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Chapter 1

Introduction en français

1.1 Motivation

Les algorithmes d’analyse de données sont utilisées dans de nombreux do-
maines tels que les moteurs de recherche, la publicité en ligne ou encore le
sport. Récemment, on parle de plus en plus des potentielles applications de
l’analyse de données dans la santé par exemple. Ces nouvelles applications
ont des enjeux tels que l’on aura besoin d’une profonde compréhension des
algorithmes utilisés et, autant que possible, de garanties théoriques perme-
ttant de donner des garanties sur les résultats obtenus par les algorithmes
utilisés. D’un autre côté, les bases de données que l’on a à traiter sont de
plus en plus grandes tandis que les données elle-même sont de plus en plus
difficiles à traiter : on a donc besoin d’algorithmes plus complexes, souvent
plus difficiles à analyser. Par exemple, les performances de nombreux algo-
rithmes diminuent très vite lorsque la dimension des données augmente, un
phénomène appelé malédiction de la dimension. Cependant, il est possible
que des données étant à première vue de grande dimension vivent en réalité
sur une structure de faible dimension : une sous-variété plongée dans un
espace de grande dimension. Il est alors capital de pouvoir travailler dans
cette structure de faible dimension plutôt que dans l’espace ambiant. Sup-
posons que nos données sont des variables aléatoires indépendantes tirées
selon une mesure µ dont le support est une variété plongée. N’ayant pas
directement accès à la variété, on peut vouloir construire un maillage de
cette variété pour l’approcher. Néanmoins le calcul d’un tel maillage risque
bien souvent d’être trop long. En pratique, on utilisera plutôt un graphe
de voisinage, obtenu en prenant comme sommets les points de données et
en ajoutant une arête entre deux points s’ils sont suffisamment proches.
Ces graphes portent le nom de graphes géométriques aléatoires. On peut
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2 CHAPTER 1. INTRODUCTION EN FRANÇAIS

alors supposer que ce graphe contient la structure de la variété, la prochaine
étape consiste alors à traiter l’information contenue dans ce graphe en util-
isant des algorithmes d’analyse de graphe. En analyse de graphes, une
des approches les plus efficaces consiste à utiliser les propriétés de marches
aléatoires pour comprendre la structure générale du graphe étudié. Afin
de comprendre le comportement ce type d’algorithme dans notre cas, il
suffit donc d’étudier les propriétés des marches aléatoires sur des graphes
géométriques aléatoires. Cependant, ces marches aléatoires sont difficiles à
étudier directement. Néanmoins, il est possible de mieux les comprendre
dans un cadre asymptotique : lorsque le nombre de points de données aug-
mente, et sous certaines hypothèses concernant la façon dont on construit
les graphe géométriques aléatoire, les marches aléatoires sur ces graphes
convergent vers un processus de diffusion dont le générateur infinitésimal
dépend à la fois de la variété et de la mesure µ. On peut donc s’attendre à
ce que le comportement de marches aléatoires soit influencé à la fois par la
structure de la variété plongée et par la structure de µ. Ainsi, même si le
support de µ n’est pas une variété mais plus simplement l’espace ambiant,
les approches utilisant des propriétés de marches aléatoires peuvent quand
même être utilisées pour obtenir des algorithmes d’analyse de données non
linéaires. Dans une première partie de cette thèse, nous allons utiliser la
convergence des marches aléatoires sur des graphes géométriques aléatoires
pour proposer un nouvel algorithme de partitionnement de données flou.
Puis nous allons approfondir les résultats concernant la convergence des
mesures invariantes de ces marches aléatoires, souvent utilisées dans des
algorithmes d’analyse de graphe. Outre les mesures invariantes, les algo-
rithmes d’analyse de graphes utilisent souvent deux autres propriétés de
marches aléatoires : le Laplacien de graphe et les temps d’atteinte.

Laplacien de graphe Les Laplaciens de graphe sont des opérateurs agis-
sant sur les fonctions définies sur les sommets d’un graphe. Ici, on se
concentre sur un type particulier de Laplacien de graphe, appelé Lapla-
cien de marche aléatoire, défini comme étant l’inverse du générateur d’une
marche aléatoire sur un graphe. Les Laplaciens de graphe sont utilisés
dans plusieurs types d’algorithmes comme le partitionnement de données
[57], la réduction de dimension [7] ou encore la classification semi-supervisée
[19]. Puisque des marches aléatoires sur des graphes géométriques aléatoires
converge vers des processus de diffusion, on peut s’attendre à ce que leur
générateur convergence vers le générateur infinitésimal du processus de dif-
fusion, entranant la convergence des Laplaciens de graphe correspondants.
Cette convergence peut être utilisée de plusieurs manières. Dans un premier
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Figure 1.1: Deux composantes fortement connectées liée par une seule arête.

temps, on a cherché à montrer la convergence de l’action des Laplaciens sur
certains ensembles de fonctions [9, 39, 45]. La convergence des marches
aléatoires vers des processus de diffusion est en fait obtenue via une telle
convergence [81]. D’autres travaux se sont ensuite concentrés sur la conver-
gence du spectre des Laplaciens de graphe [8, 38].

Temps d’atteinte Il est aussi possible d’étudier la structure d’un graphe
en utilisant le temps requis par une marche aléatoire pour passer d’un som-
met x à un autre sommet x′. Cette quantité est appelée temps d’atteinte de
x à x′, notée H(x, x′). Les temps d’atteinte peuvent être utilisés pour définir
une métrique sur le graphe, appelée distance de commutation, en prenant
comme distance entre deux sommets x et x′ la somme H(x, x′) +H(x′, x).
La distance de commutation est plus informative que des distances plus sim-
ples telles que la distance de plus court chemin car elle est influencée par la
structure globale du graphe. Par exemple, considérons le graphe présenté
dans la Figure 1.1, formé de deux composantes fortement connectées reliées
par une seule arête. A priori, on souhaiterait qu’un sommet appartenant
à la composante de gauche, tel que le sommet bleu, soit plus proche d’un
autre sommet appartenant à la même composante comme le sommet rouge,
que d’un sommet appartenant à la composante de droite, comme le som-
met vert. Pour la distance de commutation, le sommet bleu est bien plus
proche du sommet rouge que du vert, mais ce n’est pas le cas pour la dis-
tance de plus court chemin. Cette capacité à prendre en compte la structure
complète du graphe explique le succès de cette distance dans de nombreuses
applications comme le plongement de graphe [73, 68], le partitionnement
de données [90] ou encore la classification semi-supervisée [91]. Cependant,
lorsque l’on considère des graphes géométriques aléatoires, la convergence
des marches aléatoires nous déconseille d’utiliser ce type de quantité. En
effet, en dimension supérieure à un, le temps d’atteinte d’un processus de
diffusion à un point fixé est infini. Il n’existe donc pas de quantité naturelle
vers lesquelles les temps d’atteinte sur des graphes géométriques aléatoires
risquent pourraient converger, le risque étant que les temps d’atteinte con-
vergent vers des quantités peu informatives. Ce phénomène a été étudié
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dans [85], où les auteurs prouvent que la distance de commutation entre
deux sommets converge vers une quantité dépendant essentiellement des
structures locales du graphe autour des deux sommets: la distance ne cap-
ture donc pas la structure du graphe.

Mesure invariante La mesure invariante est une autre propriété des
marches aléatoires couramment utilisée en analyse de graphes. L’algorithme
PageRank [65], qui classe des pages web via la mesure invariante d’une
marche aléatoire sur le graphe ayant pour sommets les pages web et pour
arêtes les hyperliens, est probablement l’exemple le plus connu d’un algo-
rithme utilisant cette propriété. En ce qui concerne l’étude de la mesure
invariante d’une marche aléatoire sur un graphe on peut distinguer deux
cas suivant si le graphe est orienté ou non. Quand le graphe considéré est
un graphe non orienté, la mesure invariante peut être facilement étudiée :
elle est égale au degré des sommets du graphe. Cependant, quand le graphe
est orienté, la mesure invariante de la marche aléatoire sur le graphe ne
peut pas être calculée facilement. Ceci est problématique car de nombreux
graphes intéressants sont orientés, comme le graphe de pages web décrit
précédemment ou les graphes de plus proches voisins, souvent utilisés en
analyse de données. Dans le cas de graphes géométriques aléatoires, on
peut espérer que la mesure invariante des marches aléatoires convergent
vers la mesure invariante du processus de diffusion limite, que le graphe
soit orienté ou non. Si la mesure µ selon laquelle les données sont générées
admet une densité f , la mesure invariante du processus de diffusion limite a
une densité qui dépend de f . La mesures invariante d’une marche aléatoire
sur un graphe géométrique aléatoire pourrait donc être utilisée pour calculer
un estimateur de la densité f . Un tel estimateur pourrait être calculé en
utilisant uniquement la structure du graphe, répondant ainsi à un problème
posé dans [84]. Bien que cet estimateur de densité serait sans doute peu
intéressant quand on a accès aux coordonnées des points de données, en
quel cas il est possible d’utiliser des estimateurs de densité plus classiques,
avoir accès à un tel estimateur nous garantirait qu’utiliser un graphe pour
analyser les données n’entrane pas de perte majeure d’information. En effet,
si on peut retrouver f à partir du graphe, alors ce graphe contient quasi-
ment toute l’information initiale. Un résultat de convergence faible pour
les mesures invariantes de marches aléatoires sur des graphes géométriques
aléatoires a été obtenu dans [44].
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1.2 Contributions

En général, la convergence des marches aléatoires sur des graphes géométriques
aléatoires est utilisée pour obtenir des garanties théoriques pour des algo-
rithmes utilisant certaines propriétés de ces marches. Dans cette thèse, nous
commençons par suivre une démarche inverse et utilisons cette convergence
pour proposer un nouvel algorithme de partitionnement de données flou.
Le but du partitionnement de données est de répartir les échantillons de
données en paquets en espérant que les échantillons appartenant à un pa-
quet similaire aient des propriétés similaires. Cependant, cette approche
n’apporte qu’une connaissance limitée de la structure des données car elle
n’apporte a priori aucune information sur les relations entre les différents
paquets : lesquels sont proches, à quel point ces paquets sont bien séparés
etc. Afin d’obtenir une compréhension plus profonde des données, il faut
donc identifier les interfaces entre les différents paquets. Considérons par ex-
emple le cas de l’étude de l’espace des conformations d’une protéine. D’un
côté, il est possible de détecter les conformations stables d’une protéine
en utilisant du partitionnement de données [29]. D’un autre côté com-
prendre la structure des interfaces entre paquets permettrait d’identifier
les étapes probables de transition entre deux conformations stables. On
pourrait simplement définir ces interfaces comme l’ensemble de points dont
le voisinage contient des points appartenant à plusieurs paquets différents.
Néanmoins, les interfaces obtenues en utilisant cette définition peuvent être
très instables. Le partitionnement de données flou semble un meilleur outil
pour répondre à ce problème. Plutôt que de placer chaque échantillon
de données dans un paquet, on cherche à attribuer à chaque échantillon
des coefficients d’appartenance à chacun des paquets. Les interfaces corre-
spondent alors simplement aux échantillons de données dont les coefficients
d’appartenance sont bien répartis. Ces interfaces sont bien plus stables
que les interfaces obtenues via la première définition proposée. Dans ce
travail, on se concentre sur le partitionnement de données obtenu par une
approche de recherche de modes. Dans cette approche, on suppose que les
échantillons de données sont des variables aléatoires indépendantes tirées
selon une mesure ayant une densité f et on identifie les paquets de données
aux bassins d’attraction des maxima locaux de f : on utilise donc un flot
de gradient pour partitionner les données. Ici, on propose d’obtenir un
partitionnement de données flou en utilisant une version perturbée de ce
flot de gradient prenant la forme d’un processus de diffusion dépendant de
la densité f . Nous approchons ce flot de gradient en utilisant une marche
aléatoire sur un graphe géométrique aléatoire calculé en utilisant un es-
timateur de f . En pratique on obtient une version floue de l’algorithme
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de recherche de mode “Topological Mode Analysis Toolbox” (ToMATo)
[22] et, en utilisant les résultats théoriques existant pour cet algorithme,
nous obtenons des garanties pour notre algorithme flou. Nous obtenons
aussi des résultats expérimentaux encourageant pour notre algorithme sur
des jeux de données synthétiques et réelles. En pratique, notre algorithme
n’a besoin que d’un graphe géométrique aléatoire et d’un estimateur de la
densité f . Ainsi, on pourrait l’utiliser sur des données ayant directement
une structure de graphe, supposé être un graphe géométrique aléatoire, à
condition d’être capable de calculer un estimateur de densité. Comme vu
précédemment, un tel estimateur peut être obtenu en utilisant la mesure
invariante de la marche aléatoire sur le graphe. Cependant, en général, on
ne peut qu’obtenir la convergence faible de cette mesure invariante vers une
mesure à partir de laquelle on peut estimer f . Améliorer ce résultat en
obtenant une vitesse de convergence de la mesure invariante constitue le
second apport de cette thèse.

Notre approche se base sur la méthode de Stein, initialement développée
pour obtenir des vitesses de convergence pour le théorème central limite [52].
Plus tard, Barbour [5] a montré que cette approche pouvait être généralisée
pour comparer la mesure invariante d’une chane de Markov réversible à la
mesure invariante d’un processus de diffusion. En fait, sous certaines hy-
pothèses techniques, ces mesures sont proches si le générateur de la chane
de Markov correctement renormalisé et le générateur infinitésimal d’un pro-
cessus de diffusion le sont. Il y a deux problèmes avec cette approche : elle
est difficile à utiliser dans un cadre multidimensionnel et elle requiert une
chane de Markov réversible. En effet, dans notre cas, la chane de Markov
que nous souhaitons utiliser est la marche aléatoire sur le graphe qui n’est
réversible que si le graphe est non orienté, auquel cas la mesure invariante
de cette marche aléatoire peut être directement calculée. En nous basant
sur des résultats récents obtenus dans [52], nous proposons une nouvelle
manière de borner la distance de Wasserstein entre deux mesures ν et µ
où µ est une mesure réversible pour un opérateur différentiel Lµ, satis-
faisant certaines conditions techniques, et ν est la mesure invariante d’une
chane de Markov, réversible ou non. Plus précisément, on montre que si le
générateur de la chane de Markov renormalisé et Lν sont proches alors la
distance de Wasserstein d’ordre deux entre µ et ν est faible. En utilisant
ce résultat, nous sommes capables de quantifier la convergence des mesures
invariantes de marches aléatoires sur des graphes géométriques aléatoires et
nous prenons comme exemple le cas des graphes des k plus proches voisins.
Notre résultat peut aussi être utilisé pour étudier un algorithme de Monte-
Carlo basique. Enfin, il est possible de raffiner notre résultat dans le cas
où µ est la mesure gaussienne. Nous pouvons ainsi donner des vitesses
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de convergence pour la distance de Wasserstein pour le théorème central
limite.

La dernière partie de cette thèse n’est pas liée aux marches aléatoires
sur des graphes mais utilise le concept d’homologie persistante utilisé par
l’algorithme de partitionnement de données ToMATo pour faire de la re-
connaissance de formes. De nombreux algorithmes ont été proposés pour
traiter automatiquement des bases de données de formes 3D. Parmi ces
algorithmes, certains des plus performants se basent sur l’approche dite
“sac-de-mots”. Dans cette approche, on commence par extraire un ensem-
ble de descripteurs de chacune des formes de la base de données considérée.
Ces descripteurs sont ensuite quantifiés par des vecteurs dont chaque coor-
donnée correspond à un “mot”. L’information contenue dans chaque mot
est ensuite extraite et compressée lors d’une étape dite de “pooling” : pour
chaque forme, on considère la moyenne, “sum-pooling”, ou le maximum,
“max-pooling”, de chaque mot sur la forme correspondante. On a donc
caractérisé chaque forme par un vecteur et on peut ainsi classifier ces formes
en utilisant l’ensemble des vecteurs obtenus dans des algorithmes de classi-
fication classiques. Dans l’idéal, toutes les étapes de ce processus devraient
être robustes vis-à-vis des transformations que les formes peuvent subir :
translations, rotations ou encore changement d’échelle, tout en étant suff-
isamment discriminantes. Maintenant, considérons les mots non pas comme
un simple ensemble de valeurs mais comme des fonctions définies sur un
graphe de voisinage, par exemple si on utilise un maillage pour calculer les
descripteurs on peut utiliser le graphe fourni par le maillage et associer à
chaque sommet la valeur du mot obtenu pour le descripteur correspondant.
Le max-pooling consiste alors à construire un vecteur contenant les max-
ima globaux de chacune des fonctions mots. On serait alors tenté de rendre
le max-pooling plus discriminant en considérant tous les maxima locaux
de chaque fonction mot plutôt que de se restreindre aux maxima globaux.
Cependant, une telle approche serait fortement instable : perturber les
fonctions mots, même faiblement, peut créer de nombreux maxima locaux
qui ne sont pas forcément caractéristiques de la forme 3D considérée. Pour
pallier ce problème, nous proposons d’utiliser le concept d’homologie per-
sistante 0-dimensionnelle, ou proéminence, afin de sélectionner les maxima
locaux les plus stables par rapport aux perturbations des fonctions mots.
Nous appelons la procédure obtenue “Topological Pooling”, et nous mon-
trons qu’elle est plus efficace que le schéma de max-pooling classique.
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1.3 Plan de la thèse

Dans le Chapitre 3, nous introduisons le concept de marches aléatoires sur
des graphes et les algorithmes d’analyse de graphes utilisant ces marches.
Nous définissons ensuite les processus de diffusion et présentons leurs pro-
priétés en lien avec ce travail. Nous introduisons ensuite les graphes géométriques
aléatoires et nous présentons les résultats de convergence existant pour les
marches aléatoires sur ces graphes.

Dans le Chapitre 4, nous présentons le cadre de la recherche de mode en
partitionnement de données ainsi que l’algorithme ToMATo. Nous présentons
ensuite notre algorithme de partitionnement de données flou utilisant une
marche aléatoire sur un graphe géométrique aléatoire approprié. Nous
obtenons ensuite des garanties théoriques pour notre algorithme et nous
montrons son efficacité sur des jeux de données synthétiques et réelles.

Dans le Chapitre 5, nous utilisions une approche basée sur la méthode
de Stein pour borner la distance de Wasserstein entre deux mesures et
nous donnons plusieurs applications de nos résultats. Nous commençons
par donner des vitesses de convergence pour le théorème central limite.
Nous montrons ensuite comment nos résultats peuvent être utilisés pour
quantifier la convergence de mesures invariantes de marches aléatoires sur
des graphes géométriques aléatoires en prenant comme exemple le cas des
graphes de k plus proches voisins. Enfin, nous étudions les performances
d’un algorithme basique de type Monte-Carlo.

Dans le Chapitre 6, nous présentons l’approche “sac-de-mots” pour la
reconnaissance de formes ainsi que les forces et faiblesses des méthodes de
pooling usuelles. Nous présentons notre nouvelle méthode de pooling basée
sur l’homologie persistante 0-dimensionnelle et étudions ses performances
sur le jeu de données SHREC 2014.

Enfin, dans le Chapitre 7, nous présentons différentes pistes de nouvelles
recherches pour mieux comprendre la convergence de marches aléatoires sur
des graphes géométriques aléatoires.



Chapter 2

Introduction

2.1 Motivation

Data analysis algorithms are used in a large number of applications such
as search engines, online advertisement, sports, etc. The range of these
applications is to become even broader as new promising applications in
other domains such as health care are arising. As the stakes involved in
these new applications are higher, we need a strong understanding of the
algorithms we are using and, if possible, theoretical guarantees ensuring the
correctness of these algorithms. Another challenge posed by these new ap-
plications is the increasing complexity of the data to process, either due to
the sheer amount of data available or to the nature of the data itself. The
dimensionality of the data is one such source of complexity: the efficiency of
learning algorithms drops quickly when the dimension of the data increases,
a phenomenon called the curse of dimensionality. Fortunately, in some cases
the data happens to be drawn from a lower dimensional structure, a man-
ifold, embedded in a higher dimensional space. It is then crucial to take
advantage of this structure. Suppose the data takes the form of a point
cloud of independent and identically distributed random variables drawn
from a measure µ with density f supported on a manifold. Since we do
not have access to the manifold itself, a natural idea to use the manifold
structure would be to build a mesh from the data point cloud and then per-
form data analysis using this mesh. As computing an actual mesh might
be too computationally expensive, one can instead compute a graph using
the data points as vertices and adding an edge between two vertices if they
are sufficiently close. Such a graph is called a random geometric graph. At
this point, we can expect the graph to capture the structure of the mani-
fold, thus the next step is processing the information contained in the graph

9
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through graph analysis algorithms. An efficient approach to graph analysis
consists in using the properties of a random walk to gain insight of the full
graph structure. Obtaining theoretical guarantees, such as consistency, for
algorithms using random geometric graphs can then be achieved by under-
standing the properties of random walks on these graphs. Although these
are complex objects, it turns out it is possible to gain some insight on their
properties in an asymptotic setting. Indeed, when the number of data sam-
ples goes to infinity, and under some rather natural assumption on the way
the graphs are built, random walks on random geometric graphs converge
to a diffusion process whose generator depends on both the Laplacian of
the manifold and the sampling density f . Since the limiting diffusion does
not only depend on the manifold structure but also on f , it makes sense
to use random walks on random geometric graphs to perform non-linear
data analysis even when µ has a full-dimensional support. Moreover, the
convergence of random walks on random geometric graphs to diffusion pro-
cesses can also be exploited to study the consistency of random-walk based
algorithms on such graphs. Our work will consist in using the convergence
of random walks on random geometric graphs to propose a new data anal-
ysis algorithm and to provide a better understanding of the convergence
of a property of random walks often used by data analysis algorithm: the
invariant measure. Outside of the invariant measure, random walk-based
data analysis usually rely on two properties: the graph Laplacian and hit-
ting times. Let us discuss the consequences of the convergence of random
walks to diffusion processes for these three properties.

Graph Laplacian Graph Laplacians are operators acting on functions
of the vertices of a graph G. Here we focus on the random walk graph
Laplacian L of G which is simply the opposite of the generator of a ran-
dom walk on G. As the spectrum of L contains information regarding the
connectivity of G, it is often used by Spectral clustering algorithms [57].
Graph Laplacians are also used in many other applications such as dimen-
sionality reduction using Diffusion maps [7] or semi-supervised classification
[19]. Since random walks on random geometric graphs converge to diffusion
processes, we can expect the generators of the random walks to converge
to the infinitesimal generators of the limiting diffusion processes. There are
two main approaches to obtain such a convergence. The first approach is to
show the convergence of Lφ for φ belonging to a set of functionals [9, 39, 45].
The convergence of random walks to diffusion processes is actually obtained
using this type of convergence [81]. The second approach focuses on proving
the convergence of the spectrum of the graph Laplacian to the spectrum of
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Figure 2.1: Two highly connected components linked by a single edge.

the infinitesimal generator of the limiting diffusion process [8, 38].

Hitting times It is also possible to study the structure of the graph by
using the time required for a random walk to travel from a vertex x to
another vertex x′. This quantity is called hitting time from x to x′, and we
denote it by H(x, x′). Hitting times can be used to define a metric on the
graph called commute distance, where the commute distance between two
vertices x, x′ is simply the sum H(x, x′) +H(x′, x). The commute distance
is more informative than simpler distances such as the shortest path dis-
tance as it takes into account the full graph structure. For instance, let us
consider the graph drawn in Figure 2.1 which is composed of two highly con-
nected components linked by a single edge. Intuitively, we expect the blue
vertex and the red vertex to be close, since they belong to the same highly
connected component, while being far away from a vertex from the other
component such as the green vertex. While this is true for the commute dis-
tance, it is not the case for the shortest path distance. Hence, the commute
distance is used with great success in many different applications such as
graph embedding [73, 68], clustering [90] or semi-supervised learning [91].
To study the consistency of hitting times, it would seem natural to compare
hitting times of random walks on random geometric graphs to hitting times
of the limiting diffusion processes. However, in dimension greater than one,
the hitting time of a diffusion process to a given point is infinite, thus we
cannot expect hitting times of random walks on random geometric graphs
to converge to meaningful quantities. This ill-behaviour was described in
[85], where the authors proved the hitting times between two vertices of a
large random geometric graph depend mostly on local quantities alone, in
which case hitting times do not capture the global structure of the graph.

Invariant measure Finally, it is possible to use the invariant measure
of a random walk on a connected graph to process data. The most famous
algorithm using this approach is probably the PageRank algorithm [65]
which ranks web-pages using the invariant measure of a random walk on
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the graph obtained by taking web pages as vertices and hyperlinks as edges.
When studying the invariant measure of a random walk on a graph, there
are two cases. When the graph undirected, the invariant measure can be
directly computed: it is proportional to the degree function. On the other
hand, it is hard to say anything about the invariant measure of a random
walk on a directed graph. This is problematic since nearest neighbor graphs,
which are quite popular in data analysis due to their sparsity, are directed.
In our case, one may wonder whether the convergence of random walks to
diffusion processes implies the convergence of the invariant measure of the
random walks to the invariant measure of the diffusion processes. Let us
note that the invariant measure of the limiting diffusion process depends can
be used to recover the underlying density f . Hence, the invariant measure
of a random walk on a random geometric graph can be used to obtain an
estimator of f . Moreover, this estimator can be computed using the graph
structure alone, which would solve an open problem stated in [84]. Indeed,
while this density estimator would not be interesting whenever we have
access to the coordinates of the data points, in which case it is more efficient
to use a standard density estimator, it would confirm we are not loosing
information by working with the random geometric graph rather than the
original point cloud. Indeed, if we are able to recover f , and thus µ, from
the sole graph structure, then it means it contains most of the original
information. However, the current results regarding the convergence of
invariant measure of random walks on random geometric graphs are not
sufficient to prove the consistency of such an estimator since the only known
result is a weak convergence result proved in [44].

2.2 Contributions

As we have seen, the convergence of random walks on random geometric
graphs is usually used to prove the consistency of data analysis algorithms.
In a first part of this work, we propose to use this convergence to design
a new algorithm for soft clustering. The objective of clustering algorithms
is to partition the data in clusters, hoping that data belonging to a sim-
ilar cluster shares similar properties. Overall, clustering provides a fairly
limited knowledge of the structure of the data: while the partition into clus-
ters is well understood, the interplay between clusters -respective locations,
proximity relations, interactions- remains unknown. Identifying interfaces
between clusters is the first step toward a higher-level understanding of the
data, and it already play a prominent role in some applications such as
the study of the conformations space of a protein, where a fundamental
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question beyond the detection of metastable states is to understand when
and how the protein can switch from one metastable state to another [29].
Clustering can be used in this context, for instance by defining the border
between two clusters as the set of data points whose neighborhood, in the
ambient space or in some neighborhood graph, intersects the two clusters,
however this kind of information is by nature unstable with respect to per-
turbations of the data. Soft clustering appears as the appropriate tool to
deal with interfaces between clusters. Rather than assign each data point
to a single cluster, it computes a degree of membership to each cluster for
each data point. The promise is that points close to the interface between
two clusters will have similar degrees of membership to these clusters and
lower degrees of membership to the rest of the clusters. Thus, compared
to hard clustering, soft clustering uses a fuzzier notion of cluster member-
ship in order to gain stability on the locations of the clusters and their
boundaries. Here, we are interested in the mode-seeking approach to clus-
tering. In mode-seeking, clusters are defined continuously as the basins of
attractions of the modes of the density. In other words, clusters are defined
through the limit of a gradient flow of the density. We propose to derive
a soft clustering approach to a mode-seeking algorithm called Topological
Mode Analysis Toolbox algorithm [22] by turning this gradient flow into
a stochastic differential equation whose solution is a diffusion process de-
pending on the density f . In practice, we approximate the behaviour of the
diffusion process by a random walk on a random geometric graph computed
using a density estimator. We then prove the consistency of our algorithm,
study the impact of the various parameters on the output of our algorithm
and evaluate the performance of our algorithms on several datasets. An
interesting aspect of our algorithm is that it does not require the actual
coordinates of the data points but merely a random geometric graph struc-
ture and a density estimator. Hence, this algorithm could directly be used
as a graph analysis algorithm for random geometric graphs provided we are
able to compute a density estimator using the graph structure alone. As we
have mentioned earlier, it is possible to compute a density estimator from a
random geometric graph using a random walk on the graph. However, the
only result regarding the convergence of this invariant measure is expressed
in terms of weak convergence. The second contribution of this thesis will
consist in strengthening this result by quantifying this convergence.

Our approach is based on Stein’s method, which was originally devel-
oped to bound the distance to the Gaussian measure to provide rates for
the Central Limit Theorem [52]. In [5], it was shown Stein’s method can
actually be used to bound the distance between the invariant measure of
a reversible Markov chain to the invariant measure of a diffusion process
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using their (infinitesimal) generators. This seems close to our objective
since a random walk on a graph is a Markov chain, however there are two
main issues with using this result in our setting. First, it is difficult to
use in a multidimensional setting. Second, it requires a reversible Markov
chain and thus would only be helpful to study random walks on undirected
graphs which we already know how to deal with. By adapting a recent re-
sult from the Stein’s method literature [52], we provide a way to bound the
2-Wasserstein distance between the invariant measure ν of a Markov chain
with generator Lν and a measure µ which is the reversible measure of a
differential operator Lµ. More precisely, we show that the distance between
µ and ν can be bounded using a discrepancy between the two operators Lν
and Lµ. We are thus able to quantify the convergence of invariant mea-
sures of random walks on random geometric graphs: as an illustration, we
compute the rate of convergence in the case of a k-nearest neighbor graph.
Whenever µ is the Gaussian measure, we provide a more refined bound
which allows us to give rates of convergence for the Wasserstein distance
for the Central Limit Theorem, either for the p ≥ 2-Wasserstein distance in
the unidimensional setting or for the 2-Wasserstein distance distance in the
multidimensional case. Finally, we also show how our result can be used to
study a simple Markov Chain Monte Carlo algorithm.

The last work of this thesis is not related to random walks on random ge-
ometric graphs. Instead, we tackle the problem of shape recognition by us-
ing the concept of 0-dimensional persistent homology used by the Topologi-
cal Mode Analysis Toolbox clustering algorithm. In order to automatically
process 3D shapes databases, there exist multiple retrieval and classifica-
tion algorithms. The bag-of-words approach, originally developed for image
analysis, is one such classification pipeline used to process 3D shapes. Tra-
ditionally, the bag-of-words method relies on extracting an unordered col-
lection of descriptors from the shapes we consider. Each descriptor is then
quantized by a vector whose coordinates are called words. The information
available in the words values is then extracted and summarized through a
step called pooling, producing a vector usable by standard learning algo-
rithms. Traditional pooling schemes consist in taking either the average of
the value -sum-pooling- or the maximum value -max-pooling- of each words
across the shape. Ideally, each step of this framework should be robust to
standard transformations which may affect 3D shapes -translations, rota-
tions or changes of scale- while being sufficiently discriminative. Here, we
propose to put more structure in the bag-of-words approaches: rather than
considering an unordered collection of word values, we instead view these
values as a set of functions on the mesh of the shape. From here, the pooling
step should extract information from a function opening up new avenues to
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refine traditional pooling schemes. For instance, the max-pooling scheme,
which consists in taking the global maximum of a word function, could be
refined by considering all the local maxima of a word function instead. But
such an approach would not be stable since perturbing a function, even
slightly, can create many uninteresting multiple local maxima. To fix this
issue, we use the concept of 0-dimensional persistent homology, or promi-
nence, to obtain a pooling procedure which uses all the local maxima of the
word functions and weights them regarding to their stability which respect
to perturbations. Thus, we are able to generalize max-pooling to design a
more discriminative scheme while retaining most of its stability. We provide
experimental results proving the efficiency of this new pooling scheme.

2.3 Organization of the thesis

In Chapter 3, we present random walks on random graphs along with al-
gorithms using these random walks to perform graph analysis. We then
give a brief presentation of diffusion processes. Finally, we present random
geometric graphs and known results on the convergence of random walks
on random geometric graphs.

In Chapter 4, we present the mode-seeking framework and the Topolog-
ical Mode Analysis Toolbox algorithm. We then show how this algorithm
can be turned into a soft clustering algorithm by using a random walk on
a properly weighted random geometric graph. We prove the consistency of
this new algorithm and show its effectiveness on both synthetic and real
datasets.

In Chapter 5, we obtain new bounds on the Wasserstein distance be-
tween two measures using Stein’s method and provide several applications
of these bounds. We first derive convergence rates in the Central Limit The-
orem which hold in the multivariate setting. We then show how to apply
our result to bound the Wasserstein distance between the invariant measure
of a random walk and the invariant measure of a diffusion process. Using
this result, we are able to give rates for the convergence of the invariant
measure of a random walk on a random geometric graph. As an illustration,
we study the special case of the k-nearest neighbor graph. Finally, we show
how our results can be used to study a simple Monte Carlo algorithm.

In Chapter 6, we present the bag-of-word approach for shape recognition
and discuss the strengths and weaknesses of traditional pooling procedure.
We then provide a new pooling procedure based on 0-dimensional persistent
homology and assess its performance on the SHREC 2014 dataset.

Finally, in Chapter 7, we highlight possible avenues for new research to
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better understand the convergence of algorithms relying on random walks
on random geometric graphs.



Chapter 3

Random walks on random
geometric graphs

In this chapter, we formally introduce the concept of random walks on
graphs as Markov chains and we provide an overview of the main random
walk-based algorithms used in graph analysis. Then, we introduce diffusion
processes, their relevant properties for our works and we show how to ap-
proximate a diffusion process through a Markov chain. Finally, we describe
random geometric graphs and we explore the consequences of the conver-
gence of random walks on random geometric graphs to diffusion processes.

3.1 Markov chains for graph analysis

A (time-homogeneous) Markov chain is a sequence of random variables
(Xn)n∈N taking values in a measurable space (E,F) such that the behavior
of Xn depends on Xn−1 only. More formally we say that (Xn)n∈N is a
Markov Chain if

∀n ∈ N,∀F ∈ F ,P(Xn+1 ∈ F | X0, . . . , Xn) = P(Xn+1 ∈ F | Xn)

= K(Xn)(F ),

where K is a function from E to the space of probability measures on
E called the transition kernel of the Markov chain. A Markov chain is
completely characterized by its state space E, the measure of X0 and K.
Whenever E is discrete, the measures K(.) are completely characterized by
their values on singletons. Hence, we can define K as a function from E2

to [0, 1] such that

∀x, x′ ∈ E,K(x, x′) = P(X1 = x′ | X0 = x).

17
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GRAPHS

In the remainder of this Section, we assume E to be discrete.
Let G be a weighted graph with vertices X and weight function w :

X ×X → R+. A random walk on G is a Markov chain with state space X
and transition kernel K defined by

∀x, x′ ∈ X , K(x, x′) =
w(x, x′)∑
x∈X w(x, x)

.

We say a graph is undirected if

∀x, x′ ∈ X , w(x, x′) = w(x′, x).

Finally, the degree of a vertex x is given by

d(x) =
∑
x′∈X

w(x′, x),

and the volume of a subset A ⊂ X is

vol(A) =
∑
x∈A

d(x).

3.1.1 Graph Laplacian

Consider a Markov chain with state space E and transition kernel K. We
call generator of the Markov chain the operator L such that, for any function
φ : E → R and any state x ∈ E,

Lφ(x) = E[φ(X1)|X0 = x]− φ(x) =
∑
x′∈X

(φ(x′)− φ(x))K(x, x′).

In the case of a random walk on a graph, the opposite of this generator
is called the graph Laplacian L := −L. Actually, there exist three pos-
sible definitions of graph Laplacians depending on the normalization used
[57]; the graph Laplacian defined here is usually called random walk graph
Laplacian. Let us study the spectrum of L.

Proposition 1 (Proposition 3 [57]). If G is undirected, then L is positive
semi-definite and admits |X | positive real eigenvalues.

These eigenvalues and the corresponding eigenvectors contain a great
deal of information regarding the structure of the graph itself. As an ex-
ample, let us consider the problem of clustering which consists in gathering
vertices of the graph in clusters such that the intra-cluster connectivity is
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high while the inter-cluster connectivity is small. The most elementary
way to cluster a graph is to associate clusters with connected components.
While there are more direct ways to recover the connected components of
an undirected graph, they can be computed from the spectrum of the graph
Laplacian.

Proposition 2 (Proposition 4 [57]). If G is undirected, then the multi-
plicity of the eigenvalue 0 of L equals the number of connected components
A1, . . . , Ak in the graph. Moreover, the eigenspace of 0 is spanned by the
indicator functions of these components.

Since an eingenvalue equal to zero indicates a connected component, we
could expect a small eingenvalue to indicate a subset of X that is close to
being disconnected from the rest of the graph. In order to quantify how
close A ⊂ X is close to being disconnected from the graph, we can consider
the cut value

cut(A) =
1

2

∑
x∈A,x′ /∈A

w(x, x′).

This cost corresponds to the total weight of the edges we would need to
remove in order to disconnect A from the rest of the graph. If this quantity
is small, it means A and X − A are close to being disconnected. In order
to define two clusters on a connected graph, it is tempting to assign the
first cluster to a set A minimizing the cut value and the second cluster to
X −A. However, quite often, the set A minimizing this cut value is simply a
vertex of the graph so this quantity alone cannot be used to obtain a good
clustering. Instead, one possibility is to minimize a regularized quantity
such as Ncut [76]

Ncut(A) = cut(A)(V ol(A)−1 + V ol(X − A)−1).

In this case, if A (or X − A) is reduced to a point, then its volume will be
low and Ncut(A) large. To divide a graph in two clusters, one would like to
find the set minimizing the Ncut value and define it as a cluster while the
second cluster would correspond to the remainder of the graph. However,
this minimization problem is NP-hard [86]. Fortunately, a relaxation of
this minimization problem is easier to deal with: its solution is simply the
second eigenvector of the graph Laplacian [57]. Moreover, if the associated
eigenvalue is small, so is the corresponding relaxed quantity. This analysis
can be generalized when we want to cluster X in k different subclusters in
which case it involves the first k eigenvalues and eigenvectors of the graph
Laplacian.
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Algorithms using the spectral properties of graph Laplacians to perform
clustering belong to the family of Spectral clustering algorithms [57]. The
Spectral clustering algorithm corresponding to our definition of the graph
Laplacian was introduced in [76]: one computes the first k (k being the
number of clusters) eigenvectors of L, each vertex of the graph is then
embedded into Rd with coordinates equal to the values of the eigenvectors
on the vertex, the clustering is finally obtained using a k-means algorithm
[43].

3.1.2 Hitting time and commute distance

Let x ∈ E and let (Xx
n)n≥0 be a random walk on the graph such that

Xx
0 = x. For any state x′ ∈ E, we define the hitting time from x to x′ by

τx,x′ = inf
n≥0

(Xx
n = x′),

and we denote by Hx,F the mean hitting time from x to x′

Hx,F = E[τx,x′ ].

Finally, we define the commute distance between any two states x and x′

as
Cx,x′ = Hx,x′ +Hx′,x.

For a random walk on a connected graph, the commute distance between
two vertices is always finite. Moreover, on an undirected graph, the com-
mute distance can be computed using the generalized inverse of the graph
Laplacian [57].

3.1.3 Invariant measure

A probability measure π is said to be an invariant measure for the Markov
chain if

∀x ∈ E, π(x) =
∑
x′∈E

K(x′, x)π(x′).

We say a Markov chain to be irreducible if

∀x, x′ ∈ E,∃n > 0,P(Xn = x′|X0 = x) > 0.

Furthermore, we say a Markov chain to be positive recurrent if

∀x ∈ E,Hx,x <∞.

Irreducibility and positive recurrence ensures the existence of a unique in-
variant measure for the Markov chain.
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Proposition 3 (Theorem 1.7.7 [61]). An irreducible Markov chain admits a
unique invariant measure π if and only if it is positive recurrent. Moreover,

∀x ∈ E, π(x) =
1

Hx,x

∑
x′∈E H

−1
x,x

.

Computing the invariant measure of a random walk on an undirected
graph is simple: it is proportional to the degree function of the graph.

Proposition 4. The random walk on a connected and undirected graph
admits a unique invariant measure π with

∀x ∈ X , π(x) =

∑
x′∈X w(x, x′)∑

x′,x′′∈X w(x′, x′′)
.

On the other hand, the invariant measure of a random walk on a directed
graph cannot be deduced from local quantities alone. For instance, let
us take n ∈ N and consider the random walk of the graph with vertices
X = {0, . . . , n} and weight function

∀i, j ∈ X , w(i, j) =


1 if j = 0

1 if j = i+ 1

0 otherwise

.

The invariant measure of a random walk on this graph is defined on any
vertex i ∈ {1, . . . , n} by

π(i) =
2n−i

2n+1 − 1
.

As we can see, the values of this invariant measure do not depend on local
quantities such as the degree of a vertex.

For directed graphs, computing π requires solving a system of linear
equations. However, the computations can be prohibitive whenever |E| is
large. Instead, it is sometimes possible to approximate π. We say a Markov
chain to be aperiodic if

∀x ∈ E,∃n′ ∈ N, ∀n ≥ n′,P(Xn = x|X0 = x) > 0.

An approximation of π can be obtained through the measures of Xn for
large values of n as long as the Markov chain is aperiodic, irreducible and
positive recurrent, in which case it is said to be ergodic.

Proposition 5 (Theorem 1.8.3 [61]). If E is connected and (Xn)n≥0 is
ergodic then

∀x ∈ E, lim
n→∞

P(Xn = x) = π(x).
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There is a large variety of results providing convergence rates of Xn to
π, for example if the generator of the Markov chain is diagonalisable with
eigenvalues λ|E| ≤ . . . λ2 ≤ λ1 = 0, then when |λ2| is large, the convergence
of the measure of Xn to π is fast [53]. This is not a surprise: if we consider
a random walk on a graph, when λ2 is close to zero then the first non-zero
eigenvalue of the graph Laplacian is small as well. This means there exists
A ⊂ X such that the connectivity between A and the rest of the graph is
small. Hence, the random walk will take a long time entering or leaving A.

Invariant measures of random walks on graphs are commonly used for
graph analysis. For example, let X be the set of all web-pages and, for two
web-pages x, x′, let a(x, x′) = 1 if the page x contains a link to the page x′.
For α > 0, let

wα(x, x′) =
α

|X |
+ (1− α)

a(x, x′)∑
x∈X a(x, x)

.

The random walk on the random graph with vertices X and weight function
wα can be used as a simple model of a person clicking randomly on links
or, sometimes, jumping to a totally unrelated page. This random walk is
irreducible and positive recurrent, it thus admits an invariant measure π. By
Proposition 5, the value of this invariant measure on a vertex corresponds
to the probability for the random surfer to be visiting the corresponding
web-page after an infinite amount of time, it will thus tend to be higher
for web-pages having many incoming hyperlinks, which can be assumed
to be more relevant than other pages. Hence, the value of the invariant
measure can be used to rank vertices of the graph and thus web-pages.
This algorithm is a simpler version of the PageRank algorithm [65] which
is used along many other ranking algorithms in the Google search engine.
As the total number of web-pages is very large, this invariant measure is
computed using bots actually performing the random walk.

3.2 From Markov chains to diffusion

processes

In order to study the behaviour of algorithms based on random walks on
graphs, we want to exploit the convergence of these random walks to con-
tinuous processes called diffusion processes. In this section, we introduce
these processes and give a brief overview of their relevant properties for
our work. A more detailed presentation of these processes can be found in
[3, 34, 37, 79]. We start by introducing a few notations.
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3.2.1 Notations for multivariate analysis

Let x ∈ Rd and k ∈ N, we denote by x⊗k ∈ (Rd)⊗k the tensor of order k of
x:

∀j1, . . . , jk ∈ {1, . . . , d}, (x⊗k)j1,...,jk =
k∏
i=1

xji .

For any x, y ∈ (Rd)⊗k, the Hilbert-Schmidt scalar product between x and y
is

< x, y >=
∑

i∈{1,...,d}k
xiyi,

and, by extension,
‖x‖2 =< x, x > .

Let x ∈ Rd and k ∈ N, we have

‖x⊗k‖2 =
∑

i∈{1,...,d}k
(
k∏
j=1

xij)
2

=
∑

i∈{1,...,d}k

k∏
j=1

x2
ij

= (
k∑
l=1

x2
l )
k

= ‖x‖2k.

Hence,
‖x⊗k‖ = ‖x‖k.

For any smooth function φ and x ∈ Rd, let ∇kφ ∈ (Rd)⊗k such that

∀j1, . . . , jk ∈ {1, . . . , d}, (∇kφ(x))j1,...,jk =
∂kφ

∂xj1 . . . ∂xjk
(x).

Finally, the Laplacian of a function φ is

∆φ =< ∇2φ, Id >=
d∑
i=1

∂2φ

∂2xi
.

3.2.2 Diffusion processes

Let E be an open domain of Rd. Let (Kt)t≥0 be a family of kernels from E
to the space of probability measures on E such that
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• for any x ∈ E, and any Borel set B ⊂ E such that x ∈ B, K0(x)(B) =
1 (K0(x) is the Dirac measure centered on x) ;

• for any Borel set B ⊂ E and any t ≥ 0, Kt(.)(B) is a measurable
function;

• for any Borel setB and any s, t ≥ 0, Kt+s(x)(B) =
∫
E
Kt(y)(B)Ks(x)(dy).

This family is said to be a transition function and plays a similar role as the
transition kernel for Markov chains. A family of random variables (Xt)t≥0

taking values in E is a Markov process if, for every compactly supported
continuous function φ,

∀s1 ≤ · · · ≤ sn ≤ t,E[φ(Xt)|Xs1 , . . . , Xsn ] =

∫
E

φ(y)Kt−sn(Xsn)(dy).

Remark that such a definition implies that (Xt)t≥0 satisfies the Markov
property:

∀s1 ≤ · · · ≤ sn ≤ t,E[φ(Xt)|Xs1 , . . . , Xsn ] = E[φ(Xt)|Xsn ].

Let us consider a simple case of a Markov process (Wt)t≥0 for which

• W0 = 0;

• t→ Wt is almost surely continuous;

• For any s ≤ t, Wt −Ws is a d-dimensional centered normal random
variable with variance (t− s)Id;

• Wt −Ws is independent of Ws.

Wt is called the d-dimensional Brownian motion. By Donsker’s Theorem,
we know that if Z1, . . . , Zn are i.i.d. random variables with mean 0 and
variance 1 then 1√

n

∑n
i=1 Zi1 i

n
≤t converges to (Wt)t∈[0,1]. In other words,

we are able to approximate the trajectories of (Wt)t≥0 by trajectories of a
Markov Chain (Xk)k∈N with state space R such that

Xk+1 = Xk +
1√
n
Z ′k,

where the Z ′k are i.i.d. random variables with the same measure as Z1.
While this is a good start, we cannot expect random walks on random
geometric graphs to always converge to a Brownian motion. On the other
hand, the class of Markov processes is too large to study convergence of
Markov chains.
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Let C0 be the space of real-valued, continuous and compactly supported
functions on E. For any φ ∈ C0, any x ∈ E and any t > 0, let

Ptφ(x) = E[φ(Xt) | X0 = x] =

∫
E

φ(y)Kt(x)(dy).

We say (Pt)t≥0 is the semigroup associated to (Xt)t≥0 because

Pt+sφ(x) =

∫
E

φ(y)Kt+s(x)(dy)

=

∫
E×E

φ(z)Ks(x)(dz)Kt(z)(dy)

= Pt(Psφ(x)).

A family of bounded operators (Pt)t≥0 acting on E is a Feller semigroup if

• P0 = Id;

• ∀t ≥ 0, Pt1 = 1;

• ∀s, t ≥ 0Pt+s = PtPs ;

• ∀φ ∈ C0, t ≥ 0, ‖Ptφ‖∞ ≤ ‖φ‖∞ ;

• ∀φ ∈ C0, t ≥ 0, φ ≥ 0 =⇒ Ptφ ≥ 0;

• ∀φ ∈ C0, limt→0 ‖(Pt − Id)f‖∞ → 0.

A Markov process associated to a Feller semigroup is called a Feller process.
Furthermore, given a Feller semigroup, it is always possible to define a Feller
process associated to this semigroup.

In particular, a Feller semigroup is a strongly continuous positive con-
traction semigroup. These semigroups are well-studied objects [36] and
can be characterized by an operator called infinitesimal generator. The in-
finitesimal generator L of a Feller semigroup (Pt)t≥0 is an operator acting
on

D(L) = {φ ∈ C0 | lim
t≥0

(Pt − Id)φ

t
exists},

and such that, for any φ ∈ D(L),

lim
t≥0

(Pt − Id)φ

t
= Lφ.

D(L) is dense in C0 and L is a linear operator. Moreover, by the Hille-
Yosida Theorem, a linear operator satisfying some technical conditions is
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also the generator of a Feller semigroup. Hence, there is a one to one cor-
respondence between Feller semigroups and a set of linear operators. A
diffusion process (Xt)t≥0 is a Markov process associated to a Feller semi-
group with infinitesimal generator L such that ∀φ ∈ D(L),

Lφ = b.∇φ+ < a,∇2φ >,

where b : E → Rd and a = σT σ
2

with σ : E → Rd × Rd such that σ is
symmetric and positive definite on E. For any diffusion process (Xt)t≥0,
there exists (X̃t)t≥0 such that the trajectories of (X̃t)t≥0 are almost surely
continuous and ∀t ≥ 0,P(Xt = X̃t) = 1. Hence, without loss of generality,
we can assume the trajectories of diffusion processes to be almost surely
continuous.

In order to give more intuition about diffusion processes, let us note
that a diffusion process (Xt)t≥0 is actually the solution to the following
stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, (3.1)

where Wt is a d-dimensional Brownian motion. The function b is called
a drift and correspond to a deterministic trend for the trajectories of Xt

whereas σ, called diffusion coefficient, controls the noise disrupting the tra-
jectories. If σ were equal to zero then Equation 3.1 would be a purely
deterministic ordinary differential equation.

3.2.3 Convergence of Markov chains to diffusion
processes

In order to tackle the problem of convergence of Markov chains, we must
first specify a suitable notion of convergence. Let µ and (νn)n∈N be measures
on a space E. We say (νn)n∈N converges weakly to µ if, for any continuous
and bounded function φ on E,∫

E

φdνn →
∫
E

φdµ.

Weak convergence can actually be characterized in several ways.

Theorem 6 (Portmanteau Theorem). A family of probability measure (νn)n∈N
converges weakly to another probability measure µ if and only if

• For any uniformly continuous function φ,
∫
E
φdνn →

∫
E
φdµ;

• For any closed set F ⊂ E, lim sup νn(F ) ≤ µ(F );
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• For any open set F ⊂ E, lim inf νn(F ) ≥ µ(F );

• For any Borel set F ⊂ E such that µ(∂F ) = 0, νn(F ) = µ(F ).

By extension, we say a family of random variables (Xn)n∈N converges
weakly to Y if the measures of (Xn)n≥0 converges weakly to the measure of
Y .

As we have seen, diffusion processes are continuous processes, so one may
be tempted to obtain a convergence in the space of continuous trajectories
of E. However, as we have seen with the example of Donsker’s Theorem,
an approximation built using a Markov chain is in general not continuous.
Instead, given T > 0, we are going to work in the space of trajectories
[0, T ] → Rd that are right-continuous and have left limits. This space is
called the Skorokhod space and is equipped with the following metric

d(f, g) = inf
ε
{∃λ ∈ Λ, ‖λ‖ ≤ ε, sup

t≤T
|f(t)− g(λ(t))| ≤ ε},

where Λ denotes the space of strictly increasing automorphisms of the unit
segment [0, 1], and where ‖λ‖ is

‖λ‖ = sup
s 6=t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ .
Consider a family of Markov chains (Xs

n)n∈N,s≥0 defined on discrete state
spaces Es ⊂ E with initial states Xs

0 = xs and transition kernels Ks. For
x ∈ Es, γ > 0 and s > 0, let

• bs(x) = 1
s

∫
x′∈Es(x

′ − x)Ks(x, dx′);

• as(x) = 1
2s

∫
x′∈Es(x

′ − x)(x′ − x)TKs(x, dx′);

• ∆γ
s = 1

s
Ks(x,B(x, γ)c),

where B(x, γ)c is the complementary of the ball of radius γ centered in x.

Theorem 7 (Theorem 7.1 [34] ). Suppose (Xt)t≥0 is a diffusion process on
E ⊂ Rd with X0 = x0 and generator L = b.∇+ < a,∇2 > such that b and
a are continuous on E. If,

(i) lims→0 supx∈Es ‖bs − b‖∞ = 0;

(ii) lims→0 supx∈Es ‖as − a‖∞ = 0;

(iii) ∀γ > 0, lims→0 supx∈Es ∆γ
s = 0;
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(iv) lims→0 ‖xs − x0‖∞ = 0,

then, for any T > 0, the continuous time process (Xs
sbt/sc)t≥0 converges

weakly in D([0, T ],Rd) to (Xt)t≥0. Furthermore, the convergence is uniform
with respect to x0 ∈ U .

This result tells us that, if the expected direction of a step of the Markov
chain is close to b, its second moment is close to a and the length of the jump
is small, then the trajectory of the Markov chain is close to the trajectory
of the diffusion process. It is possible to relate these assumptions to a
convergence of the generator of the Markov chain.

Proposition 8. Suppose there exists R > 0 such that

∀s > 0,∀x ∈ Es,
∫
x′∈Es,‖x′−x‖≥R

K(x, dx′) = 0.

If assumptions (i)− (iii) of Theorem 7 hold, then

lim
s→0

sup
φ,‖∇φ‖,‖∇2φ‖,‖∇3φ‖≤1

sup
x∈Es
|(1

s
Ls − L)φ(x)| → 0.

Proof. In order to simplify the notations, we prove the result in dimension
one. Let φ be a smooth function with bounded first three derivatives. By
Taylor’s expansion we have, for any γ > 0,

1

s
Lsφ(x) =

1

s

∫
Es

(φ(x′)− φ(x))Ks(x, dx
′)

=
1

s

[∫
Es

φ′(x)(x′ − x) + φ′′(x)
(x′ − x)2

2
+

(∫ x′

x

φ(3)(y)
(y − x)2

2
dy

)]
Ks(x)(dx′).

Therefore,(
1

s
Ls − L

)
φ(x) = (bs − b)(x)φ′(x) + (as − a)(x)φ′′(x)

+

∫
Es

∫ x′

x

φ(3)(y)
(y − x)2

2
dyKs(x)(dx′).

Since φ has bounded derivatives, for any γ > 0,∣∣∣∣(1

s
Ls − L

)
φ

∣∣∣∣ ≤ |bs − b|+ |as − a|+ (γ3

6
+

4R3

3
∆γ
s

)
.

Therefore, if assumptions (i)− (iii) are verified, then

lim
s→0

sup
x∈X

∣∣∣∣(1

s
Ls − L

)
φ(x)

∣∣∣∣ = 0.
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3.2.4 Invariant measure

We say a measure µ to be an invariant measure for a diffusion process
associated to a semigroup (Pt)t≥0 with infinitesimal generator L if, for any
function φ in C0 and any t > 0,∫

E

Ptφdµ =

∫
E

φµ.

Equivalently, for any φ ∈ D(L),∫
E

Lφdµ = 0.

If this measure is finite, that is ∫
E

dµ <∞,

then we assume it is a probability measure. An invariant measure is said
to be reversible, if for any two functions φ, φ′ ∈ C0,∫

E

φPtφ
′dµ =

∫
E

φ′Ptφdµ,

or for two compactly supported smooth functions φ, φ′,∫
E

φLφ′dµ =

∫
E

φ′Lφdµ.

According to Section 1.11.3 [3], an absolutely continuous measure µ = hdλ
is reversible for Pt if and only if

bi =
n∑
j=1

∂ai,j
∂xi

+ ai,j
∂ log h

∂xi
.

Furthermore, since

1

2
(L(φφ′)− φLφ′ − φ′Lφ) =< ∇φ, a∇φ′ >,

if µ is reversible then it satisfies the following integration by parts formula

−
∫
E

φLφ′dµ =

∫
E

1

2
(L(φφ′)− φLφ′ − φ′Lφ) =

∫
E

< ∇φ, a∇φ′ > dµ.

When µ is reversible, it is after interesting to consider (Pt)t≥0 and L as oper-
ators acting on the Hilbert space L2(µ) in which case they are bounded and
symmetric operators. This is going to be especially useful when studying
the spectral properties of L.
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3.2.5 Spectrum of the infinitesimal generator

As we have seen, many graph analysis algorithms use the spectrum of the
graph Laplacian, and thus of the generator of the random walk on the graph.
The convergence of the outputs of these algorithms can thus be obtained
through the convergence of the spectra of generators of random walks on
graphs. Should these random walks converge to diffusion processes, one
may expect the spectra of the corresponding generators to converge to the
spectra of infinitesimal generators of the limiting diffusion processes, should
it exists.

We say a bounded operator from a Banach space X to another Banach
space Y is compact if the image of the unit ball of X is relatively compact
in Y . Let L be the infinitesimal generator of a semigroup (Pt)t≥0 acting on
a Hilbert space H.

Theorem 9 (Theorem A.6.4 [3]). If −L is positive and there exists t > 0
such that Pt is a compact operator, then L has a discrete spectrum with
eigenvalues · · · ≤ λn ≤ · · · ≤ λ1 = 0. Moreover, λn →n→∞ −∞.

Let us note that, although we are only going to deal with diffusion
processes in Rd, this results holds even if L and (Pt)t≥0 are defined as
operators acting on functions defined on manifolds. In particular, if the
manifold is compact, (Pt)t≥0 is compact as well. Hence, results dealing with
convergence of graph Laplacians for random geometric graphs are usually
obtained in a compact manifold setting.

3.2.6 Hitting times

Given F ⊂ E, let

τF = inf
t≥0

(Xt ∈ F ).

For the simplest case of diffusion process, the Brownian motion (Wt)t≥0, we
have the following result.

Proposition 10 (Corollary 2.26 [60]). If d > 1, then for any T > 0 and
x ∈ Rd, P(∃t ∈ (0, T ],Wt = x) = 0.

Thus, in dimension greater than one, a Brownian motion does not hit
any fixed point in finite time. Hence, we can expect this is going to be the
case for general diffusion processes. This is a major difference with respect
to random walks on graphs which always hit any given vertex of the graph
in finite time.
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3.3 Random geometric graphs

Let M be a p-dimensional manifold embedded in Rd and let ν be a measure
with support M and strictly positive smooth density f . Let X1, . . . , Xn be
i.i.d. random variables drawn from ν and let Xn = {X1, . . . , Xn} ∈ Rd.
Consider a function WXn : Rd → R+, a radius function rXn : Rd → R+ and
a bandwidth hn ∈ R+. Let K : R+ → R+ be a decreasing function, called
kernel, such that

• K > 0;

•
∫
Rp K(‖x‖)dx = 1;

•
∫
Rp ‖x‖

2K(‖x‖)dx <∞.

We call random geometric graph the graph G with vertices Xn and weight
function

∀x, x′ ∈ X , w(x, x′) = WXn(x′)
1

hdn
K

(
‖x′ − x‖
hnrXn(x)

)
.

Random geometric graphs encompass many graphs used in data analysis
such as the ε-graph, obtained by taking rXn = WXn = 1 and hn = ε. Taking
k ∈ N, K = 1[0,1],WXn = 1 and

hnrXn(x) = inf(r ∈ R+|
∑
y∈Xn

1‖y−x‖≤r ≥ k),

we obtain a graph such that each point is linked to its k-nearest neighbors.
Such a graph is called k-nearest neighbor graph and is a widely used type of
graph as it is very sparse, however since this graph is directed, it is harder
to analyze than ε-graphs.

3.3.1 Convergence of random walks on random
geometric graphs

For simplicity, we will assume in this Section that points are not drawn
from a manifold embedded in Rd but rather from the flat torus T = (R/Z)d

and we suppose random geometric graphs are built using the Riemaniann
metric of T .

As hn goes to zero and n goes to infinity, the length of the jumps of
the random walks get smaller and smaller. Hence, if the first and second
moments of the jumps also converge, the random walk itself should converge
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to a diffusion process. Moreover, since the structure of the graph is going to
be influenced by ν, it is reasonable to expect the limiting diffusion process
to depend on ν as well. This dependency is made explicit by the following
result.

Theorem 11 (Theorem 3 [81]). Suppose hn → 0 and nhd+2
n

logn
→ 0. Moreover,

assume there exists deterministic smooth quantities W̃ , r̃ such that

sup
x∈T

sup
ε∈Rd,‖ε‖≤h(n)

|Wn(x+ ε)− W̃ (x)−∇W̃ .ε| = o(h(n)2);

sup
x∈T

sup
ε∈Rd,‖ε‖≤h(n)

|rn(x+ ε)− r̃(x)−∇r̃.ε| = o(h(n)2).

Then, for any T > 0, the random walk on the random geometric graph
converges weakly in D([0, T ]) to a diffusion process with generator

Lφ = r̃2(∇ log(fW̃ ).∇+
1

2
∆).

The approximation timestep is s = C
hd+2 , where C is a constant depending

on d and K.

For ε-graphs, the corresponding generator is simply L = ∇ log f.∇ +
1
2
∆, so trajectories of (Xt)t≥0 are attracted by high density regions. This

result is readily obtained using Taylor’s expansion along with concentration
inequalities and Theorem 7. As an example, we prove this result for the
case of the k-nearest neighbor graph via the following Lemma, which will
prove useful in Chapter 5.

Lemma 12. Let k > 0, and pose

s =

(
k

n

)2/d
∫
‖x‖≤1

x2
1dx(∫

‖x‖≤1
1dx
)1+2/d

;

r̃ = f−1/d.

For any x, x′ ∈ X , we pose

Kn(x, x′) =
w(x, x′)∑
x′′ w(x, x′′)

,

where w is the w function corresponding to a k-nearest neighbor graph.
There exists a constant C such that, with probability 1− C

n
,
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(i) supx∈Xn ‖
1
s

∑
x′∈Xn(x′−x)Kn(x, x′)−f(x)−2/d∇f(x)‖ ≤ C(

√
lognn1/d

k1/2+1/d +(
k
n

)2/d
);

(ii) supx∈Xn ‖
1
s

∑
x′∈Xn(x′−x)T (x′−x)Kn(x, x′)−f(x)−2/dId‖ ≤ C(

√
logn
k

+(
k
n

)2/d
);

(iii) supx∈Xn ‖
1
s

∑
x′∈Xn(x′ − x)⊗3Kn(x, x′)‖ ≤ C(

√
lognk1/d

n1/dk1/2
+
(
k
n

)2/d
);

(iv) ∃n0,∀n > n0, ∀x ∈ Xn
∑

x′∈Xn,‖x−x′‖≥C( k
n

)1/d K
n(x, x′) = 0.

Proof. Let x ∈ T . In the remainder of this proof, C denotes a generic
constant depending only on d and f . For any r > 0, we denote by B(x, r)
the ball centered in x with radius r. Let Pr =

∫
B(x,r)

µ(dx) and, for k > 0,

we pose Vk =
∫
B(0,1)

xk1dx. Let Nr be the number of points in B(x, r). For

any 0 < ε < 1, Chernoff’s bound yields

P (|Nr − nPr| ≥ nεPr) ≤ 2e−
ε2nPr

3 . (3.2)

Take rM =
(

2k
nV0 miny∈T f(y)

)1/d

, we have PrM ≥ 2k
n

+ C
(
k
n

)1+2/d
. Hence, for

k
n

sufficiently small, with probability greater than 1 − 1
n2 , NrM ≥ k. Thus

the k-th nearest neighbor of x is at most at distance rM of x. Applying a
union-bound, this is true for any x ∈ Xn = {X1, . . . , Xn} with probability
1− 1

n
so we proved (iv).

Let us now prove (i), we have

E[(Xi−x)1Xi∈B(x,r)]

=

∫
B(x,r)

(y − x)µ(dy)

=

∫
B(x,r)

(y − x)f(y)dy

=

∫
B(x,r)

(y − x)f(x) + (y − x)⊗2∇f(x) +
(y − x)⊗3∇2f(x)

2
+ Cr4dy

= V2r
d+2∇f(x) + Crd+4.

Therefore, letting b1 =
∑

Xi∈B(x,r) Xi − x and applying Bernstein’s inequal-
ity,

P
(∣∣b1 − nV2r

d+2∇f(x)
∣∣ ≥ C

(
r
√
nPr log n+ nrd+4

))
≤ 2

n2
.
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Taking r =
(

k
nV0f(x)

)1/d

, we have |Pr − k
n
| ≤ C

(
k
n

)1+2/d
. Hence, by Equa-

tion 3.2, |Nr − k| ≤ C(
√
k log n + k1+2/d

n2/d ) holds with probability 1 − 1
n2 .

Thus, for b2 =
∑

Xi∈B(x,r̃) Xi − x, we have

|b1 − b2| ≤ CrM

(√
k log n+

k1+2/d

n2/d

)
.

Putting everything together, we have, with probability 1− C
n2

‖ 1

ks

∑
Xi∈B(x,r̃)

(Xi − x)−f−2/d∇ log f‖

= ‖ b2

ks
− f−2/d∇ log f‖

≤
∥∥∥∥ b1

ks
− f−2/d∇ log f

∥∥∥∥+ C

(√
log nn2/d

k1/2+2/d
+

1

k

)
≤ C

(√
log nn1/d

k1/2+1/d
+

(
k

n

)2/d
)
.

Using a union bound, we obtain the uniform convergence of 1
s

∑
x′∈Xn(x′ −

x)Kn(x, x′) over Xn with probability 1 − C
n2 . Bounds (ii) and (iii) can be

obtained in the same way.

3.3.2 Hitting times

By Proposition 10, we know that, in dimension greater than one, the Brow-
nian motion does not hit fixed points in finite time and we cannot expect
diffusion processes to do otherwise. Hence, while random walks on random
geometric graphs converge to diffusion processes, there are no continuous
quantities we can expect hitting times and commute distances to converge
to. Therefore, the limiting behaviour of these quantities might not be of
interest. In [85], it is proved the mean hitting time between two vertices x
and x′ of a random geometric graph converges to a quantity depending on
the local structure of the graph around x′ alone. Hence, hitting times fail to
describe the general structure of large random geometric graphs. Different
ways to correct this issue for the commute distance have been proposed, see
for example the amplified commute distance [85].

3.3.3 Invariant measure

Suppose a family of random walks converge to a diffusion process admitting
a unique invariant probability measure µ. Can we expect the invariant
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measures of the random walks to converge to µ?
Let us start with an ε-graph. Random walks on such random geometric

graphs converge to diffusion processes with infinitesimal generator L =
∇ log f.∇+ ∆

2
. This generator has an invariant probability measure µ with

a density proportional to f 2. By Proposition 4, the invariant measure of
a connected and undirected graph is proportional to its degree function.
An ε-graph being undirected, the invariant measure π of a random walk on
such a graph is

∀x ∈ X , π(x) =
d(x)

V ol(X )
=

∑n
i=1K(‖Xi−x‖

hn
)∑n

i,j=1K(
‖Xi−Xj‖

hn
)
.

Actually, π is proportional to the value of a standard kernel density esti-
mator.

Proposition 13. Suppose the density f is supported on the flat torus T
and has bounded second derivative. Then there exists C > 0 such that, with

probability 1− ne
nε2

2hdn ,

sup
x∈X

∥∥∥∥∥
n∑
i=1

1

hdn
K

(
‖Xi − x‖

hn

)
− f(x)

∥∥∥∥∥ ≤ ε+ Ch2
n.

Proof. Let x ∈ T and let X be a random variable drawn from ν. Since T is
compact and f is smooth, its second derivative is bounded. Thus, Taylor’s
expansion yields

E
[

1

hdn
K

(
‖Xi − x‖

hn

)]
=

∫
T

1

hdn
K

(
‖x′ − x‖
hn

)
f(x′)dx′

=

∫
T

1

hdn
K

(
‖x′ − x‖
hn

)
(f(x) + (x′ − x).∇f(x) +O(‖x′ − x‖2))dx′.

By our assumptions on the kernel K, we thus have

E
[
K

(
‖Xi − x‖

hn

)]
= f(x) +O(h2

n).

Therefore, by Hoeffding’s inequality, we have, with probability 1− e
nε2

2hdn ,∥∥∥∥∥
n∑
i=1

K

(
‖Xi − x‖

hn

)
− f(x)

∥∥∥∥∥ ≤ ε+O(h2
n).
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We then conclude the proof using the union bound inequality on all x ∈
Xn.

Hence, as long as hn → 0 and n
logn

hdn →∞, there exists C > 0 such that

limn→∞ supx∈Xn |π(x)− C f(x)
n
| = 0. Hence, for any open set A of E,

π(A) ≈ C
∑

x∈Xn∩A

f(x)

n
≈ C

∫
A

f(x)dµ ≈ C

∫
A

f 2(x)dx.

Therefore, π converges to µ. While this gives an idea regarding why al-
gorithms relying on invariant measures of random walks on such graphs
actually work well in practice, it also guarantees these random geometric
graphs do retain most of the information contained in the input data since
it is possible to recover f , and thus ν, from the sole graph structure.

One may now wonder whether a similar result holds for directed random
geometric graphs such as the k-nearest neighbor graph. By Theorem 11,
the random walk on a k-nearest neighbor graph converges to a diffusion pro-
cess with infinitesimal generator L = f−2/d

(
∇ log f.∇+ ∆

2

)
. This diffusion

process admits an invariant measure µ with density proportional to f 1+2/d.
In [44], the authors prove the weak convergence of the invariant measures
of random walks on random geometric graphs. Applying this result to k-
nearest neighbor graphs, we obtain that π converges weakly to µ as long as

kd+2

(n log(n))2
→∞. Moreover, it is conjectured that, similarly to the undirected

case, the convergence holds as long as k
logn
→∞ and is pointwise.



Chapter 4

Soft-clustering

In this Chapter, we propose a new soft clustering algorithm based on the
mode seeking algorithm ToMATo [22] which relies on hitting times of ran-
dom walks on random geometric graphs. As we have seen in Section 3.1.2,
we cannot expect consistency of hitting times to fixed points. We solve this
issue by using hitting times to a set rather than hitting times to a point,
allowing us to prove the consistency of our algorithm. We finally provide
some experimental results for our algorithm on both synthetic and real data.
This work was done in collaboration with Steve Oudot. We thank Cecilia
Clementi for providing the Alanine dipeptide dataset.

4.1 Mode-seeking

Let us assume the data points Xn = {X1, . . . , Xn} are i.i.d. random vari-
ables drawn from a measure ν with smooth density f . We assume f is a
Morse function, i.e. f is a smooth function with non-degenerate critical
points such that all the critical values are distinct, with a finite number of
critical points. For x ∈ Rd, we define the gradient flow induced by f with
initial state x {

dyx(t) = ∇f(u(t))

yx(0) = x
. (4.1)

Let v1, . . . , vm be the set of local maxima of f , the sets (Mi)i∈{1,...,m} defined
by

∀i ∈ {1, . . . ,m},Mi = {x ∈ Rd | lim
t→∞

yx = vi},

are called modes of f . These modes define a partition of Rd\U , where
U is a set of measure zero containing points whose gradient flow lead to

37
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saddle points. The mode-seeking approach consists in associating clusters
to modes of f .

Of course, since we do not have access to the density f itself, we do
not have access to its modes either. A simple way to turn this framework
into a clustering algorithm would consist in computing a density estima-
tor f̂ and define clusters as the modes of f̂ . However, modes of f̂ do
not necessarily correspond to modes of f . Mode seeking algorithms such
as [24, 22, 27, 28, 31, 48] aim at recovering the modes of f from f̂ to perform
clustering. From a statistical point of view, the analysis of mode inference
was developed recently in [23, 2, 25, 26]. Let us present one of these mode
seeking algorithms: the Topological Mode Analysis Tool (ToMATo) algo-
rithm [22].

4.1.1 ToMATo

The ToMATo algorithm relies on the concept of 0-dimensional persistent
homology, which we present below, in order to estimate the modes of f .

4.1.2 0-dimensional persistent homology of the
superlevel sets of a function

0-dimensional persistent homology was introduced in the context of Topo-
logical Data Analysis under the name size theory [82] and was later general-
ized by the persistent homology theory (see [35, 93] for more details). Here
we are interested in the 0-dimensional persistent homology of the superlevel
sets of a function, also called prominence.

Let G be an unweighted graph with vertices V and edges E, and suppose
there exists an ordering on V . Consider a function φ : V → R. For any
α ∈ R, we define the superlevel sets of φ by

Vα = {x ∈ V | φ(x) ≥ α}.

For any x ∈ G, we denote by V x
α the connected component containing x in

the subgraph Gα with vertices Vα and edges Eα such that

∀x, x′ ∈ Vα, (x, x′) ∈ Eα ⇐⇒ (x, x′) ∈ E.

Let bφ(x) be the highest α such that x ∈ Vα (i.e. φ(x)). For α < bφ(x), we
use the ordering on V to define

Dα,x := max{x′ ∈ V x
α | φ(x′) ≥ φ(x)}.
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We define dφ(x) as the highest α such that Dα,x 6= x and we pose Dφ,x =
Ddφ(x),x. The prominence pφ(x) of x with respect to φ is then defined as
bφ(x)− dφ(x). If a vertex x is not a local maximum of φ on the graph, i.e.

∃x′ ∈ V, φ(x) > φ(x),

then it has a prominence equal to zero. Replacing G by Rd, it is possible
to define a similar notion of prominence in the continuous domain.

The prominence information is usually encoded as a collection of points
in the plane with coordinate (bφ(x), dφ(x)) called persistence diagram. These
diagrams are endowed with a natural metric called the bottleneck distance
involving the notion of partial matching. A partial matching M between
two diagrams ∆1 and ∆2 is a subset of ∆1×∆2 such that each point of ∆1

and ∆2 appears at most once in M . The bottleneck cost C(M) of a partial
matching M between two diagrams ∆1 and ∆2 is the infimum of δ ≥ 0 such
that

• For any (p1, p2) ∈M , ||p1 − p2||∞ ≤ δ;

• For any other point (b, d) of ∆1 or ∆2, b− d ≤ 2δ.

The bottleneck distance between two diagrams D1 and D2, is then defined
as

dB(∆1,∆2) = inf
δ
{δ | ∃M,C(M) ≤ δ}

Intuitively, the bottleneck distance can be seen as the cost of a minimum
perfect matching between persistence diagrams with possibility to match
points to the diagonal y = x. A remarkable property of persistence diagrams
is their stability, proved in [30] and [21]. Let φ and φ′ be two functions
defined on the vertices of the same graph and ∆φ,∆

′
φ be the persistence

diagrams of the superlevel-sets of φ and φ′, applying these stability results,
we obtain the following

dB(∆φ,∆
′
φ) ≤ ||φ− φ′||∞ = sup

x∈V
|φ(x)− φ′(x)| (4.2)

Computation As 0-dimensional persistence encodes the evolution of the
connectivity of the superlevel-sets of a function, it can be computed using
a simple variant of a Union-find algorithm. In practice, we use Algorithm 1
described in [22], with parameter τ set to infinity. This algorithm has close
to linear complexity in the number of vertices of the meshes; more precisely
it has complexity O(|V | log(|V |) + |V |α(|V |)) where α is the inverse of the
Ackermann function.
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4.1.3 The Algorithm

The algorithm starts by computing an unweighted graph with vertices Xn,
while it is not mandatory, the graph is usually either an ε-graph with kernel
K = 1[0,1] or a k-nearest neighbors graph. We then compute the values of

a density estimator f̂ on Xn. In order to pinpoint local maxima of f̂ which
correspond to local maxima of f , we use the prominence of the vertices
of the graph with respect to the function f̂ . In this case, the higher the
prominence of a local maximum, the more likely it is to correspond to an
actual maximum of the underlying density f and thus to indicate a mode
of f . Given a prominence threshold τ > 0, we pose

∆τ (x) =

{
x if pf̂ (x) > τ or x = Df̂ ,x

∆τ (Df̂ ,x) otherwise.

If v1, . . . , vK denote the vertices of G with prominences higher than τ , the
algorithm outputs K clusters C1, . . . , CK where

∀i ∈ {1, . . . , K}, Ci = {x ∈ Xn | ∆τ (x) = vi}.

Moreover, if f̂(vi) ≤ τ , then the points belonging to Ci are considered as
outliers. Upon a proper choice of τ with respect to n and as long as the
density estimator converges, this clustering procedure can be shown to be
consistent [22].

4.2 Soft clustering

A natural way to turn the mode seeking approach into a soft-clustering
algorithm is to add some randomness in Equation 4.1. Here, we use the
following stochastic differential equation

dYt =
1

β
∇(log f)dt+ dWt,

where Wt is a d-dimensional Brownian motion and β is a strictly positive
temperature parameter controlling the amount of noise introduced in the
gradient flow. If it exists, the solution to this stochastic differential equation
is a diffusion process with generator

L =
1

β
∇(log f).∇+

1

2
∆.

Fortunately, by Theorem 11, this diffusion process can be approximated by
a random walk on the (properly weighted) random geometric graph used
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Figure 4.1: Soft-clustering output for an unbalanced mixture of Gaussian
measures. Red colors corresponds to the right cluster, blue to the left one,
hence green points have similar membership to both clusters.

by ToMATo. From here, one possibility would be to consider the first local
maximum of the density encountered by the random walk. When β = 1,
such an approach can be compared to the soft clustering procedure proposed
in [24]. In this work, the authors use a statistical method to select relevant
local maxima of f̂ in Rd denoted m1, . . . ,mK . Then, they build an ε-graph
with vertices Xn∪{m1, . . . ,mK} and consider the first local maximummi hit
by the random walk on the graph. However, as emphasized in Section 3.3.2,
we cannot expect consistency regarding the amount of time required to hit
a given point in the random geometric graph. Thus, if we apply this method
to a dataset consisting in two unbalanced Gaussian measures in Figure 4.1,
the obtained soft memberships are definitely wrong. In order to circumvent
this issue, we assign a zone of high density to each cluster, called cluster
core and computed using ToMATo, and we look at the first cluster core
encountered by the random walk.

4.3 Our Algorithm

The input of the algorithm is a finite set of points Xn = {X1, · · · , Xn}, a
radius ε > 0 –or an integer k if one wants to use a nearest neighbors graph–
, a density estimator f̂ , a prominence threshold τ > 0 and a temperature
parameter β > 0.
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Our algorithm then proceeds as follows. It first computes an ε-graph (or
a k-nearest neighbors graph) G from Xn then runs the ToMATo algorithm
using G. The output of ToMATo is a set of K clusters C1, · · · , CK each
corresponding to a local maximum of f̂ on the graph denoted by x1, . . . xK .
We define the i-th cluster core as the connected component containing Xi

within the subgraph of G spanned by those vertices x′ such that f̂(x′) >
f̂(xi)− τ/2, in other words, the i-the cluster core is equal to F xi

f̂(xi)−τ/2
. We

then compute a random geometric graph G̃ with the same parameters used
to compute G except for

WXn(x) = f̂(x)1/β−1. (4.3)

Finally, we compute the soft-membership values µ1, . . . , µK by solving the
linear system ATµ = µ, where the matrix A is defined by:

Akl =

{
δkl if ∃i,Xk ∈ Ci,n
KG̃(Xk, Xl) otherwise,

where KG̃ is the transition kernel of the random walk on the graph G̃. The
output of the algorithm is the set of those soft-membership values.

4.3.1 Parameters selection

Density estimator, window size, kernel and
prominence threshold

These four parameters are tied to the classical mode-seeking framework.
The density estimator can be linked to the window size in practice, for
instance by using a density kernel estimator, as is done e.g. in Mean-Shift
[27] and its successors. This not only reduces the number of parameters
to tune in practice, but it also gives a way to select the window size ε –or
k– using standard parameter selection techniques for density estimation,
which is done for example in [24]. Finally, the prominence threshold τ can
be selected by running ToMATo with prominence threshold equal to 0 in
order to obtain the distribution of prominences of the vertices within the
neighborhood graph G. An adequate value of τ can then be inferred by
looking for a gap in the distribution. This procedure is detailed in [22].

Temperature parameter

As for temperature or fuzziness parameters in other soft clustering algo-
rithms, it is not clear how β should be selected. Outputs corresponding
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to large values of β will tend to have smooth interfaces between clusters
while small values of β will encourage quick transitions from one cluster
to another. β can also be interpreted as a trade-off between the respective
influences of the Euclidean metric and of the density: when β is small, the
output of our algorithm is mostly guided by the density and therefore close
to the output of the hard mode seeking algorithm; by contrast, when β is
large, the definition of the cluster cores is the only influence of the density
on the output of the algorithm. In practice, one may get insights into the
choice of β by looking at the evolution of a certain measure of fuzziness for
the clustering output across a range of values of β. We elaborate on this in
Section 4.4.

4.3.2 Convergence guarantees

In this Section we provide theoretical guarantees for our soft-clustering
scheme by exploiting the convergence of random walks on random geometric
graphs to diffusion processes.

As usual in mode-seeking, we assume our input data points Xn =
{X1, ..., Xn} to be i.i.d. random variables drawn from some unknown prob-
ability density f over Rd. We also assume that f and ∇ log f are smooth
and Lipschitz continuous over Rd. This condition is sufficient to ensure the
existence of a diffusion process (Xt)t≥0, with X0 = x ∈ Rd, associated to
the infinitesimal generator

L =
1

β
∇ log f.∇+

1

2
∆.

Let us assume the unweighted graph G used by our algorithm is an ε-
graph. For x ∈ Xn, let Mx,ε be the random walk on the weighted graph G̃
whose initial state is the closest neighbors of x in Xn (break ties arbitrarily).
The weighting we use to create G̃ trajectories was designed such that Mx,ε

converges weakly to (Xt)t≥0. From here, convergence of the cluster cores to
continuous sets is sufficient to prove the consistency of the algorithm. For-
mally, letting v1, . . . , vK be the local maxima of f with prominence higher
than τ , we can define the limit cluster cores as

∀i ∈ {1, . . . , K}, C̃i = F vi
τ/2,

and we define µ̃i(x) as the probability for the diffusion process with gener-
ator L started at x to hit C̃i before any other C̃j.

In order to obtain a consistency result for our algorithm, we require these
continuous cluster cores to satisfy some assumptions. For any C ⊂ Rd and
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any δ > 0, let us pose

Cδ = {x ∈ Rd | ∃y ∈ C, ‖x− y‖ ≤ δ}.

Assumption 14. The boundary of the C̃i are smooth. Moreover, for any
δ > 0 there exist δ′ > 0 such that

F vi
τ/2+δ ⊂ (F vi

τ/2)δ
′
= C̃δ′i ,

and
F vi
τ/2 = C̃i ⊂ (F vi

τ/2−δ)
δ′ .

Theorem 15. Let β > 0, τ > 0 and suppose the cluster cores verify As-
sumption 14. Let ε : N → R+ be a decreasing window size such that

lim
n→∞

ε(n) = 0 while lim
n→∞

ε(n)d+2n
logn

= ∞. Suppose the density estimator f̂n

satisfies, for any compact set U ⊂ Rd and any η > 0,

lim
n→∞

P(sup
x∈U

sup
h∈Rd,‖h‖≤ε(n)

|f̂ 1/β−1
n (x+h)−(f 1/β−1(x)+∇f 1/β−1.h)| ≥ ε(n)2η) = 0.

Almost surely, there exists n0 such that, for n ≥ n0, the number of clusters
output by ToMATo is equal to K. Let (µn,i)n≥n0,i∈{1,...,K} be the output of
our algorithm. There exists a family of permutation (πn)n≥n0 such that, for
any compact set U ⊂ Rd, any η > 0 and any i ∈ {1, . . . , K},

lim
n→∞

P
(

sup
x∈U
|µ̃i(x)− µn,πn(i)(x)| ≥ η

)
= 0.

When the input graph is a k-nearest neighbors graph, the trajectories
of the random walk converge to a diffusion process (Xt)

′
t≥0 with generator

L′ = f−2/d(
1

β
∇ log f.∇+

1

2
∆).

Since trajectories of (X ′t)t≥0 correspond, up to a time-change, to trajectories
of (Xt)t≥0, a similar result can be obtained.

4.4 Experiments

We first illustrate the effect of the temperature parameter β on the cluster-
ing output using synthetic data. We then apply our method on three UCI
repository datasets and on simulated protein conformations data. In all our
experiments we use a k-nearest neighbors graph along with a distance to
measure density estimator [11] computed using the k-nearest neighbors.
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4.4.1 Synthetic data

The first dataset is presented in Figure 4.2a and is composed of two high-
density clusters connected by two links. The bottom link is sampled from a
uniform density while the top link is sampled from a density that has a gap
in-between the two clusters. Standard mode seeking algorithms will have
a hard time clustering the bottom link as the separation between the two
modes of f is extremely smooth. Thus, ToMATo missclusters most of the
bottom link (see Figure 4.2b). We display the results of our algorithm for
three values of β : β = 0.2 in Figure 4.2c, β = 1 in Figure 4.2d and β = 2
in Figure 4.2e. As we can see from the output of the algorithm, for small
values of β, the temperature parameter is not large enough to compensate
for the influence of the noise in the density estimation: the result obtained is
really close to hard clustering. Large values of β do not give enough weight
to the density function which leads to a smooth transition between the two
clusters on the top link despite the density gap. Intermediate values of β
seem to give more satisfying results. In order to gain intuition regarding
which value of β one should use, it is possible to look at the evolution of a
fuzziness value for the clustering. For example, one can consider a notion
of clustering entropy:

H =
∑
i

∑
j

µj(Xi) log(µj(Xi)), (4.4)

which gets lower when the fuzziness of the clustering increases. As we
can see in Figure 4.2f, the evolution of H with respect to β presents three
distinct plateaus corresponding to the three behaviours highlighted earlier.

The second dataset we consider is composed of two interleaved spirals—
see Figure 4.3. An interesting property of this dataset is that the head of
each spiral is close –in Euclidean distance– to the tail of the other spiral.
Thus, the two clusters are well-separated by a density gap but are close in
terms of Euclidean metric. We use our algorithm with two different values
of β: β = 1 and β = 0.3, we also run a spectral fuzzy C-means algorithm
on a subsampling of this dataset. The first thing we want to emphasize is
that the output result of spectral C-means and our algorithm using β = 1
are similar, this is to be expected as both algorithms rely on the properties
of the same diffusion operator. On the other hand, giving more weight to
the structure of the density by setting β ' 0.3, we correctly recover the two
clusters.
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(a) The data. (b) Output of ToMATo. (c) Output for β = 0.2.

(d) Output for β = 1. (e) Output for β = 2. (f) Evolution of H with re-
spect to β.

Figure 4.2: Output of our algorithm on a simple dataset composed of two
overlapping clusters. For soft clustering, green corresponds to an equal
membership to both clusters.

(a) Output for β = 1. (b) Output for β = 0.28. (c) soft Spectral Clustering.

Figure 4.3: Experiments on a cluttered spirals dataset.
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4.4.2 UCI datasets

In order to perform a quantitative evaluation of our soft clustering scheme,
we evaluate it in a classification scenario on a few datasets from the UCI
repository: the Pendigits dataset (10, 000 points and 10 classes), the Waveset
dataset (5, 000 points and 3 classes) and the Landsite Satellite dataset
(6, 435 points and 7 classes). We preprocess each dataset by renormal-
izing the various coordinates so they have unit variance. Then, for each
dataset, we run our algorithm with various values of the parameter β be-
tween 0.1 and 5, but a single value of k. We select the prominence threshold
τ using a prominence gap. Since there are two possible prominence gaps
for the Pendigits and the Landsite Satellite datasets, we run the experi-
ments twice using both thresholds and indicate the corresponding number
of clusters K in our results. As a baseline, we use the fuzzy C-means algo-
rithm with fuzziness parameters between 1.2 and 5 using the same number
of clusters as detected by the ToMATo algorithm. We also consider the
soft clustering algorithm proposed by [24], for which the cluster cores are
reduced to a single point and β = 1. Let X1, . . . , Xn denote our sample
points and Y1, . . . , Yn their respective labels taking values in {1, . . . , K ′}.
We propose an automatic selection of β by computing the values of the
clustering entropy H for multiple values of β and by selecting

β = arg max
dH

dβ
,

in other words we take β maximizing the slope of H. In order to evaluate
hard clustering algorithms, it is common to use the purity measure defined
by

P = max
π

1

n

n∑
i=1

K∑
j=1

1µj(Xi)=11Yi=π(j),

where π is a map from the set of clusters {1, . . . , K} to the set of labels
{1, . . . , K ′}. As this measure is not adapted to soft clustering, we consider
instead a quantity we call ε-entropic purity and defined by

HPε = max
π

1

n

∑
i

log

ε+
∑

j,π(j)=Yi

µ̃j(Xi)

 ,

for some ε > 0. The ε parameter is used to prevent the quantity from ex-
ploding due to possible outliers. This quantity can be viewed as an approxi-
mation of E[log(ε+

∑
j,π(j)=Y µj(X))], for X a random variable drawn from a
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Algorithm/Data(K) Wave(3) Pend(9) Pend(13) Sat(5) Sat(9)
Ours, optimal β -0.57 -0.40 -0.37 -0.42 -0.27
Ours, automatic β -0.59 -0.40 -0.38 -0.42 -0.28
fuzzy C-means -1.1 -0.84 -0.58 -0.64 -0.35
[24] algorithm -0.73 -0.47 -0.45 -0.44 -0.32

Table 4.1: Entropic purity obtained by soft clustering algorithms on UCI
datasets.

measure with density f . For any random variables X ∈ Rd, Y ∈ {1, . . . , K}
and any ε > 0, we have

arg max
f∈Rd→RK ,‖f‖1=1

E[log(ε+ f(X))] = (1− ε)−1(P(Y = j | X))1≤j≤K − ε.

Thus, for small values of ε, a soft clustering minimizing the ε-entropic purity
recovers the conditional probabilities of the labels of the data points with
respect to their coordinates. Hence, this extension of the traditional purity
can be useful to evaluate soft clustering

We provide the best 0.1-entropic purity obtained by each algorithm on
all datasets in Table 4.1.

Alanine-dipeptide conformations. We now turn to the problem of
clustering protein conformations. We consider the case of the alanine-
dipeptide molecule. Our dataset is composed of 1, 420, 738 protein con-
formations, each one represented as a 30-dimensional vector. The metric
used on this type of data is the root-mean-squared deviation (RMSD). The
goal of soft clustering in this case is twofold: first, to find the right number of
clusters corresponding to metastable states of the molecule; second, to find
the conformations lying at the border between different clusters, as these
represent the transition phases between metastable states. It is well-known
that conformations of alanine-dipeptide only have two relevant degrees of
freedom, so it is possible to project the data down to two dimensions (called
a Ramachadran plot) to have a comfortable view of the clustering output.
In order to highlight interfaces between clusters, we only display the sec-
ond highest membership function. As we can see in Figure 4.4 there are 5
clusters and 6 to 7 interfaces.
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Figure 4.4: From left to right: (a) the dataset projected on the Ramachad-
ran plot, (b) ToMATo output, (c) second highest membership obtained with
our algorithm for β = 0.2

4.5 Proofs

4.5.1 Weak-Convergence

Let x ∈ Rd, we denote by (Y x
t )t≥0 the diffusion process with infinitesimal

generator

L =
1

β
∇ log f.∇+

1

2
∆

and initial state Y x
0 = x. We start by proving the following result.

Proposition 16. Let ε : N → R+ be a decreasing function such that

lim
n→∞

ε(n) = 0 and lim
n→∞

ε(n)d+2n
logn

= ∞. Suppose our estimator f̂n satisfies,

for any compact set C ⊂ Rd and any η > 0,

lim
n→∞

P(sup
x∈U

sup
h∈Rd,‖h‖≤ε(n)

|f̂ 1/β−1
n (x+h)−(f 1/β−1(x)+∇f 1/β−1.h)| ≥ ε(n)2η) = 0.

Then, for any T, η > 0, for any compact set U ⊂ Rd, and for any Borel
set B of D([0, T ],Rd) such that P(Y y ∈ ∂B) = 0 for all y ∈ U , there exists
s(n) > 0 such that

lim
n→∞

P(sup
x∈U
|P(Mx,n

s(n)bt/s(n)c ∈ B)− P(Y x
t ∈ B)| ≥ η) = 0.

The proof relies on Theorem 11 along with a proper control of boundary
effects.

Let Xn = (X1, ..., Xn) and let Fα = {x ∈ Rd | f(x) ≥ α} be the α
superlevel-set of f . Throughout the course of the proof, the notation Mx,ε

stands for the continuous time process Mx,ε
sbt/sc. Let T and η be strictly

positive reals.
For α > 0, Fα is closed as f is continuous. Moreover, since f is Lips-

chitz continuous, lim‖x‖2→∞ f(x) = 0. Hence, Fα is also bounded and thus
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compact. Following the proof of Theorem 11, there exists s(n) > 0 such
that

(i) lim
n→∞

P(supy∈Xn∩Fα |bs −
∇f
βf
| ≤ ν) = 0,

(ii) lim
n→∞

P(supy∈Xn∩Fα |as −
Id
2
| ≤ ν) = 0,

(iii) supy∈Xn ∆ε
s = 0,

(iv) lim
n→∞

P(‖Mx,ε
0 − x‖ ≤ ν) = 0.

Thus, the assumptions (i)-(iv) of Theorem 7 are verified on Fα which implies
that Mx,n approximates correctly Y x as long as it does not leave Fα. More
precisely, for α > 0, let Bα = {w ∈ D([0, T ],Rd) | ∀t, w(t) ∈ Fα}. Since
∇ log f is Lipschitz continuous, there exists α > 0 such that, for any x ∈ U ,
P(Y x ∈ Bα) ≥ 1 − η/4 (i.e. (Y x

t )t≥0 does not explode in finite time [34]).
Since f is continuous, Bα is an open set. Therefore, there exists n0 > 0
such that, for any n > n0, using Theorem 7 along with Theorem 6,

sup
x∈U

P(Mx,n ∈ Bα) ≥ sup
x∈U

P(Y x ∈ Bα)− η/4 ≥ 1− η/2.

Therefore, for any Borel set B,

sup
x∈U
|P(Mx,n ∈ B)− P(Mx,n ∈ B ∩Bα)| ≤ η/2.

Thus, we only need to approximate trajectories that do not leave Fα to
obtain a good approximation of P(Mx,n ∈ B). Applying Theorem 7 and
Theorem 6 on these trajectories, we obtain

sup
x∈U
|P(Mx,n ∈ B)− P(Y x ∈ B)| ≤ η.

Every step of the proof hold with high probability as n tends to infinity, so
the proof of Proposition 16 is complete.

4.5.2 Proof of Theorem 15

Since f is C1-continuous, the C̃i are compact sets of Rd and are disjoint sets.
Let β and τ be strictly positive real numbers, U ⊂ Rd be a compact set and
i ∈ {1, . . . , K}. Let B(x, r) denotes the ball of radius r > 0 centered on
x ∈ Rd. For δ > 0, we pose C̃δi = ∪x∈C̃iB(x, δ) and C̃−δi = C̃i \ ∪x/∈C̃iB(x, δ).
Let η be a strictly positive real and, for x ∈ Rd,
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• µ+
i,δ(x) be the probability that Y x hits C̃δi before any other C̃−δj ;

• µ−i,δ(x) be the probability that Y x hits C̃−δi before any other C̃δj .

Let us show that, for any i, a trajectory entering C̃δi has a high probability
to enter C̃i if δ is small enough. Since the C̃i are closed and disjoint there
exists δ0 > 0 such that the C̃δ0i are disjoints. Moreover, since the C̃i have
smooth boundaries, there exists δ+

i > 0 such that if d(x, C̃i) ≤ δ+
i then, the

probability for Y x to hit C̃i before exiting C̃δ0i is at least 1−η/8. Similarly, if
a trajectory of Y x enters C̃i, then it enters C̃−δi with high probability. More
precisely there exists δ−i such that if a trajectory of Y x hits C̃i, then it hits
C̃−δi with probability at least 1− η/8.

Let δ = min(δ+
j , δ

−
j ), since Y x satisfies the strong Markov property, we

have

• µ+
i,δ(x)− µi(x) ≤ η/4,

• µi(x)− µ−i,δ(x) ≤ η/4.

The next step is to show that the approximation of µ+
i,δ provided by the

Markov chain is correct. For T > 0, let

B = {w ∈ D([0,∞],Rd) | ∃τ such that w(τ) ∈ C̃δi
and ∀t < τ, w(t) ∈ Rd \ ∪j C̃−δj },

BT = {w ∈ D([0, T ],Rd) | ∃τ such that w(τ) ∈ C̃δi
and ∀t < τ, w(t) ∈ Rd \ ∪j C̃−δj }.

We define the stopping time

τ(Y ) = inf
t
Y ∈ C̃δi ∪j∈{1,...,K},j 6=i C̃−δj .

Since Ci ⊂ Rd and Rd has a single connected component, we have that
P(τ(Y x

t ) <∞) = 1, in particular that means that there exists T0 such that,
for any T ≥ T0, P(τ(Y x) ≤ T ) ≥ 1 − η/6. Using Proposition 16, we have
that, with high probability with respect to Xn,

P(τ(Mx,n) ≤ T ) ≥ P(τ(Y x) ≤ T )− η/6 ≥ 1− 1

3
η.

Hence, we have

P(Mx,n ∈ B \BT ) + P(Y x ∈ B \BT )

≤ P(τ(Mx,n) > T ) + P(τ(Y x) > T ) ≤ η/2.
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Since P(Y x ∈ ∂BT ) = P(Y x ∈ ∂B) = 0, we can apply Proposition 16 on
the set BT , and obtain

sup
x∈U
|P(Mx,n ∈ BT )− P(Y x ∈ BT )| ≤ η/4.

Combined with our previous result, we obtain:

sup
x∈U
|P(Mx,n ∈ B)− P(Y x ∈ B)| ≤ 3η/4.

Let C1, . . . , CK(n) be the cluster cores used by the algorithm and com-

puted with the density estimator f̂ . These cluster cores are approximations
of the sets C̃1, . . . , C̃K obtained using the same computation with the true
density f . By our assumptions on the convergence of f̂ , Theorems 9.2 and
11.1 [22] guarantee limn→∞K(n) = K almost surely. Hence, we can assume
that n is sufficiently large for K(n) to be equal to K. By our assumptions
on the cluster cores and the convergence of f̂ , Theorem 10.1 [22] guarantees
there exists π such that, almost surely,

∀δ > 0,∀i ∈ {1, . . . , K}, lim
n→∞

P(C̃−δi ⊂ Cπ(i) ⊂ C̃δi ) = 1. (4.5)

Without loss of generality, we can assume π(i) = i. Hence, P(Mx,n ∈ B) ≥
limn→∞ µn,i(x) and

lim
n→∞

µn,i(x)− µi(x) ≤ lim
n→∞

µn,i(x)− µ+
i,δ(x) + η/4 ≤ η.

Similarly,
µi(x)− lim

n→∞
µn,i(x) ≤ η,

concluding the proof.



Chapter 5

Stein’s method for diffusion
approximation

At the end of Section 3.3.3, we have seen it is possible to obtain the weak
convergence of the invariant measure of random walks on random geometric
graphs to the invariant measure of the limiting diffusion process. In this
Section, we improve this result by quantifying this convergence in terms
of Wasserstein distance of order 2 (Proposition 28). In order to obtain
this bound, we adapt the approach of [52] which relies on Stein’s method
and derive new ways to bound Wasserstein distances between measures
(Theorems 18, 21 and 23). We then deal with possible applications of our
results. We first obtain convergence rates for the Central Limit Theorem
(Theorem 25). Then, we bound the distance between the invariant measures
of a random walk and of a diffusion process. This bound can be used to
solve our initial problem and to quantify the convergence of the invariant
measure of a random walk on a random geometric graph. To illustrate this
result, we tackle the case of the k-nearest neighbor graph (Proposition 28).
Finally, we show how our bound can also be used to study the complexity
of a simple Monte Carlo algorithm (Proposition 29).

5.1 An introduction to Stein’s method

Stein’s method corresponds to a family of approaches used to bound dis-
tances between measures. It was introduced by Charles Stein in 1972 [77]
to bound the distance to the Gaussian measure γ. His approach relied on
the following idea: since the Gaussian measure is the only measure such

53
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that, for any test function (i.e. compactly supported smooth function) φ,∫
(xφ(x)−∇φ) γ(dx) = 0, (5.1)

we can expect that if a measure ν satisfies∫
(xφ(x)−∇φ) ν(dx) ≈ 0,

then ν should be close to γ.
Barbour [5] generalized this idea by replacing the Gaussian measure by a

measure µ assumed to be the invariant measure of a diffusion process with
infinitesimal generator Lµ = b.∇+ < a,∇2 >. Indeed, for any suitable
function φ, ∫

Lµφµ(dx) = 0.

In the case of the Gaussian measure the corresponding generator is Lγ =
−x.∇ + ∆, hence this equation generalizes Stein’s identity by replacing φ
by ∇φ. Thus, if a measure ν satisfies∫

Lµφν(dx) ≈ 0,

for φ belonging to some set of functional, we can expect ν to be close to
µ. In order to show that such a condition holds there are two possibilities.
The first one is to “solve the Stein’s Equation” by computing Lµφ. But
this approach is not always feasible, in particular in the multi-dimensional
setting. Instead, let us assume that there exists Lν such that∫

Lνφν(dx) = 0,

in which case we say ν is invariant under Lν . Then, for any compactly
supported smooth function φ,∫

Lµφν(dx) =

∫
(Lµ − Lν)φν(dx).

Thus if Lν is close to Lµ, then
∫
Lµφν(dx) should be close to zero and ν

should be close to µ.
In our case, deriving such an operator is rather straightforward: if ν

is the invariant measure of a Markov chain with generator Lν then ν is
invariant under Lν . Using this type of operators in Stein’s method can be
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related to approach of [72] in which the author uses the a pair (X,X ′) of
random variables drawn from ν as such a pair of variable corresponds to
using a Markov chain with transition kernel defined by

∀x ∈ E,∀F ⊂ F , K(x, F ) = E[X ′ ∈ F |X = x].

Let us note there are many other ways to obtain an operator Lν under
which ν is invariant such as the original method of exchangeable pairs [78],
biasing techniques [4, 41] or the Stein kernel [52]. For a more complete
presentation of Stein’s method and results obtained using this framework,
we invite the reader to consult the following survey [20].

5.2 Distances and divergences between

measures

So far, we have only been interested into weak convergence of measures.
Unfortunately, since this convergence is not associated to a distance, it
cannot be quantified. Let us browse through potential candidates distances
we could use to quantify the convergence between measures.

Let µ and ν be two measures defined on a domain E of Rd and let B
denotes the class of Borel sets of Rd. A classical distance between µ and ν
is the total variation distance:

TV (µ, ν) = max
B
|µ(B)− ν(B)| = sup

‖φ‖∞≤1

|
∫
E

φdµ−
∫
Rd
φdν|.

If dν = hdµ, one can also use the relative entropy of ν with respect to µ,
also called Kullback-Lieber divergence,

H(ν|µ) =

∫
E

h log hdµ.

Whenever h is smooth, one can also use the Fisher information of ν with
respect to µ

I(ν|µ) =

∫
E

‖∇h‖2

h
dµ.

Unfortunately, these quantities are not appropriate for our task. Indeed,
if the total variation distance between a discrete measure and an absolutely
continuous measure is always one (the maximum is obtained by taking B
to be the support of the discrete measure). Similarly, the relative entropy
and Fisher information of a discrete measure with respect to a continuous
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one is not defined. Instead, we are going to focus on another family of
distances called Wasserstein distances. Let µ and ν be two measures on E,
a measure π on E×E is a transport plan between ν and µ if π(., E) = µ(.)
and π(E, .) = ν(.). For any p > 0, we say a measure µ has finite p-th
moment if

∫
E
‖x‖pµ(dx) <∞ . Let p ≥ 1 and suppose µ and ν have finite

p-th moment, the p-Wasserstein distance between µ and ν on E is

W p
p (µ, ν) = inf

π

(∫
E×E
‖x− y‖pπ(dx, dy)

)1/p

where the infimum is taken over all transport plans between µ and ν. These
distances quantify the weak convergence and are adapted to compare dis-
crete and continuous measures.

Theorem 17 (Theorem 6.8 [83]). Let p ≥ 1 and let µ and (νn)n∈N be
measures on Rd with finite p-th moment. The following statements are
equivalent

• limn→∞Wp(νn, µ) = 0;

• (νn)n≥0 converges weakly to µ and

∀1 ≤ q ≤ p, lim
n→∞

∫
Rd
‖x‖qνn(dx) =

∫
Rd
‖x‖qµ(dx).

Recently, Ledoux, Nourdin and Peccati [52] have provided a way to
bound the 2-Wasserstein distance between two measures µ, invariant under
an operator

Lµ = b.∇+ < a,∇2 >,

and ν, invariant under an operator of the form

Lν = b.∇+ < τν ,∇2 >,

in which case τν is called a Stein kernel.
Hence, if we manage to adapt their result and define Lν as the generator

of a Markov chain, our objective would be achieved. As mentioned in
the end of Section 5.1, ν is the invariant measure of a Markov chain with
transition kernel K if and only if there exists a pair (X,X ′) of random
variables with measure ν such that, for any x ∈ Rd, the measure of E[X ′ |
X = x] is equal to K(x). The generator of the corresponding Markov chain
is then given by

Lνφ(x) = E[φ(X ′)− φ(X) | X = x].

Since it leads to clearer notations, we will use pairs of random variables
rather than Markov chains in the remainder of this Chapter.
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5.3 The approach

Let us first introduce some notations and recall notations introduced in
Section 3.2.1. Let x ∈ Rd and k ∈ N, we denote by x⊗k ∈ (Rd)⊗k the tensor
of order k of x,

∀j1, . . . , jk ∈ {1, . . . , d}, (x⊗k)j1,...,jk =
k∏
i=1

xji .

For any x, y ∈ (Rd)⊗k and any symmetric positive-definite d× d matrix A,
let

< x, y >A=
∑

l,j∈{1,...,d}k
xlyj

k∏
i=1

Aji,li ,

and, by extension,
‖x‖2

A =< x, x >A .

For any smooth function φ and x ∈ Rd, let ∇kφ ∈ (Rd)⊗k where

∀j1, . . . , jk ∈ {1, . . . , d}, (∇kφ(x))j1,...,jk =
∂kφ

∂xj1 . . . ∂xjk
(x).

Let E be a convex domain of Rd and ν and µ be two measures with
support E. Suppose µ is a reversible measure for the diffusion process with
generator Lµ = b.∇+ < a,∇2 > where b and a are smooth on E and a is
symmetric positive-definite on all of E.

Let (Pt)t≥0 be the Markov semigroup with infinitesimal generator Lµ.
For any measure dη = hdµ, let dηt = Pthdµ. We first assume that dν = hdµ
and Iµ(νt) <∞ for any t > 0.

Since µ is the invariant measure of Lµ, under reasonable assumptions,
νt converges to µ as t goes to infinity. We can thus control the distance
between µ and ν by controlling the distance between between νt and ν. The
latter can be achieved via the following inequality (see [83]),

d+

dt
W2(ν, νt) ≤ Iµ(νt)

1/2, (5.2)

along with a bound on Iµ(νt). We have

Iµ(ν) =

∫
E

‖∇h‖2
a

h
dµ =

∫
E

< ∇h,∇ log h >a dµ.

If we write vt = log(Pth),

Iµ(νt) =

∫
E

< ∇Pth,∇vt >a dµ.
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Since µ is reversible, it satisfies the following integration by parts formula:
for any smooth compactly supported functions f and g,∫

E

< ∇f,∇g >a dµ = −
∫
E

fLµgdµ.

Since Iµ(ν) is finite and PthLµvt can be shown to be integrable by the results
of the following sections, we can apply this integration by parts formula to
obtain

Iµ(νt) =

∫
E

< ∇Pth,∇vt >a dµ = −
∫
E

PthLµvtdµ.

Using the symmetry of µ with respect to Pt and the commutativity of Pt
and Lµ,

Iµ(νt) = −
∫
E

hPtLµvtdµ = −
∫
E

LµPtvtdν.

Now, suppose there exists an operator Lν such that,∫
E

LνPtvtdν = 0,

then

Iµ(νt) =

∫
E

(Lν − Lµ)Ptvtdν.

In [52], Lν is given by the Stein kernel but it can be defined in many
other ways. For example, as mentioned at the end of Section 5.1, if (X,X ′)
is a couple of random variables drawn from ν then, taking

Lνφ(x) =
1

s
E [φ(X ′)− φ(X)|X = x] ,

we have ∫
Rd
LνPtvtdν = 0.

Now, suppose Ptvt is real analytic on E, then for any s > 0,

LνPtvt(x) =
1

s
E

[
∞∑
k=1

<
(X ′ −X)⊗k

k!
,∇kPtvt > |X = x

]
,

In which case,

Iµ(νt) =E [< E[X ′ −X | X]− b(X),∇Ptvt(X) >]

+ E
[
< E[

(X ′ −X)⊗2

2
| X]− a(X),∇2Ptvt >

]
(5.3)

+ E

[
∞∑
k=3

< E[
(X ′ −X)⊗k

k!
| X],∇kPtvt(X) >

]
.
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The last step of the approach consists in using the regularizing properties of
the semigroup Pt in order to bound the last equation by a quantity involving
Pt‖∇vt‖2

a. Then, since E[Pt‖∇vt‖2
a(X)]1/2 = Iµ(νt)

1/2 and Iµ(νt) is finite,
we obtain a bound on Iµ(νt)

1/2 and conclude. Let us note that, since a is
positive-definite on all of E, the bounds we derive on ‖∇kPtvt‖a imply Ptvt
is real analytic on all of E [47].

In order to deal with discrete measures, let us note that, for ε > 0, νε is
well-defined. Thus, if it has a finite Fisher information with respect to µ,
we can apply the previous approach to any νε and let ε go to 0 to obtain a
bound on W2(ν, µ) even though ν is discrete.

Our goal in the remainder of this section will thus consist in providing
bounds for Equation 5.3. We start with the Gaussian case where such a
bound can be directly obtained using the integral representation of (Pt)t≥0

and integrations by parts. We then deal with more general measures µ and
derive a bound using Gamma calculus.

5.3.1 Gaussian case

Let dµ = dγ = (2π)−d/2e−
|x|2
2 dx be the Gaussian measure in Rd. γ is

the invariant measure of Lγ = −x.∇ + ∆ and the associated semigroup
(Pt)t≥0 is the Ornstein-Uhlenbeck semigroup. Let φ be a smooth function
with compact support on Rd. For any x ∈ Rd, Ptφ admits the following
representation

Ptφ(x) =

∫
Rd
φ(xe−t +

√
1− e−2ty)dγ(y).

Using an integration by part, we obtain

∇Ptφ(x) = e−t
∫
Rd
∇φ(xe−t +

√
1− e−2ty)dγ(y)

=
e−t√

1− e−2t

∫
Rd
yφ(xe−t +

√
1− e−2ty)dγ(y).

For any k > 0 and any i ∈ {1, . . . , d}k, let Hi be the multivariate Hermite
polynomial of index i,

Hi = (−1)ke
|x|2
2

∂k

∂xi1 . . . ∂xik
e−
|x|2
2 .

Multiple integrations by parts yield

(∇kPtφ(x))i =
e−kt

(1− e−2t)k/2

∫
Rd
Hi(y)φ(xe−t +

√
1− e−2ty)dγ(y).
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Hermite polynomials form an orthogonal basis of L2(γ) with norm

∀i ∈ {1, . . . , d}k, ‖Hi‖2
γ =

∫
Rd
H2
i (y)dγ(y) =

d∏
j=1

(
k∑
l=1

δil,j

)
!.

Hence,

∞∑
k=1

∑
i∈{1,...,d}k−1

e2kt(1− e−2t)k−1

‖Hi‖2
γ

(∇kPtφ)2
i (x)

=
∞∑
k=1

∑
i∈{1,...,d}k−1

e2kt(1− e−2t)k−1

‖Hi‖2
γ

(∫
Rd

(∇kφ)i(xe
−t +

√
1− e−2ty)dγ(y)

)2

=
∞∑
k=1

∑
i∈{1,...,d}k−1

(∫
Rd

Hi

‖Hi‖γ
∇φ(xe−t +

√
1− e−2ty)dγ(y)

)2

=

∫
Rd
‖∇φ(xe−t +

√
1− e−2ty)‖2dγ(y)

= Pt‖∇φ‖2(x).

Let us pose

S(t) =e−2tE

[∥∥∥∥E[
X ′ −X

s
| X] +X

∥∥∥∥2
]

+
e−4t

1− e−2t
E

[∥∥∥∥E[
(X ′ −X)⊗2

2s
| X]− Id

∥∥∥∥2
]

+
∞∑
k=3

∑
i∈{1,...,d}k−1

e−2kt‖Hi‖2
γ

(sk!)2(1− e−2t)k−1
E
[
‖E[(X ′ −X)⊗ki | X]‖2

]
.

Applying Cauchy-Schwarz’s inequality to Equation 5.3 yields

Iγ(νt) ≤ S(t)1/2E[Pt‖∇vt(X)‖2]1/2 = S(t)1/2Iγ(νt)
1/2. (5.4)

We have thus bounded Iγ(νt). Now, according to Equation 5.2, integrating
our bound on Iγ(νt) for t ∈ R+ would yield a bound on W2(ν, γ). However,
we encounter integrability issues for the higher order terms for small values
of t. To circumvent this issue, we use a family of couplings (X,X ′t)t≥0

interpolating between X ′0 = X and X ′∞ = X ′ , ensuring the problematic
terms are 0 at t = 0. Finally, for any discrete measure ν, νt has finite
Fisher information as long as the second moment of ν is finite (see Remark
2.1 [62]). We are now ready to state the first result of this work.
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Theorem 18. Let ν be a measure on Rd with finite second moment and let
X and (X ′t)t≥0 be random variables drawn from ν. For any s > 0,

W2(ν, γ) ≤
∫ ∞

0

√
S(t)dt,

with

S(t) =e−2tE

[∥∥∥∥E[
X ′t −X

s
| X] +X

∥∥∥∥2
]

+
e−4t

1− e−2t
E

[∥∥∥∥E[
(X ′t −X)⊗2

2s
| X]− Id

∥∥∥∥2
]

+
∞∑
k=3

∑
i∈{1,...,d}k−1

e−2kt‖Hi‖2
γ

(sk!)2(1− e−2t)k−1
E
[
‖E[(X ′t −X)⊗ki | X]‖2

]
.

5.3.2 General case

In general, (Pt)t≥0 does not admit a closed form formula so we cannot rely
on a direct approach. Let us first apply Cauchy-Schwarz’s inequality to
Equation 5.3 in order to obtain

Iµ(νt) ≤E
[
‖E[X ′ −X | X]− b(X)‖2

a−1(X)

]1/2

E[‖∇Ptvt(X)‖2
a(X)]

1/2

+ E
[
‖E[

(X ′ −X)⊗2

2
| X]− a(X)‖2

a−1(x)

]1/2

E[‖∇2Ptvt(X)‖2
a(X)]

1/2

(5.5)

+
∞∑
k=3

E
[
‖E[

(X ′ −X)⊗k

k!
| X]‖2

a−1(x)

]1/2

E[‖∇kPtvt(X)‖2
a(X)]

1/2.

Our objective is to bound ‖∇kPtvt‖2
a by a quantity involving Pt‖∇vt‖2

a using
the framework of Γ-calculus described in [3]. This approach relies on the
iterated gradients Γi, defined recursively for any smooth functions f, g by

Γ0(f, g) = fg;

Γi+1(f, g) =
1

2
[Lµ(Γi(f, g))− Γi(Lµf, g)− Γi(f,Lµg)] .

The triple (E, µ,Γ1) is called a Markov triple, a structure extensively stud-
ied in [3]. In particular if there exists ρ ∈ R such that

Γ2 ≥ ρΓ1,
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the Markov triple is said to satisfy a curvature-dimension inequality, or
CD(ρ,∞) condition, under which (Pt)t≥0 has many interesting properties.
For instance, it is known that, under a CD(ρ,∞) condition, (Pt)t≥0 satisfies
the following gradient bound (see e.g. Theorem 3.2.3 [3])

‖∇Ptf‖2
a ≤ e−2ρtPt(‖∇f‖2

a),

Remark 19. Under a CD(ρ,∞) condition, if ν = hdµ, then, according to
Theorem 5.5.2 [3],

Iµ(νt) ≤
2ρ

1− e−2ρt
(Pt(h log h)− Pth log(Pth)) .

Thus, if νε has finite entropy with respect to µ for any ε > 0, then Iµ(νt) is
finite for any t > 0.

In the proof of Theorem 4.1 [52], the authors show that, under a CD(ρ,∞)
condition for ρ > 0 and assuming there exists κ, σ > 0 such that Γ3 ≥ κΓ2

and Γ2 ≥ σ‖∇2f‖a,

‖∇2Ptf‖2
a ≤

κ

σ(eκt − 1)
Pt‖∇f‖2

a. (5.6)

We could use a similar approach and suppose that for any k > 1 there exists
some κk and σk such that Γk+1 ≥ κkΓk and Γk ≥ σ‖∇kf‖a in order to
bound ‖∇kPtf‖a. However, such assumptions would be quite restrictive in
practice. Instead, we derive bounds relying on a simple CD(ρ,∞) condition.

Proposition 20. Suppose that L satisfies a CD(ρ,∞) condition for ρ ∈ R.
Then, for any k ∈ N?, t > 0 and any smooth compactly supported function
φ,

‖∇kPtφ‖a ≤ fk(t)
√
Pt‖∇φ‖2

a,

where

fk(t) =

e−ρtmax(1,k/2)
(

2ρd
e2ρt/(k−1)−1

)(k−1)/2

if ρ 6= 0

t(1−k)/2 if ρ = 0.

Unfortunately, our bound is not dimension-independent as one could
expect from Equation 5.6. We believe this dependency to be an artifact
of the proof. Nevertheless, by injecting these bounds in Equation 5.5, we
obtain a bound on Iµ(νt)

1/2 leading to the following result.

Theorem 21. Let ν be a measure on Rd. Assume the entropy of νε with
respect to µ is finite for any ε > 0 and let X and (X ′t)t≥0 be random variables
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drawn from ν. If Lµ satisfies a CD(ρ,∞) condition for ρ ∈ R, then, for
any s > 0, T > 0,

W2(ν, νT ) ≤
∫ T

0

e−ρtE

[∥∥∥∥E [X ′t −Xs
| X
]
− b(X)

∥∥∥∥2

a−1

]1/2

dt

+

∫ T

0

f2(t)E

[∥∥∥∥E [(X ′t −X)⊗2

2s
| X
]
− a(X)

∥∥∥∥2

a−1

]1/2

dt

+
∞∑
k=3

∫ T

0

fk(t)

sk!
E[
∥∥E[(X ′t −X)⊗k | X]

∥∥2

a−1 ]
1/2dt,

where the functions (fk)k≥1 are defined in Proposition 20.

If ρ > 0, we can set T to infinity to bound W2(ν, µ). On the other
hand, if ρ ≤ 0, it is still possible to bound W2(ν, µ) as long as νt converges
exponentially fast to ν.

Lemma 22. Suppose there exists κ such that for any measure η and any
t > 0, we have

W2(ηt, µ) ≤ e−κtW2(η, ν).

Then, for any T > 0,

W2(ν, µ) ≤ W2(ν, νT )

1− e−κT
.

Proof. Indeed, we have

W2(ν, µ) ≤ W2(ν, νt) +W2(νt, µ)

≤ W2(ν, νt) + e−κtW2(ν, µ).

Such an exponential convergence to µ can be verified under weaker con-
ditions than a CD(ρ,∞) inequality for ρ > 0. For example, if a is the
identity matrix and b is the gradient of some potential V then this assump-
tion is satisfied whenever V is strongly convex outside a bounded set C with
bounded first and second order derivatives on C [42], which is equivalent
to satisfying a CD(ρ1,∞) condition for some ρ1 ∈ R and having Γ2 ≥ ρ2Γ1

with ρ2 > 0 outside of C. An extension of this result for more general a
and for manifolds is proposed in [87].
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5.4 Gaussian measure in dimension one

The Stein kernel can also be used to bound the Wasserstein distance of
order p ≥ 1 between a measure ν and the Gaussian measure γ under a
stronger definition. Let X be a random variable drawn from ν, we say that
τν is a strong Stein kernel for ν if

E [−Xφ(X) + τν(X)∇φ(X)] = 0

for every compactly supported smooth function φ.
In dimension one, if τν is a Stein kernel for ν, then it satisfies the previous

condition, hence we can expect our coupling approach to be able to replace
the Stein kernel. Let µ = γ1 be the one-dimensional Gaussian measure. For
k ∈ N, we denote by Hk the k-th Hermite polynomial,

Hk = (−1)ke
|x|2
2
dke−

|x|2
2

dxk
.

First, a modification of the proof of Lemma 2 from [64] yields the general
estimate

d+

dt
Wp(ν, νt) ≤

(∫
R
|v′t|pdνt

)1/p

. (5.7)

Let us provide a version of v′t. Let (X,X ′) be random variables drawn
from ν and Z be a Gaussian random variable. For t > 0, let Ft = e−tX +√

1− e−2tZ and consider the function ρt defined for any x ∈ R as follows

ρt(x) = E
[
e−t
(
X ′ −X

s
+X

)
+

e−2t

√
1− e−2t

(
(X ′ −X)2

2s
− 1

)
H1(Z)|Ft = x

]
+ E

[
∞∑
k=3

e−kt

s
√

1− e−2t
k−1

(X ′ −X)k

k!
Hk−1(Z)|Ft = x

]
.

For any compactly supported smooth function φ : R→ R, we obtain, after
successive integrations by parts with respect to Z,

E[ρt(Ft)φ(Ft)] = E
[
e−tXφ(Ft)− e−2tφ′(Ft)

]
+ E

[
∞∑
k=1

e−kt
(X ′ −X)k

sk!
φ(k−1)(Ft)

]
.

Let Φ be a primitive function of φ, by the results of Section 5.3.1, E[Φ(Ft) |
X = x] = PtΦ(x) is real analytic. Hence, since X ′ and X have the same
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measure we have

E

[
∞∑
k=1

e−kt
(X ′ −X)k

sk!
φ(k−1)(Ft)

]
=

1

s
E[Φ(e−tX ′ +

√
1− e−2tZ)− Φ(e−tX +

√
1− e−2tZ)] = 0.

Therefore,

E[(ρt(Ft)− Ft)φ(Ft)] = E[(−Ft + e−tX)φ(Ft)− e−2tφ′(Ft)]

= E[−(1− e−2t)φ′(Ft)− e−2tφ′(Ft)]

= −E[φ′(Ft)].

Therefore, ρt satisfies the characterization of v′t presented in Equation 2.28
[62]: it is thus a version of v′t. We are thus able to bound

(∫
R
|v′t|pdνt

)1/p

= E[|ρt(Ft)|p]1/p

using the Lp(γ1)-norm of the Hermite polynomials ‖Hk‖pp,γ1 =
∫
R |Hk|pdγ1.

Injecting this bound in Equation 5.7, we are able to bound Wp(ν, γ1).

Theorem 23. Let ν be a measure on R and let X and (Xt)t≥0 be random
variables drawn from ν. We have, for any p ≥ 1, s > 0,

Wp(ν, γ1) ≤
∫ ∞

0

e−tE
[∣∣∣∣E [X ′t −Xs

| X
]

+X

∣∣∣∣p]1/p

dt

+

∫ ∞
0

e−2t‖H1‖p,γ1√
1− e−2t

E
[∣∣∣∣E [(X ′t −X)2

2s
| X
]
− 1

∣∣∣∣p]1/p

dt

+
∞∑
k=3

∫ ∞
0

e−kt‖Hk−1‖p,γ1
s
√

1− e−2t
k−1

k!
E
[∣∣E[(X ′t −X)k | X]

∣∣p]1/p dt.
Remark 24. [50] gives the asymptotic of the p-norm of Hermite polynomials
with respect to the Gaussian measure, more precisely there exist constants
C(p) such that

‖Hk‖p ≤

{
C(p)

√
k!k−1/4(1 +O(k−1)) if 0 < p < 2

C(p)
√
k!(p− 1)k/2(1 +O(k−1)) if p > 2
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5.5 Applications

5.5.1 Central Limit Theorem

Let X1, . . . , Xn be i.i.d. random variablestaking values in Rd such that
E[X1] = 0 and E[X⊗2

1 ] = Id. Let νn be the measure of Sn = n−1/2
∑n

i=1Xi.
According to the Central Limit Theorem, νn should converge to the Gaus-
sian measure γ, our objective in this section is to provide a bound of
Wp(νn, γ) for some p ≥ 2. LetX ′1, . . . X

′
n be independent copies ofX1, . . . , Xn

and let I be a uniform random variable on {1, . . . , n}. For any t > 0, we
pose

S ′n,t = Sn + n−1/2(X ′I −XI)1‖X′I‖,‖XI‖≤
√
n(e2t−1)

.

By construction, for any t > 0, S ′n,t is drawn from νn. Using this coupling
and applying either Theorem 18 or Theorem 23 with timestep s = 1

n
, see

Section 5.6.2 for the detailed computations, we obtain the following result.

Theorem 25. Let X1, . . . , Xn be i.i.d. random variables in Rd with E[X1] =
0 and E[X⊗2

1 ] = Id. There exists a universal constant C > 0, such that if
E[‖X1‖2+m] <∞ for some m ∈ [0, 2], then,

W2(νn, γ) ≤ C

{
n−m/4E[‖X1‖2+m]1/2 + o(n−m/4) if m < 2

n−1/2‖E[X⊗2
1 ‖X1‖2]‖ if m = 2

.

Let p ≥ 2. If d = 1, there exists a universal constant Cp such that if
E[|X1|p+q] <∞ for some q ∈ [0, p], then taking m ≤ min(4, p+ q)− 2,

Wp(νn, γ) ≤ Cp
(
n−m/4(E[|X1|2+m]1/2 + o(1m<2)) + n−1/2+(2−q)/2pE[|X1|p+q]1/p

)
.

Remark 26. Taking d = 1, p ≥ 2 in the previous result, we have, using
Hölder’s inequality,

E[|X1|4]1/2 = E[X
2−4/p
1 X2+4

1 ]1/2

= E[(X2
1 )1−2/p(|X1|p+2)p/2]1/2

≤ E[X2
1 ]1−2/pE[|X1|p+2]1/p

≤ E[|X1|p+2]1/p.

Therefore, as long as E[|X1|p+2] <∞, Theorem 25 gives

Wp(νn, γ) ≤ Cpn
−1/2E[|X1|p+2].



5.5. APPLICATIONS 67

The one-dimensional result completes a result obtained by [70] who con-
sidered the case 1 ≤ p ≤ 2,m = 2 and generalizes a result obtained by [74]
treating the case p > 2,m = 0. [12] also recovered the case p = 2,m = 2
using an entropic approach and recently proved the case m = 2 for any
p > 2 [13]. To our knowledge, the multidimensional result is new although
the entropic approach from [12] might be generalized to the multidimen-
sional setting at the expense of stronger assumptions on the moments of
the variables.

5.5.2 Diffusion approximation

Let µ be the invariant measure of the diffusion process with infinitesimal
generator Lµ = b.∇+ < a,∇2 >. Consider a discretization of this diffusion
process by a Markov chain M with transition kernel K and invariant mea-
sure π and let s be the timestep of this discretization. Let X be a random
variable drawn from π and let ξ be a random jump from X. Then for any
t > 0, T > 0,

Xt = X + 1t≥T ξ

and X follow the same law. Applying Theorem 21 using (Xt)t≥0 yields the
following result.

Corollary 27. Under the assumptions Theorem 21, we have, for any T1 >
T2 > 0,

W2(π, πT1) ≤
∫ T2

0

e−ρtE[‖b(X)‖2
a−1 ]1/2 + f2(t)dt

+

∫ T1

T2

e−ρtE

[∥∥∥∥E [ξs | X
]
− b(x)

∥∥∥∥2

a−1

]1/2

dt

+

∫ T1

T2

f2(t)E[

∥∥∥∥∥E
[
ξ⊗2

2s
| X]− a(x)

∥∥∥∥2

a−1

]1/2

dt

+

∫ T1

T2

∞∑
k=3

fk(t)E

[∥∥∥∥E[
ξ⊗k

k!s
| X]

∥∥∥∥2

a−1

]1/2

dt,

where the functions (fk)k≥1 are defined in Proposition 20.

Remark the quantities involved in this Corollary seems natural as they
are rather similar to the quantities appearing the Theorem 7 dealing with
the convergence of Markov chains to diffusion processes.
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Density approximation on k-nearest neighbor graphs

Let X1, . . . , Xn be i.i.d. random variables on the flat torus T = (R/Z)d

drawn from a measure µ with smooth density f . Let π be the invariant
measure of a random walk on a k-nearest neighbor graph built on Xn =
X1, . . . , Xn. As we have seen in Section 3.3, the random walk on the k-
nearest neighbor graph converges to a diffusion process with generator

L = f−2/d(∇ log f.∇+
1

2
∆),

which admits a reversible measure with density proportional to f 1+2/d. The
corresponding approximation timestep is

s =

(
k

n

)2/d
∫
‖x‖≤1

x2
1dx(∫

‖x‖≤1
1dx
)1+2/d

.

While T is not a domain of Rd, the arguments used in Theorem 21 still hold,
let us check its assumptions. As T is compact and f is smooth and strictly
positive, f−2/d∇ log f and f−2/d are smooth, hence, a CD(ρ,∞) condition
is verified for some ρ ∈ R. Moreover, for any ε > 0, πε is a measure with
strictly positive smooth density and thus finite Fisher information with
respect to µ̃. Finally, the assumption of Lemma 22 is verified thanks to
Corollary 2.2 [87].

Using Lemma 12 and Corollary 27 along with Lemma 22, we obtain the
following result.

Proposition 28. There exists C > 0 such that, with probability 1− C
n

,

W2(π, µ̃) ≤ C

(√
lognn1/d

k1/2+1/d
+

(
k

n

)1/d
)
.

Analysis of lower order schemes for the Langevin Monte Carlo
algorithm

Quite often in Bayesian statistics, one is interested in sampling points from
a probability measure dµ = e−udx on Rd. Many Monte-Carlo algorithms
have been proposed and analyzed to solve this task. We want to show how
our result can be used to study the convergence rate of a simple Monte-Carlo
algorithm.

The measure µ is a reversible measure for the diffusion process with
infinitesimal generator

Lµ = −∇u.∇+ ∆.
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Since, under some assumptions on µ, the measure of Yt converges to µ as t
goes to infinity, one may want to sample points from µ by approximating Yt.
Using the Euler-Maruyama approximation with timestep s, we discretize Yt
using a Markov chain M with M0 = 0 and transitions given by

Mn+1 = Mn − s∇u(Mn) +
√

2sNn,

where N1, . . . ,Nn is a sequence of independent normal random variables
with mean 0 and covariance matrix Id. If the timestep is small enough, the
invariant measure π of the Markov chain, should be close to µ. Hence, for
n large enough, the measure of Mn should be close to its invariant measure
and thus be close to µ. Approximate sampling for µ using this approach is
known as the Langevin Monte-Carlo (LMC) algorithm [71].

One may then wonder how large n should be to achieve a given accu-
racy. Answering this question is linked to the choice of s as this parameter
must satisfy some trade-off: large values lead to a poor approximation of µ
by π, but the smaller s is, the larger the number of iterations required for
the measure of Mn to be close to π. Recently, [32] proved that whenever µ
is a strictly log-concave measure (i.e. satisfying a CD(ρ,∞) condition for
ρ > 0), the LMC algorithm can reach an ε accuracy in total variation dis-
tance inO(ε−2(d3+d log(1/ε)) steps. For the Wasserstein distance, this com-
plexity was later improved to O(ε−1

√
d log(1/ε)) by [33]. A second order dis-

cretization, called the Ozaki discretization, was also considered in [32]. Un-
der this scheme, the number of iterations required to achieve an ε accuracy
in total variation distance is smaller than O(ε−1 dim(d+log(1/ε))3/2). Here,
we propose to do the opposite by considering an example of a smaller order
scheme with non-normal increments. Let (Bn)n≥0 be independent multi-
variate Rademacher random variables, and consider the following scheme

Mn+1 = Mn − s∇u(Mn) +
√

2sBn. (5.8)

Let µ be a log-concave measure, i.e. dµ = e−udλ and there exists ρ > 0
such that

∀x ∈ Rd, < ∇u(x)−∇u(y), (x− y) >≥ ρ‖x− y‖2
2.

Taking Γ1(f, g) =< ∇f,∇g >, this is equivalent to saying the Markov
Triple (Rd, µ,Γ1) satisfies a CD(ρ,∞) condition for ρ > 0. Moreover, as
shown in Subsection 5.6.3, π has finite second moment which implies, by
Theorem 5.1 [1], that πε has finite entropy with respect to µ for ε > 0.
Together with Remark 19 this implies πε has finite Fisher information with
respect to µ for any ε > 0. Let X be a random variable drawn from π and
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ξ be an increment from state X. By computations of Subsection 5.6.3, if µ
is log-concave and ∇u is Lipschitz continuous, then there exists C > 0 such
that

• E[ ξ
s
−∇u(X) | X] = 0;

• E[‖E[ ξ
⊗2

2s
− Id | X]‖2]1/2 ≤ C(sd)1/2;

• E[‖E[ ξ
⊗3

s
| X]‖2]1/2 ≤ Csd;

• ∀k > 3,E[‖E[ ξ
⊗k

s
| X]‖2]1/2 ≤ Cksk/2−1d(k−1)/2.

Applying Corollary 27 with T = sd2 allows us to bound W2(π, µ).

Proposition 29. Suppose µ is log-concave. Then, if ‖∇u‖ ≤ L,

W2(π, µ) ≤ O(d2s1/2).

Let us note that, using the coarse Ricci curvature framework introduced
in [63], it is possible to show that Mn converges exponentially fast to π.
Hence, using our result, it is possible to show that O(ε−2d4 log(1/ε)) itera-
tions are required to achieve an ε accuracy in Wasserstein distance between
the measure sampled by the LMC algorithm and µ. We believe our result
to be suboptimal due to the dependency on the dimension of the function
fk defined in Proposition 20, we conjecture the correct complexity to be
O(ε−2d2 log(1/ε)).

5.6 Proofs

5.6.1 Proof of Proposition 20

By Theorem 3.2.4 [3], under a CD(ρ,∞), we have for any compactly sup-
ported smooth function φ,

‖∇Ptφ‖a ≤ e−ρtPt‖∇φ‖a. (5.9)

In order to prove the Proposition, we need to find an equivalent to the
integration by parts used in the Gaussian case.

Lemma 30. Suppose L satisfies a CD(ρ,∞) condition, then for all com-
pactly supported smooth function φ, and any t > 0,

‖∇Ptφ‖2
a ≤

2ρ

e2ρt − 1
Pt|φ|2.
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Proof. Let t > 0, for any 0 ≤ s ≤ t let

Λ(s) = Ps(Γ0(Pt−sφ)),

the first two derivatives of this function are

Λ′(s) = 2Ps(Γ1(Pt−sφ));

Λ′′(s) = 4Ps(Γ2(Pt−sφ)).

By our assumption, Λ′′(s) ≥ 2ρΛ′(s). Hence, by Gronwall’s Lemma, Λ′(s) ≥
e2ρsΛ′(0). Now, we have

Γ1(Ptφ) =
2ρ

e2ρt − 1

∫ t

0

e2ρsΓ1(Ptφ)ds

=
2ρ

e2ρt − 1

∫ t

0

e2ρsΛ′(0)ds

≤ 2ρ

e2ρt − 1

∫ t

0

Λ′(s)ds

≤ 2ρ

e2ρt − 1
(Pt(Γ0(φ))− Γ0(Ptφ))

≤ 2ρPt(Γ0(φ))

e2ρt − 1
.

Let (e1, . . . , ed) be an orthonormal basis of Rd with respect to the a-
scalar product < ., . >a.

Lemma 31. For any smooth function φ and any k > 0, we have

‖∇kφ‖a = sup
α∈Rd,‖α‖=1

d∑
i=1

αi‖∇k−1 < ∇φ, ei >a ‖.

Proof. By the duality of the a-norm, we have

‖∇kφ‖a = sup
h∈(Rd)⊗k,‖h‖a=1

< ∇kφ, h >a

= sup
α∈Rd,‖α‖=1

d∑
i=1

sup
h∈(Rd)⊗k−1,‖h‖a=1

< ∇kφ, αiei ⊗ h >a

= sup
α∈Rd,‖α‖=1

d∑
i=1

sup
h∈(Rd)⊗k−1,‖h‖a=1

αi < ∇k−1 < ∇φ, ei >a, h >a

= sup
α∈Rd,‖α‖=1

d∑
i=1

αi‖∇k−1 < ∇φ, ei >a ‖a.
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Let us prove Proposition 20 by induction. Take x ∈ Rd and let φ be a
compactly supported smooth function. The inequality holds for k = 1 by
Equation 5.9. Now, suppose it is true for some k ∈ N. By Lemma 31 we
only need to bound

‖∇k+1 < ∇Ptφ, ei >a ‖a = lim
ε→0
‖∇k (Ptφ(x+ εaei)− Ptφ(x)) ‖a

for any ei. Let ε > 0 and let (Xt)t≥0 and (X̃t)t≥0 be two diffusion processes
with infinitesimal generator Lµ started respectively at x and x+ εae1. Let
t ≥ 0 and let πε be a coupling between Xt and X̃t. We have

Ptφ(x+ εae1)− Ptφ(x) = Pt

(
φ ◦ πε − φ

ε

)
,

Applying the induction hypothesis,∥∥∥∥∇kPt

(
φ ◦ πε − φ

ε

)∥∥∥∥2

a

≤

e−ρtmax(2,k) k−1
k

(
2ρd

e2ρdt/k − 1

)k−1

Pt k−1
k

∥∥∥∥∇Pt/k (φ ◦ πε − φε

)∥∥∥∥2

a

,

and, applying Lemma 30,∥∥∥∥∇kPt

(
φ ◦ πε − φ

ε

)∥∥∥∥2

a

≤

e−ρt(k−1)dk−1

(
2ρ

e2ρdt/k − 1

)k
Pt

∣∣∣∣φ ◦ πε − φε

∣∣∣∣2 .
By Theorem 2.2 [49], Equation 5.9 implies that we can take πε such that,
for any y ∈ Rd, supy∈Rd ‖πε(y)− id‖a−1 ≤ εe−ρt + o(ε), therefore

lim
ε→0

∣∣∣∣φ ◦ πε − φε

∣∣∣∣ = lim
ε→0

∣∣∣∣< ∇φ, a−1(πε − id) >a +o(‖πε − id‖)
ε

∣∣∣∣ ≤ e−ρt‖∇φ‖a.

Since a similar result holds for any ei, we have, using Lemma 31,

‖∇k+1Ptφ‖2
a ≤ e−ρt(k+1)dk−1

(
2ρ

e2ρdt/k − 1

)k
sup

α∈Rd,‖α‖=1

(
d∑
i=1

αi
√
Pt‖∇φ‖2

)2

.

Finally, since the supremum is obtained for α1 = · · · = αd = 1√
d
, the proof

is complete.
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5.6.2 Proof of Theorem 25

Let k be a positive integer. For any x ∈ (Rd)⊗k, we pose

‖x‖pp =
∑

i∈{1,...,d}k
|xi|p.

Let Z be a random variable in (Rd)⊗k. For any l ∈ {1, . . . , d}k, we pose

(Z)l = Zl1,...,lk .

Before starting the proof of Theorem 25, we first need to derive a multidi-
mensional version of the Rosenthal inequality.

Lemma 32. Let k > 0, p ≥ 2 and suppose Z1, . . . , Zn are independent
random variables taking values in (Rd)⊗k, then

E

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
p

p

1/p

≤ Cp
(
n‖E[Z]‖p + n1/2E[‖Z‖2

p]
1/2 + n1/pE[‖Z‖pp]1/p

)
≤ Cp

(
n‖E[Z]‖+ n1/2E[‖Z‖2]1/2 + n1/pE[‖Z‖p]1/p

)
.

Proof. By definition, we have

E

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
p

p

 =
∑

l∈{1,...,d}k
E

[∣∣∣∣∣
n∑
i=1

(Zi)l

∣∣∣∣∣
p]
.

We pose Z = Z1. For any l ∈ {1, . . . , d}k, we know by Rosenthal’s inequality
(see [15]) that there exists Cp > 0 such that

E

[∣∣∣∣∣
n∑
i=1

(Zi)l

∣∣∣∣∣
p]
≤ Cp

(
np|E[(Z)l]|p + np/2E[(Z)2

l ]
p/2 + nE[|(Z)l|p]

)
.

Hence, denoting by Z2 the random variables taking values in (Rd)⊗k such
that (Z2)l1,...,lk = (Z)2

l1,...,lk
,

E

∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
p

p

 ≤ Cp

(
np‖E[Z]‖pp + np/2‖E[Z2]‖p/2p/2 + nE[‖Z‖pp]

)
.

Using Jensen’s inequality, we have

‖E[Z2]‖p/2 ≤ E[‖Z2‖p/2] ≤ E[‖Z‖2
p].

Finally, we conclude the proof by remarking that ‖.‖p ≤ ‖.‖.
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We are now ready to start the proof of Theorem 25. Let us pose X = X1,
X ′ = X ′1, and α(t) = e2t − 1. In the remainder of this proof, we are going
to show there exist C > 0, Cp > 0 such that

•
∫∞

0
e−tE[‖E[n(S ′n,t − Sn) | Sn] + Sn‖pp]1/pdt,

•
∫∞

0
e−2t

√
1−e−2tE

[∥∥∥E [n (S′n,t−Sn)⊗2

2
| Sn

]
− Id

∥∥∥p
p

]1/p

dt,

• and
∑∞

k=3
‖Hk‖p,γ

k!

∫∞
0

e−kt√
1−e−2tk−1E[‖E[n(S ′n,t − Sn)⊗k | Sn]‖pp]1/pdt,

are bounded by

Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q]1/p + n−m/4E[‖X‖2+m]1/2

+


max(n−m/2, n−1/2)‖E[X⊗2‖X‖m]‖

∣∣∣log
(

n
√
d

‖E[X⊗2‖X‖m]‖

)∣∣∣ if n ≤ ‖E[X⊗2‖X‖m]‖√
d

eC/(1−m)

1
1−m

(
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2
else if m < 1

1
1−m

√
d

1−1/m (
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2/m
otherwise

−

)
.

Theorem 25 is then obtained using these bounds in either Theorem 18 or
Theorem 23 and remarking that

E[‖X‖2+m] = E

 ∑
i∈{1,...,d}

(X)2
i

 ∑
j∈{1,...,d}

(X)2
j

m/2


=
∑

i∈{1,...,d}

E

(X)2
i

 ∑
j∈{1,...,d}

(X)2
j

m/2


≤ d1/2

 ∑
i∈{1,...,d}

E

(X)2
i

 ∑
j∈{1,...,d}

(X)2
j

m/2


2
1/2

≤ d1/2

 ∑
i,k∈{1,...,d}

E

(X)i(X)k

 ∑
j∈{1,...,d}

(X)2
j

m/2


2
1/2

,

leads to
E[‖X‖2+m] ≤ d1/2‖E[X⊗2‖X‖m]‖. (5.10)
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Remark 33. For d > 1 and p > 2, these bounds are not optimal. For
instance, whenever p is an even integer, one can replace all 2-norms ‖.‖ by
p-norms ‖.‖p by taking

S ′n,t = Sn + n−1/2(X ′I −XI)1‖X′I‖p,‖XI‖p≤
√
n(e2t−1)

.

In the remainder of this proof, Cp denotes a generic constant depending
only on p and C a generic universal constant. For any t ≥ 0, we have, by
definition of S ′n,t,

S ′n,t − Sn =
1√
n

(X ′I −XI)1‖XI‖,‖X′I‖≤
√
nα(t)

.

Moreover, since I is independent from Sn, then, for any integer k > 0,

E[n(S ′n,t − Sn)⊗k | Sn] = E
[
n1−k/2EI [(X ′I −XI)1‖XI‖,‖X′I‖≤

√
nα(t)

] | Sn
]

= n−k/2E

[
n∑
i=1

(X ′i −Xi)
⊗k1‖Xi‖,‖X′i‖≤

√
nα(t)

| Sn

]
.

Hence,

E[n(S ′n,t − Sn) | Sn] + Sn = E[n(S ′n,t − Sn) + Sn | Sn]

=
1√
n
E

[
n∑
i=1

(X ′i −Xi)1‖Xi‖,‖X′i‖≤
√
nα(t)

+Xi | Sn

]
.

Let us pose
Z = E[(X ′ −X)1‖X‖,‖X′‖≤

√
nα(t)

+X].

Since X ′ is independent from Sn, E[X ′ | Sn] = E[X ′] = 0. Hence,

E[X ′1‖X‖,‖X′‖≤
√
nα(t)

| Sn] = −E[X ′1
max ‖X‖,‖X′‖≥

√
nα(t)

| Sn].

Therefore

E[Z | Sn] = E[(X −X ′)1
max ‖X‖,‖X′‖≥

√
nα(t)

| Sn],

and

E[‖E[n(S ′n,t−Sn) | Sn]+Sn‖pp]1/p = n−1/2E

∥∥∥∥∥E
[

n∑
i=1

(Xi −X ′i)1max ‖Xi‖,‖X′i‖≥
√
nα(t)

| Sn

]∥∥∥∥∥
p

p

1/p

.
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Applying Jensen’s inequality to get rid of the conditional expectation,

E[‖E[n(S ′n,t−Sn) | Sn]+Sn‖pp]1/p ≤ n−1/2E

∥∥∥∥∥
n∑
i=1

(Xi −X ′i)1max ‖Xi‖,‖X′i‖≥
√
nα(t)

∥∥∥∥∥
p

p

1/p

.

Let us pose
Y = (X −X ′)1

max ‖X‖,‖X′‖≥
√
nα(t)

.

Since the (Xi)1≤i≤n, (X
′
i)1≤i≤n are i.i.d. random variables, so are the ((Xi−

X ′i)1max ‖Xi‖,‖X′i‖≥
√
nα(t)

)1≤i≤n. Hence, we can apply Lemma 32 to obtain

E[‖E[n(S ′n,t − Sn) | Sn] + Sn‖pp]1/p ≤
Cp(n

1/2‖E[Y ]‖+ E[‖Y ‖2]1/2 + n1/p−1/2E[‖Y ‖p]1/p).

Since X and X ′ follow the same law, E[Y ] = 0. On the other hand, we have

E[‖Y ‖p]1/p = E[‖X −X ′‖p1
max ‖X‖,‖X′‖≥

√
nα(t)

]1/p

≤ 2E[‖X‖p1
max ‖X‖,‖X′‖≥

√
nα(t)

]1/p

≤ 2E[‖X‖p1‖X‖≥√nα(t)
]1/p

≤ 2(nα(t))−q/2pE[‖X‖p+q]1/p,

and, similarly,

E[‖Y ‖2]1/2 ≤ 2(nα(t))−m/4E[‖X‖2+m]1/2.

Overall, we obtained

E[‖E[n(S ′n,t − Sn) | Sn] + Sn‖pp]1/p ≤
Cp
(
n−m/4α(t)−m/4E[‖X‖2+m]1/2 + n−1/2+(2−q)/2pα(t)−q/2pE[‖X‖p+q]1/p

)
.

Finally, using the bound α(t) ≥ 2t in the following integral,∫ ∞
0

e−tE[‖E[n(S ′n,t − Sn) | Sn] + Sn‖pp]1/pdt ≤

Cp
(
n−m/4E[‖X‖2+m]1/2 + n−1/2+(2−q)/2pE[‖X‖p+q]1/p

)
.

Let us now tackle the second order term. We have

E
[
n

(S ′n,t − Sn)⊗2

2
| Sn

]
− Id = E

[
(X ′I −XI)

⊗2

2
1‖XI‖,‖X′I‖≤

√
nα(t)

| Sn
]
− Id

=
1

n
E

[
n∑
i=1

(X ′i −Xi)
⊗2

2
1‖Xi‖,‖X′i‖≤

√
nα(t)
− Id | Sn

]
.
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Again, taking

Y =
(X ′ −X)⊗2

2
1‖X‖,‖X′‖≤

√
nα(t)
− Id

and using a combination of Jensen’s inequality and Lemma 32, we obtain

E

[∥∥∥∥E [n(S ′n,t − Sn)⊗2

2
| Sn

]
− Id

∥∥∥∥p
p

]1/p

≤

Cp

(
‖E [Y ] ‖+ n−1/2E

[
‖Y ‖2

]1/2
+ n1/p−1E [‖Y ‖p]1/p

)
.

First, since E [X⊗2] = E [X ′⊗2] = Id,

E [Y ] = E
[

(X ′ −X)⊗2

2
1

max ‖X‖,‖X′‖≥
√
nα(t)

]
.

For two x, y ∈
(
Rd
)⊗k

, we denote by < x, y > the corresponding Hilbert-
Schmidt scalar product between x and y. Letting Z and Z ′ be two random
variables such that X, X ′, Z, Z ′ are i.i.d., we have

‖E [Y ] ‖ =

√〈
E
[
(X ′ −X)⊗21

max ‖X‖,‖X′‖≥
√
nα(t)

]
,E
[
(Z ′ − Z)⊗21

max ‖Z‖,‖Z′‖≥
√
nα(t)

]〉
=

√
E
[
〈(X ′ −X)⊗2, (Z ′ − Z)⊗2〉 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
=

√
E
[
〈(X ′ −X), (Z ′ − Z)〉2 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
≤ C

√
E
[
< X,Z >2 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
≤ C(nα(t))−m/2

√
E [< X,Z >2 max(‖X‖, ‖X ′‖)m max(‖Z‖, ‖Z ′‖)m]

≤ C(nα(t))−m/2
√

E [< X,Z >2 (‖X‖m + ‖X ′‖m + ‖Z‖m + ‖Z ′‖m)]

≤ C(nα(t))−m/2‖E[X⊗2(‖X‖m + ‖X ′‖m)]‖
≤ C(nα(t))−m/2(‖E[X⊗2‖X‖m]‖+ E[X⊗2‖X ′‖m]‖)

Since X and X ′ are independent,

‖E[X⊗2‖X ′‖m]‖ =
√
dE[‖X‖m]

≤ d−1/2E[‖X‖2]E[‖X‖m]

≤ d−1/2E[‖X‖2+m]2/(2+m)E[‖X‖2+m]m/(2+m)

≤ d−1/2E[‖X‖2+m],
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and, since we know by Equation 5.10 that E[‖X‖2+m] ≤
√
d‖E[X⊗2‖X‖m]‖,

we obtain

‖E [Y ] ‖ ≤ C(nα(t))−m/2‖E[X⊗2‖X‖m]‖.

Let us remark that this causes integration issues when m ≥ 1, as

e−2t

√
1− e−2t

α(t)−m/2 =
1

α(t)(m+1)/2
∼t→0

1

(2t)(m+1)/2
.

In order to deal with this problem, we remark that, replacing m by 0 in the
previous bound, we can also obtain

‖E [Y ] ‖ ≤ C‖E[X⊗2]‖ ≤ C
√
d.

Then, taking some 0 < t0 < 1,∫ ∞
0

e−2t

√
1− e−2t

‖E [Y ] ‖dt ≤∫ t0

0

C
√
de−2t

√
1− e−2t

dt+Cn−m/2‖E[X⊗2‖X‖m]‖‖E[X⊗2‖X‖m]‖
∫ ∞
t0

α(t)−(m+1)/2.

Let m 6= 1. Since α(t) ≥ 2t and α(t) ≥ et for t ≥ 1, we can decompose the
previous bound further:∫ ∞
t0

α(t)−(m+1)/2 ≤
∫ 1

t0

(2t)−(m+1)/2dt+

∫ ∞
1

e−tdt ≤ C

(
1 +

1− t(1−m)/2
0

1−m

)
.

At this point, there are three possibilities:

• If t
(1−m)/2
0 ≤ 1/2, then

∫∞
t0
α(t)−(m+1)/2 ≤ C

1−m .

• If t
(1−m)/2
0 ≥ 3/2, then

∫∞
t0
α(t)−(m+1)/2 ≤ Ct

(1−m)/2
0

1−m .

• If not, then | log(1/t0)(m− 1)| ≤ C and

|1− t(1−m)/2
0 | = |1− e

1−m
2

log(t0)|
≤ C|(m− 1) log(1/t0)|.

Thus
1− t(1−m)/2

0

1−m
≤ log(1/t0).
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Therefore, taking t0 = 1
n

(
‖E[X⊗2‖X‖m]‖√

d

)2/m

, there exists C > 0 such that

∫ ∞
0

e−2t

√
1− e−2t

‖E [Y ] ‖dt

≤ C


max(n−m/2, n−1/2)‖E[X⊗2‖X‖m]‖

∣∣∣log
(

n
√
d

‖E[X⊗2‖X‖m]‖

)∣∣∣ if n ≤ ‖E[X⊗2‖X‖m]‖√
d

eC/(1−m)

1
1−m

(
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2
else if m < 1

1
1−m

√
d

1−1/m (
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2/m
otherwise

.

Let us now deal with the moments of Y . We have

E[‖Y ‖p] ≤ 2p(E[‖(X ′ −X)⊗2

2
‖p] + ‖Id‖p)

≤ 2p(E[‖X‖p + d)

≤ 2p(E[‖X‖2p1‖X‖≤
√
nα(t)

] + E[‖X‖2])

≤ 2p(1 + (nα(t))(p−q)/2)E[‖X‖p+q].

and
E[‖Y ‖2] ≤ 4(1 + (nα(t))m−2)E[‖X‖2+m].

Putting everything together,

∫ ∞
0

e−2t

√
1− e−2t

E

[∥∥∥∥E [n(S ′n,t − Sn)⊗2

2
| Sn

]
− Id

∥∥∥∥p
p

]1/p

dt ≤

Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+


max(n−m/2, n−1/2)‖E[X⊗2‖X‖m]‖

∣∣∣log
(

n
√
d

‖E[X⊗2‖X‖m]‖

)∣∣∣ if n ≤ ‖E[X⊗2‖X‖m]‖√
d

eC/(1−m)

1
1−m

(
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2
else if m < 1

1
1−m

√
d

1−1/m (
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2/m
otherwise

)
.

We are now left with dealing with the higher order terms. For k > 2,
let

Y = E[(X ′ −X)⊗k1‖X‖,‖X′‖≤
√
nα(t)

| Sn].

Then, by a combination of Jensen’s inequality and Lemma 32,

E[‖E[n(S ′n,t − Sn)⊗k | Sn]‖pp]1/p ≤
n1−k/2‖E[Y ]‖+ n1/2−k/2E[‖Y ‖2]1/2 + n1/p−k/2E[‖Y ‖p]1/p.
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First, we have

E[‖Y ‖p] ≤ E[‖X ′ −X‖kp1‖X‖,‖X′‖≤√nα(t)
]

≤ 2kpE[‖X‖kp1‖X‖≤√nα(t)
]

≤ 2kp(nα(t))((k−1)p−q)/2E[‖X‖p+q],

and

E[‖Y ‖2] ≤ 4k(nα(t))k−1−m/2E[‖X‖2+m].

Then, since X ′ and X are i.i.d., E[Y ] = 0 for odd values of k. Let us now
consider an even integer k > 2. Denoting by Z and Z ′ two random variables
such that X,X ′, Z, Z ′ are i.i.d. Following the computations performed to
bound the second order term, we obtain

‖E[Y ]‖ = E
[
< X ′ −X,Z ′ − Z >k 1‖X‖,‖X′‖≤

√
nα(t)

1‖Z‖,‖Z′‖≤
√
nα(t)

]1/2

≤ 2kE
[
< X,Z >k 1‖X‖,‖Z‖≤

√
nα(t)

]1/2

≤ 2kE
[
< X,Z >2 ‖X‖k−2‖Z‖k−21‖X‖,‖Z‖≤

√
nα(t)

]1/2

≤ 2k(nα(t))(k−m−2)/2E
[
< X ′ −X,Z ′ − Z >2 ‖X‖m‖Z‖m

]1/2
≤ 2k(nα(t))(k−m−2)/2‖E[X⊗2‖X‖m]‖,

and, similarly,

‖E[Y ]‖ ≤ 2k(nα(t))(k−2)/2‖E[X⊗2]‖ ≤ 2k(nα(t))k/2−1
√
d.

Then, using the same integration procedure we used to bound the second
order term, we obtain∫ ∞

0

e−kt
√

1− e−2t
k−1

E[‖E[n(S ′n,t − Sn)⊗k | Sn]‖pp]1/pdt

≤ Cp2
k

(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+


max(n−m/2, n−1/2)‖E[X⊗2‖X‖m]‖

∣∣∣log
(

n
√
d

‖E[X⊗2‖X‖m]‖

)∣∣∣ if n ≤ ‖E[X⊗2‖X‖m]‖√
d

eC/(1−m)

1
1−m

(
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2
else if m < 1

1
1−m

√
d

1−1/m (
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2/m
otherwise

)
.
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Then, since by Remark 24,
∑∞

k=0
2k‖Hk‖p,γ

k!
<∞,

∞∑
k=0

‖Hk‖p,γ
k!

∫ ∞
0

e−kt
√

1− e−2t
k−1

E[‖E[n(S ′n,t − Sn)⊗k | Sn]‖pp]1/pdt

≤ Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+


max(n−m/2, n−1/2)‖E[X⊗2‖X‖m]‖

∣∣∣log
(

n
√
d

‖E[X⊗2‖X‖m]‖

)∣∣∣ if n ≤ ‖E[X⊗2‖X‖m]‖√
d

eC/(1−m)

1
1−m

(
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2
else if m < 1

1
1−m

√
d

1−1/m (
n−m/4‖E[X⊗2‖X‖m]‖1/2

)2/m
otherwise

)
,

which is the last bound required to conclude the proof.

5.6.3 Proof of Proposition 29

By construction,

• E[ ξ
s
−∇u(X) | X] = 0;

• E[‖E[ ξ
⊗2

2s
− Id | X]‖2]1/2 = s

2
E[‖∇u(X)‖4]1/2;

Since∇u(0) is assumed to be 0 and Lipschitz continuous, we have ‖∇u(X)‖ ≤
L1‖X‖. Let us bound E[‖X‖2]. Since X and X + ξ have the same law,

E[‖X‖2] = E[‖X + ξ‖2]

= E[‖X + s∇u(X)‖2] + 2ds

≤ E[‖X‖2 + 2sX.∇u(X) + s2‖∇(u)(X)‖2] + 2ds.

And, since µ is log-concave,

E[‖X‖2] ≤ (1− 2sρ+ L2
1s

2)E[‖X‖2] + 2ds,

therefore

E[‖X‖2] ≤ 2ds

2sρ− L2
1s

2
≤ d

ρ
+O(s).

Now, since µ is strongly log-concave and by construction of our increments,
‖X‖ <

√
2

ρ
√
sd

. Therefore there exists C > 0 such that E[‖∇u(X)‖4]1/2 ≤(
d
s

)1/2
. Let B be a multivariate Rademacher random variable, for k ≥ 3,

E[|E[(ξ)⊗k] | X|2]1/2 =
k∑
j=0

(
k

j

)
2j/2sk−j/2E[‖∇u(X)‖2(k−j)]1/2‖E[B⊗j]‖
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For j > 0, we have
‖E[B⊗j]‖ = d(j−1)/2,

and, for j < k
2
, taking

E[‖X‖2(k−2j)]1/2 ≤ sk−2j−1E[‖X‖2]1/2 ≤ sk−2j−1d1/2

ρ
+O(s),

completes the proof.



Chapter 6

Topological Pooling

In this Chapter, we incorporate the concept of 0-dimensional persistence
presented in Section 4.1.2 in the bag-of-words framework to perform shape
recognition. This work was done in collaboration with Maks Ovsjanikov,
Steve Oudot and Frédéric Chazal and was the subject of a publication in the
6th International Workshop on Computational Topology in Image Context
[14].

6.1 The bag-of-words pipeline

The bag-of-words approach consists of three main steps: feature extraction,
coding and pooling. We assume that the input to the pipeline is a set of M
3D-shapes (Gi)i∈[1,M ] represented as triangle meshes with vertices (Vi)i∈[1,M ].

Feature extraction aims at deriving a meaningful representation of the
shape: the feature function denoted as Fi : Vi → RN . These functions are
usually obtained by computing local descriptors (such as HKS [80], SIHKS
[17], WKS [6], Shape-net features [59], etc.) on each vertex of the mesh.

The purpose of coding is to decompose the values of the functions Fi by
projecting them on a set of points W = (wk)k∈[|1,K|] ∈ RN called a codebook.
This allows to replace each feature function by a family of functions (Ci :
Vi → RK)i∈[1,M ], called the word functions. In other words, for a coding
procedure Coding and codebook W , the Ci are defined through

∀x ∈ Vi, Ci(x) = Coding(Fi(x),W ).

There exist various coding methods, such as Vector Quantization [75],
Sparse Coding [89], Locally Constrained Linear Coding [88], Fisher Kernel
[66] or Supervector [92]. The codebook is usually computed using K-means
but supervised codebook learning methods [88], [16] generally achieve bet-
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ter accuracy. In the Sparse Coding approach, the one we use in this paper,
W and C are computed on the training set following

min
(Ci)i∈[1,M ],W

M∑
i=1

∑
x∈Vi

(
‖Fi(x)−WCi(x)‖2

2 + λ‖Ci(x)‖1

)
,

with constraint ‖wi‖ ≤ 1 and regularization parameter λ. During the test-
ing phase, the optimization is only performed on C with the codebook
already computed.

The pooling step aims at summarizing properties of the family (Ci)i∈[1,M ]

and representing them through vectors (Pi)i∈[1,M ] which can then be used
in standard learning algorithms such as SVM (Support Vector Machine).
Usually, the pooling method depends on the coding scheme used. For Vector
Quantization, one traditionally uses the mean of the word functions, an
approach called sum-pooling

Pi = (

∑
x∈Vi(Ci(x))1

|Vi|
, ...,

∑
x∈Vi(Ci(x))K

|Vi|
).

The other traditional pooling scheme, called max-pooling, was introduced
along the Sparse Coding scheme by Yang et al. in [89]. With this pooling
technique, word functions are summarized by their maxima

Pi = (max
x∈Vi

(Ci(x))1, ...,max
x∈Vi

(Ci(x))K).

Several works have highlighted the improvement obtained using max-
pooling rather than sum-pooling, both in terms of accuracy and, since it can
be used with a linear kernel in learning algorithms, of computational scala-
bility [89, 16]. The strength of max pooling is due in part to its remarkable
robustness properties as it is invariant with respect to many transformations
a shaper can undergo such that translations, rotations or changes of scale.
On the other hand, the information captured by this pooling procedure is
rather restricted.

One of the main assumptions made in designing and studying the bag-
of-words approach is that the values of the word functions are i.i.d. random
variables. Refinements of the max-pooling scheme have been proposed un-
der this assumption: for instance [55] proposed to consider the k highest
values for each words. However, the independence assumption of the word
functions is unrealistic: the values of the word functions on close vertices
of the mesh of a 3D-shape tend to be similar, as illustrated in Figure 6.1.
Thus, in this example, the generalization proposed by [55] ends up cap-
turing the same feature multiple times and providing multiple redundant
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values. On the other hand, an important enhancement of the pooling pro-
cedure called Spatial pyramid matching [51] was proposed in the image
processing literature. The idea behind this improvement was to perform
pooling separately on different parts, quadrants, stripes, etc. of an image
thus gaining some information regarding the spatial distribution of the word
functions. This approach has drastically improved the performance of the
bag-of-words procedures on multiple datasets, contradicting the identically
distributed assumption. Let us note there exist adaptations of this tech-
nique to 3D shape [56, 54], but they are not as efficient as the original
Spatial pyramid matching for images.

As we have seen, instead of considering word functions as an unordered
collection of independent random values, it seems more reasonable to con-
sider them as random functions defined on the vertices of a graph. We
thus propose to use the 0-dimensional persistent homology to capture in-
formation regarding the global structure of the word functions which is not
available for the traditional max-pooling approach. In this work, we aim
at being able to use classification algorithms such as SVM or logistic re-
gression requiring a Hilbert space structure, which the space of persistence
diagrams lacks. One approach to tackle this issue is to make use of the
“kernel trick” by using a positive-definite kernel in order to map the per-
sistence diagrams into a Hilbert space. As recently shown by Reininghaus
et al. [69], one cannot rely on natural distances such as the Wasserstein
distance to build traditional distance-based kernels. This led the authors
to propose a new non-linear. But using a non-linear kernel increases the
computational complexity of classification procedures leading to scalability
issues. Another approach to directly embed persistence diagrams into a
Hilbert Space was proposed in [18] but this embedding is highly memory-
consuming as it maps a single diagram into a set of functions. It is thus
not appropriate for dealing with large datasets.

In this work, we propose to perform pooling by computing the per-
sistence diagrams of each word function. We then map these persistence
diagrams into Rd for some reasonable value of d –< 20– by considering
the peaks with highest prominence. Since we provide a direct mapping
of persistence diagrams into Rd, we can use it for the pooling stage for
the bag-of-words procedure and achieve good performance with respect to
the classification phase. We call this pooling approach Topological Pooling.
Since it relies on persistence diagrams, this method is stable with respect to
most transformations the shape can undergo: translations, rotations, etc.,
as long as the descriptors used in input are also invariant to these trans-
formations. Moreover, we show that this pooling approach is robust to
perturbations of the descriptors. Finally we demonstrate the validity of our
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Figure 6.1: Example of a word function obtained on two different people
in the same pose (left and middle) and on the same person in two different
poses (middle and right).

approach compared to both sum-pooling and max-pooling by performing
pose recognition on the SHREC 2014 dataset.

6.2 Using persistence diagrams for pooling

Given a persistence diagram ∆, let us recall that the prominence p of a
point (b, d) ∈ ∆ is defined by p = b − d. Given a function f on a graph
G, we define the infinite-dimensional Topological Pooling vector of f with
i− th coordinate given by

TopoPool(f)i = pi(∆f ),

where pi(∆f ) is the i-th highest prominence of the points of ∆f if there is at
least i points in ∆f and 0 otherwise. The stability of persistence diagrams
given in Equation 4.2 implies the stability of our our pooling scheme.

Proposition 34. Let G be a graph and f and g two real-valued functions
on the vertices V of a graph G. Then, for any integer i > 0,

|TopoPool(f)i − TopoPool(g)i| ≤ 2 sup
x∈V
|f(x)− g(x)|

Of course, in practice we cannot use an infinite-dimensional vector so we
simply consider a truncation of this vector keeping the first n coordinates,
we denote such a truncated pooling vector by “TopoPool-n”. Using the
notations of Section 6.1, given some n > 0, the pooling vectors (Pi)1≤i≤M
are vectors of dimension nK defined by

Pi = (TopoPool-n((Ci)1), ...,TopoPool-n((Ci)K)).
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Figure 6.2: The real SHREC 2014 dataset

6.3 Experiments

In this section we evaluate the sum-pooling, the max-pooling and our topo-
logical pooling approaches on the SHREC 2014 dataset “Shape Retrieval of
Non-Rigid 3D Human Models” [67], which we modify by applying a random
rotation to each shape. The dataset is composed of 400 meshes correspond-
ing to 40 subjects taking 10 different poses and we wish to classify each of
these meshes with respect to the pose taken by the subject. We consider
both SIHKS features [17] and curvature-based features corresponding to the
unary features from [46] and composed of 64. We use Sparse Coding [89]
for the coding step and the computation are performed using the SPAMS
toolbox [58]. Finally, the classification is performed using a Support Vector
Machine. We use 3 shapes per class for the training set, 2 for the validation
set and 5 for the testing set. We compare the traditional sum-pooling with
our TopoPool-n with different values for n –remark that n = 1 is equivalent
to max-pooling– and under different codebook sizes. As a baseline, we also
display the results obtained using a rigid Iterated Closest Point (ICP) [10]
along with a 1-nearest neighbour classification, which aims at iteratively
minimizing the distance between two point clouds through rigid deforma-
tions. In our case it corresponds to finding the correct rotation to align
the shapes as two shapes in a similar pose are close, however the approach
can fail if it gets stuck in a local minimum and is not able to recover the
correct rotation. We run the experiment a hundred times, selecting the
training and testing sets at random. We display the mean accuracy over
the multiple runs in Table 6.1.

Overall, and especially for the SIHKS features, the Topological Pooling
scheme outperforms both max-pooling and to the sum-pooling. In the case
of curvature features, Topological Pooling and sum-pooling gives similar
accuracy results for large codebooks but in the case of smaller codebooks,
Topological pooling gives much better results. It is interesting to notice
that the gap between the different pooling scheme decreases as the size of
the codebook increases. Indeed, the smaller the codebook is, the richer each
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Pooling / Codebook size 40 60 80 100 120 140 160 180 200
SIHKS features
Sum-Pooling 0.53 0.56 0.60 0.60 0.58 0.62 0.61 0.60 0.60
TopoPool-1 0.46 0.55 0.53 0.54 0.58 0.59 0.63 0.64 0.64
TopoPool-5 0.69 0.71 0.69 0.70 0.73 0.70 0.74 0.73 0.72
TopoPool-10 0.70 0.71 0.71 0.69 0.72 0.71 0.73 0.74 0.72
TopoPool-15 0.72 0.73 0.71 0.70 0.74 0.71 0.74 0.75 0.71
TopoPool-20 0.72 0.73 0.70 0.72 0.73 0.72 0.73 0.75 0.73
Curvature features
Sum-Pooling 0.80 0.80 0.84 0.85 0.88 0.88 0.87 0.88 0.89
TopoPool-1 0.39 0.56 0.56 0.57 0.64 0.69 0.69 0.73 0.76
TopoPool-5 0.63 0.79 0.80 0.80 0.82 0.85 0.86 0.87 0.86
TopoPool-10 0.74 0.85 0.85 0.86 0.86 0.87 0.89 0.89 0.88
TopoPool-15 0.78 0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90
TopoPool-20 0.79 0.88 0.88 0.88 0.88 0.89 0.90 0.90 0.89
ICP 0.55

Table 6.1: Mean accuracy obtained on the SHREC 2014 dataset.

word function are in terms of topology –and thus the richer the correspond-
ing persistence diagrams are–.



Chapter 7

Perspectives

In this thesis, we have mainly dealt with using and studying the conver-
gence of random walks on random geometric graphs to diffusion processes.
In this context, we first designed a new soft clustering algorithm for the
mode seeking framework using such random walks and we provided a way
to bound the 2-Wasserstein distance between the invariant measure of ran-
dom walks on random geometric graphs and the invariant measure of the
limiting diffusion process. Yet, there are still many questions left unan-
swered, either linked to the algorithm we have proposed or regarding the
converge of random walks itself.

Soft-clustering algorithm. There are two main issues regarding our soft
clustering algorithm. The first one is related to the choice of the tempera-
ture parameter β. While we have shown that the evolution of the fuzziness
of the clustering through the clustering entropy can give some intuition re-
garding interesting values of β, it is not clear whether this approach would
be efficient for more complicated datasets. Finding a way to automatically
select β would prove extremely useful. The second shortcoming of our al-
gorithm is linked to the construction of the cluster cores: our definition is
rather ad hoc and it would be interesting to find a more canonical one.

Pointwise convergence of the invariant measure of random walks
on random geometric graphs. In this thesis, we have obtained bounds
in terms of Wasserstein distance for the convergence of the invariant mea-
sures of random walks on random geometric graphs to the invariant mea-
sures of diffusion processes. However, this result is still far from the point-
wise convergence that would be required to prove we can compute a density
estimator from the invariant measures of random walks on random geo-
metric graphs. As highlighted by [44], weak convergence or 2-Wasserstein
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distance can be turned into pointwise convergence as long as the invariant
measure is sufficiently regular. This sounds reasonable as the structure of
random geometric graphs itself is rather regular. Yet, it is unclear how such
a result could be obtained.

Stochastic homogenization. Among the multiple open questions re-
garding the convergence of random walks on random geometric graphs,
finding the minimal assumptions required for this convergence to hold is
of first importance. As we have seen multiple times in this thesis, for the
convergence to hold, the graph must be built in a certain way. Theorem 11

requires the window size h(n) to satisfy hn → 0 and nhd+2
n

logn
→ 0. But, if

we consider the convergence of the invariant measures on an ε-graph, with

ε = hn, it is sufficient that hn → 0 and nhdn
logn
→ 0 for the invariant measure

to converge. Similarly, while most results regarding the convergence of the
spectrum of graph Laplacians also requires the stronger assumption on the
window size, it has been shown in [38] the weaker assumption was sufficient
for this convergence to hold. Hence, one may wonder whether our results as
well as other standard results regarding the convergence of random walks
on random geometric graphs hold under the weaker assumption on the win-
dow size. In order to answer this question, it may be interesting to look
into other approaches used to study random walks in random environments
in general. For instance, results of stochastic homogenization [40] are of
particular interest.

Stein’s method and spectral convergence. It would also be inter-
esting to see if Stein’s method could be used to provide other results for
the convergence of random walks to diffusion processes. For instance, let
us consider the unidimensional Ornstein-Uhlenbeck semigroup (Pt)t≥0 and
let Lγ be its infinitesimal generator. Let Lν be the generator of a Markov
chain with invariant measure ν and let ψ be the eigenvector corresponding
to the first non-zero eigenvalue of Lν . The approach Chapter 5 relies on
the fact that, for any test function φ, Ptφ converges, as t goes to infinity,
to
∫
φdγ. Now, let us recall that the first non-zero eigenvalue of Lγ is 1

and the corresponding eigenfunction is the identity. For any φ such that∫
φdγ = 0 and any x ∈ R, etPtφ(x) converges, as t goes to infinity, to

x(
∫
φydµ(y)). One may wonder whether it is possible to use this property

to derive an interpolation scheme between ψ and x and obtain a bound on
the distance between these two functions. More generally, we could wonder
whether an approach similar to Stein’s method could be used to prove the
convergence of the spectra of a family of Markov chains to the spectrum of
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a diffusion process. For random walks on random geometric graphs, such
a result may be used to obtain new bounds in the spectral convergence of
the graph Laplacian.
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Résumé : Dans cette thèse, on s'intéresse à des algorithmes d'analyse de données utilisant des

marches aléatoires sur des graphes de voisinage, ou graphes géométriques aléatoires, construits à

partir des données. On sait que les marches aléatoires sur ces graphes sont des approximations

d'objets continus appelés processus de di�usion.

Dans un premier temps, nous utilisons ce résultat pour proposer un nouvel algorithme de partition-

nement de données �ou de type recherche de modes. Dans cet algorithme, on dé�nit les paquets

en utilisant les propriétés d'un certain processus de di�usion que l'on approche par une marche

aléatoire sur un graphe de voisinage. Après avoir prouvé la convergence de notre algorithme, nous

étudions ses performances empiriques sur plusieurs jeux de données.

Nous nous intéressons ensuite à la convergence des mesures stationnaires des marches aléatoires

sur des graphes géométriques aléatoires vers la mesure stationnaire du processus de di�usion

limite. En utilisant une approche basée sur la méthode de Stein, nous arrivons à quanti�er cette

convergence. Notre résultat s'applique en fait dans un cadre plus général que les marches aléatoires

sur les graphes de voisinage et nous l'utilisons pour prouver d'autres résultats : par exemple, nous

arrivons à obtenir des vitesses de convergence pour le théorème central limite.

Dans la dernière partie de cette thèse, nous utilisons un concept de topologie algébrique appelé

homologie persistante a�n d'améliorer l'étape de "pooling" dans l'approche �sac-de-mots" pour la

reconnaissance de formes 3D.
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Abstract: In this thesis, we study data analysis algorithms using random walks on neighborhood

graphs, or random geometric graphs. It is known random walks on such graphs approximate

continuous objects called di�usion processes.

In the �rst part of this thesis, we use this approximation result to propose a new soft clustering

algorithm based on the mode seeking framework. For our algorithm, we want to de�ne clusters

using the properties of a di�usion process. Since we do not have access to this continuous process,

our algorithm uses a random walk on a random geometric graph instead. After proving the

consistency of our algorithm, we evaluate its e�ciency on both real and synthetic data.

We then deal tackle the issue of the convergence of invariant measures of random walks on ran-

dom geometric graphs. As these random walks converge to a di�usion process, we can expect

their invariant measures to converge to the invariant measure of this di�usion process. Using an

approach based on Stein's method, we manage to obtain quantitfy this convergence. Moreover,

the method we use is more general and can be used to obtain other results such as convergence

rates for the Central Limit Theorem.

In the last part of this thesis, we use the concept of persistent homology, a concept of algebraic

topology, to improve the pooling step of the bag-of-words approach for 3D shapes.
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