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Merci de m’avoir fait confiance et de m’avoir proposé ce sujet de thèse. J’en profite pour
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qui pouvait aussi être considéré comme mon encadrant non officiel pendant ce stage. C’était là
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Merci enfin à ma famille, qui m’a toujours soutenu. Merci à mes parents et grands parents,
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Introduction

The human eye is sensitive to three ranges of wavelengths of the electromagnetic spectrum,

approximately corresponding to red, green, and blue, thanks to the three types of cone cells,

provided illuminance is sufficient. The ability we have to distinguish many more colors, and

in the end, to be sensitive to what we called the visible part of the electromagnetic spectrum

(between 380 nm and 780 nm) actually results from the processing of these three types of

information from the visual cortex of the brain. Then this color information, combined with

the shape information given by the image formed on the retina are further processed by the

brain in order to analyze and interpret the observed scene. This is possible only because

of the source of light: what we visually perceive is only the result of the interaction of the

incoming light with matter. Only from the “data” made of the color information and the

spatial information of the image on the retina as well as the processing from the brain are we

able to interpret what we see.

Somewhat similarly, digital cameras generally use color filters in order to separate the

contributions of red, green and blue in the incoming light and direct them to different Charged

Coupled Device arrays. The image is then recombined by a computer and can be displayed

or processed, in order to be automatically interpreted.

Along with the development of computers and electronic photodetectors, this analogy

spawned two challenges: to what extent is it possible to automatize the processing a human

being can naturally and easily perform, and what would we gain to sense what is invisible

to the human eye, that is the information contained in the remainder of the electromagnetic

spectrum? In more technical terms, what benefits can we obtain from augmenting the spectral

resolution of digital sensors? The former challenge gave birth to computer vision, and digital

image analysis and processing, while the latter gave birth to spectroscopy. Combining the

two by acquiring images whose individual picture elements, or pixels, are spectra of tens

to hundreds of values, rather than a single value for gray-level images, or three values for

RGB images is what defines multispectral and hyperspectral imaging, also known as imaging

spectroscopy.

The spectral information contained in such images is considerably augmented with respect

to conventional gray-level or color imaging. The chosen wavelength range can vary a lot

depending on the application, but typically incorporates the visible and near infrared parts

of the electromagnetic spectrum. Once a certain spectral resolution has been reached, the

spectrum resulting from the acquisition of a pixel, corresponding to the observation of a certain

material is usually considered as characterizing that material. This allows the identification

and characterization of the materials present in the imaged scene, or sample, in a much finer

way than what is possible with conventional images, or the naked human eye. However, in

practice, there is a compromise to find between spectral and spatial resolutions, meaning that

a hyperspectral image (HSI) of a scene will have a lower spatial resolution than a color or

even a multispectral image acquired over the same scene.

1
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The applications of hyperspectral imaging are very diverse, and include food processing,

chemometrics, astrophysics, and so on. In this thesis, we will focus on remote sensing ap-

plications. Remote sensing is concerned with earth or planetary observation, in our case

using hyperspectral sensors on board satellites, airplanes, or more recently Unmanned Aerial

Vehicles (UAVs).

Hyperspectral imaging in remote sensing has been used in: planetary exploration (as an

example, hyperspectral sensors mounted on satellites are frequently used to observe Mars)

environmental measurements (monitoring of natural landscapes, damage evaluation in the

event of a natural disaster...), agricultural (crop monitoring) or defense (surveillance, detec-

tion) applications. An example of HSI in a remote sensing context is presented in Fig. 1. Each

wavelength is represented by a slice of the data cube. This provides a second way to appre-

hend a HSI, other than a collection of spatially arranged spectra. Indeed, each of these slices

can be thought as gray level image, containing the radiance information for this particular

wavelength. The HSI is then a collection of radiance (the physical quantity measured by the

sensor, corresponding to the quantity of radiation reaching the sensor) images for different

ordered wavelengths, also referred to as spectral bands.

In many cases, the effect of the atmosphere (even more so for satellite images) is unwanted,

since we want to characterize the interaction of light with the materials on the ground,

that is, we would like to have access to the optical properties of the materials. Physics-

based algorithms are able to model and remove the contribution of atmospheric effects to the

received radiance, providing an atmospherically corrected image in surface reflectance units.

Reflectance is another physical quantity corresponding to the ratio between the light received

at the sensor and the incident light on the area in the Field Of View (FOV) of the sensor

during the acquisition of a pixel. Reflectance for a given wavelength range is then bounded

between 0 (the material absorbs or scatters all the incident light away from the sensor) and

1 (the material reflects all the incident light towards the sensor).

We can immediately see that for the examples provided in the image of Fig. 1, the re-

flectance spectra of the different materials in the FOV of the sensor when it acquired a pixel

are significantly different, which allows to distinguish between materials, and somewhat ex-

plains the use of the term “spectral signature” of a material.

The information contained in a hyperspectral image (HSI) also comes with an important

quantity of data to handle, which calls for efficient signal and image processing algorithms to

process such images, beginning with an efficient visualization of the information in HSIs.

Other applications of hyperspectral remote sensing include (the list is not exhaustive):

• Target detection, that is determining whether a material with a known signature is

present or not in the observed scene [124], or the related problems, anomaly and change

detection.

• Superresolution, a data fusion problem aiming at combining the information contained

in two (or more) co-registered images of the same scene containing complementary in-



Introduction 3

Figure 1: Representation of a HSI [20].

formation. For example, the images can have different resolutions [7]. Typically, we

are interested in fusing a hyperspectral image (low spatial resolution and high spectral

resolution) and a multispectral image (with converse resolution properties). The goal

is to obtain an image with good resolutions for the two modalities. A related problem

is pansharpening, where the goal is to fuse the information contained in a HSI and a

panchromatic image, that is a gray level image incorporating information on all wave-

lengths in the visible light (minimal spectral resolution), but with a very high spatial

resolution [106].

• HSI segmentation [24] is a problem whose goal is to partition a HSI into meaningful

spatial (connected) regions in the sense of some predefined criterion (e.g. spectral

homogeneity) in order to simplify its interpretation. A related problem is the supervised

classification problem [62, 26], where a certain number of pixels have known labels, and

the objective is to relate each pixel of the HSI to one of these predetermined classes.

• Spectral Unmixing (SU) [94]. Due to the limited spatial resolution of HSIs, many pixels

cannot account for the spectral signature of only one material, because there were

several distinct materials present in the FOV of the sensor during the acquisition. The

acquired signature is then a mixture of the contributions of the different materials. In

the example of Fig. 1, the pixels at the interface of the river and soil are a mixture of

both reflectance signatures. Similarly, pixels whose field of view incorporate only a few

isolated trees are a mixture of soil and vegetation. SU aims at identifying the signatures

of the materials present in the image scene and to quantify their proportions inside each

pixel of the image. SU will be the main focus of this thesis and this problem will be

much more developed in in the next paragraph and in the remainder of this thesis.

Spectral unmixing can be seen as a blind source separation (BSS) problem whose goal is

to be able to separate the contributions of the materials present in the FOV of the sensor
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during each pixel’s acquisition. The spectral signatures of the materials have to be extracted

from the data (they are called endmembers) and their relative proportions in each pixel have

to be estimated (these are called fractional abundances). The term “blind”, coming from

the signal processing community [43], means that we only make use of the observed data to

solve the problem, without knowing either the endmembers or the mixing coefficients. We

only use an equation describing how the observed pixel is related to the endmembers and

abundances. This equation is called the mixing model and is of prime importance for spectral

unmixing. Blind Source Separation (BSS) is an important topic in signal processing, and

has been intensively studied in the signal processing community since its introduction in the

1980s [43]. Its applications are now very diverse. BSS was first formulated for a biological

problem, but was quickly extended to many problems, such as the so-called “cocktail party”

problem, when one tries to recover several audio sources from mixtures recorded by several

microphones in the same room. Other applications include chemical analysis, geoscience,

acoustics, and a wide range of biomedical problems: electroencephalography (EEG) signal

analysis, Magnetic Resonance Imaging (MRI), electrocardiogram (ECG) analysis, and the

list is far from exhaustive.

As we will see in the thesis, in SU, the mixture model is often considered linear as a

first approximation [20], but it has particularities which make it a very specific BSS problem.

We will see that usual BSS tools, such as the well-known Independent Component Analysis

(ICA), cannot be straightforwardly applied to SU.

Objective and organization of the thesis

This thesis tries to address one of the usual limitations of the classical algorithms and models

proposed for SU. One of these limitations is the questionable validity of the usual linear

mixing model (LMM) in some practical applications, which has received a lot of interest in

the last few years in the community [80]. The second limitation, which motivates this thesis

is the so-called spectral variability (SV), or endmember variability problem. The idea behind

this concept is that in most SU models and algorithms, a single material (or endmember)

is implicitly assumed to be perfectly represented by a unique spectrum. This is in fact a

strong assumption since the different materials always exhibit a certain intra-class variability,

caused by different phenomena that we will detail in the next chapter. SV can considerably

hamper the results of conventional SU techniques in practical scenarios. In other words,

the term “spectral signature” is a bit misguiding, since a single spectrum cannot completely

characterize a material. The community has long been aware of this issue, and some works

exist to take it into account [143, 172], but in comparison to nonlinear mixtures, before this

thesis started, it had received much less attention. However, the SV problem is currently in

the spotlight and is becoming an important research topic in HSI image processing and SU.

The main objective of this thesis is then to design models and algorithms specifically designed

to tackle the SV problem. The manuscript is organized as follows:

Part I will review the state of the art methods for linear SU. It comprises two chapters.

Chapter 1 introduces more thoroughly the SU problem, and lays out a state of the art for
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this topic. We focus on linear SU, which has been extensively studied in the past few decades,

and for which many algorithms and methods have been developed. Then, in Chapter 2 we

make a review of most of the existing approaches to address the SV issue, in a linear SU

framework, and we classify them depending on their lines of attack, and assumptions made

to deal with the problem.

Part II and Part III gather the conributions of this thesis to the SU problem, accounting

for endmember variability.

Part II is concerned with approaches dealing with sparsity to handle spectral variability.

The methods we will introduce do not explicitly model spectral variability in the mixing

model. In this sense, they can be considered “data driven”. One of these approaches will

perform SU in local, often small regions of the datasets (in which endmember variability

effects are mitigated). In such cases, estimating the number of endmembers to use can

become difficult, and overestimation is frequent. Then it makes sense to evaluate how this

estimation is impacted by the small size of the regions. Chapter 3 studies the problem of

intrinsic dimensionality estimation for HSI in a local setting, by comparing and discussing

several ID estimation algorithms of the literature. Chapter 4 is divided into two parts, and

deals with the use of sparsity to tackle spectral variability. The first part aims at finding a way

to circumvent this overestimation problem in Local Spectral Unmixing (LSU) by eliminating

irrelevant extracted endmembers using sparsity. We show how this improves LSU results on

a simulated and a real dataset. The second part deals with the consideration of endmember

“bundles”, that is the representation of a material by a set of endmembers extracted from

the data rather than a single spectrum. In this context, we show that introducing structured

sparsity can also be beneficial to SU performance, both on synthetic and real datasets.

Part III introduces a new mixing model, called extended linear mixing model (ELMM),

which is specifically designed to tackle the SV issue, starting from physical considerations, in

particular to model the effect of changing illumination conditions on the spectrum of a given

material. In Chapter 5, we derive the model from the physical radiative transfer model of

Hapke, by resorting to simplifying assumptions in order to make the model tractable from

a SU point of view. Further, we lay out two algorithms to estimate the parameters of this

model, including several constraints and regularizations to provide better solutions, adapting

optimization algorithms to our problem. We show results on synthetic and real datasets

and compare our approaches to other algorithms of the literature. Chapter 6 presents some

extensions and applications of the ELMM to two other approaches for SU. The first application

is a combination of the ideas of the ELMM to those of LSU, in order to be able to estimate

SV in the LSU framework. The second application is the nonnegative Canonical Polyadic

(CP) tensor decomposition of hyperspectral data, which can be shown to be connected to the

ELMM.
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spectral unmixing problem
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1.1 Introduction

The limited spatial resolution of hyperspectral sensors makes it very likely that the incoming

light arriving to the sensor actually results from the interaction of photons with several distinct

materials. The resulting reflectance (or radiance) is then a mixture of the contributions of the

reflectances (or radiances) of the materials present in the Field Of View (FOV) of the sensor

during the acquisition of a pixel. The objective of Spectral Unmixing (SU) is then to recover

the signatures of the different materials present in the observed scene (called endmembers, for

a reason which will become clear soon), and to quantify their proportions in each pixel of the

scene (called fractional abundances). The problem is very simple to formulate, but solving it

is not straightforward. We will first review the conventional linear spectral unmixing problem,

and present the main algorithms developed to solve it. These methods have proven useful for

SU, but they assume that the materials in the imaged scene are perfectly represented by a

9
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single spectrum, which is a very strong implicit hypothesis. Then we briefly will discuss the

main limitations of linear SU, including spectral variability, which will be the main focus of

this manuscript.

This chapter’s goal is to present the linear SU problem and to review the main approaches

to tackle it. There are a large number of methods and algorithms for this problem in the

literature, and we try to select some of the best representatives and we categorize them,

following the outline of [20]. Let us denote each of the N hyperspectral pixels of the image by

a vector xk ∈ RL, k = 1, ..., N , where L is the number of spectral bands. If we assume that

there are P endmembers, with their signatures sp ∈ RL to consider, we can store all of these

signatures into the columns of a matrix S ∈ RL×P . There are then P abundance coefficients

for each pixel, which we gather in vectors ak, k = 1, ..., N . Then for pixel k, we can relate

the observation to the abundances and endmember matrix by:

xk = f(S,ak) + ek, (1.1)

where f is a function modeling the mixing process, whose analytical form is the only informa-

tion we have on the problem, other than the data. The vector ek is an additive noise, often

assumed to be Gaussian. If we store all pixels in a matrix X ∈ RL×N , all noise vectors in

matrix E ∈ RL×N , and all the abundance vectors in a matrix A ∈ RP×N , and assuming the

mixture model f is the same in the whole image, we can rewrite Eq. (1.1) as:

X = f(S,A) + E. (1.2)

The scope of this thesis is on the classical case of the Linear Mixture Model. Therefore we

will not address the case of nonlinear mixtures in detail. Reviews on the topic can be found

in [80, 49].

1.2 Linear Spectral Unmixing

Considering that the endmembers are sources, and that the abundances are mixing coeffi-

cients, then estimating S and A is a Blind Source Separation (BSS) problem. For SU, a usual

assumption is to consider a Linear Mixing Model (LMM), that is to consider that an observed

pixel is a linear combination of the endmembers’ spectra, weighted by the abundances. The

LMM is a reasonable assumption when within the FOV of a pixel, each ray of light only

interacts with a single material, before going to the sensor. This is typically the case in the

so called “checkerboard” configuration, as shown Fig. 1.1 (a). Nonlinear mixing processes are

typically linked to the limited validity of such a hypothesis in certain scenarios, for instance

in tree canopies when the incoming light bounces off several times before reaching the sensor

(Fig. 1.1 (b)), or when the mixture occurs at a microscopic level, e.g. in sand for instance

(Fig. 1.1 (c)). The specificities of SU of HSIs with respect to other BSS problems are first

due to the nonnegativity of the data: measurements are radiance or reflectance spectra, and

should therefore be nonnegative. This means that the endmembers’ spectra are nonnegative
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(a) (b) (c)

Figure 1.1: Several mixing configurations. In a “checkerboard” scenario, the LMM is valid

(a). Each material occupies a fraction of the (flat) surface in the FOV of the sensor. In (b)

is displayed a case of multiple reflections of light before reaching the sensor. (c) shows a case

of intimate mixing. The images were borrowed from [49].

as well. Besides, with the assumptions of Fig. 1.1, it is natural that the abundances should

be interpreted as proportions. That is why the abundance coefficients are usually required

to be positive and to sum to one in each pixel. The resulting constraints are usually called

the abundance nonnegativity constraint (ANC), and the abundance sum-to-one constraint

(ASC). The validity of the ASC can be questioned when nonlinearities or spectral variability

(as we will see later in the manuscript) are not negligible, but it makes perfect sense in the

classical LMM framework, provided there is no significant endmember missing. With the

LMM, we can simply rewrite Eq. (1.1) as:

xk =

P∑
p=1

apksp + ek, (1.3)

and in the global case, Eq. (1.2) becomes:

X = SA + E. (1.4)

This problem is extremely ill-posed because the solution is not unique. Indeed, for in-

stance, any invertible matrix M ∈ RP×P will satisfy SA = (SM)(M−1A). In addition,

constraining both the endmembers and abundances to be nonnegative, although physically

sound, is not sufficient to alleviate this issue. However, this ill-posedness is typical in BSS

problems, and additional assumptions have to be made to find suitable solutions. The best

known of the assumptions classically used in BSS is probably the statistical independence of

the sources to be separated, which led to the broad class of Independent Component Analysis

(ICA) algorithms [43]. ICA techniques have proven to be extremely powerful and useful in

many different situations. Unfortunately, in SU, its core assumption of statistical indepen-

dence of the sources is not valid [121, 107].

There are two ways to consider Eq. (1.4) in an ICA framework. The most natural way to

do so is to see the endmembers as the sources (in the rest of this thesis, we will often refer to

the endmembers’ spectra as “sources”), and the abundances as the mixing coefficients (with

additional constraints). However, even though the endmembers are not usually modeled as

random variables, empirical measures of statistical independence (such as Pearson correlation
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coefficients between any two endmembers, at the second order) suggest that spectral signa-

tures of the endmembers are far from independent [13]. They often share the same absorption

bands, and some other spectral features. Another less intuitive way is to consider that the

abundances are the sources, and that they are mixed by the coefficients of the endmembers’

spectra. Nevertheless, one can immediately see that the ASC introduces a statistical depen-

dence between the abundance coefficients [121]. The application of ICA techniques is then

precluded in HSI data analysis for SU. However, it could still be useful separate artifacts [75]

(e.g. the so-called “striping” and “smile” effects [139]) from the signal of interest.

This means that specific techniques have to be developed in order to reliably estimate the

parameters of SU, even in a x linear case.

1.3 Convex geometry of the SU problem

Since ICA techniques usually fail in SU, techniques to recover endmembers and abundances

have to rely on other approaches. In a LMM framework, and given the ANC and ASC, the

geometric properties of the problem are going to be the cornerstones of most SU techniques.

Both constraints mean that every abundance vector belongs to the unit (or probability) sim-

plex of dimension P−1, denoted as ∆P
1, and defined by ∆P = {a ∈ RP ,∀p ∈ [[1, ..., P ]], ap ≥

0, and
∑P

p=1 ap = 1}. A simplex can be thought as a generalization of a triangle to higher

dimensions: a n-simplex is a subset of an n dimensional affine subspace which is the simplest

n − 1 dimensional object in this subspace. For two points, the 1-simplex whose vertices are

these two points is the line joining them. Three non collinear points can define the vertices of

a 2-simplex, that is a triangle. A 3-simplex is a tetrahedron, and so on. In addition, since the

mixture of the endmembers is linear, an observed pixel also lies in a (P − 1)-simplex, whose

vertices are precisely the P endmembers (hence their name). This means that although the

data belongs to a high L-dimensional embedding space, they actually live in a much lower

dimensional subspace, whose structure is relatively simple. This is because the data pixels are

convex combinations of the endmembers. An example is given in Fig. 1.2. On this figure, the

endmembers are represented as the red dots. A data point is shown in blue. The abundances

of this pixel are the barycentric coordinates of the blue point in the simplex. This simplex

is located in the affine subspace spanned by the endmembers. If the ANC is dropped and

the ASC is kept, then the data can lie anywhere in this whole subspace, and not only in the

simplex.

Conversely, if the ASC is dropped, the data still possess a strong geometric structure, since

the ANC makes the data live in a convex cone spanned by the endmembers. This fact will be

important when we will look into the effects of spectral variability later in the manuscript.

The intersection of the cone and the affine subspace then also defines the data simplex when

both constraints are enforced.

1We put P as a subscript to insist on the number of vertices, rather than on the dimensionality of the

simplex.
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Figure 1.2: Geometric interpretation of the LMM in the case of three endmembers (red dots).

The axes represent a basis of the linear subspace spanned by the endmembers.

This geometric interpretation of the LMM under the constraints suggests a two-step line

of attack which is the most common way to perform SU: trying to extract the endmembers,

knowing they are vertices of a simplex, and after that estimating the corresponding abun-

dances. A third (implicit) step is to estimate the number of endmembers to extract, which is

a difficult task and a research topic on its own, with much broader applications than SU.

1.3.1 Estimating the number of endmembers

Before extracting the sources, the number of endmembers to consider has to be estimated

somehow. Recall that the definition of the endmembers is subjective and depends on the scale

at which the endmember extraction has to be performed. This makes the estimation all the

more difficult. However, an upper bound to this number can be obtained by estimating the

Intrinsic Dimensionality (ID) of the dataset. For a HSI: X = Y + E, decomposed as a signal

part Y and a noise part E, the ID of this dataset is defined (in the most common acceptation)

as the dimension of the vector subspace spanned by the signals y1, ...,yN . A wide variety of

algorithms exist in the literature (specific to hyperspectral remote sensing or more generally in

the signal processing community) to perform this estimation task [132]. Chapter 3 will review

some ID estimation algorithms of the literature and discuss their performance in particular

settings for SU.

1.3.2 Endmember extraction with pixel purity

Once the number of endmembers to use has been determined, algorithms specifically designed

for this task have to be designed. Since obtaining endmembers from geometric considerations

is quite specific to HSI analysis, this has been an important topic in the literature, and many

endmember extraction algorithms (EEA) have been designed. We review some of them below.
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In most cases, another key assumption has to be made in order for algorithms to be efficient:

the so-called pure pixel assumption [127]. As the name suggests, this consists in assuming

that for each of the materials considered, at least one pixel in the image is composed of

only this material (meaning that its abundance is 1 in this pixel). If this assumption holds,

then (without considering noise), there exist data points corresponding to each vertex of the

simplex. Depending on the endmembers considered, on the spatial resolution of the sensor,

and on the characteristics of the imaged scene, the assumption does not always hold, and

some algorithms take this into account [128]. A review of most of the popular EEAs assuming

pixel purity can be found in [127]. In all cases, the idea is to find a way to extract the extreme

points of the dataset, which in most cases are assumed to be the vertices of a simplex. Here,

we briefly review a few popular algorithms of the literature assuming pixel purity holds for

all materials in the image.

• Pixel Purity Index (PPI) [21]. This algorithm starts by whitening the data (so that the

noise has zero mean and a unit covariance matrix) through a Maximum Noise Fraction

(MNF) [69] transform. This is a dimension reduction step whose goal is to define image

components sorted in decreasing order in terms of Signal to Noise Ratio (SNR), (unlike

Principal Component Analysis (PCA), which sorts its image components in terms of

explained variance of the data). A smaller number of components are retained in order

to reduce the impact of the noise and the computational burden. Then, a large number

of random vectors, called “skewers” are generated, and for each of those all data points

are projected on the directions defined by the skewers, after what the data points

maximizing these projections are kept. If a point is situated on the extreme parts of

the dataset, they are likely to lead to important projection values for a large number

of skewers. The number of times each pixel leads to large projection values of a skewer

is counted. This defines a PPI score for each pixel. Finally, the pixels whose score is

larger than a user defined threshold are candidate endmembers. A further selection can

be made by an interactive visualization tool. Note that a faster and fully automated

implementation of PPI was proposed in [39].

• N-FINDR [165] (for “N-finder”, where N is the number of endmembers to extract). This

algorithm aims at finding the pixels of the image forming the simplex with maximum

volume among the possible simplices in the data. The idea is to grow a simplex inside

the data until the one with maximum volume is found. In more details: an initial noise

whitening step is also carried out using MNF to reduce the dimensionality of the data.

Then P randomly chosen pixels make an initial guess of the endmember set. The volume

of the simplex spanned by these initial endmembers is then computed. Then given a

pixel, the volumes of P new simplices are computed by replacing the pth endmember

by the current pixel. Then the endmember which is absent in the simplex with largest

volume is replaced by the current pixel. This operation is repeated for all pixels, after

what the vectors spanning the largest volume simplex are retained as endmembers.

• Vertex Component Analysis (VCA) [122]. This algorithm also performs some dimension

reduction using a PCA as its first step, in order to accommodate the noise, and projects

the data onto a P -dimensional subspace. Then, a projective projection step (a projective
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geometry concept, also known as perspective projection, or dark point fixed transform

[47]) is carried out. It is a rescaling of the data in which every pixel xk is transformed

as: x̃k = xk
x>k u

, with u ∈ RP a vector chosen so that x>k u > 0, ∀k = [[1, ..., N ]]. Here u is

chosen as the mean of the data. The projected points lie on a hyperplane (recall that at

this point, we are working in a P -dimensional subspace) defined by v>u = 1, ∀v ∈ RP .

This projection transforms a cone in RP into a (P − 1)-simplex, which makes the

algorithm relatively insensitive to scaling variations of the data (for a high enough

estimated SNR). This interesting property will be of interest later in the manuscript.

The projective projection is only carried out when the noise power is not too important

because it can amplify the noise. An iterative process is used in order to identify

the endmembers. A random vector is generated, and the first endmember is the data

point which maximizes the projection onto the direction of this vector. Then, a new

random vector is generated, with the constraint that it has to be orthogonal to the

subspace spanned by the already determined endmembers. At each step, the data point

maximizing the projection on this random vector is identified as an endmember. The

process stops when P endmembers have been identified.

These algorithms share the same core idea, which is to look for extreme points in the data

distribution. However, their main drawbacks are their stochasticity, and their sensitivity to

outliers, or to noise for low SNRs. For example, in the VCA, an outlier can easily be selected

as a spurious endmember, and this will hamper the extraction of the following endmembers

since the orthogonal projection step will be made in a suboptimal direction.

1.3.3 Abundance estimation

Once the endmembers have been identified, the last phase of the usual unmixing chain is

abundance estimation. This is generally done by solving the following optimization problem

(which is separable w.r.t. the pixels of the image):

Â = arg min
A

1

2
||X− SA||2F ⇔ Â = arg min

A

1

2

N∑
k=1

||xk − Sak||22

s.t. A ∈ ∆P s.t. ak ∈ ∆P , ∀k = 1, ..., N, (1.5)

where A ∈ ∆P must be understood columnwise (each abundance vector for each pixel is

constrained to belong to the probability simplex). ||.||F denotes the Frobenius norm. This

is the simplest way one can recover abundances subject to the ANC and ASC, once an

endmember set is known, simply by looking for the abundances which reconstruct the data

best in a least square sense, given S. This way to obtain an estimation of the abundances is

usually called Fully Constrained Least Squares Unmixing (FCLSU) in the literature. When

the ASC is dropped, solving the optimization problem (1.5) is called (partially) Constrained

Least Squares Unmixing (CLSU). The most widely used algorithm of the literature to solve

these two problems is described in [76]. Without the ASC, the problem in pixel k simply
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reduces to the nonnegative least squares problem:

âk = arg min
ak

1

2
||xk − Sak||22

s.t. ak ≥ 0, (1.6)

which is solved in [76] and in the algorithm we will use throughout the thesis by an active

set algorithm. The idea behind active set algorithms in nonnegative least squares (or more

generally in quadratic programming) is that the optimal solution a∗ (we drop for now the

pixel index for brevity) will have a certain number of strictly positive entries, and the others

will be zero (the nonnegativity constraint will be active for these entries). If the set of indices

corresponding to zero entries is known (the active set), then the remaining entries (those

of the passive set, where the constraints are inactive) of a∗ are simply the solution of the

unconstrained reduced problem:

arg min
apassive

1

2
||x− Spassiveapassive||22, (1.7)

whose solution (SpassiveS
>
passive)

−1Spassivex involves the Moore-Penrose pseudoinverse of the

matrix Spassive (provided it has full rank, which is a reasonable assumption here). Then, the

solution of problem (1.6) is a∗ = [apassive,0active]. Then the problem boils down to identifying

the active and passive sets. To do that, we write the Lagrangian for problem (1.6):

L(a) =
1

2
||x− Sa||22 + µ>a, (1.8)

where µ is a vector of Lagrange multipliers for the inequality constraint a ≥ 0. The Karush-

Kuhn-Tucker (KKT) conditions for this problem write:

S>(Sa∗ − x) + µ = 0

µ>a∗ = 0

a∗ ≥ 0

µ ≥ 0.

(1.9)

In particular, these conditions imply that the vector w = S>(Sa∗ − x) only has negative

entries. Suppose that we have initialized the indices of the active and passive sets, and solved

the reduced problem (1.7) on this passive set. Let us further define ŵ = S>(Sa† − x), where

a† = [a∗passive,0active] for the current active and passive sets. Then, if ŵ ≤ 0 on all the passive

and active indices, then we have a∗ = a†. Otherwise, it can be shown that if for some index

p, ŵp > 0, then incorporating it to the passive set, and solving the updated problem (1.7)

will decrease the objective function. This process of adding one of the indices (in practice the

one corresponding to the largest entry in ŵ) for which the condition is not satisfied to the

passive set, is repeated until the true active set has been found (when all the entries of ŵ are

negative). This first algorithm to take advantage of this idea was presented in [101], and is
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proven to terminate and converge to the true solution of problem (1.6). There are many more

ways to solve this problem, such as interior-point methods [22], or more modern proximal

methods [42]. In order to solve the FCLSU problem, that is to incorporate the ASC, [76]

augments the endmember matrix S with an additional vector of ones, and the pixel vector

with an additional 1:

S̃ =

[
δS

1>L

]
, and x̃ =

[
δx

1

]
, (1.10)

where δ is a coefficient weighting the ASC, with respect to the data fit, and 1L is a vector

of ones of length L. In order that the ASC should be almost perfectly enforced, δ should be

very small. This algorithm solves the CLSU problem (1.6), simply replacing S by S̃ and x by

x̃.

Note that the (F)CLSU problem could also be easily (and more efficiently, according

to [130]) dealt with in a proximal framework, for instance by using splitting algorithms such

as the Alternated Direction Method of Multipliers (ADMM), and adding Lagrange multipliers

for the equality constraint in case the ASC is required, or by using a projected gradient scheme,

using efficient algorithms to project on the unit simplex [45] if the ASC is considered. For

more details about proximal methods, which will be at the core of the optimization schemes

developed in this thesis, see [42], or Appendix A.

Other algorithms faster than the active set method of [76] (at least for a relatively low

number of endmembers, usually less than 10 [130]) have been more recently developed in

the community. We can cite for instance the work of [79], which does not rely on complex

optimization algorithms, but rather on affine geometry, and linear algebra. It is based on the

fact that data points outside the convex hull of the endmembers will necessarily have at least

one zero abundance coefficient. The algorithm uses a method to identify a zero coefficient,

and then finds the other zero coefficients one after the other by recursively projecting the

data point on the affine subspace spanned by the endmember set, minus one which has been

identified as having zero abundance. This operation is performed until the projected point is

situated inside or on the facet of a lower dimensional simplex, spanned by the active endmem-

bers for this pixel. Then the abundances can simply be computed using the unconstrained

least squares solution (in a very low dimensional subspace, so this operation requires a much

reduced computational load). Since the data point is inside the simplex, the ANC and ASC

will naturally be satisfied. Another algorithm based similar concepts is slightly faster due to

a more efficient computation of the barycentric coordinates of points inside the simplex [130].

1.3.4 Endmember extraction without pure pixels

Other algorithms have been designed in order to circumvent the pure pixel hypothesis [128].

Most of them are based on finding the simplex of minimum volume enclosing the data. This

method is able to find the true endmembers of the dataset if there are enough data pixels

on the facets of the simplex, in order that the scatterplot can be extrapolated into the true

simplex, as can be seen on Fig. 1.3. The constraint of having all pixels belonging to the
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Figure 1.3: Finding the minimum volume simplex enclosing the data. The endmembers are

in red, and the data points in blue. The convex hull of the data, whose extreme points would

be identified as endmembers by pure pixel-based EEAs, is represented in another shade of

blue. The true simplex is in orange, and two other simplices enclosing the data, but with a

larger volume are represented in dashed lines.

simplex can be softened to avoid too much sensitivity w.r.t. outliers, which can highly affect

the volume of the simplex. The minimum volume constraint is enforced through a hard, often

nonconvex optimization problem, resulting in an increased complexity of the algorithms,

w.r.t. pure pixel based EEAs. Also, these approaches are inherently able to jointly estimate

the endmembers and the abundances, often in a Nonnegative Matrix Factorization (NMF)

framework, which we will encounter again in section 1.4.2. We can cite as examples the

Minimum Volume Simplex Analysis (MVSA) [103], and its extension, the so-called Simplex

Identification via Split Augmented Lagrangian (SISAL) [17]. In both MVSA and SISAL, the

first step is a dimension reduction in order to identify the P -dimensional signal subspace

(using the algorithm of [19], which we will detail in Chapter 3). Since the volume of the

simplex spanned by the columns of S is proportional to its determinant, MVSA solves the

following optimization problem:

arg min
Q

− ln(|det(Q)|)

s.t. QX̃ ≥ 0, 1>PQX̃ = 1>N , (1.11)

where ·̃ is the projection of the matrix under the tilde onto the signal subspace and Q = S̃−1.

This matrix is used because the problem is better conditioned under this formulation than

simply using S̃. Such a hard problem is easier to solve in a lower dimensional subspace,

where the noise is in addition reduced. The constraints on the second line of the problem are

simply the ANC and ASC, since QX̃ is the abundance matrix. This problem is nonconvex

(in general) and very hard to solve, and in practice the MVSA only looks for a good enough

local minimum. SISAL solves a similar problem, except that it replaces the hard ANC by a

soft version in order to accommodate outliers, which can considerably hamper the results of

minimum volume-based algorithms.
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The Minimum Volume Constrained NMF (MVC-NMF) [118] or the Iterative Constrained

Endmembers (ICE) algorithm [15] can also be mentioned. It replaces the nonconvex penaliza-

tion of the volume by a simpler convex surrogate: the sum of the squared distances between

pairs of endmembers in the feature space. This is much easier to handle than the volume of

the simplex, which involves the absolute value of the determinant function. ICE considers

the following the globally nonconvex NMF problem (under the ASC and ANC):

arg min
S≥0,A∈∆P

1

2
||X− SA||2F + λ

P∑
i=1

P∑
j=i+1

||si − sj ||22, (1.12)

where λ is a regularization parameter, weighting the importance of the regularization term

w.r.t. the data fit. Note that NMF problems require the initialization of the variables involved.

In practice the initialization of the endmembers is often performed using a pure pixel-based

EEA, and the abundances can be initialized by FCLSU, or randomly initialized, although

this may cause the algorithm to be stuck in a poor local minimum of the objective function.

1.4 Statistical approaches

The algorithms discussed here make assumptions on the probability density function (PDF) of

the variables of the unmixing problem, either explicitly for Bayesian approaches, or implicitly

for NMF-based approaches. In particular, these approaches are supposed to be more robust

to heavy mixtures, outliers and noise than the usual geometric approaches because the pure

pixel assumption can be relaxed to some extent.

1.4.1 Bayesian Approaches

This class of methods relies on the Bayesian estimation framework. Provided the endmember

matrix S and the abundance matrix A are statistically independent, we can write the following

relationship between their PDFs, using Bayes’ rule:

pS,A|X(S,A|X) =
pX|S,A(X|S,A)pS(S)pA(A)

pX(X)
, (1.13)

where pX|S,A(X|S,A) is the likelihood function, which depends on the observation model,

pS(S) and pA(A) are the prior densities on the sources and abundances, respectively. These

priors are used to incorporate prior knowledge about the parameters. pS,A|X(S,A|X) is the

posterior density. The idea of Bayesian estimation is to estimate this posterior density, and

from them to estimate the parameters of the model from this PDF. Classically used estimators

are the Minimum Mean Squared Error estimator (MMSE), or the Maximum A Posteriori

(MAP) estimator. No specific prior information about the sources and abundances results in

having uniform priors, and in that case the posterior density is proportional to the likelihood,

and the MAP estimator reduces to the Maximum Likelihood Estimator (MLE). However, the
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resulting estimation problem is very ill-posed and regularizations are necessary for accurate

estimation, which, as we will see, is equivalent to incorporating priors on the abundances and

endmembers.

In most cases, the posterior density does not have a simple analytical expression, and

the MAP estimators cannot be obtained easily from an optimization problem, nor can the

MMSE estimator be computed in a straightforward way. To circumvent this, Markov Chain

Monte Carlo (MCMC) algorithms are used to sample the posterior densities, giving access to

an approximate PDF, which in turn allows to access the MAP or MMSE estimates.

For instance, the work of [50] lays out a hierarchical Bayesian model for the data, in which

the noise is assumed to be white, Gaussian with a diagonal covariance matrix, with the same

variances on each band. The endmembers are assumed to be Gaussian as well, and their

means are determined by pure pixel EEAs. The variances of these endmember distributions

are linked to the confidence in this assumption. The abundances are assumed to be uniform

over the unit simplex. The model is said to be hierarchical because the different variances

involved have to be estimated as well, so they have to be assigned (often non-informative)

PDFs as well.

Another example of an algorithm designed for SU in a purely statistical context is the so

called “Dependent Component Analysis” (DECA) [120]. In this algorithm, the abundances are

modeled as a mixture of Dirichlet densities, which automatically enforces the ASC and ANC.

The prior on the endmembers depends on a parameter λ, which influences the penalization

of a large volume of the estimated simplex (as in the minimum volume based EEAs). An

algorithm is then designed to obtain the MLE for this problem. However, out of simplicity,

the model does not incorporate noise. Having for instance a Gaussian model for the noise

would allow to access the Bayesian estimators of MAP and MMSE to be computed using

MCMC methods.

Note that the last two approaches are not constrained by the pure pixel assumption, nor

by the requirement to have enough pixels on the facets (as for the minimum volume based

approaches). In this sense, these approaches are more suited for highly mixed scenarios.

1.4.2 Nonnegative Matrix Factorization Approaches

Let us assume for a moment that the noise follows an i.i.d. Gaussian distribution with zero

mean and a diagonal covariance matrix with identical variances for each spectral band:

ek ∼ N (0, σ2IL). (1.14)

The observed image X can be decomposed as a sum of signal and noise X = Y+E, where

Y = SA is the noiseless signal. Using an hypothesis on the independence of the observed

pixels we can write the likelihood as:

pX|S,A(X|S,A) ∼
N∏
k=1

1

(2π)
L
2 σL

exp

(
−||xk − yk||22

2σ2

)
. (1.15)
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If we assume uniform priors for the endmembers and abundances (over the convex sets

incorporating the constraints, i.e. the positive orthant for the endmembers and the unit

simplex for the abundances), then the posterior density is proportional to the likelihood (1.15),

and the MAP estimator reduces to the MLE. The minimizer of the negative log-likelihood

is the same as the maximizer of the likelihood, so in the end, after some straightforward

computations, the MAP estimator is:

arg min
S≥0,A∈∆P

1

2

N∑
k=1

||xk − Sak||22 ⇔ arg min
S≥0,A∈∆P

1

2
||X− SA||2F . (1.16)

The right handside of Eq. (1.16) precisely defines the Nonnegative Matrix Factorization

(NMF) problem, that is to decompose a data matrix into factor matrices (here the sources

and abundances), with the common dimension of the two factors known beforehand (here,

the number of endmembers P to consider). However, as such the problem is extremely ill

posed since there are infinitely many ways to find factor matrices solving this problem. In

addition, the problem is biconvex (convex w.r.t. each of the factor matrices), but not jointly

convex, with possibly many local minima.

It is well known, however, that incorporating regularization terms to the problem helps

making the problem better posed and result in better solutions [163]. The various possible

regularizations can be interpreted in a probabilistic way in the Bayesian framework, using the

MAP estimator. Indeed, in a more general case than the MLE estimation of Eq. (1.16), the

MAP estimator can be written as:

arg min
S,A

− ln(pX|S,A(X|S,A))− ln(pA(A))− ln(pS(S)). (1.17)

This means that any regularized NMF problem: arg min
S,A

1
2 ||X−SA||2F +RS(S)+RA(A),

where R·(·) is a suitable regularization term on the variable in index, can be seen as a MAP

estimation for a white i.i.d. Gaussian noise, with

pS(S) =
exp(−RS(S))∫

RL+
exp(−RS(U))dU

and pA(A) =
exp(−RA(A))∫

∆P
exp(−RA(U))dU

. (1.18)

With this in mind, the minimum volume based EEA algorithms alluded to in section 1.3.2

are not only based on the geometry of the SU problem, but can be interpreted in a statistical

framework as well. For example, in the case of the ICE algorithm [15], under the same

i.i.d. white Gaussian noise assumption, choosing a uniform prior on the abundances, and

pS(S) ∝ exp
(
−λ
∑P

i=1

∑P
j=i+1 ||si − sj ||22

)
yields Eq. (1.12) as a MAP estimator. Other

examples of NMF in SU which are not solely based on the minimum volume constraint are

numerous, and can be based on various hypotheses, including spatial (piecewise) smoothness

of the abundances [176] and sparsity [170].

Note that in all cases, statistical methods for SU require the use of initial values for the

parameters to estimate , either to define the prior densities, or for NMF problems to initialize
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the nonconvex optimization problem in a smart way. In practice the initialization of the

endmembers is generally performed using a pure pixel-based EEA.

1.5 Sparse Unmixing

This section is concerned with a different approach for SU, which takes advantage of all the

recent developments in signal processing concerning the use of the sparsity hypothesis. A

sparse matrix is a matrix for which many entries are zero. For a linear system of equations, a

sparse matrix means that the equations are not very coupled, as would be the case for a dense

matrix. Sparsity has been extensively used in the last decade for instance to find desirable

solutions of underdetermined linear systems of equations, which is the core hypothesis of

compressed sensing [27, 28], or simply to enforce sparsity in any linear system if it is a valid

assumption in the problem at hand. The idea is to find a basis in which the desired latent

variable has a sparse decomposition. For instance, in SU, the sparsity hypothesis can be used

by considering that of all the endmember signatures available for a HSI, it is rare that more

than 3 or 4 materials contribute to an observed pixel. This sparsity hypothesis makes all the

more sense when the endmember matrix is a large dictionary, either built from the data, or

available a priori.

1.5.1 A semi-blind approach

Sparse unmixing [87] aims at solving the SU in a semi-supervised way by using a large

dictionary of endmembers, typically a spectral library such as the United States Geological

Survey (USGS) spectral library for minerals. Whether the library is pruned beforehand or

not, there is typically many more candidate endmembers than the actual number present

in each pixel, meaning that for such a large source matrix S, the abundance matrix A is

extremely sparse. In this context, the sparsity hypothesis makes perfect sense, and allows to

select the few endmembers of the library which are actually present in the image. This allows

to circumvent the difficult endmember estimation problem. The sparsity hypothesis can also

be justified in the blind case if there are a lot of materials to unmix (for a spatially large

or complex image), in a more classical endmember extraction and abundance estimation SU

framework.

1.5.2 Sparsity in spectral unmixing

For any vector a ∈ RP , we can define its sparsity level as its number of nonzero entries. This

number is called the L0 “norm” || · ||0 (it is not a norm per se, because it does not satisfy the

homogeneity property, i.e. ∃(a, λ), ||λa||0 6= |λ|||a||0). With this definition, for a given pixel

(whose index we will drop here for brevity), and in the context of semi-blind SU, the goal

is to find the sparsest possible solution of the linear system of equations given by the LMM
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(taking into account the noise):

arg min
a

||a||0

s.t. ||x− Sa||2 ≤ δ, a ≥ 0. (1.19)

We leave aside the ASC for now for reasons that we will clarify a bit further. The

uniqueness of the solution of the noiseless problem (δ = 0) depends on the degree of coherence

of the library S, namely on a quantity called spark(S) (for sparsity rank), which is the smallest

number of linearly dependent columns of the matrix S. It should not be mistaken with the

rank, which is the largest number of linearly independent columns of the matrix. What

is more, we have the inequality spark(S) ≤ rank(A) + 1. For the noiseless problem, it

can be shown that if there exists a solution a of the system Sa = x with ||a||0 ≤ spark(S)
2 ,

then this vector is the unique solution of problem (1.19), with δ = 0 [51]. This condition

is usually satisfied in SU applications, especially in the semi-supervised context. However,

problem (1.19) is nonconvex, combinatorial and very hard to solve, which means workarounds

have to be found to approximately solve it. One of them is the Orthogonal Matching Pursuit

(OMP) [152], a greedy algorithm aimed at finding the most important nonzero components

of the solution. It can easily be adapted to handle nonnegative solutions.

The most common way to deal with the problem is to replace the L0 norm by its convex

relaxation, the L1 norm. The benefit of doing so is to turn the hard combinatorial prob-

lem (1.19) into a convex optimization problem. What is more, it is shown in [27] that under

some assumptions on the linear system, the solution of

arg min
a

||a||1

s.t. ||x− Sa||2 ≤ δ,a ≥ 0 (1.20)

is a good approximation of a sparse solution of the linear system, and can sometimes give close

to optimal solutions of problem (1.19) as well. The sparsity condition to obtain the uniqueness

of the solution is, however, much more restrictive than with the L0 norm. In addition, there

are also geometric arguments to explain the fact that the L1 norm does promote sparse

solutions. An equivalent formulation of problem (1.20) is to minimize the data fit, under the

constraint the the L1 norm is below some value. Fig. 1.4 shows why the L1 norm can enforce

sparse solutions, compared to a classical Tikhonov regularization using a squared L2 norm.

In this figure, the blue ellipses represent the level sets of a smooth function. The red domain

is either the L1 or L2 balls of a given radius. It can be seen that the intersection between the

L1 ball and the best possible level set of the smooth function is very likely to occur on the

axes (i.e. on points with zero entries) with an L1 regularization because of the singularity of

the L1 ball on the axes. On the contrary, this phenomenon has very little chance to happen

with the L2 ball.

Problem (1.20) is also equivalent to the following Lagrange formulation, for an appropriate
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(a) (b)

Figure 1.4: A geometric explanation (in two dimensions) of the fact that the L1 norm enforces

sparse solutions (a), compared to an L2 norm regularization (b). These images were borrowed

from [109].

choice of the regularization parameter λ:

arg min
a

1

2
||x− Sa||22 + λ||a||1

s.t. a ≥ 0. (1.21)

This problem is convex, but remains nondifferentiable and cannot be easily solved. In

addition, the ANC has to be taken into account. Also, the problem with the L1 formulation

is that the ASC can no longer be enforced if needed. The reason for this is that the ASC

forces the nonnegative abundance coefficients to have a constant sum; hence the L1 norm of

the abundance vector is constant as well and cannot be minimized without breaking the ASC.

Without the ASC, problem (1.21) can be efficiently solved by proximal methods, such as the

ADMM, as done in [87], with the Sparse Unmixing by variable Splitting and Augmented

Lagrangian (SUnSAL) algorithm.

Other types of sparsity can be envisioned for SU: in particular, the so-called “collabo-

rative” sparsity hypothesis is very sound in SU applications, and has been used in [85], in

an adapted version of the SUnSAL algorithm. The rationale is that for SU with a spectral

library, many irrelevant spectral signatures of the library will not be present in any pixel of

the dataset, which amounts to say that the support of the nonzero coefficients is the same for

all pixels. In terms of sparsity, this means that the number of nonzero rows of the abundance

matrix A ∈ RP×N has to be small. In other words, we force a certain number of rows of the

abundance matrix to be entirely zero. The resulting optimization problem to solve has to be

written for the whole image:

arg min
A

1

2
||X− SA||2F + λ

P∑
p=1

||ap||2

s.t. A ≥ 0, (1.22)
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Figure 1.5: Difference between L1 sparsity (a) and collaborative sparsity (b) on the abundance

matrix. The inactive pixels (where the abundance is zero) are shown in grey.

where ap is a row (transposed in order to get a column vector) of the abundance matrix A.

The term
∑P

p=1 ||ap||2 can be seen as the L1 norm of a P -dimensional ector containing in each

entry the L2 norm of the abundance coefficients for a given pixel. In this sense, this term

can be interpreted as a mixed norm for the matrix A [97]. The Lp,q mixed norm of a matrix

A ∈ RP×N is defined for any p and q ≥ 1 (p and q can even take infinite values, in which

case one has to take the limit for p or q → ∞, which amounts to take a supremum over the

corresponding dimension) as:

||A||p,q =

 P∑
i=1

 N∑
j=1

|aij |p


q
p


1
q

. (1.23)

With this definition, the penalty in Eq. (1.22) is a L2,1 mixed matrix norm.

The difference between the regular and collaborative sparsity penalties on the entries of

the matrix on which they apply is shown in the diagram of Fig. 1.5. In our case, the abundance

matrix becomes row-sparse. This type of norms will be encountered later in the manuscript

and will prove useful to handle SV in a certain paradigm. In addition, we can remark that

this collaborative penalization is no longer at odds with the ASC.

Finally, in SU in general, the abundance maps are known to exhibit piecewise smooth

patterns. With a favorable enough SNR (say more than 20dB, which is reasonable for most

airborne of satellite remote sensing HSIs), it is not always necessary to explicitly enforce this

constraint to obtain visually meaningful abundance maps. However, in a semi-blind sparse

unmixing context, the abundance maps can turn out to be a bit noisy due to the large size of

the library, and it can be a good idea to explicitly enforce spatial smoothness of the abundance

maps. This was first done in [88] using a Total Variation (TV) penalization, and was later

refined using nonlocal means [174], in order to take advantage of similar spatial structures in

the image rather than simply neighborhood information.

1.5.3 A blind variant

The sparse unmixing framework can be a way to avoid the estimation of the endmembers,

but it requires an a priori known spectral library, and is therefore a semi-blind approach only.
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Recently, using collaborative sparsity as introduced above, the sparse unmixing problem was

reformulated in a completely blind way in [8] and [89]. These works are based on the idea that

if the pure pixel assumption holds, then the endmembers are present among the pixels of the

image, which means that some columns of the data matrix X are the endmembers. X is then

used as a dictionary of N candidate endmembers (here we have P = N). This dictionary

is used in the unmixing process, with the constraint that only a small of the pixels (the

endmembers we want to recover) actually intervene to reconstruct all the image. Therefore,

only a small number of rows of the abundance matrix should be nonzero. To enforce this, the

following optimization problem is defined:

arg min
A

1

2
||X−XA||2F + λ||A||2,1

s.t. A ≥ 0. (1.24)

The problem is formulated here without the ASC, but it could be included to the problem if

required, contrary to L1 sparsity. The interest of this formulation is the replacement of the

library S by the data matrix X, used as a self-dictionary. With a large sparsity penalty, only

the few most relevant spectral signatures of the data will be used as endmembers. This avoids

an EEA to be used beforehand, and replaces the ID estimation step with the appropriate

tuning of the regularization parameter, but requires pure pixels.

1.6 Main Limitations of the LMM

We have summarized here the different types of approaches for linear SU. Theses techniques

have proved very useful, but are subject to two main limitations. Let us assume that we have

extracted endmembers in a HSI, and have then a simplex we can work with. It can happen

that a given pixel of the image falls outside of this simplex, as shown in Fig. 1.6.

In that case, solving the usual constrained least squares problem to obtain the abundances

Figure 1.6: Example of a pixel which does not satisfy the usual LMM.
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amounts to project the new pixel onto the simplex, and the obtained abundances are those of

the projection. Then there is going to be an error on the abundance estimation for this pixel.

In case there is no important missing endmember in this pixel, there can be two limitations

of the LMM which can cause this:

• Nonlinearities: it may happen that in the considered pixel, the mixture between the

contributions of the endmembers in this pixel is not linear. For example, when the

FOV of the sensor for this pixel corresponds to a tree canopy, or in urban scenarios.

In those cases, the light which reaches the sensor may have interacted with more than

one material on the ground, and has bounced on objects multiple times. In those cases,

it can be interesting to consider more complex mixing models, such as bilinear ones

[123, 114], accounting for the interaction with up to two constituents on the ground, or

“multilinear” ones, which can theoretically account for higher order interactions [81,

110]. An example of the geometric interpretation of a nonlinear mixture is shown in

Fig. 1.7. Nonlinear mixing models and the corresponding unmixing algorithms have

been a fertile research avenue in the community for the last decade, and comprehensive

reviews can be found in [80, 49]. This subject will not be developed further in this thesis,

which focuses on the second limitation of the LMM.

Figure 1.7: A nonlinear mixture of the three endmembers for pixel xk′ .

• Spectral Variability: the simplex we are dealing with here may not be suited to a given

pixel for another reason, with a fundamentally different physical cause. Indeed, if an

endmember is usually considered to be a single point (spectrum) in the feature space,

all materials present intra-class variability in practice, which can modify locally the

spectrum of the pure materials, regardless of the mixing process. Different physical

phenomena, which will be detailed in the next chapter, can cause this diversity [143,

172]. An example is presented in Fig. 1.8, where a pixel which was not in the initial

simplex can be well explained by considering a local variant of the endmember s1. This

allows to define a new local simplex, suited for this pixel. In this case, the mixture is

still linear, but we consider that endmembers are not fixed in all pixels.



28 Chapter 1. State of the art for the linear spectral unmixing problem

Figure 1.8: Spectral variability in a LMM framework.

Both limitations of the LMM are important, but have not received so far the same at-

tention from the community. It can make sense to consider nonlinear mixtures when it is

relevant, but the risk is to try to explain a bad fit of the LMM only because of nonlinear

effects, while SV effects are equally important, if not predominant.

1.7 Partial Conclusion

This chapter introduced the spectral unmixing problem and reviewed the main lines of attack

to address it, in a linear framework. We have separated the different approaches into three

categories. The Spectral Unmixing (SU) problem is a very specific Blind Source Separation

(BSS) problem for which convex geometry plays a great role due to the Abundance Nonneg-

ativity (ANC) and Abundance Sum-to-one (ASC) constraints. The classical unmixing chain

has three steps. The first task is to estimate the number of endmembers to consider. Then

these endmembers are extracted from the data using geometric arguments. Finally, the abun-

dance coefficients are estimated. Other types of more statistical approaches to SU exist and

make explicit (or implicit in the case of Nonnegative Matrix Factorization (NMF) problems)

assumptions on the statistical properties of the variables used. A final class of methods use a

spectral library as a dictionary of candidate endmembers, and use the sparsity properties of

the abundance vectors when decomposed in such large dictionaries of signatures in order to

select the most relevant signatures and assess their proportions in the image.

However, all these approaches assume a constant spectral signature for each material. In

other words, Spectral Variability (SV) is not taken into account at all. The next chapter

will focus on linear SU techniques which take the intra-class variability of the materials into

account.
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2.1 Introduction

This Chapter addresses the spectral variability issue and how it has been handled so far in

the literature. We present the different causes of spectral variability (SV), and review some

existing approaches to tackle it. SV refers to endmember variability in a broad sense, that

is to the fact that the spectral signature of a material can vary either in the spatial domain

of the image, the temporal domain, and so on. We first introduce a general framework to

express any kind of endmember variability. We then propose a classification of these methods

in four categories, inside which they are described and compared. The different algorithms are

described mostly considering variability in the spatial domain, since it is the most common in

the literature, although some techniques specifically designed to address SV in the temporal

or angular domains are also discussed.

Note that many developments on the topic have surfaced during the preparation of this

thesis. That is why, at least in this Chapter, some recent developments which are directly

connected to the work presented in this thesis will be not be discussed here, but will be

introduced and compared in the appropriate chapters. In any case, note that a recent review

of the latest published methods is proposed in [52].

SV is concerned with taking into account the fact that any endmember (whatever the

29
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definition) always has a certain intra-class variability. This is a natural statement, and a

phenomenon that the community has always been aware of. Notwithstanding, the problem has

rarely been directly addressed in the works on SU. Indeed, the vast majority of SU techniques

consider that the endmember matrix S, once extracted, is fixed. In addition, SV, along with

nonlinear effects, is one of the main causes of errors in a conventional SU framework. Since

nonlinear mixtures have gathered much more interest in the community, errors due to SV

can be easily mistaken for nonlinear effects, whereas the LMM does not always have to be

questioned. The observed errors can also be due to the fact that the endmembers used for the

whole image may locally not be good representatives of the different materials. Incorporating

variability in SU amounts to allow this endmember matrix to vary somehow, in the spatial

or temporal domain for instance.

The causes of variability can be very diverse. If we are interested in spatial variability

within an image, SV effects can be related to:

• the changing illumination conditions during the acquisition process. It is well known

that radiance and reflectance are physical quantities which vary depending on the in-

cidence and viewing angles. On a flat surface, there is a priori no reason that these

quantities should change along the image, because the sun and sensor (except maybe

on UAVs) are far away from the scene. However, when the topography of the observed

scene is not flat, then the acquisition angles change locally, since for a given spatial

location they are defined w.r.t. the tangent plane to the surface. Fig. 2.1 illustrates

these considerations. The physics of reflectance is a quite complex topic, which has

been widely studied, in particular in planetary science. The observed reflectance is a

function of the acquisition angles, but also of the optical parameters of each material.

Even though the geometric parameters are the same for all materials, the effects of

topography on the observed reflectance are material specific, but correlated along ma-

terials, because they share the same cause. Radiative transfer equations are used to

model these phenomena, and some physical models exist to relate the geometric param-

eters during the acquisition, and the photometric parameters of the materials to the

observed reflectance. Shadow effects can also be linked to the geometry of the scene,

but this may involve nonlinear effects more than spectral variability since there is no

direct illumination from the sun. It can still be interpreted as SV.

• the intrinsic variability of the materials. This type of variability is probably the most

important in terms of impact, but also the hardest to model. Indeed, it is purely

material dependent and usually corresponds to the variation of a hidden parameter,

which is not taken into account in the mixing model. Examples of this include the

variation of the concentration of chlorophyll in green vegetation, which will affect its

color, or the effects of soil moisture on reflectance. More generally, intrinsic variability

is due to physico-chemical variations within the materials. Hence, incorporating this in

SU can be hard because different variability models have to be used for each constituent

of the image.

• atmospheric effects. These effects can be present if the image is in radiance units,

before any atmospheric correction has been performed on the data. In such cases, the
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zenith

Figure 2.1: Acquisition angles for a given spatial location (red dot). The tangent plane at

this point of the surface is in brown. The incidence angle is θ0, the emergence angle is θ, and

the angle between the projections of the sun and the sensor is the azimuthal angle, denoted

as φ. g is the phase angle. θ0 and θ are defined w.r.t. the zenith, which is defined locally (in

each point of the observed surface) as the normal to the observed surface at this point.

properties of the atmosphere can vary locally in the image. Atmospheric correction

cannot be perfect, and these effects can still happen when the data has been converted

to reflectance units.

In the case of temporal variability, more effects can be found: appearance or disappearance of

a material in a certain time frame, temporal variations, in particular seasonal variations for

vegetation and snow... The atmosphere can also vary from one acquisition to the other. In

the case of multiangular data, the acquisition angles vary from one acquisition to the other,

in addition to the effects of topography.

2.2 A general framework

In this section, we formulate mathematically the SV problem in its most general form, for

any type of variability in any domain (spatial, time, angular) whatsoever. We will use the

LMM here, although everything in this paragraph can be easily generalized to a nonlinear

mixture model.

As we have mentioned above, dealing with spectral variability can be seen as considering

that the source matrix S is not constant in space, time or, more generally, between different

datasets. Mathematically, let us consider a dataset, which is partitioned into K subsets

indexed by k, and the corresponding endmember signatures:

X ≡ {Xk} and S ≡ {Sk} for k = 1, ...,K. (2.1)

The index k can denote a partition in the spatial domain (mostly at the pixel scale, but also
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possibly at the scale of larger spatial regions), or denote several datasets if we deal with a

sequence of images acquired over the same scene at different time dates (temporal variability),

or with different acquisition angles (angular variability), or, more generally, between distinct

datasets (which are supposed to share at least one endmember). In each subset, the sources

are still a linear mixture of the abundances:

Xk = SkAk + Ek. (2.2)

Of course, the different subsets may not be independent: there are usually relationships and

some sort of continuity between certain parameters. In the spatial domains, abundances

as well as spectral variability effects can be spatially correlated (e.g. for a smooth enough

topography). In the temporal domain, abundances are also very correlated from one date to

another, although as in the spatial domain there can be discontinuities. Seasonal variations

can exhibit continuous or even periodic effects. Angular variations can be a continuous

function of the angles. These considerations advocate for a joint processing of the data rather

than totally an separate processing of each subset, using appropriate continuity or correlation

hypotheses.

2.3 Spectral variability in the spatial domain

This section reviews a number of techniques aimed at addressing SV in SU. Most of them are

mentioned in one of the two review papers available on the subject [143, 172]. In [172], the

methods are categorized in two classes, depending on whether the methods see an endmember

class as a set of signatures, or as a probability distribution. Here, we categorize the techniques

in four different classes: those which are based on the concept of endmember bundles, those

based on local spectral unmixing, those based on computational models, and those based on

parametric physics-based models.

2.3.1 Spectral Bundles

The most natural way to include spectral variability in SU is to replace the signature of each

endmember by multiple candidate endmembers for the corresponding material. Ideally, if

a library of spectral comprising several instances of each material under various variability

conditions is available, then it should be used for SU as a dictionary, not unlike the approach

described in section 1.5. Geometrically, the simplex of Fig. 1.2 in section 1.3 can now change

in every pixel, and its vertices can be selected within the pool of candidates for each material,

as shown in Fig. 2.2. However, the availability of such libraries is conditioned to controlled in

situ measurements which are usually very specific and quite costly to carry out. In the light

of this observation, we can wonder how this library could be directly build from the data, in

a completely blind way. This question is exactly the motivation behind spectral bundles.
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Figure 2.2: Concept of spectral bundles.

2.3.1.1 Extracting spectral bundles

The concept of spectral bundles was introduced in [145], under the name “Automated End-

member Bundles” (AEB). The underlying idea is very simple: let us assume that there are a

certain number of pure pixels for each material in the image. Then each of these pure pixels

explains a part of the SV present in the image for this material, and can be considered as

a suitable candidate endmember. In order to extract them, several subsets of the image are

randomly selected (possibly sampling without replacement to ensure that different endmem-

ber instances are selected every time). An endmember extraction algorithm (EEA) is run on

each of these subsets, to extract as many signatures as the number of endmembers considered

globally. If there is at least one pure pixel in each subset for each material, then different

instances of each endmember are likely to be selected. All the candidate endmembers are then

gathered in a dictionary of candidate endmembers. However, since most EEAs are stochastic,

the extracted sources are not aligned, i.e. the order of the endmembers is not the same from

one subset to the other, and there is a priori no grouping of the different signatures into classes

containing different instances of the same endmembers. To solve this problem, a clustering

step is required, in order to group the signatures into P bundles of candidate endmembers

for the different materials. This can be done using for instance the k-means algorithm, with

a suitable distance (see Fig. 2.3). The most two popular in HSI processing are probably the

spectral angle and the Euclidean distance. The former has the advantage of being insensitive

to scalings of the vectors, which will prove useful later to be robust to illumination changes in

the image. However, it is not easy to tune the parameters of the bundle extraction (number

and size of the subsets to use) in order to get optimal performance. Note that if there are no

pure pixels in the image, the efficiency of this technique with non pure pixel based EEAs is

unclear, since it is not guaranteed that the extrapolated endmembers can be explained from

a SV point of view.

2.3.1.2 Abundance estimation for multiple endmember instances

Once the dictionary of bundles is built, the abundances still have to be estimated. Before

describing how, let us denote the dictionary created from the bundles by B. The clustering
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Figure 2.3: Example of an endmember pool extracted by the AEB approach (a), clustered

into 4 meaningful classes (b).

step defines a group structure1 on the abundance coefficients and on the dictionary. We

denote this group structure by G, and each group Gi, i = 1, ..., P contains mGi signatures,

so that representative j of group Gi in the dictionary is denoted as bGi,j . Then there are

Q =
∑P

i=1mGi columns in B. From the endmember bundles, there are multiple ways to

extract abundances, several of which are detailed below.

The Fisher Discriminant Nullspace (FDN) approach [92] is a dimension reduction tech-

nique based on finding a linear transformation which maps the data to a subspace where

the intra class variability is minimized, while the inter class variability is maximized. More

precisely, the within class-scatter matrix Kw ∈ RL×L and the between-class scatter matrix

Kb ∈ RL×L are defined as:

Kw =
1

N

P∑
i=1

mGi∑
j=1

(bGi,j − b̄Gi)(bGi,j − b̄Gi)
>

Kb =
1

N

P∑
i=1

mGi(b̄Gi − b̄)(b̄Gi − b̄)>,

(2.3)

where b̄ is the mean vector of the whole dictionary B and b̄Gi is the mean vector for the

instances of group Gi. Note that the covariance matrix of the whole dictionary K can be

expressed as K = Kw + Kb. With these definitions in mind, FDN looks for the linear

transformation W solution of:

arg max
W

det(W>KbW)

det(W>KwW)
. (2.4)

1This denomination should not be understood in the sense of the algebraic structure. Instead, this simply

means that the endmembers (and hence the abundance coefficients) are grouped into a certain number of

clusters, which we call groups here.
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It can be shown that if Kw is invertible, then the columns of W are the eigenvectors of

K−1
w Kb. Unfortunately, in most cases the scatter matrices are singular because of the lim-

ited number of samples (candidate endmembers) available compared to the dimension of the

data. To solve this problem, a possibility is to first project the data onto the null space

of Kw (where the denominator of Eq. (2.4) vanishes), and then to find vectors maximizing

det(W>KbW) (the eigenvectors of the between class scatter matrix in the projected domain

associated to the largest eigenvalues). Once the projection W has been found, then the un-

mixing can be performed in the lower dimensional projected space, in a very conventional way

using the classical Fully Constrained Least Squares Unmixing (FCLSU) algorithm (detailed

in section 1.3.3), and the projected centroids of each endmember bundle as the endmembers.

Multiple Endmember Spectral Mixture Analysis (MESMA) [131] is a technique which

aims at selecting in each pixel of the HSI the best endmember candidate for each material

in terms of data fit. To do that, the FCLSU algorithm has to be run using all possible

combinations of candidate endmembers. However, the problem thus becomes combinatorial

and a brute force approach rapidly becomes untractable. To mitigate this, MESMA browses

through combinations of 2 to a certain number of endmembers (fixed by the user) to limit the

combinatorics of the problem. In addition, since we expect no more than 3 or 4 materials to

be present simultaneously in each pixel, this technique makes sense. The method still remains

computationally expensive. Interestingly, this approach was recently combined with sparse

regression methods to prune the dictionary beforehand in order to alleviate its computational

load [90].

Another technique to incorporate the bundle information to SU is to use machine learning

approaches. For example, as proposed in [117], the availability of a bundle allows to generate

training data by simulating mixtures of a selection of the candidate endmembers in various

controlled proportions. Then classes are created by discretizing the unit abundance simplex

into several areas corresponding to different mixing proportions. Then a multiclass Support

Vector Machine (SVM) is trained on the simulated data, before being used to classify the

actual data to be tested. A more recent technique uses Gaussian Processes to learn the

function linking the training data to the abundances has been proposed [154]. It has the

advantage of not requiring to discretize the solution space for the abundances.

The usual FCLSU algorithms can also be used, simply replacing the usual endmember

matrix by the dictionary B. Each instance of each endmember is then associated to an

abundance map. Under the ANC and ASC, it seems natural to compute the global abundances

of each material by summing the contributions of each instances within the corresponding

bundle. It turns out that this has a very natural geometric interpretation. Indeed, we can

write the LMM in the context of FCLSU with spectral bundles in one pixel in two different

ways:

x =

Q∑
m=1

ambm =
P∑
i=1

mGi∑
j=1

aGi,jbGi,j

 , (2.5)

where bm is themth column of this dictionary, and aGi,j is the abundance coefficient associated

to bGi,j . Now, if we want the global abundance of material i to be αi =
∑mGi

j=1 aGi,j , then we
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Figure 2.4: Geometric interpretation of using FCLSU on the whole extracted dictionary. The

red polytopes are the convex hull of the different bundles. The yellow points are accessible

endmembers when using FCLSU, whereas they were not extracted by the EEA.

have to rewrite Eq. (2.5) as:

x =
P∑
i=1

mGi∑
j=1

aGi,j

(∑mGi
j=1 aGi,jbGi,j∑mGi

j=1 aGi,j

)
=

P∑
i=1

αiS
∗
i , (2.6)

with S∗i =
∑mGi
j=1 aGi,jbGi,j∑mGi

j=1 aGi,j
. This matrix actually contains new “equivalent” endmembers

for this pixel, associated with the global “intuitive” abundance coefficients. For a certain

material, this new endmember is actually a weighted mean of all the available instances

of this material, where the weights are the abundances extracted by FCLSU. Therefore,

the normalized coefficients of this weighted mean are nonnegative and sum to one. This

means that each element of S∗i is a convex combination of the instances of the corresponding

endmember. Geometrically, each equivalent endmember belongs to the convex hull of the

elements of the bundle for this material. In this sense, finding abundances with FCLSU

rather than MESMA allows more freedom in terms of SV: the latter constrains each pixel

to come from a combination of the extracted sources, while the former theoretically allows

any point inside the convex hull of the each bundle to be a local endmember. This geometric

interpretation is shown in Fig. 2.4. The per-pixel equivalent endmember Si is of course only

defined if at least one instance group Gi is active in this pixel. Otherwise, it makes no sense

trying to extract spectral variability in a pixel from a material which is not present. The

main limitation of all the abundance estimation techniques using bundles is that the results

are heavily dependent on the quality of the extracted bundle, which is not easy to assess, due

to the unknown validity of the pure pixel hypothesis in each subset and the randomness, both

in the subset generation and in the endmember extraction itself. Recent methods trying to

extract bundles in a more refined way, in particular taking spatial information into account

have also been developed [167, 135].
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2.3.2 Local Spectral Unmixing

This section is concerned with Local Spectral Unmixing (LSU) approaches, i.e. techniques

which perform SU on spatially coherent subsets of the data (sliding windows or spatial re-

gions). This is related to bundle extraction since it is perfectly possible to use such subsets

instead of random ones in the Automated Endmember Bundles (AEB) approach [143]. How-

ever, there is an additional important difference here: not only are the endmembers extracted

locally, the abundances are also estimated in a local setting. The rationale behind LSU is that

nonlinearities and especially SV are likely to be mitigated when working on local regions of

the data. For example, when the observed scene as a slowly varying topography relatively to

the spatial resolution, then illumination effects can be seen locally as approximately uniform.

Even with a more uneven topography, defining two regions corresponding to two sides of a

hill, for instance, makes sense in this context, since even if the materials involved are the

same in both regions, two local endmembers will yield better unmixing results than a global

one for both sides. This applies to any type of SV which could be spatially correlated. Also,

pixels within local regions tend to be share the same active endmembers, in slowly varying

proportions. This means that in local regions, multiple mixtures (when the data simplex can

be partitioned into several sub-simplices, each accounting for a mixture of different materials

[171]) are less likely to occur.

2.3.2.1 Sliding windows

The simplest way to define spatial regions is to use local sliding windows, as in the works

of [66] and [29]. In [66], LSU is shown to be spatially adaptive compared to usual SU because

it is able to perform the unmixing at different spatial scales. It is also able to deal with SV

by allowing to split the vegetation class into two subclasses located at different locations of

the image: rainforest and mangrove, which was not possible using conventional SU. However,

an underlying problem related to LSU is that the final expected result for SU is usually a

set of global abundance maps. Thus, it can be useful for interpretation to go from local to

global SU results. The most straightforward way to do this is to group a posteriori all the

local endmembers into a bundle, once again using a clustering algorithm, and to sum up the

local contributions of the instances of a class in each pixel. We will come back later to this

issue.

2.3.2.2 Binary Partition Tree-based LSU

Ideally, the local subsets used in LSU should be meaningful regions of a segmentation of

the hyperspectral image, rather than just sliding windows. Here, we present an approach

which goes even further [161]: instead of using an algorithm to perform HSI segmentation

and defining the resulting regions as the subsets of LSU, it designs a segmentation which is

optimal in terms of LSU performance. This strategy is based on an image processing tool [138]

which has been recently adapted for HSI processing [155]: the Binary Partition Tree (BPT).
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Figure 2.5: Example of the construction of a Binary Partition Tree. This image was taken

from [150]. At each step of the merging process, the two most similar regions are merged.

A BPT is a hierarchical region-based representation of an image, useful for segmentation

or object recognition, among others. Its interest is that the meaningful regions of the image

are represented at different scales. The construction of a BPT is conceptually quite simple. It

requires an initial partition of the image, fine enough not to undersegment meaningful spatial

structures. It can be simply the pixel level of the HSI itself, or a preliminary segmentation

of the image, for example using a watershed segmentation [146], superpixel generation tech-

niques [1], or other segmentation algorithms such as a mean-shift clustering [41]. Then the

BPT is built by iteratively merging the two most similar adjacent regions of the image, until

there is only one region left, whose support is this of the whole image. By doing so, a tree

structure is created, as shown in Fig. 2.5. Every region of the initial partition is called a

leaf of the tree. The regions resulting from a merging are called nodes of the tree, and the

last region is called the root of the tree. In order that such a merging process be possible,

for any region Ri (where i is the index of the region), the definition of a region model MR
is necessary and the notion of “similarity” of two regions should be precised, by defining a

merging criterion, i.e. a similarity measure O(Ri,Rj) between any Ri and Rj . For any

region of a HSI, one of the simplest possible region models is the mean vector of the pixels

composing it, that is:

MRi ≡ x̄Ri =
1

|Ri|
∑
i∈Ri

xi, (2.7)

where |Ri| is the cardinality of region Ri. As a simple merging criterion, one can choose the

usual Euclidean distance, or the Spectral Angle Mapper (SAM):

OSAM (MRi ,MRj ) = SAM(x̄Ri , x̄Rj ) , arccos

(
x̄>Ri x̄Rj

||x̄Ri ||2||x̄Rj ||2

)
. (2.8)

This region model and those merging criteria, though quite simple, can already help to seg-

ment a HSI into meaningful regions [155]. However, for a SU application, it makes sense to

design unmixing based region models and merging criteria. In [161], this is done by running

an EEA on each region, thus extracting a certain number of local endmembers. This number

is determined using an intrinsic dimensionality (ID) estimation algorithm on the pixels of this
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region. We will come back in detail on the ID estimation issue in Chapter 3. The region

model is then the set of endmembers extracted in the region:

MRi ≡ SRi = [sRi1 , sRi2 , ..., sRidRi
] ∈ RL×dRi , (2.9)

where dRi is the estimated ID in region Ri. Defining a merging criterion between two regions

under this region model amounts to finding a similarity measure between two endmember

matrices, of possibly (and very likely) different sizes. To do that, [161] defines a similarity

matrix Υi,j ∈ RdRi×dRj for two regions Ri and Rj , with:

υi,j(k, l) = SAM(sRik , sRil ). (2.10)

The similarity measure is actually a distance between any two regions of hyperspectral pixels

(regardless of their shapes) characterized by their sets of endmembers, with the same number

of spectral bands [68]. It is defined as:

Ospectral(MRi ,MRj ) , ||ζri,j ||2 + ||ζci,j ||2, (2.11)

with ζri,j (resp. ζci,j) a vector containing the minimum value of each row (resp. column) of

Υi,j in its entries. The first term of Eq. (2.11) is a measure of the overall closeness of the

endmembers of region Rj to the endmembers of region Ri. The second term has converse

properties and is used to make the expression symmetric. Note that an extension of this

region model and this merging criterion has also been proposed in [161], using in addition the

similarities of the abundance maps of each region.

With this region model and this merging criterion, a hierarchical representation of the

image driven by the local endmembers’ similarity can be built. From the BPT, a large

number of different segmentations of the image can be defined, by retaining some of its nodes

to define a partition of the support of the image. The question is: how can we select the

optimal one in terms of SU performance?

From any BPT, there are many ways to recover a segmentation of the image. This process

is called pruning the tree (an example is provided in Fig. 2.6). The most simple pruning

strategies consist in cutting the tree at a given height, or in selecting the partition obtained

after a certain number of merging operations during the construction of the tree. Another

approach is to define a cost function over the set of possible partitions given by the structure

of the tree T , and to retain the one providing the lowest value of the cost function:

π∗ = arg min
π∈Π(T )

ε(π), (2.12)

where π∗ is the optimal partition on the tree given the cost function ε, defined on the set of

all possible partitions in the tree Π(T ). The cost function value for a given partition should

somehow be a combination of the values of some energy function defined for each region of

the partition. Conditions on the separability properties of the cost function to ensure that

the optimal partition can be efficiently obtained by a dynamic program have been studied

and can be found in [95, 70, 150]. The general flowchart of the construction and pruning of

a BPT is shown in Fig. 2.7 For a LSU application, a cost function which depends on the
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Figure 2.6: Example of the pruning of the BPT of Fig. 2.5. This image was taken from [150].
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Figure 2.7: Flowchart of the construction and pruning of a BPT.

unmixing performance, but also on the cardinality (i.e. the number of regions |π|) of the

partition is desirable, so as to obtain a tradeoff between reconstruction and complexity of the

segmentation. This means that the abundance estimation has to be performed in each region

using the local endmembers extracted. In the absence of ground truth on the materials and

abundances present in the image to study, a widely used criterion for unmixing performance

is the Root Mean Squared Error (RMSE) between the original pixel x and the reconstructed

one x̂ using the endmembers, abundance vector and mixing model:

RMSE(x, x̂) ,

√√√√ 1

L

L∑
l=1

(xl − x̂l)2. (2.13)

A low value of this measure means that the pixel is well reconstructed by a LMM, that is by a

linear combination of the extracted endmembers, with the estimated abundances as weights.

However, this measure is far from perfect since it is possible to reconstruct the data very

well from poorly estimated endmembers (e.g. when the pixel is actually inside the simplex

spanned by these irrelevant endmembers) and/or abundances. We denote by εR(x, x̂) the
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RMSE for a pixel x of region R.

From the RMSE in each pixel, two region-wise energies can be defined as the average or

the maximum value of RMSE over all the pixels of this region. Using these, the energy of a

partition of the HSI can be defined as one of these two expressions:

εaverage(π) =
1

N

∑
R∈π

∑
x∈R

εR(x, x̂) + λBPT |π|,

εmax(π) =
1

N

∑
R∈π
|R| max

x∈R
εR(x, x̂) + λBPT |π|.

(2.14)

εaverage looks for low values of the average RMSE in the regions of the partitions, but allows

some large RMSE values within the regions, while εmax is less sensitive to outliers, but can

produce higher RMSE values on average.

With either of these two energies, the optimal partitions for any value of λBPT can be

obtained through dynamic programming. When λBPT sweeps through the real line, the

obtained partitions go from the initial partition to a partition with a single region containing

only the root of the tree. In between are partitions with an decreasing number of regions when

λBPT gets higher. In practice, especially for large values of this regularization parameter, a

potentially large range of values of λBPT can lead to the same partition. The intervals

defining the same partition are called persistent intervals and can be easily computed from

the BPT [70]. In the end, through this approach, a segmentation of the image which is optimal

in terms of LSU performance (in terms of RMSE, weighted by the number of regions in the

partition) is obtained. This approach allows to perform the unmixing locally in a smarter way

than simply defining sliding windows, which helps mitigating nonlinear and SV effects, and

avoids the propagations of model errors the whole image, but it raises some questions. The

first is how should we deal with the possible ID estimation problems in small regions, and limit

their repercussions on the rest of the unmixing chain? The second comes from the fact that

this LSU process generates regionwise SU results: the endmembers and abundances are only

Figure 2.8: Geometric interpretation of LSU.
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defined within each region. Indeed, as we show in Fig. 2.8, the geometric interpretation of

LSU is clear for each region: we work inside a regionwise simplex. However, at the scale of the

whole image, there is no global coherence, which prevents an immediate global interpretation

of the results. How would it be possible to use these results and to reinterpret them at the

global image scale, so that they could be compared to other SU approaches? These two points

will be addressed later in the manuscript.

2.3.3 Computational Models

In this section, we present a different class of methods to address SV. This time, SV is

explicitly taken into account in the mixing model used, contrary to bundles or LSU approaches

which are more data-driven. Most of the time, the computational models we review below

allow the sources to vary locally around some reference, as shown in Fig. 2.9. Theoretically,

these techniques are quite powerful since they allow to capture any kind of SV. However,

this flexibility can also be a drawback since no SV cause is explicitly modeled, making it

sometimes hard to give a physical interpretation to the results.

Figure 2.9: The fluctuations of local endmembers around references (in green) are at the core

of most computational models to address SV.

Since the idea is to estimate parameters related to SV with little information on the

physical processes causing it, it comes as no surprise that statistical techniques have been

developed in this area, as was the case for highly mixed data in section 1.4.

For instance, several Bayesian approaches have been developed in the community to model

the sources as statistical distributions. The Normal Compositional Model (NCM) [60] uses

the usual LMM (discarding the noise term), but assumes in addition that the endmembers

are normally distributed:

sp ∼ N (s0p, σ
2IL), (2.15)

where s0p is a reference endmember spectrum for material p. The covariance matrix is diagonal
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with the same variances in each band. This allows to write the likelihood as:

xk ∼ N

 P∑
p=1

akps0p,

P∑
p=1

a2
kpσ

2IL

 . (2.16)

In addition, a uniform prior on the simplex is assumed for the abundances. The variance

σ2 is assigned a prior distribution as well, with an additional hyperparameter, which is itself

assigned an uninformative prior. From this, the a posteriori distribution of the parameters is

derived and sampled using MCMC methods, to access the Bayesian estimators. The fact that

the variance of the endmembers has to be estimated allows to assess a posteriori the degree

of SV in the processed image. However, the mean value of the endmembers is fixed by the

prior endmember extraction step. Note that a similar Beta Compositional Model (BCM) was

also proposed [59], replacing the Gaussian prior on the endmembers by a Beta distribution

(which has the advantage of taking its values between 0 and 1, which is sound for reflectance

endmembers).

More recently, the work proposed in [71] goes further by incorporating the noise term ek
in the model (with pixel dependent variances), and being capable of estimating both band

dependent variances, as well as the means of the endmember distributions. The distribution

of the noise and the prior on the endmembers are:

ek ∼ N (0, ν2
kIL),

skp ∼ N (µp, diag(σp)), (2.17)

where skp is the local endmember for material p in pixel k, ν2
k is the noise variance for pixel

k, and µp is the mean of the endmember distribution for endmember p. σp is a vector of

variances for each band for endmember p, and diag(σp) ∈ RP×P is a diagonal matrix whose

is diagonal is σp. The mean of each endmember distribution is associated to a (truncated, in

order to avoid negative values) Gaussian distribution, centered on the reference endmembers,

extracted by the EEA:

µp ∼ N (s0p, ε
2IL), (2.18)

where ε2 represents the confidence in the extracted reference. This allows to slightly correct

the mean value of the endmember distributions, in case the reference endmembers are not

optimal. The abundance prior is made of several Dirichlet distributed classes, so as to allow

the simplex to be clustered into several distinct regions where the abundance vectors can live,

and to encourage spatially close pixels to have correlated abundances. The parameters of this

prior are also part of the hierarchical Bayesian model. This model is called the “Generalized

Normal Compositional Model” (GNCM).

All these models are “computational” in the sense that they explicitly model SV (unlike

bundles and LSU approaches), but without caring about the physical processes involved in

generating the intra class variability. This is both their strength and weaknesses: they are

theoretically able to model any kind of SV, but are not able to link it to physically interpretable

parameters.
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(a)
(b)

Figure 2.10: A Simple parametric model to deal with SV (1 free parameter) (a). A more

complex model (2 free parameters) (b).

2.3.4 Parametric physics-based models

2.3.4.1 Recovering spectral variability from parametric models

In this last category of methods, the sources are also allowed to vary according to a specific

model, but in a more constrained way than in section 2.3.3. Indeed, the idea is to use an

explicit parametric model fp : Rnp 7→ RL to define the achievable spectra for a material p:

skp = fp(θ
p
k), (2.19)

where skp is the spectrum of material p in pixel k, and θpk ∈ Rnp is a vector of np phys-

ically interpretable parameters for model fp. A limited number of np free parameters are

included in the model describing material p (typically much less than the number of spectral

bands), based on the modeling of some physical phenomenon. Fig. 2.10 shows the geometric

interpretation of such models. These parametric models and the possible ranges of their pa-

rameters actually define an np-dimensional manifold for each material (which is the possible

locus of the material’s spectra), in the L-dimensional ambient space. In Fig. 2.10 are shown

two examples, in the case of models with a single parameter (a), where the sources describe

curves (i.e. 1-dimensional manifolds) in the ambient space. A second, more complex case is

shown on Fig. 2.10 (b), where the model has two parameters. The models for the different

materials are not bound to be completely independent. In some cases, e.g. when they share

the same analytical expression (for a cause of variability affecting all materials in the same,

or at least in a correlated way), and/or some physical parameters (for instance acquisition

angles). However, in most cases, material specific models have to be used, since the causes of

intrinsic variability are, by definition, material dependent.

Once the model is known, in a blind SU framework, the objective is to estimate the

parameters of the models for each material and pixel (and hence the local sources), in addition



2.3. Spectral variability in the spatial domain 45

to the abundances (still with the ANC and ASC). The most straightforward way to do this

is to resort to a least squares fit:(
âk, θ̂

1

k, ..., θ̂
P

k

)
= arg min

ak,θ
1
k,...,θ

P
k

||xk − Skak||22

s.t. Sk = [f1(θ1
k), ..., fP (θPk )]. (2.20)

Refining the model further is theoretically possible by replacing the matrix product Skak by

a nonlinear function of Sk and ak, but here we will limit ourselves to a LMM framework. In

addition, it can make sense to add various constraints (e.g. physically plausible range of the

parameters) and hypotheses using regularizations (e.g. continuity of some parameters in the

spatial domain).

However, in all generality, the estimation process of Eq. (2.20) is very ambitious. The

efficiency and tractability of this method in practice is heavily dependent on the number of

parameters to estimate, and on the analytical expressions of the model. The problem is very

difficult in a completely blind setting since the information in the data about the shape of the

manifolds is directly conditioned by the number of pure or close to pure pixels. Regardless of

the complexity of the physical models involved, obtaining good variability estimation results

in a heavily mixed scenario seems extremely difficult, even a linear case. For blind SU,

such a parameter estimation technique is expected to be efficient when the pixel is not too

heavily mixed (and only for the predominant material), for a limited number of parameters to

estimate, and with convenient enough analytical expressions for the models used (e.g. when

the functions fp are injective, to avoid identifiability issues). Using appropriate regularization

terms (such as one using spatial information) can also help to make the problem better-posed.

2.3.4.2 Examples

There are several models in the literature which describe the reflectance of materials, such

as vegetation and soil types, using various physical parameters. However, these models are

usually cumbersome to use in a blind SU context, due to their complexity. Some of their

parameters are rarely available beforehand in practice, and their efficient use in SU is likely to

be conditioned to simplifying hypotheses, in order to make the models tractable. We mention

here some models of the literature for the sake of illustration. Some examples include tree

leaves reflectance models, soil moisture content reflectance models, or models describing the

variations of the spectra due depending on geometric and photometric parameters. Most

of these models are based on radiative transfer equations, which are adapted for specific

materials, and their parameters are usually estimated using in situ measurements.

For instance, the work of [91] introduces a radiative transfer model describing the re-

flectance of tree leaves in the visible and near-infrared domains, depending on parameters

linked to the mesophyll structure of leaves, water content and pigment concentration, among

other optical parameters.

In [144], two parametric models (one is affine, the other exponential) are proposed to ex-
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plain the variations in the spectrum of soil under different moisture conditions. Wavelength-

dependent parameters of these two models are estimated by linear regression on in-situ mea-

surements for two wavelengths. By assuming these parameters have been estimated for every

wavelength (or at least for different wavelength ranges), the relationship between moisture

and reflectance defines in each case a one-dimensional manifold (parametrized in each pixel by

a real value accounting for the moisture level), which enables the local estimation of this pa-

rameter in the image. In this case, the equations are not directly related to physical modeling,

but obtained in a more pragmatic and empirical way by regression of actual data acquired by

varying the parameter of interest (here soil moisture content). This results in a more artificial

model, which has the advantage of being mathematically tractable and can still be related

to a physical parameter. Another example of a relatively simple physics based model for the

same phenomenon can be found in [137].

Another well known radiative transfer model in the remote sensing and planetary science

communities is the semi-analytical model designed by Hapke [73], to link reflectance of a

material to its single scattering albedo (SSA), and to geometric parameters (namely the ac-

quisition angles alluded to in section 2.1), as well as material specific photometric parameters.

More details on this model will be found in Chapter 5. SSA is defined as the ratio between

the scattered fraction of the incoming light to the total radiation coefficient (sum of the scat-

tered and absorbed fractions of incoming light), in each wavelength. For instance, a perfect

black body has an albedo of zero, fresh snow has a high albedo, and a perfect mirror has an

albedo of one, in any wavelength range. Unlike reflectance, the albedo spectrum of a material

does not depend on the acquisition angles and can thus be considered to truly characterize

a material. The SSA of a material is very hard to access, as are the photometric parame-

ters of the materials. In addition, the model is analytically complex and hence impossible

to use as such for SU. However, in cases where the photometry, as well as the geometry are

known, the method [112] is able to invert the model to access the SSA of the materials, and

then performs the SU in the albedo domain. It has been suggested in the several works that

topographic effects on the reflectance signatures can be empirically approximated by scaling

variations [121, 122], hypothesis that we will validate further in this manuscript.

2.4 Temporal and Angular variabilities

In this section we focus briefly on methods to tackle SV in time sequences or in multiangular

HSIs. The work of [66] performed the analysis of multitemporal HSIs using sliding windows-

based LSU, but each frame was processed independently of the others. In order to take

advantage of the correlations between adjacent time frames, and to better capture temporal

variations, a joint process of the whole sequence is preferable.

The work in [77] exploits the additional modality of the data by using a multitemporal

model for the endmembers, since they are seen as functions of the wavelength, but also of

the time, thus defining a surface as an endmember rather than a single signature. These 3D

signatures are then used to extract features in order to produce a classification map for the
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whole time series.

More recently, a new approach to SU has been developed using the arsenal of tensor

decomposition techniques [158]. Hyperspectral time series or multiangular series are seen as

three-way arrays (or tensors, although this denomination is a bit abusive): X ∈ RL×N×K ≡
{Xk}, k = 1, ...,K, where K is the number of time frames or of angular acquisitions (one

spatial modality, one spectral modality, and one temporal or angular modality). A multilinear

unmixing is proposed using a nonnegative Canonical Polyadic (CP) Decomposition. The idea

of the of the CP decomposition is to approximate a noisy tensor (ideally a low rank one)

as a tensor of rank R, decomposed as sum of R rank 1 tensors (the tensor rank is the

minimum number of terms in the decomposition required for the equality to hold exactly).

More precisely, if we denote by S ∈ RL×R a matrix of “spectral” factors, by A> ∈ RN×R
a matrix of “spatial” factors (the matrix A is transposed to comply with the definition of

the abundance matrix used throughout the thesis), and by T ∈ RK×R a matrix of temporal

factors, the underlying multilinear model can be written as:

xlkm =

R∑
r=1

slrarktmrλr, (2.21)

where λr are scaling indeterminacies for each of the R terms. Rewriting the global model in a

compact form, the nonnegative CP decomposition consists in solving the following optimiza-

tion problem:

arg min
S,A,T

||X −L×1 S×2 A> ×3 T||2F

s.t. S ≥ 0,A ≥ 0,T ≥ 0, (2.22)

where L ∈ RR×R×R is a diagonal tensor containing the scaling indeterminacies λr on the

diagonal. The operator ×k is the tensor matrix product along the kth mode [40], which is

defined for a nth-order tensor Y ∈ RN1×N2×...×Nn and a matrix Uk ∈ Rm×Nk as the tensor in

RN1×...×Nk−1×m×Nk+1×...×Nn , whose entries are:

(Y ×k Uk)i1,...,ik−1,ik,ik+1,...,in ,
Nk∑
j=1

yi1,...,ik−1,j,ik+1,...,inuik,j . (2.23)

Note that the scaling indeterminacies can be absorbed into either of the three matrix terms,

if needed. This problem is highly non-convex, yet many algorithms provide rather precise but

costly computation. One of the most popular of these algorithms is an Alternated (Nonneg-

ative) Least Squares (ALS) approach, in which the variables are optimized alternatively and

iteratively (in a way similar to NMF).

We denote the spectral and spatial factor matrices with the same notations as the ones used

for the endmembers and abundances throughout the thesis, although this is slightly abusive,

since the CP model is a priori not motivated by physical considerations. However, in the

context of CP decomposition of multitemporal or multiangular HSIs, they can be interpreted

as such, and experimental evidence for this is provided in [158]. In addition, the rank R is

linked to the number of endmembers to consider. The temporal factors are able to capture
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seasonal variations of the materials, namely for snow cover monitoring [158]. In this work, the

CP decomposition is performed in a compressed domain, making the algorithm (ProCoALS,

for Projected and Compressed Alternating Least Squares) applicable to large datasets where

usual tensor decomposition algorithms are limited by memory or computational load issues.

Also, note that the ASC can be included if needed, depending on the SU context. The method

was also adapted for multiangle images [157], where the angular factors are also physically

interpretable. We will come back later to tensor decomposition approaches and show that

they can be used to model variability not only in the temporal angular domains, but also in

the spatial domain, using an appropriate tensor representation of HSIs.

2.5 Partial Conclusion

In this chapter, we have introduced the spectral variability (SV) issue and have presented a

general framework to encompass all variability types, that is in the spatial, temporal, angu-

lar, or even multidataset contexts. We have presented the main algorithms and techniques

developed to handle it in SU, mostly focusing on SV in the spatial domain, which has been

far more studied than for other modalities. The methods developed for this domain have

been categorized into four classes: spectral bundle methods, where several instances of each

endmember are extracted from the data, Local Spectral Unmixing techniques, which perform

SU locally in spatial regions of the image, computational models whose rationale is to allow

local endmembers to vary around reference signatures, and finally discussed physics-based

models, whose applicability is not straightforward and probably more limited than the other

classes, but have the advantage of modeling variability causes using physically interpretable

parameters.

We also have presented some of the few methods used to jointly process multimodal

datasets in the context of temporal and angular variability, especially the recently proposed

tensor decomposition based approaches.

The contributions of the thesis will be connected to several of the ramifications of the SV

problem presented in this chapter:

• Part II will make the connection between sparsity and the bundles and local spectral

unmixing (LSU) approaches, where the subsets on which SV occurs are spatial regions

of the image.

– Chapter 3 addresses one of the drawbacks of LSU, which is the need to estimate

the intrinsic dimensionality (ID) of sometimes small regions of the HSI. This can

lead to erroneous estimation of the number of endmembers to use in local regions.

We review several algorithms of the literature to estimate the ID of HSIs and

study their behavior experimentally in local datasets, before providing guidelines

for their appropriate use in local settings.

– In Chapter 4, we first apply sparse regression tools to LSU in order to eliminate the
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contributions of the wrongly extracted local sources due to the possible overesti-

mation of ID in small ill-conditioned regions of the segmentations. Then, we study

the influence of social norms in SU using spectral bundles, by taking advantage of

the group structure of the spectral bundles, after the clustering step.

• In part III, we explore the less studied direction of physics based models to model SV.

– In Chapter 5, starting from the Hapke model, we make several simplifying as-

sumptions to derive a simple tractable model, termed Extended Linear Mixing

Model (ELMM) to address changing illumination conditions during SU, in partic-

ular due to uneven topography. In this case, the subsets where SV is handled are

the individual pixels. We then design an optimization problem and two algorithms

to estimate the parameters of the model, while adding regularizations to enforce

desirable properties on the solutions.

– In Chapter 6, we discuss two applications of the proposed ELMM. In the first

application, we show that combining the ELMM with the LSU approach can help

to interpret the LSU results at a global scale, and at the same time to extract

SV related information. The second application shows the connection of tensor

decomposition approaches to the ELMM, be it using time series, multiangular

series of HSIs (the different frames are then the subsets on which variability is

addressed here), or even a new tensor representation of a regular HSI, which is

proven useful to extract spatially related SV content through nonnegative CP

decomposition.
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Chapter 3

Local Intrinsic Dimensionality
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3.1 Introduction

In the previous part, we have seen that performing the unmixing in local regions of the

image can mitigate nonlinear and spectral variability (SV) effects. However, doing so requires

the estimation of the number of endmembers to use in each local region, which can become

problematic, and lead to overestimations of this number, in which case we will see sparsity can

play a role to eliminate unwanted spectra from the unmixing. Before that, it is necessary to

evaluate and quantify the possible estimation problems we are faced with in small local regions.

This chapter is then concerned with the problem of estimating the intrinsic dimensionality

(ID) of HSIs, and especially in small datasets, such as spatial regions of a larger image.

Usually, the dimensionality of hyperspectral vectors, L, is large, with hundreds or thou-

sands of spectral bands. Assuming the measurement may be decomposed into signal, y, and

noise, e, that is, x = y + e, authors in [32] introduce the following definition:

Definition 1. The ID of a dataset, x1, . . . ,xn, is the dimension, d, of the vector subspace

spanned by the signals, y1, . . . ,yn.

Different authors have given alternative definitions of the intrinsic dimension or of similar

terms. Chang and Du [36] define the “virtual dimensionality” as the the number of endmem-

bers necessary to give accurate unmixing. Bajorski [10] defines the “effective dimensionality”

53
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as the dimensionality of the affine subspace giving an acceptable approximation to all pixels.

Def. 1 is equivalent to the ones provided in [18, 140]. Besides conceptual aspects, all of them

are used in spectral unmixing to estimate the actual number of endmembers or the dimen-

sionality of the subspace spanned by these endmembers. Hereafter, for sake of clarity, we will

make use of the ID term only.

We have reviewed in Chapter 2 several local approaches for SU [29, 105, 145, 66, 56], de-

signed to overcome some of the issues of global approaches, i.e. spectral variability [143, 172].

Furthermore the local spectral unmixing (LSU) approach has proved to be a useful framework

to propose new unmixing-based segmentation techniques [161] or to improve unmixing-based

hyperspectral super-resolution techniques using the local low rank property of hyperspectral

data [160, 104]. In addition to the latter works, we envision to incorporate the local spectral

unmixing to other hyperspectral applications such as unmixing-based anomaly/target detec-

tion, spectral-spatial classification or visualization, among others. Thus, there is an increasing

need to better understand the role of ID in local neighborhoods of hyperspectral data, i.e. in

patches or segmentation regions. These results were originally published in [54].

3.2 Related work

There exist many ID methods for hyperspectral data in the literature, as well as more general

techniques in the signal processing community [25]. Nevertheless, the specificity of hyper-

spectral data reside in two aspects: the 2D spatial arrangement of the signal and the high

dimensionality induced by the numerous spectral bands. Most of the existing ID estimation

algorithms are based on the eigen-decomposition of some data dependent statistical matrix,

often second order statistics. The basic idea is that if some noiseless signals y span a d-

dimensional vector space, then their covariance matrix Ky should have a rank which is equal

to d. Then this covariance matrix should only have d nonzero eigenvalues. The main issue

with this strategy is that noisy signals have more nonzero eigenvalues than their ID value,

and the problem boils down to being able to sort the eigenvalues related to signal and the

ones related to noise in the following eigenvalue decomposition:

Kx = P>DP, (3.1)

where P is a change of basis matrix, and D is a diagonal matrix containing the eigenvalues

of Kx on its diagonal. A simple baseline approach is to define the ID as the number of

the largest eigenvalues that must be retained to represent a percentage of the total variance

of the data [64], i.e., 95% or 99%. Chang and Du [36] proposed the widely used Harsanyi-

Farrand-Chang (HFC) method, based on the comparison of the eigenvalues obtained from the

covariance and the correlation matrices. The validity of the HFC method has been questioned

in [10, 11], and Bajorski proposed an alternative algorithm, called Second Moment Linear

dimensionality (SML), based on similar concepts. Another popular algorithm to perform

hyperspectral ID estimation is the Hyperspectral Subspace Identification by Minimum Error

(HySIME) [19], which is an evolution of the Signal Subspace Estimation (SSE) algorithm

presented in [18]. The HySIME algorithm works by identifying the signal subspace achieving
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a residual error comparable to the estimated noise power. A different approach has been

proposed in [32], where new results in Random Matrix Theory (RMT) are used to determine

which eigenvalues are due to noise and which are due to signal have been adapted for the

identification of the hyperspectral ID. The Outlier Detection Method (ODM) [9] is another

eigen-based algorithm, although ODM focuses on modeling the noise and treats the signal as

outliers to the noise distribution.

Three non eigen-based hyperspectral ID estimators have recently been proposed. The

first one, introduced in [111] as part of a Negative ABundance-Oriented (NABO) unmixing

algorithm, borrows the main idea from the HySIME algorithm. Basically, it decomposes the

residual error from the unconstrained unmixing into two components, a first due to noise

and a second due to ID. The algorithm works by starting from an underestimate of the

ID, and then, iteratively increments the ID value until the unmixing error can be solely

explained by the noise term. The second non eigen-based method, called Hyperspectral Image

Dimension Estimation through Nearest Neighbor distance ratios (HIDENN) [82] is based on

local geometrical properties of the data manifold. The technique is aimed at computing the

correlation dimension of the dataset, which is itself closely related to the concept of fractal

dimension. The basic idea is to count (in the neigborhood of one data point) the total number

of pairs of points g(ε) which have a distance between them that is less than ε. Then it can

be shown that if n → ∞ and ε → 0, the so-called correlation integral C(ε) has the following

asymptotic behavior:

C(ε) ,
g(ε)

n2
∼
ε→0

εd−1, (3.2)

where d−1 is here the dimension of the manifold (and d is the ID of the data). This behavior

can be intuitively understood by the fact that in higher dimensions, there are more possible

ways for one point to reach neighboring points. One can then recover the ID by computing:

d− 1 = lim
ε→0

ln(C(ε))

ln(ε)
. (3.3)

Note that since the ID is here estimated in each point of the data cloud, in the signal processing

literature this category of ID estimation technique can be referred to as local ID estimation [31,

25]. However, the concept differs from the one we are interested in since we consider spatially

local ID estimation.

In [99], Kyubeda et al. proposed the Maximum Orthogonal Complement Algorithm

(MOCA), which solves an optimiziation problem exploiting the sensitivity of the L2,∞ norm

to rare materials, so the signal subspace preserves them. In [2], Acito et al. proposed a

version of MOCA, called Robust Signal Subspace Estimator (RSSE), that improves the latter

in terms of computational speed and lighter parametrization. The same authors summarized

in [3] both approaches, MOCA and RSSE, using a common theoretical framework, and also

proposed a more computationally efficient version of the MOCA algorithm named Modified

MOCA (MMOCA). They also derived from the RSSE algorithm a method to account for

signal dependent noise [4]. Chang et al. [37] proposed a Neyman-Pearson detector version of

MOCA linking the ideas behind MOCA with those of the HFC algorithm. Recently, Chang

et al. [38] have proposed an extension of the latter work based on high-order statistics.
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3.3 Contributions

In [33], Cawse-Nicholson et al. studied the effect of correlated noise on ID estimation, and

Hasanlou and Samadzadegan performed in [74] a comparative study of some ID estimation

algorithms for classification. A recent survey of ID estimation algorithms compares five

methods, three of which are also considered in this study, mostly in terms of ID estimation

performance on the whole image, and in terms of the impact of the noise correlation and

estimation [132]. Here, we are interested in the performance of hyperspectral ID estimation

algorithms when going from global to local studies, that is, the capacity of the algorithms

to correctly estimate the ID on small regions or subsamples of a hyperspectral image. In

addition, the present study includes several algorithms not considered in [132].

Hyperspectral ID estimation algorithms can be grouped according to two main character-

istics: i) whether they are based on eigen-decomposition or not, and ii) the requirement of a

denoising step or of a noise power estimation. When trying to identify the ID of local (often

small) regions in hyperspectral images, eigenvalue-based methods can be severely affected by

the so-called curse of dimensionality [100] and the high between-band correlation. The curse

of dimensionality refers to: i) the empty space phenomenon in high dimensions, which makes

it necessary to use more and more data samples for estimation purposes when the dimension

becomes higher, and to ii) the fact that high-dimensional data often show multicollinearity,

which can hamper noise estimation regression. The effects of the local denoising and the

local estimation of the noise power can also influence ID estimation. Usually, small regions

present a relatively high spectral homogeneity, in the sense that the materials in the different

pixels of small regions are likely to be the same, with slowly varying abundance coefficients.

Then, noise can be sometimes misinterpreted as a signal, compromising the local denoising

and noise power estimation.

We describe and compare nine ID estimation algorithms when going from global to local

studies of hyperspectral data. We catalog the ID algorithms according to their base method-

ologies and we highlight their main drawbacks when working on local, often small, subsets

of data. We also provide some guidelines for a better use of these algorithms in local studies

which can be summarized as: (i) perform a global denoising or estimation of the noise power,

that is, avoid the use of local denoising or local noise power estimation; (ii) subsets below a

size threshold produce unreliable estimations, usually presenting an overestimation peak and

an increase in the error variance.

3.4 State of the art of hyperspectral ID estimation

In this section, some methods for the estimation of the ID of a hyperspectral image are

listed and presented. These methods are the ones used for the experiments in Sections 3.5.1

and 3.5.2. Several algorithms in the following require a noise estimation step before com-

puting the ID. The algorithm used in this paper to perform this noise estimation (originally

suggested in [133]) is presented before the ID estimation algorithms themselves. In [65], sev-
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eral algorithms for noise estimation for hyperspectral images, based on linear regression are

compared. The noise estimation method suggested in [133] was shown to be relatively robust

in the simulations of that study. It is also the most widely used in the community. Any-

way, by running similar experiments as the ones described below with known noise values (or

equivalently a perfect noise estimation), we obtained comparable results to those obtained

by estimating the noise globally on the whole image. This shows that the noise estimation

provided by this method seems suited for local ID estimation. Next, we describe all the

algorithms compared in this study. Some of the properties of those are listed in Table 3.1.

3.4.1 Noise estimation

The noise estimation algorithm used in the experiments is based on the use of the high corre-

lation between adjacent bands and was first brought to the hyperspectral imaging community

in [133]. The idea behind this strategy is to perform a linear regression of each spectral band

on all the other bands, that is to say to express all the pixels from one spectral band (stacked

into a n× 1 vector) as a linear combination of the pixel vectors of all the other bands. If we

denote by X 6=k the data matrix X with the kth row xk (one entire band) removed, we can

estimate the optimal regression parameters bk ∈ RL−1 of xk on X6=k in a least square sense

by:

bk = xkX
>
6=k(X 6=kX

>
6=k)
−1, (3.4)

and we can finally estimate the noise vector ek ∈ Rn in band k by:

ek = xk − bkX6=k. (3.5)

This difference between the observations in the considered spectral band and the result of the

regression is assumed to be due to noise, providing the estimated noise values and allowing

the estimation of the noise sample correlation matrix, which is assumed to be diagonal (and

hence does not consider spectrally correlated noise) with difference variances in each spectral

band.

Other methods exist to perform hyperspectral noise estimation, such as the so-called shift

difference method [69] for instance, which assumes that the differences between adjacent

pixels are mainly due to different realizations of i.i.d. noise, the signal component being

practically the same. Two other noise estimation strategies [113, 134] which have been used

in hyperspectral data analysis, have been evaluated and discussed (especially for their behavior

in case of correlated noise) in [33].

3.4.2 Review of some ID estimation algorithms

3.4.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an extremely popular technique for data analysis [93],

which has been used extensively for dimension reduction, among other applications. The idea
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is to perform a Singular Value Decomposition (SVD) on the sample covariance matrix of a

given dataset. The resulting eigenvectors are then sorted by decreasing order of eigenvalues.

The subspace spanned by the first d eigenvectors is the d-dimensional space whose explained

variance percentage is the highest. This means that when the data cloud is projected onto

this d-dimensional subspace, the relative difference between the variance of the data cloud

and its projection is the lowest possible. To estimate the dimensionality of a dataset, one

has to select a threshold on the percentage of the explained variance. However, for some

applications, including hyperspectral imaging, the manual choice of a threshold is not an easy

task, since explained variance is not directly linked to the number of sources, and also because

variance can be very well explained in a very low-dimensional subspace while the intrinsic

dimension of the data manifold might be higher. In the experiments, we selected a threshold

of 95% of the explained variance to determine the ID values.

3.4.2.2 Harsanyi, Farrand, and Chang (HFC)

This dimensionality estimation method, termed HFC (for Harsanyi, Farrand, and Chang) is

another rather simple and widely adopted technique to compute the ID of a hyperspectral

dataset. The sample correlation and covariance matrices (Rx and Kx, respectively) of the

observations are both computed, and their eigenvalues are sorted in decreasing order. HFC

assumes that the sources are deterministic and nonnegative, and that the noise is spectrally

white (i.e. uncorrelated with constant variance) with zero mean. In this case, if the ID is d,

then the d largest eigenvalues of Rx are supposed to be larger than those of Kx because in the

corresponding components (coming from the transformation by the eigenvalue decomposition)

an endmember contributes to the correlation eigenvalues in addition to the noise. Based on

this, the algorithm performs a hypothesis test on each eigenvalue set to determine if the

eigenvalues of the covariance and correlation matrices are statistically significantly different

or not. Note that the algorithm’s results depend on a user-tuned false alarm probability,

set to α = 10−5 in the experiments. Every time the test fails in a component, the ID value

is incremented. The ID finally corresponds to the number of times this test has failed. An

alternative version of the algorithm, called Noise Whitened HFC (NWHFC), assumes that the

noise is uncorrelated but with possibly non-constant variance. It includes a noise-whitening

step before using the same methodology as HFC.

Bajorski has argued in [10, 11] that the HFC method can only measure the dependence of

the difference between consecutive eigenvalues of the covariance to the average values of the

bands, which is unrelated to the ID value. Therefore, the HFC method may be conceptually

wrong. However, the method provides consistent results because the differences between

consecutive covariance eigenvalues is in itself a useful indicator of the ID of the dataset, while

relating this difference to eigenvalues of the correlation matrix is not relevant [11].
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3.4.2.3 Hyperspectral Subspace Identification by Minimum Error (HySIME)

Another popular algorithm to perform hyperspectral intrinsic dimensionality estimation is

Hyperspectral Subspace Identification by Minimum Error (HySIME) [19]. For this algorithm,

the noise e is assumed to be zero-mean Gaussian distributed; the noise value e and the

noise correlation matrix Rn are estimated using the band correlation method described in

Section 3.4.1. The sample observation correlation matrix Rx is computed, as well as the

signal sample correlation matrix Rŷ, taking the signal values ŷ by subtracting the estimated

noise values ê from the observations x. The eigenvectors of the latter matrix are computed

and sorted in descending order according to the corresponding eigenvalues. The subspace

spanned by the first d eigenvectors corresponding to the d largest eigenvalues is the signal

subspace, whereas the orthogonal complement is associated with the noise subspace. The

separation between the two is found by looking for the value of d which minimizes the Root

Mean Squared Error (RMSE) between the signal and the projection of the observations on

the subspace spanned by the first d eigenvectors, taking into account the projection error

power (decreasing function of d) as well as the noise power (increasing with d). Note that in

this case, using the correlation matrix is meaningful because its d first eigenvectors define the

subspace minimizing the RMSE between the projected data and the original data.

3.4.2.4 Random Matrix Theory (RMT)

This technique was recently introduced in [32] and makes use of the tools of Random Matrix

Theory (RMT) to estimate the ID of a hyperspectral dataset. It requires a noise estimation

step which, in [32], is performed by the method presented in [113]. The method extends

an existing RMT-based method for dimensionality estimation [108] to the case of spectrally

correlated Gaussian noise. The underlying mixing model is also assumed to be linear. The

general idea is that, under the assumption that each column of the L × N noise image

is distributed according to e ∼ N (0,Φ), the random cross product matrix ee> follows a

Wishart distribution (which can be seen as a multivariate generalization of the χ2 distribution)

WL(Φ, N), with L representing the degrees of freedom, and Φ the L × L scale matrix. The

probability density function of the largest eigenvalue of such matrices has been extensively

studied in RMT. In the context of dimensionality estimation, a criterion has been found to

test which is the largest sample covariance eigenvalue which is statistically consistent with

the distribution of the largest eigenvalue of a Wishart matrix. In other words, this means

that the eigenvalue of Kx found by this process is the largest noise eigenvalue, and that all

the larger sample covariance eigenvalues are associated to a signal component. This criterion,

originally derived for a number of samples N →∞ and a number of variables (bands in this

application) L → ∞ , with their ratio constant: L
N = c (usual conditions in RMT), has also

shown to be reliable for large but finite N and L values (see [32] and references therein). The

computation of the eigenvalues of interest to be tested against those of a Wishart matrix, as

well as the testing criterion, differ in the general case if the uncorrelated noise assumption

has been dropped, but the basic principle remains the same.
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3.4.2.5 Outlier Detection Method (ODM)

The algorithm introduced in [9] estimates the ID of a hyperspectral image by focusing on

the noise and treating the signal data points as outliers to the noise distribution. It com-

prises three steps: the first is a whitening step performed by a Maximum Noise Fraction

(MNF) transform [69], in which the noise estimation is performed using once again the band-

regression method. The noise is then whitened by an eigenvalue decomposition of the noise

covariance matrix Ke and scaled so as to get equal variances in each band, thus defining a

noise hypersphere in the spectral space, and a principal component analysis is performed on

the transformed data to obtain the final transformed components. The final step is the ID

estimation through outlier detection, using Inter-Quartile Range (IQR) to define a boundary

between the noise and the “outliers”. The Euclidean distances between the standard devia-

tion of each transformed band and the standard deviation of the previous one are computed,

and the ID is incremented every time the value is above the IQR threshold. It is a nonpara-

metric technique, which does not make any assumption on the noise distribution (even though

the band-regression based noise estimation algorithm used will provide optimal performance

when the noise is Gaussian, because of the least squares step), and hence the final step is

supposed to be robust to a small number of samples used for the estimation.

3.4.2.6 Vertex Component Analysis/Negative ABundance Oriented algorithm

(VCA/NABO)

This technique [111] performs spectral unmixing and dimensionality estimation at the same

time. It is noteworthy that this method is not eigenvalue-based. The idea is to start from

an underestimation of the dimensionality of the dataset, and an estimation of the noise.

Then an endmbember extraction (using any Endmember Extraction Algorithm (EEA)) is

performed, and the abundances are computed through linear unconstrained least squares

unmixing, dropping both the usual Abundance Sum-to-one Constraint (ASC) and the Abun-

dance Nonnegativity Constraint (ANC). Then, the power of the Root Mean Square Error

(RMSE) is compared to the estimated noise power. If the former is higher than the latter,

the dimensionality is incremented until the error power becomes smaller than the estimated

noise power. At this step, it should not be necessary to increase the dimensionality further

since the potential gain in RMSE will not be meaningful, and so the number of endmembers

has been found. It should be noted that the abundances are computed without using any

constraints so that RMSE (in other words, the projection error) is not due to the projection

of the data onto the feasible set of solutions but mainly to the fact that the subspace on which

the data are projected has a too small dimension. In the experiments described below, the

chosen EEA is Vertex Component Analysis (VCA) [122]. As this widely used EEA is stochas-

tic by nature, the VCA/NABO algorithm is performed 20 times, and the final ID value is the

(rounded) mean of the results of each iteration.
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3.4.2.7 Hyperspectral Intrinsic Dimensionality Estimator through Nearest

Neighbor distance ratios (HIDENN)

The dimensionality estimation method described here was presented in [82] and is called

Hyperspectral Image Dimension Estimation through Nearest Neighbor distance ratios (HI-

DENN). As VCA/NABO (though the methods are completely different in nature), it differs

from most of the other methods mentioned in this paper in the sense that it is not based

on any eigenvalue decomposition whatsoever. The data is assumed to come from samples of

a manifold (it does not require any particular mixing model, so long as the abundances are

subject to the ANC and the ASC), whose dimension is equal to the number of endmembers

in the image minus one. A particular case of this is the (d − 1)-simplex defined by a linear

mixture of d materials. The algorithm estimates the dimension of the manifold (locally iso-

morphic to Rd−1) using geometrical properties and then provides the number of endmembers.

In that case, the distance between each data sample and its l-nearest neighbor is computed

for two well chosen values of l, and using a variant of Eq. (3.3), an estimator of the correlation

dimension is built to estimate the ID at this location in the spectral space. The choice of these

values is critical since they need to be small enough to reduce the influence of the noise, but

also large enough to be statistically robust. The individual pixel values are then averaged to

give the global ID of the dataset, requiring a sufficient number of samples for the estimation

to be meaningful. As the estimation of the dimension of such a manifold in the spectral space

is highly sensitive to noise, a denoising may be performed beforehand in order to allow a more

robust estimation of the ID. The algorithm becomes D-HIDENN (for Denoised-HIDENN) and

makes use once again of the band correlation noise estimation technique described in [133].

3.4.2.8 Modified Maximum Orthogonal Complement Algorithm (MMOCA)

This non eigenvalue-based ID estimation technique [3], MMOCA (for Modified Maximum

Orthogonal Complement Analysis), is actually a combination of the NWHFC algorithm de-

scribed above and the MOCA algorithm [99]. The former is used to provide an underestimation

of the ID of the dataset, so that the latter can iterate on the ID values from this starting

point. More precisely, for a given candidate ID value d, MOCA aims at finding a suboptimal

solution to the following optimization problem:

M̂ = arg min
M̃

||P⊥
M̃

X̃||2,∞, (3.6)

where X̃ is the whitened data matrix, and M̃ is taken from the set of all possible bases of a

d-dimensional subspace of RL. P⊥
M̃

is the projection matrix on the orthogonal complement

of the subspace spanned by M, such that P⊥
M̃

X̃ is the error of the projection of the whitened

data on the signal subspace. The L2,∞ norm is used for its sensitivity to rare materials, since

a rare material not accounted for by the M̃ matrix will result in a high error on the concerned

pixels, even if they are very few. The stopping criterion for this iterative process is based on

a hypothesis test using a Maximum A Posteriori (MAP) criterion. The idea is to determine

whether ||P⊥
M̃

X̃||2,∞ depends only on the noise distribution or also on the residual signal.
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``````````````̀Property

Algorithm
HySIME RMT ODM VCA/NABO HIDENN D-HIDENN PCA HFC MMOCA

Eigenvalue based X X X X X
Nearest neighbor distance ratios X X

Subspace estimation X X X
Noise estimation step X X X X X

Underlying Mixing Model Free LMM Free LMM Free Free Free Free Free

Table 3.1: Properties of the algorithms used.

Figure 3.1: The spatial pattern used for the creation of the synthetic datasets.

3.5 Local Performance of the algorithms

3.5.1 Experiments on synthetic datasets

3.5.1.1 Datasets

The synthetic datasets built for this study were designed to evaluate how the previous algo-

rithms behave from a local to a global scale, and to assess the effects of the SNR as well as

the number of bands of the hyperspectral data in the ID estimation. A spatial pattern of

300× 300 pixels comprising two kinds of aligned geometrical shapes (rectangles and ellipses)

of various sizes was synthesized (see Fig. 3.1). Different variants of the dataset were created

with different numbers of bands (480, 240, 120, 60 and 30 bands) and a spectrally and spa-

tially white Gaussian noise was added so as to reach different values of SNR (20, 25, 30, 35,

40 dB), yielding a total of 25 synthetic images.

From the spatial pattern of Fig 3.1, three distinct mixtures were created: two mixtures

of five endmembers and one of three endmembers. A mixture of three endmembers was em-

ployed to define the background, while two other mixtures of five endmembers were situated

in the rectangles and the ellipses, respectively. The endmembers were randomly chosen from

a mineral sublibrary of the United States Geological Survey (USGS) spectral library1, with

the constraint that the Spectral Angle Mapper between two signatures should not be less

than 10 degrees or more than 30 degrees. This library contains the spectral signatures of

various minerals acquired on the ground with a field spectrometer. The original endmembers

were downsampled by a factor of 2, 4, 8 and 16 to provide datasets with the selected range

of spectral bands. Note that some of the endmembers can be common to the different mix-

1http://speclab.cr.usgs.gov/spectral-lib.html

http://speclab.cr.usgs.gov/spectral-lib.html
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tures. In the end, there are 9 distinct endmembers in the image: 2 endmembers are common

between the background and the ellipses, another is common between the background and

the rectangles, and a last one is common between the ellipses and the rectangles. Thus we

can deduce that there are 4 endmembers which are repeated among the different patterns

in the image, leading to a total of 9 distinct endmembers. The abundances of each pixel

are sampled from a uniform distribution over the probability simplex of the corresponding

dimension (depending on the considered mixture), so that the ASC and ANC are enforced.

The mixed pixels are finally generated using the LMM.

Furthermore, since we want to focus on the capability of the different algorithms for local

ID estimation, we only consider Roger’s method [133] for noise estimation. We tested the

impact of this choice by comparing the results of the local ID estimation of section 3.5.1.3

using this noise estimation strategy on the whole image, to the use of the actual noise values.

The results are similar in both cases, which shows that Roger’s noise estimation strategy

has little impact on the results, at least when the noise is estimated globally. Here, we have

considered a spectrally and spatially white noise. However as shown in [132], coloration of

the noise (different variances in each bands, but still a diagonal noise covariance matrix)

and correlation between bands for the noise can be significant in real scenarios. We have

performed experiments on synthetic datasets accounting for these two properties of the noise,

in order to see the impact of non white noise on local ID estimation. However, the conclusions

are very similar to those of the experiments with white noise. Hence, these results are not

shown here but gathered Appendix C.

3.5.1.2 Experimental setup

Here we present the experimental methodology we followed to assess how the different al-

gorithms behave in local ID estimation. Each of the 25 synthetic datasets was divided into

non-overlapping square tiles of various sizes, ranging from 5×5 to 100×100 pixels with steps

of 5× 5 pixels, and from 100× 100 to 300× 300 pixels with steps of 10× 10 pixels. Therefore,

we can study the performance of ID estimation algorithms from a very small local subset (25

pixels) to a global scenario (90000 pixels). The actual ID of each tile depends on which region

of the image it falls into (see Fig. 3.1). The possible actual ID values plotted against the tile

length size are shown in Fig. 3.2 (a): 5 if the tile falls into a rectangle or an ellipse only, 3

if the tile falls into the background only, 6 if the tile falls into the background and one or

multiple ellipses, 7 if the tile falls into the background and one or multiple rectangles, and 9

if the tile falls into the background, one or multiple ellipses and one or multiple rectangles. A

summary of these considerations is presented in Fig. 3.2 (b), in which a stacked histogram of

the tiles is shown. The first two tile sizes (the bars corresponding to 5× 5 and 10× 10 pixels

are truncated for the sake of visibility, since 3600 and 900 tiles of this size can be fitted into

the image, respectively).

For all the 25 configurations of SNR and number of bands, and for all tile sizes, each ID

estimation algorithm is independently run on each tile. Since the noise is here spectrally white,

we used the HFC algorithm rather than its noise whitened counterpart, which has minimal
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Figure 3.2: True ID values plotted against size of the subset (a). Stacked Histogram of the

tiles for each size, depending on the ID value (b).

impact on the results. The ID estimation is performed in two different cases, depending on

the way the noise is estimated: locally or globally. The local noise estimation makes use of

the pixel values of the local subset only, while the global noise estimation makes use of the

whole image. In both cases, we employed a fast implementation of Roger’s method [133], due

to [19], and presented in section 3.4.1.

Next, we describe the quality metrics defined to evaluate the performance of each algo-

rithm. Given the set S = {5, 10, 15, · · · , 100, 110, 120, · · · , 300} of window sizes, let s = |S|
be the number of possible lengths. Ni denotes the number of windows of size Si, 1 ≤ i ≤ s.

Let dij and d̂ij respectively denote the actual and estimated ID values of the jth window of

size Si. We define µi as the average of the relative absolute errors committed on all windows

of size Si:

µi =
1

Ni

Ni∑
j=1

|dij − d̂ij |
dij

. (3.7)

We also define µ as the average of all the µi values for all possible window lengths. This

provides a single number to assess the overall performance of the algorithms from the most

local (i.e. smallest window size) to global ID estimation:

µ =
1

s

s∑
i=1

µi. (3.8)

Finally, σ2
i is an estimator of the variance of the absolute relative error committed on all tiles

of size Si:

σ2
i =

1

Ni − 1

Ni∑
j=1

(
|dij − d̂ij |

dij
− µi

)2

. (3.9)

3.5.1.3 Results

The results of the ID estimations on the 25 synthetic datasets are presented for all algorithms

in Figs. 3.3 to 3.8. In Fig. 3.3 (a), the value of µ (see Eq. (3.8)) is displayed as an image,
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Figure 3.3: µlocal (a) and µglobal (b) and as a function of SNR in dB (y axis) and number

of bands (x axis). The color scale ranges from blue (0.0002) to yellow (3.6 (a), 3.1 (b) or

higher).

for all noise powers and numbers of bands, in the case of a local noise estimation. From this

figure, we see that the algorithms of the bottom row (PCA, HFC and MMOCA) are nearly

insensitive to the number of bands or the noise power. This is because these algorithms do

not require any noise estimation. The results of PCA are highly dependent on the chosen

threshold for the explained variance, which is not directly related to the ID value. MMOCA

and HFC seem to perform relatively well in all cases. The case of HIDENN is different since

estimating the dimension of a manifold is an operation which is highly sensitive to noise, and

also dependent of the dimension of the ambient space. We can see that if any of the two

tested parameters here are tuned to a more favorable value (higher SNR or lower number

of bands), the overall results get better, while in unfavourable configurations, outliers in the

estimated values severely decrease the performance. The denoised version of the algorithm,

D-HIDENN, helps to reduce the impact of this phenomenon, although it is still present.

This algorithm is still sensitive to the noise power, because the noise is not only estimated

through its covariance matrix, but also subtracted from the observations. The last four

algorithms, Hysime, RMT, ODM, and VCA/NABO present a more similar behavior. They

all require a noise estimation, whose performance greatly impacts the ID estimation. We

can notice immediately that the ID estimation for these algorithms is much more sensitive

to the number of bands than to the noise power, which can be explained by the fact that

the algorithm used for the noise estimation is based on a regression of each band on the

others, an operation becoming less precise when the number of bands increases. This is due

to the multicollinearity effect: when there are more bands, they are more correlated since

adjacent wavelengths become closer and closer, and there are multiple good candidates for

the regression coefficients. Hence a small change in the data can induce a large change in

the regression coefficients (see section 3.4.1). Fig. 3.3 (b) shows the same metric µ in the

case of a global noise estimation. For MMOCA, HFC, PCA and HIDENN, the results are

very similar to the ones obtained for the local noise estimation since these algorithms do not

estimate the noise (they are not exactly equivalent since for both experiments a different noise

realization was used). However, for the other algorithms, notable differences are visible: the
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Figure 3.4: µlocal−µglobal as a function of SNR in dB (y axis) and number of bands (x axis).

The color scale ranges from blue (-0.48) to yellow (3.49 or higher).

algorithms perform much better in the least favorable cases. As we will see in the following,

this is due to the fact that global noise estimation allows a much better ID estimation in small

windows (provided the noise distribution is the same everywhere), where a precise local noise

estimation is impossible because of the too low number of samples. The ODM algorithm does

not seem very affected by the change in the noise estimation. This probably comes from the

paradigm used in this algorithm: the objective of ODM is to identify the signal as an outlier

in a noise distribution.

Fig. 3.4 sums up these considerations by showing the difference between the µ values

estimated using local and global noise estimations, µlocal − µglobal. Thus, a positive value

means that local noise estimation performed worse than global noise estimation, and vice

versa. From the figure, it is clear than in almost all cases, global noise estimation performs

better for algorithms sensitive to the way the noise is estimated. We see that when the

configuration becomes more favorable, the results of local noise estimation become closer to

the ones with global noise estimation. It happens in some cases that estimating the noise

locally performs slightly better than doing it globally, but in most cases the results show that

global noise estimation is much more robust.

In Fig. 3.5 we show in detail the results of the ID estimation for all algorithms and

all window lengths in one representative noise and band number configuration, respectively

30 dB and 120 bands, corresponding to the central pixels of the images of Fig. 3.3. This

configuration was chosen because it is representative of many real scenarios. These figures

are to be compared to the actual ID values in Fig. 3.2. Two patterns in the ID estimations

can be found for most algorithms: (i) a window size range where the ID estimate has a peak,

which is too large, and (ii) a set of window sizes for which there is a slow stabilization of the

results, until the support of the global image is reached. Fig. 3.5 shows, as expected, that for

local noise estimation and for most algorithms, the ID estimation provides erroneous values

for the smallest windows. For HySIME, RMT and VCA/NABO we can observe an important

peak in the estimated ID values for a certain window size. This peak means that nearly

all the values between zero and the maximum of the peaks were attained for the different

windows of this size, confirming the instability of the algorithms, and more specifically of



3.5. Local Performance of the algorithms 67

0 200 400
0

50

100
HySIME

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
RMT

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
ODM

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
VCA/NABO

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

100

200
D−HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

2

4
PCA

Window size

E
st

im
at

ed
 I

D

0 200 400
0

5

10
HFC

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
MMOCA

Window size

E
st

im
at

ed
 I

D

(a)

0 200 400
0

20

40
HySIME

Window size

E
st

im
at

ed
 I

D

0 200 400
0

5

10
RMT

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
ODM

Window size

E
st

im
at

ed
 I

D

0 200 400
0

5

10
VCA/NABO

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
D−HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

2

4
PCA

Window size

E
st

im
at

ed
 I

D

0 200 400
0

5

10
HFC

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
MMOCA

Window size

E
st

im
at

ed
 I

D

(b)

Figure 3.5: Estimated ID in the case of local (a) and global (b) noise estimation plotted

against window size for all algorithms, for SNR = 30dB and 120 bands.

the noise estimation for small windows. The height and position of the peak depends on the

noise and band configuration, as we will discuss in the following. The peak is also present,

to a lesser extent for HIDENN/D-HIDDEN algorithms because they estimate the dimension

of a manifold with too few samples, in which case noise is mistaken for signal, especially for

small regions which are likely to have a low rank. ODM also shows this peak because of

the noise estimation, although its importance is mitigated by the outlier in noise paradigm.

For MMOCA, the peak has another origin since the low dimensional subspace is estimated

by resorting to an optimization problem. In this case, for too small windows, this problem

is very ill-conditioned, which entails erroneous estimations. Below a certain size, singular

matrices appear during the estimation and the algorithm fails to produce an estimated value.

Finally, PCA seems affected inasmuch as the (overall small) variance seems harder to capture

with only a few dimensions. Finally, HFC seems to be less affected by the number of pixels

in the local regions, since the estimation does not show a peak in the ID values but more

a linear increase with the window size. Fig. 3.5 (b), the same plots are presented, but in

this case for global noise estimation. As before, HIDDEN, PCA, HFC and MMOCA are not

affected since they do not require a noise estimation step. ODM does not seem very affected

either, probably because of its particular signal and noise model. For HySIME the peak is

also present, because while the noise correlation matrix estimation is much more precise, the

signal correlation matrix still has to be estimated in a small dataset. However, the peak

decreases faster and is less important in amplitude than in the local case. However, RMT

and VCA/NABO, seem very affected by the change in noise estimation. The corresponding

plots are now quite similar in shape to the actual ID values in Fig. 3.2 (VCA/NABO does

not require the estimation of the signal covariance matrix). Finally, for D-HIDENN, global

noise estimation allows the suppression of the most aberrant outliers from the estimated ID

values. Overall, it seems that global noise estimation is very beneficial to ID estimation, but

it relies on the assumption that the noise is spatially i.i.d. in all the image.

Another aspect of local ID estimation shown in Figs. 3.6 and 3.7, is the transition between

erroneous ID estimations for small windows to correct ID estimations when the window sizes
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Figure 3.6: µi as a function of the window size i ∈ S in the case of local noise estimation, for

SNR = 30dB and 120 bands (a). The standard deviation of the estimated values is represented

by the red curves. (b) is simply a zoomed version of the (a).

get sufficiently high, until the size of the whole image is reached. The quality metric µi (see

Eq. (3.7)) is plotted in blue against the window length Si, while the dashed red curves corre-

spond to the quality metric plus and minus one standard deviation (the standard deviation

is defined as the square root of Eq. (3.9)) are shown in dashed red. Fig. 3.6 shows the value

of µi for the local noise estimation. The righmost figure is a zoomed version to show what

happens after the peak in the estimations. From this figure, we clearly see that for the al-

gorithms concerned, the peak is accompanied by a large variance in the estimations, which

quickly decreases as the number of samples get higher. Note that for large window sizes, this

phenomenon is also due to the fact that there are fewer windows of this size that we can fit

into the image. For global noise estimation (Figs. 3.7), we see that apart from HySIME and

ODM, the estimations in small windows are less subject to a high variance, and the estimation

for each window size in small windows is much more precise, which confirms the results of the

previous figures. The observations drawn from these figures allow one to define empirically a

size threshold above which the noise estimation will be reliable.

Finally, Figs. 3.8 depict a last but nonetheless important aspect of the noise estimation:

for which window size does the peak appear? We discuss this particular point, very linked to

the definition of a reliability threshold for the estimation, considering this time several band

number configurations at fixed SNR, and vice versa, but only for the algorithms concerned

(i.e. HySIME, RMT, ODM, VCA/NABO and MMOCA). For local noise estimation, we

immediately see that the size at which the peak appears for all algorithms is much more

related to the number of bands considered in the estimation than it is to the noise level,

which more influences its height. The higher the number of bands, the later the peak appears,

which means that larger windows will be necessary for a correct ID estimation. In the case

of global noise estimation, many cases are favorable enough for the algorithms not to present

a peak, since the noise is correctly estimated (except for MMOCA which does not require a
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Figure 3.7: µi as a function of the window size i ∈ S in the case of global noise estimation, for

SNR = 30dB and 120 bands (a). The standard deviation of the estimated values is represented

by the red curves. (b) is simply a zoomed version of (a).

noise estimation), and its position is less influenced by the number of bands.

3.5.2 Experiments on real datasets

In this section we present the experiments we performed on two real datasets in order to

validate the observations made on the synthetic datasets.

3.5.2.1 Datasets

The first dataset we used is an image acquired by NASA’s AVIRIS sensor over the Cuprite

mining district in Nevada, USA. It is a 350×350 image comprising 188 spectral bands, which

has been often used to validate ID estimation algorithms. We estimated the SNR of each

band of this image using the algorithm presented in section 3.4.1 and obtained an average

SNR (over all bands) of 27dB. It is usually considered that there are at least 17 different

materials (mostly minerals) in this image, based on ground observations and mineral maps of

the site2. In addition, according to experiments performed in [33], the noise in this image in

not very spectrally correlated. An RGB representation of this image is shown in Fig 3.9 (a),

using bands 40, 30 and 20 of the image.

The second dataset was acquired by the CASI 1500 sensor over the region of Barrax, in

the south of Spain, in 20053. The 97 × 847 image comprises 144 bands in the VNIR region

(370-1050 nm) and the estimated average SNR is 43dB. A RGB representation of this scene

is also shown in Fig. 3.9 (b), using bands 52, 35 and 25.

2http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
3http://www.uv.es/~leo/sen2flex/

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
http://www.uv.es/~leo/sen2flex/
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Figure 3.8: Window size of the ID peak (corresponding to spurious estimation) plotted

against SNR for 120 bands (top row) or against number of bands at fixed SNR = 30dB

(bottom row), for local (a) and global (b) noise estimation. Blank values indicate that no

peak is present in the corresponding configuration.

(a)

(b)

Figure 3.9: RGB representation of the Cuprite (a) and Barrax (b) datasets.

3.5.2.2 Experimental setup

For both datasets, as for the synthetic data, we perform local ID estimation on non-

overlapping square tiles of different sizes, from 5 × 5 to 100 × 100 pixels size with steps

of 5 × 5 pixels, and from then on, from 100 × 100 pixels size to the maximum possible with

steps of 10 × 10 pixels. For the Barrax dataset, we considered only the tiles in which no

unobserved values were present. For both datasets, ID estimation was carried out for all

algorithms, for local and global noise estimation. In the absence of ground truth, we cannot

compute the metrics used for the synthetic datasets, but we can compare qualitatively the

shapes of the local ID plots to the observations made for the synthetic data.

3.5.2.3 Results

First, we compared the results of the ID estimations for both datasets in the case of local

noise estimation (see Figs. 3.10 (a) and 3.11 (a) ). The results show that in both cases, the

general behavior of the algorithms is similar to that of the synthetic datasets. We can see

that HySIME, RMT, ODM and VCA/NABO show a clear peak in the ID estimations for

small windows, which is clearer for the Cuprite dataset, probably because it is noisier than
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Figure 3.10: Estimated ID of the Cuprite dataset in the case of local (a) and global (b) noise

estimation plotted against window size for all algorithms.

the Barrax data. The peaks appear roughly for the same window sizes as in the simulated

data, which is logical since the number of bands is comparable in both datasets. Then the

peaks quickly decrease and seem to stabilize around different values for each algorithm when

we approach global ID estimation. Note that the zero values which can appear for very small

windows and some algorithms are due to a very poor noise estimation. For example, in the

case of HySIME, the objective function can be increasing with the dimensionality for poorly

estimate noise values, hence the zero value for the ID. For HIDENN and D-HIDENN, the

results are consistent with the synthetic data: large outliers appear for very small windows,

and then, the algorithm quickly stabilizes with smaller outlier values if the data has been de-

noised beforehand. The performance of PCA still depends heavily on the arbitrary choice of

the variance percentage (still 95% here). For a percentage lower than 95%, the estimated ID

is rarely above 3 for the global images, showing that the ID is not linked to the variance of the

data cloud. The performance improves for larger thresholds, but the tuning is empirical and

data-dependent. HFC still obtains a more or less linear behavior with the increase in window

size. Finally, the MMOCA algorithm fails to produce a value for a large range of window sizes

because of the ill-conditioning of the subspace estimation problem (which explains why only

windows bigger than 50× 50 pixels appear for the Cuprite dataset and windows over 20× 20

pixels for the Barrax dataset). For global noise estimation, and for the algorithms requiring

noise estimation, the results are still consistent with the ones obtained on the synthetic data

(on the Figs. 3.10 (b) and 3.11 (b) ). The peak in the estimated values is still present for the

HySIME and ODM algorithms with the Cuprite data, but very attenuated with respect to

the case of local noise estimation. For RMT and VCA/NABO, as for the synthetic datasets

in such noise and band configuration, the peak has vanished. We can see that when the

windows get larger, both noise estimation strategies perform in an increasingly similar way,

as expected. From the figures above, we can define an empirical threshold above which the ID

estimation would be reliable: for instance, for the Cuprite dataset, we can set the window size

threshold to 30× 30 pixels for the case of local noise estimation, and a window size threshold

of 15× 15 pixels for global noise estimation, for all algorithms. Note that the algorithms can
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Figure 3.11: Estimated ID of the Barrax dataset in the case of local (a) and global (b)

noise estimation plotted against window size for all algorithms. Some outliers for Hidenn and

D-Hidenn are not displayed.

differ a lot in their estimated global ID values (in the Cuprite case, around 20 for HySIME,

HFC and HIDENN, and less for VCA/NABO and PCA, and much higher for RMT, ODM

and MMOCA). Notice that for both datasets, the estimated global noise ID values for large

window sizes match the ones with the same windows, but obtained in a local noise estimation

context. This tends to confirm that the spatial i.i.d. assumption for the noise holds in these

datasets.

3.6 Discussion

In this section, we summarize the observations made for the synthetic and real datasets, and

we provide some indications on how to use the ID estimation algorithms in a local setting.

From the results, we observed that there are three main parameters influencing local ID

estimation:

1. The number of pixels in the local region.

2. The number of spectral bands.

3. The noise level.

A majority of the tested algorithms require a noise estimation step. For these algorithms, a

clear pattern can be seen when estimating ID in regions of the datasets at different scales,

often comprising a peak in the overestimation of the ID in unfavorable cases. This pattern is

especially present when the noise is estimated locally, in each tile of the image. When such

a peak appears, its amplitude increases with the noise power, while its position is especially
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determined by the number of bands in the image: the more bands, the larger the window

size where the peak appears, which means that the ID estimation will be unreliable for larger

windows than if there were fewer spectral bands. This phenomenon is linked to the curse

of dimensionality: since higher dimensional spaces are sparser, more samples are required in

order that estimation algorithms obtain reliable results. In addition, the multicollinearity

phenomenon in high dimensions can also hamper noise estimation strategies exploiting the

between band correlations.

These considerations raise the question of how to choose a minimum value for the window

size, below which the ID estimation is unreliable. One has to take into account the position

of the peak, but also the speed of the decrease after it. A threshold can be roughly defined

visually from plots similar to those in Fig. 3.5. The most favorable configuration for local ID

estimation is then a low number of bands and a good SNR. In any case, for those algorithms,

a global noise estimation is preferable, since it largely reduces the uncertainty due to the

noise estimation. The only case when a local noise estimation is preferable is in the case

of a spatially non-i.i.d. noise. MMOCA does not require a noise estimation, but fails to

produce a result when the underlying optimization problem is too ill-conditioned. For the

other algorithms, HIDDEN and D-HIDDEN have a tendency to produce large outliers when

the number of samples is too few. HFC seems to behave more naturally for small windows,

since small estimated ID values come out in this case.

Next, we need to determine which algorithm to choose to estimate the ID locally. To guide

the reader in his choice, we summarize below and in Table 3.2 the strengths and weaknesses

of each tested algorithm:

• HySIME: relatively robust for local ID estimation, provided the noise is estimated glob-

ally, but still subject to overestimation when the window size is too small because it

requires the estimation of the signal correlation matrix. It is also relatively fast and

produced good results on synthetic datasets.

• RMT: comparable to HySIME, with good performance on the synthetic datasets. It

does not show a peak in the ID values when the noise is estimated globally (at least for

reasonable band number and noise configurations). Relatively fast.

• ODM: relatively fast, but less precise and more sensitive to the number of bands than

the previous two algorithms. Less sensitive to local/global noise estimation.

• VCA/NABO: same advantages as the previous ones, which fall in the same category

(although NABO is not eigenvalue-based), but quite computationally intensive since it

requires a spectral unmixing step. Slightly more sensitive to noise than most algorithms.

• HIDENN / D-HIDENN: not eigenvalue based, but very sensitive to noise, even though

its effect can be mitigated but not suppressed when a de-noising step is performed. Poor

precision in low SNR cases. Relatively slow.

• HFC: Practically insensitive to noise and band number. Provides underestimated ID

values independently of the scale, although they are overall relatively accurate. Depends
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on a user-defined threshold. It can be argued that it is theoretically wrong and that

the results depend on the average values of the bands and not directly on the ID of the

data. Fast.

• PCA: definitely not a good candidate: the performance is conditioned to the arbitrary

choice of the threshold.

• MMOCA: does not require a noise estimation, good performance. Computationally

rather intensive, especially for small windows. Does not work for too small windows

because of ill conditioning.

``````````````̀Property

Algorithm
HySIME RMT ODM HIDENN D-HIDENN VCA/NABO PCA HFC MMOCA

Noise level sensitivity + + + ++ ++ + - - - - -

Sample size sensitivity ++ + + ++ ++ + + - +

Band number sensitivity + + ++ - - + - - - - -

Computational burden - - - - - + + ++ - - - - +

Overall estimation error on synthetic datasets - - - + ++ + - + - - -

Table 3.2: Strengths and weaknesses of the tested algorithms for local ID estimation. One

or two + signs means high or very high, and one or two - signs means low or very low.

3.7 Partial Conclusion

In this chapter, we presented a study of several Intrinsic Dimensionality estimation algorithms

for hyperspectral imaging in the context of local ID estimation. The results on both synthetic

and real data show that in general, when trying to use these algorithms on local subsets of

a large image, one has to be careful with: (i) the number of samples in the subsets, which

have to be sufficiently numerous for estimation processes to be reliable; and, (ii) when noise

estimation or denoising is required, a local approach will yield a decrease in performance,

although this problem can be highly mitigated by estimating the noise on the whole image.

Two other important factors also have consequences on the results: the noise level and the

number of spectral bands. A low SNR and a high number of bands will increase the chance of

mistaking noise for signal and make the estimation more prone to fail in higher dimensional

settings, respectively. We summed up the properties of nine ID estimation algorithms and

showed how they behaved in local areas of the image, and evidenced their respective strengths

and weaknesses for local ID estimation. Future work will include considerations developed in

this chapter in the pipelines of algorithms designed for other applications on hyperspectral

imaging which resort to local subsets of the image, especially for local spectral unmixing

(LSU).
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4.1 Introduction

This Chapter is concerned with incorporating sparsity inducing penalties in the spectral

unmixing (SU) problem in order to deal with the spectral variability (SV) issue. Here, we

present two ways of doing this in two different contexts: Local Spectral Unmixing (LSU) and

spectral bundles.

In the previous Chapter, we have seen that local intrinsic dimensionality (ID) estimation

is an important step of LSU, and has to be carefully carried out in order to limit potential

overestimations of the number of endmembers to use in each subset. However, as we will

see, ID estimation algorithms provide more of an upper bound of the number of endmembers

to use, because in any case, for real data, the definition of the endmembers is a subjective

and scale dependent task. Binary partition tree (BPT) based LSU aims at improving the

problem of this scale dependency by performing the SU at different scales of the hierarchy

defined by the tree. Due to overestimated ID values, or a mismatch between estimated ID

and expected number of endmember in local regions, the results can be hard to interpret,

because meaningless signatures are often extracted as local endmembers.

On the other hand, the variety of existing sparsity inducing norms can be useful in a

75
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SU context when spectral bundles are used. Indeed, after the clustering step, the bundles

form a dictionary which has a strong group structure 1, which should be incorporated into

the SU problem for a finer abundance estimation than simply using conventional abundance

estimation approaches on the whole dictionary, such as the Fully Constrained Least Squares

Unmixing (FCLSU) algorithm.

4.2 Contributions

In this Chapter, our contributions are twofold. First, we propose a new BPT based LSU chain

in which the noise estimation is carried out globally, as per the recommendations of Chapter 3,

and also incorporates collaborative sparsity in the regional unmixing problem, in order to

obtain more interpretable region-wise unmixing results. The objective is to limit or suppress

the negative effect of an overestimated local ID. To avoid having to tune a regularization

parameter for sparsity in each region, we obtain an algorithmic regularization path, providing

the sequence of successively active endmembers when the regularization parameter increases.

Then we select the best model using the Bayesian Information Criterion (BIC), to favor

models which reconstruct the data well and penalize those with too many parameters. The

use of sparsity along with LSU was first sketched in [56], and the method described here can

be found in [58]. The results of the proposed approach on a synthetic and a real dataset show

the interest of the proposed LSU strategy.

Second, we propose to refine the abundance estimation in the bundles approach to SU with

endmember variability by including “social” sparsity inducing norms into the optimization

problem, in order to take into account the natural group structure of the bundles into the

unmixing. We test several penalties and compare them on synthetic and real datasets, and

show that they outperform the results a simple FCLSU algorithm, when used to estimate

the abundances with the automated endmember bundles (AEBs) of [143]. This approach was

initially proposed in [116]. To the best of our knowledge, this is the first time that group

sparsity is used for bundle-based SU accounting for endmember variability. In addition, this

is the first time a fractional mixed norm is used to combine within and inter group sparsity

effects in a single compact penalty, which is in addition compatible with the ASC, unlike L1

regularization.

4.3 Local Spectral Unmixing and Sparsity

4.3.1 Motivation

As we have already mentioned in section 2.3.2, local ID estimation and LSU are linked.

Indeed, an LSU approach requires the estimation of the ID in each subset used in order to

1We recall that this “group structure” denotes the organization of the bundle matrix and of the abundance

coefficients into several clusters, not the algebraic structure.
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Figure 4.1: The Washington DC mall dataset

extract an appropriate number of local endmembers. This is all the more crucial with BPT

based LSU since the extracted endmembers are part of the region model, which will be used

to decide when and with which other region the current region will merge. This means that

ID overestimation will propagate errors all along the construction and pruning of the BPT.

We have already seen what could be done in order to use ID estimation algorithms in the

best way possible in Chapter 3. However, even when the noise is estimated globally instead of

locally, there can still be overestimations of the number of endmembers to use. In addition,

the ID is not systematically linked to the number of endmembers to use, which has a hazy

and empirical definition. On real datasets, the ID can be thought of an upper bound of the

number of endmembers to use, depending on the desired scale and application. To evidence

this phenomenon, we constructed a BPT on a 302 × 307 × 191 subset of the Washington

DC mall dataset (shown in Fig. 4.1), acquired by the HYDICE sensor, whose wavelengths

range from 400nm to 2500nm, in 191 spectral bands, and with a spatial resolution of 2.8 m.

This image was taken over Capitol Hill, where the United States Capitol can be found, in

Washington DC, USA. We describe the parameters used for this BPT construction, most of

which will be the same in all section 4.3. The initial segmentation was obtained using a

mean shift clustering algorithm [41], giving an initial partition with 5760 regions. We used

the spectral region model of Eq. (2.9), along with the mergion criterion of Eq. (2.11). We

chose the Vertex Component Analysis (VCA) as the endmember extraction algorithm (EEA),

but as many other related algorithms, it has a stochastic component. In order to deal with

this, we ran VCA 20 times in each region, using the local ID estimate (computed with the

Random Matrix Theory (RMT) algorithm of [32], using a global noise estimation) as the

number of endmembers to extract, and kept the endmember set giving the largest simplex

volume. The chosen energy function for any partition admissible for the BPT pruning is

εmax(π) of Eq. (2.14). This energy function minimizes the average of the maximum values of

the RMSE in each region of the partition. This can produce higher region-wise RMSE values

than simply minimizing the average RMSE over the regions of the partition, but it is less

sensitive to outliers and has been shown to provide better looking segmentations [161]. From

this BPT, we show in Fig. 4.2 a plot of the estimated ID as a function of the region size,

similarly to what was done in Chapter 3, except that here the regions are not sliding windows

anymore, but the regions of the BPT (before the pruning). Another difference is that since

the regions are not square tiles, we use directly the number of pixels as the regions size instead
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Figure 4.2: Local ID of the regions of the BPT on the Washington Mall dataset (on a

logarithmic scale for the x-axis).

of the side of the tiles. Although there is no overestimation peak, thanks to the global noise

estimation, the estimated ID seems relatively high, up to 70 for the largest regions of the

BPT, and regularly over 10 for small regions, (even for regions of 100 pixels or less). In order

to provide more evidence for this phenomenon, we compare visually in Fig. 4.3 two regions of

the optimal segmentation obtained by keeping around 500 regions (keeping a certain number

of regions is equivalent to an appropriate tuning of λBPT during the pruning step), as well as

some of their properties. Although a visual inspection can be misleading, we do not expect

more than three, perhaps four endmembers in the region on the left, and one or two on the

region on the right. However, the estimated IDs were respectively of 20 and 9. The local

endmembers extracted by VCA are shown in the bottom row. They clearly show that many

signatures are very similar and are probably associated to the same materials. For instance,

on the left there are at least 6 signatures with a very low spectrum, which are all associated to

shadowed areas of the region. For the rooftop region, only 3 signatures or so are significantly

different from one another in terms of spectral distance (that is, neglecting scaling effects of

the signatures). Therefore, it hardly comes as a surprise that most of the abundance maps of

these two regions are very sparse (sometimes only non negligible in extremely small regions

or even isolated pixels), or only there to fit the noise. This means that most of them do

not correspond to significant instances of the same materials, and are then not meaningful

in terms of SV. However, their presence influences the root mean squared errors (RMSE) in

the region, and especially if they are given the same weight as legitimate endmembers in the

region model. In order to have better interpretable results in local regions, these dummy

endmembers should be discarded in the BPT construction process.

4.3.2 Description of the approach

4.3.2.1 Using collaborative sparsity to discard irrelevant endmembers

To select the endmembers which should be discarded in the unmixing process, we would like

to force the ones whose abundance maps are already very sparse or low in most pixels to be

zero everywhere, for each region. To do that, we use collaborative sparsity. Indeed, the mixed

L2,1 norm encourages row-wise sparsity in the abundance matrix, and will have the desired
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Figure 4.3: Two regions of a BPT built on the Washington dataset (top row), and the

associated extracted endmembers (bottom row).

effect of nulling the abundance coefficients of irrelevant endmembers. Thus in each region R,

we are going to solve the following problem to estimate the abundances of each column of the

local endmember matrix SR ∈ RL×dR , where dR is the estimated ID in region R:

arg min
AR

1

2
||XR − SRAR||2F + λR||AR||2,1 + I∆dR

(AR), (4.1)

where I∆dR
is the indicator function of the probability simplex, which has to be understood

as being applied independently to each column of AR. Depending on the value of λR, some

local endmembers will have zero abundance maps on the whole support of the region. To

solve this (convex) problem, we introduce split variables such that the problem becomes:

arg min
AR

1

2
||XR − SRAR||2F + λR||UR||2,1 + I∆dR

(VR)

s.t. UR = AR, VR = AR. (4.2)

With the problem in this form, we can then use the ADMM technique [22] (see Appendix A) to

solve it. The ADMM consists in expressing the constrained problem defined in Eq. (4.2) in an

unconstrained way using an Augmented Lagrangian (AL), and then minimizing it iteratively

and alternatively for each of the variables introduced, including the Lagrange Multipliers

appearing in the AL (the so-called dual update). ρ is the barrier parameter weighting the AL

terms. Here, the Augmented Lagrangian writes :

L(AR,UR,VR) =
1

2
||XR − SRAR||2F + λR||UR||2,1 + I∆dR

(VR)

+
ρ

2
||AR −UR −CR||2F +

ρ

2
||AR −VR −DR||2F −

ρ

2
||CR||2F −

ρ

2
||DR||2F , (4.3)
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where CR and DR are the set of dual variables. The ADMM procedure to solve this problem

in each region is summarized in Algorithm 1.

Data: XR, SR
Result: AR
Initialize AR and choose λR ;

while ADMM termination criterion is not satisfied do

AR ← (S>RSR + 2ρIdR)−1(S>RXR + ρ(UR + VR + CR + DR)) ;

UR ← prox(λR/ρ)||·||2,1(AR −CR) = softλR/ρ(AR −CR) ;

VR ← proxI∆dR
(AR −DR) = proj∆dR

(AR −DR) ;

CR ← CR + UR −AR ;

DR ← DR + VR −AR ;
end

Algorithm 1: ADMM to solve problem (4.2).

The update of AR has a closed form expression. The next two suproblems are separable

w.r.t. the pixels. The updates of the two split variables UR and VR are proximal updates

(which have to be understood columnwise for the simplex projection, and rowwise for the

update of UR). The update of UR requires the use of the proximal operator of the L2 norm,

the so-called block soft-thresholding operator, denoted by soft, and of the proximal operator

of the indicator function of the simplex (c.f. Appendix A), a projection on the simplex. This

can be efficiently carried out using the algorithm of [45]. The last two updates are the dual

updates of the Lagrange multipliers. We can stop the algorithm when the relative variation

between two iterates of AR (measured in Frobenius norm) is below a certain tolerance, for

example εA = 10−3.

However, there are two problems with this approach. The first is that since the linear

constraints of the ADMM are only satisfied asymptotically, we have no guarantee that all

the entries of the supposedly discarded rows of the abundance matrix will be exactly zero

(and this actually happens in practice). Then an arbitrary thresholding step is required to

eliminate endmembers with a small contribution [85, 8]. The second is that in order to obtain

the appropriate sparsity level, the regularization parameter λR needs to be tuned, in every

region. We could use a grid search over a set of parameters in each region, but this would

be very computationally costly and would require a criterion to select the best run of the

algorithm. We will see that we can find solutions for both issues.

4.3.2.2 Obtaining a an algorithmic regularization path

In order to tackle both the regularization parameter issue and the inexact sparsity of the

collaborative sparse regression at once, we would like to obtain the regularization path of

the solution, as a function of λR. As we have already mentioned, computing this empirically

would be computationally prohibitive. Regularization paths can sometimes be computed eas-

ily, for instance on the LASSO (for Least Absolute Shrinkage Selection Operator) problem,



4.3. Local Spectral Unmixing and Sparsity 81

which is nothing more than a least squares regression with a L1 regularization [61]. However,

for more complex problems, such as ours, there is no way, to our knowledge, to obtain this

regularization path easily, without an extensive grid search. However, we are going to find a

convenient workaround for this by computing a so-called ADMM algorithmic regularization

path, introduced in [83]. This approach is able to use the ADMM algorithm to quickly ap-

proximate the sequence of active supports of the variable of interest, when the regularization

parameter increases, for certain sparsity regularized least squares problems. Even though

there are as of today no theoretical guarantees on the efficiency of this algorithm, it was

experimentally shown to be able to efficiently approximate the true sequence of active sets

on several problems [83], including the LASSO. Here, we propose to extend this algorithm to

collaborative sparsity.

Since exactly solving the optimization problem for a large number of regularization pa-

rameters would be too time consuming, we are more interested in finding the active set of

endmembers when the weight of the sparsity increases w.r.t. this of the data fit term. The

idea is, for each region involved in the construction of the BPT, to find a sequence of endmem-

ber matrices, whose number of endmembers are decreasing from the number of endmembers

initially extracted to zero (when the model is fully sparse, for a very high penalty on dense

solutions). Each new matrix contains the same endmembers as the previous one, except for

one, which is the next endmember to be discarded when the weight of the sparsity term gets

more important.

To do that, we modify the ADMM algorithm in order to quickly obtain the support of the

regularization path, for each region. An iteration of Algorithm 1 is carried out for a very small

value of the regularization parameter (which guarantees a fully dense solution). Then, the

variables obtained at the end of the iteration are used as a warm start for another iteration

with a new regularization parameter, slightly higher than the previous one. By repeating

this for several iterations with higher and higher regularization parameters, the split variable

UR, which undergoes the soft thresholding becomes increasingly sparse. Since we are using

warm starts, and because the new regularization parameter is only slightly different from the

previous one, even if the ADMM is not fully converged at each iteration, the support of the

active set is encoded in UR, often in one iteration only, long before this active set is propagated

to AR (this will be the case only at convergence, when the constraints of problem (4.2) are

satisfied). With these modifications, we obtain Algorithm 2. The notation ||Ui
R||2,0 denotes

the number of nonzero rows of the matrix Ui
R. In this algorithm, we have not used the

same notation for the regularization parameter as in Algorithm 1 because since we are not

solving exactly the ADMM for each value of γR, the level of regularization at each iteration

is not the same as before. Here, we are using a geometric progression for the values of γR,

whose common ratio is t. The value of t should be small to approximate the active sets of

the regularization path well enough. We begin each iteration with the update of UR because

it is the variable affected by a change in γ. The regularization space can be explored very

quickly since the algorithm provides at most dR endmember subsets of the full endmember set

extracted by VCA, that need to be tested after this process. In practice we chose γ0
R = 10−4

and t = 1.04, which allows γR to sweep from 10−4 to 5.104 in around 500 iterations (which is

less than what is usually required in practice to reach a fully sparse model).
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Data: XR, SR
Result: The sequence of Ui

R, i = 0, ..., imax
Initialize A0

R and choose γ0
R and t > 0 ;

while ||Ui
R||2,0 6= 0 do

γiR ← tγi−1
R ;

Ui
R ← prox(γiR/ρ)||·||2,1(Ai−1

R −Ci−1
R ) = softγiR/ρ

(Ai−1
R −Ci−1

R ) ;

Ai
R ← (S>RSR + 2ρIdR)−1(S>RXR + ρ(Ui

R + Vi−1
R + Ci−1

R + Di−1
R )) ;

Vi
R ← proxI∆dR

(Ai
R −Di−1

R ) = proj∆dR
(Ai
R −Di−1

R ) ;

Ci
R ← Ci−1

R + Ui
R −Ai

R ;

Di
R ← Di−1

R + Vi
R −Ai

R ;

i← i+ 1
end

Algorithm 2: ADMM algorithmic regularization path for problem (4.2).

4.3.2.3 Selecting the best model

In order to obtain the sequence of active sets, one simply has to examine the successive

active sets of the iterates of UR, and store a sequence of at most dR sparser and sparser

candidate endmember matrices (denoted as SiR). The only operation left is to select the

optimal active set in the sense of some criterion. In our case, we used the Bayesian Information

Criterion (BIC) [141] (closely related to the Akaike Information Criterion (AIC) [6]), which

helps selecting the best model in a set of candidate models, by favoring models with an

important likelihood, while penalizing models with a high number of parameters.

More precisely, the purpose of the BIC is to select the model Mopt (out of a collection of

models M = {Mi}) which maximizes the posterior density of the model, given the data:

Mopt = arg max
Mi

PMi|X(Mi|X). (4.4)

The posterior density for model Mi is, according to Bayes’ Rule:

PMi|X(Mi|X) =
PX|Mi

(X|Mi)PMi(Mi)

PX(X)
. (4.5)

This definition allows to put prior densities on each model. In our cases, since local ID

estimation provides an upper bound of the number of endmembers to use, we chose to put

the same constant prior on all candidate models. To compute PX|Mi
(X|Mi), it is necessary

to marginalize the joint distribution of the data and the parameters of the model, given the

model Mi, over all the possible values of the parameters (stored in a vector θi):

PX|Mi
(X|Mi) =

∫
Θi

PX,θi|Mi
(X,θi|Mi)dθi. (4.6)

This integral is very hard to compute exactly, and therefore we use an approximation of it,

by resorting Laplace’s integration method [102]. After some algebra, we obtain the general
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formula for a quantity proportional to the posterior density, which defines the BIC:

BICi , ln(n)ki − 2ln(Li), (4.7)

where n stands for the number of samples, ki is the number of parameters of model i, and

Li is the likelihood of model i. In our problem, with the assumption that the noise and

modeling errors (ER) are distributed according to a centered i.i.d. multivariate Gaussian

whose covariance matrix is equal to σ2IL, the formula (4.7) becomes [129]:

BICi = ln(L)Pi + L ln

(
||XR − SiRÂi

R||2F
L

)
, (4.8)

where Pi is the number of columns (i.e. the number of endmembers) in SiR ∈ RL×Pi . We

recall that L is the number of spectral bands. Âi
R is the abundance matrix estimated by

FCLSU using the data and the endmember matrix SiR. The best model is simply the one

minimizing the BIC value.

The BIC has interesting properties: it allows to add priors on the density of the set

of models if needed (the formula has to be updated accordingly), and when the number of

samples (here spectral bands) becomes very high, Mopt is the model minimizing the Kullback-

Leibler divergence between the true density and that of the model, with the minimum number

of parameters to avoid overfitting [102].

In our case, in order to alleviate the computational load, we perform these FCLSU steps

from the smallest endmember matrices to the denser ones, and stop when the BIC value has

increased for three consecutive iterations, to avoid performing numerous useless abundance

matrix estimations in each region. The flowchart of this new way to build the region model

is shown in Fig. 4.4.

4.3.3 Results

4.3.3.1 Results on synthetic data

In this section, we demonstrate the effect of the proposed spurious endmember elimination

strategy for a small toy example synthetic image, which will mimic what happens in a local

region of a larger hyperspectral image. First, we randomly picked 6 endmembers out of the

mineral spectral library of the United States Geological Survey (USGS). We have resampled

these spectra so that the number of spectral bands is 300. Then, we generated synthetic

abundance maps for those endmembers using Gaussian Random Fields, which comply with the

ASC and the ANC (shown in Fig. 4.5). We used the LMM to mix the data. Finally, we added

an additive (spectrally and spatially) white Gaussian noise, such that the signal to noise ratio

(SNR) is 25dB. This provides a 40× 40× 300 simulated hyperspectral image. We know from

Chapter 3 and [54] that with these settings, namely small spatial dimensions, large spectral

dimension, and nonnegligible noise, ID estimation algorithms are likely to overestimate the

actual number of endmembers. For instance, on this dataset, the Hyperspectral subspace
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Figure 4.4: Flowchart of the proposed modifications to the region model.

identification by minimum error (HySIME) algorithm of [19] estimated the ID to be 20,

and the Random Matrix Theory-based (RMT) algorithm of [32] returned an ID value of 26,

whereas 6 endmembers were used to linearly mix the data.

Figure 4.5: True abundance maps for the simulated data. The color scale goes from 0 (blue)

to 1 (red).

Then, we ran a simple unmixing chain on the data, first extracting 20 endmembers (as

recommended by HySIME) from the data using the VCA algorithm. We estimated the

abundances using the FCLSU algorithm. They are shown in Fig. 4.6 (a). We can see that

four of the extracted endmembers correspond to the actual ones which were used to generate

the data. However the last two are not well recovered by this method. Indeed, for one of

them (corresponding to the top left abundance map of Fig. 4.5), the abundances seem spread

between two maps in Fig. 4.6 (a). The last abundance maps (middle of the bottom row of

Fig. 4.5) is spread in the remaining maps of Fig. 4.6). This means that because of the ID

overestimation VCA extracted redundant signatures, which make the abundance estimation

results harder to interpret, even in such a simple case. The proposed endmember elimination

scheme (with t = 10−2 and λ0 = 10−3), however, is able to only keep the 6 most relevant

endmembers, and to estimate their abundances correctly (see Fig. 4.6 (b)). We show the BIC
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and the values of the two terms involved in its computation in Fig. 4.7. We can see that

after the number of endmembers in the model goes over 6 (recall that the endmembers have

been sorted so that each added endmember is less explicative of the dataset than the next),

the data fit term (left) almost does not decrease anymore, while the number of parameters

(middle) increases, which makes the BIC reach a minimum for 6 endmembers.

(a)

(b)

Figure 4.6: Abundance maps estimated without sparsity by FCLSU on the whole set of

endmembers extracted by VCA (a) and with the proposed model selection (b). The color

scale goes from 0 (blue) to 1 (red).

4.3.3.2 Results on real data

In order to assess the impact of the proposed modifications to the region model, we built

two BPTs on the Washington Mall dataset, one without sparsity, and one with the proposed

region model. First we show the effect of collaborative sparsity on the local number of end-

5 10 15
−1000

−500

0

500

1000

L
ik

el
ih

o
o
d

 t
er

m

Number of parameters
5 10 15

0

20

40

60

80

100

P
ar

am
et

er
 t

er
m

Number of parameters
5 10 15

−1000

−500

0

500

1000

B
IC

Number of parameters

(a)

5 10 15
−1000

−500

0

500

1000

L
ik

el
ih

o
o
d

 t
er

m

Number of parameters
5 10 15

0

20

40

60

80

100

P
ar

am
et

er
 t

er
m

Number of parameters
5 10 15

−1000

−500

0

500

1000

B
IC

Number of parameters

(b)

5 10 15
−1000

−500

0

500

1000

L
ik

el
ih

o
o
d

 t
er

m

Number of parameters
5 10 15

0

20

40

60

80

100

P
ar

am
et

er
 t

er
m

Number of parameters
5 10 15

−1000

−500

0

500

1000

B
IC

Number of parameters

(c)

Figure 4.7: BIC values (c) (decomposed into the likelihood term (a) and the parameter term

(b)) for the sequence of endmember matrices obtained through the proposed method, for the

simulated dataset.
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members, in Fig. 4.8. We can see that using the BIC criterion on the sequence of models

extracted by the modified ADMM significantly reduces the number of endmembers in each

region, with respect to the estimated ID. We also computed, in each case, the optimal seg-
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Figure 4.8: Local ID of the regions of the BPT on the Washington Mall dataset (in blue) and

number of kept endmembers when the BPT is built with the proposed region model (in red)

(on a logarithmic scale for the x-axis).

mentations whose number of regions is closest to 500 (finding the appropriate value of λBPT
using the persistent intervals [70]). The regions of these segmentations can correspond to

actual structures in the data, but it is not always the case, since we are looking for partitions

minimizing the RMSE, not for homogeneous regions (in the sense of low variance ones). The

segmentations are relatively similar, although some differences can be found. The similarities

of the segmentations show that we have been able to discard the useless endmembers without

significantly impacting the average RMSE. For the sake of illustration, we apply the pro-

posed algorithm to discard the irrelevant endmembers of the region on the right of Fig. 4.3.

The average RMSE of this region without sparsity is 0.0061, using 9 endmembers. The pro-

posed approach (for a given run) only retains 3 endmembers, with a RMSE of 0.0064. This

shows that we have been able to discard irrelevant endmembers by removing the redundant

or meaningless information in the region.

We are going to show that the sparsity imposed by the proposed region model also has a

significant impact on the interpretability of the results. To do that, we take the region on the

left of Fig. 4.3, taken from the partition of Fig. 4.9 (a), and show the difference in abundance

maps with or without collaborative sparsity. These results are presented in Fig. 4.10. When

no sparsity is applied, we can see that at least 8 abundance maps have negligible values on

almost all the support of the region. Only around 5 abundance maps are really meaningful

at the scale of the region. There seems to be 2 instances of grass, two instances of trees and

one endmember associated to the gravel pathway. When we use the proposed scheme, only

four endmembers are retained: one for grass, two for trees (including one for shadowed parts

of the trees), and one for gravel. The different terms involved in the computation of the BIC

are displayed in Fig. 4.11. These plots confirm that the likelihood term (which is very related

to the mean RMSE in a region) does not decrease much when more than 4 endmembers

are retained, while the parameter term increases linearly. The sparsity only kept the most

relevant signatures, making the results more easily interpretable at the region scale.
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(a) (b)

Figure 4.9: Optimal segmentations whose number of regions is the closest to 500, when no

sparsity is considered (a) and using the proposed modifications to the region model (b).

It may also happen in some regions which seem relatively homogeneous visually that even

with sparsity a significant number of endmembers are retained: this happens for instance in

the water pond in the center of the upper part of the image: in the most central region, the

estimated ID is 5, and no endmember was discarded after the collaborative unmixing. In this

region, comprising a shallow water pond (around 50 cm deep), and some kind of concrete at

the bottom, the mixing process is likely to be highly nonlinear. The BPT approach allowed

to isolate this region from the rest of the image, by segmenting it, avoiding the propagation

of the errors due to the endmembers of this region. Similarly, in regions which visually

correspond to one macroscopic material (e.g. in the region on the right of Fig. 4.3), several

endmembers (around 3 to 6 in this case, depending on the VCA runs) can be retained, because

of spectral variability within the region. Since the used LMM does not account for SV, several

endmembers are necessary to fit the data well. This shows that it would be interesting to

have a mixing model incorporating SV explicitly in order to better unmix this type of regions.

(a)

(b)

Figure 4.10: Abundance maps in the region on the left of Fig. 4.3, without sparsity (a) and

with the proposed model selection (b). The color scale goes from 0 (blue) to 1 (red).
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Figure 4.11: BIC values (c) (decomposed into the likelihood term (a) and the parameter term

(b)) for the sequence of endmember matrices obtained through the proposed method, for the

region on the left of Fig. 4.3.

4.4 Spectral Bundles and Social Norms

In this section, we leave aside LSU to focus on sparsity inducing penalties for SU in the con-

text of endmember bundles. Indeed, as we have seen in section 2.3.2, after the clustering step,

the dictionary of spectral bundles is organized into several groups, because it is divided in a

certain number of bundles, each of them comprising several instances of the same endmem-

ber. For sufficiently large dictionaries, applying sparsity inducing penalties in the abundance

estimation problem can be useful to discard irrelevant endmember candidates in each pixel.

For instance, a simple L1 norm minimization will help, but it does not take into account the

group structure of the bundles, and conflicts with the ASC. In the signal processing litera-

ture, several sparsity inducing penalties exist to incorporate the structure of the coefficients

matrix. We detail some of them in the following sections, before testing their effects on the

SU problem using AEB on synthetic and real datasets. These results were first presented

in [116].

4.4.1 Social Sparsity

All the penalties we are going to detail in the following are based on applying a mixed norm

on the abundance vector (in each pixel), which is endowed with a group structure G, which

partitions the Q = nP endmembers extracted by the n runs of VCA on random subsets

into P groups (as many as the number of materials to unmix). We drop the pixel index for

simplicity of the notation. In the most general form, the group two-level mixed LG,p,q norm

is defined, for any two positive real numbers p and q as [97]:

||a||G,p,q =

 P∑
i=1

mGi∑
j=1

|aGi,j |
p


q
p


1
q

=

(
P∑
i=1

||aGi ||qp

) 1
q

, (4.9)

where mGi is the number of instances in group Gi, and aGi is a subvector of a comprising

all the abundance coefficients associated to the endmembers of group Gi. This equation only
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Figure 4.12: Illustration on how the LG,p,q norm operates on a vector, given the group struc-

ture G.

defines a true norm for p, q ≥ 1 (and also for p or q =∞, by taking limits). As explained in

Fig. 4.12, the idea is to take the p norm of each of the P subvectors of coefficient defined by

the groups, to store the results in a P -dimensional vector, for which we are going to compute

the q norm. We will see that with smart choices of p and q, different types of sparsity can be

obtained when this mixed norm is used as a regularized in the unmixing with bundles. The

definition of the LG,p,q norm can easily be extended to a matrix A ∈ RQ×N , using the same

expression, operating columnwise, and summing the results on all pixels:

||A||G,p,q =

N∑
k=1

||ak||G,p,q. (4.10)

Note that this group matrix LG,p,q norm is not the same as the mixed Lp,q matrix norm

defined in section 1.5. However, there is a connection, because using a mixed matrix norm

amounts to impose a particular group structure on the coefficients of the matrix, using its

rows. Let us define a vector a† = vec(A>) (vec being a vectorization operator which stacks

the columns of a matrix). Then a† is a (column) vector with all the rows of A stacked. If we

divide this vector into P groups, each comprising the coefficients corresponding to one row of

A, then we have ||a†||G,p,q = ||A||p,q.

Here, we are interested in norms which can handle any group structure, while enforcing

several types of sparsity. For instance, the use of sparsity in SU is based on the assumption

that a few materials are active in each pixel. If the dictionary of endmembers has a group

structure, it makes sense to enforce sparsity on the number of groups, rather than on the total

number of signatures. This rationale is the basis of the so-called group LASSO [115], which is

widely used in many signal processing applications. This method uses the LG,2,1 norm, (not

to be confused with the collaborative case, which use a very particular group structure, as

seen above), which enforces sparsity on the vector whose entries are the ||aGi ||2. This means

that when one of these entries is zero, the whole group is discarded entirely since the vector

aGi has a zero norm. Within each group, there is no sparsity and thus most or all signatures

are likely to be active. The effect of this penalty on a matrix A ∈ RP×N is shown in Fig. 4.13.

In some cases, for example when we deal with a small number of groups, and we have reasons

to believe that there is only one or few instances of each group which are active in a pixel,
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Figure 4.13: Effect of the group LASSO penalty on the abundance matrix. The group struc-

ture is shown in colors (the rows of the matrix have been sorted for more clarity). Inactive

entries of the matrix are in gray. A small number of groups is selected in each pixel, but
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Figure 4.14: Effect of the elitist LASSO penalty on the abundance matrix. A small number

of instance is each group is selected in each pixel, but all or almost all groups are active.

we may expect within-group sparsity, without group sparsity. In this case the elitist LASSO

penalty [98] is suited to the problem, since it uses the LG,1,2 norm, which promotes a small

value of the L1 norms of each aGi . The effect of this penalty is shown in Fig. 4.14. Using a

penalty which enforces both group sparsity and global sparsity (on the total number of active

signatures) also seems appealing. The sparse group LASSO [142] uses a combination of the

group lasso penalty and a classical L1 norm to benefit from both properties. It was recently

used in a sparse SU context in [86]. However, in this case, benefiting from both penalties

comes at the cost of having two regularization parameters to tune. In our case, this penalty

is also at odds with the ASC due to the presence of the L1 norm in the objective, as we have

already pointed out in section 1.5. The ASC can also be contradictory with sparsity in some

other configurations: for instance, if each material has only one representative, the group

LASSO reduces to the regular LASSO and the ASC conflicts with the objective. In order

to avoid this issue, we are also using a fractional case, with the LG,1,q “norm”, with q = a
b

(a and b ∈ N) and 0 < a
b < 1. This penalty is no longer a norm, because we lose convexity

due to the fact that q ≤ 1, but it has the advantage of enforcing both group sparsity and

within-group sparsity in a compact formulation, without conflicting with the ASC anymore.

In addition, the Lq norm q ≤ 1 is a better approximation of the L0 norm than the L1 norm.

The effect of the LG,1,q penalty on the abundance matrix is shown in Fig. 4.15. With either

of those penalties, the optimization problem to solve is:

arg min
A

1

2
||X−BA||2F + λ||A||G,p,q + I∆P

(A). (4.11)

Note that after solving this problem, in order to obtain the global abundances, one simply
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Figure 4.15: Effect of the fractional LASSO penalty on the abundance matrix. A small

number of instance is each group is selected in each pixel, and the mixture is also sparse

within each group.

has to sum the abundances within each instance of each group, as described in section 2.3.1.

The optimization problem (4.11) is convex for both the group and elitist penalties, but not

for the fractional one. In any case, we are going to use the ADMM once again to solve it.

For both convex penalties (group and elitist), we will use the ADMM in a very similar way

to Algorithm 1, with the only change being in the proximal update of the split variable U

(and in using the whole image, not just the pixels of regions). Convergence to the global

minimum is automatically guaranteed for the group and elitist penalties. For the nonconvex

case, as we will see, the situation is more complex. The ADMM was designed to tackle convex

problems, but it has been more and more (successfully) used for nonconvex problems as well,

and recent works [164] show that if the nonconvex function satisfies some conditions, the

ADMM is proven to converge to a stationary point in the nonconvex case. One of these cases

includes the Lp quasinorm for p < 1. This results remains to be shown in the mixed LG,1,q
norm with q < 1 case, (but it is likely to satisfy the same conditions, being “less nonconvex”

than the Lp quasinorm, because the unit ball of such a norm will have some nonconvex facets,

but not all since some of them will be similar as the facets of the L1 ball). The next two

sections introduce the proximal operators for the group and elitist penalties, while the last

one shows how to handle the fractional case.

4.4.1.1 Group penalty case

The update of u (in each pixel) for the group penalty involves the following proximal operator,

which is simply a group version of the block soft thresholding operator:

proxτ ||·||G,2,1(v) =

 softτ (vG1)
...

softτ (vGP )

 . (4.12)
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4.4.1.2 Elitist penalty case

The proximal operator for the elitist norm is a bit more complex, but has a closed form

(derived in [96]), which involves the regular (L1) soft thresholding operator:

proxτ ||·||G,1,2(v) =

 softγ1(vG1)
...

softγP (vGP )

 , (4.13)

where the soft thresholding is applied entrywise, and γi = τ
1+τ ||vGi ||1, ∀i ∈ [[1, P ]].

For both the group and elitist cases, the Augmented Lagrangian writes:

L(A,U,V) =
1

2
||X−BA||2F +λ|| · ||G,p,q(U)+I∆Q

(V)+
ρ

2
||A−U−C||2F +

ρ

2
||A−V−D||2F ,

(4.14)

where (p, q) = (2, 1) in the group case and (p, q) = (1, 2) in the elitist case. The ADMM

algorithm to minimize the AL is summarized in Algorithm 3.

Data: X, B

Result: A

Initialize A and choose λ ;

while ADMM termination criterion is not satisfied do

A← (B>B + 2ρIP )−1(B>X + ρ(U + V + C + D)) ;

U← prox(λ/ρ)||·||G,p,q(A−C) ;

V← proxI∆P
(A−D) = proj∆P

(AR −D) ;

C← C + U−A ;

D← D + V −A ;
end

Algorithm 3: ADMM to solve problem (4.11) in the case of the group or elitist penalties.

4.4.1.3 Fractional penalty case

The problem is more complex for the fractional mixed norm. As we have pointed out above,

there is no proof that the mixed LG,1,q norm with q < 1 satisfies the required properties for

the ADMM to converge. However, in our problem, with an appropriate variable splitting

scheme, we can express the fractional case for problem (4.11) as a Lq regularized constrained

least squares problem.

Let us suppose for simplicity (and without loss of generality), that the rows of A and

the columns of B have been sorted such that, in each pixel, the abundance vector has the

following form:

a = [a1,1, a1,2, · · · , a1,mG1
, a2,1, a2,2, · · · , a2,mG2

, · · · , aGP ,1, aGP ,2, · · · , aGP ,mGP ]>. (4.15)

Recall that mGi is the number of instances of one of the P groups, in this case Gi.
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The problem we want to solve is:

arg min
a

1

2
||X−BA||2F + λ||A||qG,1,q + I∆Q

(A), (4.16)

with Q =
∑P

i=1mGi the total number of signatures in the bundle B ∈ RL×Q. With the

following variable splitting scheme, Eq. (4.16) can be rewritten as:

arg min
a

1

2
||X−BA||2F + λ||U||qq + I∆Q

(V)

s.t. ΓA + Λ1U + Λ2V = 0(G+Q)×N , (4.17)

with 0· the zero matrix whose size is given in index. Γ =

[
M

IQ

]
, where

M =


1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 0 0 · · · 0 1 1 · · · 1

 ∈ RG×Q, (4.18)

The ith row having mGi consecutive ones. I· denotes the identity matrix whose size is in index

(we only provide one dimension for brevity since the matrix is square).

Finally, we have Λ1 =

[
−IG
0Q×G

]
∈ R(G+Q)×G, and Λ2 =

[
0G×Q
−IQ

]
∈ R(G+Q)×Q. All

these variables are defined such that: MA = U ∈ RG×N and A = V. This way, we

have reduced the optimization problem to a Lq regularized least squares problem, where the

variable on which the fractional norm is applied is a vector whose entries are the L1 norms

of the abundance coefficients in each group. Note that the new problem is equivalent to the

original one only thanks to the nonnegativity constraint, which allowed us to turn the L1

norm into linear constraints. This way, the convergence of the ADMM for our nonconvex

problem is, in theory, guaranteed [164], should we be able to compute exact updates for all

the subproblems of the ADMM.

However, even after this simplification of the problem, an issue remains: there is no closed

form expression or known algorithm (to the best of our knowledge) to compute exactly the

shrinkage operator of the Lq quasinorm (to the power q) when q < 1, except when q = 1
2 or

q = 2
3 [30]. Here, we prefer the term “shrinkage operator” to the term “proximal operator”

because the latter is usually defined for convex functions only. In addition, this operator is

a discontinuous function, because of the nonconvexity of the quasinorm [169]. This limits the

applicability of proximal methods to solve this type of problems, and other types of algorithms

(or of nonconvex sparsity inducing penalties) have been investigated in remote sensing (see

e.g. [153] and references therein).

In our case, in order to be able to apply ADMM nonetheless, we need an explicit shrinkage

operator. We resort to an approximate q-shrinkage operator Sq,λ, as defined in [166]:

∀x ∈ Rn, Sq,λ(x)i = sign(xi)(|xi| − λ2−q|xi|q−1)+. (4.19)
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This operator reduces to the soft thresholding operator when q = 1 and to the hard threshold-

ing operator when q = 0. The hard thresholding operator is closely related to the shrinkage

operator of the L0 norm [166]. In addition, it can be shown([166], theorem II.4) that the op-

erator of Eq. (4.19) is actually the exact shrinkage operator of a nonconvex function (which

we will denote as fq) with desirable properties: it is separable w.r.t. each entry of x (with

fq(x) =
∑n

i=1 gq(xi)), and the function gq is even, continuous, strictly increasing and concave

for xi > 0, differentiable everywhere except in 0, and satisfies the triangle inequality. This

function behaves in a way similar to the absolute value for small values of its argument, and

more like the absolute value taken to the power q for larger arguments (see [166] for a graph-

ical representation). For q = 1, this penalty function is the absolute value, but in general,

unfortunately, there is no analytical expression for it. This result is interesting because we

have an explicit shrinkage operator with nice properties to use with any proximal algorithm,

to the cost of having a regularizer without an explicit expression. Nevertheless, the con-

vergence of the ADMM in the nonconvex case remains to be proven, since we replaced the

Lq norm with another nonconvex penalty, which should itself satisfy the required properties

of [164] in order to guarantee convergence.

Finally, the optimization problem we solve is:

arg min
a

1

2
||X−BA||2F + λfq(U) + I∆Q

(V)

s.t. ΓA + Λ1U + Λ2V = 0(G+Q)×N . (4.20)

The AL writes:

L(A,U,V) =
1

2
||X−BA||2F+λfq(U)+I∆Q

(V)+
ρ

2
||MA−U−C||2F+

ρ

2
||A−V−D||2F , (4.21)

and we can ADMM algorithm to minimize it is shown in Algorithm 4 (the approximate

q-shrinkage is performed coordinate-wise).

Data: X, B

Result: A

Initialize A and choose λ ;

while ADMM termination criterion is not satisfied do

A← (B>B + ρM>M + ρIQ)−1(B>X + ρM>(U + V) + ρ(C + D)) ;

U← Sq,λ/ρ(MA−C) ;

V← proxI∆P
(A−D) = proj∆P

(AR −D) ;

C← C + U−MA ;

D← D + V −A ;
end

Algorithm 4: ADMM to solve problem (4.20).
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4.4.2 Results

We want to test the performance of the three sparsity inducing penalties on a synthetic

dataset and a real one. We compared them to a simple unmixing chain (based on VCA and

FCLSU) which does not include spectral variability, and a bundle approach using FCLSU on

the whole dictionary, which does not take into account the group structure of the dictionary in

the optimization. For all cases, the bundle dictionary is the same, and is extracted using the

VCA algorithm 5 times on random subsets of the data, comprising 80% of the image pixels.

The groups were created using spectral clustering (which is more robust than k-means) [162].

Note that for the FCLSU algorithm, we used as endmembers the centroids of the bundles,

which is already better than extracting only once the endmembers with VCA on the whole

dataset. The fractional norm we use is a LG,1, 9
10

norm, in order to limit the nonconvexity

of the objective, while making the ASC compatible with it. We stop the ADMM algorithms

after 300 iterations, or when the relative variation between the abundances (measured in

Frobenius norm) goes below 10−4.

4.4.2.1 Synthetic data

In order to test the different group penalties, we design a synthetic dataset with spectral

variability. To do that, we consider 15 materials, whose spectra were randomly chosen from

the USGS spectral library. We generated variability by computing scaled versions of these

endmembers. As we have already mentioned earlier in this manuscript, scaling factors can

be considered to be a good model for illumination variations along the observed scene [121,

122]. Therefore, we generated 15 spatial scaling factor maps using mixtures of Gaussians,

so that in the end each material is associated to a different local endmember in each pixel.

The abundance maps were defined using Gaussian Random Fields. They satisfy the ANC

and ASC, and are sparse, in the sense that only 3 or 4 materials are active in each pixel,

out of the 15 considered. In addition, there is only one pure pixel in each abundance map.

The performance on the synthetic data were evaluated using the following metric (termed

aRMSE for abundance Root Mean Squared Error) on the estimated abundances:

aRMSE =
1

N

N∑
k=1

√√√√√ 1

P

P∑
i=1

aGi,ktrue − mGi∑
j=1

aGi,j,k

2

, (4.22)

where aGi,ktrue is the global true abundance for material Gi in pixel k, and aGi,j,k denotes

the abundance coefficient in pixel k, for instance j of group Gi. This metric measures the

quality of the estimation of the abundances of the materials (but not of the abundances of

each instance within each group, which are not available here anyway). For this dataset, for

each algorithm, the regularization parameter λ and the barrier parameter ρ of the ADMM

were empirically set to 10−2 and 10−1, respectively.

The visual results are gathered in Fig. 4.16, where we show the abundance maps for 5

materials (out of 15) obtained by all algorithms. The quantitative results, as well as the
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Figure 4.16: Abundance maps for all the compared algorithms for 5 of the 15 materials for

the synthetic data. The color scale goes from 0 (blue) to 1 (red).

Algorithm FCLSU FCLSU Bundles Group Elitist Fractional

aRMSE 0.0111 0.0067 0.0022 0.0043 0.0019

Running Time (s) 22 43 135 136 144

Table 4.1: Estimation error on the abundances, and running time for all the competing

algorithms on the synthetic dataset. The best aRMSE value is shown in red, and the second

best is shown in blue.

running times of each algorithms are shown in Table 4.1. We also show in Fig. 4.17 the

abundance matrices, displayed as images, to show the structure they induce on the abundance

coefficients.

From the visual results, we can see that as expected, the standard linear SU chain, using

VCA and FCLSU, performs rather poorly, since it is not able to take SV into account, which

leads to significant estimation errors. All the other approaches make use of bundles, and

consequently perform better both visually and quantitatively. When FCLSU is used to obtain

the abundances of each instance of each group, the results are already much more satisfying,

because this technique is already able to correct some of the wrongly estimated abundances of

the batchless FCLSU approach. However, we can see that the results are far from perfect: the

algorithm tends to estimate wrong mixtures of different materials. Indeed, it does not take

the group structure into account, and it does not incorporate sparsity into the optimization

problem. From both Fig. 4.16 and Table 4.1, we see that from the three tested algorithms

here, the group and fractional penalty perform the best, while the elitist penalty is better

than FCLSU, but worse than the other two. The elitist penalty assumes that few instances



4.4. Spectral Bundles and Social Norms 97

Figure 4.17: Abundance matrices for all the compared algorithms for 5 of the 15 materials

for the synthetic data. A small part (1000) of the pixels are on the x-axis, and the groups,

as well as their representatives are shown on the y-axis. The groups have been sorted for an

easier visualization. Each group comprises 5 instances, which suggests that the endmember

extraction and clustering were accurately performed.

are active within each group, but does not assume anything on the number of active groups.

In practice, the mixture is dense over the groups, which explains the fact that this approach

obtains less pure abundance maps than the group and fractional case. The group penalty,

on the contrary, favors a sparse number of groups, but within each active group, it prefers

a dense mixture. This phenomenon can clearly be seen in Fig. 4.17. If theoretically, with

the geometrical interpretation of section 2.3.1 in mind, having a dense mixture within groups

is an advantage, since it allows to explore more in detail the convex hull of the instances

within a group, in practice we observe that the coefficients are often equally spread between

the instances. The fractional penalty is able to slightly improve the results further, obtaining

even sparser abundance maps than in the group case, for two reasons. The first is that it favors

group sparsity as the group penalty does, but it also favors within group sparsity as the elitist

penalty does. It is then able to combine the features of both other penalties at the same time.

Furthermore, it makes use of a mixed LG,1, 9
10

norm inducing sparser solutions than a classical

L1 norm regularization, which disregards the group structure, and in addition conflicts with

the ASC. Finally, the computational burden of all group sparsity strategies is heavier than the

conventional SU chain, or even than the FCLSU algorithm used with the extracted bundles,

but the running time is far from prohibitive. The group and elitist penalties have the same

complexity, since only the proximal operator for the sparsity inducing norm changes, while

the fractional case is slightly more expensive, since the constraints are more complex than

those of the group and elitist cases.
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(a) (b) (c)

Figure 4.18: A RGB representation of the Houston hyperspectral dataset (a). High spatial

resolution color image acquired over the same area at a different time (b). Associated Lidar

data (c), where black corresponds to 9.6m and white corresponds to 46.2m.

4.4.2.2 Real data

The real dataset we use in this Chapter is a subset of a hyperspectral image acquired over the

University of Houston campus, Texas, USA, in June 2012. It was used in the 2013 IEEE GRSS

Data Fusion Contest (DFC) [48]. The image comprises 144 spectral bands in the 380 nm to

1050 nm region, and comes with a LiDAR dataset acquired a day before over the same area,

with the same spatial resolution (2.5 m). We are interested here in a 152×108×144 subset of

this image, acquired over Robertson stadium on the Houston Campus and its surroundings.

Fig. 4.18 shows a RGB representation of the observed scene, as well as a high spatial resolution

RGB image of the scene2. The estimated ID of the dataset using the Hysime algorithm [19] is

17, but we chose to consider 7 endmembers, to be able to reconstruct the data well while being

able to keep easily visually interpretable results. The identified endmembers correspond to

the following semantic classes: red metallic roofs, vertical structures surrounding the stadium,

asphalt, healthy vegetation, an isolated red roof which was separated from the others, the

concrete stands of the stadium and finally burnt vegetation. For this dataset, we keep the

same setup as before, except that we (empirically) set the regularization parameter to λ to

0.5 for all algorithms. We will only evaluate the results visually in the absence of an available

ground truth. The abundance maps estimated for all the algorithms are gathered in Fig. 4.19.

As before, we also show the abundance matrices in Fig. 4.20.

First, we can see that the FCLSU results are not bad, except for the red metallic roofs

surrounding the stadium, which should be pure, but are not here because of spectral variability

induced by changing orientations of the facets of these roofs (as confirmed by the Lidar

elevation image). Also, the concrete stands of the stadium are split into two abundance

maps, whereas they are actually made of the same material (this much clearer from the

high-resolution RGB image than from the RGB composition of the HSI). Here the different

orientation of the stands with respect to the sun cause important spectral variability issues.

The bundle approach, combined with FCLSU is already able to make the red roofs slightly

purer, while gathering most of the stands in the same abundance map. In this case, the

group penalty obtains comparable results, except that the global abundance of each material

are much more spread across the various instances, contrary to FCLSU (as can be seen in

2Note that it was acquired at a different time with a few notable changes with respect to the dataset we

are interested in (mainly parked cars).
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Figure 4.19: Abundance maps for all the compared algorithms for the Houston data. The

color scale goes from 0 (blue) to 1 (red).

Fig. 4.20). The elitist penalty does not perform very well since it prefers a dense mixture

over the groups, which does not allow to separate the materials well enough. The fractional

penalty to produce satisfactory results, by having the sparsest and purest abundance maps

for the red roofs and the concrete stands. It also allows to reduce the impact of the duplicate

red roof endmember to a minimum by having a very sparse abundance map for it. We

note however, that probably because of the nonconvexity of the optimization problem, the

abundances are slightly less smooth than with the other approaches, especially for high values

of the regularization parameter. This suggests that the results could be further improved by

adding a spatial regularization term to the optimization.

4.5 Partial Conclusion

In this Chapter, we have proposed two different approaches in which sparsity can be inter-

esting to handle spectral variability (SV). The first one is using the regularization path of

a collaborative sparsity regularized local spectral unmixing (LSU) problem to get rid of the

irrelevant endmember signatures extracted in each region of the Binary Partition Tree (BPT)

after an overestimation of the intrinsic dimensionality (ID). We have shown that the approach

was able to obtain more meaningful local abundance maps than when only FCLSU is used in

each region to estimate the abundances. Future work on this part includes adapting the pro-

posed methodology to be able to design a global joint endmember extraction and abundance

estimation algorithm for a full HSI, instead of the local regions of a BPT, not unlike what

has been done in [8] (this approach is mentioned in section 1.5.3). The major difference is
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Figure 4.20: Abundance matrices for all the compared algorithms the Houston data. A small

part of the pixels (1000) are on the x-axis, and the groups, as well as their representatives are

shown on the y-axis. They have been sorted for an easier visualization. Each group comprises

5 instances, which suggests that the endmember extraction and clustering were accurately

performed.

that the resulting algorithm would be completely unsupervised, needing no parameter to be

tuned by the user (no regularization parameter, or threshold on the abundances to discard).

Indeed, we are able to obtain the regularization path of the optimization problem, and the

best model is selected by the Bayesian Information Criterion (BIC). Another advantage of

such an algorithm is that would be entirely deterministic, unlike most endmember extraction

algorithms (EEA) of the literature. A first step in this direction has already been taken

in [57], where we extended the proposed algorithm to estimate the appropriate number of

endmembers in a whole image from the set extracted by VCA. The LSU part could also be

improved by using new region models and merging criteria during the construction of the

BPT. For example, using an elevation model in the BPT construction could help defining

physically more sound regions, where SV and nonlinear effects are likely to occur. Note that

a multimodal LiDAR-Hyperspectral segmentation based on BPTs was recently proposed in

[151]. Another possibility would be to integrate directly SV in the region model, e.g. using a

SV oriented mixing model instead of the LMM.

The second approach uses different types of sparsity in the bundles approach to deal with

SV. The idea is to use sparsity inducing norms which take into account the group structure of

the bundle dictionary during the abundance estimation. We have tested three different types

of social sparsity: a group penalty (enforcing group sparsity), and elitist sparsity (favoring

intra-group sparsity) and a fractional sparsity (combining both in a single penalty), and

have shown that these types of sparsity, especially the group and fractional ones, can be
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interesting alternatives to simply using FCLSU for SU with bundles. On the theoretical part,

a formal proof of convergence of the ADMM for the optimization problem we deal with in

the fractional penalty case, using the approximate fractional shrinkage, remains to be found.

Another research avenue could be to derive regularization paths for the optimization problems

we deal with, in order to avoid having to tune the regularization parameters. Finally, since the

extraction of the bundle has a critical impact on the results, introducing new more robust ways

to obtain them is another interesting perspective: we can use spatially correlated subsamples

instead of random ones (e.g. regions of the optimal partitions of the BPT), or even define the

pool of endmembers as the results of the global collaborative unmixing algorithm suggested

in the previous paragraph. Indeed, with a lower regularization parameter, several instances

of the same material can be retained in the results to incorporate SV, instead of seeking only

one signature for each material.
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An Extended Linear Mixing Model

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 From the Hapke model to the ELMM . . . . . . . . . . . . . . . . . . . 106

5.3.1 The Hapke model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Simplifying assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 Solving the ambiguity between the abundances and the scaling factors . . 114

5.4.3 Regularization Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.1 Alternating Least Squares (ALS) algorithm . . . . . . . . . . . . . . . . . 116

5.5.2 Coordinate Descent (CD) algorithm . . . . . . . . . . . . . . . . . . . . . 121

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.1 Results on synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.2 Results on real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Partial Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Introduction

This chapter introduces a mixing model to handle spectral variability (SV), in particular

caused by illumination effects and topography. The motivation of such a model is to extend

the Linear Mixing Model (LMM) to a variant in which the sources are locally allowed to vary,

through pixel and material dependent mappings fpk : RL → RL which transform reference

endmembers stored in a matrix S0 into local variants. Then the classical LMM of Eq. (1.3)

rewrites:

xk =

P∑
p=1

apkfpk(s0p) + ek. (5.1)

Before commenting on the definition of the mappings, we note that the spectral bundles

presented in section 2.3.1 can be interpreted in this framework. Indeed, without explicitly

defining the functions transforming the references, having at our disposal several instances

of each endmember boils down to knowing several possible outcomes of these mappings. In

this light, machine learning approaches for spectral bundles can be seen as trying to learn
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the mappings from training samples. If SV is to be explicitly modeled, the analytical form of

the functions should be flexible and based on physical considerations, so that the additional

variability parameters introduced can be physically interpreted. The variations on the spectra

induced by illumination and the geometry of the scene affect all materials differently, but in

a correlated way since they share one cause (the geometry is the same for all materials).

Although as we will see that material specific properties have an influence, this physical

phenomenon seems to be a good candidate to design a relatively general model, applicable to

all possible materials. This phenomenon is often considered to be well approximated by scaled

variants of the spectra [94, 121]. The use of the spectral angle as a metric to compare spectra

also has the same rationale: it is insensitive to scalings and hence measures the dissimilarity

in the shapes of the spectra, not their magnitude [94]. In the literature, to model shadow and

brightness effects, a constant “shade” endmember is often considered, and its abundances are

considered in the same way as for other materials [94]. However, using this trick amounts

to scaling each pixel with the abundance of this shadow endmember, and then interpreting

the remaining abundances for the other materials. In such a case, the ASC is not physically

meaningful anymore since this endmember is not an actual material. In addition, to the best

of our knowledge, the use of scalings to approximate brightness effects on the spectra has not

been related to physical models yet.

5.2 Contributions

The contributions of this Chapter are as follows: First, in order to find a suitable definition

for the mappings in Eq. (5.1), we start from the reflectance model of Hapke [73] and simplify

it to make it tractable from a blind SU point of view. We obtain a new mixing model taking

into account SV under the form of scaling factors affecting each endmember, in every pixel,

that we term Extended Linear Mixing Model (ELMM). Then we design an optimization

problem aimed at estimating the parameters of this model, adding the usual constraints and

useful regularizations. We propose two algorithms to solve this optimization problem. We

compare the results of the proposed approach to other techniques of the literature taking SV

into account (most of which are reviewed in Chapter 2), on synthetic and real datasets. The

explicit use of scaling factors in a mixing model was introduced in [159] and [53], though

it had been already suggested in [121, 122]. Most of the results of this Chapter were first

reported in [55].

5.3 From the Hapke model to the ELMM

In this section, we briefly describe the Hapke model and try to give some insight on how it

models reflectance as a function of various physical parameters. Then we describe standard

physical assumptions to simplify its analytical expression, and make a last assumption which

motivates the ELMM we propose.
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5.3.1 The Hapke model

We already alluded to the Hapke model in section 2.3.4. We present it here in more details.

However, the complete analytical expressions of all the terms involved, and let alone a detailed

derivation of the Hapke model are far beyond the scope of this thesis. We refer to [73] for

the original derivation, and to [34] and [80] for introductions to the model. From a spectral

unmixing point of view, this model is very hard to use because of the limited avaibility in

practice of the material dependent photometric parameters and of the albedo spectra, and

because of its complexity.

Reflectance, the physical quantity usually used to work with hyperspectral remote sensing

images (after atmospheric correction of radiance units), is dependent on the geometry of the

acquisition. Depending on the incidence and viewing angles, the measured reflectance can

significantly differ. The reflectance of a material is also influenced by its photometry, that

is to say the way light interacts with the material. Photometry can be modeled through

some optical parameters (surface roughness, scattering behavior...) of the materials. We

will briefly describe the photometric parameters involved in the model, but for a thorougher

description of their physical and geological interpretations we refer to [63]. The albedo of

material, contrary to its reflectance, is truly characteristic of the material and depends neither

on the geometry of the scene nor on the photometry of the considered material. Note that

we assume the mixture of the materials occurs at the macroscopic level, and hence we do not

consider intimate mixing, which can also be explained by Hapke’s model. Therefore, in this

context, the LMM remains a valid assumption. The equations below are to be understood

to be applied separately to each endmember, using its pure albedo spectrum (they have to

be applied using the albedo value for each wavelength to obtain reflectance spectra). This

defines local endmember variants in each pixel, which are then linearly mixed.

The local (i.e. in each pixel) geometry of the scene is determined by several factors (c.f.

Fig. 5.1) [34]. The zenith is defined as the direction of the normal vector to the tangent plane

to the surface observed. This means that depending on the topography, this plane can be

different for each pixel. The angle between the zenith and the sun is called the sun zenith

angle, or incidence angle, θ0. The angle between the zenith and the sensor is called the view

zenith angle, or emergence angle, θ. The angle between the sun and sensor directions (with

the origin on the FOV of the current pixel) is called the phase angle g. It is practically

constant throughout the observed scene, since the distances between the surface and the sun

(in all cases) or the sensor (in most cases, except maybe with sensors mounted on UAVs) are

far more important than the difference in elevation along the scene, and its spatial extent.

Finally, the angle between the projection of the sun on the tangent plane and the projection

of the sensor on the tangent plane is called the azimuthal angle φ. These four angles are

then pixel-dependent and completely characterize the geometry of a pixel’s acquisition. They

are not completely independent since for instance, the phase angle can be recovered from the

other three. Hapke’s model can be expressed as [73, 80]:

ρ(ω, µ, µ0, g) =
ω

4(µ+ µ0)
((1 +B(g))P (g) +H(ω, µ)H(ω, µ0)− 1), (5.2)

where ρ is the reflectance for a given wavelength range, µ = cos(θ), µ0 = cos(θ0), ω is the
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zenith

Figure 5.1: Acquisition angles for a given spatial location (red dot). The tangent plane at

this point of the surface is in brown. The incidence angle is θ0, the emergence angle is θ, and

the angle between the projections of the sun and the sensor is the azimuthal angle, denoted

as φ. g is the phase angle. θ0 and θ are defined w.r.t. the zenith, which is defined locally (in

each point of the observed surface) as the normal to the observed surface at this point.

single scattering albedo (SSA) of the material, P is the so-called phase function, which models

the angular scattering distribution of the material, B is a function related to the opposition

effect (brightening of the observed surface when the illumination comes from behind the sen-

sor, i.e. for small g values), and H is the isotropic multiple scattering function. The functions

B, P and H are additionally parametrized by photometric parameters of a material. For B,

the parameters used are h and b0, accounting for the angular width and the strength of the

opposition surge. For the phase function P , the photometric parameters used are the asym-

metry parameter of the scattering lobes b (0 ≤ b ≤ 1, higher values meaning narrower lobes

and higher scattering intensity), and the backward scattering fraction c (0 ≤ c ≤ 1; c < 0.5

means that the material mainly backscatters the incoming light towards the incidence direc-

tion, and c > 0.5 means that the material has a predominantly forward scattering behavior).

As examples of particular behaviors of the phase function, we can cite specular reflection,

characterized by b = 1 and c = 1, or Lambertian (isotropic) scattering, characterized by b = 0

and c = 0.5. A refined version of the model taking into account the macroscopic roughness

of the materials is also used:

ρ(ω, µ, µ0, φ, g) =
ω

4(µe + µ0e)
S(µ, µ0, φ)((1 +B(g))P (g) +H(ω, µe)H(ω, µ0e)− 1), (5.3)

where µ0e and µe are the cosines of the modified incidence and emergence angles, because of

the surface roughness. S(µ0, µ, φ) is a shadowing function which reduces the total reflectance

when surface roughness hides parts of the observed surface from the sensor, or shadows some

fraction of the observed surface. This function and the modified incidence and emergence

angles are parametrized by an angle θ̄ (0◦ ≤ θ̄ ≤ 45◦) accounting for the average roughness

of the materials in the field of view of the sensor.
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5.3.2 Simplifying assumptions

Here, using simplifying assumptions, we go from the general Hapke model of Eq. (5.3) to a

special case of the ELMM presented in [161, 53, 55].

First, if we assume the surface of the materials to be smooth (θ̄ = 0), then there is no

shadowing effect, and the emergence and incidence angles are not modified. This is of course

not so realistic an assumption in practice, but it considerably simplifies the model and makes

it free from the roughness parameter which is not accessible in practice, let alone for each

material in each pixel. Then S(µ0, µ, φ) = 1 and µ0e = µ0, and µe = µ. Then the model

reduces to this of Eq. (5.2).

As explained in [80], assuming a Lambertian scattering; the phase function reduces to

P (g) = 1. Besides, for Lambertian surfaces, there is no opposition surge (h = 0 and b0 = 0).

In any case, even for non Lambertian photometries, for large enough phase angles (in practice

more than 5◦ [63]), the opposition effect is negligible and B(g) ≈ 0 anyway.

The multiple isotropic scattering function H can be approximated by:

H(ω, µ) ≈ 1 + 2µ

1 + 2µ(
√

1− ω)
, (5.4)

and hence, incorporating all these assumptions, the model for relative (bidirectional) re-

flectance (relative to a case where ω = 1) becomes:

ρ(ω, µ, µ0) =
ω

(1 + 2µ
√

1− ω)(1 + 2µ0

√
1− ω)

. (5.5)

This expression is already much simpler than the full model of Eq. (5.3). The approximation

eliminates all the photometric effects, in particular because of the Lambertian photometry

assumption. The model is still material dependent, because the albedo spectrum depends on

the material. The only other parameters left are the sun zenith angle, and the view zenith

angle. Still, the model is still not suitable for a least squares estimate of its parameters for

two reasons. The first is that the albedo spectrum is not available in practice. A workaround

for this is to numerically invert the model (the full model for a more precise estimate) if

all the parameters but the albedo are known in a pixel. In such a case, the reflectance-

albedo relation is bijective. However, there is no simple way to assess the results of this

method in practice, especially in real scenarios, and the incertitudes on the results could be

very important. The principles of this strategy are applied to controlled lab measurements

in [112]. The second reason is that the model is still relatively complex, highly nonlinear,

especially for high albedos, and it its not identifiable when no parameters are known, since it

is symmetric w.r.t. µ and µ0. There would be no way to discriminate between the two angles

in an estimation problem.

For small SSA values, this relationship is practically linear, while important nonlinearities

appear for large albedo values. In Fig. 5.2, the function defined by Eq. (5.5) is plotted for

three values of the acquisition angles. On the left is the case when both the sensor and

the sun are at nadir. On the middle is a case where the sensor and the sun both make an
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Figure 5.2: Reflectance plotted as a function of the albedo according to Eq. (5.5) (blue), and

first order Taylor expansion in ω = 0 (red), for three geometries (θ0 = θ = 0◦ (a), θ0 = θ = 45◦

(b), θ0 = 90◦ and θ = 45◦ (c)).

angle of 45 degrees with respect to the normal to the surface, and on the right is a case with

raking incident light (θ0 = 90◦), and the sensor making an angle of 45 degrees with the nadir

direction. Note that if both angles are equal to 90 degrees, the resulting reflectance equals

the albedo. Here, because of these considerations, we propose to approximate further the

relationship between albedo and reflectance by performing a first order Taylor expansion in

0 (in practice approximately valid for “small” albedos):

ρ(ω, µ, µ0) =
ω

4µµ0 + 2µ+ 2µ0 + 1
+ o(ω). (5.6)

The coefficient of the expansion only depends on the geometry of the acquisition. This means

that it affects an albedo spectrum in the same way for any wavelength. Now let us assume that

for a given material p, we have at our disposal a reference endmember s0p (usually extracted

from the data), with a geometry defined by the angles µ and µ0. Then with the first order

model of Eq. (5.6), we can write that for the representative of this endmember in pixel k, we

have, for small albedos:

skp ≈
4µkµk0 + 2µk + 2µk0 + 1

4µµ0 + 2µ+ 2µ0 + 1
s0p = ψks0p. (5.7)

From this equation, we see that now the link between the local representative of an endmember

in a pixel and a reference signature for this material is a positive scaling factor incorporating

the information about the geometry in the considered pixel. Note that we could have obtained

the scaling factor model by approximating the albedo to reflectance relationship by a linear

one in any other way (for instance by fitting a straight line to the whole curve, and not

only considering a first order Taylor expansion for small albedos). Interestingly, with this

approximation, we make the connection between the semi-empirical model of Hapke and

the well known fact in the remote sensing community that illumination effects can be well

approximated by scaling variations of the spectra (hence the frequent use of the SAM as

a distance between spectra). Some works in the HSI processing community had already

suggested that spectral variability could be well modeled as a scaling factor [122, 121], but

we propose here to define a new spectral variability-based mixing model using this.
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5.4 Model description

5.4.1 Model Formulation

The considerations of the previous sections lead us to define the mappings of Eq. (5.1) as

fpk(s0) = ψks0p, so that the model becomes:

xk =
P∑
p=1

apkψks0p + ek = ψk

P∑
p=1

apks0p + ek = ψkS0ak + ek = S0ψkak + ek. (5.8)

The LMM is simply scaled in each pixel by a different nonnegative scaling factor. In order

to estimate this scaling factor, we can take advantage of the nonnegative least squares, or

partially Constrained Least Squares Unmixing(CLSU) problem, which was presented in sec-

tion 1.3.3 (Eq. (1.6)) as a solution to estimate the abundances in a LMM framework, without

the ASC, but only considering a priori the ANC. Indeed, we can show that if the model of

Eq. (5.8) holds, then this algorithm, which assumes the data lie in a convex cone spanned by

the endmembers, does not really estimate the abundances, but a factor incorporating SV. To

see this, let us call for now α̂k the quantity estimated in one pixel by CLSU (which, inciden-

tally, is the Maximum Likelihood Estimator (MLE) for the product αk, assuming the noise

is Gaussian with an equal variance in each band):

α̂k = arg min
αk

1

2
||xk − Sαk||22

s.t. αk ≥ 0. (5.9)

Then by identifying α̂kp with ψkapk, we have:

P∑
p=1

α̂pk =

P∑
p=1

ψkapk = ψk

P∑
p=1

apk = ψk. (5.10)

The right hand side of the equation is obtained by reintroducing the ASC, but on the actual

abundances, rather than on the quantity estimated with CLSU, which absorbs SV effects. The

abundances can then simply be estimated by ak = 1
ψk
αk. This provides a very convenient

way to estimate the parameters of the model using only nonnegative least squares, summing

the estimated quantity over all materials to get the scaling factor, followed by a normalization

step to obtain the abundances. We call this technique a Scaled (partially) Constrained Least

Squares Unmixing (S-CLSU).

However, in practice we are going to allow the scaling factor to vary for each material:

xk =
P∑
p=1

apkψpks0p + ek = S0ψkak + ek = S0(diag(ψk)� ak) + ek, (5.11)

where the ψkp are now pixel and material dependent scaling factors, ψk ∈ RP×P is a diagonal

matrix, containing the scaling factors for each material on its diagonal (diag(ψk) is a vector
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containing its diagonal elements), and � is the Schur-Hadamard (termwise) product between

two matrices of the same size. The scaling factors can also be rearranged into a matrix

Ψ ∈ RP×N , which has the same size as the abundances. This allows the model (5.11) to be

rewritten globally for the whole image:

X = S0(Ψ�A) + E. (5.12)

We will refer to this equation as the Extended Linear Mixing Model (ELMM). Of course, the

ELMM reduces to the LMM if all the scaling factors are equal to 1 (no variability w.r.t. the

reference endmembers).

The main reason behind the introduction of a scaling factor for each pixel and material

is that it will make the model more flexible, allowing to model material dependent SV, be

it related to material dependent photometric phenomena or more pragmatically to intrinsic

variability of each material. Indeed, the scaling factor is able to capture other more complex

variations of the spectra by compensating the scale of the reference signature, even if there is

a modeling error (that is if the variability cannot be solely explained by scaling variations).

The other reason for allowing the scaling factors to be material dependent is related to the

interpretability of the results. Indeed, in the original formulation, there is one scaling factor

per pixel, which allows to obtain a spatial map of scaling factors. However, the fact that this

map is the same for all materials can make the results harder to interpret. For pure pixels,

this is not really a problem since the scaling factor will be related to the active material,

but for mixed pixel, there is no way to tell which material is subject to SV, and in which

proportions.

The interest of introducing one scaling factor for each material also becomes clear when we

have a look to the geometric interpretation of the model. The model enjoys a simple geometric

interpretation, as can be seen in Fig. 5.3 (in a case where there are three endmembers). The

data points are assumed to lie in a cone spanned by the reference endmembers. The scaling

factors, combined with the ASC and ANC, constrain each pixel to lie in a simplex whose

vertices are variants of the reference endmembers, situated on straight lines joining the origin

and each of the reference endmembers, thus defining the simplex orientation in the cone. For

the S-CLSU version of the model, the parametrization with the scaling factor is the same for

all endmembers. This amounts to assume that SV affects all materials in the exact same way

(w.r.t. the reference endmembers). As a consequence, it will restrict the possible simplex

configurations of the simplex. In that case, the pixelwise simplices will be linked to the

LMM simplex through a homothetic transformation, whose homothetic center is the origin.

Introducing a different scaling factor for each material will of course mostly impact mixed

pixels, and we expect the scaling factor of S-CLSU and the refined version to be similar in pure

or close to pure pixels. In order to further motivate the model advocated by Eq. (5.12), we

manually selected two pure pixels of the same material in the image of the Houston dataset

used in the experiments of section 5.6.2, and already used in this thesis in section 4.4.2.2

(Fig. 4.18). These pixels are part of the red rooftop on the northwestern part of the football

field. The two pixels are part of two distinct facets of this pyramidal roof, which are very

differently lit, since their orientation w.r.t. the sun is different. The spectral signatures are

shown in Fig. 5.4. We performed a least squares regression in order to approximate the blue



5.4. Model description 113

Figure 5.3: Geometric interpretation of the ELMM in the case of three endmembers. In blue

are two data points, in red are the reference endmembers and in green are the scaled versions

for the two considered pixels. The simplex used in the LMM is shown in dashed lines.

spectrum x1 by a scaled version of the red spectrum x2:

ψ̂ = arg min
ψ

||x1 − ψx2||22. (5.13)

The result of this regression (i.e. ψ̂x2) is shown in green in Fig. 5.4. The obtained value for

the scaling factor is ψ̂ = 1.108. We can see that the fit is almost perfect, meaning that the

variability between these two pure pixels can be approximated very well by a scaling factor,

which is confirmed by the very high Pearson correlation coefficient between the original blue

spectrum and its green regression (r = 0.9994).
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Figure 5.4: Two pixels on different facets of the same red roof in the image of Fig 5.17 (red

and blue). The result of the linear regression of the red spectrum on the blue one, using only

a scaling factor (dashed green).
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5.4.2 Solving the ambiguity between the abundances and the scaling fac-
tors

The introduction of material dependent scaling factors refines the model, but as written in

Eq. (5.12), it is easy to see that the model is not identifiable, since inverting the roles of A

and Ψ leaves the equation unchanged. There is an ambiguity between the scaling factors

and the abundances. The ASC is the only difference between the two variables, but it is not

sufficient to solve this problem completely, even though it has been shown to help calibrating

similar models in other applications [16]. Trying to estimate the model parameters using a

MLE would result in the abundance update being inversely proportional to the scaling factors,

and vice versa. This would be a problem in low abundance areas, where there is very little

information to estimate SV in addition to the abundances, and would result in numerical

instability.

In order to solve the issue, we introduce a new set of variables: pixel dependent endmember

matrices Sk ∈ RL×P . We also define the third order tensor S ∈ RL×P×N such that S ≡
{Sk}k=1,...,N , and define the following cost function:

J (A,S,Ψ) =
1

2

N∑
k=1

(
||xk − Skak||22 + λS ||Sk − S0ψk||2F

)
+ I∆P

(A) + IRL×P×S+
(S), (5.14)

where λS is a regularization parameter. The first term is a simple usual data fit term,

very similar to the LMM, with the notable exception that the endmember matrix is pixel-

dependent. The second term is a regularization forcing the local endmembers to be close the

the scaled variations of reference endmembers advocated by the ELMM. The last two terms

simply enforce the constraints on the abundances (the indicator function of the simplex has

to be understood as being applied separately to each column of the abundance matrix) and

on the sources, which have to remain nonnegative. The interest of introducing the second

term is twofold: it allows the actual local endmembers to drift away from the exact ELMM of

Eq. (5.12) if needed, in particular if SV cannot only be explained by scaling factors. Besides,

on a more algorithmic point of view, the additional variables allow us to decouple the scaling

factors from the abundances, thus getting rid of the ambiguity between them.

From a statistical point of view, minimizing the proposed criterion w.r.t. the three blocks

of variables can be interpreted as the MAP estimator for S, Ψ and A, with Gaussian i.i.d.

spectrally white Gaussian noise, a Gaussian prior on the endmembers, whose mean is S0ψk for

pixel k (and whose variance is linked to the regularization parameter λS), with a uniform prior

on the nonnegative orthant for the scaling factors, and finally a uniform prior on the simplex

for the abundances. In this sense, regarding the classification of the approaches dealing

with SV of section 2.3, minimizing this criterion is a hybrid approach, halfway between a

computational model (introducing pixel dependent endmembers Sk ∈ RL, free to fluctuate

around references) and the estimations of physics related parameters from a specific model

(the scaling factors).
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5.4.3 Regularization Terms

In order to enforce desirable properties to the parameters, we incorporate two additional

regularization terms to the objective function, one for the abundances and one for the scaling

factors, each weighted by a regularization parameter:

J (A,S,Ψ) =
1

2

N∑
k=1

(
||xk − Skak||22 + λS ||Sk − S0ψk||2F

)
+ I∆P

(A) + IRL×P×N+
(S)

+ λARA(A) + λΨRΨ(Ψ). (5.15)

As we have seen in Chapter 1, the abundances often exhibit strong spatial correlations, but

there can be abrupt discontinuities in their spatial distributions. Similarly, the scaling factors

are likely to be spatially coherent to some extent, since the scaling factors are connected to

topographic information. Hence, we define at Total Variation (TV) [136] on the abundances:

RA(A) = TV (A) =

P∑
p=1

N∑
k=1

√
Hh(A)2

pk +Hv(A)2
pk = ||H(A)||2,1,1, (5.16)

where Hh : RP×N → RP×N and Hv : RP×N → RP×N are linear operators computing

the horizontal and vertical gradients (first order derivatives) of each band of the image,

respectively. The operator H : RP×N → RP×N×2 computes the complete gradient for each

entry of A. It operates in the same way for all materials. The three level mixed Lp,q,r norm

is defined for a third order tensor T ∈ RP×N×Q and values of p, q, r ≥ 1 or equal to infinity

(taking limits), as:

||T ||p,q,r =

 P∑
i=1

 N∑
j=1

(
Q∑
k=1

|tijk|p
) q

p


r
q


1
r

. (5.17)

The TV term then amounts to sum the L2 norm of the gradient in all pixels and for all

materials, which is expressed by the mixed L2,1,1 three-level norm. In this formulation, the

regularization of Eq. (5.16) is an isotropic TV term. Several variants can be defined for the

TV, using an anisotropic version RA(A) = ||H(A)||1,1,1 = ||Hh(A)||1,1 + ||Hv(A)||1,1 (which

as less attractive properties but can be simpler to minimize), or more refined vectorial total

variations [67], possibly using different combinations of three level mixed norms [5]. which

can have nice properties but are harder to handle. Finally, a Tikhonov-like (without the

square) spatial regularization can be used by simply changing the norm, using RA(A) =

||Hh(A)||2,1 + ||Hv(A)||2,1. This version has less interesting edge preserving properties and

its proximal operator is not cheaper to compute than that a regular TV, but the convergence

rate is faster in practice. It is used in the results of [55]. For more information about gradient

operators and TV, see Appendix B.

For the scaling factors, we chose a differentiable spatial regularization out of simplicity:

RΨ(Ψ) =
1

2
(||Hh(Ψ)||2F + ||Hv(Ψ)||2F ), (5.18)
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Here, the gradient operators transform matrices into matrices of the same size, but they act

independently on each column of the Ψ matrix. With these additional regularization terms,

solving the optimization problem:

{Â, Ŝ, Ψ̂} = argmin
A,S,Ψ

J (A,S,Ψ) (5.19)

can still be interpreted as computing a MAP estimate of A, S and Ψ with similar hypotheses

as before, except for the abundances which are now associated to a TV prior on the simplex

and the scaling factors are associated to a spatially correlated prior.

5.5 Optimization

In this section, we describe how we are going to solve the optimization problem (5.19). This

problem is very challenging, for several reasons. First, it can be seen as a NMF problem

with three blocks of variables to optimize. Hence, it is not convex w.r.t. the three blocks

simultaneously, but it is w.r.t. to each of the individual blocks (regardless of the choice of the

regularization chosen for the abundances among those presented, and also regardless of the

definition of the linear gradient operators). A triconvex objective function suggests the use

of alternating minimizations w.r.t. each block of variables, in order to find a stationary point

of the objective function and to obtain a local minimum.

Since the problem is not convex with possibly many local minima, the initialization of

the variables is important. Fortunately, in our case, we have seen that S-CLSU is a suitable

initialization since it is able to provide a nice initial guess of the abundances and scaling

factors in a reasonable amount of time.

In the following sections, we are going to present two algorithms to solve problem (5.19).

The first one is based on an alternating minimization, using ADMM for the abundances, and

the other one is based on a Coordinate Descent (CD) scheme, using a primal-dual algorithm

for the abundances update (see Appendix A for more details on these algorithms).

5.5.1 Alternating Least Squares (ALS) algorithm

In the Alternating Least Squares algorithm, we will alternatively solve the subproblem asso-

ciated with one block of variables, while keeping the other blocks constant. The outline of

the ALS algorithms is given in Algorithm 5. The iterations terminate when the relative vari-

ations (measured using Frobenius norms) between consecutive iterates of A, S = {Sk} and

Ψ are below three tolerances εA, εS and εΨ, respectively. The convergence to the minimum

of each convex subproblem is guaranteed. However, the ALS strategy does not theoretically

guarantee that we obtain a stationary point of the objective function. However, in practice,

the algorithm does converge to a local minimum.
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Data: X, S0

Result: Ŝ, Ψ̂, Â

Initialize S, Ψ, A and choose λS , λΨ and λA ≥ 0 ;

while ALS termination criterion is not satisfied do
S ← arg min

S≥0
J (A,S,Ψ) ;

Ψ← arg min
Ψ≥0

J (A,S,Ψ) ;

A← arg min
A≥0

J (A,S,Ψ) ;

end
Algorithm 5: ALS scheme to find a local minimum of (5.19).

5.5.1.1 Optimization w.r.t. S

Rewriting the terms of Eq. (5.19) depending on S, we have to solve:

S = arg min
S≥0

1

2

N∑
k=1

(
||xk − Skak||2F + λS ||Sk − S0ψk||2F

)
. (5.20)

This problem is completely separable over the N pixels, and has a closed form solution which

can be computed separately for each of them. By nulling the gradient of Eq. 5.20 w.r.t. Sk,

we get:

(Skak − xk)a
>
k + λS(Sk − S0ψk) = 0. (5.21)

After some algebra, we obtain the update rule for Sk:

Sk ← (xka
>
k + λSS0ψk)(aka

>
k + λSIP )−1, (5.22)

The solution Sk is then projected onto the nonnegative orthant RL×P+ by thresholding the

negative entries to 0. This thresholding is not useful in pratice, due to the Gaussian prior for

the endmembers around (nonnegative) scaled reference endmembers.

5.5.1.2 Optimization w.r.t. Ψ

Rewriting the terms of the criterion (5.19) depending only on Ψ, we get:

Ψ = arg min
Ψ

λS
2

N∑
k=1

||Sk − S0ψk||2F +
λΨ

2
(||Hh(Ψ)||2F + ||Hv(Ψ)||2F ). (5.23)

First, let us remark that if there is no spatial regularization (i.e. λΨ = 0), then there is a

simple closed form update in each pixel, which guarantees the nonnegativity of the scaling

factors:

ψ̂pk ←
s>0pspk

s>0ps0p
. (5.24)
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When λψ 6= 0, a way to simplify the problem is to see S ≡ {Sk} as an L × N × P cube,

with P slices of size L × N corresponding to the source matrices in every pixel. Using this

description, we can rewrite Eq. (5.23) in a way that is separable w.r.t. the different materials:

Ψ = arg min
Ψ

1

2

P∑
p=1

(
λS ||Sp − sp0(ψp)>||2F + λΨ(||Hh(ψp)||22 + ||Hv(ψp)||22)

)
, (5.25)

where Sp is a L × N slice of the cube, sp0 is a column of S0 (representing one reference

endmember). ψp is the pth column of Ψ (a N × 1 vector containing the scaling factors for all

the pixels for one material). By nulling the gradient of the expression (5.25) w.r.t. ψp , we

get:

λSψ
psp0
>

sp0 + λψ(H>hHh + H>v Hv)ψ
p = λSSp>sp0. (5.26)

In all generality, if sp0 was a matrix, we would have a Sylvester equation to solve, which

has to be done numerically and which is very costly. Fortunately, here sp0 ∈ RL is a column

vector, and thus the quantity sp0
>

sp0 is a scalar. Therefore, we can factor this scalar on the

left of ψp, and obtain an expression which can be factorized on the left. Finally, the update

for ψp is:

ψp ← ((λSsp0
>

sp0)IN + λψ(H>hHh + H>v Hv))
−1(λSSp>sp0). (5.27)

We use the matrix representations of the linear gradient operators here. The N ×N matrix

inversion is intractable as such in most cases, but as the matrix to invert is circulant, the

update can be very efficiently computed in the Fourier domain (assuming periodic boundaries

for each ψp image) by:

ψp ← F−1

(
F(λSSp>sp0)

(λSsp0
>

sp0)1m×n + λΨ(|F(hh)|2 + |F(hb)|2)

)
, (5.28)

where F and F−1 denote the Discrete 2D Fourier Transform and its inverse, m and n are the

spatial dimensions of the image, such that m×n = N , and hh and hv are convolution masks

for the gradient operators. More details on solving circulant linear systems can be found in

Appendix B.

5.5.1.3 Optimization w.r.t. A

The optimization problem w.r.t. A is:

Â = arg min
A

1

2

N∑
k=1

||xk−Skak||22+λA(||Hh(A)||1,1+||Hv(A)||1,1)+IRP×N+
(A)+µ>(A>1P−1N ).

(5.29)

In order to take into account the ASC constraint (an equality) constraint, we have replaced

the indicator function of the simplex in Eq. (5.15) by a Lagrangian, introducing a vector

µ ∈ RN of Lagrange multipliers. The ANC is enforced through the indicator function of the

nonnegative orthant. Here, we are using the anisotropic TV for simplicity. This problem is
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neither separable w.r.t. the pixels nor to the different endmembers, and it is not differentiable

due to the presence of the L1,1 norm. There are several nondifferentiable terms, which suggests

the use of the ADMM. Here we use the scaled version of the ADMM [22]. It will allow us to

decompose the hard problem of Eq. (5.29) into iterations of a sequence of easier subproblems

with closed form solutions. For more details on the ADMM, see Appendix A. In addition,

by an appropriate choice of split variables (namely the definition of V1, see below), it will

allow us to decouple the optimization in the spectral domain (related to the term in which

the endmembers appear) to the optimization in the spatial domain (related to the terms in

which the gradient operators appear), in a way similar to [88]. Note that by removing the

regularization term RA(A) of Eq. (5.16), but keeping the ANC and the ASC, the problem

becomes the simple FCLSU and can be solved separately in each pixel using for instance the

algorithm of [76].

We introduce the splitting variables Vi, i = 1, · · · , 4, and express the problem of Eq. (5.29)

as:

Â =arg min
A

1

2

N∑
k=1

||xk − Skak||22 + λA(||V2||1,1 + ||V3||1,1) + IRP×N+
(V4) + µ>(A>1P − 1N )

s.t.

V1 = A

V2 = Hh(V2)

V3 = Hv(V2)

V4 = A, (5.30)

Now the optimization problem in Eq. (5.30) can be expressed in the framework of the ADMM.

To do so, we have to rewrite the problem of Eq. (5.30) in the following form:

{û, v̂} = arg min
u,v

f(u) + g(v) s.t. Γu + Λv = 0, (5.31)

where u and v are vector variables such that:

u = vec(A) and v =


v1

v2

v3

v4

 , (5.32)

where u = vec(A), and vi = vec(Vi) are the vectorized versions of A and Vi, respectively.

Here, we let

f(u) =
1

2
||x− vec(Σ)||22 + µ>(Ku− 1N ), (5.33)

with Σ =
[

S1u1 · · · SNuN
]

(where uk , ak). The function g is a closed proper convex

function defined as:

g(v) = λA(||v2||1 + ||v3||1) + IRPN+
(v4). (5.34)

K is the N × PN matrix of the linear operator summing the entries of a corresponding to

the same pixel and putting each of these sums in one entry of a vector. Finally, we have the
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following definitions for Γ and Λ:

Γ =


IPN
0

0

IPN

 , Λ =


−IPN 0 0 0

Hh −IPN 0 0

Hv 0 −IPN 0

0 0 0 −IPN

 , (5.35)

using the fact that in the vector spaces of vectorized matrices of the appropriate sizes, the

linear operators Hh,Hv : RP×N 7→ RP×N and S : RP×N 7→ RL×N can be described by their

matrices (in the canonical bases of the corresponding vector spaces) Hh, Hv ∈ RPN×PN and

Σ ∈ RLN×PN , respectively.

In this framework, the problem we want to solve falls into the category of those which

the ADMM can tackle. We have introduced two equivalent representations of the variables

we manipulate: in a matrix form and in a vector form. The matrix form is more compact

and often convenient to use, but the vector form is the only one allowing us to express

linear operators as matrices. The two are completely equivalent (up to an isomorphism)

and during the optimization process, we will use either of them depending on which one

is the most convenient in the context. The Lagrange multipliers are denoted by d in a

vector form, possibly indexed with the pixels (and possibly with the index of the appropriate

split variable), or D in a matrix form. The ADMM procedure to solve Problem (5.31) is

summarized in Algorithm 6.

Data: X, S
Result: Â = vec−1(u)

Choose ρ ≥ 0 and initialize u,µ,v and d ;

while ADMM termination criterion is not satisfied do
u,µ← arg min

u
L(u,µ,v,d) ;

v← arg min
v

L(u,µ,v,d) ;

d← d− Γu−Λv ;
end

Algorithm 6: ADMM process to solve problem (5.31).

The augmented Lagrangian for our problem, to be minimized w.r.t. u, µ, v and d is:

L(u,µ,v,d) = f(u) + g(v) +
ρ

2
(||Γu + Λv − d||22 − ||d||22)

=
1

2
||x− vec(Σ)||22 + µ>(Ku− 1N ) + λA(||v2||1 + ||v3||1) + IRPN+

(v4)

+
ρ

2
||u− v1 − d1||22 +

ρ

2
||Hhv1 − v2 − d2||22 +

ρ

2
||Hvv1 − v3 − d3||22

+
ρ

2
||u− v4 − d4||22 −

ρ

2
||d||22. (5.36)

The full ADMM optimization procedure is described in Appendix D.
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5.5.2 Coordinate Descent (CD) algorithm

Here we propose to reach a local minimum of the objective function by a coordinate descent

(CD) scheme [126]. Exactly solving the subproblems can be costly and the abundance update

needs to be carried out through an iterative algorithm. In coordinate descent, instead of

exactly solving each subproblem, alternating the minimizations with respect to one block,

we only perform one (or few) iteration(s) of each subproblem resolution (except if there is a

closed form update for a subproblem), and cycle through the three blocks of variables. This

scheme leads to faster iterations of the algorithms, and can avoid wasting computation time

exactly solving a subproblem to get small improvements. Here, we are using the isotropic TV

on the abundance for its properties, but also because using an anisotropic version would result

in one more nondifferentiable term acting on the abundances, while we will see that there

cannot be more than two for the algorithm we use to be applicable. The whole optimization

procedure is summarized in Algorithm 7.

Data: X, S0

Result: Ŝ, Ψ̂, Â

Initialize S, Ψ, A, choose λS , λΨ and λA ≥ 0 ;

while CD termination criterion is not satisfied do
· update S using Eq. (5.38) ;

· update A using Eq. (5.41) (or Eq. (5.40) if λA = 0) ;

· update Ψ using Eq. (5.28) (or Eq. (5.24) if λΨ = 0) ;

end
Algorithm 7: Coordinate Descent scheme to find a local minimum of Eq. (5.19).

At each cycle, we start by updating S because this variable interacts with both the abun-

dances and the scaling factors. Note that the linear operators used here are also computed

in the Fourier domain.

We briefly comment on the convergence of the proposed algorithm. We are using a block

coordinate descent scheme to optimize the objective function. In the case where there is no

more than one nondifferentiable term in for each block of variables (i.e. λA = 0), then the

global convergence of the algorithm is proven, even if convergence acceleration is included.

The proof can be found in [168]. However, if the regularization on the abundance is used, then

we lose global convergence guarantees, even though each update has convergence guarantees

for the subproblem addressed. In practice the algorithm does converge in any case to a local

minimum of the objective function.
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5.5.2.1 Endmembers update

Let us rewrite the terms of the global objective function of Eq. (5.15) depending only on S:

K(S) =
1

2

N∑
k=1

(
||xk − Skak||22 + λS ||Sk − S0ψk||2F

)
+ IR+(S)

=
N∑
k=1

(fk(Sk) + IR+(Sk)) . (5.37)

We have a smooth term (the data fit and the modelling term for the endmembers), and a

nonnegativity constraint. In addition, Eq. (5.37) is pixel-separable, so we can perform N

updates in parallel. We resort to a projected gradient scheme to update the sources [42]. The

update is equivalent to minimizing a prox-gradient surrogate function (see [126] for details).

In addition, we use an extrapolation in order to speed up the convergence, as described in [168]

(see Appendix A for more details). In this case, the update at cycle i is:

Si+1
k = (Šik − γk∇fk(Šik))+, (5.38)

where γk = 1
βk

is a step size linked to the Lipschitz constant of ∇f : βk = ||λSIp + aka
>
k ||F ,

and Šik is an extrapolated version of Sik defined as:

Šik = Sik + ωi(Sik − Si−1
k ), (5.39)

where ωi is the ith term of a sequence of carefully chosen weights (see [168] for details).

5.5.2.2 Abundances update

The terms of Eq. (5.15) depending only on the abundances are:

L(A) =
1

2

N∑
k=1

||xk − Skak||22 + I∆P
(A) + λATV (A)

= g(A) + I∆P
(A) + λATV (A).

If λA = 0, we are left with a smooth term and the ASC. In this case, the objective becomes

separable w. r. t. the pixels, so we can perform updates in parallel. Similarly to the update

of the endmembers without the regularization, we could apply a projected gradient scheme

(projecting on the unit simplex can be carried out very efficiently using the algorithm of [45]).

However, in this case we apply the classical FCLSU algorithm of the literature, in parallel

in each pixel (since contrary to the usual unmixing problem, the endmember matrix varies

in each pixel here) [76]. This algorithm is as fast as a proximal gradient update but has the

advantage of solving exactly the subproblem we are interested in (to the very low cost of

having a negligible slackness on the ASC).

ai+1
k = argmin

1

2
||xk − Si+1

k aik||22. (5.40)
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Otherwise, if λA 6= 0, we have one smooth term, a convex constraint and a nondifferentiable

term involving a linear operator. In order to solve this, we perform one iteration of a primal

dual algorithm of the literature able to deal with this exact type of objective functions [44].

Details on this algorithm and on some necessary convex analysis concepts can be found in

Appendix A. We introduce the dual variable U ∈ RP×N×2 and define the updates for cycle i

(as before, we introduce two step sizes ρ and µ):

Ai+1 = projsimplex(Ai − ρ(∇g(Ai) +H∗(Ui))

Ui+1 = proj||·||2≤λA(Ui + µH(2Ai+1 −Ai)), (5.41)

where projsimplex denotes the projection on the unit simplex, and proj||·||2≤λA denotes the

projection on the L2 ball of radius λA (a simple normalization). This operator is indeed

the proximal operator of the convex conjugate of the L2 norm (which is in this case the

indicator function of the unit L2 ball), required in the primal dual algorithm. It has to

be understood as being applied for each pixel and material to a two dimensional vector

(corresponding to the two dimensions of the spatial gradient). Here we are using the full

gradient operator, and the isotropic TV formulation of Eq. (5.16). It has better properties

than the anisotropic version, and is convenient here because it is essential that there should

be only one nondifferentiable term in addition to the ASC for the algorithm to be applied.

The rule to guarantee convergence [44] is:

1

ηk
− γk|||H|||2 ≥

βk
2
, (5.42)

where βk is the Lipschitz constant for the gradient of g.

5.5.2.3 Scaling factors update

This update is unchanged w.r.t the ALS algorithm, and the closed form update, as well as all

the details can be found in section 5.5.1.2.

5.6 Experimental Results

In this section, we will compare the proposed model with other approaches designed to tackle

spectral variability, namely the AEB approach [145] with sparsity (using the SUnSAL algo-

rithm [87]) to recover the abundances and the FDN approach, both introduced in Chapter 2.

We will also compare the results of the ELMM (using the ALS algorithm and the anisotropic

TV for the spatial regularization) to the S-CLSU approach. Finally, we will also compare

the results to a recent approach, the Perturbed Linear Mixing Model (PLMM) [148]. This

algorithm was specifically designed to tackle the spectral variability issue. Following our

seminal idea and paper [159], which introduced for the first time a mixing model where SV

was explicitly taken into account in each pixels, authors in [148] proposed to model spectral

variability with an additive perturbation of some reference endmembers. The PLMM models
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spectral variability in each pixel as an additive perturbation of reference endmembers, and

hence is able to estimate the variability for each material and each pixel by computing the

norm of the perturbation term.

xk =
P∑
p=1

(sp + dspk)apk + ek. (5.43)

The term dskp accounts for an additive perturbation for each endmember, in each pixel, and

for each wavelength. The parameters of this mixing model are then estimated through an

optimization problem, in which different constraints and regularizations (spatial regularization

on the abundances, proximity of the sources to a reference, limitation of the norm of the

additive perturbation...) are added in order to make this NMF problem better posed and

more suited to the expected properties of the solution. The algorithm iteratively updates the

abundances, the endmembers and the perturbations using ADMM to converge to a stationary

point of the objective function (the problem is globally not convex, but each subproblem is).

This model can be seen as a particular case of Eq. (5.1), where the mappings are additive

perturbations to the endmembers. However, contrary to the approach we propose, which

possess physically interpretable parameters, this model is purely computational, and basically

sees everything which entails modeling errors on the LMM as SV. It is still able to estimate

the variability for each material and each pixel by computing the norm of the perturbation

term.

5.6.1 Results on synthetic datasets

We present below the experiments performed on two types of synthetic datasets to validate the

proposed approach. In both cases, we will compare the proposed approach with the classical

FCLSU and CLSU, but also with the bundles approach combined with both the SUnSAL

and FDN algorithms. We also compare our results to those of the PLMM algorithm. Finally,

we will also compare the proposed approach with S-CLSU, which follows a particular case

of the ELMM. Since the ELMM algorithm makes use of spatial regularization, for a fairer

comparison, we also include the results for modified versions of the competing algorithms,

in which a TV on the abundances is enforced, using the SUnSAL-TV code of [88]. We only

added a termination criterion similar to the one used for the proposed approach, that is when

the relative variation (in norm) of the abundance matrix between two consecutive iterations

goes below εA = 10−3. Here, we are using the ALS algorithm, with the anisotropic TV on

the abundances.

The proposed approach with both regularizations enforced is denoted by ELMM-Aψ.

For the ELMM algorithm, the three tolerances εA = εS = εΨ were set to 10−3. When no

spatial regularization is performed on the abundances or the scaling factors, we simply refer

to the algorithm as ELMM. The running times of the different algorithms were measured on

a computer using an Intel R© CoreTM i7-4770 CPU @ 3.40GHz (except for the PLMM).
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Figure 5.5: A false color representation of the first synthetic dataset (a) and the endmembers

used for the simulation (b).

5.6.1.1 First scenario

The first dataset on which we tested the proposed approach was designed to follow the ELMM

with some perturbations. The idea is to build a dataset which is halfway between a toy

example and a realisitic simulation, in order to compare easily the different algorithms and

to explain the properties and particularities of the proposed method. We randomly chose five

reference endmembers corresponding to the signatures of minerals from the United States

Geological Survey (USGS) spectral library, comprising 224 spectral bands in the visible and

near-IR. They are shown in Fig. 5.5. The 200 × 200 abundance maps used were generated

using Gaussian Random Fields, and were designed to comply with the ASC. Note that these

abundance maps comprise only one pure pixel for each material, and around 5% of the pixels

have an abundance coefficient superior to 0.9 for one material. We also generated spectral

variability maps for each endmember using mixtures of Gaussians. The true abundances

are shown in Fig. 5.6 (top row) and the true scaling factors are shown in Fig. 5.7 (top

row). Then, the dataset was generated as follows: the pixel-dependent endmember instances

were generated by multiplying the references by the corresponding spectral variability scaling

factors (the achievable values are chosen so that no reflectance value becomes higher than 1,

and here the scaling factors range from 0.75 to 1.25), and a white Gaussian noise was added

to these endmembers, to obtain a 25dB SNR. Then for each pixel, the mixture was performed

using the LMM, and finally we added another white Gaussian noise to the generated pixels, so

as to obtain a 25dB SNR. The process then yielded a 200×200×224 simulated hyperspectral

image. A false color representation of the data can be seen in Fig. 5.5. For each algorithm,

the used EEA was the Vertex Component Analysis (VCA). We use this algorithm because it

is not very affected by scaling variations of the data (as seen in section 1.3.2), which makes

it adapted to the geometry of our model. The same set of 5 extracted endmembers was

used for all the algorithms which do not require a bundle. For the bundles, we extracted 5

endmembers instances on 50 randomly chosen susbets (without replacement) of the image

whose number of pixels was 2% of this of the whole image. The clustering into bundles was

performed with the k-means algorithm, with the spectral angle as a similarity measure (it is

insensitive to scalings and hence adapted to the problem).

The different regularization parameters used for the tested algorithms were set empirically

so as to get the best performance possible. The parameters for the synthetic data are gathered

in Table 5.1. λL1 stands for the sparsity regularization parameter in SUnSAL and SUnSAL-
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BUNDLES + SUnSAL BUNDLES + SUnSAL-TV BUNDLES + FDN-TV CLSU-TV PLMM S-CLSU-TV ELMM ELMM-Aψ

λL1 2.10−3 5.10−4 2.10−3 10−5 × × × × × × × × × × × ×
λTV × × 2.10−3 5.10−4 3.10−3 10−4 5.10−4 3.10−4 × × 4.10−3 3.10−4 × × × ×
λS × × × × × × × × × × × × 7.10−2 × 7.10−2 4

λA × × × × × × × × × × × × 0 × 4.10−3 1.10−2

λψ × × × × × × × × × × × × 0 × 3 4.10−1

α × × × × × × × × 10−5 10−5 × × × × × ×
β × × × × × × × × 4.9.10−3 4.7.10−3 × × × × × ×
γ × × × × × × × × 1 1 × × × × × ×

Table 5.1: Regularization parameters for all the algorithms concerned, for the first synthetic

dataset (left cell of each column) and the second synthetic dataset (right cell of each column).

TV. For the PLMM, the parameters α, β and γ are regularization parameters associated

to a Tikhonov regularization on the abundances, on a mutual distance penalization on the

endmembers (similar to that of the ICE algorithm [15]). and on a penalization of the spectral

variability power (see [148] for details).

The initialization of the proposed algorithm is important since the optimization problem

we tackle is not convex. We chose to initialize the algorithm using the abundances of S-CLSU,

every scaling factor set to one, and the five reference endmembers as well as the initial sources

in each pixel were the ones extracted using VCA. In order to assess the performance of the

algorithms, we define the abundance overall Root Mean Square Error (aRMSE) as:

aRMSE =
1

N

N∑
k=1

√√√√ 1

P

P∑
p=1

(apktrue − âpk)
2, (5.44)

and the overall source RMSE (sRMSE) as:

sRMSE =
1

N

N∑
k=1

√
1

LP
||Sktrue − Ŝk||2F . (5.45)

This metric allows us to measure indirectly how well the spectral variability is recovered by

comparing the true sources to the ones extracted by S-CLSU and the proposed approach.

A direct comparison using the scaling factors would have been harder to perform since the

extracted reference endmembers can differ from the ones actually used to generate the data,

and because of the additive perturbation added to the scaled signatures. Finally, we will

also compute the usual average RMSE on the whole image, and the average Spectral Angle

Mapper (SAM) between the actual and reconstructed data (these two quantities were defined

in section 2.3.2, in Eqs. (2.13) and (2.8)).

The quantitative results of this experiment are shown in Table 5.2. A visual representation

of the extracted abundances for most algorithms is shown in Fig. 5.6, while the scaling factors

extracted by S-CLSU and the proposed approach, as well as the variability estimation from

the PLMM are shown in Fig. 5.7.

From the results, we can see that as expected, FCLSU performs rather poorly in a sce-

nario where spectral variability comes into play. Since the endmember signatures are constant

throughout the image, a scaled endmember can be easily mistaken for another, for instance
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Figure 5.6: The abundances estimated by all algorithms (each column corresponds to one

endmember) for the first synthetic dataset, compared to the true ones (first row).

with the endmembers depicted in cyan and red in Fig. 5.5. The bundles approach is able to

obtain better results, provided the bundles are balanced and representative of the spectral

variability present in the scene. This is not always guaranteed and can lead to erroneous esti-

mations. In these experiments, we show the best result for this approach out of 15 runs. The

bundles allow several instances of each endmember to be considered. The sparsity enforced

by SUnSAL helps reducing the number of active endmembers per pixel but there can still

remain several endmembers of the same endmember class contributing to one pixel value. The

FDN approach is allowed to reduce the dimensionality of the dataset such that the impact of

spectral variability is lowered.

The results from the PLMM are in this case comparable to those of the algorithms which

use bundles. The main advantage of this algorithm is that it is able to estimate spectral

variability maps by computing the power of the additive perturbation term in each pixel,

although in this case the abundances are relatively close to the ones of FCLSU . We can see

that globally, the algorithm is able to roughly identify the regions where most of the spectral

variability occurs (corresponding to red or dark blue pixels in the true scaling factors maps
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Figure 5.7: The scaling factors estimated by S-CLSU (third row) and by the proposed ap-

proach (bottom row), compared to the true ones, and to the power of the variability estimated

by the PLMM algorithm (second row) for the first synthetic dataset.

when the true scaling factor is significantly above or below 1, respectively). The main draw-

back is that the algorithm is not able to extrapolate the information in high abundance pixels

to neighboring lower abundance pixels, on which spectral variability is harder to estimate

without considering spatial information.

The CLSU algorithm performs better than FCLSU and all the previously mentioned

approaches, since dropping the ASC allows to look for the abundances in a cone and not in

a simplex. However, the quantity estimated in each pixel by CLSU actually absorbs spectral

variability into the abundances. S-CLSU performs much better. It is a very simple approach to

adress spectral variability which is well suited in simple cases. The cases in which it performs

best are those in which there are few materials in the image, or/and when the scaling factors

are either correlated along different materials, or on the contrary if only one material per pixel

varies significantly from its reference signature. This approach is also sensitive to deviations

from the ELMM such as a noisy perturbation on the scaled signatures.

The TV on the abundances logically improves the results for all the algorithms based on

CLSU, but it cannot improve the results for the bundle approaches. Indeed, one drawback

Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM ELMM-Aψ

SR on abundances No No Yes No Yes No Yes No Yes No No Yes

aRMSE 0.0629 0.0490 0.0504 0.0407 0.0575 0.0432 0.0413 0.0886 0.0276 0.0269 0.0344 0.0186

sRMSE × × × × × × × 0.0614 0.0548 0.0545 0.0449 0.0428

xRMSE 0.0119 0.0213 0.0366 0.0331 0.1391 0.0085 0.0100 0.0136 0.0085 0.0100 0.0090 0.0088

xSAM (degrees) 1.4960 1.8752 2.1304 1.8716 7.9886 1.2268 1.2504 1.9231 1.2268 1.2504 1.3002 1.2507

Running Time (s) 14 26 131 18 8 16 6 311 17 7 366 399

Table 5.2: Quantitative results for the first synthetic dataset. The best values in each line is

shown in red, and the second best one is shown in blue.
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of the SUnSAL-TV algorithm is that it cannot enforce the ASC, since it is not compatible

with the L1 norm minimization (the ASC forces the L1 norm of the abundance vectors to be

constant). What is more, the noisiness of the abundance maps obtained with the bundles is

not ideally corrected by the TV, which tends to aggregate “noisy” areas of the abundance

maps into patches. However, the combination of the spatial regularizations on the abundances

and scaling factors, coupled with the explicit scaling factor estimation is able to improve the

results significantly.

Indeed, the proposed approach is much more robust to noise on the measured data as

well as on the signatures thanks to both spatial regularizations. Indeed, the TV allows

to estimate precisely the spatially correlated abundances, getting rid of the noise and the

uncertainty which affects S-CLSU when two endmember variations of two different materials

share a common global shape, and can look quite similar after appropriate scalings. The

spatial coherency of the abundances and the scaling factors allows to recover the parameters

more precisely. Besides, the explicit computation of a different scaling factor for each pixel

and material allows to obtain smoother and separated variability maps, which also makes the

proposed algorithm much stronger in terms of interpretability of its results. Of course, it is

only possible to recover accurately the scaling factors when the abundance contribution of

the corresponding material is high enough, or otherwise when the spatial information allows

to extrapolate from higher abundance areas. If those two conditions are missing, only the

abundance is recovered with precision, while the associated scaling factor tends to be close

to one (its initial value) as the abundance decreases. This phenomenon can be interpreted

geometrically, with the diagram of Fig. 5.3 in mind. Let us suppose that there are three

endmembers in the scene. If in a given pixel, the abundance of one material is low, then

a different scaling factor for this material will change the orientation of the simplex related

to this pixel, but the edge of the simplex linking the other two (scaled) endmembers will

not change, and thus the abundance coefficients for the other two materials will not change

much either. In the end, we can say that the proposed approach does not require pure pixels

to extract the spectral variability of a material efficiently, but only a significant abundance

contribution of this material in the considered pixel, or in the neighboring area.

From a quantitative point of view, we can see that the proposed approach obtains the best

results in terms of abundance estimation, as well as spectral variability recovery. An explicit

spectral variability map can be only recovered for the S-CLSU, PLMM and ELMM algorithms,

since only those algorithms estimate pixel-dependent endmembers, and thus enable us to

compute the sRMSE values. Computing those values is theoretically possible for bundles

as well, using Eq. (2.6), but the equivalent endmembers are numerically unstable for small

values of the abundance coefficients (confirming how hard it is to extract variability when the

contribution of a material in a pixel is small), and thus we will not use them here.

It is interesting to note that both spatial regularizations improve the results on their own

w.r.t. to the simple ELMM case (the spatial regularization on the abundances (resp. scaling

factors) improves the abundance (resp. scaling factors) estimation), but the combination

of both improves the results further both for abundance and spectral variability estimation,

since a better estimation of the scaling factors allows in turn a better abundance estimation,
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and vice versa. The regularizations also improve the conditioning of the problem, and help

to solve the ambiguity between abundances and scaling factors. The running time of the

proposed algorithm is more important than all others (except the PLMM), but the approach

is relatively fast thanks to the favorable initialization chosen.It allows to achieve a good local

miminum of the objective function while limiting the number of iterations necessary to reach it

with a reasonable precision. However, we can note that S-CLSU performed with SUnSAL-TV

(which is based on the ADMM technique) is faster than the usual nonnegative least squares,

even with the spatial regularization (at least for εΨ = 10−3).

We also compared the reconstruction errors of the different algorithms, in terms of Root

Mean Squared Error and in terms of Spectral Angle. These measures are indirect, in the

sense that they only show how the mixing model used fits the data, though it is possible

to achieve excellent reconstruction errors with a poor abundance and/or spectral variability

retrieval. Conversely, accurate parameter estimation entails a good reconstruction if the

model is suited to the data. For instance, we see that the bundle-based approaches fit the

data worse than FCLSU, although the abundance estimation is significantly improved. We

also see that for this data, all the models based on unmixing the data in a cone spanned

by three endmembers achieve better reconstruction errors (as well as abundance estimation).

For CLSU, S-CLSU, and the ELMM-based algorithms, the reconstruction error is similar, but

there are still important differences in the accuracy of the estimation of the parameters. For

the case of CLSU, only a simple scaling has a positive effect on the abundance estimation,

while the reconstruction errors are of course the same in this case.

5.6.1.2 Interest of smoothing the scaling factors

Here we describe some additional results to show the relevance of smoothing the scaling fac-

tors. We show in Fig. 5.8 a plot of the estimated scaling factors against the true ones, for

one of the endmembers of the image, and for two algorithms: ELMM and ELMM-Aψ. This

direct comparison between estimated and true scaling factors only makes sense if the reference

endmember matrix S0 is the same in both cases. Hence, here we assumed the reference end-

members were known. The red dots in Fig. 5.8 show that without any spatial regularization,

the ELMM is able here to estimate spectral variability only when the abundance coefficient

in one pixel for the considered material is above a certain value (here around 0.3). Other-

wise, the estimated values stay close to their initial value 1. We had already mentioned this

phenomenon above, and explained it geometrically. However, with the spatial regularization

on the scaling factors, we see that not only are we able to reduce the estimation error for

the red dots in most cases, we are also in general able to stir the other pixels with lower

abundance values towards a more accurate spectral variability estimation, using the spatial

information. As expected, the spatial smoothness of the scaling factor then helps estimating

spectral variability in more heavily mixed pixels than with a pixelwise approach. Note that

here, only the spatial regularization on the scaling factors impacts the shape of this plot, while

the TV on the abundances does not play an important role. Notwithstanding, the latter is

still very useful on its own for the abundance estimation, and as shown in the quantitative

results, it is complementary to the spatial regularization on the scaling factors since a better
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scaling factor estimation allows in turn a better abundance estimation.

Figure 5.8: Plot of the estimated scaling factors against the true ones (assuming S0 is known),

for ELMM and ELMM-Aψ, corresponding to the one of the endmembers of the results (second

column of Figs. 5.6 and 5.7). Each dot represents a pixel in the image, and its color refers

to the value of a2i, where i denotes the pixel index. Red corresponds to a2i ≥ 0.3, green

corresponds to 0.1 < a2i < 0.3, and blue corresponds to a2i ≤ 0.1.

5.6.1.3 Sensitivity analysis

In this section we show some results regarding the sensitivity of the proposed method w.r.t.

the three regularization parameters to tune. We have run the ELMM algorithm for λS ∈
[10−2, 10−1] with steps of 10−1, λA ∈ [10−3, 10−2] with steps of 10−2, λψ ∈ [1, 10] with steps

of 1. In order to visualize the sensitivity of the algorithm to the regularization parameters,

we have plotted a well chosen isosurface of the three-variable functions given by aRMSE and

sRMSE in Fig. 5.9. The chosen values were 0.0195 for aRMSE and 0.0425 for sRMSE. Inside

the volume delimited by the surface, the metric is lower than the chosen value. This delimits

a 3D domain for the regularization parameters inside which performance remains much better

than the competing algorithms. The intersection of the two surfaces would delimit a volume

inside which good performance is guaranteed both for abundance and spectral variability

estimation. We see that logically, λA (resp. λΨ) is a critical parameter for a good abundance

(resp. spectral variability) estimation, while the value of λS is important for both, and is

probably the most critical parameter overall. Still, it can be chosen in a relatively large

domain for close to optimal performance.

5.6.1.4 Second scenario

The second dataset we used was generated in order to mimic the spectral variability in-

duced by changing illumination conditions and topography along the scene, using the Hapke

model [73]. For the simulations, we selected 3 endmembers consisting in 16 wavelengths re-

flectance measurements for materials commonly found on small bodies of the Solar System
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Figure 5.9: Isosurfaces for two values of aRMSE = 0.0195 (left) and sRMSE = 0.0425 (right)

(seen as functions of the three regularization parameters), delimiting a domain inside which

the metrics are lower than these two values. For the aRMSE, the color scale ranges from

0.0186 (blue) to 0.0195 (red). For the sRMSE, the color scale goes from 0.0423 (blue) to

0.0425 (red).

(basalt, palagonite and tephra), and whose geometry for the acquisition, as well as their pho-

tometric parameters are known [46]. We show these reflectance spectral signatures, acquired

at nadir with an incidence angle of 30◦, in Fig 5.10. Note that palagonite and tephra are

spectrally very close (the spectral angle between the two materials is 10 degrees), making the

problem harder since the nonlinearities of the Hapke model will have more influence on the

abundances for correlated endmembers. From these data, we recovered the single scattering

albedo spectra of these materials by inverting the Hapke model [112]. Single scattering albedo

is completely characteristic to a material, and unlike reflectance, which is the physical quan-

tity we work with, it depends neither on the geometry of the scene nor on the illumination

conditions [34]. Separately, a simulated smooth 200× 200 Digital Terrain Model (DTM) was

synthesized, assuming a spatial resolution of 1 m. This DTM simulates a hilly region and

is shown in Fig. 5.10. From this model and the definition of the position of the sun and

the sensor w.r.t. the scene (sun making an angle of 18◦ with the flat part of the DTM and

sensor at nadir), we derived the acquisition angles associated to each pixel. They depend

on the position of the sun and sensor, but also on the orientation of the tangent plane to

the surface at each location, which itself depends on the topography of the scene. We show

the computed angles in Fig. 5.11. Plugging these angles, the single scattering albedos and

the photometric parameters into the Hapke model, we simulated the various instances of the

reflectance endmembers along the scene. Then we mixed these endmember variants in each

pixel using the LMM, using abundances generated in a similar way to the previous section

(with the same pixel purity characteristics), providing a 200× 200× 16 image, to which 25dB

white Gaussian noise was added. The flowchart of the synthetic data generation is shown

in Fig. 5.12. A false color composition, and a representation of the dataset (in blue) and

the endmembers generated by the Hapke model (in red) using the first three components of

a Principal Component Analysis (PCA) are shown in Fig. 5.13. This representation shows

that there are strictly speaking very few (one per material, actually) pure pixels in the image.
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Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM-Aψ ELMM-Aψ-C

TV on abundances No No Yes No Yes No Yes No No Yes Yes Yes

aRMSE 0.133 0.0860 0.0498 0.1330 0.0681 0.0676 0.0601 0.1445 0.0398 0.0300 0.0286 0.0291

sRMSE × × × × × × × 0.0814 0.0139 0.0135 0.0187 0.0128

xRMSE 0.0131 0.0105 0.0049 0.0716 0.0577 0.0041 0.0045 0.0052 0.0041 0.0045 0.0049 0.0048

xSAM (degrees) 2.0209 1.0906 1.1317 8.7639 7.9573 1.0882 1.1270 1.2035 1.0882 1.1270 1.2720 1.1631

Running Time (s) 10 15 152 10 7 11 6 235 12 7 135 143

Table 5.3: Quantitative results for the second synthetic dataset. The best values in each line

is shown in red, and the second best one is shown in blue.

This figure confirms that palagonite and tephra are spectrally close, when we look at the

scale of the second principal component. Furthermore, we can see that the different materials

are not equally affected by spectral variability. The endmembers corresponding to basalt are

less affected by the nonlinearities of the Hapke model, which have a stronger influence on

high albedo materials, whereas the spectrum of basalt is very flat and low. Hence the shape

of the variability is almost a straight line. For the other two materials, the manifold of the

endmember variants is, however, more complex.

The setup for this dataset is rather similar to this of the first synthetic dataset, with a few

notable differences. The regularization parameters for all algorithms are given in the supple-

mentary material file. For this data, we chose to set the mean of each extracted endmember

bundle as the reference endmembers. The idea is to obtain representative endmembers to

increase the robustness of the algorithm. For a fair comparison, we chose the same set of

endmembers for FCLSU, CLSU and S-CLSU. The initial abundances used are those of S-

CLSU and the initial scaling factors are either set to one (approach denoted by ELMM-Aψ),

or taken from the results of S-CLSU as well (approach denoted by ELMM-Aψ-C).

The quantitative results of this second experiment are shown in Table 5.3. A visual

representation of the extracted abundances for most algorithms is shown in Fig. 5.14, while

the scaling factors extracted by S-CLSU and the proposed approach (ELMM-Aψ-C) are shown

in Fig. 5.15. We also show the endmembers estimated by the proposed approach, compared

the true ones using a PCA in Fig 5.16.

From Fig. 5.14 and Table 5.3. we can see that for FCLSU, CLSU, and the combination

of the bundles and SUnSAL, the results are similar to those related to the first synthetic
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Figure 5.10: The reflectance endmembers (left) and the Digital Terrain Model used for the

second synthetic dataset (right).
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Figure 5.12: Flowchart of the second simulated dataset generation.
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Figure 5.13: A false color representation of the second synthetic dataset. Data cloud (blue)

and the endmember variants generated by the Hapke model (red) shown using the first three

components of a PCA.
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by S-CLSU (middle row) and by the proposed approach (bottom row) for the second synthetic

dataset.
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Figure 5.16: The second simulated dataset (blue), the endmember variants generated by the

Hapke model (red) and the sources estimated by the proposed algorithm (green), shown using

the first three components of a PCA.

dataset. FCLSU gets poor results since it does not take spectral variability into account.

CLSU obtains better results, as it does not really estimate the abundances, but their products

with the scaling factors. SUnSAL is able to partly explain endmember variability, but the

resulting abundance maps are noisy, and the performance is limited by the bundle extraction.

The FDN approach only provides slightly better results than FCLSU in this case (we kept the

best result over 15 bundle extractions). This might be because the projection performed by the

FDN approach suffers from outliers in the bundles. SUnSAL obtains better results with the

same bundles because the sparsity constraint helps discarding the outlier endmembers. The

S-CLSU approach obtains better results, and is able to recover an average spectral variability

map. In this case, its performance in terms of sRMSE (but not aRMSE) is better than the

proposed approach initialized with the abundances S-CLSU obtains and the scaling factors set

to one. The reason S-CLSU obtains satisfactory results is because the spectral variability in

the different materials have the same cause, and hence the scaling factors for each material are

correlated. However, the ELMM-Aψ initialization also gets a worse endmember estimation

result because it cannot estimate the scaling factor of a material whose abundance is too

low. As explained in Sec. 5.6.1.1, the change in orientation of the simplex due to the scaling

factor associated to a low abundance material has little impact on the remaining abundance

coefficients. As S-CLSU is only able to estimate one scaling factor for each endmember, if

we assume it applies to all endmembers, the error committed is less important. A spatial

regularization on the abundances if beneficial to the performance of the various algorithms,

especially for the bundles approach with SUnSAL, as well as S-CLSU. The PLMM obtains

poor results here because its abundances are similar to those of FCLSU, which means the

algorithm is probably stuck in a poor local minimum.

The proposed approach, initialized with the abundances and scaling factors of S-CLSU is

still able to improve the results thanks to the regularizations, which accommodate the noise,

and especially the nonlinearities of the Hapke model, as can be seen in Fig. 5.16. In this figure,

we represent the data cloud (in blue) and the endmembers generated by the Hapke model
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(a) (b) (c)

Figure 5.17: A RGB representation of the Houston hyperspectral dataset (a). High spatial

resolution color image acquired over the same area at a different time (b). Associated Lidar

data (c). Black corresponds to 9.6m and white corresponds to 46.2m.

(in red) using the first 3 components of a PCA. The endmembers estimated in every pixel

by the proposed algorithm are shown in green. The extracted endmembers are allowed to

deviate from the ELMM (as it is defined in Eq. (5.12)), and the endmembers are extracted on

a thickened line. This flexibility allows to approximate the endmember manifolds generated

by the Hapke Model better than S-CLSU does. Only the basalt endmembers are more or less

situated on a straight line, because this material has a lower albedo than the other two, and

is then less affected by the illumination changes over the scene.

It is also interesting to note that, as could be expected, the scaling factors extracted by

S-CLSU or the proposed approach are very correlated to the DTM, and even more to the

spatial maps of the incidence and emergence angles, shown in Fig. 5.11. However, the proposed

approach is able to drift away from the the model of Eq. (5.12) and is more robust than S-

CLSU here thanks to both spatial regularizations (even when the S-CLSU benefits from an

additional spatial regularization on the abundances). In this case, the freedom of the sources

to evolve around the straight lines cause a slight increase in the spectral angle between the

image and its reconstruction. This could also be because the spatial regularizations denoise

the abundance and scaling factor maps, leading to a smoother reconstructed image than the

noisy data. These results confirms the potential of the ELMM to deal with illumination and

topography induced spectral variability.

5.6.2 Results on real datasets

5.6.2.1 First Dataset

The first real dataset we use here is the subset of the Houston dataset already used in Sec-

tion 4.4.2.2. We show here once again the RGB representation of the HSI, the high-resolution

image of the scene and the LiDAR data in Fig. 5.17. We are comparing the same algorithms

as before. In the absence of ground truth, we will only assess the results visually, and give

the running times and reconstruction errors of each algorithm. The regularization parameters

for this dataset are gathered in the supplementary material. For both datasets, the PLMM

algorithm was used with a spatial smoothness constraint on the abundances, and a constraint

forcing the endmembers to be close the the reference extracted with VCA. The bundle used
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BUNDLES + SUnSAL PLMM ELMM-Aψ

λL1 5.10−4 5.10−4 × × × ×
λS × × × × 0.5 0.4

λA × × × × 1.5.10−2 3.10−3

λψ × × × × 5.10−2 5.10−3

α × × 1.4.10−3 3.1.10−4 × ×
β × × 5.102 5.102 × ×
γ × × 1 1 × ×

Table 5.4: Regularization parameters for all the algorithms concerned, for the Houston dataset

(left cell of each column) and the Cuprite dataset (right cell of each column).

was extracted using 45 subsets of 2 percent of the pixels of the image, without replacement.

For the proposed approach, we initialized the algorithm with the abundances of S-CLSU and

the scaling factors set to one.

The regularization parameters for the real datasets are stored in Table 5.4. For the

PLMM algorithm, the parameters α, β and γ are associated to a spatial regularization on the

abundances, to a distance of the endmembers to S0, and to the spectral variability power,

respectively.

The estimated Intrinsic Dimensionality of the dataset using the Hysime algorithm [19] is

17, but we chose to consider only 4 endmembers. The reason for this is twofold: First, when

17 endmembers are extracted, for all algorithms, most abundance maps are very sparse and

have very few spatial structure. This is either because outliers are selected as endembers or

because a really rare material was chosen (such as an isolated car in a single pixel only). Be-

sides, ID estimation algorithms provide an upper bound on the number of endmember to use,

and the definition of an endmember is actually application and context dependent. Results

with 4 endmembers are easier to visualize, to interpret and to compare for our endmember

variability application. From the reference endmembers selected by VCA, we identified 4

classes: vegetation, concrete stands, asphalt and red metallic roofs. The vegetation endmem-

ber could have been split into grass and trees, but we chose to consider only one endmember

vegetation to show the capability of the algorithms to recover an interpretable spectral vari-

ability. The same goes for the football field, which is actually mixed with soil. However,

the soil endmember is very hard to extract, as there is probably no pure soil pixel for this

material in the considered dataset.

5.6.2.2 Results

Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM-Aψ

xRMSE 0.0212 0.0065 0.0645 0.0047 0.0263 0.0047 0.0032

xSAM (degrees) 3.3057 1.0953 4.1885 1.4531 6.6727 1.4531 0.9979

Running Time (s) 4 6 5 4 333 5 432

Table 5.5: Running times and reconstruction errors of the tested algorithms on the Houston

dataset.

The results on the real dataset are shown in Fig. 5.18 for the abundances and in Fig. 5.19
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Figure 5.19: Magnitude of the PLMM variability term (top row), the scaling factors estimated

by S-CLSU (middle row) and the proposed approach (bottom row) for the Houston dataset.
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for the spectral variability estimation. In addition, the reconstruction errors and running

times of the different algorithms are shown in Table 5.5. From Fig. 5.18, it seems that

overall the abundance distributions of FCLSU follow the visual examination of the image,

with very pure areas for the stands, and a good identification of the lawn in the stadium

and of the stands (all the stands are indeed made of the same material if we refer to the

high resolution RGB image, whereas it is not clear at all from the RGB composition of the

hyperspectral data). However, the algorithm fails to consider the red metallic roofs as pure.

The bundle approach combined with SUnSAL improves the purity of the red roof areas but

the stands are not so well identified and interpreted as a mixture of concrete and asphalt.

The CLSU algorithm (without scaling) obtains visually more coherent results, but both the

red roofs and the concrete stands exhibit abundances which are significantly higher than 1 for

all materials (up to 1.3, corresponding to saturated red values in Fig. 5.18), because CLSU

does not actually estimate the abundances but a factor incorporating spectral variability. The

FDN approach obtains very clear abundance maps for the vegetation and red roofs, but once

again the distinction between concrete stands and asphalt (roads and parking lots) is not so

clear. The abundances from the PLMM are visually not very satisfying since there are a lot a

pixels which should be pure but are here heavily mixed. However, the algorithm is still able

to detect most of the areas where spectral variability occurs (red roofs, stadium stands for

instance). S-CLSU, on the other hand, obtains visually good results because it corrects the

estimations of CLSU thanks to the scaling. Then, the abundance maps for the red metallic

roofs are better defined. The vegetation is also well identified. Asphalt and concrete stands

are harder to discriminate. Besides, the scaling factors map is hard to interpret because

only one scaling factor is estimated for all four endmembers. In Fig. 5.19, the color scale

for each material was chosen using the results of the proposed approach. Otherwise, the

results from S-CLSU have a very large dynamic, which makes it hard to visualize the results,

added to the fact that there is only a single variability map for all materials. The proposed

approach, although computationally more intensive, obtains visually good results as well. The

vegetation is well identified, and the football field appears purer than with S-CLSU thanks

to the spatial regularization. With our definitions of the endmembers, potential mixtures of

grass with soil are interpreted as variability. The distinction between grass and tree leaves

is also clearly identifiable in the scaling factors maps because the leaves areas are associated

in this case to scaling factors smaller than 1, even though in some cases the pixels can be

mixed with red roofs or asphalt (for instance in the area to the left of the stadium). In this

case, the model seems to accommodate the intrinsic variability of the materials since it can

estimate different scaling factors for different materials in mixed pixels, thanks to the inclusion

of one scaling factor for each material and to the spatial regularizations. The red roofs are

also well detected, and the corresponding scaling factors significantly differ depending on

the orientation of the roof (which we can clearly see with the high resolution image and the

LiDAR data). The same phenomenon occurs with the stands: the 4 stands are related to the

same endmember class, but they all have significantly different scaling factors, depending once

again on their orientation (they also correspond to significant elevation changes, as can be

seen on the LiDAR image). These two facts suggest that the ELMM is indeed able to identify

variability due to changing illumination conditions. The asphalt abundance map coincides

with the location of the parking lots, and also shows local variations in scale. Finally, the
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spatial regularization also eliminates outliers (cars) in the spatial distribution of the scaling

factors and abundance maps.

5.6.2.3 Second Dataset

The second dataset we consider is a 200 × 200 × 186 subset of the Cuprite dataset, which

is shown in Fig. 5.20. The image was acquired by NASA’s AVIRIS sensor and covers the

Cuprite mining district in western Nevada, USA. We extracted 14 endmembers with the

VCA according to the ID value estimated by Hysime on our subset. We compare the same

algorithms as before and show in Fig. 5.21 the estimated abundance maps. The results are

shown only for some of the extracted endmembers. For the concerned algorithms, we also

show in Fig. 5.22 a map of the estimated spectral variability. We also show the reconstruction

errors and the running times of all algorithms in Table 5.6. The materials have been identified

by visual comparison between the estimated abundance maps and endmember signatures to

those recovered in [122].

Figure 5.20: A RGB representation of the subset of the Cuprite dataset used.

5.6.2.4 Results

From the visual results, we see for instance that FCLSU detects a near pure area of Alunite

in the top of the rightmost part of the image, while this is interpreted as near pure Muscovite

with variability by the ELMM and S-CLSU, which shows taking variability into account can

significantly change the abundance results. The PLMM algorithm detects more or less the

same variability areas than the ELMM, but its abundance maps are in average lower, meaning

that is interprets the data as being more mixed. As for the variability maps, for ELMM and

S-CLSU, we chose the reference color scale to reflect the dynamic of the map of S-CLSU.

This shows that for 14 materials, it can become very hard to interpret visually, and even

more so for mixed pixels, while the ELMM results with one scaling factor for each material is

much clearer, even at this scale, which favors S-CLSU. Anyway, we see that the materials in

the scene seem to be significantly affected by spectral variability, which makes the abundance

maps recovered by the algorithms taking it into account very different from the ones recovered

by the usual LMM.
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Figure 5.21: The abundance maps estimated by some algorithms for the Cuprite dataset.

The color scale goes from 0 (blue) to 1 (red).
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Figure 5.22: Magnitude of the PLMM variability term (top row), the scaling factors estimated

by S-CLSU (middle row) and the proposed approach (bottom row) for the Cuprite dataset.
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Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM-Aψ

xRMSE 0.0062 0.0138 0.0361 0.0047 0.0086 0.0047 0.0029

xSAM (degrees) 0.9026 0.4759 1.1954 0.7088 1.2708 0.7088 0.4489

Running Time (s) 26 96 30 27 4.103 28 3.103

Table 5.6: Running times and reconstruction errors of the tested algorithms on the Cuprite

dataset.

5.7 Partial Conclusion

In this chapter, we have proposed a new mixing model for hyperspectral unmixing, specifically

aimed at tackling spectral variability. The model approximates the radiative transfer model

of Hapke by making simplifying assumptions. In the end, spectral variability is taken in

consideration through scaling factors, defining pixelwise endmembers from reference ones,

which are extracted using VCA (robust to scaling variations of the data). We incorporate

spatial information in the algorithm through spatial regularizations on the abundances and

scaling factors. We have also proposed two algorithms to estimate the parameters of the

model. We have validated the model on two synthetic datasets, including one generated with

the Hapke model, and on two real datasets with different spatial and spectral resolutions, in

different contexts (urban scene and natural landscape). We have showed that the algorithm

outperforms other approaches of the literature aimed at addressing SV. Note that the scaling

factor model was also proven useful to deal with spectral variability in the dynamical unmixing

of multitemporal HSIs in [78]. The research perspectives related to this model are numerous,

and have started being addressed by the community. The proposed model only affects the

endmembers, while the mixing process remains linear. It is theoretically possible to combine

the ELMM with any nonlinear model of the literature, so long as the model remains tractable

and as there are not too many parameters to estimate. An encouraging step was taken in

that direction in [72], where a scaling factor (the same for all materials) is included into a

bilinear model, to account for both illumination and multiple reflection effects on the observed

reflectance. Taking advantage of an available DTM, and knowing the positions of the sun

and sensor would allow to derive the acquisition angles in each pixel of the HSI. This would

for example help to detect areas in shadow (when the zenith angle θ0 > 0). This valuable

information could also be included in a refined (nonlinear) mixing model approximating the

Hapke model in a less coarse way than the ELMM. Designing more material specific mixing

models would also be an interesting possibility. Finally, a comparison of the performance of

the two proposed algorithms would be interesting in order to find out which algorithm is the

most efficient in terms of complexity and runtime, as well as unmixing performance.

In the next chapter, we are going to make the connection of the ELMM with two different

frameworks: tensor decomposition of hyperspectral data and the LSU approach.
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6.1 Introduction

In this Chapter, we present two applications of the ELMM introduced in Chapter 5. The

algorithms presented in that chapter were using the ELMM in a completely global approach,

that is to say that the model was applied to each pixel using the same reference endmembers,

and the scaling factors, as well as the abundances and the local endmembers were globally

estimated through an optimization process. On the contrary, the Local Spectral Unmixing

(LSU) approach is able to deal with spectral variability using a different paradigm, considering

sets of local endmembers in each region, possibly representing different macroscopic materials

in different regions. We have shown in section 4.3 that this approach could be useful to

interpret the unmixing locally in each region, and at different scales using the hierarchy

defined by the BPT. However, the main limitation of LSU techniques is that the induced

endmembers and abundances are only defined locally in the image, and must somehow be

post-processed to be interpretable at the whole image scale. Here, we are going to make the

connection between the two approaches, using the ELMM to interpret the LSU results on a

global scale.

Besides, we have mentioned in section 2.4 that multitemporal and multiangular HSIs can

be viewed as three-way arrays, or tensors, and can be processed using the CP decomposition,

in order to obtain spectral factors, spatial factors, and factors related to the third modality,

i.e. time or angle. The former two factors can be interpreted as endmembers (and the number
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of endmembers can be related to the rank of the tensor) and fractional abundances, but the

third factor, albeit physically interpretable in practice, has yet to be linked to a quantity

involved in a physics-based mixing model.

6.2 Contributions

This chapter connects the ELMM to the LSU and tensor CP decomposition approaches.

In a first step, we propose to combine the LSU approach with the ELMM framework and

show that it allows to naturally derive global endmembers and abundances from their local

counterparts, while providing additional information related to the spectral variability in each

region, thanks to the explicit computation of scaling factors. These results were first reported

in [149].

Second, we show that the CP decomposition of hyperspectral data is connected to a

regularized version of the ELMM, and that the factors associated to the third modality (that

is, not the spatial or spectral one) can be linked to the scaling factors of the ELMM. We

illustrate this connection in the multitemporal and multiangular cases, and on a recently

proposed representation of conventional HSI images into tensors (we will see that seeing the

HSI cube directly as a third order tensor is not a suitable option for SU purposes), for which

the CP decomposition provides information on the endmembers and abundances, but also on

the spectral variability in the spatial domain.

6.3 LSU and ELMM

6.3.1 Interpreting LSU results on a global scale

Since our objective is to interpret the LSU results on a global scale, the starting point of the

proposed methodology is a partition π = {Ri}, i = 1, ..., |π|, of the spatial support of the HSI,

where LSU procedures have been conducted on each region Ri of the partition. Following

the approach presented in [161] (and summarized in section 2.3.2), those regions have been

designed to have minimal reconstruction errors. Thus, dRi local endmembers sRi1 , . . . , sRidRi
are available in each region Ri, as well as their associated local fractional abundances aRik =[
aRi1,k, . . . , a

Ri
dRi,k

]
for all pixel spectra xk belonging to Ri. Note that here, dRi is the estimated

local ID in region Ri, i.e. we do not apply the procedure described in section 4.3 to reduce

the number of endmembers in each region, for reasons that we will detail further. Recall that

in the LSU framework, each pixel xk (k being the index of the position of the pixel in the

whole image) associated to a region R can be expressed only using the information contained

in this region:

xk =

dR∑
i=1

aRi,ks
R
i + ek , (6.1)
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6.3.1.1 Endmember clustering

In a first step, all local endmembers are pooled together in a common set Sπ = {sR∈πi }dπi=1 with

dπ =
∑
R∈π dR being the total number of local endmembers that have been generated by the

LSU approach. Then, this set Sπ is clustered into P clusters (where P is the global number

of endmembers to consider) C1, . . . , CP by means of some clustering algorithm, with cluster

Cp =
{

sRp,1, . . . s
R
p,dCp

}
being composed of dCp local endmembers, originating from various

regions R of the partition π. Finally, the centroid s0p of each cluster Cp is retrieved

s0p =
1

dCp

dCp∑
i=1

sRp,i , (6.2)

and defined as the global endmember representing the pth cluster Cp. As opposed to all local

endmembers sp,i belonging to this cluster, the centroid s0k is expected to properly describe

the macroscopic material associated with cluster Cp across the whole image.

6.3.1.2 Global abundance retrieval

Once the global endmembers s01, . . . , s0P have been defined, their associated global fractional

abundances must be retrieved for all pixels of the HSI. In particular, let xk, k ∈ [[1, ..., N ]]

be such a pixel spectrum contained in region R of partition π, and let
[
aR1,k, . . . , a

R
dR,k

]
and

[α1,k, . . . , αP,k] be its local and global fractional abundances, respectively. Then, three possible

cases may occur:

- No local endmember sRi has been clustered in Cp. Thus, the pth macroscopic material

represented by Cp is not contained in xk and αp,k = 0.

- There is a single local endmember sRi (for some i ∈ [[1, ..., dR]]) belonging to cluster Cp.
Therefore, the proportion of this material shall not change within x, hence αp,k = aRi,k.

- There are several local endmembers sRin , n = 1, . . . ,m grouped in the same cluster Cp. In

such situation, the material is locally variable within the region R (healthy and burnt

grass for instance), but all contributions sum up with respect to the global instance of

the material (being grass in the previous example), as in the case of spectral bundles.

Thus, αp,k =
∑m

n=1 a
R
in,k

.

All previous cases can be summarized as follows:

αp,k =

dR∑
i=1

aRi,k1{sRi ∈Cp}
, (6.3)

where 1{sRi ∈Cp}
= 1 if sRi ∈ Cp and 0 otherwise. Doing so for all pixels xk, (k = 1, ..., N) of

the HSI allows to reconstruct global fractional abundance maps.



148 Chapter 6. ELMM applications

6.3.1.3 Estimation of spectral variability

In the ELMM framework, each endmember sp is authorized to vary pixelwise (here in pixel

xk) with respect to some reference endmember s0p according to some local scaling factor

ψpk, as described by Eq. (5.11). Here, we take advantage of this idea by considering cluster

centroids to be those reference endmembers and modeling all local endmembers belonging to

this cluster Cp as some scaled versions of s0p:

sRi ∈ Cp ⇒ sRi = φRi s0p . (6.4)

The scaling factor φRi associated with the local endmember sRi can be recovered in practice

by least squares regression between sRi and the centroid s0k of cluster Cp it belongs to:

φRi =
(
s0
>
p s0p

)−1
s0
>
p sRi , (6.5)

Besides, Eq. (6.5) guarantees the local scaling factor φRi to be nonnegative.

Plugging Eq. (6.4) into Eq. (6.1) yields

xk =

dR∑
i=1

aRi,kφ
R
i s0pi + ek , (6.6)

where pi ∈ {1, . . . , P} is the index of the cluster sRi belongs to. Eq. (6.6) can be rewritten as

xk =

P∑
p=1

(
dR∑
i=1

aRi,kφ
R
i 1{sRi ∈Cp}

)
s0p + ek . (6.7)

On the other hand, pixel xk can also be decomposed with respect to the global ELMM

framework as described by Eq. (5.11), namely

xk =

P∑
p=1

ap,kψp,ks0p + ek =

P∑
p=1

(
dR∑
i=1

aRi,k1{sRi ∈Cp}

)
ψp,ks0p + ek , (6.8)

with ψk,p being the global scaling factor associated with centroid s0p in pixel k. Hence, if we

identify the terms in Eqs. (6.7) and (6.8), it is possible to estimate the global scaling factor

ψp,k for pixel xk as a weighted average of its local scaling factors φRi and local abundances

aRi,k:

ψp,k =

∑dR
i=1 a

R
i,kφ
R
i 1{sRi ∈Cp}∑dR

i=1 a
R
i,k1{sRi ∈Cp}

. (6.9)

Note that, in the case where there is a single local endmember sRi belonging to cluster Cp, then

ψp,k = φRi is constant for all pixels xk belonging to region R. As a matter of fact, all pixels in

R appear spatially homogeneous with respect to the material represented by Cp. If there are

at least two local endmembers belong to the same cluster Cp on the other hand, then the global

scaling factor ψp,k varies pixelwise. Finally, in the case where αp,k =
∑dR

i=1 a
R
k,i1{sRi ∈Cp}

= 0

(that is, if pixel x does not contain the pth material), then ψp,k is set to 1.
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6.3.1.4 Geometric interpretation

We have seen that with the proposed strategy, we have been able to reinterpret globally the

results of LSU, by fitting the ELMM framework within it. With this, we can now provide

a global geometrical interpretation of the results of LSU (initially shown in Fig. 2.8). As

Fig. 6.1 now reveals, we have defined lines which account for each endmember in the feature

space, and have projected each local endmember onto a line (depending on the cluster it was

assigned to), thus deriving local scaling factors for each of them. This way, we can derive a

new local simplex in each pixel, and recover the global abundances and scaling factors in the

sense of the ELMM.

6.3.2 Results

6.3.2.1 Experimental setup

We apply the proposed methodology to the HSI acquired over the campus of the University

of Houston in 2012, already used in sections 4.4.2.2 and 5.6.2.1. The subset we use here

is composed of 340 × 320 pixels in spatial dimension, and comprises 144 bands. The study

site features an urban area with a stadium, buildings, parking lots and roads, and some

portions of grass and trees. A color composition of this HSI is presented in Fig. 6.2. The

partition π, input of the proposed methodology, is obtained following the procedure described

in section 2.3.2 and in [161]. First a spatial pre-processing of the HSI is conducted in order

to mitigate the effects of potential outliers [175]. Then, we build a BPT representation [155]

of the dataset using the spectral region model proposed in [161] (modeling all regions by

their local endmembers) and the endmember-based distance as merging criterion [68]. A LSU

procedure is conducted over each region of the BPT. The local intrinsic dimensionality dR of

each region is estimated using the RMT algorithm [32], as it proved to be more reliable than

most ID estimation algorithms when working over small regions [54] (see Chapter 3).

Figure 6.1: Geometric interpretation of LSU in the ELMM framework.
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(a) (b)

Figure 6.2: RGB composition of the Houston hyperspectral data set (a), and resulting seg-

mentation composed of 396 regions (b).

Here, we are not using the method proposed in section 4.3 to eliminate the irrelevant

endmembers extracted in each region. The reason for this is that here we are not so much in-

terested in the results in local areas as in summarizing this information in global endmembers

and abundance maps, using the local endmembers to define the scaling factors of the ELMM.

We have seen that when only one local endmember is associated to a certain cluster, there is

no spectral variability within the region. In order to allow the scaling factors to be defined

pixelwise, and not regionwise, it is interesting to keep several representatives of each cluster

in every region. The approach of section 4.3 was more concerned with inter-region spectral

variability, while here we are also interested in intra-region spectral variability. Local end-

members are estimated using the vertex component analysis (VCA) algorithm [122] and the

fractional abundances are retrieved using the FCLSU algorithm. The partition π extracted

from the BPT structure is displayed by Fig. 6.2 and composed of 396 regions. It achieves

a trade-off between low region-wise maximal reconstruction errors (penalizing large regions

with potential high reconstruction errors, which may be caused by the invalidity of the LMM

within the region) and simplicity (penalizing partitions with too many regions). We refer to

[161] or [150] for practical details.

All generated local endmembers are grouped in the set Sπ, eventually composed of 2957

individuals. This set Sπ is divided into P = 12 clusters following a multivariate Gaussian

mixing model hypothesis, by application of the Expectation-Maximization algorithm [147].

Note that the total number of clusters P has been set empirically. According to the proposed

methodology, all cluster centroids sp, p = 1, . . . , P are defined to be the ELMM reference

endmembers. The associated global abundances αp,k and global scaling factors ψp,k are re-

trieved for all pixel spectra in the HSI following the procedures exposed in section 6.3.1.2 and

section 6.3.1.3, respectively.

In order to evaluate the performance of the proposed methodology, we also unmix the im-

age following the classical LMM scenario: P “classical” endmembers and associated fractional

abundances are globally induced over the image, using the same set-up as the LSU (namely
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VCA for the endmember induction FCLSU for the abundances retrieval). In both cases, in

the absence of ground truth, the quality of the unmixing any pixel spectrum is evaluated by

its RMSE.

6.3.2.2 Results

Fig. 6.3 presents the obtained results for the semantic classes Asphalt, Vegetation and Metallic

roofs. The first row of Fig. 6.3 displays the clusters obtained by the proposed strategy, where

each blue spectrum depicts a local endmember obtained by LSU, the red spectrum is the

cluster centroid, and the black spectrum is the corresponding endmember induced using

the classical global approach. The second and third rows of Fig. 6.3 exhibit the fractional

abundance maps for the classical global approach, and the proposed approach, respectively

(with scales ranging from 0 (blue) to 1 (red)). Finally, the bottom row displays the global

scaling factors obtained by the proposed approach. Their values range from 0.5 (in blue) to

1.5 (in red). As remarked in section 5.6.1.1 and in [55], scaling factors are only relevant if

the associated fractional abundances are high enough (greater than 0.3 in practice). In the

opposite situation, the contribution of the associated endmembers to the pixel spectra cannot

be considered significant enough to reliably estimate their variability. In such case, scaling

factors have been rounded to 1 for visualization purposes.

As it can be seen on the top row, the obtained clusters are spectrally coherent in the sense

that all local endmembers grouped in the same cluster differ only from a scaling factor, which

empirically validates the ELMM base assumption. Cluster centroids and classical global

endmembers are also similar, up to some scaling factor, which confirms that the former

can indeed be considered as global endmember instances. Nevertheless, while the obtained

fractional abundance maps appear comparable for the Asphalt and Vegetation classes, which

are well present across the image, it is different for the scarce Metallic roofs class. Several

metallic roof endmembers have been extracted thanks to the LSU approach and clustered

together, allowing to retrieve a clean abundance map, while the global approach leads to an

abundance map where other structures are visible.

Finally, the obtained scaling factor maps appear visually consistent, as the observed vari-

ations can be linked to the different shades within the parking lots for the Asphalt class for

instance, or to the topography of the scene, as it is the case for Vegetation class (where it is

possible to distinguish between trees with low scaling factors, and grass with higher scaling

factors). It is even clearer when looking at the scaling factors associated to the Metallic roof

class, as shown in Fig. 6.4. While the abundances of the classical global approach show some

variability due to the topography of the two red roofs, this variability is clearly supported in

our approach by the scaling factors, while the abundances remain relatively pure.

Fig. 6.5 displays the reconstruction error maps of the proposed (b) and classical global

(a) approaches. As demonstrated in Fig. 6.5 (c), the proposed approach globally yields lower

reconstruction errors (all white pixels) than the classical approach. It confirms that processing

LSU results within the ELMM framework allows to take advantage of both the local validity
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Figure 6.3: First row: obtained clusters (in blue) along with their centroids (in red) and the

classical global endmembers (in black). Second and third rows: fractional abundance maps

associated to the global endmembers and the cluster centroids using the proposed approach,

respectively. Bottom row: scaling factor maps obtained by the proposed methodology.
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Figure 6.4: Top row: crop of the RGB image (left), and global abundances (right) associated

to the Metallic roof class. Bottom row: obtained scaling factors (left) and abundances (right)

for the Metallic roof class.

(a) (b) (c)

Figure 6.5: Reconstruction map for (a) the proposed approach and (b) the classical global

approach (the scale is saturated between 0 (blue) and 0.1 (red)), and (c) binary comparison

of the two (white if the reconstruction is better in (a) and black if it is better in (b)).

of the LMM and the global variability of endmembers to better model the hyperspectral data

set.

6.4 Tensor CP decomposition of hyperspectral data

The objective of this section is to make the explicit connection between nonnegative tensor

CP decomposition of hyperspectral datasets and spectral variability, through the use of the

ELMM. We will first show that performing the nonnegative CP decomposition of a third order

hyperspectral tensor is equivalent to solving a regularized version of a SU problem using the

ELMM, where the scaling factors are able to account for variability in the third modality (e.g.

temporal or angular variability). The derivation of this equivalence is adapted from [156].

Next, we present, as another application of this, a new representation of a regular HSI as a

third order tensor, so as to deal with SV in the spatial domain, which has been our main
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focus so far. This representation was first introduced in [156].

6.4.1 Connection between the CP tensor decomposition in HSI processing
and the ELMM

Here, we assume that we have a third order data tensor X ∈ RL×N×T at our disposal, where

T is the dimension of the third way of the tensor, representing the third modality (time,

angle, or possibly some other relevant modality). The best rank R approximation of X (see

Chapter 2) is the solution to:

arg min
S,A,T

||X − I ×1 S×2 A> ×3 T||2F

s.t. S ≥ 0,A ≥ 0,1>RA = 1>N ,T ≥ 0, (6.10)

where S ∈ RL×R, A ∈ RR×N , T ∈ RT×R. Note that here we have included the ASC in the

CP decomposition in the term 1>RA = 1>N . With respect to the decomposition of Eq. (2.22),

we have incorporated the scaling indeterminacies in the T matrix, so that I ∈ RR×R×R is a

diagonal tensor of ones. If the first two modalities are the spectral and spatial modalities, S

and A can be interpreted as the endmember spectra and the abundances, respectively. The

interpretation of T depends on the third modality. The underlying multilinear model of the

CP decomposition is now:

xlkm =

R∑
r=1

slrarktmr. (6.11)

If we denote by Xm ∈ RL×N a slice of X for a particular index m in the third way (e.g. one

time frame for time series), Eq. (6.11) allows us to decompose it as:

Xm ≈
R∑
r=1

srtmrar = SψmA, (6.12)

where ψm ∈ RR×R is a diagonal matrix, with the scaling factors tmr on its diagonal. This

makes the expression of each slice very similar to the ELMM (Eq. (5.11)), except that the

scaling factors can apply to any modality. Note that a related model was used in [78] for

the dynamical unmixing of multitemporal images, but with a smooth variation model for the

abundances and spectral variations in the temporal domain. With Eq. (6.12), we can rewrite

the CP decomposition problem (6.10) as:

arg min
S,A,T

T∑
m=1

||Xm − SψmA||2F

s.t. S ≥ 0,A ≥ 0,1>PA = 1>N ,ψm ≥ 0,∀m ∈ [[1, ..., T ]]. (6.13)

This equation means that performing the rank R decomposition of a third order hyperspectral

tensor is equivalent to solving a blind regularized version of the ELMM, where the abundance

matrix is the same for each slice of the data tensor in the third modality, and the endmember

matrix is the same in each slice, up to a spectral variability-related correction, encoded in
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the scaling factor matrices. In practice, this means that the estimated abundance matrix is

an average of the actual abundances in each slice. This explains why the abundance maps

obtained by the CP decomposition are usually relatively smooth in the spatial domain [158],

since the values incorporate information from all slices. This relationship between the ELMM

and the CP decomposition of hyperspectral tensors allows to provide a physical interpretation

of the CP decomposition, since it actually performs SU of the data, accounting for SV in its

third modality in the form of scaling factors. For time or angular series, these scaling factors

model the per-frame variations in illumination or intrinsic variability. For instance, in [158],

the temporal factors for different types of snow are shown to be related to seasonal variations,

while in [157], the angular factors follow the variations of the viewing angle in each frame.

In any case, the main difference with the ELMM is that SV is only taken into account in the

domain of the third modality, whereas the ELMM models SV in the spatial domain. The

next section will present a representation of HSI data as a third order tensor for which the

third modality is connected to SV in the spatial domain.

6.4.2 Hyperspectral Patch Tensor

HSIs are often represented as data cubes, with two spatial dimensions and one spectral dimen-

sion. This cube is already a three-way tensor, which has been used as is in the literature [173],

for denoising or compression applications mostly. However, this representation of hyperspec-

tral data as a tensor is not well suited to CP decomposition, for two reasons. The first is

that the data cube is not a low rank tensor, as we will see below. The second is that the

interpretation of the spatial factors of the CP decomposition is not as evident as for the tensor

representation of time and angular series we have described so far. In addition, the interpre-

tation of the third way with the ELMM no longer makes sense. It is then preferable to see

both spatial dimensions as a single modality. In order to be able to use this interpretation,

and to deal with SV in the spatial domain without having an explicit third modality, another

representation of the data as a tensor must be used.

In order that the third modality should contain spatial information, we define, for each

pixel xk of a HSI, a patch comprising all the pixels its neighborhood (defined, for instance as

the pixels in a window centered at xk). Let us denote by Pk = [xk1 ,xk2 , · · · ,xkT ] ∈ RL×T
such a patch (stored into a matrix), with the center pixel xk being xk1 . T is the number of

pixels in the patch. By stacking the obtained patches for each pixel of the image, we obtain

a tensor X ∈ RL×N×T , where the third modality is the spatial neighborhood of each pixel.

Since the approach is based on sliding windows, border effects have to be handled somehow

(using periodic, symmetric or zero-padded boundaries). The construction of this patch tensor

is illustrated in Fig. 6.6.

Performing a CP decomposition on this tensor then provides spatial and spectral factors,

as usual, but also a matrix T ∈ RT×R of “neighborhood” factors. With the regularized ELMM

formulation of the CP decomposition in mind, these factors account a dictionary of R spatial

patches of local scaling factors, representing the atoms of a dictionary of average spectral

variability patterns in the spatial domain. In this context, Eq. (6.13) can be reinterpreted as
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Figure 6.6: Construction of the patches (left), construction of the patch tensor by stacking

the patches for each pixel (middle), alternative construction by shifting the image along the

neighborhood dimension (right).

performing the SU of the HSI, accounting for SV in the spatial domain thanks to these local

scaling factors. The constraint that the abundances are equal in all slices in the third modality

means here that abundances within a neighborhood should be correlated. In practice, this

acts as a spatial regularization on the abundances. As suggested in [156], this constraint

may be a bit harsh in practice, but can be easily relaxed by incorporating weights wm to

each of the T terms, accounting for each pixel of the mask of the spatial neighborhood. For

example, these weights can be defined according to a Gaussian kernel of the same size as

the sliding window, so as to give more importance to center pixels of the mask in the spatial

regularization. With the weighting scheme, the optimization problem becomes:

arg min
S,A,T

T∑
m=1

wm||Xm − SψmA||2F

s.t. S ≥ 0,A ≥ 0,1>PA = 1>N ,ψm ≥ 0,∀m ∈ [[1, ..., T ]]. (6.14)

Here, Xm is a slice of the patch tensor for the mth element of the mask of the neigh-

borhoods. It is actually the original HSI X, except that it has been shifted vertically and

horizontally along the neighborhood: Xm = [x1+dmx2+dm , ...,xN+dm ], where dm is a spatial

displacement from the center of the neighborhood mask to its mth element. This equivalent

construction is shown in the right of Fig. 6.6.

In order to justify that this approach is better suited to CP decomposition than directly

using the HSI cube, we show in Fig. 6.7 the MSE on the CP decomposition of the HSI

represented as the conventional data cube (red) and the patch tensor (blue), as a function

of the rank for the decomposition for a subset of the well known Pavia university dataset.

This HSI was collected by the ROSIS-03 sensor over the facilities of the University of Pavia

in Italy. After discarding pixels with no information and noisy spectral bands, the image has

a spatial size of 610 × 340 pixels with a spatial resolution of 1.3 m, and 93 spectral bands

in the 430-860 nm range. The subset is a 200 × 200 pixels size crop of the bottom left part

of the original image. Fig. 6.7 shows a false color representation of the subset. The scene

shows an urban area, comprising a parking lot, buildings, roads and other typical man-made

constructions, together with trees, green areas and bare soil.
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Figure 6.7: RGB representation of the chosen subset of the Pavia University dataset (a).

MSE of the CP decomposition of the subset of the Pavia dataset as a function of the chosen

rank (b), when seen as a data cube (red), or represented as a patch tensor (blue).

First we can notice that regardless of the chosen rank, the MSE is lower for the patch

tensor than for the data cube. In addition, the MSE decreases until R = 15 for the patch

tensor, and remains almost constant after that, while it decreases until R = 40 for the data

cube, suggesting that the data cube is not a low rank tensor, whereas the patch tensor has a

lower rank, making it much more suited to CP decomposition.

As an illustration of the connection between the ELMM and the CP decomposition (using

unit weights and 5×5 patches), we show some results on a toy example, in which 3 endmember

spectra were randomly drawn from the USGS spectral library. The abundance maps are

synthesized with Gaussian Random Fields, and a simple spectral variability map is made

using 2D Gaussian patterns, following the ELMM. We show in Fig. 6.8 the abundance maps

estimated by FCLSU and the CP decomposition of the patch tensor, with a rank R = 3.

Since there is a significant amount of spectral variability, FCLSU performs rather poorly in

this situation, since the scaling factors cause confusion between the endmembers. The CP

decomposition of the patch tensor is able to estimate more precise abundance maps, since it

is connected to the ELMM, where the scaling factors act on the neighborhoods of each pixel

(or equivalently, on each of the T shifted images). We can see that the abundance maps are

spatially relatively smooth, in the absence of an explicit spatial regularization. This comes

from Eq. (6.14), which actually promotes the abundances to be similar inside a neighborhood.

Finally, we show in Fig. 6.9, the extracted neighborhood factors for each material. For each

material, the scaling factor patch has a spatial structure which matches a favored direction

of the corresponding actual variability pattern. This structure is very directional for the

non isotropic Gaussians, while it seems more circular for the last one. More precisely, for

each material, the structure of the scaling factor patch reflects the spatial patterns of the

high abundance areas of the image for this material where there are in addition significant

spectral variability effects. We have already seen that SV properties within a pixel can only

be extracted in a dataset for a given material if its abundance contribution is sufficient. The

structure of the patches then has to be put in relation with the true SV patterns used, but

only with (relatively) high abundance areas. For the leftmost material of Figs. 6.8 and 6.9,

the abundance and scaling factors are important only in the area corresponding to the right
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of the SV Gaussian pattern. Then the scaling factor patch has a pattern which matches the

diagonal edge of the Gaussian in that part of the image. For the material in the middle, the

abundance is high for most of the Gaussian pattern, and then the patch is able to recover its

orientation. Finally, for the rightmost material, the abundance is significant for most of the

area covered by the Gaussian, and hence the scaling factor patch picks up the circularity of

the isotropic Gaussian pattern. In the end, the scaling factor patches can be thought of a

dictionary of favored spatial variability patterns for each material.
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Figure 6.8: True and estimated abundance maps using FCLSU and the CP decomposition of

the patch tensor, for the synthetic dataset.

However, since the third modality is not independent from the spatial modality, the patch

tensor comprises some redundant information, which can be the source of identifiability issues

in complex scenarios. A solution to avoid this would be to define a priori reference endmembers

to be the spectral factors (as for the ELMM) in order to avoid confusion between the different

factors of the CP model. The patch tensor approach was successfully applied to synthetic

datasets [156], but these preliminary results remain to be confirmed on more realistic synthetic

 

 

0.8

0.9

1

1.1

1.2

 

 

0.8

0.9

1

1.1

1.2

 

 

0.8

0.9

1

Figure 6.9: Spatial variability patterns (top) for each endmember, used to generate the data.

Corresponding scaling factor patches in the CP decomposition of the patch tensor (bottom).

The range of values is not relevant because of the scaling indeterminacies of the CP model.
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data, as well as on real datasets after this ambiguity issue has been addressed.

6.5 Partial Conclusion

In this Chapter, we have presented two applications of the ELMM. The first one combines

the LSU and ELMM approach in order to interpret the local results of the BPT based-LSU

at the scale of the global image, taking advantage of the local information to extract spectral

variability under the form of the scaling factors of the ELMM. An interesting alternative could

be to directly incorporate the ELMM in the region model, and to define a merging criterion

taking the local scaling factors into account. The second part of the chapter showed how the

CP decomposition of tensors representing multimodal (the additional modality being time,

angle or spatial neighborhood) hyperspectral tensors is actually connected to the ELMM,

a regularized version of which is equivalent to the CP decomposition problem. The patch

tensor approach could be made more robust by using reference endmembers, as was done for

the ELMM. The investigation of the effects of weighting of the spatial neighborhoods, as well

as the validation of the approach on real datasets need to be addressed in the future. Also,

it could be interesting to see if more variability can be explained by increasing the rank of

the decomposition, so as to have more variability patches, even though it comes with more

spectra for the endmembers, which may require a clustering step to interpret the results, as

in the bundles approach.





Conclusion and Perspectives

In this thesis, we have addressed the problem of spectral unmixing (SU) of hyperspectral

remote sensing images, through the prism of spectral variability (SV). The SU problem has

been extensively studied in the past few decades, going from conventional linear SU to more

complex nonlinear models. However, the fact that any endmember always exhibits significant

SV, although long known, has only begun to be addressed explicitly by the community in the

unmixing problem. We have reviewed in Part I the main methods and techniques for linear

SU (Chapter 1) and the existing methods prior to this work which address SV (Chapter 2).

Then we have detailed our contributions on this topic in two parts, each exploring a different

aspect of the problem. We summarize them here and lay out some research perspectives for

this thesis (in italic).

Part II described how sparsity could be of use for the SV problem in the context of the

Linear Mixing Model (LMM). First, we have evidenced some limitations of Local Spectral

Unmixing (LSU). The first of these, addressed in detail in Chapter 3, is related to the

problem of estimating the intrinsic dimensionality (ID) (which is linked to the number of

endmembers to consider) in local regions of the image, showing that this estimation could

be highly impacted by the number of observations and spectral bands in each region, as well

as the number of bands, and the noise estimation technique used. The results of this study

have been applied in order to improve local ID estimation in LSU. However, the number of

endmembers to consider is still often overestimated in many cases.

To alleviate this issue, which impedes the interpretation of LSU results in each region,

we have proposed, in the first part of Chapter 4, a new algorithm based on collaborative

sparsity to eliminate the wrongly estimated endmembers in each region, and we have shown

on a real dataset that it allows to eliminate the redundant information in each region, making

the results much easier to interpret at the region scale. The remainder of this chapter dealt

with the SV problem using spectral bundles, and more precisely on how we could use different

forms of sparsity to estimate the abundances, while taking into account the group structure

of the bundles. We have tested three variants to do this, a group penalty, favoring a sparse

number of materials to be active in each pixel, an elitist penalty, which favors within-group

sparsity, and a nonconvex fractional one, which combines the effects of the latter two in a

single term, while being compatible with the ASC. The group and elitist penalties are known

in the literature, but to the best of our knowledge, this is the first time a mixed L1,q fractional

norm is used for group sparsity. It is also the first time that the group structure of the bundles

is explicitly taken into account in the abundance estimation problem. We have shown on real

and synthetic datasets that the proposed penalties (except the elitist one on real data) were

able to improve the unmixing performance with respect to using FCLSU on the extracted

bundle, with the best results occurring for the group and fractional penalties.

The new region model we proposed for the LSU using collaborative sparsity, based on

obtaining a regularization path for the collaborative unmixing problem in each region, and the
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selection the optimal model based on the BIC, could be easily adapted to a whole HSI to design a

completely unsupervised and deterministic linear SU algorithm. The same approach can indeed

be applied to the joint endmember extraction and abundance estimation problem alluded to in

section 1.5.3, where the image data forms a self-dictionary of endmembers (using the pixel

purity assumption). The resulting algorithm would be able to jointly estimate the appropriate

number of endmembers to use, the corresponding endmember signatures, and their fractional

abundances, in a non-stochastic way, and without any parameter to tune. Depending on the

value of the regularization parameter, SV could even be included by voluntarily allowing more

atoms of the dictionary to be active, and clustering these active atoms into bundles.

Perspectives for the sparse unmixing on bundles include a theoretical proof of the conver-

gence of the Alternating Direction Method of Multipliers (ADMM) in the nonconvex fractional

case, the use of spatial information (under the form of a well chosen TV-like penalty) to be

able to sparsify the abundance maps while preventing the abundance maps to become noisy.

Obtaining the regularization paths for the optimization problems we solve could also be useful

to avoid having to tune the regularization parameters. Finally, using better ways to extract

the spectral bundles could also improve the performance of this type of approaches. For in-

stance, clustering the optimal partition of the LSU approach could be a way to define spectral

bundles which take into account spatial information. This would also allow to interpret the

LSU results at a global scale (in an alternative to the approach of section 6.3).

Part III explored a different avenue to handle SV in the SU problem, by introducing in

Chapter 5 an explicit mixing model taking variability into account. In order to account for

the variability induced by illumination changes and uneven topography in the observed scene,

we designed an Extended Linear Mixing Model (ELMM), which introduced pixel and material

dependent scaling factors to modify locally the endmembers. This model, generalizing the

LMM, is both geometrically and physically interpretable, since it can be derived by making

simplifying physical assumptions in the Hapke model, used in the physics and planetary

science communities to express reflectance as a function of albedo, the geometric parameters

of the scene, as well as the photometric parameters of the materials. We included spatial

regularizations on the abundances and scaling factors to be able to better estimate SV in

the scene, and designed two algorithms to solve the resulting optimization problem. We

have shown on two synthetic datasets, including one simulated using the Hapke model that

the proposed method obtains state-of-the-art unmixing performance. We also show on real

datasets how both the abundance and scaling factor maps are easily interpretable and help

refining SU results.

We also presented two applications of the ELMM in Chapter 6. The first is a technique

which allows to combine all the local information obtained in a LSU approach into global

results, extracting global abundances and at the same time explain the local results in terms of

SV using the scaling factors advocated by the ELMM. We showed on a real dataset the interest

of this approach, compared to conventional SU. The second application is the nonnegative

tensor Canonical Polyadic (CP) decomposition of hyperspectral data, which can be shown to

be equivalent to solving a blind regularized version of the ELMM, in which the scaling factors

explain the variability on the third modality (time, angle, or neighborhood), and can in any
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case be physically interpreted.

The ELMM could be combined to nonlinear mixing models of the literature in order to

allow the joint extraction of information related to both phenomena. Current nonlinear models

can indeed interpret SV as nonlinearities, while the contrary could happen for SV accounting

mixing models. The ELMM could be further refined by trying to approximate radiative transfer

models such as the Hapke model in a more complex, but still tractable way. Taking advantage

of a Digital Terrain Model (DTM) (for example coming from LiDAR) data could help obtain

the acquisition angles of in each pixel, which could be fed to a more complex mixing model

to estimate other SV related parameters, such as photometry related ones. These angles

could also help finding which areas of the imaged scene are in shadow, which can be of use to

perform model selection based on this information (areas in shadow are likely to be nonlinearly

mixed). Taking example on the ELMM, new more material specific variability models could

be designed from physical reflectance models in the literature, in order to estimate precisely

physical parameters which influence the spectral signature of said materials.

The ELMM could also be directly integrated to the LSU framework, in order to design

region models and merging criteria accounting for SV. This could allow to isolate nonlinear

effects in local regions in a more precise way, since the contribution of SV would be directly

accounted for in the region model. Finally, although the preliminary results of the patch

tensor approach are promising, more work is required to make it more robust. Using reference

endmembers, as in the ELMM could be a lead in this direction. Also, the effects of the spatial

regularization using a weighting strategy on the neighborhood is also an interesting research

perspective.
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Appendix A

Convex Optimization Tools

This appendix briefly introduces most of the convex optimization algorithms and notions used

in the manuscript. The notations for the variables used here can be unrelated to those of the

rest of the manuscript. The material presented here is discussed in greater details in [42, 22,

44, 14, 12]. At some points of this appendix, we derive fixed point equations for the solutions of

certain optimization problems, to motivate the introduction of iterative algorithms. However,

note that the derivations of the fixed point equations do not suffice to prove the convergence

of these algorithms (which can be found elsewhere anyway), since we would still have to

prove some additional properties (i.e. the nonexpansiveness and α-averagedness [12] of the

operators which are iterated).

A.1 Useful notions in convex optimization

A.1.1 Proximal operators

Let f : Rn → R ∪ {+∞} be an extended real-valued lower semicontinuous convex function

(denoted by f ∈ Γ0(Rn)) . For any x ∈ Rn, the minimization problem:

argmin
y∈Rn

f(y) +
1

2
||x− y||22 (A.1)

has a unique solution denoted as proxf (x). Using this, we can define the operator proxf :

Rn → Rn.

We can interpret this operator using the following example: if f = IC , where IC is the

indicator function of a convex set C, defined as:

IC(x) =

{
0 if x ∈ C
+∞ otherwise

. (A.2)

The projection of x ∈ Rn is the point in C closest to x, i.e. the point projC(x) solution

of:

argmin
y∈Rn

IC(y) +
1

2
||x− y||22 , proxIC (x). (A.3)

Then proxf can then be seen as a generalization of a projection: we want to find a point

close to x which also leads to a small value of f(x). For a nondifferentiable function f , if this
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operator can be efficiently computed (we will say that f is “proximable” in such a case), then

it provides a way to “project” a point onto a domain where the nondifferentiable function has

a small value. This allows to design algorithms to optimize this type of functions, for which

the gradient is not defined, and for which alternatives (e.g. a subgradient descent) are very

slow.

It is usually even harder to deal with objective functions with several nondifferentiable

terms. The reason for this is that even though proxτf is very easy to compute from proxf ,

in general proxf+g is not.

Here are some classical examples of proximal operators:

• indicator function: proxIC (x) = projC(x) (e.g. positive orthant: proxIRn+
(x) = x+)

• L1 norm: proxτ ||·||1(x) = softτ (x) and softτ (x)i = sign(xi)(|xi| − τ)+

• L2 norm: proxτ ||·||2(x) = softτ (x) =
(

1− τ
||x||2

)
+

x

• L∞ norm: proxτ ||·||∞(x) = x− τ proj(||·||1≤τ)(x)

A.1.2 Convex conjugate

Another useful notion for proximal algorithms and convex optimization in general is the

convex conjugate of a lower semi-continuous function f (but not necessarily convex), defined

by:

f∗ : Rn → R ∪ {+∞}
u 7→ sup

x∈Rn
(x>u− f(x)). (A.4)

Geometrically, for a vector u ∈ Rn, f∗(u) is the maximum gap between the linear function

x>u and f [23]. f∗ is convex, even when f is not. In addition, if f is differentiable, then

the conjugate is a point u∗ where ∇f (u∗) = u (for a convex function, this property is even

a characterization of the conjugate, that is there is a unique point verifying this gradient

property).

For proximal operators, the convex conjugate of a function f ∈ Γ0(Rn) can intervene

through the Moreau decomposition property [119]:

∀x ∈ Rn, ∀τ > 0,x = proxτf (x) + τ proxτf∗
(x

τ

)
. (A.5)

This allows to compute easily the proximal operator of the conjugate of a function whose

proximal operator is known. This is especially useful for Lp norms (p ≥ 1), since the convex

conjugate of || · ||p is the indicator function of the unit ball of the so-called dual norm || · ||∗p ,
|| · ||q, where q verifies 1

p + 1
q = 1. From this property, we can deduce:
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∀x ∈ Rn, prox(τ || · ||p)(x) = x− τ proj||·||q<τ (x). (A.6)

In particular, the proximal operators of the L1, L2, L∞ norms defined above can be

deduced from this property.

A.1.3 Subdifferential

We define the subdifferential ∂f of f ∈ Γ0(Rn) as the set valued operator:

∂f : Rn → P(Rn)

x 7→ {u ∈ Rn\∀y ∈ Rn, (y − x)>u + f(x) ≤ f(y)}. (A.7)

At a point x where f is differentiable, the subdifferential is a singleton, and in addition

∂f(x) = {∇f (x)}. Otherwise ∂f(x) is set valued, and its elements are called subgradients of

at x. Geometrically, the subdifferential at a point is the set of slopes of the affine functions

which are always below f , and coincide with f at this point. The subdifferential can then be

seen as a generalization of the gradient field for nondifferentiable convex functions. Its main

interest is to allow the derivations of first order optimality conditions even for nondifferentiable

functions. Indeed, x is a minimizer of for f ∈ Γ0(Rn) if and only if 0 ∈ ∂f(x). This generalizes

the usual first order optimality condition for differentiable functions.

The subdifferential allows to derive the important consequence of definition (A.1):

∀(x,y) ∈ Rn × Rn,p = proxf (x)⇔ x− p ∈ ∂f(p). (A.8)

This property allows in particular to prove the Moreau decomposition property (A.5).

A.1.4 Lipschitz continuity

A function f : Rn 7→ R is said to be β-Lipschitz continuous if and only if:

∀(x,y) ∈ Rn × Rn, ||∇f2(x)−∇f2(y)||2 ≤ β||x− y||2. (A.9)

Lipschitz continuity is a stronger property than usual continuity since a Lipschitz continuous

function is in particular (uniformly) continuous. For example, any norm is 1-Lipschitz because

of the triangle inequality. Lipschitz continuity is useful to derive bounds for gradient descent

steps, or to compute linear operator norms.
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A.2 Proximal gradient algorithm

A.2.1 Algorithm

Now suppose we want to solve the following problem, with f1 and f2 ∈ Γ0(Rn) :

argmin
x∈Rn

f1(x) + f2(x). (A.10)

We assume that f2 is differentiable and that its gradient ∇f2 is β-Lipschitz continuous (with

β ∈]0,+∞[). However, we do not make any assumptions on the differentiability of f1, which

precludes the use of the simple gradient descent in general. It can be shown that prob-

lem (A.10) has at least one solution and for any γ ∈]0,+∞[, the solutions verify the fixed

point equation:

x = proxγf1
(x− γ∇f2(x)). (A.11)

Proof:

x is a minimizer of Eq. (A.11)

⇔ 0 ∈ ∂(f1 + f2)(x) (first order optimality condition)

⇔ 0 ∈ ∂f1(x) + ∂f2(x) (sum)

⇔ 0 ∈ ∂f1 + {∇f2(x)} (f2 is differentiable)

⇔ −∇f2(x) ∈ ∂f1(x)

⇔ −γ∇f2(x) ∈ ∂γf1(x) (nonnegative scaling)

⇔ (x− γ∇f2(x))− x ∈ ∂γf1(x)

⇔ x = proxγf1
(x− γ∇f2(x)) (using Eq. (A.8))

⇔ x is a fixed point of the operator proxγf1
(· − γ∇f2(·)) �

Hence we can find the solutions numerically by iterating the proximal gradient (a.k.a.

forward backward) update, with γk ≤ 1
β :

xk+1 = proxγkf1
(xk − γk∇f2(xk)). (A.12)

In some cases, the proximal gradient reduces to simple well known algorithms:

• if f1 ≡ 0, Eq. (A.12) reduces to the gradient descent:

xk+1 = xk − γk∇f2(xk). (A.13)

• if f2 ≡ 0, Eq. (A.12) reduces to the proximal point algorithm to minimize a nondiffer-

entiable function:

xk+1 = proxγkf1
(xk). (A.14)
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• if f1 = IC , where C is a convex set, Eq. (A.12) reduces to the projected gradient method:

xk+1 = projC(x
k − γk∇f2(xk)). (A.15)

• if f1 = || · ||1, Eq. (A.12) reduces to:

xk+1 = softγk(xk − γk∇f2(xk)). (A.16)

A.2.2 Convergence acceleration

If the objective function is separable (or nearly separable), splitting the variable x it into

blocks can help to obtain optimal Lipschitz constants in each block xi. This technique is very

convenient in Coordinate Descent (CD) schemes since it allows to adjust the gradient steps

to optimal values (because they are bounded by the inverses of the Lipschitz constants) [126].

For the proximal gradient algorithm, it is in addition possible to use extrapolation tech-

niques to get a better convergence rate, e.g. using the Fast Iterative Shrinkage Thresholding

Algorithm (FISTA) [14]:

xk+1
i = proxγkg(x̂

k
i − γk∇f(xk6=i, x̂

k
i )), (A.17)

with x̂ki = xki +ωk(x
k
i −xk−1

i ) and the ωk ≥ 0 define a sequence of carefully chosen decreasing

weights [14, 168].

For a simple gradient descent with a smooth (strongly) convex objective, this technique

allows to go from a complexity of O
(
Qlog

(
1
ε

))
iterations to O

(√
Qlog

(
1
ε

))
iterations to reach

a precision of ε [125]. Q = β
α is a condition number for f , where α is a parameter related to

the strong convexity of f . The “nicer” the function (strongly convex with a large parameter

α, and of Lipschitz continuous gradient with a low Lipschitz constant β), the lower Q is: so

the “harder” the problem, the more efficient the convergence acceleration is. For the more

general problem, this accelerated scheme improves the convergence rate in a similar way, since

the convergence rate is O
(

1
k2

)
after k iterations, vs. O

(
1
k

)
for the standard algorithm [14].

A.3 Alternating Direction Method of Multipliers

A.3.1 One nondifferentiable term

Now suppose we want to solve the more complex problem (H ∈ Rm×n is the matrix of a linear

operator H : Rn → Rm, and neither f nor g are assumed to be differentiable):

argmin
x∈Rn

f(x) + g(Hx). (A.18)
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As an illustration, H can be a difference operator and can g be the L1 norm so that g(Hx)

is a Total Variation term, and the problem becomes a TV denoising problem. The proximal

gradient algorithm can still be used here (if f is smooth), but the most popular algorithm to

solve this, the Alternating Direction Method of Multipliers (ADMM) [22], rewrites (A.18) as

an equivalent problem:

argmin
x∈Rn,y∈Rm
s.t. Hx=y

f(x) + g(y). (A.19)

The ADMM writes an augmented Lagrangian (AL) for the problem of Eq. (A.19) :

L(x,y, z) = f(x) + g(y) +
1

τ
z>(Hx− y) +

1

2τ
||Hx− y||22, (A.20)

and then alternatively minimizes it w.r.t. x and y, and finally updates the dual variable (which

is nothing more than a set of Lagrange multipliers) z by a proximal maximization step (dual

update). Indeed ADMM solves the Lagrange dual problem to (A.19): max
z

(
inf
x,y
L(x,y, z)

)
.

It is easy to verify that the alternative minimization problems lead to the following updates

for a given iteration:

xk+1 = proxH
τf (yk − zk)

yk+1 = proxτg(Hxk+1 + zk)

zk+1 = zk + Hxk+1 − yk+1, (A.21)

where proxH
τf : Rm → Rn is defined as proxH

τf (s) = argmin
x∈Rn

f(x) + 1
2τ ||Hx− s||22.

For example, if f is a classical least squares data fit f(x) = 1
2 ||u − x||22, then proxH

τf (s) =

(In + 1
τH>H)−1(u + 1

τH>s). Finally, we mention that ADMM is often used in slightly

different form [22], which has the advantage of combining the linear and quadratic terms in

the augmented Lagrangian. It is easy to see that by letting ρ = 1
τ , minimizing Eq. (A.20) is

is the same as minimizing:

L(x,y, z) = f(x) + g(y) +
ρ

2
||Hx− y − z||22 −

ρ

2
||z||22, (A.22)

where ρ is the so called barrier parameter of the AL. This is the form which we use throughout

the thesis. It may happen that we do not write explicitly the last term of Eq. (A.22) in the

AL for brevity and simplicity. Indeed, this term is related to the dual update, which is always

straightforward (the update is shown in Eq. (A.21)).

A.3.2 Several nondifferentiable terms

Now suppose we deal with a problem of the form:

argmin
x∈Rn

f1(x) + f2(x) + · · ·+ fp(x). (A.23)
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ADMM can be extended to multiple terms by writing problem (A.23) in an equivalent form

using a technique called variable splitting:

argmin
u,v

s.t. Σu=v

f(u) + g(v), (A.24)

with

u = x,v =


x1

x2
...

xp

 ,Σ =


In
In
...

In

 , f ≡ 0, g(v) = f1(x1) + f2(x2) + · · ·+ fm(xp). (A.25)

Then the augmented Lagrangian is now separable and can be iteratively minimized w.r.t.

u (only smooth terms), and then w.r.t. each xi (without forgetting the dual update). Linear

operators can even be included (this will only change Σ and the dimensions of the xi),

provided they are easily invertible. For example, if for i = 1, ..., p, we have the constraint

Hix = xi, then an ADMM iteration writes:

xk+1 = prox
H1,...,Hp

τf (vk − zk)

vk+1
1 = proxτf1

(H1x
k+1 + zk1)

· · ·
vk+1
p = proxτfm(Hpx

k+1 + zkp)

zk+1 = zk + Σuk+1 − vk+1, (A.26)

where prox
H1,...,Hp

τf : RM → Rn is defined as prox
H1,...,Hp

τf (s) = argmin
x∈Rn

f(x) + 1
2τ ||H1x −

s1||22 + ...+ 1
2τ ||Hpx− sp||22, M being the dimension of v.

Depending on the problem, it can be interesting to put in the function f all the “easy” dif-

ferentiable parts of the objective function (typically the data fit term), so long as prox
H1,...,Hp

τf

can be computed with little effort.

A.4 A primal-dual algorithm

ADMM is theoretically very powerful: an arbitrary number of “proximable” terms can be

included, and constraints and linear operators can be included in the problem. However

complexity increases a lot with each term, and the constraint Σu = v is only asymptotically

enforced. Let us consider a “simpler” problem involving two potentially nonsmooth terms

and a linear operator H:

argmin
x∈Rn

f(x) + g(x) + h(Hx), (A.27)

where f is smooth (with β-Lipschitz gradient), and g and h are proximable. For this prob-

lem there exists a nice alternative to the ADMM combined with variable splitting, which is

introduced in [44].
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The optimality condition for problem (A.27) writes (H∗ is the adjoint operator of H,

whose matrix for the canonical bases is H>) [126]:

0 ∈ (∇f + ∂g +H∗ ◦ ∂h ◦ H)(x). (A.28)

The Fenchel-Rockafellar duality theorem [84] states that x is a solution of (A.27), if and

only if there exists a solution to a Fenchel dual problem denoted as s ∈ Rm:

min
x∈Rn

f(x) + g(x) + h(Hx) = − min
s∈Rm

(f + g)∗(−H>s) + h∗(s). (A.29)

In addition, such a primal-dual solution tuple (x, s) verifies Hx ∈ ∂h∗(s), and s ∈
∂h(Hx) [126]. If x and s are solutions of the primal and dual problem, respectively, we

have, for any η and γ ∈]0,+∞[:

(A.28)⇔ 0 ∈ {η(∇f(x) + H>s)}+ ∂ηg(x) (substituting ∂h(Hx) by s in (A.28) )

⇔ −η(∇f(x) + H>s) ∈ ∂ηg(x)

⇔ (x− η(∇f(x) + H>s))− x ∈ ∂ηg(x)

⇔ x = proxηg(x− η(∇f(x) + H>s)) (using Eq. (A.8)),

and similarly:

Hx ∈ ∂h∗(s)⇔ γHx ∈ ∂γh∗(s)

⇔ (s + γHx)− s ∈ ∂γh∗(s)

⇔ s = proxγh∗(s + γHx) (using Eq. (A.8)).

We have two fixed point equations, one for the primal variable and one for the dual variable:

x = proxηg(x− η(∇f(x) + H>s))

s = proxγh∗(s + γHx), (A.30)

which allow us to iterate the following updates, with appropriate choices of η and γ to

guarantee convergence [44]:

xk+1 = proxηg(x
k − η(∇f(xk) + H>sk))

sk+1 = proxγh∗(s
k + γH(2xk+1 − xk)). (A.31)

The condition on the step sizes γ and η to guarantee convergence is 1
η − γ|||H|||

2 ≥ β
2 , where

|||H||| is the operator norm of H. More details can also be found in [126].

This has several advantages over ADMM for this specific problem: there is no variable

splitting, there is no costly update involving the inversion of a matrix of the form τIn+H>H,

we only need to compute the operator and its adjoint, and finally, the constraints (encoded

in either g of h if they are indicator functions) are exactly enforced at each iteration if the

computation of the proximal operators is exact.



Appendix B

Linear Gradient Operators and

Total Variation

This appendix provides some complements on gradient operators for gray level images and

on Total Variation (TV) for edge preserving spatial regularization.

B.1 First order gradient operators

For images, we can define horizontal and gradient operators, based on finite difference dis-

cretizations of the partial derivatives of an image I, seen as a continuous function:

I : Ω→ R
(x, y) 7→ f(x, y), (B.1)

where Ω is an open bounded set of R2. In our case, we use first order partial derivatives,

which we describe as the most simple forward finite difference operators:

∂I
∂x
≈ I(x, y)− I(x+ h, y) and

∂I
∂y
≈ I(x, y)− I(x, y + h), (B.2)

for a small value of h. For a discretized image I, this simply becomes:

∀x,∇I,h(x) = i(x, y)− i(x+ 1, y) and ∀y,∇I,h(y) = i(x, y)− i(x, y + 1). (B.3)

Since we are dealing with images with a finite support, assumptions have to be made

about boundary conditions. Here, we will assume periodic boundaries for reasons which will

become clear later.

For a vectorized m by n gray level image, denoted as u = vec(I) (bear in mind that we

defined the vectorization operator as stacking the columns of a matrix into a column vector),

with I ∈ Rm×n, we define the linear operator Hh : RN → RN , such that each entry of Hh(u)

is the horizontal first order finite difference of Eq. (B.3) for the corresponding entry of the

input vector u. The vertical gradient operator Hv is defined in a similar way. Finally we

define a global gradient operator:

H : RN → RN×2

u 7→
[
Hh(u),Hv(u)

]
. (B.4)

177
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We can use the same notations to denote gradient operators acting in the same way on each

band of multivariate images. These operators transform matrices into matrices; for example

we can define Hh : RP×N → RP×N , which applies the horizontal gradient independently on

each row of an abundance matrix.

For now, let us suppose the operators act on gray-level images. Since the horizontal

gradient are linear operators, they can be defined by their matrices Hh and Hv ∈ RN×N in

the canonical basis of RN :

Hh =



Im −Im 0 · · · · · · 0

0 Im −Im
...

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 Im −Im
−Im 0 · · · · · · 0 Im




n blocks , (B.5)

and, defining a matrix Jn ∈ Rn×n as

Jn =



1 −1 0 · · · · · · 0

0 1 −1
...

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 1 −1

−1 0 · · · · · · 0 1


, (B.6)

we have:

Hv =


Jn 0 · · · 0

0 Jn
...

...
. . . 0

0 · · · 0 Jn



m blocks . (B.7)

These two matrices have numerous interesting properties. First we can notice that the

matrices of the horizontal and vertical operators are “dual” to each other. As a matter of

fact, Hh is a block circulant matrix made of identity blocks, possibly with a minus sign (hence

it is a circulant matrix as well), and Hv is a block diagonal matrix made of circulant blocks

containing only 1 or -1 (it is then also a circulant matrix as a whole). The circulant property

is only possible with a periodic boundary assumption.

In practice, in an optimization algorithm, we will have not only to compute the gradients

Hhu and Hvu, but we will also have to deal with the transposed matrices H>h and H>v
(corresponding to the adjoint operators), and it is possible that we have to invert the matrices

H>hHh and H>v Hv to solve linear systems. If the computations of the gradients and their

transposed versions are easy to vectorize, inverting N × N matrices can conversely become

intractable for large images.
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Fortunately, since the matrices are circulant, the linear operators are actually circular con-

volutions. Indeed, computing the gradients amounts to compute the 2D circular convolutions

Kh ? I and Kv ? I, where Kh and Kv ∈ Rm×n

Kh =


0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

−1 0 · · · 0 1

 , Kv =


0 0 · · · −1

0 0 · · · 0
...

...
...

0 0 · · · 0

0 0 · · · 1

 . (B.8)

Then, these convolutions can be easily performed in the Fourier domain, where they

become pointwise multiplications between the 2D Fourier transforms (denoted by F(·)) of

each operand. For instance:

Hh(u) = Hhu ≡ Kh ? I = F−1(F(Kh)�F(I)). (B.9)

Here Hhu ≡ Kh ? I means that Hhu = vec(Kh ? I) (equality up to the vectorization of

the result). Similarly, computing the adjoint becomes very simple as well:

H∗h(u) = H>h u ≡ F−1(F(Kh)∗ �F(I)), (B.10)

where ∗ is the complex conjugate. Finally, inverting the operator H∗h ◦ Hh can be done with

the following operation which is much less expensive than a matrix inversion, especially using

a Fast Fourier Transform (FFT):

(H∗h ◦ Hh)−1(u) = (H>hHh)−1u ≡ F−1(F(I)� |F(Kh)|2), (B.11)

where | · | is the complex modulus.

B.1.1 Operator Norms

Let K : Rp → Rq (where Rp are Rq are endowed with their usual Euclidean norms) be a linear

operator. In finite dimension, K is (uniformly) continuous and

∃M ∈ R, ∀x ∈ Rp, ||K(x)||2 ≤M ||x||2. (B.12)

The smallest M verifying this relationship is the operator norm |||K||| of K. Note that M

is also the “best” Lipschitz constant of K. Instead of using the linear map K, we can use its

matrix K ∈ Rq×p. An equivalent definition of |||K||| is:

|||K||| = |||K||| = sup
||x||2=1

||Kx||2
||x||2

. (B.13)
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When Euclidean norms are used in both the domain and co-domain of K, as in this case,

then it can be shown that

|||K||| =
√
ρ(K>K), (B.14)

where ρ(K>K) is the spectral radius of K>K, i.e. the maximum eigenvalue of K>K (this

matrix is symmetric, and can then be diagonalized in an orthonormal basis). The proof is

based on the definition of the adjoint, using the inner product (hence the need of an Euclidean

norm), and the decomposition of vectors in Rn in an orthonormal basis of eigenvectors of K>K

to bound the operator norm by the spectral radius from above. The norm is then bounded

from below using the image by K of the eigenvector associated to the spectral radius, giving

equality.

In practice, the computation of |||K||| can be cumbersome for large matrices, unless they

are sparse and can be efficiently stored in the memory of a computer. Otherwise, techniques

such as power methods or Rayleigh quotients, which do not require the storage of the matrices

but only a way to compute Kx for any x can be used to compute the spectral radius in a

reasonable amount of time.

Finally, in the case of the gradient operator H, it turns out that |||H||| = |||Hh||| = |||Hv|||
(although the symbol used is the same, the norm on the left hand side is not the same as the

other two since the co-domains of the operators are different).

B.2 Total Variation

Most of the notions presented in this section can be found in [35]. At first, we will deal

with continuous images, represented as functions. For instance, a gray level image u will be

described as a locally integrable function: u : Ω → R where Ω is an open (bounded) set of

R2. In this context, the usual denoising problem aims at recovering a denoised image u from

noisy observations, possibly with an additional degradation coming from a linear operator

g = Au+n. Since trying to recover u by a simple least squares fit is a very ill-posed problem,

suitable regularizations are necessary. Natural images often exhibit smooth transitions, hence

(for Gaussian noise) it can make sense to look for a differentiable function u with smooth

spatial variations and to try to minimize a Tikhonov-like functional:∫
Ω

(Au(x)− g(x))2dx + λ

∫
Ω
||∇u(x)||22dx, (B.15)

where the gradient value ∇u(x) is a two dimensional vector. However, in addition to the

fact that this is only defined for differentiable functions, the squared gradient in the objective

penalizes large gradient values very strongly. For instance, step edges (informally functions

with “infinite” derivatives on a zero-measure set) commonly found in natural images, are

banned with this Tikhonov penalty.

Consequently, other more suited penalizations have to be found in order to enforce smooth-

ness in homogeneous regions of the image, while simultaneously preserving sharp edges. This
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is the rationale of the Total Variation [136], which can be defined for any locally integrable

function u (but not necessarily differentiable) as:

TV (u) = sup
φ∈C1

c (Ω,R2)

{
−
∫

Ω
u(x)div(φ)(x)dx, ||φ||∞ ≤ 1

}
, (B.16)

where C1
c (Ω,R) is the set of continuously differentiable functions, div is the divergence oper-

ator, and || · ||∞ is the uniform norm. Note that the TV is defined even for nondifferentiable

functions since smoothness is only required for φ. A function u is said to have bounded

variation when TV (u) ≤ ∞. This definition could be easily extended to N -D images [35]

and multivariate ones [67], in which case it can be interesting to introduce a coupling of the

channels, e.g. for color images.

When u is smooth, we can compute an explicit value for the TV. Indeed, in that case,

since minus the divergence is the adjoint operator of the gradient, we have:

〈u,−div(φ)〉 = 〈∇u, φ〉, (B.17)

where 〈·, ·〉 is, is on the left hand side, the inner product in C1
c (Ω,R) defined by: 〈u, v〉 =∫

Ω u(x)v(x)dx, and on the right hand side, the inner product in C1
c (Ω,R2) defined by: 〈φ, ψ〉 =∫

Ω φ(x) · ψ(x)dx, where · is the canonical dot product in R2. Using Eq. (B.17):

TV (u) = sup
φ∈C1

c (Ω,R2)

{∫
Ω
∇u(x) · φ(x)dx, ||φ||∞ ≤ 1

}
. (B.18)

Besides:∫
Ω
∇u(x) · φ(x)dx ≤

∣∣∣∣∫
Ω
∇u(x) · φ(x)dx

∣∣∣∣ ≤ ∫
Ω
||∇u(x)||2||φ(x)||2dx ≤

∫
Ω
||∇u(x)||2dx,

(B.19)

since ∀x, ||φ(x)||2 ≤ 1 . We have shown that TV (u) is bounded from above by the

integral of the L2 norm of the gradient. This value is attained by the function φ defined by

φ(x) = ∇u(x)
||∇u(x)||2 , showing that

TV (u) =

∫
Ω
||∇u(x)||2dx. (B.20)

The TV functional has nice properties: it is convex and lower semi-continuous.

A TV regularization thus consists (for smooth functions) in penalizing the gradient using

its L2 norm, as before, but without the square. This change is precisely what will allow the

TV to preserve edges in images.

The TV is related to summing the local variations of functions over the whole support of

the image. These variations can be discontinuous, contrary to a simple Tikhonov regulariza-

tion. To illustrate this, let us take a 1D step edge function u : [−1, 1]→ R:
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u(x) =

{
0 if x < 0

a if x ≥ 0.
(B.21)

This function is not differentiable, but it has a finite TV (adapting the definition to 1D)

nonetheless. If we take a certain φ ∈ C1
c ([−1, 1],R), then:∫ 1

−1
u(x)φ′(x)dx = a

∫ 1

0
φ′(x)dx = a(φ(1)− φ(0)) ≤ 2|a|, (B.22)

since ||φ||∞ ≤ 1 and φ is integrable on [−1, 1].

This means that edges are penalized by the TV functional in a way proportional to the

height of the edge, but not infinitely so and thus not too important edges will be kept in the

solution of the TV regularized denoising problem.

Now, if we want to come back to usual discrete digital images, we have to discretize the

TV. image u ∈ RN (in a vectorial form), the discrete TV can be defined similarly, except

that the divergence is replaced by the adjoint of the finite difference operator H:

TV (u) = max
S∈RN×2

{
u>H∗(S), ||S||∞ ≤ 1

}
. (B.23)

Then, with S ∈ RN×2 defined by its rows sk = (H(u))k � ||(H(u))k||2, the discrete

equivalent of the TV becomes:

TV (u) =
N∑
k=1

||H(u)k||2 = ||H(u)||2,1 =
N∑
k=1

√
Hh(u)2

k +Hv(u)2
k. (B.24)

An anisotropic TV also exists, which despite its weaker properties can be easier to handle

in an optimization context:

TVL1(u) =
N∑
k=1

(||(Hhu)k||1 + ||(Hvu)k||1) = ||H(u)||1,1. (B.25)

With this formulation, we can see that the TV, with the L1 norm here (and the nondif-

ferentiable norm in the isotropic case) can have the side effect of making the gradient sparse,

which might be undesirable since it can make the restored image piecewise constant, instead

of piecewise smooth. This is the so called “staircasing” effect of the TV.



Appendix C

Complementary results on local

Intrinsic Dimensionality estimation

This appendix contains complementary results for Chapter 3 of this manuscript. The contents

are organized as follows: section C.1 contains additional results for the competing algorithms

on three datasets comprising colored noise, or noise correlation. We show that while noise

correlation seems to affect the global ID value, the trends between global and local scales

remain the same as with uncorrelated noise. Section C.2 contains results on the synthetic

dataset with white Gaussian noise, but in the case where the noise values are assumed to

be known. We show that knowing the noise beforehand does not change the results much

compared to those where a global noise estimation using the algorithm of [133] is performed,

which shows that the local to global trends are much more a result of the algorithms themselves

rather than of the noise estimation strategy.

C.1 Results on synthetic datasets with colored and correlated

noise

C.1.1 Data generation

Here we explain how the synthetic datasets used were designed. Apart from the noise, the

datasets are the same than in Chapter 3.

We first generated colored Gaussian noise values. Here, by colored we imply Gaussian

noise with a diagonal covariance matrix whose diagonal elements are not the same. This

is the noise model assumed by the noise estimation method we used. In order to make

the simulation a bit more realistic in terms of the choice of the variances, we used as noise

covariance matrix the one obtained by noise estimation using Roger’s method [133] on the

Cuprite dataset (which has the same number of bands as a sublibrary of the used USGS

spectral library). In the end, the simulated datasets are then of dimensions 350× 350× 188.

Since the estimated average SNR of the Cuprite dataset (average of the estimated SNRs in

each band) is 27 dB, the results can be qualitatively compared to the ones of Chapter 3. (30

dB and 120 bands). For information, the estimated band by band SNR is shown in Fig. C.1.

Then, we address the fully correlated noise case. In that case, the diagonal elements of the
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Figure C.1: Estimated SNR for each band of the Cuprite dataset.

noise covariance matrix were chosen in the same way as in the colored case. The off-diagonal

elements were all set so as to obtain a correlation coefficient between any two distinct bands of

0.5, in order to get highly correlated noise values. For these three datasets, we have replaced

the HFC algorithm with its Noise Whitened version, the NWHFC algorithm, since here a

noise whitening should improve the results.

C.1.2 Results

C.1.2.1 Colored noise

A plot of the estimated ID value as a function of the window size in the case of colored

noise, for both local and global noise estimation is shown in Fig. C.2. The quality metric

µi is plotted against the window size i for both local and global noise estimation scenarios

in Fig. C.3. These figures are to be compared with the corresponding figures in the case of

white noise in section 3.5: Figs. 3.5, 3.6, and 3.7.

For local noise estimations, the same trends appear in the plots as for the white noise, with

a window size range with overestimated ID values, especially for local noise estimation, and

a slow stabilization after that. It is worthwhile to note that this is not very surprising since

the noise estimation method used for the concerned algorithms assumes a diagonal covariance

matrix for the noise with different variances in each band. For the algorithms requiring it, the

main difference is that colored noise seems to complicate further the noise estimation with

very few samples, resulting in a higher overestimation peak, and therefore a lower value of

the quality metric for small windows. The other algorithms can have a different behavior:

it seems that HFC is sensitive to noise coloration since it systematically provides higher ID

values than in the white noise case. The HIDENN algorithm obtains here better results

than in the white noise case, although the number of bands is more important in the colored

dataset than in the white one. This could be explained by the fact that higher variances in

some bands (which is something which happens in the Cuprite data, as seen in Fig. C.1) will

push apart (in certain directions) pixels which would have been close, had they been noiseless.

This results in a higher Euclidean distance between them than in the noiseless or even white

noise case. This means that for the same ε, there will be fewer selected neighbors, and hence

the correlation integral will be lower, inducing a lower ID. In the end, HIDDEN is a very local

(in the feature space) algorithm, so it is likely to be more affected by structure in the noise.
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Figure C.2: Estimated ID for all algorithms in the case of local (a) and global (b) noise

estimation plotted against window size for all algorithms, for colored noise.
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Figure C.3: Quality metric µi in the case of local (a) and global (b) noise estimation plotted

against window size for all algorithms, for colored noise.

Global noise estimation results are comparable to the ones with white noise, with global ID

values (estimated on the whole image) which tend to be higher than in the white noise case,

a phenomenon already evidenced in [132].

C.1.2.2 Correlated noise

The results for correlated noise are shown in Figs C.4 and C.5. Here the conclusions are

very similar to the previous section, since the diagonal elements of the covariance matrix are

unchanged. Besides, the noise estimation algorithm we used, as well as most of the other

noise estimation algorithms are not suited to fully correlated noise estimation. The trends of

the estimated ID when going from local to global are the same, although a non white noise

can cause a decrease in performance, as shown in [132]. In the end, noise correlation and
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Figure C.4: Estimated ID in the case of local (a) and global (b) noise estimation plotted

against window size for all algorithms, for highly correlated noise.
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Figure C.5: Quality metric µi in the case of local (a) and global (b) noise estimation plotted

against window size for all algorithms, for highly correlated noise.

coloration has more influence on the accuracy of the estimation than it has on the local to

global behavior.

C.2 Results on synthetic datasets with known noise values

In this section, we show (in Figs. C.6 and C.7) the results of the different ID estimation

algorithms for the synthetic dataset with spectrally and spatially white Gaussian noise and

a SNR of 25dB, as well as 120 spectral bands. We assume that, for the algorithms requiring

it, the noise values and statistics are known (or equivalently, the noise estimation is perfect).

Here, we obtain results which are very similar to the white noise case, when the noise is

estimated globally. Of course, the results of HFC, PCA, MMOCA and HIDENN are not
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Figure C.6: Estimated ID in the case of known noise values plotted against window size for

all algorithms, for 25 dB white noise.
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Figure C.7: Quality metric µi in the case of known noise values plotted against window size

for all algorithms, for 25 dB white noise.

affected since they do not require a noise estimation step. These results simply show that

in the global noise estimation case, the chosen noise estimation strategy seems to be reliable

enough and is not affecting the local to global behavior of the different algorithms.





Appendix D

ADMM for the update of A in the

ELMM-ALS algorithm

We describe below the optimization procedure to minimize the AL of Eq. (D.1) over each

variable. The Augmented Lagrangian (in its scaled form [22]) writes:

L(u,µ,v,d) = f(u) + g(v) +
ρ

2
(||Γu + Λv − d||22 − ||d||22)

=
1

2
||x− vec(Σ)||22 + µ>(Ku− 1N ) + λA(||v2||1 + ||v3||1) + IRPN+

(v4)

+
ρ

2
||u− v1 − d1||22 +

ρ

2
||Hhv1 − v2 − d2||22 +

ρ

2
||Hvv1 − v3 − d3||22

+
ρ

2
||u− v4 − d4||22 −

ρ

2
||d||22. (D.1)

D.1 Optimization w.r.t u and µ

This subproblem writes:

arg min
u,µ

N∑
k=1

(1

2
||xk−Skuk||22+µk(u

>
k 1P−1)+

ρ

2
||uk−v1k−d1k||22+

ρ

2
||uk−v4k−d4k||22

)
, (D.2)

and is separable over each pixel. By nulling the gradients of the kth term of Eq. (D.2) w.r.t.

to uk and µk, we get the following system to solve:[
Ωk 1P

1>P 0

] [
uk
µk

]
=

[
δk
1

]
, (D.3)

where

Ωk = S>k Sk + 2ρIP , (D.4)

and

δk = S>k xk + ρ(v1k + d1k + v4k + d4k). (D.5)

Finally, by introducing the scalar quantity sk = 1>PΩ−1
k 1P (which is simply the sum of all

entries in Ω−1
k ), and using the block matrix inversion formula, we get the update rule for uk

and µk: [
uk
µk

]
← 1

sk

[
Ω−1
k (skIP − 1P1>PΩ−1

k ) Ω−1
k 1P

1>PΩ−1
k −1

] [
δk
1

]
. (D.6)
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D.2 Optimization w.r.t. v1

The problem to solve for v1 is:

arg min
v1

ρ

2
||u− v1 − d1||22 +

ρ

2
||Hhv1 − v2 − d2||22 +

ρ

2
||Hvv1 − v3 − d3||22, (D.7)

which is readily solved by

v1 ← (IPN + H>hHh + H>v Hv)
−1
(
u− d1 + H>h (v2 + d2) + H>v (v3 + d3)

)
. (D.8)

However, in practice this requires an inversion of a PN ×PN matrix, which is intractable in

most cases. Fortunately, the matrix IPN + H>hHh + H>v Hv is circulant, and we can use the

computation tricks presented in Appendix B. With this in mind, using the basic properties

of the Fourier transform, we give the update rule for each band p of the image V1 ∈ Rm×n×P :

Vp1 ← F
−1
((
F(Up −Dp1) + F(hh)∗ �F(Vp2 +Dp2) + F(hv)

∗ �F(Vp3 +Dp3)
)

�
(
1m×n + |F(hh)|2 + |F(hv)|2

))
, (D.9)

where F and F−1 are the (discrete) 2D Fourier and inverse Fourier transforms, and hh
and hv are as defined in Appendix B. Each script letter corresponds to the pth band of the

corresponding variable represented as an m× n image. Here ∗ is the complex conjugate and

| · | is the complex modulus.

D.3 Optimization w.r.t. v2

Back to a matrix formulation, the optimization w.r.t. V2 writes:

arg min
V2

λA||V2||1,1 +
ρ

2
||Hh(V1)−V2 −D2||2F . (D.10)

Solving problem (D.10) is equivalent to computing:

prox(λA/ρ)||·||1,1(Hh(V1)−D2), (D.11)

whose solution involves the soft thresholding operator, the proximal operator for the L1 norm:

softλ(s) =

(
1− λ

|s|

)
+

s, (D.12)

with (·)+ = max(·, 0), and softλ(0) = 0 ∀λ. This leads to the update:

V2 ← softλA/ρ(Hh(V1)−D2), (D.13)

where the soft thresholding has to be understood entrywise. The horizontal gradient of V1

is computed in the frequency domain as in the previous section.

Note that in order to replace the anisotropic Total Variation (TV) penalization by a simple

smoothing penalty, using the L2,1 norm instead of the L1,1 norm, one simply has to replace

usual soft thresholding operator by the block soft thresholding, which is the proximal operator

for the L2 norm. Using the isotropic TV operator is also a possibility, which requires some

modifications on the algorithm.
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D.4 Optimization w.r.t. v3

Similarly, for v3 we have to solve:

arg min
V3

λA||V3||1,1 +
ρ

2
||Hv(V1)−V3 −D3||2F . (D.14)

Using the same update rule as before:

V3 ← softλA/ρ(Hv(V1)−D3), (D.15)

D.5 Optimization w.r.t. v4

For v4 the optimization problem is:

arg min
V4

= IRP×N+
(V4) +

ρ

2
||U−V4 −D4||2F , (D.16)

which is simply solved by

V4 ← (U−D4)+. (D.17)

D.6 Dual update

Finally, before going to the next iteration, the Lagrange multipliers have to be updated, giving

the dual update:

d← d− Γu−Λv. (D.18)

Then the algorithm repeats the optimization steps until a termination criterion based on

primal and dual residuals (following closely [22]) is fulfilled, The barrier parameter ρ is also

updated iteratively to speed up the convergence.
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Abstract — The fine spectral resolution of hyperspectral remote sensing images allows an

accurate analysis of the imaged scene, but due to their limited spatial resolution, a pixel

acquired by the sensor is often a mixture of the contributions of several materials. Spectral

unmixing aims at estimating the spectra of the pure materials (called endmembers) in the

scene, and their abundances in each pixel. The endmembers are usually assumed to be

perfectly represented by a single spectrum, which is wrong in practice since each material

exhibits a significant intra-class variability. This thesis aims at designing unmixing algorithms

to better handle this phenomenon. First, we perform the unmixing locally in well chosen

regions of the image where variability effects are less important, and automatically discard

wrongly estimated local endmembers using collaborative sparsity. In another approach, we

refine the abundance estimation of the materials by taking into account the group structure

of an image-derived endmember dictionary. Second, we introduce an extended linear mixing

model, based on physical considerations, modeling spectral variability in the form of scaling

factors, and develop optimization algorithms to estimate its parameters. This model provides

easily interpretable results and outperforms other state-of-the-art approaches. We finally

investigate two applications of this model to confirm its relevance.

Keywords: Hyperspectral remote sensing, spectral unmixing, spectral variability, sparsity,

convex optimization, hierarchical representation.

Résumé — La finesse de la résolution spectrale des images hyperspectrales en télédétection

permet une analyse précise de la scène observée, mais leur résolution spatiale est limitée, et un

pixel acquis par le capteur est souvent un mélange des contributions de différents matériaux.

Le démélange spectral permet d’estimer les spectres des matériaux purs (endmembers) de la

scène, et leurs abondances dans chaque pixel. Les endmembers sont souvent supposés être par-

faitement représentés par un seul spectre, une hypothèse fausse en pratique, chaque matériau

ayant une variabilité intra-classe non négligeable. Le but de cette thèse est de développer des

algorithmes prenant mieux en compte ce phénomène. Nous effectuons le démélange locale-

ment, dans des régions bien choisies de l’image où les effets de la variabilité sont moindres,

en éliminant automatiquement les endmembers non pertinents grâce à de la parcimonie col-

laborative. Dans une autre approche, nous raffinons l’estimation des abondances en utilisant

la structure de groupe d’un dictionnaire d’endmembers extrait depuis les données. Ensuite,

nous proposons un modèle de mélange linéaire étendu, basé sur des considérations physiques,

qui modélise la variabilité spectrale par des facteurs d’échelle, et développons des algorithmes

d’optimisation pour en estimer les paramètres. Ce modèle donne des résultats facilement

interprétables et de meilleures performances que d’autres approches de la littérature. Nous

étudions enfin deux applications de ce modèle pour confirmer sa pertinence.

Mots clés : Télédétection hyperspectrale, démélange spectral, variabilité spectrale, parci-

monie, optimisation convexe, représentation hiérarchique.
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