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Informatique

Par:

MOUSSAOUI Adel

Dirigé par: Pr. AIT AOUDIA Samy

Geometric Constraint Solver

Soutenue le 24 novembre 2016 devant le jury:

M. BALLA Amar Prof. ESI, Alger President

M. HADDADOU Hamid MCA ESI, Alger Examinateur

M. DJEDI Noureddine Prof. Université de Biskra Examinateur
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Abstract
Doctor of science

Geometric Constraint Solver

by Adel MOUSSAOUI

A geometric constraint system consists of a finite set of geometric elements, such as

points, lines, and circles, along with relationships of different types such as distance,

angle, incidence and parallelism. This problem is central to many applications, such

as computer-aided design, molecular modelling and recently localization in wireless

sensor networks. Solving a geometric constraint system consists of finding real co-

ordinates of geometric elements in the Euclidean space. In 2-dimensional geometric

constraint solving, graph-based techniques are a dominant approach, particularly

in the computer-aided design context. To speed up the resolution process, these

methods transform the geometric problem into a graph, which is decomposed into

small subgraphs. Each one is solved, separately, and the final solution is obtained

by recomposing the solved subgraphs. However, most of the previous research on

graph-based approaches has only focused on the decomposition without any atten-

tion on what will be decomposed: the geometric constraint graph. Major proposed

algorithms are discussed or compared theoretically, without presenting any tests on

graphs instances with different structural properties, representing several cases of

difficulties. Why? because as far as we know, there is no known algorithm for the

creation of non-decomposable graphs or graphs with interesting structural prop-

erties that best highlight the efficiency of any algorithm. Our contribution is the

design of a simple, but efficient random 2D geometric constraint graph generator.

It can be used to make benchmarks for consistent tests, or to observe the behaviour

of geometric constraints solving algorithms. It produces problem instances with

various sizes and structural properties, covering different cases of complexity. Our

design is based on the problem classification reported in the literature. We proved

that our proposed generator is complete, customizable, simple and efficient. It has

been validated experimentally and some of its properties have been theoretically

proved.[1]



Résumé

Docteur ès sciences

Solveur de systèmes de contraintes géometriques

par Adel MOUSSAOUI

Un système de contraintes géométriques est constitué d’un ensemble fini d’éléments

géométriques (points, lignes, cercles ...) et de relations géométriques tels que la

distance, le parallélisme, l’angle, l’incidence, etc. Ce problème est central dans de

nombreuses applications, en particulier la CAO. Résoudre un système de contraintes

géométriques consiste à trouver des coordonnées réelles des éléments géométriques

dans l’espace Euclidien de telle sorte que toutes les contraintes du système soient

satisfaites. Dans l’espace 2D, les approches basées graphes sont dominantes. Afin

d’accélérer la résolution, ces méthodes transforment le système de contraintes en

un graphe qui sera ensuite analysé puis décomposé en petits sous-graphes. Chaque

sous-graphe est résolu, séparément, la solution finale est obtenue en recomposant les

sous-graphes résolus. Cependant, la plupart des algorithmes proposés sont analysés

ou comparés théoriquement sans présenter des tests sur des cas de graphes de con-

traintes avec différentes propriétés structurales, représentant plusieurs cas de diffi-

cultés. Cela est dû à l’absence de méthodes connues pour la création de graphes

de contraintes non décomposables ou ayant des propriétés structurelles qui illus-

trent mieux l’efficacité des algorithmes. Notre contribution est la conception d’un

générateur aléatoire de graphe de contraintes qui est simple et efficace. Il peut

être utilisé pour des analyses de performances, permettant des tests cohérents,

ou bien pour observer le comportement des solveurs de systèmes de contraintes

géométriques. Notre générateur produit des instances de problèmes avec différentes

tailles et propriétés structurelles. Notre conception est basée sur la classification des

problèmes rapportés dans la littérature. Nous avons prouvé que notre générateur

est complet, paramétrable, simple et efficace. Il a été validé expérimentalement et

certaines de ses propriétés ont été théoriquement prouvées.
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1.1 Preface

A geometric constraint system (GCS) consists of a finite set of geometric el-

ements along with relationships of different types called constraints. In plane

geometry (2D space), we can cite for example, points, lines, and circles, con-

strained with distance, angle, incidence, and parallelism. In solid geometry

(3D space), geometric elements may be points, lines, planes, cylinders, and

spheres. This problem is central to many applications, such as computer-aided

design (CAD) [2], molecular modeling, localization in wireless sensor networks

[3], dynamic geometry [4] and many others. Solving a GCS consists of plac-

ing the geometric elements in the Euclidean space, in such a way that the

constraints are satisfied. Assigning coordinates to the geometric elements of

1



Chapter 1. Introduction 2

a GCS that satisfies the constraints was called by Hendrickson a realization

problem [5], Saxe [6] has shown it to be NP-hard. Many solvers have been pro-

posed in the literature: graph-based, symbolic, numerical, and rule-oriented.

For furthers details, please see the survey of Bettig and Hoffmann[7] and Jer-

mann et al.[8]. If a GCS is incomplete, i.e., there are not enough constraints

between geometric elements, then it will be called under-constrained. If the

specified constraints are conflicting, i.e., there are too many constraints de-

fined between geometric elements, it will be called over-constrained. A GCS

is called well-constrained, if it has a finite number of solutions. We formally

define those notions in chapter 2.

In this Thesis, we restrict ourselves to 2D geometric constraint systems in the

generic sense; we focus only on the solvability of the constraint graph and

ignore the numerical values of the geometric constraint. Particularly, we fo-

cus on graph-based methods, developed in Computer-Aided Design context,

such as those presented by Ait-Aoudia and Foufou[9], Ait-Aoudia et al.[10],

Fudos and Hoffmann[11], Hoffman et al.[12], Latham and Middleditch[13],

Owen[14]. Many such solvers transform the GCS into a graph. By applying

some decomposition techniques on the constraint graph, they isolate under,

over, and well-constrained parts. The well-constrained part is then analyzed

by a decomposition method to find the small, solvable subgraphs. The final

solution is produced by merging the solved subgraphs in respect to an or-

der of resolution generated in the decomposition phase. This is referred to

as Decomposition/Recomposition plan (DR-Plan) (Hoffman et al. [15]). The

primary aim of this decomposition is to speed up the resolution process by

limiting the use of the direct algebraic methods to subsystems that are as small

as possible. In [15], Hoffman et al. classify DR-planners into two main cat-

egories: SR-Planners (constraint shape recognition), and MM-planners (gen-

eralized maximum matching). Examples of SR-Planners are given in Joan-

Arinyo et al. [16], Fudos and Hoffmann [11] and Owen [14]. These solvers
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are not complete, i.e., they do not solve every well-constrained graphs, but

only a subclass of geometric configurations. These methods require that the

constraint graph is biconnected [16], and the smallest solvable subgraphs are

triangles [15]. Those algorithms can be theoretically extended to handle other

types of shapes than triangles by giving a particular recognition algorithm to

each new kind of shape. We note that there is an infinite collection of shapes

as reported by Joan-Arinyo et al. in [17]. As a result, SR-planners cannot

be complete. The second class is referred to as MM-planner (see for example

Ait-Aoudia et al. [10], Hoffman et al.[12], and Ait-Aoudia and Foufou[9]). In

such type of planner, there is no restriction on the domain of geometric con-

straint configurations, and the smallest subgraph can be any non-reducible

well-constrained graph. These categories use a Maximum Matching or a flow

based algorithm to detect small, solvable subgraphs and their order of reso-

lution. Those methods are complete, i.e., any well-constrained graph can be

decomposed, solved and recomposed.

The decomposition of the 2D geometric constraint graph is the goal of many

geometric constraints solver, it speeds up the resolution process and makes

CAD software more interactive. The majority of geometric constraint solver

(also called planners) proposed in the literature discuses some specific prop-

erties of the constraints graphs: the size of the largest subgraph, the number

of subgraphs, the class of the graph (Solvable by SR or MM-planners). How-

ever, there is no known datasets or tools that can be used for analyzing the

performances of graph-based solvers. This is due to many difficulties, notably,

until now, no known algorithm or method can generate graphs of a particular

class, with the desirable properties presented above. Another problem is the

construction of the non-decomposable well-constrained graph. This category

of graphs is tough to be manually constructed. Building a non-decomposable

graph of ten nodes is a challenging task. The subject of our research is to

provide some answers to those questions.
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(a) (b)

Figure 1.1: Two well-constrained graphs: (a) solvable by SR-Planners
and (b) solvable only by MM-Planners

1.2 Objectives and contributions

Most research done in 2D geometric constraint solving is limited to a theo-

retical discussion and analysis. Algorithms are always tested and compared

using some well-chosen examples. This limitation is due to the absence of any

standard dataset that represents geometric constraints problems with different

properties. As far as we know, there is no known method for the automatic

generation of two-dimensional GCS instances with representative properties.

This is due to many difficulties that will be answered in this thesis. Our re-

search goal is the design of a generator of 2D geometric constraint graphs,

a tool that can be used for the creation of desirable synthetic scenarios, i.e.,

generation of many situations of difficulties that can be used for analyzing

the performances of geometric constraint solvers. This tool can generate 2D

geometric constraint graph with desired structural properties, such as the size

of the largest subgraph, the number of subgraphs and the class of the graph

(Solvable by SR or MM-planners). We focus on generating two-dimensional

well-constrained geometric constraint graphs, where edges represent distance

constraint, and for which the following Laman condition [18] holds:

In 2D space, a geometric constraint graph G = (V , E) where |V | = n(n > 1)

and E = m is structurally well-constrained if and only if m = 2n − 3 and

m′ ≤ 2n′ − 3 for any induced subgraph G′ = (V ′, E ′), where |V ′| = n′(n′ > 1)

and |E ′| = m′.
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This condition gives the necessary condition of generic solvability for any

2D GCS. This is very significant for making consistent tests or observing

algorithm behavior on graphs with various sizes and structural properties,

covering different situations of difficulties and sizes. The design of this tool

is based on the classification of different solvers proposed in the literature,

such as those presented in [15]. The proposed generator verify the following

properties:

1. Completeness: it can generate any possible geometric configuration.

i.e., the generator covers all the domain of 2D geometric constraint prob-

lems.

2. Customizable: it can generate some specific configurations, this is

done by parameterizing the generator for producing graphs that are

solvable by either SR-Planners or only by MM-Planners. Moreover,

it can generate a specific domain of a 2D GCS or a general one. By

specifying what we called a degree of the decomposability, we can build

a graph that has a low or a high number of solvable subgraphs. We

can also specify the average size of the smallest subgraph. Those two

parameters represent our adopted metric of solvability.

3. Simplicity and efficiency: our generator is easily understood; it can

be straightforward implemented an it is based on a verified theory.

As far as we know, no such tool was proposed before. Henneberg [19] proposed

a construction method for use by engineers and architects in the building of

large statically rigid frameworks from smaller ones. We have introduced the

relation between the Henneberg construction and the decomposability of the

2D geometric constraint graph. To the best of our knowledge, for the first

time the following contributions have been successfully done:
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1. There is no known algorithm for the creation of large non-decomposable

well-constrained graphs. This type of graphs is tough to be manually

constructed: building a non-decomposable graph of ten nodes is a chal-

lenging task. This category of graphs was well discussed in the constraint

CAD literature. Our proposed generator is the first tool that can easily

generate this type of graphs.

2. With the proposed generator, it is very easy to create a 2D geometric

constraint graphs with respect to the classification and properties pro-

posed by the research communities in this area, especially, graphs that

belong to SR-planner or MM-planner domain (see Hoffman et al. [12]

for more detail). i.e., with our generator, it is very easy to create graphs

that belong to a particular domain of GCS.

3. Performance analysis of 2D geometric constraints solver can be done in

an easy way with our generator. Two metrics can parametrize this tool:

the size of the largest subgraph as proposed in [15] by Hoffman et al.

and a new metric that we have introduced: the degree of decomposabil-

ity. Those two metrics represent the essential structural properties of

constraint graphs that are in relation with the design of many solvers

proposed in the literature.

1.3 Thesis organization

The remaining of this thesis is organized as follows:

Chapter 2 presents some background on geometric constraints solving and

their importances. We briefly recall some common concepts from graph the-

ory; then we discuss the rigidity theory. We terminate this chapter by giving

some others interesting applications of the geometric constraints solving.
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Chapter 3 presents the different approaches of 2D geometric constraint solv-

ing, that arise from CAD Application: the numerical and the logic-based

methods.

In chapter 4, we show some interesting algorithms that use graph-based meth-

ods, the constructive solvers, and the general solvers.

Our contribution, the proposed generator of 2D well-constrained graphs and

some tests on their decomposability is presented in Chapter 5.

Chapter 6 summarizes the study and draws conclusions regarding the useful-

ness of the proposed 2D geometric constraint generator.
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This chapter provides the necessary background for the thesis. We start by

some important definitions, and we recall some concepts from graph theory.

We highlight the importance of geometric constraint solving in CAD. We

study the rigidity theory, which is in the center of 2D graph based solvers. We

terminate with some important applications of geometric constraints solving.

2.1 Geometric constraints solving: problem

definitions

Definition 2.1. A constraint is the desired relationship between several un-

knowns (or variables), each takes a value in a given domain. Thus, a constraint

restricts the values that variables can take.

Definition 2.2. A geometric constraint is a relationship between two geo-

metric objects or entities. We can cite, for example, the distance between two

points, the angle between two lines, coincidence between a point and a line,

or the tangency between circles, etc.

Definition 2.3. The degree of freedom (DOF) of a geometric entity is the

number of independent coordinates used to represent it. It is equal to two

for points and lines in 2D. The number of DOFs of a geometric constraint is

the number of independent equations needed to represent it. In 2D geometry,

a constraint cancels one degree of freedom, and the geometric elements have

different degrees of freedom. A point has two DOFs that corresponds to

the translation along the two directions. A line also has two DOFs, one

for translation and another for rotation. A circle with fixed radius has two

translational DOFs. Any rigid body in the plane, like a triangle, except a

single point or a single line, has three DOFs in the plane.
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Figure 2.1: A well-constrained GCS in 2D.
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Figure 2.2: An over-constrained GCS in 2D.
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Figure 2.3: An under-constrained GCS in 2D.

Definition 2.4. A geometric constraint system (GCS) is given by a set of

geometric elements, along with required relationships, called the constraints.

Definition 2.5. A geometric constraint system S is well-constrained if it has a

finite number of solutions. Figure 2.1 shows an example of a well-constrained

problem in 2D space.

Definition 2.6. A geometric constraint system S is over-constrained if it has

no solution. Figure 2.2 shows an example of an over-constrained problem in

2D space.

Definition 2.7. A constraint system S is under-constrained if it has an infinite

number of solutions. See figure 2.3 for an example of an under-constrained

problem in 2D space.
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Figure 2.4: A piston-crankshaft mechanism.

Figure 2.5: Geometric constraint system of the piston-crankshaft mech-
anism

2.2 Modelling a GCS by a system of equations

A GCS can be translated into a system of non-linear algebraic equations,

which can be solved using iterative methods. Figure 2.5 presents a piston-

crankshaft mechanism taken from [2], its corresponding 2D GCS is given in

figure 2.4. This problem comprises five points pi, 1 ≤ i ≤ 5, and a line l1. Its

corresponding system of equations is well-constrained. The set of geometric
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elements consists only of lines and points. Table 2.1 gives the set of geometric

constraints and their values.

A distance constraint d between two points pi(xpi , ypi) and pj(xpj , ypj) in 2D

is written as:

(xpj − xpi)2 + (ypj − ypi)2 = d2ij

For a line l1, defined by the triplet : (r1, n1x , n1y), where r1 is Euclidean signed

distance of the origin from the line, (n1x , n1y) is a normal vector of the line,

normalized, so it holds: n2
1x + n2

1y = 1

If d is a signed distance between a line l1 and a point p1(x1, y1), then the

corresponding equation is defined by:

(x1, y1).(n1x , n1y) = r1 + d, i.e., x1n1x + y1n1y = r1 + d

We can write the algebraic equations of the piston-crankshaft problem in the

manner shown in the formula 2.1. This system of equations can be solved

using any numerical method similar to those presented next in section 3.1.

Pair of geometric elements Type of constraints Value of the constraint

(p1, p2) dpp d1
(p2, p3) dpp d2
(p3, p4) dpp d3
(p4, p5) dpp d4
(p5, p1) dpp d5
(l1, p1) dpl 0
(l1, p2) dpl 0
(l1, p3) dpl 0
(l1, p5) dpl 0

Table 2.1: A set of geometric constraints for the piston-crankshaft mech-
anism.
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

(xp2 − xp1)2 + (yp2 − yp1)2 = d21

(xp3 − xp2)2 + (yp3 − yp2)2 = d22

(xp4 − xp3)2 + (yp4 − yp3)2 = d23

(xp5 − xp4)2 + (yp5 − yp4)2 = d24

(xp5 − xp1)2 + (yp5 − yp1)2 = d25

xp1n1x + yp1n1y = r1

xp2n1x + yp2n1y = r1

xp3n1x + yp3n1y = r1

xp4n1x + yp4n1y = r1

(2.1)

2.3 Graph theory

Graph theory provides a powerful concept for the structural analysis of geo-

metric constraint problems. Many of graph theory concepts are defined dif-

ferently by different authors. In this section, we briefly recall some standard

concepts from graph theory, for more information on treatment of these con-

cepts, we refer the reader to Thulasiraman and Swamy [20], from where the

following definitions are adapted.

Graph: A graph G = (V,E) consists of two sets: a finite set V of elements

called vertices and a finite set E of elements called edges. Each edge is identi-

fied with a pair of vertices. If the edges of a graph G are identified with ordered

pairs of vertices, then G is called a directed or an oriented graph. Otherwise,

G is called an undirected. We are concerned with undirected graphs. We use

the symbols v1, v2, v3, ...to represent the vertices and the symbols e1, e2, e3, ...

to represent the edges of a graph.
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Incidence, adjacency and degree: An edge is said to be incident on its

end vertices. Two vertices are adjacent if they are the end vertices of some

edge. If two edges have a common end vertex, then these edges are said to be

adjacent. The degree (valency) of a node ni of a graph, denoted by deg(ni),

is the number of members incident with that node.

Cardinality and size: The number of vertices, the cardinality of V , is

called the size of the graph and denoted by |V |. We usually use n to denote

the size of G. The number of edges, the cardinality of E, is denoted by |E|.

We usually use m to denote it.

Subgraph: Consider a graph G = (V,E). G′ = (V ′, E ′) is a subgraph of

G if V ′ and E ′ are, respectively, subsets of V and E such that an edge (vi, vj)

is in E ′ only if vi and vj are in V ′.

Path and connectivity: A path is a sequence of vertices v1, v2, ..., vn

such that (vi, vi+1) is an edge for 1 ≤ i ≤ n. A path is simple if all vertices

on the path are distinct. A graph G = (V,E) is connected if there exists a

path between every pair of vertices in G, otherwise, G is disconnected. The

maximal connected subgraphs of a disconnected graph G are the connected

components of G.

Walk, trail and circuit: A walk in a graph G = (V,E) is a finite sequence

of vertices v0, v1, v2, ..., vk, such that (vi−1, vi) is an edge in the graph G. A

walk is open if its end vertices are distinct; otherwise, it is closed. A walk is a

trail if all its edges are distinct. A trail is open if its end vertices are distinct;

otherwise, it is closed. An open trail is a path if all its vertices are distinct.

A closed trail is a circuit if all its vertices except the end vertices are distinct.
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Acyclic graph and spanning trees: A graph is said to be acyclic if it

has no circuit. A tree is a connected acyclic graph. A tree of a graph G is a

connected acyclic subgraph of G. A spanning tree of a graph G is a tree of

G having all the vertices of G. A connected subgraph of a tree T is called a

subtree of T . The edges of a spanning tree T are called the branches of T ,

and those which are not in T are called chords.

Planar graph: A graph is planar if it can be drawn in a plane without

graph edges crossing.

Bipartite graph: A graph G = (V,E) is called bipartite if V can be

partitioned into two sets X and Y such that each edge in E has one endpoint

in X and one endpoint in Y . X and Y are then called the vertex classes of

G. If the partitioning of the vertices into vertex classes is explicit, we use the

notation G = (X, Y,E).

Graph matching: Given a graph G = (V,E), a matching M in G is a set

of pairwise non-adjacent edges; that is, no two edges share a common vertex.

A vertex is matched (or saturated) if it is an endpoint of one of the edges in

the matching. Otherwise, the vertex is unmatched. A matching M of a graph

G is maximal if every edge in G has a non-empty intersection with at least

one edge in M .

Maximum and perfect matching: A maximum matching is a matching

that contains the largest possible number of edges. A perfect matching is a

matching which matches all vertices of the graph. That is, every vertex of the

graph is incident to exactly one edge of the matching.
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Alternating and augmenting path: An alternating path is a path in

which the edges belong alternatively to the matching and not to the matching.

An augmenting path is an alternating path that starts from and ends on free

(unmatched) vertices.

Dulmage–Mendelsohn decomposition: In graph theory, the Dulmage-

Mendelsohn decomposition is a partition of the vertices of a bipartite graph

into subsets, with the property that two adjacent vertices belong to the same

subset if and only if they are paired with each other in a perfect matching of

the graph. It is named after A. L. Dulmage and Nathan Mendelsohn, who

published it in 1958 [21].

2.4 The importance of GCS decomposition in

CAD

Generally, in most CAD software, a 2D geometry is considered the starting-

point for most 3D models. First, the designer sketches a 2D draft, then adds

some relation between geometric elements. The geometric constraint solver

transforms the problem into a geometric constraint graph (GCG). After the

solving process, that can be done in real-time, geometric objects are adjusted

to conform to the specified constraint. This offers the advantage of freeing

the user from the tedious task of the exact location of the different geometric

elements. The 2D sketch is extruded to obtain the final 3D model. Geometric

models will be easily updated in the future, by simply modifying the values of

the different constraints. Because the underlying system of equations is non-

linear, and most solving methods are O(n3) or worse, the resolution speed

depends on the size of the largest system of equations. Decomposing the

GCS, which is the central role of the planner, will speed up the resolution
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process and make the CAD software more interactive. Thus, the productivity

of the designer will be increased.

To illustrate the importance of planners, we use the example of figure 2.6 taken

from [22]. The problem consists of 13 circles, eight lines, which are connected

by 19 tangency constraints: circle-circle and circle-line, four constraints of

angles between lines and 16 distance constraints. Each geometric element has

two unknown: xi and yi. Circles are defined by the two coordinates of their

center; a line can also be defined by two values: xi, the slope of the line and

yi its distance from the origin. The corresponding constraint graph is given in

figure 2.7, nodes are numbered from 1 to 21, and each constraint is represented

by an edge of the graph. We have decomposed its corresponding graph using

Figure 2.6: A 2D constrained model.
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Figure 2.7: The corresponding constraints graph.
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Figure 2.8: The extruded model.

Figure 2.9: The final 3D model.

the method presented in [10]. The result gives 20 systems of equations, the

largest of which contains eight unknowns. To be solved, three unknown must

be fixed: x11, y11 and x8. Geometrically, this correspond to putting the center

of the circle C11 in the origin (0, 0) and fixing the slope of the line D8 to 1,

i.e., its normal vector will be (0, 1). The set of unknowns for each equation

and the order in which they will be solved is given by the following ordered

set:

{{x11}, {y11}, {x8}, {y8}, {y12, x12}, {x10, y10}, {x1, y1}, {x3, y3}, {x5, y5}, {y7, x7},

{x9, y9}, {x2, y2}, {y4, x4}, {x6, y6},{x14, y14, x21, y21, y16, x16, y15, x15},{x14, y14, x21, y21, y16, x16, y15, x15},{x14, y14, x21, y21, y16, x16, y15, x15},{y13, x13},

{x19, y19}, {y20, x20}, {y17, x17}, {y18, x18}, }
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Without the decomposition process, we have to solve a quadratic system of 42

unknowns. The time required for finding a solution will significantly decrease

by decomposing the system into smaller subsystems, and consequently, the

design process becomes more interactive.

Figure 2.8 and 2.9 show how the 3D model is constructed by extrusion. In

chapter 4, we present some interesting results on geometric constraint graph

decomposition.

2.5 NP-Hardness of finding real solution in

2D

Assigning coordinates to the geometric elements of a GCS that satisfies the

constraints is called by Hendrickson a realization problem [5]. Saxe [6] has

shown it to be NP-hard, he says in the conclusion of his paper: ”you are

trying to solve the wrong problem.” Rather than looking for an efficient worst-

case algorithm, it would be more promising to seek an algorithm that gives

good performance in cases which arise in practice. Fudos and Hoffmann [11]

have reduced one of the first problems that was proven to be NP-complete,

the SAT problem, to the geometric real solution problem. They also proved

the NP-Hardness for a sub-class of ruler and compass constructible GCS.

All the following sub-problems derived by imposing any combination of these

restrictions are also proved to be NP-hard [11]: the set of geometric objects

consists only of lines and points; the set of geometric constraints consists only

of distances and angles; the domain of the value of the geometric constraints

is {0, 1, 2}; and the geometric problem is well-constrained.
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2.6 Rigidity theory and Laman theorem

In this section, we draw on the powerful results from rigidity theory and com-

binatorial theory. We show that the geometric constraint problem is well un-

derstood in two dimensions; however, only partial similar results are available

in three dimensions.

A set of rigid bars connected by hinges allowing full rotation of the inci-

dent bars is called a framework (or bar-joint framework), rigidity theory is a

branch of mathematics that studies whether a framework is rigid or not (see

[23] for more details). A framework is not rigid if you can move hinges contin-

uously, such that bar lengths are preserved, which leads to a deformation of

the framework. In this section, we show the relevant results in rigidity theory,

the combinatorial rigidity of graphs and the pebble game [5], an algorithm for

testing rigidity of frameworks. We note that most of the known results on the

rigidity of frameworks are valid only in the two-dimensional case.

Definition 2.8. A framework (G, p) is the combination of a graph G = (V,E)

and a map p : V → Rd. (G, p) is rigid if all continuous deformations compati-

ble with constraints are rigid body motions, i.e. a composition of translations

and/or rotations.

The rectangle is an example of a flexible bar and joint framework (see 2.10a).

By moving the top two vertices, the rectangle will be deformed to a parallel-

ogram, the length of diagonals is changed. Adding an extra bar (see figure

2.10b) makes this frame rigid, the distances between all pairs of seals remain

fixed. The addition of another bar in a rigid part (see 2.10c) is unnecessary

and the frame becomes over-rigid (also called stressed).
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(a) (b) (c)

Figure 2.10: Flexible, rigid and stressed framework.

For our purpose, a framework provides a natural high-level model for geometric

constraint solving in real two-dimensional space.

2.6.1 Laman condition

The following theorem, due to Laman [18], gives the necessary combinatorial

condition for generic minimal rigidity in 2D space. Laman’s theorem was the

first combinatorial characterization of generic rigid graphs in two dimensions

space.

Theorem 2.9. [18] A graph G = (V,E) is minimally rigid in IR2 if and only

if |E| = 2|V | − 3 and for every subgraph G′(E ′, V ′), |E ′| ≤ 2|V ′| − 3.

For the condition |E| = 2|V | − 3, 2 represents the DOFs of a point in 2D

space, and 3 represents the DOFs of a rigid body, two translational and one

rotational. We know that a vertex in 2D has two DOFs, a graph is rigid means

that all DOFs are removed by the constraints. Each constraint is represented

by an edge, i.e., an edge remove a single DOF. The graph has |V | vertices,

which means we have 2|V | DOFs. The graph has 2|V |−3 edges, which implies

that 2|V |− 3 DOFs are removed. The remaining 3 DOFs represent the DOFs

of the whole graph. Informally, to be rigid a graph needs at least 2n − 3

independent edges. If a subgraph G′(E ′, V ′) has more edges than necessary,

i.e., |E ′|>2|V ′| − 3, then some edges are dependant. Non-redundant edges

are independent, i.e., they remove a degree of freedom each. Hence, 2n − 3
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independent edges guarantee rigidity. Figure 2.11 gives three minimally rigid

graphs, all of them satisfy the Laman condition. Figure 2.12 gives four graphs

that are not minimally rigid, for example figure 2.12d has |E| = 2|V | − 3

but is not minimally rigid because it contains a subgraph G′(V ′, E ′) where

|E ′|>2|V ′| − 3.

(a) (b)

(c)

Figure 2.11: Examples of minimally rigid Graphs
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(a) (b)

(c)

(d)

Figure 2.12: Examples of non-minimally rigid graphs. (a) is not rigid.
(b), (c) and (d) are over-rigid, i.e., some edges are dependant

2.6.2 Rigidity testing in 2D: The pebble game

The Laman condition is a purely counting condition. Its direct use for testing

generic rigidity of graphs gives an exponential algorithm. It requires counting

the edges in every subgraph, which are in exponential number. Many poly-

nomial algorithms have been proposed for testing the rigidity of graphs. Imai

[24] and Hendrickson [5] presented an O(n2) algorithm using a network flow

approach. Jacobs and Hendrickson [25] have simplified Hendrickson’s algo-

rithm to make it more usable. A brief overview of the pebble game algorithm

[25] will be given here. Let us start by the following theorem that represents

an alternative version of Laman’s theorem.

Theorem 2.10. [25] For a graph G(V,E), the following are equivalent.
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1. The edges of G are independent in two dimensions.

2. For each edge (vi, vj) in G, the graph formed by adding three additional

edges (vi, vj) has no induced subgraph G′ in which |E ′|>2|V ′|.

In 2D space, to test the rigidity of a graph G(V,E), we have to find 2|V | − 3

independent edges. We start by a graph G′(V, U) where U is initially empty.

The idea behind Jacobs and Hendrickson algorithm is to grow a maximal set

of independent edges, one at a time. Each candidate edge e = (vi, vj) ∈ E

is quadrupled, and the resulting graph is tested using the alternative version

of Laman’s theorem. If the edge e is independent, then it will be added to

the graph U . This leads to an incremental construction of the independent

edges set U . This process is done using a pebble game [25], that starts by

associating for each vertex v ∈ G, two pebbles, each pebble represents a DOF.

Hence, we have 2n pebbles in total. We say that an edge is covered if it has a

pebble placed on either of its ends, we recall that an edge eliminates exactly

one DOF. The goal of the pebble game is to cover all the edges of the graph,

i.e., test if the edges of the graph G are well distributed in such a way that

they remove every DOF of every vertex. To test if a new edge is not redundant

in the existing set, we have to quadruple the edge and find a pebble covering

for the four new edges. Figure 2.13 shows a cover testing for a simple graph

of three edges. Figure 2.14 shows the breath first search for a free pebble,

each vertex in the graph of figure 2.14a is labelled by the minimum search

length from the starting vertex. (step 9 of Algorithm 1). Figure 2.14b shows

the pebbles rearrangement ( or swapping) after a free edge is found (step 11

of Algorithm 1). This algorithm has an O(|V ||E|) time complexity. We note

that if the pebble game detects that the graph G is not rigid, it can discover

rigid subgraphs, and if it is rigid but not minimally-rigid, redundant edges

will be returned.
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e1

e2e3

v3

V2v1

(a)
(b)

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2.13: Illustration of the pebble game with |V | = 3

Covering progression from left to right, from top to down. (a) the initial assign-
ment, 2 pebbles for each vertex. (b) the edge e1 is quadrupled and tested for
independence.(c) edge e1 is covered. (d) the first copy of e3 is covered. (e) the
second copy of e3 is covered.(f) the third copy of e3 is covered. (g) the forth copy
of e3 is added but there is no pebble in its adjacent vertices : v1 and v2, a pebble
search will be started using a depth first search from v3 . (h) a free pebble is
found in v2 it will be shifted to v1. (i) the edge e3 is covered, four pebble remain.
(j),(k),(l),(m),(n),(o) The same process will be repeated for the edge e2, when cov-
ered, three pebble remain(two in v3 and one in v2), they represent the DOFs of

the whole graph.
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Algorithm 1 Jacobs and Hendrickson algorithm: The pebble game.

Input: G(V,E): a 2D geometric constraint graph with |E| = 2|V | − 3 ;

Output: (rigid, U) . rigid: a boolean, true if G is rigid, false if not rigid;

U : the set of independent edges.

1: procedure TestRigid(G)

2:

3: for each v ∈ V do

4: Assign 2 free pebbles to v.

5: end for

6: U ← ∅

7: for each edge (vi, vj) ∈ E do

8: Quadruple (vi, vj)

9: Search for 4 free pebbles to cover quadrupled edges (vi, vj).

10: if found then

11: Swap pebbles until the 4 edges are covered.

12: U ← U ∪ {(vi, vj)}

13: if |U | = 2|V | − 3 then

14: return (true, U)

15: end if

16: end if

17: end for

18: if |U |<2|V | − 3 then

19: return (false, U)

20: end if

21: end procedure
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(a) A breath first search for a free pebble.
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3

3
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4

4

New edge

(b) Pebble rearrangement

Figure 2.14: Searching for free pebble

2.7 Generalization of Laman’s theorem to other

types of constraints

Major graph-based solvers are based on Laman’s theorem, which is valid only

for point-point distance constraint. The introduction of new types of con-

straints like the angle between lines, tangent between circles, alignment of

points, or variable-radius circles, which are widely present in CAD software,

always need some verifications and pre-processing, for each particular case,

before the application of the graph-based decomposition techniques. The

generalization of graph-based approaches to other geometric elements than

point-point distance can give good results when applied to GCS of a small or

medium size, but when the GCS grow up, it can lead to erroneous results [26].

This problem is due to the geometric theorems. This mean that some hidden

relations between geometric elements will be present without an explicit con-

straint between them. Michelucci and Foufou proposed in [26, 27] a method

called the witness configuration method that detects all kinds of dependences:
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structural dependences already detectable by graph-based methods, but also

non-structural dependences, due to known or unknown geometric theorems,

which are undetectable by graph-based methods. To illustrate this problem,

the following 2D examples are given.

• Line-line angles: If we have for example three lines l1 , l2 , and l3

and the angles (l1, l2) = α and (l2, l3) = β, then the angle between

(l1, l3) must be γ = π − α − β (see figure 2.15). If the user specifies

only two angle constraints, we can think to add the third as ”implicit”

constraint. This is not true; the GCS is not rigid because an homothetic

transformation is always possible. This problem can also happen when

n lines are constrained with n− 1 angle constraint. In conclusion, angle

cycles are only sources of hidden dependences not detectable by graph-

based solvers. A geometric angle constraint system, structurally well-

constrained graph can be over-constrained in a geometric sense. There

is no combinatorial characterization of line-line angle constraint that

immediately lead to efficient algorithms[28].






l1

l2

l3

Figure 2.15: Three lines with angle constraint

• Variable-radius circle: Fixed-radius circles can be replaced equiv-

alently by points. Tangency between circles of the known radius can

be directly transformed to a point-point distance. The circle placement

problem is reduced to positioning the center point. Hence, this case

can be easily incorporated into graph-base solvers [11]. Variable-radius
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circle is a circle with three unknowns (or DOFs): the two coordinates of

its center c(x, y) and the radius r. Those three unknowns must be de-

duced from other constraints. It is a more complicated case, examples of

works dealing only with this issue are [29, 30]. Solving this problem by

graph-based approaches requires a special handling of several particular

cases, each of them relates to the way in which the circle is connected to

other geometric elements. With numerical solvers, variable-radius circle

pose no particular problem [29].

• Point-line incidence: in 2D space, a combinatorial characterization

for well-constrained systems of point-line incidence constraints is terri-

bly difficult. An example of dependencies, taken from [26], is Pappus

theorem: if p1, p2, p3 are three distinct aligned points, and if q1, q2, q3 are

three distinct aligned points, then the three intersection points p1q2 ∩

p2q1, p1q3 ∩ p3q1, and p2q3 ∩ p3q2 are aligned as well [26](see figure 2.16).

p1

p2

p3

q1
q2

q3

Figure 2.16: Pappus Theorem

2.8 Combinatorial characterization of the 3D

case

Laman’s [18] condition is necessary and sufficient in 2D space. A false intuitive

extension of the Laman condition to 3D space can be as follows: the graph
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a

c

e

d

b

g

f

h

Figure 2.17: The double banana, a 3D counter example.

G(V,E) is minimally rigid if it has 3|V | − 6 edges and for every subgraph

G′(E ′, V ′), |E ′| ≤ 3|V ′| − 6. 3 represents the three DOF of the point in 3D

space, 6 represents four translational and two rotational DOFs of the whole

graph in 3D space. This condition is necessary but not sufficient for rigidity

in 3D. The Laman condition in 2D can not be extended to 3D. Figure 2.17,

called the double banana , is a classic well-known counter-example. The two

banana units are free to rotate around the axis through the two point a and

e, i.e., this graph is not rigid in 3D space but satisfies the Laman condition.

The generalization of Laman’s theorem to dimensions three, or higher, has

been proved to be incorrect. Until now, there is no Laman type theorem for

3-dimensional generic rigidity and there is no combinatorial characterization

for 3D geometric constraint problems; it’s an open problem.
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2.9 Other application of geometric constraints

solving

In this section, we present some other important applications of geometric con-

straints solving: Localization in Wireless Sensor Networks, molecular biology,

and dynamic geometry.

2.9.1 Localisation in Wireless Sensor Networks

In many applications for wireless sensor networks (WSN), the geographic in-

formation can be critical. The association of the location information with any

other type of information may be used by routing algorithms, meteorological

information, agricultural, military applications, etc. A WSN can be modeled

as a graph, distances between nodes are estimated using physical character-

istics of the communication networks, like signal strength. The idea of these

algorithms is to estimate the coordinates of mobile or fixed unknown nodes

based on their connectivity. Most localization methods are based on the idea

that some nodes (called anchor) know their coordinates (e.g., GPS-equipped

nodes or specified). Anchors transmit their coordinates to help other nodes

to localize themselves. When unknown nodes deduce its location, it becomes

a new anchor (see figure 2.18). Rapidly, unknown nodes can estimate their

coordinates. For more details, see for example Mao et al. [31] or Zhang et al.

[3]. Rigidity gives the theoretical base of most localization algorithms.
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Anchor
Unknown

Figure 2.18: Example of WSN topology.

2.9.2 Molecular Biology

The protein structural flexibility and dynamics is as critical for protein func-

tion as its 3D-structure [32]. There is a direct link between protein’s function

and its three-dimensional structure. Detecting the flexible and the rigid parts

of the protein can be very helpful in the study of some diseases. Nuclear mag-

netic resonance (NMR) experiments on protein can be used to determine a

subset of distances between atoms in protein’s molecules. Hence, the problem

can be translated into constraint representation of the protein, i.e., a geomet-

ric constraint graph, which will be analyzed using most rigidity theory results.

See [33], [34] and [32] for more details. The figure 2.19 is taken from [32], it

represents the rigidity analysis of a protein. It was generated using a software

called ”FIRST” developed by Sljoka [32].
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Figure 2.19: A Rigidity decomposition of a protein

Each coloured region represents a single rigid rigid body where all bonds in each
cluster are non-rotatable and can only move using trivial rigid body motions (i.e.,

translations and rotations). The connecting gray regions are flexible.

2.9.3 Dynamic Geometry

Dynamic geometry is a new way of exploring classical geometry using inter-

active computer software [35]. The computer can record the way the user

constructs and places the geometric elements; the construction will be very

quickly rebuilt if the user changes the values assigned to some parameters.

This leads to an easy understanding of the dynamic behaviour of the geomet-

ric construction when some of its distances are modified. In such software,

the user can create geometric constructions and manipulate them interactively.

Construction is composed of many geometric elements such as points, lines,

and conics whose positions have been constrained in different ways. Dynamic

geometry software have been used in high-school geometry teaching [36], with
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a focus on classical, two-dimensional Euclidean geometry. The research labo-

ratory in applied sciences, image Processing, Computer Vision and Robotics

can also use dynamic geometry in many applications such as simulation. Ge-

oGebra [37] for example is a well-known software that can be used at the

college level as well as in a research laboratory. Figure 2.20 gives a GeoGebra

software screenshot. In such systems, when the user sketches a construction,

he may require, for example, that a line must be tangent to a certain conic, the

role of the system is to make sure that this constraint is always satisfied when

the construction is updated. The computer can record how the geometry was

built by a user which allows it to quickly reconstruct the figure whenever the

user modifies the values assigned to some parameters. The user defines geo-

metric elements with some relationships between them (constraints), then he

can explore the dynamic behaviour of the remaining geometric objects when

one of them is moved. In [38], Freixas et al. apply some well-known results

from the Geometric Constraint Solving field, to unambiguously capture the

expected dynamic behaviour of a given geometric problem.

Figure 2.20: A GeoGebra screenshot.
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3.1 Numerical Solvers

Numerical solvers were one of the first methods for geometric constraint solv-

ing. The GCS is translated into a system of algebraic equations, which have

zero value when the constraints are satisfied. The resulting system of equa-

tions is solved with iterative algebraic methods, such as Newton-Raphson,

the bisection method, homotopy or others. All those methods can solve gen-

eral nonlinear systems of algebraic equations, but may require at worse O(n3)

running times. In the following, we give a brief description of some uses of

numerical solvers in geometric constraint solving. Chapter 4 presents graph

based solver where the numeric resolution will be accelerated by the decom-

position.

3.1.1 Newton-Raphson method

Newton-Raphson method is a popular and powerful iterative method for solv-

ing system of non-linear equations. In n dimension, it has the following form:

xk+1 = xk − Jf (xk)−1f(xk) (3.1)

where Jf (x) is the Jacobian matrix of f ,

{Jf (x)}ij =
∂fi(x)

∂xj
(3.2)
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To save computational time, Jf (xk) will not be inverted, but instead we solve

the linear system:

Jf (xk)sk = −f(xk) (3.3)

the next iterate that will be taken is:

xk+1 = xk + sk

After a GCS is transformed into a system of equations, three unknown coordi-

nates of two vertices of a randomly chosen edge will be fixed (that correspond

to fixing two geometric elements in the Euclidean space). The initial approx-

imative coordinates will be guessed; we can use for example the coordinates

of the geometric elements, specified by the user, in the initial sketch. The

iterating process is then started and repeated until converging to an accu-

rate solution. The linear system of the equation 3.3 is solved using the LUP

decomposition, which is faster and more accurate than Gaussian elimination

method. Another alternative is the Krylov space methods [39]. An interest

of these methods is that they work even for an irreducible system: they only

use the sparsity of the Jacobian matrix. For further details see for example

[40]. Because the computation of the Jacobian is a difficult and expensive

operation, another alternative to Newton-Raphson method is the Broyden’s

method. This method computes the Jacobian matrix only at the first iteration

(see [41] page 214 for more detail).

3.1.2 Bisection method

Newton method has the following two major drawbacks [42, 43]: In general

case, Newton’s method does not converge or converges to an unwanted solu-

tion; it requires an initial approximation of the solution that can be provided

interactively by the user. Those two problems make the use of this method
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very limited in geometric constraint solving. In [42], Ait-Aoudia et al. pro-

posed the use of the bisection method [44] to solve the non-linear system of

equations that arise from GCS. Let F (X) be a system of non-linear equations:

F (X) : fi(x1, x2, ..., xn) = 0; 1 ≤ i ≤ n; ai ≤ xi ≤ bi

where ai and bi are known bounds of the variables xi. The solving process of

the system F (X) consists of a binary search for solutions in the interval vector

(an n-dimensional rectangle called box) (X1, X2, ..., Xn) , where Xi = [ai, bi]

and xi ∈ Xi. To find all the solutions of such system, Moore and Qi proposed

in [45] a successive interval test for existence and uniqueness of a solution to

a non-linear system and for convergence of iterative methods. The searching

process is a divide-and-conquer approach, a cyclic sequence of bisections of X.

Let X(0) be the initial box where fi(X
(0)) may contain a solution of F (X) for

1 ≤ i ≤ n. Bisect X(0) in coordinate direction x1, i.e., the box X(0) is divided

in half. We have now two new boxes, each one may contain a solution. Ex-

clude any box for which 0 /∈ fi(X(0)) for some i. Bisect in coordinate x2 the

new boxes that may contain a solution. Repeat the process until an interval

is identified and an iterative method is used to find the root or no solution

exists.. The operation is recursively repeated until all the solution are found.

Figure 3.1 shows a two-dimensional illustration of the process of searching

for the root of a system of equations: f1(x1, x2) = 0 and f2(x1, x2) = 0. The

regions in between are marked ++,+−,−+ or −−, according to the signs

of f1 and f2 respectively in those regions. Bisection method is safe, always

converges, but it is slow. Newton gains in speed but may not converge [46].

To speed-up the searching process Ait-Aoudia and Mana proposed in [47] a

distributed implementation of the bisection.
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Figure 3.1: A two-dimensional illustration of the bisection method.

3.1.3 Homotopy method

The resolution by homotopy is a standard method of numerical analysis. The

use of this method for geometric constraint solving was first proposed by

Lamure and Michelucci in [48]. In 2D CAD software, the user first defines a

sketch; then the system corrects the sketched model by solving its correspond-

ing GCS. The homotopy method works in a similar manner. Let F (X) be the

system of equations to be solved. F (X) : fi(x1, x2, ..., xn) = 0; 1 ≤ i ≤ n.

Suppose that we have another system of equations: G(X) : gi(x1, x2, ..., xn) =

0; 1 ≤ i ≤ n with a known solution S = (s1, s2, ..., sn). S represents the initial

guess interactively provided by the user, i.e., the coordinate of the geometric

objects defined in the sketched model.

G(X) = F (X)− F (S)

F and G are then embedded in a homotopy:

H(t,X) = tF (X) + (1− t)G(X)

such that:

H(0, X) = G(X) and H(1, X) = F (X)

The system H is a linear interpolation between G and F . The main idea of



Chapter 3. Major Solving Approaches in Computer-Aided Design 40

resolution by homotopy is to follow the homotopy curve, starting from t = 0,

X = S. If the homotopy curve passes through a point (t,X) with t = 1,

then a solution to H(1, X) = 0, and thus to G(X) = 0 has been found.

Because a single path is followed, one solution which is closer to the specified

sketch by the user is found. A detailed study on the use of homotopy method

in geometric constraint solving can be found in [49]. We note that damped

Newton [50] can be used as an alternative to the homotopy.

3.2 Other solving Approaches

3.2.1 Degrees of Freedom Analysis Approaches

In DOF analysis approaches, the solver reduces the system’s remaining DOFs

by incrementally satisfying each constraint. An example of such solver is pro-

posed by Kramer in [51, 52]. The GCS is transformed into a graph where

vertices are labelled with the number of degrees of freedom of the represented

geometric object. Each graph edge is marked by the degrees of freedom can-

celled by the designated constraints. For example, if the incident vertices are

points in 2D, a distance constraint cancels 1 degree of freedom. The algorithm

analyses the graph to cancel all possible DOFs. Hsu and Brüderlin proposed

in [53] a hybrid method that starts by applying geometric constructions what-

ever possible. Iterative methods are used when the geometric construction is

not possible.

3.2.2 Propagation Approaches

In Propagation approaches, the GCS is transformed into a set of algebraic

equations, which are represented by a symmetric graph, vertices are variables
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and equations. Edges are labelled with the occurrences of the variables in

the equations. The algorithm is an orientation of the edges in the graph in

such a way that each equation vertex is a sink for all the edges incident on

it except one. If the process succeeds, then there is a general incremental

solution. Freeman-Benson et al. presents an incremental constraint solver,

called DeltaBlue, that maintains a solution to the constraint hierarchy as con-

straints are added and removed. The constraint hierarchy is created by sepa-

rating constraints into levels according to their relative importance. Veltkamp

and Arbab presented in [55] an incremental approach to geometric constraint

satisfaction that categorises solution into what they called quanta. In [56],

Borning et al. study the inequality constraints that are useful for specifying

various aspects of user interfaces.

3.2.3 Logic-Based Approaches

In such solving methods, the GCS is transformed into a set of geometric asser-

tions and axioms. Aldefeld[57], Brüderlin[58], and Yamaguchi and Kimura[59],

use first order logic to derive geometric information applying a set of ax-

ioms from Hilbert’s geometry. Sunde[60] proposed a system architecture that

combines a production mechanism and a verification mechanism. Verroust

et al.[61] proposed an approach based on the use of an expert system to uncou-

ple constraint equations, and to find a possible sequence for the computation

of the geometric elements. Joan-Arinyo and Soto [62] formalize the solver as

a rewrite system whose rewriting rules are geometric construction steps.

3.2.4 Symbolic Approaches

A GCS is transformed into a nonlinear system of equations, which will be

solved symbolically, using for example Buchberger algorithm. Buchberger [63]
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uses the Gröbner bases to triangularize the system, Buchanan and de Pen-

nington[64] report a solver built on top of the Buchberger’s algorithm.

This is a rewriting algorithm, which considers each equation as a rule: the most

significant monomial is rewritten in contrast to the rest of the polynomial. For

example, x2 − 2 = 0 gives the rule: x2 → 2 where → means ”is rewritten to”.

Buchberger algorithm ensures that the system of rules is confluent, i.e., the

result of the expression rewriting does not depend on the order in which the

rules are applied.

For this, the algorithm considers the critical pairs: these are the simplest

monomials that can be rewritten at least two ways. For example, if a monomial

gives xy (non-reducible) or 2 according to the first applied rule, then, the

rule xy → 2 is added to the set of the rules. With two rules: x2 → 2

and xy → 2, the simplest monomial that can be rewritten in two ways is:

x2 → y, is rewritten by either 2x or 2y. We deduce 2x− 2y = 0 and therefore

the rule x → y or y → x, depending on the order that we have fixed on

the variables and monomials. The most common orders are: lexicographical

order, reverse lexicographical, or the total order then lexicographical, or the

total lexicographical then reverse lexicographical. Basically, if the monomial

xd = xd11 x
d2
2 ...x

dn
n is less than xe = xe11 x

e2
2 ...x

en
n , then xcxd must also be less

than xcxe. The theory shows that the algorithm terminates after a finite

number of steps. However, the number of steps can be exponential or doubly

exponential. When the algorithm terminates, the rule system is confluent,

and the two terms A and B are equal if and only if the result of rewriting

A− B is the identically zero polynomial, 0, or if the introduction of the rule

(A − B)α − 1 = 0 (where α is a new variable) causes a contradiction: the

insertion of the rule 1→ 0.

In 2D space, for example, each equation involves the coordinates xi, yi and

xj, yj of two vertices i and j. The idea is to pick one given equations and
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solve for either of the variables, x or y. The result in the first step will be

substituted into the other equation. This process will be repeated until a single

equation with one variable which can be solved as usual. A lexicographical or

inverse-lexicographical order must be used. In the end, we deal with a simple

equation to solve.

Kondo [65] and Borning [66] report a symbolic algebraic method. The main

drawback of such solvers is the computational complexity which is exponential;

this leads to their usefulness in constraint-based CAD applications.

3.3 Conclusion

Logic based solvers, symbolic methods or propagation methods are exponen-

tials (or doubly exponentials) in time, their use is declined in the recent years.

Numerical solvers are O(n3) or worse; any acceleration is welcome. The next

chapter is dedicated to the graph based solvers, where the GCS problem is de-

composed into smaller sub-problems. The goal is to limit the use of numerical

solvers to the smallest possible system of equations.
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4.1 Introduction

Among the major 2D geometric constraint solving approaches are those based

on the structural analysis of the graph representation of the GCS. Graph-

based solvers have become the dominant class of geometric constraint solvers

[7]. The geometric constraint system is transformed into a graph; the vertices

represent the geometric elements, and the edges represent the specified con-

straints between them. The solver analyses the structure of the graph and

generates a plan of resolution (also called a DR-plan).

In this work, we focus on 2D graph-based solvers, developed in Computer-

Aided Design context. Many such solvers transform the GCS into a graph.

By applying some decomposition techniques on the constraint graph, they

isolate under, over, and well-constrained parts. The well-constrained part is

then analyzed by a decomposition technique to find small, solvable subgraphs.

The final solution is produced by merging the solved subgraphs in respect to

an order of resolution produced in the decomposition phase. This is referred

to as Decomposition/Recomposition plan (DR-Plan) [15]. The primary aim

of this decomposition is to speed up the resolution process by limiting the

use of direct algebraic resolution to subsystems that are as small as possible

(typically ruler and compass solvable problems).

2D graph-based solvers are classified by Hoffman et al. [15] in two main classes:

constructive solvers (called also SR-Planners, constraint shape recognition),

and general solvers (MM-planners generalized maximum matching). Those

two types of solvers differ especially in the domain of geometric constraints

problems. Examples of constructive solvers are those proposed by Joan-Arinyo

et al. [16], Fudos and Hoffmann [11], Hoffmann and Vermeer [67], Ait-Aoudia
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et al. [68], Bouma et al.[69] and Owen[14]. The second categories is called MM-

planners, like those proposed by Ait-Aoudia et al. [10], Hoffman et al.[12], Ait-

Aoudia and Foufou[9], Latham and Middleditch[13] and Kramer[52]. Their

principle is based on finding solvable subgraphs by transforming the constraint

graph into a bipartite graph and finding a maximum generalized matching,

followed by a connectivity analysis to obtain the DR-plan. Figure 4.1b gives

a graph that can be solved by any constructive solver, the graph of figure 4.1a

is solvable only by MM-Planners.

(a) (b)

Figure 4.1: Two well-constrained graphs: (a) solvable by SR-Planners
and (b) solvable only by MM-Planners

4.2 2D geometric constraint graph and their

decomposition

Any GCS can be represented by a graph G(V,E), which consists of a vertex

set V and an edge set E. The vertices of G represent the geometric elements,

and the edges represent the constraints between them. The cardinality of V

will be called the size of G. Laman’s theorem [18] gives the necessary condition

of generic solvability for any GCS. To be solvable, its constraint graph must be

structurally well-constrained, (also called generically isostatic, minimally rigid

or Laman graph by rigidity theory and structural topology communities).

Definition 4.1. A geometric constraint graph G = (V , E) where |V | = n(n >

1) and |E| = m is structurally well-constrained if and only if m = 2n− 3 and
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m′ ≤ 2n′ − 3 for any induced subgraph G′ = (V ′, E ′), where |V ′| = n′(n′ > 1)

and |E ′| = m′.

Definition 4.2. A constraint graph G = (V,E) contains a structurally over-

constrained part if there is an induced subgraph G′ = (V ′, E ′) having more

than 2n′ − 3 edges.

Definition 4.3. A geometric constraint graph G = (V,E) is structurally

under-constrained if it is not over-constrained and the number of edges is less

than 2n− 3.

Laman’s theorem [18] is proved only for point to point distance constraints.

There is no combinatorial characterization for any other geometric element

[14]. The extension of his theorem to other geometric elements may imply

incorrect cases. Typical examples are given in section 2.7.

4.3 Desirable requirements of a graph-based

solver

Graph-based solvers can be compared using many desirable properties as de-

fined below. We note that those properties can be contradictory, the satisfac-

tion of one of them can be to the detriment of another.

• Generality : this property defines the domain of GCS and characterizes

the possible geometric configurations handled by the solver: a solver is

general if it can decompose any possible configuration.

• Optimality : the size of the largest detected subgraph has to be close

to minimal as proposed by [15] and the number of identified subgraphs

have to be maximal [1].
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• Computational complexity : The solver has to be fast in practice, allowing

an interactive use.

• Handling over- and under-constrained parts : the solver has to isolate

under- and over-constrained subgraphs for further correction.

4.4 Constructive Solvers

Examples of constructive solvers (called also SR-Planners) are given in [11,

14, 16]. These solvers are not complete, i.e., they do not solve every well-

constrained graph but only a sub-class of ruler and compass constructible

geometric configurations. These methods require that the constraint graph

is biconnected [16], and the smallest solvable subgraphs are triangles [15].

Those algorithms can be theoretically extended to handle other types of shapes

than triangles by giving an explicit recognition algorithm to each new kind of

shapes. We note that there is an infinite collection of shapes [17]. As a result,

SR-planners cannot be generalized. In the construction phase, constructive

solvers deal with only quadratic equations. Hence, the calculation of coor-

dinate does not require complex mathematical computation. Next, we will

detail three well known constructive solvers.

4.4.1 Decomposition analysis method

Owen [14] presented a graph based approach that solves a sub-class of geo-

metric constraint systems that are constructible by ruler-and-compass. This

method is considered as the first graph-based approach to be proposed in the

literature. It is composed of two phases. The first one, called decomposition

analysis phase, is based on the analysis of the geometric constraint graph by

finding all the bi-connected components (see Algorithm 2). It is a divide and
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conquers algorithm that recursively breaks down the GCG into two subgraphs

at each step. This is done by recursively splitting the graph in what he called

an articulation pair. An articulation pair is composed of two nodes whose the

removal causes the division of the graph into two new graphs. The splitting

process is repeated until the graph becomes simple enough to be solved di-

rectly, i.e., triangles or simple edges. To preserve the rigidity of the graph,

virtual edges are added as necessary. Virtual edges are removed next for allow-

ing further decomposition. The complexity of this algorithm is O(n2). Figure

4.2 shows an example of such decomposition. Figure 4.2a represents the con-

straint graph, this graph is split at the articulation pair (H,D) (Figure 4.2b);

a virtual edge is added; similar splitting is done to the other articulation pairs

(E,D) and (D,H) (Figures 4.2c, 4.2d). Others splitting are done without

adding virtual edges because one of the component is a single edge (Figure

4.2d, 4.2e, 4.2f, 4.2g ).

The second phase of Owen’s method is a combination of solved subgraphs in

a reverse order of the analysis phase. At each combination, translation and

rotation in 2D space are necessary (using only quadratic equations). If this

algorithm deals with tri-connected components, the GCS can’t be solved by

Owen’s method because the equations cannot be solved quadratically. [14].

4.4.2 Reduction analysis method

In [11], Fudos and Hoffmann presented an O(n2) algorithm that can solve

the same class of geometric constraint problems as Owen’s algorithm[14].

The algorithm is composed of two phases. The first one, called analysis

phase, where the reduction algorithm of Fudos et al [11] is as follow: let

G(V,E) be the geometric constraint graph to be analysed. The first step

of the algorithm corresponds to the construction of the initial set of clusters
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Figure 4.2: A geometric constraint graph decomposition by Owen’s algo-
rithm
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Algorithm 2 Owen’s decomposition algorithm

Input: G: the geometric constraint graph;

Output: A plan of resolution.

1. Split the Geometric constraint graph into bi-connected components.

2. Split each bi-connected component into split components, inserting vir-

tual edges as necessary.

3. At any articulation pair with no single edge and exactly one more complex

subgraph, remove the virtual edge from the subgraph. Apply the algorithm

recursively from stage 2.

4. The algorithm terminates when the graph cannot be split further. ‘

SG = {{u, v}/(u, v) ∈ E}. Each cluster represents a basic rigid body. The sec-

ond step of the algorithm is a recursive merging of each three clusters C1, C2,

and C3 such that: ∃g1, g2, g3 ∈ V,C1∩C2 = {g1};C2∩C3 = {g2};C1∩C3 = {g3}

and g1 6= g2 6= g3. (i.e., those tree clusters pairwise intersect in a singleton).

Geometrically this merging corresponds to the computation of the relative co-

ordinates of three geometric objects. Its implantation uses a bipartite graph

H(VH , EH), where VH = YH ∪ XH and YH ∩ XH = ∅. Each element of YH

corresponds to a cluster in SG, XH is the set of geometric elements. The clus-

ters merging corresponds to the finding of 6-cycle in the cluster graph H, then

rewriting them as shown in 4.3. This process is recursively repeated until the

graph H is rewritten to a star. The cluster merging is recorded, it represents

the resolution plan, it will be used as input for the construction step.

The following is the reduction of the graph shown in figure 4.2a. Merged

clusters are represented in bold font.

{{A,B},{A,C}, {A,D},{B,C}, {B,E}, {C,D}, {C,E}, {D,H}, {D, J}, {E,F}, {E,G}, {F,G}, {F, I},

{G,H}, {G, I}, {H, I}, {H, J}} →

{{A,B,C}, {A,D}, {B,E}, {C,D}, {C,E},{D,H},{D,J}, {E,F}, {E,G}, {F,G}, {F, I}, {G,H}, {G, I},
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Algorithm 3 Reduction analysis algorithm

Input: a geometric constraint graph G;

Output: a plan of resolution.

procedure Reduce(G)

1. Construct initial set of clusters SG, each element of SG is a set of two

adjacent vertices of G.

2. Construct the cluster bipartite graph H.

3. Find all triangles in G.

4. Successively rewrite H by replacing a 6 cycle in H by a four node

structure as explained in figure 4.3. Record a cluster merging operation for

each such rewriting step

5. If H can be rewritten into a final graph that is a star with center a

cluster and periphery the vertices of G, then G is solvable; otherwise, it is

not solvable.

end procedure
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Figure 4.3: Reduction of a 6-cycle of the bipartite graph H that corre-
sponds to a cluster merging.

{H, I},{H,J}} →

{{A,B,C},{A,D}, {B,E},{C,D}, {C,E}, {D,H, J}, {E,F}, {E,G}, {F,G}, {F, I}, {G,H}, {G, I}, {H, I}, } →

{{A,B,C,D},{B,E},{C,E}, {D,H, J}, {E,F}, {E,G}, {F,G}, {F, I}, {G,H}, {G, I}, {H, I}, } →

{{A,B,C,D,E}, {D,H, J}, {E,F}, {E,G},{F,G},{F,I}, {G,H},{G,I}, {H, I}, } →

{{A,B,C,D,E}, {D,H, J}, {E,F}, {E,G},{F,G,I},{G,H}, {H,I}, } →

{{A,B,C,D,E}, {D,H, J}, {E,F}, {E,G}, {F,G, I,H}, } →
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{{A,B,C,D,E}, {D,H, J},{E,F},{E,G},{F,G,I,H}, } →

{{A,B,C,D,E},{D,H,J},{F,G,I,H,E}, } →

{{A,B,C,D,E, F,G,H, I, J}}

4.4.3 Tree Decomposition Method

In [16], Joan-Arinyo et al. presented a new O(n2) constructive solver that be-

longs to the constraint shape recognition category, i.e., it solves the same do-

main of geometric constraints systems as Fudos’s [11] and Owen’s [14] solvers.

The algorithm decomposes biconnected geometric constraint graphs by search-

ing for hinges in fundamental circuits of a specific planar embedding of the

constraint graph. A planar graph is a graph that can be embedded in the

plane, i.e., it can be drawn in such a way that no edges intersect with each

other. The algorithm recursively decomposes the problem into three sub-

problems that pairwise share a common geometric primitive, called hinge.

The algorithm has two main steps:

1. Transform the GCG into a simpler, planar graph and

2. Compute a planar embedding for the transformed graph where hinges

are identified as a set of three vertices shared by two faces.

The algorithm is based on the decomposition of a graph G = (V,E), according

to the bridges induced in G by a circuit C. It is inspired by the algorithm for

finding the tri-connected components of a graph. If G = (V,E) is the geomet-

ric constraint graph; the algorithm starts by computing a spanning tree T for

G using a depth-first search and computing the set of fundamental circuits

induced by the spanning tree. Then, the algorithm seeks for a fundamental

circuit C with a set of hinges that defines a set decomposition of V . If the
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Figure 4.4: A geometric constraint graph and its spanning tree.
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algorithm fails in finding a fundamental circuit with a set of hinges, the input

graph is not tree-decomposable.

Figure 4.4a gives a geometric constraint graph, figure 4.4b shows the resulting

spanning tree. The set of fundamental circuits induced by the spanning tree

considered are shown in figure 4.5. Every chord in the spanning tree induces

a fundamental circuit. We recall that a chord is an edge (ei, ej) ∈ V such that

(ei, ej) /∈ T
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4.5 General Solvers

In the class of general solvers [9, 10, 12, 70]) there is no restriction on the

domain of the 2D geometric constraint configurations, the smallest subgraph

can be any irreducible well-constrained graph. The most important build-

ing block of those methods is the irreducible subgraphs detection procedure.

These categories use a maximum matching or a flow based algorithm to de-

tect small, solvable subgraphs and their order of resolution. Those methods

are complete, i.e., any well-constrained graph can be decomposed, solved and

recomposed. Next, we present an Algorithm proposed by Hoffmann et al. [71]

for the detection of all solvable subgraphs (called also dense subgraphs)..

4.5.1 Geometric Constraint Bipartite Network

In 2 dimensions, every geometric element has 2 degrees of freedom and all

constraints between them are binary and eliminate one degree of freedom.

Thus, in the corresponding constraint graph, the weight of all the edges is 1

and of all the vertices is 2. When the dimension space is more than 2, each

vertex v ∈ V has a weight w(v) that represents the DOF of its corresponding

geometric element. Each edge e ∈ E has a weight w(e) that corresponds to the

number of DOFs that are eliminated by its corresponding constraint. In this

case, a GCS is represented by a weighted constraint graph G(V,E,w). To find

irreducible solvable subgraphs, general solvers transform the constraint graph

G(V,E,w) of a GCS to a bipartite directed network G∗ = (M,N, s, t, E∗, w)

where:

1. s is the source and t is the sink.

2. The vertices in N are the vertices in V .

3. The vertices in M are the edges in E.
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4. The edges of G∗ are E∗ = {(e, u)(e, v)|e = (u, v), e ∈ E}.

5. Every directed edge (s, e) from the source node s to the set M is weighted

by w(e).

6. Each edge (v, t) from N to the source node t is weighted by w(v).

7. Each edge (v, t) from N to the source node t is weighted by w(v).

8. The edges from N to M are weighted by ∞.

Figure 4.6 gives an example of a 2D geometric constraint graph and its

bipartite network. Many algorithms use the constraint bipartite network for

GCS decomposition. Ait-Aoudia et al. [10] use this approach to find all the

irreducible with their order of resolution. Hoffmann et al. [71] also use this

approach to find all dense subgraphs. The next section gives more details on

those two approaches.

4.5.2 Detection of solvable subgraphs

In [71], Hoffmann and Vermeer presented an O(n(m + n))) algorithm that

isolates solvable subgraphs (called also dense subgraph) from a constraint

graph G(V,E) where |V | = n and |E| = m. The proposed algorithm is general

in the sense of handling the cases where the DOFs of geometric elements can

be greater than two and a constraint can remove more than one DOF. This

algorithm is flow-based and generalizes prior maximum matching approaches

as those proposed by Ait-Aoudia et al. [10]. The principle of finding dense

subgraphs is based on the definition below [71].

Definition 4.4. Let G(V,E) be a constraint graph of GCS. An induced sub-

graph A(VA, EA) ⊆ G is called dense if |EA|−2|VA|>K, where K is a constant.
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Figure 4.6: (a) A constraint graph, (b) its bipartite associated network

A dense subgraph represents an irreducible sub-problem of the GCS. The goal

is to find a minimal dense subgraph, that is, a dense subgraph A such that

A does not contain a proper dense subgraph B. The goal is restricted to

minimal dense subgraph (i.e. for inclusion) and not minimum because finding

the minimum dense subgraph B is shown to be NP-hard [71].

For geometric constraint problems, the constant K = −(D + 1) where D

represents the number of DOFs that a rigid figure can have. In 2D space,

D = 3 and in 3D space, D = 6. If the figure is to be fixed with respect

to a global coordinate system, then D = 0 is required. Let’s explain the

principle of this algorithm using the figure 4.7. Figure 4.7a represent a GCS

graph composed of three geometric elements, having different DOFs values as

showed by their weight. As represented by edges weight, every constraints can

eliminate 3 DOFs. The associated network is given by figure 4.7b. Figures
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Figure 4.7: (a)A flow for the constraint graph (b) another flow, (c) the
initial flow
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4.7c and 4.7d show different flows for the constraint graph. To find the dense

subgraph in a faster way, this algorithm uses a tailored version of the general

maximum flow algorithm. It starts with the empty subgraph G′ of G and

adds to it one vertex v at a time. When a vertex v is added, it considers the

adjacent edges e incident to G′. For each e, try to distribute the weight w(e)

to one or both of its endpoints without exceeding their weights. If we can

distribute all edges, then G′ is not dense. If there is a dense subgraph, then

there is an edge whose weight cannot be distributed even with redistribution.

Distributing an edge e in G now corresponds to pushing flow equal to the

capacity of (s, e) from s to t in G∗ (see figure 4.7f, 4.7g, 4.7h, 4.7i)

4.5.3 Maximum Matching Approach

The maximum matching approach was first used by Serrano [72] for systems

of non-linear equations appearing in conceptual design problems. Ait-Aoudia

et al. [10] proposed the first general solver that detects all the subgraphs with

their order of resolution. We have successfully implemented this algorithm

to test our generator presented in chapter 5. This algorithm can also isolate

the under- and over-constrained subgraphs. It is based on the calculation of

the maximum matching of the bipartite graph G(M,N,E) associated to the

GCS. For a the geometric constraints G(V,E) The bipartite constraint graph

GB = (M,N,EB) is constructed as follow:

First, we pin an edge (u,w) i.e., we consider that the coordinates of geometric

elements that corresponds to u and w are fixed in the plane.

The vertex set M represents the DOFs of the unpinned nodes. For each node

vi ∈ V , we create k nodes copies: v1i , .., v
k
i , such that k is equal to the DOFs

number of vi ( k = 3 if we are in 2D space). For each edge e = (vl, vm) ∈ G

we create a node eN ∈ N and we add edges (vil , eN) and (vjm, eN) to GB, i.e.,
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we add an edge that connect every copy of vl and and every copy of vm to eN .

Figure 4.8a gives a 2D geometric constraint graph and figure 4.8b gives its

corresponding bipartite graph.

To find the set of irreducible subgraphs, this algorithm uses the following

result due to König, and Dulmage and Mendelsohn [21] that gives the single

canonical decomposition of any bipartite graph having a perfect matching to

a set of irreducible subgraphs:

Theorem 4.5. (König 1916) Given a bipartite graph G = (M,N,E), ev-

ery perfect matching of a bipartite graph leads to a unique decomposition

into strongly connected components, each one represents an irreducible well-

constrained subsystem.

Proof. [73]

The computation of a maximum matching in a bipartite graph can be done in

polynomial time using any well-known algorithm such as Hopcroft and Karp

algorithm [74]. We note that a new method was proposed recently by Barki

et al. in [75]: the Re-parameterization. This method can reduce the irreducible

at the linear algebra routines level.

The plan of resolution, i.e., the order in which those detected irreducible

subgraphs will be solved is obtained as follow:

Let P ⊆ E be the set of edges that are in the resulted matching. A new

directed bipartite graph R is constructed as follow:

• Each edge e ∈ P is replaced by two arcs oriented in both directions.

• Edges e /∈ P are oriented from the M to N .

• The strongly connected components are calculated and arcs between

them give the partial order of the decomposition.
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The decomposition method is presented by the Algorithm 4. Figure 4.8

shows the decomposition of a 2D geometric constraints graph(figure 4.8a)

into irreducible subgraphs (figure 4.8b). The plan of resolution is given by

figure 4.8c. It means that the subgraph R1 then R2 and finally R3. The

corresponding construction steps are as follow:

1. Pin the two points F and G in the plane;

2. Calculate the coordinates of the point E;

3. Calculate the coordinates of the point D;

4. Calculate the coordinates of the points A, B and C by solving the cor-

responding system of equations.

Algorithm 4 A maximum matching algorithm for GCS decomposition

Input: G(M,N,E): a geometric constraint bipartite graph

Output: R: a decomposition plan

procedure Decompose(G)

1. Find a perfect matching M of G.

2. Build the directed graph G′ from G by replacing each edge (x, y) in

M by two arcs xy and yx, and by orienting all other edges from Y to X.

3. Compute the strongly connected components of G′. Each of these

strongly connected components is irreducible.

4. To compute the dependency between these irreducible subgraphs,

build the reduced graph R from G′ by contracting each strongly connected

component in a vertex. Each arc of R, say from s1 to s2, means: solve

subsystem s2 before s1. A compatible total order between subsystems can

be obtained by any topological sorting of R.

return R

end procedure
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(c) subgraph resolution order (DR-plan)

Figure 4.8: Maximum matching decomposition algorithm
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If the obtained maximum matching is not perfect, then there is an under- or

over-constrained parts in the graph. The well-constrained part will be isolated

using the following theorem due to Dulmage and Mendelsohn. The over- and

under-constrained parts will be returned for further corrections.

Theorem 4.6. (Dulmage and Mendelsohn, 1958)

Let G = (M,N,E) any bipartite graph. The set V = M∪N can be partitioned

into three sets D, A, and C defined as follow:

• D is the set of vertices of G unsaturated by at least one maximum match-

ing;

• A is the set of vertices V −D, adjacent to at least one vertex of D;

• C is the set V − A−D.

These three subsets are unique and lead to a canonic decomposition of G into

three subgraphs G1, G2, and G3, defined by:

• The well-constrained subgraph: G1 = (C1, C2, E1), where C1 = C ∩

Y,C2 = C ∩X, and E1 is the set of edges induced by G1;

• The over-constrained subgraph: G2 = (D1, A2, E2), where D1 = D ∩

Y,A2 = A ∩X, and E2 is the set of edges induced by G2;

• The under-constrained subgraph: G3 = (A1, D2, E3), where A1 = A ∩

Y,D2 = D ∩X, and E3 is the set of edges induced by G3.

Proof. [73]
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4.5.4 Some remarks on the MM Algorithm

In some cases, especially, when the constraint graph is composed of two parts,

one of which is over-constrained and the other is under-constrained, algorithm

4 can produce incorrect results. Such a case is illustrated in 2D by the figure

4.9. If the pinned edge is (B,D), the corresponding bipartite graph will have a

perfect matching and the constraint graph will be considered well-constrained.

(see [76] for more detail). It is very easy to overcome this problem by simply

pinning all the edges, one after the other. This modification will increase the

time complexity of the algorithm by a factor of m. To prevent this factor, this

modification has to reuse the previous calculated maximum matching, every

time an edge is pinned.

C D

E F

A B

Figure 4.9: An example of an incorrect case

The second remark on the MM algorithm concerns the number of detected

subgraphs and the size of the largest system of equations to be solved. The

example of figure 4.10 shows that it depend on the choice of the pinned edge.

In figure 4.10a, where the pinned edge is (A,E), the size of the largest sys-

tem of equations to be solved is 14 unknown (it correspond to the subgraph

:{G,H, I, J,K, L,M}). But if the pinned edge is (G,B), then, the size of the

largest system of equations to be solved is 10 unknown (it correspond to the

subgraph :{J,K, L,M, F}). The geometric elements that correspond to those
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subgraphs are represented in figure 4.9 with a dotted line. They correspond to

the strongly connected component detected in step 4 of Algorithm 4.They are

numbered by the order in which they will be solved. To detect all irreducible

subgraphs, i.e. an optimal decomposition, we have to pin all edges, one after

another. For each pinning, we have to recalculate the maximum matching, we

can avoid this recalculation by reusing data of the previous steps. We note

that the resolution order (step 4 algorithm 4) will be no more usable, but we

can use for example the Skeletonization algorithme (see section 4.5.6) as a

recomposition method.
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(b) The pinned edge is (B,G)

Figure 4.10: Two different MM-decompositions of the same constraint
graph.

4.5.5 Condensing and Frontier algorithms

In this section, we will explain two methods proposed by Hoffman et al. [12] for

geometric constraint decomposition. Each one uses the flow-based algorithm

discussed in section 4.5.2 as a building block to detect minimal solvable

subgraphs. They differ in the process of recomposition.
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4.5.5.1 The Condensing Algorithm

Condensed algorithm (CA), proposed by Hoffman et al. [12] is based on the

repetitive application of the flow-based algorithms (see section 4.5.2) to the

2D constraint graphs for finding minimal well constrained subgraphs. At

each step, the detected subgraph is sequentially extended by adding more

geometric objects one at a time, which are rigidly fixed with respect to the

subgraph. After a subgraph has been extended, it is then simplified into a

single geometric object, and the rest of the constraint graph is searched for

another minimal subgraph. Figure 4.11 gives an example of the subgraph

extension.

a b

d

ef

c

Figure 4.11: Constraint graph with vertices of weight 2 and edges of
weight 1. The minimal dense subgraph {a, b} can be extended sequentially

by the other elements, in alphabetic order.

Consider the constraint graph G of Figure 4.12a. Initially all vertices have

weight 2, all edges have weight 1. The vertices connected by the heavy edges

constitute minimal or sequentially extended subgraphs. After four simplifica-

tions (see figures 4.12b 4.12c 4.12d) the original graph is replaced by one

vertex.

4.5.5.2 Frontier Algorithm

A major drawback of the Condensed algorithm is that it can fail in some sit-

uations. In some particular cases, the simplification of a minimal or extended
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Figure 4.12: Condenced Algorithm principle

dense cluster into a single vertex don’t preserve the solvability of the graph,

because it loses valuable information about the structure of the subgraph. The

constraint graph of figure 4.13 represents a 2D GCS. The vertex weights are

2; the edge weights are 1. The graphs ABCDNO,EFHGID and NMKLIJ

are all solvable. Suppose that first subgraph S1 = ABCDNO was found and

simplified into one vertex S of weight 3. Now the graph SEFHGI is not

solvable anymore.

Frontier algorithm can be considered as an enhancement of the Condensed

algorithm. The way to find minimal subgraphs and their sequential extensions

is similar to that of Condensed algorithm. The only difference between the

two algorithms is the simplification step. In the Frontiers algorithms, only

the vertices that are not connected to outside the subgraph are simplified to

a single vertex ci . The weight of ci is D (D = 3 in 2D space). The vertex ci

is connected to each frontier vertex v by an edge whose weight is equal to the

weight of v. In another version of Frontier algorithm, called MFA (Modified

Frontier algorithm), the vertex ci is connected to each frontier vertex v by a
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Figure 4.13: An example where the CA simplification step fail.

combined edge whose weight is the sum of the weights of the original edges

connecting internal vertices to v. The frontier vertices, the edges connecting

them, and their weights remain unchanged. Figure 4.14 gives an example of

graph reduction using the Modified Frontier algorithm.

4.5.6 Recursive Skeletonization Algorithm

In their paper [9], Ait-Aoudia and Foufou presented an O(n3(n+m)) decom-

position/recombination algorithm, called S-DR. Comparing to CA or MFA,

S-DR planner proceeds in an easiest way in the process of simplifications and

abstractions. The algorithm uses a graph reduction method to solve systems

of 2D geometric constraints, based on a key concept called skeleton. S-DR

planner figures out a plan for decomposing a well-constrained system into

small sub-systems and recombines the solutions of these sub-systems to derive

the solution of the entire system. This algorithm uses the same method (see

section 4.5.2) to find solvable subgraph as in Condensed or Frontier algo-

rithm. S-DR planner will find a sequence of graphs Gi (G1, G2, ..., Gk). G1 is

the initial constraint graph G. Every Gi containing several subgraphs (called
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Figure 4.14: Example of Frontier algorithm
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clusters) is simplified into a graph Gi+1 = Ti(Gi) where T i is the transforma-

tion (simplifier map) giving the skeleton of Gi (Gi+1 is the skeleton of Gi ). If

the constraint graph G is structurally well constrained, then the process ter-

minates when the graph Gk consists of one basic cluster. The main procedure

is given by Algorithm 6, the skeleton procedure is given by Algorithm 5.

Figure 4.15a gives an example of a constraint graph and its clustering; figure

4.15b shows the corresponding skeleton and figure 4.16 illustrate the clusters

placement process.

Algorithm 5 The recursive Skeletonization.

Input: G: a geometric constraints graph; S = {C1, C2, ..., Cn}: the set of

detected cluster ;

Output: The skeleton graph Gs(Es, Vs).

procedure skeletonize(G,S)

Vs ← ∅

for all Ci ∈ S,Cj ∈ S, i 6= j do

Vs ← Vs ∪ (Ci ∩ Cj);

end for

for each Ci ∈ S do

X ← Ci ∩ Vs;

let X = {n1, n2, ..., nj}, triangulate X by doing:

Es ← Es ∪ {(n1, n2)}

for k ← 3, j do

Es ← Es ∪ {(nk, nk−1), (nk, nk − 2)}

end for

end for

return Gs

end procedure
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Figure 4.15: Example of constraint graph clustering and its skeleton

Algorithm 6 Geometric constraint graph decomposition

Input: G: a geometric constraints graph;

i = 1;G1 = G;

procedure Solve(Gi)

S ← CLUSTERS(Gi) ;

/*Clusters are calculated using the flow-based method, section 4.5.2*/

if |S|>1 then

Gi+1 ← skeletonize(Gi, S);

Solve(Gi+1)

Place clusters of Gi relatively to Gi+1

else

Place the nodes of Gi in the plane;

end if

end procedure
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Figure 4.16: The clusters placement for the skeleton of figure 4.15a.

4.6 Conclusion

In this chapter, we have studied two main categories of solvers, also called

planners, in the sense where they give a plan of resolution represented by a

set of minimal subgraphs and their order of geometric construction.

The first category is the constructive solvers, called also shape recognition

solvers. In this class, the only basic subgraphs are always triangles. Those

algorithms use the inherited methods from graph theory to detect triangles

in the corresponding geometric constraint graph. Despite the constructive

methods cover a large sub-class of the ruler and compass constructible GCS,

which are the most encountered the CAD world, they have a severe limitation:

it is very difficult to generalize these methods. Irreducible subgraphs should

always be triangles, and their extension requires a specific algorithm for each

new type of shape other than a triangle.

The second category is the general solvers, where the minimal subgraph can

be any irreducible well-constrained graph. Those methods use a flow-based

algorithm to find minimal solvable subgraphs. By some structural analysis,
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those methods can calculate the plan of resolution. Another type of general

solvers, based on the maximum matching calculation, was also presented.

Those algorithms have the advantage of solving any GCS, but major of them

are discussed or compared theoretically, without giving any tests highlighting

their performances. In the next section, we present a design of a simple, but

efficient random generator of 2D geometric constraint graph. It can be used

to make benchmarks for consistent tests, or observe the behaviour of these

two categories of solvers.
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5.1 Introduction

Tests and analysis of graph-based solvers are usually done in a theoretic man-

ner or with well-chosen examples. However, to make consistent tests, or ob-

serve the algorithm behaviour on graphs with various sizes and structural

properties, that can affect the behaviour of the solver, there is a great need

for a tool that can produce such graphs. It can help performing tests with

more data analysis rather than pure theory. This need is due to several factors,

mainly, it is very hard to manually create non-decomposable graphs. Until

now, there is no known method for creating this category of graphs.

Our contribution is the design of a simple, but efficient random geometric

constraint graph generator. This is significant because to the best of our

knowledge, there is no such generator so far. It should be of interest in the

areas of 2D geometric constraints solving. Our generator can be used to make

benchmarks for consistent tests, or observe the behaviour of 2D geometric

constraints solving algorithms. It can produce problem instances with various

sizes and structural properties, covering different cases of complexity.

We restrict ourselves to 2D geometric constraint systems in the generic sense;

we focus only on the solvability of the graph and ignore the numerical val-

ues of the geometric constraint. We focus on creating graphs for 2D well-

constrained geometric problems for which the Laman condition [18] holds.

Two algorithms will be sketched. The first one is dedicated to the creation of

non-decomposable graphs, or graphs with a given property, called the degree

of decomposability, that we have introduced. The second algorithm, which

represents our proposed generator, allows the creation of a graph with the

following desired properties:
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Completeness it can generate all possible 2D geometric constraints graphs,

i.e., any graph satisfying the Laman condition [18] can be generated. This

property is very important because it characterizes the domain of geometric

constraint systems covered by our proposed generator.

Customizability: it generates some particular configuration, targeting

special situation of difficulties. This is done by parametrizing the generator.

It can be parametrized to produce a graph solvable by SR-Planners or only by

MM-Planners. Moreover, it can generate a particular domain of GCS (repre-

senting a sub-class of ruler and compass constructible GCS ) or a general one.

By specifying what we called a degree of decomposition, we can build a graph

that has a low or a high number of solvable subgraphs. We can also determine

the average size of the smallest subgraph. Those two parameters represent

our adopted metric of solvability. They characterise the computational time

complexity of a GCS.

Simplicity and efficiency: our generator is easily understood; it is straight-

forward implemented based on a verified theory.

We start by presenting some notions about the geometric constraint graph,

its decomposition, and its generic solvability. Then we outline the generation

of random well-constrained graphs and show some tests on their decompos-

ability. Then, we introduce a suitable graph generator for well-constrained

problems. In the end, we present some experiments to evaluate the solvability

of generated graphs.
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5.2 Geometric Constraint Graph Decomposi-

tion.

Decomposition process can be done in two steps; the first one can be considered

as a pre-processing that consists of isolating the unsolvable parts: the over

and under-constrained subgraphs. For this purpose, we can use for example

the algorithm proposed in [10]. The obtained well-constrained graphs, which

are the solvable ones, are then decomposed in the second step. The goal of

this decomposition is to speed up the resolution process, by providing a plan

of resolution. We focus only on the decomposition of the well-constrained

parts. Transforming the whole geometric constraint problem into a system

of equations, and solving it, is extremely time-consuming. The main goal of

graph-based techniques is to decompose the problem into small sub-systems.

Each one is solved separately with respect to an order given as output by the

DR-planer. Two parameters that we call decomposability metrics can decide

how fast will be the resolution process:

1. The size of the largest subgraph as proposed by Hoffman et al. [15].

2. The number of detected subgraphs over the total number of vertices [1].

We can formulate this by a parameter, d, called the degree of decom-

posability, where d = n/g. n is the number of vertices of the geometric

constraint graph and g is the number of detected subgraphs to be solved

directly by algebraic methods. d indicates if the graph is highly or weakly

decomposable.

In the rest of this section, we show how to design a random graph generator

that uses those two parameters as input. Our approach is organized in two

steps: in the first one, we present a procedure called RH that generates a non-

decomposable graph, i.e., a graph that has a known size and no detectable
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subgraphs. Then we use the procedure RH to develop our random graph

generator, called RRH, which can produce a graph with a known size of the

largest subgraph and a known number of subgraphs. RRH can also create

graphs that are solvable by SR-Planner or by only MM-Planners.

5.3 Generating well-constrained graphs

In [77], Tay and Whiteley presented an inductive construction that always

produces a well-constrained graph. This construction is due to Henneberg

[19]. The definition follows.

Definition 5.1. Starting with a graph G = K3, a well-constrained graph can

be built inductively by adding one vertex at a time using one of these two

Henneberg operations:

1. Operation HI : add a new vertex v to G, then connect v to two chosen

vertices u and w from G via two new edges (v, u) and (v, w). See Figure

5.1.

2. Operation HII : add a new vertex v to G, chose an edge (y, w) and a

vertex u from G, then add three edges (v, u), (v, w) and (v, y) to G,

finally delete the edge (y, w). See Figure 5.2.

The following definition justifies our interest in Henneberg construction.

Definition 5.2. [77] A graph G is well-constrained if and only if it has a

Henneberg construction.

Proof. ([78])
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Figure 5.2: The second operations of Henneberg construction: HII

Henneberg construction always generates a well-constrained geometric con-

straint graph. In reviewing the literature, no study was done on the relation

between the choice of Henneberg steps, HI and HII, and the structural prop-

erty of the generated graph. How many solvable subgraphs has the generated

graph if we always chose the first operation HI or the second operation HII, or

if the two operations have the same or different probabilities of being selected?

Let p be the probability of choosing HI. Algorithm 7 allows the generation of

well-constrained graphs for different values of p.

Note: in step 3 of the procedure RH, we use an uniform pseudorandom num-

ber generator presented by Matsumoto and Nishimura [79].

To evaluate the decomposability degree of the graph, generated by the proce-

dure RH of algorithm 7, for different values of p, three sets of 2000 random

graph were generated. Each set corresponds respectively to the value: 0, 0.5

and 1 of the parameter p. Due to the randomness, 20 instances for each

size ranging from 4 to 100 vertices were generated, and the mean has been

calculated.
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Algorithm 7 Generate a random well-constrained graph using Henneberg
construction according to the probability p.

Input: n: the size of the graph; p: the probability of choosing HI;

Output: a well-constrained graph G.

1: procedure RH(n, p)

2: start with an initial graph G = K3

3: for i← 1, n− 3 do

4: Generate a random number r, uniform on [0, 1);

5: if r < p then

6: add a new vertex v to G according HI;

7: else

8: add a new vertex v to G according to HII;

9: end if

10: end for

11: return G

12: end procedure

We have calculated the degree of decomposability using an MM-Planner, based

on the Dulmage-Mendelsohn decomposition, presented by Ait-Aoudia et al.

[10]. This planner has been chosen because it always returns a decomposition

if one exists [8]. The result of this decomposition depends on the randomly

chosen edge that was fixed (see section 4.5.4).

As it can be seen in Figure 5.4, for p = 0, which means that we regularly

use the second operation of Henneberg construction: HII, generally, graphs

for size >40 were not decomposable. For example, the graph of size 20, only

30% were not decomposable, but for the size 40 this percentage increases

approximately to 80%. In our tests, for the 20 randomly generated graphs,

with a size ranging from 40 to 100, rarely there existed a decomposable one.

This is due to the use of the second operation of Henneberg, which splits edges.

This operation may merge two subgraphs in a single non-decomposable one
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Figure 5.3: The size of the graph vs degree of decomposability for p = 0,
p = 0.5 and p = 1.
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Figure 5.4: The percentage of non decomposable graphs in each set of 20
instances generated, size ranging from 4 to 100, the probability p = 0

at each step. This result can be used in the generation of non-decomposable

graphs of more than 40 vertices. Figure 5.3 plots the size of the graph vs

degree of decomposability, for p = 0, p = 0.5 and p = 1. Three graphs of size

50 generated by RH, for the case of p = 0.0, p = 0.5, p = 1.0 is given by Figure

5.6. In the case of p = 1, where only the first step of Henneberg construction

was used, whatever the size of the generated graph, it was decomposable.

For p = 0.5, the degree of decomposability was approximately 0.4. Table

5.2 gives the different values of d, for the graph size, ranging from 100 to
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Size p = 0.0 p = 0.5 p = 1.0

05 0.338 0.406 0.456
10 0.135 0.388 0.596
15 0.078 0.381 0.581
20 0.028 0.330 0.580
25 0.016 0.329 0.568
30 0.036 0.400 0.641
35 0.032 0.311 0.674
40 0.006 0.360 0.750
45 0.005 0.374 0.759
50 0.005 0.351 0.755
55 0.003 0.399 0.796
60 0.002 0.365 0.810
65 0.004 0.368 0.818
70 0.001 0.411 0.829
75 0.002 0.379 0.847
80 0.001 0.321 0.763
85 0.010 0.351 0.840
90 0.002 0.369 0.824
95 0.002 0.351 0.817
100 0.002 0.335 0.811

Table 5.1: Decomposability degree for different values of p : 0, 0.5 and 1.

1000 vertices. We have randomly generated five instances for each size and

calculated the mean. Results show that the degree of decomposition depends

on the probability value p rather than on size. In Figure 5.5, we have plotted

the decomposability degrees for p ranging from 0 to 1. It can be seen that

the degree of decomposability increases in the direct proportion of p, i.e., the

more we decrease the probability value p, the more we weaken the values of

the decomposability of the graph. To generate a non-decomposable graph, p

must be equal to 0. Because of algorithm 7 employs a degree of randomness

as part of its logic, in many cases, for p = 0, the generated graph may have

more then one subgraph.To ensure that the generated graph has no more than

itself as a non-decomposable subgraph, we can use Algorithm 8 instead. To

calculate the number of irreducible sub-graphs (step 5 of algorithm 8), We

have used the MM-Planner [10] presented in section 4.5.4. We not that in our
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Algorithm 8 Generate a non decomposable well-constrained graph.

Input: n: the size of the graph;

Output: a non decomposable well-constrained graph G(irreducible).

1: procedure RH0(n)

2: start with an initial graph G = K3

3: repeat

4: Generate a graph G using RH(0,n);

5: s ← the number of irreducible subgraphs of G

6: until s = 1 . Only G itself as irreducible subgraph

7: return G

8: end procedure
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Figure 5.5: The probability of choosing the first operation of Henneberg
vs the degree of decomposition.

experiment, Algorithm 8 succeed in a bounded amount of time. To calculate

the number of irreducible subgraphs, we can use the Algorithm 4 and take

into account the remark about the pinning of all edges as suggested in section

4.5.4 .

Tests conclude that the parameter p can be used to parameterize the generator

to produce highly or weakly decomposable graphs. In the next section, proce-

dure RH of algorithm 7 will be used to generate non-decomposable graphs.
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(a) p = 1.

(b) p = 0.5

(c) p = 0

Figure 5.6: Three Geometric constraint graphs generated by RH for
different values of p
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Case p = 1.0 p = 0.5 p = 0.0

1 40 14 1
2 37 19 1
3 39 13 1
4 36 20 1
5 40 27 1
6 37 16 2
7 38 20 1
8 37 24 1
9 39 13 1
10 38 18 1

Table 5.3: Number of detected subgraphs with n = 40 and for different
values of p : 0, 0.5 and 1.

5.4 Random constraint graph generator

The central role of a planner is the decomposition of geometric constraint

graphs. To evaluate how planners deal, or how will be their behavior with

some types of graphs, a tool for generating situation with some desirable

properties can be very helpful. Such tool enables the evaluation of any solving

methods with more data analysis rather than pure theory. First, we show

how to generate graphs that are decomposable by SR-Planners, and then

we explain how to set the size of the largest subgraph to a desirable value.

Decomposability degree is always represented by the probability value p. If

we want to limit the graph generated by the procedure RH, presented in the

previous section, to only those that are decomposable by SR-Planners, where

the smallest subgraphs are limited to triangles, the first idea would be to

use only the first operation HI. We will prove that is incorrect, and then we

propose the procedure RRH (Algorithm 9), which is a recursive replacement

of edges by graphs that are generated by the procedure RH of the Algorithm

7. The goal of this modification is to generate the class of graphs solvable by

the SR-Planners using only HI.
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Figure 5.7: A geometric constraints graph.

Figure 5.7 shows a graph that can be decomposed by any SR-Planner. Let us

show if there exist a Henneberg construction for this graph that uses only the

first operation HI. Suppose that we start with the triangle a, b, c as the first

step, the second step must be no other than adding the vertex c. After this

stage, no other vertex can be added to the cluster. If we start with another

triangle than a, b, c, we will obtain the same reasoning because the graph is

formed by three symmetric parts: SG1, SG2 and SG3 . Hence, this graph is

solvable by SR-Planners and not constructible by procedure RH using only

the first operation HI. Next, we show how to add a recursion mechanism to

the procedure RH so that any graph decomposable by SR-Planners can be

generated using exclusively HI, i.e., p = 1. This addition will simplify the

design of our generator. We have already seen, that for p = 0, graphs of

size > 40 generated by procedure RH are mostly non-decomposable. Hence,

we can produce a larger graph by the composition of non-decomposable ones.

This method can be used to create a graph that has a predefined size of the

largest subgraph as required by the metric defined in section 5.2. Generating

a graph G is a sequence of graphs G1, · · ·, Gn with the following properties:

1. G1 = RH(m, p),

2. Gn = G
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3. Gi+1 is obtained from Gi, through the replacement of randomly chosen

edge of Gi, by a new subgraph RH(m, p).

We have to prove that the replacement of a randomly chosen edge of Gi, by

a new subgraph RH(m, p) always leads to a well-constrained graph. We note

that the starting graph for the Henneberg construction is K3. It can be easily

adapted to start with a graph with only one edge (K2); we just need to use

HI in the first time of the Henneberg sequence.

Before that, we need the following lemma due to Haas et al. [78]..

Lemma 5.3. [78] A Laman graph has a Henneberg construction starting from

any prescribed subset of two vertices.

Proof. See [78] for a detailed proof.

Theorem 5.4. Let G = (V,E) and H(VH , EH) be two Laman graphs. Let

(a, b) ∈ E be any edge of G, and a′ ∈ VH and b′ ∈ VH , two vertices of H. The

graph G∗ = (V ∗, E∗), that result from the replacement of the edge (a, b) by the

graph H obtained using the following operation is also Laman:

• V ∗ = V ∪ VH \ {a, b}

• E∗ = E ∪ EH ∪ S, where S = {(a′, x) : (a, x) ∈ E} ∪ {(b′, x) : (b, x) ∈

E} \ ({(a, b)} ∪ {(a, x) : (a, x) ∈ E} ∪ {(b, x) : (b, x) ∈ E}}). i.e., for

every neighbour x of the vertex a (resp. b) we add an edge (a′, x) (resp.

(b′, x)) to G∗, then we delete the two vertices a and b.

Proof. By definition 5.2, in order to prove that G∗ is a Laman graph, we have

to prove that it has a Henneberg construction. Because G is supposed to be

Laman graph, then, it has a Henneberg construction, let be : Gsteps. Because

H is supposed to be Laman graph, and by lemma 5.3, it has a Henneberg
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construction: Hsteps, that starts from the two nodes a′ and b′. We conclude

that the Henneberg construction of the graph G∗ will be Gsteps, followed by

Hsteps starting from the edge (a, b). Hence, G∗ is a Laman graph.

If m is the desired size of the largest subgraph, then, Algorithm 9 can be used

to generate a random well-constrained graph, according to the two metrics:

(1) the size of the largest sub-graph, (2) the degree of decomposition. Figure

5.8 shows an example of the different steps to generate a graph solvable only

by MM-Planners.

Notice, as seen in section 5.3, generally the procedure RH generates a non-

decomposable graph for m > 40 and p = 0. For m < 40, mostly, pro-

cedure RRH will be not efficient. In this case, instead of generating non-

decomposable graphs using RH(m, p), we can easily design a dataset of non-

decomposable graphs, having a size lower than 40 [80]. Step 4 of the procedure

RRH will be replaced by a random retrieval from this dataset. If we set the

parameter m to a desirable value of the size of the largest subgraph, the pa-

rameter p must be equal to zero.
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Algorithm 9 Generation of a random well-constrained graph, according to
the two metrics: (1) the size of the largest subgraph, (2) the degree of decom-
position.

Input: n: the size of the graph, p: the probability of choosing the first step

of Henneberg construction and m: the size of the largest subgraph;

Output: G(V,E): a well-constrained graph.

1: procedure RRH(n, p,m)

2: start with an initial graph G = K3

3: k ← n/m

4: for i← 1, k do

5: Generate a random graph H(VH , EH) of size m using RH(m, p);

6: Pick an edge (x, y) from G;

7: Replace the edge (x, y) by the graph H as follows:

8: pick two random vertices x′ and y′ from the graph H;

9: connect x′, to all neighbours of x;

10: connect y′, to all neighbours of y;

11: delete x and y;

12: V ← V ∪ VH ;

13: E ← E ∪ EH ;

14: end for

15: Complete G by adding a subgraph H = RH(n− |V |+ 2, p) as in steps

5-11.

16: return G

17: end procedure
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Figure 5.8: Four steps to generate a well-constrained graph solvable
only by MM-Planners.

(a) the initial triangle. (b) adding a vertex d using the first operation of
Henneberg HI. (c) adding a third vertex e using the second operation of
Henneberg HII, by deleting the edge (a, b) and connecting e to a,b and c.
Adding the vertex f using HII, by deleting the edge (e, c) and connecting
f to e, c and d.

Claim 1. Any structurally well-constrained graph can be generated by RRH.

Proof. Since RRH uses Henneberg construction, and any one of the two op-

erations (HI or HII) may be executed in each step of RRH, and by the defi-

nition 5.2, we can conclude that RRH generates all the domain of the well-

constrained graph in 2D.

Claim 2. A geometric constraints graph is solvable by any SR-Planner if and

only if p = 1.

Proof. ⇐ If p = 1, then the procedureRRH will start initially by a triangle,

and recursively replace an edge by a new graph H, generated by the

procedure RH. Because p = 1, RRH uses only the first operation of

Henneberg: H1. We recall that all SR-planners solve only a sub-domain
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of GCS. In [81], Joan-Arinyo et al. studied the domain of SR-planners,

they have proved in that Owen’s SR-planner proposed in [14] and the

planner proposed by Fudos and Hoffmann in [11] solve the same domain

of GCS. Recently, he proposed in [16] a new SR-Planner that also solves

the same domain. In order to prove the claim 2, we have to prove that

if a graph G is solvable by an SR-Planner (called reduction analysis)

proposed by Fudos and Hoffmann in [11], then, it can be generated

by procedure RRH for p = 1. Let us recall now the principle of the

reduction analysis algorithm. More details can be found in [11]. Given

the constraint graph G = (V,E), we consider the initial set of clusters

S0
G = {{u, v}/(u, v) ∈ E}. Cluster sets, that have a central role to

this method, are rewritten using a reduction →. The reduction → is

formally defined as follows: Let Sk
G be a set of clusters in which there

are three clusters C1, C2, and C3 such that: ∃g1, g2, g3 ∈ V,C1 ∩C2 =

{g1};C2 ∩C3 = {g3};C1 ∩C3 = {g3} and g1 6= g2 6= g3. (i.e., those three

clusters pairwise intersect in a singleton). Then: Sk
G → Sk+1

G , where

Sk+1
G = Sk

G − {C1, C2, C3} ∪ {C1 ∪ C2 ∪ C3}.

The solving process is a repetitive application of reductions →, that

starts from the initial cluster S0
G. If this process end with a singleton

{V }, i.e., the final cluster that contains only one element, which is the

set of nodes V , then the graph G is solvable by the reduction analysis

algorithm.

Because p = 1, the procedure RRH always uses the first operation HI

(in step 5 of Algorithm 9). The generation process of the graph G by

RRH is a sequence of graphs: G1, ..., Gn, with the following properties :

G1 = K3; Gn = G; and Gi+1 is obtained by replacing an edge e = (a, b)

of Gi by a graph H(VH , EH), which is generated using the first procedure

RH. We proof by induction that if there exist a sequence of reductions

for Gi, then there also exist a sequence of reductions for Gi+1.
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(a) G1 is a triangle; hence it is decomposable by the reduction analysis

algorithm (trivial).

(b) Suppose that there exist a reduction → for Gi(VGi, EGi) . Gi+1

is obtained by replacing an edge e = (a, b) of Gi by a graph

H(VH , EH), which is generated using the first procedure RH. We

show how the reduction of the graph Gi+1 by → is done, by first

reducing its subgraph H, and then, reducing Gi which is supposed

reducible. We first prove that H is reducible by →:

H is created by the procedure RH as follow: we start by a tri-

angle H0, Hi+1 is obtained by adding a new vertex v to Hi and

connecting it to two randomly chosen vertices of Hi: u and w

(p = 1, we use only HI). Suppose that Hi is reducible by →,

then it corresponding set of clusters can be reduced to set SHi

of a single cluster CHi containing u and w. CHi ∩ {u, v} = {u}.

CHi ∩ {w, v} = w and {u, v} ∩ {w, v} = v. Hence, the set of clus-

ters: {CHi, {u, v}, {w, v}} → {CHi ∪ {u, v} ∪ {w, v}} = SHi+1. We

deduce that the graph H is reducible by →. The final result of

the reduction process (as presented by Fudos and Hoffmann) is the

single set composed of the vertices of H, let be SH = {VH}.

To reduce Gi+1, initially, we form a set S0
Gi+1 from Gi+1. For each

edge e = (u, v) in Gi+1, there is a cluster C = {u, v} ∈ S0
Gi+1. The

reduction steps S0
Gi+1 will be as follow:

First, reduce the clusters of S0
Gi+1 that correspond to the edges of

H (EH ⊂ EGi+1). They will be reduced to a single set = VH . We

obtain a set of clusters Sk
Gi+1.

Gi is supposed decomposable by the reduction analysis, let S0
Gi be

its initial set of clusters.

Because Gi+1 is obtained by replacing an edge (a, b) of Gi(VGi, EGi
)

by the graph H(VH , EH), then, VGi
∩VH = {a, b}. Because (a, b) ∈
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EGi, then, {a, b} ∈ S0
Gi. If we replace the cluster {a, b} in S0

Gi by

VH , we obtain Sk
Gi+1. We know that a ∈ VH and b ∈ VH . Hence,

any merge of the cluster {a, b} ∈ S0
Gi will correspond to a merge of

the cluster VH ∈ S0
Gi+1. Hence the reduction of Sk

Gi+1 can be done

with the same sequence of reductions of S0
Gi, and end with a single

cluster. We deduce that Gi+1 is decomposable by the reduction

analysis. Hence, it is decomposable by any SR-Planner.

Finally, we conclude that if p = 1, then a graph G generated by the

procedure RRH is solvable by any SR-Planner.

⇒ Now we prove that if a graph G is solvable by any SR-Planner, then

G can be generated by the procedure RRH with p = 1. Let G be a

graph that is decomposable by the reduction analysis algorithm. Then,

SG1 → SG2 → ...SGk−1 → SGk
is the corresponding cluster reduction.

We prove that there is a sequence of steps in the procedure RRH that

generates G. SGK−1 is the penultimate set of clusters of the reduction

analysis, then it has three elements : L,M,N , where L ∩ M = g1;

L ∩ N = g2;M ∩ N = g3. The last step of the reduction corresponds

to the first step of the procedure RRH. (step 1 in algorithm 9. It

creates a triangle, let be {g1, g2, g3}. The three edges of this triangle:

(g1, g2), (g1, g3), (g2, g3), will be replaced respectively (steps 4 and 5 of

algorithm 9) by three graphs: GL, GM and GN that corresponds to the

three clusters: L, M and N . If a cluster C has only two elements, i.e.,

it corresponds to an edge, this edge will not be replaced by any graph,

but considered as a graph composed by only one edge. Because the

three graphs GL, GM and GN are well-constrained, every one of them

has a reductions sequence, and the last reduction of each sequence has a

corresponding step in the procedure RRH that can be demonstrated in

the same manner as the last reduction sequence of the graph G shown

above. Because there is a finite number of reductions, we deduce that, if
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n
p

50 100 150 200 250 300 350 400 450 500

500 5.850 3.750 3.000 2.850 2.300 2.050 1.450 1.400 1.700 1.100
600 7.300 3.550 2.450 2.950 2.600 2.050 2.400 2.100 1.050 1.200
700 5.800 3.350 3.250 2.950 2.800 2.450 2.150 2.000 2.000 2.000
800 7.800 4.500 3.400 2.900 3.100 2.600 2.600 2.050 2.250 2.050
900 7.500 3.500 3.600 3.000 2.600 2.800 2.650 2.650 2.000 2.000
1000 8.600 3.550 3.650 3.250 2.700 2.900 2.600 2.450 2.700 2.200

Table 5.4: The average number of subgraph detected for graphs generated
by RRH(n, 0,m) for different values of n and m.

a graph has a reduction sequence, i.e., it is solvable by any SR-Planner,

then it can be generated by the procedure RRH for p = 1.

5.5 Embedding over- and under-constrained

subgraph

Despite that we focus on well-constrained graphs, we can easily generalize

the algorithm RRH to model over-and under-constrained graphs. To embed

under-constrained subgraphs in the generated graph, we can easily remove

randomly chosen edges from the graph H generated in step 5 of the algorithm

RRH. Adding edges between randomly selected pair of nodes from the graph

H leads to an over-constrained graph.

5.6 Experimental results

We have successfully implemented the procedure RRH. We conducted ex-

periments to evaluate the solvability of graphs generated by procedure RRH.
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n
p

50 100 150 200 250 300 350 400 450 500

500 10 5 4 3 2 2 2 2 2 1
600 12 6 4 3 3 2 2 2 2 2
700 14 7 5 4 3 3 2 2 2 2
800 16 8 6 4 4 3 3 2 2 2
900 18 9 6 5 4 3 3 3 2 2
1000 20 10 7 5 5 4 3 3 3 2

Table 5.5: The average number of subgraphs detected for different graphs
generated by RRH(n, 0,m) and for different values of n and m. (the ex-
pected optimal case: using the procedure RH0 (see algorithm 8)to generate
subgraphs by algorithm 9 step 5 ; and for decomposition, using the MM

planner modified by pinning all edges, on in turn (section 4.5.4 )

Each generated graph that has a known number of subgraphs will be decom-

posed to show how those subgraphs are detected. Experiments are done for

graph size n in {500, 600, 700, 800, 900, 1000} and for the largest subgraph size

m in {50, 10.5, 150, 200, 250, 300, 350, 400, 450, 500}. To ensure that subgraphs

are not decomposable, we have fixed the parameter p to 0 and the size m of

the largestest subgraph to 50. We recall that for the other values of p and m,

experiments are presented in section 5.3.

We calculate the mean of the number of subgraphs detected after the decom-

position. Due to the randomness, for each size, we generate 20 instances of

each situation and calculate the mean. Table 5.4 gives the average number

of subgraphs detected after decomposition. Theoretically, we expect that the

number of subgraphs detected is at least equal to n/m. Table 5.4 shows

the opposite. For example, for n = 500 and m = 50, instead of detecting at

least 500/50 = 10 subgraphs, the decomposition returns only an average of

5.85. The method of decomposition that we used did not detect all subgraphs

(see section 4.5.4). We note that For RRH(500, 0, 500), the average was 1.1,

this mean that in some cases when generating a graph using the procedure

RRH (500,0) ( step 5 of algorithm 9), the resulted graphs are not always

non-decomposable due to randomness. Notice, those results may change with
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others decomposition algorithm. Figure 5.9 shows a large graph composed

of 500 vertices, generated by RRH(500, 0, 50). It contains ten non-reducible

subgraphs, each one is generated in step 5 of algorithm 9 and has a size

of 50 nodes. To be differentiated, subgraphs are plotted in different colours.

Some subgraphs will be merged because the creation process is a recursive

replacement of edge of the graph by a new generated subgraph H (step 6 of

algorithm 9.). In figure 5.9, the yellow subgraph is merged with the orange

and the brown with light-blue. To find the best decomposition possible, a

good planner must be able to isolate all of them. In table 5.4 (The top-left

cell of the table), the average number of detected subgraphs is 5.85 but the

optimal average is 500/10 = 10, as defined by the parameters of the algorithm.

If the algorithm 9 uses the procedure RH0 of the algorithm 8 instead of the

procedure RH of algorithm 7. And if the MM-Planner was used with the

modified version (pin all edges, one one in turn) as described in section 4.5.4,

then the expected optimal decomposition must be as defined by figure 5.5.

5.7 Conclusion

We presented two algorithms for generating 2D geometric constraint graphs.

The first one, RH, can be used to produce non-decomposable graphs or graphs

with a given degree of decomposability. The second algorithm, RRH, can

serve as a generator of graphs with the desired size of the larger subgraph. It

can also be parameterized to generate graphs that are solvable by SR-Planners

or MM-planners. We conducted an experimental study to show how generated

graphs are decomposable. Our graph generator is complete: it generates all

the domain of well-constrained geometric systems; Fast: linear in the number

of iterations; Customizable: it requires few parameters to generate a class-

specific graph with desired properties. It can be used to test and observe
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Figure 5.9: A well-constrained graph of 500 vertices generated by
RRH(500, 0, 50).
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the behavior of many SR-planners or MM-planners. Moreover, it enables

the comparison of solving methods with more data analysis rather than pure

theory. Efficient and straightforward: based on strong theorems and simple

to be implemented. It has been validated experimentally by decomposing

generated graphs with a well-chosen planner.
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6.1 Summary and Conclusions

The study was set out to explore the geometric constraint solving methods

and the design of a geometric constraint graph generator that is very helpful

for the analyzing the performance of geometric constraint solvers.

First, we have drawn on the powerful results from rigidity theory and com-

binatorial theory. We have shown that the geometric constraint problem is

well understood in two dimensions; however, only partial similar results are

available in three dimensions. We have then studied some solving approaches,

particularly, numerical solvers. Those latter are O(n3) or worse and their

acceleration consists in limiting their use to the smallest possible system of

equations, which can be done by decomposing the geometric constraint prob-

lem using graph-based approaches. There are two categories of graph-based

100
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methods: constructive solvers and general solvers. The first class that consists

of finding all triangles of the geometric constraint graph is limited only to a

sub-class of ruler and compass constructible GCS, and their generalization is

tough. The second category is based on the computation of the flow or the

maximum matching of the constraint graph with some appropriate connectiv-

ity analysis. This class is general, i.e., any GCS can be solved.

Major graph-based approaches are discussed or compared theoretically, with-

out presenting any tests highlighting their performances. There is a great

need for a tool which can help to perform tests with more data analysis rather

than pure theory. Hence, we have designed our geometric constraint graph

generator. In our design, we have taken care of many details, dictated by

many results provided in the literature. Our starting point was to study the

results provided by Henneberg [19] and discussed by Tay and Whiteley [77] .

Those results are addressed to the structural topology area on the construc-

tion of rigid frameworks. This method gave us a solid starting base. We have

adapted this method to the particular need of geometric constraints solving

in CAD context.

First of all, the generator has to cover all the domain of geometric constraints

solvers: without this property, it will be useless. This important point was

achieved and theoretically proved. The second goal is how to generate a par-

ticular class of graphs. Our study was based on the classification resumed in

the work of Hoffman et al. [15] , particularly the two main types of geomet-

ric constraint problems, the constructive and the general ones. Constructive

solvers are well studied, and cover perhaps the majority of cases presented

in the real CAD software. The second class is the general solvers, and they

handle any geometric constraint problem. Another challenge in our generator

design is the creation of non-decomposable geometric constraint graphs. As

far as we know, no such method was proposed before. We have also introduced

two key parameters that represent the decomposability metrics, the size of the
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largest subgraph and the degree of decomposability. These two parameters

can decide how fast will be the resolution process.

We have proposed two procedures. The first one is RH(n, p), it produces a

graph G of size n with a degree of decomposability equal to p. A value of p = 0,

mean that the graph is generally non-decomposable for size greater than 40

vertex. The second procedure, RRH(n, p,m), generates a graph G of size n

with a number of subgraphs equal to m and the size of the largest subgraph

equal to m. When p = 1, RRH generates only graphs that are decomposable

by SR-Planners, more than that, we have proved that it cover all the domain

of this class. Otherwise,i.e. if p < 1 it generates graphs decomposable by

MM-Planners. We think that those two procedures are mostly sufficient. Fi-

nally, we believe that all required properties of the generator were achieved.

The remaining step is to test how a geometric constraint solver perform when

taking generated graphs as input. We have implemented a well-chosen gen-

eral geometric constraint solver proposed by Ait-Aoudia et al. [10]. Several

experiments was reported in this thesis, the results were as expected, they

consolidate our theoretical findings and motivate its practical usage. We can

conclude that the proposed generator is ready to be used for the performance

analysis of any geometric constraint solver.

6.2 Further works

There are several aspect where there is potential for more study in the future.

We recommend and suggest that further development should be undertaken

in the following aspects:

• Extending the proposed generator to produce graphs in 3D space. It is

also useful to study the case where geometric elements have more than

two DOFs and geometric constraint can eliminate more than one DOF.
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• It is very interesting to evaluate some well discussed graph-based meth-

ods presented in the literature using our graph generator. A comparison

of the proposed methods can be made with more data analysis rather

than pure theory.



Appendix A

Some samples of

non-decomposable graphs

In this section, we present some samples of non-decomposable graphs with

different sizes. The complete list of graphs with size ranging from 6 to 100

can be downloaded from [80].

• Number of nodes = 6
Number of edges = 9
V = {1, ...,6}
E = { (1, 5), (1, 4), (1, 6), (3, 5), (3, 4), (3, 6), (2, 5), (2, 4), (2, 6) }

1

3

2

5

4

6

Figure A.1: A non-decomposable graph with 6 nodes.

104
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• Number of nodes = 8
Number of edges = 13
V = {1, ...,8}
E = { (1, 3), (1, 2), (1, 6), (3, 5), (3, 4), (2, 8), (2, 7), (5, 8), (5, 7), (5, 6),
(4, 8), (4, 7), (4, 6) }

1
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5

4

7

6

8

Figure A.2: A non-decomposable graph with 8 nodes.

• Number of nodes = 9
Number of edges = 15
V = {1, ...,9}
E = { (1, 9), (1, 4), (1, 7), (3, 5), (3, 7), (3, 6), (2, 5), (2, 4), (2, 7), (2, 6),
(5, 9), (5, 8), (4, 8), (7, 8), (6, 9) }
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Figure A.3: A non-decomposable graph with 9 nodes.

• Number of nodes = 10
Number of edges = 17
V = {1, ...,10}
E = { (10, 8), (10, 3), (10, 2), (1, 9), (1, 3), (1, 4), (1, 7), (3, 5), (3, 6), (2,
9), (2, 5), (2, 4), (5, 8), (5, 7), (4, 6), (7, 6), (9, 8) }
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Figure A.4: A non-decomposable graph with 10 nodes.
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• Number of nodes = 20
Number of edges = 37
V = {1, ...,20}
E = { (11, 3), (11, 12), (11, 6), (10, 1), (10, 3), (10, 12), (10, 15), (13,
19), (13, 12), (13, 17), (15, 2), (15, 18), (14, 2), (14, 5), (14, 17), (14, 6),
(17, 1), (16, 8), (16, 4), (16, 6), (19, 9), (19, 18), (18, 8), (18, 7), (20, 1), (20,
4), (20, 7), (1, 2), (1, 6), (1, 8), (3, 5), (3, 7), (2, 9), (2, 7), (5, 8), (5, 4), (9, 8) }
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Figure A.5: A non-decomposable graph with 20 nodes.

• Number of nodes = 30
Number of edges = 57
V = {1, ...,30} E = { (24, 1), (24, 9), (24, 29), (24, 23), (25, 19), (25, 5), (25,
16), (26, 18), (26, 7), (26, 10), (27, 13), (27, 12), (27, 28), (27, 4), (20, 12),
(20, 29), (20, 6), (21, 13), (21, 5), (21, 23), (22, 3), (22, 30), (22, 7), (22, 23),
(23, 4), (28, 5), (28, 7), (29, 16), (1, 10), (1, 3), (1, 15), (3, 2), (3, 5), (2, 8),
(2, 16), (2, 18), (5, 10), (4, 11), (4, 14), (4, 17), (4, 8), (7, 6), (6, 11), (6, 17),
(9, 13), (9, 12), (8, 19), (11, 18), (11, 30), (11, 15), (13, 14), (13, 16), (12,
18), (12, 14), (15, 17), (14, 19), (14, 30) }
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Figure A.6: A non-decomposable graph with 30 nodes.

• Number of nodes = 40
Number of edges = 77
V = {1, ...,40} E = { (24, 12), (24, 37), (24, 40), (24, 16), (25, 18), (25, 2),
(25, 28), (25, 38), (26, 1), (26, 32), (26, 5), (26, 29), (27, 9), (27, 28), (27,
37), (27, 4), (20, 33), (20, 8), (20, 7), (20, 16), (21, 32), (21, 12), (21, 36),
(21, 40), (22, 11), (22, 18), (22, 39), (22, 5), (22, 31), (23, 10), (23, 3), (23,
31), (28, 1), (29, 9), (29, 35), (29, 6), (40, 17), (1, 11), (1, 18), (1, 9), (1, 8),
(3, 11), (3, 39), (3, 15), (2, 19), (2, 39), (2, 30), (2, 14), (5, 19), (5, 13), (5,
34), (5, 6), (4, 10), (4, 13), (4, 14), (4, 32), (4, 8), (7, 10), (7, 30), (7, 6), (6,
33), (6, 38), (9, 15), (9, 17), (9, 33), (8, 15), (8, 17), (13, 35), (38, 30), (11,
34), (12, 35), (12, 34), (15, 31), (15, 16), (14, 36), (16, 19), (37, 36) }
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Figure A.7: A non-decomposable graph with 40 nodes.

• Number of nodes = 50
Number of edges = 97
V = {1, ...,50}
E = { (42, 39), (42, 38), (42, 15), (48, 9), (48, 13), (48, 16), (43, 39), (43, 31),
(43, 41), (23, 1), (23, 18), (23, 7), (24, 9), (24, 18), (24, 40), (25, 11), (25,
27), (25, 37), (26, 2), (26, 8), (26, 30), (27, 33), (27, 19), (20, 2), (20, 7), (20,
6), (21, 32), (21, 31), (21, 49), (21, 10), (22, 46), (22, 47), (22, 1), (22, 15),
(49, 33), (49, 1), (46, 12), (46, 37), (47, 18), (47, 37), (44, 13), (44, 14), (44,
34), (45, 9), (45, 10), (45, 34), (28, 10), (28, 14), (28, 4), (29, 3), (29, 2), (29,
16), (40, 17), (40, 16), (41, 32), (41, 6), (41, 17), (41, 50), (1, 39), (1, 17), (1,
6), (1, 9), (3, 34), (3, 14), (3, 50), (2, 17), (2, 4), (5, 11), (5, 14), (5, 6), (4,
19), (4, 35), (4, 16), (7, 8), (7, 13), (6, 13), (6, 38), (9, 35), (8, 12), (8, 31),
(8, 50), (39, 16), (38, 33), (11, 33), (11, 17), (10, 13), (10, 12), (10, 30), (13,
36), (12, 36), (12, 34), (15, 31), (14, 32), (19, 30), (19, 37), (19, 18), (36, 35)
}
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Figure A.8: A non-decomposable graph with 50 nodes.

• Number of nodes = 60
Number of edges = 117
V = {1, ...,60}
E = { (56, 25), (56, 26), (56, 52), (28, 24), (28, 18), (28, 6), (45, 18), (45, 6),
(45, 8), (50, 60), (50, 25), (50, 1), (50, 5), (60, 11), (60, 20), (53, 10), (53,
39), (53, 4), (34, 11), (34, 32), (34, 40), (34, 52), (23, 1), (23, 2), (23, 37),
(24, 1), (24, 8), (24, 14), (25, 10), (25, 58), (25, 47), (26, 27), (26, 31), (26,
4), (27, 9), (27, 16), (20, 9), (20, 13), (20, 35), (21, 9), (21, 17), (21, 22), (22,
10), (22, 5), (49, 36), (49, 17), (49, 43), (46, 2), (46, 31), (46, 30), (47, 31),
(47, 8), (44, 11), (44, 5), (44, 48), (48, 55), (48, 32), (48, 6), (42, 39), (42,
36), (42, 4), (29, 10), (29, 57), (29, 15), (29, 58), (40, 57), (40, 7), (41, 13),
(41, 38), (41, 59), (1, 13), (1, 16), (1, 6), (3, 11), (3, 4), (3, 17), (3, 14), (2,
16), (5, 12), (5, 59), (5, 19), (5, 9), (4, 43), (4, 7), (7, 9), (7, 55), (7, 14), (6,
58), (6, 51), (6, 37), (9, 15), (9, 33), (8, 12), (33, 18), (33, 31), (43, 57), (43,
16), (39, 37), (39, 38), (12, 32), (59, 32), (32, 10), (11, 31), (11, 51), (10, 37),
(13, 55), (38, 17), (15, 18), (15, 14), (16, 54), (16, 52), (19, 30), (19, 36), (18,
54), (18, 35), (30, 35), (51, 54) }
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Figure A.9: A non-decomposable graph with 60 nodes.

• Number of nodes = 70
Number of edges = 137
V = {1, ...,70}
E = { (56, 1), (56, 11), (56, 45), (42, 11), (42, 32), (42, 17), (22, 39), (22, 44),
(22, 53), (22, 3), (50, 18), (50, 43), (50, 48), (60, 19), (60, 18), (60, 15), (61,
24), (61, 5), (61, 6), (62, 3), (62, 63), (62, 45), (62, 41), (63, 55), (63, 47), (63,
64), (64, 5), (64, 29), (65, 11), (65, 6), (65, 16), (66, 8), (66, 15), (66, 4), (67,
2), (67, 12), (67, 4), (68, 32), (68, 20), (68, 52), (69, 2), (69, 45), (69, 14),
(52, 43), (52, 4), (23, 37), (23, 53), (23, 7), (24, 19), (24, 1), (25, 11), (25, 3),
(25, 16), (25, 41), (26, 1), (26, 10), (26, 9), (27, 3), (27, 43), (27, 7), (20, 12),
(20, 46), (20, 43), (20, 6), (20, 8), (21, 2), (21, 4), (21, 48), (21, 49), (48, 11),
(49, 47), (49, 45), (46, 15), (46, 57), (47, 17), (44, 28), (44, 6), (45, 30), (45,
38), (45, 70), (28, 33), (28, 34), (28, 4), (28, 41), (43, 2), (40, 33), (40, 35),
(40, 16), (41, 10), (1, 4), (1, 14), (35, 18), (35, 3), (3, 17), (3, 12), (3, 58), (5,
17), (5, 16), (5, 31), (5, 37), (4, 19), (7, 39), (7, 13), (6, 10), (6, 13), (9, 33),
(9, 51), (9, 13), (8, 55), (8, 37), (8, 70), (13, 15), (13, 29), (38, 18), (38, 29),
(70, 36), (59, 19), (59, 31), (59, 15), (29, 51), (32, 12), (58, 51), (58, 39), (10,
33), (39, 14), (12, 30), (15, 54), (15, 30), (15, 34), (55, 34), (19, 54), (54, 53),
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(31, 36), (31, 34), (36, 57), (53, 34), (34, 57) }
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Figure A.10: A non-decomposable graph with 70 nodes.

• Number of nodes = 80
Number of edges = 157
V = {1, ...,80}
E = { (30, 15), (30, 46), (30, 50), (30, 1), (30, 55), (30, 63), (30, 79), (28, 68),
(28, 36), (28, 23), (48, 5), (48, 38), (48, 20), (29, 69), (29, 26), (29, 2), (29,
37), (29, 66), (60, 31), (60, 45), (60, 6), (61, 46), (61, 13), (61, 43), (62, 1),
(62, 38), (62, 65), (62, 6), (63, 39), (63, 51), (63, 67), (64, 54), (64, 44), (64,
43), (65, 27), (65, 31), (66, 25), (66, 36), (67, 27), (67, 6), (68, 77), (68, 44),
(68, 71), (69, 46), (69, 18), (80, 19), (80, 79), (80, 17), (32, 47), (32, 13), (32,
74), (32, 18), (24, 8), (24, 14), (24, 7), (25, 10), (25, 2), (25, 5), (25, 58), (26,
19), (26, 17), (26, 53), (27, 18), (27, 52), (27, 75), (27, 47), (27, 78), (20, 9),
(20, 51), (20, 40), (20, 23), (58, 55), (58, 73), (58, 76), (22, 19), (22, 12), (22,
14), (23, 15), (46, 75), (47, 21), (44, 73), (44, 38), (44, 35), (45, 33), (45, 9),
(42, 11), (42, 43), (42, 14), (43, 5), (40, 2), (40, 7), (41, 1), (41, 8), (41, 12),
(41, 71), (1, 11), (1, 13), (1, 2), (35, 74), (35, 31), (3, 31), (3, 38), (3, 73), (3,
4), (2, 6), (5, 18), (5, 57), (5, 56), (5, 9), (4, 39), (4, 15), (4, 14), (4, 55), (4,
6), (7, 17), (7, 50), (6, 12), (6, 33), (6, 19), (9, 53), (9, 49), (8, 56), (8, 37),
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(49, 31), (49, 70), (49, 71), (49, 78), (39, 12), (39, 59), (34, 55), (34, 10), (34,
72), (77, 33), (77, 12), (76, 21), (76, 52), (75, 72), (74, 54), (72, 19), (70, 15),
(70, 17), (59, 33), (59, 79), (78, 56), (11, 16), (10, 15), (10, 21), (13, 16), (13,
54), (13, 53), (12, 37), (14, 36), (16, 51), (16, 21), (54, 57), (57, 52), (18, 50)
}
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Figure A.11: A non-decomposable graph with 80 nodes.

• Number of nodes = 90
Number of edges = 177
V = {1, ...,90}
E = { (24, 12), (24, 56), (24, 43), (24, 35), (24, 41), (24, 40), (24, 7), (24,
81), (25, 59), (25, 51), (25, 72), (25, 68), (25, 69), (25, 87), (26, 13), (26, 2),
(26, 17), (27, 80), (27, 63), (27, 21), (27, 16), (20, 47), (20, 44), (20, 89), (20,
50), (21, 60), (21, 40), (21, 77), (21, 73), (21, 4), (22, 83), (22, 30), (22, 4),
(22, 85), (23, 2), (23, 5), (23, 43), (23, 78), (28, 45), (28, 15), (28, 17), (28,
41), (29, 60), (29, 39), (29, 30), (4, 10), (4, 5), (4, 6), (4, 14), (8, 11), (8, 89),
(8, 72), (8, 9), (8, 81), (8, 85), (59, 9), (59, 2), (59, 65), (59, 74), (58, 33),
(58, 18), (58, 67), (55, 1), (55, 64), (55, 87), (54, 33), (54, 11), (54, 62), (54,
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38), (57, 9), (57, 12), (57, 66), (56, 90), (56, 62), (56, 71), (56, 84), (51, 73),
(51, 17), (50, 33), (50, 61), (53, 44), (53, 37), (53, 6), (52, 16), (52, 40), (52,
70), (88, 32), (88, 31), (88, 12), (89, 39), (82, 1), (82, 31), (82, 13), (83, 13),
(83, 45), (80, 2), (80, 43), (81, 39), (86, 47), (86, 71), (86, 67), (87, 62), (84,
18), (84, 48), (85, 69), (3, 46), (3, 2), (3, 17), (3, 70), (7, 46), (7, 42), (7, 79),
(7, 11), (39, 31), (39, 14), (38, 68), (38, 36), (38, 90), (33, 76), (33, 73), (32,
47), (32, 35), (32, 34), (31, 63), (31, 78), (30, 6), (37, 11), (37, 5), (36, 12),
(36, 14), (35, 77), (34, 5), (34, 48), (60, 65), (60, 17), (61, 47), (61, 16), (63,
11), (64, 65), (64, 41), (65, 75), (66, 15), (66, 71), (67, 79), (68, 19), (69, 6),
(2, 19), (2, 45), (6, 15), (6, 19), (6, 18), (6, 1), (6, 76), (90, 10), (11, 16), (11,
41), (10, 46), (10, 13), (10, 18), (12, 79), (15, 44), (15, 75), (14, 49), (17, 78),
(16, 19), (48, 9), (48, 75), (49, 1), (49, 43), (47, 76), (47, 77), (47, 70), (42,
74), (42, 72), (40, 74), (40, 71), (1, 9) }
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Figure A.12: A non-decomposable graph with 90 nodes.

• Number of nodes = 100
Number of edges = 197
V = {1, ...,100}
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E = { (24, 57), (24, 22), (24, 70), (25, 47), (25, 84), (25, 58), (25, 22), (25,
69), (26, 1), (26, 100), (26, 42), (26, 71), (27, 44), (27, 2), (27, 89), (27, 40),
(27, 74), (20, 11), (20, 76), (20, 88), (20, 5), (21, 14), (21, 23), (21, 51), (21,
1), (21, 88), (21, 68), (22, 59), (22, 17), (22, 23), (22, 52), (23, 50), (23, 39),
(23, 44), (28, 45), (28, 4), (28, 66), (28, 36), (29, 99), (29, 90), (29, 12), (29,
37), (29, 10), (4, 49), (4, 52), (4, 1), (4, 6), (4, 81), (8, 52), (8, 96), (8, 70),
(8, 34), (59, 80), (59, 62), (58, 39), (58, 17), (55, 80), (55, 63), (55, 15), (55,
36), (54, 77), (54, 9), (54, 92), (54, 71), (54, 70), (57, 69), (57, 93), (57, 48),
(56, 48), (56, 34), (56, 73), (56, 68), (56, 92), (56, 97), (56, 96), (51, 32), (51,
85), (51, 53), (51, 48), (50, 82), (50, 75), (50, 6), (53, 11), (53, 31), (53, 63),
(88, 67), (89, 37), (89, 71), (82, 68), (82, 63), (83, 69), (83, 38), (83, 66), (80,
100), (80, 75), (81, 45), (81, 41), (86, 32), (86, 12), (86, 37), (86, 87), (87,
39), (87, 43), (87, 94), (84, 39), (84, 7), (85, 62), (85, 97), (3, 13), (3, 73), (3,
31), (7, 91), (7, 9), (7, 5), (100, 45), (39, 15), (39, 72), (38, 36), (38, 76), (33,
47), (33, 93), (33, 5), (33, 40), (33, 17), (32, 14), (32, 78), (31, 61), (31, 17),
(30, 12), (30, 14), (30, 35), (30, 60), (30, 91), (30, 69), (37, 13), (35, 1), (35,
65), (34, 46), (34, 62), (34, 65), (60, 64), (60, 40), (61, 98), (61, 45), (61, 16),
(63, 64), (64, 6), (65, 48), (66, 90), (67, 9), (67, 12), (69, 77), (69, 97), (2,
46), (2, 10), (2, 12), (6, 10), (6, 13), (6, 14), (6, 98), (99, 47), (99, 78), (98,
42), (91, 18), (90, 49), (93, 15), (92, 95), (95, 76), (95, 42), (94, 19), (94, 9),
(96, 47), (11, 13), (10, 19), (13, 41), (12, 41), (15, 43), (15, 74), (15, 9), (14,
9), (16, 9), (16, 75), (16, 5), (19, 18), (18, 74), (18, 79), (49, 9), (49, 5), (46,
79), (44, 79), (45, 75), (42, 5), (43, 5), (1, 73), (9, 72), (77, 72), (71, 78) }
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Figure A.13: A non-decomposable graph with 100 nodes.
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Abstract: A geometric constraint system consists of a finite set of geometric elements,
such as points, lines, and circles, along with relationships of different types such as distance,
angle, incidence and parallelism. This problem is central to many applications, such as computer-
aided design, molecular modelling and recently localization in wireless sensor networks. Solving
a geometric constraint system consists of finding real coordinates of geometric elements in the
Euclidean space. In 2-dimensional geometric constraint solving, graph-based techniques are a
dominant approach, particularly in the computer-aided design context. To speed up the resolution
process, these methods transform the geometric problem into a graph, which is decomposed into
small subgraphs. Each one is solved, separately, and the final solution is obtained by recomposing
the solved subgraphs. However, most of the previous research on graph-based approaches has only
focused on the decomposition without any attention on what will be decomposed: the geometric
constraint graph. Major proposed algorithms are discussed or compared theoretically, without
presenting any tests on graphs instances with different structural properties, representing several
cases of difficulties. Why? because as far as we know, there is no known algorithm for the creation
of non-decomposable graphs or graphs with interesting structural properties that best highlight
the efficiency of any algorithm. Our contribution is the design of a simple, but efficient random 2D
geometric constraint graph generator. It can be used to make benchmarks for consistent tests, or to
observe the behaviour of geometric constraints solving algorithms. It produces problem instances
with various sizes and structural properties, covering different cases of complexity. Our design
is based on the problem classification reported in the literature. We proved that our proposed
generator is complete, customizable, simple and efficient. It has been validated experimentally
and some of its properties have been theoretically proved.

Résumé : Un système de contraintes géométriques est constitué d’un ensemble fini d’élé-
ments géométriques (points, lignes, cercles ...) et de relations géométriques tels que la distance,
le parallélisme, l’angle, l’incidence, etc. Ce problème est central dans de nombreuses applications,
en particulier la CAO. Résoudre un système de contraintes géométriques consiste à trouver des
coordonnées réelles des éléments géométriques dans l’espace Euclidien de telle sorte que toutes
les contraintes du système soient satisfaites. Dans l’espace 2D, les approches basées graphes sont
dominantes. Afin d’accélérer la résolution, ces méthodes transforment le système de contraintes en
un graphe qui sera ensuite analysé puis décomposé en petits sous-graphes. Chaque sous-graphe est
résolu, séparément, la solution finale est obtenue en recomposant les sous-graphes résolus. Cepen-
dant, la plupart des algorithmes proposés sont analysés ou comparés théoriquement sans présenter
des tests sur des cas de graphes de contraintes avec différentes propriétés structurales, représen-
tant plusieurs cas de difficultés. Cela est dû à l’absence de méthodes connues pour la création
de graphes de contraintes non décomposables ou ayant des propriétés structurelles qui illustrent
mieux l’efficacité des algorithmes. Notre contribution est la conception d’un générateur aléatoire
de graphe de contraintes qui est simple et efficace. Il peut être utilisé pour des analyses de per-
formances, permettant des tests cohérents, ou bien pour observer le comportement des solveurs
de systèmes de contraintes géométriques. Notre générateur produit des instances de problèmes
avec différentes tailles et propriétés structurelles. Notre conception est basée sur la classification
des problèmes rapportés dans la littérature. Nous avons prouvé que notre générateur est complet,
paramétrable, simple et efficace. Il a été validé expérimentalement et certaines de ses propriétés
ont été théoriquement prouvées.


