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Résumé

Cette thèse porte sur le codage prédictif comme principe général pour la perception et vise à

en étayer les mécanismes computationnels et neurophysiologiques dans la modalité auditive. Ce

codage repose sur des erreurs de prédictions pondérées par leur précision (quantifiant leur plau-

sibilité) se propageant au sein de la hiérarchie corticale, et se reflétant dans des réponses neuro-

physiologiques au changement (ou déviance) telles que la Négativité de discordance (mismatch

negativity, MMN). Dans ce cadre théorique, nous avons formulé des hypothèses précises quant

aux mécanismes génératifs de ces réponses, à la fois d’un point de vue computationnel et neuro-

physiologique. Nous avons pu les tester finement grâce à une manipulation expérimentale de la

prédictibilité du changement auditif d’une part, et à l’utilisation d’enregistrements électrophysi-

ologiques (EEG, MEG) simultanés, d’autre part.

Une modulation des réponses à la déviance par la prédictibilité a été observée, permettant d’établir

un lien avec les erreurs de prédictions. Cet effet démontre un apprentissage implicite des régular-

ités acoustiques, dont l’influence sur le traitement auditif a pu être caractérisée par notre approche

de modélisation. Du point de vue computationnel, un apprentissage a été mis en évidence au cours

de ce traitement auditif, reposant sur une fenêtre d’intégration temporelle des informations dont

la taille augmente avec la prédictibilité des déviants. Du point de vue neurophysiologique, cet effet

est associé à des modifications de la connectivité effective (extrinsèque et intrinsèque) induites

par une modulation des gains synaptiques, comme le montre une analyse par modèles causaux

dynamiques.

Ces résultats soulignent l’importance d’une approche multimodale, combinant ici EEG et MEG.

Ils montrent aussi l’importance des modèles, à la fois computationnels et neurophysiologiques

qui concourent à révéler la hiérarchie corticale auditive et éclairent les processus d’apprentissage

perceptif. En accord avec le codage prédictif, nous avons notamment identifié la modulation con-

textuelle de l’erreur de prédiction ainsi que de sa précision.

Mots clés:

Cerveau bayésien, erreurs de prédictions, précision, inférence perceptive, électroencéphalographie,

magnétoencéphalographie, potentiels évoqués, sources distribuées, reconstruction de sources, fu-

sion multimodale, modèles dynamiques causaux.

v



vi RÉSUMÉ



Abstract

This thesis aims at characterizing predictive coding during auditory perception. Predictive coding

rests on precision-weighted prediction errors elicited by unexpected sounds that propagate along

a hierarchical organization in order to maintain the brain adapted to a varying sensory environ-

ment. This general principle is thought to subsume perceptual learning. However, its precise

computational underpinnings and its implications in terms of neurophysiological mechanisms re-

main unclear. Using the mismatch negativity (MMN), a brain response to unexpected stimuli

(deviants) that reflects such prediction errors in the brain, we tackled this twofold question. Pre-

cisely, we manipulated the predictability of deviants and applied computational learning models

and dynamic causal models (DCM) to electrophysiological responses (EEG, MEG) measured si-

multaneously.

Deviance responses were found to be modulated by deviant predictability, a result further support-

ing their interpretation as prediction errors. This effect reflects the (high-level) implicit learning

of sound sequence regularities which would in turn influences auditory processing in lower lev-

els of the hierarchy. Computational modeling of trial-by-trial variations of electrophysiological

evoked responses revealed the perceptual learning of sounds at play. Importantly, increased pre-

dictability yielded an increase in the size of the information temporal integration window. In

addition, DCM analysis indicated predictability changes in the synaptic connectivity established

by deviance processing. Precisely, we observed an increase in self-inhibition (coding for precision

weighting) together with a decrease in forward connectivity (coding for prediction error) with

higher predictability. This is consistent with the computational findings.

These results confirm predictive coding predictions regarding both deviance processing and its

modulation by predictability. They shed light on perceptual learning processes within the audi-

tory hierarchy. They also emphasize the great power of multimodal approaches (here the com-

bination of EEG and MEG), together with the essential contribution of advanced computational

and neurobiological models in modern cognitive neuroscience.

Key words:

Bayesian brain, precision-weighted prediction errors, perceptual inference, electroencephalogra-

phy, magnetoencephalography, evoked potentials, event-related responses, source reconstruction,

distributed sources, fused inversion, dynamical causal model.
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Preamble

Recent Bayesian theories of brain functions propose that the brain would be constantly anticipat-

ing (predicting) its interactions with the external world and that both expected and unexpected

interactions - once experienced - would be exploited to stay optimally adapted to the ever-changing

environment. These advanced theories imply a Bayesian treatment of information and are often

referred to as the Bayesian brain hypothesis. Importantly, they aim at explaining brain function-

ing as a whole, from perception to action, as well as brain dysfunctions.

Regarding perception, the Bayesian brain requires the (perceptual) learning of sensory regularities

in order to build up predictions from past sensations. The general principle of predictive coding

has been proposed as a possible functional implementation for such an information processing

framework and precise implications for its neurobiological underpinnings have been suggested.

While several behavioral studies strongly support Bayesian computation in the brain, only few

neuroimaging or electrophysiological studies attempted to relate these findings with the underly-

ing neurophysiology.

This thesis work places itself in this broad framework in order to tackle both the computa-

tional and neurophysiological mechanisms underlying auditory processing and more specifically

the well-known Mismatch Negativity (MMN).

The first part is dedicated to the theoretical background of this work. Chapter 1 provides the

rationale for Bayesian Inference and chapter 2 is dedicated to the brief description of the Bayesian

brain theory, with an overview of the main associated findings in the field of perception. Chapter

3 introduces the MMN and reviews the existing accounts for this component. Finally, chapter 4

gives an overview of most recent Bayesian models of the MMN.

The second part describes precisely the objectives of this work and presents the methodology

used to attain them, with corresponding findings. In particular, chapter 5 describes the simul-

taneous EEG and MEG study that we designed to elicit a contextual modulation of the MMN,

which we predicted under the predictive coding hypothesis. Sensor-level analysis provided posi-

tive evidence for this hypothesis. Chapter 6 is dedicated to the fine-grained reconstruction of the

cortical sources of deviance responses using both modalities. Relying on these findings, alterna-

tive hypotheses were formalized regarding the generative mechanisms of the MMN, at both the

physiological (chapter 7) and cognitive (chapter 8) levels. These competing models were tested

against our EEG and MEG data.

Finally, the third and last part summarizes and discusses our findings.
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5

Estimation of unknowns from knowns defines well the principle of which is statistical inference,

one of the key step of empirical science. In the field of cognitive neuroscience, knowns may refer to

measures of reaction time in behavioral studies, or to measures of electric potential differences or

magnetic fields in neuroimaging studies. These measures (the knowns) should contain information

to estimate the unobservable properties of the brain (the unknowns) that directly or indirectly

have influenced their generation. For instance, unknowns could refer to cognitive processes (atten-

tional load, musical perception,...) or biophysical properties like in cortical source reconstruction.

Importantly, statistical inference requires the hypothesis driving the study to be formalized in

the form of alternative models that will entail various assumptions and inevitable simplifications.

These lead to uncertainty in the information manipulated by the model that, combined with the

variability of observed data, may affect the plausibility or the degree of confidence to place in the

inferred estimates. Bayesian inference, as we will see in the following section, is a mathematical

framework that is very much appropriate to account for both prior knowledge and sources of

uncertainty.

Estimation of unknowns from knowns, this is also what the brain could do according to the

Bayesian brain. Leading contributors in the field such as Karl Friston suggest that the brain

would be equipped to process statistical inference using (or approximating) a Bayesian scheme.

Considered by some as revolutionary, the Bayesian brain provides a general theory for brain func-

tioning, unifying different psychological models of mental processes and bridging the gap between

psychology and physiology. It naturally opens the way to a vast field of research in neuroscience

and has progressively given rise to a growing amount of dedicated empirical and fundamental

studies over the past decade or so. The work presented in this thesis builds on this recent line of

research and attempts to shed light on the specific field of auditory perception.

Bayesian inference is thus at the core of this work. On the one hand the brain is approached

as a Bayesian engine observing the world. On the other hand we, as scientist observing the brain

at work, adopt a Bayesian methodology to formulate and test our hypothesis. In other words, we

conform to the Bayesian brain hypothesis when it comes to modeling brain functions (perceptual

learning in the auditory domain). Besides, we behave as Bayesian scientist in our experimental

and methodological approach in order to fit and compare alternative models of our data. We thus

start this introduction by a brief recall of the theoretical principles of Bayesian inference that

will be used throughout this work (chapter 1), followed by a presentation of the Bayesian brain

hypothesis (chapter 2). The last two parts pertain to the auditory MMN (chapter 3), which was

central to this work to investigate the predictive coding account of auditory processing as reflected

by evoked responses, and to the existing (and promising) Bayesian neurobiological and cognitive

models of this brain component (chapter 4).
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Chapter 1

Elements of Bayesian inference

1.1 From Bayes’s rule to Bayesian inference

1.1.1 Bayes’s rule

Bayes’s rule (or Bayes’s Theorem) is the cornerstone of Bayesian inference. It simply derives from

the expression of the joint probability p(A, B) (or p(A ∩ B)) of concurrently observing two events

A and B:

p(A, B) = p(A|B)p(B) (1.1)

where p(A|B) denotes the conditional probability of observing A, given B (or having observed B).

p(B) is called the marginal probability of B and represents the probability to have B regardless

of A. Importantly, the joint probability p(A, B) depends on A and B in a symmetric manner and

Eq. (1.1) can be reformulated by marginalizing on A, leading to the following equality:

p(A|B)p(B) = p(B|A)p(A) (1.2)

This leads to the following expression known as Bayes’s rule:

p(A|B) =
p(B|A)p(A)

p(B)
(1.3)

This form reflects that reverse probabilities (e.g. p(B|A)) can be obtained from direct ones (e.g.

p(A|B)) and is precisely of utmost importance in Bayesian inference when one wants to infer

causes from consequences.

1.1.2 A few general comments on the Bayesian framework

Before describing the basics of Bayesian inference, two central concepts of the Bayesian framework

must be introduced. First, probability p does not refer to the frequency of occurence of an event

(e.g. the number of tails in N tosses of a coin, N being infinite) but to its degree of plausibility.

Plausibility is quantified by a real number normalized between 0 and 1, where 0 means that the

event can never be (or is false, according to a logical formalism) and 1 means it always happens

(always true). Hence, in a Bayesian scheme, the probability distribution of a variable (i.e. the

function that assigns a probability to each value of the set of possible values for the given variable)

7
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formalizes our knowledge (or equivalently the uncertainty associated with) of this variable. For

instance, let J be the activity of a cortical source at time t. Using a gaussian distribution, we can

model both our knowledge (or belief) that this activity is (for instance) null and the confidence we

place on this knowledge, by informing accordingly the mean and the variance of the distribution

respectively.

The second key notion in a Bayesian framework is the fact that every available information about

the phenomenon of interest has to be accounted for (with associated uncertainty represented in

the probability distribution). These two concepts highlight the fact that in a Bayesian setting, it

is all about knowledge and uncertainty.

1.1.3 Bayesian inference

From these introducing remarks, one can see that Bayesian inference, allowing inferring param-

eter estimates from observations, is nothing else than belief updating from new observations. It

is also termed as Bayesian learning. Precisely, Bayesian inference rests on the central notions of

prior and posterior knowledges. Every unknown is treated as a random variable whose knowledge

evolves with the confrontations to observations. Before having observed the data, this knowledge

is represented in the form of a prior distribution, and the integration of information contained in

the data leads to an update formalized by a posterior distribution. Posterior distribution is by

essence conditioned to the data and reflects learning.

Let y and θ denote the observations and the unknowns respectively (θ could also refer to an

hypothesis or a model, as will be seen in §1.2). Bayes’s rule (Eq. (1.3)) provides the following

relation between the prior distribution p(θ) and the posterior distribution p(θ|y):

p(θ|y) =
p(y|θ)p(θ)

p(y)
(1.4)

Under this form, p(y|θ) is referred to as the likelihood distribution and represents how likely it is

to observe y given θ. p(y) is called the evidence and corresponds to the marginal distribution of

y:

p(y) =
∫

p(y|θ)p(θ)dθ (1.5)

p(y) is thus a constant term independent from θ, whose value is obtained by integrating out

(marginalizing) p(y|θ) over the domain of possible values for θ. Eq. (1.4) expresses how the

knowledge and uncertainty about θ are updated using the rules of probability and given the

observed data. Importantly, the respective uncertainty associated with the prior p(θ) and like-

lihood p(y|θ) will affect this update, as illustrated in Figure 1.1. The lack of knowledge about

an information is formalized by the variance of its distribution. This gives rise for instance to

the following: large value of the likelihood variance (or equivalently, low confidence or precision),

reflecting unreliable observation, will force the posterior to stick to the prior (whatever the data),

whereas low value (high precision) allows posterior to differ from prior, being mostly informed by

the (reliable) data.

In practice, Bayesian inference starts with the specification of likelihood and prior distributions

that together define a model. This critical step relies on a subjective decision that depends on
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Figure 1.1 – Typical schematic view of Bayes’s rule application to derive the posterior distri-
bution of parameter θ. πθ, πL, and πθ|y denote the precision (inverse variance) of the prior (red),
likelihood (green) and posterior (blue) distributions. Lower: increasing the likelihood precision
(right) results in the posterior distribution being mostly informed by the observed data, whereas
a decrease (left) gives more weight to the prior. The same reasoning applies to changes in prior
precision.

the degree of knowledge (before observing the data) about both the relation between data and

parameters, and the plausibility of parameters. It may not be achievable easily (in particular

when the phenomenon of interest is not well understood or implies a large number of data and/or

parameters) and yet, it directly affects the estimation of posterior parameters. However, if one

considers several models corresponding to competing hypothesis, parameter estimates given each

model can be formally compared by means of their respective posterior distributions. This point

is exactly where Bayesian inference derives its strength from: it allows both parameter estimation

(in terms of its full distribution) and a principled model selection. These aspects will be covered

in the following sections.

1.2 Models: definitions of useful concepts

The purpose of this section is to present different model families that were used in this thesis.

These pertain to generative (first paragraph), hierarchical (second paragraph) and dynamical (last

paragraph) models.

1.2.1 Generative models

Generative models are probabilistic models that formalize the generation of observable data y as

a function of parameters θ (and possibly states x in the particular case of dynamic system models,

as will be described in the following section). Put simply, a generative model m allows to predict

how data should look like, given hidden causes. The real (and unknown) generative mechanism of

y may not be necessarily a random process but its modeling - aiming at a better understanding of

this mechanism - appeals to a probabilistic framework to account for uncertainty associated with

both observed data and underlying parameters. Data predicted by m are consequently always

wrong and the difference with observed data represents the amount of data that is not explained

by the model, referred to as the error term and denoted ε. Possible origins of uncertainty entering
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this residual term include model assumptions that may be inherited from a limited knowledge

about the generative mechanism of the data. Furthermore, data are typically contaminated with

noise originating from the measurement equipment. The Bayesian framework can flexibly ac-

count for these different uncertainties and Bayesian learning aims at removing part of the residual

term associated with limited knowledge before seeing the data, hence providing better predictions.

Definition of a Bayesian generative model m requires the specification of a likelihood and a prior

distributions:

p(y, θ|m) = p(y|θ, m)p(θ|m) (1.6)

In the case of the generative models used throughout this thesis to account for brain signals, the

likelihood distribution p(y|θ, m) derives from:

• a deterministic part embodying the generative mechanism per se, called the forward or the

observation model, denoted g

• a prior distribution characterizing the error term, denoted p(ε|m).

The expression of y given θ is then:

y = g(θ) + ε (1.7)

The likelihood function p(y|θ, m) can be obtained by combining Eq. (1.7) and the prior distri-

bution of ε, p(ε|m). Two prior assumptions thus enter the likelihood function: the prior about

the generative mechanism and the prior regarding the source of variability affecting the data. For

instance, in the field of source reconstruction from electrophysiological data (EEG or MEG), g

could indicate the lead-field operator that allows simulating sensor data from cortical activity

given specific quantities (dipolar source parameters, anatomical and biophysical assumptions...)

represented by θ. A gaussian distribution is usually assumed for ε, with zero mean and variance σ.

The specification of the prior distribution p(θ|m) should entail prior knowledge inherited from

previous studies or expert statements for instance. In some cases where no explicit knowledge

about θ is provided, non-informative priors can be used: typically, these are priors whose distri-

bution has an nearly infinite variance. However, the use of such flat priors constitutes in itself a

prior and may favor overfitting in parameter estimation. Another important category of priors is

referred to as empirical priors. Empirical priors impose a hierarchical structure of the generative

model m, which will be described in the following section.

1.2.2 Hierarchical models

Hierarchical models emerge when one considers priors about priors. As already mentioned, it may

be difficult to fully specify the prior distribution of θ. Once the form of the parametric distribution

has been chosen given the nature of the phenomenon to be modeled (e.g. a Bernoulli distribution

to model a parameter taking two distinct possible values, a Gaussian distribution to model the

activity of a cortical source), parameters of this distribution need to be defined (e.g. mean and

variance) but in most cases, they remain unknown. Treating these parameters as random variables

allows them to be estimated by Empirical Bayesian (EB) inference. Pursuing with the example

of source reconstruction, with y = g(θ) + ε, and θ being the amplitude of cortical sources, one



1.2 Models: definitions of useful concepts 11

could model θ as a multivariate Gaussian variable with zero mean and covariance Σs. This would

lead to a two-level hierarchical model of the form:

⎧⎪⎪⎨
⎪⎪⎩

y = g(θ) + εn with p(εn|m) ∼ N (0 ; Σn)

θ = 0 + εs with p(εs|m) ∼ N (0 ; Σs)

(1.8)

where εn and εs reflect the uncertainty at each level of the hierarchy, namely the error at the

sensor-level and source-level, respectively. The Gaussian probability distributions of the variables

thus express as follows: ⎧⎪⎪⎨
⎪⎪⎩

p(y|θ, m) ∼ N (g(θ) ; Σn)

p(θ|m) ∼ N (0 ; Σs)

(1.9)

In the general case, a hierarchical model is composed of N levels, each associated with a parameter

θi, i ∈ [1, N ] such that prior distribution of θi is a function of θi+1 (Figure 1.2). Data y can be seen

as the parameter of the lowest level with y = θ0 and prior distribution of θN , at the highest level

is a function of θN+1 that is supposed to be known (otherwise, a level N + 1 should be defined

to account for its uncertainty). At each level i, hyperparameters θi+1 represent the parameters of

the distribution over θi. The full generative model now expresses as:

p(y, θ1, ..., θN , θN+1|m) = p(y|θ1, ..., θN , θN+1, m)p(θ1, ..., θN , θN+1|m) (1.10)

Interestingly, the hierarchical nature of the model yields the following factorization and convenient

rewriting:

p(y, θ1, ..., θN |m) = p(y|θ1)p(θ1|θ2)...p(θN |θN+1)p(θN+1|m) (1.11)

where p(y|θ1) is the likelihood function. This formulation highlights the relations between param-

eters that will be exploited within the hierarchical Bayesian inference, when one wants to infer

θ1, ..., θN , θN+1 from data y. Indeed, applying Eq. (1.4) to such a hierarchical model m yields:

p(θ1, ..., θN , θN+1|y, m) =
p(y|θ1)p(θ1|θ2)...p(θN |θN+1)p(θN+1|m)

p(y|m)
(1.12)

p(y|m) is a constant term and can be temporarily omitted so that simply:

p(θ1, ..., θN , θN+1|y, m) ∝ p(y|θ1)p(θ1|θ2)...p(θN |θN+1)p(θN+1|m) (1.13)

The causal relationships between these hierarchical levels can be visualized using directed graphical

models. These models are composed of nodes which entail a random variable (or a vector of random

variables), whose distribution is conditioned to the variable of the parent’s node. The key feature

is that each node thus receives constraints from its parents and itself provides constraints to its

children. Such models are widely used in Bayesian statistics as they furnish an intuitive way to

design the structure of a probabilistic model required for model inversion. They also conveniently

and strikingly conform to often encountered structures in the environment as presumably in the

brain.
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Figure 1.2 – Example of a hierarchical model composed of 4 levels.

1.2.3 Dynamic causal models

The final part of this section is dedicated to dynamic causal system modeling that allows de-

scribing the activity of a phenomenon of interest over time as a system perturbed by external

(sensory or contextual) inputs. This system receives an input u(t) at time t that influences its

internal (hidden) states x(t) leading to the observable outputs y(t). Causality refers to the fact

that present activity derives from past - but not future - activity. Dynamical system theory is a

vast field of research and only the relevant aspects needed to understand the work presented in

this thesis will be introduced here. In particular, we will refer to dynamical models resting on a

state-space representation (also referred to as Hidden Markov Models), which is one of the widely

used family of models in system theory.

Using a state-space representation, a dynamical model - presented here for continuous time -

has the following structure: ⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t), u(t), θ) + εs

y(t) = g(x(t), u(t), ψ) + εn

(1.14)

where x(t) denotes the hidden states of the system, that describe its internal activity at time

t (hidden refers to the fact that these states are not directly observable). The first equation

describes the dynamical part of the model and is called the evolution model. The second equation

refers to the static part of the model and is called the observation model.

• The evolution model. This model f rests on ordinary differential equations to calculate ẋ(t),

the update of state x at time t as a function of its value x(t), the input u(t) and parameters

θ. The term εs is called the state noise and is set to 0 in the case of a deterministic evolution

model. It can be shown that the trajectory of x has the following Markov property: x(t)

depends only on x(t0) (the initial state of x at time t0), inputs u from t0 to t and parameters

θ (see 1.3.1 for the definition of the Markov property). Linear (non-linear) state-space
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models refers to models with f being linear (non-linear). Using discrete time, the evolution

equation is formulated as follows: xt+1 = f(xt, ut, θ) + εs.

• The observation model. This model allows mapping internal states x(t) to observations y(t).

Function g corresponds to the forward model described above, and gives y(t) as a function

of x(t), input u(t) and observation parameters ψ. The term εn refers to the error term

already introduced.

1.3 Numerical methods for Bayesian inference

The previous section focused on describing generative models meant to predict observations, i.e.

going forward, from causes to consequences, to derive predictions of observed data. Naturally,

these models are made to be evaluated and used against empirical data, thus going from conse-

quences to causes, namely to estimate the unknown parameters (and states) from observations.

This is obtained using Bayes’s rule and the ensuing posterior distribution over unknowns:

p(θ|y, m) =
p(y|θ, m)p(θ|m)

p(y|m)
(1.15)

which involves marginalization process, hence integral computation (see Eq. (1.5)). In some very

simple (and rare) cases, the resolution of these integrals can be derived analytically leading to

an exact solution. However, in the frequent case of complex models involving a large number of

parameters and states and/or non-linear models - the brain for instance - it remains intractable

and numerical methods approximating the parameters of the true Bayesian posterior distribution

have to be employed. The two main categories of numerical approaches are presented below.

1.3.1 Stochastic methods

Stochastic methods (or sampling methods) allow approximating any kind of integration and

in particular the posterior distribution p(θ|y), by collecting N samples from this distribution,

{θ1, θ2, ..., θN}1. As N tends towards infinity, this approximation becomes the exact distribution

(under the Central Limit Theorem). In practice, sampling methods require drawing samples of θ

from its set of possible values to derive a sample of p(θ|y) using the product p(y|θ)p(θ).

Monte-Carlo methods rest on the specification of a proposal distribution q, from which samples

θ are drawn. Each sample, denoted α will enter a decision criterion (involving q(α) and p(α|y)),

to reject or accept p(α|y) as a new sample for p(θ|y). If the decision criterion is too conservative,

the procedure will tend to reject a lot of samples, hence increasing the total duration of the process.

For models dealing with high-dimensional θ, samples must be collected in an efficient manner (they

should be picked preferentially in high-probability intervals) to avoid excessive time-consuming

process. This can be addressed with Markov-Chain-Monte-Carlo (MCMC) methods. A distribu-

tion of random variables {X1, X2, ..., XN } is defined as a Markov-Chain if it verifies the following

1Subscript indices here no longer refer to hierarchical levels but to samples.
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Markov property:

p(Xn = xn|Xn−1 = xn−1, ..., X1 = x1, X0 = x0) = p(Xn = xn|Xn−1 = xn−1) (1.16)

This property states that the entire sequence X1, ..., XN is obtained by simply knowing the initial

value of X0 and the transition probabilities pab = p(Xk = a|Xk−1 = b) with a, b being possible

values of Xk.

MCMC methods consist in collecting a Markov chain of samples α from q defined as a tran-

sition probability. For sample k, αk = q(αk|θk−1) and αk will be accepted as the sample θk under

some decision criterion. The two main MCMC methods are the Metropolis-Hastings and the

Gibbs Sampler algorithms. MCMC methods have the advantage to possibly furnish the exact

posterior distribution (whatever the distribution form) as N becomes large enough. However, in

practice, the chain size (N) is not necessarily easy to define and results depend on the initial

values of the chain (usually M chains of N samples are built up to avoid this issue). Finally,

despite advances in computer performances, these powerful methods still remain computationally

intensive in comparison with deterministic procedures introduced below.

1.3.2 Deterministic methods

Deterministic or variational methods rely on variational calculus, that is finding a function f

that optimizes the value of a specific integral I(f). Precisely, variational methods for Bayesian

inference consist in finding q(θ), an approximate distribution to the posterior distribution p(θ|y)

that maximizes a certain cost function F (q), the variational free energy. Hence these methods

transform the (intractable) problem of estimating p(θ|y) into (tractable) optimization problem

over q.

Let q(θ) be the approximation to the posterior p(θ|y, m), under model m. To assess how well

this approximation fits the targeted distribution, one could estimate the Kullback Leibler (KL)

divergence between q(θ) and p(θ|y, m), DKL(q(θ), p(θ|y, m)). This information-theoretic mea-

sure quantifies the dissimilarity between two probabilistic distributions (with this non-negative

measure being such that the larger the more dissimilar q and p are). It writes:

DKL(q(θ), p(θ|y, m)) =
∫

q(θ) ln
q(θ)

p(θ|y, m)
dθ (1.17)

Rearranging this equation gives:

DKL(q(θ), p(θ|y, m)) =
∫

q(θ) ln q(θ)dθ −
∫

q(θ) ln p(θ|y, m)dθ (1.18)

Applying Bayes’s rule (Eq. (1.1)) to the term p(θ|y, m) gives:

DKL(q(θ), p(θ|y, m)) =
∫

q(θ) ln q(θ)dθ −
∫

q(θ) ln p(θ, y|m)dθ +
∫

q(θ) ln p(y|m)dθ (1.19)

• The last term of this equation does not depend on θ and is equal to ln p(y|m), which

corresponds to the log-evidence of the model (model evidence has been defined in Eq.
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(1.5)). The term − ln p(y|m) is also defined as the statistical surprise.

• The first two terms correspond to the expectation of (ln q(θ) − ln p(θ, y|m)) under q(θ)

which is commonly noted 〈ln q(θ) − ln p(θ, y|m)〉q. It refers precisely to the expression of

the negative variational free energy of q so that:

−F (q) = 〈ln q(θ) − ln p(y|θ, m) − ln p(θ|m)〉q (1.20)

Finally, the KL divergence between q(θ) and p(θ|y, m) becomes:

DKL(q(θ), p(θ|y, m)) = −F (q) + ln p(y|m) (1.21)

The calculation of ln p(y|m) and DKL(q(θ), p(θ|y, m)) is not feasible but by noticing that a KL

divergence is always positive, one can see that the free energy becomes a lower bound1 on model

log-evidence (ln p(y|m)) for any given distribution q(θ):

ln p(y|m) ≥ F (q) (1.22)

Hence, finding the distribution q∗(θ) (sometimes referred to as the variational or approximate

posterior or also the recognition density) that maximizes F (q) ensures maximizing the evidence

of the model, p(y|m), and minimizing the KL difference between the approximate q(θ) and the

true posterior distribution p(θ, y|m). This approach is referred to as Variational Bayes (VB).

A closed-form for q∗(θ) can be obtained using variational calculus, with q∗(θ) being a solution

of ∂F
∂q

= 0. This problem turns out to simplify nicely when adopting the mean-field assumption.

This approximation, typically applied in such procedures, consists in assuming that for θ being a

vector of parameters, the approximate posterior q(θ) can factorize over N partitions of θ:

q(θ) ≈
N∏

i=1

qi(θi) (1.23)

with each qi(θi) being an approximate of the posterior p(θi|y, m). When using fixed-form for

qi, VB allows inferring the hyperparameters of the corresponding parametric distribution (e.g:

μ and σ if qi(θi) ∼ N (μ ; σ); a and b if qi(θi) ∼ Gamma(a, b); ...). The use of the mean-

field approximation borrows its strength to the fact that for each parameter θi, the approximate

distribution q∗
i maximizing F (q) is of the form2:

q∗(θi) = argmax
qi

F (q) (1.24)

Critically, by substituting q(θ) into
∏N

i=1 qi(θi) in Eq. (1.20), we can derive an analytical expres-

sion for the posterior distributions qi, also referred to as variational updates:

q∗(θi) ∝ 〈ln p(y, θ)〉q\i
(1.25)

1This can be equivalently reformulated as the free energy being an upper bound on the statistical
surprise.

2The argmax operator applied to a function f returns the values of the domain of f at which maxima
are attained.
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where q\i refers to all but qi. A complete demonstration can be found in Flandin et al. (2007).

The general scheme of VB can thus be summarized as follows:

1. initialization of each qi(θi) (using prior knowledge)

2. for each iteration k,

for each parameter θi

optimization of qi(θi) using:

the variational update equation for qi

the current estimates of q\i

3. iterations are repeated until convergence of F (q)

It should be noted that each update of qi(θi) contributes to maximizing F (q).

The Laplace approximation is also typically used in VB in the case 〈ln p(y, θ)〉q\i
is intractable.

This consists in assuming a Gaussian distribution for p(y, θ). The key aspect here is that both

approximations (Laplace and mean-field assumptions) lend VB variational updates that express

with closed-form, leading to an efficient procedure for Bayesian inversion. VB is a general scheme

encompassing expectation maximization (EM, Dempster et al., 1977) and restricted maximum

likelihood (ReML), that can be applied to linear and nonlinear models, as well as to generative,

hierarchical models, and to dynamical models. We refer the reader to Friston et al. (2007) for a

complete overview of VB.

1.4 Model comparison

In addition to model parameter estimation, model comparison is the other type of inference that

Bayesian framework provides and that makes it so powerful. Model comparison aims at evaluating

the plausibility of models within a specific model space (the domain of all possible models) and

at simply providing quantitative (relative) clues to answer the question ”How good is my model ?”.

1.4.1 Trading model accuracy and model complexity

The Occam’s Razor (also referred to as the Principle of Parsimony) is a general principle that

indicates that when several competing models may explain observations, one should favor the

simpler model, that is the one embedding the smaller number of unnecessary hypothesis. Applied

to Bayesian inference, this principle can be illustrated using three schematic models of different

complexity (Figure 1.3):

1. Model m1 (red in the figure). The evidence of m1 indicates that this model is very good

at describing y (it should be associated with a high value of goodness of fit for instance).

However, one can see that it explains y and only y: it may not be generalizable to other

data (acquired from another group of subjects for instance). In fact, model m1 comprises

a large number of parameters that allow fitting perfectly the data and possibly irrelevant

information (noise) contained in the data. Such models are referred to as complex model,

that should be penalized as they favor overfitting and hardly generalize.
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Figure 1.3 – Typical representation of Occam’s razor principle. X-axis represents the data
space and y-axis reports the model evidence p(y|m).

2. Model m2 (blue in the figure). This model obtains a similar but low evidence for a very

large set of possible data values. It means that it can explain most observations. However,

this model whose complexity is low provides a poor data fit, hence low model evidence.

3. Model m3 (green in the figure). Finally, model m3 appears as a good model as it allows

describing y correctly without being too specific (hence precluding overfitting of y).

The principle of Occam’s Razor highlights two properties that a good model should balance:

accuracy (the capacity to describe the data) and complexity (inherited from a large number of

parameters possibly interacting with each other).

1.4.2 Approximations of model evidence

As illustrated in Figure 1.3, model evidence provides information regarding how model fit and

model complexity are balanced for any particular model. In fact, several approximations of

model evidence have been proposed that formally account for this trade-off between these two

requirements.

• The AIC approximation. The Akaike Information Criterion (Akaike, 1973) is given by:

AIC = ln p(y|θ∗, m) − p (1.26)

where θ∗ represents the posterior estimate of θ and p is the number of parameters entering

θ. The accuracy is thus formalized as the the likelihood of the data given θ∗, whereas

complexity is represented in the form of the penalty term p.

• The BIC approximation. The Bayesian Information Criterion (Schwartz, 1978) is given by:

BIC = ln p(y|θ∗, m) −
p

2
ln n (1.27)

where n is the number of observations. A model will be more complex in the BIC sense as

either the dimension of the data or the number of parameters increases.
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• The free energy approximation. As already introduced, the free energy is an approximation

of the log-evidence. Interestingly, its expression can be rearranged to reveal an accuracy

and a complexity term:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F (m) = Accuracy(m) − Complexity(m)

Accuracy(m) =
∫

q(θ) ln p(y|θ, m)dθ

Complexity(m) = DKL(q(θ), p(θ|m))

(1.28)

The demonstration can be found in Friston et al. (2010), Trujillo-Barreto et al. (2015).

The complexity term is the KL divergence between the prior and the posterior distribution

over θ. This amounts to associating a cost to letting the posterior get away from the prior.

This cost has to be compensated by a better fit to provide the model a high evidence. In

other words, priors will be reevaluated only if the data provide strong or accurate evidence.

Contrary to the AIC and BIC criterion, the free energy is more flexible as it distinguishes

parameters from one another and accounts for their interactions (covariance).

1.4.3 The Bayes Factor

Let mi and mj be two models. Introduced by Kass and Raftery (1995), the Bayes Factor Bij

allows comparing the evidence of each model:

Bij =
p(y|mi)
p(y|mj)

(1.29)

As detailed in section §1.1.3, model evidence p(y|mi) quantifies the plausibility of observing the

current data y with model mi having marginalized over model parameters θ. Interestingly, p(mi|y),

the posterior probability of mi, can also be obtained with Bayes’s rule:

p(mi|y) =
p(y|mi)p(mi)

p(y)
(1.30)

where p(y) corresponds to the plausibility of observing y having marginalized over the whole

model space (it is a normalization constant). Modeling the prior distribution p(mi) as a uniform

distribution is typically decided to formalize the belief that before seeing the data, all models

from model space have equal probability. Under this condition, we have the equivalence:

p(y|mi) ∝ p(mi|y) (1.31)

Interpretation of the Bayes Factor is given in Kass and Raftery (1995) where for instance, a value

of 20 for Bij corresponds to p(mi|y) ≈ 0.95, and is typically interpreted as strong evidence in

favor of model mi relative to mj . The Bayes Factor can thus be used for hypothesis testing, where

H0 could be rejected to accept H1 if B10 > 20 (contrary to classical hypothesis testing, H0 could

also be accepted if B01 > 20).
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1.4.4 Bayesian Model Selection and Bayesian Model Averaging

Bayesian Model Selection. The purpose of Bayesian Model Selection (BMS) is to select in model

space, the model that is more likely than the others (the winning model) based on the comparison

of their relative evidences. Importantly, just like Bayesian inference on parameters relies on

the posterior distribution over parameters, Bayesian inference on models relies on the posterior

distribution over models p(m|y).

Let’s consider a group of N subjects from whom observations {y1, ..., yN} were collected, and M

models {m1, ..., mM}, each corresponding to a specific hypothesis about the generation of the data.

Bayesian inference for each model and each subject leads to the set of evidences {p(yi|mj)}i,j.

BMS can then be performed at the group level, either following a fixed-effect (FFX) or a random

effect (RFX) type of analysis, as follows (Stephan et al., 2009):

• Fixed-effect analysis (FFX). This approach assumes that the same model mi generated the

data of every subjects. A multinomial distribution can be used to model prior distribution

on models p(m). The aim of Bayesian inference is thus to estimate the posterior distribution

p(m|y1, ..., yN).

• Random-effect analysis (RFX). This approach assumes that different models may have gen-

erated the different data y1, ..., yN . The parameter of the pre-cited multinomial distribution

is now treated as a random variable (to be estimated) generated by a Dirichlet distribution

(with a fixed parameter to be estimated). This leads to a two-level hierarchical model that

can be inverted with Bayesian inference using MCMC or VB.

Note that when the number of models composing the model space become large, the sensibility

of the BMS can be affected by the possibility that too many different models may be “used” by

subjects. The Family level inference procedure proposed by Penny et al. (2010) allows addressing

this issue. This approach consists in partitioning the model space according to a specific charac-

teristic and is thereby dedicated to draw inference about this particular characteristic only. At

some point, it constitutes an extension of the BMS to enable the selection of the winning family.

This approach can deal with families having different numbers of models. Furthermore, the prior

probability of each model is adjusted to account for family size. For instance, under a uniform

distribution (each model having the same probability), such normalization precludes the family

comprising the largest number of models to be favored.

Bayesian Model Averaging. The aim of Bayesian Model Averaging (BMA) is to provide the

posterior distribution of parameter θ from different model inversions, hence with taking account

of model uncertainty. It corresponds to an “average” of θ over models, denoted θ̂, in the sense

that each posterior θi deriving from Bayesian inference on model mi informs θ̂ in proportion to

the evidence p(y|mi). Put simply, a general scheme of BMA rests on collecting N samples of θ

and could be described as:

for each sample collection k

sample a model mi from the posterior distribution p(m|y)

sample θk,i from the posterior distribution p(θ|y, mi)
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The posterior distribution of θ is thus constructed from these N samples. Importantly, BMA can

be applied at the individual level, at the group level and for Family level inference. We refer the

reader to Penny et al. (2010) for further details about this method.

1.5 Summary

This chapter introduced the key elements of the Bayesian framework that are essential to under-

stand this work. The rule of Bayes forms the basis of this large theoretical field and points to

the four information types that are fundamental for Bayesian inference: the prior, the likelihood,

the posterior and the evidence. This probabilistic framework is very well appropriate to explain

data while accounting for their associated uncertainty. Formally speaking, this is achieved by

describing every quantity by its probability distribution (instead of point estimate) where the

variance (the inverse precision) characterizes the degree of confidence relative to our (or the sys-

tem’s) knowledge about these quantities. The Bayesian framework allows describing any kind of

generative models (stochastic, deterministic, hierarchical, lineal, nonlinear, static, dynamic) and

model inversion (being the aim of statistical inference) can involve exact methods in simple cases

or most often numerical approaches, such as variational treatments. Importantly, Bayesian infer-

ence provides posterior estimates of unknown parameters (fully described by their distribution)

and model evidence (or its approximation) that is necessary for model selection, a formal method

to statistically compare hypothesis.



Chapter 2

The Bayesian brain

The Bayesian framework has progressively infiltrated neuroscience research as advances in the

field of Artificial Intelligence, Computer Vision and Theory of Probabilities led to model human

behavior using Bayesian systems. The last two decades have thus witnessed a growing interest

for Bayesian models that appear promising to predict human behavior and to possibly under-

stand the mechanisms underlying human brain function. By pointing out that the brain has to

deal with uncertain information, it is not surprising that scientists considered this probabilistic

framework as a valuable approach to address those issues. Uncertainty in the brain has various

origins: information incoming to the brain from the external world may be noisy, partial and

sometimes ambiguous, and may be coupled to internal noise (originating from the nervous system

for instance). As will be detailed, in addition to persuasively describe human behavior, Bayesian

models - gathered in the Bayesian brain hypothesis - also provide mechanistic assumptions re-

garding brain functioning. Both aspects appeal to empirical evidence to place reliability in this

challenging theory.

This chapter is organized as follows: the first section is dedicated to the underpinnings of the

Bayesian brain hypothesis, with a brief overview of empirical studies addressing the issue of pre-

dicting human behavior. The second section is dedicated to an even more ambitious framework,

namely the free energy principle proposed by K. Friston. This principle introduces a generic

computational criterion that the brain would optimize in order to survive in interaction with its

environment. Importantly, this encompasses the Bayesian brain hypothesis and puts constraints

on its neurobiological implementation. Finally, the third section introduces the predictive coding

scheme that has been proposed as an implementation of Bayesian computation in the brain in the

particular case of perception. The whole current work adheres to this general theoretical frame-

work and aimed at testing some aspects of its neurobiological and computational underpinnings

in the particular case of auditory processing.

2.1 The Bayesian brain hypothesis

2.1.1 Definition

The idea of the brain being able to perform probabilistic inference is at least two centuries old.

It can be traced back to the concept of unconscious inference proposed by Helmholtz to explain

21
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perception (Westheimer, 2008). Indeed, according to Helmholtz, perception would rest on recog-

nizing the causes that have generated the sensations using previous knowledge about these causes

(e.g. acquired from past experience) in order to disambiguate multiple interpretations (or per-

cepts). This is exactly what Bayesian inference does and Helmholtz’s concept can be formalized

as follows:

p(cause|sensation) ∝ p(sensation|cause)p(cause) (2.1)

Replacing cause and sensation by hypothesis and observation allows generalizing this perceptual

learning scheme to many brain functions spanning from perception to cognition. This is referred

to as the Bayesian brain hypothesis, a general brain theory that rests on the two following features:

1. The brain accounts for uncertainty.

2. It does it by implementing Bayesian inference and learning.

The denomination of Bayesian brain was first employed in the review of Knill and Pouget (2004)

but the foundation of this theory results from seminal works in various fields (including machine

learning, computer vision, neuroeconomics) over the last decades, with notably the largely cited

studies of Mumford et al. (1992) and Dayan et al. (1995). These pioneer works have been

reviewed in Friston (2012).

2.1.2 Implications for brain function

Importantly, the Bayesian brain theory has two major implications:

• Information processing. Informations in the brain is coded in the form of probability dis-

tributions. As explained in §1.1.2, the lack of knowledge (or uncertainty) is formalized by

the distribution variance (or inverse precision). Applying Bayes’s rule allows the brain to

manipulate information based on its reliability (Figure 1.1), that is by means of precision

weighting. Each new observation can be used to update the current belief: the resulting

posteriors would thus become the new priors. Hence, the brain is learning while interacting

with its environment, and it does it in a Bayesian optimal way, that is by conforming to

Bayes rule in order to update its belief about hidden causes in the surrounding world.

• Computations. To infer the unknown causes, the brain implements Bayesian calculations

in order to invert and update its internal model of the world. The different necessary

computations (on probability distributions) may include: combining different informations

(with Bayes’s rule), marginalizing over parameters, and estimating parameters from the

posterior distribution (like the maximum a posteriori (MAP), the mean, ...).

Two main branches of empirical studies have emerged in order to address these central aspects

of the Bayesian brain hypothesis. First aims at testing human behavior and asks: does a human

observer behave as a Bayesian observer? Most of these studies involve a behavioral task and rest

on comparing subject performances with predictions derived from Bayesian models of behavior.

Main findings are presented in the following paragraph. The other class of studies concerns the

neurobiological mechanisms that may underlie Bayesian inference in the brain. Paragraph 2.1.4

will summarize the main findings obtained at the neuronal level. At the brain scale, characterizing

the feasibility of Bayesian processes requires i) making assumptions about the internal generative

model the brain is entertaining and ii) formalizing this model in terms of mechanistic hypothesis
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to be confronted with (real) brain activity. These assumptions refer to the neurophysiological

substrates underlying Bayesian computation by the brain. Given the complex nature of the real

world, non-linear hierarchical dynamical generative models have been proposed and tested in

neuroimaging studies. So far, they rely on the free energy principle and the predictive coding

scheme and will thereby be presented in their respective sections.

2.1.3 Empirical evidence for Bayesian behavior

Initial empirical studies investigating the Bayesian brain hypothesis were mostly conducted in the

field of perception using psychophysical approaches. The work of Ernst and Banks (2002) using

multisensory integration had a great influence by showing that Bayesian models can be efficient

in predicting subject’s performances. Precisely, in a forced-choice discrimination task, subjects

had to estimate the height (h) of an object from visual (V ) and haptic (H) observations, both of

them being controlled by the experimenter. Visual stimuli were coupled to noise with different

magnitudes to degrade accordingly the reliability of this modality. The precision of each modality

was estimated from subject performances in unimodal - visual or haptic alone - sessions (from the

parameters of the relative psychometric functions). These values allowed to model p(uV |h)1 and

p(uH |h) the relative likelihood functions (describing the probability to observe uV and uH , the

visual and haptic measures respectively, given h the height of the object). These functions entered

a Bayesian model that predicted the performances in the multimodal session. Importantly, this

session always comprised conflictual informations between modalities. Predictions were that ac-

curacy under multimodal information should be larger than under unimodal information and that

a perceptual bias should be observed toward the more reliable modality. The results did match

both predictions, and were interpreted reflecting the way the brain optimally combines different

sources of information (ie, in a Bayes-optimal manner).

Similar model-based approaches were further employed to compare human behavior with Bayesian

predictions. A Bayesian ideal observer should for instance i) weight multiple sources of information

(within or between different sensory modalities) in proportion to their relative reliability, ii) bias

perception towards a prior knowledge in the case of ambiguous or poorly informed observations

(this would account for illusory perceptions for instance) and iii) plan and control movements

(actions) while accounting for estimated sensory and motor states (and associated uncertainties).

All these predictions were evaluated empirically in several studies reviewed in Knill and Pouget

(2004), with findings supporting Bayesian models (but see, O’Reilly et al., 2012, for multisensory

integration). Bayes-optimal behavior were also reported in studies involving higher-order cognitive

functions, such as decision-making (Behrens et al., 2007). In 2012, in a series of lectures dedi-

cated to the Bayesian Brain (http://www.college-de-france.fr/site/stanislas-dehaene/

_course.htm), Dehaene pointed to the review of Tenenbaum et al. (2011), reporting Bayesian

models accounting for (unconscious) abstract reasoning such as language learning: for instance,

inferring the meaning of a word from a limited number of expositions could rest on Bayesian model

comparison to select the most plausible hypothesis. Infants may also behave Bayes-optimally ac-

cording to the work of Teglas et al.(2011), where the authors could fit 12-month-old children

performances in inductive reasoning tasks with Bayesian predictions.

1From now on, u will refer to observations collected by the brain, and y to observations measured
by the experimenter; this distinction points to the crucial aspect of meta-Bayesian analysis, described in
§2.4
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2.1.4 Neural implementation: the Bayesian coding hypothesis

The processing of Bayesian calculations by neural populations is of course a great challenge and

to date, according to the pioneers in the field, only weak (few) evidences have been shown so far.

As detailed in Knill and Pouget (2004), and more recently in Pouget et al. (2013), this neural

implementation issue gives rise to the Bayesian coding hypothesis, which states that:

1. Neurons encode uncertainty.

2. Neural mechanisms underlie Bayesian inference in the brain.

The main findings addressing each point have been reviewed in the articles of Knill and Pouget

(2004) and Pouget et al. (2013). A brief presentation is given in the two following paragraphs.

How neurons may encode uncertainty? Neural activity has long been believed to represent a

single value (for instance neuron responses in V1 could represent the orientation of a visual stim-

ulus). However, as described in Knill and Pouget (2004), this could be challenged by several

studies using single-cell recordings with monkeys, reporting neuronal responses proportional to

the probability of a feature of interest (for instance, the probability of the visual stimulus to be

horizontal). Beside, several neural models have been proposed that could encode the probability

distribution p(θ|y) (with θ a specific feature such as orientation, and y the neural activity) with

different functional forms. Some have been supported by findings from recent studies (see Pouget

et al., 2013) but still, Pouget et al. stress the need for collecting a large amount of data to better

characterize the likelihood p(y|θ) that is required to infer p(θ|y).

How neurons may implement Bayesian inference? As described in chapter 1, probabilistic in-

ference involves different computations manipulating probability distributions. Research in the

field of neural circuit has led to several proposals to model the corresponding calculations, some

of them being supported by electrophysiological recordings macaques (see Pouget et al., 2013).

Here again, the biological plausibility of the implementation of the Bayesian brain has thus been

evidenced and now requires empirical validations.

2.2 The free energy principle

In 2012, Friston wrote:

“The future of the Bayesian brain (in neuroimaging) is clear: it is the application

of dynamic causal modeling to understand how the brain conforms to the free energy

principle.”

The impact of this sentence will be clarified throughout this section, starting with the definition of

the free energy principle as a general theory for brain function resting on a Bayesian framework,

then presenting some important implications it entails.
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2.2.1 Definition

The free energy principle addresses the issue of the exchanges the brain - as a biological system

- operates with its environment. It assumes a Bayesian formalization of these interactions that

accounts for brain adaptation to this (ever-changing) environment.

Minimizing the statistical surprise. The free energy principle rests on the key concept of statistical

surprise which has been defined in section §1.3.2 as − ln p(u|m). This quantity is a measure of

the unexpectedness of an event u, that represents how likely it is given a generative model m.

It ranges from 0 (in the case of u being fully expected under model m: p(u|m) = 1) to infinity

(in the case of u being not expected, p(u|m) = 0). Importantly, it is conditioned on model m:

different models will result in different surprises. For instance, the surprise deriving from the

observation of a rain of frogs may be smaller in individuals having the knowledge of this rare

phenomenon than in individuals that can not even imagine it exists. Moreover, the idea that

the brain should reduce surprise can intuitively be illustrated using an evolutionary perspective:

a model that does not predict the existence of a predator (hence a model associated to a large

surprise as p(predator|m) = 0) could hardly be selected as it threatens species survival. Mini-

mizing surprise is equivalent to generating good predictions. Applied to brain function, it appeals

to (i) the ability of the brain to specify a generative model of its environment and (ii) Bayesian

inference in the brain to estimate the unknown environmental quantities that are necessary to

provide, update and evaluate predictions.

Minimizing the free energy. As shown in Eq.(1.22), the free energy F is an upper bound on

statistical surprise. Hence, minimizing F ensures reducing surprise. Precisely, the free energy

principle states that the brain has to minimize its free energy to maintain its equilibrium within

the external environment (Friston, 2010). To do so, the brain must change its internal quantities

to stay adapted to environmental changes. Practically speaking, what are these quantities (the

parameters entering F ) that should be optimized? The idea of the brain being at equilibrium with

its environment rests on bilateral exchanges comprising the effect of the environment on the brain

(which corresponds to the sensory inputs that the brain receives) and the effect the brain may

exert on the environment (through action). Importantly, this prescribes two ways for the brain to

minimize its free energy: on the one hand, the brain can update its model of the environment from

its sensory inputs. This implies Bayesian learning of the unknown environmental quantities. On

the other hand, the brain can trigger an action to make its predictions come true. Both strategies

contribute to minimize surprise. The first one corresponds to perceptual inference and learning,

while the latter is also referred to as active inference. This twofold optimization can be cast in a

single Variational Bayes (VB) scheme (Friston et al., 2010).

A comment on the thermodynamic free energy. The free energy is most well known from thermo-

dynamics, where it quantifies the part of a system’s internal energy that can be transferred into

the environment in the form of useful work. Together with entropy H measuring the degree of

disorder of a system, they constitute state variables describing the dynamics of a system. Fris-

ton and Stephan (2007a) drew a close parallel between the thermodynamic and the statistical

(or information theoretic) free energy. This allowed interpreting the free energy principle as an

account of how any biological system (and the brain in particular) maintains itself in an ordered

state and prevents non-viable ones (associated with large entropy) that would compromise its



26 Chapter 2: The Bayesian brain

living. However, thermodynamics and information theory share equivalences but also differences.

To prevent possible misinterpretation, one should refer to Friston et al. (2006) where the authors

clarified that the free energy principle rests on the statistical formulation of the free energy.

2.2.2 Hierarchical and dynamic causal models in the brain

The cornerstone of the free energy principle remains the generative model of the external en-

vironment that the brain must entertain. The most advanced and generic form of models is a

hierarchical dynamic causal model, which can capture the hierarchical, dynamical and non-linear

nature of the world. From an evolutionary perspective, simple models may not survive natural

“model” selection as they would fail explain the world and hence to minimize surprise. This para-

graph addresses the issue of the biological plausibility for the brain to entail hierarchical dynamic

causal models and then describes a general structure for such generative models that have been

proposed in the literature and that will be used throughout this work.

Prerequisite. To represent hierarchical models, the brain should be itself hierarchically orga-

nized. Moreover, Bayesian model inversion (inference) demands the organization of connections

between (cortical) areas to allow for two distinct (and segregated) pathways to convey messages

within the hierarchy:

• a top-down pathway propagating information in the “generative” direction (from causes to

consequences), leading to predictions or expected interactions with the environment,

• a bottom-up pathway propagating information in the “recognition” direction (from conse-

quences to causes), leading to the recognition of the causes of current sensations.

Hierarchical organization of the cortex. A large number of studies (including the seminal work of

Felleman & Van Essen, 1991b), reported hierarchical architecture in the macaque visual cortex. A

key feature characterizing a cortical hierarchy pertains to the laminar patterns of the origins and

the terminations of extrinsic1 connections. Using the technique of neuronal tracing, an extensive

work has pursued the pioneering study of Rockland and Pandya (1979) to categorize cortico-

cortical connections in feedforward, feedback and lateral connections. The latter are acknowledged

to have no laminar preferences: stemming from all cortical layers, they terminate in all layers of the

target neuron. In the review of Markov and Kennedy (2013), feedforward and feedback pathways

building up two counterstreams linking the upper (supra) and lower (infra) compartments of the

cortical surface are detailed as follows:

• feedforward connections: they comprise connections originating in the supragranular layers

(termed as supra-feedforward) or in the infragranular layers (infra-feedforward) and termi-

nating predominantly in layer 4 (layer 6 is also reported). Supra-feedforward connections

would be more dominant as the length of connection increases.

• feedback connection: they comprise connections originating in the supragranular layers

(supra-feedback) principally targeting the supragranular layers, and those originating in

the infragranular layers (infra-feedback) terminating in infra- and supragranular layers.

Infra-feedforward would be more dominant as the length of connection increases.

1extrinsic refers to long-distance connections, and is to be opposed to intrinsic which indicates con-
nections confined to a local neuronal circuit.
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On the basis of the feedforward and feedback pathways proposed by Rockland and Pandya (1979),

Van Essen and collaborators proposed a hierarchical cortical organization for the monkey visual

cortex (Maunsell & Van Essen, 1983; Felleman & Van Essen, 1991b). To date, the hierarchical

architecture of the cortex does not seem to be questioned but, as pointed by Markov and Kennedy

(2013), its complexity lends to challenging perspectives to improve its characterization and in-

crease our understanding of the functional role of connections. A detailed review of the cortical

connectivity properties that support Bayesian inference is provided in Friston (2005), (and also

in Friston & Kiebel, 2009; Friston & Stephan, 2007b), with in particular the notion that feedfor-

ward and feedback connections are associated with driving and modulatory effects respectively,

(but see Bastos et al., 2012; Markov & Kennedy, 2013). A critical remaining question is how

generalizable are the findings in the macaque visual cortex to other brain areas and other species?

In Anderson and Martin (2015), the extensive search for a canonical scheme for local circuits in

the cortex is reported, and a recent successful example of animal model applied to human is cited

(Heinzle et al., 2007). In Bastos et al. (2012), a proposition for a canonical model accounting

for the predictive coding prerequisites is described (as well as a detailed review of the literature

regarding the hierarchical organization of the cortex). We will come back to the model of Bastos

and collaborators in chapter 4, §4.2, as it is at the heart of the DCM that we used. Such attempts

must however face “the various morphological cell types and how this physiology differs across

cortical layers and areas” (Markov & Kennedy, 2013).

General structure for a hierarchical dynamic generative model of the environment. In Friston

and Kiebel (2009) and in Feldman and Friston (2010), a very general structure of generative mod-

els possibly implemented in the brain is described (in line with the above findings and arguments).

Precisely, the authors consider a generative model of the form p(u, ϑ) = p(u|ϑ)p(ϑ), u being the

observations by the brain (the sensory inputs), and ϑ = {x, ν, θ} the hidden variables participat-

ing to the internal dynamics. First quantity, x, represents the hidden states of the model, and

reflects the propagation of internal information over time (like a memory) as it links time samples

together. The latter two refer to the directed graphical model structure employed to represent

causal relationships between levels within the hierarchy (see §1.2.2): parameters within each level

are denoted θ, and causes ν establish the links between levels. Both states and causes vary over

time (they have their own trajectories), whereas θ are constants (or vary much more slowly than

x and ν) and may vary across individuals. At each level i of the hierarchy, the dynamics of states

and causes can be described using the following equations (the time dependency of x and ν has

been omitted here for the sake of simplicity):

⎧⎪⎪⎨
⎪⎪⎩

ν(i) = fν
(i+1)(x(i+1), ν(i+1), θ) + zν

(i+1)

ẋ(i) = fx
(i)(x(i), ν(i), θ) + zx

(i)

(2.2)

with fx
(i) and fν

(i) being non-linear (deterministic) continuous state functions and zx
(i) and zν

(i)

reflecting random fluctuations. These latter are assumed to be gaussian (with zero mean and

covariances Σx, Σν parameterized by hyperparameters γx, γν respectively) and conditionally in-

dependent. At the lowest level, we have:

ν(0) = fν
(1)(x(1), ν(1), θ) + zν

(1) = u (2.3)



28 Chapter 2: The Bayesian brain

and fν
(1) is thus an observer function, mapping hidden states x(1) and ν(1) to ν(0) = u, the data

observed by the brain. The random term zν
(1) here refers to the observation noise. At the highest

level k we have:

ν(k) = η + zν
(k+1) (2.4)

where η is the prior mean on cause ν(k). Empirical Bayes (EB, §1.2.2) assumption accounts for

the fact that priors on causes may not be generated de novo but have to be learned from past

observations (for considerations regarding priors at the top of the hierarchy, see Friston, 2005).

An illustrative example of such a generative model composed of three levels is described in the

figure below, using a graph-based structure as can also be found in (Bastos et al., 2012):

Figure 2.1 – Example of a hierarchical model composed of three levels.

Whether such generative model truly exists or not is not the important point, it is all about

modeling the brain’s representation of the world (however, according to Friston (2005), the brain’s

anatomy and physiology could have evolved to mirror the hierarchical and dynamic structure of

the world). Importantly, the brain could specify several models and use Bayesian model selection

to select the more likely given its observations and prior knowledge.

2.2.3 Perceptual Inference, Perceptual Learning and Active In-

ference

According to the free energy principle, the brain has two options to minimize surprise (and make

its prediction match its sensory inputs).

First, it could adapt its internal quantities to suppress (reduce) the errors of its predictions. Using

above formalism, this strategy amounts to optimizing ν and x. This is referred to as perceptual

inference. It also rests on optimizing θ, which referred to as perceptual learning. As explained

in Friston (2005), an expectation maximization (EM) approach constitutes a possible scheme to

solve this optimization problem. Importantly, these considerations also apply to Bayesian models

of perception that do not necessarily rest on the free energy principle. As will be described in
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the next section, Bayesian models of perception could be implemented using a predictive coding

scheme. The present work focuses on such models in the context of the auditory modality.

The second strategy pertains to action and rests on active inference: if the internal predictions do

not match the sensory inputs, the only remaining possibility for the brain to minimize surprise is to

trigger actions that will change or observe the environment such that predictions will be fulfilled.

As can be seen in Eq.(2.2), action a does not enter the generative model but can influence inputs

(u becomes u(a)). Importantly, active inference appears promising to account for different brain

functions involved in reflexive behaviors such as saccades but also higher level intentional behav-

iors. These include for instance: eye movements (e.g. oculomotor pursuit, Adams et al., 2016),

action observation and motor control (Friston et al., 2010), attribution of agency (Brown et al.,

2013), decision-making (Friston, Rigoli, et al., 2015; Schwartenbeck, Fitzgerald, Mathys, Dolan,

Kronbichler, & Friston, 2015), emotional adaptation (Joffily & Coricelli, 2013), not to mention

several dysfunctions associated with psychiatric disorders (Stephan et al., 2015a). To date, active

inference studies remain scarce and rest on simulations (which have proved useful but are limited

to face validating the framework against behavioral or neurophysiological observations). Future

studies should now address the predictive validity of active inference at different levels and scales.

2.2.4 The Bayesian brain and the free energy principle

The Bayesian brain hypothesis simply assumes that perception and learning by the brain conform

to Bayes’s rule, thus combining in an optimal fashion prior knowledge and incoming sensory evi-

dence in order to update current belief. Although this is an important and far reaching statement,

this does not prescribe what model of the world a given brain implements and neither how this

model and the ensuing computation is implemented. These latter aspects are essentials in order

to characterize brain functions and dysfunctions. Some authors have questioned Bayes optimality

in the brain, even in healthy subjects (O’Reilly et al., 2012). Although this might well be the

case, it is not trivial to demonstrate because of an indeterminacy which is worth noticing. Indeed,

Bayesian inference and learning might well be optimal and conform to Bayes’s rule while proceed-

ing under a suboptimal or maladaptive model of the world, which may yield the conclusion that

the brain is not optimal.

The free energy principle encompasses the Bayesian brain hypothesis and goes further in stating

that a living organism optimizes free energy in order to survive. Optimizing free energy amounts

to minimizing surprise, which for the brain can be achieved by both updating the model of the

world and acting upon the world or its sampling. Moreover and beyond the Bayesian brain hy-

pothesis, the free energy principle prescribes the way the functional anatomy is (hierarchically)

organized in order to implement empirical hierarchical Bayes and surprise minimization. This

yields important predictions that can be confronted to current knowledge of cortical organization

and message passing in the brain.

As such, the free energy principle also encompasses the predictive coding (see §2.3) hypothe-

sis which was first introduced to explain (visual) perception. In contrast with the Bayesian brain

hypothesis, predictive coding emphasizes a computational scheme rather than an algorithmic

theory, in the sense of David Marr’s levels of analysis (Marr, 1982). Importantly though, the
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free energy principle brings together those different aspects pertaining either to the underlying

functional anatomy or to the underlying computation. In the current literature, those terms are

sometimes used interchangeably. Nevertheless, the Bayesian brain hypothesis is often referred to

in computational studies trying to explain mental processes and subsequent behavior. Predictive

coding is rather invoked in electrophysiological and neuroimaging studies addressing the mech-

anisms underlying perceptual inference. To date, the free energy principle is rather mentioned

in methods papers showing how a given behavior or neurophysiological phenomenon can be ex-

plained in the light of this framework.

These distinctions may explain some recurrent debates upon the validity of the free energy princi-

ple. Some have even questioned the empirical possibility to falsify this principle. The original work

described hereafter did not intend to contribute to this somewhat philosophical debate. However,

it took great advantage of all the recent and very advanced modeling approaches that originate

from all the powerful ideas that the free energy principle has developed and greatly refined.

2.3 The predictive coding implementation for per-

ception

2.3.1 Definition

Predictive coding refers to inference methods where the estimation process is driven by some

prediction errors and stops when these have been suppressed. Precisely, at each level i of the

Figure 2.2 – General scheme for predictive coding

hierarchy, a prediction error relative to a specific quantity xi is defined as the difference between

its current value informed by the current observation u and its expected value derived from

model predictions: εx
(i) = xobs

(i) − xpred
(i). The key feature of predictive coding pertains to

the message-passing scheme taking place within the hierarchy, that comprises the propagation

of errors in the bottom-up (recognition) direction and the propagation of predictions in the top-

down (generative) direction, until convergence (i.e. suppression of prediction errors). Figure (2.2)

presents the general principle of predictive coding. Each time a new observation u is experienced,



2.3 The predictive coding implementation for perception 31

the prediction errors, the internal (unknown) quantities and the predictions are updated according

to specific equations embodying model assumptions. One of the most cited predictive coding

scheme remains the model of Rao and Ballard (1999), initially designed for the visual system.

This framework as well as others designed for perception have been reviewed in Spratling et al.

(2016).

2.3.2 Generalized predictive coding

The predictive coding implementation for perception proposed by Friston and collaborators, re-

ferred to as generalized predictive coding, has been described in several articles (Friston, 2005;

Friston & Kiebel, 2009; Feldman & Friston, 2010; Bastos et al., 2012) and rests on mathematical

underpinnings which can be found for instance in (Friston, 2008). We will provide here the key

principles that are required for the understanding of the hypothesis addressed in the current work.

The general form of the generative model considered here is the one described in Eq.(2.2). The

first key aspect of this scheme pertains to the fact that it rests on Variational Bayes (VB) to esti-

mate the unknown causes of sensory inputs and minimize free energy. This is a consequence of the

equivalence between the minimization of the free energy and the minimization of prediction errors

that has been introduced in §2.2.3. Indeed, minimizing F aims at eliciting predictions fulfilling

incoming sensations, hence reducing prediction errors (the mathematical demonstration leading

to the main equation of generalized predictive coding is provided in Friston, 2008). Putting this

equivalence into practice, it means that the iterative VB scheme (until convergence in minimiz-

ing F is attained) is equivalent to message passing in the predictive coding scheme (which also

operates iteratively until prediction error is suppressed).

In Friston and Kiebel (2009) and in Bastos et al. (2012), the authors focused on the recogni-

tion of states x and causes ν that serve perceptual inference. As described in §1.3.2, VB rests on

the specification of a recognition density q(x, ν) that approximates the true posterior distribution

p(x, ν|u) and for which the Laplace approximation is considered. The gaussian form q ∼ N (μ, C)

thus gives the mean expectations μx and μν as the conditional expectations for x and ν. Predic-

tion errors relative to x and ν are thus defined at each level i of the hierarchy as the difference

between the conditional expectations and the associated predictions prescribed by state functions

fx
(i) and fν

(i): ⎧⎪⎪⎨
⎪⎪⎩

εx
(i) = μx

(i) − fx
(i)(μx

(i), μν
(i), θ)

εν
(i+1) = μν

(i) − fν
(i+1)(μx

(i+1), μν
(i+1), θ)

(2.5)

Precision of predictions refer to the inverse variance of the random terms zx
(i) and zν

(i) in Eq.(2.2).

They write Πx
(i) and Πν

(i) respectively. Given the expression for F , its gradients (the partial

derivatives of F with respect to x and ν) can be derived; they constitute a system of differential

equations for which the conditional expectations μx and μν provide optimal solutions. These

equations allow updating the internal quantities of the model, namely the precision-weighted pre-

dictions errors ξx
(i) = Πx

(i).εx
(i) and ξν

(i) = Πν
(i).εν

(i), and the conditional expectations μx
(i) and

μν
(i). The update equations can be found in Bastos et al. (2012) (Eq.1) where they are expressed

in generalized coordinates of motion that allow accounting for the different time derivatives of

each variables. These equations reveal a message-passing scheme (Figure 2.3) with precision-
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weighted prediction errors being informed by changes in conditional expectations, and vice-versa.

The notion of precision-weighted prediction errors is a critical feature of this model that endows

the brain with the ability to weight the information it manipulates according to its relative (esti-

mated) uncertainty.

Generative model
of the environment

(in the brain)

Generalized predictive coding
(in the brain)

''
re

co
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n
' 
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Figure 2.3 – Example of a generalized predictive coding scheme as proposed in Bastos et al.
(2012), and the associated generative model. The color code for arrows is the same as in Figure
(2.2); dotted green arrows indicate that both predictions and observations enter the target unit.

Figure (2.3) allows visualizing the key features of this predictive coding scheme:

• each level exchanges information with its first parent (level above) and its first children

(level below),

• prediction errors integrate top-down and lateral (within source) information from the level

above and the same level, respectively,

• updates in conditional expectations are guided by the prediction errors from the same level

and from the level below, leading to lateral and bottom-up messages respectively.

These rules have implications on the neurobiological implementations of message passing:

• neuronal activity should encode the cited updates; therefore each level i of the hierarchy

should comprise four neuronal units: two error units to compute ξx
(i) and ξν

(i) and a state

unit and a cause unit to update conditional expectations μx
(i) and μν

(i) respectively.

• extrinsic connections should convey prediction and prediction error messages, with the

former involving feedback connections, and the latter feedforward ones.

• intrinsic connections should embed the computations of conditional expectations and pre-

diction errors within each level of the hierarchy.
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Finally, the generalized predictive coding allowing the recognition of parameter θ is described

in Friston (2008) and in Feldman and Friston (2010). This corresponds to perceptual learning.

In Feldman and Friston (2010), the authors proposed that the neuronal activity encoding the

conditional expectation of θ could be reflected by the gain of the post-synaptic responses of the

error units. They further argue in favor of attention modulating the precision of prediction. Im-

portantly, based on this scheme for perception, Friston (2005) suggested that electrophysiological

responses should support this message-passing framework and proposed that evoked responses

scale with prediction errors in the brain. In addition, some evidence has been reported in Bastos

et al. (2012) suggesting that oscillations in the gamma band (>30 Hz) would be the biological

marker of bottom-up prediction errors while oscillations in the beta band would encode top-down

predictions. All these hypotheses hence allow relating neuroimaging and neurophysiological find-

ings with (Bayesian) computational principles in the brain and thereby motivated a series of

empirical studies whose main findings are presented in the following paragraph.

2.3.3 Empirical evidence

Predictive coding furnishes testable predictions regarding how brain activity (reflecting sensory

information processing) should be modulated by experimental manipulations. Precisely, if the

brain were to implement Bayesian inference, brain responses elicited by a specific stimulus should

reflect the way predictions and precision-weighted prediction errors are updated.

Two recent comprehensive reviews (Summerfield & de Lange, 2014; Kok & de Lange, 2015, with

the former focusing on visual perception) report the existing findings in line with predictive coding.

Most of reported studies addressed the top-down influence of expectations (priors) on low-level

sensory processing and were conducted with various paradigms (repetition suppression sequences

(see below), cue-priming tasks, paired association learning, illusory contours or motions, stimulus

omission) in humans and monkeys using different neuroimaging techniques (fMRI, EEG, MEG,

single-cell recordings). A noticeable point is that predictive coding allows re-interpreting existing

results, like for instance, those reported in Kok and de Lange (2015) regarding audiovisual inte-

gration for speech processing. Besides, it allows formulating new (mechanistic or model-based)

hypothesis, to address for instance the influence of the precision of information (priors or sensory

inputs) on brain responses.

An influential model-based fMRI study is the one by Summerfield et al. (2008), where the au-

thors tested the predictive coding account for repetition suppression (RS). RS is a well-known

effect characterized by the decrease of brain activity associated with the second (and subsequent)

presentation(s) of a stimulus in comparison to the initial activity elicited by its first presenta-

tion. It can take many forms, and it has been observed with several neuroimaging techniques, at

different timescales and in different species. RS has long been thought to reflect bottom-up mech-

anisms but a predictive coding interpretation would also imply top-down processes (Grill-Spector

et al., 2006): these would generate sensory low-level predictions fulfilled by the repeated stimulus,

leading to an absence of prediction-error related activity. Summerfield et al. (2008) designed a

smart study dealing with expected and unexpected repetitions. This contextual manipulation

was found to modulate RS amplitude as predicted by predictive coding, namely smaller RS am-

plitudes observed with unexpected repetitions. Following this, further studies were carried out to
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better characterize this account, and have been recently reviewed in Auksztulewicz et al. (2016),

Grotheer and Kovács (2016) (see also chapter 3, §3.4.3). Beside, the predictive coding account of

degraded speech perception could be addressed in a recent EEG-MEG study (Sohoglu & Davis,

2016). Three factors were manipulated: the precision of sensory inputs (using vocoders to synthe-

size words pronounced with varying intelligibility), the precision of predictions (using matching or

mismatching cues presented before the vocoded words) and the timescale of perceptual learning

(using speech recognition tasks at a short “cue-stimulus” scale, and at a long “experimental-

session” scale). Their results, including behavioral computational simulations, strongly support

the predictive coding as a unifying approach to explain the effect of their experimental manipu-

lations. Together with the above cited RS studies, these findings substantiate predictive coding

but also, and importantly, they nicely illustrate how such mechanistic hypothesis can improve our

understanding of a perceptual process.

A critical issue however remains: consistent evidence is not direct evidence of predictive cod-

ing operating in the brain. When it comes to assigning a functional role to the modulations of

neuronal responses described in the studies cited here, one remains limited to speculative inter-

pretations. For instance, as noticed in Kok and de Lange (2015), the activation of low-level visual

area V1 observed using single-cell recordings in macaques for illusory triangles (hence in the ab-

sence of physical sensory input) could either reflect top-down predictions from V2 or a prediction

error computed in V1. In fact, validating the predictive coding requires:

• the identification of the separate state and error units that compose a level in the hierarchy

• the characterization of their computational processes (namely, prediction and precision-

weighted prediction error updates respectively) which involves intra-level and inter-level

information exchanges.

Regarding the former point, some pieces of evidence of separate activities have been reported

in Summerfield and de Lange (2014), Kok and de Lange (2015), based on the assumption that

expected sensory input (matching priors) should induce an increase of state unit activity and a

decrease of error unit activity. Kok and de Lange (2015) suggested from findings in macaque, that

both units could be implemented in the different layers of a cortical column. The second aspect

requires establishing the computational role of the intrinsic and extrinsic connectivities at play in

the cortical hierarchy.

Today, addressing these two points remains great challenges that appeals to advanced model-

ing, aiming at describing from both a neurophysiological and computational perspectives, the

internal circuitry of a level and its connections within the hierarchy. Dynamic Causal Modeling

(Friston et al., 2003; Kiebel et al., 2009) - combined with the canonical microcircuit proposed by

Bastos et al. (2012) - has been designed especially in order to tackle the neurophysiological-level

description (see for instance this review of DCM findings for RS, Auksztulewicz & Friston, 2016).

DCM is central to the present work, we will describe its underpinnings in chapter 4, §4.2. Be-

sides, advanced computational learning models rests on a meta-Bayesian scheme (to be described

in the next section). They are mandatory in order to test the mapping between computational

and neurobiological processes. A exemplary study is the one by Iglesias et al. (2013): in this

fMRI study using an associative learning task, the inversion of a hierarchical dynamic genera-

tive model (namely a hierarchical gaussian filter, HGF, Mathys et al., 2011, 2014) from BOLD
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measures allowed to spatially characterize different prediction errors computed at different levels

of a hierarchy. One remarkable aspect of these findings is that low-level prediction errors were

found to involve the midbrain, known to enter the reward system. This study thus contributed

to elaborate the emergent hypothesis of neuromodulation signaling predictive coding messages in

the brain. Computational learning models were also crucial to our work, and will be described in

chapter 4, §4.3.
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2.4 Meta-Bayesian analysis

Under the assumption of the Bayesian brain, a close parallel can be drawn between the neuro-

scientist inferring unknowns from observed brain data, and the brain itself inferring unknowns

from observed sensory inputs. In fact, it goes beyond noticing the similarity between these two

types of Bayesian inference schemes, since the experimenter’s level of analysis encapsulates the

brain’s level one. Therefore, when this experimenter’s perspective is made explicit, it is referred

to as meta-Bayesian approach. In this section, we will first introduce the meta-Bayesian scheme

proposed by Daunizeau et al. (2010). Then, we will summarize the three model types used

throughout this work with the aim to clarify this meta-Bayesian approach that emerges when

working with a Bayesian framework to investigate Bayesian inference in the brain. Finally, we

present the VBA Toolbox for nonlinear probabilistic model inversion (Daunizeau et al., 2014),

which we used to perform meta-Bayesian analysis.

2.4.1 Observing the observer

In a series of two papers from Daunizeau and collaborators (Daunizeau, den Ouden, Pessiglione,

Kiebel, Stephan, & Friston, 2010; Daunizeau, den Ouden, Pessiglione, Kiebel, Friston, & Stephan,

2010), a meta-Bayesian analysis for neuroscientists was proposed as a principled framework to

tackle the “observing the observer” issue:

• the observer refers to a participant engaged in an experimental task (hence observing its

environment). Neuronal mechanisms underlying perception and decision-making1 are as-

sumed to conform to Bayesian principle. During the task, the behavioral or neuroimaging

data that should reflect such mechanisms are collected.

• observing refers to the experimenter analyzing these data with the aim to characterize

the unobservable perceptual and decision-making processes. This characterization itself

involves Bayesian inference in order to recognize the hidden states or parameters entering

such processes.

Using the formalism introduced in these papers, the (neuroimaging or behavioral) data generative

(meta-Bayesian) model is made of two main parts:

• The perceptual model. This model, m(p), pertains to the observer and describes how its

sensory inputs u are generated given the unknown causes ν in the environment, and some

hidden parameters ϑ(p). Such a model can be expressed as a combination of the likelihood

of observing the sensory inputs and some priors about the hidden causes and parameters:

p(u, ν, ϑ(p); m(p)) = p(u|ν, ϑ(p); m(p))p(ν, ϑ(p)|m(p)) (2.6)

Model inversion rests on variational Bayes scheme, which entails minimizing the free energy

under the free energy principle. The obtained posterior estimates (of ν and ϑ(p)) reflect the

1One of the strength of the meta-Bayesian framework presented here pertains to its ability to formalize
and solve issues in the field of Bayesian decision theory. Because this aspect is beyond the scope of this
work, we refer the interested reader to (Daunizeau, den Ouden, Pessiglione, Kiebel, Stephan, & Friston,
2010; Daunizeau, den Ouden, Pessiglione, Kiebel, Friston, & Stephan, 2010) for more detailed information,
and to (Devaine et al., 2014) for an application in the context of theory of mind.
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updated beliefs, and influence his or her (behavioral o neurophysiological) response through

the response model.

• The response model. This model, m(r) describes how the subject’s internal states which are

hidden to the experimenter, map onto the observations y. This mapping depends upon the

experimental design u and unknown parameters. It writes:

p(y, u, ϑ(r); m(r)) = p(y|u, ϑ(r); m(r))p(ϑ(r)|m(r)) (2.7)

As outlined by the authors, a critical aspect of meta-Bayesian analysis comes from the fact

that the response model integrates the perceptual model and its inversion but also the map-

ping of associated quantities to measurable responses. Here again, the variational scheme

can handle model inversion to provide posterior beliefs about ϑ(r).

Importantly, each model inversion depends on the uncertainty associated with the likelihood

and the priors that is passed into the free energy at convergence. As explained in Daunizeau

et al. (2010), F (p) and F (r) should not be confused as they approximate model evidence of

different observed data. The authors indicate the formal relationship between these two quantities

and discuss how the uncertainty regarding the observer’s knowledge can be estimated from the

uncertainty in the experimental data.

2.4.2 Examples of response models

We describe here the general form of three Bayesian generative models corresponding to the three

main types of models we used. Note that the first two models correspond to response models,

and do not rely on any assumed perceptual model that the subject may entail. As such, they

subsume a simple, classical Bayesian modeling approach for neuroimaging and do not require a

meta-Bayesian scheme. Only the third model exploits the meta-Bayesian framework. Various

Bayesian methods have been proposed for different types of analysis conducted with behavioral

or neuroimaging data. The most popular toolbox for Bayesian neuroimaging data analysis is

arguably the SPM package (http://www.fil.ion.ucl.ac.uk/spm). In the particular case of

electrophysiological data, SPM proposes Bayesian methods that have been proved well suited

(and successful) to solve the inverse problem of EEG-MEG source reconstruction (case 1 ), and to

estimate the effective connectivity underlying the generation of electrophysiological data (DCM,

case 2 ). The third case (case 3 ) refers to another type of dynamic causal models, referred to in

this work as computational models as they aim at describing mental processes. Importantly and

in contrast with the two first models, these are meta-Bayesian models since mental processes are

not directly observed but through a mapping to electrophysiological measures.

1. Static model for source reconstruction. The method proposed in SPM for distributed source

reconstruction rests on a two-level hierarchy of the form:

⎧⎪⎪⎨
⎪⎪⎩

Y = LJ + εn with εn ∼ N (0 ; Σn)

θ ∼ N (0 ; Σs)
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where Y denotes the (static) observation by the experimenter (EEG or MEG data for in-

stance), L the (known) leadfield operator, J the unknown parameter (the cortical source

activity), Σn and Σs the unknown noise covariance at the sensor and source levels respec-

tively. Model inversion (using VB) requires specifying the prior distributions of parameter

J and hyperparameters λn and λs characterizing the noise distributions Σn and Σs respec-

tively (Mattout et al., 2006).

2. Dynamic causal model for effective connectivity estimation. The generative model of DCM

proposed in SPM, is of the form (Kiebel et al., 2006):

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t), u(t), θ)

y(t) = g(x(t), u(t), ψ) + εn with εn ∼ N (0 ; Σn)

where y denotes the observation by the experimenter (EEG or MEG data for instance), x

the hidden states (describing neuronal activity), u the causes (the input of this dynamic

system), θ and ψ the unknown evolution and observation parameters. Model inversion

also rests on VB and requires specifying the prior distributions of the hyperparameter λn

characterizing the distribution of the observation noise Σn (the evolution model is assumed

to be deterministic), the evolution and observation parameters θ and ψ and the initial state

value x0. Note that the causes u entering the generative model are the experimental inputs,

thereby controlled by the experimenter.

3. Dynamic causal model for assessing mental processes. We present here a general form for

such models (examples of application to the cognitive processes behind the MMN will be

described in chapter 4, §4.3). Usually, these models are expressed in discrete time since

observations collected by the experimenter correspond to the brain activity elicited at each

trial. Since these models are hierarchical, causal and dynamic, they write:

⎧⎪⎪⎨
⎪⎪⎩

xt+1 = f(xt, ut, θ)

yt = g(xt, ut, ψ) + εn

where y denotes the observation by the experimenter (behavioral, EEG or MEG data for

instance), x the hidden states (describing activity within computational units), u the causes

(the input of the system), θ and ψ the unknown evolution and observation parameters.

Model inversion requires specifying the prior distributions as for DCM. Again, the causes

u entering the generative model are known by the experimenter and thereby are not to

be estimated. Most importantly, f here entails the Bayesian inference that the subject is

performing under his/her model of the world, while g is the observation model mapping the

subject’s (hidden) mental representations to available observations. As such, f embodies

equations which result from the Bayesian inversion of the subject’s perceptual model of the

experimental task.

In the same manner as the brain learns (updates its prior knowledge) after having collected a

new information, the experimenter learns from behavioral or neuroimaging data. From both

perspectives, this learning process provides posterior estimates of unknowns that become the



2.5 Summary 39

priors for next observations. Additionally, Bayesian inference provides the free energy which is an

approximation of the model log-evidence used for model comparison. Model comparison is at the

heart of experimental science and is essential for the experimenter, as we shall see in this work.

It might also be at the heart of human perception and decision-making (Friston et al., 2012).

2.4.3 The VBA toolbox

The aim of this subsection is to briefly describe the VBA toolbox that we used for our computa-

tional model analysis. This toolbox has been introduced in (Daunizeau et al., 2014) and can be

downloaded from the website http://mbb-team.github.io/VBA-toolbox.

The VBA (Variational Bayes Analysis) toolbox is a Matlab package dedicated to the inversion

of probabilistic nonlinear state-space models of behavioral and neuroimaging data. It thus ad-

dresses Bayesian inference from data observed by the experimenter (the causes u or inputs being

controlled). The generative models can be static or dynamic, probabilistic or deterministic (in

this case, state or observation noise is set to 0). The core of this toolbox rests on VB inversion

using a Laplace approximation. Below are listed the four key features handled by VBA:

• Data simulation. This point deals with the generative model (from causes to consequences)

and usually refers to preliminary analysis aiming at optimizing model specifications. Us-

ing the known trajectory of cause u (a time series or a discrete sequence of stimuli for

instance), the trajectories of hidden states and causes can be computed, as well as predic-

tions of neuroimaging data ypred. This step thus allows checking whether an experimental

modulation observed on the real data (for instance yA < yB, for two conditions A and

B) can be captured by the model (can we predict ypred(uA) < ypred(uB)?). In the typical

case of multiple models (embodying competing hypotheses), simulations helps figuring out

which model should be best.

• Parameter estimation. This step concerns model inversion per se. The toolbox includes

useful tools for diagnostic (e.g. to check the quality of fit of the data).

• Model selection. This step involves the functions that are necessary to conduct various

statistical analysis, including Bayesian model comparison with between-group and between-

condition comparisons.

• Design optimization. This point refers to design optimization given an objective, be it

model selection or parameter estimation (Sanchez et al., 2014).

2.5 Summary

The different Bayesian models for brain function that have been described in this chapter share the

common assumptions that the brain would specify a generative model of its environment and would

learn, in the Bayesian way, while interacting with it. In other words, the brain would treat every

observation that it receives to update its environmental knowledge as a Bayesian system would

do. This requires the brain to represent and account for the uncertainty of each information that

it manipulates (prior, likelihood and posterior). Bayesian models, the free energy principle and

generalized predictive coding in particular, appear very convincing to describe the underpinnings
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of perception, and to establish a distinction between perceptual inference and perceptual learning

operating at different timescales. A large body of the literature is consistent with these ambitious

hypotheses, which appears necessary but not sufficient for their acceptation. As we have seen,

evidencing predictive coding in the brain requires relating functional (computational) processes

to neurophysiology and promising efforts are gradually made to that aim. Today’s advanced

methods for meta-Bayesian analysis combined with neuroimaging model-based studies now enable

investigating this challenging hypothesis.
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The Mismatch Negativity

The Mismatch Negativity (MMN) is a brain response that is central to cognitive neuroscience and

that has accordingly motivated an outstanding piece of literature for almost four decades. As we

will see, this interest in MMN derives from its rather ease of recording (notably because it does

not require the explicit engagement of the participant’s attention) but more importantly, because

its investigation could help refining the characterization of the mechanisms underlying perception,

including learning processes. Maybe the most significant feature of the MMN is the gap between its

essential role in cognitive neuroscience and clinical research (Sussman et al., 2014) - not to mention

its numerous applications (Näätänen, 2003; Morlet & Fischer, 2014) - and the fundamental issue

of understanding the MMN that still remains an open question. By understanding we specifically

refer to characterizing its underlying mechanisms as well as clarifying its functional role. This

chapter starts with a presentation of the MMN, as well as a brief overview of empirical findings in

relation to the current work. Following this, current knowledge about both the neurophysiological

and the cognitive processes behind the MMN is summarized. The latter point will concern the

different interpretations of the MMN that have been proposed, including its recent predictive

coding account exploiting its potential usefulness for testing the Bayesian brain hypothesis.

3.1 Introduction to the MMN

3.1.1 Presentation

The Mismatch Negativity is an electrophysiological response that has been extensively described

in the literature since it was first introduced by Näätänen in 1978 (Näätänen et al., 1978). It is

elicited whenever a regular stream made of sensory events undergoes a change (for instance, the

humming noise of the refrigerator that stops) and is largely assumed to reflect that the brain has

detected this change, the so-called mismatch. It is evoked experimentally using standard stimuli

building up the regularity, and deviant stimuli interrupting it. Using such experimental material,

the MMN could be measured in several modalities (auditory, visual, tactile) (Winkler & Czigler,

2012; Restuccia et al., 2007) with the majority of MMN studies conducted using auditory stimuli.

This chapter, as well as the work presented in this thesis, focuses on the auditory MMN.

The typical experimental design employed to measure the MMN is the two-tone oddball paradigm

(Figure 3.1), which involves sequences of a repeating standard sound, with infrequent deviant

41



42 Chapter 3: The Mismatch Negativity

Figure 3.1 – Typical oddball sequence: standard sounds (grey) are being repeated, while
deviant sounds (red) occurring infrequently violate the regularity established by the standards.

occurrences. The most intuitive way to design a deviant calls for changes in the physical attributes

of the standard sound (like location, duration, intensity or frequency) but may also imply the

temporal and statistical regularities present in the acoustic environment. Many deviant types were

found to elicit an MMN, with findings contributing to a better understanding of the functional

role of the MMN (see §3.2.2).

Figure 3.2 – Typical MMN measured with frequency deviants. First row corresponds to
nose-referenced EEG responses, with standard (left), deviant (middle) and difference (deviant -
standard) evoked responses (right). Bottom row corresponds to MEG signals (radial gradiome-
ters). Right column indicates scalp topographies obtained at the peak latency of the MMN for
both modalities (black dots indicate corresponding sensors, the range of values used for the color
scale is mentioned for each map). For EEG map, the typical mastoid inversion can be revealed
thanks to the nose reference.

In all cases, the MMN is revealed using the difference response obtained by subtracting the

standard evoked response to the deviant one. The MMN generally occurs from about 130 ms

to 210 ms after deviant onset with the following topographies: using nose-referenced EEG, a

negativity at frontal sensors combined with positive inversion at temporal ones; using MEG with

radial gradiometers, two anterior and two posterior poles with opposite signs, as represented in

Figure 3.2.

3.1.2 Brief overview of auditory evoked potentials

The (auditory) MMN is a component of the auditory evoked responses at the latency range of the

Long Latency Responses (LLR). To facilitate the understanding of the MMN in relation to other

auditory components, we provide here a brief recall of the main auditory evoked potentials (AEP).

These refer to the event-related potentials (ERP) induced by an auditory stimulus, and reflect the
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electrical signal generated by this sound through the ascending auditory pathways (Figure 3.5).

Auditory evoked responses have been initially described using EEG recordings (hence, potentials)

but their magnetic counterpart also contributes to their characterization (notably due to the great

sensibility of MEG channels to capture activity within the auditory cortex). In what follows, we

present the three typical categories of AEP that are commonly used (Figure 3.3):

Figure 3.3 – Auditory evoked potentials (adapted from Pérez-González and Malmierca, 2014).
Time is represented with a logarithmic scale.

Early Latency Responses. These early responses constitute the first responses to the stimulation

and occurs within 10-12 ms after stimulus onset. They consist of seven positive deflections la-

belled wave I to wave VII, reflecting the auditory information carried out from the auditory nerve,

through the cochlea and different relay nuclei upward the thalamus, being the last stop before the

auditory cortex.

Middle Latency Responses (MLR). Early latency potentials are followed by the Middle Latency

Responses (MLR), which comprises five components, N0, P0, Na, Pa and Nb, as described in

(Picton, 1980). Their generators could predominantly be located in the supratemporal cortex

(Pantev et al., 1995; Yvert et al., 2001), leading to the MLR being the earliest auditory cortical

responses.

Late Latency Responses. Finally, the Late Latency Responses (LLR) occurs from 50 ms to 500

ms after stimulus onset. They comprise the obligatory components, namely the P50 (or P1 or

Pb), a positive deflection peaking around 50 ms, and the N1-P2 complex entailing a negative

component followed by a positive deflection peaking at around 100 ms and 200 ms after sound

onset respectively (see response to standards in Figure 3.2). Both have larger amplitude in com-

parison to earliest components and are predominantly generated in the auditory cortex (Scherg

et al., 1989). The LLR also comprise responses elicited by a change in the acoustic environment,

such as the MMN but also the N2b (Näätänen, 1992) immediately following the MMN, and the

P3a (Escera et al., 2000), a positive deflection peaking around 230 to 350 ms after stimulus onset.
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In the particular case of active tasks, where the subjects have to process explicitly the auditory

stimuli, additional components such as the N200 (or N2b), the P300 (or P3b) and the processing

negativity (PN) are observed.

3.1.3 A comment on refractoriness and neuronal adaptation

This paragraph presents the refractoriness and the neuronal adaptation, two different processes

both affecting the responsivity of neurons when a stimulus is being repeated and thereby involved

in the auditory processing of oddball sequences.

Put simply, once a neuron has fired a spike, there is a delay (which inverse is called the spiking

firing rate) before it fires again. Two terms in particular influence this delay: the refractoriness (or

neuronal fatigue), a simple physiological mechanism resting on the refractory period of the neuron

and the neuronal adaptation, relying upon more complex mechanisms explored by a large number

of studies using single-cell recordings (for review, Pérez-González & Malmierca, 2014). Neuronal

adaptation would derive from synaptic changes emerging when a stimulus is being repeated, that

could modify the receptive field of neurons (relative to the stimulus physical features). Contrary

to refractoriness, neuronal adaptation presents some sophisticated characteristics like for instance

long-term effects (May & Tiitinen, 2010) and can take different forms over the different relays

of the auditory hierarchy where it could be measured (Pérez-González & Malmierca, 2014). An

illustrative example pertains to the N1, whose amplitude was often shown to be very sensitive

to sound repetitions. A refractoriness account of this decrease would imply a rapid stabilization

after sound repetitions, whereas neuronal adaptation would lead to a continuous and progressive

diminution. Findings in Demarquay et al. (2011) where the maximal decrease of N1 amplitude

was found to be attained after 2-3 sound repetitions, could reflect a refractoriness effect.

In their recent review, Pérez-González and Malmierca (2014) provide a comprehensive description

of a particular form of neuronal adaptation, the stimulus-specific adaptation (SSA). A neuron is

subject to SSA when the two following properties are encountered: i) the repetition of a stimulus

induces the decrease of its firing rate and ii) the neuron fires when a different stimulus is presented

(after the repeated-stimulus train). SSA could not be observed at the lowest level of the audi-

tory hierarchy but with neurons in the inferior colliculus, the thalamus and the auditory cortex.

Cortical SSA was found to entail larger temporal integration than subcortical ones, suggesting

ascending levels of temporal processing. Underlying mechanisms remain unclear but a recent

dynamic (deterministic) model was proposed (May et al., 2015), that provided convincing simu-

lations of SSA emerging at the latency of the MMN within the tonotopically-organized auditory

cortex in response to oddball-like sequence presentations (SSA could be generated with varying

temporal integration windows). In addition to deviance processing, experimental manipulations

at the cortical level also suggest a role of SSA in filtering the repetitive (hence non-informative)

inputs to avoid sensory overload and recent findings reported in this review support adaptation

as a proxy to encode the statistical distribution of stimuli.

Aside from SSA, basic forms of neuronal adaptation and refractoriness are unlikely to account

for the MMN (but this hypothesis has been advanced, that will be presented in §3.4.2). They

are thus commonly treated as undesirable effect to be minimized. Indeed, when deviants target
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different neuronal populations than standards (for instance with frequency deviants due to the

tonotopic organization of the auditory pathways), the difference response (deviant-standard) is

contaminated by a difference in responsivity between both populations, predominantly at the la-

tency of the MMN due to the refractoriness effect on the N1. Limiting the magnitude of deviance

maximizes the chance that standard and deviant neuron populations overlap and thus remains

strongly advised. The controlled paradigm proposed in Schröger and Wolff (1996) constitutes

another attempt to reduce this unavoidable effect as much as possible.

It should be noted that another confounding effect might enter the difference response, with

regards to the physical differences between stimuli (which might entail differences in their respec-

tives evoked responses). This has led some authors to use the term of genuine MMN to make

a clear distinction between the response triggered by the violation of the regularity and these

undesirable effects. Methodological guidelines to optimize the observation of such genuine MMN

are provided in Escera et al. (2014).

3.2 Modulation of the MMN by experimental ma-

nipulations

The purpose of this section is to describe the major findings about the modulation of the MMN

amplitude that remain relevant in the context of the present work.

3.2.1 Key features

The MMN is an automatic response. The MMN elicitation is observed even in the absence of the

subject’s attention being engaged into the sound sequence. In fact, the MMN could be measured

in coma (for review, Morlet & Fischer, 2014), during sleep (Ruby et al., 2008), under anesthesia

(for review, Chennu & Bekinschtein, 2012). Other evidence supporting this fundamental property

of the MMN have been reviewed in Näätänen et al. (2010). Hence, likewise a reflexive behavior,

it seems that the MMN cannot be refrained, but its amplitude could be modulated by attention

according to several studies reviewed in Fishman et al. (2014).

The MMN expresses very rapidly. Many studies have reported the MMN to be visible as soon as

two standards were delivered, with the rule governing the sound sequence involving for instance

a simple sound repetition (Sams et al., 1984) or specific transition probabilities (Bendixen et al.,

2007). It should be noted that a single presentation is not sufficient to elicit the MMN (as recalled

in Winkler et al., 1996), that the first standard following a deviant also generates a (small) MMN

(Sams et al., 1984) and that repeated deviants exhibit a reduced MMN (Sams et al., 1984; Morlet

et al., 2014).

The MMN does not habituate. Contrary to the N2b and P3a, the MMN amplitude has been

shown to be invariant to the time exposure to the oddball sequence (Morlet et al., 2014).
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3.2.2 The broad spectrum of deviance types

First study reporting a MMN (Näätänen et al., 1978) employed a duration deviance. Since then,

MMN has been successfully measured with deviant stimuli embedding change relative to the

standards that can be categorized as follows (for comprehensive reviews, see Näätänen et al.,

2010; Fishman, 2014):

• physical changes: deviants differ from standards relative to the physical properties of sounds

(such as frequency, duration, location), also comprising higher-level features such as pho-

netic properties in speech sounds. Ensuing MMN are found to be larger as the deviance

magnitude increases.

• contextual changes: this time the physical content of both standards and deviants are

the same but deviant occurrence induces a change in the temporal property of the sound

sequence (with for instance, the time-interval duration between two sounds) or involves the

statistical dependencies of sounds within the sequence. In this case, researchers often refer

to global or abstract rules, that may rest on large time-scale (to induce a specific periodicity

like in Alain et al., 1994; Bekinschtein et al., 2009), or to local time-scale in the case of

specific transition probabilities or contingency rules (Bendixen et al., 2008; Todd & Mullens,

2011).

• omission: this is a specific case of deviance, where the deviant violating the rule is a standard

not being delivered. This case of deviance is of particular interest as no auditory input is

to be processed.

In addition, it is worthy to mention the numerous MMN findings observed using physical and

contextual changes during high-level cognitive processes such as language and music processing

(also reported in the above cited reviews).

Overall, these findings illustrate the large extent to which the MMN allows investigating per-

ceptual processes in passive situation or without the explicit engagement of subject’s attention

towards the sound sequence. It is important to underscore the (trivial) statement that deviance

can not be evoked without preceding standards to set up the regular acoustic environment. The

range of rules (built up with standards) that were associated to an MMN when violated with

appropriate deviants therefore suggest that the MMN is “not so primitive” (Todd et al., 2013),

particularly considering its automatic nature. Its function is now accepted to be beyond the de-

tection of an environmental change and to involve neural processes of regularity extraction. As

will exposed in section §3.4, all these findings have contributed to clarify the (still unclear) role

of the MMN.

3.3 Neurophysiological underpinnings of the MMN

In the present day, the mechanisms underlying the generation of MMN observed with electro-

physiological recordings are not fully understood. These mechanisms are triggered by deviant

occurrence and operate in a “neurophysiological context” established by preceding standards.

They obviously involve auditory processing along the auditory pathways. The first step forward

a better characterization of deviance processing concerns the identification of the related cortical
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regions, for which a review of existing findings is presented below. We then describe preliminary

attempts to assess the dynamics of cortical connectivity at play during this processing. Finally, we

present the hypothesis of an auditory hierarchy spanning from sub-cortical structures to high-level

cortical regions, proposed by Escera and Malmierca (2014).

3.3.1 Sources of the MMN

Equivalent current dipole (ECD) studies. The majority of the numerous studies dedicated to the

identification of MMN generators aimed at characterizing a fronto-temporal network for which

strong priors were provided from Current Source Density (CSD) studies (Giard et al., 1990; De-

ouell et al., 1998) and from lesioned-patient studies (Alain et al., 1998). Initial dipole modeling

studies (reviewed in Alho, 1995) contributed to describe ECDs (location and orientation) within

bilateral supratemporal planes (Scherg et al., 1989; Sams et al., 1991) that were different for

different deviance features (Giard et al., 1995; Levänen et al., 1996). Altogether, these studies

point to the spatial and temporal complexity of auditory processing achieved in temporal regions.

Interestingly, a few recent EEG studies succeeded in modeling frontal generators (Schairer et al.,

2001; Jemel et al., 2002; Rissling et al., 2014; MacLean et al., 2015).

Neuroimaging studies (fMRI, TEP). In the 2000’s, a large number of MMN studies were conducted

using neuroimaging techniques (fMRI, TEP, Optical Imaging) as they provide functional maps of

brain activity with higher spatial (but lower temporal) resolutions than EEG and MEG data. Ma-

jor findings of deviance-related activity were reviewed in (Deouell, 2007), with quasi-systematic

implication of the Superior Temporal Gyrus (STG) and several reports of contributions of the

Inferior Frontal Gyrus (IFG). Other frontal areas located in the Middle Frontal Gyrus (MFG),

the Superior Frontal Gyrus (SFG) and the Anterior Cingulate Cortex (ACC), as well as parietal

clusters (Molholm et al., 2005; Gomot et al., 2006) could be reported. Recently, Alho (2014)

meta-analyzed fMRI studies showing activities within the auditory cortex and found median lo-

cation (from 18 studies) of specific pitch-change processing bilaterally in the mid-STG close to

the Planum Temporale (PT). Using duration deviance, a refined description of temporal activity,

dissociating the STG, Heschl’s Gyrus (HG) and PT could be obtained in a study combining fMRI

and EEG recordings (Schönwiesner et al., 2007). More recently, temporal (HG and STG) and

subcortical structures (Inferior Colliculus and Medial Geniculate Body) - but no frontal regions

- were observed with a frequency deviance paradigm using fMRI (Cacciaglia et al., 2015). Crit-

ically, as already pointed by Deouell (2007), it remains difficult to summarize these numerous

findings resulting from a large variety of experimental setups, each attempting to circumvent the

inadequacy of metabolic techniques to measure genuine deviance response.

Distributed source studies (EEG, MEG). The 2000’s also witnessed remarkable advances in dis-

tributed source modeling with electrophysiological data that now provides an adequate degree of

spatial resolution. We briefly review below the main findings reported with EEG and MEG:

• Using EEG, clusters within supratemporal planes were measured (Waberski et al., 2001;

Marco-Pallarés et al., 2005), including HG and PT (Fulham et al., 2014). MTG was also

reported (Marco-Pallarés et al., 2005; Fulham et al., 2014). Frontal contributions were

localized in ACC (Waberski et al., 2001; Marco-Pallarés et al., 2005) and in bilateral IFG

(Fulham et al., 2014; Hanna, 2014) with the former study also showing MFG activity.
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Figure 3.4 – Overview of experimental findings regarding MMN generators. From 1 to 4 :
fMRI studies with 1=Opitz et al., 2002; 2=Gomot et al., 2006 (children findings); 3=Cacciaglia
et al., 2015; 4=Schŏnwiesner et al., 2007). From 5 to 11: Distributed sources using EEG or MEG
with 5= Rinne et al., 2000; 6=Fulham et al., 2014; 7=Marco-Pallares et al., 2005; 8=Chakalov
et al., 2014; 9=Waberski et al., 2001; 10=Recasens et al., 2014; 11=Ruhnau et al., 2013. We
refer the reader to these articles for more details.

• Using MEG, temporal activations were reconstructed in right STG (Lappe et al., 2013a;

Paraskevopoulos et al., 2014; Recasens, Grimm, Capilla, et al., 2014), left STG (Lappe

et al., 2013b) or bilateral STG (Ruhnau et al., 2013; Recasens, Grimm, Wollbrink, et al.,

2014) with both studies also showing clusters in HG. Clusters in right MTG, PT and HG

(Recasens, Grimm, Capilla, et al., 2014), right insula (Lappe et al., 2013b) and bilateral

STS (Ruhnau et al., 2013) were also reported. Frontal activations were found in right SFG

(Paraskevopoulos et al., 2014), left MFG (Paraskevopoulos et al., 2014; Chakalov et al.,

2014) and bilateral IFG and SFG (Lappe et al., 2013a). Parietal sources were also found

(Lappe et al., 2013b; Chakalov et al., 2014).
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This review confirms that both EEG and MEG signals contain sufficient information that can be

captured with distributed methods to disentangle frontal, temporal and even parietal participa-

tions to the generation of deviance responses. However, it also reveals a critical lack of robustness

in the characterization of the cortical network recruited during deviance processing. Not only this

issue may result from differences in experimental designs (including different physical properties

of stimuli) but also from the variability of methods used for data preprocessing, event-related po-

tentials/fields (ERP/ERF) computations (including the selection of standard trials entering the

difference deviant-standard) and of course source reconstruction (including forward modeling). A

common point shared by the majority of the EEG, MEG and fMRI studies cited here consists in

the fact that their respective experimental design entails a modulation of oddball sequences by

a factor of interest (most often deviance magnitude or deviance feature is used). Differences in

the sources of the resulting MMNs thus constitute a proxy to infer how deviance processing (and

more generally auditory processing) is achieved over the corresponding brain areas. For instance,

several fMRI studies manipulated different ranges of deviance magnitude to investigate where in

the brain ensuing modulation could be measured, that could to possibly clarify the respective role

of frontal and temporal regions (Opitz et al., 2002; Rinne et al., 2005; Schönwiesner et al., 2007).

3.3.2 Characterization of cortical dynamics (premises)

Recent modeling methods such as DCM now allow characterizing finely the dynamics of cortical

interactions during deviance processing. However, spatio-temporal results obtained before such

methods became available appear to be very informative with regard to this connectivity issue.

Initial ECD studies investigated the N1 and MMN generators within the supratemporal plane

(based on standard and difference responses respectively) with the aim to disentangle the neu-

ronal adaptation of N1 and genuine deviance processing (Scherg et al., 1989; Sams et al., 1991).

Their findings indicated the MMN dipole being anterior to the N1 dipole, and were confirmed by

several subsequent source reconstruction studies (Näätänen & Alho, 1995; Rosburg et al., 2004;

Recasens, Grimm, Capilla, et al., 2014) (but see Maess et al., 2007), as well as lesion-based studies

(reviewed in Alho, 1995). Despite the acknowledged limitation of ECD approach (imposing the

number of activated sources), these results could suggest auditory processing resting on a spatial

progression within the supratemporal plane, from posterior (at N1 latency) to anterior (at MMN

latency).

In the same vein, findings from studies that investigated the relative role of the frontal and tem-

poral generators of the MMN provide some premises that could help refining our understanding

about the fronto-temporal connectivity. Actually, several findings reported a temporal activation

occurring before the frontal one (Rinne et al., 2000; Waberski et al., 2001; Opitz et al., 2002;

Doeller et al., 2003; Rinne et al., 2005; Fulham et al., 2014) but the reverse hypothesis (frontal

regions being activated before temporal ones at the latency of the MMN) was also introduced

by Gomot et al.(2000), with subsequent findings in line with this view (Yago et al., 2001; Tse &

Penney, 2008; Lappe et al., 2013a; Tse et al., 2013).

These initial findings, based on estimated source activity, thus appear useful but somehow limited

in the sense that the different methodological approaches employed were not equipped to assess
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Figure 3.5 – Auditory hierarchy with associated deviance related findings. The neurobiological
description of the auditory hierarchy is adapted from A.Caclin (thesis); only the ascendant
connections have been depicted (red); MGB=Medial Geniculate Body, PT=Planum Temporale,
PP=Planum Polare, STG=Superior Temporal Gyrus. For each level of the hierarchy, green ticks
indicate that empirical support for deviance processing could be provided, red crosses indicate
an absence of evidence and interrogation points suggest ambiguous findings. The absence of
symbol correspond to an absence of findings (at the present day).

the cortical connectivity per se (they prevent from estimating the feedback influence of targeted

sources for instance). Such analysis can precisely be achieved with DCM. Using such models,

Garrido et al.(2007) did not test the hypothesis of a frontal-to-temporal dynamics, but using a

temporal-to-frontal model, they succeeded in revealing that feedback connections were needed to

fit deviance response from the latency of around 220 ms. Because DCM of the MMN fall under

a predictive coding account of deviance processing, we will present them in details in chapter 4,

§4.2.3.

3.3.3 Auditory hierarchy for deviance processing

In addition to the numerous (human and animal) studies that have reported MMN, other deviance-

related responses could be measured at different latencies and at different levels of the auditory

hierarchy that were reviewed in (Escera & Malmierca, 2014). Corresponding findings are listed

below (see also Figure 3.5):

• Stimulus-specific adaptation (SSA). First evidence for neurons showing SSA were reported

in the seminal study of Ulanovsky et al. (2003), conducted with single-unit recordings in

the cat’s primary auditory cortex. Subsequent (numerous) studies also indicated evidence
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for SSA in the inferior colliculus (IC) and the thalamus (recorded with rat, guinea pig or

monkey) but investigation in the higher-cortical levels appears to be lacking. SSA can take

various forms (depending on experimental manipulation), with the more sophisticated one

located in the primary auditory cortex (Pérez-González & Malmierca, 2014).

• Frequency following responses (FFR). These evoked responses measured with scalp elec-

trodes are part of the auditory brainstem responses (ABR) and are assumed to reflect

activity within the brainstem (where the waves IV and V of the early latency responses

originate). A deviance-related modulation of the FFR could be measured in recent studies

using speech stimuli (Slabu et al., 2012) and amplitude-modulated sounds (Shiga et al.,

2015). The brainstem origin of such responses could be challenged by recent findings sup-

porting a cortical contribution (Bellier et al., 2014; Coffey et al., 2016), but the implication

of the IC and the medial geniculate body of the thalamus (MGB) in deviance processing

was confirmed by a fMRI study (Cacciaglia et al., 2015).

• Middle latency responses (MLR). In a recent series of studies (main findings described in

Escera et al., 2014), different components of the MLR (Na, Pa, Nb, Pb) were found to be

modulated by the occurrence of deviants using physical changes such as frequency, intensity

and location. Deviant responses were found to exhibit either a decrease or an increase1 of

peak amplitude (in comparison to standard response). A cortical contribution from the

primary auditory cortex could be found using source reconstruction. It should be noted

that only a few studies addressed the localization of these deviance responses. The works

by Recasens and collaborators (Recasens, Grimm, Capilla, et al., 2014; Recasens, Grimm,

Wollbrink, et al., 2014) suggested a temporal activation centered in HG extending to the

medial part of the STG. In Ruhnau et al. (2012), generators of early mismatch response

(from 50 ms to 100 ms after deviant onset) were identified in bilateral STG and STS,

including the primary auditory cortex (PAC).

• Late latency responses (LLR). Beyond the MMN, deviant tones can also elicit the N2b-

P3a complex (Morlet et al., 2014). The characterization of their cortical generators remain

unclear, notably with regards to the auditory cortex contribution. Higher-level sources, in

the anterior cingulate cortex (ACC) for instance could be evidenced (Crottaz-Herbette &

Menon, 2006).

In their review, Escera and Malmierca proposed that MLR deviance responses could bridge the

gap between the SSA, occurring at the spike time-scale and measured with animal recordings,

and the MMN, peaking from around 130 ms and which could entail more sophisticated perceptual

processing. Beside, recent studies reported that MLR modulation by deviants was not exhib-

ited in the particular case of complex rules (resting on larger statistical dependencies than the

simple repetition pattern of typical oddball sequences) (Cornella et al., 2015; Althen et al., 2013;

Recasens, Grimm, Wollbrink, et al., 2014). Based on these findings, Escera and collaborators sup-

port the view that deviance processing, relying upon change detection and regularity extraction

mechanisms, would be grounded in the auditory hierarchy, where the neurobiological levels of this

1One should be aware that an increase (or decrease) of brain responses measured for deviants with
EEG or MEG does not necessarily implies a larger (or smaller) brain activity related to deviant processing
(due to the non-linear biophysical mapping of neuronal activity to external sensors). Such increase (or
decrease) just informs about a different underlying processing.
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hierarchy could be related to the “ascending levels of complexity” involved in deviance processing.

To sum up, despite an extensive literature, the neurophysiological description of the MMN (in-

cluding its contributing generators) still remains an unresolved issue, and thereby continues to

be investigated. All the studies cited here suggest that a finer characterization could be achieved

by no longer considering this component in isolation from the other deviance-related responses

generated along the auditory hierarchy. The next (challenging) step pertains to the description of

the connectivity within this hierarchical structure to go beyond speculative interpretations, and

relies upon advanced methods such as DCM.

3.4 What functional role for the MMN?

So far, what we know about the MMN from a cognitive point of view, is that it is elicited by

a change in the sensory environment that has been detected by the auditory system. All MMN

studies investigating its generators or its modulation by experimental factors, have contributed

to give insight into its cognitive function. Several mechanisms have been proposed to explain the

MMN, and we present below the dominant models with the latest being predictive coding. As we

will see, predictive coding appears as the only model (in the present day) that provides a detailed

mechanistic description of the MMN while reconciling other (exclusive) existing models.

3.4.1 The sensory memory account

The (early) sensory memory model1 of the MMN has emerged from the observation that a min-

imum of two standard repetitions was needed to elicit a MMN, hence suggesting the idea of a

sensory memory that would allow the standard representation to be stored. This view, described

in Näätänen et al. (2005), assumes that exposure to repetitive standards generates a memory

trace of the standards and that the MMN reflects the outcome of a comparison between this trace

and the incoming sound. Specific neuronal populations would thus be in charge of computing this

comparison, at the core of change detection.

The large number of studies that have explored the generators of the MMN (in particular the

early ECD studies) attempted to reveal these neuronal populations, as well as clarifying their (still

debated) feature specificity at both the temporal and frontal levels. A commonly shared view is

that temporal regions could entail the pre-attentive change detection with comparison output con-

veyed to frontal regions in order to trigger, if necessary, the orientation of attention (as observed

for novel - or salient or alerting - deviant stimuli) (Giard et al., 1990). The latter aspect is of-

ten referred to as the involuntary switch of attention preceding the orienting responses (N2b, P3a).

As it became clearer that the MMN could index the detection of contextual changes, the sen-

sory memory model was refined to extend the mechanisms behind this component: in addition to

change detection, the MMN would also rest on rule extraction mechanisms. This variant, some-

times referred to as the model adjustment hypothesis (Garrido, Kilner, Stephan, & Friston, 2009),

considers deviants violating the extracted rule instead of mismatching the memory trace. The

differences between these two versions of the memory-based model are detailed in Winkler et al.

1also referred to as memory-mismatch hypothesis, or memory-trace explanation
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Figure 3.6 – The adaptation model proposed by May and collaborators (adapted from May et
al. (2010).

(2007, see their Table 1, p.157).

Such memory-based model strongly opposes to the adaptation model (see below) with the MMN

elicited by abstract rules or omitted standards being the most convincing empirical evidence in

favor of memory-based models (Näätänen et al., 2005).

3.4.2 The adaptation model

The adaptation model proposed by May and colleagues (Jääskeläinen et al., 2004; May & Ti-

itinen, 2010) challenges the underlying cognitive mechanisms of the MMN. According to these

authors, the MMN is not a brain component per se, following the N1 and having its own gener-

ators, but it rather derives from a differential adaptation affecting the standard and the deviant

N1. In other words, the MMN would only exist by the subtractive effect on the N1 responses.

Importantly, in May and Tiitinen (2010) the adaptation model is also termed as fresh-afferents

model, and adaptation is defined as refractoriness - ”the differential responding to the standard

and deviant is due to adaptation (refractoriness) of the neuronal population” - or more evasively

as ”the short-term modification of the responsiveness of neurons by sensory stimulation”. The key

feature of this model is that it requires only two neuronal populations: one for the standards and

one for the deviants (see Figure 3.6). Using simulations, May and Tiitinen (2010) demonstrated

how adaptation and lateral inhibition can account for the difference in N1 deviant and standard

responses leading to the (delayed) MMN.

In a recent review, Fishman (2014) reported empirical findings supporting the adaptation model.

A large piece of the argumentation is based on inconsistent predictions that the sensory mem-

ory and the adaptation models would generate in the case of deviantoddball stimuli, embedded in

a typical oddball sequence, and deviantsilenced embedded in the same sequence but with stan-

dards being silenced. According to Fishman, memory-based model would predict deviantoddball >

deviantsilenced because of the absence of comparison outcome in the silenced condition (but see
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Alcaini et al., 1994), whereas the adaptation would predict deviantoddball ≤ deviantsilenced because

deviantsilenced would have equal or eventually more fresh afferent activity. Several human and

animal findings supporting these adaptation predictions are cited. Besides, supporting evidence

would also result from the unresolved issue of identifying cortical generators being activated for

deviants only, that would be the signature of the sensory memory model. However, the author

recognized the difficulty of the adaptation model to account for the MMN observed with abstract

rules, unless considering the (unlikely) differential adaptation over neurons encoding specific ab-

stract features.

Critically, the type of adaptation involved in such model of the MMN differs from the more

sophisticated SSA that could play a key role in the temporal integration of sensory information

(a mechanism also likely to be behind the MMN). Interestingly, the model proposed by May et

al. (2015), based on a time-varying synaptic connectivity between cortical columns within the

supratemporal plane, could provide successful simulations of such columns eliciting SSA. Pre-

cisely, connection strength between two columns was set to depend on the synaptic adaptation

(neuronal fatigue) of the column targeting the other one. Synaptic adaptation rested on a specific

time constant whose tuning could generate SSA with unexpected sounds violating a typical fre-

quency oddball sequence but also with a within-pair frequency change sequence. This model thus

demonstrates how specific cortical columns can be activated only when a deviant pattern occurs

(a property required for SSA), and highlights the role of varying temporal integration windows

to endow the auditory system with a change detection mechanism. However, this model entails

several limitations including notably the lack of result generalizability for non-frequency based

rules. Crucially, the (essential) tuning of time constants, operated by the experimenter for the

simulations reported in the study, has to adapt to the temporal structure of sound sequence to

induce deviance responses, an issue not accounted for by the model.

3.4.3 The predictive coding model

The predictive coding view of the MMN, with one of its first description to be found in Friston

(2005), assumes the ability of the brain to represent the generative model of sound sequence

(namely the statistical dependencies that govern the relationship within sequence items) as it is

exposed to its acoustic environment. Each sound is treated as a new observation by the brain

and as such, induces updates of predictions and precision-weighted prediction errors along the

auditory hierarchy (Figure 2.3). Hence, expected standards contribute to enhance the precision of

predictions and to reduce prediction errors within state units, whereas unexpected deviants trigger

prediction errors within error units propagating through the hierarchy. Under this view, the MMN

would thus reflect these precision-weighted prediction errors and their associated updates.

Some authors have drawn a close parallel with the (early) sensory memory model, as it also

involves a comparator between experienced and incoming sounds. Memory trace could thus be

equated to model predictions and mismatch (or comparison outcome) to prediction error (Winkler

& Czigler, 2012). In Fishman (2014), these two models are even explicitly presented as being

equivalent. This parallel appears somehow limited due to the absence of mechanistic assumptions

in the memory-based model (describing the MMN conceptually). In fact, the predictive coding

account of the MMN reconciles the mutually exclusive memory-based and adaptation models.
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From a theoretical perspective, both models contradict each other regarding the existence of spe-

cific deviance populations, since the adaptation model refutes any deviance processing. Under

predictive coding, such deviance populations exist (the error units) but belong explicitly to the

auditory system. As already mentioned, such error units could even take place within the cortical

layers of each hierarchical levels. Using DCM, empirical evidence for such reconciliation could

be provided (Garrido, Kilner, Kiebel, & Friston, 2009). Another argument of predictive coding

accounting for both model predictions pertains to the deviantoddball and deviantsilenced findings

reviewed in (Fishman, 2014), with deviantsilenced interrupting the short timescale rule of silence,

hence triggering prediction errors.

Numerous findings of MMN modulation by experimental factors can be successfully interpreted

under the predictive coding hypothesis (Garrido, Kilner, Stephan, & Friston, 2009; Winkler &

Czigler, 2012). A persuasive illustration is given by the widely cited increase of MMN amplitude

measured with larger deviance magnitude: the predictive coding here accounts for larger predic-

tion errors, hence larger MMN. The fact that the MMN was found to not habituate after long

exposure to the sound sequence (Morlet et al., 2014) could at first sight disproves this hypothesis.

However, it could on the contrary points to the fact predictive coding entails several prediction

errors generated at different levels of the hierarchy, with ascending timescale processing (Kiebel et

al., 2008). Hence, lower levels having a short temporal integration window would always predict

a standard.

As already mentioned in Chapter 2, §2.3.3, one of the strength of predictive coding concerns

the novel (mechanistic) hypothesis that it raises. Applied to the MMN in particular, predictive

coding allows investigating the processing of repetitive standards, an issue that had never be

addressed finely under the sensory memory model (the so-called memory-trace formation). The

succession of standards induces the (perceptual) learning of the regularities and should accord-

ingly lead to reduced prediction errors and to larger precision of predictions. In Auksztulewicz

et al. (2016), findings that addressed the “dual role of descending predictions”, namely the sup-

pression of prediction errors and the changes in prediction precision, are reviewed in the context

of repetition suppression (RS), an effect introduced in chapter 2, §2.3.3. One plausible candidate

for its underlying mechanism could be adaptation, with for instance SSA being its correlate in

the primary auditory cortex. Todorovic and de Lange (2012) aimed at dissociating RS from the

expectation suppression (ES), another cause of reduced activity (inherited from predictive coding)

that could be evidenced in Summerfield et al. (2008). Using an orthogonal design in MEG, they

measured main effects of RS and ES at the latency of the P50 and around 100 ms respectively.

They concluded in favor of a cascade of updates revealed by these separate activities, where RS

would correspond to local regularity treated at a low level and ES to larger timescale processing

in a higher level. In the same vein, other attempts to isolate spatially and temporally different

ERP components observed after repeating standards have been made (Recasens et al., 2015), that

could suggest hierarchical activities at play during perceptual inference.

3.5 Summary

This chapter aimed at presenting the (auditory) MMN, an auditory evoked response essential to

cognitive neuroscience and clinical research that remains poorly understood. Neurophysiological
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findings reported here support the hypothesis of deviance processing achieved within the auditory

hierarchy. This thereby calls for a better characterization of the dynamic interactions between

MMN generators that would give insight (new hypothesis) into the functional processes involved at

each level of the hierarchy. Several psychological models of the MMN have been proposed for years

that have not yet succeeded in fully describing this component. Recent predictive coding account

appears very much relevant to investigate its role within auditory information processing. Re-

markably, this Bayesian framework provides a plausible account for numerous MMN experimental

findings and appears reconciling inconsistent former models. Importantly, this mechanistic frame-

work allows describing the MMN at both the neurophysiological and psychological levels. More

specifically, findings from each perspective could reveal the importance to consider all deviance

responses as a whole within the hierarchical auditory system. Hence, two timescales of analysis

are required for a comprehensive characterization of deviance processing: the ERP timescale of

perceptual inference, to clarify the role of the different components with regard to the predictive

coding message-passing scheme along the auditory hierarchy, and the experimental timescale of

perceptual learning, to assess the learning of regularities emerging from successive standards and

deviant processing. As was explained in previous chapter, evidencing predictive coding in the

brain remains a great challenge and the relevance of oddball sequence processing to attain that

aim was described here. Recent advances in Bayesian modeling have just started exploring such

hypothesis.



Chapter 4

Advanced Bayesian modeling of

mismatch responses

This final introduction chapter aims at presenting recent advanced Bayesian modeling tools that

now allow testing in a principled fashion the hypothesis of predictive coding for deviance process-

ing. Predictive coding here refers specifically to the framework proposed by Friston (2005), namely

generalized predictive coding, with the minimization of the free energy being the mechanism for

the suppression of prediction errors. Within this framework, neural activity reflects the dynam-

ics of Bayesian information processing at different levels, which could presumably contribute to

the (observable) evoked responses. We start with a brief recall of predictive coding predictions

in the context of oddball sequences. Next, we present two approaches that allow investigating

empirical Bayesian inference within the auditory hierarchy: the neurobiologically informed dy-

namic causal model (DCM) and the computational learning model. Finally, we report the very

few recent studies which have proposed to combine these two (neurophysiological and functional)

perspectives.

4.1 Expected physiological and functional dynamics

under predictive coding

In this section, we summarize the predictions regarding standard and deviant processing that pre-

dictive coding entails at both the functional and physiological levels. These predictions constitute

a guidance for subsequent modeling.

Standard tone repetitions. From the observation of successive standards, the brain learns the

generative model of sound sequences (for instance, the sequence has a two-tone structure and

tone category, rare or frequent, follows a Bernoulli distribution with specific parameters to be in-

ferred). As the number of repetition increases, predictions elaborated under this model becomes

more and more precise, hence giving lesser importance to new sensory inputs (Figure 1.1). From a

physiological perspective, standard tone repetitions yield reduced activity (possibly mediated by

synaptic adaptation) and reduced bottom-up and top-down cortical interactions (Friston, 2005;

Auksztulewicz & Friston, 2016).

57
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Rule violation by deviants. Unexpected deviants induce prediction errors which trigger message

passing along the auditory hierarchy until all errors have been explained away. The amplitude of

prediction errors varies according to the deviance magnitude but is furthermore weighted by its

precision, i.e. the relative precision of the observations and the predictions. From a physiological

perspective, deviants should cause enhanced forward connectivity (in comparison to standard pro-

cessing) but also enhanced backward connectivity as well as within-level activity (Friston, 2005).

For both tone types, the dynamics of functional and physiological updates elicited after stim-

ulus delivery can be characterized within trial at the ERP timescale (successive ERP components

should reflect the chronology of updates with possibly the latter indexing higher level activity)

but also over trials at the experimental timescale (sound processing should be modulated through

learning, hence depending on the history of perceived tones). Furthermore, higher levels in the

auditory hierarchy are expected to have larger temporal integration windows than lower ones

(Kiebel et al., 2008).

4.2 Dynamic causal modeling (DCM)

This section describes the method of Dynamic Causal Modeling (DCM) that we used to model

EEG and MEG mismatch responses. We start by a short introduction of the method that applies

to several types of neuroimaging data, and then provide a detailed description of its main features

in the case of electrophysiological evoked responses. Finally, we overview the insights that DCM

has provided into the specific context of auditory deviance responses.

4.2.1 General presentation

DCM allows describing the dynamics of cortical interactions between different regions composing

a hierarchy in response to a stimulation and generating the corresponding neuroimaging data

(Figure 4.1). These interactions are defined in terms of effective connectivity, accounting for the

causal (directed) influence that a brain region exerts on another1. DCM represents the brain

as a dynamical system receiving inputs (the stimuli, u), treating them using a specific evolution

function f (resting on hidden states x and parameters θ) and producing observable outputs (the

measurable brain activity y) according to a specific observation function g (also resting on hidden

states x and parameters ψ). A dynamic causal model is thus a generative spatio-temporal model

of observable brain activity embedding biophysical assumptions about the cortical implementa-

tion of information processing. Importantly, DCM can be used to test how the cortical coupling

within the hierarchy is modulated by experimental manipulation, which is precisely needed to

better understand how standard and deviant processing differ along the auditory hierarchy (at

least, the cortical part of this hierarchy).

Practically speaking, conducting a DCM analysis starts with specifying one or several genera-

tive models accounting for specific brain responses. Bayesian inference then provides the (ap-

proximate) log-evidence for each alternative hypothesis, which is first used to compare models

or families of models. Finally, the winning model or model family is used to make inference on

1Effective connectivity differs from functional connectivity: the latter provides a description of the
undirected statistical relations between two signals.
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Figure 4.1 – Schematic view of a DCM, a generative model of neuroimaging data (depicted
here in the specific case of electrophysiological data). The brain is modeled as a cortical network
that is perturbed by some inputs (green arrow) which are processed along the hierarchical
organization made of the interconnected nodes or sources (light brown rectangles). Extrinsic
connections are connections between sources, they are forward (red arrows) or backward (blue
arrows) connections. Intrinsic connections appeal to the internal circuitry within each source,
for which an example is given here (based on the CMC model used in this work, see also Figure
4.2). The dynamics of hidden states x in response to input u are described using an evolution
model f and can be mapped onto sensors using an observation model g to generate the data y.

(hidden) states and parameters characterizing the effective connectivity. DCM has been originally

proposed for fMRI data (Friston et al., 2003) and was then extended to model electrophysiological

responses (David et al., 2006; Kiebel et al., 2006). In what follows, we focus on DCM for EEG

and MEG evoked responses.

4.2.2 DCM for EEG and MEG evoked responses

In this particular case, DCM generates the evoked responses that are modeled as the output of

a dynamical system (the cortical brain) in response to an experimental input. There is a crucial

distinction to be made between the extrinsic connectivity that refers to the coupling between the

different sources composing the DCM architecture, and the intrinsic connectivity at play between

the different neuronal populations composing a source. Each connection (extrinsic or intrinsic) is

defined by its origin and termination but also by its strength, a time-independent variable which

quantifies the influence that the source population exerts on the target population. The different

features composing DCM for EEG and MEG evoked responses are detailed below.

Neuronal microcircuit. Each source (or cortical area) composing a DCM comprises interconnected

neuronal populations defined following the laminar structure of the cortex, and can thereby be as-

similated to a cortical macrocolumn. Several models describing the local circuitry within a source

(and associated neural activity) have been proposed (for a review, see Moran, Pinotsis, & Friston,

2013), each embedding approximations informed by animal findings and widely accepted in the
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field of neural circuits. The original version of DCM for evoked responses rests on the Jansen

and Rit neural mass model composed of three neuronal populations (David et al., 2005; Kiebel

et al., 2006) (we will refer to this model as the “ERP” model, following the terminology used in

the SPM software). A neural mass model provides a simplified description of the activity within

a cortical area, resting on a small number of state variables like the mean membrane potential

and the mean current of each population (mean refers to the mean-field approximation, where the

neuron-level characteristics are being replaced by their averaged value over the whole population).

DCM was recently augmented with another neural mass model based on a canonical microcircuit

(CMC, Bastos et al., 2012). This model, that we used in this work, entails neurophysiological

assumptions strongly inherited from predictive coding and thus make DCM even more convenient

to test the biological correlates of this hypothesis. Precisely, the CMC implemented in DCM is

a reduced form of the model proposed by Bastos et al. (2012) which was conceived as a possible

implementation of predictive coding in the brain. The CMC for DCM is composed of four neu-

ronal populations (Brown & Friston, 2012; Moran, Campo, et al., 2013; Auksztulewicz & Friston,

2016) (Figure 4.2):

• The superficial pyramidal cells (SP) predominantly located in cortical layers 2 and 3. The

outputs of these neurons have been evidenced to be involved in extrinsic excitatory forward

connexions (denoted Af in Figure 4.2), and could thereby encode precision-weighted predic-

tion errors on cause ξν , leading population SP to represent the cause error unit (using the

terminology introduced in chapter 2, §2.3.2).

• The deep pyramidal cells (DP) predominantly located in cortical layers 5 and 6. The outputs

of these neurons are known to be involved in extrinsic inhibitory backward connexions (Ab),

and could thereby encode predictions on states μx to be conveyed to lower levels. This would

lead population DP to represent the state unit that update state conditional expectations.

• The spiny stellate cells (SS), predominantly located in cortical layer 4. Since these neurons

have been evidenced to receive extrinsic excitatory forward input (ASS
f), population SS

could represent the cause unit updating conditional expectations of cause μν with regard

to prediction errors received from lower levels.

• The inhibitory interneurons (II) of cortical layers 2, 3. Population II could be associated to

the state error unit ξx, whose activity remains confined to the cortical area.

The intrinsic coupling between these four populations is presented in Figure 4.2: it rests on six ex-

citatory and inhibitory recurrent connections (linking two neuronal populations together) as well

as four inhibitory self connections (connecting a population to itself). The strengths (or gain)

of intrinsic connections (denoted γ1, ..., γ10) vary over sources. Of particular importance is the

strength of self inhibitory connection of population SP (γ7). Indeed, as was mentioned in chapter

1, Bayesian processing of information rests on the precision weighting of information in order to

give greater importance to more reliable beliefs. In a predictive coding scheme, precision-weighted

prediction errors conveyed to higher levels in the hierarchy enable “filtering out” irrelevant (or

poorly plausible) updates that should not be performed. This key computational aspect is trans-

posed in CMC into parameter γ7 which reflects the negative log-precision of prediction errors:

γ7 = − ln(Πν) (Brown & Friston, 2013). Strictly speaking, Πν represents a weighting term, and

could possibly reflect a precision ratio between (bottom-up) sensory and (top-down) predictions
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as expected under predictive coding (Mathys et al., 2014). High value of Πν suppresses the

self-inhibition of SP and enables the forward passing of prediction errors, hence triggers belief

updating.

Figure 4.2 – Canonical Micro-Circuit model (adapted from Auksztulewicz et al. (2016). Left:
schematic view of the circuitry within a source. Light brown rectangle represent a level within
the hierarchy being a cortical macrocolumn; dark brown areas correspond to the different
neuronal population composing this source, with triangle SP=supra-pyramidal cells, triangle
DP=deep pyramidal cells, star SS= spiny stellate cells and circle II=inhibitory interneurons.
ASS

f, ADP
f,ASP

b,AII
b: gain of the extrinsic forward (from SP to SS), forward (from SP to

DP), backward (from DP to SP) and backward (from DP to II) connections targeting this level
respectively. Af, Ab: gain of the extrinsic forward and backward connection originating from
this level respectively. γi: intrinsic coupling parameter. Right: typical organization of a hierar-
chical level of generalized predictive coding, as illustrated in Figure 2.3, is shown on the right
to highlight the correspondence between both approaches.

Intercortical connexions. In DCM, the connections between the different cortical areas conform

to the rules derived by Felleman and Van Essen (1991a) while adopting simplifying assumptions

(Bastos et al., 2012) leading to the following scheme (Figure 4.2):

• Feedforward (or bottom-up) connections originate in superficial layers (population SP) and

targets the agranular layers predominantly (population SS in layer 4) but also the infra-

granular layers (population DP)

• Feedback (or top-down) connections originate in infragranular layers (population DP) and

target supragranular layers (predominantly population SP but also II).
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Extrinsic connection strengths can be specified in specific matrices noted ASS
f, ADP

f,ASP
b,AII

b,

which correspond to the extrinsic forward (from SP to SS), forward (from SP to DP), backward

(from DP to SP) and backward (from DP to II) connections, respectively. For instance, the

strength of the forward connection (from SP to SS) linking the third to the fifth source of a DCM

is encoded in ASS
f(5, 3).

As can be seen in Figure 4.2, CMC has been designed so that the input signal that each cor-

tical area receives is segregated into two signals: a forward message originating from population

SP and a backward message originating from population DP. By dissociating the pyramidal cells

of supra- and infragranular layers, CMC exploits the suitability of the hierarchical organization

of the cortex for predictive coding, with prediction errors associated with excitatory connexions

and predictions with inhibitory connections enabling the suppression of prediction errors.

The evolution model. The evolution model of DCM describes the dynamics of each neuronal

population of each source in response to a stimulation, given the specified intrinsic and extrinsic

interactions among these populations. It takes the following form:

ẋ = f(x, u, θ)

where x, u and θ stand for the hidden states, the (exogenous) input or stimulation and the

evolution parameters, respectively. More precisely, hidden states x represent the mean post-

synaptic membrane potential and the mean current of each neuronal population (hence x for

the four-population CMC is a vector of 8 elements). The evolution function f entails a set of

ordinary differential equations adapted from the Jansen and Rit model (Jansen & Rit, 1995).

Under this model, each population receives a synaptic input (or more exactly the mean density

of pre-synaptic inputs) and transforms it into a post-synaptic membrane potential by means of

the convolution with an impulse response p ; in turn, this membrane potential is converted into a

firing rate with a (non-linear) sigmoidal function S and thus becomes a synaptic input for every

connected (intrinsic and extrinsic) population (Figure 4.3). The expressions of p and S operators

are given below:

p(t) =

⎧⎨
⎩

H

τ
t exp(−

t

τ
) if t ≥ 0

0 if t < 0
(4.1)

S(x) =
1

1 + exp(−rx)
−

1
2

(4.2)

where H is a synaptic parameter controlling the maximum postsynaptic responses, τ is a synaptic

time constant and r the sigmoid parameter. Parameters H and τ are specified for every neuronal

populations in each source (contrary to r whose value is common to all populations of the DCM). In

CMC, H is also equivalent to the strength of connections. Based on these variables and the Jansen

and Rit operators, the eight evolution equations of DCM describing the rate of changes of voltage

xvolt and currents xcurr for each population can be formulated; we provide those corresponding to

population SP (the remaining six equations having a similar form can be found in Auksztulewicz
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Figure 4.3 – Operators of the Jansen and Rit neural mass model (adapted from David et
al., 2006). H, τ and r represent the synaptic parameter controlling the maximum postsynaptic
responses, the synaptic time constant and the sigmoid parameter respectively (see main text).
Example of synaptic inputs in population SP is provided (right) using the notations and color
codes employed in Figure 4.2.

et al. (2015)):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋvolt,SP = xcurr,SP

ẋcurr,SP =
γ8S(xvolt,SS) − γ7S(xvolt,SP ) − ASP

bS(xvolt,DP )
τSP

−
2xcurr,SP

τSP

−
xvolt,SP

τSP
2

(4.3)

where γ8, γ7 represent the intrinsic gains as described in Figure 4.2. Variables γ. and x.,. cor-

respond to vectors containing the values relative to each source of the DCM structure. These

equations show how the voltage is updated as a function of the current, and how the current

evolves with both current and voltage. Inhibitory synaptic inputs are integrated as negative con-

tributions in order to model the decrease of neuronal responsivity that they induce. Importantly,

stimulus input is modeled as a thalamic excitatory input arriving at population SS of the sources

that have been declared to receive exogenous inputs. Finally, it should be pointed out that the

evolution parameter θ comprises the synaptic parameters (r, τ), the intrinsic coupling parame-

ters (γ), the extrinsic coupling parameters (A matrices), as well as trial-specific effect parameters

(see below) and input and conduction delay parameters (David et al., 2006). Simulations of

evoked responses constitute an efficient way to experience how such parameters affect the recur-

rent dynamics taking place in the network (see for instance, David et al., 2005; Kiebel et al., 2007).

Modulatory connections. DCM with CMC also comprises an additional (and optional) extrin-
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sic modulatory connection between population SP of a cortical area and population DP of its

first parent (Brown & Friston, 2013). Applying this connexion makes the self-inhibitory gain of

population SP γ7
(i) dependent of the firing rate of the higher-level population DP S(xvolt,DP

(i+1))

in such a way that larger value increases the suppression of self-inhibition in SP. This connection

aims at modeling the top-down influence of predictions, assuming that a larger activity in DP

reflects larger prediction updates that have to trigger prediction errors until those have been ex-

plained away. Using this connection lends γ7
(i) be no longer time-independent.

Trial-specific effects. Another key feature of DCM is the trial-specific effect (embodied in the

B matrix, following the same notation as in the SPM implementation) which enables modulat-

ing the connection strength relatively to the type of exogenous input (a standard or a deviant

for instance). It should be noted that trial-specific here refers to the modulation of evoked re-

sponses by experimental manipulation. Non-diagonal elements of matrix B encode the modulation

of extrinsic connections. For instance, the strength of the forward connection (from SP to SS)

linking the third to the fifth source of a DCM is equal to ASS
f(5, 3) for standard inputs, and to

B(5, 3)ASS
f(5, 3) for deviant inputs. Diagonal elements pertain to intrinsic modulations and apply

to the self inhibitory gain of population SP γ7. This trial-specific modulation assumes differential

synaptic changes induced by the different input types. Modulation of backward connections en-

tailing a modulatory connection (see paragraph above) applies to the intrinsic gain γ7 instead of

the backward extrinsic gain.

The observation model. The observation model of DCM rests on a typical forward model as

used for static source reconstructions, mapping neuronal activity to EEG or MEG sensors (Kiebel

et al., 2006). It writes:

y = g(x, u, ψ) + εn

where y denotes the EEG or MEG data, x the hidden states (being the evolution states x1, ..., x8),

u the exogenous input, ψ the observation parameters and εn the residuals. Function g corresponds

to the forward model, transforming neuronal activity into electrophysiological responses, and in-

cludes simplifications about this biophysical mapping. Measurement noise is assumed to be zero

mean Gaussian and is defined relatively to the temporal covariance of data Σn, parameterized by

hyperparameter λ. In DCM with CMC neural mass model, cortical areas are modeled as ECD,

whose position and orientation are represented by parameter ψ (note that ECD parameters are

thus time-independent). As already seen, each source comprises four neuronal populations; only

the post-synaptic activity (depolarization) of the excitatory populations SP, DP and SS are al-

lowed to project on sensors, with greater (prior) importance assigned to the superficial pyramidal

cells (SP).

Model inversion. Previous paragraphs have described the main features of DCM, being a gener-

ative model of brain responses. This paragraph is about inverting this generative model (from

observed evoked responses) to infer the effective connectivity at play during the experimental

manipulations that have caused the observed EEG or MEG data. DCM inversion provides con-

ditional expectations (or posteriors) of both evolution and observation parameters. Interestingly,

regarding the latter parameters, DCM inversion can be seen as a source reconstruction approach

augmented with temporal constraints. Practically speaking, DCM inversion aims at inferring the
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conditional distribution of θ and ψ given data y and a model m using Bayes’s rule:

p(θ, ψ|y, m) =
p(y|θ, ψ, m)p(θ, ψ|m)

p(y|m)

Inversion rests on Variational Bayes (VB) to estimate q(θ) and q(ψ), the mean-field approxima-

tions to p(θ, ψ|y, m), using the Laplace approximation. The variational free energy F (q, λ, m),

with λ the error variance, is maximized using a EM scheme (VB-EM). Step E provides the con-

ditional distribution of θ and ψ (by means of a descent on F (q, λ, m)) and step M estimates λ.

The iterative scheme can be found in Kiebel et al. (2006).

Summary. DCM is a Bayesian-based method aiming at inferring the (hidden) effective con-

nectivity taking place during an experimental manipulation. Despite simplifying assumptions,

strong efforts have been put into DCM to endow this procedure with a biological plausibility:

DCM rests on both a dynamic system physiologically informed by widely accepted animal find-

ings and a biophysical forward model mapping neuronal activity to sensors. DCM with CMC has

been proposed to address the present need of investigating predictive coding in the brain. Model

inversion providing both the posterior estimates of unknown parameters and the (approximate)

of model evidence, allows for bayesian model selection. DCM thus enables the formal comparison

of alternative hypothesis about the cortical implementation of predictive coding in the context of

mismatch responses.

4.2.3 DCM of mismatch responses

This section aims at presenting the key results of DCM analyses of deviance responses obtained

in less than ten years. We first describe the early studies whose aim was twofold: validating

the DCM method to model evoked responses and characterizing at the same time the change in

effective connectivity induced by deviance processing. Latest DCM studies include those that

have continued to investigate the neural mechanisms of the MMN guided by predictive coding

predictions (reported here), and other works that used DCM of MMN as a proxy to reveal different

perceptual processing between groups or between experimental conditions.

The initial work of Garrido and colleagues. First studies aiming at characterizing the DCM of

deviance processing were performed by Garrido and colleagues in the late 2000’s using EEG data

and DCM-ERP. A series of five papers addressed the following questions:

• The architecture of the deviance processing (Figure 4.4.a). Two passive frequency deviance

studies compared a three-level asymmetric architecture (including five sources inherited

from fMRI MMN studies: bilateral primary auditory cortex, A1; bilateral posterior STG

and right IFG) to bilateral networks comprising one, two or three levels (Garrido et al.,

2008; Garrido, Kilner, Kiebel, & Friston, 2009). Model comparison based on real EEG data

supported the five-source DCM.

• The extrinsic connectivity (Figure 4.4.b). Based on deviant responses elicited during an

active oddball frequency paradigm where subjects had to count deviants, forward extrinsic

connectivity was found more likely than reciprocal extrinsic connectivity to accommodate
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Figure 4.4 – Initial findings in DCM of mismatch responses. a) Model space used to test
the network architecture, with winning model (red rectangle), adapted from Garrido et al.
(2009). b) Bayesian comparison of model F (forward connectivity) and model FB (forward
and backward connectivity), with individual log-Bayes factor values (black dots) measured for
each time-interval DCM inversion. Winning models are specified in red rectangles, with a shift
around 220 ms; adapted from Garrido et al. (2007). c) Winning model selected in a trial-
specific modulation study, adapted from Garrido et al. (2007). Note that lateral connections
between STG sources were specified (these are specific to the ERP model, David et al., 2006)
but they were not used in subsequent studies. d) The two winning models selected in an intrinsic
modulation study, adapted from Kiebel et al. (2007).

deviant ERPs from stimulus onset to the end of the MMN (around 220 ms), but the reverse

conclusion was obtained for larger time interval including the P3 component (Garrido,

Kilner, Kiebel, & Friston, 2007) (No trial-specific modulation was considered in this study).

From a dynamical system point of view, this result suggests that backward connections are

required at later latency than the MMN to induce the generation of late component at lower

levels.

• The modulation of extrinsic connectivity (Figure 4.4.c). Using the same data (including

standard and deviant responses) and a model space adapted to the extrinsic modulation is-

sue, Bayesian model comparison supported synaptic changes in both forward and backward

connections in comparison to forward only or backward only to accommodate the difference

between standard and deviant ERPs (Garrido, Kilner, Kiebel, Stephan, & Friston, 2007).
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Consistent results in favor of this reciprocal modulation were also reported in (Kiebel et al.,

2007; Garrido et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009). However, the results

of subsequent statistical analysis of the modulation gain per connection (the non-diagonal

elements of matrix B) show different patterns over the studies of Kiebel et al. (2007) and

Garrido et al. (2009): a significant increase of backward connection strength with deviants

could be observed only between STG and A1 in the left hemisphere for the former study

and bilaterally in the latter study. Regarding the modulation of forward connection, it

was found significant between A1 and STG in the study of Kiebel (with opposite effect

between hemispheres) and in the right hemisphere in the study of Garrido (with opposite

effect between levels, namely an increase of connection strength between A1 and STG and

a decrease between STG and IFG).

• The modulation of intrinsic connectivity. It was first assessed in (Kiebel et al., 2007) with

a model space composed of DCM with no intrinsic modulation, intrinsic modulation within

A1 only or within all sources (in combination with changes in extrinsic modulation). Results

strongly supported intrinsic modulation for A1 but not for the higher levels where extrinsic

modulation was found equally plausible to account for the deviant effect (Figure 4.4.d).

Garrido and collaborators also support intrinsic modulation within A1 but did not test its

possible involvement higher up, in STG and IFG (Garrido et al., 2008; Garrido, Kilner,

Kiebel, & Friston, 2009). Analysis of the modulation gain in each source (the diagonal

elements of matrix B) consistently revealed an A1 gain increase with deviants.

To sum up, these pioneering studies validated DCM as an efficient procedure to test model-driven

hypothesis regarding the generation of mismatch responses. In particular, predictive coding was

found outperforming (and reconciling) other MMN models (the adaptation and the sensory mem-

ory models). BMS analysis concluded in favor of a three-level architecture with reciprocal con-

nectivity and trial-specific modulation of this connectivity. However, inference on extrinsic and

intrinsic parameters (conducted in the latest studies) rather failed to exhibit consistent deviant

modulation among studies.

Recent findings. We report here the (few) DCM MMN studies dedicated to further improve

the characterization of effective connectivity during deviance processing. Two EEG studies em-

ployed neuropharmacological manipulations, which highlight a noticeable aspect of DCM: it allows

investigating in a precise and formal manner the effect of such manipulation on (synaptic-based)

connectivity, that could not be captured by traditional ERP comparison. Using DCM-ERP, de-

viance responses elicited under placebo and under ketamine (an antagonist to NMDA receptors

known to reduce MMN amplitude) were compared. This comparison revealed a significant de-

crease of the forward connection strength between left A1 and left STG with ketamine (Schmidt

et al., 2013). This result demonstrated the potential of this DCM procedure but the choices used

for the analysis may have prevent from a finer characterization of synaptic changes (for instance,

the window used for inversion suits for the MMN but sensor-level analysis revealed a significant

ketamine effect at the transition between the MMN and the P3a). The second study constitutes a

significant step towards the characterization of predictive coding for deviance processing as it ad-

dressed neuromodulation as the correlate of precision of predictions (Moran, Campo, et al., 2013).

Using DCM with CMC, mismatch responses under placebo and galantamine (cholinergic modu-

lation by galantamine is a plausible candidate for precision encoding) were compared by means
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Figure 4.5 – Neuromodulation as the correlate for precision of prediction encoding (adapted
from Moran et al., 2013). a) Model space embedding the different (and exclusive) connectivity
changes that could reflect galantamine modulation, with the winning model (red rectangle)
corresponding to modulation in population SP in bilateral A1. b) Comparison of self-inhibitory
gain in both conditions.

of BMS applied to an appropriate model space (Figure 4.5). Each DCM embedded a specific

hypothesis regarding the influence of galantamine (for instance, a decrease of the self-inhibitory

gain in superficial pyramidal cells would support larger precision weighting of prediction errors).

Their findings showed such cholinergic modulation in the lower level of the cortical auditory hi-

erarchy. Finally, an MEG study using CMC attempted to measure the difference in synaptic

changes induced by the opposite effects of attention and expectation on evoked responses (an in-

crease and a decrease respectively) (Auksztulewicz & Friston, 2015). Such characterization would

inform on the cortical implementation of predictive coding as both effects should affect differen-

tially the precision of predictions. To that aim, they manipulated both effects orthogonally using

oddball-like sequences and conducted a factorial-design DCM analysis. Most importantly, this

study illustrates the great potential of DCM (with CMC in particular) to disentangle competing

model-driven hypothesis to explain sound processing.

Summary. This overview emphasizes the utility of DCM to investigate the neural underpinnings of

mismatch responses. Latest studies involved a two-step analysis where BMS first enables selecting

the more plausible generative model among competing DCMs. Inference on parameters (derived
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from the winning model1) further allows examining more finely changes in connectivity induced

by experimental manipulations (or difference between groups, Schofield et al., 2009; Boly et al.,

2011; Cooray et al., 2014). Both steps can be employed to challenge predictive coding predictions

relative to standard and deviant processing. The CMC neural mass model in particular makes

it possible to test the hypothesis of self-inhibitory connection encoding precision of information

by means of pharmacological but also experimental manipulations (see for instance the effect of

attention on precision assessed in a visual cue-target task, Brown & Friston, 2013). Besides, the

cited studies reported findings that give insights into MMN generation, notably with regard to

the architecture and the reciprocal connectivity behind the auditory hierarchy. As noted above,

many aspects remain to be clarified, including the direction of change in connectivity induced

by deviants and its confrontation with predictive coding expectations. In (2009), Garrido and

colleagues pointed out the difficulty to interpret brain mechanisms (from a functional perspec-

tive) from DCM estimates. All together, this suggests that it is worthwhile spending additional

efforts using DCM to better characterize the dynamics of neuronal interactions during auditory

processing, and it emphasizes the importance of the predictive coding message-passing scheme to

guide this investigation.

4.3 Computational learning models

We present here different (and recent) studies that have proposed computational (or cognitive)

models of the MMN based on the Bayesian learning of environmental sensory regularities. Con-

trary to DCM that operates at the ERP timescale to provide the timecourse of neural responses

over peristimulus time, computational learning models consider trial-by-trial changes (thus at

the experimental timescale) in order to relate brain activity to the Bayesian processing of each

stimulation. The purpose of this section is twofold: it aims at illustrating how such models can

be designed (in order to frame specific functional hypothesis into a mathematical formulation)

and tested against real data. And, it describes the findings regarding the processing of oddball

sequences obtained with such modeling approaches. Two emblematic and pioneering studies in

particular are reviewed.

Throughout this section, we have used the terminology of perceptual and response model, as

well as the notations introduced in chapter 2, §2.4.1. Consequently, notations adopted in some

of the original papers may have been replaced by ours for sake of consistency throughout the

document.

4.3.1 The MMN as a Bayesian surprise (Ostwald et al., 2012)

This study tested the hypothesis that neural activity, as recorded with EEG, reflects prediction

error and hence Bayesian inference in the brain. They did so using a somatosensory roving2 (odd-

ball) paradigm (Ostwald et al., 2012). Roving sequences were composed of two electrical stimuli

with either a high or low intensity (Figure 4.6-a). The attention of the subjects was engaged to

1or the winning family in the case of large model space. Parameters are thus obtained with BMA
performed over the different models composing the winning family.

2The roving paradigm constitutes a variant of the typical oddball paradigm (Cowan et al., 1993),
where the sound sequence is composed of alternating trains of repeating items hence enabling the different
physical properties of standards and deviants to be mirrored.
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the stimulations as they were asked to count the number of trains in each session. Description

of both the perceptual models designed in this study and the procedure (based on the inversion

of a response model) used to confront EEG data to perceptual model predictions are provided

below as they have guided one of the approaches that we used in this work. Each perceptual

model corresponds to a specific hypothesis of how the brain may treat the sequence of sensory

stimulations.

Bayesian perceptual model. The hypothesis behind this model is that the brain instantiates a

generative model of the stimulus sequence, and updates its parameters through (Bayesian) learn-

ing. As the sequence rests on two different stimuli, the authors have considered a beta-Bernoulli

model as follows:

• at each trial t, the probability to observe a stimulus u being of high intensity is given by μ

(and the probability to observe low intensity is thus equal to 1 − μ). The likelihood of the

generative model is thus a Bernoulli function:

⎧⎪⎪⎨
⎪⎪⎩

u|μ ∼ Bern (μ)

p(u|μ) = μu(1 − μ)1-u

(4.4)

with u = 1 for high intensity (and u = 0 for low intensity).

• μ is treated as a parameter to be learned and is subject to uncertainty. To model the prior

knowledge on μ (before having observed trial t), the common choice is the beta distribution

of parameters at and bt, where at (bt) can be interpreted as the number of high (low)

intensity stimuli already observed before trial t. The prior distribution of the generative

model for trial t thus expresses as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ ∼ beta (a, b)

p(μ) =
Γ (at−1 + bt−1)
Γ (at−1) Γ (bt−1)

μat-1(1 − μbt-1)

(4.5)

where Γ denotes the gamma function.

Once trial t has been delivered, Bayesian inference consists in inverting this generative model

to infer the updated belief on μ, namely p(μ|S). The conditional expectation of this parameter

evolves over trials according to update equations that specifically form the evolution part of the

response model (see below).

The response model. This model encompasses the evolution function derived from the inver-

sion of the perceptual model inversion, as well as an observation model mapping internal states

(the Bayesian surprise, see below) to the observed brain data. Since the beta prior is conjugate

to the binomial (or Bernoulli) likelihood, Bayesian inference for perceptual model inversion is

analytically tractable and the update equation for μ derives from the expression of the posterior

distribution of μ:

p(μ|at, bt) =
Γ (at + bt)
Γ (at) Γ (bt)

μat(1 − μbt) (4.6)
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Interestingly, a forgetting parameter τ has been introduced in the model to account for different

temporal integration windows that the brain may entertain. This is achieved by means of an

exponential function that weights the different stimulus counts at and bt, yielding to awt
and bwt

.

Each trial of the sequence is associated with a prior and a posterior distribution of μ, parameterized

with the (weighted) stimulus counts at that trial. The following expression:

p(μ|awt
, bwt

) =
Γ (awt

+ bwt
)

Γ (awt
) Γ (bwt

)
μawt(1 − μ)bwt (4.7)

thus characterizes the posterior distribution of μ at trial t, and its prior at trial t + 1. The

observation model rests on the Bayesian surprise which is computed at each trial to furnish a

quantitative measure of belief updating or surprise, or equivalently prediction error. The Bayesian

surprise is defined as the KL divergence (see chapter 1, §1.3.2) between the prior and the posterior

distribution of μ, and is thus informed by the conditional expectation and the precision (or inverse

variance) of each distribution. We call the trajectory of Bayesian surprise the vector X containing

the N values of this measure computed for each of the N stimuli of the sequence u. The observation

model is a two-level linear model of the form:

⎧⎪⎪⎨
⎪⎪⎩

y = Xθ1 + ε1

θ1 = 0 + ε2

(4.8)

where y indicates the data feature to be fitted, ε1 and ε2 the first and second level gaussian

noise, respectively. Different trajectories obtained with different forgetting values are showed in

Figure 4.6. Five models of this kind were considered in this study, resting on different values for

τ , including infinity value (corresponding to full memory with no forgetting). These models are

denoted BS0 (infinite τ), BS1, BS2, BS3 and BS4.

Non-Bayesian models. Three additional models were used in this study, that did not involve

Bayesian learning of the statistical regularities of the stimulus sequence. The first model is called

the simple change model (model SC) and assigns to trial t a value of 0 if the current stimulus is

equal to the preceding one, and 1 otherwise. The second model is called the linear-change model

(LIN), which is similar to model SC but assigns, at each deviant, a prediction error proportional to

the number of preceding standards. This aimed at modeling the larger MMN amplitude observed

as the number of repeated standards increases. The last model, model M0, corresponds to the

null hypothesis and assigns a constant value of 1 to each trial. Models SC and LIN are classical

models of the MMN. Each of these models also provides a regressor X composed of N values to

be fitted to the EEG data y.

Data feature to be fitted. This paragraph describes the data features y entering Eq. (4.8). One

specificity of this study pertains to the procedure by which the data y were obtained. First, source

reconstruction was performed on individual evoked responses that resulted at the group-level in

6 dipoles with fixed locations and orientations. Secondly, for each subject, single-trial responses

were projected onto these sources. Then, for each subject and for each source, yk denoted the

vector of data at peri-stimulus time k and was thus composed of N values (for N trials).
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Figure 4.6 – Simulations of Bayesian surprise, adapted from Ostwald et al. (2012). a)
Schematic view of the two-stimuli roving sequence, composed of 60 items. b) Trajectories
of Bayesian surprise obtained with two forgetting values; (left) without forgetting, the model
rapidly learns the real probability to have a deviant, leading to accurate predictions for μ preclud-
ing update belief: the Bayesian surprise rapidly reaches near zero values. (right) with forgetting,
the inferred value of μ at each trial depends on the number of standards and deviants delivered
within the sliding-window for temporal integration, leading to prediction errors reflected by the
peaks of the Bayesian surprise trajectory. c) (left) without forgetting, prior (blue) and posterior
(black) distributions of μ at the end of the sequence (trial 60) are almost identical; (right) with
forgetting, both distributions differ that generate non-null Bayesian surprise.

Model inversion. Model inversion aims at inferring the hidden parameters of the perceptual

and the response models given observed data yk and stimulus sequence u delivered to the sub-

ject. In this study, none of the perceptual models involved any free hidden parameters. Strictly

speaking, model inversion does not imply a meta-Bayesian scheme (as described in in chapter 2,

§2.4.1) since it rests on a two-step procedure: first, trajectory Xi is computed for each model mi.

Second, the following model: ⎧⎪⎪⎨
⎪⎪⎩

yk = Xiθ1,k + ε1,k

θ1,k = 0 + ε2,k

is inverted for each sample k using EM (performed with the parametric empirical Bayes procedure

implemented in SPM, Friston et al., 2007). A total of M inversions were thus performed, with

M being equal to the product of the number of models, the number of subjects, the number of

sources and the number of samples. In this way, a relative free-energy map could be obtained for

each source, each subject, where each pixel (i, j) represents the value of the log-Bayes factor for

model mi (namely the relative free energy Fmi
− FM0), at sample j. Using a FFX model, these

individual maps were summed over the group of subjects, as reported in Figure 4.7. Besides, BMS
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was conducted based on pair-wise free energy comparisons for relevant time-windows, indicating

the more plausible models over each window.

Figure 4.7 – Findings from Ostwald et al. (2012). The six relative free energy maps obtained for
each source are depicted (S1=right primary sensory cortex, rS2=right secondary somatosensory
cortex, lS2=left secondary somatosensory cortex, rIFG=right inferior frontal gyrus, lIFG=left
inferior frontal gyrus, MC=medial cingulate cortex). For each map, peri-stimulus time (from
-100 ms to 600 ms) is represented on x-axis, and models BS0-BS4, SC and LIN are represented
on y-axis; the color at each pixel encodes the relative free energy difference Fmi

− FM0, ie the
log-Bayes Factor of model mi and the null model.

Results. Using this approach, a spatio-temporal characterization of the functional mechanisms at

play during this active oddball task could be assessed. Relative free energy maps indicated only

positive values (> 200), meaning that the null model could be rejected for any latency, any source

and any model (chapter 1, §1.4.3). Three time-windows were found to be discriminative between

models: around 150 ms after stimulus onset, the activity of the right secondary somatosensory

ECD was associated with the Bayesian surprise model with forgetting (BS1–BS4); around 250 ms,

model SC and model BS4 outperformed others in the right inferior frontal cortex; finally around

350 ms, the medial cingulate ECD supported Bayesian learning models with different forgetting

values (BS2–BS4). Learning model without forgetting (BS0) was always found with the lowest

relative free energy, suggesting that infinite temporal integration was not a plausible account

for the observed data. These results are encouraging, as they rest on single-trial modeling and

yet succeeded in revealing that Bayesian learning models outperform classic (non learning) other

models at relevant time intervals.
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4.3.2 Free energy principle models of the MMN (Lieder et al.,

2013)

This study rests on the EEG data described in (Garrido et al., 2008), with auditory mismatch

responses elicited during a roving frequency paradigm made of seven different frequencies (Lieder,

Daunizeau, et al., 2013). It aimed at testing whether single-trial MMN amplitudes could reflect

computational quantities related to the Bayesian processing of sound sequence and specifically

expected under the free energy principle. We describe the key features of this study using the

framework of previous section.

Bayesian perceptual model. The brain’s generative model of the present roving sequence is as-

sumed to rest on hidden causes ν (related to the mapping of the true frequency of ut to its percept

or pitch) and hidden parameter ϑ(p) (comprising notably the expected length of trains and a fre-

quency transition probability matrix).

Response model. The evolution function f of the response model describes perceptual model

inversion achieved after each sound presentation, leading to the conditional expectation of ν and

ϑ(p) that are represented as the hidden state x = {xν , x
ϑ

(p)}. Their dynamics over the experimen-

tal timescale follows:

xt+1 = f(xt, ut, ϑ(r)) (4.9)

where ϑ(r) denotes the hidden parameters of the response model (including subject-specific param-

eters). Assuming the free energy principle, posterior distribution p(ν, ϑ(p)|ut) is approximated by

q(ν, ϑ(p)) with q being a delta distribution. This assumption lends to analytical one-step update

of x that minimizes the free energy of the perceptual model m(p), hence conforming to the free

energy principle1:

xt+1 = argmin
xt+1

F (xt+1, ut, xt, m(p)) (4.10)

This evolution model was combined with different observation models gi to test specific hypothesis

regarding the mapping of internal quantities to the observed EEG data. These different mappings

appeal for instance to a precision-weighted prediction error relative to the sensory input ut or to

the adjustment of parameters ϑ(p) (resting upon the difference between expected values at trial

t − 1 and trial t). Similarly to the study of Ostwald et al. (2012), each model gi has a general

linear form (Eq. (4.8)) with regressor X expressing as follows:

X = gi(x, u, ϑ(r)) (4.11)

Non-Bayesian models. As in Ostwald et al. (2012), alternative response models that did not

involve Bayesian information processing were considered. They aimed at modeling change de-

tection mechanisms and synaptic adaptation. These “phenomenological” models rest on a linear

observation model g that provided a regressor X to be confronted to the data (Eq. (4.8)).

Data feature to be fitted. This study dealt with single-trial MMN amplitudes measured at se-

lected fronto-central electrodes, leading to a vector y of N values in Eq. (4.8) obtained for each

1The argmin operator applied to a function f returns the values of the domain of f at which minima
are attained.
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electrode (generalization to the multivariate linear model required to account for multiple elec-

trodes is ignored here for the sake of clarity).

Model inversion. Individual inversion of the multivariate Bayesian linear regression model was

performed for each perceptual model using a Monte-Carlo procedure, leading to posterior distri-

butions of ϑ(p) and ϑ(r), as well as the free energy approximating model log-evidence. Bayesian

model family comparison were conducted over the group of subjects using a RFX model.

Results. Model comparison failed to reveal a particular model having significant larger model

evidence. However, family model comparison based on the ’“phenomenological” and the “free en-

ergy principle” families was clearly in favor of the latter (p(famfep|y) = 0.87). This suggests that

Bayesian learning models were more equipped to capture the single-trial changes in the MMN am-

plitude. These changes depend on the sequence of preceding sounds delivered before each deviant

(past observations). Such short timescale context of deviant occurrence was further evidenced

in this study to affect MMN amplitude. These results highlight the importance of trial-by-trial

analysis to assess the learning of regularities that shape the MMN and that is ignored in typical

evoked response studies. However, the authors also discussed some limitations of their study, in-

cluding the lack of neurophysiological model mapping computational quantities to EEG responses.

To conclude, the studies reported in this section illustrate the typical procedure one should adopt

when attempting to model cognitive functions (perceptual inference and learning in our case)

based on neuroimaging data. It starts with designing a perceptual model, then update equations

handling model inversion should be specified (possibly involving relevant assumptions to derive

one-step and/or exact updates). These equations form the evolution function that enter the re-

sponse model in combination with an observation function providing the biophysical mapping.

As with DCM, competing hypothesis (alternative perceptual models, response models or both)

can be formally compared with Bayesian model comparison resting on model log-evidence derived

for each response model. Besides, this overview points to the small number of studies that have

addressed the MMN as a Bayesian inference process. However, and encouragingly, empirical find-

ings detailed here were fairly in favor of learning models and thereby call for further trial-by-trial

modeling analysis to provide insights into how the brain learns the statistical regularities of sound

sequences.

4.4 Attempts of computationally-informed dynamic

causal models

In (2013), Lieder and collaborators pointed out the simplification used in their computational mod-

eling approach - also used in the other studies cited above - where they have related learning-based

quantities (such as prediction error) to neuroimaging data without having explicitly character-

ized the intermediate relationship between these quantities and neurophysiological data (such as

synaptic gain). This could be theoretically resolved by a “meta-response” model that would in-

volve two levels of response: one handling the computational to biophysical mapping, and the one

mapping those biophysical variables onto observations. In Figure 4.8, we attempted to represent

this (complex) issue with the different levels it entails and we also added the different modeling
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work with regard to each level.

Figure 4.8 – Schematic view of the different modeling levels. SSA model refers to (May et
al., 2015), Wacongne’s model refers to (Wacongne et al., 2012), computational learning models
refer to (Ostwald et al., 2012; Lieder et al., 2013a; Mathys et al., 2014), Lieder’s model refers to
(Lieder et al., 2013b). Single arrow indicates model for which the generative direction has been
reported but not model inversion, double arrow indicates that both directions were documented.
Dashed line indicates that predictions from learning models were considered. Tick indicates a
level accounted for by the model.

DCM with CMC appears as a first attempt to bridge the gap between the computational and neu-

rophysiological levels. Indeed, specific neuronal populations subjected to synaptic changes have

been attributed to the computational units of a predictive coding scheme in agreement with cur-

rent neurobiological knowledge. It should be recalled that DCM operates at the ERP timescale,

and the modulation of synaptic gains by experimental manipulation (reflected in DCM’s B ma-

trix) is time-independent (only synaptic changes between two conditions only can be assessed,

but see Garrido, Kilner, Kiebel, Stephan, et al., 2009). The SSA model of May and collaborators

(2015) presented in chapter 3, §3.4.2 is a generative model of neural responses (and related electro-

physiological responses) within the auditory cortex that rests on purely physiological (bottom-up)

mechanisms of synaptic adaptation induced by the flow of incoming sounds (at the experimental

timescale), which can only account for frequency-based associations between sounds. A more so-

phisticated (model-driven) approach can be found in Wacongne et al. (2012), where the authors

proposed a generative model of neural activity based on the dynamics of synaptic currents within

a network, with additional assumptions inherited from predictive coding. Indeed, this model in-

volves reciprocal interactions within the hierarchy enabling a message passing conforming to a

simple predictive coding implementation (precision of information is not accounted for). In addi-

tion, this model entails a top-down modulation of synaptic gains controlled by a memory unit at

the top of a hierarchical structure. Critically, synaptic plasticity, modeled using time-dependent

rules, is at the core of the model, that could underlie sequence learning, and the detection of

unexpected sounds enabling updates within the memory unit. Likewise DCM with CMC, the

computation of prediction errors is not accounted for by the model but these messages are as-
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signed to the activity of specific neuronal populations. These are neurons receiving excitatory

bottom-up and inhibitory top-down inputs. Using such approach, MMN-like neuronal activity

could be successfully simulated, with modulation by experimental manipulations consistent with

the experimental MMN literature. In a recent study, this model was augmented with synap-

tic adaptation (Wacongne, 2016) that could reveal the difficulty to disentangle top-down and

bottom-up effects on synaptic dynamics as both were found to contribute to MMN-like responses.

To date, these evolution models have been applied in the generative direction to provide simulated

responses; their integration in a meta-Bayesian response model to enable inversion with real data

has not been proposed yet.

Finally, the last study reported here is an attempt toward a full response model for mismatch re-

sponses (Lieder, Stephan, et al., 2013). The perceptual model employed in this study was designed

with a three-level hierarchical structure with each level attributed to a particular cortical region

(including two sources within the primary auditory cortex, and the IFG). Model inversion (resting

on a VB scheme) was performed for each item of sound sequence, that led to trajectories of learning

quantities. In particular, hierarchical prediction errors were assumed to contribute to the MMN

responses: they were thus transformed into firing rates by means of a simple computational-to-

neurophysiological mapping and the ensuing activities were subsequently projected onto a single

fronto-central electrode according to the observation model specifications. The timecourse of the

signal simulated at this electrode revealed a MMN-like component. Besides, the modulation of

the MMN amplitude and latency with experimental factors (deviance magnitude and deviance

probability) was consistent with the MMN literature. As discussed by the authors, this framework

constitutes a proof of validity that synthetic response resembling the MMN and showing similar

phenomenological properties can be obtained from the dynamics of Bayesian learning quantities.

Although this study rests on predictions of a response model (not confronted to real electrophys-

iological responses), these results support the plausibility of predictive coding.

To sum up, it appears that despite convincing (but rare) efforts, there is a need for further

advanced ”meta-response” models, allowing to characterize precisely the neural correlates of

Bayesian information processing in the brain from neuroimaging data.

4.5 Summary

This chapter focused on the existing methodological approaches that enable addressing the pre-

dictive coding account of mismatch responses from both a neurophysiological and a functional

perspective. The reviewed studies confirm that the corresponding tools are reasonably ready to

be employed. They rest on sophisticated Bayesian methodologies detailed here for a better un-

derstanding of the modeling analysis conducted in this thesis. Both DCM and learning model

empirical findings remain scarce at the present day but they all appear consistent with predictive

coding at their respective level (namely deviant-based neuronal dynamics resting on reciprocal

cortical interactions for the former and learning-based trajectories providing better correlations

with electrophysiological data than non-learning ones for the latter). Hence, they contribute to

motivate further investigations, as it is clear that more empirical evidence is needed to improve

our understanding of mismatch processing in the light of predictive coding. A relevant aspect

indicated by different studies (for instance, Moran, Campo, et al., 2013) pertains to the use of
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experimental factors to modulate deviance responses. Indeed, estimating the neurophysiologi-

cal or the cognitive mechanisms related to such modulations can provide deep insights into the

characterization of standard and deviant processing per se. Finally, although the fusion of both

perspectives into a full response model is not yet available, conducting separate analyses using

the two approaches could still be very informative to bridge the gap between them, provided that

mechanistic hypothesis could be formulated for both approaches.



Part II

Experimental work
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The first chapters aim at characterizing the current knowledge about the predictive coding view

of mismatch responses. Chapter 1 provided the basics of Bayesian inference, and recalled the

relevance of a Bayesian framework to deal with information and uncertainty, typically encountered

by both the observer (the subject or patient being studied) and the experimenter, in their respec-

tive observation process. Chapter 2 introduced the Bayesian brain hypothesis and in particular

its application to perception through the proposal of the free energy principle and generalized

predictive coding. Generalized predictive coding considers the brain as approximating optimal

Bayesian inference to infer the causes of its sensory inputs and therefore appears as a principled

formulation of Helmholtz’s view of perception. Bringing empirical evidence to this compelling

framework was shown to be a great challenge and Chapter 3 indicated how mismatch responses

constitute a privileged way to that aim. Indeed, both the neural mechanisms and the functional

role behind the MMN (and more generally deviance responses) remain unclear and predictive cod-

ing furnishes new hypothesis that could improve their understanding. This requires the Bayesian

modeling approaches presented in Chapter 4 to provide mechanistic insights that cannot be

captured by traditional sensor-level analysis. To date, model-based findings corroborate this the-

oretical framework and despite the small number of studies published so far, existing ones have

highlighted the relevance of both the ERP-timescale (the MMN in relationship with other de-

viance responses) and experimental-timescale (trial-by-trial) analysis to fully explore the neural

and functional underpinnings of perceptual inference and learning.

Based on these reviews, it appears that much experimental and modeling work remain to be

done to link deviance processing to a Bayesian inference scheme. Building upon previous findings,

the objective of the present thesis was thus to further investigate the predictive coding account of

mismatch responses, using advanced modeling approaches to refine both the neurophysiological

correlates and the functional characterization of these brain components.

This methodological work was based on a single and original experimental study which we an-

alyzed from different perspectives in order to test different hypotheses regarding the effect of

contextual manipulation (predictability) on the implicit treatment of sound sequences. Chap-

ter 5 describes our oddball paradigm and the experimental conditions we used to investigate

the predictive coding view of the MMN. This study was conducted using simultaneous EEG and

MEG recordings as their complementarity is now widely acknowledged. This chapter reports

sensor-level findings confirming that deviance responses at various latencies are attenuated by

an increased predictability, following an expected reduction in prediction error. Chapter 6 is

dedicated to the characterization of deviance cortical generators that we addressed using recent

advanced distributed procedures entailing group-level inference and EEG-MEG fusion. In ad-

dition to bringing empirical support to fused source reconstruction (in comparison to unimodal

inversion), this analysis provided the architecture of the hierarchical network entering our subse-

quent modeling analysis. Chapter 7 describes the two step DCM approach we performed to first

establish the underlying neuronal network at play during deviance processing (under the twofold

guidance of EEG and MEG), and then to identify the modulations of effective connectivity under-

lying the effect of predictability. We hoped here to elucidate the neural correlates of modulations

of precision-weighted prediction error by predictability. Finally, Chapter 8 describes our com-

plementary computational approach aiming at identifying the ongoing implicit learning processes.

This approach tries to explain trial-by-trial variations of evoked responses in the above identified
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cortical network and enables comparing alternative models of the computation and the updating

of precision-weighted prediction error. Importantly, the obtained results did corroborate our DCM

findings.



Chapter 5

Effect of deviant predictability on

mismatch responses

5.1 Objectives

As was explained in chapter 2, §2.3.3, predictive coding brings new hypothesis regarding how

brain activity should be modulated by experimental manipulations. The contextual expectancy

of a stimulus in particular deserves to be considered under the light of this framework which

formally predicts reduced brain activity induced by fulfilling top-down predictions. Consistent

fMRI findings were indeed reported in Summerfield et al. (2008) using predictable and unpre-

dictable repetitions of visual stimuli. Regarding deviance processing, expected deviant should

be associated to reduced surprise hence smaller MMN if this component were to reflect predic-

tion errors. In a study addressing the conscious processing of auditory regularities, deviance was

designed to induce local (simple repetition) and global (five-tone pattern repetition) violations

using the so-called Local-Global paradigm (Bekinschtein et al., 2009). Such sound sequence em-

bedded expected and unexpected local deviants but the modulation of mismatch responses by

deviant expectancy was not specifically assessed because it was out of the scope of the study. The

manipulation of the predictability of deviants appears relevant to test the validity of mismatch

responses being such prediction errors. It was the main question of the present study. To that

aim, we designed two frequency oddball sequences entailing different contextual manipulation of

deviance expectancy. Our study was conducted with simultaneous EEG and MEG recordings.

This chapter is dedicated to the analysis of sensor-level data and is organized as follows: first, we

report the article that described the EEG analysis of deviance responses and their modulation by

deviance predictability. We then present the results obtained with the sensor-level MEG data,

and finally we report some attempts that we made to characterize the perceptual learning of the

regularities taking place over the oddball sequences used in the present study.

5.2 EEG analysis - Article

Implicit learning of predictable sound sequences modulates human brain responses

at different levels of the auditory hierarchy.

Front Hum Neurosci, 2015, 9:505
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Implicit learning of predictable sound
sequences modulates human brain
responses at different levels of the
auditory hierarchy
Françoise Lecaignard1,2,3*, Olivier Bertrand1,2, Gérard Gimenez3, Jérémie Mattout1,2† and
Anne Caclin1,2†

1 Lyon Neuroscience Research Center, CRNL, INSERM, U1028 – CNRS, UMR5292, Brain Dynamics and Cognition Team,

Lyon, France, 2 University Lyon 1, Lyon, France, 3 MEG Department, CERMEP Imaging Center, Lyon, France

Deviant stimuli, violating regularities in a sensory environment, elicit the mismatch

negativity (MMN), largely described in the Event-Related Potential literature. While

it is widely accepted that the MMN reflects more than basic change detection, a

comprehensive description of mental processes modulating this response is still lacking.

Within the framework of predictive coding, deviance processing is part of an inference

process where prediction errors (the mismatch between incoming sensations and

predictions established through experience) are minimized. In this view, the MMN is a

measure of prediction error, which yields specific expectations regarding its modulations

by various experimental factors. In particular, it predicts that the MMN should decrease

as the occurrence of a deviance becomes more predictable. We conducted a passive

oddball EEG study and manipulated the predictability of sound sequences by means

of different temporal structures. Importantly, our design allows comparing mismatch

responses elicited by predictable and unpredictable violations of a simple repetition

rule and therefore departs from previous studies that investigate violations of different

time-scale regularities. We observed a decrease of the MMN with predictability and

interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset.

Following these pre-attentive responses, a reduced P3a was measured in the case

of predictable deviants. We conclude that early and late deviance responses reflect

prediction errors, triggering belief updating within the auditory hierarchy. Beside, in

this passive study, such perceptual inference appears to be modulated by higher-level

implicit learning of sequence statistical structures. Our findings argue for a hierarchical

model of auditory processing where predictive coding enables implicit extraction of

environmental regularities.

Keywords: mismatch negativity, auditory regularity, predictive coding, early deviance response, EEG, P3a

Introduction

Oddball paradigms involve sequences of a repeating (standard) pattern that sets up a regular
environment, and infrequent (deviant) stimuli, which violate this regularity and subsequently elicit
mismatch responses in the brain. They have been extensively employed in humans using non-
invasive electrophysiology recordings, because of their ease of recording, their unique ability to
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reveal mechanisms of perceptual inference and learning (Kujala
and Näätänen, 2010), as well as their clinical relevance (Näätänen
et al., 2012; Morlet and Fischer, 2014). The well-known mismatch
negativity (MMN), first described in Näätänen et al. (1978), is
observed in such paradigms and has been described in several
sensory modalities although mostly studied in audition (for
review, see Näätänen et al., 2007). A large literature is dedicated
to the functional interpretation of the MMN and several models,
resting either on psychological concepts, on computational
frameworks or even on neural adaptation processes have been
proposed [for review, see Näätänen et al. (2007) and Garrido et al.
(2009b)]. Adaptation refers to a decrease of neural responsiveness
after several repetitions of a stimulus, and is widely acknowledged
to contribute to the difference in responses to standards and
deviants. A considerable number of MMN findings argue against
the adaptation model (that implies a full account of the MMN
by adaptation effects) and suggest that this component reflects
an automatic detection of change in the acoustic environment,
with strong support to the MMN as the output of a comparator
between observed and expected sensory inputs (Näätänen et al.,
2007). In the current study, we were interested in recent
theories based on a predictive coding scheme that have been
proposed to account for the generation of the MMN (Friston,
2005) [see also Winkler and Czigler (2012) for a review of
findings compatible with this account]. These theories rest upon
a hierarchical organization of the brain, wherein predictions
regarding incoming inputs are conveyed to lower levels by top-
down messages, while bottom-up prediction errors reflecting
mismatch between observations and predictions are sent back to
higher levels. In this view, the MMN reflects a prediction error
that triggers the update of predictions by means of message-
passing between the different levels of the auditory hierarchy
(Friston, 2005).

Importantly, predictive coding models of mismatch responses
do not entail a single prediction regarding incoming inputs
but multiple ones, generated at different levels of the hierarchy
(Friston, 2005). Precisely, these predictions pertain to the physical
attributes of sound and to the statistical dependencies within
the sound sequence. Accordingly, prediction errors, hence likely
the MMN, should be affected by at least three factors: (1) the
acoustic separation between the predicted and observed stimuli
(also referred to as the deviance magnitude), (2) the variability of
the acoustic features, and (3) the sequence predictability, deriving
from statistical regularities. Factor (1), deviance magnitude,
has already been proved to modulate the MMN. For instance,
Tiitinen et al. (1994) showed that for frequency deviation
spanning above 2% of the standard frequency, the larger
the deviation, the larger the MMN amplitude. The last two
factors affect prediction error through modulations of sound
predictability, by influencing either the predictability of the
sound’s acoustic features [factor (2)], or the predictability of the
stimulus category [standard or deviant, factor (3)]. Importantly,
predictability may influence both the content of the prediction
and its precision or confidence. The two evolve with learning and
could modulate the MMN amplitude, provided that the MMN
reflects a precision-weighted prediction error (Friston and Kiebel,
2009). Consequently, we hypothesized that the MMN amplitude

should be reduced as the occurrence of the deviant stimulus
becomes more predictable.

In the two following sections, we review the findings
describing effects of above-defined factors 2 and 3 on the
MMN amplitude. It reveals that they have been rarely studied
so far, probably because of the methodological difficulties to
disentangle those effects from those of deviance magnitude. Yet,
validating the above hypothesis is required in order to assess the
predictive coding perspective on the MMN and to refine our
functional understanding of this widely used electrophysiological
marker. The present study was carefully designed to overcome
methodological caveats and specifically observe the effect of
sequence predictability on the MMN.

Effect of Acoustic Feature Variability on the
MMN
Among the few studies that investigated the effect of
predictability on the MMN, the majority manipulated the
variability of the acoustic features of standard stimuli. In Daikhin
and Ahissar (2012), the authors used a frequency oddball
sequence with variable standard frequency belonging to a
uniform distribution with a 2% deviation. Compared to a fixed
standard condition, the authors found no significant difference
in average responses to standards but a reduced MMN. This
suggests that conditions with jittered standards yield a blurred
representation of the standard stimulus, producing a less precise
prediction and hence weaker responses to deviance. More
recently, larger deviations were used (Garrido et al., 2013), with
sequences of sounds whose frequencies were drawn from either
a narrow or a broad Gaussian distribution (mean frequency
of 500 Hz with standard deviations of 250 and 1500 Hz,
respectively). Outlier sounds elicited an MMN-like response,
which was reduced in the case of the broad distribution. This
confirms the ability of the brain to extract statistical rules from
sound sequences and gives strong support to the existence of
predictions of future events that would be weighted by their
inferred precision.

However, since these studies manipulated the predictability
of the standards in ways that inherently involve changes in the
acoustic parameters, the observed results might be confounded
with deviance magnitude and adaptation effects (induced by
refractoriness) that are likely to differ between conditions.

Effect of Sequence Predictability on the MMN
Sequence (or sound category) predictability refers to rules that
define the statistical dependencies of items within the sequence.
Rules are usually categorized into simple (local) ones resting on
short time-scale dependencies and complex (abstract or global)
ones generating larger time-scale regularities or contingent
relations. The violation of the latter also elicits a MMN (in
both cases of passive and active paradigms) and has largely been
described in the literature (for review, see Näätänen et al., 2010).
Passive studies used the MMN as a marker of rule violation in
order to reveal fairly high-level implicit learning processes (see
for instance Bendixen et al., 2008; Todd et al., 2013). They were,
however, not designed to test the effect of sequence predictability
on the MMN per se.
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Deviant predictability should be distinguished from deviant
probability. The latter refers to the ratio of deviant events within
the sequence, irrespective of its temporal structure, while the
former refers to the statistical nature of the temporal sequence,
irrespective of deviant occurrence frequency. Some studies have
manipulated the deviant probability in order to measure its effect
on the MMN (Sams et al., 1983; Sato et al., 2000). In our study,
we manipulated deviant predictability only, which avoids the
confounding effect of refractoriness inherent to the manipulation
of deviant probability (i.e., varying the number of standards
preceding a deviant).

To date, only a couple of studies have compared MMN
responses elicited by unpredictable sequences (embedding
unpredictable deviants) and predictable ones (embedding
predictable deviants). In Scherg et al. (1989), a fully predictable
sequence (one frequency deviant every fifth tone) was compared
with an unpredictable one with the same global deviant
probability (p = 0.2). The authors found no significant effect
of the predictability manipulation on the MMN amplitude.
They hypothesized that this result was compatible with initial
findings (and widely confirmed since) suggesting that the MMN
derives from an automatic process independent of participant’s
attention (Näätänen et al., 1978, 2010). However, using the
same paradigm but with different temporal characteristics,
Sussman et al. (1998) and Sussman and Gumenyuk (2005) found
a disappearance of the MMN in the predictable condition, which
the authors interpreted as an automatic perceptual effect of tone
grouping that could only occur in the predictable condition.
However, as judiciously pointed by Fishman (2014), this effect
could also be attributable to predictability. Importantly though,
none of these studies rigorously controlled for adaptation
effects as the number of standard preceding a deviant differed
between the regular and irregular conditions. Others studies
proposed oddball sequences embedding predictable deviants
(Jankowiak and Berti, 2007; Bekinschtein et al., 2009) but
their aim was not to measure the effect of predictability on
mismatch responses. In some respect, although using a very
different setting, a few studies already reported MMN-like
responses that were modulated by the predictability of musical
sequences. For instance, in Brattico et al. (2006), out-of-key tone
responses suggest that less probable transitions are processed
like deviants. In Vuust et al. (2009), subtle rhythmic violations
were shown to induce larger magnetic MMN-like responses in
musical experts compared to novices, whereas large violations
induced responses in both groups. In line with those studies,
the current experiment aims at generalizing those findings
by testing the effect of predictability in isolation of deviance
magnitude and independently of acquired skills over the
lifespan.

From the existing literature briefly reviewed here, it is
clear that empirical findings are compatible with the predictive
coding view of the MMN. Nevertheless, direct evidence is
missing and finely controlled sequence predictability appears
as a good candidate to resolve this issue. As reported above,
little is known on the effect of sequence predictability on
the MMN, since it has never been studied genuinely. The
widely acknowledged automaticity of the MMN has possibly

inclined to the worthlessness of searching for any predictability-
driven modulation. Today, recent (computational) theories of
brain function (Friston, 2005; Winkler and Czigler, 2012)
rather suggest that sequence predictability should affect deviance
responses as follows: the more predictable the occurrence of a
deviant sound, the finer the prediction, hence the smaller the
prediction error and the smaller the MMN amplitude. Therefore,
we used a passive oddball paradigm with unpredictable and
predictable sound sequences differing by the transitional
probabilities between sounds within each sequence type. The
strict conservation of the acoustic properties of the sequence
between conditions was achieved by means of a statistical
structure determined over a relatively long time range in the
predictable condition. Our design also includes the appropriate
control for adaptation effects. Furthermore, we used small
deviance magnitudes in a passive oddball paradigm, in order to
limit automatic attention-orienting processes. These processes
are typically reflected by the N2b-P3a complex (brain orienting
response) following the MMN under specific condition of
attention (Näätänen et al., 1982; Morlet et al., 2014). As
mentioned above, the ability of the brain to encode implicitly
large time-scale regularities has been indirectly demonstrated in
several MMN studies, therefore we expected that participants
would learn the statistical rule in the predictable condition.
We hypothesized that predictable deviants would elicit reduced
deviance responses. Conversely, in the absence of any implicit (or
explicit) learning of the rule, no difference between conditions
would emerge. Additionally, as recent studies point to earlier
deviance responses than the MMN (Escera et al., 2014), we used
an analysis strategy that did not make any assumptions regarding
the temporal specificity of predictability effects.

Materials and Methods

Participants
Twenty-seven adults (14 female, mean age 25 ± 4 years,
ranging from 18 to 35) participated in this experiment. All
participants were free from neurological or psychiatric disorder,
and reported normal hearing. One participant had professional
musical education and has been excluded from the analysis
for he did not respect the instruction to ignore the sounds.
All participants gave written informed consent and were paid
for their participation. Ethical approval was obtained from the
appropriate regional ethics committee on Human Research (CPP
Sud-Est IV – 2010-A00301-38).

Stimuli and Sound Sequences
The large use of frequency deviance in MMN studies encouraged
us to choose this acoustic feature to test the prediction error
model of the MMN. However, undesirable adaptation effects
are of particular importance in this particular case because
of the tonotopic organization of the auditory pathways. They
would in particular impact the amplitude of exogenous event-
related potentials (ERPs) in the P50 and N1 wave latency range.
We therefore introduced a supplementary condition in order
to control for such adaptation effects, using intensity deviance
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(see below). Overall, three kinds of sequences were used: (1)
an unpredictable sequence with frequency deviance: UF, (2) a
predictable sequence with frequency deviance: PF, and (3) an
unpredictable sequence with intensity deviance: UI. Note that we
did not considered a predictable sequence with intensity deviance
for the sake of experiment length and also because the feature
specificity of the prediction error model of the MMN is beyond
the scope of the current study. All the sequences shared the same
deviant probability (p = 0.17).

Sound duration was 70 ms (including 5 ms rise-time and
5 ms fall-time) and the stimulus onset asynchrony (SOA) was
fixed to 610 ms. Two different frequencies (f 1 = 500 Hz and
f 2 = 550 Hz) and two different intensities (i1 = 50 dB SL
(sensation level) and i2 = 60 dB SL) were combined to define
the four different stimuli that were used across conditions. In
this (passive) study, we carefully chose the deviance magnitude
in the frequency sequences in order to satisfy a trade-off
between eliciting a deviance response, on the one hand, and
both minimizing refractoriness effects and avoiding to attract the
subject’s attention, on the other hand. Therefore, although even
smaller deviance have been previously used (Sams et al., 1985),
we used a 10% deviance which falls in the lower range of recently
implemented deviance magnitudes [e.g., 8% in (Daikhin and
Ahissar, 2012), 10% in (Schwartze et al., 2013), 23% in (Recasens
et al., 2014), 30% in (Grimm et al., 2011), and 50% in (Todd et al.,
2014)].

To design the predictable sequences (Figure 1), we did not
use a fixed number of standards between two deviants as in
Scherg et al. (1989), because this cannot be mirrored in the
unpredictable sequence without inducing different refractoriness
effects. This issue could be avoided by the construction of a
statistical structure unfolding over a larger time-scale. Precisely,
the rule that we designed increments the number of standards
progressively within a cycle: it starts with one deviant after two
standards, followed by one deviant after three standards and
so on until one deviant after eight standards. From now on,
a chunk with n standards will refer to a series of n standard
sounds ending with a deviant stimulus (n ranging from 2 to 8).
The 42-tone cycle, composed of seven incrementing chunks, was
repeated 16 times in the sequence, thus leading to a total of 560
standards and 112 deviants. For the unpredictable sequences,
each cycle was shuffled so as to permute the order of the seven
chunks with the constraint that no chunk with n standard
was preceded or followed by a chunk with either n−1 or n+1
standards. Additionally, the transition between two cycles was
such that no successive chunks with n standards could occur.
Altogether this randomization allowed to (1) avoid any global
rule to emerge in the unpredictable sequence and (2) have exactly
the same number of chunks with n standards in predictable
and unpredictable conditions. Note that the number of deviants
presented at a 2–3 chunk timescale may differ between UF and
PF (for instance, the set of 16 sounds that precede a “chunk of
8 standards” deviant comprises exactly one deviant in PF and
two deviants on average in UF) but the fact that adaptation
saturates rapidly [2–3 standard repetitions,(Demarquay et al.,
2011)] led us to assume that this particularity did not introduce
any significant adaptation effect difference between PF and UF,

in the current analysis that we conducted with standards just
preceding deviants.

Each sequence type (UF, PF, UI) was delivered twice in
separate blocks resulting in 224 deviants in each condition. For
each type of deviance (frequency or intensity), the sound property
used as the standard (e.g., for frequency deviance, f1) for the first
block was used as the deviant for the second (reverse) block.
The irrelevant feature was constant within a block but changed
between the two reverse blocks [e.g., for frequency deviance,
first block with properties (f1,i1) for standards and (f2,i1) for
deviants, and reverse block with properties (f2,i2) for standards
and (f1,i2) for deviants]. The order of the six resulting blocks was
counterbalanced between participants with the constraint that no
successive sound sequences of the same kind could be delivered.
Additionally, in order to avoid any bias of perceptive association
between frequency and intensity, half of the participants received
the associated properties (f1,i1) and (f2,i2) as standards whereas
the other half received the pairs (f1,i2) and (f1,i2). Altogether
these acoustical matching constraints on stimuli and sequences
were applied to ensure comparisons between conditions with
an optimal control for undesirable effects of specific acoustic
properties.

All stimuli were delivered using Presentation software
(Neurobehavioral Systems, Albany, CA, USA).

Procedure
The present study was conducted using simultaneous EEG and
MEG recordings, although the MEG data will not be analyzed
here. Participants were seated upright in a comfortable armchair
in a sound-attenuated, magnetically shielded recording room,
at a 1 m distance from the screen. Sounds were presented
binaurally through air-conducting tubes using Etymotic ER-3A
foam earplugs (Etymotic Research, Inc., USA). Participants were
instructed to ignore the sounds and watch a silent movie of
their choice with subtitles. Before recordings, participants’ sound
detection thresholds using the sound with (f1,i1) characteristics
were determined for each ear, and the level was adjusted so that
the sounds were presented at 50 dB SL (i1) or 60 dB SL (i2) with
a central position (stereo) with respect to the participant’s head.
Each of the six blocks lasted 7 min resulting in a total recording
time of ∼50 min, including short breaks between sequences. At
the end of the experiment, participants were asked to report to
which extent they had been following the instruction to ignore
the sounds and whether they had noticed the different sound
attributes (e.g., “Did you notice anything in particular about
the sounds?”) and sequence temporal regularities (e.g., “Did you
notice that some sounds were less frequent than others?”, “Did you
notice any regularities in sound presentation?”).

EEG Recordings
EEG recordings were carried simultaneously to MEG ones using
the EEG recording system provided with the MEG equipment
(275-channel whole head system, CTF-275 by VSM Medtech
Inc.). EEG data were collected from 63 electrodes (including
the two mastoids) whose locations were defined by the 10–15
extension of the international 10–20 system. Reference electrode
and ground electrode were placed on the tip of the nose and
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FIGURE 1 | Experimental design. (A) Schematic view of a complete cycle in predictable (left) and unpredictable conditions (right). Rectangles symbolize single

tones with standards and deviants colored in gray and black, respectively. Sound duration was 70 ms with stimulus onset asynchrony (SOA) set to 610 ms. In every

condition, each cycle entails seven deviants, each of them being preceded by a number of standards ranging from 2 to 8. A chunk of n standards corresponds to

n+1 tones (n consecutive standards and the following deviant), as illustrated by the shaded area in condition PF. Chunks are sorted by their size in predictable

condition, whereas these are shuffled in unpredictable ones. (B) Variation of the size of chunks (black circle) within cycles, over sound sequence in predictable (left)

and unpredictable conditions (right). Each sequence is composed of 16 cycles and examples of shuffled cycles are presented for unpredictable conditions. Shaded

areas delineating one cycle in both sequence types highlight their difference with respect to sound predictability.

left shoulder, respectively. One bipolar EOG derivation was
recorded from two electrodes placed on the supra-orbital and
infra-orbital ridges of the left eye. Throughout the recordings,
impedances were below 15 k�. Signal was amplified, band-pass
filtered (0.016–150 Hz), digitized (sampling frequency 600 Hz)
and stored for off-line analysis. Head position relative to theMEG
sensors was acquired continuously (continuous sampling at a rate
of 150 Hz) using coils placed at three fiducial points (nasion, left
and right preauricular points).

Data Preprocessing
The software package for electrophysiological analysis (ELAN1)
developed at the Lyon Neuroscience Research Center (Aguera
et al., 2011) was used for ERP computation and statistical analysis.

EEG and MEG data were preprocessed independently but
for the sake of a combined analysis, which will be reported in
a further study, we only used time epochs that survived the
procedures applied for artifact rejection for both techniques.
A total of 5 participants out of 27 had to be excluded from
the group. For two participants, raw MEG recordings were
contaminated by ferromagnetic artifacts caused by metallic
elements, which created a temporally stationary artifact at the
participant’s respiratory frequency. One participant’s EEG data
had a very bad SNR. One participant had individual MR images
that disclosed a ventriculomegaly. Finally, as mentioned above,
one participant did not ignore the sounds as instructed but
counted them leading to an explicit detection of the predictable
rule in PF sequences. Preprocessing of raw data for the remaining
22 participants comprised the following successive steps: (1) an
initial rejection of data segments corrupted by head movements
above 15 mm within each sequence was automatically performed
(in prevision of future MEG data analysis), (2) three stop-band

1http://elan.lyon.inserm.fr

filters centered on 50, 100, and 150Hz (with bandwidth of±2Hz)
were applied to get rid of the power line artifact in the EEG
data, (3) using EEGlab routines2, an independent component
analysis (ICA) correction for ocular artifacts was achieved (largest
possible time windows – free from artifacts from all origin but
ocular – were selected from continuous stop-band filtered data to
derive ICA components) for all participants but one for whom
ICA correction failed to improve the SNR of EEG and MEG
data, (4) individual recordings were automatically inspected from
−200 ms to 410 ms with respect to the onset of each sound; trials
with signal amplitude range exceeding 2000 fT for MEG data
and 150 μV for EEG data over the 610 ms time-window at any
sensor were excluded from the analysis (for the participant whose
data did not receive any ICA correction, a threshold of 100 μV
was used for the EOG signal range), (5) a 2–45 Hz band-pass
digital filter (bidirectional Butterworth, fourth order) was applied
to EEG and MEG data. It should be noted here that most MMN
studies rely on filtered data with lowpass cutoff frequency lower
than 45 Hz (20 or 30 Hz are commonly used), leading to smoother
baselines and ERPs.

Event-Related Potential (ERP) Computation
Data collected within the first 20 s of each block was excluded
from averaging to ensure that no transitory effect could bias the
ERPs. Responses to standards just preceding a deviant and to
deviants were considered for averaging within an epoch of 610ms
including a pre-stimulus period of 200 ms. Baseline correction
was achieved by subtracting the mean value of the signal during
the pre-stimulus period. ERPs for each stimulus type (standard
and deviant) were first computed per block. The two reverse
blocks for each condition (UF, PF, and UI) were then pooled by
averaging corresponding ERPs. Difference response (also referred

2http://sccn.ucsd.edu/eeglab/index.html
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to as deviance response) was obtained by subtracting the standard
ERP from the deviant one.

Statistical Analysis
We applied permutation tests based on a t-statistic at the group-
level at each sample of each electrode of the ERP time series
in bandwidth 2–45 Hz, correcting for multiple comparison in
the temporal dimension (Blair and Karniski, 1993; Besle et al.,
2008). For each test, we ran 100,000 permutations by randomly
redistributing the ERPs of the two conditions to be compared.
We tested for (1) an effect of deviance in the three conditions
(i.e., standard vs. deviant in UF, UI, and PF), (2) an effect of
predictability (i.e., PF vs. UF) in difference, deviant and standard
responses, (3) an effect of acoustic features (i.e., UF vs. UI) in
the difference, deviant, and standard responses. Finally, since the
first analysis above revealed a significant effect of deviance at both
early and late latencies as well as a smaller effect at the P3a latency,
we also conducted further analysis in tests (2) and (3) in three
local time windows [0, 80] ms, [100, 210] ms and [250, 350] ms.
Hence, permutation tests were run both on the entire time series
[−200, 410] ms for each effect of interest (1, 2, 3) and on specific
local time windows for (2, 3).

Adaptation Effect Characterization
To isolate the effect of predictability on genuine mismatch
responses in conditions UF and PF, we had to characterize the
effect of adaptation. Our experiment was designed to minimize
this effect and we hypothesized that, if present, it would be the
same in the UF and PF conditions. To this aim, we used a small
deviance magnitude to reduce refractoriness effect as much as
possible and imposed strong acoustical constraints on sound
sequences such as a strict balancing of the number of standards
preceding a deviant across conditions. Moreover, we introduced
a third condition using an intensity deviance (condition UI)
as a control condition for these possible adaptation effects.
Adaptation effects for intensity deviance cannot be ruled out,
although their existence remains rather controversial [but see
Bilecen et al. (2002)]. We assumed that the MMN to intensity
would not be contaminated by refractoriness, or at least to a
far smaller extent than the MMN to frequency. Furthermore,
we carefully matched the intensity and frequency deviance
magnitude thanks to a prior behavioral deviance detection
task so that frequency and intensity MMN would have similar
amplitudes. Consequently, comparison between UI and UF
difference responses should help characterizing (in the temporal
and spatial dimensions) the undesired adaptation effects possibly
entering UF and PF difference responses.

Control for Possible Filtering Confounds in
Early Effects
As early effects were revealed by statistical tests in both the
deviant vs. standard and the predictable vs. unpredictable
comparisons, additional analysis were needed to control for their
validity. As explained in Acunzo et al. (2012), the bidirectional
low-pass filter that we applied on our data may have generated
artifactual responses preceding the sharper deflections of the
ERPs, namely the N1 and MMN components. In order to

test whether our early effects were of such artifactual origin,
we repeated the whole ERP analysis (using the statistical
analysis described above) on unfiltered data to control for
any bias induced by filtering (particularly low-pass filtering).
These unfiltered data correspond to the data recorded by the
acquisition system (0.016–150 Hz acquisition bandwidth) with
further application of three stop-band filters and ICA correction
as described in the Data processing section. Trials averaged for
both ERP types (standard and deviant) were those retained for the
analysis in the 2–45 Hz bandwidth. Note that this complementary
analysis also allows to check that the 2 Hz high-pass filter that
we used for the main analysis did not obscure some differences
between conditions, e.g., in the very low frequencies.

Results

Post-experimental debriefing with the 22 participants whose
data were retained for statistical analysis (11 female, mean
age: 25 ± 5 years, ranging from 18 to 35) revealed that 15
of them noticed that sounds could take different intensities,
12 noticed that sounds could take different frequencies
and nine noticed that some sounds were less frequent
than others. Critically, none of them reported to have
inferred the global rule of the PF sequence. Given our
design, this implies that any difference between deviance
responses in UF and PF reflects implicit learning of a global
rule in PF.

On average per subject, the number of retained standard
trials (standard sounds just preceding a deviant sound) was
177 ± 16 for the UF sequence, 174 ± 18 for the UI sequence and
172 ± 17 for the PF sequence. Similarly for deviants, the number
of retained trials was 174 ± 17 for the UF sequence, 172 ± 22 for
the UI sequence and 172 ± 21 for the PF sequence.

Multiple Deviance-Specific Responses
Figure 2 displays ERPs (with bandwidth 2–45 Hz) at electrodes
Fz and TP9, for the standard, deviant, and difference responses,
in each experimental condition. It also shows the statistically
significant patterns in the deviance responses and the
corresponding scalp topographies at relevant latencies. In
every condition, the standards just preceding a deviant elicited
a N1 component peaking around 95 ms, associated with
a negativity distributed over fronto-central electrodes and
followed by a fronto-central P2 component peaking around
155 ms. As shown on Figure 2, testing for deviance effects
revealed three significant time-windows for the unpredictable
sequences and two for the predictable one: an early time-window
(within 70 ms after stimulus onset) for conditions UF and UI,
and for the three conditions, we could detect a MMN and a P3a.

At early latencies, larger responses were elicited with deviants
in condition UF compared to standards, leading to a positive
difference response spanning from about 10 to 90 ms over the
frontal and central areas. It was confirmed statistically significant
from 11 to 28 ms at six adjacent electrodes located in left fronto-
central area (−0.2 and 0.6 μV at Fz at 20 ms for standards
and deviants, respectively). In condition UI, the deviant response
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FIGURE 2 | Deviance effects. (A) Grand-average ERPs (n = 22 participants) elicited by standards just preceding a deviant (solid line), deviants (dotted line) and

difference responses (bold solid line) at electrode Fz and TP9 in bandwidth 2–45 Hz for condition UF (left column), PF (middle column), and UI (right column). Main

components in standard (N1, P2) and difference responses [mismatch negativity (MMN), P3a] are shown for condition UF. (B) Statistical maps obtained with

non-parametric tests (n = 100,000 permutations) when comparing standard and deviant responses, at each electrode and each latency of the whole trial. Three

intervals of significance were revealed for unpredictable sequences (UF, UI) at early latencies, and at the latency of the MMN and the P3a whereas only two were

observed for condition PF at the latency of the MMN and P3a. Electrodes are sorted by spatial clusters (left column, from top to bottom: LF, left frontal, RF, right

frontal, FC, fronto-central, CP, centro-parietal, LT, left temporal, RT, right temporal, PO, parieto-occipital). (C) Scalp topographies of the grand-average difference

ERP, at the early effect (left column), the MMN (middle column) and the P3a (right column) latencies, for each condition. The MMN significant (positive) inversion is

visible in each condition. Similarly, early deviance effect in condition UF and UI also entail a (negative) inversion but this does not reach significance.

was very similar to the one in UF, thus leading to very similar
difference responses (deviant – standard) in those two conditions.
Statistical analysis for UI revealed a significant interval occurring
from 16 to 38 ms on left frontal and fronto-central areas. On
the contrary, in condition PF, no significant effect was found at
this early latency range. Because at this early latency there is an
overlap of slow components (such as the P50) and fast Middle
Latency Responses (MLR), we ran a complementary analysis with
two different filtering (2–15 and 15–45Hz) to further characterize

this deviance effect. As shown on Figure 3, statistical analysis in
the bandwidth 2–15 Hz confirmed the significant early deviance
effect measured in UF (from 13 to 58 ms) whereas statistical
tests in the bandwidth 15–45 Hz did not reveal any significant
effect. A similar pattern was observed for condition UI (data
not shown). Altogether, these results suggest that early deviance
effects measured here in UF and UI pertain to a slow component
at the latency of the P50 and do not concern the peaks of the MLR
per se.
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FIGURE 3 | Early responses. Traces at electrode Fz in the time interval [−50, 100] ms, with original [−200, 0] ms baseline correction. Fast components,
bandwidth 15–45 Hz (top row). Grand-average ERPs elicited by standards just preceding a deviant (solid line) and deviants (dotted line) for condition UF (left

column) and PF (middle column). Data were re-referenced to the average of both mastoids to facilitate the identification of Middle Latency Responses (MLR)

components. Fast MLR components are indicated for condition UF with corresponding scalp topographies (from standard ERPs, with original nose reference

allowing for the visibility of temporal polarity inversion) at the latencies 13, 26, 36, 50, and 68 ms for P0, Na, Pa, Nb, and Pb, respectively. Right column:

Grand-average ERPs corresponding to difference responses (bold lines) for condition UF and PF. Slow components, bandwidth 2–15 Hz (bottom row).

In the MMN latency range, difference response in condition
UF showed a typical MMN peaking around 165 ms, with large
negativity over the frontal electrodes (−1.9 μV at Fz) combined
with a positivity at the mastoids (the MMN inversion), with
both deflections ending at the same latency. A similar difference
response was observed in condition UI. The emergence of the
MMN was statistically significant from 125 to 205 ms over 33
fronto-central electrodes and mastoids for UF, and from 128 to
205 ms over fronto-central electrodes, mastoids and occipital
electrodes for UI. In condition PF, the difference response
revealed the MMN inversion starting around 100 ms over the
parieto-occipital areas, followed by the MMN per se (−1.4 μV
at Fz), peaking at about 156 ms with a large negativity over
frontal electrodes. Statistical tests confirmed the emergence of the
MMN inversion (from 105 to 200 ms over mastoid and occipital
electrodes) and of the MMN proper (from 120 to 200 ms over
fronto-central electrodes and parieto-occipital electrodes). In all
three conditions, the MMN inversion ended at the same latency
than the frontal negativity deflection, suggesting that the N2b
component, which does not invert in polarity at the mastoids, was
negligible if any.

Finally, in the P3a latency range, a large positive deflection at
fronto-central electrodes could be seen for difference responses
of all conditions. These typical P3a components were maximal
at around 316, 295, and 290 ms for UF, UI, and PF, respectively
(with corresponding peak amplitude at Fz: 1.4, 0.8, and 1.0μV for
UF, UI, and PF, respectively). For condition UF, the emergence
of the P3a was statistically significant from 238 to 270 ms over
12 frontal and fronto-central electrodes, and from 295 to 355 ms
over 31 fronto-central and centro-parietal electrodes (including
Fz, FCz, Cz, and CPz). Similarly, for condition UI, emergence
was significant from 245 to 303 ms over 26 fronto-central and

centro-parietal electrodes (including Fz, FCz, Cz, and CPz). For
condition PF, statistical significance was measured from 265
to 281 ms over nine temporal and parieto-occipital electrodes
(including TP9, P0z, and Iz), and from 280 to 303 ms over 13
frontal and fronto-central electrodes.

Predictability Modulates the Early Deviance
Response, the MMN and the P3a
Figure 4 displays difference responses for conditions UF and
PF at electrode Fz, as well as scalp topographies of the double
difference waveforms (UF difference response – PF difference
response). The effect of predictability was first assessed by
comparing the difference responses obtained with the predictable
and unpredictable sequences (PF vs. UF). Second, in order to
disentangle the relative contribution of standard and deviant
stimuli, we further assessed the effect of predictability on those
two responses, separately.

Difference responses (Figure 4) differ as early as around 35 ms
due to a weak (non-significant) deviance response measured
in PF whereas a large significant fronto-central positivity was
measured in UF (see above). It was confirmed significant from
55 to 65 ms on 13 electrodes, with more positive potentials
in UF compared to PF (at 60 ms, 0.6 and −0.04 μV at Fz
for UF and PF, respectively). Moreover, statistical analysis in
the bandwidth 2–15 Hz revealed a significant effect from 46 to
68 ms (14 electrodes). No significant effect was found in the
15–45 Hz frequency band (Figure 3). Following this early effect,
the scalp topography of the double difference (Figure 4) shows
that the MMN peak is larger in the UF condition than in the
PF one (from 163 to 190 ms over 15 fronto-central electrodes).
We also observed a tendency for the MMN inversion in the PF
condition to start earlier than in the UF condition (from about
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FIGURE 4 | Predictability effect (UF vs. PF). (A) Statistical maps of the permutation tests comparing difference responses between condition UF and PF, at each

electrode and each latency of the whole trial. Black and gray areas indicate significant differences (p < 0.01) resulting from whole trial [−200, 410] ms and local tests,

respectively. Results revealed three intervals of significant difference: at early latencies (13 electrodes), at the latency of the MMN (15 electrodes) and at the latency of

the P3a (7 electrodes). (B) Grand-average ERPs elicited by difference responses at electrode Fz in bandwidth 2–45 Hz for condition UF (red) and PF (green). Shaded

areas display the windows of statistical significance (at any electrode). (C) Scalp topographies of the difference responses in bandwidth 2–45 Hz, at the latency of

the predictability effect, for the early effect (left column), the MMN (middle column) and the P3a (right column), in conditions UF and PF. The range of voltage values

used for the color scale is mentioned for each map.

100 to 130 ms) and to be enhanced at parieto-occipital electrodes
from about 150 to 210 ms, but these effects were not statistically
significant. Finally, the statistical analysis also revealed a larger
P3a component in UF compared to PF (at 315 ms, 1,4 and 0.3μV
for UF and PF, respectively at Fz), with significance spanning
from 310 to 320 ms over seven electrodes (Fp2, AF3, Fz, F2, F4,
F6, F8).

In response to deviants, permutation tests confirmed that
more positive potentials were recorded in UF compared to PF
in the early latency range (at 65 ms, 1.1 and 0.7 μV for UF
and PF, respectively at Fz), with significance spanning from
58 to 72 ms over 18 fronto-central and left centro-parietal
electrodes. Moreover, the negative deflection following the N1
was significantly larger in UF from 178 to 190 ms at electrodes
F1, F3, Fz, FC1, FCz, and FC3 (at Fz: −1.2 μV at 185 ms for UF,
and −0.8 μV at 205 ms for PF). These two effects observed for
the deviant thus mirrored those observed in the difference wave
tests. At the latency of the P3a, no significant difference between
UF and PF could be measured.

In response to standards, no significant effect of sequence
predictability could be observed in the ERPs of standards
just preceding a deviant. Larger N1 and P2 components were
observed in the UF compared to the PF condition (see Figure 2,
standard traces at electrode Fz for UF and PF) but this tendency
did not reach significance.

To sum up, an effect of predictability was observed, not
only at the latency of the MMN but also earlier, within 70 ms
after deviant onset. These two effects go as expected: the more
predictable the sequence, the smaller the deviance response.
The P3a component was also modulated by the sequence
predictability, with larger amplitude observed in UF. The first
two effects seem to derive mostly from a deviant response
contribution, the P3a one could not be statistically attributed to
either standard or deviant responses only.

Controls for Non–Predictability based Biases
in UF and PF Responses
First, characterization of undesirable adaptation effects in
frequency deviance sequences (UF and PF) was achieved by the
comparison between UF and UI conditions. Statistical tests did
not reveal any significant effect neither on the difference response
(with the exception of TP9 and TP7, from 136 to 148 ms), nor on
the deviant and standard responses taken separately, suggesting
that the deviance effects observed in UF are, at least to a large
extent, not resulting from undesirable refractoriness effects on
exogenous ERPs (P50, N1 in particular).

Second, statistical analysis of unfiltered ERPs confirmed every
significant effect reported above in bandwidth 2–45 Hz. However,
it should be noted that the spatial and temporal extents of those
effects were reduced with unfiltered data, which is perfectly
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sensible at lower SNR. In the Supplementary material, we provide
the unfiltered difference responses for conditions UF and PF
at electrode Fz, as well as the corresponding statistical maps
obtained from the permutation tests.

Discussion

In this study, we measured different deviance responses elicited
by oddball sequences only differing by their statistical temporal
structure, referred to as predictability. Our results indicate that
sequence predictability modulates deviance responses such that
the more predictable the deviant stimulus, the smaller the
deviance response. This modulation affects not only the MMN
but also earlier slow responses, at the latency of P50 and the
auditory MLR components, thereby arguing in favor of various
mismatch responses reflecting prediction errors and updates
at different levels of the auditory hierarchy. In addition, the
measured modulation of the P3a is consistent with unpredictable
deviants inducing a larger attentional capture effect. Importantly,
these effects were elicited while participants were unaware of the
sequence structure. This substantiates the ability of the brain to
implicitly monitor statistical properties of the environment such
as sequence predictability.

Deviance Effects are not Confounded with
Adaptation Effects
Regarding deviance responses, refractoriness state difference
between UF and PF should be minimized by the sequence
design, which involves the same number of stimulus chunks of
each size for both conditions. Moreover, UI and UF deviance
responses did not significantly differ, suggesting that not only
these responses are similar for both features but also, and
more importantly, that frequency deviance of a small magnitude
(50 Hz) did not elicit any refractoriness effect detectable in
the EEG with our analysis strategy. These findings ensure that
observed significant differences between deviant and standard
responses are genuine deviance effects. We can thus assume that
the significant difference between deviance responses observed in
condition UF and PF is not confounded with adaptation effects.

Sequence Predictability Reduces MMN
Amplitude
Contrary to Scherg et al. (1989), we measured a significant
modulation of the MMN amplitude by sequence predictability,
which we interpret as reflecting a smaller prediction error
due to a more predictable deviance occurrence. In Scherg
et al. (1989), the absence of effect has been interpreted as a
result of the automaticity of the MMN, which would prevent
this component from being modulated by high-level cognitive
processes such as rule extraction. It should be noted that their
result derived from a preliminary study conducted with only five
participants and relied on a statistical analysis focusing on the
MMN amplitude at electrode Fz. Visual inspection of deviance
responses for a deviance magnitude of 50 Hz (see Figure 3
in Scherg et al., 1989) shows a difference between regular and
irregular sequences which is compatible with our findings. It

then appears plausible that a more comprehensive analysis, over
all sensors and time bins, would reveal a significant modulation
by predictability. However, their experimental design was not
adapted to characterize the effect of predictability in isolation
from any possible refractoriness confound.

The reduction of the MMN amplitude when predictability of
deviance occurrence increases is in line with predictive coding
or the Bayesian brain hypothesis (Knill and Pouget, 2004;
Friston, 2005). It allows formulating interpretations regarding
the underlying mechanisms of prediction updating. UF and PF
sequences only differ by their statistical regularities (brought by
the global rule). In condition PF, exposure to at least two or three
incrementing chunks is required in order to start inferring the
regularity of the sequence; with the more chunks, the stronger
the confidence in that rule. Perceptual learning - here defined as
the process by which the brain encodes over trials the statistical
structure of a sensory environment (Friston and Stephan, 2007)
-by contrast with the process of learning of new perceptual skills
[like in Alain et al. (2007) for instance]- could thus explain the
observed modulation of the MMN in the PF compared to UF
condition. Predictions, which are updated dynamically through
sequential exposure to the stimuli, could indeed be refined in
PF through the learning, although approximate, of sequence
statistical dependencies. Importantly, none of the participants
did report being aware of the differences between experimental
conditions. As instructed, they obviously paid little attention
to the sounds. This interpretation is consistent with the small
amplitude measured for the N2b and P3a components, as
we know that they typically follow the MMN under specific
condition of stimulus salience or attention orienting toward the
stimulus. Altogether, these findings strongly suggest that those
perceptual learning processes are implicit. A large number of
studies have proposed that the MMN elicited by the violation of
complex rules indirectly evidence the implicit learning capacities
of the brain. Beside oddball paradigms, the brain ability to
track and learn abstract rules without awareness has been
straightforwardly evidenced by a large number of studies in
the fields of implicit and statistical learning (Perruchet and
Pacton, 2006). In line with these accounts, our data argue for
a unified implicit learning process that optimizes predictions at
different levels. Hence the brain would be constantly tracking
the regularities of the environment by means of statistical
and implicit learning so as to infer the hidden causal rule(s)
governing incoming sensations. Throughout this inference
process, mismatch responses would reflect the dynamics of
prediction updating, which is guided by the minimization of
prediction errors (Friston, 2005). The decrease of mismatch
responses observed for the predictable sequence gives support
to the idea that the brain optimizes its predictions, even
independently of awareness. The MMN has already been
proposed to be weighted by the confidence about predictions
established through stimulus exposure (Winkler et al., 2009; Todd
et al., 2014). Interestingly, the presence of an MMN in condition
PF suggests that prediction errors were not abolished for the
fully predictable sequence. This could be due to the predictions
derived from the approximate learning of the global rule but also
to the fact that the local (repetition) rule in UF is still valid in PF
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sequences. Despite the existence of high-level predictions derived
from the learned global rule, low-level predictions integrating
incoming information on a short time-scale might still generate
prediction error signals. This is in line with Horváth et al. (2001)
who demonstrated the simultaneous integration of different rules
at different time-scales, and with Kiebel et al. (2009) pointing to
different time-scale prediction errors, corresponding to different
levels of an internal hierarchical model.

Under the predictive coding view of the MMN, one could
expect the predictability effect to affect both responses to deviants
and standards. However, for the latter we only observed a
tendency of smaller N1 and P2 responses to predictable standards
but no statistically reliable difference. One possible explanation
for this lack of significance relates to the passive nature of this
paradigm that induces rather small responses to standards, thus
yielding a poor signal-to-noise ratio when comparing PF and UF.

Note that in the current study, we manipulated simple
perceptual stimuli and observed a modulation of automatic
sensory processes by temporal predictability. It would be
interesting to replicate our paradigm with conceptual stimuli to
test whether this contextual modulation also operates on higher-
level processes. Our prediction is that the same effects would be
observed and likely express on later components related to more
abstract processes like those pertaining to semantic information
for instance.

Early Markers of Deviance Detection and
Deviance Predictability
Contrary to the majority of MMN studies, we conducted our
statistical analysis on entire epochs (from −200 to 400 ms)
and this strategy revealed earlier markers of mismatch than the
MMN for the unpredictable sequences (UF, UI), within 70 ms
after deviant onset. We could identify a statistically significant
deviance effect at low frequencies (below 15 Hz). It is worth
noting that our set-up and experimental design was not adapted
for a fine characterization of fast MLR components, which can
also be modulated in oddball paradigm (see below), as there
were only ∼175 trials retained on average per stimulus type
(typically over 1000 for MLR studies), and an upper bound of
bandwidth limited to 45 Hz (typically 150 Hz or 200 Hz for
MLR studies). Critically, the genuineness of these early responses
had to be controlled with regard to adaptation effects and high-
pass filtering bias. Results of these tests, namely an absence of
significant difference between UF and UI responses and all effects
measured in the bandwidth 2–45 Hz retrieved significantly with
unfiltered data, allow us to conclude with high confidence in favor
of genuine deviance responses for every early effect reported in
this study.

Recent findings have already confirmed deviance processing
within 50 ms after stimulus onset (for review see Grimm and
Escera, 2012; Escera et al., 2014). Contrary to the current results,
these findings pertain to the rapid components of the MLR
with for instance, an enhancement of the Nb component elicited
with pure tone frequency deviants measured with EEG (Grimm
et al., 2011) and MEG (Recasens et al., 2014) recordings. Such
early mismatch responses complement single-neuron recordings
(in animal studies) showing novelty detection responses within

midbrain, thalamus and primary auditory cortex (Ulanovsky
et al., 2003; Ayala and Malmierca, 2012). Interestingly, Escera
and Malmierca (2014) proposed a model of the auditory system
dedicated to deviance detection processing at the latency of
the MLR that unifies scalp and neuron level findings. Together
with the current results, these findings suggest that deviance
processing expresses very early and affects both the fast and slow
components of the deviant response at early latencies.

Predictable and unpredictable deviance responses were also
measured significantly different from about 60 ms over temporo-
parietal electrodes. As for the MMN modulation by sequence
predictability, we propose that implicit learning is the key
mechanism that explains how such early components can be
shaped by a global rule. The predictability effect at both early
and late latencies could reflect a modulation of high-level
predictions on low-level ones within the deviance processing
hierarchy. Besides, our results confirm sequence predictability
as a suitable tool to characterize the different components of
deviance response properly.

Interestingly, previous studies of early deviance effects failed
to measure such early ERPs after a global rule violation (Cornella
et al., 2012; Althen et al., 2013; Recasens et al., 2014). Escera
et al. (2014) and Escera and Malmierca (2014) suggest that
these findings corroborate the hierarchical organization of the
auditory system, where the different time-scales defining the
regularities of the environment would be processed in a forward
direction. This model is totally in accordance with a predictive
coding implementation (Kiebel et al., 2009), where early deviance
responses and the MMN would reflect prediction errors and
updates at different levels. However, this view cannot explain the
reduced (and thus non-significant) early deviance response in PF
as no global rule violation occurs in this condition: mismatch
responses are elicited by local rule violation just as they are in
the unpredictable sequences. Hence, perceptual learning of the
global context may be a plausible explanation to account for
the results in PF, with high-level predictions controlling lower
level ones. Hence our study provides a new (complementary)
contribution to the characterization of the hierarchical auditory
system, highlighting top-down (backward) modulations within
this hierarchy.

Modulation of the P3a by Sequence
Predictability
Following theMMN, the P3a is widely acknowledged as reflecting
attention-orienting processes (Polich, 2007). Despite the small
frequency and intensity deviance magnitudes that were used, a
small but significant P3a component was observed in each of
the three experimental conditions. However, its small amplitude,
smaller than the MMN deflections, (see Figure 2), suggests
that the automatic orientation toward the deviants remained
rather limited. Note that since the presence of a P3a cannot be
interpreted as the signature of an explicit engagement of attention
[for instance, it was measured during sleep (Ruby et al., 2008)
and with patients with disorders of consciousness (Morlet and
Fischer, 2014)], this finding remains compatible with the absence
of awareness of the sequence structure as inferred via verbal
report in every participant. Interestingly, sequence predictability
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also induced a significant modulation of the P3a with larger
responses to unpredictable deviants. This further suggests that
the P3a also reflect a (third) prediction error. This is definitely in
keeping with the predictive coding model of deviance processing,
where unexpected stimuli trigger a cascade of prediction errors
(conveyed from lower levels to higher ones) that induce in turn
adjustments of predictions within each level of the hierarchy.
The Dynamic Causal Modeling (DCM) study of Garrido et al.
(2007) supports this view, as the authors showed that frontal-
to-temporal connections become necessary to explain auditory
deviance responses up to the latency of the P3a. An alternative
(but compatible) interpretation is that the smaller P3a in the
case of predictable deviants reflects a smaller automatic shift of
attention.

Conclusion

The recent prediction error model of the MMN yields new
expectations regarding its modulations by specific experimental
factors, and one of them, sequence predictability, was employed
here to refine our understanding of deviance processing. Indeed,
we proposed a passive auditory oddball paradigm allowing
for the measurement of this effect on genuine deviance
responses. We observe a decrease of deviance responses induced
by sequence predictability, which directly relates these ERPs
to prediction errors and thereby substantiates the predictive
coding scheme. Moreover, the threefold predictability effect
observed at early and late latencies gives strong support to
an auditory hierarchy computing prediction errors at different
levels. The statistical structure of sound sequence could be
encoded implicitly, possibly through a bayesian inference and
learning process implemented within the hierarchy (Kiebel et al.,
2009), and large time-scale regularities could induce high-level
predictions that modulate both the content and the precision
of lower-level ones. These new findings thus raise questions
regarding the neural implementation of the predictive coding

scheme and the dynamics of deviance processing within the
dedicated hierarchy. Hence, further use of our paradigm, in
conjunction with generative modeling approaches (Garrido et al.,
2009a; Wacongne et al., 2012; Lieder et al., 2013) as well as
suitable design optimization methods to compare such models
(Sanchez et al., 2014) should help shedding light onto the
neurocomputational mechanisms underlying rule learning and
deviance processing.
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5.3 MEG analysis

We now present the analysis of sensor-level MEG data acquired simultaneously to EEG data

during this study.

5.3.1 Material and methods

MEG analysis rested on the data obtained from exactly the same subjects (N=22) and using

the same material as for the EEG study. Preprocessing of data included independent component

analysis (ICA) correction for ocular artifacts and filtering (2-45 Hz band-pass digital filter, bidi-

rectional Butterworth, 4th order) (as detailed in Lecaignard et al., 2015). In addition, specific

MEG treatments were applied: data segments corresponding to head movements larger than 15

mm relative to the average position within a session and to SQUID jumps were rejected. Crit-

ically, the stimuli entering EEG and MEG analysis throughout every analysis presented in this

thesis were exactly the same. Filtered data were epoched from -200 ms to 410 ms post-stimulus

(mean signal during pre-stimulus time-interval was removed for baseline correction). Standard

sounds entering standard evoked response refer to every sound preceding a deviant.

5.3.2 Results

We first present the deviance responses measured in each condition (UF, PF and UI). We then

report the findings regarding the predictability effect (UF vs. PF). Mismatch responses obtained

with frequency and intensity (condition UF and UI) will be briefly compared (more details will

be provided in next chapter dedicated to the characterization of frequency and intensity deviance

cortical generators).

Deviance responses. Deviance results obtained at different latency and for each condition are

presented in Figure 5.1. The spatial distribution of peak amplitudes for each response was as-

sociated to a typical MEG auditory pattern composed of two anterior and two posterior poles

with diametrically opposed sign (Figure 5.1-B). Early deviance response could be measured in all

conditions with a significant early effect in the first 100 ms ([−5, 90] ms, [−15, 90] ms, [−5, 95] ms

for condition UF, PF and UI respectively). MMN was observed in all conditions, peaking around

175 ms and with significance over [110, 215] ms, [105, 225] ms, [135, 225] ms for UF, PF and UI

respectively. It should be noted that visual inspection could reveal similar peak amplitudes at

anterior poles for every condition (175 ms) combined with posterior poles in UF and PF peaking

earlier (around 160 ms for left posterior pole, and around 170 ms for right posterior pole). In

condition UI, both posterior poles were found peaking later than anterior ones (around 185 ms).

Finally, following the MMN, a late component peaking around 275 ms could be also observed,

with significant emergence from 225 ms to 325 ms, 230 to 345 ms and 235 to 315 ms for condi-

tion UF, PF and UI respectively. Findings from EEG data led us to label this component as a P3a.

Predictability modulation of deviance responses. Contrary to the EEG findings, the compari-

son of difference responses obtained in UF and PF at the sensor-level revealed that there was

no consistent evidence of predictability effect on deviance responses, as can be seen in Figure

5.1-c and Figure 5.2. An absence of modulation was also observed between UF and PF stan-

dard responses (it was also the case with EEG data). Finally, comparison of UF and PF deviant
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Figure 5.1 – Deviance responses measured with MEG. (a) Standard, deviant and difference
evoked responses measured at left temporal sensor MLT14, for frequency (UF, red; PF, green)
and intensity (UI, blue) deviance. (b) Statistical maps revealing the different periods of signif-
icant deviance responses with a corrected for multiple comparison threshold of p < 0.01. (c)
Scalp topographies obtained for each condition, at three relevant latencies corresponding to the
early deviance, the MMN and the P3a responses. Color scales are indicated per map latency.
Black dot indicates sensor MLT14.

responses could reveal two time intervals with a significant difference resting on more than 10

adjacent sensors: an early effect at 16 sensors within the right anterior pole with significance

spanning from 15 ms to 25 ms; and a later effect, at the latency of the MMN, involving 16 sensors

at the left posterior pole, with significance from 190 ms to 210 ms. Both effects exhibit larger

event-related field (ERF) amplitude for condition UF.

Frequency and intensity deviance responses. The MMN elicited by (unpredictable) frequency de-

viants (UF) was found to start earlier and to have larger amplitude than the MMN elicited with
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Figure 5.2 – Predictability effect assessed with MEG. (a) Standard, deviant and difference
evoked responses measured at left temporal sensor MLT14, for UF (red) and PF (green) condi-
tions. (b) Scalp topographies obtained for deviant responses for UF (left column), PF (middle)
and UF-PF (right) at early latency (upper row) and late latency (lower row). Color scales are
indicated for each map. Black dot indicates sensor MLT14 and sensors showing a significant
predictability effect have been surrounded by a black line.

intensity deviants (UI). For instance, the peak at sensor MLT14 was measured around 150 ms

with an amplitude of 51 fT in condition UF, and around 185 ms with an amplitude of 34 fT

in condition UI (Figure 5.1-a). Statistical comparison of UF and UI deviance responses showed

a significant interval from 90 ms to 160 ms. Such difference between conditions was found to

originate from deviant contribution as no difference between standard traces could be measured.

Regarding deviant responses, the three deflections (with alternating sign) following the N1 ex-

hibited significant larger amplitude in UF compared to UI. These differences affected posterior

bilateral poles for the first two deflections (with a larger effect on the right side), spanning from

95 ms to 165 ms for the first one (the rising slope of the MMN), and from 210 ms to 250 ms for

the second peak during the P3a. The last peak was measured larger in UF only for right sensors

from 330 ms to 360 ms.

5.3.3 Conclusion

The three deviance responses reported in our EEG analysis could be also observed with MEG

recordings. The early effect was found to start around stimulus onset and to last until the N1

component. Importantly, it was consistent on MEG traces in condition PF while EEG analysis

failed to reach statistical significance. Following this effect, an MMN could be measured in all

conditions, with anterior poles peaking around 175 ms, consistent with EEG findings; posterior

poles showed a more complex pattern over conditions that was not found with EEG. Finally, the

P3a was found to peak earlier than in EEG (around 275 ms and around 300 ms for MEG and EEG

respectively). These findings support the plausibility of the three different mismatch responses
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elicited by our oddball sequences. Furthermore, the observed differences between modalities can

be explained by the acknowledged different (theoretical) sensitivity of EEG and MEG regarding

the orientation and the depth of sources (Crouzeix-Cheylus, 2001). Different spatio-temporal pat-

terns were observed in the two modalities and suggest multiple spatially distinct areas involved

during auditory deviance processing. Their respective activity could indeed be captured (or not)

by a modality according to specific biophysical properties. The complex pattern of posterior

MEG responses is consistent with the high sensitivity of MEG to measure temporal activity with

large SNR, hence enabling the dissociation of different activation distributed along the superior

temporal gyrus (Yvert et al., 2001).

Surprisingly, the EEG modulation of deviance responses by sequence predictability could not

be retrieved with MEG, but two effects on deviant responses (with however consistent latencies,

and larger amplitude with unpredictable deviants, as expected). One should consider here a

practical limitation encountered with MEG when performing group-level sensor-level averages of

evoked responses: the variability of the relative position of the head relative to the sensors may

induce a spatial blurring, hence degrade the statistical sensitivity of the group-level analysis (not

to mention within-subject head movements over time). However, the current lack of evidence

may potentially provides some indications regarding the underlying neural activity behind this

contextual manipulation. Indeed, our EEG analysis led us to consider the contribution of a frontal

area for the implicit learning of the statistical structure in PF. Different arguments supported this

interpretation: first, the existing literature in the field of implicit learning reports such frontal

implication (Conway & Pisoni, 2008). Second, from a predictive coding perspective, the pre-

dictability modulation should have the form of a descending prediction influencing information

processing at lower levels. Finally, a more speculative argument pertains to our sensor-level EEG

analysis as the predictability effect on the MMN was found at fronto-central electrodes but not

at mastoid sites. This latter aspect should be considered cautiously as it gets over the so-called

inverse problem of inferring neural mechanisms from external recordings. However, the absence

of MEG modulation could also support a fronto-medial contribution since these regions (having

a quasi-radial orientation) may poorly express on MEG gradiometers.

Contrary to the EEG findings, frequency and intensity deviance responses measured with MEG

exhibited different patterns at the latency of the MMN and the P3a. This result suggests similar

early processing of deviants until 100 ms, that could refer to low-level processing of sound at-

tributes. Then, both processing could differ that could engage different areas within the auditory

cortex. This was already suggested by equivalent current dipole (ECD) source reconstruction

studies with EEG data (Giard et al., 1995) and MEG data (Rosburg et al., 2004). This result

also supports the larger spatial resolution of MEG for temporal activations.

5.4 Attempts to identify electrophysiological mark-

ers of perceptual learning

Following the EEG and MEG analysis of deviant predictability effect on mismatch responses, we

attempted to characterize the learning of the statistical structure in condition PF using scalp-level

data, although the present study had not been designed to that aim. Such analysis would help
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at identifying electrophysiological markers reflecting how the brain extracts the regularities of

its environment, that could inform subsequent computational learning modeling. In particular,

one could hypothesized that the brain has the capacity to learn the incrementing structure of a

PF sequence, or at least to figure out that deviants get more and more spaced in time (possibly

in a cyclic manner). Alternatively, it could be that the brain learns that the size of chunks (or

equivalently the number of standards in between two deviants) evolves slowly or remains stable in

PF whereas strong transitions occurs in condition UF. As already seen, rule extraction could rest

on the perceptual learning of sequence regularities and its investigation requires a trial-by-trial

model-driven analysis to capture the dynamics of such learning. In the following, we present some

attempts to start to tackle this issue, that were conducted with EEG event-related responses

over the experimental timescale; none of them succeeded to reveal consistent effect, due to the

inadequate number of stimuli required for such averaging analysis.

Dynamics of rule learning. We first tried to assess the dynamics of rule learning by examining the

predictability effect on mismatch responses throughout the experimental sessions. Precisely, each

subject received two sessions of each condition UF and PF, each of them comprising 16 cycles of

42 sounds (see Figure 1 in the EEG article). For each of these four sessions, we computed the

average standard (preceding a deviant) and deviant responses over cycles 1 to 6 and over cycles 11

to 16 to derive two mismatch responses whose comparison could reflect the effect of rule exposure

if any. Each of these 8 evoked responses entailed a maximum of 42 events per subject; at the group

level, a MMN could clearly be observed but visual inspection failed to reveal a learning effect (ie

an MMN difference between the beginning and the end of a session), neither an interaction of this

learning with the predictability effect. This observation suggests a rapid learning of the rule in

PF, taking place within the first 6 cycles of the regular sequence. No difference could neither be

observed between the first session and the second session for both conditions UF and PF.

Predictability effect on standard repetition. As already described in previous chapters, the de-

crease of activity observed for repeated stimuli could derive from bottom-up adaptation and from

top-down predictions, that were referred to as repetition suppression (RS) and expectation sup-

pression in (Todorovic & de Lange, 2012). We assumed that bottom-up effects should be the same

in both conditions (as discussed in the EEG article) but expected a different modulation of top-

down predictions over the sequential presentation of standards induced by the PF rule learning.

To assess such modulation on the MMN amplitude, we averaged standard stimuli according to

their position relative to deviants in the sequence. We restricted the analysis to position 2 to 6 to

ensure a minimum of 75 events per average. A two-way anova with repeated measures (with con-

dition and standard position as factors) conducted on MMN amplitudes could reveal significant

main effects for both factors but failed to reveal an interaction, that was necessary to conclude.

A possible interpretation for such failure concerns the interaction of standard position and the

size of chunks that could affect the expectancy of incoming sounds (for instance, in condition PF,

a standard at position 3 may not be treated equivalently depending if it belongs to a small or

a large chunk) . The number of stimulus (per position and per chunk size) was insufficient to

consider any further investigation.

Evolution of deviant expectation over sound sequence. Finally, we aimed at refining the pre-

dictability effect measured with all deviant responses by sorting deviants according to the number
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of preceding standards (we denoted deviants of rank 2 to 8). For both UF and PF sequences,

the brain could have learnt that on average a deviant could occur every five standards, leading

deviant of rank 5 to be more expected than extreme ranks (2 or 8), hence eliciting a smaller MMN

(visual inspection of corresponding traces could indeed show a trend). In addition, the higher-level

incrementing rule in PF should affect such prediction in the sense that deviant expectation should

remain stable (and high) over deviant ranks. This analysis rested on averaged over 25 events per

evoked response, which hampered the statistical analysis. In the same vein, in PF, deviants of

rank 2 should elicit a MMN as they violate the incrementing rule, but the small number of related

stimuli prevented from such analysis.

The failure of these analysis could be due to the inadequation of our experimental design for

the event-related investigations cited here (in particular with regards to the number of stimuli

per condition). These unfruitful attempts confirmed that further modeling analysis should only

address the predictability modulation of deviance responses (as was initially planned before start-

ing the study) and could not resolve the (unknown) underlying mechanisms by which the rule

in PF was learnt. Most of all, they could reveal the limitation of evoked response analysis to

capture electrophysiological biomarkers of the learning dynamics, thereby calling for more sophis-

ticated methodologies such as computational trial-by-trial analysis to provide a more fine-grained

investigation of brain activity reflecting such processes.

5.5 Conclusion

As expected under predictive coding, the predictability of deviant occurence was shown to de-

crease the amplitude of the MMN measured with EEG. Two additional deviance responses could

be measured that also appeared modulated by this effect in the same manner. This modulation

led us to interpret these three deviance responses as reflecting different prediction errors elicited

along the auditory hierarchy. We believe that this modulation derived from the implicit learn-

ing of the statistical structure of PF sequence, that could involve higher cognitive levels possibly

implicating frontal regions. Critically, MEG analysis confirmed these three responses but their

modulation by sequence predictability could not be visible on difference responses (but on deviant

responses). None of the two modalities could reveal an effect of predictability on standard re-

sponses using sensor-level data (unless considering all standards but the one following a deviant,

as described in the EEG article), although one could reasonably consider that it should affect

both standard and deviant processing. Difference between EEG and MEG was also encountered

with the intensity deviance response. Taken together, these results highlight the complementary

information about neural processes provided by both modalities. In the present study, they both

helped at characterizing deviance processing and its modulation by sequence predictability. Ad-

vanced modeling analysis appears necessary at this stage to further characterize this modulation

under the perspective of predictive coding, hence possibly providing new insights into the mech-

anisms behind mismatch responses. As such inversion-based methods require a large amount of

information contained in measured data, the EEG and MEG complementarity observed so far

therefore encouraged us to fully exploit these data in every subsequent analysis presented in this

thesis.
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Chapter 6

Spatial characterization of the

cortical network for auditory

deviance processing

6.1 Objectives

Both DCM and computational learning models of the MMN (chapter 4) build on a hierarchy

accounting for specific neurophysiological or functional hypothesis that should remain biologically

plausible. For instance, the DCM of MMN proposed by Garrido and collaborators (2009) is or-

ganized as a three-level hierarchy composed of equivalent current dipoles whose locations were

estimated in a former fMRI study (Opitz et al., 2002). This brings to the critical importance

to inform such models with accurate description of the cortical network associated with deviance

processing. Despite a large literature dedicated to the characterization of the auditory MMN

generators (see chapter 3, §3.3.1) limitations in spatial and temporal resolutions have prevented

from a precise description that could now be attained with recent methodological advances in

source reconstruction using EEG and MEG data. Moreover, there is a lack of findings regarding

the localization of early mismatch sources, which is likely due to the recency of related studies.

Hence, it thus appears essential to use up-to-date methodologies to describe accurately early and

late deviance response sources, as such characterization could contribute to improve subsequent

deviance modeling analysis. Using an empirical Bayesian distributed approach integrating EEG-

MEG fusion, we performed a source reconstruction analysis to locate mismatch cortical generators

elicited by frequency and intensity deviances. Furthermore, the potential of Bayesian model selec-

tion that this statistical framework offers was exploited to assess quantitatively the performance

of fused inversion to resolve source prior models in comparison to unimodal one. All these findings

are reported in the article in preparation presented below.
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6.2 Article

Empirical evaluation of fused MEG-EEG source reconstruction

applied to auditory mismatch generators

(in preparation)

Authors: Françoise Lecaignard, Olivier Bertrand, Anne Caclin, Jérémie Mattout

ABSTRACT

Combining complementary EEG and MEG information for source reconstruction has been con-

sistently evidenced to enhance localization performances using simulated data. Such fusion has

been integrated in a Bayesian scheme (Henson et al., 2009), thereby providing an advanced recon-

struction approach exploiting both modalities (EEG, MEG) in a Bayesian optimal way. Bayesian

framework for model inversion allows estimating posterior estimates of unknown quantities, and

also enables model comparison that appears perfectly adapted to test quantitatively the added

value of fusion in the case of real data, as we propose here. Fused EEG-MEG source reconstruc-

tion was applied to the Mismatch Negativity (MMN), a well-known brain component elicited by

a deviant stimuli violating a regular auditory stream. Despite a great number of studies about

the underlying generators of the MMN, this issue is still controversial. Furthermore, recent find-

ings in auditory deviance studies revealed earlier mismatch responses than the MMN (Escera

& Malmierca, 2014) whose cortical sources have not been fully explored yet. Fused localization

methods combining high spatial and temporal resolutions thus appears relevant to refine the char-

acterization of mismatch generators. In this study, we used Bayesian source reconstruction with

EEG-MEG fusion to locate early and late mismatch cortical generators elicited by frequency and

intensity deviances. Bilateral sources in supratemporal cortex and inferior frontal gyrus were

found for both features, and interestingly, fusion could reveal an accurate spatio-temporal dissoci-

ation between conditions within the supratemporal plane. Using Bayesian model comparison, we

could confirm empirically that fused inversion provides an increased spatial resolution compared

to unimodal ones. Our findings provide empirical support for fused inversion using simultaneous

EEG and MEG recordings. The fine-grained spatial description of the auditory cortical hierarchy

achieved here represents a crucial step prior to further address the outstanding issue of charac-

terizing the neurophysiological and computational mechanisms behind mismatch responses.
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Introduction

Imaging Human brain function is acknowledged to require high spatial and temporal resolu-

tions. A concrete illustration underlining this twofold necessity pertains to the large literature

dedicated to the generators of the auditory Mismatch Negativity (MMN), a brain response elicited

by a change (deviant) in a regular acoustic environment that plays a central role in cognitive and

clinical neuroscience (Morlet & Fischer, 2014; Sussman & Shafer, 2014). Spatial characterization

of MMN sources is needed to improve our understanding of this response (known to peak within

230 ms after deviant onset), and strong efforts using different neuroimaging techniques have been

made to that aim for about three decades. Functional Magnetic Resonance Imaging (fMRI) and

electrophysiological techniques such as Electro- and Magneto-encephalography (EEG and MEG

respectively) were mostly employed, that favored spatial or temporal precision respectively. Both

fMRI (see for review Deouell, 2007) and electrophysiological studies (Giard et al., 1995; Waberski

et al., 2001; Marco-Pallarés et al., 2005; Lappe et al., 2013b; Ruhnau et al., 2013; Recasens,

Grimm, Wollbrink, et al., 2014; Fulham et al., 2014) suggested dominant temporal and frontal

contributions. However, these findings also strongly reflect a lack of robustness in the charac-

terization of deviance sources that could result from the fact that none of these modalities is

efficiently informed in both spatial and temporal dimensions. In addition, recent EEG and MEG

studies now suggest earlier deviance response than the MMN (for review, see Escera & Malmierca,

2014), hence further demonstrating the need to combine temporal and spatial information for a

comprehensive description of brain responses.

Spatial description of brain activity using EEG and MEG recordings requires solving an under-

determined inverse problem when using distributed source reconstruction methods. With recent

advances producing more informed modeling, distributed inversion now appears promising to

combine in a straightforward fashion a fine degree of spatial and temporal precision required to

describe brain functioning. Two methods in particular were of interest in the current study, that

could help incorporating additional information to constrain model inversion, thereby reducing

source localization uncertainty. First, the formulation of the inverse problem within a Bayesian

framework allows confronting initial assumptions (priors) to sensor measurements in a principled

fashion (Friston, Henson, et al., 2006a; Mattout et al., 2006). In particular, the unknown spatial

covariance of sources, embodying experimenter’s prior knowledge about the spatial properties of

activated sources, can be estimated through the Bayesian inversion scheme integrated into the

Multiple Sparse Priors (MSP) method (Friston, Harrison, et al., 2008). Importantly, MSP has

recently been enriched with group-level inversion (Litvak & Friston, 2008) to further refine these

priors. Second, integration of EEG and MEG data for solving the inverse problem augments the

quantity of information introduced in source modeling. MEG-EEG fusion not only allows account-

ing for information missed by one modality and captured by the other one (Dale & Sereno, 1993;

Fuchs et al., 1998), but also crucially provides complementary information: under the quasi-static

approximation of the Maxwell’s Equations, scalp-level recordings in each modality result from the

same neuronal activity inducing decoupled (hence independent) electric and the magnetic fields

(Plonsey & Heppner, 1967). There is a broad literature dedicated to fused MEG-EEG source

reconstruction that suggests (in spite of the various modeling assumptions employed) greater

performances for this approach compared to separate inversions. In short, reduced localization

errors could be reported with fused inversion for both superficial and deep sources (Fuchs et al.,
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1998), as well as for different signal-to-noise ratio (SNR) and sensor montages (Babiloni et al.,

2004). Decrease of the undesirable sensitivity of inversion methods to source orientation (Baillet

et al., 1999) and enhanced precision of source estimates (Henson et al., 2009) were also reported.

Most of these studies employed simulated data (for which the true source distribution is known)

and comparative evaluation then relied on several metrics accounting for differences between the

reference and reconstructed distributions. In the case of real data, the ill-posed property of the

inverse problem (absence of unique solution) prevents from similar quantitative analysis. Recent

attempts considered specific cases for which fMRI results (Sharon et al., 2007), brain response

widely described in the literature (Molins et al., 2008) or intracranial recordings with epileptic

patients (Chowdhury et al., 2015) approximated true solutions to be compared with; all these

studies, resting on data acquired from 2 to 6 subjects, were in favor of reduced mislocalizations

with fused modalities.

In this context, the aim of the current study was twofold: to model brain activity spatiotempo-

rally using advanced electrophysiological Bayesian methods including fused MEG-EEG inversion

(Henson et al., 2009) and to propose a general method to evaluate quantitatively the performance

of unimodal and fused source reconstruction with empirical data. Our approach investigates the

ability of each modality (EEG, MEG and MEG-EEG) to separate different source distributions

(being spatial models) and relies on Bayesian model comparison (Stephan et al., 2009) to provide

a quantitative measure of this spatial model resolution.

We applied these advanced methods and our evaluation approach to the investigation of deviance

generators, including early deviance effect and the MMN per se. We considered data originating

from a previous passive auditory oddball study (Lecaignard et al., 2015) with two deviance fea-

tures (frequency and intensity, separately manipulated) and conducted with simultaneous EEG

and MEG recordings. Despite the large literature in the field of deviance sources, to date no study

has been conducted using fused inversion (simultaneous recordings but separate source modeling

were achieved in Huotilainen et al., 1998; Rinne et al., 2000). Furthermore, only a few MEG

studies addressed the localization of early deviance responses (Recasens, Grimm, Capilla, et al.,

2014; Recasens, Grimm, Wollbrink, et al., 2014; Ruhnau et al., 2013), with activity circumscribed

in the primary auditory cortex. Prior to these deviance-related inversions, we controlled the per-

formance of the overall inversion scheme (from forward model computation to individual source

estimates) on auditory P50 component elicited by standard (regular) sounds. This response has

been previously associated with primary auditory cortex activity using intracranial recordings

(Pantev et al., 1995; Yvert et al., 2002) and was therefore considered fairly appropriate for vali-

dation purposes.

Our study presents estimates of cortical activity obtained with advanced methods comprising

group-level inference and fused MEG-EEG source inversion. For the first time, separate (EEG,

MEG) and fused MEG-EEG inversions were evaluated empirically by means of a model-comparison

method. Applied to the reconstruction of early and late auditory deviance generators, our results

demonstrate the usefulness of fused inversion that produced a fine-grained description of a fronto-

temporal network.
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Material and Methods

This section is divided into three parts. In the first section, we describe the methods employed

for source reconstruction, comprising forward model computation and model inversion with MSP,

group-level inference and fused MEG-EEG. In the second section, we detail the approach that

we propose for the quantitative evaluation of EEG, MEG and MEG-EEG inversions. Finally, the

third section presents the empirical data used to validate our approach. These data corresponds to

auditory evoked responses recorded using frequency and intensity oddball sequences (conditions

FRQ and INT respectively, in separate sessions; these conditions correspond to the UF and UI

conditions in Lecaignard et al. (2015).

Methods for source reconstruction

Forward model computation

For both MEG and EEG modalities, realistic Boundary Element Model (BEM) (Hämäläinen &

Sarvas, 1989) was employed here to account for head geometry and avoid oversimplification in-

duced by spherical models. Individual head-models were composed of three layers (scalp, skull

and brain) with homogenous and isotropic conductivities set to 0.33, 0.0041 and 0.33 Sm respec-

tively (Rush & Driscoll, 1968). Layer boundaries were defined with individual meshes (scalp,

outer skull and inner skull) and composed of 5120 faces and 2562 nodes each. Source domain

included Ns=20484 sources (mean average distance = 3.4 mm) distributed on the cortical mesh

(grey-white matter interface) and dipole orientation was constrained to be normal to the sur-

face. All meshes derived from canonical uniformly tessellated templates that had been warped to

account for subject-specific anatomy using a spatial non-linear transformation (inverse normaliza-

tion of MRIs, see Mattout et al., 2007). Coregistration of functional data (MEG and EEG sensor

locations) and anatomical information (head-model including source domain) in a common frame-

work was achieved for both modalities separately using a rigid spatial transformation matching

coordinates of fiducials and head-shapes specified relative to both sensor space and MRI space.

For MEG data, head position was averaged across FRQ and INT sessions to allow for a common

forward model between conditions. For each participant and each modality, computation of accu-

rate BEM was performed with the software Openmeeg (http://openmeeg.github.io) as it was

shown to outperform other traditional BEM methods (Gramfort et al., 2010). Re-referencing to

the average mastoids was applied to EEG BEM. The resulting lead-field operator or gain-matrix

L ∈ R
Nc×Ns (with Nc sensors and Ns sources) embodying the pre-cited anatomical and biophysical

assumptions, enters the following linear generative model M of data Y :

Y = LJ + εn (6.1)

where J represents source distribution, i.e. the magnitude of dipole at each node of the cortical

mesh, and εn represents the residual or error term, accounting for the fact that Y may provide

partial and noisy information about J and that approximations enter L. The linearity of this

generative model derives from the normal constraint on dipole orientation.

Model inversion using Multiple Sparse Priors (MSP)
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Within a hierarchical Bayesian framework, we defined J as a multivariate Gaussian distribution

of the form J ∼ N (0, Cs) with Cs ∈ R
Ns×Ns the (unknown) spatial covariance of sources. We

assumed a multivariate Gaussian measurement noise εn ∼ N (0, Cn) with Cn ∈ R
Nm×Nm the

(unknown) spatial covariance of measurement noise (relatively to a normalized spatial space com-

posed of Nm modes that will be defined in the following section). We used Multiple Sparse Priors

(Friston, Harrison, et al., 2008) to estimate the distribution J that satisfies the general equation

of linear model with Gaussian errors:

J̃ = CsL
T (Cn + LCsL

T )−1Y (6.2)

MSP also allows estimating Cs and Cn, the spatial source and noise covariances. Precisely,

regarding source-level covariance, we defined Cs as a linear combination of Np variance components

Qi ∈ R
Ns×Ns (the Sparse Priors) weighted by hyperparameters λi:

Cs =
Np∑
i=1

λs
i Q

s
i (6.3)

We used SPM8 default Sparse Priors including 256 components in each hemisphere, each defined as

a patch of nodes on the cortical mesh, whose spatial extent from a seed point derives from a Green’s

Function. In addition, we used a bilaterality constraint leading to a total of Np = 712 variance

components (hence 712 source hyperparameters to estimate). At the sensor level (relatively to

normalized space), we considered one variance component per modality (each equal to identity

matrix) weighted by its related hyperparameter:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn = λEEGQEEG for EEG inversion

Cn = λMEGQMEG for MEG inversion

Cn = λEEGQEEG + λMEGQMEG for fused EEG-MEG inversion

(6.4)

Initial source-level hyperparameters were set to the default values specified by the software.

MSP rests upon expectation maximization (EM), a widely used variational inversion scheme

and provides (Restricted Maximum Likelihood, ReML) estimates of posterior hyperparameters

λ =
{

λs
1, ..., λs

Np
; λmodality

}
and Maximum A Priori (MAP) estimate of J using Eq. (6.2) (Friston

et al., 2007). Posterior estimates of hyperparameters quantify the contribution of each variance

component (Mattout et al., 2006). EM is an iterative process guided by the maximization of the

free energy F , an approximation of the log-evidence of the model (the log-value of p(Y |M ), the

probability of observing the data Y given the generative model M defined in Eq. (6.1)). Critically,

F is composed of two counterbalancing terms: the accuracy indexing the quality of the fit, and

the complexity which reflects the propension of the model to overfit the data and thereby its lack

of generalizability.The higher the model evidence (hence the higher F ), the better the model. EM

stops when convergence on F is reached, furnishing posterior estimates of J ,Cs and Cn and an

approximation of model evidence.

Group-level inference

Group-level inference (Litvak & Friston, 2008) is a recent advance of MSP that aims at refining
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prior source covariance Cs by accounting for the assumption that distribution J should be common

to all participants. This is a two-step procedure (Figure 6.1.a) where Step 1 performs group-level

data inversion using SPM8 default Sparse Priors. Iterative updates follow the principle of source

sparsity implemented in the Greedy-Search (GS) approach (Friston, Chu, et al., 2008) that we used

to select relevant variance components. Posterior estimates of source hyperparameters, referred

to as group priors because they are informed by the variance of data at the group-level, furnish

posterior Cs using Eq. (6.3), that becomes a (group-informed) prior entering Step 2. Precisely,

Step 2 proceeds to individual-level MSP inversions with two/three hyperparameters to estimate:

{λs, λEEG}, {λs, λMEG} and {λs, λEEG, λMEG} for EEG, MEG and fused MEG-EEG inversions

respectively. We assigned all prior hyperparameters to the same default values as in Step 1. Prior

to data inversion, group-level inference involves the normalization of individual sensor data in a

common spatial-mode space (Friston, Harrison, et al., 2008). In short, this space is composed

of Nm orthogonal virtual sensors (referred to as spatial modes) resulting from the singular value

decomposition (SVD) of a group-informed gain matrix. Projection of individual data on these

Nm spatial modes thus implies the rejection of sensor-level signals that could not be generated by

the cortical sources involved in the selected SVD components (data reduction). Data reduction

is also achieved using a subsequent projection of data on temporal modes (Friston, Henson, et

al., 2006b). For each subject, spatially and temporally projected data Ỹi ∈ R
(Nm×Nt) is rescaled

(using the trace of ỸiỸ
T

i ) to accommodate signal amplitude differences over spatial modes.

Fused MEG-EEG inversion

The fused MEG-EEG inversion approach proposed by Henson et al. (2009) was employed in the

current study. This method entails the necessary rescaling of data and gain matrix over modalities

to accommodate different physical nature of signals (hence different measurement units). This

rescaling leads to two crucial aspects: (1) projected data on MEG and EEG spatial modes become

homogeneous and (2) sensor-level hyperparameters λEEG and λMEG can be quantitatively com-

pared to assess the relative contribution of each modality to account for the variance of data to

be inverted. This second point was conducted using paired Student’s t-tests in the case of MMN

inversion ([150, 200] ms) for condition FRQ and INT.

Comparative evaluation for separate and fused inversions

In this section, we propose a method based on Bayesian Model Comparison (BMC, Penny et

al., 2010) for the quantitative comparison of separate (EEG, MEG) and fused (MEG-EEG)

source reconstructions. Precisely, our approach evaluates the ability of each modality to sepa-

rate different hypothesis (or models) represented by different source distributions defined over

the source domain. Figure 6.1.b depicts the framework of our approach, which exploits the

two-step characteristic of group-level inference (described in Figure 6.1.a). Group priors (re-

sulting from Step 1 of group-level inference scheme) obtained with EEG, MEG and MEG-EEG

inversions were considered of utmost importance (among the infinity of possible source distri-

bution that could be addressed) for multimodal comparison as they entail the spatial infor-

mation that could be inferred by each modality over the group of subjects. Hence, for each

modality mod ∈ {EEG, MEG, MEG − EEG}, we defined three generative models Mmod,EEG,

Mmod,MEG and Mmod,MEG−EEG that each embedded source covariance priors Cs resulting from

Step 1 with modality EEG, MEG and MEG-EEG respectively. At the individual level (Step 2 of

group-level inference scheme), a total of 9 cross-modal inversions were computed for each subject:
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Figure 6.1 – Schematic view of the inversion scheme and the fusion evaluation procedure. (a)
The two-step procedure of group-level inference (Litvak et al., 2008). Y _mod denotes observed
EEG, MEG or EEG-MEG data. Step 1 derives the group priors illustrated as purple clusters on
inflated cortical surface, Step 2 derives the individual source distribution J represented by red
clusters on the cortical surface. (b) Procedure for cross-modal inversions: individual inversions
(for each imaging modality) are conducted with group-priors inherited from the different group-
level inversions achieved with EEG, MEG and EEG-MEG data. (c) Bayesian model selection
(BMS) is conducted per modality (column) and rests on the free energy obtained for each
individual inversion achieved with EEG (first row), MEG (second row) and MEG-EEG (third
row) group priors.

three modalities for data (modd ∈ {EEG, MEG, MEG − EEG}) combined with three modalities

for group priors (modp ∈ {EEG, MEG, MEG − EEG}). Thereafter, for each modality modd,

the resulting free energy approximating evidences p(Ymodd
|Mmodd,EEG), p(Ymodd

|Mmodd,MEG) and

p(Ymodd
|Mmodd,MEG−EEG) were compared across subjects using BMC with a random effect (RFX)

model. BMC aimed at evaluating whether the three models Mmodd,modp
with

modp ∈ {EEG, MEG, MEG − EEG}, could be separated by modality modd. To account for

inter-individual variability, we computed the following free energy difference between models for

each subject:

Fmodd,modp=d
− Fmodd,modp,p�=d

≈
p(Ymodd

|Mmodd,modp=d
)

p(Ymodd
|Mmodd,modp,p�=d

)
(6.5)

for each of the 9 cross-modal inversions. Following the usual principles of Kass and Raftery (1995),

we interpreted the free energy differences as follows: a value comprised between -3 and 3 would

indicate that both generative models (both group priors) have comparable evidence (we would

then assume that modality used for inversion is not informed enough to disentangle these two

models); a value larger (lower) than 3 corresponds to first (second) model having a greater evi-

dence (for these two cases, we would then assume that modality modd used for inversion contains

enough information to resolve corresponding models). For each BMC applied to modality modd

(Figure 6.1.c), we expected model Mmodd,modp
with d = p to be the best model as this would

reflect that data Ymodd
is sufficiently informed at the group-level to recognize (and prefer) the
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group priors that it has generated. We also expected specific patterns across modalities by con-

sidering that EEG may have a lower spatial resolution than MEG (hence would be less informed)

and that MEG and EEG contain complementary information (Lopes da Silva, 2013). Namely,

we hypothesized that i) EEG inversion would also perform well with MEG and MEG-EEG group

priors (EEG would have a rather low ability to resolve models), ii) MEG inversion would also

perform well with MEG-EEG group priors but not with EEG ones, and iii) MEG-EEG inversion

with its own group priors would outperform EEG and MEG group priors (fused inversion would

have the larger model resolution). An original aspect of the proposed method pertains to the fact

that it allows comparing quantitatively EEG, MEG and fused MEG-EEG source reconstructions

applied to real (not simulated) data. We carried out this empirical evaluation for the FRQ and

INT MMN as described below.

Empirical data for source reconstruction and multimodal evaluation

Data originate from a passive auditory oddball study with simultaneous MEG-EEG recordings

where EEG analysis revealed two deviance responses: an early effect occurring within 70 ms after

stimulus onset and a late effect (MMN) peaking at 170 ms post-stimulus (Lecaignard et al., 2015).

We refer the reader to this study for a more detailed description of material and methods.

Participants

27 adults (14 female, mean age 25±4 years, ranging from 18 to 35) participated in this experiment.

All participants were free from neurological or psychiatric disorder, and reported normal hearing.

All participants gave written informed consent and were paid for their participation. Ethical

approval was obtained from the appropriate regional ethics committee on Human Research (CPP

Sud-Est IV - 2010-A00301-38). Two participants have been added to the 5 ones excluded for

EEG analysis (Lecaignard et al., 2015), because they had too low SNR for MEG data, leading

the current analysis based on a total of 20 participants.

Experimental design

The oddball sequences embedding unpredictable occurrence of deviants (UF, UI) employed in the

original study were retained for the current analysis, leading to two conditions for the present

work that we rename here as FRQ (frequency deviance) and INT (intensity deviance). Both

sequence types had the same deviant probability (p = 0.17). Two different frequencies (f1=500

Hz and f2=550 Hz) and two different intensities (i1=50 dB SL (sensation level) and i2=60 dB

SL) were combined to define the four different stimuli that were used across conditions, with

each condition (FRQ and INT) delivered twice in reverse sessions (standard and deviant physical

properties were exchanged between sessions). Further details about stimuli and sequences can be

found in Lecaignard et al. (2015). Participants were instructed to ignore the sounds and watch a

silent movie of their choice with subtitles.

Data acquisition

The original study was conducted using simultaneous MEG and EEG recordings. Participants

were seated upright in a comfortable armchair in a sound-attenuated, magnetically shielded record-

ing room, at a 1 m distance from the screen. Sounds were presented binaurally through air-

conducting tubes using Etymotic ER-3A foam earplugs (Etymotic Research, Inc. United States
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of America). Sound level was adjusted individually according to participants’ detection thresh-

olds (performed before recordings using the sound with 500 Hz). Electrode positions relative to

three anatomical fiducials (landmarks positioned at nasion, left and right pre-auricular points)

were localized using a digitization stylus (Fastrak, Polhemus, Colchester, VT, USA). Special care

was taken to minimize head position drifts between sessions. Finally, T1-weighted magnetic reso-

nance imaging images (MRIs) of the head were obtained for each subject (Magnetom Sonata 1.5

T, Siemens, Erlangen, Germany). High MRI contrast markers were placed at fiducial locations

to facilitate their pointing on MRIs hence minimizing anatomical and functional coregistration

errors.

MEG recordings were carried out using a 275-channel whole-head MEG system (CTF-275 by VSM

Medtech Inc.) with continuous sampling at a rate of 600Hz, a 0.016–150Hz filter bandwidth, and

first-order spatial gradient noise cancellation. EEG recordings were carried simultaneously to

MEG ones using the EEG recording system provided with the MEG equipment (same sampling

rate and filter bandwidth). EEG data were collected from 63 electrodes whose locations were

defined by the 10–5 extension of the international 10–20 system. Reference electrode and ground

electrode were placed on the tip of the nose and left shoulder respectively. Throughout the

recordings, impedances were below 15 kΩ. Head position relative to the MEG sensors was ac-

quired continuously (continuous sampling at a rate of 150 Hz) using head localization coils placed

at fiducial points.

Data preprocessing and event-related field/potential (ERF/ERP) computation

The software package for electrophysiological analysis (ELAN, http://elan.lyon.inserm.fr)

was used for ERF/ERP computation and statistical analysis. Continuous measures of fiducial

position were averaged within each session to account for participant’s head movement. Data

segments corresponding to head movements larger than 15 mm relative to the average position

and to SQUID jumps (for MEG data) were rejected. Further preprocessing included independent

component analysis (ICA) correction for ocular artifacts and filtering (2-45 Hz band-pass digital

filter, bidirectional Butterworth, 4th order), as detailed in Lecaignard et al. (2015). Filtered data

were epoched from -200 ms to 410 ms post-stimulus (mean signal during pre-stimulus time-interval

was removed for baseline correction). Importantly, we only used time epochs that survived the

procedures applied for artifact rejection for both modalities. Responses to standards just preced-

ing a deviant and to deviants were considered for averaging and difference responses (also referred

to as deviance response) were obtained by subtracting the standard ERF/ERP from the deviant

one. Importantly, EEG evoked responses were re-referenced to the averaged mastoid electrodes

for the current study for compatibility with the forward model. The effect of deviance (deviant vs.

standard) was tested with MEG and EEG responses (with averaged mastoid reference) for both

conditions FRQ and INT. Statistical analysis included permutation tests (100,000 permutations)

at each time sample with correction for multiple testing in the temporal dimension (see initial

EEG study for a detailed description).

Data for source reconstruction

We used SPM8 software (Wellcome Department of Imaging Neuroscience, http://www.fil.ion

.ucl.ac.uk/spm). Standard and deviant ERFs and ERPs (with averaged mastoid reference) were

imported in SPM8 for both FRQ and INT conditions, and down-sampled (200Hz) for data reduc-

tion. We started with reconstruction of the cortical sources of the P50 component elicited by stan-
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dards just preceding a deviant (from 60 to 70 ms) for each modality (EEG, MEG, MEG-EEG).

This preliminary step constitutes a control for the validity of our inversion scheme. Following

this, deviance-related reconstructions were estimated for difference responses (deviant-standard)

for each condition separately (frequency, intensity), for each modality in three post-stimulus time

windows: from 15 to 75 ms (early deviance effect), from 110 to 150 ms (MMN rising edge), and

from 150 to 200 ms (MMN peak). Overall, a total of 21 separate inversions were computed for

each of the 20 participants. In addition, comparative evaluation of separate (EEG, MEG) and

fused (MEG-EEG) inversions was applied to the MMN source reconstruction ([150, 200]ms) for

both conditions (FRQ, INT). Regarding data normalization, 7 and 21 spatial modes (explaining

99.0% and 99.9% of the group-informed gain matrix variance) were retained for EEG and MEG

respectively. Data reduction using temporal modes was achieved for all inversions but the P50-

standard ones (number of samples in time interval [60, 70] ms was too low). For deviance-related

inversions, the number of temporal modes allowing for 100.0% of the variance of the spatially

projected data to be explained was equal to 6, 4 and 5 for [15, 75] ms, [110, 150] ms and [150, 200]

ms time intervals respectively.

Statistical analysis on source distributions

We conducted our statistical analyses at the group-level using the recent surface-based approach

proposed in SPM12. Posterior estimates of source activity and associated variance at each node

of the cortical mesh (the source domain) resulted from posteriors of J̃ and Cs. The energy of

posterior mean was considered for statistical analysis. One-sample t-tests were performed at each

node, thresholded at p < 0.05 with Family Wise Error (FWE) whole-brain correction. In addi-

tion, we imposed the size of subsequent significant clusters to be greater than 20 nodes. Distance

between two local maxima within a cluster was constrained to be larger than 5 nodes.

Results

This section presents our results as follows: first we briefly report for both MEG and EEG

the grand-average responses. Second, we describe the results obtained for the localization of the

standard P50 generators using EEG, MEG and MEG-EEG (condition FRQ). We then present the

comparative evaluation for EEG, MEG and fused inversions that we conducted with FRQ and

INT difference responses, at the MMN peak ([150, 200] ms). Finally, as multimodal comparison

was in favor of fused MEG-EEG inversion, we report the corresponding sources obtained for the

time intervals [15, 75] ms, [110, 150] ms and [150, 200] ms in the difference responses, for both

conditions FRQ and INT.

Sensor-level analysis

Grand-average responses at gradiometer MLP56 and electrode FCz for standard, deviant and dif-

ference responses for condition FRQ and INT are shown in Figure 6.2. Regarding EEG responses,

the early deviance effect and the MMN described in Lecaignard et al. (2015) were recovered for

both FRQ and INT conditions with the current group of 20 participants and average-mastoid ref-

erence. The emergence of the early effect was statistically significant from 15 to 55 ms and from

5 to 65 ms for FRQ and INT respectively. For the MMN, emergence was statistically significant

from 115 to 210 ms and from 113 to 211 ms for FRQ and INT respectively. Regarding MEG
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Figure 6.2 – Deviance responses measured with EEG and MEG. (a) EEG analysis with average
mastoid reference. Left: Standard, deviant and difference evoked responses measured at frontal
electrode FCz for frequency (red) and intensity (blue) deviance. Grey areas indicate significant
deviance time-intervals. Right: Scalp topographies at relevant latencies for the early effect,
the rising edge and the peak of the MMN, for frequency (upper row) and intensity (lower row)
deviance. Voltage color scale is indicated for each time-window. (b) MEG analysis. Traces
measured at left temporo-parietal gradiometer MLP56 are represented using the same color
code as for EEG; Scalp maps at relevant latencies are represented on the left. Black dots on
EEG and MEG scalp maps indicate electrode FCz and gradiometer MLP56 respectively.

responses, these two components could be also observed, with significant emergence from 5 to 90

ms, and 105 to 210 ms respectively for condition FRQ, and from 3 to 90 ms and 140 to 225 ms

respectively for condition INT.

Both EEG and MEG traces show a tendency for the MMN in INT to start later than in condition

FRQ, we therefore distinguished the rising edge of this component from the peak per se to increase

the spatial sensitivity of reconstructions. The time windows were defined as follows: [15, 75] ms

for the early deviance effect, [110, 150] ms for the rising edge of the MMN and [150, 200] ms for the

MMN peak. For the sources of the standard P50 component (condition FRQ) visual inspection

of EEG and MEG standard responses led us to select the [60, 70] ms time window.

Source reconstructions for the standard P50

For each modality, R the percentage of variance of data Y explained by the estimated source

distribution J̃ (comparable to a goodness-of-fit measure) was equal on average across subjects

to 82.0%(±27.5), 91.1%(±3.4) and 85.9%(±10.9) for EEG, MEG and MEG-EEG inversions re-

spectively. Two subjects presented very low values of R for EEG inversion (but not for MEG),

that could be explained by the small (adapted) amplitude of EEG standard responses within the

short window of [60, 70] ms (this was not observed for MEG data). Value of R without these

two subjects was equal to 90.1%(±7.3). EEG source distribution comprised 18 significant clus-

ters including posterior STG (expanding through STS), the superior frontal gyrus (SFG), the
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inferior temporal gyrus (ITG), the posterior central gyrus and the intraparietal sulcus (in both

hemispheres). Results with MEG inversions showed significant activity in 12 clusters distributed

bilaterally in Heschl’s gyrus (HG), posterior inferior frontal gyrus (IFG), posterior STG (includ-

ing its inferior bank), middle temporal sulcus (MTS) and orbitofrontal regions. Activity in right

temporo-parietal junction (TPJ) expanding through posterior central gyrus was also observed.

Finally, fused MEG-EEG inversions revealed 8 clusters located in HG, posterior IFG, posterior

STG (expanding through STS in left hemisphere, and TPJ in right one) and orbitofrontal regions

bilaterally. Contribution from bilateral supratemporal planes with in particular HG (for MEG

and MEG-EEG) is consistent with literature and led us assume that the framework employed in

the current study (with pre-cited assumptions, BEM forward model and MSP group-level infer-

ence with default Sparse Priors), although limited by the ill-posed nature of the inverse problem,

provide plausible estimation of auditory cortical activity.

Multimodal evaluation

For each modality, source reconstructions were computed for each subject using difference re-

sponses at the time interval [150, 200] ms. The value of R for condition FRQ was equal on average

to 95.1%(±2.1), 94.2%(±2.3) and 93.6%(±2.6) for EEG, MEG and MEG-EEG inversions respec-

tively. In condition INT, it was equal on average to 94.7%(±2.5), 93.8%(±2.3) and 93.1%(±2.7)

for EEG, MEG and MEG-EEG inversions respectively. Regarding the contribution of each modal-

ity (EEG, MEG) in the case of fused inversion, paired Student’s t-tests were used to compare the

mean values of hyperparameters λEEGand λMEG. In both condition FRQ and INT, inversions

across subjects led to no significant difference between modalities (t(19)=1.30, p=0.21 for FRQ;

t(19)=1.98, p=0.06 for INT).

Separate and fused MMN source distributions (qualitative comparison)

Figure 6.3 shows the results of the statistical analysis projected on the inflated cortical surface

for each modality (EEG, MEG and MEG-EEG) and each condition (FRQ, INT). In condition

FRQ, EEG inversion revealed activity in the supratemporal plane expanding anteriorly from the

Planum Polare (PP) and in the lower bank of the posterior part of the STG in both hemispheres.

No frontal area was found significant. MEG inversion indicated a large cluster in the supratem-

poral plane (number of nodes in cluster k > 120) expanding from the lateral part of HG through

PP in both hemispheres. A bilateral frontal area was retrieved in the posterior part of the IFG.

Smaller supratemporal clusters were found with fused MEG-EEG inversion: in the right hemi-

sphere, one cluster (k=92) including the lateral part of HG and PP could be measured, and in the

left hemisphere HG and PP were found in separate clusters (k=55 and 25 respectively). Bilateral

clusters similar to MEG ones were found in the frontal lobe. In condition INT, the MMN with

EEG inversion was associated with bilateral activity in the posterior part of the STG and the

intraparietal sulcus. MEG inversion revealed activity in the supratemporal plane and the IFG in

both hemispheres, similarly to FRQ condition. With fused inversion, largest clusters were found

in the lateral part of HG in both hemispheres. Other activity in the right hemisphere was found

significant in the posterior part of IFG, the posterior part of STG and in the inferior temporal

gyrus (ITG).

Comparative evaluation for condition FRQ
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Figure 6.3 – Reconstructed sources of the MMN (150-200 ms). Significant clusters are rep-
resented in red on the canonical inflated cortical surface. First three columns from the left
correspond to right, front and left views revealing frequency deviance generators, obtained with
EEG (upper row), MEG (middle row) and MEG-EEG (lower row) data. The same three columns
on the right show the results for intensity deviance.

Group priors obtained with each modality for condition FRQ are displayed on inflated cortical

Figure 6.4 – Group priors for the MMN (150-200 ms). Purple areas represent the activated
clusters resulting from group-level inversion that will enter as priors in subsequent individual
inversions. Results are presented using the same organization as in Figure 6.3.

surfaces in Figure 6.4. Several differences can be observed between modalities from a visual in-

spection. First, priors in the supratemporal planes are mostly located more anteriorly in EEG

than in MEG and MEG-EEG (although small spots in the vicinity of HG and PP are also found

in EEG). Priors in bilateral posterior STG were found only for EEG, but priors located in right

posterior MTG could be revealed with MEG and MEG-EEG. Regarding frontal priors, they were

found in the same area (the posterior part of IFG) but with a far smaller extent in EEG. Priors in

the intraparietal sulcus were identified with EEG only. In summary, MEG and MEG-EEG group

priors appears similar (favoring posterior IFG and supratemporal planes including HG and PP
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bilaterally), whereas EEG differs by strengthening priors in posterior STG and anterior temporal

lobe.

Separate and fused inversion evaluation using these group priors were then conducted, with results

shown in Figure 6.5. At the group level, RFX BMC (Figure 6.5.b) indicated that for all modalities

EEG, MEG and MEG-EEG, the generative model embedding group priors derived from the same

modality (Mmodd,modp=d
) had the greatest posterior probability. Precisely, the following model ex-

ceedance probabilities were found: p(MEEG,EEG|YEEG) = 1.00, p(MMEG,MEG|YMEG) = 0.97 and

p(MMEG−EEG,MEG−EEG|YMEG−EEG) = 0.88. In the latter case, model MMEG−EEG,MEG−EEG

was followed by MMEG−EEG,MEG having a posterior probability of 0.11. Group priors obtained

with EEG inversion were associated with posterior probability close to zero in all modalities but

EEG.

At the individual level, free energy differences (see Eq. (6.5)) calculated for each of the 9

Figure 6.5 – Cross-modal evaluation the frequency MMN (150-200 ms). (a) Individual free
energy differences obtained for EEG (left), MEG (middle) and fused (right) inversions; Grey
area indicates the (-3 +3) interval corresponding to an absence of evidence between group-prior
models. For each graphic, the color of the two bars assigned for each subject indicate which
relative difference it represents following the color code presented below the three graphs. (b)
BMS results using a RFX model for EEG (left), MEG (middle) and fused (right) inversions.

cross-modal inversions are displayed in Figure 6.5.a. For EEG inversion, MEG group priors

compared to EEG ones were found equivalent (−3 ≤ FEEG,EEG − FEEG,MEG ≤ 3) across 18

subjects and different (FEEG,EEG − FEEG,MEG > 3) for 2 subjects; MEG-EEG group priors

were found equivalent across 13 subjects and different (FEEG,EEG − FEEG,MEG−EEG > 3) for

7 subjects. For MEG inversion, EEG group priors induced lower free energy than MEG ones

(FMEG,MEG − FMEG,EEG > 3) for all subjects; MEG-EEG group priors were found equivalent

to MEG ones for 14 subjects, led to a positive difference (FMEG,MEG − FMEG,MEG−EEG > 3 )

for 5 subjects and negative difference (FMEG,MEG − FMEG,MEG−EEG < −3 ) for 1 subject. For

MEG-EEG inversion, all subjects obtained lower free energy with EEG group priors than with
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MEG-EEG ones; MEG group priors were found equivalent for 8 subjects, led to a positive dif-

ference (FMEG−EEG,MEG−EEG − FMEG−EEG,MEG > 3 ) for 9 subjects and a negative difference

(FMEG−EEG,MEG−EEG − FMEG−EEG,MEG < −3) for 3 subjects.

Comparative evaluation for condition INT

Group priors obtained for condition INT are shown in Figure 6.4. From visual inspection we

noticed that EEG group priors were located in bilateral posterior STG, ITG and intraparietal sul-

cus. Anterior part of the right supratemporal plane was also involved in this model. MEG group

priors were predominantly distributed in lateral HG, PP and posterior IFG in both hemispheres.

Smaller clusters were also located in the vicinity of temporo-parietal junction, the central sulcus,

the occipital lobe, the orbitofrontal region and the ITG. Finally for MEG-EEG, group priors were

located mostly in lateral HG, posterior IFG (two distinct clusters) in both hemispheres. Bilateral

priors in posterior MTG and in the central sulcus, as well as in right posterior STG expanding

through the temporo-parietal junction and in right ITG could also be identified. To sum up,

similarly to condition FRQ, EEG inversion led to group priors that strongly differ from MEG and

MEG-EEG (with namely the absence of priors in the IFG and in the area embedding HG and

PP). Regarding MEG and MEG-EEG, contrary to condition FRQ, two noticeable differences can

be reported: the absence of priors in PP for fused inversion, and the numerous clusters with small

extent for MEG inversion.

Results of our comparative evaluation for condition INT are shown in Figure 6.6. Group-level

model comparison using RFX BMC (Figure 6.6.b) showed greatest posterior probability for model

Mmodd,modp=d
in the case of EEG and MEG-EEG inversions, with p(MEEG,EEG|YEEG) = 1.00 and

p(MMEG−EEG,MEG−EEG|YMEG−EEG) = 0.97. Regarding MEG inversion, BMC indicated com-

parable posterior probabilities evidences for MEG and MEG-EEG group-prior models (0.52 and

0.48 respectively). Group priors obtained with EEG inversion were associated with posterior

probability equal to zero in all modalities but EEG.

At the individual level (Figure 6.6.a), for EEG inversion, MEG group priors were found equiv-

alent to EEG ones (−3 ≤ FEEG,EEG − FEEG,MEG ≤ 3) for 15 subjects and induced lower free

energy (FEEG,EEG − FEEG,MEG > 3) for 5 subjects; MEG-EEG group priors were found equiv-

alent across 19 subjects and different (FEEG,EEG − FEEG,MEG−EEG > 3) for 1 subject. For

MEG inversion, results are similar to those obtained with condition FRQ. In particular, EEG

group priors also induced lower free energy than MEG ones for all subjects and MEG-EEG

group priors were found equivalent to MEG ones for 14 subjects, led to a positive difference

(FMEG,MEG − FMEG,MEG−EEG > 3) for 3 subjects and a negative difference (FMEG,MEG −

FMEG,MEG−EEG < −3) for 3 subjects. For MEG-EEG inversion, EEG group priors induced

lower free energy than MEG-EEG ones for all subjects; MEG group priors were found equivalent

for 6 subjects, led to a positive difference (FMEG−EEG,MEG−EEG − FMEG−EEG,MEG > 3) for 12

subjects and a negative difference (FMEG−EEG,MEG−EEG−FMEG−EEG,MEG < −3) for 2 subjects.

Summary

Reconstructions of the sources of frequency and intensity MMN were performed using EEG,

MEG and MEG-EEG inversions. Source distributions all provided a very good fit of data and

for fused inversion, EEG and MEG contributed equally to the inversion process. Using MEG



6.2 Article 121

Figure 6.6 – Cross-modal evaluation the intensity MMN (150-200 ms).

and MEG-EEG, a bilateral fronto-temporal network could be identified, with a finer dissociation

of supratemporal clusters obtained with fused inversion. EEG results differed from MEG and

MEG-EEG ones, with notably an absence of significant frontal contribution Our model-based

method for multimodal comparison indicated that on average across subjects, inversions with

every modality perform better with their respective group priors (with the exception of MEG in

condition INT). Considering within-subject effects:

• For EEG inversion, no significant difference could be measured for the majority of subjects

(N ≥ 13) between EEG and MEG or MEG-EEG group priors. Beside, EEG group priors

always (N = 20) perform less successfully when used in MEG and MEG-EEG inversions.

• For MEG inversion, the use of MEG-EEG group priors led to non-different free energy for

the majority of subjects (N = 14 in all conditions).

• For MEG-EEG inversion, the use of MEG-EEG group priors led to equal or larger free

energy for the majority of subjects (N ≥ 17). In condition INT (where visual inspection

of MEG and MEG-EEG group-prior maps revealed larger difference compared to FRQ),

relative free energy for MEG-EEG inversion showed a larger number of participants (N =

12) with MEG-EEG group priors outperforming MEG ones compared to condition FRQ

(N = 9).

Our evaluation method thus revealed a better ability for fused MEG-EEG inversion to resolve

spatial models (group-prior distributions). In the following section, we therefore present the

deviance-related source reconstructions obtained only with this modality.

Fused MEG-EEG sources for auditory mismatch responses

Figure 6.7 shows the results obtained for each deviance type, each time interval with fused inver-

sion.
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Figure 6.7 – Deviance generators obtained with fused inversion. First thee columns present
right, front and left views for frequency deviance; following three columns present results for
intensity deviance. For each deviance type, significant distributed network for early deviance
(upper), the rising edge (middle) and the peak (lower) of the MMN are represented by red
clusters. Black dots within clusters indicate local maxima.

Frequency-deviance sources

Reconstructions of difference responses within time windows [15, 75] ms, [110, 150] ms and [150, 200]

ms were associated with R equal on average to 90.7%(±4.8), 92.3%(±4.4) and 93.6%(±2.6) re-

spectively.

Early-deviance effect ([15, 75]) was found to involve HG in both hemispheres and left poste-

rior IFG. Following this, reconstruction of the rising edge of the MMN ([110, 150] ms) indicated

supratemporal activity in HG and PP, within a large cluster in the right hemisphere (comprising

two local maxima), and separated in two distinct clusters in the left hemisphere (with HG cluster

being smaller). Significant activity was also found in bilateral posterior IFG. Finally, as described

in previous section, the peak of the MMN ([150, 200] ms) was associated with activity in both

hemispheres peaking in HG, PP and posterior frontal IFG. The total number of significant sources

within bilateral supratemporal planes was larger for the peak than for the rising edge of the MMN

(178 and 108 respectively), while it remained constant within IFG (116 and 112 respectively).

Intensity-deviance sources

Reconstructions of difference responses within time windows [15, 75] ms, [110, 150] ms and [150, 200]

ms were associated with R-value equal on average to 91.4%(±5.2), 90.5%(±5.4) and 93.1%(±2.7)

respectively.

Within the early-deviance window ([15, 75] ms), activity was more widespread in bilateral HG but

was also found in posterior IFG. Reconstructions within [110, 150] ms produced significant clusters

in bilateral HG and posterior IFG. In addition, there was a contribution from left middle occipital

gyrus (MOG). Finally, sources in HG and posterior IFG were observed in both hemispheres for

the MMN peak reconstruction ([150, 200] ms). Smaller clusters were found in ITG and posterior

STG in the right hemisphere.
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Summary

For both conditions, a fronto-temporal network could be retrieved for the three time windows

corresponding to the deviance-related responses observed in ERP/ERF using fused MEG-EEG

inversions. Frontal contributions could be measured as soon as the early deviance response win-

dow. Regarding temporal activity, in the frequency condition fused inversion allowed to separate

HG and PP clusters spatially, but also temporally, as PP was not found associated with the rising

edge of the component. For the intensity condition, supratemporal activity was found circum-

scribed to HG.

Discussion

In the present study, we conducted a source reconstruction analysis of auditory mismatch gen-

erators using state-of-the-art methodologies at every stage of the scheme, including a particular

care for data coregistration, an accurate realistic forward model, a Bayesian-based group-level

inversion procedure coupled with advanced surface-based statistical tools, and most of all the

integration of simultaneous EEG and MEG recordings. Importantly, we also proposed a simple

and efficient procedure resting on Bayesian model comparison for the quantitative evaluation of

fused inversion with empirical data. The whole framework was validated with the reconstruction

of the P50 generators. Applied to the mismatch responses, it enabled to locate bilateral sources

in the supratemporal cortex and the IFG for both frequency and intensity deviances with subtle

spatio-temporal difference between conditions. Beside, using our comparison approach, we showed

that fused inversion provided an increased spatial resolution compared to unimodal ones.

Our findings reflect the different sensitivity of EEG and MEG measurements that both capture

the (different) observable effects of the same hidden distributed neuronal activation. Contribution

of the IFG could be revealed by MEG inversion for both deviance features but not by EEG. In

fact, very few EEG studies reported such contribution like in Rinne et al. (2000), and most of

them involved constrained ECD modeling (Jemel et al., 2002; MacLean et al., 2015). It should

also be noted that very few MEG studies succeeded in observing such inferior frontal activation

(Lappe et al., 2013a; Recasens et al., 2015). Regarding the activity within the supratemporal

plane, modalities differed with EEG providing large clusters in posterior STG whereas MEG

could reveal activity spanning over the expected primary auditory cortex. These findings thus

confirm the long time acknowledged high potential of MEG to resolve temporal lobe activity (see

for instance early MMN dipole studies, Alho, 1995). The different source distribution obtained

with EEG and MEG should derive from the fact that they don’t capture the same aspects of

the underlying biophysical activity (originating from the same neural activation) (Lopes da Silva,

2013). Furthermore, the two imaging techniques do not have the same sensibility to various

assumptions embedded in their respective forward models (eg, the conducting properties of the

head, sensor positions and orientations). For instance EEG is more sensitive than MEG to white

matter anisotropy changes within brain tissues (Güllmar et al., 2010), a property not accounted

for by the forward models used here. Taken together, these findings support fused inversion to

exploit these complementary EEG and MEG information, as was observed in the present study:

only fused inversion could provide subtle dissociation within the supratemporal plane induced by
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frequency and intensity deviances. This highlights the importance to include EEG information

to improve MEG spatial resolution in the particular case of temporal activations.

This augmented performance of fused inversion could be measured quantitatively using a novel

procedure that we proposed and that rests on the Bayesian framework employed in source re-

construction. Bayesian model comparison is a powerful tool to select which model is the more

likely to have generated the observed data, taking into account for not only the fit of data but

also the relative complexity of models that cause (undesired) data overfitting. By essence, BMC

is not to be used to compare source inversion obtained with different data (in our case, EEG,

MEG and MEG-EEG data). To circumvent this issue, we compared for each data type the in-

versions conducted with the different group priors obtained by each modality, that reflect the

amount of information captured by each modality at the group-level. We thus exploited both

the Bayesian scheme and group-level inference procedure to derive an easy-to-achieve comparison

tool, estimating the capacity of each modality to resolve EEG, MEG and fused group priors.

Application at the group level to auditory mismatch reconstruction suggest that each modality

recognized its proper priors, but individual inspection could suggest the lack of information in

EEG data that prevented to disentangle modality models, whereas MEG and MEG-EEG ap-

peared sufficiently informed to do so. Moreover, fused inversion was found to outperform MEG

as suggested by intensity deviance results where a larger resolution capacity could be measured.

Importantly, no significant difference between the measurement noise estimate (hyperparameter

λn) obtained for each modality in the case of fused inversion led us assume that both modalities

equally contributed to the inversion scheme. The larger accuracy for fused inversion obtained

here is definitely in accordance with expectations from simulation-based literature and could con-

stitute the first robust empirical evidence resting on a sizeable group of subjects (N=20) and a

quantitative procedure. Generalizability of the present results to other brain activations should

be evaluated using the efficient scheme that we propose, that could further help to characterize

the spatial complementarity of EEG and MEG recordings. In particular, this could help deciding

whether or not simultaneous recordings remain advised (and under some technical adjustments,

such as estimating the number of required sensors per modality), which is an important practical

aspect to consider when designing a new experiment.

The fronto-temporal distributed network identified with fused inversion for frequency deviance

processing, including the rising edge and the peak of the MMN component, is perfectly consistent

with previous findings. However, the fine-grained description that could be established within the

supra-temporal plane implies a spatial resolution that, to our knowledge, had rarely been attained

before using either EEG or MEG distributed methods. In fact, the present findings are more com-

parable to those reported in the fMRI study of Schönwiesner and collaborators (2007), despite

some differences (notably regarding the implication of posterior STG) that could be attributed

to the duration deviance that they used. We failed to reveal other contributing generators often

(but not systematically) reported, like sources in the parietal lobe or the ACC. This could be due

to the MSP approach guiding the iterative optimization procedure behind model inversion: MSP

implements the principle of sparsity (regarding the number of activated sources) and consequently

progressively cancels out sources that are less likely than others to fit the observed data. Parietal

or ACC sources could have been treated as less plausible candidates to explain the MMN than

IFG and supra-temporal regions. Another noticeable aspect regarding our findings pertains to the
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posterior to anterior progression that we measured between the rising edge and the MMN peak,

that appears in keeping with several studies that had explored the N1 and the MMN generators

(Scherg et al., 1989; Recasens, Grimm, Capilla, et al., 2014). These results support the (complex)

multiple distributed activated area at play during auditory deviance processing.

Regarding the generators or the early response elicited with both deviance features, temporal

activity was clearly circumscribed within bilateral Heschl’s gyrus, that supports the adequate

spatial resolution reached with fused inversion. These HG sources, as well as those measured for

the P50 response in our face validity procedure are consistent with MLR findings from intracra-

nial recordings studies (Liégeois-Chauvel et al., 1994), but they slightly differ from recent MEG

findings in Recasens et al. (2014), where the Nb source could be located in right hemisphere,

involving HG but also additional temporal areas. Bilateral contributions were however reported

using a similar procedure in (Recasens, Grimm, Wollbrink, et al., 2014), with generators found in

HG but also anterior part of the STG. Crucially, a major difference between these studies and the

present findings pertains to frontal sources that we were able to recover. Under the assumption

of a hierarchical organization for deviance processing that could unfold from subcortical areas to

higher cognitive cortical levels (Escera & Malmierca, 2014), such frontal contribution as soon as

these early latency becomes highly expected.

Finally, although investigating the difference between frequency and intensity deviance processing

was beyond the scope of the study, distinct spatio-temporal patterns reconstructed in our study

suggested similar early underlying mechanisms, followed by different neural processes taking place

within the supratemporal plane and frontal regions. The anterior progression (from HG to PP) ob-

served with frequency deviance could rest on the specificity of frequency, a more complex property

of stimulus whose treatment could recrute additional auditory areas. Such different processing

is largely accepted, that had been supported by early ECD MMN studies conducted with EEG

(Giard et al., 1995) and MEG (Levänen et al., 1996) data. The observed interhemispheric frontal

asymmetry for intensity deviance could conform several MMN studies that have reported a right

hemisphere dominance (see for instance Paavilainen et al., 1991). Intensity deviance also indicated

unexpected contributions such as the middle occipital gyrus. These results are not consistent with

previous findings but it is worth recalling that (at least for this contribution in particular) the

intensity MMN was not significant over the time interval used for this reconstruction (from 100

to 150 ms), as can be seen in Figure 6.2; we therefore assumed that these findings reflect local

minima into which the iterative algorithm had converged. Such false positive results should also

constitute a reminder of the ill-posed nature of the source reconstruction problem, that will always

remain whatever the advanced methodologies integrated in the inversion framework.

Conclusion

Using advanced MEG-EEG localization methods, a bilateral fronto-temporal network conforming

previous findings was identified for both frequency and intensity deviance ERPs. Interestingly,

a high degree of spatial resolution could be attained with fused inversion, allowing an accurate

spatio-temporal description that could reveal differences within the supratemporal plane between

deviance types. Evaluation of spatial model resolution for each modality speaks clearly in favor

of using fused MEG-EEG data as it proved best to disentangle spatial models, even compared
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to MEG. Despite the fact that simultaneous acquisitions may appear less straightforward that

unimodal ones in terms of experimental procedure, the present findings suggest that they should

be considered as an attractive and powerful option that we recommend, particularly in the case of

auditory studies. The refined spatial description of the auditory cortical hierarchy achieved here

represents a crucial step prior to further hypothesis testing regarding the neurophysiological and

computational mechanisms behind mismatch responses.



Chapter 7

Neurophysiological modeling of

deviance responses: insights from

predictability manipulation

7.1 Introduction

The predictive coding account of auditory processing rests on precision-weighted prediction errors

generated by unexpected sounds along the auditory hierarchy. Characterizing the neural corre-

lates of such errors could shed light onto the neurophysiological mechanisms behind this predictive

framework in auditory processing. DCM and CMC (Kiebel et al., 2006; Bastos et al., 2012) has

been proposed to tackle this challenging issue. These dynamical causal models aim at describing

the effective connectivity at play during a mental process, and CMC relates explicitly the pre-

cision weighting to the intrinsic connectivity, and the prediction error to the forward extrinsic

connectivity. As briefly reviewed in chapter 4, §4.2.3, some studies have addressed the effective

connectivity behind deviance processing using DCM, with findings validating the ability of these

models to predict electrophysiological mismatch responses on the one hand, and supporting the

predictive coding message-passing scheme induced by unexpected sounds, the deviants, on the

other hand.

Using a manipulation of deviance predictability in an EEG-MEG passive study, we could re-

late different mismatch responses (including the MMN) to prediction errors (Lecaignard et al.,

2015). Precisely, we could observe that the more predictable the sound sequence, the smaller

the mismatch responses, as expected under predictive coding. As discussed in chapter 5, this

predictability effect involved the implicit learning of auditory regularities, and such (high-level)

learning was hypothesized to shape the lower-level precision-weighted prediction errors. Impor-

tantly, an unresolved issue pertains to the fact that predictability could affect either the precision

weighting or the prediction error or both. Using DCM with CMC, the present study aimed at

characterizing the neurobiological underpinnings of auditory evoked responses during a passive

oddball paradigm, and at assessing the influence of contextual manipulations on the deviance-

related effective connectivity, with regard in particular to the ensuing adjustment of precision-

weighted prediction errors. The present analysis, if it were to reveal specific neurophysiological

changes in both the extrinsic and the intrinsic connectivity induced by regularity learning, would

127
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thus establish a relation between electrophysiological data and Bayesian computation in the brain.

As a second aim, the acknowledged better performance obtained for source reconstruction us-

ing fused inversion (Dale & Sereno, 1993; Fuchs et al., 1998; Babiloni et al., 2004; Henson et al.,

2009) and the consistent findings obtained with our empirical evaluation conducted in chapter

6 encouraged us to combine EEG and MEG DCM. Indeed, the information captured by each

modality is complementary over the spatial dimension (as indicated with successful fused source

inversions) and could arguably be so over the temporal one (DCM inversion is driven by the fit of

data over this dimension). In the present study, we propose to combine posterior DCM estimates

obtained with each modality (under the assumption of conditional independence of the data), to

derive a ”posterior fusion” (p-MEEG). In addition, we also further attempted to fuse modalities

within the generative model of DCM, that would arguably increase inversion performances as this

would provide additional constraints in the model. The approach that we propose and the tests

that we performed (with simulated and real data) to face its validity are presented in the Annex

section of this chapter (§7.7). Basically, following the scheme for fused (static) source reconstruc-

tion proposed in Henson et al.(2009), we could extend the observation model of DCM to account

for fused data. Despite convincing simulation-based results, our approach was found unsuccessful

when applied to real data, that calls for further methodological improvements.

This work addresses the underlying neurophysiological mechanisms of deviance processing at the

latency of the MMN, and their modulation by the contextual predictability. The overall study

was conducted using the EEG and MEG mismatch responses obtained in the oddball study pre-

sented in chapter 5 and rested on the cortical network identified with fused source reconstruction

described in previous chapter. This chapter is organized as follows: we first describe the general

methods for the different DCM studies conducted here. We then present the first one (Study

1 ) addressing the characterization of the network structure for deviance processing (in terms of

architecture and system inputs), followed by a presentation of the second one (Study 2 ), aiming at

assessing the synaptic changes induced by deviant stimuli (namely the trial-specific effect between

standard and deviant responses, see §4.2.2). The analysis of the predictability effect on deviance

processing DCMs (UF vs. PF) is then described. Finally, in the last section, we discuss our

findings.

7.2 Material and methods for all DCM studies

DCM studies rested on data originating from a passive auditory oddball study conducted with

simultaneous MEG-EEG recordings (Lecaignard et al., 2015). This study comprised two types

of frequency oddball sequences having different temporal structure: an unpredictable frequency

sequence (condition UF) with deviant stimuli occurring pseudo-randomly, and a predictable fre-

quency sequence (condition PF) with deviant stimuli occurring in a deterministic fashion. Study

1 was dedicated to the characterization of the network structure for deviance processing and in-

volved standard and deviant responses of a typical frequency oddball sequence (condition UF).

Study 2 was dedicated to the changes in connectivity induced by deviants within the structure

selected in Study 1. It was first carried out with unpredictable data (UF) to refine the DCM of

the MMN, and then conducted with predictable data (PF) to address the effect of the perceptual

learning of statistical regularities on DCM connectivity.
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Participants. 27 adults (14 female, mean age 25 ± 4 years, ranging from 18 to 35) participated in

this experiment. All participants were free from neurological or psychiatric disorder, and reported

normal hearing. All participants gave written informed consent and were paid for their partici-

pation. Ethical approval was obtained from the appropriate regional ethics committee on Human

Research (CPP Sud-Est IV - 2010-A00301-38). Five subjects were excluded from the analysis due

to EEG or MEG artefacts, another due to individual MR images disclosing a ventriculomegaly,

and another due to a failure to respect task instructions. The current analysis was thus based on

a total of 20 participants.

Experimental design. Both unpredictable and predictable sequence types had the same deviant

probability (p = 0.17). The original study also included an intensity oddball sequence (data not

used here), that led us to manipulate the intensity and frequency attributes of sounds. Conse-

quently, two different frequencies (f1=500 Hz and f2=550 Hz) and two different intensities (i1=50

dB SL (sensation level) and i2=60 dB SL) were combined to define the four different stimuli that

were used across conditions, with each condition delivered twice in reverse sessions (standard and

deviant physical properties were exchanged between sessions). Further details about stimuli and

sequences can be found in Lecaignard et al. (2015). Participants were instructed to ignore the

sounds and watch a silent movie of their choice with subtitles.

Figure 7.1 – EEG and MEG data for DCM analysis. Grand-average ERP (n = 20 participants)
elicited by standards just preceding a deviant (solid line), deviants (dotted line) and difference
responses (bold solid line) at electrode FCz (upper row) and gradiometer MLT14 (lower row)
in bandwidth 2–20 Hz for condition UF (red) and PF (green). EEG responses with average
mastoid reference. Shadowed area correspond to significant time interval for the comparison of
UF and PF traces (p>0.01, corrected for multiple comparisons).

Data for model inversion. Simultaneous MEG and EEG recordings were collected using a 275-

channel whole-head MEG system (CTF-275 by VSM Medtech Inc.) and the associated EEG

recording system (63 electrodes) provided with the MEG equipment. We refer the reader to

Lecaignard et al. (2015) and to chapter 6 for a detailed description of data collection and pre-

processing. Responses to standards just preceding a deviant and to deviants were considered for

averaging and difference responses were obtained by subtracting the standard ERF/ERP from the

deviant one. EEG evoked responses were re-referenced to the averaged mastoid electrodes for the

current study. Evoked responses epoched from -200 ms to 410 ms post-stimulus were imported in
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SPM12 (Wellcome Department of Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/spm)

and were down-sampled (200 Hz) for data reduction and low-pass filtered (20 Hz low-pass digital

filter, bidirectional Butterworth, 5th order). Resulting data entering the current DCM analysis

are shown in Figure 7.1. Statistical analysis described in Lecaignard et al. (2015) was replicated

with the 2-20 Hz data, that confirmed 2-45 Hz findings on MMN amplitude. The present study

focused on the MMN component and visual inspection of group-level traces led us to select the

time interval of 0 ms to 220 ms for DCM inversion. Within DCM procedure, every data point

was time-weighted by a Hanning window to ensure that system’s dynamics was set to zero before

being excited by the (thalamic) inputs. Finally, before starting data inversion, DCM procedure

performs the projection of sensor data onto virtual sensors (referred to as spatial modes) for data

reduction. Basically, this projection rests on the singular value decomposition (SVD) of the gain

matrix mapping the Ns sources composing the DCM to the external sensors. Loosely speaking,

this step corresponds to the rejection of sensor-level information that could not have been gener-

ated by the Ns sources of the DCM. A total of Ns = 8 sources were considered for the analysis

presented here (see below), leading to an average of Nm = 8(±2.7) spatial modes with EEG data,

and Nm = 13 spatial modes for every subject with MEG data.

Source locations. DCM architecture for both analysis was informed by the fine cortical source

reconstructions performed with the UF difference responses using fused EEG-MEG inversion (see

chapter 6). These inversions could reveal 6 bilateral clusters over Heschl’s gyrus (HG), the planum

polare (PP), and the inferior frontal gyrus (IFG). Each cluster was represented here by a cen-

tral point being the spatial average of all the local maxima over the different time intervals. In

addition, we assumed a bilateral superior frontal contribution (SF) that was motivated by our

sensor-level findings but also by previous electrophysiological studies that had already reported

a double contribution from frontal areas (see for instance, Marco-Pallarés et al., 2005; Fulham et

al., 2014). More precisely, the predictability effect that could be captured with EEG (at fronto-

central sites) but not with MEG (see chapter 5, §5.3.2) led us consider a further contribution to

deviance processing that would express reliably on frontal electrodes and poorly on gradiometers.

We attempted to locate such bilateral frontal contribution by reconstructing the sources of the

Figure 7.2 – Sources for DCM analysis. Projection of the eight ECD used for DCM architecture
on a canonical surface in MNI space. Black dots indicate ECD locations, red clusters derive
from the fused source reconstruction on deviance responses. HG=Heschl’s gyrus; PP=planum
polare; IFG=inferior frontal gyrus; SF=superior frontal. MNI coordinates: HG left (-51, -15,
4), right (52, -10, 5); PP left (-49, -8, -10), right (49, -7, -8). IFG left (-53, 3, 7), right (57, 2,
6). SF left (-28, 24, 44), right (30, 25, 41).

difference between UF and PF deviance responses over the significant time intervals reported

in Lecaignard et al. (2015), namely 55-65 ms and 160-190 ms. Fused inversion revealed left
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and right frontal clusters (36 and 29 nodes respectively, thresholded at p < 0.05 with Family

Wise Error (FWE) whole-brain correction) for the former interval, and a left contribution of 34

nodes for the MMN interval (with p < 0.001 not corrected). Using the same procedure as for

other clusters, these frontal contributions were summarized into a central point to define ECD

locations. The eight resulting equivalent current dipoles (ECD) are represented on a canonical

inflated cortical surface in Figure 7.2 (with MNI coordinates provided). Contrary to orientation,

dipole locations were not estimated during (individual) DCM inversion in order to exploit the

fine spatial information gathered at the group level from fused EEG and MEG source reconstruc-

tion. For each modality, the forward model used for DCM inversion was a realistic Boundary

Element Model (BEM) (Hämäläinen & Sarvas, 1989) computed with the software Openmeeg

(http://openmeeg.github.io) as it was shown to outperform other traditional BEM methods

(Gramfort et al., 2010), as in chapter 6.

General DCM specifications. DCM analysis were performed with SPM12 (Wellcome Department

of Imaging Neuroscience, http://www.fil.ion.ucl.ac.ik/spm). We used the CMC neural mass

model (Bastos et al., 2012; Brown & Friston, 2013) described in chapter 4, §4.2 to exploit its rel-

evance to test predictive coding predictions. For each evolution, observation and measurement

noise parameters to be estimated through DCM inversion, we used default values of SPM12 as

prior expectations and prior variance. Each DCM inversion involved standard response as the

initial state of the system and deviant response resulting from the experimental perturbation (de-

viants possibly inducing changes in synaptic connectivity).

Posterior fusion of EEG and MEG DCM. The approach that we propose to combine EEG and

MEG DCM rests on the assumption of the conditional independence of EEG and MEG data

under the quasi-static approximation of Maxwell equations, which is largely admitted for signals

below 1 kHz (as is the case here). This leads to:

p(yEEG, yMEG) = p(yEEG)p(yMEG) (7.1)

and to:

p(yEEG, yMEG|θ) = p(yEEG|θ)p(yMEG|θ) (7.2)

with θ the evolution parameters. The posterior distribution of θ given yEEG and yMEG writes:

p(θ|yEEG, yMEG) =
p(yEEG, yMEG|θ)p(θ)

p(yEEG, yMEG)
(7.3)

from which we derive (with Eq.(7.1) and Eq.(7.2)):

p(θ|yEEG, yMEG) =
p(θ|yEEG)p(θ|yMEG)

p(θ)
(7.4)

with p(θ|yEEG) and p(θ|yMEG) the posterior distributions of θ obtained with unimodal inversion

of EEG and MEG data, respectively. DCM approach assumes every parameter θ to have of the

form of a gaussian distribution. Hence prior distribution expresses as q(θ) ∼ N (μo, σo). We

also denote q(θ, yEEG) ∼ N (μe, σe), q(θ, yMEG) ∼ N (μm, σm), q(θ, yEEG, yMEG) ∼ N (μp, σp) the

posterior distribution of θ given EEG data, MEG data and EEG-and-MEG data respectively. We
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have μem and σem the mean and variance of the distribution resulting from the multiplication of

q(θ, yEEG) and q(θ, yMEG) (whose expressions can be found in most statistic books). Substituting

these expressions in Eq. (7.4) gives:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σp =
σemσo

σem + σo

μp = σp(
μe

σe

+
μm

σm

)

(7.5)

p-MEEG model evidence could be approximated using EEG and MEG model evidences as follows:

p(yEEG, yMEG|θ) ≈ p(yEEG|θ)p(yMEG|θ) (7.6)

Consequently, Fp the variational free energy approximation to p-MEEG model log-evidence could

be approximated by:

Fp ≈ Fe + Fm (7.7)

with Fe and Fm the free energy values for EEG and MEG respectively. In practice, for each

DCM analysis, every model of the model space was inverted with EEG and MEG data separately,

and resulting posterior EEG and MEG estimates of θ were subsequently combined using the

expressions in Eq. (7.5) to derive the p-MEEG posterior distribution of θ, and the p-MEEG free

energy was obtained by summing unimodal free energies.

7.3 DCM structure for deviance processing

Model space underlying this study (Study 1 ) was designed to assess the structure of the DCM

for deviance processing, namely its architecture and its inputs. This study was conducted with

condition UF.

7.3.1 Methods

DCM specifications. The scope of this analysis pertains to the characterization of the DCM

structure for deviance processing, with regard to its architecture (i.e. the sources composing the

network and the number of hierarchical levels) and the sources targeted by thalamic inputs (

Figure 7.3). For DCM architecture, we hypothesized a four-level hierarchy composed of the eight

ECD presented above, connected with intra-hemispherical bidirectional (forward and backward)

connections. This model supports the contribution of every sources (HG, PP and IFG) identified

with our source analysis (chapter 6) to the generation of the MMN. In addition, the inclusion of

the superior frontal level models the plausible involvement of SF sources in the perceptual learning

of the acoustic regularities. Alternative hypothesis entailed two- and three-level networks allowing

to test the contribution of PP and SF sources. A total of five model families (A1, A2, A3, A4

and A5 ) could thus be designed for the architecture issue, that are presented in Figure 7.3.a.

Regarding DCM inputs, all models were designed with HG receiving the thalamic inputs. In ad-

dition, we also considered the possibility that they could arrive in IFG sources (as we know that

the inferior frontal cortex receives thalamic afferents). This hypothesis was motivated by elec-

trophysiological findings that could report frontal regions being activated before temporal ones
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Figure 7.3 – Model space for Study 1. a) Architectures families. Five families of models
(denoted A1, A2, A3, A4 and A5) were constructed with varying number of levels (from 2 to
4). b) Input families. Two families were considered (HG and HG-IFG). Red and blue arrows
represent forward and backward connections respectively; Green arrows indicate where thalamic
inputs enter the DCM. For every model of the model space, forward and extrinsic backward
connections were allowed to be modulated with deviants. The combination of architecture and
input families led to 9 models, as the HG-IFG input was not applicable to the architecture A1.
The subsequent combination with factor ModI (equal to 0 or 1) and with factor M (equal to
0 or 1) lend to 36 models for Study 1. HG= Heschl’s gyrus; PP=planum polare; IFG=inferior
frontal gyrus; SF=superior frontal.

(as mentioned in chapter 3, §3.3.2). Furthermore, the fact that we could measure a significant

modulation of deviance responses by deviant predictability as soon as the P50 latency (Lecaignard

et al., 2015) could also support the early involvement of these frontal regions. The input factor

thereby included two model families (HG and HG-IFG) depicted in Figure 7.3.b. Each model

constructed for Study 1 included trial-specific modulation (between standard and deviant) of the

forward (ModF ) and backward (ModB) connections, that we denoted ModF = 1 and ModB = 1

respectively. Regarding the trial-specific modulation of intrinsic connections (ModI), we con-

sidered the case of an absence of such intrinsic modulations (ModI = 0) and the modulation

of all sources (ModI = 1). Finally, we considered models having a modulatory connection (M ,

defined in chapter 4) for none or all sources (M = 0 and M = 1 respectively). A total of 36
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models composed the model space for Study 1, partitioned over the architecture, input, intrinsic

modulation and modulatory connection families. Importantly, only the architecture and input

model subsets were considered for model family comparison (we assumed that the other two were

not relevant to address the DCM structure issue, but related models allowed integrating over all

possible parameter values). For each subject, these models were inverted separately for EEG and

MEG data in condition UF.

Statistical analysis. The different model families specified above were quantitatively evaluated

using family level inference (Penny et al., 2010) with a RFX model. Precisely, we performed

such comparison over the architecture and the input families, for EEG, MEG and p-MEEG in

condition UF.

7.3.2 Results

The 36 models designed for Study 1 were inverted for each of the 20 subjects and for each modality

(EEG, MEG) separately. The percentage of variance of data explained on average across subjects

(n=20) and across models (n=36) was equal to 92.5%(±10.5) for EEG, and to 78.1%(±11.6) for

MEG.

Figure 7.4 – Family level inference for Study 1 with p-MEEG DCM. Family exceedance prob-
abilities are represented with bar diagrams for factors Architecture (left) and Input (right).

DCM architecture. Family level inference revealed that family A5, having four hierarchical levels

with intra-hemispherical reciprocal connections, outperformed other families with both EEG and

MEG data: posterior confidence and posterior exceedance probabilities for this family were equal

to 0.48 and 0.81 for EEG, and to 0.60 and 0.98 for MEG. Using p-MEEG fusion, this statistical

test was also in favor of A5, with corresponding posterior confidence and posterior exceedance

probabilities equal to 0.68 and >0.99 respectively (Figure 7.4, left).

DCM inputs. Family level inference was clearly in favor of models with inputs arriving in both HG

and IFG sources for both EEG and MEG inversion. Posterior confidence and posterior exceedance

probabilities for family HG−IFG were equal to 0.74 and 0.98 for EEG, and to 0.77 and >0.99 for

MEG. Here again, family level inference performed with p-MEEG DCM strengthened unimodal
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findings, with posterior confidence and posterior exceedance probabilities for HG − IFG equal to

0.81 and >0.99 (Figure 7.4, right).

As every modality (EEG, MEG and p-MEEG) provided consistent and strong evidence for archi-

tecture A5 and HG − IFG inputs, subsequent analysis presented in this study were conducted

with this DCM structure. Besides, as p-MEEG findings proved consistent here, we will focus

for the following reports on results derived from Bayesian comparison with this fused approach.

Unimodal findings will also be reported, that could reveal the different (and complementary)

sensibility of each modality.

7.4 Neural connectivity for deviance processing

Model space here enabled addressing the changes in connectivity induced by deviants. This study,

Study 2, was applied to condition UF with the aim to further characterize the underlying effective

connectivity behind the MMN.

7.4.1 Methods

Figure 7.5 – Model space for Study 2. a) Schematic view of the 14 models (columns) resulting
from the combination of factors ModF, ModB, ModI and M (rows). Note that the combination of
factors M=1 and ModB=1 turns into a backward trial-specific modulation affecting the intrinsic
connectivity, and gives ModB=Bint (dark blue), whereas the combination of M=1 and ModB=1
gives ModB=Bext (light blue). b) Two models from model space are illustrated. Red, blue,
dark blue and black arrows represent forward, extrinsic backward, modulatory and intrinsic
connections respectively; green arrows indicate where thalamic inputs enter the DCM. Dotted
arrows indicate connections allowed to be modulated by deviants.
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DCM specifications. This analysis aimed at characterizing how and where in the hierarchy deviant

stimuli modify the effective connectivity observed during standard processing. This was done by

considering the network structure selected by the family comparison conducted in Study 1, namely

the four-level network with HG and IFG receiving inputs (A5). Model space was constructed as

follows: for each connection types (forward, backward and intrinsic), trial-specific modulation

could be allowed for none or all sources. Besides, we also tested the existence of a modulatory

connection (M ) at none or all sources, that could reflect a top-down influence on sensory precision.

As was described in chapter 4, in the specific case of M = 1 in combination with ModB = 1, the

backward modulation no longer affects the extrinsic backward connection but the intrinsic self-

inhibitory connection of population SP (γ7). We will refer to Bext in the case of extrinsic backward

modulation (M = 0 and ModB = 1) and to Bint in the case of intrinsic backward modulation

(M = 1 and ModB = 1). A total of 14 models composed the model space for Study 2 (Figure 7.5),

partitioned over families corresponding to forward modulation (ModF = 0, ModF = 1), back-

ward modulation (ModB = 0, ModB = Bint, ModB = Bext), intrinsic modulation (ModI = 0,

ModI = 1) and modulatory connection (M = 0, M = 1). Under predictive coding, we expected

deviants to induce an increase of forward and backward extrinsic modulation, that would reflect

larger ascending prediction errors and descending predictions elicited by deviants in comparison

to standards. We also expected a decrease of intrinsic modulation that implies a decrease of

self-inhibition within population SP assigned to the prediction error units: this would thus allow

error units to send forward errors through the hierarchy when a deviant occurs. For each subject,

these models were inverted separately for EEG and MEG data in condition UF and PF.

Statistical analysis. We performed family level inference with a RFX model over the factors

forward modulation, backward modulation, intrinsic modulation and modulatory connection, for

EEG, MEG and p-MEEG inversion of data with condition UF. For each of these factors, using

Bayesian model averaging (BMA), we computed the group-level and the individual posterior es-

timates under the models composing the corresponding winning family. Group estimates were

examined to assess the direction of changes (increase or decrease) for each trial-specific modula-

tion (forward, backward and intrinsic) for condition UF.

7.4.2 Results

The percentage of variance of data explained on average across subjects (n=20) and across models

(n=14) was equal to 96.5%(±5.1) for EEG, and to 87.1%(±7.4) for MEG.

Deviant effect on connectivity (p-MEEG analysis). The winning model indicated by the four fam-

ily level inferences conducted on factors ModF , ModB, ModI and M included a modulation of

the gain of forward, backward (extrinsic) and intrinsic connections but rejected the modulatory

connections (Figure 7.6.a). Posterior confidence and posterior exceedance probabilities were equal

to 0.68 and 0.96 for models with ModF = 1, to 0.52 and 0.87 for ModB = Bext, to 0.82 and >

0.99 for ModI = 1 and to 0.68 and 0.96 for M = 0. More precisely, the examination of BMA

posterior estimates (at the group-level) showed that over hemispheres and levels, an increase of

the forward gain (Bf = 1.15±0.14) as well as an increase of the backward gain (Bb = 1.18±0.18)

was measured with deviants (Figure 7.6.c). Regarding the intrinsic modulation, large variability
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Figure 7.6 – Family level inference for Study 2 with p-MEEG. a) Condition UF. Family ex-
ceedance probabilities are represented for the following factors (from left to right): forward
modulation (ModF ), backward modulation (ModB), intrinsic modulation (ModI) and modu-
latory connection (M). b) Condition PF. c) Direction of synaptic gain modulation induced by
deviants for forward (first column), backward (second col.) and intrinsic (third col.) modula-
tions. For each graph, black dots correspond to the prior expectation of trial-specific gain (equal
to 1; left) and to BMA group posterior estimates (averaged over the network) for UF (mid-
dle) and PF (right); corresponding standard error bars are indicated. For intrinsic modulation,
values per sources (average over hemispheres) are also provided (fourth col.)

between sources led us to consider BMA estimates per sources, that revealed a decrease of intrin-

sic gain with deviants (hence a decrease of self-inhibition in population SP) for all sources but

SF (Bi = 0.96±0.25, 0.92±0.21, 0.81±0.04 and 1.09±0.18 for HG, PP, IFG and SF respectively).

Unimodal analysis. With EEG data, family level inferences were in favor of ModF = 1 (pos-

terior confidence : posterior exceedance probabilities = 0.64 : 0 .91), ModB = Bext (0.43 : 0.69),

ModI = 1 (0.55 : 0.67) and M = 0 (0.64 : 0.91). BMA posterior estimates indicated larger

forward gain over every connections (Bf = 1.20 ± 0.12) , larger backward gain (Bb = 1.10 ± 0.06)
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and larger intrinsic gain (Bi = 1.18 ± 0.98). This latter measure is inconsistent with MEG (see

next) and p-MEEG findings and is associated to large variability across sources. Regarding MEG

analysis, family level inferences revealed ModF = 1 (0.74 : 0.99), ModB = Bext (0.36 : 0.41),

ModI = 1 (0.86 : > 0.99) and M = 0 (0.51 : 0.55). Similar change direction were measured

with BMA posterior estimates compared to p-MEEG: larger forward gain over every connec-

tions (Bf = 1.20 ± 0.16), larger backward gain (Bb = 1.08 ± 0.24) and smaller intrinsic gain

(Bi = 0.81 ± 0.25).

7.5 Predictability effect on deviance processing

This section concerns the analysis of the predictability effect on the effective connectivity behind

the MMN. Study 2 was replicated with condition PF. We then performed a statistical analysis

(repeated-measures ANOVA) of posterior estimates obtained with conditions UF and PF.

7.5.1 Methods

Statistical analysis. Study 2 family level inference (described in previous section) was applied to

the DCMs in condition PF. As in condition UF, we then computed the group-level and the indi-

vidual BMA posterior estimates under the models composing the corresponding winning family.

The evaluation of the synaptic changes induced by the predictability effect was achieved by com-

paring the BMA posterior estimates of specific DCM parameters obtained with UF and PF in-

versions. Precisely these parameters were:

• the gain of extrinsic forward connection (ASS
f and ADP

f matrices, see chapter 4, §4.2.2);

BMA was computed under the winning family regarding factor ModF ,

• the gain of extrinsic backward connection (ASP
b and AII

b); BMA computed under the

winning family for factor ModB,

• the gain of intrinsic self-inhibitory connection in population SP (γ7); BMA computed under

the winning family for factor ModI,

• the trial-specific modulation estimates between conditions (B); BMA computed under the

winning family for factor ModF for the forward-related terms, for factor ModB for the

backward-related terms and for factor ModI for the intrinsic-related terms.

For each of these parameters, we conducted a repeated-measures ANOVA (over individual BMA

estimates) with factors Condition (UF, PF), Hemisphere (Left, Right) and Levels (HG-PP, PP-

IFG, IFG-SF); in the case of intrinsic-related parameters, this latter factor was replaced by factor

Sources (HG, PP, IFG, SF). We only report main effects involving the Condition factor. Regarding

connection strength parameters, a significant difference between UF and PF would indicate that

the learning in PF had induced a change affecting the processing of both standard and deviant

sounds. For trial-specific modulation parameters, different UF and PF estimates would suggest an

influence of this learning on the deviant processing only. Differences affecting the self-inhibition in

population SP (γ7) were expected as they would reflect different precision-weighting of prediction

errors between conditions.
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7.5.2 Results

The percentage of variance of data explained by each of the 280 models inverted with PF data

was equal on average to 97.5%(±3.0) for EEG, and to 86.1%(±8.5) for MEG.

Predictable-deviant effect on connectivity. Using PF data, family level inferences based on p-

MEEG free energy were in favor of ModF = 1 (0.73 : 0.99), ModB = Bext (0.61 : 0.98), ModI = 1

(0.59 : 0.82) and M = 0 (0.68 : 0.96) (Figure 7.6.b). Direction of synaptic changes were similar

than those observed with condition UF (Figure 7.6.c): larger forward gain over every connections

(but to a lesser extent than UF; Bf = 1.02 ± 0.10), larger backward gain (Bb = 1.31 ± 0.27) and

smaller intrinsic gain (Bi = 0.96 ± 0.13). Unimodal EEG analysis indicated a winning model with

ModF = 1 (0.68 : 0.96), ModB = Bext (0.39 : 0.55), ModI = 1 (0.58 : 0.78) and M = 0 (0.55 :

0.68), which was consistent with MEG analysis where the following winning family were selected:

ModF = 1 (0.55 : 0.67), ModB = Bext (0.61 : 0.97), ModI = 1 (0.82 : >0.99) and M = 0 (0.68

: 0.96).

Effect of deviant predictability on MMN connectivity (Figure 7.7). Using p-MEEG estimates, there

was reduced backward connection strength for PF compared with UF over the right hemisphere

(AII
b;F(1,19) = 4.71; p = 0.03). Interestingly, there was also reduced self-inhibition in population

SP for PF compared with UF over every sources (γ7; F(1,19) = 10.52; p = 0.001). Over the left

hemisphere, a tendency for smaller backward extrinsic modulation for UF compared to PF could

be observed (Bb; F(1,19) = 3.47; p = 0.06). No other difference between condition could be mea-

sured. Unimodal EEG analysis indicated larger forward connection strength over left hemisphere

for UF (ASS
f; F(1,19) = 7.09; p = 0.008); MEG analysis also revealed reduced self-inhibition in

population SP for PF compared with UF (γ7; F(1,19) = 8.83; p = 0.003).

7.6 Conclusion

This study aimed at improving our understanding of the neural mechanisms underlying auditory

deviance processing in the light of predictive coding. Dynamic causal models with CMC allowed

us to test mechanistic hypothesis regarding how MMN sources communicate in terms of effective

connectivity within the auditory hierarchy and how and where deviant processing change this

connectivity. Based on EEG and MEG evoked responses and a fused reconstruction of deviance

generators, our DCM findings are in favor of a bilateral temporo-frontal structure composed of

four levels with a twofold thalamic input arriving in bilateral HG and IFG. Interestingly, the

changes of connectivity induced by deviants relative to standards conform to predictive coding

expectations with larger forward and backward connections (on average over the whole structure)

and reduced self-inhibition of neuronal population assigned to the error units of the predictive

coding scheme. Moreover, the implicit learning of the temporal structure of oddball sequences

that could be evidenced in Lecaignard et al. (2015) was found to influence the synaptic gain of

specific DCM connections hosting strong assumptions regarding a Bayesian processing of infor-

mation. EEG and MEG data provided consistent results but still revealed different sensitivity;

their respective DCM could be fused a posteriori to fully exploit their complementary information.

To investigate the DCM of the MMN, the current approach was inspired from the initial studies
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Figure 7.7 – Effect of deviant predictability on connection strength. a) Forward connections
(ASS

f). EEG, MEG and p-MEEG BMA group values of connections strength over levels are rep-
resented per hemisphere for UF (red) and PF (green) conditions. Standard error bars indicate
variability between levels. b) Backward connections (AII

b). c) Intrinsic connections (γ7). BMA
group values are represented over hemisphere and over sources, with resulting variability indi-
cated by standard error bars. Red stars (if any) indicate significant main effects or interactions
involving factor Condition (UF, PF) in the repeated-measure ANOVA.

of Garrido and collaborators (Garrido, Kilner, Stephan, & Friston, 2009) that exploited the suit-

ability of DCM to evaluate quantitatively competing hypothesis about MMN generation. Most

of subsequent MMN DCM studies (Boly et al., 2011; Moran, Campo, et al., 2013) employed the

three-level structure proposed in Garrido et al. (2009), that was spatially informed by fMRI

mismatch studies. In the present study, we constructed a model space with two- and three-level

structures (with different supratemporal contributions compared to the studies of Garrido and

colleagues) as well as a four-level structure (HG, PP, IFG and SF) motivated by previous elec-

trophysiological source studies and our predictability analysis at the sensor- and source levels.

The winning family (selected by BMS with RFX) suggested the contribution of both HG and PP,



7.6 Conclusion 141

consistent with early ECD findings reporting a posterior (at N1 latency) to anterior (at MMN

latency) progression within this region (Alho, 1995). The four-level architecture outperformed

other structures as expected, that could suggest the implication of superior frontal regions in the

perceptual learning of sequence regularities (even in the case of a typical unpredictable oddball

sequence, where such learning should also be achieved). Another notable result pertains to sys-

tem input targeting two levels, namely HG and the IFG, for which family level inference provided

strong evidence with both EEG and MEG data. This could suggest an efficient cortical scheme

with parallel deviance processing in HG and IFG. This scheme would be triggered by thalamic

deviant-related inputs, as we know from animal findings that unexpected sounds are already sig-

naled within subcortical regions (Escera & Malmierca, 2014). Note that such processing would

not challenge the hierarchical nature of deviance processing (required by predictive coding) as it

is not incompatible with the distinct feedforward and feedback pathways. Regarding the trial-

specific modulation induced by deviants, our results are clearly compatible with the predictive

coding message-passing scheme as larger strength for forward and backward connections could

reflect larger ascending prediction errors and descending predictions. This result was found con-

sistently across conditions (UF, PF) and across modalities (EEG, MEG) and pursues the work

by Garrido and colleagues by indicating the direction of synaptic change that could be assessed

over the entire network. A decrease in intrinsic connectivity was also found more likely to explain

the deviant effect (the MMN), an effect mostly seen with MEG data (across UF and PF). With

CMC, such modulation corresponds to a reduced self-inhibition in population SP in charge of

prediction error computations; we will discuss this interpretation in the following. Finally, the

modulatory connection was not selected by the BMS (in both conditions), possibly due to the

larger penalty term in the free energy associated to the related increase of DCM parameters, not

counterbalanced by a better fit of the data.

Regarding the effect of sequence predictability on the effective connectivity for the MMN, it

is first noteworthy that with MEG data, despite the lack of significant reduced MMN amplitude

(but a small effect on deviant responses), DCM with MEG (and p-MEEG) succeeded in revealing

a reliable effect between condition UF and PF. As models in Study 2 could fit MEG data ade-

quately leading to reliable MMN DCM analysis in both UF and PF conditions, this aspect could

be regarded as the ability of a sophisticated generative model, biologically informed, to capture

relevant information that could not reach significance (but was arguably present) with traditional

ERP/ERF analysis.

As discussed in Lecaignard et al. (2015), we interpreted the decrease of MMN amplitude with

predictability as deriving from the high-level implicit learning of sequence regularities that could

influence information processing at low levels. In particular, such influence could affect both the

prediction error and its precision within these levels, in a way that their respective characteriza-

tion may be ambiguous. However, CMC has been explicitly conceived to resolve this issue (while

ensuring the biological plausibility of this model Bastos et al., 2012). The current comparison of

UF and PF DCM could involve two types of synaptic parameters: those representing the strength

of connections, and those related to trial-specific modulation reflecting the deviant perturbation

of the initial standard state. No effect on the latter could be observed (but a tendency with p-

MEEG, not significant with unimodal analysis). Interestingly, for connection strength, a tendency

of larger forward connection for UF compared to PF was visible over the left hemisphere (Figure
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7.7.a) that reached significance with EEG. This could suggest synaptic changes induced by the

regularity learning and affecting every sounds. From a computational perspective, it is interpreted

as larger prediction errors (elicited by each item of the sequence) in the case of unpredictable se-

quence. The laterality of the effect could involve the left hemisphere specialization for temporal

processing observed for speech but also non-speech stimuli (Zatorre & Belin, 2001). Reduced

backward connections over the right hemisphere were revealed with p-MEEG for PF condition.

Since this effect could not be seen with unimodal analysis, further investigations are required to

clarify this point. Finally, the most notable result of this statistical analysis could pertain to the

reduced self-inhibition for condition PF observed with MEG and p-MEEG. Combined with the

effect of contextual predictability on the forward connectivity, these findings confirm the poten-

tial of CMC to disambiguate the two terms entering the precision-weighted prediction errors. In

addition, reduced self-inhibition was observed in PF compared to UF, but also with deviant com-

pared to standard. We further discuss the implications of these findings in the following paragraph.

Generalized predictive coding proposed in Friston et al. (2005) entails the weighting of ascending

prediction errors by their precisions (inverse of variance) with larger confidence in these errors

leading to larger forward messages. This endows the hierarchy with a filter to trigger updates

only for reliable information. This computational scheme has been mapped onto neurophysiology

with CMC: as explained in Brown and Friston (2013), DCM parameter γ7 is the gain of the in-

trinsic inhibitory connection within population SP (assigned to the error units) and represents the

negative log precision weighting. Low values of γ7 thus correspond to i) at the neurophysiological

level, low self-inhibition enabling the signal generated in SP to be send in a forward direction (or

in other words, larger excitability within SP) and ii) at the computational level, large sensory

precision up-weighting the ascending prediction errors. In Moran et al. (2013), the effect of cholin-

ergic neuromodulation on mismatch responses was found more likely to affect self-inhibition in SP

compared to extrinsic connection. In the current study, we observed a decrease of γ7 for deviants

(with UF and PF, mostly seen with MEG), hence a larger precision weighting that could reflect

the fact that deviants are more informative than standards. Regarding the predictability effect,

reduced γ7 was observed with predictable sequences (PF), corresponding to larger up-weighting

of prediction errors (if any), that could thus facilitate the processing of auditory inputs (for both

stimulus types). It appears that a more efficient processing with contextual expectancy has al-

ready been reported for words but also music stimuli (Tillmann et al., 1998), as suggested by

better task performances. Similar effect was also found in a recent fMRI visual study where fewer

voxels being more informed were found involved in the processing of expected stimuli (Kok et al.,

2012). Taken together, these findings conform to predictive coding predictions with the learning

of environmental regularities influencing the precision weighting in order to improve the capacity

for prediction updates when prediction errors occur (if they do).

Conclusion. Using DCM with CMC applied to EEG and MEG mismatch responses, we ad-

dressed the issue of characterizing the neural mechanisms behind the MMN, guided by the pre-

dictive coding account of sensory processing. Consistently over modalities, our results conform

predictive coding predictions as they suggest larger ascending prediction errors, larger descending

predictions and larger weighting of prediction errors observed along a hierarchical network for

unexpected events. This analysis thus corroborates the biological plausibility of the predictive

coding message-passing scheme that would implement the perceptual learning of environmental
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regularities. Furthermore, the experimental manipulation of sequence predictability could suggest

reduced prediction errors (over the left hemisphere) and larger precision weighting of predictions

errors in the case of predictable sequences. Of course, the outstanding question of the functional

role associated to the effective connectivity remains to be clarified in a more straightforward

fashion, that could be addressed with computational modeling.

7.7 Annex: Fused EEG-MEG DCM attempts

This section presents our attempts to fuse EEG and MEG data within the inversion scheme

of DCM. As already mentioned, this was motivated by the acknowledged complementarity of

these modalities in the spatial dimension (evidenced by source studies based on simulations and

empirical studies, including ours in chapter 6). Loosely speaking, DCM can be seen as a method

for solving the non-linear inverse problem of source reconstruction, augmented with the temporal

dimension. As such, one can see that it is limited by its ill-posed nature, calling for introducing

additional independent information that EEG and MEG can provide. In the following, we start

by describing our approach, that simply involved the adjustment of DCM observation model,

then we present the material used for simulation and real data inversion. As will be described,

ensuing results exhibited poor data fits with real data; we thus discuss the possible reasons for

this failure and possible future improvements in the last paragraph. It should be noted that facing

the validity of such approach should rest on a rigorous evaluation strategy aiming at quantifying

fused inversion performances. This could not be done so far and in the current report, we mostly

focused on the percentage of explained variance (R), quantifying the error between observed and

reconstructed signals.

7.7.1 Methods

As mentioned in chapter 2, §2.4.2, the generative model of DCM is of the form (we omitted time

t for clarity): ⎧⎪⎪⎨
⎪⎪⎩

ẋ = f(x, u, θ)

y = g(x, u, ψ) + εn

(7.8)

with x the hidden states describing neuronal activity, u the thalamic inputs entering the system,

θ the evolution parameters and ψ the observation parameters. The residual term εn is defined as

gaussian:

εn ∼ N (0 ; Σn) (7.9)

with Σn the temporal covariance. In DCM, Σn is modeled explicitly as an autoregressive process

of order 1:

Σn = he × AR(1) (7.10)

with he the hidden noise parameter to be inferred. Likewise fused source reconstruction, we

aimed at inferring the neuronal activity that is exactly the same for both modalities but expresses
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differently over electrodes and gradiometers. Precisely, we sought for θ and ψ that satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x, u, θ)

yEEG = gEEG(x, u, ψ) + εn,EEG

yMEG = gMEG(x, u, ψ) + εn,MEG

(7.11)

As explained in Henson et al. (2009), combining modalities having different dimensionalities re-

quires the generative model (precisely the observation model) to put them in the same framework.

Current practice is to scale both the data and the forward model to accommodate these inhomo-

geneities. In fact, the data reduction framework employed in SPM, involving data projection to

spatial and temporal modes (see chapter 6) nicely allows such scaling and a method was proposed

in Henson et al. (2009) for source reconstruction. Projection of data is also performed in DCM

(transposing data y to y*), that allows the fit to be selectively driven by the activity that can only

be generated within the DCM network (specified by the experimenter). In addition, SPM12 also

includes the cited scaling of data. Importantly, at each iteration of the inversion scheme:

• Predicted data yp are generated at the sensor-level for each modality using equation Eq.

(7.8) applied to θ and ψ from previous iteration.

• Spatial projection (including the necessary scaling) is applied subsequently, leading to yp
*

for each modality, with all time series originating from EEG and MEG being homogeneous

data.

• These data are then subtracted to the observed projected data y* to derive the prediction

errors guiding the optimization scheme (VB-EM procedure) in order to infer θ, ψ and he,

that will serve as priors for the following iteration (until convergence of the free energy is

reached).

Regarding the residual term, contrary to source reconstruction where it is informed along the

spatial dimension, it represents here time-lag relationships that we assumed to be similar between

EEG and MEG signals. Prior expectation on he was defined to represent 1% of the variance of

the projected data y* (hence informed by both modalities).

Tests with simulated data. These tests aimed at checking the validity of the proposed scheme.

This analysis rested on data from four participants (denoted S1, S2, S3 and S4) and for each

of them, we performed as follows: we first inverted a specific DCM (three-level network with

bidirectional connections, trial-specific modulation enabled for forward, backward and intrinsic

connections) with real data using EEG inversion (DCMe), MEG inversion (DCMm) and fused

inversion (DCMf). We used DCM with the neural mass model microcircuitry (ERP ). Each inver-

sion provided posterior estimates of θ and ψ that we used to generate synthetic EEG and MEG

data, with additional gaussian noise (we used 10% of the total variance). We then inverted these

data with DCMe, DCMm and DCMf (leading to 9 inversions). For the sake of time, since the use

of openmeeg within DCM is very time-consuming, we conducted this analysis using the spherical

models available in SPM (three-shell sphere for EEG, and local spheres for MEG). We enabled

dipole locations to be inferred and likewise previous analysis, we applied a Hanning filter on data.
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Application to real data. This was achieved using the same four participants data. We

considered the model space of Study 1 (36 models) described in section §7.2 and the forward

model of openmeeg (with fixed dipoles). Here, we used DCM with CMC neural model. Three

inversions were conducted per subjects (DCMe, DCMm, DCMf) for each of the 36 models, on the

time interval 0 to 220 ms.

7.7.2 Results with simulated data

Inversions were performed successfully for every subject. Regarding spatial modes, 6 modes were

retained for EEG data for all subjects, 11 modes for MEG data for S1 and S3, and 12 modes

for S2 and S4. Figure 7.8 indicates the percentage of explained variance (R) obtained for each

inversion. These values derived from the difference between the observed and the predicted data

both projected on the spatial modes. These values could reasonably suggest a good quality of fit

as they were always larger than 96%, with the exception of S4 where DCMf inversion of MEG

data gave 85% and DCMm inversion of EEG data gave 80%. In addition, visual inspection of

observed and reconstructed neuronal time series (within each source) as well as source location

errors provided a reliable indication that the fused scheme had correctly fitted the data, and that

it had performed equivalently to unimodal inversions.

Figure 7.8 – Quality of data fit with simulation tests. For each subject, the values of R for each
of the 9 inversions are represented by a colored matrix, where the rows represent the modality
that has provided the evolution parameters required to generate the synthetic data, and the
columns represent the modality used to compute R values: uni-EEG (uni-MEG) corresponds to
EEG (MEG) data inverted with DCMe (DCMm). Fus-EEG and fus-MEG correspond to EEG
and MEG data respectively, both estimated with DCMf inversion. R color scale ranges from
80% to 100% as indicated.
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7.7.3 Results with real data

Using DCM with CMC and openmeeg BEM, we could perform DCM inversion of standard and

deviant responses from 0 to 220 ms. Regarding data projection, 8, 11, 7 and 7 spatial modes were

retained for EEG for S1, S2, S3 and S4 respectively, and 13 modes for MEG for all subjects. We

first analyzed the quality of fit obtained using DCMe, DCMm and multimodal DCMf over the

model space. Table 7.1 provides the averaged R values across the 36 models, for each data set

Subject uni-EEG uni-MEG fus-EEG fus-MEG
S1 85.6 68.5 46.3 61.5
S2 96.7 83.1 74.5 78.5
S3 86.6 72.6 57.6 74.9
S4 78.8 56.2 33.4 41.1

Table 7.1 – Averaged R values (%) across model space for real data. Labels uni-EEG, uni-MEG,
fus-EEG and fus-MEG are referred to in Figure 7.8.

type (EEG or MEG) and for each DCM type. Fused values for each data set were consistently

reduced with respect to those for modalities considered separately. It should be noticed that

unimodal R values, for MEG in particular, indicated rather low data fit (see for instance subject

S4, R = 56.2%) but were associated to a large variability over model space. For instance, for

subject S4, the model having the greater evidence with DCMm (model m34) had a R value equal

to 96.6% and 85.5% for EEG and MEG respectively in unimodal inversion, and to 46.0% and

53.9% for EEG and MEG respectively in fused inversion. Visual inspection of observed and

reconstructed traces on spatial modes suggested different patterns behind these reduced R values

with DCMf. Precisely, we observed that data fit could be inhomogeneous across spatial modes, or

across trials (for instance standard responses were reliably reconstructed but not deviant ones),

or both. An example is given in Figure 7.9, showing the traces obtained for the first spatial mode

for subject S4 and for model m34. In this particular case, for EEG, unimodal inversion perfectly

modeled the observed data, whereas fused inversion failed to generate the deflexion around 150

ms. Regarding MEG data, fused inversion provided a better fit compared to unimodal inversion.

Having examined the individual traces over the different spatial modes for each subject, we could

see that EEG data was under-estimated in most cases. We checked that the scaling applied on

projected data would not be involved, which was not the case as suggested in Figure 7.10. Finally,

we examined the posterior estimates of he to assess whether residuals would be of the same order

of magnitude between modalities (Table 7.2). On average across time samples (n=45) and models,

we measured that for each subject EEG always presented the lowest value, followed by MEG and

followed by fused inversion.

Subject DCMe DCMm fDCMf
S1 0.0016 0.0051 0.0061
S2 0.0007 0.0023 0.0034
S3 0.0014 0.0035 0.0039
S4 0.0040 0.0054 0.0094

Table 7.2 – Average he values across model space across time samples measured with DCMe,
DCMm and DCMf.
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Figure 7.9 – Example of reconstructed data obtained with one subject (S4). For each modality
(EEG, MEG, rows) and each experimental condition (standard, deviant, columns), observed
data at first spatial mode (black) is represented to be compared with its estimates obtained
with unimodal (blue) and fused (red) inversions.

7.7.4 Conclusion

Combining EEG and MEG within DCM rests on the adjustment of the observation model to

accommodate the different properties of these independent signals. This could be achieved here

by incorporating the scaling scheme proposed by Henson et al. (2009) for source reconstruction,

that had been validated to improve inversion performances in the same study, and also in the

present thesis (chapter 6). Despite persuasive simulation-based findings, going from theory to

real data was found to fail in the current DCM study, with data fit being strongly reduced in

comparison to those from unimodal inversions. Clearly, the work presented in this section consti-

tutes a first attempt for fused DCM, resting on crude quantitative evaluation, and would require

deeper investigations, that for a matter of time, could not be achieved during this PhD.

Among the different tests that could be further conducted, one in particular concerns the exam-

ination of the evolution and the observation posterior estimates. Indeed, in the current chapter,

results obtained in Study 2 with regard to the predictability effect suggested differences between

modalities, with EEG possibly being more sensitive to extrinsic connection and MEG to intrin-

sic connections. It thus could be that such differences prevented the optimization procedure to
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Figure 7.10 – Projected data y* for EEG and MEG modalities (subject S4). The differ-
ent modes retained for EEG (left) and MEG (right) are superimposed, that all correspond to
homogeneous data due to application of scaling procedure inspired from Henson et al. (2009).

converge towards values being optimal for both modalities. This calls for a critical point that

deserves a comment: it could be that our approach failed because of the complex nature of EEG

and MEG signals which prevents present day’s generative model to provide accurate output. Such

issue could have been emphasized here as fusion would thus impose to accommodate model errors

(in addition to true neuronal information) from both modalities. We know that EEG and MEG

data comprise a mixture of neuronal contributions from various origins. DCM allows to model

other contributions than the commonly accepted pyramidal cell ones (Nunez & Harth, 1982)

but still ignores subcortical signals for instance. In addition, despite active research in the field,

finely modeling the effect of the conducting properties of the head on sensor data still remains a

great challenge, leading to forward models embedding acknowledged and admitted simplifications,

whose influence on reconstructed data varies between EEG and MEG (Gencer & Acar, 2004; Val-

laghé & Clerc, 2009; Güllmar et al., 2010; Acar & Makeig, 2013). Hence, the current failure could

illustrate the fact that as the degree of sophistication of the (non-linear) model increases, the

influence of the assumptions (and simplifications) entering the model increases.

The goal of fused DCM was to exploit the complementary information collected by EEG and

MEG. Alternatives still allowing for such benefit could rest on sequential inversions, with poste-

rior estimates from one modality inversion entering as priors for the subsequent inversion with the

other modality. One could also consider to fit data reconstructed at the cortical level using fused

source reconstruction, instead of fitting sensor-level data. This would require a simpler observa-

tion model, mapping for instance the CMC supra-pyramidal time series to these reconstructed

cortical activities.



Chapter 8

Computational single-trial analysis

of auditory responses: evidence for

Bayesian learning at the MMN

latency

8.1 Introduction

This chapter describes the computational modeling approach we used to characterize the cognitive

mechanisms at play during deviance processing. Many ERP studies support the MMN generation

to involve i) rule extraction mechanisms, that would endow the brain the capacity to represent

the regularities of its environment (Bendixen et al., 2007), and ii) change detection mechanisms

(at the origin of the MMN per se) signaling a violation of these regularities, with possibly further

orienting of attention (under specific conditions of change saliency). Under the predictive coding

hypothesis, these processes would be achieved within a more general (and versatile) scheme. Pre-

cisely, predictive coding assumes that the brain performs Bayesian inference to infer the causes

of its sensory inputs in order to maintain an internal generative model of its environment (the

perceptual model, see chapter 2 §2.4.1). This subsumes both perceptual inference to recognize

the cause of the auditory input (for instance, a standard or a deviant), and perceptual learn-

ing to update model parameters (for instance, the probability to have a standard). Hence, each

standard sound will contribute to increase the confidence in the model (or its precision), whereas

unexpected deviants could be signaled by the prediction errors they induce, propagating upward

along the hierarchy.

Bayesian learning in the brain for auditory processing can be investigated using computational

models applied to oddball sequences. Such studies imply analyzing trial-by-trial responses to

assess the trajectory of precision-weighted prediction errors and updates over the course of the

experiment, provided that those are indeed computed in the brain. As indicated by the literature

review in chapter 4 §4.3, only a few computational account of the MMN have been proposed so far.

The approach proposed in the study of Ostwald and colleagues (2012) aimed at comparing learn-

ing and non-learning mechanisms with somatosensory deviance responses and revealed Bayesian

149
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learning processes at relevant mismatch latencies. Both the efficiency of the approach and their

results encouraged us to perform a similar analysis for auditory processing. Hence, the first goal

of this study was to characterize (or to refute) perceptual learning underlying the processing of

standards and deviants in an auditory oddball sequence. In addition, we were also interested in

examining the effect of contextual manipulations. Precisely, using deviance responses embedded

with unpredictable and predictable frequency oddball sequences (Lecaignard et al., 2015), we

expected that the implicit learning of the predictable structure (brought out by the sensor-level

analysis) would reduce prediction errors but would also increase their weighting by their estimated

reliability. These predictions derive straightforwardly from a predictive coding scheme for audi-

tory processing and were already corroborated by consistent changes in the effective connectivity

underlying deviance processing revealed by our DCM analysis (chapter 7).

Importantly, we restricted our computational analysis to the previously identified cortical network

using both EEG and MEG recordings, as described in chapter 6 and 7. In what follows, we first

detail the material and methods of the study, with a description of the model space constructed

to address our twofold aim. The results section then reports our findings, namely revealing the

most likely implicit learning mechanisms at play during passive listening of the auditory oddball

sequences, but also its modulations depending on the context. Finally, the implications of these

findings are discussed.

8.2 Material and methods

As mentioned in the previous section, this study was based on the EEG and MEG data originating

from our passive auditory oddball study conducted with unpredictable and predictable frequency

oddball sequences (conditions UF and PF, respectively). The current analysis is twofold. Analysis

1 was performed similarly on all time series from both conditions and aimed at testing whether

any learning model could account for trial-by-trial variations in the ERPs. Subsequent Analysis

2 involved separate UF and PF data inversion to address the predictability effect on perceptual

learning. This latter analysis was conducted over the MMN time interval only.

Experimental design and participants. Data used from the current study derive from the ex-

perimental design described earlier (Lecaignard et al., 2015) and rested on the acquisitions from

the 20 participants included in the source reconstruction and DCM analysis (chapter 6, chapter 7).

Preprocessing and data feature extraction. Computational model inversion aimed at fitting the

source-level trial-by-trial data within each cortical cluster identified by the fused reconstruction

analysis on difference responses (deviant - standard ERP). We denoted the four left hemisphere

clusters as lHG, lPP, lIFG, and lSF, and the four right ones as rHG, rPP, rIFG and rSF (with

HG: Heschl’s gyrus, PP: planum polare, IFG: inferior frontal gyrus and SF: superior frontal).

Trial-by-trial time series were obtained using the distributed source inversion procedure employed

in chapter 6, resting on BEM forward models for both modalities (computed with openmeeg)

and the Bayesian framework with Multiple Sparse Priors (MSP) available in SPM8. Sensor-

level single-trial data were epoched from -200 ms to 410 ms post-stimulus, imported in SPM8,

down-sampled (200 Hz) and low-pass filtered (20 Hz low-pass digital filter, bidirectional Butter-

worth, 5th order). Source inversion involved the epochs for each of the 674 events composing
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an oddball sequence (trial-rejection obtained with sensor-level analysis will be applied within the

meta-Bayesian scheme, see below), leading to a total of 2696 trial data inversions carried out per

subject (two reverse sessions were delivered per condition). Crucially, we could spatially constrain

these distributed inversions with the results of our deviance generator analysis (chapter 6) by

means of the two-step group-level inference scheme (Figure 6.1). Practically speaking, group pri-

ors entering step 2 individual inversions corresponded to the clusters resulting from the deviance

source analysis (chapter 6) and the additional bilateral superior frontal sources revealed by the

UF vs. PF contrast (chapter 7), represented in Figure 8.1.a. After each inversion, for each cluster,

the activities reconstructed at all nodes composing the cluster were averaged to derive a single

trace informed by both EEG and MEG data. We controlled the validity of the entire procedure

by computing the grand-average standard (preceding a deviant), deviant and difference responses

for each cluster, using exactly the same events as for the sensor-level analysis (with regard to

artifact rejection), for both condition UF and PF. The resulting traces, shown in Figure 8.1.b.

Figure 8.1 – Fitted data. a) Clusters used for trial-by-trial source reconstruction represented
on a canonical inflated cortical surface (light grey=gyri, dark grey=sulci), with right view (left),
front view (middle) and left view (right). Cluster labelling is referred to in the main text. Black
dots indicate nodes within each cluster, with corresponding total number of nodes indicated
between parenthesis. b) Group-average difference responses reconstructed at each cluster using
fused inversion, for condition UF (red) and PF (green).

8.2.1 Analysis 1: Modeling auditory mismatch responses

Model space. We constructed a model space partitioned into five families of response models which

were inspired by models used in Ostwald et al. (2012) and Lieder et al. (2013) (see chapter 4).
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The first family (famnull) is made of a single model, the null model M0 as follows:

⎧⎪⎪⎨
⎪⎪⎩

y = θ0 + εn

θ0 = 0 + ε0

(8.1)

The second family (famnoL) contains the non-learning models, namely models SC and LIN as in

the Ostwald’s study: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y = θ0 + Xtθt + εn

θ0 = 0 + ε0

θt = 0 + εt

(8.2)

with Xt the vector of N values defined in chapter 4. Subscript notation t refers to perceptual

processes operating at the tone level, that relate single items of the sound sequence to each other

using non-learning or learning-based mechanisms. It is to be distinguished from the chunk level

also considered in this study (see below), involving regularities established over a group of items.

The third family (famLt
) included the Bayesian learning models described in Ostwald’s study,

reflecting the perceptual learning that the brain would perform at the tone level to estimate the

probability μ to hear a standard (under a Bernoulli distribution). Likewise the original study,

we considered different values for the forgetting parameter τt, precisely 2, 6, 10 and 100, which

down-weights the influence of past observations . Models in family famLt
assume that the brain

encodes the Bayesian surprise pertaining to belief updating about μ. We recall here that this

measure is informed by both the expectation and the variance (or inverse precision) of the prior

and posterior distributions. The observation model for each model of famLt
has the form of Eq.

(8.2), with X being the trajectory of the Bayesian surprise over the experimental session.

The fourth family (famLtc
) is equivalent to famLt

augmented with a chunk-level learning, that

was inspired from the study of Lieder et al. (2013) where they designed a model enabling the

learning of the expected size of roving trains. Indeed, as was noticed in chapter 5, §5.4, it could be

that the brain has the cognitive capacity to learn and predict implicitly the size of chunks, which

is here always equal to 5 on average over an entire sequence, but presents differences between

conditions at a more local timescale: the size of the chunk varies very smoothly in the condition

PF whereas it is subjected to high variability in the UF condition. We thus considered worthy to

include chunk-level learning models that could possibly capture the observed difference between

UF and PF.

These perceptual (generative) models are based on the following rationale: let Uc be the size

of a chunk (or equivalently, the number of standards in between two deviants) and Zc the prior

knowledge about Uc. As in Lieder et al. (2013), the likelihood of Uc given Zc was modeled using

a Poisson distribution and the prior distribution of Zc was chosen to be a Gamma distribution of

parameters g and d, the number of observed tones and observed chunks, respectively. These two
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distributions forms the following generative model (expressed at chunk k):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uc ∼ Poisson(Zc)

p(Uc = N |Zc) = ZN
c

exp(−Zc)
N !

Zc ∼ Γ(gk, dk)

(8.3)

with N in the range of 2 to 8 in the current study. Each deviant provides a new observation

Uc which allows updating Zc. This update is easily tractable since Gamma prior distribution is

conjugate to the Poisson likelihood. Hence, after having observed chunk k: Zc ∼ Γ(gk+N , dk+1)

with N the number of standards in chunk k. As for the tone-level learning models, we considered

a forgetting value τc, with values equal to 2, 6, 10 or 25. The resulting observation model writes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = θ0 + Xtθt + Xcθc + εn

θ0 = 0 + ε0

θt = 0 + εt

θc = 0 + εc

(8.4)

where Xc indicates the trajectory of the chunk-level Bayesian surprise computed as the KL di-

vergence between the prior and the posterior Gamma distributions. Because of the four possible

values for τt and τc, family famLtc
is made of 16 response models.

The fifth family that we considered, famLtci
, was equivalent to famLtc

but with observation

model comprising an additional interaction term: y = θ0 + Xtθt + Xcθc + Xtcθtc + εn with vector

Xtc being equal to the product of Xt and Xc. This family also comprised 16 models, which led

our whole model space to include 39 models.

Model inversion. Model inversions were performed with the VBA toolbox (Daunizeau et al.,

2014) presented in §2.4.3. Contrary to Ostwald’s study, models were tested against the data

by means of a meta-Bayesian analysis (we did not perform a regression analysis on vectors X).

These were achieved at each time sample. To reduce the number of inversions, we restricted the

time interval to -50 ms to 350 ms and considered one over two samples, leading to 41 samples.

Hence, given the 39 models and 8 clusters, 12792 meta-Bayesian inversions were carried out per

subject. Importantly, we used multi-session based inversions , meaning that individual model

evidence and parameter posterior estimates were informed by all the data from each subject. In

other words, individual UF and PF data (4 sessions) were fitted all at once. Furthermore, VBA

allows rejecting specific trials: this can be done by taking them into account within the evolution

model but not within the observation model, to avoid parameter optimization to be affected by

noisy data. Exactly the same events considered for our sensor-level analysis thus entered the

current study. Regarding model specifications in VBA, we assumed a deterministic evolution

model (no state noise was introduced in the evolution model) and used VBA defaults priors for
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the measurement noise. The prior distribution over θ0 was defined with zero mean and a variance

of 100; other parameters (θt, θc, θtc) were defined with prior mean and prior variance equal to

1 and 100. Finally, we set the following initial condition for each model type. For model SC

and LIN, model inversion started with previous observation defined as a standard, and the num-

ber of observed standards was set to 0 for model LIN. For every tone-level learning model, model

inversion started with the number of observed standards and deviants both equal to 1. For chunk-

level learning models, model inversion started with the number of observed tones equal to 5, the

number of observed chunk equal to 1, and the number of standards in the current chunk equal to 0.

Statistical analysis. For each cluster, we constructed the relative free energy maps as in Ost-

wald’s study (Figure 4.7) which allow figuring out which models outperform the static null model

M0, and if any, at which latency. For each model mi, at each time sample, we summed the free

energy values obtained across subjects from which we subtracted the summed free-energy values

obtained for M0. This is equivalent to the group log-Bayes factor between model mi and M0.

Then we considered that a value greater (lower) than 20 reflect strong evidence in favor of model

mi (the null model). We conducted a family-level with a RFX model comparison for each cluster

and each time sample. We expected Bayesian learning models to outperform the null and the

non-learning models at the latency of mismatch responses.

8.2.2 Analysis 2: Assessing the effect of predictability

As family level inference conducted in Analysis 1 concluded in favor of family famLt
, we aimed at

testing the hypothesis that the learning behind the predictability effect could induce some changes

in the value of τt (which can be interpreted as the size of temporal integration window). Indeed,

practically speaking, it takes a minimum of 3 chunks to capture the incrementing structure of PF

sequence. Hence it could be that PF data would be better fitted with large values of τt whereas

UF data would require smaller values. In this subsequent analysis restricted to the winning model

family in Analysis 1, we thus fitted UF and PF sessions separately in order to reveal a possible

difference in this crucial integration parameter.

Simulations. We first simulated pseudo-MMN amplitudes obtained for both conditions with sev-

eral values of τt to assess whether the exact same parameter value could still lead to the reduced

amplitude in PF observed with EEG by the mere virtue of the sequences themselves. This was

done with τt equal to 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 75 and 100. Precisely, for each

τt and for each subject (i.e. using the sound sequence delivered to each subject), we used the

VBA routine to simulate the Bayesian surprise trajectory elicited by the different sound sequences

delivered to the subject. We then selected the Bayesian surprise values obtained for each standard

preceding a deviant and for each deviant, and using exactly the same procedure that had been

used to compute the event-related difference response at the sensor level, we could calculate the

simulated group-average pseudo-MMN amplitude in conditions UF and PF.

Learning model inversion. Model inversions were conducted separately on UF and PF trial-

by-trial source data at samples exhibiting statistical significance in Analysis 1. SF clusters were

not considered in this analysis as results in Analysis 1 failed to reveal greater evidence for the

learning model (at any latencies). τt was expressed as τt = exp(θ) and θ was specified as an
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evolution parameter to be estimated (defined with a prior mean of 10 and prior variance of 10).

Likewise Analysis 1, model inversions were performed with the VBA toolbox; 96 inversions were

conducted per subject (1 model, 2 conditions, 8 samples, 6 clusters). Multi-session inversion was

employed to fit the two reverse sessions collected per condition at once. The same other model

specifications described for Analysis 1 were used for Analysis 2.

Statistical analysis. We assumed that the value of τt could not change within the time inter-

val used for model inversion (spanning the MMN), we therefore averaged τt estimates across

samples for each cluster and each condition. Predictability effect could thus be analyzed by con-

ducting a repeated-measures ANOVA on these posterior estimates with factors Condition (UF,

PF), Hemisphere (Left, Right) and Sources (HG, PP, IFG).

8.3 Results

We first present the results of Analysis 1 addressing the cognitive processes elicited by oddball

sequence, and performed with UF and PF simultaneous data inversion. We then report findings

for Analysis 2 conducted with Bayesian tone-level learning models inverted on UF and PF data

separately to investigate the predictability effect on perceptual learning.

8.3.1 Implicit perceptual treatment of the oddball sequence

For each time sample (from -50 ms to 350 ms, 41 samples), each cluster, individual source activity

for UF and PF sessions was modeled using the 39 different models presented in previous section

(model space for Analysis 1 ). Relative free energy maps are provided in Figure 8.2. For each

cluster, the null model (M0) was found with greater evidence over pre-stimulus time. Two time

intervals indicated non-null models outperforming M0: at the latency of the MMN and at the

latency of the P3a. Regarding models of family famnoL, model SC exhibited smaller free energy

values at all sources, all time samples (but three around 150 ms in rIFG). Model LIN was found

better than M0 for all sources but SF ones, at the latency of the MMN (from around 140 ms to

190 ms). Regarding learning models, every model involving a tone-level learning with τt = 2 failed

to provide larger model log-evidence compared to M0 at any source location, any time samples.

Models of family famLt
had greater evidence than M0 at the latency of the MMN (from 120 ms

to 220 ms) for all sources but left SF. Model with τt = 10 also exhibited a peak at the latency of

the P3a in rHG, bilateral PP and bilateral IFG. Models of family famLtc
outperformed M0 at the

latency of the MMN at all sources but lSF and rSF; this effect was mostly observable with models

with τt = 10. Finally, regarding models of family famLtci
, only rHG, rIFG and lIFG could reveal

a peak at the latency of the MMN, for models with τt = 10. Model families were subsequently

compared to each other using family level inference with a RFX model (Figure 8.3). Posterior

exceedance probability of family famLt
was found greater than those for other families at the

latency of the MMN for all sources but superior frontal ones. Precisely, the interval showing

this effect was equal to 150 ms to 200 ms for lHG (6 samples), 130 ms to 180 ms for lPP (6

samples), 130 ms to 200 ms for lIFG (8 samples), 150 ms to 200 ms for rHG (6 samples), 150

ms for rPP (1 sample) and 140 ms to 190 ms for rIFG (6 samples). Every other time samples

(across sources) were associated to M0 having the larger posterior exceedance probabilities. No
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Figure 8.2 – Relative free energy maps. Group free-energy values obtained for sources in
the left (upper row), and right hemisphere (lower row). For each map, the 39 models (rows)
are sorted by family with color code indicated on the left. First and second rows (famnoL)
correspond to model SC and model LIN, respectively. For learning models, grey squares on the
right side indicate the value(s) of τt (right col.) and τc (left col.). The value of the relative free
energy obtained for each model mi (row) and each time sample (column) is represented using
the [−20 + 20] color scale so that a dark red (blue) pixel indicates strong evidence in favor of
model mi (the null model).

spatial effect revealing a cognitive specialization could be measured during this analysis. We thus

retained famLt
models for subsequent analysis.

8.3.2 Predictability effect on the forgetting value τt

Bayesian surprise simulations. The simulated group-average MMN-like amplitudes obtained from

the Bayesian surprises generated with UF and PF sequences and the different values of τt value

are shown in Figure 8.4. Interestingly, one can see that i) the larger τt, the smaller the amplitude,

and that ii) UF and PF amplitudes are very similar over the whole range of τt values that we

considered (relative differences all below 6%). In other words, a difference in τt is mandatory

in order to explain the observed difference in ERPs between UF and PF. This observation thus

justifies and motivates the following analysis.

Predictability effect on τt posterior estimates. As expected, larger τt values were estimated with

condition PF compared to condition UF ( F(1,19) = 10.89; p = 0.001). On average, τt was equal

to 16.4 and to 21.2 with UF and PF, respectively (Figure 8.5.a). These values yield different

forgetting kinetics between conditions, as illustrated in Figure 8.5.b at the 200th trial. Likewise

Ostwald’s study, we could compute the weighted stimulus counts awn
and bwn

(see §4.3.1, with

n indicating the current trial number) resulting from PF and UF group-averaged τt estimates,
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Figure 8.3 – Family level inference (RFX) for Analysis 1. Posterior exceedance probabilities
of each family estimated at each time sample for each source (upper row: left hemisphere; lower
row: right hemisphere).

Figure 8.4 – Simulations of Bayesian surprise (group-average) for different integration values
(τt) for condition UF (red) and PF (green); amplitudes are expressed in arbitrary units (a.u.).

which approximately correspond to a size of temporal integration window equal of around 17

sounds and 22 sounds, respectively (see the example given in Figure 8.5.c). Considering the fact

that sequences were built with a fixed SOA of 610 ms, this translates into around 10 s and 13

s, respectively. Besides, the examination of τt posterior estimates for each sources could suggest

that in condition PF no differential spatial effect could be exhibited whereas in condition UF, HG

clusters showed a tendency for smaller values that PP and IFG (Figure 8.6); however this result

did not reach significance.
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Figure 8.5 – Predictability effect on temporal integration window (Analysis 2 ). a) Group
average of τt posterior estimates (across sources and hemispheres) for condition UF and PF.
b) Example of the forgetting weighting applied at the 200th trial, using the average τt value
for condition UF (red) and PF (green). c) Examples of the dynamics of stimulus counts over
oddball sessions. Upper and lower graphs represent these dynamics for deviant (awn , orange)
and standard (bwn , grey) counts, as well as the total count (black) reflecting the size of the
temporal integration window, for one particular UF sequence and PF sequence, respectively.
For each graph, the arrow indicates the total number of stimuli at the 200th trial computed for
these particular sequences.

8.4 Conclusion

This study investigated the cognitive processes engaged during the passive listening of a frequency

oddball sequence, particularly with regard to changes related to the manipulation of the contextual
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Figure 8.6 – Posterior estimates of τt per sources (group average across hemispheres) for
condition UF (left) and PF (right).

predictability. First analysis performed with unpredictable and predictable sequences altogether

could reveal Bayesian learning at the specific latency of the MMN at all sources but the superior

frontal ones. No other time interval - and in particular at the latency of the early deviance effect

and the P3a - provided strong evidence in favor of any non-null (e.g. learning) model. The sub-

sequent predictability analysis provided a strong insight into the temporal integration windows

underlying perceptual learning. Specifically, larger integration values were found to better fit the

trial-by-trial updates at the latency of the MMN in the case of predictable deviance.

It is worth noticing that throughout this study, the inversion scheme could benefit from the

combination of information captured by both EEG and MEG modalities as it relied on the source

time series obtained with fused source reconstruction. Despite the fact that MEG sensor-level

analysis failed to reveal a reliable predictability effect, source-level difference responses (informed

by both modalities) did exhibit this effect. This suggests that this effect is present in MEG

data but was hardly visible at the sensor level (in fact, a small effect on deviant responses did

reach significance) and continues to highlight the usefulness of EEG-MEG fusion to increase the

signal-to-noise ratio (SNR). Another remarkable result of this study pertains to the trial-by-trial

approach which was necessary to investigate the dynamics of belief updating. The feasibility

of such not-so-common analysis has already been demonstrated by several neuroimaging studies

(Iglesias et al., 2013; Schwartenbeck, Fitzgerald, Mathys, Dolan, & Friston, 2015; Tomiello et al.,

2016) and also, to a lesser extent, electrophysiological ones as in Ostwald’s study (2012) or more

recently (Weber et al., 2015, 2016). This methodological aspect of our study thus contributes to

establishing the potential of exploiting the trial-by-trial update information, which is undoubt-

edly reduced using averaging procedures performed in more traditional event-related studies. The

flexibility offered by the VBA toolbox (notably the rejection of artifactual trials and multi-session

inversions) combined with the efficiency of its VB inversion scheme made this analysis possible.

Considering evoked responses reflecting hierarchical prediction errors, one could have expected

significant effect of non-null models at the latency of the early deviance effect and the P3a, but

also within the highest level of the hierarchy indicated by the DCM analysis. Regarding the for-

mer point, we believe that the absence of such evidence is to be related to the small amplitude of

these components. In Ostwald’s study, using a counting task, a spatio-temporal pattern involving

Bayesian learning could be revealed, with in particular a significant effect at the medial cingu-
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late source from around 300 ms to 400 ms. Our study addressed the predictive coding account

of passive listening, and the small deviance magnitude that we employed (to avoid attentional

effects) may arguably have led to a small P3a. Of course, the possibility of an inadequate model

space to describe early and P3a effects should also be considered. Regarding the second point, it

is important to recall that SF clusters did not emerge robustly with the statistical source anal-

ysis (see chapter 7), and reconstructed SF difference responses shown in Figure 8.1 suggest a

low SNR. Yet, these sources were found necessary to fit deviance responses (over the spatial and

the temporal dimension) with DCM, providing support for the existence of a fourth level in the

current auditory hierarchy but whose locations might be very approximate here due to its low

SNR activity in this task. This point could be improved in further analysis by reconstructing the

sources of the grand-average of all sounds composing the oddball sequence: indeed, in the current

study, we aimed at modeling the learning reflected in every time series and we no longer restricted

the analysis to the processes behind deviant and standard (preceding a deviant) ones.

Noticeably, chunk-level models failed compared to tone-level models in Analysis 1. Several ex-

planations can be put forward: first, it could be that such learning occurred but related brain

activity was not measurable with our approach (such learning could for instance recrute higher-

level frontal sources, poorly estimated in our case). Second, modeling the expected size of chunks

by a Poisson distribution may also be inadequate or should have entered a (more realistic) hier-

archical generative model of sounds, with higher levels imposing constraints on lower ones. This

aspect will be discussed in the last paragraph. Another possibility pertains to the larger number

of parameters to be inferred with chunk-level models compared to tone-level ones, that have in-

creased the complexity of these models, not counterbalanced by a larger accuracy. This aspect,

resulting from the BMS that we performed, also calls for the speculative interpretation of the

brain being able to conduct such model comparison (an issue already suggested in Summerfield et

al., 2011). Indeed, one could envisage that during passive listening, the brain would select in an

optimal fashion the cognitive process that best enable to adapt to a varying environment. During

the current oddball sequence exposure, a simple tone-level learning could represent a sufficient

mechanism ensuring this goal, for both unpredictable and predictable sequences.

In Analysis 2, we could further refine the characterization of the perceptual learning indicated

in Analysis 1, by estimating how contextual predictability influences the temporal integration

window on which this learning relies. First, posterior estimates of τt correspond to a size of

the temporal-integration window of about 10 ms and 13 ms for UF and PF, respectively. This

is definitely in line with the sensory-memory duration usually reported in typical MMN studies

(Näätänen et al., 2007). In addition, the current results confirmed our predictions of the widening

of this window with predictability. It appears necessary to clarify the implications of a larger

τt value for the (computational) precision-weighted prediction errors, a key feature of Bayesian

information processing. Likewise Ostwald’s study, we assumed the prediction errors to be the

Bayesian surprise reflecting the updates of deviant and standard weighted counts, awn
and bwn

,

respectively. In fact, as τt increases, prediction errors decrease and their weighting increase. Pre-

cisely, the larger τt, the larger the number of past stimuli entering the weighted counts, and the

smaller the contribution of the current observation (a standard or a deviant) to the count updates.

This reduction amounts to a reduction of prediction error. In addition, the effect of τt on the

precision weighting of prediction errors can be intuitively predicted by considering the fact that
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the deviant:standard ratio is estimated with a larger confidence or precision when information is

computed from a larger number of events (for instance, 10:90 versus 1:9). Such modulations can

be formally demonstrated using the Bayesian surprise expression at trial n:

BSn = log(
Γ(an−1 + bn−1)

Γ(an + bn)
)

+ log(
Γ(an)

Γ(an−1)
)

+ log(
Γ(bn)

Γ(bn−1)
)

+ (an−1 − an) × [ψ(an−1) − ψ(an−1 + bn−1)]

+ (bn−1 − bn) × [ψ(bn−1) − ψ(an−1 + bn−1)]

with Γ and ψ indicating the Gamma and Euler function, respectively. Subscript w in deviant and

standard weighted count notations has been omitted for sake of clarity. Assuming that the first

three terms can be neglected (this was confirmed with simulations), we focused on the fourth and

fifth terms that can be interpreted as precision-weighted prediction errors regarding deviant and

standard counts, respectively. In the case of deviants, (an−1 −an) reflects the prediction error, and

[ψ(an−1) − ψ(an−1 + bn−1)] its weighting (same definition for standards). Applying the forgetting

weight τ to past events gives the count updates at trial n:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

an = un + exp(
−1
τ

)an−1

bn = (1 − un) + exp(
−1
τ

)bn−1

with un being equal to 0 in the case of a standard, and 1 for a deviant. One can see that τ enters

both the prediction error and the weighting terms. In the following, we will focus on deviant

updates (a similar demonstration for standards can easily be derived). Regarding the prediction

error term, it can be expressed as:

an−1 − an = (exp(
−1
τ

) − 1)an−1 − un

Let τ1 and τ2 be such that τ2 > τ1, we have in absolute terms (exp(
−1
τ2

) − 1) < (exp(
−1
τ1

) − 1)

hence smaller updates (an−1 −an) with τ2, hence smaller prediction errors. Regarding the weight-

ing term, since ψ is monotonically increasing for positive real numbers (like weighted counts), the

behavior of [ψ(an−1) − ψ(an−1 + bn−1)] with τ depends on the corresponding behavior of bn−1. As

τ2 > τ1 gives exp(
−1
τ2

) > exp(
−1
τ1

), one can see that bn(τ2) > bn(τ1), leading to a larger weighting

term with τ2. Having examined how these terms vary with τ , we can consequently conclude that

the predictable structure of PF sequences yielded smaller predictions errors and larger precision

weights compared to unpredictable oddball sequences.

Interestingly, consistent effects were observed with DCM as reported in chapter 7. Precisely,

DCM findings were that higher predictability was associated with a reduction of the forward

extrinsic connections (visible with EEG), that could relate to reduced prediction errors, and a

reduction of self-inhibition in the supra-pyramidal population associated to the error units, that
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could reflect an increase of precision weighting. Taken together, it is interesting to point out con-

verging results measured with the same data sets but obtained from completely different schemes

(DCM at the neurophysiological level, fitting evoked responses; functional modeling at the com-

putational level, fitting trial-by-trial responses).

Several findings from different research fields support the hypothesis of a temporal hierarchy within

which higher levels would pertain to larger temporal integration windows. (Escera & Malmierca,

2014; Kiebel et al., 2008). However, our result could not subsume such nuances along our hierar-

chy. In other words, we did not observe a gradient of τ values from auditory to frontal regions.

Only a non-significant tendency could be observed in the UF condition.

Our results reveal a perceptual learning mechanism at play during auditory processing, reflected

by single-trial variations of responses at the MMN latency. They also suggest the ability of the

brain to adapt the temporal integration window to the statistical structure of the environment.

Together, these findings speak to the predictive coding account of auditory evoked responses,

enabling an efficient processing of information under environmental predictability. These compu-

tational findings are nicely compatible with the ones we obtain with DCM, both bringing empirical

support to the top-down weighting of prediction errors induced by high-level processes.
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General Discussion
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Chapter 9

Discussion and perspectives

9.1 Summary of the main results

The aim of this PhD work was to refine the predictive coding account of (passive) auditory process-

ing through measuring and interpreting EEG and MEG mismatch responses. Predictive coding,

and more generally the Bayesian brain theory, assume that the brain entertains a generative

model of the environment and adapts to its changes using Bayesian computation. This includes

the learning of environmental regularities, which makes the oddball paradigm, involving sequence

of expected and unexpected sounds, particularly well-suited to test formal hypothesis about the

underlying computational and neurobiological processes. In particular, we aimed at examining

the influence of contextual predictability on deviance responses to characterize its effects in terms

of message passing and computation of precision-weighted prediction errors. Using simultaneous

EEG-MEG recordings and advanced neurophysiological and computational Bayesian modeling,

we obtained the following findings:

• Three sensor-level deviance responses (the expected MMN, but also an earlier effect and

the P3a) exhibited reduced amplitude with increasing predictability (significant on EEG

data), corroborating the computation of a cascade of prediction errors along the auditory

hierarchy.

• A fronto-temporal network for deviance processing could be reconstructed at the cortical

level using fused source reconstruction (augmented with group-level inference), revealing

fine-grained patterns within the supratemporal plane conditioned to the type of deviance

(frequency or intensity) but also the latency of deviance responses (early mismatch effect

and the MMN).

• Within this cortical network (augmented with an additional frontal contribution), implicit

perceptual learning proved at play at the latency of the MMN using the computational

modeling of trial-by-trial responses. Using Dynamic Causal Modeling based on a Canonical

Micro-Circuit representation of cortical sources, we could show that this learning process

was grounded in a four-level cortical hierarchy underlying the generation of mismatch evoked

responses.

• Predictability was found to influence the size of the temporal integration window, on the

one hand, and the strength of forward extrinsic and self-inhibitory intrinsic connections,
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on the other hand. From both perspectives, a higher predictability was found to dampen

prediction errors while boosting their precision weights.

It is worth noticing that those results were obtained using EEG and MEG data in combination.

Importantly, the two modalities did not contradict each other but showed different sensitivity

hence proved highly complementary. In other words, those precise and important findings could

not have been derived if we had followed a unimodal approach, be it with EEG or MEG alone.

9.2 Implications for future research

At the core of the predictive coding principle is the hierarchical message passing of precision-

weighted prediction errors, whose suppression drives the learning of environmental regularities.

In the current work, we manipulated the regularity of auditory oddball sequences so as to test

the biological and cognitive plausibility of this inference framework. Our findings did shed light

on such processes but also highlighted the usefulness of probabilistic modeling. In what follows,

we discuss those different aspects and their possible implications for future work.

9.2.1 The auditory hierarchy serving Bayesian inference

Our findings, in the context of auditory evoked responses, neatly support the key architectural

principle of predictive coding, namely a hierarchical organization, from both a neurophysiological

and cognitive perspective. However, assessing Bayesian learning with a computational modeling

approach showed fragile evidence in favor of a hierarchical cognitive sophistication (the widening

of the temporal integration window with ascending levels did not reach significance). We detail

here further investigations that could refine the description of the suggested predictive hierarchy.

Characterizing auditory components as hierarchical errors. Our results at the sensor-level revealed

deviance responses at three different latencies with both EEG and MEG, and their modulation

by deviance predictability was interpreted as a signature of prediction error. From a dynamical

system perspective, the hierarchical architecture provides constraints, that shape the dynamics

of electrophysiological responses. According to Friston, the different components of evoked re-

sponses represent hierarchical prediction errors that are suppressed by means of their respective

top-down adjustments (Friston, 2005). This view provides a mechanistic interpretation of the

temporal delays between components, and relates late components to higher-level prediction er-

rors, hence with higher-level learning processes. Seeking for empirical evidences in favor of such

a spatio-temporal hierarchy of prediction errors is thus an important challenge. Recent studies

reporting early mismatch responses elicited by simple repetition rules but not by more structured

ones (Cornella et al., 2012; Recasens, Grimm, Wollbrink, et al., 2014) are remarkably in line with

this view. Given our data, it would be worth investigating the early effect and the P3a using our

twofold modeling approach. Notably, using DCM and an approach inspired from the work of Gar-

rido et al. (2007), we could replicate our analysis with shorter and longer time intervals, to assess

the ensuing modulation of forward and backward connections. It should be recalled that learning

models failed to reveal a significant effect at other latencies than the MMN, possibly due to the

lack of high SNR. This speaks in favor of intracranial trial-by-trial analysis of intracranial data

acquired during the same protocol in implanted epileptic patients. Considering larger deviance

magnitude (inducing larger component amplitude due to larger adaptation effects) may also be



9.2 Implications for future research 167

a valuable option to increase the SNR. Indeed, an interesting idea brought by predictive coding

pertains to adaptation effects, long considered as masking the genuine MMN, but which could

be re-considered as a useful phenomenon to facilitate the investigation of early to late deviance

responses. Precisely, under this perspective, difference responses (deviant − standard) are no

longer the most relevant contrast to investigate perceptual learning compared to the trial-by-trial

modulations. Augmenting computational models with an account of deviance magnitude (see for

instance Lieder, Daunizeau, et al., 2013; May et al., 2015)) could help quantifying the contribution

of adaptation effects in shaping prediction error signals. In that respect, SSA as modeled by May

and collaborators is very inspiring. SSA is shown to possibly emerge from synaptic depression

which induces time-varying synaptic connectivity. This can explain dynamical frequency-based

associations (hence temporal integration) and events disrupting such associations could generate

MMN-like responses. Hence, large deviance magnitude could trigger learning at higher levels

in the hierarchy, just like large stimulus saliency can induce late (high-level) attention orienting

components.

Insights from oscillations. An important aspect that we did not discuss yet is the putative

functional role of oscillations in a predictive coding scheme. Indeed, Several studies reported

different oscillatory signatures exhibited by the feedforward and feedbackward pathways, as re-

viewed in (Bastos et al., 2012; Markov et al., 2014; Bastos et al., 2015). Importantly, those

findings substantiate the asymmetry between those two pathways and hence further emphasize

the hierarchical organization of the cortex. In particular, supra-granular layers (mostly involved

in ascending signals) were related to theta- and gamma-band oscillations whereas infra-granular

layers (mostly involved in descending signals) presented neurons showing beta-band oscillations.

As explained in (Friston, Bastos, et al., 2015), the generation of synchronous oscillatory activ-

ities could modulate the synaptic gain, hence the weighting of prediction errors. Assessing the

effect of predictability on (non-phase locked) oscillatory activity in various frequency bands could

possibly further substantiate the hierarchical organization and the weighting of information by

their relative precision. As a matter of fact, visual inspection of EEG traces during pre-stimulus

interval could suggest differences in the alpha and beta bands between UF and PF (see Figure 4

in Lecaignard et al., 2015).

9.2.2 Precision-weighted prediction errors

Our results revealed an increase of the precision-weighting of prediction errors with contextual

expectancy, that would facilitate the processing of auditory information. In our point of view,

this is an important step towards establishing the ability of the brain to manipulate information

by taking into account their estimated reliability.

Neural correlates of error weighting. The dominant hypothesis for a possible neural implemen-

tation of precision-weighting prediction error rests on synaptic signaling, and neuromodulation

(possibly involving dopamine, acetylcholine) (Friston, 2010).The latter controls the synaptic gain

of prediction error units, hence their precision weighting. DCM with CMC explicitly accounts

for such signaling, which is modeled by the self-inhibitory gain of supra-pyramidal cells (presum-

ably reflecting the error units) . Pharmacological manipulations were proved relevant to explore

the underlying mechanisms behind precision-weighting of prediction errors at a neurobiological
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level (Moran, Campo, et al., 2013) and more recently, at a computational level (Tomiello et al.,

2016). In our work, the use of both levels of modeling demonstrated the possibility to precisely

and quantitatively investigate this issue. And our findings speak in favor of the modulation of

synaptic signaling, resulting from the perceptual learning of environmental regularities.

Deepening our understanding of precision-weights. Our results corroborates that less weight is

attributed to less reliable information. Computationally, this weight is a trade-off between the

likelihood precision and the prior precision, and formally represents a means for the brain to ap-

propriately balance the two types of information, namely bottom-up sensory inputs and top-down

predictions. Each precision estimate evolves with the update dynamics behind perceptual learn-

ing. Elucidating the processes and neural mechanisms behind the computation, the adjustment

and the combination of those precisions is becoming a central question which not only call for

appropriate and dedicated models but also for new and finely tuned experimental manipulations.

For instance, regarding the likelihood precision, we could consider the reasoning applied in many

psychophysical studies (Ernst & Banks, 2002) that aimed at testing whether the brain integrates

multiple information in a Bayesian way. Using dichotic listening of oddball sequences with differ-

ent intensities or noise levels between the two ears, as well as conflicting trials (a deviant at one

ear and a standard at the other), we might be able to isolate the optimal adjustment of sensory

precision and its contribution to perceptual learning and decision making. Regarding prior preci-

sion, one limitation of the current study pertained to the fact that the learning of regularities in

PF sequences was very rapid, preventing from examining how it could have gradually influence

the weighting of prediction errors. We could thus envisage a more complex pattern of sound

association as in (Bendixen et al., 2008; Furl et al., 2011), where the duration of exposure to the

sound sequence was shown to modulate deviance responses. However, this calls for more complex

perceptual models involving high-order transition probabilities and for which the inversion of the

response model may not be straightforwardly tractable (but see Lieder, Daunizeau, et al., 2013).

9.3 Towards model-driven clinical applications of the

MMN

As previously emphasized and also further supported by our work, the free energy principle and

both its neurobiological and computational implications has already provided great insights into

several cognitive neuroscience domains. In this section, we consider how this framework can also

promisingly benefit to clinical applications, in particular to neurology and psychiatry, and we

discuss the possibility of our study and modeling approach to contribute to that aim.

Classical neuroimaging studies for clinical applications contribute to improve the accuracy of

diagnostic procedures at the individual patient level (in terms of predictive outcome value), in

order to refine the selection for specific treatments. Critically, this involves the long-standed issue

of classifying patients into meaningful groups based on key criteria, that must be achieved with

routine clinical procedure using single-subject measurements. In (Stephan et al., 2015b), the au-

thors propose computationally informed biomarkers to enter (and refine) the diagnostic scheme,

in order to infer the (possibly impaired) mechanisms that have generated the neuroimaging data.

Typically, a relevant maker would be a neural correlate of precision-weighted prediction error
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(DCM connectivity parameters for instance). Regarding deviance responses and the MMN in

particular, oddball paradigms have been extremely used for various clinical domains for decades

(Näätänen, 2003; Sussman et al., 2014). The MMN is indeed a window into cognitive process-

ing as it allows assessing dysfunctioning in regularity learning or in perceptual discrimination for

instance. From a technical point of view, it is easy and rapid to measure, without requiring the

attention of the patient. Existing methodologies for patient evaluation are bound to the typical

measure of the MMN amplitude, duration or latency. They sometimes but rarely involve its un-

derlying generators using source reconstruction. To go further, some DCM studies have already

attempted to promote the added value of quantitative neurophysiological generative models to

better exploit oddball paradigms in clinical settings, namely in the case of patients with altered

states of consciousness (Boly et al., 2011), or in schizophrenia (Dima et al., 2012). In the following,

we present two examples (one in neurology, one in psychiatry) of possible clinical applications of

our paradigm, in close relation to side projects I have contributed during this PhD (see §9.4.1).

MMN and computational neurology. We consider here patients in altered states of consciousness,

for whom a cognitive state evaluation in the absence of explicit communication is challenging.

Such patients are typically grouped into the categories of comatose state, vegetative state (VS)

or minimally conscious state (MCS) (Giacino et al., 2004). The use of MMN paradigms with

comatose patients has proved efficient to predict coma outcome (Fischer et al., 2004). Using

DCM, Boly et al. (2011) tested the hypothesis of impaired effective connectivity in VS and MCS

patients during an oddball paradigm, with findings suggesting the implication of backward (fronto-

temporal) connectivity in VS patients compared to healthy subjects. Our oddball study focused

on the implicit processing of environmental regularities and indicated specific computational and

biological markers characterizing the ensuing perceptual learning. Based on such mechanistic

markers, conducting our paradigm with VS and MCS patients could help examining their cog-

nitive ability to process auditory information compared to healthy subjects. The predictability

effect could further inform us about the degree of preserved cognitive function, as it was found

to involve high level processing in the current work. This would require some adjustments such

as increasing the magnitude of the deviance, to allow measuring the predictability effect at the

individual level (namely the detection of a reduced MMN amplitude with predictable sequence),

as indicated by our preliminary attempts. In addition, further investigating the usefulness of

the P3a appears of significant relevance using our modeling approach, as this later component

presumably reflects the transition from automatic to attention-orienting and voluntary processes.

MMN and computational psychiatry. The case of autism is naturally addressed by the emerg-

ing field of computational psychiatry (Friston et al., 2014) as Bayesian brain theories succeeded

in framing the phenomenology of this mental disorder, which would be characterized by impaired

perceptual inferences. Precisely, as proposed in a recent review (Haker et al., 2016), an altered

weighting of prediction errors favoring bottom-up sensory input information at the expense of top-

down predictions would be involved, compromising the learning processes required for adaptive

behavior to emerge, especially in complex environment such as in social interactions. Clarifying

these impairments rests on investigating the computation of sensory and prediction precision as

well as assessing their physiological underlying correlates and should involve the manipulation of

environmental stability to test how patients with autism adapt (and learn) in a volatile context

(Behrens et al., 2007; Robic et al., 2014). Impaired sensory processing in autism has long been
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explored with the MMN (Näätänen et al., 2014), with findings showing various amplitude and

latency modulation patterns depending on the experimental material (speech vs. non-speech for

instance). Hence, computational models of the MMN provide new perspectives for investigating

autism (in particular regarding how the brain learns in a changing environment) while resting on

easy-to-run paradigms that are convenient for patients. This could efficiently be achieved using

the twofold modeling strategy employed in this work, first using our paradigm to examine the

dynamics of precision-weighted prediction errors, and second using model-driven adjustments of

oddball sequences to enable a finer examination of the relative adjustment of precisions (this could

possibly rest on the suggestions developed in §9.2.2).

9.4 Concluding remarks

To conclude, this thesis aimed at establishing the validity of the predictive coding account of

auditory processing during a passive oddball paradigm, in terms of its cognitive and biological

plausibility. This framework provides precise predictions regarding how deviance responses, or

equivalently hierarchical precision-weighted prediction errors, should be affected by environmental

regularities. We thus manipulated the predictability of frequency oddball sequences, leading

to unpredictable and predictable deviants, and deployed a twofold modeling analysis informed

by simultaneous EEG and MEG recordings, to address on one hand the functional significance

(using learning models of trial-by-trial responses) and on the other hand the neurophysiological

underpinnings (using models of effective connectivity) of deviance responses. Our findings, at

both levels, support the key principles of predictive coding, namely a hierarchical organization

for perceptual inference and learning and the weighting of prediction errors which is crucial to

trigger learning processes in a changing environment according to the reliability of information.

These results speak neatly in favor of computational and mechanistic modeling, being efficient

approaches to better understand perceptual learning.

9.4.1 Related works performed during this PhD

During this PhD, I took part to different projects sharing methodological and cognitive concerns

with the questions addressed in the current thesis:

• with Marie Gomot (Inserm U930, Tours) and Jérémie Mattout, using DCM, we attempted

to characterize the differences in deviance responses measured with children with autism

and neurotypical children in terms of effective connectivity. Precisely, using EEG data in a

passive frequency oddball sequence (Gomot et al., 2002), the aim was to test whether thala-

mic afferences would arrive in the ACC for children with autism, an hypothesis corroborated

by a subsequent fMRI study (Gomot et al., 2006).

• with Dominique Morlet (CRNL, Dycog, Lyon) and Jérémie Mattout, we attempted to model

deviance responses measured in patients having altered states of consciousness using DCM

and EEG recordings in a duration deviance paradigm. This work was motivated by the

study of Boly et al. (2011), and aimed at establishing a relationship (at the group-level)

between the effective connectivity at play during oddball sequence, patients’ score obtained

using the commonly used Coma Recovery Scale (CRS) and the statistical emergence of

brain components (the N1, the MMN and the P3a) at relevant EEG sensors.
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• with Ludovic Bellier (CRNL, Dycog, Lyon) , Anne Caclin and Jérémie Mattout, we aimed

at testing the hypothesis of cortical contribution to speech auditory brainstem responses

(ABR), long established as originating from brainstem. Using DCM, we considered a model

space comprising cortical, subcortico-cortical, and subcortical networks and expected model

comparison to provide empirical evidence for subcortico-cortical contributions, as suggested

by intracranial recordings collected with a comparable experimental setup. Unfortunately,

the inadequacy of DCM evolution parameters to model the rapid component of these re-

sponses prevented us to pursue this work.

• with Antoine Lutz (CRNL, Dycog, Lyon) , Anne Caclin and Jérémie Mattout, we discussed

the predictive coding account of the modulation of deviance responses by different medita-

tive state (relative to different meditation practice styles). Preliminary sensor-level (EEG)

analysis suggest that the level of expertise and the state of mind do interfere with auditory

mismatch processing. These early results now call for quantitative hypothesis to be formally

tested using Bayesian model comparison.

9.4.2 List of publications related to this PhD work
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Lecaignard, F., Bertrand, O., Gimenez, G., Mattout, J., Caclin, A. (2015). Implicit learn-

ing of predictable sound sequences modulates human brain responses at different levels of the

auditory hierarchy. Frontiers in Human Neuroscience, 9:505.

Lecaignard, F., Bertrand, O., Caclin, A.,Mattout, J. Empirical evaluation of fused MEG-EEG

source reconstruction applied to auditory mismatch generators. In preparation.

Sanchez, G., Lecaignard, F., Otman, A., Maby, E., Mattout, J. (2016). Active SAmpling

Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired

Dynamic Experimental Design. Frontiers in Human Neuroscience, 10:347.

Book chapters

Lecaignard, F., Mattout, J. (2015) Forward models for EEG-MEG in ”Brain Mapping: An
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