-
egy, and Ejona Kishta’s Ph.D. (in collaboration with ENS Cachan and supported by CEA), in
the case of the enhanced kinematics approach. For this latter topic, improvements of the global
crack path following algorithm have been obtained during the one-year internship of Francesco
Riccardi (a student at the Politecnico Milan-ENPC), supported by the CEA and IRSN. Mikel
Balmaseda’s Master’s thesis (supported by the Paris Saclay SEISM Institute) has also con-
tributed to assessing the relevancy of the approach. On the other hand, the assessments in
connection with the dissipative capability of reinforced concrete structures, aiming at better
identifying the damping/damage relationship and the effect of corrosion on the bearing capacity
of an existing bridge, were made in the context of Romain Crambuer’s Ph.D. thesis (in collabo-
ration with ENS Cachan), supported by the CEA, and Sebastien Epaillard’s Master’s thesis (in
collaboration with Polytech’ university at Lille, France), supported by the European-FP7 project
Sustainable Bridges, respectively. Last, the seismic assessments of a torsion-sensitive reinforced
concrete structure aiming at quantifying the seismic margins and validating the best-estimate
nonlinear assessment approaches have been carried out within the frameworks of the one-year
internship of Stefano Cherubini’s (a student at Tor Vergata University at Roma, Italy-ENPC,
France) and of a collaboration with Paolo Martinelli (Associate Professor at the Politecnico
Milan, Italy). This work has been supported by the CEA and EDF, under the umbrella of the
IAEA. The influence of the thermal break components has been numerically and experimentally
analyzed within the framework of the European-FP7 project SERIES. The visiting Ph.D. student
Sebastian Crijanovschi (Technical University “Ghoerghe Asachi” at Iasi, Romania) contributed
in part to the analysis. The CEA and IRSN partially supported this work.
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1 Introduction

Nowadays, the concept of structural performance has become common, not only for design en-
gineers but also for stakeholders. Looking for efficient structures requires paying attention to
three criteria: (i) ensuring a satisfactory level of sustainability at the material scale, (ii) ensuring
serviceability, and (iii) ensuring structural safety regarding external loadings. The issues related
to the aforementioned requirements become of higher importance when dealing with sensitive
facilities such as the ones devoted to the energy production. The design of civil engineering
structures having a satisfactory level of performance over their life-cycle requires the ability to
assess their structural behavior when subjected to various kinds of loadings, which can be either
long-term or short-term. Furthermore, structural assessments at the design level become less
and less sufficient: it is crucial to understand how reinforced concrete structures behave in the
beyond-design range in o rder to quantify the strength provisions. To illustrate this, in 2010
French regulators increased the safety requirements regarding the seismic loading in the case
of classical civil engineering structures. This trend can also be noticed at a higher scale. In
2011, following the Tohoku earthquake Ide et al. (2011) which took place in 2011 in Japan, the
European Commission required that all its member states demonstrate the safety level of their
nuclear facilities, not only at the design level but also in the beyond-design regime.

Except for some slender structures that may reach a failure state because of second-order effects,
most civil engineering buildings are solid. In this case, nonlinearities can be explained by local
dissipative mechanisms occuring at the material scale. For instance, we can mention concrete
cracking, steel reinforcement yielding, and bond failure. As a consequence, it is important to
have trustworthy and efficient constitutive laws which may be used for a refined analysis up
to failure. To ensure a satisfactory predictive capability, several material parameters should be
identified. Due to the presence of uncertainties, it is becoming more and more crucial to define
a possible set of structural responses instead of a unique result. In other words, taking into ac-
count uncertainties and making possible their propagation through a mechanical model are very
helpful for both design engineers and stakeholders. The efficiency of a probabilistic approach
depends not only on its way of estimating the failure probability, but also on the relevancy of the
nominal mechanical models used to describe the structure under study. In addition, because it
is necessary to compute several mechanical responses for statistical purposes, efficient simplified
strategies should be considered. This task is far from being straightforward because it requires
the understanding of the local mechanisms which are of secondary importance. Nowadays, the
most matural approaches are based upon a continuous description of the constitutive materials.
For instance, constitutive models expressed within the frameworks of continuum damage me-
chanics or plasticity theory have reached a certain confidence level even though some questions
remain open. How can the material parameters related to nonlinear processes be identified?
How can local cracking features be quantified? It is not rare that similar questions arise, espe-
cially when safety requirements are expressed in terms of local quantities, such as crack openings
or spacings. Tackling these issues requires being able to explicitly describe the discontinuous
nature of the displacement field. Despite the fact that various numerical strategies have been
explored and developed in the literature over the past decades, the efficiency of such strategies
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has not been generally assessed for the case of large-scale structures. Indeed, the complexity of
the local dissipative mechanisms, which are usually coupled, requires not only their robust iden-
tification at the material scale but also the understanding of their consequences at the structural
scale. Especially in the case of extreme loadings, such as earthquakes, additional phenomena
appear due to their dynamic nature. Among the most known, we can mention the resonance
or damping, which both play an important role when dealing with the design or structural as-
sessment of reinforced concrete structures. Therefore, appropriate testing strategies, such as
shaking table tests, must be considered in order to better understand and describe the complex
dynamic responses of a given structure. The experimental data obtained by means of such ex-
perimental techniques can then be used by the international scientific community in order to
demonstrate and assess the efficiency of advanced nonlinear strategies. Indeed, because of the
challenges currently faced, and the fact that the computational practices are varied, it is crucial
to create international opportunities to allow scientific exchanges and brainstorming sessions to
move forward.

In view of the conclusions and issues mentioned above, our research activities have been con-
ducted with the following objectives in view:

1. To improve both the predictive capabilities and the numerical robustness of the time
integration strategies of the continuous constitutive model when dealing with the cyclic
behavior of quasi-brittle materials subjected to either long-term or short-term loadings;

2. To improve numerical techniques capable of describing the discontinuous nature of cracking
and related local dissipative phenomena;

3. To contribute to the formulation of large-scale experimental programs and associated col-
laborative international projects aimed at better understanding the complex behavior of
reinforced concrete structures when subjected to extreme loadings, such as earthquakes.

To reach the aforementioned objectives, this report is split into two different parts. In the first
part, publications related to three research topics are summarized. We focus on the development
of constitutive laws to describe the cyclic behavior of concrete-like materials, on the formulation
of a steel/concrete interface constitutive model accounting for refined mechanisms based upon
more or less simplified frameworks and then, on the improvements of probabilistic approaches.
In the second part, several works aiming at quantifying the vulnerability of reinforced concrete
structures are presented. The first item is related to the development and improvement of re-
fined strategies to quantify cracking features. Then, some contributions aimed at taking into
account uncertainties and efficiently updating an initial probabilistic model are described. Last,
experimental studies aiming at estimating not only the dissipative capability of reinforced con-
crete components but also the design provisions with respect to extreme loadings are presented.

Because the beyond-design behavior of civil engineering structures is locally driven by that re-
lated to concrete, we first focus on that specific case. Among the available approaches developed
over the past decades, the isotropic continuum damage mechanics has been considered because
it allows nonlinear computations at the member scale. The initial theoretical background which
lies in decreasing the elastic properties of concrete in a progressive and continuous way has been
enhanced with the aim of handling the complex case of cyclic loadings. The first idea consists
in splitting the difficulties related to the crack opening/closing and local sliding between the
lips of the cracks. This consideration has been implemented by a spherical/deviatoric split of
the Helmholtz energy. The feedback we got from this first attempt showed the inability of the
approach to deal with highly damaging cyclic loadings, mainly due to the fact the initial stiffness
could not be fully recovered when switching from tension to compression. The second idea lies
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in describing the fact that cracking is localized in tension and much more diffuse in compression.
In other words, damage has been used in tension and plasticity in compression. Both descrip-
tions have been continuously linked by introducing a linear crack closure function. Despite the
fact that satisfactory results could be obtained in the case of cyclic bending-dominated load-
ings within a fully three-dimensional framework, the constitutive law failed to handle the case
of a reinforced concrete structure subjected to shear-dominated loading, such as shear walls.
We observed a lack of numerical robustness of the local time-integration strategy when dealing
with this kind of loading. The main conclusion from these first attempts is that the way of
describing the unilateral effect has been identified as playing a crucial role, not only to ensure
a good numerical robustness of local time-integration strategies but also to reach a satisfactory
description of the mechanical responses when subjected to cyclic loading. As a consequence,
the concept of regularized unilateral effect has been introduced in recent developments. This
strategy is still based on the use of a crack closure function in order to manage the unilateral
effect. However, the function does not link the total stress and total strain anymore. Rather,
it allows making a C1 junction between the stress and strain rates when switching from tension
to compression. In addition, the choice of the crack closure function has also been improved,
especially thanks to physical considerations. This way, the resulting continuous constitutive
model has been successfully tested on several structural case studies, such as reinforced concrete
beams and shear walls subjected to cyclic loadings.

Another quasi brittle-like “material” having a noticeable influence on the mechanical response
of reinforced concrete structures is the steel/concrete interface. Indeed, specific dissipative phe-
nomena occur at this location during the loading process. The understanding of the behavior of
such a region is of primary importance because it drives the redistribution of the load between
the concrete and the reinforcing steel bars under a cracked condition. In addition, this region
may be a preferential location for the development of reinforced concrete pathologies such as
corrosion. The prediction of the performance level of a reinforced concrete structure over its
life cycle requires being able to satisfactorily understand how this area behaves under complex
loadings. Among the available approaches to tackle this issue, we first focused on the devel-
opment of a refined constitutive law which can be used within a three-dimensional framework
based upon the use of zero-thickness finite elements. Despite the fact that this strategy pro-
vides pretty nice results, its principal limitation lies in the quasi-inability of meshing all the
interface areas with zero-thickness finite elements. This step is far from being straightforward,
and the resulting nonlinear analyses are generally time consuming. In order to overcome this
drawback, we simplified this refined constitutive law in order to make it compatible with the
multifiber finite element framework. We explored a way of coupling a steel fiber constitutive
law with a numerical model of the steel/concrete interface. Despite the fact that an increase in
the computational cost related to the multifiber analysis has been noticed, this strategy allows
satisfactorily quantifying the mechanical response of reinforced concrete structures subjected to
complex loadings.

In order to make accurate estimations of the cracking features possible, we focused on the
improvement of numerical strategies based upon an explicit description of the cracking. The
first approach explored was the discrete element method. This strategy lies in a particle-based
description of the media, each particle being linked by beam-like elements with a brittle behav-
ior. To make this model capable of handling cyclic loadings, two additional mechanisms were
introduced: contact and frictional sliding, which are of primary importance when dealing with
the cyclic response of concrete-like materials. Besides these physical considerations, strong non-
linearities in connection with these two mechanisms lead to numerical difficulties related to the
time-integration algorithm. Furthermore, to ensure the rigorous fulfillment of the momentum
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balance equation, it is necessary to consider implicit strategies, even though this is unusual in
the case of this kind of method. A time integration algorithm coupling, in a strong way, the
well-know sawtooth approach (to handle fracture nonlinearities) with a predictor–correction nu-
merical scheme (to handle contact and frictional sliding nonlinearities) has been developed and
the benefits we could get from its use have been highlighted. Especially the numerical results
become almost independent of the time-step. Then, the particle model has been used not only
in the context of a postprocessing strategy to quantify in a refined way the cracking features,
but also as a virtual testing machine to complement the set of available mechanical tests in
order to improve the way of identifying the material parameters of continuous constitutive laws.
This latter could not have been handled if the particle model had not exhibited strong predic-
tive capabilities. However, the use of such strategies remains difficult in the case of large-scale
structures.

To overcome this drawback, one of the possibilities lies in enhancing the displacement field
by a discontinuous term allowing for cracking description. This approach has been considered
within a local framework in order to ensure its low-intrusiveness in the computational software.
Furthermore, this framework allows refining the crack description by taking into account several
fracture mechanisms: mode I, mode II and mixed mode I+II. The classical continuum constitu-
tive laws are naturally replaced by traction/separation relationships. Based upon an anisotropic
damage framework, a mixed mode traction/separation law has been formulated and tested at the
member scale. As a major drawback of this kinematically enhanced approach, the geometrical
C0-continuity of the crack path is not ensured. Therefore, the use of tracking strategies is recom-
mended. One of the best known algorithms consists in solving a heat conduction-like problem.
The iso-temperature-like lines are used to enforce the continuity of the crack path. However,
in its original formulation, the global tracking strategy leads to an ill-posed discrete problem
that needs the addition of an algorithmic conductivity term which is generally user-defined and
therefore decreases the predictive capability of the approach. To overcome this drawback, we
introduce a new interpretation of the boundary value problem to solve, based upon techniques
classically used in computational fluid mechanics. The relevancy of this alternative approach
has been assessed though numerical comparisons with the previous technique.

The developments and improvements of computational strategies to handle cracking need al-
ways to be complemented by experimental data. We have especially focused on the estimation
of the dissipative capabilities of reinforced concrete structures subjected to either long-term or
short-term loadings. In the first case, the refined steel/concrete constitutive law has been used
in order to predict the structural consequences of corrosion, which is one of the most damag-
ing pathologies. A 40-year old reinforced concrete bridge has been analyzed and the numerical
results obtained at the member-scale confirmed some conclusions given in the published litera-
ture. The dissipative capability of the bridge appeared to be drastically reduced as well as its
overall ductility. These results made us think corrosion should have a great influence on the
dynamic response of reinforced concrete structures when subjected to an extreme loading. Fur-
thermore, another parameter which is highly influenced by the degradation state is the damping
ratio. Often considered as a tuning parameter when dealing with dynamic analysis, an analyti-
cal experimental study involving reinforced concrete beams was carried out in order to derive a
damage/damping relation. The experimental measurements were then compared with numerical
results, allowing discriminating different hysteretic schemes to manage the energy dissipation
due to the frictional sliding mechanism.

On the other hand, despite the fact that local cracking mechanisms may be understood and
reproduced, the predictive capability of a given model is highly dependent on the way of identi-
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fying the set of material parameters. It is rare that the material parameters can be considered
as being deterministic, indeed, uncertainties should be taken into account. To reach this ob-
jective, probabilistic approaches have been developed over the past decades. Based upon the
definition of a satisfactory structural model, the responses corresponding to a set of realizations
of material parameters should be computed. Due to the large number of responses needed to
compute statistical estimators, the issue of the computational efficiency appears in a natural
way. In addition, the probabilistic model should be able to be updated based upon new pieces
of information. Within the framework of our research activities, we paid attention to both these
issues.

Structural assessments need to be compared with the output from large-scale experimental
studies. Within the framework of earthquake engineering, this becomes essential when dealing
with strongly asymmetric reinforced concrete structures. Indeed, asymmetry creates coupled
torsional/bending effects, which are usually quite complex to take into account. We analyzed
this issue in two structural case studies, aiming at providing some answers to different chal-
lenges. First, the case of a reinforced concrete structure designed according to the rules allowed
in France in the nuclear industry was analyzed. A wide experimental study based upon shaking
table tests was realized in order to assess the seismic margins available. The experimental re-
sults formed the basis for an international benchmark, named SMART 2013. This benchmark
was the opportunity for the international earthquake engineering community to exchange views
about their common scientific concerns. Engineers and researchers sat down around the same
table and could exchange views and reach a consensus. On the other hand, in a more industrial
context, the issue of thermal insulation and efficiency has become of primary importance. To
reduce energy loss, innovative structural components called thermal break elements have been
developed. They are introduced at the shear wall–slab junction, an area where thermal bridges
are often located. However, the effect of these new components on the dynamic behavior of
strongly asymmetric reinforced concrete structures have not been well-established. Therefore,
shaking table tests were carried out to obtain some answers to this issue. The experimental
measurements have been complemented by nonlinear time history analysis. The results allow
concluding that the thermal break elements have almost no influence on the overall behavior of
this kind of reinforced concrete structure.
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2 Modeling of some mechanisms occurring
in quasi-brittle material failure process

2.1 Introduction

The family of quasi-brittle materials includes those which exhibit different strength properties,
depending on the type of the loading they are subjected to. As an example, the most used
material in civil engineering is nowadays concrete. Ductile in compression and brittle in ten-
sion, this material exhibits complex local dissipative mechanisms during its failure process. In
addition to its strong asymmetry in tension/compression, concrete is a material that is sensitive
to the hydrostatic pressure and exhibits dilatancy phenomenon in the case of quasi-static load-
ings. Its physics becomes more complex when dealing with cyclic loading. Indeed, a part of the
elastic energy is released due to the frictional sliding occurring between the lips of the cracks
(also known as the hysteresis effects) and the elastic stiffness is recovered when switching from
a tension stress state to a compression state (also known as the unilateral effect). From these
observations, it can be concluded that concrete modeling is still a paradigm which motivates the
national and international scientific community and makes this area an intense and fascinating
research field.

Most of the structures in civil engineering are not made of concrete alone: steel reinforcing
bars are used to withstand tension forces that cannot be balanced if concrete were used alone.
Reinforced concrete is therefore a composite material that is able to withstand many types of
complex loadings. However, the strength properties of such a composite material are mainly
dependent on the properties of the bond between the steel reinforcing bars and the surrounding
concrete. This specific area may exhibit complex dissipative mechanisms when dealing with a
structural response that is close to the failure state. Indeed, either a brittle or a more progressive
loss of the bond appears at the steel/concrete interface. Both types of degradation mechanisms
are often called mode-I and mode-II failure modes respectively. The presence of passive (stir-
rups) or active (prestressing force) modifies the variations of the bond properties, allowing a
mixed mode failure mode. Furthermore, the steel/concrete interface may be a preferential area
in which some pathologies appear. For instance, it is the case of corrosion, which involves the
creation of rust products that swell, leading to the presence (locally) of tensile stresses respon-
sible for cracking if the tensile strength is overcome, coupled with a reduction in the the steel
cross section.

In this chapter, a summary of our contributions to providing some answers to the complex
issue of the modeling of quasi-brittle materials is presented. First, we focus on the case of con-
crete modeling, a research topic we have been dealing with for six years now. The objective
of our research is to improve the constitutive laws to improve the numerical description of the
complex behavior of concrete under cyclic loading. Both the progressive improvements of the
initial constitutive law formulated within the framework of my Ph.D. thesis and the remaining
limitations we are working on are presented. Second, the case of the steel/concrete interface
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modeling is considered. A full three-dimensional formulation allowing a refined description of
the most preponderant dissipative mechanisms is presented. This formulation is based upon the
use of zero-thickness finite elements and therefore may lead to some difficulties when dealing
with the mesh generation. In order to overcome this drawback, a strategy, within the framework
of the multifiber approach, aiming at embedding the contribution of the steel/concrete inter-
face to the constitutive law of the steel reinforcing bars has been explored. This work has also
been motivated by the fact that simplified strategies are needed when dealing with probabilistic
studies, requiring hundreds of computations.

2.2 Theoretical framework

2.2.1 Generalized standard materials

The formulation of a constitutive law can be realized in several ways. Given a specific mate-
rial, some authors make the choice of expressing its constitutive law by fitting experimental
data obtained from elementary mechanical tests, whereas others consider dedicated theoretical
frameworks in order to avoid physical inconsistencies. In our research, we have chosen to use
the theoretical framework of irreversible thermodynamic processes Lemaitre et al. (2009). In-
deed, this approach offers an energetic framework that ensures well-known principles coming
from physics will be a priori fulfilled. Considering a representative volume element (RVE) of the
material to be described, it is assumed that its thermodynamical state can be represented by
a given set of variables, which are collected into a scalar functional, called the state potential.
Each variable allows for the description of a macroscopic deformation mechanism. Among the
different possibilities which exist to express the state potential, the most convenient is to express
it as the sum of strain-based terms. Indeed, this strategy allows simplifying the time integration
of the underlying constitutive law when dealing with its numerical implementation.

Assuming the state potential is represented by the Helmholtz free energy Ψ, an admissibil-
ity condition can be obtained from the first and second principles. This condition is called
the Clausius–Duhem–Truesdell inequality and should be fulfilled for all loading processes of the
RVE in order to make possible the description of the evolution of its thermodynamic state. This
condition can be expressed as follows, in the case of small perturbations and an isothermal strain
process:

D = σ : ε̇− ρΨ̇ ≥ 0 (2.1)

where σ is the second-order Cauchy stress tensor, ε the second-order strain tensor, and ρ the
mass density of the considered material. D is called the intrinsic dissipation and should remain
positive or null. To move forward, it is assumed that the Helmholtz free energy is a convex and
C2-differentiable function of the strain tensor and a given set of variables allowing the description
of macroscopic degradation mechanisms:

Ψ = Ψ(ε, (αk)k=1,··· ,n) (2.2)

where αk is an internal variable related to the kth macroscopic mechanism to be described and n
the total number of mechanisms the constitutive law takes into accounts. It should be noted that
the mathematical nature of the variable αk depends on the physical properties characterizing
the mechanism it represents. Combining Equations 2.1 and 2.2 and assuming a constant mass
density, the intrinsic dissipation can be expressed as follows:

D =

(
σ − ρ∂Ψ

∂ε

)
: ε̇− ρ

n∑
k=1

∂Ψ

∂αk
α̇k ≥ 0 (2.3)
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The inequality 2.3 should be fulfilled for all loading paths, the first state law can be deduced as
follows:

σ = ρ
∂Ψ

∂ε
(2.4)

Similarly, dual variables can be associated each αk as follows:

Ak = ρ
∂Ψ

∂αk
(2.5)

From Equations 2.4 and 2.5, it can be seen that two sets of variables P = (ε, (αk)k=1,··· ,n)
and F = (σ, (Ak)k=1,··· ,n) have been introduced and are linked with each other through the
state potential Ψ. These two sets of variables define the thermodynamic state of the RVE and
represent the sets of the state variables and the thermodynamic forces, respectively. However,
it is necessary to add conditions in order to describe when and how this state will evolve during
a given loading process. To achieve these goals, a dissipation potential f is introduced, often
expressed in the F space. It can be interpreted as a threshold criterion (or a loading surface)
that defines the time when the internal variables will flow. The flow rules define the way the
internal variables flow. They are built from the maximum plastic dissipation principle, which
postulates that the admissible variables Ak are the ones that maximize the intrinsic dissipation
under the constraint of being inside the loading surface Eckart (1948). Under these assumptions,
the admissible thermodynamic forces are defined as follows:

Ak = Argmin
f(A?k)≤0

{−D(A?k)} (2.6)

Equation 2.6 can be solved by introducing a Lagrangian functional G(.) = −D(.) + λ̇f(.), where
λ̇ is a Lagrange multiplier. The stationarity conditions of the Lagrangian allow defining the flow
rules as follows:

∂G(Ak)

∂Ak
= 0 =⇒ −α̇k + λ̇

∂f(Ak)

∂Ak
= 0 =⇒ α̇k = λ̇

∂f(Ak)

∂Ak
(2.7)

Complementary conditions, also called Karush–Kuhn–Tucker’s conditions, are naturally ob-
tained:

λ̇ ≥ 0 f(Ak) ≤ 0 λ̇f(Ak) = 0 (2.8)

Conditions 2.8 are crucial to manage the loading/unloading response of the RVE. However,
some materials fail to fulfill gradient-based flow rules having the general expression shown in
Equation 2.7. In order to overcome this drawback, it is common to introduce a new potential
g, called the pseudo-potential of dissipation, which will be used to define the flow rules Halphen
et Quoc Son (1974). A material which exhibits dissipative mechanisms that flow according to
a pseudo-potential of dissipation is qualified as being generalized. In such a case, the potential
of dissipation f is used to know when the internal variables flow and the pseudo-potential of
dissipation is used to know how they flow.

2.2.2 Spherical/deviatoric split

Driving ideas

Quasi-brittle materials exhibit different dissipative mechanisms according to the type of stress
state they are subjected to. Assuming that cracking is mainly responsible for the energy dissipa-
tion and consequent material nonlinearities, it seems necessary to accurately describe the local
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mechanisms that are connected with the way a cracked area behaves. The first mechanism to be
considered is the cracking itself. Following the progressive growth of cavities at the mesoscopic
scale, macroscopic cracks appear in a more or less localized way, depending on the stress state
(tension or compression). Note that the pure shear stress state, which is an extreme case, cor-
responds to a coupled tension/compression stress state in different observation directions. This
first mechanism can be described by isotropic continuum damage theory, introducing a unique
scalar damage variable d (ranging continuously from 0 to 1) for reasons of thermodynamical
consistency Mazars (1984); Marigo (1985). A second mechanism which plays an important role
when dealing with cyclic loadings is the frictional sliding Ragueneau (1999). This is related to
the fact that frictional forces appear between the crack lips. This mechanism must be taken into
account in order to accurately capture the internal damping when dealing with the low-velocity
dynamics. To do so, a second-order tensor επ has been introduced. In connection with the
aforementioned mechanisms, corresponding hardenings have also been introduced in order to
treat the loading/unloading response of the RVE. Following the same idea as the one proposed
by Gabet et al. (2008), both mechanisms are included in the thermodynamic state potential
through a spherical/deviatoric split of the functional. In the present formulation, the frictional
sliding mechanism has only been introduced on the deviatoric part since it is mainly related to
the friction. Furthermore, the damage has not been introduced in the negative part of the spher-
ical part of the energy. This strategy allows, partially, taking into account the crack/closure
effect Mazars et al. (1990). A summary of the constitutive equations proposed is presented in
the next paragraphs.

The state potential

The state potential is chosen as the Helmholtz free energy, split into a spherical part and a
deviatoric part. It can be expressed as follows:

ρΨ =
1

2

{κ
3

tr2ε+ 2µεd : εd
}

(2.9)

where (.)d = (.) − 1
3tr(.)δ with δ Kronecker’s tensor, and κ and µ the bulk coefficient and

Coulomb’s modulus respectively. This strategy has been proposed in order to describe cracking,
frictional sliding and the unilateral effect according to the physical motivations presented above.
Cracking is introduced by considering a scalar damage variable d ranging from 0 (virgin material)
to 1 (fully broken material). The thermodynamic state potential becomes as follows:

ρΨ =
1

2

(1− d)︸ ︷︷ ︸
Damage

κ

3
tr2ε+ 2(1− d)︸ ︷︷ ︸

Damage

µεd : εd

 (2.10)

The spherical part of the Helmholtz free energy is split into a positive part and negative part,
allowing to cancel, at least partially, the effect of damage when the volumetric strain becomes
negative. This consideration allows obtaining the following expression for the state potential:

ρΨ =
1

2

κ3 ((1− d) < trε >2
+ + < trε >2

−︸ ︷︷ ︸
Unilateral effect

) + 2(1− d)µεd : εd

 (2.11)

where < . >+ and < . >− stands for the positive and negative parts of (.), respectively. This
strategy for the description allows accounting for a partial unilateral effect. The last mechanism
included in the formulation is the frictional sliding, which is characterized by the internal sliding
second-order tensor. Because frictional sliding is mainly related to mode II, this mechanism acts
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on the deviatoric part of the free Helmholtz energy. Hence, the state potential can be formulated
as follows:

ρΨ =
κ

6
((1− d) < trε >2

+ + < trε >2
−)+

(1− d)µεd : εd + dµ(ε− επ)d : (εd − επ)d︸ ︷︷ ︸
Internal sliding

(2.12)

Finally, hardening mechanisms are added to the free Helmholtz energy. An isotropic hardening
in connection with damage is assumed, whereas a kinematic one is assumed when dealing with
internal sliding. The thermodynamic state potential becomes

ρΨ =
κ

6
((1− d) < trε >2

+ + < trε >2
−)+

(1− d)µεd : εd + dµ(ε− επ)d : (εd − επ)d}+H(z) +
γ

2
α : α

(2.13)

where H is the consolidation function, z the isotropic hardening variable, γ a material parameter
to be identified, and α the kinematic hardening second-order tensor.

The state equations

State equations can be deduced from Equation 2.12 by differentiating it with respect to each
state variable. The stress/strain relation is deduced as follows:

σ =
∂ρΨ

∂ε
=
κ

3

(
(1− d) < trε >+ + < trε >−

)
δ + 2(1− d)µεd + 2dµ(ε− επ)d (2.14)

The frictional stress that is related to the internal sliding is defined as follows:

σπ =
∂ρΨ

∂επ
= 2(1− d)µεd + 2dµ(ε− επ)d (2.15)

The rate Y of the release of damage energy is obtained from its classical expression:

Y = −∂ρΨ

∂d
=
κ

6
< trε >2

+ +2µεd : εd︸ ︷︷ ︸
Damage

− 2µ(ε− επ)d : (εd − επ)d︸ ︷︷ ︸
Internal sliding

(2.16)

We can see that Y is composed of two contributions: one related to the damage and the other
related to the internal sliding. Finally, the thermodynamic forces associated with the isotropic
hardening and the back stress are computed by differentiating the thermodynamic state potential
with respect to the corresponding variables:

X = γα (2.17)

Z =
dH(z)

dz
(2.18)
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The potentials of dissipation

In order to allow the definition of the pseudo-time from which the dissipative mechanisms (dam-
age and frictional sliding) become active, two potentials of dissipation have to be introduced.
Regarding the isotropic damage, the threshold surface is expressed in terms of the energy rate
Ȳ as follows:

fd = Ȳ − (Y0 + Z) (2.19)

where Y0 is an initial threshold which must be overcome. Ȳ is the strain energy variable that
drives the damage. To define different behaviors in tension and compression, the total strain is
split into two contributions. The first one refers to direct extensions εDir whereas the second

one refers to indirect extensions εInd. The direct extension second order tensor is defined as
follows:

εDir =< ε >+ H(< ε >+:< σ >+) (2.20)

where H stands for the Heaviside function. The indirect extension second order tensor is defined
by removing the direction extension contribution from the total strain tensor:

εInd = ε− εDir (2.21)

Corresponding energy rates are introduced in order to express the threshold surface related to
damage:

Y Dir =
1

2
εDir : C : εDir (2.22)

Y Ind =
1

2
εInd : C : εInd (2.23)

where C is the fourth order Hooke tensor. Finally, the threshold surface is expressed as follows:

fd = Ȳ − (Y0 + Z) = Y Dir + βY Ind − (Y0 + Z) (2.24)

where β is a material parameter allowing the setting up of the shape of the biaxial response.
Regarding the frictional sliding mechanism, the threshold surface is chosen as a J2-plasticity
based surface:

fπ = J2(σ
π
−X) (2.25)

where J2(.) is the second invariant of (.)d. One can note that fπ ≥ 0 for all loading paths.
This means an energy balance occurs between two consecutive thermodynamic states from the
damage mechanism to the frictional sliding one.

The flow rules

Flow rules are introduced for both dissipative mechanisms. In the case of damage, an associative
flow is assumed, whereas in the case of frictional sliding, a non-associative flow is assumed
in order to describe the nonlinearities related to the hysteretic responses when dealing with
the loading/unloading paths. The flow rules driving the damage and the isotropic hardening
variables follow the normality rule: 

ḋ = λ̇d
∂fd
∂Ȳ

= λ̇d

ż = λ̇d
∂fd
∂Z

= −λ̇d
(2.26)
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where λ̇d is the Lagrange multiplier related to the damage. We can note that ḋ+ ż = 0, which
means that d and z are flow-coupled. The flow rules related to the frictional sliding mechanism
require the consideration of a pseudo-potential of dissipation φπ. According to the proposal
made by Armstrong et Frederick (1996), the following pseudo-potential is considered:

φπ = fπ +
a

2
X : X (2.27)

where a is a material parameter which drives the energy dissipation during a loading/unloading
cycle. Now the flow rules can be defined, employing the normality rule with respect to φπ:

ε̇π = λ̇π
∂φπ
∂σπ

α̇ = −λ̇π
∂φπ
∂X

(2.28)

where λ̇π is the Lagrange multiplier related to frictional sliding.

2.2.3 Coupled damage/plasticity

Driving ideas

In the continuation of the work presented in Section 2.2.2, new efforts were made in order to
overcome some of the identified drawbacks related to the proposed constitutive equations. In
particular, the objectives of this new line of research were to consider a full unilateral effect
when switching from tension to compression and to include the internal sliding mechanism in
tension. Indeed, quasi-brittle material RVEs tend to reach their failure state in tension prior
to reaching it in compression. Hence, frictional sliding may be significant in tension Yazdani
et Schreyer (1990) and need to be taken into account. In order to achieve the aforementioned
objectives, isotropic damage is used in tension and plasticity is used in compression. The
use of plasticity in compression is frequent in the field of soil mechanics when nonlinearities,
dilatancy and permanent strains must be described Jason et al. (2006). The behavior of tension
and compression can be split into two distinct parts by considering the sign of the Cauchy
stress tensor in 1D (or a related quantity in 3D). Since hysteretic phenomenon are linked with
frictional sliding, this mechanism is considered in tension, allowing a realistic description not
only of hysteretic loops but also of permanent strains in tension. The unilateral effect is also
taken into account using a closure function, which ensures the continuity of the stress/strain
relation whatever the loading path. With these assumptions, one can state that the behavior of
an RVE is accurately represented in tension (brittleness, hysteretic loops and permanent strains)
and roughly described in compression (nonlinearity and permanent strains).

The state potential

The state potential has been chosen as the Helmholtz free energy. Similarly to the work presented
in Section 2.2.2, this strategy makes the numerical implementation easier, since the state laws
will not have to be inverted. The starting point of the Helmholtz free energy is the following
expression:

ρΨ =
1

2

{
(1− d)ε : C : ε+ d(ε− επ) : C : (ε− επ) + γα : α

}
+H(z) (2.29)

We can note that the spherical/deviatoric split introduced in Section 2.2.2 is no longer employed.
Furthermore, expression 2.30 allows taking into account both damage and frictional sliding
mechanisms, which are necessary when dealing with the cyclic response of a quasi-brittle material
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RVE. In order to consider a full unilateral effect, a closure function η is introduced. The way of
including it in the state potential is driven by the fact that when επ = 0, Hooke’s constitutive
law is recovered. In accordance with this observation, the state potential is enhanced as follows:

ρΨ =
1

2

{
(1− d)ε : C : ε+ d(ε− ηεπ) : C : (ε− επ) + γα : α

}
+H(z) (2.30)

The closure variable η should range from 1 (opened crack) to 0 (closed crack). Finally, the
nonlinearities related to the diffuse cracking process of the quasi-brittle material RVE when
subjected to a compressive stress state are considered by including a dedicated energy rate in
the state potential. Because of the diffuse nature of cracking when dealing with compression, a
plasticity based approach is employed. The expression for the Helmholtz free energy becomes:

ρΨ =
1

2

{
(1− d)(ε− εp) : C : (ε− εp) + d(ε− ηεπ − εp) : C : (ε− ηεπ − εp) + γα : α

}
+

H(z) +G(p)

(2.31)

where εp is the second order tensor representing the permanent strains in compression, G is
a consolidation function allowing the description of the softening, and p is the isotropic hard-
ening variable associated with the plastic strain variable, which can also be interpreted as the
cumulative plastic strain.

The state equations

The state potential being now well-defined, the state equations can be derived from expression
2.31 by differentiating it with respect to the state variables. The first state equation, linking
Cauchy’s stress tensor with the total strain second-order tensor, is:

σ =
∂ρΨ

∂ε
= −∂ρΨ

∂εp
= (1− d)C : (ε− εp) + dC(ε− ηεπ − εp) (2.32)

An important feature of expression 2.33 is the fact that when η = 0, Hooke’s constitutive law
is recovered. The frictional stress σπ can be defined as follows:

σπ = −∂ρΨ

∂επ
= ηdC : (ε− ηεπ − εp) (2.33)

Note that the closure variable η acts as a multiplicative part of the internal sliding tensor.
Moreover, there is a state coupling between damage and internal sliding, which is physically
motivated by the fact that the more damaged the material is, the higher the energy released by
internal sliding will be. The rate at which energy is released by the damage mechanism, denoted
by Y , is expressed by:

Y = −∂ρΨ

∂d
=

1

2

{
(ε− εp) : C : (ε− εp)− (ε− ηεπ − εp) : C : (ε− ηεπ − εp)

}
(2.34)

It can be noted that the rate of release of energy due to damage is also the sum of two contri-
butions: the first one is related to the elasto-damage part of the energy and the second one is
related to the sliding mechanism, which means there is an energy balance between the damage
mechanism and the internal sliding, weighted by η. The thermodynamic forces associated with
the isotropic hardenings are:
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Z =

∂ρΨ

∂z
=
dH(z)

dz

R =
∂ρΨ

∂p
=
dG(p)

dp

(2.35)

Finally, the back stress is a linear function of the kinematic hardening variable:

X =
∂ρΨ

∂α
= γα (2.36)

The potentials of dissipation

The damage mechanism and the isotropic hardening are managed in a coupled way. Moreover,
an associative flow rule is assumed. The threshold surface is expressed as a function of the
energy rate released by damage:

fd = Ȳ − (Y0 + Z) ≥ 0 (2.37)

where fd is the threshold surface, Ȳ is the rate of release of that part of the energy released by
damage, which is defined next, Y0 is an initial threshold that must be overcome, and Z is the
thermodynamic force associated with isotropic hardening. Assuming that the damage is linked
with positive extensions, Ȳ can be defined as follows:

Ȳ =
1

2
< ε− εp >+ C :< ε− εp >+ (2.38)

To improve the numerical robustness of the time-integration strategy used to compute the
Cauchy stress from the proposed constitutive equations, it has been chosen to drive the dam-
age variable by a function of the total strain (for extensions only). This quantity must be an
increasing function of the total strain. If the thermodynamic force Y had been employed, the
damage could not have been driven in a satisfactory way, since Y is not an increasing quantity
in the total strain (due to the compression load step, for example). This is the main reason why
the energy rate defined by Equation 2.38 has been employed. The internal sliding mechanism is
assumed to be coupled with the kinematic hardening at the flow level. The threshold surface is
expressed in terms of the sliding stress and the back stress. One can note that there is no initial
threshold in the expression for the threshold surface, allowing this mechanism to be activated
only when damage is activated. The threshold surface fπ is enhanced by an indicator that is a
function of Cauchy’s stress tensor:

fπ = J2(σπ −X)H(trσ) (2.39)

The unilateral effect can be defined as an initial (undamaged) stiffness recovering when switching
from tension to compression. This effect can be included in the model in various ways (changes
of the signs of the strains, stresses, or an expression that couples the stresses with the strains).
A closure function is used to gradually cancel the permanent strains created in tension (which
no longer flow) when unloading. Following the proposal of LaBorderie (1991), a linear function
is assumed:

η = 1−
trσ

σf
(2.40)

where σf is a material parameter which needs to be identified. If trσ > 0, cracks obviously
remain opened (η = 1) and if trσ < σf , cracks are fully closed (η = 0). The last potential of
dissipation which needs to be considered is related to the smeared cracking process considered
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in compression. In order to take into account the triaxiality effects, especially when dealing with
bi-compressive stress states, a Drucker–Prager threshold surface is considered. From Equation
2.32, we can note that when plasticity is activated, the term dεπ has no effect since the closure
function η is null.

fp =
(
J2(σ) + αfpI1(σ)

)
H(σf − tr(σ))− (R+ fc) ≥ 0 (2.41)

where fc is a material parameter which needs to be identified.

The flow rules

According to the previous presentation, the flow rules in connection with three dissipative mech-
anisms have to be considered: isotropic damage, frictional sliding, and plasticity. Regarding the
continuum damage mechanism, an associative flow rule is assumed. Therefore, normality rules
with respect to the potential of dissipation fd are used:

ḋ = λ̇d
∂fd
∂Ȳ

= λ̇d

ż = λ̇d
∂fd
∂Z

= −λ̇d
(2.42)

where λ̇d is the Lagrange multiplier, which can be computed from the consistency conditions.
Regarding the internal sliding variable επ, a non-associative flow rule is postulated. Similarly
to the case of the initial set of constitutive equations, this strategy ensures describing quite
well nonlinearities related to the hysteretic effects. The related flow rules are expressed by
Equations 2.27 and 2.28. The last variable whose flow should be determined is the plastic strain
in compression εp. In order to allow the possibility to describe the dilatancy phenomenon,
which is characterized by an increase of the apparent Poisson ratio, a non-associative flow rule
is assumed. The pseudo-potential of dissipation considered is

φp = J2(σ) + αφpI1(σ)−R (2.43)

where αφp is a material parameter that manages the dilatancy capacity. Under these assump-
tions, the flow rules are obtained using normality rules with respect to the pseudo-potential of
dissipation presented above: 

ε̇p = λ̇p
∂φp
∂σ

ṗ = −λ̇p
∂φp
∂R

(2.44)

where λ̇p is a new Lagrange multiplier in connection with the plasticity-based mechanism in
compression.

2.2.4 The regularized unilateral effect

Driving ideas

In particular, the feedback we got from the use of the constitutive law presented in Section
2.2.3 showed that the local time integration strategy had some convergence issues. It was noted
that most of the numerical issues appeared when switching from tension to compression. This
observation made us work on improving treatment of the crack closure effect. In particular, we
worked on a strategy to take into account the unilateral effect in a smoother way than was used
in the case of the constitutive law based on the coupled damage/plasticity. In order to reach
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this objective, new physical assumptions were introduced. In particular, in accordance with
Mihai et Jefferson (2013), we assumed that the stress state in an RVE could be split into two
different contributions: one coming from the matrix and one coming from the cracks. Under
these assumptions, the constitutive model is formulated using a typical decomposition of the
Cauchy stress tensor characterizing the stress state in the RVE. It is assumed that the Cauchy
stress σ can be split into two independent parts:

σ = σm + σf (2.45)

where σm stands for the stress in the cracked continuum domain and σf the stress transmitted
by the cracks. In addition, it is assumed that no interaction occurs between the cracks. Within
this framework, the Helmholtz free energies Ψm and Ψf associated with the two stress tensors
can be defined. In accordance with the additive decomposition of the Cauchy stress tensor, the
total free energy of the RVE, denoted by Ψ, is obtained by summing each of these energetic
contributions:

Ψ = Ψm + Ψf (2.46)

The free energy Ψm can be expressed in accordance with isotropic continuum damage mechanics
theory. The way of constructing the free energy Ψf is detailed in the next section.

The state potential and the state equations

Fracture processes are modeled by means of isotropic continuum damage theory. In general, the
simpler the damage variable is kept, the more robust the proposed macroscopic model will be.
Therefore, in view of the structural applications of the proposed model, an isotropic damage
mechanism is assumed, leading to a unique scalar damage variable ranging from 0 to 1. However,
even though the numerical robustness of the local time integration algorithm should be ensured
by this strategy, the description of the anisotropy related to the cracking process will not be
achieved. The free energy associated to the cracked continuum medium is simply:

Ψm =
1

2
(1− d) ε : C : ε+H(z) (2.47)

Equation 2.47 leads to the following expression for σm:

σm = (1− d)C : ε (2.48)

The energetic contribution related to the cracked areas is introduced by considering a new strain
variable εf . This variable is defined as a part of the total strain tensor, the proportionality

constant is assumed to be equal to the damage variable. Furthermore, εf can be interpreted as
the homogenized contribution of the crack openings to the total strain in the RVE. Under these
assumptions, the homogenized contribution of the crack openings is defined as follows:

εf = dεf (2.49)

The following assumption is made on the time-evolution of σf with respect to εf :

σ̇f = ϑ
(
εf
)
C : ε̇f (2.50)

The function ϑ is chosen to be a scalar. In other words, the tangent modulus of the cracks
stress/strain relation is proportional to the undamaged Hooke elastic tensor and can be con-
trolled by the ϑ function. Therefore, ϑ represents the part of the stiffness lost due to cracking
that is recovered thanks to crack closure, and can only take values ranging from 0 (when the
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cracks are fully opened) to 1 (when cracks are fully closed). Since ϑ flows according to the ma-
terial’s loading state, it is considered to be dependent on εf . Setting aside its physical meaning,
ϑ can be considered as a numerical regularization of the multiple Signorini contact problem in-
duced by crack closure. ϑ should then be defined to flow from 0 to 1 in a sufficiently regular way
to avoid spurious discontinuities of the constitutive laws or of their (first at least) derivatives.
As a function of εf , the scalar nature of ϑ is obtained by means of a scalar indicator of this strain
tensor. A simple indicator dependent on the sign of the loading is required, so as to observe
stiffness recovery when switching from tension to compression. Therefore, the first invariant is
used. The elastic part of the free energy associated to crack behavior is then written as:

Ψf,e =

∫ T

0

(∫ T

0
ϑ
(
I1

(
εf
))

C :
dεf

dt
dt

)
dεf

dt
dt (2.51)

where T is the final pseudo-time of the loading. In order to ensure that the free energy Ψf,e is
C2, ϑ should remain integrable. The explanation of hysteretic effects relying on the occurrence
of frictional sliding at the cracks’ surfaces justifies the use of a plasticity based approach to
describe them. Using a framework based on perfect plasticity, the free energy Ψf is reduced
to an elastic part Ψf,e and introduces a single internal variable, the plastic strain accumulated
through the internal sliding mechanism between cracks εf,p, defined as εf = εf,e + εf,p:

Ψf = Ψf,e
(
εf − εf,p

)
=

∫ T

0

(∫ T

0
ϑ
(
I1

(
εf − εf,p

))
C :

d
(
εf − εf,p

)
dt

dt

)
d
(
εf − εf,p

)
dt

dt

Assuming εf,p is purely deviatoric (trεf,p = 0), Equation 2.52 becomes:

Ψf =

∫ T

0

(∫ T

0
ϑ
(
I1

(
εf
))

C :
dεf

dt
dt

)
dεf

dt
dt− 1

2
ϑ
(
I1

(
εf
))

εf,p : C : εf,p (2.52)

and finally:

Ψf = Ψf,e
(
εf
)
− 1

2
ϑ
(
I1

(
εf
))

εf,p : C : εf,p (2.53)

We can note that the contribution coming from the cracked areas to the total Helmholtz free
energy Ψ has been built a posteriori, assuming a given state law linking σ̇f with ε̇f a priori. This
is a major feature of the proposed constitutive model to introduce the crack closure effect in a

smooth way. The idea behind this was to control the tangent modulus
∂σf

∂εf
in order to ensure

that its variation preserves C1 property of the stress/strain relation.

The potential of dissipation and the flow rules

According to the previous presentation of the thermodynamic state potential and the associated
state laws, the flow of the three internal variables needs to be defined. The damage variable
d and the related isotropic hardening variable z) are flow coupled. The third variable is the
plastic strain εf,p. Consequently, two distinct potentials of dissipation should be introduced.
The isotropic damage mechanism and the associated hardening is based upon a Mazars-like
failure criterion which is expressed in terms of strain energy rates:

fd = Ȳ − (Y0 + Z) ≥ 0 (2.54)
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where Z stands for the thermodynamic force associated to z, Ȳ is the energy rate Ȳ = 1
2Eε0ε

eq,

written as a function of the Mazars equivalent strain εeq =
√
〈ε〉+ : 〈ε〉+, ε0 is the elastic limit

strain, and Y0 is the elastic limit energy rate written in a similar manner: Y0 = 1
2Eε

2
0. The

asymmetry between traction and compression loading is only taken into account through its
consequence on the peak load and the softening behavior of the material, and is introduced into
the flow rule for the damage variable derived from the consolidation function H. Under these
assumptions, the following flow rules are introduced:

ḋ = λ̇d
∂fd
∂Ȳ

= λ̇d

ż = λ̇d
∂fd
∂Z

= −λ̇d
(2.55)

The hysteretic effects are described by means of the plastic strain εf . In order to treat the
nonlinearities related to this mechanism, a non-associative flow rule is assumed. Furthermore,
this strategy makes it possible to ensure that εf is purely deviatoric. A Drucker–Prager criterion
is chosen as the potential of dissipation:

ff,p = J2

(
σf
)

+ µ0I1

(
σf
)
≥ 0 (2.56)

where µ0 is a material parameter which needs to be identified and which can be interpreted as
a fiction coefficient. The pseudo-potential of dissipation is simply a Von Mises criterion:

φf,p = J2

(
σf
)

(2.57)

The flow rule is expressed by considering the normality of the rate of the plastic strain with
respect to the pseudo potential. Under these considerations, the flow rule has the following
expression:

ε̇f,p = λ̇f,p
∂φf,p
∂σf

(2.58)

where λ̇f,p is the Lagrange multiplier related to the plastic strain, which can be computed from
the consistency condition.

2.3 Concrete behavior: Critical review

In the previous sections, three different strategies allowing for the description of the cyclic
response quasi-brittle materials behavior have been summarized. In the following, a comparison
of the proposed approaches is presented.

2.3.1 Softening description, asymmetry between tension and compression,
and regularization

Softening is one of the major consequences of cracking development. Within the framework
of the proposed modeling strategies, isotropic continuum damage mechanics has been used in
order to describe this phenomenon. More precisely, a scalar damage variable has been intro-
duced to represent the progressive decrease of the RVE’s elastic properties. As a consequence, a
consolidation function has been used in order to define the way the damage variable evolves in
time. Furthermore, it has been mentioned that the consistency conditions related to the damage
could be integrated in closed form. Hence the damage variable remains explicit and therefore
no implicit time-integration strategies have to be used. Expressions for the first derivative of
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each consolidation function and the resulting damage variable are given in Tables 2.1 and 2.2,
respectively. The strategies # 1, # 2 and # 3 correspond to those presented in Sections 2.2.2,
2.2.3 and 2.2.4, respectively.

Let us first focus on Table 2.1. In modeling strategy # 1, the first derivative of the consol-
idation is built as the sum of two contributions, each of them being characterized by a specific
material parameter. This decomposition has been employed in order to describe the asymmetry
between the tension response and the compression response. This is quite similar to the idea
introduced in Mazars (1984), even though the driving variables are not the same. Even though
a robust decomposition between the tension and compression can be realized this way, the case
of a pure shear stress state leads to some issues due to the fact that the first derivative does not
exist close to the origin. In the second strategy, the previous expression has been drastically
simplified. In particular, a single contribution is employed. Indeed, this is consistent with the
basic assumptions that motivated the development of strategy # 2 and which lie in considering
damage only in the case of tension-dominated stress states. The asymmetry between tension
and compression was described by a consolidation function dedicated to compression. Last,
we can note that this expression is continuously differentiable and is characterized by a single
material parameter. In the last modeling strategy (# 3), the expression is no longer a rational
function, but is composed of a logarithmic function. Furthermore, we can observe the presence
of an additional function κ. This function has been built for two reasons: (i) taking into account
the confinement effect when dealing with compression stress states and (ii) allowing for a split
between tension and shear. We can also note the smoothness of this expression with respect to
the hardening variable z, except at z = −1, which is not an issue because this case corresponds
to the limit of the damage variable, i.e., when it goes to 1.

Strategy First derivative of the consolidation function dH(z)
dz

# 1
(H(<ε>+:<σ>+)

ADir
+

1−H(<ε>+:<σ>+)

AInd

)
−z
1+z

# 2 1
Ad
−z
1+z

# 3


− κ

B0
ln

(
Y0

Ȳ
(1 + z)

)

κ = 1 + k0

< C : ε >−:< C : ε >−

(C : ε) : (C : ε)

 1
2

Table 2.1: Closed-form expressions of the consolidation functions’ first derivatives — # 1 =
strategy presented in Section 2.2.2, # 2 = strategy presented in Section 2.2.3, # 3 = strategy
presented in Section 2.2.4.

Closed-form expressions for the resulting damage variables are presented in Table 2.2. In strategy
# 1, the damage variables are composed of two terms, each of them aiming at describing the
softening in tension and in compression. The difference between the flow rates can be handled by
setting the material parameters ADir and AInd to different values. In strategy # 2, the damage
variable is bounded by 1. However, a unique flow rate can be used since a single parameter Ad has
been introduced for the reasons explained in the previous paragraph. An important feature of
the expressions considered in the first two strategies is the fact that the fracture energy-like term∫∞
t0
σ : ε̇dt (t0 stands for the localization pseudo-time) does not converge towards a finite value.

In other words, a fracture energy-based regularization Hillerborg et al. (1976) can not be used in
the first two approaches in order to reduce the mesh-dependency effects. Averaging techniques,
such as the non-local approach Pijaudier-Cabot et Bazant (1987) or the second-order gradient
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Peerlings et al. (1996); De Borst et al. (1996), have to be used. Despite the fact that the use
of these techniques is possible, they usually induce a drastic increase in the computational time
when dealing with non-linear analysis, which limits the possiblities for large-scale computations.
This is the main reason why slight modifications have been considered in strategy # 3. Indeed,
the presence of the exponential functions makes the fracture energy-like term bounded, and so
the generalized integral converges towards a finite value. An energy-based regularization can be
used, by making the parameter B0 dependent on a characteristic length of the finite elements.

Strategy Damage variable d

# 1 1− 1
1+(ADirH(<ε>+:<σ>+)+AInd(1−H(<ε>+:<σ>+)))(Ȳ−Y0)

# 2 1− 1
1+Ad(Ȳ−Y0)

# 3 1− Y0

Ȳ
exp

(
−B0

κ (Ȳ − Y0)
)

Table 2.2: Closed-form expressions for the damage variables — # 1 = strategy presented in
Section 2.2.2, # 2 = strategy presented in Section 2.2.3, # 3 = strategy presented in Section
2.2.4.

2.3.2 Material parameters and identification

In this section, we focus on the sets of material parameters needed for each modeling strategy in-
troduced in the previous sections. They are presented in Table 2.3 for each constitutive model.
For all constitutive laws, two parameters are needed to describe the linear elasticity region,
namely Young’s modulus and the Poisson ratio. They can be identified by fitting the initial
modulus of the experimental uniaxial response in compression. In addition, a single parameter
is needed to define the initial threshold surface in tension. In the case of the first two strategies,
this parameter is the initial energy rate Y0, whereas in the case of the third one, it is expressed
as a limit strain ε0. However, both parameters can be linked with the tension strength, which
can be identified from either characterization tests or empirical formulae in which the tension
strength may be estimated from the compressive strength measured at 28 days. We can note
that the second modeling strategy involves a threshold in compression fc. This threshold does
not correspond to the compressive strength (defined at the peak stress in compression) but
should be understood as the initial threshold that has to be overcome in compression to activate
damage. Its identification is not straightforward: a full uniaxial response is needed. However,
it allows controlling the peak stress in compression, which may be an interesting feature.

The fracture energy can be controlled, in a more or less simple way, in all modeling strate-
gies. The related parameters allow for defining the brittleness of the post-peak branch. For
instance, in the case of the first two approaches, the parameters ADir and Ad play this role.
Nevertheless, it is important to keep in mind that no direct relation can be found between these
parameters and the fracture energy, based upon the considrations presented in Section 2.3.1.
In the case of the third modeling approach, the parameter B0 can be linked with the fracture
energy through a closed form expression. Similar parameters are also introduced in the case
of the first two strategies to control the dissipated energy in compression, namely AInd and
(αf , βf ). All these parameters can be identified thanks to the knowledge of the fracture energy,
at least in tension. However, based on our experience, it is better to identify them by fitting
the load/displacement curve of a bending test performed on a notched concrete beam. This
strategy allows taking into account the finite element mesh size in the identification procedure,
otherwise a regularization technique has to be used.
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The last set of parameters is related to the control of the hysteretic dissipation. In the case
of the first two approaches, two parameters are needed, (a, γ), whereas in the case of the third
approach, a single parameter should be identified µ0. Their identification procedure is not
straightforward at all, due to the experimental difficulties when dealing with the cyclic test’s
being tension-dominated. A promising approach lies in downscaling the identification step by
considering a refined numerical description of the RVE. In other words, assuming that an effi-
cient and predictive model is available at a lower scale, the experimental tests can be carried out
virtually. The outputs can then be used to complement the experimental results coming from
the mechanical tests. This aspect is discussed and illustrated in Section 3.2.1. In addition, this
approach can be used to identify the parameters controlling the biaxial response of the RVE.

Strategy Symbol Meaning

# 1 E Young modulus
ν Poisson ratio
Y0 Energy rate threshold to activate damage
ADir Brittleness in tension
AInd Brittleness in compression
β Confinement effects
a Hysteretic effects
γ Hysteretic effects

# 2 E Young modulus
ν Poisson ratio
Y0 Energy rate threshold to activate damage
Ad Brittleness in tension
a Hysteretic effects
γ Hysteretic effects
fc Compressive strength
αf Threshold surface in compression
αφ Threshold surface in compression
aR Brittleness in compression
bR Brittleness in compression

# 3 E Young modulus
ν Poisson ratio
ε0 Strain threshold to activate damage
B0 Brittleness in tension
k0 Confinement effects
µ0 Hysteretic effects

Table 2.3: Sets of material parameters — # 1 = strategy presented in Section 2.2.2, # 2 =
strategy presented in Section 2.2.3, # 3 = strategy presented in Section 2.2.4.

2.3.3 Main features

In this section, some features of the three modeling strategies are presented. To illustrate them,
some local tests have been carried out and the results are compared and discussed.

Unilateral effect

The first aspect highlighted is related to the ability of the constitutive laws to describe the crack
closure effect. Cyclic tension/compression tests have been simulated at the integration point
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level. The results are presented in Figure 2.1. In the case of the first approach, we can observe
the inability of the constitutive law to capture this effect. Indeed, coming back to Equation 2.14,
the stiffness recovery is ensured only in the bulk modulus. Indeed, the Coulomb modulus is not
recovered at all. The results shown in Figure 2.1a allow concluding that this simple strategy is
not sufficient to account for this effect. The results obtained by the second strategy are shown
in Figure 2.1b. Both the hysteretic loops and the progressive crack closure effect are described
when switching from tension to compression. However, the resulting stress/strain response is
not smooth at all, leading to numerical issues in the local time-integration algorithm. These
results confirm the necessity of including a closure function in order to properly control the
crack closure effect, as proposed by LaBorderie (1991) within a uniaxial framework. The results
obtained with the last strategies are shown in Figure 2.1c. We can observe the smoothness of
the stress/strain response when the cracks are closing. In addition, the hysteretic loops are in
better agreement with the experimental ones from a qualitative point of view.
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Figure 2.1: Control of the crack closure effect — uniaxial cyclic tension loading path.

Uniaxial complex loading path

The second aspect we focused on is the stress/strain response when dealing with a ten-
sion/compression loading path. Due to the limitations of strategy # 1 in describing the crack
closure effect, the results coming from this constitutive law are not presented in what follows.
However, we can mention that this type of loading path can be handled by this first strategy if
the damage level remains low. The results obtained with the modeling approaches # 2 and #
3 are presented in Figures 2.2a and 2.2b respectively. The results are quite similar. However,
the stress/strain relation is (i) smoother in the case of the third strategy than in the case of
the second and (ii) the nonlinearities in compression observed in the case of the third modeling
strategy are a consequence of the formulation. Indeed, no specific attention has been paid to de-
scribing nonlinearities in compression. The main experimental features of concrete-like materials
subjected to cyclic loadings are quite well described by both approaches but the smoothness of
the stress/strain relation observed in the case of strategy # 3 drastically improves the numerical
robustness of the time-integration algorithm.
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Figure 2.2: Uniaxial tension/compression loading path.

Biaxial response

The last aspect discussed in this section is related to the ability of the constitutive laws to
describe the biaxial response of a concrete-like material RVE. The results are presented in Figure
2.3. In the case of the first approach, the failure surface is quite smooth but the shear strength is
overestimated. This can be explained by the fact the consolidation function associated with the
isotropic hardening does not allow an accurate control of the shear response. In contrast, the
consolidation function considered in the third strategy allows overcoming this drawback, as we
can observe in Figure 2.3c. The biaxial response related to the second strategy is presented in
Figure 2.3b. The overall shape is in quite good agreement with the experimental measurements
but some singular points can be noted. This is due to the way of splitting the tension contribution
from the compression one. This feature leads to convergence difficulties. In the case of the third
modeling strategy, the failure surface fits well the experimental observations in the tension and
shear regions (k0 = 3). Nevertheless, the case of a pure compressive loading state is not well
described. Indeed, we did not pay specific attention to taking it into account. In addition, trying
to achieve such an objective by keeping the damage variable a scalar may not reasonable.
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Figure 2.3: Biaxial response — experimental data from Kupfer et Gerstle (1973).
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2.4 Steel/concrete interface behavior

2.4.1 Full 3D approach

Driving ideas

In the case of reinforced concrete structures, the interface between the steel and the concrete is a
specific location where dissipative mechanisms may occur during a degradation process. Taking
them into account when making a structural assessment is of primary importance because they
influence the load transfer from the concrete to the steel. If the load transfer is full (perfect
interaction) then all the internal loads which are in the concrete domain are balanced by the
internal load which appears in the steel domain. But if the load transfer is only partial, then only
a part of the internal loads which are in the concrete domain are balanced by those appearing in
the steel domain Reinhardt et Balazs (1995). In this latter case, local cracking features such as
crack spacing or openings will be influenced. It is therefore necessary to take into account the
specific behavior of the steel/concrete interface when a refined structural assessment is aimed at.
On the other hand, the steel/concrete interface may be the location where phenomena coming
from the interaction between a reinforced concrete structure and the external environment de-
velop. As an example, we can mention the case of corrosion of the steel reinforcing bars, which is
one of the most critical pathologies faced by existing reinforced concrete structures. Among the
dissipative mechanisms which appear when corrosion is developing, we can mention the creation
of rust products that exhibit a trend to swell. Therefore, tensile stresses appear and increase
over time, leading to the development of cracking from the steel to the concrete cover. Within
such a framework, it is clear that appropriately modeling the steel/concrete interface is necessary.

Experimental evidence has shown that the steel/concrete interface could be damaged by means
of two major mechanisms: mode I (local opening) and mode II (frictional sliding) Eligehausen
et al. (1982). The first mechanism may appear when the reinforced concrete component works
close to its failure state, i.e., macrocracks are opened. This mechanism also appears in the
presence of corrosion, when the process has reached an advanced stage characterized by an im-
portant amount of rust products. The second mechanism appears as soon as the reinforcing bar
is (at least locally) subjected to a tension stress state. Furthermore, these mechanisms may be
considered as being coupled. Indeed, the mode II mechanism will be influenced by whether the
steel is in contact with the surrounding concrete or not. This latter mechanism is also influenced
by the radial stress state, which can either improve the peak stress or decrease it, depending on
the nature of the radial stress (tension or compression) Nguyen et al. (2011).

From the aforementioned presentation, it appears that three mechanisms should be taken into
account in order to reach a statisfactory description of the steel/concrete interface in the presence
of corrosion. In addition, not only because these mechanisms have specific directions but also
because the interface between the steel and concrete has no physical dimension, a dedicated nu-
merical framework should be used. With the aim of proposing a refined steel/concrete interface
constitutive model, we have made the choice to consider a degenerate kinematics that is com-
patible with zero-thickness finite elements technology. Within this framework, the constitutive
law will be expressed in terms of a traction vector and relative displacements.

Constitutive equations

Uncorroded steel/concrete interface The formulation of the set of consitutive equations
is inspired from both the framework presented in Section 2.2.2 and the earlier Ragueneau et al.
(2006). In this paragraph, no corrosion is considered: we focus on the mechanical part of the
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constitutive model. Equation 2.13 may be reformulated in terms of a traction vector and relative
displacement vector as follows:

ρΨ =
Kn

2
((1− d) < un >

2
+ + < un >

2
−)+

(1− d)ut.Kt.ut + d(ut − uπt ).Kt.(ut − uπt ) +H(z) +
γ

2
α.α

(2.59)

where Kn is the stiffness in the normal direction, un the relative displacement in the normal
direction, ut the relative displacement vector in the tangential direction, uπt the sliding dis-
placement vector, Kt the stiffness matrix in the orthnormal directions, and α the kinematic
hardening variable. Some state laws can be derived from Equation 2.59 quite straightforwardly:

tn =
∂ρΨ

∂un
= Kn((1− d) < un >+ + < ut >−)

tt =
∂ρΨ

∂ut
= 2(1− d)Kt.ut + 2dKt.(ut − uπt )

(2.60)

In addition, the thermodynamical forces in connection with both isotropic and kinematic hard-
ening can be defined as follows: Z =

∂ρΨ

∂z
=
dH(z)

dz
X = γα

(2.61)

The potentials of dissipation which allow handling the activation of both the damage and fric-
tional sliding mechanisms can now be introduced. The first one is related to the damage and
has been chosen as follows:

fd = α0Y
+
n + Yt − (Z0 + Z) ≥ 0 (2.62)

where α0 is a material parameter which allows for the definition of the relative importance of
the damage in the normal direction compared to the damage in the orthonormal directions, Y +

n

is the rate of energy released in mode I, and Yt is that for mode II. Both rates are defined as
follows: Y +

n =
Kn

2
< un >

2
+

Yt = 2ut.Kt.ut

(2.63)

Consider the following expression for the consolidation function:

H(z) =
1

Ad
(−z + ln(1 + z)) (2.64)

where Ad is a material parameter which allows setting up the post-peak brittleness (i.e., the
softening branch). Summing the associative flow rules for damage and isotropic hardening, a
closed form expression for the Lagrange multiplier related to the damage can be obtained. After
some analytical computations, the damage can be expressed as follows:

d = 1− 1

1 +Ad(α0Y
+
n + Yt − Z0)

(2.65)

The frictional sliding mechanisms are treated according to the considerations presented in Sec-
tion 2.2.2. The potential of dissipation takes the following form:
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fπ =|| tt −X || +c < tn >−≥ 0 (2.66)

where c is a material parameter allowing setting up the effect coming from the confinement.
Assuming a non-associative flow in order to treat the nonlinearities related to the frictional
sliding, the following pseudo-potential of dissipation is considered:

φπ = fπ +
a

2
X.X (2.67)

Now the flow rules related to the frictional mechanism can be derived:
u̇πt = λ̇π

∂φπ
∂tπt

α̇ = λ̇π
∂φπ
∂X

(2.68)

Corroded steel/concrete interface With the aim of including the effects related to cor-
rosion, the constitutive framework presented previously has been enhanced. But first, it is
necessary to frame the developments in order to clarify the additional set of variables to be
introduced. Among the complex effects induced by corrosion, we focus only on those which take
place at the steel/concrete interface. In other words, the influence of corrosion on the concrete
and steel is not considered.

The quantification of the phenomenon of corrosion requires the definition of a macroscopic
variable which characterizes the corrosion state for a given time t Fang et al. (2004). Therefore,
the mapping t 7→ Tc(t) is assumed to be known. Among the possibilities offered in the literature
to define the corrosion degree, the most used lies in considering the reduction of the steel cross
section or the overall mass loss. Both possibilities may be found. Within the framework of our
research, two mechanisms characterizing the phenomenon of corrosion are considered. First, it
is necessary to describe the swelling related to the expansive nature of the rust products, which
will lead to the development of cracking in the concrete around the reinforcing bar. To this
end, a dedicated variable urn is introduced. In addition, experimental obervations have pointed
out that the rust products behave like a granular material, i.e., their normal stiffness increases
when subjected to compression Zandi Hanjari et al. (2011). This aspect has also been taken into
account by making the elastic parameters dependent on the void density through a modified
Needlman–Tvergaard–Gurson criterion Needlemann (1988). Secondly, rust products lead to the
modification of the frictional properties at the steel/concrete interface. In order to take these
into account, a natural way lies in modifying the damage variable characterizing the degradation
state at the steel/concrete interface according to the value of the macroscopic corrosion degree.

Based upon the aforementioned considerations, the state potential expressed by Equation 2.59
has been enhanced as follows:

ρΨ =
Kn

2
((1− d) < un >

2
+ + < un − urn >2

−︸ ︷︷ ︸
Compacting character

) + 2(1− d)ut.Kt.ut+

2d(ut − uπt ).Kt.(ut − uπt ) +H(z) +
γ

2
α.α+Knun < urn(t0) >+︸ ︷︷ ︸

Swelling

(2.69)

where t0 is the duration of the corrosion, which is linked with the macroscopic corrosion de-
gree. It is important to note that two time-scales are considered: one related to the corrosion
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phenomenon and another related to the mechanical effects (degradation process). The corre-
sponding state laws can be derived as follows:

tn =
∂ρΨ

∂un
= Kn((1− d) < un >+ + < un − urn >−)

tt =
∂ρΨ

∂ut
= (1− d)Kt.ut + dKt.(ut − uπt )

trn = −∂ρΨ

∂urn
= Kn < un − urn >−

(2.70)

The way to treat the displacement related to the rust products has been determined in order
to describe the fact that they become stiffer when subjected to a compressive stess state. To
reach this objective, a modified Needlman–Tvergaard–Gurson criterion is introduced. Taking
into account the fact that urn acts in the normal direction, the following expression is obtained:

fr = 2q1f
?ch(q2

trn
2tM

)− (1 + (q3f
?)2) (2.71)

where q1, q2 and q3 are material parameters, tM a hardening variable, and f? an internal variable
which may be interpreted as the void density. Three complementary equations should now be
introduced in order to treat the flow of the void density, the hardening variable, and the normal
displacement of the rust products:

u̇rn = λ̇r
∂fr
∂trn

u̇M = λ̇r
∂fr
∂tM

ḟ? = k(1− f?) < u̇rn >−

(2.72)

The hardening law is defined as follows:
tM = KnuM if tM ≤ t0M

tM = t0M

(
KnuM
t0M

) 1
n

if tM > t0M
(2.73)

where t0M is an initial threshold. The elastic properties Kn and Kt are made dependent on
the void density in order to describe the fact they increase with the intensity of the loading in
compression. Assuming a Poisson ratio equal to 0.2, The Mori–Tanaka homogenization scheme
provides a closed form expression for the homogenized elastic parameters:

Kn(f?) =
1− f?

a1 + a2f?

Kt(f
?) = Kt

1− f?

a3 + a4f?

(2.74)

where (ai)i=1,··· ,4 are material paremeters which allow setting up the range of variation of the
elastic parameters.

The second effect taken into account is related to the fact that rust production lead to the
modification of the properties of the steel/concrete interface and therefore of the degradation
state of the steel/concrete variable. To take this into account, the potential of dissipation related
to the damage has been enhanced as follows:

fd = α0Y
+
n + Yt − (Z0 + Z +W ) ≥ 0 (2.75)
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where W is a function of the macroscopic corrosion degree, to be identified. Based upon similar
considerations as those presented previously, the damage variable becomes

d = 1− 1

1 +Ad(α0Y
+
n + Yt − (Z0 +W ))

(2.76)

Numerical examples

Local considerations In Figure 2.8a, the response of the proposed constitutive model with
respect to the tangential direction is presented. Various simulations at the Gauss point level, for
several lateral pressures, have been performed. An increase of the peak value of the shear stress
can be noted. This feature has been widely observed experimentally Eligehausen et al. (1983);
Lundgren (2001). Figure 2.8b highlights the response when mode I occurs at the steel/concrete
interface. It can be noted that the peak value is almost 50% lower than that in the tangential
direction (without any lateral pressure), which is in accordance with the results obtained by
Dominguez (2005). This property is important when swelling occurs at the interface. It is
possible to exhibit it because the asymmetrical Drucker–Prager criterion is used. Moreover, it
is not rare that local opening happens when pull-out tests are performed. As a consequence,
the way of controlling the asymmetry between the mechanical responses in modes I and II is
crucial in order to ensure the accuracy of the underlying structural analysis. To move forward,
some features of the proposed steel/concrete interface constitutive model in a corroded condition
are shown in Figures 2.4c and 2.4d. Figure 2.4c depicts the response in the normal direction
when an imposed pressure at the steel/concrete interface is applied. This analysis focused on
the normal direction response and not on the tangential direction. It can be observed that
the stiffness increases, as was to be expected. Some experimental data have been reported in
order to show the relevancy of the approach. The local mechanisms occuring at the interface,
which explain the non-monotonic evolution of the residual bond capacity with respect to the the
corrosion degree, are still not fully understood in a clear way. A comparison between simulations
at the Gauss point level and local measurements from Sulaimani et al. (1990) is presented in
Figure 2.4d and a good agreement can be highlighted. However, it must be said that this latter
result should not be understood as a demonstration of the predictive capability of the proposed
steel/concrete interface model but as a demonstration of the possibility of describing the refined
mechanisms occuring at the steel/concrete interface with corrosion. Indeed, the predictive ability
of the constitutive model greatly depends on the availability of experimentaml data to properly
identify the material parameters.

Structural case study In order to illustrate the capabilities of the proposed steel/concrete
interface constitutive model, a structural case study at the member scale is shown in the fol-
lowing. The experimental campaign carried out by Nguyen et al. (2007) has been considered.
This experimental campaign was chosen because the specific effects related to the corrosion
phenomenon have been studied separately. On the one hand, the consequences of the reduction
in the steel cross section have been analyzed and, on the other hand, the influence of the mod-
ification of the bond properties in connection with cracking have been studied. To reach this
objective, the corrosion was created artificially by prescribing a current density considering two
conditions: (i) before and (ii) after the concrete casting. This strategy allows avoiding account-
ing for the effect associated with the swelling of the corrosion products and therefore, getting
rid of the cracking. Once the reinforced concrete specimens were corroded, they were subjected
to a four-point bending loading in order to assess their bearing capacity. As a consequence, we
can state that the full loading sequence had two different stages: (i) corrosion followed by (ii) a
four-point bending loading. In addition, several reinforced concrete beams were tested, allowing
the assessment of the evolution of the bearing capacity with respect to the corrosion degree.
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(d) Peak shear stress evolution due to corrosion.

Figure 2.4: Steel/concrete interface constitutive law — local results.

The finite element mesh is shown in Figure 2.5. Due to the employment of a zero-thickness
finite element technology to implement the steel/concrete interface constitutive model, both the
concrete and steel had to be discretized three-dimensionally. Both the stirrups and longitudinal
reinforcing bars have been meshed because corrosion developed around them. Zero-thickness
finite elements have been put between the steel bars and the surrounding concrete. In addition,
elastic platens have been included in the finite element model in order to avoid spurious effects
close to the boundaries. In the central part of the beam, we can note that the sturrups were cut
off. Despite the fact that this choice does not represent any civil engineering design practices,
it has been made in order to ensure a uniform corrosion distribution on the lower longitudinal
steel bars. This way, no interaction with the stirrups can occur. The mechanical behavior of
the concrete has been described by the constitutive model presented in Section 2.2.4, and that
for the steel by the well-known Menegotto–Pinto constitutve model Menegotto (1973). Among
the available experimental results, we have focused on the case where the corrosion is created
after the concrete casting.

The nonlinear analysis was performed with the finite element software Cast3M CEA-Cast3M
(2016). The damage patterns after corrosion and after applying the four-point bending test are
shown in Figures 2.6 and 2.7 respectively. In accordance with the experimental setup, only the
lower reinforcing bars were artificially corroded. We can note a progressive development of the
damage around the bars with the increase of the macroscpic corrosion degree. In addition, it
is interesting to note that cracking appears close to the steel anchorages. Despite the fact that
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this effect was expected, it helps in understanding why corrosion leads to a loss of ductility.
The damage patterns obtained after applying the mechanical loading are consistent with the
experimental observations. The cracking is rather uniform in the constant bending moment
area, and becomes directional in the shear dominated areas, close to the supports.

Figure 2.5: Finite element mesh — reinforced concrete beam.

Figure 2.6: Damage pattern — after corrosion and before the mechanical loading for different
corrosion degrees.
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In order to analyze the consequences of corrosion on both (i) the load transfer between the
concrete and steel and (ii) the evolution of the bearing capacity, more quantitative results were
looked for. Especially, the variations of the load/midspan displacement curve with respect to the
macroscpic corrosion degree are prsented in Figure 2.8a. On the one hand, we can observe the
progressive decrease of the elastic stiffness and the decrease of the bearing capacity. Both effects
were in accordance with the experimental observations. However, as shown in Figure 2.8a, a
local steel failure appeared during the experiment. This effect could not be reproduced because
the steel constitutive model used did not include a local failure criterion. The load transfer has
been analyzed by observing the stress distributions along both the upper and lower reinforcing
bars. As shown in Figure 2.8b, we can note that the stress in the upper steel bars is rather
constant in the central part of the specimen whereas the maximum stress decreases drastically in
the lower steel bars. This effect may be explained by the fact that corrosion decreases the bond
properties at the steel/concrete interface, leading naturally to the unloading of the corroded
rebars.

Figure 2.7: Damage pattern — after corrosion and after the mechanical loading for different
corrosion degrees.

2.4.2 Simplified approach

Driving ideas

In Section 2.4.1, a set of constitutive equations allowing the description of the mechanical behav-
ior of the steel/concrete interface with or without corrosion has been presented. The aim of this
research was to build a constitutive model allowing refined and accurate structural assessments
of reinforced concrete structures. To reach this goal, a dedicated finite element technology has
been used, consisting in zero-thickness finite elements. Despite the fact that this strategy al-
lows the explicit definition of a steel/concrete interface domain, it may lead to difficulties when
meshing. Indeed, this strategy requires meshing the steel reinforcing bars in an explicit way,
and generally leads to time consuming analyses. In order to overcome the aforementioned draw-
backs, we explored the possibility of studying the steel/concrete interface in a way compatible
with the use of simplified finite element technologies, such as the multifiber approach Taucer
et al. (1991); Spacone et al. (1996); Neuenhofer et Filippou (1997).

49



0 0.005 0.01 0.015 0.02
0

1

2

3

4

5

6

7

8
x 10

4

Midspan displacement (m)

Lo
ad

 (
N

)

 

 

Exp. − uncorroded
Exp. − 18.5%
Num. − uncorroded
Num. 18.5%
Num. 18.0%
Num. 17.5%
Num. 17.0%
Num. 16.5%
Num. 16.0%
Num. 15.5%
Num. 15.25%

Initial stiffness decrease

Bearing capacity decrease

(a) Load/midspan displacement curve

0 0.2 0.4 0.6 0.8 1
0

2

4

6
x 10

8

Steel abscissa (m)

A
xi

al
 s

tr
es

s 
(P

a)

Upper steel reinforcing bars

 

 

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4
x 10

8

Steel abscissa (m)

A
xi

al
 s

tr
es

s 
(P

a)

Lower steel reinforcing bars

 

 

Num. − uncorroded
Num. 5.5%
Num. 10.5%
Num. 14.5%
Num. 18.5%

Constant stresses

Decrease of the 
stresses

(b) Axial stresses in the rebars

Figure 2.8: Local and structural responses after the four-point bending tests.

In addition, we made the choice to keep the strategy light in terms of numerical implemen-
tation. As a consequence, we decided not to go to kinematic enhancement based approaches
although they might lead to satisfactory results.

The multifiber approach is based upon Timoshenko kinematics. Two discretization levels are
introduced: the first one lies in describing the beam itself whereas the second lies in describing
the cross section. The link between both levels is ensured thanks to load/stress relations coming
from the well-known beam theory. At the cross section level, nonlinear constitutive laws can be
taken into account. However, constitutve operators have to be projected in specific directions
in order to be compatible with the Timoshenko kinematics. Within the framework of reinforced
concrete structures modeling, two types of constitutive laws are generally considered at the cross
section level: one related to the concrete and one related to the steel. As we made the choice
not to go to kinematic enhancement based approaches for the sake of computational efficiency,
the only degrees of freedom we have to take into account for the steel/concrete interface lies in
modifying the aforementioned constitutive laws. Modifying the concrete constitutive law does
not seem meaningful because the location of the steel/concrete interface remains somehow fuzzy.
Hence, we introduced a strategy to take it into account in the steel constitutive law.

The essence of our proposal lies in its assumptions on the load transfer mechanism between
the concrete and the steel reinforcing bars. Considering a given loading, we assume that the
load in the rebar is balanced by frictional stresses at the steel/concrete interface. In the numer-
ical description of the steel/concrete interface with corrosion, due to the kinematic assumptions
related to the multifiber approach, the swelling that has been taken into account in the full
three-dimensional constitutive model is not in the proposed simplified strategy.

Numerical strategy

Describing the partial interaction between the concrete and the steel means the existence of a
frictional sliding. In other words, the strain in the steel εS may be expressed as follows:
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εS = ηεS︸︷︷︸
Steel contribution

+ (1− η)εS︸ ︷︷ ︸
Interface contribution

= εAS + εIS (2.77)

where η is a partition factor, εAS = ηεS is the steel contribution, and εIS = (1 − η)εS is the
steel/concrete interface contribution. As a new unknown has been introduced, it is necessary
to use an additional equation to determine it. This equation should express the load balance
between the steel and concrete. It can be expressed as follows:∫

S(x)
σAdS − lc

∫
∂S(x)

τ IdΓ = 0 (2.78)

where S(x) is the cross section of the beam element at the abscissa x, lc the anchorage length
(allowing setting the relative weight of the contributions of the steel and the concrete), τ the
frictional stress at the steel/concrete interface, and ∂S(x) the boundary of the steel bar. Denot-
ing by LA and LI the constitutive operators allowing the computation of the stress in the steel
σA and in the steel/concrete interface τ I , Equation 2.78 becomes:∫

S(x)
LA(εS , η)dS − lc

∫
∂S(x)

LI(εS , η)dΓ = 0 (2.79)

Assuming a constant strain εS and a constant partition factor over the finite element, Equation
2.79 can be analytically integrated:

LA(εS , η)S(x)− lcLI(εS , η)P (x) = 0 (2.80)

where S(x) and P (x) are, respectively, its cross-sectional area and its perimeter. Equation 2.80
may be nonlinear because of the nature of the constitutive operators. However, it can be solved
by a fixed-point based method, leading to the value of the partition coefficient. The constitu-
tive operators defining the stress contributions related to both the steel and the steel/concrete
interface can be chosen according to the desired accuracy of the assessment.

The constitutive operator related to the steel LA has been chosen according to the proposal
made by Ouglova (2004), known as Ouglova’s law. Indeed, Ouglova (2004) has developed a steel
constitutive law which may account for some features related to the phenomenon of corrosion,
such as the reduction in the cross section of the steel or the decrease in the ultimate strain. We
restricted the three-dimensional formulation to a coupling between the damage and plasticity
not only in terms of the state but in terms of the flow. On the other hand, the constitutive op-
erator related to the steel/concrete interface LI has been constructed according to the research
presented in Section 2.4.1 in the case of corrosion. As mentioned previously, the only feature
which could not be taken into account in a straightforward way is the swelling. However, the
consequences of its effect on the degradation state of the steel/concrete interface could be taken
into accoun by means of the additional energy rate W (see Equation 2.75), which is a function of
the macroscopic corrosion degree. The full set of constitutive equations allowing the definition
of both operators LA and LI are presented in detail in Richard et al. (2011).

The proposed steel/concrete interface model has two main limitations and we would like to
point them out. The first one is related with the identification of the material parameters. The
proposed model is able to represent the bond–slip relation as soon as the material parameters
have been satisfactorily calibrated. Especially the parameter related to the corrosion may be
difficult to be identified. However, a framed process to identify material parameters is proposed
in Richard et al. (2011). The second limitation is related to the change of failure mode. Indeed,
it is well known that the growth of corrosion leads to switching from a pull-out failure to a
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splitting failure. This can be modeled by switching the bond–slip relation from a brittle one
to a ductile one. The proposed steel/concrete interface model can be calibrated to obtain this
effect. Nevertheless, the concrete model used in the analysis plays an important role when such
failure modes occur, since concrete cracking is responsible for the global failure of the structure.
As the multifiber approach does not aim at accurately representing cracking patterns (through
damage patterns), the change of failure mode is only taken into account at a structural level (no
significant differences in the damage pattern will be observed).

Numerical examples

Local considerations The main features of the proposed approach are analyzed in the present
section. To perform this analysis, the proposed model has been implemented in the finite el-
ement software Cast3M. One single steel fiber is considered in order to obtain local results at
the Gauss point level. Consequently, the anchorage length lc has been chosen equal to 1.0 m
and the other material parameters have been identified according to the process presented in
Richard et al. (2011). Three local tests have been performed: first, the coupling effect between
the constitutive laws driving the behaviors of the steel and the steel/concrete interface is stud-
ied; second the effect of an increase of the corrosion degree is analyzed; last, the possibility of
describing the effects of reverse loading is discussed.

Figure 2.9 illustrates the local response of the steel/concrete interface in terms of the shear
stress versus the sliding strain. The three different degradation stages are taken into account
and are in good agreement with the observations published by Lutz et Gergely (1967). The
pre-peak and the post-peak behaviors are well exhibited, making possible analyses up to failure.
The local response of the steel rebar in terms of the normal stress versus the total strain is
also shown. An elastoplastic response is obtained. An unloading step can be seen, although
the loading is increasing during the computations. This is due to the fact that from a specific
loading state, the steel/concrete interface becomes too damaged and therefore cannot ensure
equilibrium with the steel rebar. The equilibrium state is therefore obtained by the unloading of
the steel fiber. The evolution of the partition factor versus the number of load steps is presented
in Figure 2.9. It first decreases, reflecting the predominance of the steel/concrete interface. It
then increases up to 0.85, reflecting the predominance of the steel behavior. Finally, it decreases
drastically, highlighting the unloading of the steel rebar. All these evolutions clearly show that
the behavior of the steel is coupled with the behavior of the steel/concrete interface.

Numerical results for the corroded condition are shown in Figure 2.10a. The shear stress peak
associated with the steel/concrete interface clearly decreases. Therefore, the steel rebar cannot
be loaded at the same level as in the case of no corrosion. The steel does not reach the plastic
stage because the steel/concrete interface is too damaged to provide a suitable stress transfer.
The partition factor evolution highlights a strong predominance of the steel/concrete interface.
Indeed, the latter is decreasing to zero, sliding being the main mechanism. A simple tension test
under repeated loading has been simulated. For the sake of simplicity, the corrosion degree is set
to zero. The results are presented in Figure 2.10b. The nonlinearities due to hysteretic effects
are clearly taken into account in the proposed model. Moreover, the dissipated energy within a
cycle is influenced by the damage level; this is represented by a variation of the hysteretic loops
areas. The steel response is influenced by the behavior of the steel/concrete interface. Although
the hysteretic effects are not explicitly taken into account in the steel constitutive law, since the
coupling equilibrium equation is satisfied they appear in the steel response. The evolution of
the partition factor shows the different patterns of behavior along the simulation.
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Figure 2.9: Local results — monotonic loading — uncorroded.
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Figure 2.10: Local results.

Structural case study The possibilities offered by the simplified approach we proposed have
been explored at the member scale. To this end, several structural case studies have been car-
ried out. Especially, we assessed the relevancy of the approach to reinforced concrete beams
by considering several loading cases: (i) monotonic loading without corrosion effects, (ii) cyclic
loading without corrosion effects, and (iii) monotonic loading with corrosion effects. These three
structural case studies are presented in Richard et al. (2011). In the following, we aim at com-
paring the influence of a full interaction between steel and concrete with a partial interaction.
Furthermore, no corosion is assumed.

The reinforced concrete beam analyzed has been experimentally studied by Ragueneau (1999).
The three point bending test was realized by controlling the loading in five different steps: 10
kN, 30 kN, 50 kN, 70 kN and 90 kN (failure). To avoid fatigue effects, only ten cycles were
performed at the loading step. Two structural cases have been simulated. The first one uses
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a perfect steel/concrete interface and the second one uses an imperfect interface. The results
are expressed in terms of load/midspan displacement curves and are presented in Figure 2.11.
The experimental results are bounded by those obtained numerically. First, with a perfect
steel/concrete interface, the initial elastic stiffness is well described. Nevertheless, both the
tension stiffening stage and the yielding stage are overestimated. The load/displacement curve
appears to be smooth, meaning that redistribution phenomena do not seem to be of primary
importance. Moreover, since the steel/concrete interface is considered as being perfect, the steel
rebar can yield more easily than if the interface is imperfect. Indeed, the stress transfer between
concrete and steel is complete and not degraded whatever the load level. The numerical failure
mode is a flexural one, which does not accurately match with experiments, since a combination
between a flexural failure and a bond failure has been reported experimentally. Second, with an
imperfect steel/concrete interface, the elastic stiffness and the concrete cracking stages are better
captured compared to the previous case. Nevertheless, the yielding stage is underestimated but
remains well described. This is due to the absence of accurate experimental data related to the
properties of the bond. The load/displacement curve appears less smooth than the previous one;
the stress redistribution phenomena seem to be better characterized than in the previous case.
The strength is lower since the steel/concrete interface is starting to be damaged. Therefore, as
soon as the interface has reached a critical level of degradation, the stress transfer between the
concrete and steel cannot be maintained, resulting in a lower strength. The numerical failure
mode is a bond failure.
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Figure 2.11: Structural results — load/midspan displacement.

The damage patterns obtained are shown in Figures 2.12a and 2.12b for, respectively, a full
interaction and a partial interaction between the steel and concrete. The results are in agree-
ment with the load/midspan displacement curve presented in Figure 2.11. Two distinct failure
mechanisms can be observed. In the case of a full interaction, the reinforced concrete specimen
reaches failure by compression. In contrast, in the case of a partial interaction, the compressive
area does not have the same pattern as the one observed in the previous case. Cracks start from
the bottom part of the beam and propagate towards the upper part. These different failure
mechanisms are driven by the load transfer, which is conditioned by the degradation state of
the steel/concrete interface.
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(a) Perfect steel/concrete interface. (b) Non perfect steel/concrete interface.

Figure 2.12: Damage pattern.

2.5 Summary

In this section, a summary of contributions aiming at improving the numerical description of
some dissipative mechanisms occuring during the degradation process of quasi-brittle materials,
such as concrete-like materials or a steel/concrete interface. In the first part, three different
modeling strategies were presented. The physical assumptions as well as the constitutive equa-
tions were presented and discussed. The capabilities of each set of constitutive equations were
illustrated and discussed in the second part. Especially, we focused on some important features,
such as the way of describing the softening and how the material parameters can be interpreted
and identified. Results coming from some local uniaxial tests carried out at the integration point
level were also presented and discussed in order to emphasize the pros and cons related to each
constitutive model. The main contributions are in proposing constitutive equations coupling a
unilateral effect with hysteretic loops to handle the complex case of cyclic loadings. The third
part aimed at presenting more or less simplified strategies to include the specific behavior of the
steel/concrete interface in the structural analysis, when dealing with reinforced concrete struc-
tures. After explaining a fully three-dimensional approach based on the use of zero-thickness
finite elements, the developments we made to formulate a simplified strategy were highlighted.
The main contributions related to this last part are: (i) formulating a fully three-dimensional
steel/concrete interface consitutive model accounting for the effects related to corrosion and (ii)
proposing a simplified strategy aiming at reducing the computational cost of the nonlinear anal-
ysis and which could be used within a probabilistic context.
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A6 Adéläıde, L., Richard, B., Ragueneau, F., Crémona, C. (2012). A simplified numerical
approach of global behaviour of RC beams degraded by corrosion. European Journal of
Environmental and Civil Engineering 16(3–4).

A7 Richard, B., Quiertant, M., Bouteiller, V., Adéläıde, L., Tailhan, J.-L., Crémona, C.
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3 Quantification of the vulnerability of re-
inforced concrete structures

3.1 Introduction

Nowadays, most structures are made of reinforced concrete. Following the second world war,
many reinforced concrete structures were erected in a short period due to the necessity to rebuild.
Within this context, buildings devoted to housing, public infrastructure, and energy production
facilities were constructed. Because of the necessity to bring some answers as quickly as possible
and to face the tremendous demand, the issues related to the performance of the new reinforced
concrete structures were not fully addressed. Today, many reinforced concrete structures can
not be considered as being new since they are nearly 40 years old. As a consequence, it is
necessary to quantify their performance level in order to check whether they can still achieve
the objectives for which they were built. In other words, it is important to be able to quantify
not their vulnerability but also the design provisions in the case of extreme loading scenario.

Quantifying the vulnerability of a reinforced concrete sructure requires describing the dissipative
mechanisms related to the constitutive materials. In the previous chapter, several constitutive
laws have been presented. Especially, we have shown their ability to represent several features
which should be taken into account for an accurate description of the material behavior. Among
these features, cracking has been identified as being a key point. However, because cracking is
a complex phenomenon, its description may be undertaken by several indicators, such as crack
openings, crack spacing, or crack tortuosity. These indicators must be determined because the
limit states may depend on them. To reach this objective, it is necessary (i) to identify the set
of material parameters in a robust way and (ii) to use approaches allowing the definition of such
indicators. Furthermore, in the case of dynamic loadings, a new variable appears: the damping.
Damping is a phenomenon that is still not clearly understood. It is usually decomposed into two
contributions: one coming from the material dissipation (related to the material nonlinearities)
and that coming from all other sources of dissipation. Therefore, it seems necessary to identify
both contributions in order to make robust the model considered in the context of a structural
assessment study. From the aforementioned presentation, it appears that methodological tools
are needed in order to quantify the structural vulnerability.

However, the predictive ability of a given model is highly dependent on the way of identify-
ing the set of material parameters. Uncertainties related to the material parameters should be
taken into account. Based upon the definition of a satisfactory structural model, the responses
corresponding to a set of realizations of the material parameters should be computed by using
a satisfactory structural model. Due to the large number of responses needed to computed
statistical estimators, the issue of computational efficiency becomes salient. In addition, the
probabilistic model should be able to be updated based upon new pieces of information.
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The formulation of advanced approaches to predict the beyond-design behavior of either new or
existing reinforced concrete structures is not sufficient. It is also necessary to validate these ap-
proaches intrinsically and to frame the way to use them. The issue of the validation of methods
should also be addressed in a regulatory context. A natural practice for validating structural
assessment methods is in benchmarking the approaches, based upon reference data coming from
experiment. Within the framework of our research, we have focused on two issues coming from
two different fields, both issues addressing the case of torsion-sensitive reinforced concrete struc-
tures. The first one is related to the quantification of the design provisions when dealing with
an extreme seismic scenario. Broad experimental studies, including shaking table tests, were
carried out to produce reference experimental data which have fed an international benchmark
to assess the predictive capabilities of advanced assessment approaches. The second one ad-
dresses the issue of the seismic behavior of innovative structural components, called thermal
breakers, which have been designed to provide the shear wall–slab connection with improved
thermal insulation properties. Within this context, we contributed in providing some answers
by defining an experimental program and carrying out the related numerical analysis in order
to quantify the influence of thermal breakers on the structural response of a torsion-sensitive
reinforced concrete structure subjected to a seismic scenario.

In this chapter, we sum up the contributions of our work aiming at improving the way of
quantifying cracking, idenfifying the dissipative capabilities of reinforced concrete components,
improving the computational efficiency of probabilistic approaches, and validating structural
assessment approaches.

3.2 Quantification of cracking features

3.2.1 Discrete element strategy

Background

When dealing with structural assessments, the quantification of cracking features has become of
primary importance, mainly because of sustainability requirements. However, civil engineering
reinforced concrete structures are often complex and the description of their mechanical behav-
ior is generally achieved by means of continuous constitutive laws. Despite the fact that this
strategy allows estimating both structural and local responses, the major drawbacks lie in (i)
their inability to represent kinematic discontinuities and (ii) the need to have sufficiently many
pieces of information to identify the material parameters in the case of complex loading paths.
Within this framework, we focused on the use of particle models, also called lattice models, in
order to provide some answers to the aforementioned issues. The particle model we focused on
was initially proposed by D’addetta et al. (2002) and modified by Delaplace (2008) and Vassaux
et al. (2015). The concrete domain is spatially represented through polygonal particles linked
together by brittle Euler–Bernouilli beams. The cohesive forces between two particles’ centroids
are expressed by the following set of equations:

F coh,ij =



FN,ij =
EAb,ij
Ib,ij

(ui − uj) .nb,ij

FT,ij =
12EIb,ij
l3b,ij

(ui − uj) .tb,ij −
6EIb,ij
l2b,ij

(θi − θj)

MZ,ij =
6EIb,ij
l2b,ij

(ui − uj) .tb,ij +
4EIb,ij
lb,ij

(
θi −

θj
2

) (3.1)

where E stands for the Young’s modulus of the beams, Ab,ij the cross section of the beam, lb,ij
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the length of the beam, Ib,ij the moment of inertia, ui and uj the displacement of the particles
i and j respectively, θi and θj the rotations of the particles i and j respectively, nb,ij and
tb,ij are the normal and tangential vectors associated with the beam ij. The beams’ behavior
is assumed to be brittle in order to treat the fracture process that characterizes quasi-brittle
materials. Therefore, a local breaking criterion is used:

Pij

(
εij
εcrij

,
| θi − θj |

θcrij

)
> 1 (3.2)

where Pij is a threshold to be overcome in order to break the beam ij, εcrij is a critical strain,
and θcrij a critical rotation. As soon as the failure criterion is reached, the beam is removed from
the particle mesh and a local crack opening can be computed.

Handling cyclic loading through contact and friction

Implicit time integration strategy Based upon the aforementioned considerations, it ap-
pears the particle model can describe fracture. This feature makes it capable of dealing with
monotonic loadings but does not allow dealing with cyclic ones. To overcome this limitation,
we added two mechanisms: contact and frictional sliding between the particles. Contact is
introduced only when two particles are overlapping, i.e., when the failure criterion has already
been reached. To manage contact, an intersection area Sr has been introduced as the overlap-
ping area of two intersecting polygons. Once the area is identified, the contact band width can
be defined as the longest segment inside the area Sr. Furthermore, a local basis (normal and
tangental vectors) is defined by assuming the normal vector nc is perpendicular to the contact
band width. The tangential vector tc is then deduced. Finally, the point at which the contact
forces will be applied is defined as the center of inertia of the intersection area Sr. Figure 3.1
depicts the assumptions related to the contact mechanism.

i

j

+ +
Oi

Oj

nc

tcSr

+
C

Lc

Figure 3.1: Description of the setup for the contact mechanism.

In the normal direction nc, the contact force is computed with respect to geometrical indicators
Sr,ij and lc,ij as follows:

F cont,ij = −ESr,ij
lc,ij

nc,ij (3.3)

where lc,ij stands for a characteristic length defined as the harmonic mean of the diameters of
two contacted particles. On the other hand, a Coulomb-based law is employed in the tangential
direction tc. Therefore, a friction coefficient µ is introduced:

F fric,ij = min

(
EIc,ij
l3c,ij

[(uc,ij − uc,ji) .tc,ij −∆us,ij ] , µ || F cont,ij ||

)
.tc,ij (3.4)

where Ic,ij = l3c
12 and ∆us,ij stands for the sliding displacement (or relative displacement) in

the tangential direction in between two particles. Indeed, the behavior remains elastic before
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reaching a perfectly plastic friction. Considering two particles, only the fraction of displacements
accumulated since the the contact has been initiated is taken into account:

ut+1
c,ij =

{
utc,ij + δutc,i if i and j are overlapping

0 if i and j are not overlapping
(3.5)

Most of the beam-particle models are based upon the use of an explicit time integration strat-
egy. This class of solver algorithms is not suitable to handle quasi-static problems. Indeed, the
dynamic effects (velocity-proportional resisting force field and inertia force field) are naturally
neglected due to the quasi-static nature of the problem to solve. Under these assumptions,
the neglect of dynamic effects leads to an interesting reduction in the computational costs and
consequently permits implicit integration. Therefore, we made the solver algorithm implicit,
avoiding the introduction of a local kinematic displacement field assumption and allowing a
reduction of the computational cost at the RVE scale. The integration strategy we proposed
is based upon a combination of (i) the well known saw-tooth algoritm Rots et al. (2008), (ii)
a predictor–corrector algorithm, and (iii) a numerical relaxation scheme. To clarify, the saw-
tooth algoritm consists in solving the balance equation, removing the first beam that leads to
exceeding the failure criterion, and solving again the balance equation. In this way, the stress
redistribution is taken into account in a natural way. Between two consecutive saw-tooth iter-
ations, an iterative process is used, due to the nonlinearities related to contact and frictional
sliding. Numerical experience has shown that the convergence issues could be mitigated by con-
sidering a secant stiffness matrix for the prediction step. Numerical relaxation is applied to the
correction step of the aforementioned predictor–corrector strategy. The relaxation coefficient is
chosen according to the convergence rate. More advanced strategies based upon the convergence
radius extension/contraction might have been used, such as the well known line search method.

Numerical example In order to illustrate the capabilities of the particle model for handling
cyclic loadings, the experiment realized by Nouailletas (2013) has been simulated. It consists
in a cyclic direct tension test carried out on a plain concrete notched specimen under a fixed
boundary condition. The loading was displacement-controlled and several loading/unloading
cycles were considered. During the experiment, some rotations were monitored on the edge that
was subjected to the prescribed displacement. Simulations were carried out by including this
feature, an additional loading has therefore been considered (see Figure 3.2a). The results are
shown in Figure 3.2. We can note a satisfactory agreement between the experimental and the
numerical results. This would not have happened if both contact and frictional sliding had not
been treated in a robust way.

Coupling discrete element/finite element strategy for a refined cracking analysis

Despite the fact that continuous constitutive models allow for large-scale structural computa-
tions, a major drawback lies in their inability to provide quantitative results related to local
quantities, such as cracking features (crack spacing, openings, etc.). In order to overcome this
drawback, the particle model presented above can be advantageously used in order to post-
process the results coming from continuous computations Oliver-Leblond (2013); Giry et al.
(2014).
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(a) Numerical setting.
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(b) Experimental results.
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(c) Numerical results.

Figure 3.2: Numerical comparison of the cyclic direct tension test performed by Nouailletas
(2013).

Figure 3.3: Sequential description of the global/local analysis strategy.

General concept The post-processing strategy is inspired by submodeling techniques often
used within the framework of industrial problems, due to their simplicity. These methods have
two major steps: in the first step, the whole domain under study is analyzed; in the second step,
specific areas, also called regions of interest (ROI), are accurately studied. The ROIs are ex-
tracted from the domain under study and therefore should be subjected to dedicated boundary
conditions. In the proposed approach, Dirichlet boundary conditions are used. More precisely,
the displacement field computed at the global level is projected onto the boundaries of the ROI.
This choice has been made in order to ensure that the post-processing strategy does not depend
on the constitutive model chosen at the global level. The method is non-intrusive because be-
cause it only uses the available input and output (nodal displacement field). A flowchart of the
post-processing strategy is presented in Figure 3.3.

Four main steps are performed during the global/local analysis:

1. global analysis of the whole domain by means of a continuous constitutive model,

2. extraction of the ROI, which is generally the area where a strain localization occurs,

3. projection of the displacement field coming from the the global level onto the boundaries
of the ROI,

4. local analysis of the ROI thanks to the particle model presented in Section 3.2.1.
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It is important to note that no interaction between the local and the global levels is considered.
For instance, no force-based correction at the boundaries is carried out. Indeed, the aim of the
post-processing strategy is to provide refined information on the local kinematic and cracking
features. The two models complete each other by describing, each in its own different way, the
same phenomenon, namely cracking. In addition, as shown in Figure 3.3, the post-processing
strategy is sequential. In other words, for several damage levels, a local analysis is performed.
An important feature lies in the fact that it is not necessary to perform a local analysis at each
global loading step. In practice, the number of local analysis steps is chosen according to the
rate of evolution of the damage pattern.

The boundary conditions of the local computations are obtained from the global analysis per-
formed on the whole domain. Those boundary conditions are Dirichlet boundary conditions,
which is often the case for submodeling techniques. A natural way to transfer the displacement
field from a higher scale to a lower one is to use the finite element shape functions. In this way,
the displacement field at each particle centroid can be expressed as follows:

u(xD) =
nn∑
i=1

N i(xD)ui (3.6)

where u stands for the interpolated displacement field, xD for the coordinates of the centroid,
nn for the number of nodes, N i for the shape functions associated with the node i, and ui
for the nodal displacements at the node i. Focusing on Equation 3.6, we can observe that the
continuity of the rotations is not ensured. Indeed, numerical experience has shown that the
kinematic errors are not preponderant and therefore may lead to not considering this additional
kinematic constraint. Another aspect which has been studied is related to the equilibrium of the
ROI. Indeed, the momentum balance equation is naturally fulfilled as soon as the same model
is considered at the global scale. If two different constitutive models are considered, unbalanced
forces may appear at the boundary but equilibrium is ensured for both models independently.

In order to ensure consistency between the models used at each scale, it is necessary to identify
the corresponding material parameters in an appropriate manner. In the case of the continuous
constitutive model, the set of material parameters can be identified thanks to experimental char-
acterization tests. If necessary, the experimental data can be complemented by using a virtual
testing based approach. This latter aspect is presented and discussed in the next section. In
the case of the particle model, the corresponding material parameters are identified from both
the strain/stress uniaxial response in tension given by the continuous model and the dissipated
energy (also in tension).

Numerical example In order to illustrate the possibilities of the global/local computational
strategy, a numerical example is presented in this section. The three-dimensional test carried
out by Feist et Hofstetter (2007b) has been chosen. Indeed, this test allows studying the validity
of the global/local approach in the case of a three-dimensional crack propagation problem. The
specimen is a plain concrete beam with a prismatic notch. A sketch of the experimental setup
is shown in Figure 3.4. Two steel reinforcing bars have been cast in the concrete specimen in
order to support it. The load is displacement-controlled in order to capture the post-peak re-
gion. From a mechanical point of view, the loading can be considered as a quasi-static coupling
between bending and torsion.

63



The spatial discretizations at the global and local levels are shown in Figures 3.5a and 3.5b,
respectively. The continuous constitutive model used at the global scale is the one presented in
Section 2.2.2. The local mesh corresponds to an ROI located at the left side of the notch, where
the crack plane is expected to start and to propagate.

Figure 3.4: Experimental setup of the PCT3D test as in Feist et Hofstetter (2007b).

(a) Mesh at the global level. (b) Mesh at the local level.

Figure 3.5: Spatial discretizations considered for the refined re-analysis of the PCT3D.

Three damage states, at the global scale, have been considered for the refined local analysis.
These states are shown in Figures 3.6a to 3.6c and the corresponding cracking patterns in
Figures 3.6d to 3.6f. On the one hand, we can see a pretty good agreement between both
patterns (cracking and damage), and on the other hand, a good accordance with the experimental
measurements reported by Feist et Hofstetter (2007b). Despite the fact that the experimental
values of the crack openings are not known all along the crack plane, we observed a satisfactory
accordance between the maximum crack openings: 6.8×10−4 mm for the numerical value versus
8.0× 10−4 mm for the experimental one.

Virtual testing for the identification of the material parameters

Another possibility offered by the particle model lies in using it as a virtual testing machine
in order to complement the experimental information available at the RVE scale or to simulate
experimental tests which may be complex to realize from a practical point of view due to the
quasi-brittle nature of concrete. Especially for such materials, experimental data related to
both the tension and tension/compression loading cases at the RVE scale is rare. However, this
data is of primary importance when a refined description of these mechanisms is aimed at. In
order to illustrate the capabilities of the developed particle model to be used as a virtual testing
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machine Willans et Harrison (2001), we focused on the case of the constitutive model presented
in Section 2.2.4, for which this strategy was used.

(a) Damage pattern
— state # 1.

(b) Damage pattern
— state # 2.

(c) Damage pattern
— state # 3.

(d) Cracking pattern
— state # 1.

(e) Cracking pattern
— state # 2.

(f) Cracking pattern
— state # 3.

(g) Damage pattern — 3D view —
state # 3.

(h) Cracking pattern — 3D view —
state # 3.

(i) Cracking pattern — 3D
view — state # 3 — exp. ob-
servations according to Feist
et Hofstetter (2007b).

Figure 3.6: Results obtained after the re-analysis of the PCT3D test by means of the global/local
post-processing strategy.

Local considerations Among the set of constitutive equations presented in Section 2.2.4,
Equation 2.50 expresses the fact that a fraction of the elastic modulus is continuously recovered
when switching from tension to compression. In other words, the ϑ function describes the
fraction of closed cracks in the RVE and therefore, should vary from 0 (no crack closed) to 1
(all the cracks closed). Furthermore, we assume a priori that the crack closure function can be
expressed as a Gaussian cumulative probability function centered at 0:

ϑ = 1− 1

1 + exp
(
−f(εf )

) (3.7)
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where f is a function to be determined. Expression 3.7 will be a posteriori verified thanks
to the results coming from the virtual testing process. On the other hand, the damage level
reached in the RVE seems to have an influence on the crack closure function. In order to take
into account these features, various tension/compression tests have been carried out considering
different damage levels, characterized by the maximum crack strain over the pseudo-time, or a
scalar indicator in the three-dimensional case. The results of such an identification process are
shown in Figure 3.10.
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Figure 3.7: Fraction of closed cracks versus the maximum crack strain.

More precisely, Figure 3.7a depicts the fraction of closed cracks for different damage levels
obtained by using the particle model. We can note that the curves seem to be close to a
sigmoid. Our initial assumption seems to be suitable. On the other hand, Figure 3.7b shows
fitted curves based on the following expression:

ϑ = 1− 1

1 + exp

(
−α0

I1(εf )

max
0≤τ≤t

I1(εf (τ))

) (3.8)

where α0 is a material parameter set to 6.5 in the case of the present identification, and t is the
current pseudo-time. The latter value of the α0 coefficient has been found as being the one which
leads to the most satisfactory results. For the sake of concision, this aspect is not presented in
the present memoir. The term max

0≤τ≤t
I1

(
εf (τ)

)
allows taking into account the influence of the

level of damage on the way the cracks close.

Another material parameter which is not straightforward to identify is the friction coefficient µ0,
introduced in Equation 2.56. The main difficulty in the identification process is due to the fact
that the local cyclic responses at the RVE scale have to be known. The identification process of
the µ0 coefficient consists in quantifying, for a given damage level, the energy dissipation when
the RVE is subjected to a loading/unloading/re-loading path. In the case of the particle model,
the dissipated energy is estimated by accumulating the incremental contributions coming from
the set of contacted particles:

Ed,t+1
µ = Ed,tµ +

1

2

np∑
i=1

nic∑
j=1

(
t
(
F t+1
fric,ij + F t

fric,ij

)
. (∆us,ijtc,ij)

t+1
)

(3.9)

where np is the number of contacted particles, nic the number of contacts for particle i, and Ed,tµ
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is the energy dissipated at the pseudo-time t. On the other hand, in the case of the continuous
model, the dissipated energy is computed in a similar manner:

Ec,t+1
µ = Ec,tµ +

1

2

∫
Ω

(
σf,t+1 + σf,t

)
: ∆εf,p,t+1dΩ (3.10)

where Ec,tµ stands for the energy dissipated at the pseudo-time t. Finally, the µ0 coefficient is
calibrated by minimizing the gap between Edµ and Ecµ. As depicted in Figure 3.8, we end up
with µ0 = 2.89.
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Figure 3.8: Fraction of closed cracks versus the maximum crack strain.

Structural example In order to assess the validity of the material parameter identification
approach presented in the previous section, a structural case study at the member scale has been
analyzed. The experimental study realized within the framework of the French research project
CEOS.fr has been chosen Rospars et Chauvel (2014). Among the reinforced concrete specimens
studied, two low-aspect ratio reinforced concrete shear walls were tested up to failure. The
drawings of the shear wall considered are shown in Figure 3.9. The reinforced concrete shear
walls were subjected to cyclic loadings (non-reverse and reverse), which are described in Figures
3.10a and 3.10b, respectively. The loading is force-controlled. The loading is applied in the
horizontal direction by means of one or two actuators which have been fixed on a dedicated steel
plate located on the edges of the upper reinforced concrete beam.
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Figure 3.9: Drawings of the CEOS.fr shear wall.
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Figure 3.10: Description of the loading histories.

A fully three-dimensional strategy has been retained to simulate the mechanical response of the
shear wall. The finite element mesh is shown in Figure 3.11. The concrete domain has been
discretized by means of 8-node finite elements and steel reinforcing bars by means of 2-node
elements. Timoshenko beam elements have been used in the case of the reinforcing bars located
on the edges whereas simple bar elements have been chosen in the other parts of the wall. Both
the upper and lower reinforced concrete beams have been considered to be linear elastic whereas
the central part has been described by means of the constitutive model presented in Section
2.2.4. The simulations have been carried out with the finite element software Cast3M.

Figure 3.11: Finite element mesh used for the reinforced concrete shear wall.

It is crucial to note that the material parameters have been identified, on the one hand, from
the experimental characterization tests and, on the other hand, from the virtual tests carried
out to complement the aforementioned set of data. Experimental–numerical comparisons are
shown in Figure 3.12. In the case of the non-reverse cyclic loading, the results presented in
Figures 3.12a and 3.12b show a satisfactory agreement in terms of the ultimate load and relative
displacement. The residual displacements when unloading and the energy dissipated by friction
during the loading/unloading cycles seem to be underestimated. However, we can note that
the hysteretic dissipation increases with the number of cycles, which is in accordance with the
experimental obsevations. Furthermore, looking at the experimental results when the load is
equal to zero, we can observe a sliding displacement, which allows thinking that the experimental
loops are overestimated. Even if the sliding displacement had been substracted, the simulated
hysteretic loops would have underestimated the experimental ones. The results obtained in the
case of the reverse cyclic loading are shown in Figures 3.12c and 3.12d. To complement the
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remarks made previously, which remain applicable, we can note that the mechanical response
is symmetric with respect to the origin. This shows that the unilateral effect is captured not
only in a satisfactory way but also in such a manner the continuity of the stress/strain relation
is preserved. The qualitative results related to the cracking pattern have also been analyzed,
and are shown in Figure 3.13. In order to compare the numerical results with the experimental
measurements obtained from the digital image correlation technique, the principal strains have
been computed. In the case of the non-reverse cyclic loading, the results are shown in Figures
3.13a and 3.13b. We can note a pretty good agreement. In such a case, the failure mechanism
seems to be satisfactorily reproduced. In contrast, the case of the reverse cyclic loading has been
much more complex to handle. The results obtained for load values equal to 3.9 MN and -3.9
MN are shown in Figures 3.13c and 3.13d, respectively. At first sight, two groups of cracks with
different orientations are captured, which is in accordance with the experimental observations.
However, when looking at the pattern for both load values, we note that some cracks do not
close. Indeed, the existence of some strain localization areas seems to show that the unilateral
effect is not full. In addition, neither is the pinching effect, when switching from positive loads
to negative ones, is not accurately reproduced. This observation may be explained by the fact
the local sliding between the steel reinforcing bars and the surrounding concrete is not taken
into account.
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Figure 3.12: Experimental–numerical comparaison of the load/relative displacement of the shear
wall under cyclic loading.
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(a) Exp. — non-reverse response — 4.2 MN. (b) Num. — non-reverse response — 4.2 MN.

(c) Num. — reverse response — 3.9 MN. (d) Num. — reverse response — -3.9 MN.

Figure 3.13: Numerical and experimental principal strains — experimental–numerical compar-
isons.

3.2.2 Enhanced kinematics approach

Background

Cracking features can not be quantified in a natural way when dealing with a continuous de-
scription of the media. Indeed, it is necessary to use post-processing techniques such as the one
presented in Section 3.2.1 in order to extract specific quantities. Despite the fact that these
approaches lead to accurate results, specific attention should be paid to the way of calibrating
them and an additional computational effort is required.

Alternative approaches based on a kinematic enhancement of the displacement field came up.
We can distinguish two groups of techniques, according to the type of kinematic enhancement
considered. Some of them assume a local1 enhancement Simo et al. (1993); Alfaiate et al.
(2003); Feist et Hofstetter (2006); Dias-da Costa et al. (2009a,b); Radulovic et al. (2011); Linder
et Zhang (2013) whereas others postulate a global2 enhancement Belytschko et al. (2001); Moës
et Belytschko (2002). Among the approaches based upon a local kinematic enhancement, the
strong discontinuity method (SDM) is one of the most used Oliver (1996a,b) because of (i) its
low-intrusiveness in computational software and (ii) the absence of additional degrees of freedom,
keeping unchanged the structure of the algebraic system of equations to be solved. Within this
framework, it has been shown that the kinematic enhancement of the displacement field allows
defining a discrete constitutive law (expressed in terms of a traction vector and a displacement
jump), from specific classes of continuous constitutive laws (expressed in terms of stress and
strain) Oliver et al. (2002a); Simone et al. (2003); Cazes et al. (2010). Especially, this result has
been established in the case of isotropic continuum damage mechanics and J2-plasticity based
models.

However, from a physical point of view, the development of microcracks is a directional degra-
dation process. The information related to the directional character of the damage can be taken
into account by representing the damage tensorially. In this way, the description of the physical
mechanisms in given directions can be accurately carried out. Based on these considerations, the

1The term local refers to the fact that the additional degrees of freedom related to the kinematic enhancement
can be condensed at the finite element level. The size of the algebraic system of equations to be solved is not
modified with respect to the case of a classical kinematics.

2The term global refers to the fact that the additional degrees of freedom are considered at the node. Therefore,
the size of the algebraic system of equations to be solved increases.
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first objective of our research was to show that a strong discontinuity kinematic enhancement
leads naturally to the definition of a discrete constitutive model when a family of anisotropic
continuum damage based constitutive models is considered instead of an isotropic continuum
damage mechanics or J2-plasticity based models. From this result, an original tension/separation
constitutive law has been proposed to allow for an anisotropic description of cracking.

As an inherent drawback of SDM, the local nature of the kinematic enhancement induces a
loss of the C0-continuity of the displacement discontinuity field. This feature may lead to spuri-
ous crack orientations and stress locking phenomenon. As a direct consequence, the numerical
results may become mesh-dependent Feist et Hofstetter (2006). In order to overcome this lim-
itation of SDM, tracking algorithms have been developed over the past decades to ensure the
continuity of the displacement discontinuity field on the domain under study. Tracking algo-
rithms may be sorted into two categories. The first one gathers the so-called local strategies,
which ensure the continuity of the crack paths by means of geometrical considerations for each
finite element. When such local tracking algorithms are used, SDM somehow loses its local
character and becomes non-local in the sense that the quantities have to be estimated on neigh-
borhoods for all finite elements. With the aim of pr eserving the local character of the SDM, a
second category of tracking algorithms has been developed. These strategies are called global
tracking algorithms and determin the envelopes of all the possible crack paths by solving a
heat-conduction-like boundary value problem Oliver et al. (2004). Potential crack paths cor-
respond to the isovalues of a temperature-like field. This strategy allows preserving the local
nature of the SDM because quantities defined on neighborhoods of the finite elements are no
longer needed: the potential crack paths are determined once on the whole domain. Despite
this interesting feature, the global tracking step is generally performed at the beginning of the
analysis and therefore the isolines do not change once they have been determined. This strategy
leads to accurate results in the case of quasi-static loadings but is not appropriate in the case
of cyclic loadings, when the local stress states may be subjected to strong variations. Furth
ermore, local redistribution phenomena at the crack tip may not be described properly if the
crack path can not change during the computational analysis. According to the aforementioned
discussion, the second objective of our research was to improve the global tracking algorithm
originally proposed by Oliver et al. (2002b) in order to make it able to deal with cyclic loadings.

Consequences from a strong discontinuity kinematics in an anisotropic damage set-
ting

Anisotropic continuum damage framework The class of anisotropic continuum damage
models under study is inspired by the Bargellini et al. (2006) and can be classified among the
so-called micro-mechanics-based approaches. They are based on a tensorial decomposition of the
stress/strain relation. This feature allows giving a physical meaning to each component of the
damage-like variables. A summary of the constitutive equations is given in Table 3.1. We can
note the presence of a famility of functions (gi)i=1,··· ,n : E → R+, with E being the space of com-
patible strain tensors. The (gi)i=1,··· ,n are assumed to be combinations of quadratic strain-based
terms in order to ensure (i) the convexity and (ii) the continuity of the second order derivative
of the state potential. The functions gi may be chosen according to tensorial representation
theories in order to particularize the way of taking into account the damage anisotropy Boehler
(1978); Walpole (1984); Bargellini et al. (2006). Furthermore, the thermodynamic forces associ-
ated to the isotropic hardening are naturally bounded Zi ∈ [0, Z0] since the loading/unloading
conditions are assumed to be fulfilled.
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Description Equation

Total state potential Ψ(ε, (ρi)i=1,··· ,n) = Ψ0(ε)−Ψa(ε, (ρi)i=1,··· ,n)

Elastic potential Ψ0(ε) = 1
2ε : C : ε

Inelastic potential Ψa(ε, (ρi)i=1,··· ,n) =
∑n

i=1 ρigi(ε)

Stress/strain relation σ(ε) = ∂Ψ
∂ε (ε, (ρi)i=1,··· ,n) = σ

0
(ε)−

∑n
i=1 ρi

dgi
dε (ε)

Thermodynamic force — damage variable ρi Fρi(ε) = − ∂Ψ
∂ρi

(ε) = gi(ε)

Thermodynamic force — hardening Zi = dHi(zi)
dzi

Threshold surface φρi(Fρi , Zi) = Fρi − Zi
Flow rules — damage variable ρi ρ̇i = λ̇i

∂φρi
∂Fρi

= λ̇i

Flow rules — hardening variable zi żi = λ̇i
∂φρi
∂Zi

= −λ̇i
Loading/unloading conditions λ̇i ≥ 0; φρi ≤ 0; λ̇iφρi = 0

Table 3.1: Summary of the constitutive equations characterizing the anisotropic continuum
damage model.

Strong discontinuity kinematics Let us denote by Ω a body in R3. Let us also assume
that a strong discontinuity occurs at a certain location Γ in Ω, such that Ω is split into two
sub-bodies Ω+ and Ω−. These two sub-bodies can be identified in a consistent manner according
to the normal n to the discontinuity Γ. The discontinuous displacement field can be expressed
as follows:

u(x, t) = u(x, t) +HΓ(x)[u](x, t) (3.11)

where u : Ω× [ti, tf ]→ R3, [u] : Ω× [ti, tf ]→ R3 and HΓ : Ω→ {0, 1} is the Heaviside function
centered on Γ. [ti, tf ] stands for the pseudo-time interval in which the loading process takes
place. The corresponding strain field can be deduced from Equation 3.11 as follows:

ε(x, t) = ∇su(x, t) = ε(x, t) + δΓ(x)([u]⊗ n)s(x, t) (3.12)

where ∇(.) stands for the the gradient of (.), (.)s stands for the symmetric part of (.), ε is the
regular (bounded) part of the strain tensor ε, and δΓ(x) is the Dirac function (the derivative of
the Heaviside function HΓ in the distributional sense) centered on Γ. It can be seen that ε is the
sum of two contributions, which are not given in detail since the important feature is that the
sum is bounded. Furthermore, let us note that δΓ(x)[u] constitutes the irregular (unbounded)
part of the strain tensor ε. Considering the kinematics defined by Equation 3.12, it is necessary
to introduce mathematical conditions which make it compatible with the class of continuum c
onstitutive models summarized in Table 3.1

Furthermore, because the equilibrium equations should be fulfilled in both Γ and Ω \ Γ, the
continuity of the traction vector through the discontinuity must be ensured. On the other hand,
since the stress (and the corresponding rates) must be bounded on Ω \ Γ, we can deduce that
they should also be bounded in Γ Oliver et al. (2002a). Therefore, the continuity of the traction
vector implies that the following condition must be fulfilled:

t Γ = σ
Ω\Γ.n (3.13)

The condition expressed by Equation 3.13 is known as the traction continuity condition.

Compatibility conditions The Dirac function is regularized by the following sequence Oliver
(1996b):

72



δΓ(x) ≈ δkΓ(x) =
1

k
µΓ(x) (3.14)

where µΓ is a collocation function centered on Γ, i.e., µΓ(x) = 1 if x ∈ Γ, but µΓ(x) = 0
otherwise. Hence, the strong discontinuity kinematics can be expressed in a regularized way as
follows:

ε(x, t) ≈ εk(x, t) = ε(x, t) +
1

k
([u]⊗ n)s(x, t) (3.15)

For the sake of clarity, the dependance on the position vector x and on the pseudo-time t are
omitted when no confusion is possible. Combining the stress/strain relation shown in Table 3.1
with Equation 3.15, the Cauchy stress on the discontinuity Γ is expressed as follows:

σk =
1

k
C : (kε+ ([u]⊗ n)s)−

n∑
i=1

ρi
k

dgi
dε

(kε+ ([u]⊗ n)s) (3.16)

The Cauchy stress tensor σ can be obtained by taking the limit of Equation 3.16 when k tends
to 0:

σ = lim
k→0

σk = lim
k→0

(
1

k
C : ([u]⊗ n)s

)
−

n∑
i=1

lim
k→0

(ρi
k

) dgi
dε

([u]⊗ n)s (3.17)

Finally, the traction vector t can be deduced. After some algebraic manipulations, one ends up
with the following expression:

t = σ.n = lim
k→0

(
1

k
Q

)
.[u]−

n∑
i=1

lim
k→0

(ρi
k

) dgi([u⊗ n])s

dε
.n (3.18)

where Q = n.C.n stands for the acoustic tensor.

Analysis The expression of the traction vector on the discontinuity Γ shows that two terms
must be analyzed. The first one is related to the micro-cracking density variables limk→0

(ρi
k

)
and the second one can be interpreted as an initial stiffness limk→0

(
1
kQ
)

. In order to study

the first term, let us introduce the discrete hardening variable z̄i which will be required to be
bounded, such as:

z̄i =
zi
k

(3.19)

The micro-cracking damage variable ρi can be linked with its time derivative as follows:

ρi =

∫ tf

ti

ρ̇idt (3.20)

Furthermore, considering the continuous flow rules, we end up with:

ρi = −
∫ tf

ti

żidt = −
∫ tf

ti

k ˙̄zidt =⇒ ρi
k

= −
∫ tf

ti

˙̄zidt = −z̄ (3.21)

Finally, we show the bounded character of the first term:

lim
k→0

(ρi
k

)
= −z̄ <∞ (3.22)
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Furthermore, it seems interesting to study what are the consequences of the introduction of
a bounded discrete hardening variable on the tangent modulus when the strong kinematics is
considered. The hardening modulus can be expressed as follows:

Ż =
dZ

dz
ż =

dZ

dz
k︸︷︷︸

= dZ̄
dz̄

˙̄z (3.23)

In Equation 3.23, we note that both terms Ż and ˙̄z are bounded in an intrinsic way (because
Z and z are also bounded). Therefore, the term dZ

dz k also has to be bounded. This result can
be interpreted as the fact that the discrete tangent modulus is bounded on the discontinuity.
A second implication of this result is the fact that a discrete flow rule can be derived from the
continuous one in order to manage the discrete hardening variable, and therefore the discrete
micro-cracking variable (since they are flow-coupled).

Now, let us consider the second term limk→0

(
1
kQ
)

. This term is related to an initial elasticity

exhibited by the traction vector when the displacement jump flows. Indeed, by differentiating
Equation 3.18, we end up with:

∂t

∂[u] t=ti

= lim
k→0

(
1

k
Q

)
(3.24)

However, if we consider a displacement jump introduced (or in other words, the introduction of

a discontinuity Γ) at the pseudo-time ti, we can note that on the one hand limk→0

(
1
kQ
)

= +∞,

and on the other hand [u] = 0. Therefore, the product limk→0

(
1
kQ
)
.[u] is an undetermined

form. To move forward, it is necessary to invoke the continuity conditions of the traction vector
Oliver et al. (2002a). Indeed, since they should vanish for all pseudo-times, they are especially
fulfilled at the pseudo-time t = ti. In this way, we can see that this product is bounded. The
bound can be determined by the continuity of the traction vector (see Equation 3.13). Therefore,

we can see that limk→0

(
1
kQ
)
.[u] = t0. The bound t0 depends on the lo calization criterion to

introduce the discontinuity Γ. Equation 3.18 can be re-written consistently as follows:

t = t0 −
n∑
i=1

ρ̄i
dgi([u]⊗ n)s

dε
.n (3.25)

Anisotropic discrete damage framework From the aforementioned presentation, we can
conclude that there can be defined a set of discrete variables which remain bounded although the
strain field is unbounded. This feature is of primary importance because it leads to the possibility
of building bounded flow rules. This set of discrete variables needs to be complemented by a
discrete state potential. To reach this objective, the k-regularization of the Dirac function is
combined with the expression of the continuous state potential presented in Table 3.1:

Ψk = Ψk
0(ε+

1

k
([u]⊗ n)s)− Ψ̄k

a((ρ̄i)i=1,··· ,n, ε+
1

k
([u]⊗ n)s) (3.26)

After factoring the term 1
2k2 , the first term Ψk

0(ε+ 1
k ([u]⊗ n)s) can be expressed as follows:

Ψk
0(ε+

1

k
([u]⊗ n)s) =

1

2k2

(
kε+ ([u]⊗ n)s

)
: C :

(
kε+ ([u]⊗ n)s

)
(3.27)

Considering the limit of Ψk
0 when k tends to 0, one ends up with:
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Ψk
0(ε+

1

k
([u]⊗ n)s) ∼

k→0

1

2k2
([u]⊗ n)s : C : ([u]⊗ n)s =

1

2k
[u].

(
1

k
n.C.n

)
.[u] (3.28)

Now the elastic contribution of the discrete state potential can be expressed as follows:

Ψ̄0 = lim
k→0

kΨk
0 =

1

2
[u]. lim

k→0

(
1

k
Q

)
.[u]︸ ︷︷ ︸

=t0

(3.29)

Let us consider now the second term in Equation 3.26. Keeping in mind that the set of functions
(gi)i=1,··· ,n are combinations of quadratic strain-based terms, we can obtain from Equation 3.26
the following expression:

Ψk
a((ρ̄i)i=1,··· ,n, ε+

1

k
([u]⊗n)s) =

1

k2

n∑
i=1

ρigi(kε+([u]⊗n)s) =
1

k

n∑
i=1

ρi
k
gi(kε+([u]⊗n)s) (3.30)

Taking the limit of Equation 3.30, the inelastic contribution of the discrete state potential takes
the following form:

Ψ̄a = lim
k→0

kΨk
a =

n∑
i=1

ρ̄igi(([u]⊗ n)s) (3.31)

The discrete state potential can be expressed by subtracting the inelastic contribution from the
elastic one:

Ψ̄ =
1

2
t0.[u]−

n∑
i=1

ρ̄igi(([u]⊗ n)s) (3.32)

The full set of discrete constitutive equation can now be defined. It is summarized in Table 3.2.

Description Equation

Total state potential Ψ̄ = 1
2t0.[u]−

∑n
i=1 ρ̄igi(([u]⊗ n)s)

Elastic potential 1
2t0.[u]

Inelastic potential
∑n

i=1 ρ̄igi(([u]⊗ n)s)

Traction — separation relation t = t0 −
∑n

i=1 ρ̄i
dgi([u]⊗n)s

dε .n

Thermodynamic force — damage variable ρ̄i F̄ρ̄i = − ∂Ψ̄
∂ρ̄i

= gi(([u]⊗ n)s)

Thermodynamic force — hardening Z̄i = dH̄i(z̄i)
dz̄i

Threshold surface φ̄ρi(F̄ρi , Z̄i) = F̄ρi − Z̄i
Flow rules — damage variable ρ̄i ˙̄ρi = ˙̄λi

∂φ̄ρi
∂F̄ρ̄i

= ˙̄λi

Flow rules — hardening variable z̄i ˙̄zi = ˙̄λi
∂φ̄ρi
∂Z̄i

= − ˙̄λi

Loading/unloading conditions ˙̄λi ≥ 0; φ̄ρ̄i ≤ 0; ˙̄λiφ̄ρ̄i = 0

Table 3.2: Summary of the constitutive equations characterizing the anisotropic discrete damage
model.
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Application to the description of mixed-mode cracking The set of constitutive equa-
tions presented in Table 3.2 characterizes a class of tension/separation laws induced by a strong
discontinuity kinematics. With the aim of describing mixed-mode cracking in a refined way,
this set of discrete constitutive equations has been particularized. For the sake of clarifty, a
two-dimensional framework has been considered. Especially, specific choices for both the func-
tions (gi)i=1,2,4,7 and the discrete hardening variables

(
Z̄
)
i=1,2,4,7

have been made. Based on

Bargellini et al. (2006), the following set of functions has been chosen:
gi :E → R+

ε 7→ gi(ε) =α

[
tr(ε.ε)− 1

2
tr2(ε) + tr(ε)tr(ε.N

i
)

]
+ 2βtr(ε.ε.N

i
)

(3.33)

where (N
i
)i=1,2,4,7 are directional second order tensors which can be determined according to

the normal and the tangent vectors to the discontinuity, α and β are positive constants that
can be identified from the elastic properties, and E is the space of admissible strains. The
directional tensors aim at considering micro-cracking density variables in specific directions. For
each direction, a specific mechanism (tension, shear, compression, etc.) can be considered with
respect to the orientation of the discontinuity. More precisely, the directional tensors can be
expressed as follows: 

N
1

= n⊗ n
N

2
= t⊗ t

N
4

=
1

2
(n+ t)⊗ (n+ t)

N
7

=
1

2
(n− t)⊗ (n− t)

(3.34)

where n and t stand for the normal and tangential vectors to the displacement discontinuity.
Both the discrete damage variables and the isotropic hardening thermodynamic forces are defined
through a consolidation function H̄i. We make use of the proposal made by Bargellini et al.
(2006), which consists in the following expression:

H̄i :R→ R

x 7→ H̄i(x) = −Z0Ciexp

(
− x

Ci

)
(3.35)

where Z0 and Ci are the elastic energy rate stored at the localization time and material param-
eters to be identified for each damage variable and exp stands for the exponental function. To
take into account mixed-mode cracking, let us project the displacement discontinuity onto the
local basis (n, t). Furthermore, taking advantage of the tensorial representation defined by the
set of equations 3.35, the strain-like term in the traction/separation law (see Equation 3.2) can
be reformulated as follows:

([u]⊗ n)s = ([u]nn+ [u]tt)⊗ n)s = [u]nN1
+

1

2
[u]t

(
N

4
−N

7

)
(3.36)

where [u]n = [u].n and [u]t = [u].t. Equation 3.36 shows the usefulness of the tensorial decom-
position introduced through the choice of the (gi)i=1,2,4,7. Indeed, the first term allows driving
the crack opening/closing effect whereas the second one describes the shear/sliding effects. It is
interesting to note that the strain-like term does not depend on the directional tensor N

2
, which

is interpreted according to Bargellini et al. (2006) as the contribution of purely compressive
loadings. After some analytical developments and considering the strain-like term expression,
the traction/separation law becomes:
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t = t0 −
(

(3α+ 4β)ρ̄1 + 2(α+ β)(ρ̄4 + ρ̄7) (0.5α+ β)(ρ̄4 − ρ̄7)
(0.5α+ β)(ρ̄4 − ρ̄7) (α+ β)(ρ̄1 + ρ̄4 + ρ̄7)

)
.

(
[u]n
[u]t

)
(3.37)

We can note that a symmetric stiffness-like matrix which depends on the damage variables
comes out. Assuming the damage variables ρ̄4 and ρ̄7 flow in a similar way, the out-of-diagonal
terms of the stiffness matrix becomes equal to zero and therefore, the normal component of
the traction vector is only driven by the normal component of the displacement discontinuity.
However, cracking modes I and II remain coupled through the damage variables ρ̄4 and ρ̄7.

Local considerations In order to illustrate the main features of the constitutive law presented
in the previous sections, some local tests have been simulated. However, within the framework
of the SDM, local simulations are performed at the finite element level since the displacement
discontinuity field is spatially discretized. The corresponding shape functions are generally taken
to be a linear combination of classical shape functions, but this is not mandatory. The only
condition to be fulfilled in order to make possible the static condensation of the additional
unknowns characterizing the displacement discontinuity is to ensure that their spatial mean
is null over a given finite element. The results coming from a cyclic tension test are shown in
Figure 3.14. In particular, the stress/strain relation and the tension/separation law are depicted
in Figures 3.14a and 3.14b, respectively. On the one hand, we can observe that the unloading
modulus is equal to the secant modulus. In addition, we note that the crack closure effect
is also taken into account. Indeed, SDM provides a very convenient framework to handle this
effect, mainly because it is sufficient to remove the contribution of the displacement discontinuty
to recover Hooke’s law without violating any thermodynamical principles. Indeed, this is made
possible because the crack features (such as the crack opening) are quantified. The use of closure
functions is no longer necessary.
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(b) Tension/separation law.

Figure 3.14: Numerical results — cyclic tension test.

To move forward, a cyclic tension/shear test has also been simulated. It consists in applying a
tension loading path in the first step (at a pseudo time t such that 0 ≤ t ≤ 1). Then, the RVE
is unloaded in the second step (at a pseudo time t such that 1 ≤ t ≤ 2). The last step consists
in applying a shear loading path (at a pseudo time t such that 2 ≤ t ≤ 3). The results are
shown in Figure 3.15. In Figure 3.15a, we note that, during the first step (tension), the damage
variable ρ̄1 flows from 0 upwards, to reach a constant value. The damage variables ρ̄4 and ρ̄7

flow at the same time but at a slower rate. During the same step, the results shown in Figure
3.15b show an increase of the normal component of the displacement discontinuity and no flow
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of the tangential component, which is meaningful in the case of a tension loading. In the second
step (unloading), the damage variables remain constant and the normal component of the crack
opening decreases. In the last step (shear), Figure 3.15a shows that only the damage variable
ρ̄4 and ρ̄7 flow: the damage variable ρ̄1 remains constant, which is consistent with the fact that
the loading is shear dominated. Regarding the components of the displacement discontinuity,
only the tangential one increases.
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Figure 3.15: Numerical results — cyclic tension test.

Alternative cracking path continuity strategy

Background The objective of the global tracking algorithm is to determine the envelopes
Si, defined as Si = {x ∈ Ω | θ(x) = θSi}. The constants θSi can be determined by assuming a
localization criterion that should be fulfilled in order to locally introduce the strong discontinuity
kinematic. For the sake of clarity, the theoretical background of the global tracking algorithm is
presented within a two-dimensional framework. However, the extension to three dimensions does
not lead to any specific difficulties. According to the proposal made by Oliver et al. (2002b),
the starting point of the approach lies in introducing a unitary vector field T (x) defined for
all points x ∈ Ω, Ω being the domain under study. The vector field T (x) is an input: it can
be computed according to the principal stresses for instance, in the case of a Rankine-based
localization criterion. The problem consists in finding a scalar field θ(x) such that:

T (x).∇θ(x) = 0 ∀x ∈ Ω (3.38)

Equation 3.38 expresses the fact that a θ(x) is sought such that its directional derivative in the
direction prescribed by T (x) should be null. Omitting some analytical computations, it can be
shown that the aforementioned problem can be reformulated as a boundary value problem:

∇q(x) = 0 ∀x ∈ Ω

q(x) = − (T (x)⊗ T (x)) .∇θ(x) ∀x ∈ Ω

q(x) x∈∂Ωq
.ν = 0 ∀x ∈ ∂Ωq

θ(x) x∈∂Ωθ
= θ?(x) ∀x ∈ ∂Ωθ

(3.39)

Looking at the formulation 3.39, it can be noted that the Neumann boundary condition on ∂Ωq

is automatically fulfilled. On the other hand, the Dirichlet boundary condition on ∂Ωθ should
be prescribed with care. Indeed, it can be shown that the solution does not depend on the choice
of the Dirichlet boundary conditions as soon as the values of the scalar temperature-like field
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are prescribed at two different nodes belonging to different isovalues Oliver et al. (2002b). Last,
the second-order tensor Q = T (x)⊗T (x) can be interpreted as a conductivity-like tensor when

coming back to the analogy with a heat conduction-like problem.

Furthermore, it is interesting to analyze the second-order conductivity tensor Q. Assuming

this tensor is projected on the two-dimensional canonical basis, it is represented by the following
2× 2 matrix:

[T (x)⊗ T (x)] =

(
T 2
X TXTY

TXTY T 2
Y

)
(3.40)

where T (x) = [TX(x) TY (x)]t. Looking at Equation 3.40, it is obvious that the conductivity
matrix can not be inverted, due to the nullity of its determinant. In other words, the rank of the
conductivity matrix is not equal to 2. This feature may be the source of an ill-posed problem.
In order to overcome this drawback, Oliver et al. (2002b) proposes to add a so-called algorithmic
conductivity as follows:

[T (x)⊗ T (x)]ε =

(
T 2
X TXTY

TXTY T 2
Y

)
+ ε

(
1 0
0 1

)
(3.41)

where ε is a user-defined numerical parameter. The way to choose this numerical parameter is
not clear at all. The only recommendation provided in the cited paper is to set this parameter to
a small value. However, it is easy to show that the results obtained when solving the boundary
value problem defined by Equations 3.39 are highly dependent on this numerical parameter. In
addition, the fact of adding a diffusivity term, as shown in Equation 3.41, leads to the non-
fulfillment of the governing equations 3.39. This last comment can be interpreted as a limitation
of the global tracking strategy expressed in its initial form and has already been pointed out in
the recent studies Feist et Hofstetter (2007a); Zhang et al. (2015).

For our first illustration of the use of the global tracking algorithm, the well-known experi-
ment performed by Schlangen (1993) has been simulated. The specimen is a single edge notched
(SEN) plain concrete beam subjected to asymmetric bending. The concrete cracking has been
described by means of the tension/separation law derived from the class of anisotropic contin-
uum damage models analyzed in the previous sections. Some of the results are shown in Figures
3.16 and 3.17 in terms of the crack path and the isovalues of the normal component of the
displacement discontinuity, respectively. The heat conduction-like problem is solved only once,
at the beginning of the nonlinear analysis. Three cases have been considered: (i) no tracking at
all (see Figures 3.16a and 3.17a), (ii) tracking without considering previously intersecting finite
elements during the crack propagation (see Figures 3.16b and 3.17b), and (iii) tracking consid-
ering previously intersecting finite elements during the crack propagation (see Figures 3.16c and
3.17c). In the first case, we noted many convergence issues, mainly due to the poor prediction
of the crack orientations during the propagation leading to stress locking. This assumption is
corroborated by the fact that sometimes no softening could be obtained. In the second case,
we noted fewer numerical issues, but the stress states were not well described. In particular, we
observed some residual stresses at some integration points. However, a softening branch at the
beam scale could be described. In the last case, the information related to the intersecting finite
element was exploited in order to take into account the position of the displacement discontinu-
ity in the current finite element. No specific convergence issues were reported. In addition, we
saw that the analysis was almost fully mesh-independent.
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(a) No tracking. (b) Tracking without consider-
ing intersecting finite element
edges.

(c) Tracking considering inter-
secting finite element edges.

Figure 3.16: Crack path around the notch — gray finite elements having enhanced kinematics
are highlighted in gray.

(a) No tracking. (b) Tracking without consider-
ing intersecting finite element
edges.

(c) Tracking considering inter-
secting finite element edges.

Figure 3.17: Normal component of the displacement discontinuity around the notch — gray
finite elements having enhanced kinematics are highlighted in gray.

Towards a new interpretation of the boundary value problem to enforce the
C0-geometrical continuity of the crack path With the aim of overcoming the aforemen-
tioned limitation, we have proposed a new interpretation of the initial boundary problem defined
by Equations 3.39. To start with, let us consider a convection–diffusion problem that consists
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in finding a scalar temperature-like field θ(x) such that:
T (x).∇θ(x)︸ ︷︷ ︸
Convective term

− div (α∇θ(x))︸ ︷︷ ︸
Diffusive term

∀x ∈ Ω

θ(x) x∈∂Ωθ
= θ?(x) ∀x ∈ ∂Ωθ

(3.42)

where α is a diffusion coefficient. Equation 3.42 is pretty close to the initial problem defined
by the set of equations 3.39. Indeed, an additional term which can be interpreted as a diffusive
contribution has been included. Let us focus on the one-dimensional case. Assuming a constant
diffusion coefficient and considering on the one hand a first order upward scheme for the con-
vective term and, on the other hand, a second order centered scheme for the diffusive term, the
problem 3.42 gives the following set of equations:T

θi − θi−1

∆x
− αθi+1 − 2θi + θi−1

∆x2
= 0 i ∈ {1, · · · , n}

θ0 = θ? i = 0
(3.43)

where ∆x is the one-dimensional spatial discretization step. To move forward, let us analyze
the discretized expression of the convective term. After some analytical computations, it can be
shown that:

T
θi − θi−1

∆x︸ ︷︷ ︸
Upward scheme

= T
θi+1 − θi−1

2∆x︸ ︷︷ ︸
Centered scheme

− T∆x

2︸ ︷︷ ︸
Diffusion coefficient

θi+1 − 2θi + θi−1

∆x2︸ ︷︷ ︸
Centered scheme

i ∈ {1, · · · , n} (3.44)

Equation 3.44 shows that the discretized expression of the convective term by means by the first
order upward scheme is equal to the discretized expression of this same term by using a first order
centered scheme plus an additional contribution which is equal to the discretized expression of the
diffusive term, considering a second order centered scheme. Comparing Equations 3.43 and 3.44,
we note that a numerical diffusive term comes out naturally and is characterized by a diffusion
coefficient T∆x

2 , which is a function of a mesh characteristic length: ∆x in the case of one-
dimensional problems. This term is similar to the diffusion coefficient ε introduced in Equation
3.41 but is no longer user defined. This observation constitutes the fundamentals of upward
discretization methods classically used in fluid mechanics Hughes (1987). Within the framework
of our research, this feature is crucial since it allows recovering, in a rigorous and consistent
manner, the initial heat-conduction-like problem arbitrarily enhanced with an additional term
(see Equation 3.41). Higher-dimensional extensions of the numerical diffusion concept have been
well established in the literature of fluid mechanics but have never been applied to enforce the
C0-geometrical continuity of the crack path in the case of a strong discontinuity kinematics. More
precisely, we focused on the case of two formulations. Given a vector field T (x), a straightforward
multi-dimensional extension of the concept of numerical diffusion, the following formulation has
been proposed Hughes (1987):T (x).∇θ(x)− div

(
hT || T (x) ||

2
∇θ(x)

)
∀x ∈ Ω

θ(x) x∈∂Ωθ
= θ?(x) ∀x ∈ ∂Ωθ

(3.45)

where hT is a mesh characteristic length. Equation 3.45 describes the numerical diffusion as an
isotropic process, which may not be appropriate for all situations. Another formulation, which
assumes the numerical diffusion is only in the direction of the vector field T (x), has also been
proposed:
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T (x).∇θ(x)− div

(
hT || T (x) ||

2

T (x)⊗ T (x)

|| T (x) ||2
∇θ(x)

)
∀x ∈ Ω

θ(x) x∈∂Ωθ
= θ?(x) ∀x ∈ ∂Ωθ

(3.46)

Weak formulations associated with problems described by Equations 3.45 and 3.46 have been
built and implemented in the finite element software Cast3M. In order to illustrate their capa-
bilities, the SEN plain concrete beam has been considered once again. Figures 3.18a and 3.18b
depict the isovalues of the temperature-like field. In the case of isotropic diffusion, the isovalues
are much more stable: no oscillation appears. In contrast, in the case of directional diffusion, the
isovalues seem to be less stable. Therefore, in the case of our problem, considering a direction
diffusion does not seem to be sufficient.

(a) Isotropic diffusion. (b) Directional diffusion.

Figure 3.18: Isovalues of the temperature-like field.

As a consequence of the above considerations, the most appropriate strong formulation of the
global tracking algorithm is given by Equation 3.18a. Another interesting feature of this method
is related to the fact that the diffusion coefficient is not user-defined but is a function of a
mesh characteristic length hT . A sensivity analysis has been performed with different meshes.
The results are presented in Figure 3.19. We can note that the isovalue starting from the
notch changes. Indeed, the more refined the finite element mesh, the less intense the numerical
diffusion. This feature is due to the fact that the diffusion coefficient decreases with the mesh
size. In the case of an infinitely fine mesh, the diffusion coefficient becomes also infinitely small.
The method is therefore consistent with the initial (ill-posed) problem (see Equation 3.40). In
addition, the isovalue changes in a stable way with the mesh refinement, which is a very nice
property when coupling this tracking approach with SDM.

Figure 3.19: Isovalues of the temperature-like field for different meshes — root element plotted
in red.

Online tracking strategy to handle cyclic loadings Usually, in the context of a nonlin-
ear analysis, the boundary value problem related to the tracking strategy is solved only once,
at the first pseudo-time. This gives satisfactory results in the case of quasi-static loading, in
which the stress state flows continuously smoothly. The main reason for this choice is related
to the fact the isovalues of the temperature-like field may change during the analysis Feist et
Hofstetter (2007b), which leads to unstable crack propagation and stress locking issues. One
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of the possibilities for overcoming this drawback lies in applying Dirichlet boundary conditions
in Ω in order to make the isolines more stable. This strategy is not appropriate because the
initial boundary value problem is drastically modified. Another solution lies in mixing the global
algorithm with local strategies, requiring specific information related to the vicinity of the finite
elements. A knowledge of the connectivity table becomes necessary, which makes this approach
nonlocal Zhang et al. (2015). Despite the fact that good results may be obtained, the globality
of the tracking strategy becomes lost.

In order to preserve the global nature of the tracking strategy, in the sense that the connectivity
table does not need to be known, we introduced an alternative strategy based upon a modifica-
tion of the former definition of the potential crack paths. More precisely, the former definition
of the ith crack path, denoted Si, is expressed as follows at the localization pseudo-time t0:

Si(t0) =

{
x ∈ Ω | θ(x) = θSi(t0)

θSi(t0) = θ(xr, t0); xr ∈ Ω | || σ(xr, t0) ||≥ ft
(3.47)

where ft is an initial threshold to be overcome in order to induce the strong discontinuity
kinematics and || . || is a tensorial norm. The previous definition implicitly assumes that the
portion of the isovalue associated with the active part of the crack (i.e., points characterized by
[u] 6= 0) does not change any more. However, due to the approximate nature of a finite element
solution, this feature is not generally ensured. As a consequence, stress locking effects may take
place, mainly due to changes of the decomposition of a finite element. In order to overcome
this drawback, the root element should be updated ∀t ≥ t0. This ensures taking into account
both the active part Sia and the potential part Sip of the crack. In order to allow for online
tracking and ensure a stable and consistent evolution of the isovalues, Definition 3.47 has been
complemented by the following one:

Si(t) = Sia(t) ∪ Sip(t) =
n−1⋃
k=0

S̃ia(tk) ∪ S̃ip(tn)

S̃i(tk) = {x ∈ Ω | θ(x, tk) = θ(xr, tk), [u](xr, tk) 6= 0}
S̃i(tn) = {x ∈ Ω | θ(x, tn) = θ(xr, tn), [u](xr, tn) = 0}

xr ∈ Ω | || σ(xr, tk) ||≥ ft

(3.48)

where n is the total number of pseudo-time steps. The definition expressed by Equation 3.48
simply expresses the fact that the root element xr is updated at each converging time step. In
other words, the crack is tracked sequentially all along its propagation. The potential crack
path is then defined sequentially, ensuring its stable evolution during the crack propagation. An
illustration of the proposed online strategy is given in Figure 3.20. In particular, when no root
element updating is used (see Figure 3.20a), we observe that the evolution of the isovalue leads
to additional finite elements in which the strong discontinuity kinematics is activated. This
is not consistent, because the strong discontinuity regime appears far from the crack tip. In
contrast, when the root element is updated during the nonlinear analysis, complemented by a
sequential building of the crack path, the latter effect is no longer observed, as shown in Figure
3.20b. The fact that the isovalues change in a stable way when employing online tracking opens
the way to handling the complex case of cyclic loadings.

Numerical example

In the following, a structural case study is presented in order to illustrate not only the discrete
traction/separation law accounting for mixed mode cracking but also the alternative tracking
strategy discussed above. The specimen tested by Schlangen (1993) is considered once more.
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(a) Online tracking — without root el-
ement updating.

(b) Online tracking — with root ele-
ment updating and sequential building
of the crack path.

Figure 3.20: Comparison between online tracking strategies — gray area = strong discontinuity
kinematics activated.

The loading setup is shown in Figure 3.21. The thickness of the beam is 50 mm and the rigid
platens have a width of 20 mm. The asymmetry of the load is obtained by mounting a trimmer
on the beam. Numerically, a rigid trimmer has been modeled in order to represent a controlled
asymmetry of the load. The platens have been modeled by perfect rigid bodies. Nevertheless, in
order to make the post critical analysis more robust, the loading was controlled in terms of ver-
tical displacement. The online tracking strategy presented in the previous paragraph has been
used. The concrete is described by the traction/separation law presented, derived from the class
of anisotropic continuum damage models discussed above. Two cases have been considered: (i)
only mode I is taken into account, and (ii) the mixed mode is included in the traction/separation
law. In other words, in the first case, the tangential component of the displacement discontinuity
vector is set to zero.

The results are presented in Figure 3.22. The quantitative experimental–numerical compari-
son highlights the preponderant role played by the tangential component of the displacement
discontinuity vector. Indeed, when it is not taken into account, we note the inability of the
computational model to exhibit softening. In addition, the deformed shape of the SEN beam
shown in Figure 3.22c allows discerning the continuity of the crack path. Research aimed at
handling the case of multicracking is ongoing.
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Figure 3.21: Loading setup according to Schlangen (1993) — SEN plain concrete beam.
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Figure 3.22: Experimental–numerical comparisons — SEN plain concrete beam.

3.3 Structural dissipation capability

3.3.1 Effect of cracking on damping

Driving ideas

Nowadays, several sources of damping have been identified and related phenomena are recognized
as contributing factors to the overall damping phenomenon. In the case of concrete or reinforced
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concrete, one can point to (i) the frictional sliding between the surfaces of the crack, (ii) the
bond at the steel/concrete interface that may induce residual displacements, (iii) radiation
damping, and (iv) the energy dissipation at connections or the dissipation due to non-structural
components Semblat et al. (2001). The most common way of modeling damping in structural
analysis consists in including a velocity proportional force field in the balance equation. This
field is characterized by a viscous damping matrix which can be computed according to several
proposals made in the literature. In particular, the most common linear viscous damping model
is Rayleigh’s damping model Rayleigh (1877). In this case, the viscous damping matrix is
expressed by the following equation:

C = αM + βK̃ (3.49)

where (α, β) are scalar coefficients chosen by the user, M is the mass matrix of the system, and
K̃ is a stiffness matrix. Much research has been carried out in order to give a physical meaning
to the use of viscous damping. Most lies in considering the specific stiffness in Equation 3.49. For
instance, K̃ may be chosen as the secant matrix or as the tangent matrix Priestley et al. (1996);
Priestley et Grant (2005); Petrini et al. (2008). However, recent studies Demarie et Sabia (2011);
Jehel et al. (2014) have demonstrated that such strategies lead to inaccurate estimates of the dis-
placement and internal forces in the structure when dealing with nonlinear time history analysis.

From the aforementioned discussion, it is clear that properly modeling the damping phenomenon
is not an easy task. Coming back to physical considerations, damping can be seen as the result
of local dissipative mechanisms. As a consequence, a natural way to reduce the contribution of
the viscous damping matrix lies in better identifying the local constitutive models. A key issue
is how to account for hysteretic phenomena. In the case of steel, effective constitutive models
have been proposed in the literature. However, things are not so clear in the case of concrete,
for which the hysteretic scheme needs to be properly identified. To do so, an experimental
study has been carried out in order to acquire the appropriate experimental data related to the
energy dissipation in reinforced concrete structural elements. This study was based on a reverse
cyclic three-point bending loading applied to reinforced concrete beams. After post-processing
the experimental results, the data has been used to analyze different hysteretic schemes for
constitutive models of concrete. In this way, recommendations for the key mechanisms to be
included in the constitutive model can be made, both to naturally represent the damping and
to drastically reduce the contribution of the viscous damping matrix.

Experimental and numerical setups

Reinforced concrete specimen and loading Six rectangular reinforced concrete beams
have been tested with different ratios of the longitudinal steel reinforcement, as presented in
Table 3.3. They were subjected to cyclic loading, following two different loading paths. The
specimens are 1.65 m in length, 0.22 m high, and 0.15 m wide.

In order to manifest the dissipative capability of the reinforced concrete specimen, two types of
loadings have been considered, denoted by L1 and L2, respectively. The L1 loading is composed
of several blocks. The first block creates a limited damage level. Then, the subsequent blocks
create intermediate damage, and finally, the last ones create high levels of damage. Each block
is divided into five cycles: cycle #1 creates a given damage level, cycles #2, #3, and #4 have an
increasing intensity (1/3 of cycle#1, 2/3 of cycle #1 and 100% of cycle) and make the reinforced
concrete specimens exhibit hysteretic effects. Cycle #5 aims at stabilizing the dissipated energy.
The loading path L1 is presented in Figure 3.24a. The aim of such a loading is to evaluate the
damping for different levels of progressive cracking. The L2 loading is composed of two blocks
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of cycles. The first block creates a damage level and stabilizes the behavior of the beam. This
block has an intensity of 80% of the predicted maximum load. Then, several blocks of three
cycles are applied and each block has an increasing intensity. The loading path L2 is presented
in Figure 3.24c. In comparison with the L1 loading, the L2 history tends to generate dissipation
for a pre-cracked specimen, generating progressive erosion of the cracked surfaces.

Series Beam Ec(MPa) fcm(MPa) ftm(MPa) Steel ratio (%) Loading case

1 HA8-L1 26,500 (0.9) 32 (0.6) 2.6 (0.1) 0.67 Uncracked
HA8-L2 Pre-cracked

2 HA10-L1 28,500 (3.5) 34 (2.5) 2.7 (10) 1.05 Uncracked
HA10-L2 Pre-cracked

3 HA12-L1 29,000 (5.2) 38 (12.3) 2.7 (1.6) 1.51 Uncracked
HA12-L2 Pre-cracked

Table 3.3: Specimen specifications and loading characteristics — Ec = Young’s modulus for
the concrete — fcm = Compressive strength of the concrete — ftm = Tensile strength of the
concrete — Values in brackets stands for the coefficients of variation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

−1

−0.5

0

0.5

1

Pseudo time

Lo
ad

in
g 

fa
ct

or

(a) L1 loading.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

−1

−0.5

0

0.5

1

Pseudo time

Lo
ad

in
g 

fa
ct

or

(b) L2 loading.

Figure 3.23: Description of the loadings — loading factor = percentage of maximum force.

Equivalent damping ratio In order to quantify the energy dissipation related to hysteretic
phenomenon, in particular the part due to cracking, the damping of the structure has been
quantified by mean of the equivalent viscous damping ratio. For the case of a symmetric hys-
teretic response, the equivalent viscous damping ratio ξeq can be expressed by Equation 3.50, as
proposed by Jacobsen (1960).

ξeq =
Ah

4πAe
=

Ah
2πVmDm

(3.50)

where Ah stands for the dissipated energy within a given cycle, Vm and Dm are the mean values of
the peak force and displacement, Vmax, Vmin and Dmax, Dmin are respectively the maximum and
minimum values of the peak force and displacement, and Ae is the elastic strain energy stored
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in the equivalent linear elastic system having an effective stiffness equal to keff = Vm/Dm.
However, reverse cyclic responses are rarely perfectly symmetric. This can be explained by
the fact that concrete cracking induces anisotropy. Consequently, Equation 3.50 can not be
used straightforwardly. According to Varum (2003), the equivalent viscous damping can be
evaluated for each half-cycle of the load/displacement curves. The principle lies in defining a
half-cycle by two successive zero load points. Then, for each half-cycle, the maximum generalized
displacement Dmax and the corresponding generalized load Vmax are determined. Finally, the
strain energy can be determined by computing the area Ahalf loop and the equivalent damping
ratio is computed according to Equation 3.51 for each half-cycle:

ξeq =
1

π

Ahalf loop

VmaxDmax
(3.51)

Constitutive models In order to analyze the influence at the member scale of the way the
local hysteretic effects are taken into account, several constitutive laws have been considered.
The first one was proposed by LaBorderie (1991) and can be considered as a reference law since
it has been used for a large range of applications. Nevertheless, it is known that this law does
not account for hysteretic effects, and therefore it is interesting to compare its results with those
from more refined models accounting for this effect. In the following, the reference model is
referred to as the “No Hysteretic Dissipation” (NHD) model. The second and third constitutive
models considered are derived from that presented in Section 2.2.3. Both models account for
the unilateral effect with different unilateral criteria accounting for crack closure. In the case
of the second model, the unilateral effect criterion is expressed in terms of stresses, whereas in
the case of the third model, it is expressed in terms of strains. The main consequence of these
two assumptions is the size of the hysteretic loops and therefore, the capability of dissipating
energy that will contribute to the structural damping. In the following, the second model is
referred to as the “Low Hysteretic Dissipation” (LHD) model and the third one as the “High
Hysteretic Dissipation” (HHD) model. The steel reinforcing steel bars are modeled by the
well known constitutive law of Menegotto Pinto, as modified by Filippou et al. (1983). This
constitutive model accounts for both isotropic and kinematic nonlinear hardenings. In particular,
Bauschinger’s effect can be described. The material parameters of all the constitutive models
considered have been identified according the mechanical tests carried out within the framework
of the experimental program. The uniaxial reverse cyclic responses of the three constitutive
models which have been considered are shown in Figure 3.24.
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Figure 3.24: Uniaxial reverse cyclic responses.
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Representative results

The numerical and the experimental equivalent viscous damping ratios have been compared
with each other. The results are shown in Figure 3.25 for all the reinforced concrete beams.
Noticeable differences between all the models can be observed. The experimental results exhibit
an equivalent viscous damping ratio at least equal to 1% for every cycle. The NHD model is
not able to damp for most of the cycles that are lower than 60% of the maximum load. The
HHD model allows obtaining the best results in the case of the L1 loading, as one can see in
3.25. In the case of the L2 loading, the LHD model allows obtaining results that are close to
the ones obtained by the NHD model. The HHD model leads to the best results even if the
damping is overestimated when the reinforcing bars yield. This is not surprising because the
local dissipation due to hysteretic effects is higher than in the case of the other models. In
the case of the low level of loading, the dissipation may come from the hinge device and some
compression near the loading system. The study of the equivalent damping ratio has clearly
revealed the influence of the hysteretic loop scheme on the ability of the model to dissipate
energy. These results are of primary importance since they allow understanding the ability of
the models to describe the damping in a physical way. Based on these results, one can conclude
that the HHD model seems to be able to describe the energy dissipation contributing to damping.

Nevertheless, the simulations performed with the HHD constitutive law lead to satisfactory
results as long as the steel reinforcements do not yield. In the yielding region, the damping is
overestimated. When plasticity is activated, phenomena such as steel/concrete interface sliding,
local shear degradation, and pinching also appear at the same time. These mechanisms are not
included in the model. This result seems helpful for practical applications, since it gives some
guidelines for realistically taking into account not only the hysteretic effect but also the crack
closure effect. Considering the main features of this constitutive law, it can be stated that the
unilateral effect should be treated in terms of strains, meaning that the stiffness recovery is
activated as soon as the total strain becomes negative. Furthermore, the hysteretic effect should
be allowed even though the Cauchy stress (or related indicator) becomes negative. All in all, if
the major sources of dissipation are included in the constitutive models at the material scale,
a physical explanation for damping can be given and the contribution of the viscous damping
matrix can be drastically reduced. As a consequence, the damping may no longer be seen as a
tuning parameter.

3.3.2 Effect of corrosion on the ductility

Driving ideas

Nowadays, stakeholders are reporting a loss of performance of existing structures due to the
presence of aggressive agents. This usually starts with a decrease of the durability of the con-
stituent materials, and is followed by a decrease in the serviceability. If no specific maintenance
action is undertaken, the structural safety of the existing structures can be affected. Then, the
key question lies in finding a way to preserve or even improve existing structures by mean of
economical solutions. In such a context, it is becoming necessary to carry out in situ strength
assessments in order to estimate the safe load-carrying capacity of existing reinforced concrete
structures. Within the framework of the European project Sustainable Bridges Olofsson et al.
(2005), in situ tests of existing bridges were carried out. One of them was a two-span reinforced
concrete bridge located in Sweden, in the city of Ornskoldsvik. Benefitting from the availability
of the experimental data, we focus on this large-scale case study in order to assess the util-
ity of both (for the concrete and and for the steel/concrete interface) constitutive models we
developed. In particular, the research we conducted aimed at quantifying the effects of local
degradation on the overall dissipative ability of the reinforced concrete bridge.
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Figure 3.25: Equivalent viscous damping ratio versus loading factor.

To reach this objective, a two-dimensional finite element model has been developed and cal-
ibrated in order to describe the overall mechanical response of the reinforced concrete bridge
when subjected to a coupling shear/bending loading. Then, local effects, such as a decrease in
the cross section of the steel and the loss of the bond at the steel/concrete interface, were as-
sumed. The consequences of such local degradations on the structural response of the reinforced
concrete bridge have been analyzed in order to discern some trends helping to understand how
it would have behaved if it had been corroded.
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Large-scale in situ tests

The bridge was built in 1955 and was taken out of service in 2005 due to the construction of
a new high-speed railway, the Bothnia Line. The bridge was planned to be demolished in 2006
and was loaded to failure after its decommissioning in order to assess its ultimate load carrying
capacity after a 50-year service period. A picture of the reinforced concrete bridge and part of
the formwork drawings are shown in Figures 3.26a and 3.26b, respectively.

(a) Side view. (b) Geometry — dimensions in meters.

Figure 3.26: Description of the Ornskoldsvik bridge.

The railway bridge was tested with a vertical point load at midspan, as shown in Figure 3.27.
The experimental testing setup was designed to ensure that the bridge failure would be the
result from a combination of shear and bending. The instrumentation included measurements
of the actual material properties of the steel in the reinforcement bars and of the concrete.
The deflections and strains in reinforcement bars were monitored during the loading process in
order to check the deformations and sectional forces. In order to prevent an unwanted bending
failure (without shear), the bridge slab was strengthened with rectangular bars of carbon fiber-
reinforced polymers (CFRP), which were mounted as near-surface mounted reinforcement by
drilling out grooves in the slab. The loading was displacement-controlled in order to make sure
the post-peak region could be captured.

Figure 3.27: Loading setup of the Ornskoldsvik bridge.
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Structural model

The proposed finite element analysis was performed under the plane stress state assumptions.
The steel reinforcement bars were meshed explicitly. The bridge’s strengthening by the addition
of the CFRP bars was also taken into account. In order to improve the numerical robustness of
the nonlinear analysis, small linear elastic areas were considered close to the boundary conditions.
The finite element mesh is depicted in Figure 3.28.

Figure 3.28: Finite element mesh of the Ornskoldsvik bridge — concrete in blue; reinforcing
bars in red; elastic platen in purple; elastic areas and CFRP bars in geen.

The mechanical behavior of the concrete has been described by the constitutive model pre-
sented in Section 2.2.2. The steel/concrete interface has been taken into account by inserting
two-dimensional zero-thickness finite elements between the reinforcing bars and the surrounding
concrete. The constitutive model which has been presented in Section 2.4.1 was used. The steel
bars were modeled by the law of Menegotto–Pinto. The CFRP bars were assumed to be linear
elastic. The material parameters related to both the concrete and steel constitutive models were
identified thanks to the mechanical characterization tests carried out within the framework of
the experimental study. In contrast, the mechanical response of the steel/concrete interface was
poorly documented. It was decided to simulate classical pull-out tests up to failure based upon
the experimental study reported in Dominguez (2005). That data was employed because of the
similarity of the mechanical properties related to concrete and steel. The material parameters
were then identified by performing an inverse analysis. Due to the lack of local experimental
data, no better option was available at the time this work was carried out.

The numerical analysis was carried out with the finite element software Cast3M. The numerical–
experimental comparison in terms of load–midspan displacement is shown in Figure 3.29. The
proposed finite element model gives results in pretty good agreement with those coming from
experiment. The experimental data allows discerning three main degradation stages: first a
brief linear stage, which shows that all the constitutive materials remain fully elastic (from a
midspan displacement equal to 0.0 mm up to 2.89 mm), then a nonlinear stage, which highlights
the cracking of the concrete (from a midspan displacement equal to 2.89 mm up to 8.25 mm),
and lastly, a stage in which the steel reinforcements are yielding (from a midspan displacement
equal to 8.25 mm up to failure). The numerical results obtained by the proposed finite element
model and by the Sustainable Bridges project are both in accordance with the experiment.
However, the numerical simulation performed in the Sustainable Bridges project tends to un-
derestimate the load carrying capacity of the bridge. Several hypotheses can be made to explain
this difference. In particular, no frictional effect is included in the constitutive model used in
the Sustainable Bridges project. This key mechanism seems rather preponderant when shear
occurs. The fact that CFRP bars were added to the bridge before testing decreases the effects
of bending cracks and improves the probability of obtaining a shear failure, and this is what
happened, as shown in Figure 3.30a. The principal strain pattern computed at the failure is
shown in Figure 3.30b. A pretty good agreement can be observed between the numerical failure
mechanism and the experimental one.
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Figure 3.29: Experimental–numerical comparison of load–midspan displacement response.

(a) Cracking pattern at failure. (b) Principal strain localization area.

Figure 3.30: Experimental–numerical comparison of the failure mechanism.

Corrosion and dissipative capability

Known as one of the major effects related to the phenomenon of corrosion, the reinforcement
cross section tends to decrease because of the electrochemical process involved. In order to study
the evolution of the load carrying capacity due to the reduction in the cross section of the steel,
the finite element analysis presented previously has been performed considering four different
steel distributions in the tested span of the bridge. The cross sections of steel reinforcement
bars have been considered as Gaussian random variables. The mean was chosen equal to 100%,
85%, 65% and 50% of the initial cross section. The coefficients of variation were all chosen equal
to 1%. The coherence function is an exponential function, which required the identification of
an internal length. In order to ensure a certain continuity level between the reinforcement, it
was chosen equal to the mean bar element length. It is interesting to note that the iterative
incremental procedure converged more and more slowly as the cross section was reduced. The
numerical results are given in Figure 3.31.

As expected, the load carrying capacity of the bridge decreases with the reduction of the re-
inforcement cross sections. However, two specific features can be pointed out. The decrease
of the cross section acts almost in proportionally on the load carrying capacity of the bridge.
Although no experimental result is available at such a scale, as far as the authors’ knowledge
extends, similar observations were made in Jason et al. (2010), who performed direct tensile
mechanical tests on steel bars in order to study the effect of the reduction of the cross section on
the stress/strain response. A bi-linear relation linking the reduction in the cross section to the
steel’s critical stress was found. The simulation presented in Figure 3.31 clearly shows that one
could expect a similar result for a large-scale reinforced concrete structure. One can also observe
that a local reduction in the reinforcement’s cross section clearly acts on the whole behavior of
the structure. Although these results seem to be interesting because they give some direction
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for further research, the present authors insist on the fact that they are only qualitative, due to
the lack of experimental data at such a scale.
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Figure 3.31: Sensitivity of the load–midspan displacement with respect to steel cross section
reduction.

Another major effect due to the phenomenon of corrosion is the change in the bond strength
at the steel/concrete interface. In order to analyze the influence of this effect on the structural
response of the bridge, four degrees of corrosion (expressed in terms of steel mass loss) were
chosen: 0.0%, 4.0%, 5.0% and 7.0%. The results are shown in Figure 3.32. As expected,
one can see that the carrying capacity decreases with an increase in the degree of corrosion.
Nevertheless, regarding the results previously discussed, one can conclude that the change in
the bond strength is less damaging than the reduction in the cross section. This result goes
in the same direction as those presented in Jason et al. (2010). When a structure is corroded,
the bond strength at the steel/concrete interface reaches an asymptotic value before the steel
cross section is totally consumed by the electrochemical process. In other words, even though
the bond strength has reached a critical value, the carrying capacity of the structure keeps on
decreasing due to the reductionin the cross section of the steel. These results also corroborate
those obtained in Ouglova (2004).
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Figure 3.32: Sensitivity of the load–midspan displacement to the bond properties.

3.4 Probabilistic analysis

3.4.1 Driving ideas

Meaningful structural assessments require accurate and efficient modeling strategies, which are
often nonlinear, as shown in the previous sections. The computational labor required by a
single deterministic analysis is often great. The input parameters of a finite element model
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are identified from experience and therefore have an uncertain nature. Taking into account
uncertainties is an important feature that can improve the decision-making process in various
fields of activities. Structural reliability is a theoretical framework able to take into account
parameter uncertainties Cremona (1995). The reliability assessments of a mechanical system
requires the computation of several quantities of interest, among them, the probability of failure
Pf . Its determination depends on the probability distribution functions (PDF) of the input
variables that have been identified as preponderant. These random variables can be related to
many aspects, such as the geometry, material parameters (tension strength, Young’s modulus,
etc.), and boundary conditions (stiffness, reaction, wave heights, wind pressures, etc.). The
probability of failure can be seen as the probability of exceeding a given threshold. To be more
specific, the random variables X = (X1, · · · , Xd) are gathered into a random vector X and are
called the basic variables. They are defined by a multivariate PDF pX(x). The aforementioned
threshold is classically expressed by a performance function gX(x). Then, the basic space can
be split up into three regions: the safety domain S = {x ∈ Rd : gX(x) > 0}, the failure domain
F = {x ∈ Rd : gX(x) < 0}, and the limit state L = {x ∈ Rd : gX(x) = 0}. The probability of
failure of a mechanical system can be defined by

Pf =

∫
F
pX(x)dx (3.52)

Several methods have been developed to estimate the results of the integration of the PDF over
the failure domain. However, in the case of complex structural models, the limit state function
is only rarely defined in a closed form and may be highly nonlinear. Therefore, it is necessary to
evaluate the structural response through a given model. If the model is complex (which is often
the case when refined structural assessment are the goal), the number calls to the structural
model will control the time consumption related to the failure probability estimation. An way
to reduce the number of performance function calls is to build an analytical approximation of
the performance function. Among the techniques that have been recently developed, one can
find the classical response surface method Bucher et Bourgund (1990) as well as statistical learn-
ing methods such as neural networks and support vector machines (SVMs) Papadrakakis et al.
(1996); Hurtado et Alvarez (2001); Hurtado (2002, 2004). In addition, the number of structural
model calls may further decrease if an appropriate structural design of the input parameters is
employed to build an analytical approximation of the limit state function. Based upon these
considerations, we proposed a strategy benefitting from both the SVM approach and experi-
mental design theory in order to compute a limit state approximation allowing a reduction of
the structural model calls.

According to the aforementioned considerations, it appears that a set of material parameters
may be represented by a random vector X, defined by a joint PDF pX on an appropriate
probability space. This PDF is generally defined according to the current state of knowledge,
characterized by a set of realizations x. In particular, a closed form expression of the PDF
may be naturally determined by the maximum entropy principle. However, when additional
experimental data are acquired from either expert judjements or from measurements, the PDF
should be updated. In other words, a robust updating strategy should be used in order to allow
including additional pieces of knowledge in the probabilistic description of the set of material
parameters considered as uncertain.

In the following, we present a summary of the work we carried out in order to (i) improve
the efficiency of probabilistic methods by minimizing the number of the structural model calls
and (ii) to update a priori joint PDFs based upon new pieces of knowledge.
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3.4.2 Equational framework

An improved response surface method

SVM is a technique which aims at building a relation between two sets: the first one is called the
input data (xi)i=1,··· ,n and the second one is called the response data (yi)i=1,··· ,n. Both sets can

be gathered and lead to the definition of the training set {(x1, y1), · · · , (xn, yn) ∈
n
×
i=1

(Rd ×R)}.
Within the framework of our research, we defined the input set (xi)i=1,··· ,n to be a realization of
the vector of material parameters. The output set (yi)i=1,··· ,n was defined as the values of the
limit state function. The SVM provides a closed form expression g̃X linking both these sets. In
the nonlinear case, it is expressed as follows:

g̃X(x) =
n∑
i=1

(αi − α?i )K(x,xi)− b (3.53)

where α and α?i are Lagrange multipliers, K is a kernel function, and b is a scalar called the bias.
(αi, α

?
i )i=1,··· ,n and b can be computed by solving a quadratic optimization problem with the

appropriate constraints. A detailed presentation of the solving strategy can be found in Cortes
et Vapnik (1995).

In addition to building an analytical approximation of the limit state function through an SVM,
it is possible to appropriately choose the samples to be evaluated by the structural model in
order to make the SVM approximation as close as possible to the limit state. With this aim,
experimental designs can be used. An experimental design consists in a specific arrangement of
the samples to be evaluated. To make this clearer, two examples of well-known experimental
designs are presented in Figure 3.33.

xi

xj

(a) Star

xi

xj

(b) Modified star

Figure 3.33: Classic experimental designs in a two-dimensional physical space.

Each sample, in a given experimental design, can be subjected to a rotation using the rotation
matrix P . Figure 3.34 shows both the initial and final positions of a star experimental design.
The objective of this rotation is to place the training samples in an orthogonal plane to the
gradient of the limit state. This way, one expects to obtain a better local approximation of
the limit state function. Indeed, the quality of the response surface is highly dependent on the
knowledge of the implicit (but unknown) limit state. The closer the samples are to the implicit
limit state, the more accurate the approximation will be. Therefore, considering the case of a
symmetric experimental design (with distinct branches, such as the star experimental design, for
instance), the geometrically organized samples can become very close to the implicit limit state
if the design is rotated as proposed in the present approach. One can note that the rotation
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is performed with respect to the center of the experimental design and not with respect to the
design point of the space.

xi

xj

gX(x)=0

Figure 3.34: Initial and final positions of the proposed adaptive experimental design — appli-
cation to the star configuration.

Benefitting from the appropriate experimental design leads to choosing the samples to be eval-
uated in an optimal way. Furthermore, because the SVM provides a closed form expression of
the limit state approximation, it possible to derive not only the gradient but also the Hessian
matrix. The gradient vector can be expressed as follows:

∇h̃U (u) =

(
∂h̃U (u)

∂u1
, · · · , ∂h̃U (u)

∂ud

)t
(3.54)

where h̃U stands for the limit state approximation with normally standard distributed random
variables. After some analytical computations and considering a radial basis function as a kernel
function, we end up with the following expression:

∂h̃U (u)

∂uk
= − 1

σ2

n∑
i=1

(αi − α?i )(u(k) − u(k)
i )K(u,ui) (3.55)

where σ is a scalar parameter. From the above expression of the gradient, one can easily deduce
the Hessian matrix H:

Hjk =


1

σ4

n∑
i=1

(αi − α?i )K(u,ui)(u
(k) − u(k)

i )(u(j) − u(j)
i ) if j 6= k

− 1

σ2

n∑
i=1

(αi − α?i )K(u,ui)(1 +
u(j) − u(j)

i

2
)(1−

u(j) − u(j)
i

2
) if j = k

(3.56)

Once the Hessian matrix has been obtained, the curvatures can be deduced and well known
approximations of the probability of failure, such as Breitung’s, Tvedt’s, or Hohenbichler’s, can
be used Adhikari (2004).
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Bayesian updating strategy for structural applications

A Bayesian network (BN) associated with a set of variables X = (X1, · · · , Xn), n ∈ N?, is a way
of representing a joint PDF between those variables. The network consists of two components:
a network structure G and a set P of conditional probabilities Friedman et al. (1997); Pearl
(2014). G encodes the conditional dependencies between the variables. It is an n-node directed
acyclic graph (DAG) in which the nodes correspond to the random variables identified. For all
(i, j) ∈ N? × N? such that 1 ≤ i, j ≤ n, there exists an arc in G from Xi to Xj if and only if
Xj is conditionally dependent on Xi. The set P describes the conditional dependencies between
the set of variables that are directly connected to arcs in the structure G. If a node Xi has arcs
coming in from the set of nodes (Xi1 , · · · , Xik), then P contains the PDF of Xi conditioned
on the variables (Xi1 , · · · , Xik). The set of conditional probabilities is usually represented by a
conditional probability table (CPT), whose determination involves a computational cost.

Since the BN structure G is acyclic, the nodes of G can be topologically sorted in such a
way that if there is an arc from a node Xi to another node Xj , then Xi must precede Xj in the
ordering. The acyclicity of G also induces ancestral relations. If there is an arc from Xi to Xj ,
then Xj is called a child of Xi and Xi is called a parent of Xj . For each j, π(i) denotes the set
of all parents of Xi and κ(i) denotes the set of children of Xi. The joint PDF related to the set
of variables (X1, · · · , Xn) can then be represented in the following factored form:

P (X) =

n∏
i=1

p(Xi | Xπ(i)) (3.57)

where P (X) stands for the probabilty that X is realized, p(Xi | Xπ(i)) is the conditional prob-
ability of Xi given the assignment to Xπ(i). From a practical point of view, the use of BNs is
particularly interesting due to their property of inference. Let us consider a random variable
Xi with its related set of parents Xπ(i) = (Xi1 , · · · , Xik) (assume that Xi has k parents). The
marginal distribution of the variable Xi can be computed as follows:

P (Xih | Xi) =
P (Xi | Xih)

P (Xi)
(3.58)

Since the updated PDFs related to all the parents of the variable Xi are determined, the updated
PDF of Xi can be computed. The gap between the initial PDF of the variable Xi and the PDF
of the observations is reduced. Moreover, it can be seen that the updating acts on the parents
of the variable Xi, which, in turn, induces the updating of Xi, but does not act on Xi straight-
forwardly. This key point justifies the use of BNs instead of other classical Bayesian updating
methods Deby et al. (2009). In the updating method we proposed, structural reliability meth-
ods are used to (i) identify the most influent variables, and (ii) compute the updated structural
model response. The theory of BNs is used to perform the updating of the statistical parameters
of the PDFs associated with the random variables. This powerful tool has been chosen for two
reasons: first, it can be used when several random variables are considered; second, it allows
updating the PDFs of the random variables, which is not possible when using the well known
Bayesian updating methods Melchers (1999), which only update the structural model response.
To use the proposed updating method, the considered mean structural model is assumed to be
satisfactory but not optimal. The objective of the proposed method is to reduce the gap between
a set of observations and the structural model’s predictions, thanks to the updating of the PDF
of the considered random variables.

The proposed updating approach has three different steps. The first step aims at choosing
from among the input variables of the structural model those which should be considered as
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random. In theory, all the input variables can be considered as random since they are subjected
to uncertainties. Nevertheless, the sensitivity of the structural model response to different ran-
dom variables may not be the same. Since the number of random variables influences the whole
computational cost of the updating process, it is of primary importance to consider as random
only the most influential ones. The second step aims at defining the BN used to carry out
the updating of the PDF of the random variables. Both the graph structure G and the set of
conditional dependencies P have to be defined. The DAG structure is chosen as a V -structure.
The corresponding set of conditional probabilities is computed by means of the Monte Carlo
simulation method. It can be seen that building the V -structure is a time-consuming process.
The reason is that the size of the CPT required for the children nodes is equal to the size of the
full joint sample outcome space of the random variables. Nevertheless, the computational cost is
also linked with the structural model solving process. Therefore, the whole computational cost
of the updating analysis can also be restrained by simplifying the structural model. This is why
simplified modeling strategies such as the one presented in Section 2.4.2 should be considered.
The last step of the proposed updating framework aims at both updating the random variables’
PDF and computing the updated mean response of the structural model. When considering a
set of random variables (X1, · · · , Xp), p < n that are the parent variables of a structural model
response Y , and a set of observations coming from experts’ judgements or in-situ measurements,
the updated PDF associated with the random variables Xk can be computed as

P (Xk | Y ) =
P (Y | Xk)

P (Y )
∀k ∈ {1, · · · , p} (3.59)

where P (Xk | Y ) stands for the probability of Xk given the assignment of the observation Y ,
P (Y | Xk) is the a priori probability of Y given the assignment Xk, and P (Y ) is the probability
of Y coming from the structural model. Considering the updated PDFs of the random variables
allows computing the updated mean structural model response. One can note that the confidence
intervals related to the structural model can also be updated if needed.

3.4.3 Numerical examples

Reliability analysis in a high dimensional space

This case study has been treated by Liu et Der Kiureghian (1986) and Bucher et Bourgund
(1990) and more recently by Nguyen et al. (2009). Four analyses were carried out, denoted
by 1, 2, 3 and 4. The analysis 1 means that neither the adaptive experimental design nor the
explicit computation of the probability of failure has been used. The analysis 2 differs from the
previous one by the fact that the probability of failure has been computed using the closed-form
expression of the Hessian matrix. In the analysis 3, the adaptive experimental design is used
and the probability of failure is computed from a first order reliability method. Last, in the
analysis 4, both the adaptive experimental design and the closed-form expression of the Hessian
matrix are used. The considered structure is a three-bay five-story rigid frame, as depicted in
Figure 3.35. Twenty-one random variables have been defined. This problem illustrates clearly
the fact that the number of limit state function calls drives the whole computational cost of the
analysis. The statistical parameters and the distributions of the random variables are presented
in Table 3.4 and have been chosen according to the data given by Bucher et Bourgund (1990).
The variables Fi are the loads, Ei is the Young’s modulus, Ai is the cross-sectional area, and
Ii is the inertia. All loads are correlated by a coefficient of correlation ρ = 0.95. All properties
of the cross-sectional areas are also correlated by a factor ρAiAj = 0.13. The two different
moduli of elasticity E1 and E2 are correlated by ρ = 0.9. All other variables are assumed to be
uncorrelated. The performance function is expressed in terms of a safety margin:
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Figure 3.35: Structural system — the dimensions are in meters.

gX(x) = 0.061− U (3.60)

where U is a vertical displacement on the top-right corner of the structure (see Figure 3.35). One
can note that the limit state function is implicitly defined. A comparison between the results
coming from the published literature and those obtained by means of the proposed approach is
presented in Table 3.5.
The value of the reliability index computed by the proposed approach is fairly close to that ob-
tained by the other authors. Furthermore, one can note that the use of an adaptive experimental
design allows drastically decreasing the computational cost. When it is employed, only two it-
erations are needed (132 limit state function calls) although when it is not, five iterations are
needed (220 limit state function calls). Another point of interest is the value of the performance
function gX(xd). The magnitudes are equal to 10−5, which means that the computed design
point reaches the limit state surface fairly well. Moreover, it appears that the use of the adaptive
experimental design helps decrease this quantity. The rotation of the initial experimental design
according to the gradient of the SVM approximation naturally makes the evaluation samples
closer to the implicit limit state function.

Bayesian robust updating applied to a reinforced concrete beam subjected to cyclic
loading

The objective of this structural example is to show that the proposed updating approach can
be applied when dealing with reinforced concrete structure which behaves close to its failure
state. The reinforced concrete beam considered is the same as the one presented in Section
2.4.2. Therefore, the structural model is built within the framework of the multifiber beam
finite element method. The concrete is described by means of the constitutive law presented in
Section 2.2.2, and a perfectly plastic constitutive law with kinematic hardening has been used
for the steel. The steel/concrete interface is considered as being perfect in order to reduce the
computational cost associated with each structural model call. As shown in Figure 2.11, the
initial structural model is satisfactory but not optimal.
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Variable Distribution Unit Mean deviation Standard deviation

F1 Gumbel max kN 133.454 40.04
F2 Gumbel max kN 88.97 35.59
F3 Gumbel max kN 71.175 28.47
E1 Normal kN/m2 2.173752× 107 1.9152× 106

E2 Normal kN/m2 2.379636× 107 1.9152× 106

I1 Normal m4 0.813443× 10−2 1.08344× 10−3

I2 Normal m4 1.150936× 10−2 1.298048× 10−3

I3 Normal m4 2.137452× 10−2 2.59609× 10−3

I4 Normal m4 2.596095× 10−2 3.028778× 10−3

I5 Normal m4 1.081076× 10−2 2.596095× 10−3

I6 Normal m4 1.410554× 10−2 3.46146× 10−3

I7 Normal m4 2.327853× 10−2 5.624873× 10−3

I8 Normal m4 2.596065× 10−2 6.490238× 10−3

A1 Normal m2 0.312564 0.055815
A2 Normal m2 0.3721 0.07442
A3 Normal m2 0.50606 0.093025
A4 Normal m2 0.55815 0.11163
A5 Normal m2 0.253028 0.093025
A6 Normal m2 0.29116825 0.10232275
A7 Normal m2 0.37303 0.1209325
A8 Normal m2 0.4186 0.195375

Table 3.4: Statistical parameters and distributions of the random variables.

Type of β Number of Pf gX(xd)
analysis calls

1 3.41 220 3.24× 10−4 −9.98× 10−5

2 3.41 220 4.02× 10−4 −9.98× 10−5

3 3.25 132 5.77× 10−4 −7.01× 10−5

4 3.25 132 7.64× 10−4 −7.01× 10−5

Bucher et Bourgund (1990) 2.29 87 5.01× 10−4 (FORM) Not available
Nguyen et al. (2009) 3.22 259 6.41× 10−4 (FORM) −6.76× 10−5

8.05× 10−4 (SORM)

Table 3.5: Results.

To reduce the gap between the experimental data and the numerical results, the updating
method described previously has been employed for the reinforced concrete beam. The first
step is to identify the most preponderant variables in the structural analysis. From engineering
assessments (assuming that the structure behaves close to its failure state), the total number of
potential input variables has been reduced to three: the concrete tensile strength, the concrete
cover thickness, and the lower steel rebar yield stress. From these considerations, the elasticity
indicators have been computed and the results are presented in Table 3.6. One can note that
the lower steel rebar yield stress is clearly predominant, which was to be expected since the steel
yields. Nevertheless, all three variables have been considered as random. The PDFs related to
the random variables are also given in Table 3.6. The corresponding CPT has been computed
by means of BN (15,000 samples) and all the samples are shown in Figure 3.36.

101



Random variable Distribution Mean COV Sensitivity Sensitivity
vs mean vs std

Concrete tensile strength (MPa) LN 3.15 0.15 -0.3146 -0.0036
Concrete cover thickness (m) LN 0.010 0.15 -0.6571 -0.0056

Yield stress (MPa) LN 450 0.07 -9.5567 -0.2705

Table 3.6: Identification of the probabilistic model — LN = Lognormal; COV = Coefficient Of
Variation; std = Standard Deviation.
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Figure 3.36: 15,000 samples computed by the Monte Carlo simulation method.

The experimental information used to update the PDF of each input variable is based on the
midspan displacement. The results of the updating analysis are presented in Figures 3.37a and
3.37b. From such an analysis, one can note that the material properties are decreased with
respect to their initial values. This is consistent with the fact that the measured mid-span
displacement is larger than the mid-span displacement predicted by the numerical model. The
relative gap between the prediction and the experience is reduced by almost 15%. Moreover,
the updated material parameters can be seen as the true parameters related to the reinforced
concrete beam. This structural example shows that the proposed updating process allows not
only reducing the gap between a numerical prediction but also estimating the true material
parameters related to a given structure when behaving close to its failure state.

3.5 Structural assessment of torsion-sensitive structures sub-
jected to extreme loading

3.5.1 Seismic margins assessment

Context

Identified as having the potential to withstand severe damage, reinforced concrete shear walls
been extensively studied worldwide since the 1970s. Many research programs aimed at studying
the structural behavior of isolated shear walls under static loading have been carried out Hidalgo
et al. (2002). The experimental data obtained reveal that shear walls have a high bearing capac-
ity when subjected to static loadings. Shear walls are generally not used as isolated components
but rather are included and connected with other components: this is an important fact that
has not yet been fully analyzed. The specific structural effects of such a use must be understood.
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Figure 3.37: Results from the updating strategy.

Additional experimental investigations have focused on shear walls with end walls Lefas et al.
(1990) or walls framed with beams and columns under static loadings Farrar et al. (1991). The
structural effects due to the assembly between each component appear to be significant. Subse-
quently, experimental investigations were carried out on a three-dimensional shear wall assembly,
mainly with a symmetrical geometry not only in-plane but also in elevation, and tested under
static conditions. In order to assess the ability of a structure based on shear walls to with-
stand seismic loadings, experimental studies with a dynamic loading factor have been carried
out. Nevertheless, the difficulties of applying a dynamic loading where the inertia force field
is reproduced to a reinforced concrete specimen make experimental data rare in the scientific
literature, especially when such a loading condition is applied to a three-dimensional model of
a structure based on shear walls. Experiments where an impulsive loading was considered to
analyze the fundamental dynamic properties of a structure are available in the literature Ogata
et Kabeyasawa (1984). A few scientific works where a fully three-dimensional structural model
was subjected to a dynamic load Mahin et Bertero (1976) are also reported in the literature.
In 2010, an extensive experimental study was carried out at the University of California at San
Diego.

A symmetric seven-story reinforced concrete structure based on shear walls was subjected to
uniaxial shaking table tests of increasing intensity Moaveni et al. (2010); Martinelli et Filippou
(2009). These tests were carried out within the framework of an international benchmark aiming
at comparing various modeling strategies and identifying the benefits and limitations under a
blind condition. This experimental program led to fruitful conclusions regarding the identifica-
tion of model uncertainties and the determination of the need for further large-scale testing. In
2006, the French Atomic Energy and Sustainable Energies Commission (CEA) and Electricité
De France (EDF) began a wide research program entitled “Seismic Design and Best-Estimate
Methods Assessment for Reinforced Concrete Buildings Subjected to Torsion and Nonlinear Ef-
fect” (SMART). In 2008, a large experimental program was launched to carry out seismic tests
on an asymmetric reduced scale model of a reinforced concrete wall based structure by means
of the AZALEE shaking table operated by the Nuclear Energy Division (DEN) at the CEA
center located in Saclay (France). It was called SMART 2008. Synthetic seismic loadings with
increasing intensities were applied to the reinforced concrete specimen: the main aim was to
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quantify the seismic margin with respect to the design level. It has been clearly shown that
there are seismic margins. A well-documented experimental database was set up for the aim of
validating numerical simulation methods for engineering purposes and for setting a basis for a
benchmark exercise in that field.

Despite the improvements made, several questions were still unanswered. Hence, CEA and
EDF began a new experimental program in 2011, called SMART 2013, which is partially sup-
ported by the International Atomic Energy Agency (IAEA); in this program, the same type of
wall-based asymmetrical structure as that part of the SMART 2008 program is being tested.
The aims of this new experimental program are to improve the representativeness of the seis-
mic loading regarding real seismic scenarios and to better quantify the effects of nonlinearities
and torsion on the dynamic response of the equipment and secondary structures. In addition,
in order to supply inputs to the numerical models, the monitoring of the boundary conditions
during shaking table tests was given special attention. The reference data created within the
framework of the SMART 2013 experimental program were used to make up an international
benchmark.

Test specimen

The reinforced concrete specimen is a scaled model of a simplified half-part of a nuclear electrical
building. It was prepared to reproduce the geometrical, physical and dynamical characteristics
of a part of the real building. Due to the inherent limitations related to a laboratory’s capacity,
regardless of the laboratory in question, some simplifying assumptions have to be employed.
In particular, considering the size or the mass of the real building and the load capacity of
the AZALEE shaking table, the model had to be geometrically reduced to a scale of 1:4. The
well-known Cauchy–Froude similitude law was chosen in this experiment. This choice ensures
that both the acceleration and the stress fields remain unchanged throughout the scale change
if the following conditions are met: the frequencies are multiplied by a factor of two, the mass is
multiplied by a factor of four, and the time is divided by a factor of two. The reinforced concrete
specimen was designed according to the current French design rules to be followed when dealing
with a nuclear building. The design spectrum considered is shown in Figure 3.38.

This corresponds to an earthquake magnitude equal to 5.5 at a distance of 10 km from the
failure plane. The peak ground acceleration (PGA) is 0.2 g. Synthetic accelerograms were
generated from the design spectrum and the corresponding acceleration response spectra are
compared to the design spectra in Figure 3.38. A satisfactory agreement between the design
spectra and the response spectra derived from synthetic signals can be seen.
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Figure 3.38: Comparison between design and response spectra — 2% and 5% damping —
magnitude equal to 5.5.
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The geometry of the reinforced concrete specimen was defined in order to satisfy the following
conditions: (i) the specimen should have an asymmetric shape to ensure significant torsional
effects during the loading and (ii) the first eigenfrequencies should be in the range 4–10 Hz
to ensure that significant damage appears and that the specimen is representative of existing
nuclear buildings currently operating in France. A picture of the test specimen is presented in
Figure 3.39.

Figure 3.39: Picture of SMART 2013 specimen fixed on the AZALEE shaking table, ready to
be tested.

It is composed of nine structural elements: one foundation, three shear walls (referred to as shear
walls #1 to #4 in the in-plane view of the formwork drawings presented in Figure 3.40), three
slabs, three beams, and one column. In order to avoid any potential differential displacements,
a new anchorage and foundation design was considered with respect to the former SMART 2008
specimen. The continuous reinforced concrete footing is 650 mm wide and 250 mm high; it is
bolted at 34 anchoring points in a 20-mm thick steel plate; planarity defaults are mitigated by
means of a mortar layer against the steel plate, which is fastened to the shaking table. Uniformly
distributed additional masses are clamped on the mock-up slabs (apart from on the reinforced
concrete beams) to ensure the condition related to the similitude rule; the total mass of the
reinforced concrete specimen is then equal to 45.69 tons.

Instrumentation arrangement

The instrumentation arrangement defined within the framework of the SMART 2013 joint
project is similar to the one defined within the framework of the SMART 2008 joint project
regarding the measurement channels dedicated to the reinforced concrete specimen. However,
the feedback from the SMART 2008 experimental program has clearly pointed out the impor-
tance of accurately monitoring the boundary conditions of the whole structural system (the
reinforced concrete specimen and the shaking table). Therefore, the main improvements were
to employ additional sensors at junctions between the shaking table and the actuators. Eight
actuators (four in the horizontal directions and four in the vertical direction) were monitored
in order to record the displacement and acceleration time histories over the whole experimental
program. The knowledge of this data means that it is possible to accurately control the bound-
ary conditions which are of primary importance when dealing with a numerical simulation of
the dynamic behavior of such a complex structural system. The pipe has also been monitored so
that this component can be studied separately from the rest of the reinforced concrete specimen.
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Figure 3.40: Formwork drawing of the SMART 2013 test specimen — dimensions in millimeters.

Accelerometers in the three directions were put at the pipe-ends to monitor the seismic loading
and also on the central valve to capture its global dynamic response. Approximately 200 mea-
surement channels were devoted to monitoring the structural system, including the boundary
conditions, and several steel strain gauges. The measurement channels were apportioned as fol-
lows: 75 accelerometers dedicated to the structure, 55 low-velocity-displacement transducers, 35
strain gauges, 15 specific low-velocity-displacement transducers to monitor the interface between
the foundation and the shaking table’s upper plate, 10 diagonal sensors fixed on the little shear
wall, and 10 accelerometers dedicated to the pipeline. Both the acceleration and displacement
were monitored at the corners of each slab. In addition, the acceleration was monitored at the
center of each half of the slabs and at the centers of the beams. A sketch of a part of the instru-
mentation arrangement is shown in Figure 3.41. Moreover, a digital image stereo-correlation
technique was set up to monitor the evolution of the crack pattern of shear wall #4 at the first
story during the tests, using two high frequency cameras.

Seismic loading procedure

Specific attention has been given to the definition of the seismic loading procedure. The driving
idea was to choose a set of highly damaging bi-axial seismic input ground motions considered to
be representative of a real seismic scenario. Mainly natural input ground motions were applied
to the reinforced concrete specimen. Considering the feedback from the SMART 2008 project,
the seismic signals were chosen so that their frequency contents are in accordance with the
eigenfrequencies of the reinforced concrete specimen, so as to ensure their damaging character.
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Figure 3.41: Summary of the measurement points.

In addition, to avoid the unwanted effects of cumulative damage, a consensus was reached to
reduce the number of intermediate seismic tests. The seismic loading is composed of three
seismic test sequences. In test sequence #1, a synthetic seismic signal corresponding to the
seismic demand at the design stage was employed. In test sequence #2, the main shock of the
Northridge earthquake that occurred in California, USA, in 1994 was employed (Magnitude 6.7)
and, in test sequence #3, the first aftershock of the same earthquake was considered (Magnitude
5.2). In test sequences #2 and #3, the natural seismic signals extracted from the PEER NGA
database Chiou et al. (2008) at the same monitoring station, Tarzana Cedar Hill (7 km from the
epicenter), were selected. The eigenfrequency shifts measured during SMART 2008 were taken
into account in the choice of these input ground motions. In this way, the input ground motions
were chosen so that their frequency content is in accordance with the resonance frequencies of
the reinforced concrete specimen, in order to ensure their damaging character. To ensure a
satisfactory realization of the seismic input ground motion by means of the shaking table, each
test sequence was split into several seismic runs. Each run aimed to apply a given percentage
of the nominal seismic signal to the reinforced concrete specimen. In order to avoid unwanted
effects due to cumulative damage from one run to another, a limited number of intermediate
runs was carried out. The full seismic test procedure is described in Table 3.7. Low level
random signals with a PGA in both horizontal directions between 0.05 and 0.1 g were also
applied between each seismic run in order to monitor the evolution of the modal properties of
the reinforced concrete specimen. In addition, similar signals were applied to the specimen from
runs #1 to #6 in order to get the shaking table properly set up.

Overall damage pattern

From run #7 to run #11, no significant cracking was observed on the reinforced concrete speci-
men, only diffuse cracking close to the geometric singularities was observed. The main localized
cracks began during run #13. The main areas that cracked were shear wall #4, the first slab
and the junction between the foundation and shear wall #4. From run #17 to run #19, the
aforementioned parts of the reinforced concrete specimen become more and more cracked. In
particular, shear cracking pattern could be observed in shear wall #4, as shown in Figures 3.42a
and 3.42b.
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Test sequence Run Target Target Realized Realized Brief
number number PGA in X PGA in Y PGA in X PGA in Y description

direction direction direction direction
(g) (g) (g) (g)

#1 #7 0.10 0.10 0.13 0.14 DL - 50%
#1 #9 0.20 0.20 0.22 0.23 DL - 100%
#2 #11 0.20 0.11 0.21 0.16 Northridge

MS - 11%
#2 #13 0.40 0.21 0.40 0.25 Northridge

MS - 22%
#2 #17 0.80 0.42 0.60 0.40 Northridge

MS - 44%
#2 #19 1.78 0.99 1.10 0.94 Northridge

MS - 100%
#3 #21 0.12 0.07 0.14 0.14 Northridge

AS - 33%
#3 #23 0.37 0.31 0.70 0.40 Northridge

AS - 100%

Table 3.7: Seismic loading procedure — DL = design level; MS = Main Shock; AS = After
Shock — percentages are computed, for a given test sequence, as the ratio between the PGA of
a run and the nominal PGA.

The failure of the reinforced concrete specimen occurs during run #19 with the propagation
of a crack at the junction between the foundation and shear wall #4. Due to the presence of
this crack, an important uplift of shear wall #4 was observed during run #19. During this uplift,
the steel reinforcing bars yielded. It is also believed that sliding at the steel/concrete interface
occurred. When the reinforced concrete specimen went down, the concrete crushed suddenly, as
shown in Figure 3.42c.

(a) Cracking in shear wall #4 after
run #17.

(b) Cracking at the 1st level after
run #19.

(c) Concrete crushing at the junc-
tion between shear wall #4 and the
foundation during run #19.

Figure 3.42: Experimental observations of the degradation process of the SMART 2013 specimen.
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Description of SMART 2013 international benchmark

The SMART 2013 international benchmark was organized between February 2012 and Septem-
ber 2014 and was concluded by an international workshop which took place in Saclay, France,
25–27 November 2014. Forty-two participating teams from all over the world were registered. A
list of the participants is provided in Tables 3.8 and 3.9, including the parts of the benchmark
they were involved in.

The objectives of the benchmark were (i) to assess the capabilities of advanced best-estimate
methods in predicting the seismic response of a complex reinforced concrete specimen, subjected
to overdesign dynamic loadings that may occur in the case of extreme seismic events; in par-
ticular, the capabilities of nonlinear numerical models to satisfactorily capture the structural
damage from a natural seismic scenario consisting of a main shock and an aftershock for a given
magnitude/distance pair, (ii) to improve the use of probabilistic methods addressing random
and epistemic uncertainties to estimate the fragility curves, and (iii) to share seismic assessment
methods and build a consensus in the international seismic engineering community. To reach
these objectives, the experimental measurements coming from the SMART 2013 experimental
program were considered as reference data to make up a benchmark.

The SMART 2013 international benchmark was composed of four stages. Stage 1 was devoted
to the characterization of the numerical model used by all the participating teams. Several data
regarding the spatial/time discretization, the time integration algorithms used and the ways of
taking the boundary conditions into account were asked for from the participants. A description
of the structural model was also required. In order to assess the relevancy of the assumptions
used in the formulation of the constitutive laws (concrete, steel and steel/concrete interface), a
description of the effects taken into account was required. Therefore, each participant was asked
to carry out basic static tests considering more or less complex (both monotonic and cyclic)
loading paths on an RVE of concrete, steel, and reinforced concrete. No dynamic loading was
considered in stage #1. Stage #2 aimed at calibrating the numerical finite element structural
models in the elastic range. In order to reach this objective, modal analyses considering vari-
ous boundary conditions and transient analysis were required. Only two low-intensity seismic
loadings, with PGA equal to 0.1 g, were considered: a random signal (run #6) and a synthetic
seismic signal (run #7) corresponding to 50% of the design seismic loading in terms of PGA.
Both measured seismic inputs and outputs were provided to the participants. In order to leave
them the choice of how to accurately control the boundary conditions, the time histories of the
displacements and accelerations measured at the shaking table actuators were provided to the
participants. In addition, CEA provided a numerical model of the AZALEE shaking table taking
into account the exact position of the actuators to allow an accurate description of the whole dy-
namic system. In stage #3, blind nonlinear dynamic computations for medium- to high-intensity
seismic loading sequences (PGA ranging from 0.2 to 1.78 g) were asked for from the participants.

109



Institution Country Stage Stage Stage Stage
#1 #2 #3 #4

National University Argentina X X X
of Cuyo
Phimeca France X X X

ENSI Team 2 (Stangenberg Germany X X X X
& Partner Ingenieur-GmbH)

University of Parma Italy X X X X
CKTI-Vibroseism Russian X X

Federation
Korea Institute South X X X X

of Nuclear Safety Korea
Scanscot Technology Sweden X X

Ecole Normale Supèrieure France X X X
de Cachan

Pakistan Atomic Energy Pakistan X X X
Commission

Woelfel Beratende Ingenieure Germany X X X
Institut Nationale des France X X X

Sciences Appliquées de Lyon
AREVA GmbH Germany X X
Laboratoire 3SR France X X X

EDF-SEPTEN 3SR France X X X X
IDOM Spain X X

Cervenka Consulting Czech Republic X X X
Technical University of Romania X X

Civil engineering
ENSI Team 1 (Basler-Hofmann Switzerland X X X X
& AG Consulting Engineers)

EGIS Industries France X X X
Faculty of Civil Engineering Macedonia X X
China Guangdong Nuclear China X X X

Power Design Company
Nagoya University Japan X X X

Middle-East Technical Turkey X
University

University of Houston USA X
State Nuclear Electric China X

Power Planning

Table 3.8: Teams involved in the SMART 2013 international benchmark—Part 1.

The nonlinear analysis of seven seismic loadings, two being optional, was required. Only the
seismic inputs were provided to the participants. The measured outputs were not available
when stage #3 was ongoing, this strategy enabled analyzing the predictive capabilities of the
assessment methods used by the participants. Lastly, stage #4 was devoted to a numerical
vulnerability analysis of the reinforced concrete specimen within a probabilistic framework ad-
dressing random and epistemic uncertainties. The purpose of this stage was to assess the effect
of the type of uncertainties on the fragility curves considering various failure criteria. Two
substages were considered. In the first, the numerical model was assumed to be linear elastic.
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Participants were free to use their own method to compute the fragility curves. In the sec-
ond substage, participants had to consider nonlinear constitutive laws to describe the energy
dissipation. The method to compute the fragility curves was imposed, assuming a lognormal
distribution of the random variables. For all substages, the set of input ground motions was
provided.

Institution Country Stage Stage Stage Stage
#1 #2 #3 #4

Computational Engineering France X X X
and Structures

Alyotech Technologies France X
Technical University Romania X

Gheorghe Asachi
Swissnuclear Switzerland X X X X
Rene Lagos Chile X

Engineers SAC
Ecole Polytechnique Switzerland X X X

Fédérale de Lausanne
PRINCIPIA Spain X X X

Autodesk France X X X
Laboratório Nacional de Portugal X X

Engenharia Civil
TNO DIANA BV The Netherlands X X X
ATR Ingenierie France X X X

Géodynamique et Structure France X X
SDA-engineering GmbH Germany X

Fortum Power and Heat Oy Finland X X X
Numerical Engineering and France X X X

Consulting Services
University of California USA X

Berkeley

Table 3.9: Teams involved in the SMART 2013 international benchmark—Part 2.

Lessons learned

Modeling assumptions SMART 2013 has been an opportunity to draw up a collection of
engineering practices to assess the beyond-design behavior of a complex reinforced concrete
specimen subjected to seismic loadings. The modeling assumptions and feedback from all the
participating teams were shared during the final international workshop and several key points
appeared as being crucial: (i) the type of laws to consider in order to describe the mechanical
behavior of the constitutive material (in particular, concrete), (ii) the choice of the damping
model, and (iii) the way of applying the seismic loading. First, regarding the modeling assump-
tions related to the constitutive laws, most of the participants agreed with the importance of
taking into account the nonlinear mechanisms responsible for the material dissipation in their
structural model. A consensus was reached on the fact that equivalent linear approaches are
inappropriate when dealing with the assessment of seismic margins, and therefore with beyond-
design behavior. Most of the participants used constitutive laws based on either continuum
damage theory (including smeared crack models, which are a particular type of damage model)
or coupled damage–plasticity theory. The results show that recent techniques allowing the prop-
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agation of displacement discontinuities in the continuum are not mature enough to be used in
the case of such complex analyses. Second, the question of the choice of the damping model
remains an important issue and no specific consensus has been reached. However, in the case
of the use of constitutive laws including hysteretic effects, no specific reduction of the viscous
damping contribution was noted. This observation highlights the fact that the quantification of
the material dissipation contributing to the structural damping is an issue that still needs to be
studied. In addition, the use of damage-driven damping models remains rare, which confirms
the aforementioned need. Last, as one of the main lessons from the SMART 2008 project, the
sensitivity of the numerical results to the way of applying the seismic loading to the structural
system has been confirmed. A consensus on the best practice to follow was reached. More
specifically, most of the participants agreed with the necessity of including the shaking table in
the structural model. In this way, the initial dynamic properties of the system can be captured
well and the seismic loading can be input at the actuator level. Most of the participants made
the choice to input the actuator displacement time histories, which allowed the full kinematics
of the system to be taken into account. However, this practice requires checking the consistency
of the frequency contents of the numerical and the experimental acceleration responses at the
upper plate of the shaking table.

Predictive capabilities of nonlinear seismic assessment methods of the beyond-de-
sign behavior of the SMART 2013 specimen The assessment of the predictive capabilities
of nonlinear structural models when dealing with beyond-design behavior makes it necessary to
control their initial state, that is, to ensure they are well calibrated in the elastic range. This
aspect has been addressed in a specific stage of the benchmark and one ended up with the fact
that the initial modal properties of the dynamic system were well captured, the acceleration
based responses were also satisfactorily described, but the displacement-based quantities were
underestimated. However, the maximum value of the displacement being lower than 1 mm, the
weight of the experimental uncertainties become important, and so no definite conclusions could
be drawn from this observation. It appeared that most of the participants succeeded in cali-
brating their structural models when dealing with low-level seismic loadings. The quantitative
analysis of the mechanical indicators computed from the results provided by the participants
was then carried out under a blind condition. Among the indicators studied, it appeared that
the stiffness degradation, occurring mainly during the Northridge main shock seismic sequence,
was satisfactorily captured by most of the participants. In other words, the structural dissipa-
tion is well described thanks to the use of nonlinear constitutive laws. Subsequently, the peak
frequency shifts (PFS) appeared to be particularly well captured in this experimental program.
However, as with the case of the low-level seismic loadings, the inter-story drifts (ISDs) were, on
average, underestimated. No specific consensus on the key factors explaining this observation
came about during the international workshop. However, the nonlinear approaches seem to
exhibit different capabilities, depending on the nature of the quantity to be described. Indeed,
member scale dissipation-related quantities seem to be captured more easily than those related
to local dissipation. Another point of interest is related to the validity of the prediction of the
seismic behavior of the SMART 2013 specimen during the Northridge aftershock sequence. The
displacement based quantities were badly predicted, due to the fact that only some constitutive
laws accounted for residual strains, which were important to be considered since an important
increase in the damage occurred during the previous seismic sequence. However, satisfactory
results were obtained regarding the acceleration based quantities.

Assessment of the structural robustness of the SMART 2013 reinforced concrete
specimen The specimen was subjected to several transient seismic signals and was therefore
gradually damaged. These transient signals were sorted according to three sequences introduced
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in Table 3.7 in order to quantify the damaging power of each seismic sequence. Each sequence
was composed of several scaled transient signals, based on a nominal signal. In a given sequence,
the loading factor, defined as the ratio between the PGA of the scaled signal and the PGA of the
nominal signal, was increased by up to 100%. In order to assess the robustness of the structure,
two indicators (or engineering demand parameters) were defined and analyzed: the maximal ISD
between the second and the third floors (the ISD is calculated from the absolute displacements;
those for the other stories follow the same trend), and the frequency shift related to the first peak
identified from the floor response spectra (FRS) computed at point D, located on the third floor.
The ISD is a local indicator that can be associated with the ductility capacity of the reinforced
concrete structure, and represents the capability of the numerical models to reproduce the
differential displacements between two stories by comparison with experimental measurements.
The PFS is a structural indicator that represents the capabilities of the numerical models to
capture the overall behavior of the specimen while the stiffness degradation and dissipation are
increasing. Three damage thresholds, allowing the definition of three engineering damage states
(light, controlled, and extended damage) have been introduced for each mechanical indicator.
These damage indicators can correspond to the values of the ISD or to the PFSs exhibited by
the structural system. For each participant, the first peak frequency was identified from the first
transient signal of each seismic sequence (i.e., runs #7, #11 and #21), allowing the definition
of the reference peak frequency. This reference peak frequency is compared with the first peak
frequency of the following transient signals in a given seismic sequence to estimate the PFS.
The experimental values of these two mechanical indicators are compared with the numerical
ones considering the damage thresholds to assess the robustness of the structure subjected
to the different seismic sequences. The quite arbitrary three values chosen as the thresholds
are expected to be relevant for distinguishing damaged structural states. In particular, the
PFS thresholds can not only be justified regarding the floor response spectra frequency content
demand for equipment seismic assessment, but also by an engineering practice of reducing the
Young’s modulus by 50% in cracked zones of bended reinforced concrete sections in linear elastic
calculations. Regarding the design level, the ISD led to concluding that no damage appeared
(see Figure 3.43a), whereas the PFS led to concluding that some small damage appeared (see
Figure 3.43b).
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(a) Displacement based indicator.
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(b) Peak frequency based indicator.

Figure 3.43: Robustness indicators — design level — numerical–experimental comparisons.
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The experimental observations were in agreement with the last conclusion: even in the case of
the design level, small nonlinearities, mainly related to concrete cracking, appeared, and it is
crucial to use nonlinear approaches to capture this effect. Regarding the Northridge main shock,
the analysis of the ISD led to concluding that the specimen is highly damaged since the extended
damage threshold was surpassed by almost a factor of two. However, the results expressed in
terms of PFS revealed that the extended damage threshold was not surpassed at all. Again,
the experimental observations were in agreement with the conclusions that could be drawn from
the PFS. Indeed, besides localized cracks observed on the shear walls and on the slabs, a main
crack appeared at the interface between the foundation and the shortest shear wall, leading to
concrete crushing due to compressive failure. However, it is worth mentioning that the concrete
crushing remained confined to a limited area, as can be observed in Figure 3.42c. Therefore, the
description of the damage state given by the PFS at the end of the Northridge main shock seems
to be in better agreement with the experimental observations than the one given by the ISD.
Regarding the Northridge aftershock sequence, both indicators led to similar conclusions, even
though the ISD captured an increase in the damage, since the light damage threshold expressed
in terms of the ISD was exceeded, as shown in Figure 3.44.
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Figure 3.44: Robustness indicator — displacement based indicator — Northridge after shock.

However, as mentioned previously, the experimental observations confirmed the fact that the
Northridge aftershock did not lead to a significant increase in damage. Consequently, the physics
of the structural response seems to be described more realistically when using the PFS. From
the aforementioned discussion, it appears that the choice of the structural indicator to describe
the structural damage is a crucial question, since the quantification of the structural robustness
is a consequence of it. Within the framework of the SMART 2013 project, the PFS indicator
appeared to be more appropriate than the ISD, based on the experimental observations. In
addition, defining the robustness as the ability of a structure to withstand extreme events without
being damaged to an extent disproportionate to the original cause, the SMART 2013 specimen
can be qualified as robust, since only moderate cracks were observed after the Northridge main
shock, which had a PGA greater than four or five times the design PGA. This trend was
confirmed by the results expressed in terms of the PFS.

Probabilistic vulnerability analysis Stage #4 of the benchmark was dedicated to calcula-
tions of the fragility curves from time-history analyses. The participants were invited to make
their calculations with the structural model developed for the previous stages and validated on
the experimental results. In order to have a more realistic exercise, the shaking table finite ele-
ment model was replaced by the simplified equivalent foundation impedances—having been fitted
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to the reduced scale—at the bottom of the mock-up model. The first step aimed at comparing
methods for evaluating fragility curves with the linear structural model, using the participants’
practice. However, the linear regression method was the only one used, although the maxi-
mum likelihood principle method was also allowed. In addition, the Latin hypercube sampling
approach based on a set of time-history analyses was used. The parameters of the equivalent log-
normal distribution of the fragility curves were fitted from their results. The second step focused
on calculating the fragility curves in the nonlinear range by means of the regression method.
Both steps allowed determining the median capacity and the log-standard deviation, depicting
the aleatory and epistemic uncertainties. The following structural properties were considered as
random variables, first: the overall foundation stiffness and damping coefficients; and during the
second step of stage #4, in the nonlinear range, there were added: the tensile concrete strength
and structural damping ratio. Lognormal probabilistic distributions were assumed for all these
random variables. The same two damage indicators were considered: the ISD at point D in the
X direction, and the PFS, with the same three levels as those presented in the previous sections.
Three seismic intensity measures were proposed: the PGA, the cumulative absolute velocity
(CAV), and the structure-specific average spectral acceleration (ASA) De Biasio et al. (2014),
which is the area obtained by integrating the ground motion response spectrum between half
and one times the first eigenfrequency of the structure. A database of 100 pairs of synthetic
non-stationary accelerograms (X and Y directions), compatible with median (plus and minus one
standard deviation) spectra, for a specific relevant seismic event, was provided. This database
was expected to be sufficient to cover the whole range of damage indicators to be analyzed in
the computation of the fragility curves. A reduced pool of seven participants took part in stage
#4. Huge computational resources were needed for these calculations. From the comparison
of the log-standard deviations obtained for the computed fragility curves, in the case of both
the ISD and PFS damage indicators, it appears that the discrepancy is higher using the CAV
intensity measure. It seems that this measure is less valid for such reinforced concrete structure,
leading to the highest log-standard deviation. This observation may be linked with the fact that
its definition is more appropriate for cumulative dissipation processes, such as yielding. The
ASA indicator led to the results with the lowest log-standard deviations. This may be explained
by the fact it is more appropriate for structures whose evolving eigenfrequencies are associated
with material damage processes. Furthermore, for the three levels of the two damage indicators,
computations of the fragility curves based on nonlinear simulations always gave higher values of
the mean capacity and lower values of the probability of failure than those obtained using linear
structural calculations. This confirms the ability of nonlinear structural transient analyses to
assess the existence of seismic margins. Finally, it has been observed from the responses pro-
vided by the participants that there is a large scatter in the method (calculation and practice)
to establish the fragility curves for engineering office purposes.

3.5.2 Influence of thermal breakers on the seismic response of an asymmetric
reinforced concrete structure

Context

The thermal performance of such structures is becoming a requirement in European countries.
Consequently, much research has been carried out to limit, ideally to erase, the sources of ther-
mal dissipation between the building and the external environment Ge et al. (2013). Successful
insulation techniques and dedicated components have been developed, leading to a drastic re-
duction of the thermal energy loss. Indeed, new structural components called thermal break
components have been designed to improve the in-building thermal insulation. Despite the fact
that such a technique of insulation appears promising regarding the results coming from the
thermal analysis, their effects on the overall mechanical response of the equipped structure have
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still to be addressed, especially when considering seismic loadings.

The issue of thermal and seismic compatibility arose in the case of conventional buildings.
Nevertheless, the research carried out so far to address this issue has been mainly related to
beam-column type structures. Although this structural configuration is recommended, for in-
stance, by the design rules for conventional building, it is not forbidden to consider wall-based
structures (even irregular) for conventional applications. One of the originalities of the research
presented in this memoir resides in this key point. In addition, assessing the seismic response of
a reinforced concrete structure equipped with thermal break components that exhibits torsional
effects is also a key point since the thermal break components were not initially designed to
withstand torsion. Within the framework of the European research project Seismic Engineer-
ing Research Infrastructures for European Synergies (SERIES), financially supported by the
7th frame research program, experimental and numerical studies of the seismic behavior of an
asymmetric half-scaled mock-up equipped with thermal break components have been carried
out Fardis (2012). The objectives of this research project were (i) to assess the overall seismic
behavior of such structures to provide some quantitative knowledge, and (ii) to analyze the local
behavior of thermal break components under seismic conditions.

Seismic tests have been carried out with the AZALEE shaking table of the TAMARIS experi-
mental facility Payen et al. (2006). The main advantage of shaking table tests is their ability to
represent inertial forces on a physical time scale. A mock-up of a reinforced concrete specimen
designed according to Eurocodes 2 (EC2) and 8 (EC8) was built and then equipped with thermal
break components. Bi-directional seismic loadings, all gathered in a seismic testing sequence,
with increasing PGAs were applied to the specimen to assess its seismic behavior up to a severe
damage state. The input signals were synthetic: they were generated using the design spectra
defined in EC8. Local data acquisition systems were used to monitor the behavior of the thermal
break components. In addition to the experimental investigations, a numerical study was also
carried out.

Test specimen

The specimen represents a typical three-story conventional building. The shape of the speci-
men was inspired by the one considered within the framework of SMART 2008. However, it
is important to highlight that the specimen considered in this study is not devoted to nuclear
applications, as was the case of the SMART research project. Therefore, the design practices
followed are not the ones considered in the French nuclear industry but are the ones considered
in the case of civil engineering buildings.

Due to the dimensions of the shaking table, a full scale structure could not be tested. A
reduced scale mock-up at the 1:2 scale had to be built for this reason. In order to ensure, as
best as could be done, the representativeness of the measurements carried out on the reduced
scale mock-up, a similitude rule had to be employed. The similitude rule employed in this study
is Froude’s rule, which was developed with the aim of keeping unchanged the stress and the
acceleration field through the scale change. To keep these quantities constant, the requirements
consist in using both (i) a time contraction and (ii) an increase of the mass density of the con-
stitutive materials (both the steel and the concrete). In addition, the design spectrum of the
reinforced concrete mock-up is obtained by dividing the period of the design spectrum related
to the full scale structure by the square root of the scale factor (equal to 2). The full scale
structure should have its first three eigenfrequencies in the range 4–14 Hz (or 0.071–0.250 s if
it is expressed in periods). Due to the scale change, the reduced scale mock-up should have
its first three eigenfrequencies in the range 5.65–19.79 Hz (or 0.050–0.176 s if it is expressed in
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periods). This requirement was posed to make the frequency content of the loading compatible
with the natural frequencies of the tested system.

Condition (ii) could not be precisely fulfilled, since it was not possible to act on the mass
density from a practical point of view. Therefore, additional masses were put on the slabs,
assuming most of the mass is concentrated on them. For this purpose, 6.45 tons were put down
on each floor, leading to a total amount of additional mass equal to 19.35 tons. The total mass
of the mock-up loaded with the additional masses was about 40.2 tons. This strategy was fol-
lowed to make the reduced scale structure as representative of the full scale one as possible. If
it is assumed that the similitude rule is fulfilled, neither the stress and the acceleration field
are modified. This strategy allows conserving the original materials for the construction of the
specimen and using classical constitutive laws for the numerical modeling. A picture of the
ENISTAT mock-up is shown in Figure 3.45.

Figure 3.45: Picture of ENISTAT mock-up.

The structural frame is composed of various components: three shear walls, one column,
three beams, three slabs, and one footing. The main dimensions of the formwork are given in
Figure 3.46.
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Figure 3.46: Sketch of the specimen geometry — dimensions in millimeters.

Recent construction technology aims at developing and producing energy efficient buildings.
An efficient way to reduce energy loss is to reduce thermal bridges from forming, especially
at wall–slab connections. Thermal break components are innovative technological components
developed in Europe. If their thermal benefits have already been proved, the dynamic behavior
of such a wall–slab connection in a building under a seismic loading has not yet been assessed at
the member scale. Nevertheless, experimental and numerical investigations have been conducted
at the component scale for identification purposes. To assess the modification of the seismic vul-
nerability due to these thermal break components, the connections at the 2nd floor level of the
mock-up were made through these structural elements. Thermal break components were only
put on the 2nd floor for two main reasons. First, this structural configuration represents a real
situation. Indeed, in the design stages, the task consisting in installing thermal break compo-
nents in the building leads to a financial overhead (civil engineering work stopped, qualified
technicians required, etc.). Therefore, it may appear that such components are only put at a
given floor and not on the other ones. Second, if the thermal break components were put in an
area located too close to the shaking table upper plate, they would not have been subjected to
any significant dynamic amplification and therefore they would have been less loaded than they
were in the experiment. Considering both reasons, it appeared best to put the thermal break
components at the 2nd floor.
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Figure 3.47: Picture of a thermal break component.

Three types of thermal break components were considered: DF (Dalle-Façade in French and
Wall-Front in English) type 1, DF type 2, and ESI (Élement Sismique in French and seismic
component in English). The two first modules are designed to take care of bending moments that
appear at the wall–slab connection and the last one, to handle shear forces. All components
were specifically designed by Schöck company for the ENISTAT mock-up. Drawings of the
thermal break components are given in Figures 3.48, 3.49 and 3.50 according to their type. The
mechanical characteristics of each type of thermal break component were characterized by Schöck
company and are presented in Table 3.10. Only the constitutive steel bars of the thermal break
components contribute to their bearing capacity, whereas the surrounding polystyrene does not.

Figure 3.48: Drawing of the DF type 1 thermal break component.

Figure 3.49: Drawing of the DF type 2 thermal break component.
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Figure 3.50: Drawing of the ESI thermal break component.

Strength parameter DF Type 1 DF Type 2 ESI

Ultimate bending moment (kNm/m) - 10.47 7.34
Ultimate shear strength (kN/m) - 119.96 119.96
Ultimate tensile strength (kN) - 169.65 169.65

Ultimate horizontal strength (kN) 12 - -
Ultimate compressive strength (kN) - 136 136

Table 3.10: Mechanical parameters of the thermal break components.

Instrumentation arrangement

The location of the measurement points is shown in Figure 3.51. Both linear variable displace-
ment transducers (LVDTs) and accelerometers were attached to the reinforced concrete mock-up
to monitor its overall behavior during the seismic tests. In addition, dedicated measurement
points allowing monitoring the relative displacement between the 2nd floor and the surrounding
shear walls were also employed. The observation points were determined in order to capture the
overall torsional response of the specimen and to accurately monitor the behavior of the slab
located at the 2nd floor. The most excited points were monitored with several accelerometers
in the three directions. In particular, this explains why points A, D and H were equipped with
accelerometers at each floor and why more than 15 strain gauges were put on the thermal break
components.

Figure 3.51: Measurement points.
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Seismic loading procedure

The dynamic loading was applied to the mock-up by the AZALEE shaking table CEA-Tamaris
(2016). The whole seismic sequence included two types of dynamic loading: low level random
loadings and bi-directional seismic loadings in the horizontal plane (X, Y). The first type of
loading aimed at identifying the variations of the modal properties of the dynamic system com-
posed of the shaking table and the reinforced concrete mock-up, whereas the second type aimed
at assessing its dynamic behavior. The objective of the shaking table experiment presented
in this memoir was to quantify the dynamic behavior of an asymmetric reinforced concrete
building equipped with thermal break components that were not initially designed to withstand
induced dynamic loadings. Therefore, the seismic loading was defined in connection with the
design spectrum recommended by EC8, taking into account the conditions from the similitude
rule that was assumed and that was presented previously. Consequently, synthetic earthquakes
were generated according to the method implemented in the software Cast3M. This strategy
consists in assuming that the generated signal can be expressed as a sum of sinusoidal functions
with random phases. The sum is weighted by an exponential function including parameters
that are identified by the least-squares method to match the target frequency content and PGA
prescribed by the user.

A reference bi-directional seismic loading was artificially generated from the design spectrum
given by EC8 (taking into account the constraints coming from the similitude rule assumed) for
a PGA scaled at 0.1 g. The comparison between the 5% damping response spectra computed
from the target and the generated signals are shown in Figures 3.52b and 3.53b in the X and
Y directions, respectively. It is worth mentioning that a single pair of seismic signals were gen-
erated. Other bi-directional signals with higher PGAs were deduced from this single pair by
scaling it in such a way that the desired PGA was reached. The PGA of the seismic loading
was progressively increased in order to exceed the design level. The main bi-directional seismic
loadings are presented in Table 3.11. One can note that the PGAs in both horizontal directions
range from 0.2 to 0.8 g. Random noise or hammer shocks are not included in Table 3.11, this
explains why the run numbers are not strictly increasing.

Run PGA (g) PGA (g)
number X-direction Y-direction

19 0.1 0.1
20 0.2 0.2
25 0.4 0.4
28 0.6 0.6
31 0.8 0.8

Table 3.11: Target PGAs of all the bi-directional seismic runs.

Overall damage pattern

The reinforced concrete mock-up was progressively degraded along the bi-directional seismic
runs. The degradation process can be split into three different parts according to the PGA of
the input ground motion that was applied to the reinforced concrete specimen: The first stage,
in which the PGA is lower than 0.2 g; the second stage, in which the PGA is higher than 0.2 g
and lower than 0.6 g; and the last stage, in which the PGA is higher than 0.6 g.
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Figure 3.52: Seismic loading in the X direction — comparison between the target response
spectrum with the synthetic one — PGA scaled at 0.1 g.
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Figure 3.53: Seismic loading in the Y direction — comparison between the target response
spectrum with the synthetic one — PGA scaled at 0.1 g.

Regarding the development of the overall cracking pattern, the first cracks appeared at the cor-
ners of the opening located at the 1st floor and in the corresponding lintels. The opening located
at shear wall #3 at the 1st floor was monitored with the digital image correlation technique in
order to capture the development of cracking during the seismic test. The strain component εxx
is shown in Figure 3.55. It is interesting to observe that the cracking starts from the corner and
propagates outside of the area monitored by the digital image correlation technique, following a
diagonal path. In the second stage, diagonal cracks started in shear wall #1. Cracks appeared
close to the openings and kept on propagating. It is worth mentioning that a major crack started
at the shear wall–foundation interface. The shear cracks in shear wall #1 became more and more
numerous. In the last stage, some new cracks appeared in the slabs and also in shearwall #1
due to shear, as shown in Figure 3.54a. The crack that appears at the shear wall–foundation
interface kept on propagating up to the middle of shear wall #2, as can be observed in Figures
3.54b and 3.54c.

Regarding the strain level in the steel reinforcing bars, this quantity was monitored by classical
strain gauges that were stuck on the steel bars before the concrete was cast in. A preliminary
numerical analysis of the mock-up allowed identifying the position of the most stressed area,
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and therefore strain gauges were put at this location. Whatever the stage considered, no yield-
ing in the steel reinforcing bars was monitored. However, the properties of the steel–concrete
interface became more and more weakened during the seismic tests, leading to thinking that a
bond failure occurred at the interface between shear wall #1 and the foundation.

(a) Walls #1 and #2 — shear
cracking.

(b) Walls #1 and #2 — con-
crete crushing.

(c) Wall #1 — transversal
crack.

Figure 3.54: Cracking pattern — input signal with a PGA = 0.8 g.

Figure 3.55: DIC results — input signal with a PGA = 0.2 g — opening at the 1st floor — shear
wall #3.
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Influence of thermal breakers on the structural behavior

The 2nd floor was monitored carefully in order to capture the effect of the thermal break com-
ponents on the overall behavior. Two types of quantities were monitored: (i) the relative
displacements in the X and Y directions between the 2nd floor and the surrounding shear walls
using eight LVDTs and (ii) the strains in the steel of the thermal break components using 34
dedicated gauges. The evolution of the relative displacement vs. the input ground motion level
are plotted in Figure 3.56. The maximum amplitude is reached at point M in the X direction
with a relative displacement equal to 1.2 mm. The 2nd floor is subjected to an internal rigid
body motion that is driven by torsional effects. The low maximum amplitude demonstrates that
the thermal break components can be seen as highly rigid connections.

 

 0.8 g
0.6 g
0.4 g
0.2 g
0.1 g

Point M

Point L

Point J
Point K

Figure 3.56: Qualitative representation of the overall relative displacement of the 2nd floor —
amplification factor equal to 1500.

The strain distribution in the thermal break components was analyzed in order to study the load
transfer from the shear walls to the 2nd floor. The engineering stress, denoted P , was computed
as the product between the strain and the Young’s modulus of the reinforcing bar P = Eε. For
each shear wall, the maximum engineering stress distribution was plotted as a function of the
PGA of the seismic input ground motion. For shear wall #1, the results are shown in Figures
3.57a and 3.57b for the thermal break components DF type 1 and ESI, respectively. One can
note that the most stressed thermal break components are located close to point M, defined
in Figure 3.56. This is fully in accordance with the relative displacement measurements. In
addition, for the seismic level with a PGA equal to 0.8 g, the engineering stress ranges from
almost 90 MPa to 400 MPa, which is lower than the yield stress (516 MPa). The load transfer
is clearly ensured, not only in terms of bending moments but also in terms of shear forces.
This is confirmed by the results shown in Figure 3.57b. The maximum engineering stress in the
ESI thermal break components ranges from 150 MPa to almost 250 MPa, showing an efficient
shear force transfer. This is confirmed by the fact that no significant slip between the steel bars
of thermal break components and the surrounding concrete appeared. Indeed, the maximum
relative displacement between the slab located on the 2nd floor and the surrounding shear walls
was very small.
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Figure 3.57: Maximum engineering stress versus seismic ground motion level — shear wall #1.

For shear wall #2, three types of thermal break components were installed. The maximum
engineering stress is shown in Figures 3.58a, 3.58b and 3.58c for each type of thermal break
component. As previously, one can observe that no yielding occurs. The fact that the maximum
engineering stress is lower than in the case of shear wall #1 is consistent with the fact that lower
relative displacements were monitored at points J and K, as presented in Figure 3.56. Figure
3.58b shows that the DF type 2 thermal break components monitored by the strain gauges
P8, J1U6 and J2U6 have approximately the same stress level as the ESI ones monitored by
the strain gauges J1V1 and J2V1. The low stress level is in accordance with the fact that no
significant relative displacement was monitored in this part of the structure. Finally, one can
observe that all the thermal break components behave in their elastic domain. For shear wall
#3, only DF type 1 thermal break components were used. The maximum engineering stress is
shown in Figure 3.59 and no yielding is observed.
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Figure 3.58: Maximum engineering stress versus seismic ground motion level — shear wall #2.

For all the shear walls, the maximum engineering stresses in the thermal break components in-
crease faster than the PGA. Furthermore, the results in terms of relative displacements between
the slab at the 2nd floor and the surrounding shear walls show a trend that is in agreement with
the fact that the maximum engineering stresses in the thermal break components increase faster
than the PGA. The maximum amplitude of the relative displacements seems proportional to
the PGA in the range 0.2–0.4 g and increases faster for higher PGAs.

From the results presented above, we can note the satisfactory dynamic properties of the ther-
mal break components under seismic loading. Indeed, the thermal break components do not
significantly modify the load transfer between the shear walls and the related floor. One can
add that structure failure has not been reached because of a local failure of such a component,
as mentioned in Section 3.5.2.
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Figure 3.59: Maximum engineering stress versus seismic ground motion level — thermal breaks
DF type 1 — shear wall #3.

Nonlinear time history analysis

Description The numerical investigations that were carried out by using the finite element
software Cast3M are presented in this section. It is important to mention that the numerical in-
vestigations were realized after the experimental study. The validity of the numerical model was
assessed through post-test comparisons of the numerical results with experiment. The ability of
advanced modeling techniques to handle such a complex structure is investigated and analyzed.

The numerical model includes the reinforced concrete mock-up as well as the shaking table.
This choice has been made in order to ensure an accurate description of the boundary condi-
tions. Each structural component has been represented by appropriate finite elements in order
to reduce the computational time required as much as possible, without reducing the accuracy
of the whole analysis. The overall mesh is shown in Figure 3.60. Considering the results coming
from the experiments, the thermal break components have been included in the finite element
model using a linear elastic constitutive law. Indeed, since the experimental observations have
shown that a full load transfer is ensured as well as the continuity of the displacements at the
shear wall–slab connections, the same assumptions have been kept in the modeling strategy.

Figure 3.60: Finite element mesh of the shaking table and the mock-up — red: shear walls;
white: plates; yellow: beams; red: column; green: foundation; gray: shaking table.

Except for the reinforced concrete column that was modeled by the uniaxial version of the
constitutive law introduced in Section 2.2.3, a single constitutive law was used in order to
describe the dynamic behavior of an RVE of a reinforced concrete component Markovic et al.
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(2007). It is expressed within the framework of the thermodynamics of irreversible processes.
This strategy ensures not only consistency with the principles of physics but also numerical
robustness. It is based upon the following assumptions:

• the reinforcing bars are orthotropically distributed;

• the loading does not lead to an extended damage state.

Under these assumptions, the mechanical behavior of a reinforced concrete RVE can be split
into two parts with two different modulus: a linear elastic stage and a cracking stage. It is
worth noting that the extended damage state refers to the part of the behavior in which the steel
bars yield. In other words, yielding of the steel reinforcement can not be described. A detailed
description of the constitutive equation as well as a well established procedure to identify the
material parameters can be found in Markovic et al. (2007).

The nonlinear time history analyses were carried out in the relative basis. The time/acceleration
signals (X and Y directions) recorded at the center of gravity of the shaking table were prescribed
to the system as an equivalent inertial force field distributed proportionally to the mass. In ad-
dition, kinematic relations between the lower surface of the mock-up foundation model and the
shaking table upper plate model were employed in order to link them to each other.

The damping was represented by the well-known Rayleigh viscous damping model, meaning
that a viscous damping matrix was introduced into the balance equations. The parameters of
the damping model were selected according to the first eigenfrequency and to the frequency
for which 90% of the total mass of the dynamic system was taken into account. An equivalent
damping ratio was assumed equal to 4% and was kept unchanged for all the seismic loadings
analyzed. The nonlinear dynamic problem was solved using the well-known Newmark (α = 1

2
and β = 1

4) time integration algorithm, available in Cast3M. The computational parameters
were selected so as to make the algorithm unconditionally stable. The average acceleration was
kept constant within the time interval [t, t+ ∆t], in order to avoid time step dependency issues.
The time step selected was equal to 10−3 s. The duration of each seismic loading was 40 s. The
computations were carried out on a 20-core computer with 32 Gb of RAM. The equivalent of
four cores was used at their maximum capability during the nonlinear dynamic computations.
The computational time of one seismic run was about five days.

Post-run modal properties The evolution of the first eigenfrequencies of the reinforced
concrete specimen were numerically investigated using the nonlinear model presented previously.
From among the possibilities for determining the eigenfrequencies, the choice was made to carry
out a modal analysis after each computed seismic loading. Assuming that the mass matrix
remained constant, the damage stiffness matrix was computed numerically from the secant
Hooke matrix as follows:

K =

n∑
e=1

∫
Ωe

Bt
eC̃eBedΩ (3.61)

where
∑

(.) stands for the assembly operator, n for the number of finite elements Ωe, Be for the
gradient matrix of the shape functions, and C̃e for the secant Hooke local matrix.
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Mode Experimental Numerical Error

number eigenfrequency eigenfrequency εi =
|fexpi −fnumi |

fexpi

(Hz) (Hz) (%)

After 0.2 g

1 4.3 4.5 4.6
2 7.7 8.2 6.5
3 15 16.1 7.3
4 24 27 12.5

After 0.4 g

1 4 4.1 2.5
2 6.9 7.2 4.3
3 15 15.5 3.3
4 23 25.5 10.8

After 0.6 g

1 3 3.3 9.1
2 6 6.5 8.3
3 12.5 13.7 9.6
4 22 24 9.1

Table 3.12: Experimental–numerical comparison of the eigenfrequencies — damaged structural
state.

This strategy allows taking into account the damage when computing the eigenfrequencies and
the modeshapes. A comparison between the numerical and the experimental results is presented
in Table 3.12. It is worth noting that the error between the experimental data and the numerical
results never exceeds 13%. After the seismic loadings with PGA equal to 0.2 and 0.4 g, the
lower the eigenfrequencies are, the better they are estimated. This trend is different after the
seismic loadings with PGA equal to 0.6 g: the error seems almost the same whatever the mode
considered. In addition, the values of the error emphasize the fact that the numerical model is
too stiff and the energy dissipation is not enough. This is in accordance with the observations
presented in Combescure et al. (2013), in which an updated version of the constitutive law is
suggested.

Floor response spectra in the case of a beyond-design seismic loading The nonlinear
finite element model presented in the previous sections was used to simulate three bi-directional
runs. The comparisons of the numerical results with experiment are based on acceleration
response spectra that were computed with a 5% damping ratio. Three seismic runs have been
considered, with a PGA ranging from 0.2 g to 0.6 g. Indeed, the results presented in the previous
sections show that the reinforced concrete mock-up reached a severe damage state after run #31,
with a PGA equal to 0.8 g. Since yielding is not taken into account by the constitutive law,
this run was not simulated. Nevertheless, the relevancy of the finite element model has been
assessed through comparisons of experiment with the numerical results, made at point H (see
Figure 3.51), located on the 3rd floor, and for the three directions X, Y and Z. In the following,
only the results obtained in the case of the ground motion with the highest intensity are shown.
The results are presented in Figure 3.61 in terms of the acceleration time histories, and in
Figure 3.62 in terms of the FRS computed for 5% damping. A satisfactory agreement between
the experimental and the numerical results has been obtained. This result allows supporting
the assumptions made to model the thermal break components, such as the full load transfer
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and the continuity of the displacements at the wall–slab connection.
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Figure 3.61: Acceleration time histories — experimental–numerical comparison — run #28.

10
−1

10
0

0

10

20

30

40

50

60

P
se

ud
o 

ac
ce

le
ra

tio
n 

(g
)

Period (s)

 

 

Num.
Exp.

(a) X direction.

10
−1

10
0

0

20

40

60

80

100

P
se

ud
o 

ac
ce

le
ra

tio
n 

(g
)

Period (s)

 

 

Num.
Exp.

(b) Y direction.

10
−1

10
0

0

5

10

15

P
se

ud
o 

ac
ce

le
ra

tio
n 

(g
)

Period (s)

 

 

Num.
Exp.

(c) Z direction.

Figure 3.62: Floor response spectra — experimental–numerical comparison — run #28.
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Lessons learned

Regarding the analysis of the experimental results presented in previous section, the following
conclusions can be drawn:

• a severe damage state is reached at the end of the whole seismic sequence;

• a bond failure occurred at the steel–concrete interface close to the connection between the
foundation and shear wall #1;

• the presence of thermal break components does not modify the structural response of the
mock-up, since an almost-perfect full load transfer between the slab and the surrounding
shear walls is ensured by the thermal break components.

In order to support the experimental data, an advanced modeling approach was used to analyze
its capability to describe the structural behavior of the dynamic system subjected to seismic
loadings. The constitutive law, expressed within the framework of continuum damage mechanics,
aims at describing the behavior of a reinforced concrete RVE. Yielding of the steel reinforcing
bars is not taken into account, therefore the seismic loading with a PGA equal to 0.8 g was
not analyzed in this study. The relevancy of the modeling approach was assessed by analyzing
several quantities, such as (i) the modal properties of the reinforced concrete mock-up after
each seismic loading and (ii) the FRS computed for 5% damping. From these comparisons, it
appeared that the evolution of the first eigenfrequencies along the seismic loadings is slightly un-
derestimated. This may be related to a lack of dissipation capability of the constitutive law used.

According to the results presented above, the thermal break components do not seem to in-
fluence the dynamic behavior of the reinforced concrete mock-up when subjected to seismic
loadings. Indeed, the stiffness as well as the deformability at the wall–slab connection seem to
be satisfactory, at least in the case of the designs considered in this study. It can be concluded
that the inclusion of such new thermal insulation components does not lead to significant struc-
tural modifications. In other words, the provisions made by EC8 remain justified even though
these additional components are included in a complex structure.

3.6 Summary

This section was devoted to the presentation of our contributions aiming at (i) quantifying in a
refined way the cracking features, (ii) estimating the dissipative capabilities of reinforced concrete
structures under cracked conditions, (iii) improving the computational efficiency of probabilistic
approaches, and (iv) better understanding not only the complex behavior of torsion-sensitive
reinforced concrete structures but also the applicability of structural assessment methods.

In the first part, a particle model was presented. The improvements made in order to make
it capable of handling cyclic loadings were presented. Especially the time-integration algorithm
and the additional dissipative mechanisms that have been included were presented. The ability of
the resulting model to be used as a virtual testing machine to complement the set of experimental
results when dealing with the identification of the material parameters for continuous consti-
tutive laws have been pointed out. Because the analysis carried out with the aforementioned
discrete approach is highly time-consuming, the case of a large-scale structure is not straight-
forward to handle. As a consequence, the developments to improve the traction/separation law
considered in the kinematic enhancement based approach have been presented. In particular,
we formulated, within a consistent framework, a mixed-mode traction/separation law based
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on micromechanical assumptions. Despite the fact this approach is low intrusive in computa-
tional software and does not lead to additional computational costs due to the extra degrees
of freedom describing the crack opening, the C0-geometrical continuity of the crack path is not
ensured. Therefore, by reformulating the boundary value problem to be solved, we improved
the well-known global tracking strategies in order to make the results less user-sensitive and
allow online tracking during the incremental/iterative integration scheme. Representative case
studies have also been shown and discussed. The main contributions consist in: (i) improving
the particle model in order to make it capable of handling cyclic loading path, (ii) showing the
pros of an implicit time integration strategy, (iii) expressing in a consistent way an anisotropic
damage based traction/separation law and (iv) improving the existing global tracking strategy to
ensure the continuity of the crack path.

In the second part, the dissipative capability of reinforced concrete structures was studied.
In particular, we focused on the quantification of the effects of cracking on the damping, based
on an experimental study that we had defined. In addition, some recommendations have been
made aiming at identifying a hysteretic scheme allowing for a natural description of damping.
Another research topic consists in estimating the effects of corrosion on the bearing capacity
of a large-scale reinforced concrete bridge that had been experimentally tested. The objective
was reached with the help of the constitutive models we developed. Some conclusions already
reached in the literature, but at a lower structural scale, have been confirmed.

In the third part, light was shed on some developments aiming at (i) taking into account uncer-
tainties related to the material parameters of a structural model with a reduced computational
demand, and (ii) updating an a priori probabilistic model. The possibilities offered by the pro-
posed techniques have been emphasized by a structural case study.

In the last part, some contributions aiming at better understanding the behavior of torsion-
sensitive reinforced concrete structures subjected to an extreme loading were presented. In
particular, two large-scale experimental studies including shaking table tests were presented.
On the one hand, the experimental results have allowed for some assessments on the local
effects of thermal break components on the structural behavior, and on the other hand, the
seismic margins available on a reinforced concrete structure designed according to the French
nuclear practices have been estimated. In addition, these last results have served as input to
an international benchmark we organized in order to share approaches to the best design and
assessment methods to employ when dealing with strongly asymmetric reinforced concrete struc-
tures. The main contributions are: (i) creating and making available data coming from shaking
table tests performed on large-scale reinforced concrete structures, (ii) assessing the capabilities
of best-estimate approaches to provide meaningful information when dealing with beyond-design
behavior and (iii) creating an international event to encourage the international earthquake en-
gineering community to share.
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4 Conclusions and outlook

The main objectives of the research summarized in this memoir are to improve the numerical
description of the behavior of a quasi-brittle material subjected to cyclic loadings, and to bet-
ter understand the way complex reinforced concrete structures behave under extreme loading
conditions. On the one hand, my work has been focused on the improvement of the continuous
descriptions of the cyclic behavior of the RVEs, allowing the formulation of simplified numerical
strategies to serve probabilistic approaches. On the other hand, we contributed to improving
the way of analyzing and quantifying the vulnerability of reinforced concrete structures. To
reach these goals, we explored advanced modeling techniques to allow a refined description of
cracking and we contributed in the definition of shaking table experimental campaigns to create
reference data in order to assess of the efficiency of best-estimate approaches.

In the first part, several constitutive models were presented. We first focused on the case of
concrete-like materials, presenting three modeling strategies. The progressive improvements we
made have been explained by discussing the pros and cons of each strategy. Special attention
was paid to the description of the crack closure effect and its coupling with the hysteretic re-
sponse when switching from tension to compression. Regarding this aspect, we can conclude
that: (i) a spherical/deviatoric split is not sufficient, (ii) a regular closure function is needed,
and (iii) an incremental formulation (in terms of stress and strain rates) reduces the convergence
issues in the local time-integration algorithm. Next, the case of the steel–concrete interface was
addressed. The developments of a set of constitutive equations aiming at describing the behav-
ior of the steel–concrete interface in the presence of corrosion show that accurate results could
be obtained at the structural component scale. However, dealing with large-scale structures
remains complex due to the computational burden. This is the reason why a simplified strategy
has been proposed, within the framework of the multifiber approach. Despite the fact that not
all the mechanisms included in the three-dimensional model could be considered in the simpli-
fied model, the main characteristics of the behavior at the structural component scale could be
reproduced.

The last part of this memoir was devoted to the presentation of some contributions aiming
at assessing the vulnerability of reinforced concrete structures by means of different numerical
and experimental techniques. Our contributions have been gathered under four complementary
topics, which are summarized in the following.

To begin with, we focused on the complex issue of the quantification of the cracking features.
To reach this objective, we explored two strategies: on the one hand, a particle model and on
the other hand, an approach based on kinematic enhancement, explicitly taking into account
the discontinuity of the displacement. Regarding the development related to the particle model,
our developments allowed making it applicable to the case of cyclic loadings, by both improving
the time-integration strategy and enhancing the dissipative mechanisms included, namely the
contact and the frictional sliding. The capabilities of the beam model were illustrated through
two examples. First, the crack features can be quantified a posteriori, following a continuous
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analysis of the structure under study. Second, we benefitted from the predictive capabilities of
the model to carry out virtual tests in order to complement the experimental data available to
serve as inputs into the identification process of the material parameters of a continuous model.
According to the results obtained so far, the particle model has now reached a sufficient degree
of maturity to make us confident in it. However, because the computational time required by
such an analysis is quite important, the analysis of a whole structure remains difficult. Next,
we focused on a kinematic enhancement based approach. The advantageous role of the strain
singularity on a class of anisotropic damage constitutive models based on micro-mechanical
assumptions has been shown, which extends the well-known result achieved in the case of con-
stitutive models of isotropic damage. In this way, a traction/separation law taking into account
refined mechanisms such as mode I and mixed mode cracking could be formulated. As a major
drawback of this numerical framework, the continuity of the crack is not ensured. We improved
the well-known global tracking strategy in order to ensure a well-posed boundary value problem
and to allow online tracking to handle cyclic loadings involving complex stress states.

Then we focused on the estimation of the dissipative capability of reinforced concrete com-
ponents subjected to complex loadings. Indeed, estimating the ductility level is a key point
when dealing with either design studies or the reassessment of existing structures. The relation
between cracking and damping was investigated by means of quasistatic tests. The experimental
results were analyzed in order to quantify the internal damping or, in other words, the damping
contribution coming from the energy dissipation at the material scale. Based upon these results,
we could assess the efficiency of some hysteretic schemes to describe the energy dissipation due
to frictional sliding. If the hysteretic scheme is well chosen, the contribution from the viscous
damping matrix can be drastically decreased, and so one can avoid using it as a tuning param-
eter within the framework of a nonlinear transient analysis. The case of existing structures has
also been addressed. A 40-year old reinforced concrete bridge was analyzed in order to estimate
the influence of corrosion on the bearing capacity. Despite the fact that this study was purely
numerical, we could observe trends which confirmed the results published in the literature but
obtained at a lower scale.

Because it is necessary not only to take into account the uncertainties related to the mate-
rial parameters of a mechanical model, but also to update an a priori probabilistic model based
upon new available information, we contributed to the improvement of statistical techniques. In
particular, we proposed an alternative strategy allowing an accurate estimation of the probabil-
ity of exceeding a given limit state and we applied the concept of Bayesian updating within the
framework of beyond-design analysis to adjust, in a consistent way, the statistical parameters of
a probabilistic model.

In sum, the research we carried out to better understand the behavior of strongly asymmet-
ric reinforced concrete structures subjected to dynamic loading has been presented. The main
issue lies in being able to comprehend the torsional effects coming from the existence of an
in-plane geometrical eccentricity. Experimental studies involving shaking table tests performed
on large-scale reinforced concrete structures were defined. The first one was devoted to under-
standing the influence of thermal break components on the dynamic response of an asymmetric
structure. The experimental results, corroborated by a numerical nonlinear analysis, show only
slight modifications of the overall behavior due to the presence of these additional components.
The second experimental study aimed at confirming the existence of seismic margins exhibited
by a reinforced concrete structure designed according to the French practices applicable in the
nuclear industry, and quantifying them. To provide some answers to this issue, an extreme seis-
mic scenario was considered, including natural ground motion signals. The experimental data
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were used within the framework of an international benchmark, the objective being to assess
the capabilities of best-estimate approaches to predict the dynamic response of such a complex
structure. The analysis of the benchmark outputs and the discussions that took place during an
international workshop have allowed reaching a consensus about identifying not only the best
practices but also paths to improvement when dealing with structural beyond-design assessment
issues.

Following on from the results and conclusions presented above, we plan to work on several
topics. In the short term , we envisage focusing on three main aspects, which are enumerated
below:

1. application of the concept of regularized unilateral effect in the case of constitutive models
formulated within an anisotropic framework,

2. identification and quantification of the dissipative capability of reinforced concrete com-
ponents,

3. comprehension of the consequences of structural pathologies, such as the corrosion of the
steel reinforcing bars, on the dynamic response of reinforced concrete structures.

Regarding the first topic, the conclusions reached in the second part of this dissertation have
shown the necessity of considering both a continuous approach and more local techniques to
be able to estimate in a refined way the cracking features. As a consequence, we think it
would be interesting to study the possibility of extending the concept of a regularized unilateral
effect within two frameworks: the first would be an anisotropic continuum damage constitutive
setup in which the damage variable is described in a tensorial form to allow a robust split
between the tension, compression and shear. To reach this objective, the recent work carried
out by Desmorat (2015) could be advantageously considered. The second framework we plan to
focus on is the microplane theory Bazant et Oh (1985). Indeed, based upon a local variational
principle allowing linking two different scales, uniaxial relations can be included within this
framework. Due to the energetic principle, a uniaxial response can be upscaled in order to
describe the mechanical response of an RVE. This theoretical context could be used in connection
with a kinematic enhancement based technique, including displacement discontinuities. This
may contribute, at least in part, to tackling the challenge that lies in dealing with several
discontinuities in a single finite element. In addition, because the microplane approach requires
uniaxial relations, the concept of a regularized unilateral effect could be introduced quite easily
in a specific traction/separation law. The principle of the approach we plan to focus on is
illustrated in Figure 4.1.

Figure 4.1: Principle of the enhanced microplane approach.
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Regarding the second aspect, the work we carried out to improve the understanding of the
relation between damping and damage has two major limitations. Indeed, the absence of exper-
imental data obtained under a dynamic loading led to the necessity to extrapolate, somehow,
the quasistatic results in order to be able to estimate the damping. In addition, the fact that
three-point bending tests were carried out has led to some difficulties due to the heteroge-
neous distribution of the damage. Learning from these lessons, a new experimental program,
named IDEFIX1, has been designed within the framework of the French national research project
SINAPS@. The experimental setup is represented in Figure 4.2. Both quasistatic and dynamic
tests are planned. The specimen will be subjected to dynamic loading having a frequency content
that matches the first eigenfrequencies. In this way, the modification of the modal properties
(mainly the modal damping and eigenfrequencies) with respect to the growth of the damage will
be estimated. The experimental results should supply a model identification approach in order
to estimate, in a consistent way, the relations between the damage and the modal properties.
This research has already begun, and the initial results are encouraging. To move forward, the
next step we envisage lies in considering reinforced concrete plates instead of beams. In this way,
the relations between the damage and the modal properties may be included in plate or shell
finite elements, which are the those most used when dealing with a nonlinear transient analysis.

Figure 4.2: Experimental setup of the IDEFIX experiments.

Regarding the last aspect, we plan to focus on the effects of structural pathologies on the dy-
namic response of reinforced concrete structures. This issue represents, as far as our knowledge
extends, a nearly unexplored field of research with many scientific challenges to tackle. Nowa-
days, we see that most operators are working on the life-extension of their energy production
facilities. It is well known that reinforced concrete is a composite material that can be subject to
several pathologies. Therefore, understanding their effects on the dissipative capability of such
a building should be clarified. The literature shows a clear lack of research aiming at answering
this complex issue. When focusing on the case of corrosion, its mechanical consequences for the
quasistatic response of reinforced concrete structures has been explored. This is not the case
for the extreme loading scenario, such as earthquake loading. Among the scientific challenges
related to this aspect, we first should think about the definition of an experimental study in-
volving shaking table tests in order to understand the physical mechanisms which take place
during the degradation process. Then and only then, will we be able to start thinking about
the formulation of numerical strategies to describe the mechanical consequences in connection
with this coupled loading, involving not only different time scales but also different dissipative
mechanisms.

1IDEFIX: French acronym for damping identification of reinforced concrete components under cracked condi-
tion.
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In the long term , we plan to develop topics which are more application oriented:

1. clarification of failure criteria to consider in the case of strongly asymmetric reinforced
concrete structures,

2. integration of simplified modeling strategies aiming at describing the performance loss with
respect to the time into the framework of uncertain system analysis.

The first aspect is motivated by the fact that design engineers often have to face the complex
issue of defining a damage indicator when dealing with the structural assessment of a reinforced
concrete structure. Indeed, linear analysis is very popular in engineering practice and therefore
the type of damage indicator is naturally restricted. For instance, the use of the well known
inter-story drift may not be the most appropriate indicator in the case of wall-based structures.
More accurate structural assessments might be obtained if nonlinear methods became more used
in design offices. Indeed, the nonlinear nature of the common assessment methodology leads to
the ability to consider new indicators that could help engineers to design complex structures,
such as asymmetric ones, in a less conservative way that still remains safe. However, the use
of nonlinear assessment methods to derive new damage indicators at the member scale leads to
two scientific/technical issues: (i) new thresholds should also be introduced in order to define
the concept of failure, and (ii) the way to use nonlinear assessment approaches should be framed
in order to become usual in engineering practice. The definition of new thresholds can not be
thought of from a purely numerical point of view (even though nonlinear modeling approaches
have reached a certain degree of maturity over the past decades) but new pieces of knowledge
should also come from experimental investigations. The second challenge may be addressed, at
least partially, only thanks to fruitful exchanges among the international scientific community.
Indeed, best practices always come from consensus and the sharing of knowledge.

Stakeholders are in charge of the maintenance policy of a building network. The definition of the
planning of maintenance actions should serve two main objectives: (i) a sufficient performance
level must be ensured and (ii) the maintenance costs should be optimized. The second aspect
we plan to work on is motivated by the latter observation. Indeed, maintenance cost optimiza-
tion strategies generally include performance loss models, which are generally empirical, mainly
because this topic is located at the frontier between two research communities. We seriously
think we could derive great benefits from advanced nonlinear modeling strategies to develop
simplified laws allowing the description of structural performance loss. In this way, system-
based approaches might be enhanced. Furthermore, extreme loading scenarios are generally
not considered, only long-term loadings, such as the effects of reinforced concrete pathologies,
are included. Based on this observation, the new pieces of knowledge which could arise from
ongoing projects we are working on could be used. Hence, coupled effects (pathologies and
extreme loading) may be included within the framework of a system-based modeling to improve
the management of maintenance policy.

The long term research topics presented above are not exhaustive, they will depend on the
future collaborative frameworks we have and the financial support available in the next years.
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den, 1996. G.E.G.B., Report RD/B/N.

R. Bargellini, D. Halm et A. Dragon : Modelling of anisotropic damage by microcracks:
towards a discrete approach. Archives of Mechanics, 58(2):93–123, 2006.

Z.P. Bazant et B.H. Oh : Microplane model for progressive fracture of concrete and rock.
Journal of Engineering Mechanics, 111(4):559–582, 1985.
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