
HAL Id: tel-01395879
https://hal.science/tel-01395879

Submitted on 12 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy efficient scheduling of parallel real-time tasks on
heterogeneous multicore systems

Houssam Eddine Zahaf

To cite this version:
Houssam Eddine Zahaf. Energy efficient scheduling of parallel real-time tasks on heterogeneous mul-
ticore systems. Computer Science [cs]. Université de Lille 1, Sciences et Technologies, 2016. English.
�NNT : �. �tel-01395879�

https://hal.science/tel-01395879
https://hal.archives-ouvertes.fr

UNIVERSITY OF LILLE

UNIVERSITY OF ORAN 1

DOCTORAL THESIS

Energy efficient scheduling of parallel real-time
tasks on heterogeneous multicore systems

Author:
Houssam-Eddine ZAHAF

Supervisor:
Dr. Richard OLEJNIK

Dr Abou-ElHassen BENYAMINA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Computer Science

November 2,2016

Joöl GOOSSENS Full professor, Univ-Libre Brussels, Belgium Referee
Mohamed BENYETTOU Full professor, USTO, Algeria Referee
Samira CHOURAQUI Full professor, USTO, Algeria Examiner
Yahia LEBBAH Full Professor, LITIO, Univ-Oran1, Algeria Examiner
Sophie Quinton Researcher, Inria, Grenoble, France, Examiner
Giuseppe LIPARI Full professor, CRIStAL, Univ-Lille1, France Invited
Richard OLEJNIK Senior Researcher, CNRS, CRIStAL, Univ-Lille1, France Supervisor
A.Hassen BENYAMINA Associate Professor, LAPECI, Univ-Oran1, Algeria Supervisor

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

http://www.univ-lille.fr
http://www.univ-lille.fr
http://houssameddine-zahaf.fr
https://www.cristal.univ-lille.fr/~olejnik
https://www.cristal.univ-lille.fr/~olejnik

i

“Life is short and you can not realize
If you start a job you have to finalize
worthy, life is not what someone did or does
Sometimes your life is too many lies
and too many shames you have exercise
So never be late to tell your apologize
Cause life is short and you can not realize

Life is something and you should matter
So start by making it little bit better
Every thing is simple, An alphabet starts with one letter
And even one hundred miles starts with one meter
It is not hard, Try to speak, or send a letter
Cause, life is short and it does matter

A lot of people where there for me from the day I took my first breath, and they are still in my life,
some has been gone, but they are still as memories, others enter and they are making memories,

Thank You, ”

Houssam Eddine ZAHAF

ii

Acknowledgements

The research lead in this thesis is the property of both University of Lille1, and University of
Oran 1. The works that will be presented has been done in two research teams: Optimization
dans les Reseaux de Transport Et Systemes Embarques (ORTESE) team of the laboratory “Lab-
oratoire d’Architetures Paralleles, Embarquees et du Calcul Intensif” LAPECI of university of
Oran 1 and, emeraude team of “Centre de Recherche en Informatique, Signal et Automatique
de Lille” CRIStAL laboratory of university of Lille. The research were held at IRCICA, “Insti-
tut de Recherche en Composants logiciels et materiels pour l’Information et la Communication
Avancee” and LAPECI laboratory.

This research has been funded in part by IRCICA and PHC Curien under the direction of
Abou El Hassen BENYAMINA and Richard OLEJNIK. Giuseppe LIPARI has participated in
directing the thesis and has importatnt impact on the choices taken during the last two years.
I am very glad and grateful to my directors Hassan and Richard with a very special thank and
admiration to Giuseppe LIPARI for his scientific and human support.

I would thank also the member of my jury. Firstly, Jöel Goossens and Benyattou Mohamed
for accepting and putting time even in their very full agenda, to read and evaluate my work.
I thank also Sophie Quinton, Samira Chouraqui and Lebbah Yahia to be members of my jury
and accept to examine the research presented in this disseration.

I will always remember the great times that I have passed in Emeraude and ORTESE teams.
I will always keep in my memories Philippe Devienne, Pierre Boulet, Clement Balabriga, Pierre
Falez, Yassine SidLakhdar, Loukil Lakhdar, Abbassia Deba, Aroui Abdelkader, · · · . A special
thank to Antoine Bertout for discussions that we had about everything and nothing, and the
great moment that we shared in playing football. A special thank to all IRCICA and IRI col-
leagues, Anne So, Ahmed, Xavier lepallec and all the people that I could not cite all names.

A special thought to my family, My Father Charef and my both mothers, the one who gave me
life and to the one that made me the man I am today. A special thank to my brothers: Farida,
Ismail, Salah, Oum Elkhier, Nassima, Hanane, Wafaa, Rajaa, my nephews, and to my friends,
especially mohammed maloufi, Azzouz Joseph and Amrane Kichou. A very special thought to
Sawsen, the woman that made my life different. Thank you for being there, you are a treasure
for me.

1

Abstract
by Houssam-Eddine ZAHAF

Cyber physical systems (CPS) and Internet of Objects (IoT) are generating an unprecedented
volume and variety of data that needs to be collected and stored on the cloud before being
processed. By the time the data makes its way to the cloud for analysis, the opportunity to
trigger a reply might be late.

One approach to solve this problem is to analyze the most time-sensitive data at the net-
work edge, close to where it is generated. Thus, only the pre-processed results are sent to
the cloud. This computation model is know as *Fog Computing* or *Edge computing*. Crit-
ical CPS applications using the fog computing model may have real-time constraints because
results must be delivered in a pre-determined time window. Furthermore, in many relevant
applications of CPS, the processing can be parallelized by applying the same processing on
different sub-sets of data at the same time by the mean parallel programming techniques. This
allow to achieve a shorter response time, and then, a larger slack time, which can be used to
reduce energy consumption.

In this thesis we focus on the problem of scheduling a set of parallel tasks on multicore
processors, with the goal of reducing the energy consumption while all deadlines are met. We
propose several realistic task models on architectures with identical and heterogeneous cores,
and we develop algorithms for allocating threads to processors, select the core frequencies, and
perform schedulability analysis. The proposed task models can be realized by using OpenMP-
like APIs.

2

Contents

Acknowledgements ii

Abstract 1

Introduction 11

I Context, Motivations & Related work 14

1 Multiprocessors & Parallel Systems 15
1.1 Introduction . 16

1.1.1 Classification of multicore systems . 16
1.2 Programming parallel architecture . 19

1.2.1 Thread & Process . 19
1.2.2 Sources of parallelism . 20
1.2.3 Communication models . 21
1.2.4 Decomposition & granularity of a parallel task 21
1.2.5 Limits and costs of parallel programming 21

1.3 Parallel models . 22
1.3.1 Fork-Join model . 22
1.3.2 Gang Model . 23

1.4 Designing a parallel code . 23
1.5 Power consumption in multiprocessor systems . 24

1.5.1 DVFS: Dynamic voltage and frequency scaling 24
1.5.2 DPM: Dynamic Power Management . 24

1.6 Conclusion . 25

2 Introduction to real-time systems 26
2.1 Introduction . 27
2.2 Task Model . 27
2.3 Priority Driven Scheduling . 28

2.3.1 Scheduling characteristics . 29
2.4 Uniprocessor Scheduling . 30

2.4.1 Rate Monotonic RM . 30
2.4.2 Deadline Monotonic DM . 31
2.4.3 Earliest Deadline First . 32

2.5 Multiprocessor Scheduling . 34
2.5.1 Partitioned Scheduling . 34
2.5.2 Global Scheduling . 35
2.5.3 Semi-Partitioned . 35

2.6 Programming Real-time systems . 36
2.6.1 Real-time Scheduling policies In LINUX Kernel 37
2.6.2 POSIX Threads . 37

2.7 Conclusion . 37

3

3 Parallel Real-time: Related work 39
3.1 CPS Systems Needs . 40

3.1.1 Real-time needs . 40
3.1.2 Parallel computing needs . 40
3.1.3 CPS and energy consumption . 41

3.2 This work . 41
3.2.1 Global or Partitionned? . 41
3.2.2 What kind of parallelism to do and where? 42
3.2.3 What energy saving techniques are we going to use? 42

3.3 Related work . 44
3.3.1 Taxonomy on parallel real-time tasks . 44
3.3.2 OpenMP . 44

3.4 Parallel Real-time tasks & scheduling . 45
3.4.1 Gang Model . 45
3.4.2 Multithread Model . 46
3.4.3 Federated scheduling . 48

3.5 Related work to energy consumption . 48
3.6 Conclusion . 49

II Contributions 50

4 FTC on Uniform cores 51
4.1 Introduction . 52
4.2 System overview . 52
4.3 Architecture Model . 52
4.4 Task model . 52
4.5 Power & Energy Models . 53

4.5.1 Power Model . 53
4.5.2 Energy Model . 54

4.6 Allocation and Scheduling . 54
4.6.1 Exact Scheduler . 54
4.6.2 FTC Heuristic . 55

4.7 Experimentation . 60
4.7.1 Task Generation . 60
4.7.2 Simulations . 60
4.7.3 Results & discussions . 61

4.8 Conclusion . 62

5 allocating CPM tasks to heterogeneous platforms 63
5.1 Introduction . 64
5.2 System Model . 64

5.2.1 Experimental platform . 64
5.2.2 Architecture Model . 65
5.2.3 Model of the execution time . 65
5.2.4 Parallel moldable tasks . 69
5.2.5 Power model . 70
5.2.6 Energy model . 73

5.3 Allocation & Scheduling . 74
5.3.1 Optimal schedulers . 74
5.3.2 Scheduling heuristics . 76
5.3.3 Frequency selection . 78
5.3.4 CP partitioning . 78

4

5.4 Results and discussions . 82
5.4.1 Task Generation . 82
5.4.2 Simulations . 83
5.4.3 Scenario 1 . 86
5.4.4 Scenario 2 . 89

5.5 Conclusion . 89

6 Parallel Di-graph model 90
6.1 Introduction . 91
6.2 Some related work . 91
6.3 System Model . 92

6.3.1 Architecture model . 92
6.3.2 Task Model . 92

6.4 Parallel applications . 94
6.4.1 MPEG encoding/decoding . 94
6.4.2 Array-OL . 94

6.5 Schedulability analysis . 98
6.5.1 Decomposition . 98
6.5.2 Analysis . 99

6.6 Heuristics . 102
6.6.1 Task decomposition & thread allocation . 102

6.7 Results and Discussions . 103
6.7.1 Task Generation . 104
6.7.2 Simulations . 106
6.7.3 Scenario 1 . 106
6.7.4 Scenario 2 . 108

6.8 Conclusion . 109

Conclusion & Perspactives 110

Personal publications 112

Bibliography 113

5

Contents

6

List of Figures

1.1 The power & heat increasing . 16
1.2 Shared memory model . 18
1.3 Distributed memory model . 18
1.4 Hybrid memory model . 18
1.5 Example of Data parallelism . 20
1.6 Example of task parallelism . 20
1.7 Example of Fork-Join Model . 23

2.1 Periodic Task model . 28
2.2 Example of scheduling with rate monotonic . 31
2.3 Example of scheduling with Deadline Monotonic 32
2.4 Example of scheduling with EDF . 33
2.5 Demand Bound Function . 33
2.6 Partitioned Scheduling vs Global Scheduling . 34

3.1 Comparaison between static and dynamic energy in different technologies 43
3.2 The memory power dissipation by one little and big core 43
3.3 Difference between Gang and Co scheduling . 45
3.4 Fork-join Model . 46
3.5 Generalized Model of Saifullah . 47
3.6 Multi-Phase Multi-Thread Model . 48

4.1 An example of excess− time evaluation . 57
4.2 Schedulability rate for BF, WF, FF, FTC and Exact Scheduler 61
4.3 Average Utilization per cores for BF, WF, FF, FTC and the exact scheduler 62
4.4 Energy consumption for different heuristics . 62

5.1 The execution time of the 6 benchmarks when allocated on one little/big Core . . 66
5.2 The execution time of square matrix multiplication (200x200) thread allocated on

one little/big Core . 66
5.3 Execution time of the MATMUL (150x150) thread with and without interfering

thread . 67
5.4 The computed mt as a function of RSS . 68
5.5 The execution time of matrix multiplication under several decompositions 68
5.6 The execution time of different task decompositions at different frequencies . . . 69
5.7 The memory power dissipation by one little and big core 71
5.8 Power dissipation of matrix multiplication on big and little cores 71
5.9 Power dissipation for different processing . 72
5.10 Real-values and regressions of power dissipation of little cores of matrix multi-

plication and Fourier transformations . 72
5.11 Energy consumption matrix multiplication and Fourier transformations threads

allocated on little and big cores . 73
5.12 The number of schedulable task sets . 86
5.13 Average utilization per each core group . 86
5.14 Scenario 1: Selected Frequency for big and little cores 87
5.15 Energy consumption for big and little cores . 88

7

5.16 The number of schedulable task sets . 89

6.1 Example of parallel di-graph task. 93
6.2 A di-graph modeling MPEG encoding . 94
6.3 An Example of video filter with Array OL . 96
6.4 The radar tracking applications with Array-OL . 96
6.5 Radar tracking application with our model . 97
6.6 1st Scenario: Schedulability Rate . 104
6.7 1st Scenario: Schedulability Rate . 106
6.8 1st Scenario: Average Speed (All) as function of total utilization 107
6.9 1st Scenario: Average Speed (Only Schedulable) as function of total utilization . . 107
6.10 2st Scenario: Schedulability Rate . 108
6.11 2st Scenario: Average Speed (Only Schedulable) as function of total utilization . . 108
6.12 2st Scenario: Energy Consumption as a function of total utilization 109

8

List of Tables

2.1 Example of Rate Monotonic:Task set details . 30
2.2 Example of Deadline monotonic: Task set details 32
2.3 The used Pthread primitives and their role . 38

3.1 Comparaison between global and partitioned scheduling 42

4.1 Example of excess-time evaluation . 56
4.2 Excess-time values . 57
4.3 Example of FTC scheduling: task set details . 58
4.4 The results of task allocation . 59

5.1 Cut-points list example . 70
5.2 The power dissipation coefficients for the 6 benchmarks 73
5.3 Example of cut-point selection : cut-point details 81
5.4 Example of cut-point selection: the selected results 81

6.1 An example of a task modeled by a parallel di-graph 93
6.2 An example of a path set . 98
6.3 The decomposition according to [val] = 6 of task of Figure 6.1 98

9

List of Symbols

% The rest of the ecludienne division
random(a, b) generates a random number between a and b
fj The operating frequency of core j
f An arbitrary operating frequency
sj The speed of core j
τi Task i
Ji,a The ath job of task τi
Ai,a The arrival time of ath instance of task τi
Di The relative deadline of task τi
Oi The offset of task τi
Ti The period of task τi
T A task set
Tj The task set allocated on core j
act The active state of an arbitrary core
A A multicore architecture
Th An arbitrary thread
aTH An arbitrary allocated thread
Ci Execution time of the single thread version of task τi
C The execution time of an arbitrary thread

Ci,j The execution time of the thread of task τi allocated to core j in FTC model
Thi,j The thread of task τi that is allocated to core j in the FTC task model
tdbf(τi, t) The demand bound function of task τi for an interval of time of length t
dbf(Tj , t) The demand bound function of task set Tj for an interval of time of length t
Di An arbitrary decomposition of task τi
dbf The demand bound function
α The symbol of excess time in equations

Thi,j,k Thread k of cut-point γi,j of task τi
aTHi,j,k,z Thread Thi,j,k allocated on core j
ugi,k,z(fop) The base line utilization of thread Thi,k,z when allocated on group g
~ξ Energy coeficients
γi,k The kth cut-point of task τi
ctgi,j,k(fop) A part of execution time of thread Thi,k,z on group g operating at frequency fop
ct An arbitrary part of the execution time that depends on the frequency
Gg the group g of cores
mtgi,k,z The memory acces time of thread Thi,k,z on group g
mt An arbitrary memory acces time
Ωg The needed strength of group g
Sg The current strength of core g

Πi(t) All pathes that could be generated by task τi in any interval of time of length t
pC|Si| The combination of p elements of |Si| elements
pdf An arbitrary path demand function
pdf(i, j) The demand function of the jth path of task τi

10

πik(t) the kth path of task τi of length t
G(V,E) A di-graph of vertices set V and edges E
Ei The egdes set of the graph of task τi in the di-graph model
e(s, d) The edge starting from s and ending at d
vi,j The vertice j of task graph of τi
Vi The vertice set of the task graph of τi
Cgi,j,k(fop) The worst case execution time of thread Thi,k,z on group g
Cv
i,k(f) The execution time of vertice vi,j on a core operating at f

11

Introduction

Context

The internet of things (IoT) is a network of physical devices, vehicles, buildings and other em-
bedded items with electronics, software, sensors, and network connectivity that enables these
objects to collect and exchange data. The IoT allows objects to be sensed and controlled re-
motely across existing network infrastructure, creating opportunities for more direct integra-
tion of the physical world into computer-based systems, and resulting in improved efficiency,
accuracy and economic benefit. When IoT is augmented with sensors and actuators, the tech-
nology becomes an instance of the more general class of cyber-physical systems (CPS) (please
refer to Baheti and Gill, 2011).

A CPS is therefore a system composed of physical entities such as mechanisms controlled
or monitored by computer-based algorithms. Today, a precursor generation of cyber-physical
systems can be found in areas as diverse as aerospace, automotive, chemical processes, civil in-
frastructure, energy, health-care, manufacturing, transportation, entertainment, and consumer
appliances.

CPS is generating an unprecedented volume and variety of data, by the time the data makes
its way to the cloud for analysis, the opportunity to trigger a reply might be late. The basic idea
is to analyze the most time-sensitive data at the network edge, close to where it is generated
instead of sending vast amounts of data to the cloud. The reply can be triggered quick enough
to ensure the system constraints. Only, the pre-processing results are sent later to the cloud for
historical analysis and longer-term storage. Thus, a CPS should (Cisco, 2015):

• Minimize latency: Milliseconds matter when you are trying to prevent manufacturing
line shutdowns or restore electrical service. Analyzing data close to the device that col-
lected the data can make the difference between averting disaster and a cascading system
failure.

• Conserve network bandwidth: Offshore oil rigs generate 500 GB of data weekly. Com-
mercial jets generate 10 TB for every 30 minutes of flight. It is not practical to transport
vast amounts of data from thousands or hundreds of thousands of edge devices to the
cloud. Nor is it necessary, because many critical analyses do not require cloud scale pro-
cessing and storage.

• Operate reliably: CPS data is increasingly used for decisions affecting citizen safety and
critical infrastructure. The integrity and availability of the infrastructure and data cannot
be in question.

This computing model is known as Fog Computing or Edge computing (see Bonomi et al.,
2012). Fog computing uses one or a collaborative multitude of near-user edge devices to carry
out a substantial amount of storage, communication, and control, configuration, measurement
and management.

The embedded platforms used for supporting fog computing are often multicore systems
and many of CPS applications can be easily parallelized by distributing data across the parallel
computing elements. Reducing power consumption in these systems is a very serious problem
especially when processing elements operate on battery power. Even when they are connected
to the electric grid, we need to keep the consumption as low as it is possible. Multicore tech-
nology can help us in achieving timeliness and low power consumption systems. In fact, even

12

when the computational load is not very high, multicore processors are more energy efficient
than an equivalent single-core platform as reported by Wolf, 2012.

Critical processings done in CPS systems such as electrical grid control must deliver re-
sponses in a pre-determined time window. Thus, a large spectrum of CPS applications real-
time applications.

Therefore, in this thesis we will be interested in parallelizing real-time application to multi-
processor architectures in the goal of reducing the energy consumption.

Contributions

In this thesis, we will be interested in particular in parallelization techniques, real-time schedul-
ing techniques, energy reduction techniques for a set of real-time tasks expressed with different
models on several types of multicore architectures. Mainly our contributions consist in propos-
ing realistic and expressive task models and efficient feasibility tests for these task models on
multicore architectures. Based on the proposed tests, we propose methodologies to reduce the
energy consumption for identical, uniform and heterogeneous cores. Thus the main contribu-
tions of this thesis are:

1. The Free-To-Cut FTC task model,

2. The allocation of FTC tasks to uniform architectures: exact and sufficient feasibility tests,

3. The Cut-point task model (CPM),

4. A methodology to build a realistic timing, power and energy models

5. The allocation of cut-point tasks to heterogeneous multicore architectures: exact and suf-
ficient feasibility tests,

6. Modelling parallel task with di-graphs,

7. The allocation of di-graph parallel tasks to identical cores platform: a sufficient feasibility
test.

Organization

This thesis is structured as follows. In the first chapter, we give a quick overview on multi-
core systems, parallel programming and energy consumption techniques. In this chapter, we
illustrate how parallel systems are seen for non-real-time systems. The second chapter will be
reserved to real-time systems theory, and practice. This chapter is divided mainly into two
parts: in the first, we talk mainly on real-time systems scheduling theory, and in the second
part, we will show how a simple real-time task model can be implemented in a real-time oper-
ating system. We will talk later in chapter 3 about the context of our work and the motivations
that pushed us to be interested in the parallelization of real-time task on multicore architecture,
and we will state some work that has been done in this field of research in real-time systems.
In the chapter 4, we present a simple and non-realistic parallel real-time task model that we
call, Free-To-Cut task model. We propose a corresponding feasibility test, and exact scheduler
and a heuristic to allocate such tasks to a uniform multicore architecture. The chapter 5, will
be reserved into an extension of the model in chapter 4, to a realistic model. In addition, we
will be interested on allocating a set of task of the extended model to heterogeneous multicore
platform. In this chapter, we present the results of a large set of experiments that has been
conducted on an ARM big.LITTLE processor to build task, architecture and energy models. We
propose an other feasibility test for these tasks on heterogeneous architectures. We will show
that obtaining an optimal solution of these problem is hard for only medium size problem, and

13

we will propose heuristics that allows to obtain quasi-optimal solutions in a reasonable time.
In the last chapter, we present a very expressive parallel task model that extend the di-graph
the one proposed by Stigge et al., 2011. We propose a sufficient feasibility test for the extended
model to a set of identical cores.

14

Part I

Context, Motivations & Related work

15

Chapter 1

Multiprocessors & Parallel Systems

“ On dit que le temps change les choses,
mais en fait le temps ne fait que passer

et nous devons changer les choses nous-młmes. ”

Andy Warhol

Contents
1.1 Introduction . 16

1.1.1 Classification of multicore systems . 16
1.2 Programming parallel architecture . 19

1.2.1 Thread & Process . 19
1.2.2 Sources of parallelism . 20
1.2.3 Communication models . 21
1.2.4 Decomposition & granularity of a parallel task 21
1.2.5 Limits and costs of parallel programming 21

1.3 Parallel models . 22
1.3.1 Fork-Join model . 22
1.3.2 Gang Model . 23

1.4 Designing a parallel code . 23
1.5 Power consumption in multiprocessor systems 24

1.5.1 DVFS: Dynamic voltage and frequency scaling 24
1.5.2 DPM: Dynamic Power Management . 24

1.6 Conclusion . 25

Chapter 1. Multiprocessors & Parallel Systems 16

1.1 Introduction

Gordon E. Moore, the co-founder of Intel and Fair-child Semiconductor observed, in 1965, that
the number of transistors in a dense integrated circuit is doubling every year in the number
of components per integrated circuit, and projected this rate of growth would continue for at
least another decade. In 1975, looking forward to the next decade, he revised the forecast to
doubling every two years. This observation is called the moore’s law (please refer to Aspray,
2004, Moore, 2006, Moore, 2005). In the last decade, Intel stated that the pace of advancement
has slowed.

Starting from 2004, the market leaders have difficulties of satisfying Moores law greedy de-
mand for computing power using classic single processor architectures because increasing the
operating clock speed improvements slowed due to the serious heating problems and consider-
able power consumption (see Figure 1.1) and also due to the increasing gap between processor
and memory speeds. This, in effect, pushes cache sizes to be larger in order to mask the latency
of memory. This helps only to the extent that memory bandwidth is not the bottleneck in per-
formance, the increasing difficulty of finding enough parallelism in a single instruction stream
to keep a high-performance single-core processor busy.

FIGURE 1.1: The power & heat increasing

In order to continue performance improvements, processor manufacturers such as Intel and
AMD have turned to multicore designs. the idea is to put several computing elements on the
same die and operate these cores on lower frequencies.

A multicore processor is a single computing component with more than one computing
element (referred as “cores”). Manufacturers integrate cores onto a single integrated circuit. In
contrast to multicore systems, the term multiprocessors refers to multiple physically separate
processing-units.

1.1.1 Classification of multicore systems

Multicore processors have been pervading and several architectures of multicore systems had
been proposed. For example, cores may or may not share caches, and they may implement mes-
sage passing (MPI itemplementations 2016) or shared-memory inter-core communication (such
as OpenMP Architecture Review Board, 2008). At the same time, cores may run same instruc-
tions or different ones. Cores may be interconnected by a single bus, ring, two-dimensional

Chapter 1. Multiprocessors & Parallel Systems 17

mesh, and crossbar, · · · . According to a criteria (Instruction set, memory, micro-architectures,
· · ·), multicore (multiprocessor) systems can be classified to distinguish between them.

According to Flynn

Flynn, 1972 classification of architectures is based upon the number of instructions that could
be run at the same time (single, multiple), and on the data streams on which instructions are
applied (also single, multiple). Hence, 4 classes can be distinguished:

• Single Instruction, Single Data (SISD): Also known as the Von Neumann machine, or
sequential computer. In this class no parallelism is allowed, only one instruction is run
at the time. A single control unit fetches a single instruction from memory. However,
SISD machines can have concurrent processing characteristics. Pipelined processors and
superscalar processors are common examples found in most modern SISD computers
(Michael, 2003).

• Single Instruction, Multiple Data (SIMD): In such architectures, the same instruction
can be applied to different data at the same time. In January 8, 1997, Intel proposed the
1st processor with MMX technology, The Pentium MMX (P166MX) operating at frequency
166 Mhz (P166MX) is the first SIMD machine.

• Multiple Instruction, Single Data (MISD) Multiple instructions operate on the same
data stream. It is very uncommon architecture and only few cases can use this kind of
machines.

• Multiple Instruction, Multiple Data (MIMD) Multiple processing elements simultane-
ously executing different instructions on different data. This class is the more general
than all previous classes. All architectures, we use in this thesis, are from this class of
multicore architectures. An example of MIMD system is Intel Xeon Phi, descended from
Larrabee microarchitecture. These processors have multiple processing cores (up to 61 as
of 2015) that can execute different instructions on different data (Pfister, 2008).

According to architecture and microarchitecture

According (as state in Davis and Burns, 2011) to the difference (architecture and micro-architecture)
between the computing elements, the multiprocessors (multicores) can be classified to:

• Identical: The processors are identical; hence the execution time of a processing is the
same on all processors. The odroid C2 contains an identical core platform compound of
4 ARM cortex A53 processors (HardKernel, 2016).

• Uniform: The rate of execution of a processing depends only on the speed of the pro-
cessor. Thus, a processor of speed ×2, will execute a processing at twice of the rate of
a processor of speed 1. The third generation of Intel i5 can be considered as a unifrom
architecture (Intel, 2016).

• Heterogeneous: The processors are different; hence the rate of execution of a processing
depends on both the processor and the task. Indeed, not all tasks may be able to execute
on all processors and a processing may have different execution rates on two different
processors operating at the same speed. The single ISA platforms such ARM big.LITTLE
allow to have the same instruction set architecture in all cores, but with different microar-
chitecture and architecture, thus allowing a task to be executed on any core. SAMSUNG
EXYNOS 5422 is a Single ISA platform compound of 8 cores: 4 “big” cores ARM A15, and
4 little cores ARM A7 (Samsung, 2016).

Chapter 1. Multiprocessors & Parallel Systems 18

FIGURE 1.2: Shared memory model

In Chapter 4, we will be interested in uniform architectures, and in single ISA architec-
tures, especially SAMSUNG EXYNOS 5422 processor in Chapter 5. In last chapter, we will be
restricted to only identical core platforms.

According to memory architecture

• Shared memory A shared memory multicore (multiprocessor) offers a single memory
space used by all processors. Any processors can access physically to data at any location
in the memory (see Figure 1.2).

• Distributed memory refers to a multicore (multiprocessor) in which each processor has
its own private memory. Processings can only operate physically on local data, and if
remote data is required, the processing must communicate with one or more remote pro-
cessors (see Figure 1.3).

FIGURE 1.3: Distributed memory model

• hybrid memory refers to a multiprocessor in which each core has its own private memory,
and all cores share a global memory. The largest and fastest computers in the world today
employ both shared and distributed memory architectures (see Figure 1.4).

In the experiments that we present in chapter 5, we will be restricted to a platform with a
shared memory.

FIGURE 1.4: Hybrid memory model

Chapter 1. Multiprocessors & Parallel Systems 19

1.2 Programming parallel architecture

Parallel computing is a type of computation in which many calculations are carried out si-
multaneously, operating on the principle that large problems can often be divided into smaller
ones, which are then solved at the same time. There are several different forms of parallel com-
puting: bit-level, instruction-level, data, and task parallelism. Parallelism has been employed
for many years, mainly in high-performance computing, but interest in it has grown lately due
to cyber-physical systems. Parallel computing is closely related to concurrent computing, they
are frequently used together, and often conflated, though the two are distinct: it is possible to
have parallelism without concurrency (such as bit-level parallelism), and concurrency without
parallelism (such as multitasking by time-sharing on a single-core CPU). In some cases par-
allelism is transparent to the programmer, such as in bit-level or instruction-level parallelism,
but explicitly parallel algorithms, particularly those that use concurrency, are more difficult to
write than sequential ones, because concurrency introduces several new classes of potential
software bugs, of which race conditions are the most common. Communication and synchro-
nization between the different subtasks are typically some of the greatest obstacles to getting
good parallel program performance.

Before talking in more details about programming parallel architectures, we give a quick
overview on two fundamental concepts in parallel computing: Threads and Processes.

1.2.1 Thread & Process

First, we will give basic definitions of process, thread and how a real-time task is implemented a
like thread. A process is an instance of a computer program that is being executed. Each process
has a Process Control Block (PCB) which contains information about that process. Depending
on the implementation of PCB in OS1, PCB may hold different pieces of information, commonly
it contains:

• PID: Process Identifier

• PPID the Parent Process Identifier;

• UID: User Identifier;

• The values of registers: The current state of the process even if it is ready, running, of
blocked;

• Instruction Pointer (IP) or Program counter (PC): it contains the address of the next
instruction to execute;

• Process addressing space;

PCB may contains other information like the processor time, register values, · · · .
A thread is the smallest sequence of instructions that can be managed independently by a

scheduler. The implementation of threads and processes differs between operating systems,
but in most cases a thread is a component of a process. If a process has only one thread, the
thread is executed in sequential (single thread). If the process contains multiple threads, they
execute concurrently and share resources such as memory. On uniprocessor systems, the CPU
is switched between multiple threads/processes. When a thread/process execution is inter-
rupted from a higher priority task, all information about the interrupted task are saved, and
the information of the new one is loaded, this operation is called Context Switch.

1Operating Systems

Chapter 1. Multiprocessors & Parallel Systems 20

Array AArray A

...

...
do i= 1,25

A(i)=B(i)*3
end do

...

...

...

...
do i= 1,25

A(i)=B(i)*3
end do

...

...

...

...
do i= 26,50

A(i)=B(i)*3
end do

...

...

...

...
do i= 26,50

A(i)=B(i)*3
end do

...

...

...

...
do i= m,n

A(i)=B(i)*3
end do

...

...

...

...
do i= m,n

A(i)=B(i)*3
end do

...

...

Task 1Task 1Task 1 Task 2Task 2Task 2 Task 3Task 3Task 3

FIGURE 1.5: Example of Data parallelism

...

...

Code of Task
One

...

...

...

...

Code of Task
One

...

...

...

...

Code of Task
Two

...

...

...

...

Code of Task
Two

...

...

...

...

Code of Task
Three

...

...

...

...

Code of Task
Three

...

...

Task 1Task 1Task 1 Task 2Task 2Task 2 Task 3Task 3Task 3 Main ThreadMain ThreadMain Thread

if (processor=”a”)
Task 1

if (processor=”a”)
Task 1

if (processor=”b”)
Task 2

if (processor=”b”)
Task 2

if (processor=”C”)
Task 3

if (processor=”C”)
Task 3

FIGURE 1.6: Example of task parallelism

1.2.2 Sources of parallelism

Data Parallelism

Data parallelism is a form of parallelization, it focuses on distributing the data across different
parallel computing nodes. Data parallelism is achieved when each processor performs the
same processing on different subsets of data at the same time.

In Figure 1.5, we present an example of data parallelism. Tasks task 1, task 2, · · · , task n do
the same computation is done on a sub array of Array B and results are gathered in Array A.

Task Parallelism

Task parallelism (control parallelism) focuses on distributing different processing across differ-
ent processors. The processings may execute the same or different code.

It is of a paramount importance to consensus on programming models because the existence
of different parallel computers, thereby facilitating portability of software. Parallel program-
ming models are a bridge between hardware and software.

Classifications of parallel programming models can be divided broadly into two areas: pro-
cess interaction and problem decomposition. First, we will focus on the interaction between
tasks.

Chapter 1. Multiprocessors & Parallel Systems 21

1.2.3 Communication models

Process interaction relates to the mechanisms by which parallel processes are able to communi-
cate with each other. The most common forms of interaction are shared memory and message
passing.

Shared memory model

Shared memory is an efficient means of passing data between processes. In a shared-memory
model, parallel processes share a global address space that they read and write to asynchronously.
Asynchronous concurrent access can lead to race conditions and mechanisms such as locks,
semaphores and monitors can be used to avoid these. Conventional multi-core processors di-
rectly support shared memory, which many parallel programming languages and libraries,
such as Cilk (Blumofe et al., 1996), OpenMP(OpenMP Architecture Review Board, 2008) and
Threading Building Blocks, (TBB Pheatt, 2008), are designed to exploit.

Message passing

In a message-passing model, parallel processes exchange data through passing messages to
one another. These communications can be asynchronous, where a message can be sent before
the receiver is ready, or synchronous, where the receiver must be ready.

1.2.4 Decomposition & granularity of a parallel task

Granularity is the amount of real work in the parallel task. If granularity is too fine, then perfor-
mance can suffer from communication overhead. If granularity is too coarse, then performance
can suffer from load imbalance. The granularity of a multithreaded application greatly affects
its parallel performance. When decomposing an application for multithreading, one approach
is to logically partition the problem into as many parallel tasks as possible. Within the paral-
lel tasks, next determine the necessary communication in terms of shared data and execution
order. Since partitioning tasks, assigning the tasks to threads, and sharing data between tasks
are not free operations, one often needs to agglomerate, or combine partitions, to overcome
these overheads and achieve the most efficient implementation. The agglomeration step is the
process of determining the best granularity for parallel tasks.

The granularity is often related to how balanced the work load is between threads. While
it is easier to balance the workload of a large number of smaller tasks, this may cause too
much parallel overhead in the form of communication, synchronization, etc. Therefore, one
can reduce parallel overhead by increasing the granularity (amount of work) within each task
by combining smaller tasks into a single task.

1.2.5 Limits and costs of parallel programming

Here, we present the challenges that programmer could face in the world of parallel program-
ming:

• Acceleration Amdahl’s law gives the theoretical speedup in latency of the execution of a
task at fixed workload that can be expected of a system whose resources are improved.

Amdahl’s law can be formulated as:

Slatency(s) =
1

(1− p) + p
s

(1.1)

where:

– Slatency is the theoretical speedup in latency of the execution of the whole task;

Chapter 1. Multiprocessors & Parallel Systems 22

– s is the speedup in latency of the execution of the part of the task that benefits from
the improvement of the resources of the system;

– p is the percentage of the execution time of the whole task concerning the part that
benefits from the improvement of the resources of the system before the improve-
ment.

{
Slatency(s) ≤ 1

1−p
lims→∞ Slatency(s) = 1

1−p .
(1.2)

Furthermore, the above equation show that the theoretical speedup of the execution of
the whole task increases with the improvement of the resources of the system and that
regardless the magnitude of the improvement, the theoretical speedup is always limited
by the part of the task that cannot benefit from the parallelization.

Amdahl’s law is often used in parallel computing to predict the theoretical speedup when
using multiple processors. For example, if a program needs 20 hours using a single pro-
cessor core, and a particular part of the program which takes one hour to execute cannot
be parallelized, while the remaining 19 hours (p = 0.95) of execution time can be paral-
lelized, then regardless of how many processors are devoted to a parallelized execution
of this program, the minimum execution time cannot be less than that critical one hour.
Hence, the theoretical speedup is limited to at most 20 times (1/(1 p) = 20). For this
reason parallel computing is relevant only for a low number of processors and very par-
allelizible programs.

• Communication In the general case, different threads communicate with each another
as they execute. Communication usually takes place by passing data from one thread to
another as part of a workflow.

• Harder to debug Programming multi-threaded code often requires complex coordination
of threads and can easily introduce subtle and difficult-to-find bugs due to the interweav-
ing of processing on data shared between threads. Consequently, such code is much more
difficult to debug than single-threaded code when it fails.

• Load Balancing workload across processors can be problematic, especially if they have
different performance characteristics.

• Complexity In general, parallel processing are much more complex than corresponding
sequential processing.

• Portability: Thanks to standardization in several APIs such as MPI, POSIX threads and
OpenMP, portability issues with parallel programs are not as serious as in past years.
However, even though standards exist for several APIs, implementations differ in a num-
ber of details, sometimes requiring code modifications to ensure the portability.

1.3 Parallel models

In this section, we present two models for parallel programming, the fork-joint model and the
gang model and their correspondent schedulers.

1.3.1 Fork-Join model

The forkjoin model is a way of executing parallel programs, such that execution branches al-
ternatively between parallel and sequential execution at designated points in the program.
Parallel sections may fork recursively until a certain task granularity is reached.

Chapter 1. Multiprocessors & Parallel Systems 23

S1 p11

p12

S2 p21

p22

p23

S3

FIGURE 1.7: Example of Fork-Join Model

The fork join example given in Figure 1.7 presents an example of three consecutive forks
and joins. The first sequential segment is S1 which forks two parallel threads P11 and P12.
The second sequential segment is S2 and it joints the two segments forked by S1 and continue
onward its execution and it forks at its turn three parallel threads P21, P22 and P23. The last
task joins the threads created by S2 and continue onward till the task ends.

Threads used in forkjoin programming will typically have a work stealing scheduler that
maps the threads onto the underlying thread pool. This scheduler can be much simpler than
a fully featured, preemptive operating system scheduler: general-purpose thread schedulers
must deal with blocking for locks, but in the fork join paradigm, threads only block at the join
point.

Fork-join is the main model of parallel execution in the OpenMP framework. although
OpenMP implementations may or may not support nesting of parallel sections. It is also
supported by the Java concurrency framework, the Task Parallel Library for .NET, and Intel’s
Threading Building Blocks (TBB).

1.3.2 Gang Model

When a critical section is used by some thread which is descheduled because its time quantum
expired, then other threads attempting to access the critical section must wait until the context
switch. A solution is to execute the threads of the same parallel application in parallel at the
same time. Thus, task should synchronize activation, running and termination of all its threads.
This scheme is called “Gang scheduling”.

1.4 Designing a parallel code

Managing concurrency acquires a central role in developing parallel applications. The basic
steps in designing parallel applications are:

1. Partitioning: The partitioning stage of a design is intended to expose opportunities for
parallel execution. Hence, the focus is on defining a large number of small tasks in order
to yield what is termed a fine-grained decomposition of a problem.

2. Communication: The tasks generated by a partition are intended to execute concurrently
but cannot, in general, execute independently. The computation to be performed in one
task will typically require data associated with another task. Data must then be trans-
ferred between tasks to allow computation to proceed. This information flow is specified
in the communication phase of a design.

Chapter 1. Multiprocessors & Parallel Systems 24

3. revisiting: In the third stage, development moves from the abstract toward the concrete.
Developers revisit decisions which has been made during the partitioning and commu-
nication phases in so that the task will execute efficiently on some class of parallel archi-
tectures. The fine-grain decompositions can be clustered to gather to form bigger tasks
and provide a smaller number of tasks.

4. Mapping: In the fourth and final stage of the design of parallel algorithms, the developers
specify where each task will be executed.

In this thesis, we are interested in the two last aspects for parallel programming design
under real-time constraints in the goal of reducing the energy consumption. Hence, in the next
section, we overview two major techniques for reducing the power consumption : DVFS and
DPM.

1.5 Power consumption in multiprocessor systems

Reducing power consumption in multicore systems for CPS is a very serious problem when
they are operated by batteries. Even when they are connected to the electric grid, we need to
keep the consumption as low as it is possible. In fact, even when the computational load is
not very high, multicore processors are more energy efficient than an equivalent single-core
platform Wolf, 2012.

Previously, power management on multicore architectures boils down to a simple principle
“turn-off anything you do not use” in the logic of Dynamic Power Management (DPM). In
modern processor, it is possible to change dynamically the operating frequency to reduce the
power consumption, this operation is called Dynamic Voltage and Frequency Scaling DVFS.

1.5.1 DVFS: Dynamic voltage and frequency scaling

Increasing the frequency of a processor involves switching its transistors more rapidly, and
transistors that are switched more rapidly dissipate more power. The power dissipated due to
switching is called dynamic power.

Dynamic Voltage and Frequency Scaling (DVFS) describes the use of two power saving
techniques: dynamic frequency scaling and dynamic voltage scaling. The benefit of scaling voltage
and frequency is to reduce power consumption of the processor and the attached peripherals
like memory. A frequency can be set on one of several available operating points. An Operating
Point is a set voltage and frequency in which the processor can operate. Typically, the voltage
is determined by the minimum voltage that can sustain a set processor frequency, therefore it
usually does not make sense to have two different operating points at the same frequency, but
at different voltages. Downscaling the frequency downgrades the timing performances of a
system. Thus, calibrating the frequency to reduce the energy consumption is always coupled
with a quality of service.

1.5.2 DPM: Dynamic Power Management

Even transistors that are not switching will still leak current during idle periods. This leakage
current constantly dissipates power. The amount of power dissipated due to leakage current is
called static power.

In 1996, Intel, HP, and Microsoft with Toshiba and Phoenix standardized static power man-
agement by presenting the ACPI Specification. ACPI defines which registers, piece of hardware
should be available, and what information should be offered to control the processor states. The
basic idea behind ACPI based power management is that unused/less used devices should be
put into lower power states. Even the entire system can be set into low-power state (sleeping
state) when possible. Standards designate two famillies of processor states: P-states and C-
states. P-states are described as performance states; each P-state corresponds to a certain clock

Chapter 1. Multiprocessors & Parallel Systems 25

speed and voltage. P-states could also be called processing states, contrary to C-states, a core
in a P-state is actively processing instructions.

With the exception of C0, C-states correspond to sleep/idle states, there is no processing
on a core when it is in a C-state. The ACPI standard only defines 4 CPU power states from
C0 to C3: C0 is the state where the P-state transitions happen: the processor is processing. C1
halts the processor. There is no processing done but the processor’s hardware management
determines whether there will be any significant power savings. All ACPI compliant CPUs
must have a C1 state. C2 is optional, also known as stop clock. While most CPUs stop ”a few”
clock signals in C1, most clocks are stopped in C2. C3 is also known as sleep, or completely stop
all clocks in the CPU.

The actual result of each ACPI C-state is not defined. It depends on the power management
hardware that is available on the processor. Modern processors does not only stop the clock in
C3, but also move to deeper sleep states C4/C5/C6 and may drop the voltage of the CPU.

The total power dissipation is the sum of the dynamic and static power. The integral of
dissipated power over time defines the energy consumption. In this work, we focus on mini-
mizing the total energy dissipation.

In this thesis, several hardware architectures will be benchmarked to build a timing and
power profile for both DVFS and DPM techniques.

1.6 Conclusion

In this chapter, we presented an overview on two fundamental concepts that we are going to
use in this thesis: The parallelization techniques and energy saving techniques. We will be
interested in the next chapters in particulary two problems of parallelization: decomposition
and allocation. We will consider a set of tasks with timing constraints to be parallelized to a
multicore platform with the goal of reducing the energy consumption. However before that
we will give a quick overview on real-time systems in the next chapter.

26

Chapter 2

Introduction to real-time systems

“ Time is like a sword Either you strike it,
or it will strike you ”

Arabic proverbe

Contents
2.1 Introduction . 27
2.2 Task Model . 27
2.3 Priority Driven Scheduling . 28

2.3.1 Scheduling characteristics . 29
2.4 Uniprocessor Scheduling . 30

2.4.1 Rate Monotonic RM . 30
2.4.2 Deadline Monotonic DM . 31
2.4.3 Earliest Deadline First . 32

2.5 Multiprocessor Scheduling . 34
2.5.1 Partitioned Scheduling . 34
2.5.2 Global Scheduling . 35
2.5.3 Semi-Partitioned . 35

2.6 Programming Real-time systems . 36
2.6.1 Real-time Scheduling policies In LINUX Kernel 37
2.6.2 POSIX Threads . 37

2.7 Conclusion . 37

Chapter 2. Introduction to real-time systems 27

2.1 Introduction

Real-time systems are defined as those systems in which the correctness of the system depends
not only on the correctness of logical result of computation, but also on the time on which
results are produced Burns and Wellings, 2001. If the response time violates the timing con-
straints imposed by the dynamic of the processing, the system has to pay a cost for the viola-
tion. Hence, it is essential that the timing constraints of the system are guaranteed to be met.
The cost of failure in a real-time system differentiates real-time systems into mainly three types
of real-time systems.

If the violation of timing constraints causes the system failure, the real-time is hard. Mis-
sile Guidance System (MGS) and Electronic Stability Program (ESP) are both hard real-time
systems. If the ESP is available in a car, then the car has two other sub-systems, the Anti-lock
Braking System (ABS) which prevents the car wheels from blocking while braking, and Trac-
tion Control System (TCS) which prevents the wheels from spinning while accelerating. The
ESP collects data from several sensors (wheel speed sensor, steering angle sensor, lateral ac-
celeration sensors, etc) 25 times per second and processes the collected data. If it detects that
the car is moving in an other direction than the driver guidance, it triggers several actions
independently from the driver, these actions act mainly on brakes (ABS), engine, and wheel
orientations in order to get the car control back. The data collected from sensors must be pro-
cessed and reaction triggered within 40 milliseconds. Any delays on reaction, may cause life
loss, or car damage.

The second type of real-time systems are soft real-time systems. In such systems, the vi-
olation of timing constraints does not leads to catastrophic consequences, but a bad user ex-
perience. Video streaming and multimedia are examples of soft real-time systems. In a soft
real-time systems, the results may stay relevant even if the timing constraints are violated.

The firm real-time systems are not hard-real time systems, but results delivered after that
time constraints ha been violated, are ignored. These systems are coupled to Quality of Service
(QoS) that they deliver. However, it is still important to limit the number of timing constraint
violations. For example, a video streaming of 25 FPS1 can violates deadline 5 times per second,
such that the video will have a frame rate at worst of 20 FPS.

2.2 Task Model

In this thesis, we refer to system functionalities as tasks. Tasks in real-time systems are recur-
rent. Any task can appear at any time in the system life. We call each task appearance a job.
We denote Ji,a the ath appearance (job) of the task τi. Each job Ji,a is characterized by the tuple
(Ai,a,Di,Ci). The job Ji,a is ready at time Ai,a, and takes Ci time units to execute, and must
finish its execution before timeAi,a+Di. The job is said active in the time window betweenAi,a
and Ai,a + Di. In the sporadic task model a minimum inter-arrival time between two consec-
utive releases (jobs) of the same task is defined. Thus, a sporadic task is characterized by the
tuple τi = (Oi,Di,Ti,Ci) where:

• Offset Oi: is the task release date, it represents the date of the first appearance of the task
τi.

• Deadline Di: is the task’s relative deadline, it represents the time within the task have
to end it’s execution starting from the release date Oi. If Di is equal to the period Ti
the deadline is implicit. If Di is less or equal to the period Ti the deadline is constrained.
Otherwise, the deadline is arbitrary. If Di = Ti the deadline is implicit.

• Period or inter-arrival time Ti : it represents the minimum inter-arrival time between two
releases of the same task. The worst case of sporadic arrivals is that the task is released

1Frame Per Second

Chapter 2. Introduction to real-time systems 28

at each Ti time units from its previous release. This assumption leads us to the periodic
task model of Liu and Layland.

• Charge Ci: is the task execution time. It represents the time elapsed from the time task ac-
quires the processor to the end of the task without being interrupted. In a lot of real-time
works, this parameter represents the worst case execution time. The estimation of the ex-
ecution time can be done dynamically by testing several inputs, however this technique
underestimates the execution execution times, because we can not ensure that all inputs
had been tested, and that the worst execution path was produced. An other technique
is based on doing the analysis of the compiled code of the task and a processor model.
We explore task code paths to generate the worst one, and use the processor model to
estimate the execution time that could be generated by this path. These techniques are
time consuming and in general overestimate the worst case execution time of the task
and it depends mainly on the processor model and its correctness. Therefore, building
a processor model is hard for modern processors. To have more information about the
worst case execution time estimation please, refer to papers Puschner and Burns, 2000
Colin and Puaut, 2000.

Other task parameters can be defined such as:

• Laxity Li : the laxity is the largest time for which the scheduler can safely delay the job
execution before running it without any interruption. It is given byLi(t) = Ai,j+Di−t−Ci

• Utilization ui : it is given by the ratio Ci
Ti

, it represents the processor occupation rate if the
task τi is allocated on this processor.

• Density di : it is given by the ratio Ci
Di

if the deadline is constrained otherwise it is equal
to Ci

Ti
.

• Worst case Response time Ri: is defined as the longest time from a job arriving to its
completing.

• Hyper Period H : is defined as the least common multiple of all task periods.

You can see on Figure 2.1 a graphical representation of task parameters.

0

Ai,0 Ai,1 Ai,2
Di

Ci
Li

Ti

FIGURE 2.1: Periodic Task model

2.3 Priority Driven Scheduling

Scheduling real-time tasks at run-time is ordering the execution of active jobs. In a real-time
operating system, a scheduler denotes the algorithms that determines which active job(s), is
run on the processor(s) at each moment of time. Run-time scheduling algorithms are typically
implemented as follows: at each time instant, assign a priority to each active job, and allocate
the available processors to the highest-priority jobs (Sanjoy Baruah, 2015). Different scheduling
algorithms differ one from another in the manner in which priorities are assigned.

A scheduling algorithm is said to be a priority driven scheduling algorithm if and only if it
satisfies the condition that for every pair of jobs Ji,a, Ji′,a′, ,if Ji,a has higher priority than Ji′,a′

Chapter 2. Introduction to real-time systems 29

at some instant in time, then Ji,a always has higher priority than Ji′,a′ (Goossens, Funk, and
Baruah, 2003).

According to the priority, we can classify scheduling algorithms into 3 categories:

• Fixed Task Priority: A task has a fixed priority during the whole system life, and all jobs
of the same task, has the same priority. Rate Monotonic (RM Liu and Layland, 1973a) and
Deadline Monotonic (DM Leung and Whitehead, 1982) are fixed task priority scheduling
algorithms.

• Fixed Job Priority, EDF: A job has a fixed priority during its execution, but jobs of the
same task may have different priorities. Earliest Deadline First (EDF Liu and Layland,
1973a) represents this class of scheduling algorithm.

• Dynamic Job Priority: A job priority changes at each moment of time. These algorithms
are hard to implement, and have a high complexity. Least Laxity First (LLF Dertouzos,
2002) is a dynamic job priority scheduling algorithm.

2.3.1 Scheduling characteristics

Before detailing different scheduling algorithms, it is necessary to give more definitions.

Preemption

Preemption is the act of interrupting an executing job and invoke a scheduler to determine
which process should execute next. Therefore, allowing higher priority jobs to acquire the
preemptible resource.

Feasibility

A task set is said to be feasible with respect to a given system if there exists some scheduling
algorithm that can schedule all possible sequences of jobs that may be generated by the task set
on that system without missing any deadlines.

Optimality

A scheduling algorithm is referred as optimal if it can schedule all of the task sets that can be
scheduled by any other algorithm. In other words, all of the feasible task sets.

Sufficient tests

A schedulability test is termed sufficient, with respect to a scheduling algorithm and a system
if all of the task sets that are deemed schedulable according to the test are in fact schedulable.

Necessary tests

Similarly, a schedulability test is termed necessary if all of the task sets that are deemed un-
schedulable according to the test are in fact unschedulable.
A schedulability test that is both sufficient and necessary is referred to as exact test.

Schedulability

A task is referred to as schedulable according to a given scheduling algorithm if its worst-case
response time under that scheduling algorithm is less than or equal to its deadline. Similarly, a
task set set is referred to as schedulable according to a given scheduling algorithm if all of its
tasks are schedulable.

Chapter 2. Introduction to real-time systems 30

Predictability

A scheduling algorithm is referred to as predictable if the response times of jobs cannot be in-
creased by decreases in their execution times, with all other parameters remaining constant.
Predictability is an important property, as in real systems task execution times are almost al-
ways variable up to some worst-case value

Comparability

In comparing the task sets that can be scheduled by two different scheduling algorithms A and
B, there are three possible outcomes.

1. Dominance. Algorithm A is said to dominate algorithm B, if all of the task sets that are
schedulable according to algorithm B are also schedulable according to algorithm A, and
task sets exist that are schedulable according to A, but not according to B

2. Equivalence. Algorithms A and B are equivalent, if all of the task sets that are schedulable
according to algorithm B are also schedulable according to algorithm A, and vice versa.

3. Incomparable. Algorithms A and B are incomparable, if there exist task sets that are
schedulable according to algorithm A, but not according to algorithm B and vice versa

Sustainability

A scheduling algorithm is said to be sustainable with respect to a task model, if and only if
schedulability of any task set compliant with the model implies schedulability of the same task
set modified by (i) decreasing execution times, (ii) increasing periods or inter-arrival times,
and (iii) increasing deadlines. Similarly, a schedulability test is referred to as sustainable if
these changes cannot result in a task set that was previously deemed schedulable by the test
becoming unschedulable. We note that the modified task set may not necessarily be deemed
schedulable by the test. A schedulability test is referred to as self-sustainable, if such a modified
task set is always deemed schedulable by the test.

2.4 Uniprocessor Scheduling

In this section, we present the uniprocessor scheduling algorithms and their corresponding
schedulability tests.

2.4.1 Rate Monotonic RM

Rate Monotonic scheduling algorithm is a fixed task priority algorithm. It assigns a priority
according to the task’s period : the shorter the period is, the higher is the priority.

T C T

τ1 3 10
τ2 2 15

TABLE 2.1: Example of Rate Monotonic:Task set details

Chapter 2. Introduction to real-time systems 31

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

FIGURE 2.2: Example of scheduling with rate monotonic

Example: Let T a set of 2 periodic tasks with implicit deadlines (see table 2.1 for task details).
The total task set utilization is :

U =
3

10
+

2

15
= 0.43 (2.1)

The utilization is less than 0.82, Thus the task set is schedulable under RM. Notice the same
results in Figure 2.2 where a schedule is presented for the same task set in the time interval
[0, 30].

2.4.2 Deadline Monotonic DM

Deadline monotonic is a scheduling algorithm from fixed task priority scheduling class. With
deadline monotonic, tasks priorities are assigned according to their deadlines; the highest pri-
ority is assigned the task with the shortest deadline. In contrary of Rate Monotonic, DM con-
siders tasks with constrained deadlines. DM is optimal in its class.

Audsley et al., 1990 proposed a sufficient schedulability task under the hypothesis that tasks
are sorted in a non-decreasing order of deadlines (Equation (2.2)).

∀i, (1 ≤ i ≤ n) :
Ci
Di

+
Ii
Di
≤ 1, whereIi =

i−1∑
j=1

⌈
Di
Tj

⌉
Cj (2.2)

Where I is the parameter describing the interference from higher priority tasks.
An other exact test based on the worst response time analysis can be performed. The critical

instance of a task i of priority p happens when all other tasks with higher priority are active
at the same time. For a synchronous task set, these moment happen at time 0. Joseph et al.
proposed a test based on response time analysis Ri. The worst case response time is given by
the smallest (positive) value that satisfies the recursive equation in Equation (2.3) where hp(i)
denotes the set of tasks with a higher priority than τi;

Ri = Ci +
∑

j=hp(i)

⌈
Ri
Tj

⌉
Cj (2.3)

We can use the following recurrent equations to calculate the worst case response time
(Audsley et al., 1993).

R0 = Ci (2.4)

Rk+1
i = Ci +

∑
j=hp(i)

⌈
Rki
Tj

⌉
Cj (2.5)

Example Let T a set of 3 periodic tasks with implicit deadlines (see Table 2.2, P is the task
priority).

By using Equations (2.4) and (2.5), we obtain the results of the columns R in Table 2.2. We
can notice that task τ3 worst case response time is 29 which is greater that it’s deadline which is

Chapter 2. Introduction to real-time systems 32

T Ci Ti Di Pi Ri
τ1 5 10 9 2 9
τ2 4 15 7 3 4
τ3 6 30 15 1 29

TABLE 2.2: Example of Deadline monotonic: Task set details

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

τ3

FIGURE 2.3: Example of scheduling with Deadline Monotonic

15. Thus, the task is not schedulable. This is confirmed in the scheduling simulation on Figure
2.3.

2.4.3 Earliest Deadline First

Earliest deadline first (EDF) is a fixed job priority scheduling algorithm. At each scheduling
event (job termination or arrival), the scheduler assigns the job with the smallest value ofAi,a+
Di the highest priority. EDF is an optimal scheduling algorithm on preemptive uniprocessor.

For implicit deadline task, EDF has a utilization bound of 100%. Thus, an exact schedula-
bility test can be driven based on utilization as following if all deadlines are implicit:

U =
n∑
i=1

Ci
Ti
≤ 1 (2.6)

For constrained deadlines tasks, lot of sufficient testes where driven. The response time
based analysis are hard to perform (Guan and Yi, 2014,Spuri, 1996), since that the critical mo-
ment does not arrive at time 0 like for DM. In the following, we present a demand based exact
schedulability test for synchronous tasks for uniprocessor EDF.

Demand Bound Analysis

Let T={τi, i ∈ {1 . . . n}} be a set of synchronous periodic tasks and let t be a non-negative
integer. The demand bound function dbf(T,t) denotes the maximum cumulative execution
requirement that could be generated by jobs of T that have both ready times and deadlines
within any time interval of length t. Equation (2.7) describes the formula for computing the
dbf:

dbf(T, t) =
∑
τi∈T

⌊
t+ Ti − Di

Ti

⌋
Ci (2.7)

Baruah, Rosier, and Howell, 1990 proposed the following exact schedulability test for a set
of synchronous task sets:

∀t ≤ t∗, dbf(Tj , t) ≤ t (2.8)

where t∗ is a constant that depends on the utilization of the task set (see Baruah, Rosier, and
Howell, 1990 for more details on the analysis algorithm). In this work, we consider t∗ = h,

Chapter 2. Introduction to real-time systems 33

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ1

τ2

τ3

FIGURE 2.4: Example of scheduling with EDF

15 30

y=t

t

db
f

τ1

15 30

y=t

t

db
f

τ2

15 30

y=t

t

db
f

τ3

15 30

y=t

t

db
f

τ1, τ2, τ3

FIGURE 2.5: Demand Bound Function

where h is the hyper period of tasks, it is computed as least common multiple of all periods of
tasks.

Example Let T be the same task set as the example 2.2.
The simulation of scheduling this task set (see Figure 2.4) shows that the task set is not

schedulable under EDF, and that at moments t = 19 and t = 22 deadlines are missed. This
could be also driven by using the demand bound function analysis on Figure 2.5, where we
can see that at the same moments (19,22), the value of the demand bound function (dbf(T,19) =
20, dbf(T,22) = 24).

Chapter 2. Introduction to real-time systems 34

2.5 Multiprocessor Scheduling

With the revolutionary impact of multiprocessor architecture onto systems design, a lot of work
concerning real-time multiprocessor scheduling has been proposed. Mainly, two approaches
had been followed: the first one try to extend uniprocessor scheduling techniques into multi-
processors, and the second one proposes completely new techniques dedicated for multipro-
cessor architectures. Extending an optimal algorithm of uniprocessor does not allow to have
an optimal multiprocessor algorithms (please refer to Levin et al., 2010). In this section, we
will focus on global, partitioned and semi partitioned scheduling techniques. scheduling. The
classification of the multiprocessor scheduling algorithms, that we present here, is based on
ability of jobs/taks to migrate from a processor to another (see Figure 2.6).

CPU4

CPU3

CPU2

CPU1

τ1τ4

τ2τ3

τ5τ6

Partitionned Scheduling

CPU4

CPU3

CPU2

CPU1

τ1τ4τ2τ3τ5τ6

Global Scheduling

FIGURE 2.6: Partitioned Scheduling vs Global Scheduling

2.5.1 Partitioned Scheduling

Partitioning tasks among processors is transforming the problem of allocation to m processors
to m uniprocessor problems. Most partitioning algorithms passes trough three steps:

1. Sort tasks in order of some criteria (period, deadline, density, utilization, etc.);

2. Assign tasks in the order of step 1 to a processor where it will always meet all deadlines
when assigned to that processor, and it does not cause another previously-assigned task
to miss a deadline. If a task verifies these conditions, the task fits on this processor. This
step is performed using schedulability tests.

3. After each task has been assigned to a processor, we use the well-known uniprocessor
scheduling algorithm on each processor to schedule the processor’s respective tasks.

Bin-Packing problem

The problem of step 1 and 2 is a Bin-Packing Problem (BPP). In the bin-packing problem, ob-
jects of different volumes vi must be packed into a finite number containers each of volume V
in a way that it minimizes some objectives. In computational complexity theory, it is a combi-
natorial NP-complete problem. A variant of bin packing that occurs in practice is when items
can share space when packed into a bin. Specifically, a set of items could occupy less space
when packed together than the sum of their individual size, our research on real-time systems

Chapter 2. Introduction to real-time systems 35

are classed in this category of bin-packing problem. If items can share space in arbitrary ways,
the bin packing problem is hard to even approximate. In the next chapters, we will present LP,
ILP, INLP formulations of bin-packing problem in our context. In real-time scheduling, items
are tasks, and containers are processors.

The fact that the bin packing problem has an NP-hard computational complexity, lead to
develop many heuristics like First Fit, Best Fit, Worst Fit.

First Fit (FF) algorithm provides a fast but often non-optimal solution, involving placing each
task into the first processor in which it will fit. It requires θ(n log n) time, where n is the number
of tasks to be allocated. The algorithm can be made much more effective by first sorting the list
of elements into decreasing order (sometimes known as the first-fit decreasing algorithm) FFD,
although this still does not guarantee an optimal solution, and for longer lists may increase
the running time of the algorithm. It is known, however, that there always exists at least one
ordering of items that allows first-fit to produce an optimal solution.

Best Fit (BF) is driven from FF algorithm by assigning the current task to the feasible proces-
sor that have the smallest residual capacity (utilization). It has been proved that in terms of
reducing the number of used cores, the lower-bound of BF is FF.

Worst Fit (WF) is driven from BF algorithm, instead off assigning the current task to the
feasible processor that have the smallest residual capacity (utilization), it is assigned to the one
with the largest residual capacity.

2.5.2 Global Scheduling

In contrast to partitioned scheduling, the global scheduling allows task migration. All core
have the same ready-queue and the m highest priority jobs are run at the same time on m pro-
cessors. Global scheduling has several advantages compared to partitioned scheduling because
it allows fewer context switches/preemption. This is because the scheduler will only preempt
a task when there are no processors idle When a task executes for less than its worst-case ex-
ecution time, the slack time of the task can be utilized by all other tasks, not just those on the
same processor. If a task overruns its worst-case execution time budget, then there is arguably
a lower probability of deadline failure as worst-case behavior of the entire system, with all
tasks taking worst-case execution times, worst-case phasing occurring, etc., is less likely across
multiple processors than it is on a single processor. In global scheduling we find two kinds of
migrations:

• Job level migration: In this kind of migration, a job can start its execution of a processor
and be interrupted to pursue its execution in an other.

• task level migration: Here, a job is executed on only one core, but jobs of the same task
may be executed on different processors.

A natural adaptation of the uniprocessor scheduling into global multiprocessor architecture
is proposed, Global EDF, Global DM, · · · are example of these adaptations. At each algorithm
the priority is assigned to a task in the same logic like uniprocessor system but the m high-
est priority tasks(jobs) are run in parallel and at the same time. When a task arrives and no
processor is idle, the lowest priority task is interrupted, and the new job is run on the freed
processor.

2.5.3 Semi-Partitioned

Andersson and Tovar, 2006 aimed at addressing the fragmentation of spare capacity in parti-
tioned systems is by splitting a small number of tasks between processors. Thus, they proposed

Chapter 2. Introduction to real-time systems 36

an approach to scheduling periodic task sets with implicit deadlines, based on partitioned
scheduling, but splitting some tasks into two components that execute at different times on
different processors.

Andersson, Bletsas, and Baruah, 2008 developed the idea of job splitting to cater for spo-
radic task sets with implicit deadlines. In this case, each processor p executes at most two split
tasks, one also executed by processor p1 and one also executed by processor p + 1. Later, they
extended this approach to task sets with arbitrary deadlines.

2.6 Programming Real-time systems

In this section, we address the real-time systems programming. We focus on the link between
programming real-time systems with PosixThreads (Pthread) in C language and the periodic
task model of Liu and Layland. Periodic tasks are implemented as an infinite loop of the task
code. At each iteration, the task sleeps from its end until its next wake-up period. A typical
code of a real-time task in C programming language can be :

void rtTask()
{
while (true)
{

// task code

WaitForNextPeriod();
}

}

waitForNextPeriod is implemented by using clock nanosleep syscall which takes 4 parame-
ters. The first one is the clock type offered by Linux Kernel. We use CLOCK REALTIME clock
because it has a good compromise between clock accuracy and latency. The second parameter
is the type of time, here we use absolute time. The third parameter is the desired awaking
time. In the case of periodic tasks, this parameter is set to the next period and it is computed at
each iteration. The last parameter is the remained time in the case of sleeping failure due to a
wake-up event. Thus, the typical real-time task code in C will become :

void rtTask(void *arg) {
while(true)
{

struct timespec next,begin;
clock_gettime(CLOCK_REALTIME, &begin);
next=TimeAddOperation(begin, taskPeriod);

// task code

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &rem,
NULL); } }

A real-time task can be implemented using a process or a thread in the same manor. However,
in most RTOS2 such FreeRTOS(Barry et al., 2008), RTAI(Mantegazza, Dozio, and Papachar-
alambous, 2000), VxWorks (Guide, 1999), tasks are implemented as threads. In the next section,
we show how to use POSIX threads on Linux kernel to implement real-time threads.

Traditionally, applications that have real-time constraints, use custom-built hardware and
RTOS to meet their real-time requirements. However, for some soft real-time requirements,

2Real-time Operating Systems

Chapter 2. Introduction to real-time systems 37

this may be an expensive solution. With the advent of the PREEMPT RT patch-set led by Ingo
Molnar (Molnar, 2009), a number of modifications (such as the scheduler, interrupt handling,
locking mechanism, · · ·) were made to the general-purpose Linux kernel to make Linux a viable
choice for real-time systems.

2.6.1 Real-time Scheduling policies In LINUX Kernel

The standard Linux kernel provides two real-time scheduling policies, SCHED FIFO and
SCHED RR (Garg, 2009). The main real-time policy is SCHED FIFO. It implements a first-
in, first-out scheduling algorithm. When a SCHED FIFO task starts running, it continues to
run until it voluntarily yields the processor, blocks or is preempted by a higher-priority real-
time task. It has no time slices like Linux CPS3. All other tasks of lower priority will not be
scheduled until it frees the CPU. Two equal-priority SCHED FIFO tasks do not preempt each
other. SCHED RR is similar to SCHED FIFO, except that such tasks are allotted time slices
based on their priority and run until they exhaust their time slice. Non-real-time tasks use the
SCHED NORMAL scheduling policy (older kernels had a policy named SCHED OTHER).

In the standard Linux kernel, real-time priorities range from zero to (MAX RT PRIO-1),
inclusive. By default, MAX RT PRIO is 100. Tasks with real-time priorities are organized on a
run-queue in a priority-indexed array of type struct rt prio array. An rt prio array consists of
an array of sub-queues and only one sub-queue is available per priority level.

2.6.2 POSIX Threads

Usually referred to as Pthread (Nichols, Buttlar, and Farrell, 1996), allows a program to con-
trol multiple different concurrent flows. Each flow is referred as a thread. Threads creation
and control is achieved by making calls to the Pthread API. This API is defined by the stan-
dard POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995). Implementations of Pthread are
available on many Unix-like POSIX-conferment operating systems such as Linux.

Pthread defines a set of C programming language types, functions and constants. It is
implemented with a “pthread.h” header and a thread library. There are around 100 Pthread
procedures, all prefixed “pthread ” and they can be categorized into four groups:

• Thread management;

• Mutexes;

• Condition variables;

• Synchronization with locks and barriers.

The POSIX semaphore API works with POSIX threads but is not part of threads standard,
having been defined in the POSIX.1b, Real-time extensions (IEEE Std 1003.1b-1993) standard.
It is used to synchronize threads.

The following table resumes the Pthread primitives that we use in the rest of this thesis to
benchmark hardware architectures:

All these primitives and scheduling policies are used in the next chapters to benchmark a
specific hardware architecture and study the impact of several factors on the execution of a
parallel real-time tasks.

2.7 Conclusion

In this Chapter, we overviewed the theory of scheduling in real-time systems for uniprocessor
and multiprocessor systems. We presented several scheduling policies and their corresponding

3Completely Fair Scheduler

Chapter 2. Introduction to real-time systems 38

Primitive role
pthread create create a thread

pthread join join a thread
pthread attr init intialize pthread attributes

pthread setaffinity np allow to allocate a task to a processor or a set of processors
pthread self allow to a thread to refer to it self

pthread attr setschedpolicy define the linux scheduling policy
pthread attr setschedparam define the scheduling parameters such as priority

pthread mutex lock It uses a mutex semaphore to protect a critical section
pthread mutex unlock allows to unlock a critical section lock with a mutex lock

pthread cond wait allows to lock a section waiting for a signal
pthread cond signal free a section locked by a wait

TABLE 2.3: The used Pthread primitives and their role

feasibility tests. We had show also how a real-time of Liu and Layland model is implemented
in real-time operating systems with a special focus on linux kernel.

At the end of this chapter, all the ingredients are ready to cook the problem that we address
in this thesis.

39

Chapter 3

Parallel Real-time: Related work

“ Il n’est rien de plus precieux que le temps,
puisque c’est le prix de l’ternit. ”

Louis Bourdaloue

Contents
3.1 CPS Systems Needs . 40

3.1.1 Real-time needs . 40
3.1.2 Parallel computing needs . 40
3.1.3 CPS and energy consumption . 41

3.2 This work . 41
3.2.1 Global or Partitionned? . 41
3.2.2 What kind of parallelism to do and where? 42
3.2.3 What energy saving techniques are we going to use? 42

3.3 Related work . 44
3.3.1 Taxonomy on parallel real-time tasks . 44
3.3.2 OpenMP . 44

3.4 Parallel Real-time tasks & scheduling . 45
3.4.1 Gang Model . 45
3.4.2 Multithread Model . 46
3.4.3 Federated scheduling . 48

3.5 Related work to energy consumption . 48
3.6 Conclusion . 49

Chapter 3. Parallel Real-time: Related work 40

3.1 CPS Systems Needs

3.1.1 Real-time needs

The rapid development of information technologies in the past decades has resulted in wide
availability of embedded computing platforms and communication capabilities in almost all
types of objects. Such large-scale and parvasive deep embedding of the cyber intelligence into
the physical world has created unprecedented amount of data.

Cyber-physical systems (CPS) are a promising class of systems featuring tightly integration
between the cyber intelligence and the physical world that allow to cope with the increas-
ing needs of computation power. Enabled by the ubiquitous availability of computation and
communication capabilities (Rajkumar et al., 2010), the CPS covers an important applications
ranging from macro-scale infrastructure based systems, such as smart grid (Karnouskos, 2011),
data centers (Parolini et al., 2012 Rao et al., 2012), transportation systems, to micro-scale sys-
tems, such as intelligent medical devices (Lee et al., 2012). Almost every device today has
a controller that reads inputs through sensors, does some processing and then performs ac-
tions through actuators. Examples include controller systems in cars (Anti-lock Brake System,
Cruise Controllers, Collision Avoidance, etc.), automated manufacturing, smart homes, robots,
etc. These controllers are discrete digital systems whose inputs are physical quantities (e.g.,
time, distance, acceleration, temperature, etc.) and whose outputs control physical devices.

The computational components coordinate and control the physical operations to satisfy
the overall requirements. Most of computational components in CPS applications are control
systems which are good at managing and regulating the behaviors of physical components.

In cyber-physical systems (CPS) the passage of time becomes a central feature of system
behavior, in fact it is one of the important constraints distinguishing these systems from dis-
tributed computing in general. Time is central to predicting, measuring, and controlling prop-
erties of the physical world. Thus, Most CPS must deal with real-time constraints. That is, a
computational task needs to be accomplished correctly in terms of not only functionality but
also time. A delayed reaction can lead to unsatisfied customers (such as in a video streaming)
or total catastrophy (such as in a vehicle anti-lock braking). The real-time requirements of CPS
are generally described by deadlines associated with tasks. A task is typically executed repeat-
edly. Each instance of a task is a job in the real-time scheduling area. Since a computational
component in CPS almost always handle multiple real-time tasks, the execution order of such
tasks plays a big role in meeting the deadlines. CPS is required to have predictable and reli-
able behaviors in terms of meeting the time requirements of all tasks instead of completing a
single task fast. The predicability and reliability of CPSs can be satisfied by employing certain
real-time scheduling methods in the CPS design.

Cyber physical systems are the need of today and hence they must be made compatible
enough to handle various types of events may be periodic or aperiodic whose validation is
critical to the correct behavior of the system. e.g., in an industrial plant monitoring, an aperi-
odic alert may be generated when a series of periodic sensors readings meet certain detection
criteria. Varying user inputs and certain other parameters may trigger other real-time aperiodic
events.

Thus, classic real-time task models may not be able to express properly CPS real-time ap-
plications. Thus, we focus on expressing expressive task models in this thesis.

3.1.2 Parallel computing needs

With this trend of CPS systems, embedded real-time systems are essential in order to sense the
physical environment, process data in real-time and control the actuators. Autonomous driving
is concrete example of applying real-time into CPS technology. In an autonomous car, motion
planning, sensor fusion, computer vision and other articial intelligence algorithms must run
in real-time. Most algorithms for autonomous driving are parallelizable (Kim et al., 2013). In
order for the vehicle to understand its surroundings, the perception subsystem should be able

Chapter 3. Parallel Real-time: Related work 41

to process massive amounts of data from various types of sensors. This lead to a very fine
grain parallesim for both data and task parallelism. Automotive industry has already started
moving towards the multicore processors for higher performance. AUTOSAR (Fennel et al.,
2006), a widely used automotive software infrastructure, supports multicore processors. There
has been relatively little research on tackling chalenges in modeling and scheduling parallel
real-time tasks. We will reports the works that has been done in this field in the next section,
and later we focus on some of the energy-efficient real-time scheduling works.

3.1.3 CPS and energy consumption

The issue of energy is important. The greedy need of computing power trends increase the pro-
cessor operating frequency, this factor yields an exponential increase in power needs. Moreover
in 2006, data centers in the US used 59 billion kilowatthours of electricity, costing the US 4.1$
billion and 864 million metric tons in carbon dioxide emissions; this accounted for 2 percent of
the total USA energy budget. The increasing cost of power press for developping energy-aware
scheduling algorithms. The energy consumption must be controlled and optimized especially
when the computational elements are operated by battery power.

3.2 This work

In this work, we tacle three of the discussed CPS issues, which are:

1. garanteeing that all timing requirements will be respected,

2. by usings parallel computing techniques,

3. while reducing the energy consumption.

We tacle the first problem by focusing on real-time scheduling theory for multiprocessor
architectures. In the real-time system literature, and as stated earlier, there are mainly two
approches for multiprocessor systems scheduling: partitioned and global scheduling. Thus,
the question that must be revealed is: what to select?:

• Partitioned or global scheduling?

• and what scheduling algorithm?

The second issue to tacle is :

• How are we going to adress the problem of parallizing real-time tasks?

• and at which level of parallelizing process?

Finally,

• what energy saving techniques are we going to use?

• and what is the more efficient way to do it ?

3.2.1 Global or Partitionned?

Partitioned and global scheduling are incomparable, since some task sets are feasible with par-
titioned scheduling that are not feasible in global and some task sets are feasible with global
scheduling and that are not feasibile in partitioned scheduling. Here we present a short com-
paraison between both :

As you can notice in Table 3.1, Global schedulability analysis are not mature and the critical
instance is unknown. In contrast, partitioned scheduling aims to convert the problem into a

Chapter 3. Parallel Real-time: Related work 42

Global Scheduling Partitionned scheduling
Automatic load balancing Supported by automotive industry
Lower avg. response time No migrations
Simpler implementation Isolation between cores
Optimal schedulers exist Mature scheduling framework
More efficient reclaiming
Migration costs Rescheduling not convenient
Inter-core synchronization NP-hard allocation
Loss of cache affinity Cannot exploit unused capacity
Weak scheduling framework

TABLE 3.1: Comparaison between global and partitioned scheduling

uniprocessor problem, thus the schedulability tests for this classe of algorithms are well-known
and mature. Another important aspect about partitioned scheduling is migration. Let assume
a preempted thread, that was previously executing on an ARM-Cortex A7 core, resumes it
execution on a ARM Cortex A15. There is no-way to evaluate the rest of its execution time on
that core. Thus, the analysis are very hard to be done for such architectures where migration is
allowed. Hence, we decided to choose partitioned scheduling.

As partitioned scheduling converts the problem of scheduling real-time tasks into a set of
uniprocessor scheduling problems, we decided to select earliest deadline first (EDF) scheduler
which is known to be an optimal algorithm for single processor architectures.

3.2.2 What kind of parallelism to do and where?

As we stated in Section 1.4 of Chapter 1, designing a parallel code needs typically 4 steps.
The two first steps are generally made by the programmer were he decides to express a very
fine grain parallelism and the task communication mechanism. The two last steps consist in
defining how sub-tasks are grouped to gather in threads, and where these grouped threads are
allocated. In this thesis, we focus exactly on the two last steps. We propose a methodology that
allows to revise the decisions of the programmer by grouping threads to gather and allocat-
ing these grouped threads on cores in the goal of reducing the energy consumption while all
deadlines are met.

As the programmer defines the parallelisable segments of its code, we address both task and
data parallelism in the same way. Thus, in the next chapter we propose a task model adapted
to data parallelism. In Chapter 5, the model is more realistic and allow to express both task
and data parallelism. In both Chapter 4 and 5 the parallelism grain is defined off-line and can
not change during the execution. In the last chapter, we propose a general model that allow to
express both data and task parallelism and we allow the grain of parallelism to change during
execution.

3.2.3 What energy saving techniques are we going to use?

In order to achieve an optimal decomposition with respect to the energy consumption for a
set of tasks on heterogeneous multicore platform we need to (i) decompose each task into a
set of parallel threads (if possible/desirable); (ii) perform a schedulability analysis and allo-
cate the threads on the cores to guarantee that each thread completes before its deadline, and
(iii) set the operating frequency of cores and their state to reduce the energy consumption.
As stated in Chapter 1, we address the energy consumption problem by using DVFS or DPM
techniques. As you can notice in Figure 3.1 (Maxfield, 2012) which represents the static and
dynamic power consumption for different architectures when cores are operating at their max-
imum performances, different architectures consume different static and dynamic power. But

Chapter 3. Parallel Real-time: Related work 43

in general dynamic the dynamic power is greater than the static one. Hence, for such archi-
tectures it is better to calibrate the operating frequency to reduce energy consumption but, as
we will show in Chapter 5, when the frequency is very low, the static energy is higher and it is
more convenient to turn “off” some cores.

0.25u 0.18u 130nm 90nm 65nm 40nm 28nm
0

10

20

Architecture

Po
w

er
(n

or
m

al
iz

ed
)

Static
Dynamic

FIGURE 3.1: Comparaison between static and dynamic energy in different tech-
nologies

Moreover, it is expected that the static power take the lead to the dynamic power for close
futur architectures as it is show in Figure 3.2 (Salman and Qi, 2011). Hence, it is important to
model the architecture and adapt the allocation techniques according to different architectures.
Thus, we will benchmark two hardware architectures in Chapter 5 and show how our heuristic
can be easily adapted to different hardware platforms.

2013 2016 2019 2022

2

4

6

Year

Po
w

er
(n

or
m

al
iz

ed
to

20
10

) Dynamic
Static

FIGURE 3.2: The memory power dissipation by one little and big core

Chapter 3. Parallel Real-time: Related work 44

3.3 Related work

Now that we presented what motivate the research reported in this thesis, we overview the
different works done in the area of our interest.

3.3.1 Taxonomy on parallel real-time tasks

Parallel real-time task models are classified according to the way the level of parallelism is
specified and to the moment of this specification. We can distinguish three types of models:

• rigid: the number of processors assigned to a task is specified independently before the
scheduling analysis and does never change;

• moldable: the number of processors assigned to a task is specified off-line using an off-line
analysis algorithm, for example during pre-processing or compilation;

• malleable: similar to moldable, but the number of processors assigned to a task may dy-
namically change during execution.

According to Drozdowski, 2004; Mounie and Drozdowski, 2004, most parallel applications in
the real world are moldable. Hence, in chapter 4,5 we focus on task models and their schedul-
ing. In Chapter 6, we propose a task model that can express both moldable and malleable
tasks.

In parallel computing, a computational task is typically broken down in several subtasks
that can be processed independently and whose results are combined afterwards, upon com-
pletion. Task decomposition is a well-known problem in the parallel programming commu-
nity. Several API had been proposed to help the programmer to write a parallel code such as
OpenMP, Cilk, TBB, · · · .

3.3.2 OpenMP

OpenMP Chandra, 2001 is an API specification for parallel programming. The section of code
that is meant to run in parallel is marked with a pre-compiler directive. One example of such
directive is the pragma parallel for. In the OpenMP parallel model, a parallel for loop preceded
by the STATIC schedule clause is implemented by distributing the N iteration on p threads into
approximately N

p iterations per each thread (if no further specification is implied). After the
execution of the parallelized code, the threads join back into the master thread, which continues
onward to the end of the program. An example of this directive is presented in listing below,
which represents the addition of two 2D arrays. If N = 16 and p = 4, the first thread will sum
the rows between 0 to 3, the second from 4 to 7, and so on.

int i, j;
int [][] mat1, mat2; // NxM matrix
int [][] res;

//Load mat1 and mat2
#pragma omp parallel for
for (i = 0; i < N; i++)

for (j = 0; j < M; j++)
res[i][j] = mat1[i][j] + mat2[i][j];

The example in the listing shows how data parallelism is expressed by OpenMP. OpenMP of-
fers also support for task parallelism with parallel section pragma. With such pragma, different
parallel sections threads execute different code and the parallel threads are executed separatly.

However, this way of decompositing a task does not take into account the task scheduling,
the respect of the real-time and energy constraints and the processor frequency definition. In
the rest of this chapter, we will present several related works that has a focus on task paral-
lelization for real-time task with and without energy-aware scheduling.

Chapter 3. Parallel Real-time: Related work 45

3.4 Parallel Real-time tasks & scheduling

Han and Lin, 1989 analyzed the effect of job parallelism on the complexity of multiprocessor
scheduling of hard real-time systems. They considered a system which consists of a set of
independent parallel jobs and they proved that parallel fixed priority scheduling on multipro-
cessor systems is NP-Hard and an exact schedulability analysis of job parallelism is intractable.
Based on the characteristics of parallel tasks and their internal structure, parallel scheduling is
divided into two approaches: Gang Model and multithread Model.

3.4.1 Gang Model

Gang scheduling and coscheduling was proposed in Ousterhout, 1982; Feitelson and Rudolph,
1992; Gehringer, Siewiorek, and Segall, 1987 in order to grant the processors to the threads
of the same task at the same time quantum. The difference between coscheduling and Gang
scheduling is that the first allows tasks to continue its execution even if the number of cores
needed is less than the number of available cores. This may imply the change of the parallelism
level at run-time. Gang model is more strict and does not allow a task to execute if the number
of processor required is less than the number of available cores. Figure 3.3 allows to see the
difference between both considering a platform with 4 processors. Notice that in coscheduling,
task τ needs 2 processors to run. At time 0, it is has the highest priority, thus it acquires two
processors until a more priority task arrives (blue one). The new task requires 3 processors
and acquires them. Thus, task τ adapts its parallelism level, and continue its execution in only
one thread. At the end of the blue task, task τ continue its execution but this time with two
thread until the arrival of a new task (the green task). The green task requires only two cores,
and notice that in this case, both tasks are running at the same time. When a higher priority
task arrives (gray task) and it requires all processors, task τ is suspended, and continue its
execution after the end of the gray task. Notice that for the same scenario, that the task τ was
suspended at the arrival of the blue task. Thus coscheduling considers malleable tasks, and
gang scheduling the moldable tasks. Thus, gang scheduling, then, is defined as the scheduling
in which all parallel threads are forced to execute simultaneously on multiple processors.

Tasks with
higher priority than τ

τ
1

22

1

21

2

3

1

2

1

2

3

4

1 1

22

1

21

2

3

1

2

1

2

3

4

FIGURE 3.3: Difference between Gang and Co scheduling

Kato and Ishikawa, 2009 adapted the gang task model to a gang real-time task model and
proposed the Gang EDF scheduling algorithm and the corresponding feasibility test. This fea-
sibility test has been proven to be wrong in the paper of Goossens, et al. 2016. In Kato’s task
model, a task is defined by the number of processors used simultaneously, its execution time,
period, and constrained deadline. All threads of a parallel section in a gang model have to
be run in parallel (they must start and end the execution on their processors simultaneously).

Chapter 3. Parallel Real-time: Related work 46

However, this model is difficult to implement, because the scheduler needs to synchronize the
execution of the threads among different cores and when a thread is preempted, we need to
preempted all parallel threads of the same job, actually operating systems does not support
this kind of preemption, hence modifications should be ported to operating system to support
this kind of preemption. Kato et al. considered an identical core platform with m processing
units. Gang EDF is basically Global EDF. In contrast to classic global EDF, in gang EDF a high
priority task at time t may not be run at that time if the number of available processors is less
than the number of the parallel threads of this task. However, they take into account the num-
ber of cores required by a task, and the number of available cores while in Global EDF, the m
ready tasks are selected to be run.

Goossens and Berten, 2010 provided an exact schedulability condition for FTP Gang schedul-
ing on identical processor.

3.4.2 Multithread Model

In contrast to the Gang model, parallel threads in multithreaded task models are scheduled
independently and may start and end at different times. Multi-thread model is easier than
Gang model to implement by the mean of different parallelization APIs such as OpenMP, Cilk,
TBB, etc. Here we describe the multithreaded task models proposed in the literature of real-
time systems

Fork-join model

Lakshmanan, Kato, and Rajkumar, 2010 introduced fork-join model for parallel real-time tasks:
each task is a sequence of alternating parallel and sequential segments (See Figure 3.4). They
considered a set of periodic implicit-deadline tasks to allocate to an identical core platform.

.. ..
..

Deadline Di

P11

P12

P1..

P21

P22

P2..

C1
1 C2

1 C3
1 Cn

1

FIGURE 3.4: Fork-join Model

A task starts by executing the master thread and when a fork event happens, the master
thread splits into a number of threads that execute in parallel which forms a parallel segment.
When all of the threads of a parallel segment terminate their execution, they join back the
master thread to resume it execution.

Lakshmanan et al. proposed an divided tasks in two classes :

• Low utilization tasks whose utilization is not greater than 1. These tasks are executed
sequentially in order to reduce the costs of parallelization.

• High utilization tasks whose utilization is greater than 1, this thread must execute in
parallel and one processor is not enough to be feasible. The basic idea of the allocation al-
gorithm proposed in the work of Lakshmanan is to fill the slack of by fractions of threads
from the parallel segments of the task and try to have the maximum utilization per al-
ready loaded cores. The remaining parallel threads are then forced to execute within
fixed execution intervals.

Chapter 3. Parallel Real-time: Related work 47

Lakshmanan et al. used also a partitioned preemptive Deadline Monotonic algorithm to
schedule the constrained-deadline parallel threads resulting. They proved that they can have
a resource augmentation bound equal to 3.42.

The scheduling algorithm proposed by Lakshmanan et al. suffers from overheads due to
the migration of a thread from a processor to an other (when trying to load at maximum a
processor)

Lakshmanan et al. stated in their work that this task model is not convenient from the
“perspective of schedulability, it is therefore desirable to avoid such task structures as much as
possible”, as they stated.

Generalized model

Saifullah et al., 2013 proposed a parallel task model where a task is composed of segments,
and each segments consists of a set parallel threads with the same real-time characteristics
(e.g. release time, execution time, deadline). At the end of each segment, parallel threads
must synchronize their termination. They also proposed a general method to express models
proposed in Lakshmanan, Kato, and Rajkumar, 2010; Courbin, Lupu, and Goossens, 2013 in
their own. They use global EDF and partitioned DM for scheduling. They assume that their
work can be used on uniform processors with different speeds, and they assume that the thread
execution time scales inversely on speed. However, they ignore the memory effect on execution
time variation.

..
..

Deadline Di

P11

P12

P1..

Pn1

Pn2

Pn..

Start
P21

P22

....
P12

End

FIGURE 3.5: Generalized Model of Saifullah

Authors simplified the scheduling problem of parallel tasks by using a decomposition algo-
rithm which assigns intermediate offsets and deadlines for each segment. These intermediate
parameters are used by real-time algorithms to schedule tasks after they are transformed into
a set of independent sequential subtasks. They insure the intermediate deadline of a segment
insures that the density of any segment can not be greater than 2·Ci

Ti
. They then divide a task

according to certain threshold into heavy and light segments. Hence, in the same task we can
find only heavy segments, only light segments or heavy and light segments.

• If all segments are light, then the task deadline is split proportionally among all segment
according to the WCET of each segment.

• If all segments are heavy, then task deadline is split to proportionally based on the total
execution time of each segment.

• if a task contains a mixture of heavy and light segments. Here, a larger deadline is divided
between heavy segments, and a shorter for light segments.

Chapter 3. Parallel Real-time: Related work 48

Multi-Phase-Multi-Thread model (MPMT)

Courbin, Lupu, and Goossens, 2013 proposed, multi-phase multi-thread model), a less restric-
tive model where parallel sub-tasks of each phase1 have the same real-time characteristics except
for the execution time. They state that the model proposed in Saifullah et al., 2013 is a specific
case of their model. They also proposed an algorithm to assign real-time parameters to adapt
fork-join model to their own.

Threads of each phase (equivalent to segment in the previous model) share the same dead-
line (Figure 3.6) and each thread is a sequential process that requires a single processor. In this
work, the authors define two different classes of real-time schedulers for this model which are
summarized as follows:

• Hierarchical schedulers manage tasks with a task-level rule and use a second rule to
schedule threads within each task (thread-level rule).

• Global thread schedulers use a single scheduling rule to assign priorities to threads re-
gardless of their tasks.

An exact schedulability condition is provided for each class of schedulers. The performance
of these schedulers is also compared with Gang scheduling.

Period
Deadline

P1 P2

T11

T12

T13

T21

T22

T23

T31

T32

T33

P3

FIGURE 3.6: Multi-Phase Multi-Thread Model

3.4.3 Federated scheduling

Li et al., 2014 proposed a federated scheduling approach for parallel real-time task scheduling.
They considered a general task model (DAG to express the data dependency) with implicit
deadlines. The federated scheduling algorithm proposes to divide tasks into two disjoint sets,
the high-utilization tasks (u ≥ 1) and the low-utilization tasks (u < 1). The low-utilization
tasks are run in competition with each other on shared cores using well-know multiprocessor
scheduling algorithms. The high-utilization tasks are run each on a dedicated core. This is not
always the optimal choice in the case of optimizing the energy consumption.

3.5 Related work to energy consumption

Works in (Courbin, Lupu, and Goossens, 2013; Saifullah et al., 2013; Lakshmanan, Kato, and
Rajkumar, 2010; Li et al., 2014) only address the scheduling problem of parallel task, without
considering the energy consumption and assume a fixed decomposition of a task to a set of
parallel threads. However, parallel threads size may be adjusted. For example, a parallel for
loop with 100 iteration may be decomposed into two threads with each 50 iteration, or the first
with 80 iteration and the second 20 iteration or any other decomposition that ensures that the
sum of iterations is 100. This may allow more flexibility on scheduling. The models that we

1A phase is equivalent to a segment

Chapter 3. Parallel Real-time: Related work 49

will present in this thesis allow having numerous alternative parallel decompositions without
any particular restriction.

Regarding the energy consumption problem for parallel tasks, Paolillo et al., 2014 defined
the optimal frequency for minimizing energy consumption on homogeneous platforms with
gang malleable tasks. They target homogeneous processor platforms with the ability of turning
off some processors. They considered sporadic implicit deadline tasks and use a canonical par-
allel scheduler proposed in Collette, Cucu, and Goossens, 2008, which is an optimal scheduling
algorithm for sporadic tasks on homogeneous multiprocessor platforms.

Colin, Kandhalu, and Rajkumar, 2015 proposed a partitioned-EDF heuristic to allocate im-
plicit deadline tasks on Single-ISA heterogeneous multicore architecture such ARM big.LITTLE
architecture, with the goal of minimizing the energy consumption. They show several experi-
ments on EXYNOS 5410,5420,5422 big.LITTLE processors. They assume that the power dissi-
pated by executing a task depends only on the hardware architecture. As we will show later,
this assumption is not valid in general, but different tasks dissipate energy in a different way
(see Section 5.2.6).

based their work on a similar power dissipation model as the one proposed in Colin, Kand-
halu, and Rajkumar, 2015 for an architecture compound of a set of islands. Each island contains
a set of cores that share the same frequency characteristics. In contrast to our interests, they fo-
cus only on task sequential execution and consider also that the execution time of a task scales
in the same way on all island (two cores of two different islands are identical but they may
operate at different frequencies). We use the same methodology as Pagani et al. in deriving
task allocation and frequency selection.

3.6 Conclusion

In this chapter, we first presented our motivations regarding the CPS needs. We show that it
is of a paramount importance to focus on the parallelization under real-time constraints with
a special interest in reducing the energy consumption. Secondly we overviewed the different
related work that have been published in our interest domain. In the rest of this thesis, we will
present three tasks models on three different types of multicore architectures. We will be focus
especially on multithreaded models because they are easier to implement and does not need
any change on the operating system. All the models we present later can be expressed by an
OpenMP-look-like API.

50

Part II

Contributions

51

Chapter 4

Free-to-Cut task model On Uniform
Computing Architectures

“Le temps est du mouvement sur de l’espace. ”

Joseph Joubert

Contents
4.1 Introduction . 52
4.2 System overview . 52
4.3 Architecture Model . 52
4.4 Task model . 52
4.5 Power & Energy Models . 53

4.5.1 Power Model . 53
4.5.2 Energy Model . 54

4.6 Allocation and Scheduling . 54
4.6.1 Exact Scheduler . 54
4.6.2 FTC Heuristic . 55

4.7 Experimentation . 60
4.7.1 Task Generation . 60
4.7.2 Simulations . 60
4.7.3 Results & discussions . 61

4.8 Conclusion . 62

Chapter 4. FTC on Uniform cores 52

4.1 Introduction

In parallel computing, many computations are carried out simultaneously by decomposing the
solution of a large problem into smaller ones which can cooperate to solve at the same time the
same problem. In many cases, the computational task is typically broken down in several sim-
ilar subtasks that can be processed independently and whose results are combined afterwards,
upon completion. Practically, the programmer implements such processing by the mean of for
loops, and APIs such as OpenMP allow to parallelize task code at compilation by interpreting
the user compilation directives. However, new aspects that are not considered in sequential
programming must be taken into account when parallelizing a task such as: sub-task creation,
termination, communication and synchronization These aspects always bring an overhead to
the parallel execution of a task compared to the sequential execution of the same task. In this
chapter, we ignore the overhead brought by the task parallelization.

4.2 System overview

In this chapter, we consider a set of tasks where each task can be decomposed (cut) at any point
of its code. For example, a for loop with 100 independent iterations can be decomposed into
two thread where the 1st thread can handle 20 iterations and the 2nd handles 80 iterations, or it
can be decomposed into 3 threads such as the 1st and the 2nd thread can perform 35 iterations
for each and the last one only 30 Iterations, or any decomposition to any arbitrary number of
threads whose the sum of the performed iterations is equal to 100. However, we do not allow
this decomposition to change at run-time, and it is defined at pre-compilation phase. Hence,
we are interested only by moldable tasks in this chapter. We focus on allocating such tasks on a
compound set of cores with the same characteristics and operate at different fixed frequencies.
The aim of the allocation is to reduce the energy consumption, while guaranteeing that all
deadlines will be met.

4.3 Architecture Model

In this chapter, we consider an uniform core platform compound of m cores. Every core j has
only one operating frequency point fj . Any core may select one state : active state where it
is operating at frequency fj or deep power state. The core state is defined offline and does not
change at run-time. We denote by sj the speed of core j and it is computed as the ratio of its
operating frequency by the maximum frequency in the platform:

sj =
fj

fmax
(4.1)

Thus, the speed of core j is bounded by :

fmin
fmax

≤ sj ≤ 1 (4.2)

4.4 Task model

Let T={τ1, τ2, . . . , τn} be a task set. Every task τi is characterized by the tuple τi = (Ci(1),Di,Ti),
where:

• Ci(1) is the worst case execution time of task τi on a core operating at the maximum speed.
It represents the execution time of the sequential version of the task (single thread). We

Chapter 4. FTC on Uniform cores 53

assume that the execution time of task τi on core j is the ratio of the execution time of the
task at speed equal to 1 by the speed of core j:

Ci(sj) =
Ci(1)

sj
(4.3)

• Di is the task relative deadline. We consider tasks with constrained deadline (Di ≤ Ti);

• Ti: is the task period, it represents a fixed time between releases of two consecutive in-
stances of task τi.

In this chapter, we assume that a task can be decomposed into several parallel threads at
any point of its code. For example, a task with an execution time Ci(1) = 11, can be decom-
posed into three parallel threads with an execution time that equals 3, 3 and 5, or any arbitrary
decomposition to any number of threads that verifies that the sum of the execution times of
the parallel threads is equal to the execution time of the sequential Ci(1) (Equation (4.4)), we
call this model “Free-to-Cut” (FTC) task model . In this model, parallel threads are indepen-
dent from each other whereas threads belonging to the same task and running on different
cores need to synchronize their activation and deadlines. Notice that the model, we consider
in this chapter, does not take into account the overheads due parallelization (thread creation,
synchronization, · · ·). We refer by thread τi the thread responsible for sequential execution of
task τi.

Definition 1. Let τi be a task. We define Thi,j as the thread of task τi that is allocated on the core j. We
define also Ci,j(sj) as the worst case execution time of thread Thi,j on core j.

Definition 2. Decomposition Dτi = {Thi,j , i ∈ {1, · · · , n}, j ∈ {0, · · · ,m}} is a correct decomposi-
tion of the task τi according to FTC model, if and only if:

m∑
j

Ci,j(sj) · sj = Ci(smax) (4.4)

Notice here, that only one thread of task τi can be allocated on a core. Thus, a task can never
be decomposed to a number of thread that exceeds m the number of cores.

4.5 Power & Energy Models

As stated in Chapter 1, total energy is the integral of the sum of static and dynamic power.
In this chapter, we consider cores with one operating frequency point, thus the dissipated dy-
namic power does not change at run-time and we assume that cores in deep power state does
not dissipate power.

4.5.1 Power Model

Mei et al., 2013 defined the dynamic power dissipation by a CMOS circuit as the product of
a constant coefficient ξ that depends on the technology used to manufacture the chip, by the
square of the voltage, and by the frequency.

P = ξ × V 2 × f (4.5)

They also defined the frequency (f) as the ratio of the difference between the actual voltage
V and VTh raised to the power of a, where Vth is the threshold voltage, by the product of a
constant K and the logic depth Ld. a and K are constants that depend on ξ.

f =
(V − VTh)a

K × Ld
(4.6)

Chapter 4. FTC on Uniform cores 54

By combining Equation (4.5) and Equation (4.6), the dynamic power P can be expressed as a
polynomial of frequency of degree λ, where λ has been set equal to 3 in most of the papers
focusing on energy consumption.

In this chapter, We compute the dissipated dynamic power by core j as:

P (j) = Coef f3j (4.7)

We also assume that static power is equal to a constant values Const for active cores and 0 for
cores in deep sleep state.

4.5.2 Energy Model

To simplify the calculation of the integral of power consumption, we assume that the energy
consumption of core j is computed as the sum of the product of the dynamic of the power
dissipation of the core j by the execution time of all threads allocated and the product of the
constant amount of static energy by the state of the core by the system life time.

E(j) = (
n∑
i=0

Coef · f3j ·
Cij
Ti

) + Const · h · state(j) (4.8)

Where:

• Coef: is the power consumption coefficient.

• Const: is the constant static power dissipated when the core is in active state.

• h: the system life time, here we consider it as the hyper period, computed as the least
common multiple of all periods.

• state(j): is the core state, this parameter is equal to 0 if the core is in deep sleep state and
1 in the case of active state.

4.6 Allocation and Scheduling

After having defined task, architecture and energy models, we proceed to task allocation in
this section. Firstly, we formulate the problem of allocating a set of tasks to m uniform cores
as Linear Programming (LP) problem. Further, we propose a heuristic to solve efficiently the
allocation problem in a very short time.

We assume a partitioned Earliest Deadline First (EDF) scheduling. Each core has its own
single-processor EDF scheduler and a separate ready-queue. Therefore, the scheduling analysis
can be performed with well- know techniques for single-processor scheduling. The analysis
here are based on the demand function analysis introduced in Chapter 2.

4.6.1 Exact Scheduler

We formulate the FTC allocation problem as Linear Program (LP). We denote by Tj the threads
allocated on core j and by dbf(Tj , t) the demand bound function of the set of threads of Tj for a
time of lengtht.

Let T = {τ1, τ2, ..., τn} be a task set of n sporadic tasks to allocate to m uniform cores.
First, we define variable xij as the percentage of the execution time Ci that will be allocated

to core j. Thus, thread Thi,j has an execution time that equals:

Cij = xij · Ci (4.9)

Chapter 4. FTC on Uniform cores 55

Hence, xij is defined : [0, 1]. 
x ∈[0, 1]

i ∈1..n

j ∈1..m

(4.10)

The objective function (Equation (4.11) is set to minimize the energy consumption on all
cores, thus it combines the energy consumption (Equation (4.8)) for all threads on the same
core.

minimize E =
m∑
j=0

((
n∑
i=0

Coef · f3j · xij ·
Ci
Ti

) + Const · h · state(j)) (4.11)

The best solution that minimizes the energy consumption must respect the following con-
straints:

m∑
j=1

xij = 1, ∀i ∈ {0, · · · , n} (4.12)

dbf(Tj , t) ≤ t ∀t ∈ [0− h],∀j ∈ {0, · · · ,m} (4.13)

where :

dbf(Tj , t) =

|Tj |∑
i=0

⌊
t+ Ti − Di

Ti

⌋
C(sj) · xij

Equation (4.12) insures that all the parts of the task are allocated to a core. Equation (4.13)
grants that all allocated threads are schedulable according to the demand bound function based
analysis for uniprocessor.

There are many NLP solvers, both freely available as open source software, and commercial
ones. We selected LP SOLVE solver, an open source solver designed to solve efficiently linear
programs.

4.6.2 FTC Heuristic

In this section, we describe our allocation heuristic. Our approach uses an ordered task queue,
a compound set of tasks that are not yet allocated. The heuristic selects at each iteration a task
and a core and aims to allocate the selected task to the selected core if it is possible. If it is not
possible than it tries to allocate a part of the task on the current core. If this second step fails,
then the heuristic seek to allocate the task on the next core. If all cores are investigated and a
task could not be allocated, the schedule is aborted. Thus, the heuristic goes two steps:

• 1st Step: The queue is ordered according to some criteria (for example, decreasing uti-
lization, or rate monotonic, etc.). As we will show further, the results do not depend too
much on how the queue is ordered. Because the dynamic power depends mainly on the
operating frequency of a core, it is more convenient to allocate the maximum load to the
cores with the minimal speed first because they consume less energy. Hence, cores are
also sorted in a non-increasing order by speed.

• 2nd Step: The second step consists in performing the schedulability analysis. We select
the task at the top of the task queue let it be τi and the lowest indexed core let it be j. Let
Tj denote the set of threads already allocated on core j, we assume that Tj is feasible on
core j. The goal of this step is to define the maximum portion of the execution time of task
τi that can be allocated on core j, such that the system remains feasible. The maximum
execution time of task τi corresponds to the single thread version of the task (since all
execution times of the parallel threads are less than the sequential version of the task).

Chapter 4. FTC on Uniform cores 56

D T C
Th1 7 10 2
Th2 9 15 3
τ3 5 6 4

TABLE 4.1: Example of excess-time evaluation

According to the computed portion of execution time, the task is cut into two threads: the
1st is allocated on core j and the 2nd is put back to the task queue to be allocated in the
next iterations. We call this portion of execution time excess-time

Excess-time computation

Here, we describe how excess-time is computed. We start from the assumption that Tj is feasible
on core j, thus:

∀t ∈ [0− t∗], dbf(Tj , t) ≤ t (4.14)

To be feasible on core j, the set Tj ∪ {τi}must verify the following condition:

∀t ∈ [0− t∗], dbf(Tj ∪ {τi}, t) ≤ t (4.15)

Lemma 1. Let Tj be a set of threads feasible under EDF on core j, and τi be a sporadic thread not
belonging to Tj . Then, ∃C′, 0 ≤ C′ ≤ Ci(sj) such that the following condition is always verified.

∀t ∈ [0− t∗], dbf(Tj , t) +

⌊
t+ Ti − Di

Ti

⌋
(Ci(sj − C′) ≤ t (4.16)

Proof. If we select C′ = Ci the second term is zero, and since Tj is schedulable by hypothesis,
the lemma is verified.

Let us suppose that Tj ∪{τi} is not feasible on core j, for at least for one value of t Condition
(4.15) is not verified for t. Hence, We estimate the largest portion of execution time of task τi
that can be allocated on core j, by computing C′ as the minimum value such that Condition
(4.16) is verified.

Theorem 1. Let Tj be a set of threads feasible under EDF on core j, τi be a task not belonging to Tj , and
let us assume that Tj ∪ {τi} is not feasible on core j.
Tj∪Th is feasible if Th has the same period and deadline as τi and an execution time equals to Ci−C′

where:

C′ = max
t∈{0···t∗}

 t− dbf(Tj ∪ {τi}, t)⌊
t+Ti−Di

Ti

⌋
 (4.17)

Proof. It is sufficient to invert Equation (4.16) but considering the largest portion possible, thus
dbf = t.

In the rest of this work C′ is called excess-time and computed as Equation (4.17).
Example Here we present an example of excess-time evaluation. Threads Th1 and Th2 are

feasible on core p and we try to allocate task τ3 on the same core as Th1,Th2 (thread details are
shown in the table below).

The dbf of threads Th1,Th2 is shown in blue in Figure 4.1, whereas for threads Th1,Th2,Th3
it is presented in red. In interval [0, 30], we notice 5 points where dbf({th1, th2, th3}, t) is greater
than t. These points and the corresponding excess-time are reported in the table below (Table
4.2):

Chapter 4. FTC on Uniform cores 57

y=t

x=t

y=
db

f

5 10 15 20 25 30

Excess1=1

Excess2=0.66

Excess3=0.5

Excess4=0.2

Excess5=0.8

FIGURE 4.1: An example of excess− time evaluation

t excess-time

11 1
17 0.66
24 0.5
27 0.2
28 0.8

TABLE 4.2: Excess-time values

Thus, only the first value is kept because it corresponds to the greatest value of excess-time.
Notice that the system is schedulable if the execution time of the new incoming thread is re-
duced by excess-time (dashed red line).

Excess-time evaluation is described in Algorithm 1. The theoretical complexity of this algo-
rithm is θ(h · n)

The excess-time is used in to choose the portion of the task to allocate to current core.

Allocation

Now that we have introduced the concept of excess-time, we use a simple heuristic to select cut
the task and assign one thread. According to the value of the excess-time and execution time of
the task only 3 cases need to be checked:

1. excess-time = 0, it means that the single thread version of the task and the thread-set al-
ready allocated on core j is feasible. Thus, single thread version of the task is allocated on
the current core (the task is run in sequential way). Our approach favours the allocation
of the single thread version of a task first because it does not suffer from any paralleliza-
tion costs. This choice has been made because the parallel version in the next chapters
will suffer from parallelization costs while sequential one does not.

Chapter 4. FTC on Uniform cores 58

Algorithm 1 excess-time Evaluation

Input: Taskset:Tj , Task :τi , sj
Output: excess-time = 0
t = 0
while (t ≤ h) do

dbf∗ = dbf(Tj , t) +
⌊
t+(Ti−Di)

Ti

⌋
C(sj)

if (dbf∗ > t) then

temp-excess-time =

(
t−dbf(Tj∪{τi},t)⌊

t+Ti−Di
Ti

⌋
)

if (Temp-excess-time > excess-time) then
excess-time = Temp-excess-time

end if
end if
t=t+1

end while

2. excess-time is equal to execution time of the single thread version of the task (excess-time =
Ci(sj)). This means that the single thread version of the task is fully in excess on current
core j. In other words, any thread having the same period and deadline with any execu-
tion time can not be allocated to core j. Thus, we seek to allocate threads on the next core
j + 1.

3. excess-time is greater than zero, and less than the execution time of single thread version of
the task (0 < excess-time < Ci(sj)). The single thread version of the task is not schedulable
on current core j, but a thread that has the same period and deadline as task τi and an
execution time equals to (Ci(sj)− excess-time) can be allocated on the current core. Thus,
the task is split into two threads that have the same period and deadline as task τi: the first
have an execution time that equals to Ci(sj) − excess-time and is allocated to the current
core. The second thread has an execution time that equals to excess-time and is put back
to the task queue to be allocated in the next iterations.

The algorithm 2 combines different steps of our heuristic. The theoretical complexity of this
algorithm is θ(n log n · h)

Example: In this example, we try to allocate task set T = {τ1, τ2} to 3 cores of speed 1. The
task characteristics are reported in the following table:

Task C(1) D T

τ1 9 6 7
τ2 10 8 9

TABLE 4.3: Example of FTC scheduling: task set details

Here the different iterations to allocate τ1, τ2 to the cores 1, 2 and 3:

1. The first selected task is τ1 and the first selected core is core 1, then the excess-time is
evaluated for this task, on this core. The evaluation result is that excess-time = 3, this
value is greater than 0, and less than the task execution time 9. Thus, task is decomposed,
according to the 3rd case, into two threads: the first thread Th11 is allocated on core 1 with
the characteristics Th11(C(1) = 6,D = 6,T = 7); the second thread Th12(C(1) = 3,D =
6,T = 7) is put back into the task queue to be allocated in the next iteration.

Chapter 4. FTC on Uniform cores 59

Algorithm 2 Free To cut model partitioning

OrderTasks()
sortCoresBySpeed()
for τi ∈ AllTasks do

for ∀j&τinotAllocated do . loop2
excess-time = evaluate excess-time();
if (excess-time = 0) then

Allocate τi to j
break loop2

else
if (Ci(sj) < excess-time) then

Th1=(Ci(sj)− excess-time,Di,Ti);
Th2=(excess-time× sj ,Di,Ti);
Allocate Th1 to j
put back Th2 to task queue
break loop2

else
SeekOnTheNextCore

end if
end if

end for
end for

2. The selected task now is Th12 and the selected core is core 2. The excess-time is evaluated
for this couple and it is equal to 0, thus the thread is allocated to core 2, according to the
1st case.

3. The selected task in this iteration is task τ2 and the selected core is core 1. The excess-time is
evaluated for this task and core and it is equal to 9. As in the first iteration, the excess-time
is greater than 0 and less than the task sequential execution time. Thus, the task is decom-
posed into two threads: the first thread Th21 is allocated to core 1 with the characteristics
Th21(C(1) = 1,D = 8,T = 9); the second thread Th22(C(1) = 9,D = 8,T = 9) is put back
into the task queue to be allocated in the next iteration.

4. We have only one task in the task queue, Th22 and the selected core is 2. In this case,
the excess-time is equal to 4. As in the previous iteration, thread Th22 is decomposed
into two threads: the first thread Th221 is allocated on core 1 with the characteristics
Th221(C(1) = 5,D = 8,T = 9); the second thread Th222(C(1) = 4,D = 8,T = 9) is put
back into the task queue to be allocated in the next iteration.

5. We have again only one task in the task queue, Th222 and the selected core is core 3. The
excess-time is evaluated and it is equal to 0. Thus, thread Th222 is allocated to this core.

The task queue is now empty thus, and all tasks were allocated. Thus the allocation has been
successful. The results of allocation are described in Table 4.4 :

Core Threads
1 Th11(C(1) = 6,D = 6,T = 7) & Th21(C(1) = 1,D = 8,T = 9)

2 Th12(C(1) = 3,D = 6,T = 7) & Th221(C(1) = 5,D = 8,T = 9)

3 Th222(C(1) = 4,D = 8,T = 9)

TABLE 4.4: The results of task allocation

Chapter 4. FTC on Uniform cores 60

Algorithm 3 UUniFast-Discard

Input: TotalU : Double,nbTask : Integer
Output: ~U : Double
nextSumU : Double;
discard : boolean;
while discard or utilization is valid do

sumU = TotalU
discard = false;
for (i = 0; i < nbTask − 1; i+ +) do

nextSumU = sumU * Math.pow(random(0,1), 1/ (nbTask - (i + 1)));
U[i] = sumU - nextSumU;
sumU = nextSumU;
if (U [i] > 1) then

discard = true;
end if

end for
util[nbTask - 1] = sumU;
if (util[nbTask - 1] > 1) then

discard = true;
end if

end while

4.7 Experimentation

In this section, we apply our heuristic on a large number of randomly generated synthetic
task sets to evaluate the performances of our heuristic. For the experiments, we allocate the
generated task sets on a set of 4 cores with speed 0.5, 0.5, 1 and 1.

4.7.1 Task Generation

The UUniFast method, proposed by Bini and Buttazzo, 2005, can be used to generate a num-
ber of utilization factors, each one bounded by 1 and whose sum is a given number bounded
by 1. The method has been extended by Davis and Burns, 2009 to multicore systems with
the UUniFast-discard algorithm. The latter allows setting the bound to a number m ≥ 1, and it
adds the constraint that each utilization must not exceed 1. Algorithm 3 describes the UUnifast-
Discard. Utilization is valid. is a simple method that checks if the sum of the generated uti-
lization is less than the number of cores.

Goossens and Macq, 2001 have shown that the hyperperiod grows exponentially with the
greatest value of period. They also proposed a method to bound the hyperperiod and generate
periods Ti. We use their method for generating task periods.

Therefore, we compute the computation time of the single thread for little and for big cores
Ci(1) = u(i)× Ti.

Finally, the deadline is generated in the interval [Pr×Ti,Ti] where Pr is randomly generated
between [0.75, 1].

4.7.2 Simulations

Our algorithm has no direct competitors, in the sense that classic partitioning heuristics do not
take into account intra-task parallelism or task decomposition. Therefore, we have no choice
but to compare our heuristics to classic bin-packing heuristics, such as Best Fit (BF), Worst Fit
(WF) and First Fit (FF) and the exact scheduler solved by LP SOLVE.

Chapter 4. FTC on Uniform cores 61

The BF, FF, WF were implemented as they are stated in the literature without any paral-
lelization features and without any modification to be adapted to uniform platforms. Total
utilization is varied from 0.5 to 3.0. For each utilization, we generate 100 different task sets.

4.7.3 Results & discussions

Figure 4.2 shows schedulability rate as function of total utilization for the 100 task sets using the
bin-packing allocation heuristics: BF, WF, FF, the FTC heuristic and the exact solution. Notice,
in the figure, that our heuristic “FTC” outperforms hugely all the bin-packing heuristics, and
keeps the schedulability rate equal to the exact solution until a total utilization of 2.5. In contrast
to the results reported in the literature of partitioned scheduling for identical core platforms,
BF is worse than WF and FF because it tries to load the most free processor first and then the
most loaded processor first and in this case it loads processors with high speed first (those with
speed is equal to 1). Thus, the schedulability chances are reduced because the task set is sorted
by task utilization and the core with speed equals to 0.5 has less chance to accept the allocation
of heavy tasks (heavy tasks are tasks with high utilization). Even at the maximum possible
total utilization, our heuristic FTC is able to schedule more than 35% of task sets while the bin-
packing heuristic can not schedule any task set, but FTC is still less than the exact scheduler
which is able to find feasible allocation for more than 55% of task sets.

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

Total utilization

%
sc

he
du

la
bl

e
ta

sk
se

ts

WF
BF
FF

FTC
ExactSOL

FIGURE 4.2: Schedulability rate for BF, WF, FF, FTC and Exact Scheduler

Our heuristic outperforms the bin-packing heuristics also in term of processor usage. As
you can notice in Figure 4.3, it reports the average utilization per every core for all heuristics
and exact scheduler. Our heuristic FTC and exact solution loads the processors as full as it is
possible (core utilization is close to 1). Hence, FTC and exact scheduler allow to use less cores
than bin-packing heuristic. But, for low total utilization (less than 2), you can notice that BF
uses less cores than both exact scheduler and FTC because it uses high speed cores first. Notice
that there is only a slight difference between FTC and the exact solution in terms of processor
usage.

Figure 4.4 reports the energy consumption as a function of total utilization for all heuristics
and the exact scheduler. FTC heuristic outperforms all bin-packing heuristics, and it consumes
a slightly more energy than the exact scheduler. Notice here that FF bin packing heuristic
outperforms BF and FF because it load more the first cores which are the core operating at a
low speed, hence they consume less energy.

Chapter 4. FTC on Uniform cores 62

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

fo
r

FT
C

C1 C2 C3 C4

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

fo
r

BF

C1 C2 C3 C4

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

fo
r

W
F

C1 C2 C3 C4

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

fo
r

FF

C1 C2 C3 C4

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

fo
r

Ex
ac

tS

C1 C2 C3 C4

FIGURE 4.3: Average Utilization per cores for BF, WF, FF, FTC and the exact
scheduler

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

Total utilization

En
er

gy
C

on
su

m
pt

io
n

WF
BF
FF

FTC
ExactSol

FIGURE 4.4: Energy consumption for different heuristics

4.8 Conclusion

In this chapter, we presented a parallel task model that does not take into account the par-
allelization costs and we proposed two methods to solve the problem of decomposing and
allocating a set of n tasks of this model to a set of m uniform cores where each core has its
own operating frequency point and it can not be changed. In the first method, we modeled
the problem as a linear program and it was solved using LP Solve, an open source solver. In
the second method, we proposed a heuristic that allows to decompose the execution of a task
into several parallel thread based on the dbf computation. We conducted several experiment
for classic non-parallel bin packing heuristics and the proposed heuristic “FTC” and the exact
scheduler. The results had shown that our heuristic outperforms all bin-packing heuristics and
that the obtained decomposition and allocation is very close to the optimal one. In the next
chapter, we propose a more realistic task model on a more realistic hardware architecture.

63

Chapter 5

Minimal frequencies for allocating
Cut-Point Tasks model to Uniform &
Heterogeneous Multicore Architectures

“ Le temps est du mouvement sur de l’espace. ”

Joseph Joubert

Contents
5.1 Introduction . 64
5.2 System Model . 64

5.2.1 Experimental platform . 64
5.2.2 Architecture Model . 65
5.2.3 Model of the execution time . 65
5.2.4 Parallel moldable tasks . 69
5.2.5 Power model . 70
5.2.6 Energy model . 73

5.3 Allocation & Scheduling . 74
5.3.1 Optimal schedulers . 74
5.3.2 Scheduling heuristics . 76
5.3.3 Frequency selection . 78
5.3.4 CP partitioning . 78

5.4 Results and discussions . 82
5.4.1 Task Generation . 82
5.4.2 Simulations . 83
5.4.3 Scenario 1 . 86
5.4.4 Scenario 2 . 89

5.5 Conclusion . 89

Chapter 5. allocating CPM tasks to heterogeneous platforms 64

5.1 Introduction

In this chapter, we address the problem of executing task and data parallel (soft) real-time appli-
cations on heterogeneous computing platforms with the goal of reducing the energy consump-
tion. We extend the model of task, architecture and energy proposed in the previous chapter
to more realistic models. Here we focus on Dynamic Voltage and Frequency Scaling (DVFS),
parallelization, real-time scheduling and resource allocation techniques. In the first part of the
chapter, we present a model of the performance and energy consumption of a parallel real-time
task executed on an ARM bigLITTLE architecture. We use this model in the second part of the
chapter where we first define the optimization problem as an Integer Non-linear Programming
(INLP) problem, and then propose heuristics for efficiently solving it.

In order to achieve an optimal decomposition with respect to the energy consumption for a
set of tasks on heterogeneous multicore platform, we need to (i) set the operating frequency of
cores; (ii) decompose each task into a set of parallel threads (if possible/desirable); (iii) perform
a schedulability analysis and allocate the threads onto the cores to guarantee that each thread
completes before its deadline.

5.2 System Model

We focus on scheduling moldable real-time tasks on heterogeneous multicore platforms. In
such platforms, cores may have different characteristics (e.g. architecture, pipelines, memories,
etc). These differences have an impact on the behaviour of a task (its execution time and energy
consumption) when it is allocated on different cores. Thus, it is important to construct a realistic
model of the task execution times, of the architecture and of the energy consumption.

5.2.1 Experimental platform

We use the ODROID XU3 1 Board as experimentation platform. The ODROID XU3 board is
compound of a Samsung Exynos 5422, a Mali GPU, a RAM memory and I/O peripherals.

The Samsung Exynos 5422 is an ARM big.LITTLE multicore architecture. It consists of 8
cores: 4 big cores (ARM Cortex A15) and 4 little cores (ARM Cortex A7). The ODROID XU3
board embeds 4 INA231 current-shunt and power sensors2 that allow measuring the instant cur-
rent and power dissipation of big cores, little cores, the GPU and the RAM memory. The
INA231 sensors have a high accuracy with a maximum error that reaches 0.5% (as per con-
structor specification). Besides the embedded sensors, an external energy sensor (ODROID
Smart-Power3) is plugged to the power supply of the board to measure the overall power dissi-
pation.

Each core of the Exynos 5422 has 2 × 32 Ko of L1-cache (data and instruction cache). Little
cores share 512 Ko of L2-cache. Big cores share 2 Mo of L2-cache. Both big and little cores share
2 Go of RAM memory. Unlike the Samsung Exynos 5420, big and little cores of Samsung Exynos
5422 can be active at the same time.

The frequency of little cores can be calibrated homogeneously for all little cores at the same
time from 200Mhz to 1400Mhz by discrete steps of 100Mhz (13 modes). Similarly, the frequency
of big cores can be calibrated from 200Mhz to 2000Mhz by discrete steps of 100Mhz (19 modes).
Any core (big or little) can be set in low power state (Standby power state) 4. The core enters the

1HardKernel board, link: http://www.hardkernel.com/main/products/prdt_info.php?g_code=
G140448267127&tab_idx=2

2INA231 sensors are manufactured by Texas Instruments, Link: http://www.ti.com/lit/ds/symlink/
ina231.pdf

3ODROID Smart Power of Hard Kernel, Link: http://odroid.com/dokuwiki/doku.php?id=en:
odroidsmartpower

4ARM documentation: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/
DEN0022C_Power_State_Coordination_Interface.pdf

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2
http://www.ti.com/lit/ds/symlink/ina231.pdf
http://www.ti.com/lit/ds/symlink/ina231.pdf
http://odroid.com/dokuwiki/doku.php?id=en:odroidsmartpower
http://odroid.com/dokuwiki/doku.php?id=en:odroidsmartpower
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Chapter 5. allocating CPM tasks to heterogeneous platforms 65

standby power state by executing a WFI5 or WFE6 instructions and exits on a corresponding wake
up event.

5.2.2 Architecture Model

According to the characteristics of many heterogeneous multicore architectures, we introduce
the concept of core group. We model an architecture of m cores as a set of G groups. Each
group Gg is compound of a set of cores that have the same frequency characteristics (minimal
(fgmin), maximal (fgmax), operating frequency (fgop)). Each group has a set of discrete frequencies
(modes) and its own energy calculation characteristics (discussed in Section 5.2.6). Cores are
indexed alternatively, so Group g of Core j is denoted with index (j mod G). This representa-
tion (Equation (5.1)) allows us to address homogeneous architectures like SMPs by setting the
number of groups g to 1 and the ARM big.LITTLE architecture by setting the number of groups
to 2. For example, the Exynos 5422 of the ODROID XU3 board is modelled with g = 2, where
little cores are indexed 0,2,4,6 and big cores are indexed 1,3,5,7.

A ={Gg, g ∈ {1 . . . G}}
Gg =({Pj , (j mod G) = g, j < m},

fgmin, f
g
max, f

g
op), g ∈ {1 . . . G} (5.1)

We denote mg as the number of cores of group g.
In order to build task and energy models, we benchmark the Exynos 5422 Samsung proces-

sor with 6 different profiling tasks: matrix multiplication (MATMUL), Fast Fourier Transform
(FFT), Quick sort (QS), Shortest graph path (Dijkistra), Basic math operation (BM), and susan-c.
The last 4 benchmarks have been adapted from the corresponding MiBench benchmark suite
(Guthaus et al., 2001). The tasks’ code is written in C using the POSIX real-time thread library.
The implemented threads are periodic and have real-time priorities. We measure the execution
time by the mean of the POSIX clock gettime system call and the power dissipation by the
mean of the embedded sensors on big cores, little cores and RAM memory.

5.2.3 Model of the execution time

Seth et al., 2006 reported that a part of the task execution time does not depend on the core
frequency (e.g. due to the central memory access). Bini, Buttazzo, and Lipari, 2005 proposed a
similar approach for the task timing model where timing model has been modeled as the sum
of semi-linear function of frequency and a constant that represents the memory access. Hence,
we assume that the execution time of a thread depends on:

• the operating frequency of the group (fgop) where it is allocated (assumption 1),

• the microarchitecture (g) of this group (assumption 2),

• the thread itself. A part of the thread execution time depends on the core operating fre-
quency, we denote it as ctgTh(f). The other component, that we denote as (mtgTh), does
not depend on the operating frequency of the core (e.g. due to the central memory ac-
cess)(assumption 3).

To verify these assumptions, we conducted several experiments. At each experiment, we
allocated the 6 benchmarking thread(s) onto the core(s) operating at a fixed frequency. In each
scenario we vary the number of threads, the core(s) on which the thread(s) is(are) allocated, the
operating frequency of this(these) core(s).

5Wait For Interrupt
6Wait For Event

Chapter 5. allocating CPM tasks to heterogeneous platforms 66

500 1,000 1,500 2,000
0

0.5

1

1.5

2

2.5

Frequency (Mhz)

Ex
ec

ut
io

n
Ti

m
e

MatMul
BasicMath
Dijkistra

QuickSort
Susan
FFT

FIGURE 5.1: The execution time of the 6 benchmarks when allocated on one lit-
tle/big Core

In Figure 5.1, we present the execution of one thread of each benchmark when it is exe-
cuted on one little core as a function of frequency. The execution time of each thread has been
calibrated so that their execution time at 200Mhz is approximately the same.

We observe that the profile of execution time as a function of frequency is very similar for
the 6 benchmarks. However, as you can notice, there is a invariant difference between the execu-
tion time of the benchmarks. It can be explained by the different profile of the memory access
pattern of each benchmark. To investigate this assumption, we conducted several experiments
that are presented in the rest of this section.

500 1,000 1,500 2,000
0

0.5

1

1.5

2

2.5

Frequency (Mhz)

Ex
ec

ut
io

n
Ti

m
e

(S
)

B-avg
B-max
B-Min
L-avg
L-max
L-Min

FIGURE 5.2: The execution time of square matrix multiplication (200x200) thread
allocated on one little/big Core

Figure 5.2 shows the average execution time of 500 executions of one MATMUL thread
allocated on one big core (B-avg) and on one little core (L-avg) as a function of frequency. The
figure shows also the maximum and the minimum execution time on big cores (B-max, B-min)
and on little cores (L-max, L-min). The average value changes in an interval of 2% on little cores
and 3 % on big cores. Obviously, the execution time varies with the frequency in an inversely
proportional manner (assumption 1 checked). We observe that the execution time of the thread
allocated on a big core is approximately (×3) times shorter than the execution time of same

Chapter 5. allocating CPM tasks to heterogeneous platforms 67

thread allocated on a little core operating on the same frequency. This is due to the larger and
more complex pipeline of big cores compared to little cores. The ARM cortex A15 pipeline is
an Out-Of-Order pipeline and contains complex branch predictors and powerful computation
elements; whereas the ARM cortex A7 pipeline is a smaller and an In-order-pipeline. Thus,
ARM Cortex A15 executes in average more instructions by one cycle than ARM Cortex A7
(assumption 2 is checked).

200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

Frequency (Mhz)

Ex
ec

ut
io

n
Ti

m
e

(S
)(

lit
tl

e
co

re
s) L-With-P

L-Without

FIGURE 5.3: Execution time of the MATMUL (150x150) thread with and without
interfering thread

Figure (5.3) shows the results of two different experiments on little cores. In the first, we al-
locate one MATMUL thread on one core (L-without is the average execution time of this thread
as a function of frequency). In the second, we allocate the same thread as in the first experi-
ment on a core and an interfering thread on another little core (L-with is the average execution
time of the same thread as experiment 1 as function of frequency). The thread of the second
experiment takes more time to execute than the same thread in the first experiment, even if it
has no competition on the core where it is allocated. Thus, we assume that the difference in
the execution time between both experiments is due to the interference on cache and memory
access in the second experiment. To estimate this difference, we apply a non-linear regression
on the execution time of both experiments. The difference is almost constant and is estimated
to 0.015 sec. The same experiments were conducted on big cores, and similar observations can
be done, but the difference is estimated to 0.007 sec. We assume that the difference is smaller
on big cores because the L2-cache of big cores is larger than the L2-cache of little cores, so less
cache-misses occur. Thus, the variation of the execution time of a thread as a function of fre-
quency can be estimated as the sum of a linear function of the speed (inverse of frequency) and
a constant value that represents the memory access time (Const2 in Equation (5.2)).

CTh(fgop) =
Const1
fgop

+ Const2 (5.2)

In order to confirm this assumption about Const2, we changed the size of the matrix (100x100,
150x150, 200x200, 250x250, 300x300) in the MATMUL and we computed Const2 and the resi-
dent set size (RSS7) for each case. Results are presented in Figure (5.4).

Figure (5.4a) shows the RSS as a function of the matrix size. Figure (5.4b) shows the values
of Const2 for the big core (Const2-B) and for the little core (Const2-L) as a function of the RSS:
as you can see, RSS and the Const2 are directly proportional. Thus, Const2 depends mainly on
the memory demands. In the rest of this chapter Const2 is renamed as mt.

7RSS: is the portion of memory occupied by a process that is held in main memory (RAM)

Chapter 5. allocating CPM tasks to heterogeneous platforms 68

100 150 200 250 300
0

500

1,000

1,500

matrix size

R
SS

(K
o)

RSS

(a)

1,200 1,300 1,400 1,500 1,600 1,700 1,800
0

0.5

1

1.5

2

·10−2

RSS (Ko)

Ti
m

e
(s

)

Const2-B
Const2-L

(b)

FIGURE 5.4: The computed mt as a function of RSS

The execution time of any thread Cth on group g operating at frequency fgop is the sum of a
linear function of speed and the memory access time (mt) (Equation (5.3)).

CgTh(fgop) =
ctgTh(fgmax)fmax

fgop
+ mtgTh. (5.3)

Similar results has been obtained on an Intel i3 processor. The i3-3217U processor is com-
pound of 2 physical cores hosting two logical cores by hyper-threading. The processor has 3
cache levels: L1, L2 and L3. The L1 cache has 2 x 32 KB of cache instruction and 2 x 32 KB for
data cache. L2 cache has a size of 2 x 256 KB and L3 cache has a size of 3 MB. The frequency of
each physical core can be set from 800 MHz to 1800 MHz by discrete steps of 100Mhz.

2 4 6 8

5 · 10−2

0.1

0.15

0.2

0.25

Number of Threads

Ex
ec

ut
io

n
Ti

m
e

(s
)

FIGURE 5.5: The execution time of matrix multiplication under several decom-
positions

In the experiment of Figure 5.5, the matrix multiplication task was decomposed into 2,3,4,5,6,7
and 8 threads with the same load (all threads do a similar size of data) and the operating fre-
quency is set to 1800Mhz. The figure reports the maximum, the minimum and the average
execution time for all decompositions. As You can notice, increasing the number of threads
leads to a shorter execution time. But as expected, when the number of threads is greater than
the number of available cores (4), the execution time can not be improved (shorter), even more
the configuration with 8 threads has a bit longer execution time than the configuration with 6
threads. Moreover, we can notice that the execution time when the task is decomposed into

Chapter 5. allocating CPM tasks to heterogeneous platforms 69

two threads is a little bit more than the execution time of the single thread version of the task
divided by 2. The slight difference is due to the parallelization costs.

To estimate the parallelization costs, we can refer to the metrics stated in Chapter 1.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 800 1000 1200 1400 1600 1800

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Frequency (Mhz)

1 Thread
(Ci/S) 1 Thread

(Ct/S+mt) 1 Thread
2 Threads
4 Threads

FIGURE 5.6: The execution time of different task decompositions at different fre-
quencies

Figure 5.6 reports the results of three experiments: in the first we allocate the matrix mul-
tiplication (size of matrix is 200 x 200) thread on one core, in the second we decompose the
matrix multiplication task into two threads with the same load and we allocate each one on a
different core, in the last experiment we decompose the task into 4 threads each one allocated
on a different core. Figure 5.6 reports the average execution time of the three experiments as a
function of frequency. The figure shows also two semi-linear functions of frequency: the first
one is

C(f) =
C(800Mhz) · 800

f
(5.4)

This timing model in the most used one in literature for uniform architectures and it is plotted
in green. The second one is

C(f) =
C(800Mhz) · 800

f
+ 0.4 (5.5)

and it is plotted in blue. Notice that these two functions are plotted only for the single thread
version of the task. The first function underestimates the execution time of the task as a function
of frequency. Hence the results of Equation (5.3) is quite general and representible for different
hardware architectures.

5.2.4 Parallel moldable tasks

In this chapter, we consider sporadic moldable real-time tasks. Let T={τ1, τ2, . . . , τn} be a set of
sporadic moldable independent synchronous tasks. Every task τi is characterized by the tuple
τi = (Di,Ti, ~ξig,Γi), where:

• Di is the task relative deadline. We consider constrained deadline tasks (Di ≤ Ti).

• Ti: is the task period, it is the time between the releases of two consecutive instances of
task τi.

• ~ξig is the vector of power dissipation coefficients. It will be discussed in Section 5.2.6.

• Γi is a set of cut-points, Γi = {γi,1, . . . , γi,ki}. Each cut-point γi,k represents one possible
parallel decomposition of the task τi into parallel threads (Thi,k,1,Thi,k,2, . . .). We denote
as |γi,k| the number of threads in cut-point |γi,k| and we denote Thi,k,z as the thread z
of cut-point γi,k from the task τi. Each thread Thi,k,z has the same period and the same
relative deadline of the task τi to which it belongs. We assume that the first cut-point γi,1

Chapter 5. allocating CPM tasks to heterogeneous platforms 70

cut-point Threads ctb mtb ctl mtl

γ1,1 Th1,1,1 64 9 250 37

γ1,2
Th1,2,1 35 7 139 29
Th1,2,2 35 7 139 29

γ1,3
Th1,3,1 50 8 207 33
Th1,3,3 17 5 49 15

TABLE 5.1: Cut-points list example

contains one thread representing sequential execution of task τi (single thread version),
thus γi,1 = {Thi,1,1}.

For example, let τ1 be a sporadic moldable task that implements MATMUL with size 200x200.
Let us suppose that the task is modelled with 3 different cut-points as follows:

τ1 = (D1 = 150,T1 = 200,Γ1 = {γ1,1, γ1,2, γ1,3})

Γ1 details are described in the following table (Table 5.1):
Task τ1 can be run in a sequential way (single thread version) using the first cut-point

γ1,1. The execution time of τ1 on a big core operating at the maximum frequency is equal to
Cb1,1,1(fmax) = [ctb1,1,1(f

b
max) + mtb1,1,1] = 64 + 9 = 73 ms. If τ1 is run on a little core operat-

ing at the maximum frequency and using the same cut-point, the execution time is equal to
Cl1,1,1(fmax) = [ctl1,1,1(f

l
max) + mtl1,1,1] = 250 + 37 = 287ms.

The same task can be decomposed into 2 threads for a parallel execution using cut-points
γ1,2, γ1,3. Since running a task in parallel brings an overhead for creating and synchronizing
threads, the parallel execution suffers from an overhead, computed as the difference between
the sum of execution time of parallel threads and the execution time of the single thread version
of the task. For example using γ1,2, if threads are allocated on big cores, the overhead is (35 +
7 + 35 + 7)− (64 + 9) = 11 ms. The overhead is hard to evaluate when threads of the same task
are allocated on different groups, but it still exists.

Notice that we allow different values of ct and mt among parallel threads belonging to the
same cut-point and we allow many cut-points with the same number of threads. Thus, this
model is quite general and can be used to represent alternative decompositions for the same
level of parallelism.

5.2.5 Power model

In this chapter, we calculate off-line an operating frequency for each group and the power state
for every core, and we fix both for the whole system lifetime. Therefore, in this chapter we are
not interested in measuring the needed time and power to change the frequency mode or the
core power state.

In Figure (5.7), we measured the memory power dissipation of MATMUL as a function of
frequency. The L2-cache of little cores is smaller than the L2-cache of big cores. Thus, the same
thread demands more memory accesses when allocated on a little core than when it is on a
big core, and this leads to a higher power dissipation. The power dissipation varies very little
with core frequency, and again this small variation can be explained by the different number of
memory accesses per second which depends on core frequency and on the data access pattern
of the task. If we restrict to little cores, memory power dissipation represents [10-17] % of total
power dissipation in the case of MATMUL, and [16-25] % in the case the FFT (not shown in the
figure).

Figure (5.8) shows the power dissipation of one core where one MATMUL thread is allo-
cated as a function of frequency. B-avg represents the average power dissipation for big cores

Chapter 5. allocating CPM tasks to heterogeneous platforms 71

500 1,000 1,500 2,000
0

2

4

6

8
·10−2

Frequency (Mhz)

Po
w

er
(w

)
Little core
Big core

FIGURE 5.7: The memory power dissipation by one little and big core

500 1,000 1,500 2,000
0

1

2

3

Frequency (Mhz)

Po
w

er
(w

)

B-avg
B-Max
B-Min
L-avg
L-Max
L-Min

FIGURE 5.8: Power dissipation of matrix multiplication on big and little cores

(L-avg for little cores), B-min represents the minimal sensed power for big cores (L-min for
little cores), B-max presents the maximal one for big cores (L-max for little cores). The timing
acceleration obtained by using big core instead of little cores has an impact, as big cores con-
sume more power than little cores. Even when operating at the highest frequency, little cores
dissipate less power than big cores operating at the lowest frequency.

Figure 5.9 reports the average power dissipation of one core where one thread of the 6
benchmarks is allocated as a function of frequency. Each benchmark has its own energy con-
sumption profile. Also, the variation of the frequency is small for lower frequencies (between
200, 600) and bigger for higher frequencies. This is due to the fact that power is the product of
current and voltage, and that the voltage is constant for a subset of the lower frequencies.

Figure (5.10) shows the results of 6 experiments, 3 on little cores and the same 3 experiments
on big cores. In the first, we allocate one thread on one core, in the second two threads on two
different cores, and three threads on three different cores in the last one. The figure presents
the average power dissipation as a function of frequency. Using more cores implies consuming
more power. However, power dissipation is not multiplied by two and three because cores
share the same common power, and this power is not replicated when using more than one
core.

Chapter 5. allocating CPM tasks to heterogeneous platforms 72

200 400 600 800 1,000 1,200 1,400

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Frequency (Mhz)

Po
w

er
(w

)

BM
Dijkstra

FFT
MatMul

QS
Susan-c

FIGURE 5.9: Power dissipation for different processing

Figure (5.10) reports also the results of a polynomial regression of the third degree on the
real values for MATMUL and FFT. The maximum error on the regression is 2%.

200 400 600 800 1,000 1,200 1,400
0

0.1

0.2

0.3

0.4

0.5

Frequency (Mhz)

Po
w

er
(W

)

Rg-FFT-1
Rg-FFT-2
Rg-FFT-3
Rg-MM-1
Rg-MM-2
Rg-MM-3
Real-FFT-1
Real-FFT-2
Real-FFT-3
Real-MM-1
Real-MM-2
Real-MM-3

FIGURE 5.10: Real-values and regressions of power dissipation of little cores of
matrix multiplication and Fourier transformations

The 6 benchmarks dissipate different amounts of power because they activate different
components of the processor cores and those different components may consume different
amounts of power. The polynomials resulting from the regressions on one little core for all
benchmarks are reported in the table below (Table 5.2).

From all these experiments, we conclude that the power dissipation can be modelled as a
third degree polynomial of frequency (Equation (5.6)), whose coefficients are different for each
application. These coefficients are dependent on the task and on the core group. The vector of
coefficients is denoted by ~ξig:

PTh,g(f) = ~ξig · ~F 3, (5.6)

where ~F 3 denotes the vector of powers of the frequency, {f3, f2, f1, f0}. In this chapter, we
assume that threads of the same task dissipate the same amount of power, thus they have the
same coefficients.

Chapter 5. allocating CPM tasks to heterogeneous platforms 73

task Coef f3 Coef f2 Coef f1 Coef f0

FFT 4.609 · 10−11 2.193 · 10−8 3.410 · 10−8 4.433 · 10−2

MATMUL 5.220 · 10−11 4.053 · 10−9 7.763 · 10−5 1.675 · 10−2

BasicMath 3.475 · 10−11 6.500 · 10−8 3.016 · 10−5 2.883 · 10−2

QuickSort 3.427 · 10−11 5.659 · 10−8 5.261 · 10−5 2.755 · 10−2

Susan-c 4.833 · 10−11 4.245 · 10−8 5.934 · 10−5 2.460 · 10−2

Dijkstra 4.136 · 10−11 5.519 · 10−8 4.542 · 10−5 2.682 · 10−2

TABLE 5.2: The power dissipation coefficients for the 6 benchmarks

Even if threads use different hardware components, there is a basic amount of power that
is dissipated as long as the core is turned on and the frequency is fixed, even when the idle
process runs in the OS. We call this absolute static power (P gstat).

Finally, the power consumed by a set of threads allocated on core group g is expressed as
the sum of every thread power dissipation and the absolute static power. Equation (5.7) will be
used in the rest of this work to compute the power dissipation:

P g(f) =
∑

PTh,g(f
g
op) + P gstat (5.7)

5.2.6 Energy model

The energy consumption is the integral of the power dissipated by a thread over the time when
it executes. It can be approximated as the product of the average power dissipation of thread
Th and its execution time CTh:

Eg(Th, f) = CTh · PTh,g(f) (5.8)

500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Frequency (Mhz)

En
er

gy
(W

h)

FFT-L
FFT-B
MM-L
MM-B

FIGURE 5.11: Energy consumption matrix multiplication and Fourier transfor-
mations threads allocated on little and big cores

Figure 5.11 shows the energy consumption of MATMUL and FFT on little and big cores.
MATMUL and FFT consume different amounts of energy, however they still vary in the same
way as a function of frequency. Starting from 200Mhz, both are lower when the frequency is
higher until a certain frequency (400 For Susan, 500Mhz for MATMUL and QuickSort and Dijk-
stra, 600Mhz for FFT and Basic Math). After this minimum, increasing the frequency involves

Chapter 5. allocating CPM tasks to heterogeneous platforms 74

more energy consumption. In the figure we do not take into account the timing constraints:
obviously, not all frequencies allow to complete the task within its deadline.

We call the frequency that corresponds to the least amount of energy per each thread (re-
gardless its timing constraints) effective frequency and it is denoted by feff . The effective fre-
quency is the one which cancels the derivative of energy, and it can be easily found, for example
by using a dichotomy search in a few iterations.

After having described architecture, task and energy models, we address the problem of
scheduling.

5.3 Allocation & Scheduling

In the case of heterogeneous platforms, it is hard to handle the migration of a thread from
a group to another because for each group we may have different timing analysis. Thus, in
this work, we consider partitioned Earliest Deadline First (EDF) scheduling. Each core has its
own separate ready-queue and single-processor EDF scheduler known to be optimal for this
purpose. Therefore, the scheduling analysis can be performed with well-known techniques for
single-processor scheduling. We assume that all tasks are independent of each other, whereas
threads belonging to the same tasks and running on different cores need to synchronize their
activation times and deadlines. The scheduling analysis is based on demand-analysis proposed
by Baruah, Rosier, and Howell, 1990.

Thread Thi,k,z allocated on core j is denoted by (aTHi,j,k,z), and let Tj denote the set of
threads allocated on core j: Tj = {aTHi,j,k,z, i ∈ {1 . . . n}, k ∈ {1 . . .Ki}, z ∈ {1 . . . |γi,k|}}.
Let t be a non-negative integer: the demand bound function dbf(Tj , t) denotes the maximum
cumulative execution requirement that can be generated by jobs of Tj that have both ready
times and deadlines within any time interval of length t:

dbf(Tj , t) =
∑

aTH∈Tj

⌊
t+ Ti − Di

Ti

⌋
Cgi,k,z(f

g
op) (5.9)

Theorem 2 (Baruah 1990 Baruah, Rosier, and Howell, 1990). Task set Tj is feasible if and only if
the following condition is verified for all values of t:

∀t ≤ t∗, dbf(Tj , t) ≤ t

where t∗ is a constant that depends on the utilization of the task set (see Baruah, Rosier, and
Howell, 1990 for more details on the analysis algorithm). In this work, we consider t∗ equal to
the hyperperiod which is computed as the least common multiple of task periods.

First, we will start by presenting the problem formulation as an Integer Non-Linear Pro-
gramming problem (INLP), then, we will present our heuristics for frequency selection and
thread allocation.

5.3.1 Optimal schedulers

We formulate the problem of scheduling a task set T={τ1, τ2, . . . , τn} on multicore architecture
A as an Integer Non-Linear Programming (INLP) problem. The problem of task allocation
without decomposition is already a NP complete problem, by adding the decomposition and
the frequency selection, the problem becomes harder and non-linear.
We define the binary variable xi,j,k,z as:{

1 if thread Thi,k,z is allocated on core j
0 otherwise

Chapter 5. allocating CPM tasks to heterogeneous platforms 75

We define frequency as a discrete variable:

fgop ∈ {f
g
min, · · · , f

g
max}

Given these definitions, we now present one formulation of the problem as INLP problem.
The objective function can be expressed as follows:

minE =
n∑
i=1

m∑
j=1

K∑
k=1

m∑
z=1

h ~ξig · ~F 3

(
Cgi,k,z(f

g
op)

Ti

)
xi,j,k,z+ (5.10)

G∑
g

h P statg


(
n∑
i=1

m∑
j=1

K∑
k=1

m∑
z=1

xi,j,k,z)

m
G


(where : j ∈ {1 · · ·m}, j mod G = g)

The objective function is the sum of two terms. The first term expresses the energy that
depends on thread execution. The second term expresses the common energy consumption
that is generated by at least one thread when allocated on group g (otherwise it is turned off).
The ceiling in the second term is equal to 1 if at least one thread is allocated on core group g,
and it is equal to 0 otherwise.

The constraints of the problem:

m∑
j=1

K∑
k=1

m∑
z=1

xi,j,k,z = m, ∀i (5.11)

n∑
i=1

dbf(Tj , t) xi,j,k,z ≤ t, ∀j, t ∈ [0− h] (5.12)

xi,j,k,z + xi,j′,k′,z′ ≤ 1, ∀(i, k, z, j, z′, j′, k′ > k) (5.13)
m∑
j=1

xi,j,k,z ≤ 1, ∀i, k, z (5.14)

In order to formulate our problem as INLP, the maximum number of threads per every cut-
point must be defined. Observe that it is not necessary to have a number of threads per cut-
point greater than the number of cores, otherwise some threads will be forced to be allocated on
the same core and it would increase pessimism of our analysis because each thread utilization
is inflated by a cost of parallelization. Thus z is upper bounded by m. As you will notice in the
next section, to simplify the heuristic, our allocation approach may indeed allocate threads of
the same cut-point on the same core.

To grant the respect of the schedulability of every task set Tj at each time t, t ∈ [0, h], the
demand bound function must verify Condition (5.12). Constraint (5.11) imposes that all threads
of the same cut-point must be allocated. A correct solution of the problem must verify that all
threads of the same task belong to the same cut-point: we express this as a conflict constraint
(Constraint (5.13)). Constraint (5.13) is an optimized version of the following constraint:

xi,j,k,z + xi′,j′,k′,z′ ≤ 1,∀i, j, k, z, i′, j′, k′, z′, k 6= k′ (5.15)

if any xi,j,k,z is equal to 1, it excludes all other cut points, because any xi′,j′,k′,z′ where k is
different of k′ is equal to 0 (because the sum is equal to 1 and the first one is already less or equal
to 1). This constraint is not generated for thread of the same cut point, because k is different
from k′, thus only one cut-point can be selected. As addition operation “+” is commutative,

Chapter 5. allocating CPM tasks to heterogeneous platforms 76

and we want to reduce the number of constraints of this kind (which is very huge), we do not
to generate duplicated constraints, like x1,2,1,1 + x1,1,2,1 ≤ 1 and generate x1,1,2,1 + x1,2,1,1 ≤ 1,
by imposing that k to be greater than k′. Thus, the selected cut-point is unique.

Finally, we must verify that each thread is allocated on one core only (Constraint (5.14)).
There are many NLP solvers, both freely available as open source software, and commercial

ones. We used Knitro Solver8 Byrd, Nocedal, and Waltz, 2006, a commercial solver expressly
designed for solving efficiently this kind of problems. Unfortunately the problem at hand is a
very complicated combinatorial problem. We run the solver on a small example with 3 tasks
with 5 cut-points per each task, to be executed on a ARM big/Little with 8 cores, having 13
frequency modes for little cores and 19 for big cores. The optimization took 12 hours before
resolution. So we had been limited to very small sizes of the problem, which are not presented.
The problem complexity can be reduced by using dbf approximations as in baruah2016 but the
produced results are not optimal. We believe that it is impractical to use a NLP solver for this
kind of problems. Thus, in this chapter we propose heuristics to obtain quasi-optimal solutions
in a reasonable time.

5.3.2 Scheduling heuristics

We propose a greedy algorithm for selecting the frequencies and the cut-points, and allocating
the threads on the different available cores, so to minimize total energy consumption while
guaranteeing that all deadlines are respected.

Let T = {τ1, τ2, . . . , τn} be a set of n tasks. We start by defining the baseline utilization for

each task on a group as ugi (f
g
op) =

Cgi,1,1(f
g
op)

Ti
, where Cgi,1,1(f

g
op) is the execution time of the single

thread cut-point, considering group g operating on frequency fgop. Then Ug(fgop) =
∑

i u
g
i (f

g
op) is

the total baseline utilization of the task set on group g.

Lemma 2. A necessary condition for task set T to be feasible on mg identical cores operating on fre-
quency fgop with ma

g active cores is the following:

Ug(fgop) ≤
fgop
fgmax

ma
g (5.16)

Proof. The proof is based on the necessary condition for a task set on uni-processor architec-
ture Baruah and Fisher, 2005: the total utilization of a task set must not exceed 1. However,
in the original theorem, there is no notion of frequency scaling:

∑
ui ≤ 1. This version can be

adapted to uni-processor with variable frequencies by adding the frequency as parameter to
compute the ui such as: ∑

ui(fop) ≤
fop
fmax

8Knitro Solver web page: http://www.artelys.com/fr/optimization-tools/knitro

http://www.artelys.com/fr/optimization-tools/knitro

Chapter 5. allocating CPM tasks to heterogeneous platforms 77

This equation must be verified for all active cores:∑
τi∈T1

ui(fop) ≤
fop
fmax

· · · · · ·∑
τi∈Tma

g

ui(fop) ≤
fop
fmax

By doing the sum of left and right sides∑
τi∈T1

ui(fop)+ · · ·+
∑

τi∈Tma
g

ui(fop) ≤
fop
fmax

+ · · ·+ fop
fmax

Where∑
τi∈T1

ui(fop)+ · · ·+
∑

τi∈Tma
g

ui(fop) = Ug(fgop)

fop
fmax

+ · · ·+ fop
fmax

=
fgop
fgmax

ma
g

We call (fgop
fgmax

ma
g) the current strength (Sg) of group g:

Sg =
fgop
fgmax

ma
g . (5.17)

Given a set of threads that have been allocated on group g: we define as needed strength Ωg

of these threads in group g as the minimum necessary strength of the group for these threads to
be feasible.

Theorem 3. The needed strength per each group is bounded by the total baseline utilization of the thread
set (Ug(fgmax)) and by the maximum current strength that group g can provide (mg):

Ωg ∈ [min(Ug(fgmax),mg),max(Ug(fgmax),mg)] (5.18)

Proof. From Lemma 2, we have:

Ug(fgop) ≤
fgop
fgmax

ma
g

The operating frequency is less than the maximum frequency fop ≤ fmax and the number of
active cores is 1 ≤ ma

g ≤ mg. Obviously, Ug(fgmax) ≤ Ug(fgop), and the equation of Lemma (2)
becomes:

Ug(fgmax) ≤ Ug(fgop) ≤
fgop
fgmax

ma
g ≤ mg

Thus,
Ug(fgmax) ≤ Ωg ≤ mg

Our approach is “greedy”, because it increments the needed strength Ωg of groups at each
iteration until a feasible schedule is found, or the needed strength of all groups reachesmg. Our
approach, described in Algorithm (11), allocates the maximum possible number of threads to
one group at each iteration in three steps:

• Select the frequency for the current group by invoking Algorithm 5.

Chapter 5. allocating CPM tasks to heterogeneous platforms 78

Algorithm 4 Full algorithm

Input: T: TaskSet
for (g ∈ Gg) do

compute Ug

Sg = min{Ug, |Gg|}
while (not feasible) & (Sg <= Sgmax) do
Sg = Ωg

selectFrequencies(Sg)
feasible = allocate(T, A);
Ωg = Ωg + strengthIncValue

end while
if (task-queue = ∅) then

return true;
end if

end for
return false;

• Try to allocate the maximum number of threads to the current group by invoking Algo-
rithm 12. We check the schedulability of each core group using a parallel partitioning
heuristic using a schedulability test relying on dbf computation (see Section 5.3.4).

• If the needed strength Ωg is less then the maximum strength of the current group g and the
schedule of step 2 is not feasible, the current strength will be increased by strengthIncValue.

We now describe each step in more details.

5.3.3 Frequency selection

The goal of this step is to select the operating frequency of the current group and the number
of cores that can be turned off (i.e. set in deep power state). Our frequency selection algorithm
is simple: at first it assumes that all cores are active (ma

g = mg), thus the needed strength is
distributed equally on all cores (because all cores have the same operating frequency). Hence,
frequency is computed by inverting Equation (5.17). The resulting value may be less than the
least effective frequency of all threads. Thus, the computed frequency is set to the maximum
value between the minimal effective frequency and fgop. However such frequency may not be
available, so we approximate it with the next available mode (ceil-to-next function in Algorithm
5).

Since the frequency may be higher than expected due to the ceiling, the current strength
may had be increased. As a consequence, it is maybe possible to set some cores in deep power
state. The number of cores to be set in deep power state is computed as the difference between
the number of cores of the current group and the ratio of the increased strength and the first
input strength. Algorithm 5 describes the frequency selection, its complexity is O(1).

5.3.4 CP partitioning

We proceed now to task decomposition and thread allocation. The goal of this step is to select
one cut-point according to which the task is decomposed into a set of parallel threads and then,
allocate these threads. Algorithm 12 performs decomposition and allocation and it consists of
three steps:

1. selecting a task and a core,

2. computing excess-time,

3. selecting cut-points and assigning threads.

Chapter 5. allocating CPM tasks to heterogeneous platforms 79

Algorithm 5 Frequency Selection

Input: strengthSg
leastFreqg = minof(fgeff)
fgop = Sg

mg
fmax

if (fgop < leastFreqg) then
fgop = leastFreqg

end if
fgop = ceil-to-next(fgop)

set-deep-power-state for (mg −

⌊
f
g
op
mg

fgmax

inputSg

⌋
) cores

Algorithm 6 allocate

for (τ ∈ T) do
for (P ∈ Gg) do

evaluate excess-time
(Th1,Th2) = LookForCP(τ, excess-time) . cut-point selection
if Th1 != null then

allocate(Th1, P)
T = T + Th2

else
if last core group then

return false;
else
Tnext = Tnext + τ

end if
end if

end for
end for
return false;

First Step The algorithm uses a queue of tasks that contains the tasks that have not yet been
allocated. The queue is ordered according to some criteria (for example, decreasing utilization,
or rate monotonic, etc.). As we will show in Section 5.4, the results do not depend too much on
how the queue is ordered.

In the first step, we select the task at the head of the task queue, let it be τi, and the first core
of the current core group, let it be j. Tj defines the set of threads already allocated on core j.

Second step The second step consists in performing the schedulability analysis. This step is
very similar to the same step described in the previous chapter. However, a slight differences
exist and that is why we report the lemmas and theorems with the slight differences. The
goal of this step is to define the maximum portion of the execution time of task τi that can be
allocated on core j, such that the system remains feasible. The maximum execution time of task
τi corresponds to the single thread version of the task (since all execution times of the parallel
threads are less than the sequential version of the task). We start from the assumption that Tj
is feasible on core j, thus:

∀t ∈ [0− t∗], dbf(Tj , t) ≤ t (5.19)

Chapter 5. allocating CPM tasks to heterogeneous platforms 80

To be feasible on core j, the thread set Tj ∪ {Thi,1,1} must verify the following condition,
where Thi,1,1 corresponds to the single thread version of task τi:

∀t ∈ [0− t∗], dbf(Tj ∪ {Thi,1,1}, t) ≤ t (5.20)

Lemma 3. Let Tj be a set of threads feasible under EDF on core j, and Th be a periodic thread not
belonging to Tj . Then, ∃C′, 0 ≤ C′ ≤ CTh such that the following condition is always verified.

∀t ∈ [0− t∗], dbf(Tj , t) +

⌊
t+ Ti − Di

Ti

⌋
(CTh − C′) ≤ t (5.21)

Proof. If we select C′ = CTh the second term is zero, and since Tj is schedulable by hypothesis,
the lemma is verified.

Let us suppose that Tj ∪ {Thi,1,1} is not feasible on core j, for at least for one value of t
Condition (5.20) is not verified for t. Hence, we estimate the largest portion of execution time
of task τi that can be allocated on core j, by computing C′ as the minimum value such that
Condition (5.21) is verified.

Theorem 4. Let Tj be a set of threads feasible under EDF on core j, Th1 be a periodic thread not
belonging to Tj , and let us assume that Tj ∪ {Th1} is not feasible on core j.
Tj ∪ Th2 is feasible if Th2 has the same period and deadline as Th1 and an execution time less than

CTh1 − C′ where:

C′ = max
t∈{0···t∗}

 t− dbf(Tj ∪ {Th1}, t)⌊
t+Ti−Di

Ti

⌋
 (5.22)

Proof. It is sufficient to invert Equation (5.21).

In the rest of this work C′ is called excess-time and computed as Equation (5.22).

Third step Now that we have introduced the concept of excess-time, we use a simple heuristic
to select cut-points and assign threads. According to the value of the excess-time and the single
thread version of the task, only 3 cases need to be checked as in the previous chapter:

1. excess-time = 0, it means that the single thread version of the task and the thread-set
already allocated on core j is feasible. Thus, single thread version of the task is allocated
on the current core (the task is run in sequential way).

2. excess-time is equal to execution time of the single thread version of the task (excess-time =
Cgτ,1,1(f

g
op)), it means that the single thread version of the task is fully in excess on current

core j as in the previous chapter.Xe seek to allocate threads on the next core j + 1.

3. excess-time is greater than zero, and less than the execution time of single thread version
of the task (0 < excess-time < Cgτ,1,1(f

g
op)). The single thread version of the task is not

schedulable on current core j, but any thread(s) of the task that have the execution time
less than (Cgτ,1,1(f

g
op)− excess-time) can be allocated on the current core.

In the last step the allocation is different from the one in the previous chapter. We need to
decompose the task according to one possible γi,k ∈ Γi. We use a search function that returns
two lists, σ′i,k and σ′′i,k: the first one consists of threads that fit on the current core, whereas the
second one consists of threads that do not fit and need to be allocated elsewhere.

The threads in σ′′i,k are used to create a new sub-task. This task contains two cut-points: the
first cut-point contains a single thread whose execution time is the sum of the execution times
of all threads in σ′′i,k: the ct (respectively mt) of the all these threads are summed to form the
execution time of the single thread. The second cut-point of this new sub-task is simply σ′′i,k.

Chapter 5. allocating CPM tasks to heterogeneous platforms 81

Theorem 5. Let τi be a task that we want to allocate, and let γi,k be one of its cut-points. Let excess-time
be the excess time generated by the single thread version of τi, and let σ′i,k and σ′′i,k be the two thread list
obtained by our decomposition.

The decomposition is feasible if and only if Equation (5.23) is verified:

∃σ′′i,k ⊂ γi,k, σ′′i,k 6= ∅, γi,k 6= σ′′i,k∑
Thi,k,z∈σ′′i,k

Cgi,k,z(f
g
op) ≥ excess-time. (5.23)

Proof. σ′i,k can not be empty, otherwise no thread is allocated on the current core. Furthermore,
σ′i,k can not contain all threads in the cut-point, otherwise the single thread version of the task
is feasible on the current core. Therefore, the σ′i,k must fit on the current core.

For one task, numerous σ′i,k can verify Condition (5.23). We select the solution according to
two criteria:

1. first, we take the solution with the minimum overheard;

2. in case of tie, we select the solution with the maximum number of threads in σ′′i,k: in fact,
a cut-point that contains more threads has more flexibility to be decomposed again (if
needed).

Example Assume that allocation is done on a big core operating of the maximum frequency.
Assume the task cut-point list (Γ) described in the table below (Table 5.3). This task can be

cut-points Thread ctb mtb ctl mtl

γ1,1 Th1,1,1 8 3 27 7

γ1,2
Th1,2,1 5 2 16 5
Th1,2,2 5 2 16 5

γ1,3

Th1,3,1 2 1 8 3
Th1,3,2 2 1 8 3
Th1,3,3 5 1 17 3

TABLE 5.3: Example of cut-point selection : cut-point details

decomposed into several ways. In fact, the only cut-point that verifies Condition (5.23) is γ1,3,
and it can be decomposed in 4 different ways, according to the following table (Table 5.4): We

N γ1,k σ′ σ′′

1 γ1,3 Th1,3,2, Th1,3,3 Th1,3,1
2 γ1,3 Th1,3,1, Th1,3,3 Th1,3,2
3 γ1,3 Th1,3,1, Th1,3,2 Th1,3,3
4 γ1,3 Th1,3,3 Th1,3,1,Th1,3,2

TABLE 5.4: Example of cut-point selection: the selected results

choose the last one because all solutions have the same overhead, but the last one contains
more threads in σ′′.

The complexity of Algorithm 7 of cut-point selection is Θ(max(|Γi|)×max(|γi,k|)). However,
please notice that after the first decomposition the number of different cut points is reduced
to only two because threads must belong the same cut-point and Condition (5.23) must be
verified. Thus, the average complexity is reduced considerably after the first allocation.

Chapter 5. allocating CPM tasks to heterogeneous platforms 82

Algorithm 7 lookForCp

Input: excess-time,fop: Frequency,τi:Task, g: core group
Output:(List[ThreadS], List[ThreadS])
MoreThanTH: List[ThreadS] = Nil;
lm: List[ThreadS] = Nil;
Lout: List[ThreadCP] = Nil;
for (all γi,k ∈ Γi) do

cum= 0
l = Nil
for (all Th,i,k,z,∈γi,k) do

if (Cgi,k,z(fop) ≤ (ctgτ,1,1(fop)− excess-time)) then
lm = lm.add(Thg,i,kz)
lout = γi,k / lm
cum+ = Cgi,k,z(fop)
if (cum ≥ Kept) then

lm = lm.add(MoreThanTH);
lout = γi,k / lm;

else
MoreThanTH += Thg,i,kz

end if
end if

end for
end for
return (lm, lout)

Algorithm 11 combines all the heuristics described in this section. The complexity of this
algorithm is θ(nbrIt × n ×m × h ×

∑n
i=1max(| γi,k |)) where nbrIt is the number of iterations

from the lowest Ωg to the highest Ωg for each group g. This algorithm is referred as CPM in the
rest of this work.

5.4 Results and discussions

In order to evaluate our approach, we apply our heuristics on a large number of randomly
generated synthetic task sets. For the experiments, we modelled the big/LITTLE architecture
described in Section 5.2.1: our platform consists of 8 cores, divided into 2 groups of 4 cores each
(little and big).

5.4.1 Task Generation

In this chapter, we tested two scenarios. In the first, we use the UUniFast-discard algorithm. In
the second, we removed the latest constraint of UUniFast-discard (ui ≤ 1), because we allow
the single thread version of tasks to have an utilization greater than 1. The modified UUNIfast-
Discard is described in Algorithm 8.

The modified UUNIFAST-discard is used to generate n baseline utilization factors of the
single thread version on little cores operating at fgmax. To obtain realistic utilization, we generate
the baseline utilization of each task on the big core by multiplying the baseline utilization for
little cores by a random factor between [0.3, 0.4].

Goossens et al. in Goossens and Macq, 2001 have shown that the hyperperiod grows ex-
ponentially with the greatest value of period. They also proposed a method to bound the
hyperperiod and generate periods Ti. We use their method for generating task periods.

Therefore, we compute the computation time of the single thread for little and for big cores:

Chapter 5. allocating CPM tasks to heterogeneous platforms 83

Algorithm 8 Utilization generation

Input: N,U: integer
Output: u: Array[N]
nextSumU: Float = 0;
numberOftask :Integer = N;
while (numberOfTasks > 0) do

var sumU = U;
for (i = 0 to N − 1) do

nextSumU = (sumU × (random()1/(N−(i+1))))
u[i]=sumU-nextSumU
sumU=nextSumU

end for
u[nbTask-1]=sumU
numberOfTasks= numberOfTasks -1

end while
return u

• Cli,1,1(flmax) = uli × Ti

• Cbi,1,1(fbmax) = ubi × Ti

We define as P gi the average rate of central memory access of task τi on group g. Then, we
generate mt and ct for the single thread version as:

mtbi,1,1 =Cbi,1,1(fbmax)× P bi
ctbi,1,1(f

b
max) =Cbi,1,1(fbmax)−mtbi,1,1

mtli,1,1 =Cli,1,1(flmax)× P li
ctli,1,1(f

l
max) =Cli,1,1(flmax)−mtli,1,1

where P bi is generated between [Pmin, Pmax] and P li is generated between [P bi , Pmax]. This pa-
rameter does not change during run-time, however in reality it depends on the interference
from other active jobs.

Task τi has Ki cut-points, where Ki is generated randomly between 2 and 5. For each cut-
point γi,k, We generate between 2 and 8 threads.

We use again UUniFast to generate |γi,k| baseline utilization factors for the threads belong-
ing to cut-point γi,k on little cores.

Then we generate the baseline utilization for each thread on big cores by multiplying lit-
tle’s utilization by a random factor between 0.3 and 0.4. To take into account the overhead of
decomposition (due to synchronization barriers, scheduling, etc.), we inflate the utilization of
the thread to U ′i = Ui × (1 + cost | γi,k |), where cost is a constant that represent the overhead
in percentage. We fixed this overhead to cost = 0.05 per thread.

Finally, the deadline is generated in the interval [Pr×Ti, Ti] where Pr is randomly generated
between [0.75, 1]. The task set generation algorithm is described in Algorithm 10.

5.4.2 Simulations

Our algorithm has no direct competitors, in the sense that classic partitioning heuristics do not
take into account intra-task parallelism or task decomposition. Therefore, we have no choice
but to compare our heuristics to classic bin-packing heuristics, such as Best Fit (BF), Worst Fit
(WF) and First Fit (FF).

The BF, FF, WF were implemented as they are stated in the literature without any paral-
lelization features, and without suffering from any parallelization costs. The same frequency

Chapter 5. allocating CPM tasks to heterogeneous platforms 84

Algorithm 9 Heuristics

Input: T: TaskSet
for (g ∈ Gg) do

compute Ug

Sg = min{Ug, |Gg|}
while (not feasible) & (Sg <= Sgmax) do
Sg = nSg
selectFrequencies(Sg)
feasible = BF or WF or FF(T, A);
nSg = nSg + strengthIncValue

end while
if (task-queue = ∅) then

return true;
end if

end for
return false;

selection algorithm as the one for CPM is combined with BF, FF and WF such that they have
the ability to select cores frequencies, and power states as described in algorithm 9.

To be fair, we compare BF, WF, FF against our heuristic (CPM) on two different scenarios.
In the first scenario, we impose that the single thread version of each task must have a base-
line utilization on little cores inferior to 1. This scenario is advantageous for BF, WF and FF
because they allocate only the single thread version of each tasks, whereas CPM may need to
decompose the task into several threads, thus suffering from parallelization costs. In the sec-
ond scenario, we relax the constraint on utilization by allowing the single thread version of the
tasks to have a baseline utilization on little cores greater than 1. We expect that this scenario
will be advantageous to CPM compared to BF, WF and FF because the sequential execution is
not possible on little cores for tasks with density greater than 1.

For both scenario 1 and 2, we generated 1000 task set per each total baseline utilization and
total baseline utilization is varied from 0.5 to 16.

Chapter 5. allocating CPM tasks to heterogeneous platforms 85

Algorithm 10 TaskSetGeneration

Output: taskSet
ul:Array[Float]=UUnifastDiscard()/UUnifastDiscardModified()
ub:Array[Float]=ub × random(0.3, 0.4)
for (i = 0 to n− 1) do
Cbi,1,1(fbmax) = Ti × ubi
Cli,1,1(flmax) = Ti × uli
P b = random(Pmin, Pmax)
mtbi,1,1 = Cbi,1,1(fbmax)× P b

ctbi,1,1(f
b
max) = Cbi,1,1(fbmax)−mtbi,1,1

P l = random(P b, Pmax)
mtli,1,1 = Cli,1,1(flmax)× P l

ctli,1,1(f
l
max) = Cli,1,1(flmax)−mtli,1,1

Di = random(0.75, 1)× Ti
add the sequential thread to Γi
k=random(2, 5);
for (k = 1 to K) do

Z=random(2,m);
UZl = UUniFast(Z,1+ Cost × Z);
UZb = UZb × random(0.3, 0.4);
for (z = 0 to Z − 1) do

mtbi,k,z = mtbi,1,1 ×UZz;
ctbi,k,z(f

l
max) = ctbi,1,1(f

b
max)×UZz;

mtli,k,z = mtli,1,1 ×UZz;
ctli,k,z(f

l
max) = ctli,1,1(f

l
max)×UZz;

add Thread to CP
end for
add CP to Γi

end for
add Task to taskset

end for
return taskset;
random(a, b): is a function that generate a random number between a and b

Chapter 5. allocating CPM tasks to heterogeneous platforms 86

5.4.3 Scenario 1

In Figure 5.12, we plot the number of schedulable task sets as a function of the total baseline uti-
lization. For small total utilization (< 10), all BF, WF, FF, and our heuristic (CPM) can schedule
100 % of the task sets. However, when the total utilization is greater than 10, CPM outperforms
the classic heuristics. In fact, our heuristic always tries to allocate the maximum number of
threads per each core, by performing task decomposition.

11 12 13 14 15 16
0

20

40

60

80

100

120

Total utilization

%
of

sc
he

du
la

bl
e

ta
sk

se
ts

WF
BF
FF

CPM

FIGURE 5.12: The number of schedulable task sets

A similar effect can also be seen in Figure 5.13, where we show the average utilization per
little and big cores as a function of the total utilization. For little cores, our approach reaches
an average utilization very close to 1 which is greater than all other classical heuristics. Again,
this can be explained by the fact that the task decomposition feature of CPM that can split a
large task into several smaller parallel threads that can better fit on an already loaded core.

Even for big cores, the average utilization is close to 1 and higher than the one obtained with
BF, WF, FF, which may seem to be contradictory with what we just observed for little cores. In
fact, CPM selects smaller frequencies than all other classic heuristics as shown in Figures 5.14a,
5.14b. Even when BF, WF and FF allocate the same threads as CPM on the big cores, the latter
is able to set lower frequencies (so the average utilization is higher).

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

pe
r

a
lit

tl
e

co
re

BF WF FF CPM

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Total utilization

A
ve

ra
ge

U
ti

liz
at

io
n

pe
r

a
bi

g
co

re

BF WF FF CPM

FIGURE 5.13: Average utilization per each core group

Figure 5.14a reports the maximum, the minimum and the average selected frequency for
little cores as a function of total utilization using the classic heuristics and CPM. We notice that

Chapter 5. allocating CPM tasks to heterogeneous platforms 87

for little cores, CPM sets the frequency of little cores slightly higher than the other heuristics,
because CPM favours little cores over big cores.

0 2 4 6 8 10 12 14

0.6

0.8

1

1.2

1.4

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)B

F

0 2 4 6 8 10 12 14

0.6

0.8

1

1.2

1.4

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)W

F

0 2 4 6 8 10 12 14

0.6

0.8

1

1.2

1.4

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)F

F

0 2 4 6 8 10 12 14

0.6

0.8

1

1.2

1.4

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)C

PM

(A) Max, Min, Avg Selected Frequency on Little
cores

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)B

F
0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)W

F

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)F

F

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

Total utilisation

Fr
eq

ue
nc

y
(G

hz
)C

PM

(B) Max, Min, Avg Selected Frequency on Big
cores

FIGURE 5.14: Scenario 1: Selected Frequency for big and little cores

For big cores, CPM sets the average frequency lower than any other heuristics, as shown
Figure 5.14b. In general, this allows us to reduce energy consumption on big cores (as can
be seen in Figure 5.15) thanks to the fact that CPM allocates a smaller number of threads on
big cores than all other heuristics. The distance between the maximum and the minimum
frequency found during the experiments is the smallest between all heuristics. This means
that: 1) our algorithm is quite effective and gives more stable results; 2) the practical average
complexity of CPM is lower because function allocate in Algorithm 11 is invoked less times.

In Figure 5.15, we plot the energy consumption of little and big cores as a function of the to-
tal utilization. For little cores, CPM consumes more energy than bin-packing heuristics. How-
ever, this energy is recovered on big cores, where CPM consumes less power than the best

Chapter 5. allocating CPM tasks to heterogeneous platforms 88

4 6 8 10 12
0

1

2

3

4
·10−2

Total utilization

En
er

gy
of

lit
tl

e
co

re
s

(W
)

BF
WF
FF

CPM

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Total utilization

En
er

gy
of

bi
g

co
re

s
(W

)

BF
WF
FF

CPM

FIGURE 5.15: Energy consumption for big and little cores

bin-packing heuristics BF.

Chapter 5. allocating CPM tasks to heterogeneous platforms 89

5.4.4 Scenario 2

In this scenario, the baseline utilization of the single thread version of a task executing on the
little cores may be greater than 1.

Figure 5.16 reports the number of schedulable task sets as a function of total utilization.
Since the single thread version of a task may have baseline utilization greater than 1, BF, WF
and FF are outperformed by CPM, which keeps the schedulability rate higher.

4 6 8 10 12
0

20

40

60

80

100

120

Total utilization

N
um

be
r

of
sc

he
du

la
bl

e
ta

sk
se

ts

WF
BF
FF

CPM

FIGURE 5.16: The number of schedulable task sets

We do not discuss the rest of the results for Scenario 2: the statistical comparison is mean-
ingless because CPM outperform all other heuristics.

5.5 Conclusion

In this chapter, we first presented a general methodology for modelling the energy consump-
tion of periodic tasks on heterogeneous multicore architectures such as the ARM big/LITTLE.
We discovered that different tasks have different power dissipation profiles and we proposed
an execution time and power consumption model which take task characteristics into account.

Then we proposed an heuristic for parallelizing and allocating threads on heterogeneous
multicore platforms, and setting the frequency and the power state of the cores so to reduce the
total energy consumption without missing deadlines. Our methodology is effective when com-
pared to classical bin-packing heuristic algorithms. With our work we show the advantages of
parallelization from the point of view of the energy consumption. Our model is realistic, as
it considers moldable tasks that easily allow specifying parallel decomposition in the style of
OpenMP, it does not require specific scheduling synchronization among threads, and can be
applied to existing operating systems as Linux. To deal with the dynamic task behavior, in the
next chapter we extend the di-graph task model proposed Stigge et al., 2011.

90

Chapter 6

Modeling parallel tasks with di-graphs

“ Si tu ne profites pas du temps que tu as de libre,
tu n’en profiterais pas davantage quand ce temps serait

dix fois plus considrable. ”

Alexandra David-Neel

Contents
6.1 Introduction . 91
6.2 Some related work . 91
6.3 System Model . 92

6.3.1 Architecture model . 92
6.3.2 Task Model . 92

6.4 Parallel applications . 94
6.4.1 MPEG encoding/decoding . 94
6.4.2 Array-OL . 94

6.5 Schedulability analysis . 98
6.5.1 Decomposition . 98
6.5.2 Analysis . 99

6.6 Heuristics . 102
6.6.1 Task decomposition & thread allocation 102

6.7 Results and Discussions . 103
6.7.1 Task Generation . 104
6.7.2 Simulations . 106
6.7.3 Scenario 1 . 106
6.7.4 Scenario 2 . 108

6.8 Conclusion . 109

Chapter 6. Parallel Di-graph model 91

6.1 Introduction

Many real-time task models have been proposed in the past to deal with the every increas-
ing complexity of real-time software. For example, the classical Liu and Layland model can
not express the dynamic behavior of tasks whose processing depends on the input data. The
multiframe model has been proposed by Mok and Chen, 1996 as a first simple extension to
deal with multimedia tasks, where the behavior of each instance of a periodic task depends on
input and follows itself a periodic cycle. Later, Baruah, 2010 proposed the GMF (Generalized
MultiFrame model) to express alternative processing described by a Directed Acyclic Graph
(DAG). Lately, Stigge et al., 2011 proposed the di-graph model that further extends the GMF
model by allowing to express the alternative behaviors with a finite automaton (we summarize
the di-graph model in the next section).

However, the di-graph model does not express the potential parallelism that could exist in
such tasks. In this chapter, we present a generalization of the di-graph model to effectively deal
with parallel tasks. In particular, we allow a task to express a dynamic level of parallelism by
using a special form of di-graph.

Such extension is useful in many parallel application that exhibit dynamic behavior and
some form of real-time constraints. For example, in the MTI (Moving Target Indication) radar
application, airborne radars scan ground surfaces and air looking for targets. Since precise
detection is a time consuming task, initially, the area is quickly scanned for potential target
objects. When the system detects a potential target, the processing focuses on the concerned
area, and more effective detection algorithms are used only on a subset of data. This kind of
incremental processing is also found in many other situations, e.g. communication systems,
satellite navigation systems, or active sonar detection systems, in general in any STAP (Space-
Time Adaptive Processing stated by Ward, 1994; Guerci, 2014) processing.

MPEG Video encoding is another example of tasks that could be modeled by our model.
A MPEG video is a compound set of frames of different types (I-Frame, P-Frame, B-Frame).
The I-Frame (Intra-coded picture) is a fully specified picture compressed with JPEG. P-Frame
(Predicted picture) and B-Frame (Bi-predictive picture) hold only part of the image informa-
tion, so they occupy less space to be stored than an I-frame. The encoder produces a (mostly)
periodic sequence of frames: for example, a typical sequence consists of 12 frames of type
IBBPBBPBBPBBI. However, the sequence may change dynamically. Notice that for video de-
coding, different processing is applied according to the frame type.

In this chapter we first propose the Parallel Di-Graph model, that extends the di-graph pro-
posed by Stigge et al., 2011 to parallel tasks. We show also how Array-OL, proposed by Glitia,
Dumont, and Boulet, 2010, an existing specification language dedicated to STAP applications,
can be used to specify a parallel di-graph.

Then, we address the problem of allocating a set of parallel tasks, each one modeled by a
parallel digraph, onto a multicore architecture consisting of a set of identical cores, in a way
that respects all timing constraints and select the minimum possible frequency. We propose
a sufficient feasibility test for partitioned scheduling of a set of di-graph tasks on an identical
core platform. Based on this test, we also propose a set of heuristics for parallelization and
partitioning of a set of di-graph tasks. Our heuristics allow to select the operating frequency
of all cores to study the effectiveness of task models against each other at variable frequencies.
Our frequency selection algorithm can be used to reduce the energy consumption. A set of syn-
thetic experiments are presented that emphasize the effectiveness of our model against other
less expressive models proposed in the literature.

6.2 Some related work

In this section, we report some related works to non-parallel real time task models. The parallel
models proposed in the literature of real-time systems extends the well-known Liu and Layland

Chapter 6. Parallel Di-graph model 92

model. Thus, these models have basically a fixed period and execution time. However, tasks
like MPEG encoding or MTI can not be effectively expressed by these models. They can only
express the worst case of different instances as the worst case execution, however these tasks
are compound of different type of processings at different instances. Researchers in real-time
systems (not for parallel tasks) have proposed more expressive models like the multiframe
model (Mok and Chen, 1996). In this model, a task is expressed by a repetitive sequence
of instances with different execution time for each. Baruah, 2010 generalized this model to
express the dependency between instances like a condition on an external event. In the model
of Baruah a task is expressed by a graph where connected nodes express the appearances order
of instances of a task. Each graph has an entry and exits. Stigge et al., 2011 extended the model
in Baruah, 2010 and expressed a task by a digraph. We extended the model of Stigge et al., 2011
to parallel tasks. We refer to the model proposed by Stigge et al., 2011 by Stigge model, and Liu
and Layland model as the periodic model.

6.3 System Model

6.3.1 Architecture model

We consider a set of m identical cores. Cores have the same micro-architecture and share the
same frequency characteristics (operating frequency fop, maximum frequency fmax and min-
imum frequency fmin). ODROID C21 is an example of a such computing platform. It is a
compound set of 4 ARM Cortex-A53 operating on the same frequency. Each core has 2 × 32Kb
of Instructions/Data L1-cache and all cores share 512Kb of L2-cache and an external SDRAM-
DDR3 of size of 2Gb. In this work, we allow cores to change the frequency in order to compare
the schedulability rates at frequency variation, and the effectiveness of scheduling algorithms
against each other at variable frequencies. This work can be easily extended to reduce the
energy consumption.

6.3.2 Task Model

Each task τi in the system is characterized by a tuple τi = (Di,Ti,G(Vi,Ei)) where Di is the task
relative deadline; Ti is the task period, i.e. the time between the releases of two consecutive
instances of τi, as we consider constrained deadline tasks, Di ≤ Ti; G(Vi,Ei) is a di-graph where
Vi is the set of vertices, and Ei is the set of edges. Each vertex (vi,j ∈ Vi) is one possible parallel
decomposition of task τi into a set of parallel threads (vi,j = {Thi,j,1, · · · ,Thi,j,z}). We denote
by Thi,j,z thread z of vertex vi,j of task τi, and by |vi,j | the number of threads of vertex vi,j .

The execution time of thread Thi,j,z is noted Cth
i,k,z(f). The execution time of vertex vi,j is

defined as the sum of the execution times of all of its threads.

Cv
i,j(fop) =

vi,j∑
fz=0

Cth
i,j,z(fop)

The execution time of a vertex corresponds to the execution time of the sequential version of
the vertex when all threads are allocated on the same core.

The set of edges expresses the precedence order between instances of task τi: e(vi,s, vi,d) ∈ Ei
expresses the constraint that instance vi,d may be released only after Ti time units from the
release of instance vi,s (see Figure 6.1). A vertex with two or more outgoing edges means that
one of the destination vertex will be selected according some internal condition in the code (for
example the value of the input data). Since we do not model directly the code behavior, in our
model the choice of outgoing edge is non-deterministic. An edge that goes from one vertex to
the same vertex is called a self-edge.

1ODROID CU2: http://www.hardkernel.com/main/products/prdt_info.php?g_code=
G145457216438&tab_idx=2

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438&tab_idx=2

Chapter 6. Parallel Di-graph model 93

vi,1

vi,2 vi,3

vi,4

FIGURE 6.1: Example of parallel di-graph task.

We consider that the execution time of a thread scales in a semi-linear way with the fre-
quency as defined by Bini, Buttazzo, and Lipari, 2005.

Cth =
ct · fmax

fop
+ mt (6.1)

where ct is the part of the execution time of the thread that depends on the operating frequency
and mt is the part that does not depend on the operating frequency (e.g. central memory
access). We define the execution time parameters (ct,mt) in the same way as proposed by
Zahaf et al., 2016a and Zahaf et al., 2016b

Example Let τi be a task τi = (Di = 8,Ti = 10,G(Vi,Ei)). G(Vi,Ei) is shown in Figure
6.1 and the details of the execution times of threads of every vertex are reported in the table
below (Table 6.1): In this example, we assume that the given execution times correspond to

Vertex Thread List
vi,1 2,2,5
vi,2 4,3
vi,3 6
vi,4 2,2,4

TABLE 6.1: An example of a task modeled by a parallel di-graph

the execution time at the maximum frequency. When the task is in vi,2, it is decomposed into
two parallel threads (Thi,2,1,Thi,2,2) with an execution time that equals to 4 and 3 units of time,
respectively, and must finish the execution within 8 time units. After 10 time units (period), the
task moves to one between vi,1 or vi,4.

If it goes to vi,1, it will be decomposed into 3 parallel threads, otherwise it goes to vi,4, and it
will be decomposed into 3 parallel threads. In this second case, all future instances of the task
τi will be run according to vi,4 because the only outgoing edge from this vertex is a self-edge.

We highlight the fact that we allow two vertices to have the same level of parallelism with
different combinations of execution times. We allow also two vertices to have the same level of
parallelism and the same amounts of execution time to express different states of the task.

Chapter 6. Parallel Di-graph model 94

6.4 Parallel applications

In this section, we show how we can model two different applications, an MPEG decoder and
a STAP application, using our parallel di-graph model.

6.4.1 MPEG encoding/decoding

MPEG is a standard for compression of video and audio. An example of MPEG encoding/de-
coding (with a frame rate of 25 FPS) can be expressed with our model as task τMPEG = (DMPEG =
40ms,TMPEG = 40ms,G(VMPEG,EMPEG,)).

The corresponding graph G(VMPEG,EMPEG,) is described in Figure 6.2. The vertex I ex-
presses the I-Frame compression/decompression. This operation is basically JPEG-encoding
which is based on DCT 2. In the I-vertex, the picture is decomposed into several blocks of size
8 × 8 and then DCT transformations are applied. Here, we assume that encoding I-Frames is
done with 4 threads. The P-vertex represents the P-Frame encoding/decoding. A P-Frame is
encoded based on its difference on a previous frame. Thus, the frame is divided into macro-
blocks and comparing each of the macro-blocks with a corresponding block. The search for
correspondence on macro-blocks can be parallelized. The number of parallel threads can be
defined according to the size of macro-block and the size of frames. We set the number of
threads of this vertex to 2. B-Frame encoding uses the same algorithm as with the P-Frames
but it considers the previous and the next frame. Again this can be parallelized, and we as-
sume that it will be done with 3 threads. Notice here that the task behavior depends basically
on input data and the level of parallelism may change at run time.

I B

P

FIGURE 6.2: A di-graph modeling MPEG encoding

6.4.2 Array-OL

The Array-OL language proposed by Boulet, 2007 is a high-level specification language ded-
icated to multidimensional intensive signal processing applications. It allows to specify both
the task parallelism and the data parallelism of these applications by focusing on their complex
multidimensional data access patterns. Array-OL expresses all the potential parallelism in in-
tensive signal processing application and does not express any implementation specification.
Using some correct-by-construction refactorings of Array-OL specifications as those proposed
by Glitia and Boulet, 2008; Glitia et al., 2011, can transform the potential parallelism into ef-
fective parallelism with a control on the grain of this effective parallelism. Applying different
refactorings give different versions of the application with different parallel execution charac-
teristics.

2Discrete Cosine Transformation

Chapter 6. Parallel Di-graph model 95

The Array-OL language deals with only one type of data structures: multidimensional ar-
rays. The idea of Array-OL is to express data access by the way of regular tilings of the input
and output arrays of data-parallel tasks. The number of repetitions of a data-parallel task im-
plies the number of tiles of each input and output array. The tiles are defined as regularly
spaced multidimensional sub-arrays, they all have the same shape (for a given array) and they
are regularly spaced. Thus the tiling can be expressed as an affine relation. In addition to
this affine relation, the indices of the elements of the tiles in the array are considered mod-
ulo the shape of the array. This construction (the so-called tilers) allows to express all common
data access patterns of multidimensional signal processing applications including sub- or over-
samplings, and cyclic accesses. The introduction of delays in Array-OL as proposed by Glitia,
Dumont, and Boulet, 2010 completes the toolbox of this language.

Array-OL has been included in the MARTE UML profile for Modeling and Analysis of
Real-Time Embedded Systems (the MARTE specifications can be found in Object Management
Group, 2009) to express data parallel tasks and repetitive hardware. The refactorings are avail-
able in the Gaspard2 framework Gamati et al., 2011.

A data-parallel recurrent task is specified in ArrayOL by repetitions. Each repetition is the
processing of a sub-array of the input array to produce a sub-output-array. The basic hypoth-
esis is that all the repetitions of a recurrent task are independent and that input sub-arrays
processed by different instances of the same recurrent task have the same shape (size), respec-
tively the same hypothesis is assumed for the output data. In order to give all the information
needed to create sub-arrays (input and output), a tiler is associated to both input and output
arrays. A tiler is able to build the different sub-arrays from an input array, or to store them in
an output array. It describes the coordinates of the elements of the tiles from the coordinates of
the elements of the patterns. It contains the following information:

• F : a fitting matrix.

• o: the origin of the reference pattern (for the reference repetition).

• P : a paving matrix.

From the tiler, all sub-arrays can extracted by enumerating its other elements relatively
to this reference element, the reference element for each sub array is computed by using the
paving operating by the mean of paving matrix. The fitting matrix is used to compute the
other elements of a sub-array. The coordinates of the elements of the pattern are built as the
sum of the coordinates of the reference element and a linear combination of the fitting and an
enumeration of the possible vectors. The set of possible vectors is bounded by the sub-array
size.

Figure 6.3 is an example of a data parallel task modeled with Array OL. The horizontal filter
converts a video stream from size (1920,1080) to (720,1080). As you can notice, the input tiler
allows to create input sub-arrays and an output tiler that allows to create output sub-arrays.
The shapes of the arrays and patterns are noted on the ports. The repetition space indicating
the number of repetitions to be done on each instance of the recurrent task are defined as an
multidimensional array. Each dimension of this repetition space can be seen as a parallel loop
and the shape of the repetition space gives the bounds of the loop indices of the nested parallel
loops. in Figure 6.3, the repetition space is specified on the ports for the input and output.

Array-OL implementations can be easily expressed by our model. To express the data par-
allelism, we can set the period and the deadline as the time between two arrivals of data (data
refreshing). On each vertex of our model, we can map different grains of parallelism. Each
vertex can be connected to all other vertices and to itself in order to allow passing from any
parallelism grain to another without any restrictions. Hence, we express in such way malleable
parallel tasks in the same logic as those proposed in Paolillo et al., 2014. We can also express the
task parallelism by adding threads of different processings to the same vertex. Array-OL can
express also a precedence order between different processings, we express that by adding an
edge between two different processings.

Chapter 6. Parallel Di-graph model 96

Horizontal Filter

H. Filter

(240, 1080,∞)

(13) (3)

F

1
0
0



O

1
0
0



P

3 0 0
0 1 0
0 0 1



F

1
0
0



O

1
0
0



P

8 0 0
0 1 0
0 0 1



(1920, 1080,∞) (720, 1080,∞)

FIGURE 6.3: An Example of video filter with Array OL

Input signal

Output results

Step 1:

1st detection

Step 2:

2nd detection
velocity computation

Step 3:

3nd detection
accurate velocity,
& position prediction

4nd detection
Same as 3

& More precision

5nd detection
Target out
of prediction

New detection

FIGURE 6.4: The radar tracking applications with Array-OL

Chapter 6. Parallel Di-graph model 97

A typical application that can be modeled by Array-OL implemented by our model is the
automatic radar trackers which operates as follows:

1. Target is detected as the received echo exceeds a threshold. There is no information about
its velocity.

2. Target is detected again but within the uncertainty boundary. A crude velocity estimate
is made and the position where the target will appear next is predicted.

3. The target appears and tracking filters estimates of position and velocity improve, and
the next sample prediction is made with a smaller position uncertainty

4. As with (3)

5. The actual target position falls outside the position uncertainty boundary because it has
accelerated for example, and track is lost.

6. A new target is detected with unknown velocity.

vi,1

vi,2 vi,3

vi,4vi,5vi,6

vi,7

FIGURE 6.5: Radar tracking application with our model

The example of automatic radar trackers can be expressed by Array-OL as in Figure 6.4
(tilers are not specified). Each step of the processing is described by a block, and each block
communicates its results with the next block by the edges between blocks and all blocks receive
the data from the input stream and may require the results of another processing. Our model
can easily express an implementation of the Array-OL model of Figure 6.4 by setting period
and deadline to the data refreshing time. Each step of the automatic radar tracking algorithm
is a different processing, and it is expressed by a vertex in our model. We may be able to add
vertices to express different parallel configurations (different grains of parallelism) for each
block of the Array-OL model. In Figure 6.5, we make the choice to allow only the first step
to have two parallel configurations, thus vMTI,1, vMTI,2 expresses the first step, the two vertices
are connected to each other and each one has a self-edge in order to have the ability to choose
to stay on its configuration or change it to the other parallel configuration with a different
parallelism grain. The j step after the first one is presented with vertices vMTI,j+1. Only the
finest parallelism grain is presented for these vertices in order to allow decomposing as much
as it is possible any block of processing and in order to have a simple example of the task graph.

Our work can easily integrate the synchronization model proposed by Morteza Mohaqeqi
and Yi, 2016 to add synchronization between threads.

We claim that parallel real-time task models proposed in the literature (as those proposed
by Liu and Layland, 1973b, by Mok and Chen, 1996, by Baruah, 2010, and by Stigge et al., 2011)
are not expressive enough to properly express this kind of applications.

Chapter 6. Parallel Di-graph model 98

6.5 Schedulability analysis

In this work, we consider partitioned Earliest Deadline First (EDF) scheduling. Each core has its
own single-processor EDF scheduler and a separate ready-queue. We assume that all threads
are independent of each other, whereas threads belonging to the same vertex and running on
different cores need to synchronize their activation times and deadlines.

Definition 3. We denote by πpi (t) the pth sequence of instances that can be generated by task τi in any
interval of time of length t. We denote by Πi(t) the set of all paths that can be generated of any interval
of time of length t.

As an example, in the following table (Table 6.2) we report the set Πi(30) for the task of
Figure 6.1:

p Πi(30)

π1i (30) (vi,1, vi,2, vi,4)

π2i (30) (vi,1, vi,2, vi,1)

π3i (30) (vi,1, vi,3, vi,3)

π4i (30) (vi,2, vi,4, vi,4)

π5i (30) (vi,2, vi,1, vi,3)

π6i (30) (vi,2, vi,1, vi,2)

π7i (30) (vi,3, vi,3, vi,3)

π8i (30) (vi,4, vi,4, vi,4)

TABLE 6.2: An example of a path set

6.5.1 Decomposition

Definition 4. Let τi be a task. τ ′i , τ
′′
i are two tasks with the same period and deadline as τi such τ ′i =

(Di,Ti,G(V′i,E
′
i)),τ ′′i = (Di,Ti,G(V′′i ,E

′′
i)). τ ′i , τ

′′
i are decomposition of τi if and only if :

∀(i, j) ∈ N2, v′i,j ∪ v′′i,j = vi,j

v′i,j ∩ v′′i,j = ∅
E′i = E′′i = Ei

Decomp (1) Decomp (2)
vertex content subtask1 subtask 2 subtask1 subtask 2
vi,1 2,2,5 2 2,5 2,2 5
vi,2 4,3 4,3 ∅ 3 4
vi,3 6 ∅ 6 ∅ 6
vi,4 2,2,4 2,4 2 2 2,4

TABLE 6.3: The decomposition according to [val] = 6 of task of Figure 6.1

Example Let τi be a task, task graph of τi is described in Figure 6.1. Table 6.3 shows also two
possible decompositions of this task decomp(1) and decomp(2). decomp(1) is a decomposition
that verifies the Definition 4. Notice that each thread belong to only one sub task, and both
sub-tasks have the same edge’s set.
decomp(2) shows another decomposition. In this decomposition, we split a task according to a
certain positive value, let it be [val], in such way the execution time of every vertex in one of
the two sub-task is equal or less than [val]. The second sub-task contains the threads that are

Chapter 6. Parallel Di-graph model 99

not in the first sub task (the threads that if they are put in the first sub task, they will procreate
the break of the constraint that every vertex must have an execution time is equal or less than
[val]). Notice that every vertices in the sub task in the right on decomp(2) have an execution time
less or equal to [val] = 6. We will show further the importance of this kind of decompositions.

6.5.2 Analysis

Path Demand Function

The path demand function pdf(πpi (t), t) denotes the cumulative execution requirement that can
be generated by path πpi (t) over a time interval of length t. Let ω be an integer that denotes the
ωth vertex in path πpi (t) and Cω

πp
i (t)

denotes the execution time of this vertex.
pdf(πpi (t), t) can be computed as follows:

pdf(πpi (t), t) =

1+
⌊
t−Di

Ti

⌋∑
ω=0

Cωπp
i (t)

(6.2)

Task Demand bound Function

The demand bound function of task τi is the maximum path demand function of any time
interval of length t, it is denoted by tdbf(τi, t), and it is computed as:

tdbf(τi, t) = max {pdf(πpi (t), t),∀π
p
i (t) ∈ Πi(t)} (6.3)

The demand bound function of a set of tasks Tk is the sum of the dbf of all its tasks:

dbf(Tk, t) =
∑
τi∈Tk

tdbf(τi, t) (6.4)

Theorem 6. Task set Tk is feasible on a uniprocessor if and only if the following condition is verified for
all values of t:

∀t ≤ t∗, dbf(Tk, t) ≤ t,∀t ∈ [0, h] (6.5)

Proof. Let assume that all the threads of the same vertice are allocated on the same core, thus
they will have the same priority, and may run as one single task. Thus, the proof of feasibility
can be done in a similar way as in the previous work e.g as in the one proposed of Baruah, 2010
where the proof was done for uniprocessor architectures. As the tasks have only one period, it
is sufficient to check the schedulability only on the interval of length from 0 to h, where h is the
least common multiple of all periods.

The feasibility test of Theorem 6 concerns the uniprocessor architectures. In this work, we
address the problem of allocation of a set of tasks to a set of identical cores by partitioning.
Thus, the problem is simplified to a set of m uniprocessor allocation problem. Hence, the
schedulability is checked at the moment of allocation of a task to a core for the task with the
tasks already allocated to that core. In contrast with the schedulability analysis done for no
parallel systems, if the system is not feasible on a core, we do not seek to allocate the whole
task to another core, but we check if it is possible to allocate only a part of the task on the
current core.

Our allocation algorithm uses an ordered task queue and an architecture compound of m
identical cores. At each iteration, it selects the task in the head of the task queue let it be τi, and
the highest loaded processor first in the logic of Best Fit bin-packing heuristic, let it be k. Our
approach checks the feasibility for the task set already allocated on core k let it be Tk, with task
τi by checking:

∀t ≤ h, dbf(Tk ∪ {τi}, t) ≤ t (6.6)

Chapter 6. Parallel Di-graph model 100

If condition (6.6) is verified, task set Tk ∪ {τi} is feasible on core k. if Condition (6.6) is not
verified, task set Tk ∪ {τi} is not feasible on core k but we may be able to allocate a part of task
τi on the current core by decomposing the execution of the task into two sub-tasks.

Checking the system feasibility comes to check the feasibility of all possible decompositions
of all tasks on all cores for all possible operating frequencies. The complexity of an exact feasi-
bility test is high and time consuming. In this section, we will show how to reduce the number
of decompositions to be checked and propose a heuristic for threads allocation.

Definition 5. Let τi, τ ′i be two tasks. τi = τ ′i if and only if they have the same edges, sames vertices,
and the same threads.

Lemma 4. Let Tk be a feasible task set and τi a task that does not belong to Tk. and Tk ∪ {τi} is not
feasible. ∃τ ′i and τ ′′i as a decomposition of τi:

τ ′i = (Di,Ti,G(V′i,Ei)),τ ′′i = (Di,Ti,G(V′′i ,Ei)) and :
Tk ∪ {τ ′i} is feasible under EDF.

Proof. We need just to prove that at least one possible decomposition exists.
Let assume τ ′′i = τi, this imply :

∀i, j, z, Cth′
i,j,z = 0

because all vertices of τ ′i are empty thus:

∀t, tdbf(τ ′i , t) = 0

dbf(Tk ∪ {τ ′i}, t) = dbf(Tk, t) + tdbf(τi, t) = dbf(Tk, t)

as Tk is feasible, we have
dbf(Tk ∪ {τ ′i}, t) ≤ t (6.7)

Thus Lemma 4 is verified.

Let Tk be a feasible task set and τi a task that does not belong to Tk. If Tk ∪ {τi} is not
feasible, task τi can be decomposed in several decompositions that may verify Lemma 4. Let
|Si| denote the maximum number of thread in any vertex of Vi, and |Vi| the number of vertices
of task τi. The number of possible decompositions is

#decompositions = |Vi| · (1C|Si| +
2C|Si| + · · ·+

|Si|−1C|Si| + 1)

Where pC|Si| denote the combination of p threads among the maximal number of threads
per vertex |Si|. Notice that the number of decomposition is huge and checking all these possible
decomposition for all task on all cores can easily cause a combinatorial explosion. Thus, we
propose a method that allows extracting only feasible decompositions (See Theorem 7).

Theorem 7. Let Tk be a feasible task set, τi is a task that does not belong to Tk and Tk ∪ {τi} is not
feasible.
∃α ∈ R and ∃τ ′i , τ ′′i as a decomposition (τ ′i = (Di,Ti,G(V′i,E

′
i))) of task τi where :

∀v′i,j ∈ V′i, C
v′,
i,j(fop) ≤ α (6.8)

such Tk ∪ {τ ′′i } is feasible and

α = max
t∈[0,h]

 t− dbf(Tk, t)−
⌊
t+Ti−Di

Ti

⌋
·max{Cv

i,j(fop)}⌊
t+Ti−Di

Ti

⌋
 (6.9)

Chapter 6. Parallel Di-graph model 101

Proof. Let Tk be a feasible task set, already allocated on core k, and τi = (Di,Ti,G(Vi,Ei)) a task
that does not belong to Tk. {τi} ∪ Tk is not feasible.

Let τtmp = (Dtmp,Ttmp,G(Vtmp,Etmp)) be a task such as Dtmp = Di and Ttmp = Ti. Task τtmp
contains only one vertex, with one threads which has an execution time that equals:

Cv
tmp,1(fop) = max{Cv

i,j(fop),∀j}

The only vertex have a self edges.
Notice that τtmp is the worst case version of the task τi. The dbf of task τtmp can be computed

as in Baruah, Rosier, and Howell, 1990 by :

tdbf(τtmp, t) =

⌊
t+ Ttmp − Dtmp

Ttmp

⌋
· Cv

tmp,j(fop) (6.10)

Obviously, τtmp generate more processor demand than τi, hence :
tdbf(τi, t) ≤ tdbf(τtmp, t), ∀t

Thus, the maximum portion of the execution time of task τtmp that can be allocated on core
k, such that the system {τtmp} ∪ Tk remains feasible is equal or greater than the maximum
portion of the execution time of task τi that can be allocated on core k such the system {τi}∪Tk
(only the maintained portions) is feasible. We denote this portion as α.

Thus, if we are able to define α for τtmp we are surely safe for the same α for τi.
To abbreviate the equations, and since that Dtmp = Di and Ttmp = Ti, we use Ti and Di

instead of those of task τtmp.

dbf({τtmp} ∪ Tk, t) = dbf(Tk, t) + tdbf(τtmp, t)

= dbf(Tk, t) +

⌊
t+ Ti − Di

Ti

⌋
· Cv

tmp,j(fop) (6.11)

Here, we assume that for some values of t, dbf({τtmp} ∪ Tk, t) is greater than t because we
assumed that the system is not feasible. Let Cv

tmp,j(fop) = α+ β where β refers to the execution
time that completes the excess α to achieve all the task τtmp execution time. α is than the
execution time that refers to the excess and β to the portion of time that could be allocated on
core k. Thus, we combine β and α with Equation (6.11).

dbf({τtmp} ∪ Tk, t) = dbf(Tk, t) +

⌊
t+ Ti − Di

Ti

⌋
(α+ β)

(6.12)

To be schedulable, we need only to keep the β execution time of task τtmp, thus β =
Cv
tmp,j(fop) − α. In order to reduce the slack time, and increase the processor utilization, we

consider the feasibility at extreme case, thus we consider : dbf({τtmp} ∪ Tk, t) = t thus, we have
:

t = dbf(Tk, t) +

⌊
t+ Ti − Di

Ti

⌋
· (Cv

tmp,j(fop)− α) (6.13)

α =
t− dbf(Tk, t)−

⌊
t+Ti−Di

Ti

⌋
· Cv

tmp,j(fop)⌊
t+Ti−Di

Ti

⌋ (6.14)

Chapter 6. Parallel Di-graph model 102

Since for several values of t we can have different values of α, we need to keep only the maxi-
mum excess max{α,∀ t} to cover all other excess points, thus :

ε = max
t∈[0,h]

 t− dbf(Tk, t)−
⌊
t+Ti−Di

Ti

⌋
· Cv

tmp,j(fop)⌊
t+Ti−Di

Ti

⌋
 (6.15)

Thus, it is necessary to compute α and choose one decomposition of those that verify The-
orem 7.

6.6 Heuristics

We propose a greedy algorithm for selecting the frequencies, decompose the task , and allocat-
ing the threads on the different cores.

The frequency selection algorithm is simple. It starts from the lowest possible frequency
and increase it mode by mode at each iteration till finding a feasible schedule or the maximum
frequency is reached.

On every frequency mode, we try to find a feasible allocation. If the system is not feasible
under the current frequency. The frequency mode is increased to the next mode. If no feasi-
ble schedule is found for all frequencies, the schedule is aborted. The allocation algorithm is
described in Algorithm 11

Algorithm 11 Full algorithm

Input: T: TaskSet
while (fop <= fmax) do

feasible = allocate(T,multiprocessor,fop);
if (feasible) then

return true;
end if
fop = next mode()

end while
return false;

Algorithm allocate (Algorithm 12) is described in the next section.

6.6.1 Task decomposition & thread allocation

We proceed now to task decomposition and thread allocation. The goal of this step is to allocate
the current task on the current core if it is possible. If it is not possible, we select one possible
decomposition according to which the task is decomposed into two sub-tasks. The first is
allocated on the current core and the second is put back into the task list. Algorithm 12 performs
decomposition and allocation and it consists of two steps:

1. selecting a task, a core and computing α (Theorem 7),

2. task decomposition and threads allocation.
First Step The algorithm uses a queue of tasks that contains the tasks that have not yet been
allocated. In the first step, we select the task at the head of the task queue (tasks are in a random
order), let it be τi, and the first available core in the logic of Best Fit, let it be k. Tk defines the
set of threads already allocated on core k. Now, we proceed in performing the schedulability
analysis. The goal of this step is to define the maximum portion of the execution time of task τi
that can be allocated on core j, such that the system remains feasible (See Theorem 7).

The algorithm decompose is described as the third step.

Chapter 6. Parallel Di-graph model 103

Algorithm 12 allocate

for (τi ∈ T) do
for all cores k in the core list do

evaluate α
if α == 0 then

allocate τi on core k,
proceed to the next task

else
(sub-task1, sub-task2) = Decompose(τi, α)
if (∀vi,j ∈ sub-task1, vi,j ! = ∅) then

allocate sub-task1 on core k
put back sub-task2 in the task list
proceed to the next task

end if
end if

end for
if (if no-allocation found for τi) then

return false;
end if

end for
return false;

Second step Now that α had been computed, we use a simple heuristic to decompose task
graph. We denote by Cmax the maximum execution time of a thread among all vertices of
current task. According to the value of α and Cmax, only 3 cases need to be checked:

1. α = 0, it means that Tk ∪ {τi} is feasible on the core k. Thus, all threads of all vertices are
allocated on the same core, and the every vertex is run in a sequential way.

2. α is equal toCmax. This means that there is no space for any part of the task to be allocated
on the current core. In other words, not even the smallest thread in all the task set can be
allocated to current core k. Thus, we seek to allocate threads on the next core j + 1.

3. α is greater than zero, and less than Cmax. The system Tk ∪ {τi} is not feasible on core k
but a part of a task may be feasible with Tk on the current core. In this case, the task is
decomposed according to α.

According to the value of excess, we decompose a task into one decomposition as in Defini-
tion 4. Here, the decomposition is constrained by excess. The first sub-task is a task where exe-
cution time of every vertex is less than α, this task is put back to the task list, to be allocated in
the next iterations. The other sub task which is constituted by the rest of threads on each vertex
of the first task, and it is allocated on the current core. Algorithm 11 combines all the heuristics
described in this section. The complexity of this algorithm is θ(#Modes×m×n×max{|Vi|}×h))
where #Modes is the number of modes available on our architecture.

6.7 Results and Discussions

To evaluate our approach, we apply our heuristics on a large number of randomly generated
synthetic task sets. For the experiments, we modeled an architecture composed of 4 cores.
Cores share the same frequency modes and can operate all at the same frequency in 13 modes
starting from 200MHz, to 1.4 GHz by step of 100MHz. In this section, we refer to the ratio of
the operating frequency by the maximal frequency as speed.

Chapter 6. Parallel Di-graph model 104

Total Utilization

Av
er

ag
e

U
til

iz
at

io
n

pe
r C

or
e

0.2

0.4

0.6

0.8

1.0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

Our Model

Total Utilization

Av
er

ag
e

U
til

iz
at

io
n

pe
r C

or
e

0.2

0.4

0.6

0.8

1.0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

The Periodic model

Total Utilization

Av
er

ag
e

U
til

iz
at

io
n

pe
r C

or
e

0.2

0.4

0.6

0.8

1.0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

Stigge Model

FIGURE 6.6: 1st Scenario: Schedulability Rate

6.7.1 Task Generation

The UUniFast-Discard Emberson, Stafford, and Davis, 2010 algorithm is used to generate n
utilization factors, each one bounded by 1 whose sum is given number bounded by m the
number of cores in our platform. We generate the number of vertices of every task randomly
between 2 and 5. We define a probability p that expresses the chance to have an edge between
two vertices. Of course, we ensure that all vertices of the same task are connected. If they are
not, edges are added to link the isolated vertices to insure full connectivity of every task graph.
The period of every task is generated using the algorithm proposed by Goossens and Macq,
2001. The deadline is generated as a random value between 0.75 · Ti and Ti.

For every vertex, we generate the vertex utilization by randomly varying the task utiliza-
tion in an interval of -0.1 and +0.1 of the task utilization in the first scenario, and -0.3 and +0.3 in
the second one. After, we choose a random number of threads between 1 and 4. We apply UU-
niFast again on the vertex utilization to generate the utilization of threads. We inflate the vertex
utilization by a cost per each thread to reproduce the effect of thread creation, termination and
synchronization.

Finally, to generate each thread execution time, we generate a random probability Mp in
the interval [0.05, 0.1] which represents the rate of memory access. This parameter is used to
generate mt and ct as described in section 6.3.2. Thus, mt, ct are generated as follows:

mt =T · uth ·Mp

ct(fmax) =T · uth · (1−Mp)

Where uth is the generated utilization per each thread.
Algorithm 13 describes the task set generation. The parameters are:

• maxvarU: this parameter describes the maximum variability that can occur on a task
utilization ,

• connectibityG: this parameter represents the chance to have an arc between two vertices,

• nminvertices, nmaxvertices: these paremeters bound the number of vertices,

• nminthreads, nmaxthreads: as the two precedent parameters, these bound the number of
threads,

• deadlinePercentage: this parameter describes the variation on the constrained deadline.

Chapter 6. Parallel Di-graph model 105

Algorithm 13 Task Set generation

input: NumberOfexprementsPerU, maxvarU, connectibityG, nminvertices, nmaxver-
tices,nminthreads, nmaxthreads, deadlinePercentage
uarray =generate utilizations by UUNIFASTM(n, U, nbrproc);
for (τi ∈ T) do

T = Generate Period()
D = RandomBitween((deadlinePercentage * T).toInt, T);
nvertices = RandomBitween(nminvertices, nmaxvertices)
for vi,j ∈ Vi do

var threads: List[Thread] = Nil
val uv = (math.random * (un(i) - un(i) * (1 - maxvarU))) + (un(i) * (1 - maxvarU))
if (uv ≥ 1) then

nthreads = RandomBitween(2, nmaxthreads)
else

nthreads= RandomBitween(nminthreads, nmaxthreads)
end if
threadsUtilizations = generate utilizations by UUNIFAST(nthreads, uv, nbrproc)
for ∀threads do

C = generate thread execution time;
addThreadToVertice

end for
addVertice (j, threads)

end for
for vi,j ∈ Vi do

for (doVij′ ∈ Vi)
p = (RandomBitween(1, 100) / (100.toDouble))
if p ≥ connectibityG) then

addTheArc(vi,j , vi,j′)
end if

end for
end for
if not all graph connected then

connect the graph
end if
tau = Task(i, vertices, arcs, T, D)
taskset = taskset + temptau

end for

Chapter 6. Parallel Di-graph model 106

6.7.2 Simulations

Our scheduling algorithm and task model is unique in the sense that partitioning heuristics
does not consider this kind of tasks or parallelization. Therefore, in this chapter we try to
emphasize the benefit of using our model. Hence, we compare our model with a partitioned
scheduling of Stigge and the periodic models. Firstly, we allow only a small variation of the ev-
ery vertex utilization (±0.1). Secondly, a larger variation is allowed (±0.3). This two scenarios
are designed to study in the first, the benefit of the parallelization and to emphasize the benefit
of using such expressive models in the second scenario.

We vary total utilization from 0.5 to 4 per step of 0.5. For each total utilization, we generate
100 different task sets.

6.7.3 Scenario 1

In this scenario, the variation from a vertex utilization to another is limited to ±0.1.

● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ● ●

●

●

●

●

●0

40

80

1 2 3 4
Total Utilization

R
at

e
of

 s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

Labels
●

●

●

Our
Stigge
Periodic

FIGURE 6.7: 1st Scenario: Schedulability Rate

Figure 6.7 reports the schedulability rate. As the variation from each vertex to another is
small, Stigge task model overtake just a little bit the periodic model. However, our model still
hugely outperforms Stigge model, and the periodic models due to the parallelization features
of our algorithm.

Figure 6.6 shows the average utilization per each core as a function of total utilization. On
the left, the figure shows the average utilization of our task model, in the middle Stigge model
and on the right the periodic task model. Notice that almost all models load cores in the same
way because the algorithm used for allocation has the same logic as Best-Fit heuristic (there
are processors that are hugely more loaded than others) but our algorithm still has an average
utilization per core higher than the two other models. This helps to reduce effectively the static
power.

Figure 6.8 presents the maximum, minimum and the mean selected speed for the generated
task sets to be schedulable as a function of total utilization for our model, Stigge model and the
periodic model. Here we allow the speed to be greater than 1 in order to compare the necessary
speed for all the 100 task sets to be schedulable. Notice that for total utilization between 0.5
and 1, all models select the same speed. Starting from total utilization equals to 1.5, our model
selects the speed less than Stigge and periodic model, because it allows achieving more load on
one core than the other models. This can be noticed also on Figure 6.6 where we can see that
the average utilization in our model is greater than Stigge and periodic models.

Chapter 6. Parallel Di-graph model 107

●●

●●

●●●

●

●

●●

●

●

●●

●●

●

● ●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●●●●

●●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

0.5

1.0

1.5

0.5 1 1.5 2 2.5 3 3.5 4
Total Utilization

Sp
ee

d
Labels

Our
Stigge
Periodic

FIGURE 6.8: 1st Scenario: Average Speed (All) as function of total utilization

●●

●●

●●●

●

●

●●

●

●

●●

●●

●

● ●●

●●●

●

●

●

● ●●●●●●●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●●●●

●●●●●●

●

●●●●●●

●●

●

●

●●●

●

●

●

●●●●●

●●●●

●●

●

●

●●●

●●●

●●

●

●●

●

●●

●

●

●●

●

0.3

0.6

0.9

0.5 1 1.5 2 2.5 3 3.5 4
Total Utilization

Sp
ee

d

Labels
Our
Stigge
Periodic

FIGURE 6.9: 1st Scenario: Average Speed (Only Schedulable) as function of total
utilization

Figure 6.9 expresses the same results as Figure 6.8, but only for schedulable task sets, thus
speed is bounded by 1. Notice here, that our model selects just a little bit lower speed than
the other models. However, when total utilization is high, with our model, the scheduling
algorithm is able to find feasible scheduling whereas other models does not.

Chapter 6. Parallel Di-graph model 108

6.7.4 Scenario 2

In this scenario, we vary the vertex utilization to more or less of 0.3 of the task utilization.
Figure 6.10 presents the schedulability rate of the 100 task sets as a function of total utilization.

● ● ● ●

● ●

●

●

● ● ●
●

●

●

●

●

● ● ●
●

●

●

●

●

30

60

90

1 2 3 4
Total Utilization

R
at

e
of

 s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

Labels
●

●

●

Our
Stigge
Periodic

FIGURE 6.10: 2st Scenario: Schedulability Rate

We notice here that Stigge model outperforms periodic model, because it allows tasks to have
different utilizations at each instance while the periodic model keep that utilization fixed. Our
model still outperforms hugely Stigge model, and keeps the same gap as in the first scenario.

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●●●●●●●

●

●

●●

●

●●

●●

●●●

●●
●

●

●●●

●

●

●

●●

●●●

● ●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

● ●●●

●

●●●●●●●●

●

●●●●●●●●●

●●

●

●

●●●●●●●●

●

●●●

●

●

●

●●

●●●●●●

●●

●

●●●●

●

●●

●

●

0.25

0.50

0.75

1.00

0.5 1 1.5 2 2.5 3 3.5 4
Total Utilization

Sp
ee

d

Labels
Our
Stigge
Periodic

FIGURE 6.11: 2st Scenario: Average Speed (Only Schedulable) as function of total
utilization

Figure 6.11 shows the selected speed as a function of the total utilization for the three mod-
els. Notice here, that the scheduling algorithm with our model allows to select the speed at
worst as Stigge model, both our model and Stigge model outperform the periodic model but
ours still outperforms Stigge model for high utilization factors. Figure 6.12 shows the average
energy consumption of the three models for this scenario. We use the same energy models pro-
posed in Zahaf et al., 2016a; Zahaf et al., 2016b. As we select a speed lower than all the other

Chapter 6. Parallel Di-graph model 109

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

1

2

3

4

5

1 2 3 4
Total Utilization

En
er

gy
 C

on
su

m
pt

io
n

Labels
●

●

●

Our
Stigge
Periodic

FIGURE 6.12: 2st Scenario: Energy Consumption as a function of total utilization

models, the energy consumption is lower. Therefore, the more the utilization is high, the more
our model is efficient in terms of energy consumption.

6.8 Conclusion

In this chapter, we presented an extension of the task model proposed by Stigge et al., 2011 to
express the potential intra-task parallelism. In our model, each vertex is a potential decompo-
sition of instances of the task into a set of parallel threads. The task can be run according to a
vertex according to the input data, and a set of edges. Thus, the choice of each vertex is not
deterministic. We proposed a sufficient feasibility test for partitioned EDF on a set of identical
cores. We propose also a heuristic to select the core frequency that can be used to reduce the
energy consumption while all deadlines are met. We presented a wide set of experiments that
showed that our model and scheduling heuristic are more effective than sequential task models
proposed in the literature.

110

Conclusion & perspectives

Conclusions

In this thesis, we investigate the choices for parallelization and allocation of a set of real-time
tasks to different types of multicore platforms. As parallelization consists of decomposing a
task into several sub-task that cooperate to solve the same problem, an overhead is assigned to
parallel execution. These overheads are mainly due to the sub-task creation, termination and
synchronization.

The parallel real-time models proposed recently in the literature do not take into account
several realistic parameters such as the parallelization costs, the static/dynamic parallel grain
size definition and does not take into account heterogeneous cores in computing platforms
such as ARM bigLITTLE. Moreover, only few works consider the parallelization and reducing
the energy consumption. Especially because of the slow developement of battery technologies
against the increasing energy demand in nowadays systems such as CPS. Hence, In this thesis
we had chosen to focus on the limits of the models proposed in the litterature to cope with the
nowadays computing needs.

Particularly, in chapter 4 we addressed the problem with a simple moldable task model
that does not take into account parallelization costs, but that solves already the problem of the
representation of difference parallel grain size for the same task. We proposed two solutions
for the problem: an exact solution by modeling the problem as a linear problem and it was
solved using lp solve solver, and an heuristic that by experimentation shown that the obtained
results were very close to optimal ones.

In the 5th chapter we first build a realistic timing and energy models for a parallel execution
on heterogeneous platforms. Based on different parallelization techniques such those proposed
in Cilk or OpenMP. We proposed a task model that takes into account the parallelization costs.
The problem consists in allocating a set of task modeled by a realistic parallel model to a set
of heterogeneous cores with the ability to calibrate the core frequency and state to reduce the
energy consumption. The problem in hand now is very hard and was solved by expressing
it as a Mixed Integer Non Linear problem and only small-size problem could be solved using
Knitro Solver. Hence, we proposed a heuristic that allow to have quasi-optimal solutions in a
very short time.

As the two proposed models where for moldable tasks, and are not expressive enough
to cope with the increasing complexity of CPS applications and their dynamic behavior, we
proposed in Chapter 6 a methodology to present parallel tasks with di-graphs. The proposed
model was very expressive against the models proposed in the literrature. We addressed also
the problem of allocating such tasks to a set of identical cores with the ability of setting the
core frequency and state. The problem here is very hard, and finding an optimal solution for
a very small problems is very computational. Thus we proposed several techniques, methods,
and mathematical proofs to reduce the complexity of the problem. The proposed methods
where used to propose a heuristic that solves the problem in a reasonable time. The results
obtained by testing a very large set of expirements have shown that our model and scheduling
heuristics are effective against less expressive models and that it can be used to reduce the
energy consumption.

Chapter 6. Parallel Di-graph model 111

Limitations & perspectives

Shared ressources

In this thesis we addressed the problem of parallelization under the assumption that parallel
threads communication waiting time is bounded, and that it is included in the worst case exe-
cution time analysis. In the last chapter, the communication between tasks are expressed by the
precedence order between different instances of a task. However, this parameter is bounded
by the worst case which is very pessimistic. It may be possible to apply shared resources tech-
niques proposed in the litterature of real-time scheduling to reproduce more realistic.

Global scheduling

All our contributions reported in this thesis concern only partitioned scheduling. The basic idea
is that for heterogeneous computing platforms, job-level migration is not allowed especially at
job migration because the timing analysis of the preempted thread at the preemption point can
not be done. However, it may be possible to allow migration of the same thread for the cores
of same group.

Dynamic voltage and frequency scaling

When a parallel thread ended its execution shorter than the worst case execution time, a slack
time is engendred by these early end. Thus, it may be convenient to recalibrate dynamically
the core frequency to allow to have less slack time, and may be save energy.

112

Personal publications

1. H.E. Zahaf, A.E. Benyamina, R. Olejnik, Giuseppe Lipari, Pierre Boulet “Modeling paral-
lel tasks with di-graphs”, RTNS2016 H.E. Zahaf, 2016c

2. H.E. Zahaf, A.E. Benyamina, R. Olejnik, Giuseppe Lipari “Energy-efficient partitionning
for periodic soft Real-Time Tasks on single-ISA heterogeneous Architectures”, under final
revision to Journal Of System Architecture H.E. Zahaf, 2016a

3. H.E. Zahaf, R. Olejnik, G. Lipari, A.E Benyamina , ”Modelling the Energy Consumption
of Soft Real-Time Tasks on Heterogeneous Computing Architectures”, EEHCO’2016: En-
ergy Efficiency with Heterogenous Computing, Prague, January 15-16, 2016H.E. Zahaf,
2016b

4. H.E. Zahaf, R. Olejnik, G. Lipari, A.E Benyamina , ”Energy-aware parallel tasks schedul-
ing on multicore architectures”, ACACES Workshop’2015: Advanced Computer Archi-
tecture and Compilation for High-Performance and Embedded Systems, Fiuggi , July
12-18, 2015 H.E. Zahaf, 2015b

5. H.E. Zahaf, R. Olejnik, G. Lipari, A.E Benyamina , ”Energy-aware moldable real-time task
scheduling on uniform architectures”, EDiS’2015: Embedded and Distributed Systems,
Oran, November 15-16, 2015 H.E. Zahaf, 2015a

6. H.E. Zahaf, A.E. Benyamina, R. Olejnik ”Intensive Real-Time Task Scheduling on Uni-
form Multiprocessors”, Models, Optimization, and Mathematical analysis (MOMA), Spe-
cial Issue IWMCS’2014,ISSN2253-0665(2014), Vol 2, Issue 1, Pages 3-13,H.E. Zahaf, 2014b

7. H.E. Zahaf, A.E. Benyamina, R. Olejnik ”Intensive Real-Time Task Scheduling on Uni-
form Multiprocessors”,The 2 nd international Workshop on Mathamatics and Computer
Science IWMCS’2014, december 1-3, 2014, Tiaret, Algeria.H.E. Zahaf, 2014c

8. H.E. Zahaf, A.E. Benyamina, R. Olejnik ”Energy-Aware Work Load for Real-Time MapRe-
duce Environment”,The 1st doctorial days of LAPECI, Oran, September 28-29, 2014, Oran,
Algeria.H.E. Zahaf, 2014a

9. H.E. Zahaf, A.E. Benyamina, R. Olejnik ”Smart cities, Scenarios and Applications (Poster)”,
National Exhibition of Valuation Research Result Programmes, April 8-9, 2014, Oran, Al-
geria.H.E. Zahaf, 2014d

113

Bibliography

Andersson, Björn, Konstantinos Bletsas, and Sanjoy Baruah (2008). “Scheduling arbitrary-deadline
sporadic task systems on multiprocessors”. In: Real-Time Systems Symposium, 2008. IEEE,
pp. 385–394.

Andersson, Björn and Eduardo Tovar (2006). “Multiprocessor scheduling with few preemp-
tions”. In: 12th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’06). IEEE, pp. 322–334.

Aspray, William (2004). Chasing Moore’s Law: Information Technology Policy in the United States.
SciTech Publishing.

Audsley, Neil et al. (1993). “Applying new scheduling theory to static priority pre-emptive
scheduling”. In: Software Engineering Journal 8.5, pp. 284–292.

Audsley, Neil C et al. (1990). Deadline monotonic scheduling. Citeseer.
Baheti, Radhakisan and Helen Gill (2011). “Cyber-physical systems”. In: The impact of control

technology 12, pp. 161–166.
Barry, Richard et al. (2008). “FreeRTOS”. In: Internet, Oct.
Baruah, S. (2010). “The Non-cyclic Recurring Real-Time Task Model”. In: Real-Time Systems

Symposium (RTSS), 2010 IEEE 31st, pp. 173–182. DOI: 10.1109/RTSS.2010.19.
Baruah, Sanjoy and Nathan Fisher (2005). “The partitioned multiprocessor scheduling of spo-

radic task systems”. In: Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE Interna-
tional. IEEE, 9–pp.

Baruah, Sanjoy K, Louis E Rosier, and Rodney R Howell (1990). “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one processor”. In:
Real-Time Systems 2.4, pp. 301–324.

Bini, Enrico, Giorgio Buttazzo, and Giuseppe Lipari (2005). “Speed modulation in energy-
aware real-time systems”. In: Real-Time Systems, 2005.(ECRTS 2005). Proceedings. 17th Eu-
romicro Conference on. IEEE, pp. 3–10.

Bini, Enrico and Giorgio C. Buttazzo (2005). “Measuring the Performance of Schedulability
Tests”. In: Real-Time Systems 30.1, pp. 129–154. ISSN: 1573-1383. DOI: 10.1007/s11241-
005-0507-9. URL: http://dx.doi.org/10.1007/s11241-005-0507-9.

Blumofe, Robert D et al. (1996). “Cilk: An efficient multithreaded runtime system”. In: Journal
of parallel and distributed computing 37.1, pp. 55–69.

Bonomi, Flavio et al. (2012). “Fog computing and its role in the internet of things”. In: Proceed-
ings of the first edition of the MCC workshop on Mobile cloud computing. ACM, pp. 13–16.

Boulet, Pierre (2007). Array-OL Revisited, Multidimensional Intensive Signal Processing Specifica-
tion. Research Report RR-6113. INRIA, p. 24. URL: https://hal.inria.fr/inria-
00128840 (visited on 07/22/2016).

Burns, Alan and Andrew J Wellings (2001). Real-time systems and programming languages: Ada 95,
real-time Java, and real-time POSIX. Pearson Education.

Byrd, Richard H., Jorge Nocedal, and Richard A. Waltz (2006). “KNITRO: An integrated pack-
age for nonlinear optimization”. In: Large Scale Nonlinear Optimization, 3559, 2006. Springer
Verlag, pp. 35–59.

Chandra, Rohit (2001). Parallel programming in OpenMP. Morgan Kaufmann.
Cisco (2015). Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are.

White paper. Cisco, p. 6. URL: https://www.cisco.com/c/dam/en_us/solutions/
trends/iot/docs/computing-overview.pdf.

http://dx.doi.org/10.1109/RTSS.2010.19
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
https://hal.inria.fr/inria-00128840
https://hal.inria.fr/inria-00128840
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf

BIBLIOGRAPHY 114

Colin, Alexei, Arvind Kandhalu, and Ragunathan Raj Rajkumar (2015). “Energy-Efficient Allo-
cation of Real-Time Applications onto Single-ISA Heterogeneous Multi-Core Processors”.
In: Journal of Signal Processing Systems, pp. 1–20.

Colin, Antoine and Isabelle Puaut (2000). “Worst case execution time analysis for a processor
with branch prediction”. In: Real-Time Systems 18.2-3, pp. 249–274.

Collette, Sébastien, Liliana Cucu, and Joël Goossens (2008). “Integrating job parallelism in real-
time scheduling theory”. In: Information Processing Letters 106.5, pp. 180–187.

Courbin, Pierre, Irina Lupu, and Jol Goossens (2013). “Scheduling of hard real-time multi-phase
multi-thread (MPMT) periodic tasks”. en. In: Real-Time Systems 49.2, pp. 239–266. ISSN: 0922-
6443, 1573-1383. DOI: 10.1007/s11241-012-9173-x. URL: http://link.springer.
com/10.1007/s11241-012-9173-x (visited on 12/25/2014).

Davis, R. I. and A. Burns (2009). “Priority Assignment for Global Fixed Priority Pre-Emptive
Scheduling in Multiprocessor Real-Time Systems”. In: Real-Time Systems Symposium, 2009,
RTSS 2009. 30th IEEE, pp. 398–409. DOI: 10.1109/RTSS.2009.31.

Davis, Robert I. and Alan Burns (2011). “A Survey of Hard Real-time Scheduling for Multipro-
cessor Systems”. In: ACM Comput. Surv. 43.4, 35:1–35:44. ISSN: 0360-0300. DOI: 10.1145/
1978802.1978814. URL: http://doi.acm.org/10.1145/1978802.1978814.

Dertouzos, Michael L. (2002). “Control Robotics: The Procedural Control of Physical Processes.”
In: IFIP Congress, pp. 807–813. URL: http://dblp.uni-trier.de/db/conf/ifip/
ifip74.html#Dertouzos74.

Drozdowski, M. (2004). Scheduling Parallel Tasks Algorithms and Complexity, chapter 25. Hand-
book of SCHEDULING Algorithms, Models and Performance Analysis. CHAPMAN and HAL-
L/CRC.

Emberson, Paul, Roger Stafford, and Robert I Davis (2010). “Techniques for the synthesis of
multiprocessor tasksets”. In: proceedings 1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems (WATERS 2010), pp. 6–11.

Feitelson, Dror G and Larry Rudolph (1992). “Gang scheduling performance benefits for fine-
grain synchronization”. In: Journal of Parallel and Distributed Computing 16.4, pp. 306–318.

Fennel, Helmut et al. (2006). “Achievements and exploitation of the AUTOSAR development
partnership”. In: Convergence 2006, p. 10.

Flynn, Michael J (1972). “Some computer organizations and their effectiveness”. In: IEEE trans-
actions on computers 100.9, pp. 948–960.

Gamati, Abdoulaye et al. (2011). “A Model Driven Design Framework for Massively Parallel
Embedded Systems”. In: ACM Transactions on Embedded Computing Systems (TECS) 10.4.
URL: https://hal.inria.fr/inria-00637595 (visited on 07/22/2016).

Garg, Ankita (2009). “Real-time linux kernel scheduler”. In: Linux Journal 2009.184, p. 2.
Gehringer, Edward F, Daniel P Siewiorek, and Zary Segall (1987). Parallel processing: the Cm*

experience. Digital Press.
Glitia, Calin and Pierre Boulet (2008). “High Level Loop Transformations for Multidimensional

Signal Processing Embedded Applications”. In: International Symposium on Systems, Archi-
tectures, MOdeling, and Simulation (SAMOS VIII). Samos, Grce. URL: http://hal.inria.
fr/inria-00565154/en.

Glitia, Calin, Philippe Dumont, and Pierre Boulet (2010). “Array-OL with delays, a domain
specific specification language for multidimensional intensive signal processing”. In: Mul-
tidimensional Systems and Signal Processing 21.2, pp. 105–131. DOI: 10.1007/s11045-009-
0085-4. URL: http://dx.doi.org/10.1007/s11045-009-0085-4 (visited on
05/28/2010).

Glitia, Calin et al. (2011). “Repetitive model refactoring strategy for the design space explo-
ration of intensive signal processing applications”. In: Journal of Systems Architecture 57.9,
pp. 815–829. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2010.12.002. URL: http:
//www.sciencedirect.com/science/article/pii/S1383762110001645 (vis-
ited on 07/22/2016).

http://dx.doi.org/10.1007/s11241-012-9173-x
http://link.springer.com/10.1007/s11241-012-9173-x
http://link.springer.com/10.1007/s11241-012-9173-x
http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Dertouzos74
https://hal.inria.fr/inria-00637595
http://hal.inria.fr/inria-00565154/en
http://hal.inria.fr/inria-00565154/en
http://dx.doi.org/10.1007/s11045-009-0085-4
http://dx.doi.org/10.1007/s11045-009-0085-4
http://dx.doi.org/10.1007/s11045-009-0085-4
http://dx.doi.org/10.1016/j.sysarc.2010.12.002
http://www.sciencedirect.com/science/article/pii/S1383762110001645
http://www.sciencedirect.com/science/article/pii/S1383762110001645

BIBLIOGRAPHY 115

Goossens, Joël and Vandy Berten (2010). “Gang FTP scheduling of periodic and parallel rigid
real-time tasks”. In: arXiv preprint arXiv:1006.2617.

Goossens, Joël, Shelby Funk, and Sanjoy Baruah (2003). “Priority-driven scheduling of periodic
task systems on multiprocessors”. In: Real-time systems 25.2-3, pp. 187–205.

Goossens, Joel and Christophe Macq (2001). “Limitation of the hyper-period in real-time peri-
odic task set generation”. In: In Proceedings of the RTS Embedded System (RTS01. Citeseer.

Guan, Nan and Wang Yi (2014). “General and efficient response time analysis for EDF schedul-
ing”. In: Proceedings of the conference on Design, Automation & Test in Europe. European Design
and Automation Association, p. 255.

Guerci, Joseph R (2014). Space-time adaptive processing for radar. Artech House.
Guide, VxWorks Programmers (1999). “Wind River Systems”. In: Alameda, Calif.
Guthaus, Matthew R et al. (2001). “MiBench: A free, commercially representative embedded

benchmark suite”. In: Workload Characterization, 2001. WWC-4. 2001 IEEE International Work-
shop on. IEEE, pp. 3–14.

Han, C-C and K-J Lin (1989). “Scheduling parallelizable jobs on multiprocessors”. In: Real Time
Systems Symposium, 1989., Proceedings. IEEE, pp. 59–67.

HardKernel (2016). Odroid C2 datasheet. URL: http : / / www . hardkernel . com / main /
products/prdt_info.php (visited on 08/14/2016).

H.E. Zahaf R. Olejnik, G. Lipari A.E Benyamina (2015a). “Energy-aware moldable real-time
task scheduling on uniform architectures”. In: CEDiS’2015: 1st Algerian Conference Embedded
and Distributed Systems, Oran, pp. 3–13.

H.E. Zahaf A.E. Benyamina, R. Olejnik (2014a). “Energy-Aware Work Load definition for Real-
Time MapReduce Environment”. In: The 1st doctorial days of LAPECI, Oran.

— (2014b). “Intensive Real-Time Task Scheduling on Uniform Multiprocessors”. In: Models,
Optimization, and Mathematical analysis (MOMA), Special Issue IWMCS,ISSN2253-0665(2014),
Vol 2, Issue 1, pp. 3–13.

— (2014c). “Intensive Real-Time Task Scheduling on Uniform Multiprocessors”. In: The 2 nd
international Workshop on Mathamatics and Computer Science IWMCS’2014.

— (2014d). “Smart cities, Scenarios and Applications (Poster)”. In: National Exhibition of Valua-
tion Research Result Programmes.

H.E. Zahaf A.E. Benyamina, R. Olejnik Giuseppe Lipari (2015b). “Energy-aware parallel tasks
scheduling on multicore architectures”. In: CACES’2015: Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems. Hipeac.

— (2016a). “Energy-Efficient Scheduling for Moldable Real-Time Tasks on Heterogeneous Com-
puting Platforms”. In: under revision to Journal Of System Architecture. Elesevier.

— (2016b). “Modelling the Energy Consumption of Soft Real-Time Tasks on Heterogeneous
Computing Architectures”. In: EEHCO’2016: Energy Efficiency with Heterogenous Computing.
Prague.

H.E. Zahaf A.E. Benyamina, R. Olejnik Giuseppe Lipari Pierre Boulet (2016c). “Modeling par-
allel tasks with di-graphs”. In: submitted to RTNS2016.

Intel (2016). Intel i5 datasheet. URL: http://ark.intel.com/fr/products/69114/
Intel-Core-i5-3350P-Processor-6M-Cache-up-to-3_30-GHz (visited on
08/14/2016).

Karnouskos, Stamatis (2011). “Cyber-physical systems in the smartgrid”. In: 2011 9th IEEE In-
ternational Conference on Industrial Informatics. IEEE, pp. 20–23.

Kato, S. and Y. Ishikawa (2009). “Gang EDF Scheduling of Parallel Task Systems”. In: 30th IEEE
Real-Time Systems Symposium, 2009, RTSS 2009. Pp. 459–468. DOI: 10.1109/RTSS.2009.
42.

Kim, Junsung et al. (2013). “Parallel scheduling for cyber-physical systems: Analysis and case
study on a self-driving car”. In: Proceedings of the ACM/IEEE 4th International Conference on
Cyber-Physical Systems. ACM, pp. 31–40.

http://www.hardkernel.com/main/products/prdt_info.php
http://www.hardkernel.com/main/products/prdt_info.php
http://ark.intel.com/fr/products/69114/Intel-Core-i5-3350P-Processor-6M-Cache-up-to-3_30-GHz
http://ark.intel.com/fr/products/69114/Intel-Core-i5-3350P-Processor-6M-Cache-up-to-3_30-GHz
http://dx.doi.org/10.1109/RTSS.2009.42
http://dx.doi.org/10.1109/RTSS.2009.42

BIBLIOGRAPHY 116

Lakshmanan, K., S. Kato, and R. Rajkumar (2010). “Scheduling Parallel Real-Time Tasks on
Multi-core Processors”. In: Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pp. 259–
268. DOI: 10.1109/RTSS.2010.42.

Lee, Insup et al. (2012). “Challenges and research directions in medical cyber–physical sys-
tems”. In: Proceedings of the IEEE 100.1, pp. 75–90.

Leung, Joseph Y-T and Jennifer Whitehead (1982). “On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks”. In: Performance evaluation 2.4, pp. 237–250.

Levin, Greg et al. (2010). “DP-FAIR: A simple model for understanding optimal multiprocessor
scheduling”. In: 2010 22nd Euromicro Conference on Real-Time Systems. IEEE, pp. 3–13.

Li, Jing et al. (2014). “Analysis of federated and global scheduling for parallel real-time tasks”.
In: 26th Euromicro Conference on Real-Time Systems (ECRTS 2014). IEEE, pp. 85–96.

Liu, Chung Laung and James W Layland (1973a). “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment”. In: Journal of the ACM (JACM) 20.1, pp. 46–61.

Liu, Chung Laung and James W. Layland (1973b). “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment”. In: Journal of the ACM (JACM) 20.1, pp. 46–61. URL:
http://dl.acm.org/citation.cfm?id=321743 (visited on 07/21/2016).

Mantegazza, Paolo, EL Dozio, and S Papacharalambous (2000). “RTAI: Real time application
interface”. In: Linux Journal 2000.72es, p. 10.

Maxfield, Max (2012). Achronix new 22nm Speedster22i FPGA. URL: http://www.embedded.
com/electronics-products/electronic-product-reviews/fpga-pld-products/
4371597/Achronix-announces-new-22nm-Speedster22i-FPGAs.

Mei, Jing et al. (2013). “Energy-aware preemptive scheduling algorithm for sporadic tasks on
DVS platform”. en. In: Microprocessors and Microsystems 37.1, pp. 99–112. ISSN: 01419331.
DOI: 10.1016/j.micpro.2012.11.002. URL: http://linkinghub.elsevier.
com/retrieve/pii/S0141933112001895 (visited on 12/25/2014).

Michael, J Quirm (2003). “Parallel Programming in C with MPI and OpenMP”. In: Dubuque, IA:
McGraw-Hill.

Mok, A. K. and D. Chen (1996). “A multiframe model for real-time tasks”. In: Real-Time Systems
Symposium, 1996., 17th IEEE, pp. 22–29. DOI: 10.1109/REAL.1996.563696.

Molnar, Ingo (2009). Preempt-rt.
Moore, Gordon (2005). “Excerpts from a conversation with Gordon Moore: Moores Law”. In:

Video Transcript, Intel 54.
Moore, Gordon E (2006). “Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.” In: IEEE Solid-State Cir-
cuits Newsletter 3.20, pp. 33–35.

Morteza Mohaqeqi Jakaria Abdullah, Nan Guan and Wang Yi (2016). “Schedulability Analysis
of Synchronous Digraph Real-Time Tasks”. In: Euromicro Conference on Real-Time Systems.

Mounie, PF. Dutot G. and Denis Trystram M. Drozdowski (2004). Scheduling Parallel Tasks Ap-
proximation Algorithms, chapter 26. Handbook of SCHEDULING Algorithms, Models and Perfor-
mance Analysis. CHAPMAN and HALL/CRC.

MPI itemplementations (2016). URL: http://www.mcs.anl.gov/research/projects/
mpi/implementations.html (visited on 08/01/2016).

Nichols, Bradford, Dick Buttlar, and Jacqueline Farrell (1996). Pthreads programming: A POSIX
standard for better multiprocessing. ” O’Reilly Media, Inc.”

Object Management Group (2009). UML Profile for MARTE: Modeling and Analysis of Real-time
Embedded Systems. Object Management Group. URL: http://www.omg.org/spec/
MARTE/1.0 (visited on 02/23/2011).

OpenMP Architecture Review Board (2008). OpenMP Application Program Interface Version 3.0.
URL: http://www.openmp.org/mp-documents/spec30.pdf.

Ousterhout, John K (1982). “Scheduling Techniques for Concurrebt Systems.” In: International
Conference on Distributed Computing Systems, ICDCS. Vol. 82, pp. 22–30.

http://dx.doi.org/10.1109/RTSS.2010.42
http://dl.acm.org/citation.cfm?id=321743
http://www.embedded.com/electronics-products/electronic-product-reviews/fpga-pld-products/4371597/Achronix-announces-new-22nm-Speedster22i-FPGAs
http://www.embedded.com/electronics-products/electronic-product-reviews/fpga-pld-products/4371597/Achronix-announces-new-22nm-Speedster22i-FPGAs
http://www.embedded.com/electronics-products/electronic-product-reviews/fpga-pld-products/4371597/Achronix-announces-new-22nm-Speedster22i-FPGAs
http://dx.doi.org/10.1016/j.micpro.2012.11.002
http://linkinghub.elsevier.com/retrieve/pii/S0141933112001895
http://linkinghub.elsevier.com/retrieve/pii/S0141933112001895
http://dx.doi.org/10.1109/REAL.1996.563696
http://www.mcs.anl.gov/research/projects/mpi/implementations.html
http://www.mcs.anl.gov/research/projects/mpi/implementations.html
http://www.omg.org/spec/MARTE/1.0
http://www.omg.org/spec/MARTE/1.0
http://www.openmp.org/mp-documents/spec30.pdf

BIBLIOGRAPHY 117

Paolillo, Alfredo et al. (2014). “Power minimization for parallel real-time systems with mal-
leable jobs and homogeneous frequencies”. In: Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2014 IEEE 20th International Conference on. IEEE, pp. 1–10.

Parolini, Luca et al. (2012). “A cyber–physical systems approach to data center modeling and
control for energy efficiency”. In: Proceedings of the IEEE 100.1, pp. 254–268.

Pfister, Greg (2008). Larrabee vs. Nvidia, MIMD vs. SIMD. URL: http://perilsofparallel.
blogspot.gr/2008/09/larrabee-vs-nvidia-mimd-vs-simd.html.

Pheatt, Chuck (2008). “Intel R© threading building blocks”. In: Journal of Computing Sciences in
Colleges 23.4, pp. 298–298.

Puschner, Peter and Alan Burns (2000). “Guest editorial: A review of worst-case execution-time
analysis”. In: Real-Time Systems 18.2, pp. 115–128.

Rajkumar, Ragunathan Raj et al. (2010). “Cyber-physical systems: the next computing revolu-
tion”. In: Proceedings of the 47th Design Automation Conference. ACM, pp. 731–736.

Rao, Lei et al. (2012). “Distributed coordination of internet data centers under multiregional
electricity markets”. In: Proceedings of the IEEE 100.1, pp. 269–282.

Saifullah, Abusayeed et al. (2013). “Multi-core real-time scheduling for generalized parallel
task models”. en. In: Real-Time Systems 49.4, pp. 404–435. ISSN: 0922-6443, 1573-1383. DOI:
10.1007/s11241-012-9166-9. URL: http://link.springer.com/10.1007/
s11241-012-9166-9 (visited on 12/25/2014).

Salman, Emre and Qi Qi (2011). “Path specific register design to reduce standby power con-
sumption”. In: Journal of Low Power Electronics and Applications 1.1, pp. 131–149.

Samsung (2016). Exynos 5422 Announcement. URL: http://www.samsung.com/semiconductor/
minisite/Exynos/w/solution/mobile_ap/5422/ (visited on 08/14/2016).

Sanjoy Baruah Marko Bertogna, Giorgio Buttazzo (2015). Multiprocessor Scheduling for Real-Time
Systems.

Seth, Kiran et al. (2006). “Fast: Frequency-aware static timing analysis”. In: ACM Transactions
on Embedded Computing Systems (TECS) 5.1, pp. 200–224.

Spuri, Marco (1996). “Analysis of deadline scheduled real-time systems”. PhD thesis. Inria.
Stigge, Martin et al. (2011). “The digraph real-time task model”. In: Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2011 17th IEEE. IEEE, pp. 71–80.
Ward, James (1994). Space-time adaptive processing for airborne radar. Tech. rep. DTIC Document.
Wolf, Marilyn (2012). Computers as components: principles of embedded computing system design.

Elsevier.
Zahaf, H.E et al. (2016a). “Energy-Efficient Scheduling for Moldable Real-Time Tasks on Het-

erogeneous Computing Platforms”. In: Under revision for : Journal of Systems Architecture.
— (2016b). “Modelling the Energy Consumption of Real-Time Tasks on Heterogeneous Com-

puting Architectures”. In: Hipeac, ECCHO.

http://perilsofparallel.blogspot.gr/2008/09/larrabee-vs-nvidia-mimd-vs-simd.html
http://perilsofparallel.blogspot.gr/2008/09/larrabee-vs-nvidia-mimd-vs-simd.html
http://dx.doi.org/10.1007/s11241-012-9166-9
http://link.springer.com/10.1007/s11241-012-9166-9
http://link.springer.com/10.1007/s11241-012-9166-9
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5422/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5422/

	Acknowledgements
	Abstract
	Introduction
	I Context, Motivations & Related work
	Multiprocessors & Parallel Systems
	Introduction
	Classification of multicore systems

	Programming parallel architecture
	Thread & Process
	Sources of parallelism
	 Communication models
	Decomposition & granularity of a parallel task
	Limits and costs of parallel programming

	Parallel models
	Fork-Join model
	Gang Model

	Designing a parallel code
	Power consumption in multiprocessor systems
	DVFS: Dynamic voltage and frequency scaling
	DPM: Dynamic Power Management

	Conclusion

	Introduction to real-time systems
	Introduction
	Task Model
	Priority Driven Scheduling
	Scheduling characteristics

	Uniprocessor Scheduling
	Rate Monotonic RM
	Deadline Monotonic DM
	Earliest Deadline First

	Multiprocessor Scheduling
	Partitioned Scheduling
	Global Scheduling
	Semi-Partitioned

	Programming Real-time systems
	Real-time Scheduling policies In LINUX Kernel
	POSIX Threads

	Conclusion

	Parallel Real-time: Related work
	CPS Systems Needs
	Real-time needs
	Parallel computing needs
	CPS and energy consumption

	This work
	Global or Partitionned?
	What kind of parallelism to do and where?
	What energy saving techniques are we going to use?

	Related work
	Taxonomy on parallel real-time tasks
	OpenMP

	Parallel Real-time tasks & scheduling
	Gang Model
	Multithread Model
	Federated scheduling

	Related work to energy consumption
	Conclusion

	II Contributions
	FTC on Uniform cores
	Introduction
	System overview
	Architecture Model
	Task model
	Power & Energy Models
	Power Model
	Energy Model

	Allocation and Scheduling
	Exact Scheduler
	FTC Heuristic

	Experimentation
	Task Generation
	Simulations
	Results & discussions

	Conclusion

	allocating CPM tasks to heterogeneous platforms
	Introduction
	System Model
	Experimental platform
	Architecture Model
	Model of the execution time
	Parallel moldable tasks
	Power model
	Energy model

	Allocation & Scheduling
	Optimal schedulers
	Scheduling heuristics
	Frequency selection
	CP partitioning

	Results and discussions
	Task Generation
	Simulations
	Scenario 1
	Scenario 2

	Conclusion

	Parallel Di-graph model
	Introduction
	Some related work
	System Model
	Architecture model
	Task Model

	Parallel applications
	MPEG encoding/decoding
	Array-OL

	Schedulability analysis
	Decomposition
	Analysis

	Heuristics
	Task decomposition & thread allocation

	Results and Discussions
	Task Generation
	Simulations
	Scenario 1
	Scenario 2

	Conclusion

	Conclusion & Perspactives
	Personal publications
	Bibliography

