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Résumé de la thèse en français

Aujourd’hui, avec le développement rapide des technologies de communication
sans fil, des services de plus en plus nombreux apparaissent dans tous les aspects de
notre vie tels que les soins de santé, les bâtiments intelligents, la surveillance du trafic,
l’observation de champs de bataille, des applications multimédias. Le spectre étant
considéré comme une ressource limitée, il en résulte une compétition croissante entre
les applications sans fil. En outre, en raison de la stratégie d’allocation du spectre fixée
par l’autorité de régulation, la plupart des bandes de fréquences sont a priori réservées
pour certains utilisateurs agréés. Par exemple, la gamme de fréquences comprise entre
512 MHz et 608 MHz est attribuée aux canaux de télévision 21-36. Il n’existe que très
peu de bandes libres dans le spectre électromagnétique exploitable par les applications
sans fil. De plus, les bandes réservées semblent ne pas être pleinement exploitées; de
manière inattendue le taux d’utilisation du spectre semble être de moins de 30% [1].

Afin de faire face à la rareté et à la sous-exploitation des ressources spectrales, des
stratégies de partage du spectre ont été proposées. L’idée de base est de permettre à
chacun d’utiliser le spectre sous licence lorsqu’il n’est pas occupé par son propriétaire
officiel (utilisateur primaire). L’utilisateur secondaire n’est donc pas prioritaire et ne
doit causer aucune interférence à l’utilisateur primaire [2, 3, 4, 5]. Les technologies
de radio cognitive [6], se sont imposées dans cette stratégie, en utilisant un mécanisme
de cognition pour détecter le spectre, déterminer des groupes vacants et utiliser ces
bandes disponibles de manière opportuniste [7, 8]. La première étape du cycle de
la cognition est la détection du spectre, elle joue un rôle essentiel et central dans la
radio cognitive. L’utilisateur cognitif (utilisateur secondaire) doit détecter rapidement
et de manière certaine que l’utilisateur autorisé est présent ou non dans une bande de
fréquence considérée. Il existe diverses méthodes de détection de spectre pour la radio
cognitive dans la littérature [9, 10], mais très peu d’entre elles semblent être vraiment
appropriées au contexte des réseaux cognitifs de capteurs sans fil.

Les réseaux cognitifs de capteurs sans fil sont définis comme des réseaux distribués
de nœuds cognitifs de capteurs sans fil. Généralement conçus pour relever des mesures
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ou détecter des événements, les nœuds capteurs du réseau collaborent entre eux et com-
muniquent dynamiquement sur les bandes de fréquences disponibles. Un réseau cog-
nitif de capteurs sans fil possède donc des capacités cognitives pour l’exploitation du
spectre [11]; ce qui n’est pas le cas des réseaux sans fil traditionnels. Par conséquent,
les nœuds de capteurs sans fil sont équipés de la capacité cognitive. Les avantages at-
tendus sont multiples: (1) Utilisation plus efficace du spectre: Les nœuds des réseaux
de capteurs sans fil existants utilisent généralement une bande fixe sans licence pour
communiquer. Ces bandes libres sont donc en général très fréquentées par d’autres
appareils. Par conséquent, l’accès au spectre de manière opportuniste est en mesure
d’améliorer la cohabitation efficace des plusieurs utilisateurs/services. (2) Plusieurs
canaux de communication potentiels: Dans les réseaux de capteurs sans fil à forte
densité de déploiement, un grand nombre de nœuds de capteurs tentent d’accéder au
même canal en même temps. Cela augmente la probabilité de collisions et de pertes de
paquets, ce qui diminue la fiabilité globale de communication avec une consommation
d’énergie excessive. Les réseaux cognitifs de capteurs sans fil ont en revanche la ca-
pacité d’exploiter plusieurs canaux selon leur disponibilité de façon opportuniste pour
atténuer ces problèmes potentiels. (3) Efficacité énergétique: Les réseaux cognitifs de
capteurs sans fil sont en mesure de modifier leurs paramètres de fonctionnement selon
les conditions du canal afin d’optimiser leur consommation d’énergie liée aux trans-
mission. (4) Opérabilité mondiale: La réglementation d’exploitation du spectre peut
être différente d’une région à une autre, certaines bandes sont libres dans une région
tandis qu’elles ne sont pas exploitables dans un autre pays. Les réseaux de capteurs
cognitifs peuvent s’adapter à n’importe quelle réglementation grâce à l’agilité spectrale
des nœuds cognitifs.

Cependant, la réalisation de réseaux cognitifs de capteurs sans fil et les avantages
potentiels ci-dessus nécessitent de répondre à certains défis. En général, un nœud cog-
nitif de capteurs sans fil se compose de cinq éléments de base: une unité de détection-
capteur, une unité de traitement et de stockage, une unité dite de traitement-décision
dédiée aux fonctions radio-cognitives, un module radio émetteur-récepteur et une ali-
mentation. Souvent imposé par le contexte d’application, le nœud doit généralement
répondre à de nombreuses contraintes (limitation de la consommation, capacité de cal-
cul, durée de vie, la durée de détection, fiabilité des mesures . . . ). Notamment, les
nœuds sont parfois situés dans des endroits inaccessibles, ce qui exclut le remplace-
ment des piles et entraine dans ce cas que l’une des principales préoccupations pour
l’exploitation du réseau cognitif est la consommation d’énergie. Parmi les composants
des nœuds de capteurs, l’unité radio émetteur-récepteur consomme beaucoup d’énergie
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afin de fournir une connectivité aux autres nœuds. En outre, le traitement et la mémoire
sont également limités. En raison des contraintes de coût et de taille, les capacités de
traitement des nœuds peuvent s’avérer relativement limitées par rapport à d’autres sys-
tèmes embarqués [12]. Cependant, les différentes méthodes existantes de détection
du spectre pour la radio cognitive dans la littérature ne considèrent pas ces limites de
ressources des nœuds de capteurs. Par conséquent, concevoir une technologie spéci-
fique de radio cognitive pour les réseaux cognitifs de capteurs sans fil est un sujet non
résolu.

Dans le chapitre 2, nous présentons les techniques de détection de spectre dévelop-
pée dans la littérature. Ce chapitre reprend aussi les indicateurs de performance qual-
ifiant ces techniques. La détection du spectre peut se faire uniquement localement au
niveau de chaque nœud (détection locale), ou de manière coopérative entre plusieurs
nœuds du réseau (détection coopérative). Dans le cas de la détection locale du spec-
tre, nous présentons plusieurs méthodes basées sur les principes suivants: détection de
l’énergie, la détection à base de valeurs propres de la matrice de covariance des obser-
vations, test du Goodness-of-Fit etc.. Concernant la détection coopérative du spectre,
nous discutons de la détection du spectre de coopération centralisée et la détection
du spectre coopératif distribuée. Ensuite, nous nous concentrons sur la présentation
des méthodes de fusion. Il s’agit de générer une décision en combinant les données
issues des nœuds, à partir de règles (hard decision, soft decision, théorie des croy-
ances de Dempster-Shafer, etc.). Cependant, comme indiqué dans le chapitre 2, la
plupart de ces méthodes ont leurs limitations. Par exemple, la détection d’énergie per-
met d’atteindre une bonne performance de détection uniquement lorsque la taille de
l’échantillon est suffisamment grande [13]. De même, de nombreuses méthodes de
détection basées sur l’analyse des valeurs propres de la matrice de covariance ont été
proposées [14, 15, 16, 17, 18], mais la plupart d’entre elles ont des exigences intenables
en termes de durée d’observation (ce qui génère une grande taille de l’échantillon) et
de complexité de calcul.

Considérant les contraintes et les limitations précédentes des méthodes de détection
du spectre de la littérature, nous proposons d’étudier de nouvelles techniques permet-
tant de détecter le spectre à partir d’un faible nombre d’échantillons. Cette caractéris-
tique est en effet un moyen de limiter la consommation des circuits et la complexité
des traitements. Un petit nombre d’échantillons permet de réduire considérablement
la durée d’observation du spectre, ce qui se traduit aussi par une économie d’énergie
et une prolongation de la durée de vie de l’ensemble du réseau.

Dans le chapitre 3, une méthode locale de détection du spectre est proposée. Cette
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méthode repose sur un modèle statistique des signaux reçus ainsi que sur l’utilisation
de la théorie des croyances de Dempster-Shafer. Les échantillons du canal sont tout
d’abord séparés en plusieurs groupes pour former une variable aléatoire pour chaque
groupe. Le nombre d’échantillons étant faible, il apparaît que cette variable suit une
loi t de Student. Les paramètres de cette loi sont différents selon que le canal ne com-
porte que du bruit ou qu’il soit utilisé par un utilisateur primaire. Cette différence va
être exploitée pour distinguer les deux hypothèses (H0 absence d’utilisateur primaire
/ H1 présence d’un utilisateur primaire) en s’appuyant sur la théorie des croyances de
Dempster-Shafer. Ainsi pour chaque groupe d’échantillons, des BPA (Basic Probabil-
ity of Assignement) sont calculées pour les deux hypothèses: mi(H0) et mi(H1). Le
processus de fusion de Dempster-Shafer est ensuite utilisé pour produire une décision
finale à partir des BPA de tous les groupes d’échantillons. Les résultats de simulation
montrent que la probabilité de détection de la méthode proposée est supérieure aux
autres méthodes locales de la littérature lorsque le nombre d’échantillons est faible.

Dans le chapitre 4, une méthode coopérative de détection du spectre est proposée.
La technique repose aussi sur la théorie des croyances de Dempster-Shafer, mais le
processus de fusion permettant d’obtenir la décision globale exploite les BPA fournies
par chacun des nœuds du réseau. Cette fusion est faite au niveau d’un nœud particulier
appelé centre de fusion. Au niveau de chaque nœud (utilisateur secondaire) il s’agit
donc de calculer les BPA relatives aux deux hypothèses à partir d’un faible nombre
d’échantillons. Pour cela, la technique s’appuie à nouveau sur un modèle statistique
des observations. En effet, chaque utilisateur secondaire forme une matrice de co-
variance de ses observations. Ici encore, le nombre d’échantillons pour calculer cette
matrice de covariance est faible et de plus le taux d’échantillonnage est choisi rela-
tivement faible de telle manière que les échantillons sont considérés indépendants. Il
s’avère dans cette situation que la plus forte valeur propre de la matrice de covari-
ance est régie par une loi statistique de Tracy-Widom. Comme précédemment, les
paramètres de la loi sont différents selon que l’on soit en présence ou non d’un utilisa-
teur primaire. Cette différence est exploitée au niveau de chaque utilisateur secondaire
pour calculer les BPA pour les deux hypothèses. Les résultats de simulation permettent
de vérifier l’efficacité de la méthode proposée pour les faibles nombres d’échantillons.

Dans le chapitre 5, une autre technique coopérative de détection du spectre est pro-
posée. L’approche est différent du chapitre précédent car les critères privilégiés sont ici
la consommation et la fiabilité de la décision. Dans un premier temps l’organisation du
réseau en cluster est étudiée. Les nœuds (utilisateurs secondaires) sont donc regroupés
en clusters de manière à réduire la consommation globale liée aux communications
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pour effectuer la détection coopérative à l’échelle du cluster. Basé sur l’algorithme K-
mean, la technique de formation du cluster permet aussi de désigner le meilleur nœud
centre de fusion pour la détection de spectre dans le cluster. Ensuite la méthode de
détection de spectre consiste à mettre en œuvre un double critère de fiabilité des util-
isateurs. La théorie des croyances de Dempster-Shafer est une nouvelle fois utilisée
pour qualifier les deux hypothèses des utilisateurs secondaires et combiner ces infor-
mations au niveau du centre de fusion du cluster. La technique repose d’une part sur
une estimation du niveau de bruit reçu par chaque utilisateur et d’autre part sur le sou-
tien mutuel que s’accordent les utilisateurs entre eux. De cette manière un utilisateur
évoluant dans un milieu trop bruité verra sa crédibilité diminuer, et de même un util-
isateur fournissant des BPA trop différentes des autres verra aussi baisser sa crédibilité
(soutien mutuel). Enfin, les utilisateurs dont la crédibilité est trop basse sont rejetés
du processus de fusion pour la décision globale dans le cluster. Ce principe permet
d’améliorer la fiabilité de la décision car les utilisateurs secondaires les moins crédi-
bles ne participent pas à la décision. Un utilisateur peut être considéré non crédible par
exemple lorsque sa perception du canal est trop mauvaise ou simplement lorsqu’il est
défectueux. Des résultats de simulation sont fournis pour illustrer les performances du
système proposé.

La thèse se termine par une conclusion reprenant les différentes contributions et
indiquant quelques perspectives.
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1
Introduction

1.1 Background

Nowadays, with the rapid development of wireless communication technology,
more and more wireless services are used in all aspects of life such as health care,
intelligent buildings, vehicle traffic monitoring, battlefield surveillance, multimedia
applications and so on. The limited spectrum resource can not meet the growing de-
mand of wireless application. In addition, due to the existing fixed spectrum allocation
strategy, most frequency bands are specified for the licensed user (LU) where the other
communication device is not allowed to utilize it in spite of the unoccupied band. For
example, the frequency range between 512 MHz and 608 MHz is assigned as TV chan-
nel 21-36, which means that only TV user can use it, but the others can not occupy it at
any time. A mass of allocated frequency bands cause that the available spectrum is so
little. Even more unfortunately, the spectrum utilization rate of LU are unexpectedly
under 30% [1], as shown in Figure 1.1. The fixed mobile frequency band 1850-1990
MHz and the air traffic control frequency band 108-138 MHz are even used at 5%.

In order to solve the scarcity of spectrum resource and the low spectrum utiliza-
tion, dynamic spectrum allocation (DSA) which is a flexible and intelligent spectrum
management mode has been proposed [2]. In DSA, according to the actual require-
ments of wireless communication system, spectrum resource is dynamically allocated
to those wireless systems. When this process is finished, the spectrum is taken back by
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Figure 1.1 – A snapshot of spectrum utilization where each band averaged over 6
locations [1].

the assignment system. Although this management mode is efficient for the spectrum
utilization, it changed the current static frequency allocation schemes. Therefore, spec-
trum sharing strategy without altering the current frequency allocation schemes which
is considered as the popular spectrum sharing technique has been proposed. The basic
idea is to open licensed spectrum to unlicensed users while limiting the interference
perceived by licensed user. It mainly includes two approaches to spectrum sharing:
spectrum underlay and spectrum overlay [3].

The spectrum underlay approach allows that the unlicensed user accesses the li-
censed spectrum with a extremely low power, which results in multiple communica-
tion system using the same frequency band simultaneously [4]. Due to the very low
power of the unlicensed user, like a background noise for the licensed user, there is no
serious interference with the licensed user when the licensed and unlicensed users exe-
cute their own operations at the same time under the same frequency band. According
to this, the unlicensed ultra-wideband (UWB) working in the frequency range from 3.1
GHz to 10.6 GHz, whose power spectrum density emission is limited -41.3 dBm/MHz,
can coexist with the worldwide interoperability for microwave access (WiMAX) at 3.5
GHz band [5]. On the other hand, the spectrum overlay approach does not necessarily
impose severe restrictions on the transmission power of unlicensed users, but rather on
when and where they may transmit. In other words, when the licensed frequency band
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is unoccupied at spatial and temporal scales, the unlicensed user is allowed to operate
in the frequency band. In this spectrum overlay, two approaches including opportunity
spectrum sharing and cooperation spectrum sharing are considered.

In cooperation spectrum sharing, the licensed user needs to know whether the un-
licensed user is present or not. And when the licensed user prepares working, if the
unlicensed user is using the licensed frequency band, the licensed user chooses the
other unoccupied sub-channels for operating and does not interrupt the communica-
tion of the unlicensed user. In opportunity spectrum sharing, it does not know the
situation of the unlicensed user and has no cooperation between the licensed and unli-
censed user. When the unlicensed user needs to access the licensed frequency band, it
needs to detect whether the licensed user is present or absent. If the licensed frequency
is occupied by the licensed user, the unlicensed user can not access the spectrum;
otherwise, it can use the licensed spectrum. When the licensed user reoccupies the
frequency band, the unlicensed user needs to quit immediately and look for a new un-
occupied frequency band. Therefore, this approach is sufficient for Cognitive Radio
(CR) which is first proposed by Mitola [6] and is defined by Federal Communications
Commission (FCC) as : “A radio or system that senses its operational electromagnetic

environment and can dynamically and autonomously adjust its radio operating param-

eters to modify system operation, such as maximize throughput, mitigate interference,

facilitate interoperability, access secondary markets." [7].

CR utilizes a mechanism called cognition cycle as shown in Figure 1.2 [8] for
sensing the spectrum (spectrum sensing, SS), determining the vacant bands (spectrum
decision) and making use of these available bands in an opportunistic manner (spec-
trum mobility and spectrum sharing). As the first step of cognition cycle, spectrum
sensing plays an essential and central role in CR. The key of SS is that the cognitive
user (as the secondary user, SU) needs to detect quickly and reliably that the licensed
user (as the primary user, PU) is present or not in a considered frequency band. There
are various method of spectrum sensing for CR in the literature [9, 10], but a very few
of them seem to be really suitable in the context of cognitive wireless sensor networks
(CWSNs).

CWSNs is defined as distributed networks of wireless cognitive radio sensor nodes,
which sense event signals and collaboratively communicate their readings dynami-
cally over available spectrum bands in a multihop manner to ultimately satisfy the
application-specific requirements [11], which can be constructed by incorporating CR
technology into the traditional wireless sensor networks (WSNs). Therefore, the sen-
sor nodes in WSNs are equipped with cognitive ability, which may benefit the WSNs.
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Figure 1.2 – Cognition cycle.

The advantages of using CR in WSNs are discussed in the following:

• Efficient spectrum utilization: Current WSNs are deployed over unlicensed
frequency band, such as industrial, scientific and medical (ISM) radio bands,
which faces an increased level of interference from various wireless system. ISM
bands are overcrowded which limits the development of new technologies. Dy-
namic spectrum access in CR is able to make SU cooperate efficiently with other
types of users.

• Multiple channels utilization: In traditional WSNs referring to the detection
of an event, several sensor nodes generate bursty traffic. Especially, when in
densely deployed WSNs, a large number of sensor nodes attempt to access
the same channel at the same time. It increases the probability of collisions
and packet losses, which decreases the communication reliability with exces-
sive power consumption. CWSNs access multiple channels opportunistically to
alleviate these potential challenges.

• Energy efficiency: CWSNs may be able to change their operating parameters
according to the surrounding channel conditions in order to avoid the power
waste for packet retransmission due to packet losses in traditional WSNs.

• Global operability: Due to different spectrum regulations, a certain band in one
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specific region or country may be available, while it is not available in another
places. However, the sensor nodes with cognitive capability in CWSNs may
overcome this potential problem.

However, the realization of CWSNs and the potential advantages above depends on
addressing some challenges that are introduced by the wireless sensor node equipped
with cognitive capability in CWSNs. Generally, a cognitive wireless sensor node con-
sists of five basic units: a sensing unit, a processing and storage unit, a CR unit, a
transceiver unit and a power unit. Just like a traditional wireless sensor node, it has
hardware constrains in terms of computational power, storage and energy. Therefore,
considering the limitation of processing, memory and energy, it is still a serious chal-
lenge to design specific CR technology in CWSNs.

1.2 Motivation

It is provided that the cognitive wireless sensor node in CWSNs is resource con-
strained that refers to power limitation, hardware limitations, sensing duration and
reliability. Because most WSNs are inaccessible or it is not feasible to replace the bat-
teries of the node when the limited battery power is exhausted, the main concern for
the operation of CWSNs is the energy consumption. Among the components of sensor
nodes, the transceiver unit consumes the most energy in order to provide connectivity
to the other nodes. In addition, the processing and memory are also constrained. Due to
the cost and size constraints, the processing power of current nodes is seriously lower
than the other embedded systems [12]. However, the existing various methods of spec-
trum sensing for CR in the literature do not consider these limits of resource of sensor
nodes. For example, energy detection is able to achieve a good detection performance
only when the sample size is sufficiently large [13]. Numerous covariance matrix or
eigenvalue based detection methods have been proposed in [14, 15, 16, 17, 18], most
of them have the requirements of the long sensing time (large sample size) and the high
computational complexity.

Motivated by the constrained resource described and the limitation of the existing
spectrum sensing methods above, as a way of solving this problem, small sample size
is proposed to design new efficient CR techniques, especially in spectrum sensing al-
gorithms, which is able to preferably adapt in CWSNs. A small number of samples
can greatly reduce the data burden of the transceiver unit, which results in an exciting
energy saving. Due to the most energy consumed by the transceiver unit as shown
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above, small samples size plays a role to prolong the usage of sensor nodes and even
extend the lifetime of the whole network. Besides, it also alleviates the limits of the
processing power and memory. Therefore, small sample size is an efficient method
to adopt in CWSNs where sensor nodes are resource constrained and additional CR
actions is required.

In order to cope with the small sample size, we firstly propose to reformulate the
spectrum sensing into a student’s t-distribution test problem. It is demonstrated that
the student’s t-distribution test under small sample size can also provide a low error
rates close to the 5% nominal value [23]. Thus, according to this characteristic of stu-
dent’s t-distribution and taking into account several goodness of fit (GoF) tests [24],
an efficient local spectrum sensing method is proposed on basis of both hypotheses of
presence and absence of PU signal, which is able to get a high reliability of detection.
However, in order to focus on dealing with the small sample size, we do not consider
the channel condition in the system model of the proposed method. Hence, consider-
ing the SU practically experiencing path loss, multipath and shadowing, we propose to
adopt a cooperative spectrum sensing strategy based on multiple sensor nodes in order
to improve the reliability of detection, which is based on an adjusted Tracy-Widom
distribution that is suitable for small sample size. In summary, two solutions to small
sample size including the student’s t-distribution and the adjusted Tracy-Widom dis-
tribution are proposed at the beginning.

However, small sample size really increases the uncertainty of the observation sam-
ples and reduces the reliability of final decision. Therefore, our efforts begin with the
Dempster-Shafer (D-S) theory of evidence that can deal with the uncertainty from the
small observation samples and improve the reliability by fusing different data groups.
According to the D-S theory of evidence, after coping with the small number of sam-
ples, some basic probability assignment (BPA) are estimated with the characteristic of
the student’s t-distribution or the adjusted Tracy-Widom distribution. Finally, relying
on the fusion of different probability assignment estimations, we make a reliable fi-
nal decision whether a PU signal is present or not. These refer to the proposed local
spectrum sensing (LSS) based on the GoF principle and cooperative spectrum sensing
(CSS) based on D-S theory of evidence.

In addition, the energy efficiency of the whole network and the reliability of the
decision are also great challenges. On the one hand, an unreasonable allocation of
sensor nodes in the network can result in a great waste of the transmission power
among sensor nodes. On the other hand, it is necessary to consider the security issues
of sensor nodes in the whole networks. For example, sometimes some nodes inevitably
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fail in sending the information data due to battery depletion, electronic device under
harsh environment or even being attacked by malicious users. Considering the situation
mentioned above, a robust and energy efficient cooperative spectrum sensing scheme
is proposed, which is based on a clustering algorithm and utilizes a double reliability
evaluation.

1.3 Contributions

The main contributions of this thesis are summarized as follows.

• An efficient local spectrum sensing with small sample size is proposed. In the
proposed method, we reformulate spectrum sensing into a student’s t-distribution
test problem and propose some new basic probability assignment evaluations.
Then, the D-S theory of evidence is used to make a decision relying on both
hypotheses of presence or absence of PU. Simulation results show that the pro-
posed method can achieve a higher probability of detection than other compared
methods with small sample size.

• An efficient cooperative spectrum sensing with small sample size is proposed.
In the proposed method, considering the channel condition at each SU, a more
reasonable Tracy-Widom approximation is utilized to form a thin observation
matrix. Then, we also propose some new BPA functions based on the largest
eigenvalue of the received sample covariance matrix, which considers the credi-
bility of local spectrum sensing. Finally, a more reliable final decision is made.
Simulation results verify the effectiveness of the proposed method for small sam-
ple size scenarios.

• A robust and energy efficient cooperative spectrum sensing scheme in CWSNs
is proposed. In the proposed method, firstly, considering the energy consump-
tion of sensor nodes, we propose a cluster-based cooperative spectrum sensing
scheme where the energy consumption of the communications unit for the SU
is reduced extremely and the spectrum utilization of the spectrum hole for the
whole network is remarkably improved. Secondly, taking the reliability problem
into account, we propose a method that allows to consider simultaneously the
reliability of each SU in the cluster and the mutually supportive degree among
the whole set of SUs in the cluster, namely double reliability evaluation. Finally,
after removing the nodes of low credibility, the energy efficiency and reliabil-
ity of each cluster is improved. Simulation results show that the proposed CSS
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scheme clearly allows to save energy and provides a more robust decision under
faulty nodes situation.

1.4 Outline of the thesis

The remainder of this thesis is organized into five chapters as listed below.

• Chapter 2 overviews the developed spectrum sensing techniques in the literature.
At first, the performance indicators of spectrum sensing techniques are given.
Then, we discuss the local spectrum sensing techniques, where several local
spectrum sensing methods such as energy detection, eigenvalue based sensing,
GoF test based sensing, etc. are presented. After that, we introduce the coop-
erative spectrum sensing, which includes the centralized cooperative spectrum
sensing and the distributed cooperative spectrum sensing. We focus on present-
ing fusion methods such as hard-decision, soft-decision combining data fusion
schemes, bayesian fusion rule, D-S theory of evidence, etc..

• Chapter 3 presents the proposed local spectrum sensing with small sample size.
First of all, we take advantage of the student’s t-distribution to cope with the
small number of samples. Then some new basic probability assignment func-
tions are proposed in order to evaluate the reliability of observation samples.
At last, the D-S theory of evidence is used to make a decision. The simulation
results referring to the performance comparisons are also given.

• Chapter 4 presents the proposed cooperative spectrum sensing with small sam-
ple size. At the beginning, the system model considering channel conditions
is given. We then consider an adjusted Tracy-Widom distribution and use the
eigenvalue based method at each SU. After that, we estimate the reliability of
each SU and combine these results to make a final decision using D-S theory of
evidence. Some simulation results and analyses are given at the end.

• Chapter 5 introduces the proposed robust and energy efficient cooperative spec-
trum sensing scheme in CWSNs where some faulty nodes are existing. On one
hand, we make use of the clustering algorithm in the whole network. On the
other hand, a double reliability evaluation is presented in each cluster to remove
the nodes of low credibility. We also show the simulation results of each method
and give the performance comparisons with other methods.

• Chapter 6 gives the conclusions of this thesis and the possible directions in the
future work.



2
Overview of spectrum sensing
techniques

In order to improve spectrum efficiency and alleviate the problem of spectrum re-
sources constraints, the concept of cognitive radio is proposed which is a smart wireless
communication system. A cognitive radio is able to be aware of its environment and
learn from the surrounding, then change the corresponding operating parameters, such
as transmission power, carrier frequency, its modulation mode, etc., finally in real time
adjust the internal state of cognitive radio user to accommodate the impending change
in radio frequency excitation [25].

In cognitive radio, a major challenge is that the SU needs to sense the presence of
PU in a licensed frequency band, and to leave it as quickly as possible when the PU
emerges in order to avoid interference to the PU. This technique is called spectrum
sensing. As a critical part of CR, spectrum sensing has attracted a large amount of
interest and several spectrum sensing techniques have been widely studied in the liter-
ature [9, 10, 20, 21]. According to whether the sensing needs collaboration or not, we
can classify all spectrum sensing algorithms into two main types: local and coopera-
tive spectrum sensing, (as shown in Figure 2.1). In local spectrum sensing, the detector
makes a decision only on basis of its own sensing, whereas cooperative spectrum sens-
ing is able to use multiple devices and combine their measurements to make a decision.
Those techniques are briefly explained in Section 2.2 and Section 2.4, respectively.
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Spectrum Sensing 
Algorithms

Cooperative Spectrum 
Sensing

Local Spectrum 
Sensing

Figure 2.1 – The classification of spectrum sensing techniques.

Before exploring local spectrum sensing and cooperative spectrum sensing, we
describe performance indicators of spectrum sensing techniques in Section 2.1.

2.1 Performance indicators of spectrum sensing tech-
niques

Before showing the performance indicators of spectrum sensing techniques, the
general signal detection model and decision criterion are described. The spectrum
sensing, in a simple form can be formulated as a binary hypothesis testing problem
[9, 19],

H0 : y[n] = w[n] n = 1, 2, · · · , Ns

H1 : y[n] =

x[n]z }| {
h[n]⌦ s[n] +w[n], n = 1, 2, · · · , Ns

(2.1)

where H0 is the hypothesis of the absence (vacant channel) whereas the hypothesis
H1 denotes the presence (occupied channel) of the PU’s signal, y[n] represents the
received data at the SU with s[n] and w[n] denoting the signal transmitted from the
PU and the additive white Gaussian noise (AWGN) with variance �2

w, respectively.
Moreover, h[n] denotes the channel impulse response from the PU to the SU, and x[n]

is the received PU signal with channel effects. Ns is the number of samples. Note that,
for purpose of guaranteeing that the received data y (y =

⇥
y[1]y[2] · · · y[Ns]

⇤T ) does
not include SU’s own signal, we assume that the SU executes alternatively spectrum
sensing and data transmission.

In order to decide whether the observation y is generated under hypothesis H0

or hypothesis H1, it is typically accomplished by firstly forming a test statistic T (y)

with the received data y according to different spectrum sensing algorithms, and then
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comparing T (y) with a predetermined threshold ⇣ [9, 10]. In this way, we can decide
that the hypothesis H1 is true if T (y) > ⇣ whereas the hypothesis H0 is true if T (y) <

⇣ , as shown in Equation (2.2).

T (y)
H1

?
H0

⇣ (2.2)

In general, spectrum sensing needs to be able to reliably detect the presence of PU
and leave PU’s frequency band as quickly as possible in order to avoid interference
to PU. On the other hand, it needs to provide spectrum access opportunities as many
as possible to SU. In order to specifically show the performance of spectrum sensing,
some indicators are defined as follows [26]:

• Probability of detection (Pd)
It denotes the probability that we decide H1 when H1 is true.

Pd = P (T (y) > ⇣|H1) (2.3)

• Probability of miss (Pm)
It denotes the probability that we decide H0 but H1 is true.

Pm = 1� Pd = P (T (y) < ⇣|H1) (2.4)

• Probability of false alarm (Pfa)
It denotes the probability that we decide H1 but H0 is true.

Pfa = P (T (y) > ⇣|H0) (2.5)

As shown in Equation (2.3) and Equation (2.5), the high probability of detection
indicates that the SU provides reliable protection for PU and the high probability of
false alarm indicates that the SU loses spectrum access opportunities. Then, for an
outstanding spectrum sensing algorithm, both high probability of detection and low
probability of false alarm need to be accomplished as fully as possible. In order to
preferably show the performance of spectrum sensing, the receiver operating charac-
teristic (ROC) curve is presented in Figure 2.2, which gives the probability of detection
as a function of the probability of false alarm [19]. As shown in Figure 2.2, the ROC
curve is a concave function. The better spectrum sensing algorithm is, the deeper the
concave of the ROC is. In that case, both a low probability of false alarm and a high
probability of detection are obtained. Therefore, the ROC curve is a key indicator to
evaluate the performance of spectrum sensing techniques.
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Figure 2.2 – Illustration of the ROC curve in [19].

In addition, other indicators, such as detection sensitivity and sample complexity,
can be used to evaluate the performance of spectrum sensing algorithms. Detection
sensitivity presents the smallest signal to noise ratio (SNR) of received signal at SU
when the probability of detection of SU satisfies some conditions. For example, the de-
tection sensitivities of the digital television (DTV) signal and the wireless microphone
signal are respectively determined to -117 dBm (SNR = -22 dB) and -107 dBm (SNR
= -12 dB) by IEEE 802.22 working group [27]. Thus, an excellent spectrum sensing
method should meet the requirement of the detection sensitivity at least in order to ap-
ply it in practical systems. Sample complexity refers to the number of samples Ns, on
which spectrum sensing algorithms can achieve some level of performances under cer-
tain SNR conditions. It is generally denoted as a function of the SNR, Pfa and Pm, and
defined as Ns = ⇠(SNR, Pfa, Pm) [28]. For reasonable spectrum sensing algorithms,
⇠(SNR, Pfa, Pm) is a monotonically decreasing function. For example, the sample
complexity of a classic energy detection scales as Ns = O(1/SNR2

) [29]. These
metrics are used together to evaluate the performance of different spectrum sensing
algorithms in the rest of this thesis.
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2.2 Local spectrum sensing

Local spectrum sensing is substantially a detection process conducted by each SU.
It is based on local SU’s observation and aims to sense whether the PU signal is present
or not in a specific frequency band. Several local spectrum sensing techniques have
been studied in the literature [26, 30]. Matched filter detection (MFD) is the optimal
method when the PU signal is known [31, 32, 33, 34]. Cyclostationary feature de-
tection (CFD) which requires a prior knowledge of the PU signal characteristics, is
robust against noise uncertainty [32, 35, 36]. However, it needs a long observation
time and complex computation in order to get a good detection performance. Energy
detection (ED) is popular due to its low implementation complexity, but it suffers from
the noise uncertainty and requires a large number of samples for achieving a high
probability of detection [32, 37, 38, 39]. Waveform based sensing (WBS) as a sim-
plified version of the MFD is also robust to the noise uncertainty, but it also needs a
prior knowledge of the PU signal [40, 41, 42]. Eigenvalue based sensing (EBS) is not
only robust to noise uncertainty, but also requires no prior information of the PU signal
[43, 44, 45, 46, 47, 48, 49, 50]. Unfortunately, it suffers from the long sensing time and
the high computational complexity. Goodness of fit (GoF) test based sensing presents
an advantage under a small number of samples, which utilizes the distribution char-
acteristics of the background noise and is able to obtain a high detection performance
[51, 52, 53, 54, 55, 56, 57, 58]. In addition, wideband sensing has also attracted a lot
of interests [22, 59, 60, 61].

Most common local spectrum sensing techniques, which are listed in Figure 2.3,
will be briefly explained in the next sections.

Cyclostationary 
Feature Detection

Local Spectrum 
Sensing

Energy 
Detection

Matched Filter 
Detection

Eigenvalue Based 
Sensing

Waveform Based
Sensing

Wideband
Sensing

GoF Test Based
Sensing

Figure 2.3 – Local spectrum sensing techniques.
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2.2.1 Matched filter detection

The matched filter detection, which is a traditional coherent signal detection method,
is known as the optimum method when transmitted signal is known at the receiver side
[34]. Based on the signal model in (2.1), assume that y[n] is the input to a finite
impulse response (FIR) filter with impulse response h[n], where h[n] is nonzero for
n = 0, 1, · · · , Ns � 1, then the output at time n is

Output[n] =
nX

k=0

h[n� k]y[n]. (2.6)

Let the impulse response be a “flipped around” version of the signal s[n] with
power �2

s or

h[n] = s[Ns � 1� n] n = 0, 1, · · · , Ns � 1 (2.7)

then

Output[n] =
nX

k=1

s[Ns � 1� (n� k)]y[k]. (2.8)
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Figure 2.4 – Block diagram of matched filter detection [19].

Define the test statistic of the matched filter detection as the output at time n =

Ns � 1, which is given by [19]

TMFD = Output[Ns � 1] =

N
s

�1X

k=0

s[k]y[k]. (2.9)

By comparing this test statistic with a threshold ⇣MFD, a decision whether the PU
signal is present or not can be made.
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The block diagram of matched filter detection is illustrated in Figure 2.4. As shown
in Figure 2.4, the received signal y(t) goes through a band pass filter (BPF) to reject
out of band noise and adjacent signals, and then Nyquist sampling analogy-to-digital
converter (ADC), a FIR filter are applied to get the test statistic TMFD.

The test statistic TMFD is proved to be Gaussian under either hypothesis [29]. Thus

TMFD ⇠

8
><

>:

N (0, �2
w"), H0

N (", �2
w"), H1

(2.10)

where N presents a Gaussian distribution and " =
N

s

�1P
n=0

s2[n].

Then Pd and Pfa can be evaluated as:

Pd = Q
� � � "p

"�2
w

�
(2.11)

and

Pfa = Q
� �p

"�2
w

�
, (2.12)

respectively, where � is the SNR at SU and Q(x) =
R1
x

e�v2/2dv/
p
2⇡.

The main advantage of this method is that it maximizes the output SNR for a given
signal and needs less detection time because it requires only O(1/SNR) sample to meet
a given probability of detection constraint [62]. The minimum number of samples is a
function of the SNR � = �2

s/�
2
w, given by [29]

Ns =
�
Q�1

(Pfa)�Q�1
(Pd)

�2
��1 (2.13)

However, in order to get high processing gain and less detection time, this method
needs perfect knowledge of PU’s signal feature such as bandwidth, modulation type,
etc.. And as a coherent detection method, it requires synchronization with PU, which
is an unreasonable assumption in most typical spectrum sensing scenarios. In addition,
due to various signal types, the implementation complexity of sensing unit is high.
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2.2.2 Cyclostationary feature detection

The cyclostationary feature detection is an effective detection method which is
implemented based on the cyclostationary property of the received signal [63, 64, 65,
66, 67, 68]. In general, modulated signals are coupled with sine wave carriers, cyclic
prefixes, etc., which result in built-in periodicity. Therefore, they can be characterized
as cyclostationary. Since the noise is wide-sense stationary with no correlation, the
cyclostationary feature based detection can be used for detecting the presence of PU
signal. Furthermore, cyclostationary feature can be used for distinguishing among
different types of transmissions and PUs [67].

For a cyclostationary process s[n], its mean and autocorrelation are periodic in
time. Thus, its cyclic autocorrelation function (CAF) R↵

ss[k] = E
�
s[n]s⇤[n�k]e�j2⇡↵n

�

and conjugate cyclic autocorrelation function (CCAF) R↵
ss⇤ [k] = E

�
s[n]s[n�k]e�j2⇡↵n

�

are nonzero for a set of cyclic frequencies ↵ (↵ 6= 0); on the other hand, for a
signal which does not exhibit cyclostationarity, i.e. white Gaussian noise, its CAF
R↵

ww[k] = 0 and CCAF R↵
ww⇤ [k] = 0, 8↵ 6= 0. Therefore, according to the signal

model in Equation (2.1), an estimation of the conjugate cyclic autocorrelation function
of the observation samples at cyclic frequency ↵ may be obtained using Ns observa-
tions as [67]:

ˆR↵
yy⇤ [k] =

1

Ns

N
sX

n=1

y[n]y⇤[n+ k]e�j2⇡↵n (2.14)

= R↵
yy⇤ [k] + "↵yy⇤ [k] (2.15)

where k is the lag parameter in the autocorrelation and "↵yy⇤ [k] is the estimation error
which vanishes asymptotically as Ns ! 1. In practice, due to the error "↵yy⇤ [k], the
estimation ˆR↵

yy⇤ [k] is seldom exactly zero and a decision has to be made whether a
given value of ˆR↵

yy⇤ [k] presents a zero or not [64].

In general, a vector of ˆR↵
yy⇤ [k] rather than a value is considered in order to check

simultaneously for the presence of cycles in a set of lags k.

Let k1, k2, · · · , kN be a fixed set of lags, ↵ be a candidate cycle-frequency, A de-
note the set of cyclic frequencies of interest, and

ˆr↵yy⇤ =
h
Re

�
ˆR↵
yy⇤ [k1]

 
, · · · ,Re

�
ˆR↵
yy⇤ [kN ]

 
,

Im

�
ˆR↵
yy⇤ [k1]

 
, · · · , Im

�
ˆR↵
yy⇤ [kN ]

 i
(2.16)
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denote a 1⇥ 2N vector consisting of the estimated cyclic autocorrelations from (2.14)
with Re

� 
and Im

� 
representing the real and imaginary parts, respectively. If the

asymptotic (true) value of ˆr↵yy⇤ is given as r↵yy⇤

r↵yy⇤ =
h
Re

�
R↵

yy⇤ [k1]
 
, · · · ,Re

�
R↵

yy⇤ [kN ]
 
,

Im

�
R↵

yy⇤ [k1]
 
, · · · , Im

�
R↵

yy⇤ [kN ]
 i

, (2.17)

then the estimation in Equation (2.15) becomes

ˆr↵yy⇤ = r↵yy⇤ + "

↵
yy⇤ , (2.18)

where

"

↵
yy⇤ =

h
Re

�
"↵yy⇤ [k1]

 
, · · · ,Re

�
"↵yy⇤ [kN ]

 
,

Im

�
"↵yy⇤ [k1]

 
, · · · , Im

�
"↵yy⇤ [kN ]

 i
. (2.19)

Finally, by finding out whether there exists cyclic components in ˆr↵yy⇤ , the hypoth-
esis test in Equation (2.1) is reformulated in the following:

H0 : 8↵ 2 A, 8{kn}Nn=1 =) ˆr↵yy⇤ = "

↵
yy⇤

H1 : ↵ 2 A, for some{kn}Nn=1 =) ˆr↵yy⇤ = r↵yy⇤ + "

↵
yy⇤ .

(2.20)

The test statistic relying on the estimation ˆr↵yy⇤ is given by [64]

TCFD = Nsˆr
↵
yy⇤
P̂�1

2c (ˆr
↵
yy⇤)

T (2.21)

where
P̂

2c is the covariance matrix of ˆr↵yy⇤ , whose computation is given in Appendix
A. Under the null hypothesis H0, TCFD is asymptotically �2

2N -distributed. Thus, the
probability of false alarm Pfa is derived:

Pfa = P (TCFD > ⇣CFD|H0) = 1� F�2
2N
(⇣CFD), (2.22)

where F�2
2N

is the cumulative distribution function of �2
2N -distribution and ⇣CFD is a

threshold. Under the alternative hypothesis H1, it is proved that the test statistic TCFD
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Figure 2.5 – Block diagram of cyclostationary feature detection.

for Ns large enough approximate a Gaussian distribution [64], as follows

TCFD ⇠ N (Nsr
↵
yy⇤

P�1
2c (r

↵
yy⇤)

T , 4Nsr↵yy⇤
P�1

2c (r
↵
yy⇤)

T
). (2.23)

Therefore, after getting the threshold ⇣CFD by Equation (2.22), the probability of de-
tection Pd can be evaluated by

Pd = P (TCFD > ⇣CFD|H1) = Q
⇣⇣CFD �Nsr↵yy⇤

P�1
2c (r

↵
yy⇤)

T

4Nsr↵yy⇤
P�1

2c (r
↵
yy⇤)

T

⌘
. (2.24)

The block diagram of cyclostationary feature detection is illustrated in Figure 2.5.
There are various implementations of cyclostationary feature detector in the litera-

ture. In [32], two detectors based on estimating the spectral correlation density and the
magnitude squared coherence are proposed, which present a good performance in the
low SNR. In addition, a hardware implementation of a cyclostationary feature detector
is presented in [68], where a detection of 802.11g wireless regional access network
(WLAN) signal from air is demonstrated by the cyclostationary feature detector. How-
ever, this method also requires a prior knowledge of the signal characteristics, and it
needs a long observation time and complex computation.

2.2.3 Energy detection

Energy detection, which is a non-coherent detection method, has been demon-
strated to be simple, blind and able to detect the PU signal based on the received
energy. A block diagram of ED is shown in Figure 2.6.

In Figure 2.6, the received signal y(t) goes through a BPF to reject out of band
noise and adjacent signals, and then Nyquist sampling ADC, square-law device and
integrator are applied to measure the signal power at SU, that is the test statistic TED.
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Figure 2.6 – Block diagram of energy detection.

As shown in the following equation:

TED =

N
sX

n=1

|y[n]|2 (2.25)

where y[n] is the n-th sample of the received signal and Ns is the length of the sample.

In order to more comprehensively understand the performance of energy detection,
two analyses of ED including exact performance and Gaussian approximation (GA)
are considered as follows.

• Exact performance

The test statistic TED in Equation (2.25) has been proven to follow a central
chi-square (�2) distribution with Ns degrees of freedom when there is no signal
transmission from PU. Otherwise, it follows a noncentral �2 distribution with Ns

degrees of freedom and a non centrality parameter Ns� [37, 69]. Following the
short-hand notations mentioned at the beginning of Section 2.1, the test statistic
can be described as

TED ⇠

8
><

>:

�2
N

s

, H0

�2
N

s

(Ns�), H1

(2.26)

where � is the SNR of PU signal at SU.

Hence, the probability of false alarm and detection can be generally computed
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by [70, 71]

Pd = P (TED > ⇣ED|H1) = 1� F�2
N

s

✓
2⇣ED

�2
x + �2

w

◆
(2.27)

Pfa = P (TED > ⇣ED|H0) = 1� F�2
N

s

✓
2⇣ED

�2
w

◆
(2.28)

where ⇣ED is a predetermined threshold, F�2
N

s

presents the cumulative distribu-
tion function (CDF) of �2 distribution with Ns degrees of freedom, �2

x and �2
w

denotes the variance of x[n] and w[n].

According to Equations (2.27) and (2.28), by eliminating the threshold ⇣ED, the
ROC can be obtained as

Pd = 1� F�2
N

s

0

@
F�1
�2
N

s

(1� Pfa)

1 +

�2
x

�2
w

1

A (2.29)

where �2
x

�2
w

= � is the SNR and F�1
�2
N

s

is the inverse function F�2
N

s

.

In the exact performance analysis, in order to achieve a prescribed performance
(Pfa, Pd) for a given SNR �, the minimum number of samples Ns needs to be
exactly calculated. Because Ns can not be obtained from Equation (2.29), it is
necessary to execute multiple evaluations of two-dimensional functions such as
F�2

N

and F�1
�2
N

, which has a huge computational complexity in exact �2 distribu-
tion performance analysis [13].

• Gaussian approximation
In order to use low-complexity analytical expressions about the required number
of samples, it has been extensively shown that the test statistics TED can be well
approximated as a Gaussian distribution N . This is because the central limit
theorem conditions are satisfied by the large number of the received samples
(e.g. Ns >200). As a result, the following expressions are obtained.

TED ⇠

8
><

>:

N (Ns, 2Ns), H0

N (Ns(� + 1), 2Ns(2� + 1)), H1

(2.30)
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Then, in this case, the performance indicators Pd and Pfa can be written as

Pd =
1p
2⇡�1

Z 1

⇣
ED

exp
⇣�(t� µ1)

2

2�2
1

⌘
dt (2.31)

= Q
�⇣ED � µ1

�1

�
(2.32)

and

Pfa =
1p
2⇡�0

Z 1

⇣
ED

exp
⇣�(t� µ0)

2

2�2
0

⌘
dt (2.33)

= Q
�⇣ED � µ0

�0

�
, (2.34)

respectively, where µ0 = Ns, µ1 = Ns(� +1) and �2
0 = 2Ns, �2

1 = 2Ns(2� +1)

are the means and variances of the Gaussian distribution in Equation (2.30) under
both hypotheses H0 and H1. Combining Equations (2.30), (2.32) and (2.34),
Equation (2.29) becomes

Pd = Q
⇣
(1 + �)�1Q�1

(Pfa)� �(1 + �)�1
p
Ns

⌘
(2.35)

where Q(x) =
R1
x

e�v2/2dv/
p
2⇡ and Q�1 is the inverse function of Q. Clearly,

for a fixed Pfa in Equation (2.35), with the increasing of the samples Ns, the
probability of detection Pd rises up at any SNR. That is to say, if the sensing
time is arbitrarily long, Pd ! 1. However, in practice, this is typically not the
case.

The Figure 2.7 shows the ROC comparison of ED for the exact �2 model and the
Gaussian approximation model when the SNR � = -5 dB. As shown, the classical
GA in Equation (2.35) significantly deviates from the exact result in Equation (2.29).
Conversely, with the increase of the number of samples from Ns = 10 to Ns = 100, the
deviated distance is clearly reduced. This also verifies that the Gaussian approximation
of ED is a good estimation only when the number of samples Ns is sufficiently high.

In addition, the effect of the uncertainty of noise power is also a disadvantage of
ED. In ED, a decision whether the PU signal exists or not is simply made by comparing
the statistic TED with the noise power. Thus, accurate knowledge of the noise power
is necessary to get a reliable detection performance. However, in practice, the noise
uncertainty is always present. Assume that the estimated noise power is �̂2

w = ��2
w



40 CHAPTER 2. OVERVIEW OF SPECTRUM SENSING TECHNIQUES

Probability of false alarm
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y 
of

 d
et

ec
tio

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact

GA

Ns=100

Ns=35

Ns=10

Figure 2.7 – The ROC comparison of ED for the exact chi-squared model and the
Gaussian approximation model.



2.2. LOCAL SPECTRUM SENSING 41

where � is called the noise uncertainty factor. The bound of the noise uncertainty (in
dB) is defined as [72]

B = sup {10log10�} . (2.36)

And � (in dB) is evenly distributed in an interval [�B,B]. When the noise uncertainty
exists, ED is not a reliable sensing method [73]. However, ED still becomes one of the
most popular sensing techniques in cooperative spectrum sensing because of its simple
operations and no requirement on a prior knowledge of PU signals.

2.2.4 Waveform based sensing

Waveform-based sensing (WBS) aims to detect a prior known signals or sequences
expected with the PU signal through correlation detection [21, 40, 41, 42], which is a
simplified version of the matched filter detection where the exact PU signal is required.
Many wireless systems introduce known pre-patterns such as preambles, transmitted
pilot patterns, spreading sequences, etc. to assist synchronization or for other purposes.
Correlation between the received signal and a known copy of itself can be used to
detect the presence of a PU signal exhibiting this pattern. As shown in [40], waveform-
based sensing has better detection performance and requires shorter sensing time over
the energy detection. However, WBS needs to assume that a pattern exists in the PU
signal, and SU must know and detect this information. Especially when a wide range of
PU needs to be detected, the database of known pattern for SU may become large and
complex to manage. Moreover, synchronisation is required between PU and SU and an
error of synchronization can severely degrade the detection performance. Comparing
with the matched filter detection, waveform based sensing has a lower complexity [21].

2.2.5 Eigenvalue based sensing

As a result of requiring no prior information of the PU signal or no noise variance,
eigenvalue based detection has been widely investigated for blind spectrum sensing
methods in CR [43, 44, 45, 46, 47, 48, 49, 50]. Those eigenvalue based methods usu-
ally utilize the correlation structure inherent in the received data for sensing, which
results from the multipath propagation and/or oversampling of the PUs signal for a
single-antenna receiver or the deterministic channel during the sensing period for a
multiantenna receiver. It also involves that the statistical covariance matrices or the
eigenvalues of the covariance matrix of signal and noise are different. Thus, the dif-
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ference is used to differentiate the signal component from background noise in those
eigenvalue based methods where the knowledge of the noise variance is not required.

Considering L (called “smoothing factor”) consecutive samples and defining the
following vectors:

y

def
=

⇥
y[n] y[n� 1] y[n� 2] . . . y[n� L+ 1]

⇤T (2.37)

x

def
=

⇥
x[n] x[n� 1] x[n� 2] . . . x[n� L+ 1]

⇤T (2.38)

w

def
=

⇥
w[n] w[n� 1] w[n� 2] . . . w[n� L+ 1]

⇤T
. (2.39)

We can define the statistical covariance matrices of the received signal, the trans-
mitted signal passing through a wireless channel and the corresponding noise as

Ry = E
⇥
yy

H
⇤
, (2.40)

Rx = E
⇥
xx

H
⇤
, (2.41)

Rw = E
⇥
ww

H
⇤
. (2.42)

where (·)H denotes the conjugate transpose and E[·] is the mathematical expectation.

According to Equations (2.37 - 2.42), the hypothesis test in Equation (2.1) can be
reformulated as follows:

H0 : Ry = Rw

H1 : Ry = Rx + Rw,
(2.43)

In practice, a finite number of samples can be obtained for calculating the statistical
covariance matrix. Define the sample auto-correlations of the received signal as

�(k) = lim

N
s

!1
1

Ns

N
s

�1X

n=0

y[n]y[n� k], k = 0, 1, . . . , L� 1. (2.44)

where Ns is the number of collected samples.

Then, statistical covariance matrix Ry can be approximated by the sample covari-
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ance matrix defined as

Ry(Ns) =

2

66664

�(0) �(1) · · · �(L� 1)

�(1) �(0) · · · �(L� 2)

...
... . . . ...

�(L� 1) �(L� 2) · · · �(0)

3

77775
(2.45)

where the sample covariance matrix is a Toeplitz matrix, and it is also symmetric. The
eigenvalues of Ry(Ns) are defined as �1 � �2 � . . . � �L.

Depending on the difference of the statistical covariance matrices or its eigenvalue
between signal and noise, several covariance matrix or eigenvalue based methods have
been proposed in literature [50], such as the maximum-minimum eigenvalue (MME)
method [14], the eigenvalue arithmetic-to-geometric mean (AGM) method [15], the
covariance absolute value (CAV) method [16], the scaled largest eigenvalue (SLE)
method [17] and the function of matrix based detection (FMD) method [18]. These
methods will be explained in the following.

• Maximum-minimum eigenvalue (MME) method:
The MME method firstly takes advantage of the ratio of the maximum over the
minimum eigenvalue of the sample covariance matrix, that is, �max/�min, in
order to decide that the PU signal is present or not. The test statistic of the MME
method is given by [14]

TMME =

�max

�min

H1

?
H0

⇣MME, (2.46)

where ⇣MME is the decision threshold. If �max/�min > ⇣MME , the signal exists;
otherwise, the signal does not exist. The MME method overcomes the noise
uncertainty problem and can even perform better than the energy detection when
the samples of the signal to be detected are highly correlated.

• Arithmetic-to-geometric mean (AGM) method:
The AGM method is derived from a generalized likelihood ratio test (GLRT),
which only depends on the observations through ˆRy(Ns). The test statistic is
based on the ratio of the arithmetic mean over the geometric mean of the eigen-
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values of the sample covariance matrix, which is given by [15]

TAGM =

1
L

LP
i=1

�i

(

LQ
i=1

�i)
1
L

H1

?
H0

⇣AGM (2.47)

where �1 � �2 � . . . � �L are the decreasing sampling eigenvalues of ˆRy(Ns)

and ⇣AGM is the decision threshold of the AGM method.

• Covariance absolute value (CAV) method:
The CAV method makes use of the difference of the statistical covariances of
the received signal and noise. When signal is not present, Rx = 0. Hence,
Ry = Rw = �2

wIL, its off-diagonal elements are all zeros. When there is a signal
and the signal samples are correlated, Rx is not a diagonal matrix. Hence, Ry =

Rx + �2
wIL, some of its off-diagonal elements should be nonzeros. According to

this, the test statistic of the CAV method is given by [16]

TCAV =

T1

T2

H1

?
H0

⇣CAV (2.48)

where ⇣CAV is the decision threshold of the CAV method, and the two values T1

and T2 are calculated by

T1 =
1

L

LX

i=1

LX

j=1

|ri,j| (2.49)

T2 =
1

L

LX

i=1

|ri,i| (2.50)

where ri,j is the (i, j) entry of the sample covariance matrix ˆRy(Ns).

• Scaled largest eigenvalue (SLE) method:
When the number of PUs (or rank) is a priori known, the accurate generalized
likelihood ratio (GLR) method is proposed [17]. In the presence of a signal PU,
the rank-1 GLR detector employs the SLE as its statistic, which is called the SLE
method and is expressed as

TSLE =

�1

1
L

LP
i=1

�i

H1

?
H0

⇣SLE (2.51)
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• Function of matrix based detection (FMD) method:
In the FMD method, the trace operation is utilized to distinguish the PU signal
presence or absence, where the FMD method makes use of the monotonically
increasing property of function of covariance matrix. For example, as known, the
covariance matrix Rx is a positive semi-definite matrix with low rank, then Rx+

Rw > Rw. Based on the monotonically increasing property of trace operation,
as a result Tr (Rx + Rw) > Tr (Rw) is obtained. Thus, the existence of PU can
be detected. The test statistic of the FMD method is given by [18]

TFMD = Tr (Ry)

H1

?
H0

⇣FMD, (2.52)

where Tr(·) is the trace operation and ⇣FMD is the threshold of the FMD method.
The FMD method does not require the prior information of structure of PU sig-
nal, and it is able to work under extremely low SNR with limited sample data.

Algorithm 2.1 Pseudo code of eigenvalue based sensing
1: ⇣  Set the decision threshold
2: y Receive the sensing segment
3: ˆRy(Ns) Compute the sample covariance matrix according to Equation (2.45)
4: �i (i = 1, 2, · · · , L) Obtain the eigenvalue of the matrix ˆRy(Ns)

5: T  Calculate the test statistic
6: if T > ⇣ then
7: PU signal exists
8: else
9: PU signal does not exist

10: end if

Considering the mentioned methods above, the pseudo code of eigenvalue based
method is given in Algorithm 2.1.

In Algorithm 2.1, the decision threshold ⇣ can be determined by solving F (⇣) =

1 � Pfa, where F (x) is the cumulative density function (CDF) of the statistic under
H0. The CDF can be determined via theoretical derivation or Monte Carlo simulation.
Note that the major computational complexity of eigenvalue based sensing comes from
computation of the covariance matrix, the eigenvalue decomposition (EVD) of the
covariance matrix and computation of the test statistic T . According to this, various
methods present different complexity. The computational complexity of MME, AGM,
CAV, SLE and FMD are summarized in Table 2.1 [50].

As mentioned above, numerous covariance matrix or eigenvalue based detection
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Table 2.1 – Number of flops required in different eigenvalue based methods [50].

Method
Calculation
of ˆRy(Ns)

EVD of
ˆRy(Ns)

Norm of
ˆRy(Ns)

Total

MME
AGM L2Ns O(L3

) – L2Ns +O(L3
)

SLE
CAV L2Ns – L2 L2

(Ns + 1)

FMD L2Ns – – L2Ns

methods have been proposed, which overcome the noise uncertainty problem and can
even perform better than the energy detection. Moreover, there are no requirement
of the prior information of the PU signal. In addition to these advantages, most of
them have also some limits: the long sensing time (large sample size) and the high
computational complexity mainly resulting from the computation of the covariance
matrix and the eigenvalue decomposition of the covariance matrix. These limits hinder
the eigenvalue based detection to be applied in some practical applications. Therefore,
in order to overcome these problems, some new eigenvalue based method with small
sample size are proposed [50, 74, 75]. In [74], based on the latest development in
multivariate analysis of variance, the distribution of the largest eigenvalue of finite
sample covariance matrix is approximated as the form of sum of two gamma random
variables referring to the moment generating function of the distribution of the largest
eigenvalue and confluent form of Lauricella function. It is shown that the proposed
approximation can obtain a better detection performance for finite number of samples.
In [75], a cumulative spectrum sensing method with small data sets is proposed, where
oracle-approximating shrinkage estimation is utilized to get an accurate estimate of
the true covariance matrix. Concentration inequalities of statistics is also adopted to
demonstrate that the proposed method can work in a lower SNR with small data sets.

2.2.6 GoF test based sensing

In order to get a practical approach, the GoF test based detection is proposed which
utilizes the distribution characteristics of the background noise and can be easily ex-
tended to make use of the empirical cumulative density function, thus resulting in a
high detection performance [51, 52, 53, 54].

In the GoF test based detection, let y[n] (n = 1, 2, · · · , Ns) denote Ns local time-
domain observation samples at SU. Without loss of generality, each y[n] is assumed
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to be real-valued; otherwise, replace y[n] by its real and imaginary parts. In situations
when there is no signal transmission from the primary user, y[1], . . . , y[Ns] are only
the noise samples. In this case, they can be regarded as an independent and identically
distribution (i.i.d.) sequence with common cumulative distribution function F0(y).
However, on basis of the kind of modulation and the channel characteristics, the obser-
vations y[1], . . . , y[Ns] may not come from the distribution function F0(y) when there
is a signal from the primary user. Therefore, the spectrum sensing problem is now
equivalent to testing the null hypothesis

H0 : y is an i.i.d sequence drawn with distribution F0(y) (2.53)

against the general alternative that y is not an i.i.d. sequence drawn with distribution
F0(y). In other words, for the GoF test based detection, the binary hypotheses of
spectrum sensing at the beginning of this section can be formulated as follows:

H0 :F (y) = F0(y), (2.54)

H1 :F (y) 6= F0(y). (2.55)

where F (y) is the empirical CDF of the observation samples and can be calculated by

F (y) = |{i : Yi  y, 1  i  Ns}|/Ns, (2.56)

where for any finite set S , |S| denotes the cardinality of S . Note that in this GoF test
formula, there is no need of the knowledge of any information about the PU signal and
arbitrary noise distribution F0(y) can be assumed.

Depending on how to measure the distance between two distributions F (y) and
F0(y), many GoF tests have been proposed in literature [24, 76], such as Shapiro-
Wilk (SW) test, Kolmogorov-Smirnov (KS) test, Cramer-Von Mises (CM) test and
Anderson-Darling (AD) test. In the following, KS test, CM test and AD test are briefly
explained, which all perform well with small sample sizes [77].

• Kolmogorov-Smirnov (KS) Test:
In KS test, relying on the empirical CDF of the observation samples and the
reference CDF, the largest absolute distance between the two CDFs is used as
the GoF test statistic given by

TKS = sup{|F (y)� F0(y)| : �1 < y <1}, (2.57)
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where sup{·} is a supremum function which denotes the maximum element of
the set.

• Cramer-Von Mises (CM) Test:
The CM test is an alternative to the KS test, whose statistic is defined by

TCM = Ns

Z 1

�1

�
F (y)� F0(y)

�2
dF0(y). (2.58)

According to [24], and by breaking the integral into Ns parts, TCM can be ap-
proximated as

TCM =

1

12Ns

+

N
sX

n=1

�
F0(y[n])�

2n� 1

2Ns

�2
. (2.59)

• Anderson-Darling (AD) Test:
As shown in Equation (2.59), the CM test statistic TCM does not give enough
weight to the tails of the distribution F0(y). Thus, Anderson and Darling gener-
alized the CM test statistic in order to enhance the difference between the lower
and upper tails of the distribution. By introducing a weight function, the AD test
statistic is proposed as follows:

TAD = Ns

Z 1

�1

�
F (y)� F0(y)

�2
�(F0(y))dF0(y), (2.60)

where �(t) is a non-negative weight function defined over 0  t  1. As the AD
statistic, the weight function �(t) is selected to be �(t) = 1/(t(1� t)).

The expression of TAD can be also simplified to:

TAD = �Ns �
1

Ns

N
sX

n=1

(2n� 1)(lnZn + ln(1� ZN
s

+1�n)), (2.61)

where Zn = F0(y[n]).

After obtaining the GoF test statistic T (that is one of TKS, TCM and TAD), if T >

⇣ , reject the null hypothesis H0 and agree with the presence of signal transmission;
otherwise, declare that the channel is vacant. Algorithm 2.2 gives the pseudo code of
the GoF test based sensing.

Each kind of GoF test is appropriate to a specific distribution and various GoF test
based methods are proposed [78, 79]. In [80], the AD test based detection is pro-
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Algorithm 2.2 Pseudo code of GoF test based sensing
1: ⇣  Set the decision threshold according to the reference [24]
2: y[n] (n = 1, 2, · · · , Ns) Obtain the observation samples
3: Sort the sequence y[n] in increasing order such as y[1]  y[2]  · · ·  y[Ns]

4: T  Calculate the test statistic
5: if T > ⇣ then
6: PU signal exists
7: else
8: PU signal does not exist
9: end if

posed, where both analysis and simulation results show that under the same detection
conditions and channel environments, the detection performance of the AD test based
method outperforms ED, especially with a low SNR at SU. In [81], the KS test based
spectrum sensing method offers superior detection performance and faster detection
than ED and eigenvalue based detection. In [57], a new GoF test with a unilateral
alternative hypothesis for spectrum sensing is proposed, which is able to obtain an im-
provement of the detection performance under low computational complexity. And it
also evaluates that the superiority of the AD test based methods over the KS and CM
test based methods. In summary, most GoF test based spectrum sensing methods show
the similar advantages that there is no requirements of the prior knowledge of PU sig-
nal, the computational complexity is low and a better detection performance can be
obtained even under the small number of samples.

In the end, a basic comparison of the various local spectrum sensing methods men-
tioned in this section is presented in Figure 2.8. It is evident that matched filter detec-
tion has highest accuracy and waveform based sensing has the second highest accuracy.
It results from the coherent processing from using deterministic signal component,
but a prior information about PU signal’s characteristics should be known in advance.
Similarly, energy detection is least accurate compared to other approaches, as shown in
Figure 2.8. That is because the performance of energy detection is limited by the noise
uncertainty. But it is still one of the most popular methods in cooperative spectrum
sensing because of the least complexity of implementation. For other approaches, cy-
clostationary feature detection can get a higher accuracy than energy detection under
the condition of non-stationary noise. In addition, eigenvalue based sensing and GoF
test based sensing have obviously higher accuracy then energy detection, and they do
not need a prior knowledge of PU signal.
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Figure 2.8 – Sensing accuracy and complexity of various sensing methods [20, 21].

2.3 Wideband spectrum sensing

Wideband spectrum sensing aims to find more spectral opportunities over a wide
frequency range, for example, the ultra-high-frequency (UHF) TV band (between 300
MHz and 3 GHz), and achieve higher opportunistic aggregate throughput. According
to the difference of sampling rate, wideband sensing can be broadly categorized into
two types: traditional Nyquist wideband sensing and sub-Nyquist wideband sensing.

FFT
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Threshold 
device

1 0
/  
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Figure 2.9 – Block diagrams of traditional Nyquist wideband sensing based on multi-
band joint detection [22].

• Traditional Nyquist wideband sensing
Traditional Nyquist wideband sensing usually acquires the wideband signal us-
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ing a standard ADC at or above the Nyquist rate and then utilizes signal process-
ing techniques to detect spectral opportunities. For example, a multiband joint
detection method is proposed in [22] which is based on a simple detection struc-
ture (Figure 2.9) and can sense the PU signal over multiple frequency bands.
However, it’s worth noting that sampling signals in the traditional Nyquist wide-
band sensing follow Shannon’s theorem: the sampling frequency should be at
least twice the highest frequency contained in the signal to avoid aliasing. It is
very difficult to achieve such sampling frequency when the frequency band to
be detected is too wide. For example, if the wideband signal has frequency rang
5 ⇠ 10 GHz, the sampling rate should be at least 20 GHz, which is a significant
challenges for the implementation of the high-rate ADC.

• Sub-Nyquist wideband sensing
Facing the disadvantages of high sampling rate in the traditional Nyquist wide-
band sensing, sub-Nyquist based wideband sensing methods are proposed that
mainly include two methods: multichannel sub-Nyquist wideband sensing refer-
ring to the processing of dividing the wideband channel into multiple and jointly
sensing transmission opportunities on those channels, and compressive sensing
based wideband sensing focusing on the sparsity of the signal to be exploited. In
the following, some discussions and comparisons regarding these methods are
presented.

— Compressive sensing based wideband sensing
Due to the inherent sparsity of the wideband spectrum, compressive sens-
ing becomes a promising candidate to realize wideband sensing. The com-
pressive sensing is able to efficiently acquire a signal using relatively few
measurements and reconstruct it [82]. Authors of [59] introduce compres-
sive sensing theory for wideband spectrum, where sub-Nyquist rate sam-
ples are utilized to detect and classify frequency bands via a wavelet-based
edge detector. The robustness to noise is improved since spectrum location
estimation takes priority over fine-scale signal reconstruction. Moreover,
considering the acquisition cost and the implementation of compressive
sensing in the analog domain, [83] and [60] propose a distributed com-
pressive wideband sensing, which are based on a decentralized consensus
optimization algorithm, and an analog-to-information converter relying on
a new type of data acquisition system called a random demodulator, respec-
tively.
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— Multichannel sub-Nyquist wideband sensing
The multiband sensing problem can be reduced to a binary hypothesis test
if all subchannels are independent. However, in practice the primary user
occupancy can be correlated [84]. In this case, the detection problem be-
comes a composite hypothesis test and a huge complexity of the optimal
detector appears with the increasing of the number of subchannels. There-
fore, many multichannel sub-Nyquist wideband sensing methods have con-
sidered joint spectrum sensing and efficient resource utilization. In [61], an
asynchronous multirate wideband sensing method is proposed where sub-
Nyquist sampling is induced in each sampling branch to wrap the sparse
spectrum occupancy map to itself. The sensing requirements are therefore
significantly reduced.

In a word, various wideband sensing methods have been proposed, which are able
to obtain more spectral opportunities over a wide frequency range. And each wideband
sensing method mentioned above has some advantages and disadvantages. A summary
of these wideband sensing methods is shown in Table 2.2.

Table 2.2 – Summary of wideband sensing methods with advantages and disadvan-
tages.

Type Traditional
Nyquist WS

Compressive
sensing based WS

Multichannel
sub-Nyquist WS

Advantage Simple
structure

Low sampling rate,
signal acquisition cost

Low sampling rate,
robust model mismatch

Disadvantage High sampling
rate, energy cost

Sensitive to design
imperfections

Require multiple
sampling channels

2.4 Cooperative spectrum sensing

Local spectrum sensing has a number of limitations. First of all, the detection
sensitivity of a single detector can not meet the requirement of PU signal because of
the limits of processing and energy. Furthermore, local spectrum sensing can miss the
detection of PU who experiences a deep fading. Moreover, the SU who is shadowed
might not detect the PU signal, and then may try to utilize the frequency band of PU
when in the presence of PU. That is known as the hidden terminal problem. In order
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to effectively improve the detection sensitivity of SS and make it more robust against
depth attenuation, multipath shadows and the hidden terminal, cooperative spectrum
sensing is considered.

Cooperative spectrum sensing generally utilizes more than one detectors and com-
bines their results to make a more reliable decision. According to the different col-
laboration model, cooperative spectrum sensing technology is classified into two cate-
gories: centralized cooperative spectrum sensing and distributed cooperative spectrum
sensing.

• Centralized cooperative spectrum sensing
In centralized cooperative spectrum sensing techniques, multiple sensor nodes
(SUs) distributed in different locations firstly independently sense the local en-
vironment, and then transmit the sensing information to a central unity called
fusion center (FC), finally the FC makes the decision whether PU is present or
not on basis of the received information and diffuses the decision back to each
SU. The diagram of the centralized cooperative spectrum sensing is shown in
Figure 2.10.

PU

PU

PU 
Station

SU

SU

SU

FC

Figure 2.10 – The diagram of centralized cooperative spectrum sensing.

• Distributed cooperative spectrum sensing
In distributed cooperative spectrum sensing, due to lack of a central coopera-
tor, it works in a distributed manner. The SUs share their information among
themselves and update periodically on the spectrum information table in order
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to reach an unanimous collaborative decision, which thus occupies more storage
and consumes more energy than those nodes in the centralized CSS. The diagram
of the distributed cooperative spectrum sensing is shown in Figure 2.11.

PU

PU

PU 
Station

SU

SUSU

Figure 2.11 – The diagram of distributed cooperative spectrum sensing.

Based on the discussion above, for the centralized and distributed cooperative spec-
trum sensing, the final decision which is made by SU or FC depends on data fusion.
According to the way of fusing information, cooperative spectrum sensing techniques
can also be grouped into hard-decision combining or soft-decision combining. If SU
is sending signal characteristic about the presence or absence of the PU by using 1
bit of information, this is called hard-decision combining. If SU directly transmits the
received information or the test statistics calculated from its local observation, this is
called soft-decision combining.

2.4.1 Hard-decision combining data fusion schemes

In the hard-decision combining data fusion schemes, the final decision is made by
taking into consideration only the individual decisions reported by each SU. The main
advantage of the method is that it is simple and has small transmission overhead. In or-
der to simplify the explanations, some notation will be introduced first: Pd,i, Pfa,i and
Pm,i denote the probability of detection, the probability of false alarm and the prob-
ability of miss of the i-th SU in cooperative spectrum sensing scheme, respectively.
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Whereas their global representatives will be denoted as PD, PFA and PM .
In [85], three classic hard-decision combining methods, which are very simple, are

shown as follows:

• “And” Rule
The FC makes use of the way of logic “And” to merge the local detection results
(Pd,i and Pfa,i) from all Nsu SUs, which results in the cooperative detection
results (PD and PFA) as follows.

PD =

N
suY

i=1

Pd,i (2.62)

PFA =

N
suY

i=1

Pfa,i (2.63)

• “Or” Rule
Similarly, the way of logic “Or” is used in the FC. That is, the FC makes decision
that the PU is present if at least one of the SU decides for the presence of PU,
otherwise the PU is absent. Then, the cooperative probability of detection PD

and probability of false alarm PFA can be obtained in the following:

PD = 1�
N

suY

i=1

(1� Pd,i) (2.64)

PFA = 1�
N

suY

i=1

(1� Pfa,i) (2.65)

• “K order” Rule
The FC makes a decision that the PU is present if more than K users in Nsu SUs
decide the PU is present, otherwise it is absent. This is the general form of the
“And” rule and “Or” rule, when K = Nsu and K = 1, respectively. Then the
corresponding probability of detection and probability of false alarm are

PD =

N
suX

j=K

X
P

D
i

=j

N
suY

i=1

(Pd,i)
D

i

(1� Pd,i)
1�D

i (2.66)

PFA =

N
suX

j=K

X
P

D
i

=j

N
suY

i=1

(Pfa,i)
D

i

(1� Pfa,i)
1�D

i (2.67)

In addition, [86] studies the optimization of cooperative spectrum sensing based



56 CHAPTER 2. OVERVIEW OF SPECTRUM SENSING TECHNIQUES

on hard-decision combining data fusion for energy detection with equal SNR for all
SUs. In this case, it has been found that the optimal decision voting rule to minimize
the total error probability is the half-voting rule. Then, optimal decision threshold and
minimal number of SUs are derived, where optimality refers to the global probability
of error PFA + PM .

2.4.2 Soft-decision combining data fusion schemes

Due to only 1 bit information transmitted from SU to FC in hard-decision combin-
ing data fusion scheme, the reliability of detection is low and can not always satisfy
requirements. Thus, in order to improve the detection performance and reduce the
probability of false alarm, soft-decision combining data fusion schemes are proposed.
In soft-decision combining, observations from the local SU are delivered to the FC
to provide high level of information, but this increases the volume of communication
data.

Cooperative spectrum sensing scheme based on energy detection is considered in
[87], where soft-decision combining of the observed energy values from different SUs
is investigated. In this case, the observation energies from Nsu cooperative SUs are
scaled by weight factor and added up. The test statistic results of the weighted sum
and is given by

T =

N
suX

i=1

wiEi (2.68)

where Ei is the observed energy of the i-th SU and wi denotes the weighted factor
corresponding to the i-th SU.

Based on the different evaluation of the weights, two soft-decision combining
schemes including maximal ratio combination (MRC) and equal gain combination
(EGC) are proposed.

• MRC soft-decision combining scheme
In MRC soft-decision combining scheme, the weight coefficients are defined as

wMRC,i =
�iqPN

su

j=1 �
2
j

, 1  i  Nsu (2.69)

where �i denotes the instantaneous SNR of the i-th SU. After normalizing the
weights and assigning them to each SU, nodes with strong signals are further am-
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plified, while weak signals are attenuated. It is proved that MRC is the optimal
combination in the low SNR case, but it requires an estimation of the channel
gains.

• EGC soft-decision combining scheme
In EGC soft-decision combining scheme, the weight coefficients are calculated
as

wEGC,i =
1

Nsu

, 1  i  Nsu (2.70)

Note that the weights of EGC soft-decision combining scheme only depend on
the number of cooperative SUs Nsu. It is considered as the best choice for a
combination under the limitation of the channel state information of SUs.

Moreover, an extension of this research is proposed based on a softened hard com-
bination scheme with 2-bit overhead for each SU, but it has a much lower spectrum
sensing performance than the MRC and further requires a complicated computation
for the quantization threshold at each SU whenever the network size is changed.

In addition, there are substantial data fusion schemes, which are widely studied in
[88, 89, 90]. In the next sections, four data fusion mechanisms which enable both hard
and soft decision methods are described. They mainly include Bayesian fusion rule,
Neyman-Pearson criterion, Fuzzy fusion rule and Dempster-Shafer theory of evidence.
Some knowledge of these approaches are provided in the following.

2.4.3 Bayesian fusion rule

In Bayesian fusion rule, considering that there are Nsu local nodes (SUs), the ob-
servations at each SU are denoted by yi, (i = 1, · · · , Nsu) and y = {y1, y2, · · · , yN

su

}.
The observations at the individual SUs are assumed to be statistically independent. The
Bayesian criterion allows to determine the decision rule so that the expected cost E[C],
also known as Bayes risk R, is minimized. The expected cost is calculated by:

R = E[C] =
1X

i=0

1X

j=0

CijP (Hi|Hj)P (Hj). (2.71)

where Cij is the cost if deciding Hi but Hj is true. P (H0) and P (H1) are the prior
probabilities of hypotheses H0 and H1, respectively. P (Hi|Hj) is the conditional prob-
ability that indicates the probability of deciding Hi when Hj is true, which is defined
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by:

P (Hi|Hj) =

Z

R
i

p(y|Hj)dy (2.72)

where Ri = {y : decide Hi}, (i = 0, 1) is termed the critical region of deciding Hi

hypothesis, and p(y|Hj) is the probability density function (PDF) of y when hypothesis
Hj is true. By taking Equation (2.72) into (2.71), the Bayes risk is determined by:

R =C00P (H0)

Z

R0

p(y|H0)dy + C01P (H1)

Z

R0

p(y|H1)dy

+ C10P (H0)

Z

R1

p(y|H0)dy + C11P (H1)

Z

R1

p(y|H1)dy (2.73)

And
Z

R0

p(y|Hi)dy = 1�
Z

R1

p(y|Hi)dy (2.74)

since R0 and R1 partition the entire space. Substitute Equation (2.74) into (2.73), the
Bayes risk can be simplified to

R =C00P (H0) + C01P (H1)

+

Z

R1

⇣�
C10P (H0)� C00P (H0)

�
p(y|H0)

+

�
C11P (H1)� C01P (H1)

�
p(y|H1)

⌘
dy. (2.75)

Consequently, only if the integrand is negative, include y in R1. That is to say, we
decide H1 if

�
C10 � C00

�
P (H0)p(y|H0) <

�
C01 � C11

�
P (H1)p(y|H1), (2.76)

otherwise, we decide H0. Therefore, the decision rule from the Bayesian criterion is
the likelihood ratio test as follows:

p(y|H1)

p(y|H0)

H1

?
H0

(C10 � C00)P (H0)

(C01 � C11)P (H1)
(2.77)
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Define the likelihood ratio (LR) L(y) by

L(y) = p(y|H1)

p(y|H0)
=

p(y1, · · · , yN
su

|H1)

p(y1, · · · , yN
su

|H0)
(2.78)

Since the observations at each SU are independent, the LR can be simplified as follows:

L(y) = p(yi|H1) · · · p(yN
su

|H1)

p(y1|H0) · · · p(yN
su

|H0)

=

N
suY

i=1

p(yi|H1)

p(yi|H0)

=

N
suY

i=1

L(yi) (2.79)

Substituting Equation (2.79) into (2.77) and simplifying, the log likelihood ratio (LLR)
test is obtained as follows:

T =

N
suX

i=1

⇤i

H1

?
H0

⇣ (2.80)

where ⇣ is the Bayes optimal threshold to make a final decision and ⇤i denote the LLR
value of the i-th SU which is calculated by

⇤i = logL(yi) = log
✓
p(yi|H1)

p(yi|H0)

◆
. (2.81)

The threshold ⇣ minimizing the expected cost is determined by

⇣ = log
(C10 � C00)P (H0)

(C01 � C11)P (H1)
(2.82)

Usually, when the minimum probability of error criterion Pe is assumed, that is, C00 =

C11 = 0, and C10 = C01 = 1, the threshold reduces to

⇣ = log
P (H0)

P (H1)
. (2.83)

Based on the Bayesian fusion rule mentioned above, an optimal data fusion scheme
is proposed in [91] where a global decision is made by combining the individual SUs
while minimizing the overall probability of error and individual decisions are weighted
according to the reliability of the SU. However, the main problem of this method is that
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it requires that priori probabilities P (H1) and P (H0) to be known in advance.

2.4.4 Neyman-Pearson criterion

In the Neyman-Pearson test, the objective is to guarantee a target probability of
false alarm PFA = ↵ while maximizing the probability of detection PD. This method
is also based on calculating the LLR test and comparing the result with a threshold, as
shown in the following expression:

T (y) =
N

suY

i=1

p(yi|H1)

p(yi|H0)

H1

?
H0

⇣ (2.84)

where the threshold ⇣ is found from

PFA =

Z

{y:T (y)>⇣}
p(y|H0)dy = ↵. (2.85)

Unfortunately, each SU in the cooperative sensing processing, experiences differ-
ent reception conditions, thresholds can not be obtained analytically and their numer-
ical evaluation is an NP-complete problem. In contrast to Bayesian fusion rule, this
method does not require the prior probabilities of the hypotheses H0 and H1. How-
ever, it still requires the knowledge of a priori probability of yi (i = 1, · · · , Nsu) when
the global decision is H1 or H0.

2.4.5 Fuzzy fusion rule

Fuzzy reasoning is able to deal with imperfect data, which introduces the novel
notion of partial set membership enabling imprecise reasoning [92].

A fuzzy set F ✓ U is defined by the gradual membership function µF(u) in the
interval [0,1] as below:

µF(u) 2 [0, 1] 8u 2 U (2.86)

where the higher the membership degree is, the more u belongs to F . Thus, fuzzy data
fusion is able to utilize fuzzy rules and combine the fuzzy data which is produced by
vague sensing data with a gradual membership function.

There are two classifications in fuzzy fusion rule, which mainly include conjunctive
and disjunctive fuzzy fusion as follows:
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• Conjunctive fuzzy fusion
When the sources are homogeneous and the fusion data from the sources are
equally reliable, conjunctive fuzzy fusion rule is appropriate. Two examples are
shown in the following:

µA\B(x) = min
�
µA(x), µB(x)

�
(2.87)

µA\B(x) = µA(x) · µB(x), (2.88)

where A and B are fuzzy sets that A,B 2 U , x is an element in the U universe.
Equations (2.87) and (2.88) represent the standard intersection and product of
two fuzzy sets, respectively.

• Disjunctive fuzzy fusion
When high conflict among the data from the sources exists, disjunctive fuzzy
fusion is applied. Two examples are given by:

µA[B(x) = max
�
µA(x), µB(x)

�
(2.89)

µA[B(x) = µA(x) + µB(x)� µA(x) · µB(x), (2.90)

which represent the standard union and algebraic sum of two fuzzy sets, respec-
tively.

Accordingly, fuzzy fusion rule is well suitable for modelling the fuzzy membership
of a target in a vague class. Unfortunately, it requires prior membership functions for
different fuzzy sets.

2.4.6 Dempster-Shafer theory of evidence

The Dempster-Shafer theory of evidence, which was first introduced by Dempster
and was later extended by Shafer, is a mathematical theory of evidence which allows
to combine evidence from different sources and evaluate the credibility of system state
[93].

According to the D-S theory of evidence, denote ⌦ a finite set of mutually exclu-
sive and exhaustive hypotheses, and let 2⌦ be its power set. A function m: 2⌦ 7! [0, 1]

named basic probability assignment (BPA) is defined to quantify the candidate propo-



62 CHAPTER 2. OVERVIEW OF SPECTRUM SENSING TECHNIQUES

sition as follows:

m(;) = 0 (2.91)
X

A⇢2⌦

m(A) = 1 (2.92)

where, for any set A ⇢ 2

⌦, m(A) > 0 which provides the body of confidence that
proposition A is true. In D-S theory of evidence, there are two functions named be-
lief (bel) and plausibility (pl) that define the upper and lower bounds of a probability
interval from the mass assignment in the following:

bel(A)  P (A)  pl(A). (2.93)

These two functions, derived from the mass values, are respectively defined as a
map from set of hypotheses to an interval [0, 1] as follows:

bel(A) =
X

B✓A

m(B) (2.94)

and

pl(A) =
X

A\B 6=;
m(B), (2.95)

where bel(A) can be interpreted as the minimum or necessary support of one’s belief
that hypothesis A is true, while pl(A) may be viewed as the maximum or potential
support for that hypothesis.

In order to combine different sets of probability mass assignments from differ-
ent information sources, Dempster’s rule of combination is used. It makes use of the
orthogonal sum for multiple mass functions and then yields a new mass function. Spe-
cially, the new joint mass function m is calculated from the two mass functions m1 and
m2 in the following manner:

m(;) = 0 (2.96)

m(A) = (m1 �m2)(A)

=

1

1� 

X

B\C=A

m1(B)m2(C) (2.97)
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where

 =

X

B\C=;
m1(B)m2(C). (2.98)

 is often interpreted as a measure of conflict among different mass functions.

According to the D-S theory of evidence, several efficient cooperative spectrum
sensing methods have been proposed in order to make a reliable decision in the litera-
tures. In [88], the credibility of the channel condition between PU and SU is quantified
by the basic probability assignment (BPA) estimation and D-S theory of evidence is
firstly applied into FC in order to fuse the different detection from each SU. That turns
out to be better than the traditional logic fusion "And" and "Or" rules. The authors
in [94] reduce the reporting bandwidth and keep the performance by utilizing spe-
cial characteristics of hypothesis and employing the Lloyd-Max quantization method.
In [95], an enhanced D-S theory cooperative spectrum sensing algorithm is proposed
against spectrum sensing data falsification attack by removing the lowest reliable SU,
which is evaluated by considering the Max-Min similarity degree between any two
SUs. In [96], the authors evaluate the trustworthiness degree from the current and his-
torical aspects, and establish a "soft update" approach for the reputation value mainte-
nance, which results in obtaining a better detection performance compared with other
spectrum sensing methods.

Table 2.3 – Comparison of different data fusion schemes.

Method Pros Cons
“And” rule
“Or” rule
“K order” rule

Simple implementation,
small transmission overhead Low reliability, low robustness

MRC
EGC

Considering a weight factor,
improving reliability Increasing transmission overhead

Bayesian
fusion rule

Calculating a decision cost,
optimal fusion rule Requiring prior probabilities

Neyman-Pearson
criterion

Guaranteeing a target
probability of false alarm Requiring prior probabilities

Fuzzy fusion
rule

Intuitive approach to deal
with vague data Requiring membership functions

D-S theory
of evidence

Fusing uncertain data,
high reliability High computational complexity
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In the end, a comparison of different data fusion schemes given in this section
is presented in Table 2.3, where the pros and cons of each data fusion scheme are
summarized.

2.5 Summary

In this chapter, some developed spectrum sensing techniques are summarized. At
the beginning, the classification of spectrum sensing is shown and performance indica-
tors of spectrum sensing are given. Then, in local spectrum sensing, energy detection,
eigenvalue based sensing and GoF test based sensing are primarily introduced. In co-
operative spectrum sensing, the Bayesian fusion rule and Dempster-Shafer theory of
evidence are introduced in detail. Based on the observations of the spectrum sensing
techniques in the literature and considering the limits of current methods such as the
long sensing time and high energy consumption, we propose new efficient spectrum
sensing methods, which are introduced in the next chapters.



3
Proposed local spectrum sensing
technique

As described in previous chapter, wireless sensors in CWSNs have hardware con-
straints in terms of computational power, memory storage and energy. One way to
solve the problem, reducing the sampling brings an important advantage in CWSN ap-
plications. It is usually able to reduce the storage requirements and the computational
power consumption. Sometimes small sample size also means shorter time in real-time
data processing. This is particularly true when SU has only a single-radio architecture,
the time of sampling and observing the channel is expected to be as short as possible.
In the literature many spectrum sensing methods are limited by the number of samples
and has low reliability of detection. For example, energy detection, as the most popu-
lar technique, is able to achieve a good detection performance only when the sample
size is sufficiently large [13]. Thus, several goodness-of-fit test based methods are pro-
posed for the small number of samples [24], which rely on the Kolmogorov-Smirnov
test [81], the Cramer-Von Mises test [51], the Anderson-Darling test [80] and other sta-
tistical tests. These GoF test based methods can obtain better probability of detection
than ED. However, in these cases, the GoF test is only performed to assess the rejection
(or not) of the null hypothesis (the absence of PU signal). It seems reasonable to think
that the detection performance could be improved by considering both hypotheses of
presence and absence of the PU signal.

65
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Considering the challenges mentioned above, we propose an efficient local spec-
trum sensing method, which is able to get a high reliability of detection under small
number of samples. Firstly, in order to deal with the small sample size at SU, spectrum
sensing is reformulated into a student’s t-distribution test problem, which is popular
in situations where the sample size is small. Besides, based on the characteristics of
student’s t-distribution, new basic probability assignment functions are proposed for
estimating the presence or not of PU. However, due to the small number of samples,
the estimation of SU’s belief has inevitably a lack of reliability. In order to improve the
reliability, the D-S theory of evidence is used to make a final decision. In our scheme,
in order to fully exploit the collected sample, both hypotheses of presence or absence
of PU are assessed.

The remainder of this chapter is organized as follows. In Section 3.1, we give
a simplified system model for local spectrum sensing. The proposed local spectrum
sensing scheme with small sample size is presented in Section 3.2, where a statistical
model based on student’s t-distribution is firstly proposed to deal with the received
small samples, then new BPA functions are proposed to estimate the SU’s reliability
and finally a reliable decision is made by D-S theory of evidence. Simulations and
conclusions are respectively presented in Section 3.3 and Section 3.4.

3.1 System model

In this part of the work, in order to focus on how to cope with small sample size and
improve the reliability of spectrum sensing, we do not consider realistic radio channel
conditions, which means there is no path loss, no multipath and no shadowing. Thus,
we assume a simple system model similar to [80] and [53]. Let y[n] (n = 1, 2, · · · , Ns)
denotes the observation sample set made locally at the SU, where Ns is the number of
samples. Without loss of generality, we assume that each sample y[n] is real-valued.
Then spectrum sensing for PU signal detection in Equation (2.1) can be simplified as
follows

y[n] =

8
><

>:

w[n], H0

st + w[n], H1

(3.1)

where H0 and H1 respectively represent the hypothesis of absence and presence of
PU signal. w[n] is an additive white Gaussian noise with zero mean and �2

w variance,
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the transmitted signal st = 1 is assumed such as in [80]. This assumption can be
considered realistic for static signals, which can be found in the event detection of
a WSN, or in the case of the very high sampling rate. In these cases, the spectrum
sensing problem refers to a standard scenario with Gaussian distributions with equal
variance and different means under each hypothesis.

3.2 Proposed LSS with small sample size

The proposed local spectrum sensing method relies on a fusion processing using
the D-S theory and a new set of basic probability assignments (BPA). BPA definition
and evaluation are the key points of the D-S fusion. In most applications, it is generally
assumed that a sufficiently large number of samples is available in order to correctly
estimate BPAs and perform a reliable fusion. But in this work, we consider that the
SU is very limited in terms of sample size. Hence, we propose to define a new BPA
relying on the student’s t-distribution.

3.2.1 Statistical model of the received samples

Considering the small number of samples and the special sensing scenario about
detecting non-zero PU signal in a zero mean noise, it is demonstrated that the optimal
test in signal detection is the student’s t-test [55]. In order to construct the test statistic
in accordance with the student’s t-distribution, after collecting the sample data y[n]

(n = 1, 2, · · · , Ns) at the SU, we divide the samples into Ng groups where each group
has L (L > 1) samples, that is Ng = Ns/L. Let define ¯Yj and S2

j as the mean and
variance of the samples in the j-th group, respectively. Then, just as in [53],

¯Yj ,
L�1X

k=0

y[Lj � k]

L
(3.2)

and

S2
j ,

L�1X

k=0

(y[Lj � k]� ¯Yj)
2

L� 1

(3.3)

where j = 1, 2, · · · , Ng.
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Figure 3.1 – Histogram and the GoF of Zj under H0 hypothesis with only noise and
H1 hypothesis with signal plus noise.

As a result, a new variable Zj can be defined as:

Zj ,
¯Yj

Sj/
p
L
, j = 1, 2, · · · , Ng. (3.4)

Under H0 hypothesis, there is no signal transmission from PU, y[n] s N (0, �2
w),

thus Zj is proved to follow a student’s t-distribution with degree v = L�1. Otherwise,
under H1 hypothesis, the received signal samples include the PU signal and the noise,
then y[n] s N (µ, �2

w), where µ = st in our case. It comes that Zj has then a noncentral
student’s t-distribution with v = L�1 degrees of freedom and non-centrality parameter
� =

p
Lµ2/�2

w, µ2/�2
w is the SNR [53]. The histograms and the GoFs of the variable

Zj under H0 and H1 hypotheses are shown in Figure 3.1, where the number of samples
Ns = 64 and SNR = �2 dB. We can see that the histograms of only noise and signal
plus noise fit the student’s t-distribution and the noncentral t-distribution, respectively.
It is also obvious that the position of the curve of the noncentral t-distribution moves a
little to the right relative to the student’s t-distribution with the same degree of freedom.
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Figure 3.2 – The impact of the different degrees of freedom v = L � 1 for the proba-
bility density function (PDF) of student’s t-distribution.

Moreover, the shape of the probability density function of the student’s t-distribution
resembles the bell shape of a normally distributed variable with mean 0 and variance
1, except that it is a bit lower and wider. The larger L is, the more the student’s t-
distribution approaches the standard normal distribution. Conversely, when L is small,
the tail of that student’s t-distribution is much heavier than those of the normal distri-
bution, as shown in Figure 3.2. Hence for small L, it results that the variable Zj in
Equation (3.4) is prone to getting values that fall far from their statistical mean. This
leads to an unreliable BPA estimation and a poor detection performance. Therefore, we
propose to calculate Ng variable Zj and combine them by the D-S theory of evidence
for a reliable decision. In addition, in order to estimate the SU’s belief, the cumulative
distribution functions (CDF) of Zj under H0 and H1 denoted by F0(z) and F1(z) are
applied, which are given respectively in Equation (3.5) and Equation (3.6) [97], where
aj =

2j
2j+1aj�1, a0 = 1, bj = 2j�1

2j bj�1, b0 = 1, and I is the regularized incomplete beta
function.
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F0(z) =

8
>>>>>>>><

>>>>>>>>:

1
2 +

1
⇡

tan�1
(z), v = 1,

1
2 +

z
2
p
v+z2

(v�2)/2P
j=0

b
j

(1+ z

2

v

)j
, v � 2 even,

1
2 +

1
⇡

tan�1
(

zp
v
) +

z
p
v

⇡(v+z2)

(v�3)/2P
j=0

a
j

(1+ z

2

v

)j
, v � 3 odd,

(3.5)

F1(z) =

8
>><

>>:

1
2

1P
j=0

1
j!(��

p
2)

je�
�

2

2
�( j+1

2 )p
⇡
⇥ I( v

v+z2
;

v
2 ,

j+1
2 ), y � 0,

1� 1
2

1P
j=0

1
j!(��

p
2)

je�
�

2

2
�( j+1

2 )p
⇡
⇥ I( v

v+z2
;

v
2 ,

j+1
2 ), y < 0.

(3.6)

Note that in this statistical model we reformulate the received sample y into a new
form Z = {Zj}Ng

j=1, which has a student’s t-distribution and noncentral t-distribution
under H0 and H1 hypotheses, respectively. As shown in Equation (3.5), the CDF
F0(z) of Zj under H0 hypothesis only refers to the degrees of freedom v, while F1(z)

in Equation (3.6) is related to the parameter � =

p
L⇥ SNR. Thus we assume that

the noise variance �2
w is known, such as in ED based methods. For the D-S fusion,

we assume that Zj has at least 2 values, that is Ng � 2. Moreover, for the proposed
method, as explained in the next section, the PU signal detection is done by evaluating
the reliabilities of both H0 and H1 hypothesis, which is a beneficial feature that is not
used in the conventional GoF test based methods.

3.2.2 Basic probability assignment estimation

After collecting small number of samples y and reformulating it into the new value
Z = {Zj}Ng

j=1, Zj from the j-th group sample is used to estimate a SU’s self-assessed
decision credibility. According to D-S theory of evidence shown in Section 2.4.6, ⌦
denotes the universal set, and let 2⌦ be its power set. The BPA function m : 2

⌦ 7! [0, 1]

is able to quantify the candidate proposition as follows:

m(;) = 0 (3.7)
X

A⇢2⌦

m(A) = 1. (3.8)
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Figure 3.3 – The tendency of the BPA functions of Zj including mj(H0) under H0

hypothesis and mj(H1) under H1 hypothesis.

where, for any set A ⇢ 2

⌦, m(A) > 0. Then, in our framework, ⌦ = {H0,H1} and
2

⌦
= {;, {H0}, {H1},⌦}.

In order to estimate a SU’s credibility, we propose two new BPA functions mj(H0)

and mj(H1) for H0 and H1 hypotheses, which are given by

mj(H0) = 1� F0(Zj) (3.9)

mj(H1) = F1(Zj). (3.10)

Importantly, these BPA functions state the credibility for hypotheses H0 and H1 to
be true. For example, the larger of the value of Zj results in the larger mj(H1) and
the smaller mj(H0), and vice versa, as shown in Figure 3.3. Thus we can make a
decision whether the PU signal is present or not by comparing mj(H0) and mj(H1).
If mj(H1) > mj(H0), signal exists; otherwise, it is do not.

However, since the total number of samples Ns is small, it is obvious to tell that Zj

has been obtained with a very few number of them, i.e. L samples. This causes a big
uncertainty and increase the conflict between mj(H0) and mj(H1). Then a third BPA
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function is defined as follows:

mj(⌦) = 1�mj(H0)�mj(H1) (3.11)

where ⌦ = {H1,H0} denotes that both hypothesis could be true and mj(⌦) indicates
the total uncertainty of the jth group of samples. In order to improve the probability
of detection and reduce the influence of the conflict evidence, we make a final reliable
decision by fusing all BPA functions obtained from the Ng groups of samples.

3.2.3 D-S fusion and final decision

In order to improve the reliability of detection, we need to combine the Ng BPA
functions and make a final decision. Then, according to the basic D-S theory of evi-
dence and Equations (3.9), (3.10) and (3.11), two new combined BPA functions can be
obtained in the following:

m(H0) =
1

1� 

X

\A
j

=H0,A
j

⇢2⌦

j2{1,...,N
g

}

N
gY

j=1

mj(Aj) (3.12)

m(H1) =
1

1� 

X

\A
j

=H1,A
j

⇢2⌦

j2{1,...,N
g

}

N
gY

j=1

mj(Aj) (3.13)

where  is a measure of the amount of conflict among the mass sets:

 =

X

\A
j

=;,A
j

⇢2⌦

j2{1,...,N
g

}

N
gY

j=1

mj(Aj). (3.14)

Finally, based on all Ng groups of samples, the decision is made by comparing the
ratio between m(H1) and m(H0) as follows:

m(H1)

m(H0)

H1

?
H0

⇣ (3.15)

where ⇣ is the decision threshold. According to the constant false alarm rate (CFAR)
criterion, we can acquire in advance the threshold ⇣ corresponding to a given probabil-
ity of false alarm by Monte Carlo approach.
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Algorithm 3.1 Proposed SS method with small sample size
1: Initialization: j = 0
2: ⇣  Set the decision threshold
3: y =

⇥
y[1]y[2] · · · y[Ns]

⇤T  Get the received sample
4: Divide y into Ng groups (each group has L elements)
5: while j  Ng do
6: j  j + 1

7: Zj  Construct the new statistics using Equation (3.4)
8: F0(Zj), F1(Zj) Zj

9: mj(H0), mj(H1), mj(⌦) F0(Zj), F1(Zj)

10: end while
11: D-S fusion (m(H0), m(H1)) Calculate the final BPA functions using Equation

(3.12) and Equation (3.13)
12: if m(H1)

m(H0)
> ⇣ then

13: PU signal exists
14: else
15: PU signal does not exist
16: end if

Consequently, the pseudo code of the proposed spectrum sensing method with
small sample size is given as Algorithm 3.1. Note that the computational complexity
of the proposed method mainly comes from two parts: the construction of the statistics
Zj (in Step 7 in Algorithm 3.1) and the D-S fusion (in Step 11 in Algorithm 3.1). For
the first part, the statistics Zj is constructed by Equations (3.2), (3.3) and (3.4). Hence
Ng(3L� 2) additions and Ng(L+ 3) multiplications are needed. For the second part,
the computational complexity generally increases rapidly with the number of elements
in the frame of discernment (⌦) and the number of groups Ng, as shown in Equa-
tion (3.12) and Equation (3.13). However, since the frame of discernment consists in
only two elements {H0,H1} for the spectrum sensing, the combination of two mass
functions require the computation of 2 ⇥ 2 intersections [98]. Thus, (2Ng � 1) � 1

additions and (Ng � 1)⇥ (2

N
g � 1) multiplications are sufficient for the computation

of the second part. Moreover, in the proposed scheme, the small number of samples
Ns is considered. And due to dividing Ns samples into Ng (Ng � 2) groups, a large L

leads to a small Ng, which also reduces the number of BPA functions participating in
combination in order to simplify the computation of the D-S fusion. Above all, under
the same small number of samples Ns, the less the number of groups Ng is, the lower
the total computational complexity is.
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Figure 3.4 – Probability of detection versus SNR for the proposed method and ED with
different sampling numbers.

3.3 Simulation results and analysis

In this section, performance comparison among the proposed method, the method
based on GoF test [53] [58] and ED method [37] are given for different SNR and
numbers of sample, when the PU signal is not known. The noise power �2

w is assumed
to be known in ED method and in the proposed method.

Figure 3.4 presents the probability of detection of the proposed method with dif-
ferent sample numbers Ns = 16, L = 4 and Ns = 32, L = 2, 4, 8, 16, where the prob-
ability of false alarm is set to 0.05 for different SNR. As can be seen, with the increase
of the SNR, the probability of detection of the proposed method with Ns = 32 and
Ns = 16 rises up quickly which is better than the trend of the curves of ED method
with Ns = 32 and Ns = 16. For the proposed method, when the sample numbers
Ns = 32, the detection performance with L = 2 is the worst among all tests. As an
example, consider a SNR of -5 dB with the parameters used in the given comparison.
As shown in the magnified parts of Figure 3.4, when the number of samples Ns = 32,
the probability of detection with L = 2, 4, 8, 16 is 0.7887, 0.8748, 0.9069 and 0.9233,
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Figure 3.5 – ROC curves of the proposed method and ED with different sampling
numbers at SNR= -6 dB.

respectively. This also verifies that a large L results in a more reliable BPA estimation
and finally obtains a higher detection probability. In order to clearly reveal the pro-
posed method, the receiver operating characteristic (ROC) curves are shown in Figure
3.5 when the SNR = -6 dB. It is obvious that the performances of the proposed method
and ED are improved with the increase of the number of samples from Ns = 16 to
32. More specifically, as shown in the magnified parts of Figure 3.5, when the prob-
ability of false alarm Pfa is 0.11 with Ns = 16, L = 4 and Ns = 32, L = 2, 4, 8, 16,
the corresponding detection probability of the proposed method Pd reach 0.7100 and
0.8451, 0.9062, 0.9299, 0.9389, respectively. We can see that the performance of the
proposed method with L = 16 is the best under the number of samples Ns = 32. And
noting that Ng = 2 when Ns = 32, L = 16, the computational complexity is also the
lowest. Therefore, for the proposed method, when a small number of samples is re-
ceived, it should be divided into 2 groups to obtain the highest detection performance
and the lowest computational complexity.

Likewise, Figure 3.6 shows the ROC curves of the proposed method, the GoF
method in [53] with a number of samples of Ns = 16 and L = 4, the method in
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[58] and ED method with Ns = 16 at SNR= -3 dB. As it can be observed, the pro-
posed method and the GoF methods [53] [58], are better than ED when 16 samples
are used. When the probability of false alarm is equal to 0.10 and Ns = 16, the de-
tection probability of our method is 0.8926. This is about 7% better than the detection
probability of its counterparts (the GoF methods [53] [58]). Besides, the ED technique
with Ns = 16 samples shows much less performances. In addition, in order to facil-
itate comparisons with other methods, we determine the number of samples required
by the ED technique to achieve a similar performance. Thus, in Figure 3.6, it can be
observed that the black dot (Pfa, Pd) = (0.10, 0.9047) associated to the ED technique
using 80 samples is close to the position (Pfa, Pd) = (0.10, 0.8926) connected with
the proposed method using only 16 samples. Finally, reducing the number of samples
without sacrificing the detection performance is a very attractive feature in practice, be-
cause it brings an economy in terms of computational burden, sensing time and energy
consumption.
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3.4 Conclusion

In this chapter, we propose a local spectrum sensing method with small sample size
for small devices used in WSN. The advantage of the proposed technique compared
to the traditional energy detection is that only small number of samples is required.
In this work, the samples are fully exploited with a statistical model more suitable to
the small sample size case. New BPA functions based on a statistical model are con-
structed and used in a D-S fusion process, which reduces the conflict from different
sample groups and improves the detection performance. Simulation results show that
the proposed method achieves a higher probability of detection than other compared
methods with small sample size. Therefore, as a local spectrum sensing method, the
proposed method can be efficiently employed in cooperative spectrum sensing frame-
work.

However, there are also many limiting conditions in the proposed method. For ex-
ample, in order to focus on dealing with the small number of samples based on the
student’s t-distribution, channel conditions are not considered in the system model in
this chapter. Unfortunately, it is demonstrated that the radio channel conditions seri-
ously affect the detection reliability of local spectrum sensing methods. When a SU
practically experiences path loss, multipath, shadowing due to obstacles and possibly
non-line-of-sight between SU and PU, it is difficult for the SU to make a reliable de-
cision only on its own measurement. It is thus obvious that a stand-alone decision
about the fact that a PU is emitting or not, made independently by each SU, is not reli-
able enough. In that context it is much more preferable to use a cooperative spectrum
sensing strategy, which is introduced in Chapter 4.





4
Cooperative spectrum sensing
technique

As described in the previous Chapter, when considering the channel conditions
such as path loss, multipath and shadowing fading, the detection reliability of local
spectrum sensing method decreases. In order to solve this problem, cooperative spec-
trum sensing has attracted a lot of attention [10, 11] and has been shown to be an
effective technique to improve the detection performance by exploiting spatial diver-
sity. In cooperative spectrum sensing scheme, several distributed SUs in an area are
cooperatively involved in the spectrum sensing, which allows to mitigate the channel
effects. A fusion center (FC) is then in charge of merging information collected by the
SUs and making a final decision about the spectrum occupancy. Unfortunately coop-
erative sensing can incur additional computation and cost; i.e. delay, fusion processing
and overhead transmissions. In order to mitigate the impact of these issues, and not to
increase the overall computation cost of the cooperative spectrum sensing (CSS) pro-
cess at an unbearable level, a part of the solution is to reduce the sample size at each
SU.

As mentioned previously, when CSS is expected to get energy-efficient, a signifi-
cant reduction of sample size at each SU would be worthwhile. Although, an efficient
local spectrum sensing method based on GoF test is proposed to cope with small sam-
ple size in Chapter 3, it is still a big challenge to apply those methods into cooperative

79
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spectrum sensing. On the one hand, the transmitted signal in spectrum sensing method
based on GoF test is assumed as st = 1, which is only suitable for some cases in
practical applications. On the other hand, we do not consider the channel conditions
between the transmitter of PU signal and the receiver of SU in the spectrum sensing
method based on GoF test. Thus, in order to solve the problems, spectrum sensing tech-
niques based on the eigenvalue analysis of the samples covariance matrix have been
proposed recently. These methods make use of the statistics of the largest eigenvalue
of the covariance matrix of the observation that is a Tracy-Widom law, and exhibit
appealing performance [17, 18, 45, 50]. Since our ambition is to massively reduce
the number of samples used for the spectrum detection, we introduce an appropriate
approximation of the Tracy-Widom distribution to characterize the largest eigenvalue
in the very small sample size case.

Therefore, in this chapter, considering the channel conditions and relaxing the limit
of the PU signal compared with the PU signal in spectrum sensing method based on
GoF test, we propose a new method for coping with the small number of samples in
cooperative spectrum sensing. The method is based on an appropriate approximation
of the Tracy-Widom distribution and D-S theory of evidence. Firstly, according to the
small number of samples at each SU, a more reasonable Tracy-Widom approxima-
tion compared to other eigenvalue-based spectrum sensing techniques [17, 18, 45, 50],
is utilized to form a thin observation matrix, which allows to get a small dimension
covariance matrix. Then, we propose some new BPA functions based on the largest
eigenvalue of the received sample covariance matrix, which considers the credibility
of local spectrum sensing and is applied to the D-S theory of evidence. Finally, a
more reliable final decision is made. Simulation results verify the effectiveness of the
proposed method for different scenarios.

The remainder of the chapter is as follows. In Section 4.1, the local SS system
model based on the covariance matrix of received signal is introduced. The proposed
cooperative spectrum sensing scheme with small sample size is presented in Section
4.2, where a suited Tracy-Widom approximation is introduced and a thin observation
matrix is formed, then some new BPA functions are constructed at the local sensing
side, and finally the D-S fusion is applied at the FC. Simulations and conclusions are
respectively presented in Section 4.3 and Section 4.4.
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Figure 4.1 – Scenario and framework of cooperative spectrum sensing in CWSNs.

4.1 System model

In our work, we consider a centralized CSS based on D-S theory of evidence. As
shown in Figure 4.1, our system includes one PU, one FC and Nsu SUs, where each
SU is equipped with one antenna. Then, each SU senses the channel and sends the
acquired information to the FC. This latter makes a final decision and returns the results
to each SU. In detail, Figure 4.1 shows the CSS framework where spectrum sensing is
periodically executed before data transmissions [94]. Firstly SU receives the sensing
request from the FC and measures the channel, then each SU reports its sensing or
processed information to the FC, finally the FC makes a decision whether the PU is
present or not, and broadcasts the result to each SU. Therefore, in the following we
present the system model in local sensing at SU.

For presentation convenience and without loss of generality, we consider the local
spectrum sensing with a discrete model. Then, spectrum sensing can be formulated as
a binary hypothesis test between the following two hypotheses:

H0 : y[nTs] = w[nTs] (4.1)

H1 : y[nTs] = h

T
s[nTs] + w[nTs] (4.2)

where Ts is the sampling period, h = [h[0], h[Tc], . . . , h[(Nc � 1)Tc]]
T stands for

Nc taps of the multipath discrete channel impulse response which includes the trans-
mission filter, the channel itself and the receiver filter. The length of each tap is Tc,
Th = NcTc being the maximum length of the impulse response. Here, we consider
that the received signal of a SU is sampled at a low rate Ts > Th (under-sampling).
This aims to assume that the observation samples are uncorrelated, which plays an
important role in next largest eigenvalue analysis. For practicality and without loss of
generality, we consider the channel h as the Clarke’s Rayleigh fading model which is a
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baseline filtered white Gaussian noise (FWGN) model [99, 100]. In the Clarke model,
isotropic scattering and linear relationship between input and output are assumed, and
it includes two branches, one for a real part and the other for an imaginary part. The
random process of Clarke’s fading model with Nm multipaths can be described as the
sum-of-sinusoid as follows:

hI [lTc] =
1p
Nm

N
mX

i=1

cos{2⇡fD cos[

(2i� 1)⇡ + ✓

4Nm

]lTc + ↵i} (4.3)

hQ[lTc] =
1p
Nm

N
mX

i=1

sin{2⇡fD sin[

(2i� 1)⇡ + ✓

4Nm

]lTc + �i} (4.4)

h[lTc] = hI [lTc] + jhQ[lTc] (4.5)

where ✓,↵i and �i are uniformly distributed over [0, 2⇡) for all l and are mutu-
ally distributed, fD is the maximum Doppler spread. s[nTs] = [s[nTs], s[nTs �
Tc], . . . , s[nTs� (Nc� 1)Tc]]

T is the discrete model of the PU signal. The noise signal
w[nTs] is assumed to be complex white Gaussian with zero mean and �2

w variance.
Furthermore, it is assumed that noise and signal are uncorrelated.

In order to create a covariance matrix of observations, each SU collects Ns frames
yi=0,1,...,N

s

�1 of L consecutive samples which is a stationary random vector. As shown
in the next section, the local spectrum sensing operation can rely on the eigenvalue
decomposition of this matrix. Then the following matrices can be defined:

Y def
= [y0,y1, . . . ,yi, . . . ,yN

s

�1] (4.6)

S def
= [s0, s1, . . . , si, . . . , sN

s

�1] (4.7)

w

def
= [w0,w1, . . . ,wi, . . . ,wN

s

�1] (4.8)

where, yi, si, and wi denote the L⇥ 1 received random vector, the LNc⇥ 1 PU signal
vector si = [s[iLTs]

T
s[(iL+1)Ts]

T . . . s[((i+1)L� 1)Ts]
T
]

T , and the L⇥ 1 random
noise vector, respectively.

When there is no PU emitting

yi = wi (4.9)
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When the PU is present,

yi =

2

66664

y[iLTs]

y[(iL+ 1)Ts]

...
y[((i+ 1)L� 1)Ts]

3

77775
(4.10)

=

2

66664

h

T
1 s[iLTs] + w[iLTs]

h

T
2 s[(iL+ 1)Ts] + w[(iL+ 1)Ts]

...
h

T
Ls[((i+ 1)L� 1)Ts] + w[((i+ 1)L� 1)Ts]

3

77775
(4.11)

= Hisi +wi (4.12)

where Hi is a L⇥ LNc channel matrix defined as:

Hi
def
=

2

66664

h

T
1 0 · · · 0

0 h

T
2 · · · 0

...
... . . . ...

0 0 · · · h

T
L

3

77775
(4.13)

Statistical covariance matrix of the received signal, the PU signal and the noise can
be respectively defined as:

RY =E[yiy
†
i ] (4.14)

RS =E[Hisis
†
iH

†
i ] (4.15)

Rw =E[wiw
†
i ] (4.16)

where yi, si and wi are assumed to be zero-mean stochastic stationary processes.

Then the binary hypothesis, (4.1) and (4.2), can be rewritten in a matrix form as

H0 : RY = Rw (4.17)

H1 : RY = RS + Rw (4.18)

However, in practice we only can get a finite number of samples. Thus, the sample
covariance matrix RY can be estimated as

ˆRY =

1

Ns

YY† (4.19)



84 CHAPTER 4. COOPERATIVE SPECTRUM SENSING TECHNIQUE

Index of eigenvalues
0 5 10

M
ag

ni
tu

de
 (d

B)

-10

-5

0

5

10

15

(a)   Only noise

Theoretical value
Simulative value

Index of eigenvalues
0 5 10

M
ag

ni
tu

de
 (d

B)

-10

-5

0

5

10

15

(b)   Signal plus noise

Theoretical value
Simulative value

Figure 4.2 – Comparison of eigenvalues between theoretical value and simulative value
where there are a finite number of samples. (a) Only noise in H0 hypothesis. (b) Signal
plus noise in H1 hypothesis.

As mentioned previously, noise is a white Gaussian process. In case of the pres-
ence of a PU, whose signal is obviously not correlated to the noise, the sampling period
has been set sufficiently large (Ts > Th) to assume that the observation samples Y are
independent and identically distributed random variables. Then in the H0 case (no
PU), the mean power of the observed signal Y is given by the noise power P = �2

w,
and in the H1 case (a PU is present) the asymptotical mean power samples is P = �2

s

+ �2
w where �2

s is the received PU signal power through the channel. In Figure 4.2,
we illustrate that the asymptotical eigenvalues of covariance matrix RY under H0 or
H1 hypotheses are the same, and the asymptotical eigenvalues �2

w in Figure 4.2(a)
are smaller than the asymptotical eigenvalues �2

s + �2
w in Figure 4.2(b). Moreover,

the simulative/sample eigenvalues of the estimated sample covariance matrix ˆRY with
Ns = 20 and L = 10 are also presented in Figure 4.2. As shown in Figure 4.2(a) and
Figure 4.2(b), the simulative/sample eigenvalues are blurring relative to the theoretical
eigenvalues when there is a finite number of samples. Therefore, the eigenvalue distri-
bution of the sample covariance matrix ˆRY becomes very complicated [101, 102], no
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closed form expression has been found for the marginal probability density function
(PDF) of ordered eigenvalues. In the following, the latest random matrix theory re-
ferring to the largest eigenvalue is introduced to propose an efficient spectrum sensing
method for small sample size.

4.2 CSS with small sample size

The proposed CSS strategy relies on a fusion process using the D-S theory and
a new set of basic probability assignments(BPA) functions. BPA function definition
and evaluation is the key point of the D-S fusion. In most applications, it is generally
assumed that a sufficiently large number of samples is available in order to correctly
estimate BPAs and perform a reliable fusion. But in this work, we consider that the SU
are very limited in terms of sample size. Following the effectiveness of the utilization
of the D-S fusion [93] in CSS, we propose to define new reliable BPA functions by
using eigenvalues of the covariance matrix of the observation, enabling to have a small
number of collected samples.

4.2.1 Largest eigenvalue analysis

Whether a PU signal is present or not in the collected samples at a SU, according to
the statistical properties of the samples, the observation covariance matrix ˆRY in Equa-
tion (4.19) can be considered as a Whishart matrix [101]. In such a case, according to
[102], when the number of samples is high enough, the largest eigenvalue of the matrix
RY is ruled by the Tracy-Widom (TW) distribution. Parameters of the distribution can
be defined as functions of Ns, L and the dimensions of the observation matrix Y. The
following theorem allows to establish the parameters of the Tracy-Widom distribution
when the number of samples is large (or in the asymptotic case).

Theorem 4.1 Assume that the received signal is real. Let A =

N
s

P
ˆRY, � = (

p
Ns � 1+p

L)2, and � = (

p
Ns � 1 +

p
L)(1/

p
Ns � 1 + 1/

p
L)1/3. Then, �1(A)��

�
converges

to the Tracy-Widom distribution of order 1 (W1) [102].

The Tracy-Widom distribution which was found by Tracy and Widom (1996) is
considered as the limiting law of the largest eigenvalue of certain random matrices
[103]. The cumulative distribution function (CDF) of the Tracy-Widom distribution of
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Table 4.1 – Some values of CDF of the Tracy-Widom distribution of order 1.

t -3.90 -3.18 -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02
F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

order 1 F1 is defined as

F1(t) = exp
⇣
� 1

2

1Z

t

�
q(u) + (u� t)q2(u)

�
du
⌘
, (4.20)

where q(u) is the solution of the nonlinear Painleve II differential equation

q
00
(u) = uq(u) + 2q3(u). (4.21)

Because there is no closed form expression for the distribution function F1, it is diffi-
cult to evaluate it. Fortunately, there are have been tables for the functions [102]. The
values of F1 at some points are given in Table 4.1.

However, since Theorem 4.1 is based on a large number of samples, reducing the
number of samples (small Ns ⇥ L product) means that definitions of �(Ns, L) and
�(Ns, L) in Theorem 4.1 are no longer well suitable. Recently in [104] it has been
found that when facing with thin observation matrix Y, namely when L is as small
as 2, more appropriate parameters of the Tracy-Widom distribution should be chosen.
Then, according to [104] when L is very small, and referring to Theorem 4.1, the
largest eigenvalue �1 is considered to be ruled by the Tracy-Widom distribution of
order 1, with the following mean and variance parameters:

µ =

P

Ns

(

p
Ns� +

p
L�)2 (4.22)

�2
= (

P

Ns

)

2
(

p
Ns� +

p
L�)2(

1p
Ns�

+

1p
L�

)

2/3 (4.23)

where Ns� = Ns � 1
2 and L� = L � 1

2 . It is also called adjusted TW distribution,
which is able to achieve improved accuracy for a small number of samples.

This is illustrated in Figure 4.3, where the comparison of the theoretical CDF of
the maximum eigenvalue, TW distribution and adjusted TW distribution with Ns = 50

and L = 4 is presented. It is evident that the curves of the TW distribution and the
adjusted TW distribution of the largest eigenvalue both match the theoretical CDF ap-
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Figure 4.3 – Comparison of the theoretical CDF of the maximum eigenvalue, TW
distribution and adjusted TW distribution with Ns = 50 and L = 4.

proximately. Moreover, it is clear that the adjusted TW distribution of the maximum
eigenvalue converges closely to the theoretical CDF than the TW distribution in The-
orem 4.1 but still with significant deviation when there is a finite number of samples.
In addition, the mean power P in Equation (4.22) and Equation (4.23) is respectively
equal to �2

w or �2
s + �2

w if the PU is present or not. We assume that in both cases, the
value of P is known at each SU. When L is small, the matrix Y of collected samples
is what we can call a thin observation matrix and the inherited small size of the covari-
ance matrix ˆRY eigenvalue calculation requires less complexity. This last feature is of
great importance in the framework of our applications.

According to the local spectrum sensing system model above, it is obvious that
each SU acquires the sensing information through stochastic channel condition, thus
each SU indicates its own credibility, and small sample size at each SU increases the
uncertainty of observing and reduces the credibility of its sensing. Hence, in order to
improve the detection performance and reduce the uncertainty, we propose some new
BPA functions for evaluating the reliability of each SU.
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4.2.2 Basic probability assignment evaluation

D-S theory of evidence allows to combine evidence from different sources and
evaluate the credibility of each source with small sample size. In order to make a
final decision by applying D-S theory of evidence, we propose some new basic prob-
ability assignment functions of each SU based on the largest eigenvalue �1 of the re-
ceived sample covariance matrix ˆRY. The BPA functions are able to estimate SUs’
self-assessed decision credibility.

The proposed BPA functions at the ith SU (i = 1, 2, ..., Nsu) are based on the
integral of the probability density function of the Tracy-Widom distribution of order 1,
and are defined as:

mi(H0) =

+1Z

�1i

W1(
x� µ0i

�0i
)dx

= 1� F1(
�1i � µ0i

�0i
) (4.24)

and

mi(H1) =

�1iZ

�1

W1(
x� µ1i

�1i
)dx

= F1(
�1i � µ1i

�1i
), (4.25)

where mi(H0), mi(H1) are the BPA of hypotheses H0 and H1 of the ith SU, which
presents respectively credibility for hypotheses H0 and H1 to be true. W1 and F1

denote the probability density function and the cumulative distribution function for the
distribution of Tracy-Widom of order 1 [103] [105]. �1i is the largest eigenvalue of
the received sample covariance matrix ˆRY of the ith SU. µ0i and �0i are respectively
equal to µ and � in Equation (4.22) and Equation (4.23) with P = �2

w. µ1i and �1i are
respectively equal to µ and � in Equation (4.22) and Equation (4.23) with P = �2

s +
�2
w.

The third BPA function is

mi(⌦) = 1�mi(H0)�mi(H1) (4.26)

where ⌦ = {H1,H0} denotes that either hypothesis could be true, and mi(⌦) is the
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Figure 4.4 – The tendency of the BPA functions of (�1i � µi)/�i under H0 and H1

hypotheses.

total uncertainty of the ith SU.

Roughly speaking, if the calculated �1i turns out to be small, the BPA function
mi(H0) will get a larger value than mi(H1), which will give more credit to the H0

hypothesis. Conversely if �1i is large, the H1 hypothesis will get a much higher prob-
ability than the H0 hypothesis. This is illustrated in Figure 4.4 where the tendency of
the BPA functions under H0 and H1 hypotheses are presented. As shown in Figure 4.4,
the dashed line indicating the BPA function mi(H1) goes up with the increasing of the
value of (�1i � µ1i)/�1i, whereas the solid line presenting the BPA function mi(H0)

declines when the value of (�1i � µ0i)/�0i increases.

These BPA functions are evaluated at each SU relying on their own observations.
Due to the problem of path loss, multipath and shadowing fading, single node can not
make a reliable decision by its own evaluation. Each SU sends the information of BPA
functions to the FC, and this latter will make a final decision by running the D-S based
fusion process.
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4.2.3 D-S fusion

According to D-S theory of evidence and the above new BPA functions (Equations
(4.24), (4.25) and (4.26)), two new BPA functions can be obtained at the FC as follows:

m(H0) = (m1 �m2 � · · ·�mN
su

)(H0)

=

1

1� 

X

\A
i

=H0,A
i

⇢2⌦

i2{1,...,N
su

}

N
suY

i=1

mi(Ai) (4.27)

m(H1) = (m1 �m2 � · · ·�mN
su

)(H1)

=

1

1� 

X

\A
i

=H1,A
i

⇢2⌦

i2{1,...,N
su

}

N
suY

i=1

mi(Ai) (4.28)

where 2

⌦
= {;, {H0}, {H1},⌦}, � is the logical operation of exclusive disjunction,

and  is a measure of the amount of conflict among the mass sets defined as:

 =

X

\A
i

=;,A
i

⇢2⌦

i2{1,...,N
su

}

N
suY

i=1

mi(Ai) (4.29)

Finally, the decision is made at the FC by simply comparing m(H0) and m(H1) as
follows:

H1 is true if m(H1) > m(H0) (4.30)

H0 is true otherwise (4.31)

4.3 Simulation results and analysis

In the following simulations a captured DTV signal in [106] is considered to be
transmitted by the PU, with a 0.5 probability of being present. Its center frequency is
545 MHz with a 6 MHz bandwidth. The observed passband signal is frequency-shifted
and turned into the baseband signal. It is then sampled at 1/Ts=100 KHz rate. This
sampling rate is much lower than the 6 MHz bandwidth of the PU signal. The channel
impulse response duration is set to Th = 1µs. In this condition (Ts > Th), collected
samples are totally uncorrelated. With this setting, 0.5 ms is required to collect 50
samples. Channels between the PU and the SUs are generated according to the Clark
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Table 4.2 – DTV signal parameters and simulation setup.

Center frequency 545 MHz
Bandwidth 6 MHz

Sampling period 10 µs
Channel model Clark model

Channel impulse response duration 1 µs
Maximum doppler spread 1 KHz

Number of SU 6
Number of PU 1
Number of FC 1

Rayleigh fading model in Equation (4.5), where the maximum Doppler spread fD is
set to 1 KHz. The DTV signal parameters and the simulation setup are summarized
in Table 4.2. In addition, an additive, white and Gaussian noise (AWGN) channel is
considered and it exists a FC which combines evidences from each SU and makes the
final decision.
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Figure 4.5 – The variation trend of the BPA functions with the increasing of SNR when
PU is present using 200 samples.
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Figure 4.6 – The variation trend of the BPA functions with the increase of SNR when
PU is present using 50 samples.

As the first part of simulation, we show the mean behavior of the BPA functions
when SNR is varying in Figure 4.5 and Figure 4.6 where the number of sampling
is respectively 200 and 50. Since the BPA function of the traditional D-S (T-DS)
fusion in [88] is based on the central limit theorem, it is a good estimate of SUs’ self-
assessed decision credibility only when the number of samples is sufficiently high [13].
Therefore, it is not suitable for small sample size. According to the Equation (4.24)
and Equation (4.25), we know that mi(H0) decreases and mi(H1) increases with the
increasing of the largest eigenvalue �1i when a PU is present. Then after D-S fusion
in Equation (4.27) and Equation (4.28), the BPA functions m(H0) and m(H1) also
should have a declining and increasing trends, respectively. As shown in Figure 4.5,
when the number of sample is large, i.e. 200 samples, for the proposed method, that
is (Ns, L)=(100,2), the BPA functions in Equation (4.24) and Equation (4.25) of the
proposed method are very similar to the BPA functions in T-DS [88]. Conversely,
when the number of samples is small, the BPA function of the proposed method is still
suitable. Figure 4.6 shows that the BPA functions of the proposed method with small
sample size, with 50 samples that is (Ns, L)=(25,2), has a similar tendency compared
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Figure 4.7 – ROC curves of the compared methods using 200 samples at each SU.

to the large sample size, which is not true for T-DS. We can see that the proposed DS
(Prop-DS) method has about 5% improvement over T-DS with small sample size.

Therefore, in order to show the behaviour of the compared methods in a more
general scenario, we assume now that each of the six SUs experiences different channel
conditions. 100000 Monte Carlo simulations have been run where SNR at each SU is
a random variable with a uniform distribution on the interval [-20 dB, 0 dB]. Based
on this setting, Figure 4.7 and Figure 4.8 present the ROC curves of the proposed
method and the other methods in [88] and [45]. When the sample number is 200, as
shown in Figure 4.7, the proposed method (the circular curve) has a litter bit lower
detection probability than the maximum-minimum eigenvalue (MME) method in [45].
As expected when the number of samples is large, the approximated Tracy-Widom
distribution is no longer well adapted to characterize the BPA function. This is why
the proposed method shows little less attractive performance in that case. Besides with
200 samples, it can be observed that the two eigenvalue-based methods perform much
better than the T-DS one. Most importantly, when the sample number is 50, as shown
in Figure 4.8, it is very obvious that the probability of detection of all methods decline
compared with 200 samples. However, the proposed method shows better performance
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Figure 4.8 – ROC curves of the compared methods using 50 samples at each SU.

than its counterparts. It can be observed that the ROC curve of the proposed method
with 50 samples is even partly above the one of the T-DS method in [88] with 200
samples.

In addition, for evaluating the performance of the proposed method with small
sample size according to the number of SUs engaged in the process, we show in Figure
4.9 the ROC curves of the proposed method when the number of SUs is 10, 8, 6
and 4. The sample size at each SU is 50, and Monte Carlo simulations have been
run where the SNR at each SU is randomly chosen in the interval [-20 dB, 0 dB],
exactly in the same way as for the previous experiments. As shown in Figure 4.9, the
detection performance brings up with the increasing number of SU. When the number
of SU is 10, the proposed method can obtain about 0.9 probability of detection with
0.1 probability of false alarm. And due to the small sample size 50, with L=2, the
proposed method keep on exhibiting a very low computational cost, mainly because
of the eigenvalue decomposition. It is very suitable in practical CWSNs applications
when dealing with constrained power devices.
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Figure 4.9 – ROC curves of our proposed scheme with different numbers of SU when
the sample number is 50.

4.4 Conclusion

In this chapter, considering the channel conditions, an efficient cooperative spec-
trum sensing with small sample size is presented. The advantage of the proposed
technique compared to other eigenvalue-based spectrum sensing techniques is that we
form a thin observation matrix, which allows to get a small dimension covariance ma-
trix. In that case the eigenvalue decomposition has a negligible cost. Then, a new BPA
function is constructed and used in D-S fusion rule, which reduces the conflict of evi-
dence from different SUs. Simulation results have shown that our method can achieve
a higher probability of detection than other methods in small sample size situation.

However, in order to focus on the research of small sample size in spectrum sens-
ing, previous schemes assume that all SUs always work normally, which means there
are not any security issue for SU in the sensor network. Unfortunately, it is not very
practical. Therefore, we will consider the cooperative spectrum sensing where faulty
nodes are existing in the next chapter.





5
Robust and energy efficient CSS

In order to deal with the energy efficiency of a complete network, we propose a
cluster-based CSS scheme in CWSNs where all SUs are separated into clusters and one
“cluster head” is set as the FC to collect the sensing information and make the cluster
decision. This is motivated by the energy consumption of sensor nodes, especially for
the mobile ones, where the communication unit consumes the most power [107, 108]
and the location of sensor node is changed. When applying the cluster algorithm into
CSS, the energy consumption of the communications unit for the SU will be extremely
reduced because most of them are closer to their own cluster head than the other FC and
less power is needed to transmit local decisions. In addition, for the whole network, the
cluster head makes its own decision whether the PU is present or not in each cluster,
which remarkably improves the spectrum utilization of the spectrum hole.

On the other hand, reliability of the spectrum sensing decision in CR becomes a
very important challenge when the WSNs is dealing with low-power and even low-cost
SU nodes [109]. Among the SUs in the cluster, sometimes some of them inevitably
fail in sending to the FC (that is the cluster head) a reliable information about the spec-
trum. Many reasons can lead to a node dysfunction such as battery depletion, electronic
device under harsh environment or even errors in data transmissions. Taking the re-
liability problem into account, we propose to make the decision more robust against
faulty nodes effects. We then propose a method that allows to consider simultaneously
the reliability of each SU in the cluster and the mutually supportive degree among the
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whole set of SUs in the cluster. This is what we call the double reliability evaluation
in the rest of this chapter. Finally, after removing the nodes of low credibility, that are
supposed to be faulty, the energy efficiency and reliability of each cluster is improved.
Simulation results show that the proposed CSS scheme clearly allows to save energy
and provides a more robust decision under faulty nodes situation.

The rest of this chapter is organized as follows. In Section 5.1, we present the
system description with some background on cooperative spectrum sensing. The pro-
posed robust and energy efficient CSS scheme in CWSNs is given in Section 5.2, where
the cluster technique is adopted in CSS scheme and the double reliability evaluation
is proposed in D-S fusion. Simulation results are shown in Section 5.3. Finally, the
conclusions are drawn in Section 5.4.

5.1 System model

As illustrated in Figure 5.1, we consider a CWSNs where all SUs are separated
into K clusters. These clusters are formed by running the K-means clustering algo-
rithm presented in Section 5.2.1. Each cluster includes one FC and some SUs where
potentially faulty sensor nodes exist. At first, each SU measures its input signal energy
and calculates the evidence of its reliability according to the D-S theory. Then the in-
formation is sent to the FC in the cluster. After receiving the data, the FC calculates the
supportive degree of every sensor node, removes the node of low reliability, combines
the remaining evidences and makes the final decision for its cluster. This process is
conducted in each cluster in parallel.

In this scheme, on basis of local observation, each SU in the cluster executes the
local spectrum sensing. Thus, for each SU, the spectrum sensing problem in Equation
(2.1) can be simplified in the following:

H0 : yi[n] = wi[n]

H1 : yi[n] = xi[n] + wi[n]
(5.1)

where yi[n] represents the received data at i-th SUi. In our scheme, each SUi applies
energy detection to measure the PU’s signal energy in one sensing period, as shown in
Section 2.2.3. When the number of sampling is relatively large (e.g. Ns > 200), the
observation energy follows a normal distribution as in Equation (2.30).

After local spectrum sensing, each SU will process this information and transmit
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Figure 5.1 – Cluster-based cooperative spectrum sensing in CWSNs where some faulty
nodes are existing.

them to the FC where the final decision is made. In Section 2.4.6, we introduce the
D-S theory of evidence in order to make the final decision. In our spectrum sensing
context, let ⌦ = {H0,H1} be the set representing all possible states of the system
under consideration, called the frame of discernment. Then 2⌦ is the set of all subsets
of ⌦, including the empty set ;. In our framework, 2⌦ = {;, {H0}, {H1},⌦}. In this
case, the BPA functions for each SUi, which estimate the SU’s self-assessed credibility,
are given by

mi(H0) =

Z +1

T (y
i

)

1p
2⇡�0i

exp
�
� (x� µ0i)

2

�2
0i

�
dx (5.2)

mi(H1) =

Z T (y
i

)

�1

1p
2⇡�1i

exp
�
� (x� µ1i)

2

�2
1i

�
dx (5.3)

and

mi(⌦) = 1�mi(H0)�mi(H1), (5.4)

where i 2 {1, 2, · · · , Nsu} and Nsu is the number of SUs introduced in the CSS pro-
cess. T (yi) denotes the test statistic of the i-th SU as in Equation (2.25). µ0i, µ1i and
�2
0i, �2

1i are the mean and variance of the statistic test T (yi) under hypotheses H0 and
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H1, respectively. Finally, according to the so-called D-S rule of combination shown
in Equation (2.97), for Bj ⇢ 2

⌦, a new BPA function m(Bj) is yielded by Nsu BPA
functions at FC as:

m(Bj) = (m1 �m2 � · · ·�mN
su

)(Bj) (5.5)

In order to reduce the energy dissipation of sensor nodes as in the broadcast CSS
scheme and to improve the detection reliability of CSS when faulty nodes are existing,
we introduce the clustering into CSS and propose the double reliability evaluation
algorithm.

5.2 Efficient and reliable CSS scheme

In this section, we propose a robust and energy efficient CSS scheme where a clus-
tering technique is introduced to CSS. Thus all SUs are separated into K clusters. One
cluster head is chosen in each cluster. Clustering is a common data analysis method
which is widely applied to machine learning, pattern recognition and image analy-
sis. Clustering is the task of grouping similar objects, which have similar characteris-
tics. Here, clustering is introduced into CSS in order to separate all SUs into different
groups. The idea is to reduce the distance between each SU and its associated FC who
is in charge to make the CSS decision. The cluster head is the FC in the cluster. This
strategy allows to reduce the energy consumption of transmission from each SU to its
cluster head. At the same time, in order to take into account the possible existing faulty
nodes in clusters, we propose the double reliability evaluation method that allows to
consider simultaneously the reliability of each SU and the mutually supportive degree
among the whole set of SUs in each cluster. At the end, we remove the node of low
reliability in the cluster, which does not only provide more robust decision but also
reduce the global energy consumption of the cluster.

5.2.1 K-means clustering algorithm

The usual clustering algorithms are respectively partitioning clustering algorithm,
hierarchical clustering algorithm, density-based clustering algorithm, grid-based clus-
tering algorithm and model-based clustering algorithm [110, 111]. Among these algo-
rithms, the K-means algorithm is very simple and can be easily implemented in solving
many practical problems. At the same time, we know that K-means clustering algo-
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rithm can divides some sensor nodes into K clusters and the average distance from
every sensor node to the cluster head is minimized in each cluster. Therefore, CSS
based on K-means clustering algorithm can save energy consumption, especially for
mobile cognitive sensor nodes. We mainly study the K-means clustering algorithm in
the following, but other approaches can be studied.

K-means clustering algorithm is an efficient clustering algorithm based on parti-
tion. It assigns objects (SU) to the nearest cluster by distance and divides ultimately
Ntot SUs into K clusters. The process is that firstly choose K SUs, regularly dis-
tributed in the whole network, as the center of each cluster, then assign the remaining
SUs to a cluster according to the distance from the SU to the center of each cluster,
and calculate the average value of each cluster again until convergence [112]. Here we
use a squared error criterion:

V =

KX

i=1

X

x
j

2S
i

||xj � vi||2 (5.6)

where xj is vector of coordinate of the j-th SU, and vi is the mean coordinate vector
of the SU in the i-th cluster, which is defined as

vi =
1

card(Si)

X

x
j

2S
i

xj, (5.7)

where Si is the set of position vectors of SUs of the i-th cluster.

The steps of K-means clustering algorithm are:

1 : Choose K SUs regularly distributed in the whole network as the center of the K
clusters;

2 : Define the sets of SU for the K clusters by assigning each SU into the cluster
with the nearest center;

3 : Calculate the average coordinate vector vi (i = 1, 2, · · · , K) of each cluster, and
define vi as the new center of the i-th cluster;

4 : Calculate the function V in Equation (5.6);

5 : Repeat Step 2 to Step 4 until the function value V is not varying.

Then, for every cluster, the FC is finally chosen as the nearest SU to the center
of the cluster, xFC,i = min

x
j

2S
i

||xj � vi||. Obviously we have to mention here that this

technique requires to know the position of every SU.
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5.2.2 Energy consumption of CSS based on K-means clustering al-
gorithm

For simplicity and without loss of generality, we only consider the energy con-
sumption of the communication unit in the sensor node. In addition, we know that the
transmitting power is relative to the distance between the emitting and the receiving
node.

In order to compare the energy consumption of the CSS based on clustering with
the energy consumption of the broadcast approach, we assume that each sensor node
knows the position of the other ones. First of all, we consider that some sensor nodes
are randomly scattered in a certain area. In the broadcast CSS scheme, each SU sensor
node transmits its own sensing result to every other SU in the whole network. The
energy consumption of the broadcast cooperative spectrum sensing approach is given
by:

Ebroadcast = ET
x

+ ER
x

= (

N
totX

i=1

Pdis�farthest�user,i +Ntot(Ntot � 1)PR
x

)T (5.8)

where ET
x

and ER
x

are respectively the total transmitting energy and the total receiving
energy in the network. The range of the broadcast is the farthest distance, Ntot is the
total number of sensor nodes, T is the time of transmitting and receiving. PR

x

is the
power consumption of a SU in the receiving mode, Pdis�farthest�user,i is the power
consumption of the i-th SU in the emitting mode, which is ruled by the distance with
the farthest SU in the network.

Similarly, the energy consumption of the CSS based on K-means clustering algo-
rithm is given by:

EK-means = ET
x

+ ER
x

(5.9)

However, other than the broadcast CSS scheme, in our cluster-based scheme the
communication distance is bounded to the cluster dimension, and we consider only the
transmission from the SU to the FC. Thus, the Equation (5.9) can be turned into the
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Equation (5.10) [113, 114]

EK-means =
� KX

j=1

N
node,j

�1X

i=1

Pi,CH
j

+ (Ntot �K)PR
x

�
T, (5.10)

where Nnode,j is the number of sensor nodes in the j-th cluster, K is the number of
clusters, Pi,CH

j

is the transmitting power from the i-th node to the j-th cluster head,
PR

x

is the receiving power and T is the time required to transmit or receive the report
for the CSS. Note that in each cluster we assume that the cluster head is the FC. It
receives the data information from the SUs in the cluster and makes its own decision
whether the PU is present or not, which is able to improve the spectrum utilization in
the whole network.

For comparing the energy consumption of the different approaches, we introduce
the energy ratio which is the ratio between the energy consumption of the CSS based
on K-means clustering algorithm and the energy consumption of the broadcast CSS.
According to the Equation (5.8) and Equation (5.10), we calculate the energy ratio as
follows:

⌘ =

EK-means

Ebroadcast
(5.11)

Note that in cooperative spectrum sensing based on K-means clustering algorithm,
we need to select a suitable value for the parameter K in order to keep balance between
reducing the energy consumption of the whole sensor networks and increasing the re-
liability of each cluster. For example, when the total number of sensor node is 100, the
parameter K is set to 8. But providing an optimized value of K is not obvious, it relies
on many parameters, such as area to be covered, mean distance between nodes, mo-
bility of node and transmission rate. That is out of the scope of this thesis but it could
be part of future works. In addition, because of the imbalanced energy consumption
between FC and other nodes, a battery level threshold for the FC is set in order to en-
sure the reliability. When the battery level of the FC is lower than the threshold, the
next nearest node to the center vi is elected as the new FC. Moreover, according to the
mobility of nodes in the network, it has to be mentioned that the K-means clustering
algorithm needs to be recalculated periodically.
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5.2.3 Double reliability evaluation algorithm

In the previous subsection, we consider the energy consumption of CSS. Then, in
this subsection, we will focus on the reliability of spectrum sensing in CWSNs. For
one cluster including Nsu (equal to Nnode,j in the j-th cluster) nodes in the network,
we need to consider the reliability of evidence before using D-S theory of evidence
and fusing them, and then make a more reliable decision only according to the reliable
evidence. So we propose the double reliability evaluation algorithm in order to evaluate
more accurately the reliability of each SU by simultaneously considering the source
reliability and the mutual supportive degree among the SUs.

The source reliability can be evaluated by Equation (5.12) [115]:

wi =
�i

max(�1, �2, · · · , �N
su

)

(5.12)

where �i is the SNR of the PU at the i-th SU. And then, combining with the Equations
(5.2) and (5.3), the new BPA functions are obtained with corresponding weight wi as
follows:

m
0

i(H0) = wimi(H0) (5.13)

m
0

i(H1) = wimi(H1) (5.14)

m
0

i(⌦) = 1�m
0

i(H0)�m
0

i(H1) (5.15)

According to the reliability resource evaluation in Equations (5.12) - (5.15), the
effect of low reliable node (lower SNR) is decreased thanks to the weighting. However,
in realistic environment some SUs may inevitably fail in sending a reliable information
about the spectrum due to node dysfunctions, such as low battery or electronic device
under harsh environment.

In realistic environment, SUs experience different surroundings and their credibil-
ity degrees are not the same. Especially when some SUs are not working as expected
and send erroneous data, the evidences are different from other SUs. That is to say, if
the evidence of one SU is similar to the other ones, this SU acquires a high supportive
degree. Otherwise, if one SU’s evidence is obviously different from the other SUs,
it gets a less supportive degree from the other SUs. Then this node is considered as
not reliable and is removed from the fusing process. As a result, the similarity de-
gree between SUi and SUj based on BPA function can be described by the following
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formulation:

sim(i, j) =

card(2⌦)P
k=1

min(m0
i(Ak),m

0
j(Ak))

1
2

card(2⌦)P
k=1

(m
0
i(Ak) +m

0
j(Ak))

(5.16)

where card(2⌦) denotes the cardinality of 2⌦.

Then the supportive degree of SUi with respect to other SUs can be evaluated by
Equation (5.17):

Sup(i) =
N

suX

j=1

sim(i, j), j 6= i, i = 1, 2, . . . , Nsu. (5.17)

If a node is not working as expected, its supportive degree Sup(i) will be very low,
and vice versa.

Thus, the normalization of the supportive degree evaluation can be written as:

Rel(i) =
Sup(i)

max
j2{1,2,...,N

su

}
(Sup(j))

, i = 1, 2, . . . , Nsu. (5.18)

In order to make a more reliable decision, we have to consider the highest reliabil-
ity of SUs. So we should remove the data with low reliability caused from faulty node
which can disturb the final decision. Hence, we need to define the evaluation threshold
F that is able to decide whether we should remove the data. For accuracy and effec-
tiveness, we set the evaluation threshold F to 0.5. When the supportive degree Rel(i)

is lower than 0.5, SUi is considered as not reliable and is removed, otherwise, the ev-
idence is saved and applied for the fusion. In addition to the faults in the node, the
proposed method also allows to remove the unreliable sensing due to channel experi-
ences.

Finally, after removing the unreliable evidence, we get the reliable and accurate
BPA function of M remaining SUs (with 1  M  Nsu), and the final BPA function
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is obtained based on the D-S theory in the Equations (5.19) and (5.20),

m(H0) =
1

1� 

X

A1\A2\···\A
M

=H0

MY

i=1

m
0

i(Ai) (5.19)

m(H1) =
1

1� 

X

A1\A2\···\A
M

=H1

MY

i=1

m
0

i(Ai) (5.20)

where

 =

X

A1\A2\···\A
M

=;

MY

i=1

m
0

i(Ai) (5.21)

After getting the final combination results m(H0) and m(H1), the final decision is
made upon the following rule:

H0 : m(H1) < m(H0)

H1 : m(H1) > m(H0)

(5.22)

Note that in the double reliability evaluation algorithm, we remove the node of low
reliability from the cluster in order to improve the detection probability. Hence, the
cluster head (FC) will not ask any information to the faulty node for the next round
of CSS. The consequence is that less energy will be required because the cluster head
does not need to communicate anymore with those faulty nodes. In Section 5.3, we
present the energy consumption benefit obtained thanks to the removal of faulty nodes.

5.3 Simulation results and analysis

In this section, performance of the proposed scheme is evaluated by simulations.
The simulation of the proposed efficient and reliable CSS scheme in CWSNs is con-
ducted under the following assumptions:

• The PU signal is DTV signal as in [116].

• The probability of PU appearing is 0.5.

• The bandwidth of the PU signal is 6 MHz.

• The local sensing time is 50 µs, and an AWGN channel is considered.

• Each cluster head is the FC of the cluster.
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Figure 5.2 – The energy efficiency performance for different cluster number.

Firstly, for evaluating the energy consumption in the Equations (5.8) and (5.10),
we present a classic model [107] which includes the power consumption of the trans-
mitting and the receiving in the Equations (5.23) and (5.24),

ptx(n1, n2) = (↵11 + ↵2d(n1, n2)
D
)r (5.23)

prx = ↵12r (5.24)

where ptx(n1, n2) is the transmitting power consumption from node n1 to node n2 and
d(n1, n2) is the distance between node n1 to node n2, D is the path loss index. prx

is the receiving power consumption. Parameters in Equations (5.23) and (5.24) are
respectively ↵11 = 45 nJ/bit, ↵12 = 135 nJ/bit, ↵2 = 10 pJ/bit/m2 (D = 2) or 0.001
pJ/bit/m4 (D = 4) [107].

According to the model and the Equation (5.11), we evaluate the energy ratio of
the proposed CSS based on K-means clustering algorithm with four different numbers
of sensor nodes (1000, 500, 250 and 100) which the number of clusters changes from
2 to 14. As shown in Figure 5.2, the energy ratio is between 0 and 0.085 and decreases
along with the increase in the number of clusters. Clearly, the energy consumption of
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Figure 5.3 – 100 SUs are scattered into 8 clusters with K-means clustering algorithm.

the clustered CSS is under the energy consumption of the broadcast CSS. And when
the number of clusters is 7 or 8, the CSS based on K-means clustering algorithm has
the highest energy ratio relatively to the broadcast CSS scheme. For example, when
the number of SUs is 250 and the number of cluster is 8, the energy ratio is about 0.02,
that is the CSS based on K-means clustering algorithm reduces up to 92% the energy
consumption compared with the broadcast CSS. Figure 5.3 shows the distribution of
100 sensor nodes after using K-means clustering algorithm.

Secondly, we assess again the detection reliability and energy efficiency of the pro-
posed CSS scheme in each cluster. In the following, taking into account one cluster in
CWSNs, we assume that there are ten SUs (one of them is faulty) which are distributed
in different locations for conducting the local spectrum sensing. For clearly showing
the improvement of the proposed double reliability evaluation algorithm, the compar-
ison between proposed method and the other methods are shown in Figure 5.4, where
the SNR at SU1-SU5 are -14 dB, SNR at SU6-SU10 are changed from -22 dB to -6 dB.
It shows the probability of detection of the proposed method and the method in [115]
and [95] with one faulty node. In this simulation, we make use of the double reliability
evaluation algorithm at FC. According to Figure 5.4, the probability of detection of
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Figure 5.4 – Probability of detection comparison between proposed algorithm and
other methods.

the proposed method is better when there is no faulty nodes. Under the condition of
one faulty SU over ten SUs, the probability of detection increases with the increase of
SUs’ SNR. However, the performance of our method is superior to the method in [95]
at least and better than the method in [115] when SNR is below -12dB. That is to say,
the double reliability evaluation successfully removes the faulty node and reduces its
interference.

In addition, there are often more than one faulty user in the cluster in realistic sys-
tems. Figure 5.5 shows that the detection performance brings down with the increasing
number of faulty nodes, where the SNRs at SUs are between -22 dB and -10 dB. How-
ever, when the ratio of faulty nodes is 20%, the probability of detection is better than
the methods in [115] and [95] where the ratio of faulty nodes of which are 10%. It
shows that our method is more robust compared to the other methods when the faulty
users number increases. Moreover, Figure 5.5 shows also that the curve of proposed
method including 30% and 40% faulty nodes are below the diagonal. That is because
a large number of faulty nodes in the cluster affect seriously the decision of the cluster
head. It can be interpreted as faulty nodes behave as malicious nodes who mislead the
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ation algorithm.

decision process.

Finally, after removing the faulty node in each cluster, we reduce the transmission
energy consumption for each cluster where some faulty nodes have been identified.
In order to demonstrate the energy consumption reduction, Figure 5.6 presents the
energy consumption of each cluster in CWSNs. As shown, when we consider that
100 SUs are scattered into 8 clusters with K-means clustering algorithm inside a circle
of radius 500m, for each cluster (C1-C8), the energy consumption after removing the
faulty nodes is appreciably lower than before removing the faulty node, especially
in cluster C4 and C7. That is because we remove the faulty node according to the
proposed double reliability evaluation algorithm, thus reduce the power consumed in
transmitting information from the faulty node to the cluster head. Obviously, for each
cluster, the proposed method can save energy, then for the whole network, the energy
consumption after removing the faulty node is also significantly lower. That is to say,
the proposed method is more efficient in term of energy for large networks.
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5.4 Conclusion

In this chapter, we addressed the problem of the improvement of the CSS process
in CWSNs. In such a framework, by considering that the energy is scarce resource
which needs to be managed efficiently, we proposed a robust and energy efficient tech-
nique. Firstly, the method aims to divide the nodes into a few clusters which brings
the advantage of making a CSS decision in each covered by the clusters. This clus-
ters organization also allows to reduce the distance between the nodes involved in the
CSS, which reduces the energy consumption devoted to the communications required
by the process. Secondly in this work, we consider that some nodes in the clusters
can be faulty. Indeed generally speaking, with some heterogeneous nodes in CWSNs,
the chance to get deficient nodes is far from being negligible. Then in this work we
proposed a combined double reliability evaluation algorithm with the D-S theory of
evidence which allows to detect those unreliable nodes and allows to make a more
robust decision. This last technique can also help to save some energy in the net-
work. Finally, many other improvements could be made to optimize the CSS process
in CWSNs. In this proposed work, some strong assumptions have been used regard-
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ing the prior knowledge of the SUs positions or the SNR encountered in the channels.
Future studies should be devoted to the development of less dependent techniques to
such energy-consuming estimations, and to the optimization of energy consumption in
the whole network.



6
Conclusion and future work

In this chapter, we make a conclusion of this dissertation and discuss the further
works. In detail, a brief conclusion is drawn in the next section whereas some perspec-
tives for future works are mentioned in Section 6.2.

6.1 Conclusion

In this thesis, we explore the spectrum sensing (SS) techniques in cognitive wire-
less sensor networks (CWSNs). Due to the scarcity of spectrum resource and the low
spectrum utilization, cognitive radio (CR) technology as a very promising solution is
proposed and applied in wireless sensor networks (WSNs). There are various meth-
ods of spectrum sensing for CR in the literature, but a very few of them seem to be
really suitable in WSNs framework. As a matter of fact, the constrained resource of
the sensor nodes, namely hardware limitations, power limitation, sensing duration and
reliability, are rarely considered. Therefore, considering these limitations above, we
propose to make spectrum sensing decisions from small sample size. Then, some effi-
cient SS methods with small sample size are proposed to improve the energy efficiency
in CWSNs.

At the beginning, this dissertation presents the background of the development
of CR technology, the cognition mechanism of CR which includes spectrum sensing,
spectrum mobility, spectrum decision and spectrum sharing, and the advantages of
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using CR in WSNs such as efficient spectrum utilization, multiple channels utilization,
energy efficiency and global operability. After that, an overview of the developed SS
techniques is given in chapter 2, which mainly includes performance indicators of SS
techniques, local spectrum sensing (LSS) and cooperative spectrum sensing (CSS).
In local spectrum sensing, several methods are presented such as MFD, CFD, ED,
WBS, EBS,GoF test based sensing and wideband sensing. In cooperative spectrum
sensing, centralized CSS and distributed CSS are described. In detail, the different
data fusion methods of fusion center (FC) in centralized CSS are introduced, which are
hard-decision combining data fusion, soft-decision combining data fusion, Bayesian
fusion rule, Neyman-Pearson criterion, fuzzy fusion rule and Dempster-Shafer (D-S)
theory of evidence. However, the existing various methods of spectrum sensing for CR
in the literature do not consider these limits of resource of sensor nodes. For example,
energy detection is able to achieve a good detection performance only when the sample
size is sufficiently large. Numerous covariance matrix or eigenvalue based detection
methods have been proposed, but most of them have the requirements of the long
sensing time (large sample size) and the high computational complexity. Motivated
by these limitations, the proposed local spectrum sensing and cooperative spectrum
sensing are presented in chapter 3 and chapter 4, respectively.

In chapter 3, we firstly exploit the student’s t-distribution to cope with the small
number of samples. It is demonstrated that the student’s t-distribution test under small
sample size can also provide a low error rates. Thus, according to this characteristic
of student’s t-distribution and taking into account several GoF tests, an efficient local
spectrum sensing method is proposed on basis of both hypotheses of presence and
absence of primary user (PU) signal, which is able to get a high reliability of detection.
However, in order to focus on dealing with the small sample size, we do not consider
the channel condition in the system model of the proposed method. Hence, considering
the secondary user (SU) practically experiencing path loss, multipath and shadowing,
we propose to adopt a cooperative spectrum sensing strategy based on multiple sensor
nodes in order to improve the reliability of detection, which is based on an adjusted
Tracy-Widom distribution that is suitable for small sample size in chapter 4.

However, small sample size really increases the uncertainty of the observation sam-
ples and reduces the reliability of final decision. Therefore, our efforts begin with the
D-S theory of evidence that can deal with the uncertainty from the small observation
samples and improve the reliability by fusing different data groups. According to the
D-S theory of evidence, after coping with the small number of samples, some ba-
sic probability assignment (BPA) are estimated with the characteristic of the student’s
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t-distribution in chapter 3 or the adjusted Tracy-Widom distribution in chapter 4. Fi-
nally, relying on the fusion of different probability assignment estimations, we make
a reliable final decision whether a PU signal is present or not. The simulation results
referring to the performance comparisons are also given in chapter 3 and chapter 4,
which also verifies the effectiveness of the proposed methods for small sample size
scenarios.

In the end, considering the energy efficiency and the reliability of decision, a co-
operative spectrum sensing scheme in CWSNs is proposed. In the proposed method,
firstly, considering the energy consumption of sensor nodes, we propose a cluster-
based CSS scheme where the energy consumption of the communications unit for the
SU is reduced and the spectrum utilization of the spectrum hole for the whole net-
work is improved. Secondly, taking the reliability problem into account, we propose a
method that allows to consider simultaneously the reliability of each SU in the cluster
and the mutually supportive degree among the whole set of SUs in the cluster, namely
double reliability evaluation. Finally, after removing the nodes of low credibility, the
energy efficiency and reliability of each cluster is improved. Simulation results show
that the proposed CSS scheme clearly allows to save energy and provides a more robust
decision under faulty nodes situation.

6.2 Future work

In this thesis, we concentrate on taking advantage of small sample size to solve
the problem of the resource-constrained sensor nodes in WSNs by proposing some
efficient spectrum sensing methods. Based on this work, some prospects are suggested
for the future works.

• In this thesis, the noise power �2
w is assumed to be known at each SU. However,

knowledge of the noise power is not always realistic in practice. How to accu-
rately estimate the noise power is a promising direction. In addition, how do the
estimated noise power affect the proposed methods also should be studied.

• We consider one channel model in the proposed cooperative spectrum sensing
method with small sample size. But in the real applications of CWSNs, the
sensor nodes are probably deployed in any place such as in busy intersections,
in a large building and in a forest. Therefore, more realistic channel model in
specific environment (hotspot, indoor, urban and suburban area, etc.) should be
considered in the future work.
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• In the thesis, we propose some efficient spectrum sensing methods for small
sample size, where some simulation results are given to verify the availability
of the proposed methods. However, in most cases the validity of research works
need to be further evaluated in a hardware testbed. Thus, in the future work the
proposed method will be verified on a hardware platform.

• We take advantage of the basic D-S theory of evidence in order to make a final
decision in the proposed methods. However, many enhanced D-S theory of evi-
dence methods have been proposed in the literature. How do the enhanced D-S
theory of evidence methods behave is a interesting study orientation. Besides,
there are various fusion methods such as fuzzy fusion and Kalman filter, which
is worthy of study.

• A trade off between energy efficiency and detection reliability is a very essential
aspect to design the spectrum sensing algorithm. In the proposed robust and
energy efficient cooperative spectrum sensing method, we give a rough balance
between the energy efficiency of the whole networks and the detection reliability
of each cluster. The optimal trade off between efficiency and reliability including
the network and the node is a very important direction in the future.

• In this thesis, considering the constrained resource of the sensor node in CWSNs,
we propose to deal with small sample size in order to design efficient algorithms,
which reduce the detection reliability. In the future work, other methods that are
energy efficient to the node should be investigated.
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Appendix 1: Computation of
P̂

2c the covariance matrix
of r̂↵yy⇤

In Equation (2.21),
P̂

2c is the covariance matrix of ˆr↵yy⇤ , which can be computed
as [64]
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quency smoothed cyclic periodograms as

ˆSf
k

i

f
k

j

(2↵,↵) =
1

NsL

(L�1)/2X

l=�(L�1)/2

W(l)Fk
i

(↵ +

2⇡l

Ns

)Fk
j

(↵� 2⇡l

Ns

) (A.4)

ˆS⇤
f
k

i

f
k

j

(0,�↵) = 1

NsL

(L�1)/2X

l=�(L�1)/2

W(l)Fk
i

(↵ +

2⇡l

Ns

)F ⇤
k
j

(↵ +

2⇡l

Ns

) (A.5)

where W is a normalized spectral window of odd length L and
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Thèse de Doctorat

Shaoyang MEN

Techniques de détection du spectre dans les réseaux cognitifs de capteurs
sans fil

Spectrum sensing techniques in cognitive wireless sensor networks

Résumé
Dans cette thèse, nous étudions l’optimisation des techniques

de détection du spectre dans le contexte des réseaux cognitifs de
capteurs sans fil. L’objectif de ces techniques est de déterminer l’oc-
cupation ou la disponibilité du canal. Tout d’abord, une vue d’en-
semble des techniques de détection du spectre développées dans la
littérature est fournie. Ensuite, les défis posés par le cadre applicatif
des réseaux de capteurs sans fil sont décrits ; il s’agit de considérer
dans le processus de décision les ressources et les capacités limi-
tées des nœuds du réseau. Ainsi, plusieurs méthodes de détection
du spectre sont proposées dans cette thèse. Certaines s’appliquent
uniquement localement au niveau d’un nœud, tandis que d’autres
mettent en œuvre une stratégie coopérative entre les nœuds pour
une meilleure détection du spectre. En premier lieu, afin de dimi-
nuer la durée d’observation du canal et de réduire la consommation
d’énergie, le problème adressé est celui de la détection du spectre
à partir d’un très petit nombre d’échantillons. Deux techniques re-
posant sur la statistique des échantillons sont donc proposées afin
d’améliorer la décision concernant la disponibilité ou non du canal :
une détection locale du spectre basée sur un test Goodness-of-Fit
et, une détection coopérative du spectre basée sur la théorie des
croyances de Dempster-Shafer. Puis, le problème de l’optimisation
de l’efficacité énergétique à l’échelle du réseau est abordé. Une nou-
velle technique basée sur un algorithme de classification est alors
proposé. Cette dernière permet d’améliorer la fiabilité de la détec-
tion, notamment par sa capacité à rejeter du processus de décision
les nœuds qualifiés de défectueux ou moins fiables.

Abstract
In this thesis we investigate the required efficiency and reliability

trade-off of spectrum sensing techniques in cognitive wireless sensor
networks (CWSNs). An overview of the developed spectrum sens-
ing techniques in the literature is provided. Then, considering the
challenges posed by the framework of resource-constrained nodes in
CWSNs, we propose several improved local and cooperative meth-
ods for spectrum sensing. Firstly, in order to minimize the chan-
nel observation duration and to get reduced power consumption, the
problem of running the spectrum sensing process from a small sam-
ple size is addressed. We thus propose two techniques in order to
increase the strength of the decision on the presence or not of a
signal: local spectrum sensing based on the goodness-of-fit (GoF)
principle and cooperative spectrum sensing based on the Dempster-
Shafer (D-S) theory of evidence. Moreover, considering the energy
efficiency of the whole network and the reliability of the decision, a
robust and energy efficient cooperative spectrum sensing scheme is
proposed. This latter is based on a clustering algorithm and utilizes
a double reliability evaluation. Compared with the methods in the lit-
erature, the proposed method present an improved performance of
detection, and is designed to support harsh channel conditions and
faulty nodes.

Mots clés
Détection du spectre, Réseaux cognitifs de
capteurs sans fil, Echantillons de taille faible,
Théorie des croyances de Dempster-Shafer.

Key Words
Spectrum sensing, Cognitive wireless sensor
networks, small sample size, Dempster-Shafer
theory of evidence.
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