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1 Introduction

In the competitive world of today, the industries are overwhelmed with the high demand

that the human being himself cannot achieve. It is is apparent that faster, more efficient,

more productive and reliable systems are required. That is one of the reasons why more

efficient robotic systems have to be developed.

Traditional robotic manipulators can be classified into two families: the serial and the pa-

rallel manipulators. Serial manipulators are distinguished by the fact that they have only

one independent kinematic chain between the base and the end-effector of the manipu-

lator whereas the parallel manipulators have more than one kinematic chains connecting

the base and the end-effector.

Parallel manipulators, also known as Parallel Kinematics Machines (PKMs), have attrac-

ted attention for their high speed, better accuracy, low mass/inertia properties and high

structural stiffness. These are attractive features for the innovative machine-tool archi-

tectures; however practical utilization for the potential benefits requires an extensive and

efficient analysis of their structure, kinematics and dynamics.

PKMs design, like any other product design, goes through many phases and requires,

as a prerequisite, a designer’s knowledge as well as years long experience for a design

to be appreciable. A designer is faced with a great amount of variables and parameters,

each one needed to be analyzed carefully. While some are more important than others, to

know how important they are with respect to each other can be an exhaustive task. Still,

there are times when less important variables play the most important role in the failure

of an engineering structure. It is only natural that while dealing with a very complex

design of enormous proportions, it is not possible for a designer to take into account all

the variables simultaneously. An optimization process, however, does not require such an

experience and it is faster than conventional design processes. Design optimization based

on numerical algorithms and techniques can be applied to various engineering systems to

help a designer come out with a proposal that is more efficient, light weight, reliable, safe,

cost effective and that satisfies the user too. This requires not only the final product to
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be optimized but also the optimization of manufacturing process as well as the optimum

use/application of the product.

Conventional design techniques may be used for a trivial design of PKMs with a limited

capability of considering the performance measures and constraints. However, for complex

designs, with a large set of objectives and constraints, these techniques cannot adequately

address the problem. A multiobjective optimization approach, on the other hand, can

be used to identify a set of optimal trade-off solutions (called a Pareto set) between the

conflicting design objectives/constrains, to gain a better understanding of the complexity

of the PKMs design problem. Accordingly, in this thesis, some multiobjective optimization

approaches are proposed for the design optimization of PKMs.

Research Directions and Contributions

The major contributions of this research work are listed as follows.

– A multiobjective optimization approach to determine the optimal design parameters

of a PKM is proposed in order to maximize its regular workspace and minimize

the mass in motion. The performance of the mechanism within the workspace is

guaranteed by constraining the condition number of the kinematic Jacobian matrix

and stiffness characteristics.

– An approach to select proper actuators/motors is presented based on the kinematic

and dynamic analysis of a parallel manipulator. Some test trajectories are proposed

to analyze the mechanism and motors performance.

– A novel concept of single and multiobjective optimum path placement based on the

electric energy consumption, shaking forces and actuators torque is introduced that

deals with optimum use of a pre-designed in-use PKM.

Thesis Organization

This thesis report is composed of four chapters. The first chapter provides a state of the

art of parallel manipulators and design optimizations. The other three chapters address

three separate but inter-linked design optimization issues of PKMs.

The first issue addressed in the second chapter is that of dimensional synthesis of parallel

manipulators. A multiobjective optimization problem is proposed to determine optimum

structural and geometric parameters of parallel manipulators in order to minimize the

mass of the components in motion and to maximize its workspace with desired manipu-

lability and stiffness characteristics. The proposed approach is applied to the optimum

design of a three-degree-of-freedom planar parallel manipulator.

The second topic addressed in the third chapter is the important issue of the actuators

selection based on the dynamic model of the manipulators. The process focuses on the

�
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kinematic and dynamic analysis of the Orthoglide 5-axis, a spatial PKM developed for

high speed operations. The analysis is carried out firstly for the 2-dof spherical wrist

of the Orthoglide 5-axis and then for the 3-dof translational parallel manipulator, the

Orthoglide 3-axis. Some test trajectories are used to analyze the results and finally, a

procedure of motors selection is proposed.

The fourth chapter deals with the optimal use of a PKM. Single and multi-objective

path placement optimization approaches for PKMs are presented based on electric energy

consumption, actuators torques and shaking forces. It proposes a methodology to deter-

mine the optimal location of a given test path within the workspace of a PKM in order

to minimize the electric energy used by the actuators, actuators maximal torques and the

shaking forces subject to the geometric, kinematic and dynamic constraints. The proposed

methodology is applied to the Orthoglide 3-axis, as an illustrative example.

�
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This chapter presents a brief overview of the parallel kinematic machines or parallel robots.

It covers general introduction, some of the design aspects and performance measures of

the parallel manipulators. Some typical parallel architectures are also presented. At the

end, an introduction to the optimization process addressing single and multiobjective

optimizations formulations is presented.

1.1 Introduction

Parallel mechanisms have attracted attention for high speed and accuracy applications due

to their conceptual potentials in high motion dynamics and accuracy combined with low

mass/inertia properties, high structural stiffness (i.e. stiffness-to-mass ratio) due to their

closed kinematic loops (Brog̊ardh, 2007; Weck and Staimer, 2002; Chanal et al., 2006;

Merlet, 2006c). This growing attention is inspired by their essential advantages over serial
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manipulators that have already reached the dynamic performance limits (Pashkevich et al.,

2009b). These features are induced by their specific kinematic structure, which resists

to the error accumulation in kinematic chains and allows convenient actuator location

close to the manipulator base. Besides, the links work in parallel against the external

force/torque, eliminating the cantilever-type loading and increasing the manipulator stiff-

ness (Pashkevich et al., 2009b; Tsai, 1999). Parallel robots are attractive for the innovative

machine-tool architectures (Tlusty et al., 1999; Wenger et al., 1999), but practical utili-

zation for the potential benefits requires development of efficient kinematic and dynamic

analysis, which satisfy the computational speed and accuracy requirements of relevant

design procedures (Pashkevich et al., 2009b).

1.2 Parallel Robots

Traditional robotic manipulators can be classified in two families: the serial and the pa-

rallel manipulators. Serial manipulators are distinguished by the fact that they have only

one independent kinematic chain between the base and the end-effector of the manipu-

lator. These are opened-loop mechanisms, namely, composed of an open kinematic chain

with each intermediate link coupled with two other links by means of two actuated joints.

One end of this chain is fixed to the base while the other end is the end-effector. The

presence of single kinematic chain and the absence of any passive joint make the serial

manipulators simpler to design and to analyze.

Figure 1.1 – Schematic of a serial robot

On the contrary, the parallel manipulators have several legs connecting the base and

the end-effector (EE), also called moving platform (MP). Each leg is a kinematic chain

whose end links are connected to the two platforms, i.e. base and end-effector. Contrary

to serial manipulators, where all joints are actuated, parallel manipulators also contain

passive joints. The inclusion of passive joints causes their analysis more complex than the

�
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Figure 1.2 – Schematic of a Parallel robot

analysis of their serial counterparts. Parallel manipulators are closed-loop mechanisms

presenting very good performance in terms of accuracy, velocity, stiffness and ability to

manipulate large loads. They have already been used for many applications like machi-

ning (Bruzzone et al., 2002), medical robotics (Pisla et al., 2008), space (Rojeski, 1972;

Thompson and Campbell, 1997), astronomy (Su et al., 2003), flight-simulators (Baret,

1978) for the design of earthquake simulators (French et al., 2004).

Serial manipulators are more common in industry due to their simple kinematics and ac-

cessibility of well developed and matured technical design and analysis material. Another

advantage of serial manipulators is the availability of large workspace compared to their

own size. However serial manipulators have many limitations some of which include low

stiffness, low payload, low accuracy, high inertia etc. Major drawbacks of parallel mani-

pulators are their limited workspace and difficult kinematic analysis. A summary of the

comparison of the general features of serial and parallel manipulators presented in (Kuen,

2002) is given in Table 1.1.

1.2.1 Classification of Parallel Robots

The parallel robots can be compared based on several criteria. For instance,(Company,

2006) used the following criteria to compare some parallel robots:

– Mechanism number of degrees of freedom (dof)

– Type of dof

– Mechanism features (constant legs length, variable legs length,...)

– Mechanism dimensions (as for Gough-like platforms)

�
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Table 1.1 – General comparison of serial and parallel robots (Kuen, 2002)

Feature Serial Robots Parallel Robots

Workspace large small

Stiffness low high

Singularity Problems some abundant

Payload low high

Inertia large small

Structure simple complex

Accuracy error accumulated error average out

Speed low high

Acceleration low high

Forward Kinematics simple complex

Inverse Kinematics complex usually simple

Dynamics relatively simple complex

Design Complexity low high

– Actuators placement and number regarding mechanism dof

– Number of kinematic chains (fully parallel, kinematics redundancy, actuation re-

dundancy, hybrid mechanisms...)

A detailed survey of the different classifications of parallel manipulators can be found in

(Company, 2000)

1.2.2 Planar Parallel Manipulators

As their name indicates, planar parallel manipulators (PPMs) generate planar motions.

Usually, their kinematics and control are simple. A Two-dof and a three-dof PPMs are

shown in Figs. 1.3 and 1.4, respectively.

ρ1 ρ2

P (x, y)

X

Y

Figure 1.3 – A 2-dof planar parallel manipulator
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PPM can find their uses in stand alone applications, particularly, when planar motions are

required with high speed and precision, like laser or water jet cutting and pick-and-place

operations. They can also be used as simple sub-elements in more complex mechanisms

(Company, 2006). Some machining applications with such devices are given in (Katz et al.,

2001).

ρ1

ρ2

ρ3

θ
P (x, y)

X

Y

Figure 1.4 – A 3-dof planar parallel manipulator

1.2.3 Spatial Parallel Manipulators

Spatial parallel manipulators (SPMs) can have more than 3-dof and have the ability

to move in the three dimensional space. These manipulators have various architectures

and can be used in a vast milieu of robotic applications. We can find a great amount

of SPMs in the literature (Stewart, 1965; Clavel, 1988; Kong and Gosselin, 2002, 2004;

Liu et al., 2005; Gogu, 2006). Some of the famous architectures of spatial robots are

Delta architecture (Clavel, 1988), Star architecture (Hervé and Sparacino, 1992), Tsai

architecture (Tsai, 1996) and Stewart platform (Stewart, 1965). Star and 3-UPU Tsai

architectures are shown in Figs. 1.5 and 1.6, respectively, whereas Delta robot and Stewart

platform are briefly presented in the coming sections.

�
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Figure 1.5 – Star Architecture (Hervé and Sparacino, 1992)

Fixed Base

Moving Platform

Figure 1.6 – 3-UPU Tsai Architecture (Tsai, 1996)

1.2.4 Hybrid Manipulators

Hybrid manipulators are usually a concatenation of serial and parallel architectures where

only a part of the mechanism is based on parallel kinematics. According to Krut (2003),

�
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a mechanism is hybrid if it has several kinematic chains between the base and the plat-

form with at least one of them including more than one actuator. For example, parallel

manipulators with a serial wrist and serial manipulators with a parallel wrist can be clas-

sified as hybrid manipulators. These hybrid manipulators can gather the advantages of

both serial and parallel manipulators. For example a hybrid manipulator can have large

workspace thanks to the serial architecture and a good accuracy and stiffness thanks to

the parallel chain. Figure 1.7 depicts a concatenation of a Delta type manipulator and

3-UPS platform, namely, a hybrid manipulator (Gallardo-Alvarado, 2005).

Fixed Platform

Translational Platform

End-Platform

Independent Limb

Passive Kinematic Chain

OX
Y

Z

Figure 1.7 – Hybrid robot (Gallardo-Alvarado, 2005)

1.2.5 Some Basic Parallel Architectures

1.2.5.1 Delta Architecture

The Delta manipulator, designed by Clavel (1988), is a well known 3-dof translational

parallel manipulator. It is composed of three identical limbs connecting the moving plat-

form to the base as illustrated in Fig. 1.8. Each limb contains a revolute joint and a

parallelogram joint and another revolute joint.

The distinguishing feature of the Delta robot is the use of parallelograms. It has three

�
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Figure 1.8 – Basic Delta architecture

kinematics chains of type R−R− Pa −R where R and Pa stand for revolute and paral-

lelogram joints respectively. These parallelograms constrain some rotation of the moving

platform and enable it to move in pure translation along X, Y and Z directions. Actuators

are fixed and are located at the base of the robot. Actuators can be of linear or of rota-

tional type. Three kinematic chains connect the base with the platform or end-effector.

An additional actuator and a central telescopic bar can be added to provide a rotational

degree of freedom about the axis of symmetry of the robot, hence yielding a four-dof

robot. This is the case of commercially available Delta robot devoted to pick and place

operation like the Flexpicker robot from ABB shown in Fig. 1.9.

As the actuators are located at the base and the moving parts are light, Delta robots have

small inertia hence have good dynamic performance. As a matter of fact, they can achieve

a velocity equal to 10m/s and accelerations up to 20g (Krut, 2003). Due to high speed

of the Delta robot, it is widely used in packaging, medical, pharmaceutical and electronic

industry.

1.2.5.2 Stewart Platform

Stewart platform, also known as Gough-Stewart platform or Hexapod,is a PKM having

six degrees of freedoms, developed by Gough and Whitehall (1962) and Stewart (1965).

The mechanism consists of a stationary base platform and a mobile platform connected

with each other with six kinematics chains or legs. The legs have actuated prismatic joints

allowing the change of the length of each leg. The legs are connected to the base and the

�
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Figure 1.9 – FlexPicker (ABB)–Delta Robot

mobile platform by means of universal joints, (Figs. 1.10 and 1.11).

The desired position and orientation of the mobile platform can be achieved by varying

the lengths of the six legs, i.e., transforming six translational motions of prismatic joints

into three positional (x, y, z) and three rotational (pitch, yaw, roll) degrees of freedom of

the mobile platform.

Stewart platform or its counterparts (Hexapods etc) are widespread in the literature.

The Stewart platforms are mainly used in the design of flight simulators, for virtual

reality, machine tool technology, crane technology, satellite dish positioning, telescopes

and medical applications.

1.3 Design Aspects of Parallel Robots

Parallel robots offer promising advantages over their serial counterparts like high stiffness,

high accuracy, high dynamic capacity, low inertia and a better payload-to-weight ratio

(Merlet, 2006c; Tlusty et al., 1999; Wenger et al., 1999; Majou et al., 2001). However,

the closed-loop nature of the mechanism leads to complex kinematics, difficult trajectory

planning, small and complicated workspace with singularities and non linear input/output

relations (Angeles, 2002).

�
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Platform

Base

Figure 1.10 – General Stewart Platform Structure

1.3.1 Kinematics

Robot kinematics is the study of the relationship between the joint parameters and the

corresponding pose of the end-effector. Inverse kinematic model (IKM) determines the

required joint parameters for a given end-effector pose whereas direct or forward kinematic

model (DKM) determines the end-effector pose for a known set of joint coordinates. The

IKM is expressed as follows:

xp = f (q) (1.1)

and the DKM as:

q = f−1 (xp) (1.2)

where q is the vector of active joints variables and xp is the vector of operational coordi-

nates of the end-effector.

Similarly, direct velocity model (DVM) defines the Cartesian velocities of the end-effector

in terms of joint rates, i.e.,

ẋp = Jpq̇ (1.3)
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Figure 1.11 – Stewart Platform

And, inverse velocity model (IVM) determines joint rates as a function of the Cartesian

velocities of the end-effector, i.e.,

q̇ = J−1
p ẋp (1.4)

where, Jp is the robot Jacobian matrix, ẋp is the end-effector velocity vector comprising

of linear and angular velocity components and q̇ is the actuated joints velocity vector.

Eq. (1.3) can also be written as:

Aẋp = Bq̇ (1.5)

where A and B are the parallel and serial Jacobian matrices (Gosselin, 1990b). As long

as matrix A is not singular, we have, Jp = A−1B.

Finally, the second order velocity model (or acceleration model) expresses the accelera-

tion of the end-effector in terms of the accelerations and velocities of the actuated joints

variables which can be derived upon differentiation of Eq. (1.3):

ẍp = Jpq̈+ J̇pq̇ (1.6)
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The kinematics of parallel robots along with various practical examples and applications

have been thoroughly presented by Merlet (2006c) and Angeles (2002). Besides, we can

find the kinematic model of a general Stewart-Gough platforms in (Husty, 1996), the

kinematic analysis of the Delta robot in (Clavel, 1988) and the one of the Orthoglide,

a 3-dof translational PKM, in (Wenger and Chablat, 2000). A state of the art of the

kinematics of the PKMs is given by Zentner (2005), Nielsen (1999) and Erdman (1993).

1.3.2 Dynamics

Forces and torques acting on the robot are related to the resulting robot motion by its

dynamics. Robot dynamics deals with the determination of the relations between joint

forces and the generalized accelerations, velocities and coordinates of the end-effector. The

Inverse Dynamic Model (IDM) gives the relation between the actuated joint forces/torques

for a given trajectory, velocities and acceleration of the end-effector whereas the Direct

Dynamic Model (DDM) gives the relation between the end-effector trajectory, velocities

and acceleration for a known or given actuated joints forces/torques. The knowledge of

robots dynamics is of prime importance to understand the robot performance and for the

command and control. Particularly, dynamics plays an important role in the control of

PKMs, high bandwidth robots and structurally sensitive robots (Merlet, 2006c).

The dynamics of PKMs has been an area of interest of several researchers (Fichter, 1986;

Lee and Shah, 1988; Sugimoto, 1989; Reboulet and Berthomieu, 1991; Sklar and Tesar,

1998). To develop the dynamic model of parallel robots, several approaches have been pro-

posed, including the Newton-Euler formulation (Sugimoto, 1989; Dasgupta and Choudhury,

1999), Lagrange approach (Miller and Clavel, 1992), principle of virtual work (Tsai, 2000),

screw theory (Gallardo-Alvarado et al., 2003) or principle of Hamilton (Miller, 2004). An

introduction to different approaches to derive the IDM and DDM of PKMs can be found

in (Merlet, 2006c; Angeles, 2002; Ibrahim, 2006).

1.3.3 Singularities

Singularities is one of the major issues of parallel robots and has been a prime focus of

research of several roboticians. At singular configurations, robots are exposed to unusual

behaviors as loss or gain of degrees of freedom, unattainable directions of motion, exis-

tence of motion while the actuators are locked (Pashkevich et al., 2009b). Merlet (2006c)

defines the singular configurations as the particular poses of the end-effector, for which

parallel robots lose their inherent infinite rigidity, and in which the end-effector will have

uncontrollable degrees of freedom.

One of the earlier singularity analysis of a closed-loop kinematic chain is that of Hunt

(1978). Other pioneers to define and study singularities of closed-loop kinematic chains

are Gosselin (1990b); Gosselin and Sefrioui (1991); Merlet (2006c, 1989); Ma and Angeles
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(1991a); Zlatanov et al. (1994, 1995); Mohammadi Daniali et al. (1995) and Park and Kim

(1999).

In general kinematic singularities of mechanisms can be classified into six different classes

(Zlatanov et al., 1994), whereas there are two basic types of singularities (Gosselin, 1990b),

namely, parallel and serial singularities.

A parallel singularity occurs when the determinant of the parallel Jacobian matrix, A,

vanishes, i.e. |A = 0| (Gosselin, 1990b). At this configuration, end-effector can move with

locked actuated joints, which results in an absence of control of the end-effector or tool-

point P . Figure 1.12 shows a parallel singular configuration of 2-dof mechanism, Biglide.

These singularities can damage the mechanism and have to be eliminated from the works-

pace (Majou and Chablat, 2007).

P

Figure 1.12 – Biglide-parallel singular configuration

A serial singularity occurs when the determinant of the serial Jacobian matrix, B, va-

nishes, i.e. |B = 0| (Gosselin, 1990b). This type of singularity results in a loss of degree of

freedom of the mechanism, i.e. at this configuration, there exists a direction along which

no motion can be produced. Figure 1.13 represents the serial singular configuration of the

Biglide. Serial singularities define the boundary of the Cartesian workspace of the parallel

kinematic machines (Merlet, 2006c).

P

Figure 1.13 – Biglide-serial singular configuration

1.4 Design Optimization

Humans have been exploiting and manipulating their knowledge, experience and resources

since pre-historic times to maker their living better and easier. In other words they have
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been optimizing their resources for better yields. In simple words, optimization is a process

of increasing the overall output while reducing the input at the same time. Development

of industrial tyres is just one good example to realize the humans’ desire to improve

their usage of resources, from a very inefficient triangular to very efficient circular one,

it has gone through many phases gradually reducing the effort and hence increasing the

mechanical efficiency. In order to increase the strength to weight ratio, the use of hollow

cylindrical shafts compared to solid ones is another good example.

Off course, optimization is not just limited to tyres or shafts; it now encompasses whole

range of engineering applications in every field of endeavour. From automobiles to aircrafts

and satellites, watercrafts to trains, housing projects to giant bridges, simple objects like

needles to state of the art robots, and from civil to military applications, optimization has

been a key area of interest in all applied fields.

Humans are consuming the resources made available to them by the nature in growing

numbers. To say the obvious; not all of these resources are renewable, it is therefore increa-

singly important, logically and environmentally, to optimize our use of these resources.

Optimization may therefore be rightly said as one of the most crucial tools in humans’

battle for survival.

Engineering design process goes through many phases and requires, as a prerequisite, a

designer’s knowledge as well as years long experience for a design to be appreciable. A de-

signer is confronted with myriad variables and parameters, each seeking careful attention

and indulgence. While some are more important than others, the very designation of the

level of importance can itself be an exhaustive task. Still, there are times when ”less im-

portant” variables play the most important role in the failure of an engineering structure.

It is only natural that while dealing with a very complex design of enormous proportions,

it is not possible for a designer to take into account all the variables simultaneously. An

optimization process, however, does not demand this much experience and yet it is faster

than a conventional design process. Design optimization based on numerical algorithms

and techniques can be applied to varied engineering systems to help a designer come out

with a proposal that is more efficient, light weight, reliable, safe, cost effective and that

satisfies the end user too. This requires not only the final product to be optimized but

also the optimization of manufacturing process as well as the tools to manufacture those

products at every level of production. A lot of research has been done in the field of op-

timization, proposing different approaches, techniques and methodologies. They span a

large range of problems such as linear programming, constrained/unconstrained non-linear

optimization, single and multi-objective optimization.
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1.4.1 Optimization Process

Optimization process in design is a tool of conceptualization and analysis used to achieve

better designs or design improvements. It is a mathematical procedure for determining

optimal solutions by representing all the complexities of the design in the form of de-

sign variable(s), objectives function(s) and/or constraint(s). The basic elements of any

constrained optimization problem are:

Objective function. An objective function or vector of objective functions is the

mathematical expression that expresses the optimization goal in terms of design

variables. Optimization process is required to either minimize or maximize the ob-

jective function. For instance, in robotics, maximization of the workspace or mini-

mization of inertia/mass of a manipulator can be the objective functions.

Design variables. Also known as decision variables, are the“unknowns”of the opti-

mization problem which are to be determined. From the point of view of the designer,

these are the controllable numeric values which affect the value of the objective func-

tion. Design variables can be continuous (such as a length/diameter/cross-section

of the robot links) or discrete (such as the number of links/joints in a robot).

Constraints. A set of constraints that must be satisfied in order for the design

to be feasible. These are mathematical expressions that combine the variables to

express limits on the possible solutions. Constraints allow the design variables to

take certain values but exclude others. In addition to physical laws; constraints

can reflect resource limitations, user requirements, or bounds on the validity of the

analysis models.

Variable bounds. Design variables are not usually permitted to take any value.

Instead, these are usually have lower and upper limits, known as variable bounds.

Variable bounds limits the design space and along with constraints, used to distin-

guish the solutions as feasible or unfeasible.

The optimization problem is then:

Find the values of the design variables that minimize or maximize the objective function

while satisfying the constraints. Remembering that variables describe all situations and

constraints describe all feasible situations Mathematically, an single-objective optimiza-

tion problem can be expressed as:

min
x

f subject to:











gi (x) 6 0 i = 1, · · ·m
hj (x) = 0 j = 1, · · ·n
xl 6 x 6 xu

(1.7)

Where, x is the vector of design variables, f is the objective function to be minimized

subject to m inequality and n equality constraints given by gi (x) and hj (x), respectively.
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Optimization is an iterative process and involves at least some degree of trial and errors.

As the problem complexity is increased, the search procedure becomes tedious and may

not guarantee a solution in all cases. The main steps involved in solving an optimization

problem can be cited as (Arora, 1989):

– understand the problem, by drawing a diagram or flow chart which represents the

problem;

– write a problem formulation in words, including decision variables, objective func-

tion, and constraints;

– write the algebraic formulation of the problem;

o define the decision variables;

o write the objective function(s);

o write the constraints;

develop a spreadsheet model;

– set up the Solver settings and solve the problem;

– examine the results and make corrections to the model;

– analyze and interpret the results.

The overall structure of an optimization approach is presented in Fig. 1.14.

1.4.2 Classification of Optimization Process

There are many optimization algorithms available to solve an optimization problem. Many

methods are appropriate only for certain types of problems. Thus, it is important to be able

to recognize the characteristics of a problem in order to identify an appropriate method to

solve the problem. Within each class of problems there are different minimization methods,

varying in computational requirements, convergence properties, and so on. Optimization

problems are classified according to the mathematical characteristics of the objective

function, the constraints, and the control variables. Other classifications are summarized

in Table 1.2. Normally, optimization problems found in engineering are the combinations of

different classifications. For instance, a problem may be of the type“constrained nonlinear

multiobjective optimization”

1.4.3 Multiobjective Optimization and Pareto Optimality

In numerous real life optimization applications, there exist many targets or objectives

that should be optimized simultaneously. However, these targets often conflict and it is

not possible to satisfy all of them at the same time. Thus one has to make compromises.

Such types of optimization problems are called multiobjective optimization problems.
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Identify
i. Design variables
ii. Objective function

iii. Constraints

Collect data to describe

the system

Estimate initial design

Analyze the system

Check the constraints

Does the design satisfy

the convergence criterion(a)?

Update the design using

an optimization scheme

Yes

No

Stop

Figure 1.14 – General design optimization process (Arora, 1989)

A general multiobjective optimization problem is to find design variables that optimize

a vector objective function subject to a number of constraints and bounds. It is often

formalized as follows (Shan and Wang, 2005):

min
x

F (x) = (f1(x), . . . ,fm(x), . . . fk(x)) (1.8)

subject to:

gk (x) 6 0 k = 1, · · · p
hj (x) = 0 j = 1, · · · q
xl
r 6 xr 6 xu

r r = 1, · · ·n
where the components of the multiobjective function F (x), are usually in conflict with

one another with respect to their own optimum point. The design variable vector, x =

[x1, · · · xr, · · · ,xn], consists of n design variables of the problem bounded by xl and xu.

hj(x) and gk(x) are equality and inequality constraints, respectively.
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Table 1.2 – Classification of optimization problems (Jilla, 2002)

Characteristic Property Classification

Number of Control
variables

One Single variable

More than one Multivariable

Type of control
variables

Continuous real number Continuous

Integers Discrete

Continuous real number and integers Mixed Integer

Problem functions

Linear function of control variables Linear

Quadratic functions of the control variables Quadratic

nonlinear functions of the control variables Nonlinear

Problem formulation
Subject to constraints Constrained

Not subject to constraints Unconstrained

Number of Objective
function

One Mono objective

More than one Multiobjective

Contrary to the traditional mono-objective optimization, multiobjective optimization pro-

blems have several objective functions to optimize at the same time. In addition, there is

not a unique solution, but instead there can be a number of mathematically equivalent

good solutions. Best solution means a solution not worst with respect to any of the ob-

jectives and at least better in one objective than the other. An optimal solution is the

solution that is not dominated by any other solution in the search space. Such an optimal

solution is called Pareto optimal and the entire set of such optimal trade-offs solutions is

called Pareto optimal set (Abraham et al., 2005).

f1

f2

A

B

C

Feasible Space

Pareto Frontier

Figure 1.15 – Graphical representation of the Pareto frontier
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Pareto optimal can be defined as (Marler and Arora, 2004), A point x∗ ∈ X is Pareto op-

timal if and only if there does not exist another point x ∈ X, such that fi(x) 6 fi(x
∗) and

fi(x) < fi(x
∗) for at least one function. Pareto optimal points are also known as efficient,

non-dominated, or non-inferior points. Even though there are several ways to approach

a multiobjective optimization problem, most work is concentrated on the approximation

of the Pareto set (Abraham et al., 2005). Determination of some Pareto subsets, where

the solution or its part must lie, decreases the design space which results a reduction of

the overall computational complexity of the design task. The storage of any design va-

riant, computed intermediately, can be used for numerical determination of the Pareto set

(Valasek and Sika, 2003; Caro et al., 2007; Bouyer et al., 2007).

There are several approaches to solve multiobjective optimization problems. Some examples

of these approaches are weighted sum method, weighted product method, weighted min-

max method, exponential weighted criterion, Lexicographic method, goal programming

methods, physical programming, genetic algorithms and simulated annealing. A survey of

these and others multiobjective optimization approaches can be found in (Marler and Arora,

2004; Andersson, 2001).

1.5 Conclusion

The parallel kinematics machines are getting more and more attention in modern indus-

trial applications for their potential benefits of high speed, good accuracy, low mass/inertia

properties and high structural stiffness. However, practical utilization for these added be-

nefits requires an extensive and efficient analysis of their structure, kinematics and dyna-

mics. On the design front, use of optimization techniques is a prime area of interests of the

researchers in order to optimize the existing designs or to explore new design prospects.

The use of computer aided design (CAD), computational fluid dynamic (CFD) and finite

element methods (FEM) has reduced the time-consuming design and analysis process with

better results. Conventional design techniques may be used for a trivial design of PKMs

with a limited capability of considering the performance measures and constraints. Nu-

merical optimization techniques, on the other hand, can be very useful to obtain solution

variants, i.e., set of reliable and acceptable solutions obtained by following a systematic

approach instead of hit and trail or heuristics approaches.

In the next chapter, various performance measures of PKMs will be discussed and sub-

sequently a multiobjective optimization approach will be presented in order to determine

optimum design parameters of a PKM.
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This chapter addresses the dimensional synthesis of parallel kinematics machines. A mul-

tiobjective optimization problem is proposed in order to determine optimum structural

and geometric parameters of a parallel manipulator. The proposed approach is applied

to the optimum design of a three-degree-of-freedom planar parallel manipulator in order
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to minimize the mass of the mechanism in motion and to maximize its regular shaped

workspace.

2.1 Introduction

The design of parallel kinematics machines is a complex subject. The fundamental pro-

blem is that their performance heavily depends on their geometry (Hay and Snyman,

2004) and the mutual dependency of almost all the performance measures. This results

computational complexity of the problem and makes the traditional solution approaches

inefficient. As reported by Merlet (2006c), since the performance of parallel manipulators

depends on their dimensions, customization of these manipulators for each application

is absolutely necessary. Furthermore, numerous design aspects contribute to the PKM

performance and an efficient design will be that which takes into account all or more of

these design aspects. For instance, a simplified design network of a parallel kinematics

machine is shown in Fig. 2.1 (Valasek et al., 2005). In this figure, eight design criteria are

considered, namely, workspace, collision avoidance, dexterity and force transmission eva-

luation, stiffness and eigen-frequency (modal) evaluation, dynamic capability evaluation,

kinematic and elastostatic accuracy evaluation and finally control system dynamics and

accuracy evaluation. The design process has been decomposed into three levels of design

conflicts and related structural and parametric optimizations (Valasek et al., 2005):

Kinematics

Dimensions

Dimensions

Cross-section

Material

Control
Parameters

Max Max Max Max Max MaxMax Min Max/Min

WorkspaceWorkspaceWorkspace CollisionsCollisionsCollisions

DexterityDexterityDexterity

Force TransferForce TransferForce Transfer
StiffnessStiffnessStiffness

DynamicDynamicDynamic
CapabilityCapabilityCapability

EigenfrequenciesEigenfrequenciesEigenfrequencies
Vibration modesVibration modesVibration modes

ElastostaticElastostaticElastostatic
accuracyaccuracyaccuracy

CalibrationCalibrationCalibration DynamicsDynamicsDynamics
ControlControl ControlControlControl Control

AccuracyAccuracyAccuracyAccuracy AccuracyAccuracy

Geometry Embodiment design Actuator

Geometrical design iterations

Structural design iterations

Actuator design iterations

Figure 2.1 – Design network of parallel kinematics mechanisms (Valasek et al., 2005)
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– geometric design conflicts: workspace, collision versus necessary dimensions for stiff-

ness, accuracy, dexterity and other requirements.

– structural design conflicts: stiffness, accuracy, eigen-frequencies versus mass, dyna-

mics, acceleration etc;

– actuator design conflicts: drive torque versus drive inertia, the influence of control

system.

From this general description of a PKM design process, it is obvious that it is an itera-

tive process and an efficient design requires a lot of computational effort and capability

for mapping design parameters into design criteria (objectives, constraints) and hence

following a multiobjective design procedure. The design parameters of a PKM can be

determined by using multiobjective optimization techniques where the design variants

can be obtained from the generated Pareto frontiers. Modern optimization techniques can

serve the purpose of this customization process and can facilitate the designer to come up

with more efficient and cost-effective solutions. Therefore, design optimization of parallel

mechanisms has become a key issue for their development and has gained more and more

attention of the researchers in the recent years. Several researchers have addressed the

optimization problem of parallel mechanisms to optimize their performance with respect

to a single or several design objectives.

Lou et al. (2005, 2008) presented a general approach for the optimal design of paral-

lel manipulators to maximize the volume of an effective regular-shaped workspace while

subject to dexterity constraints. Effective regular workspace reflects simultaneously the

requirements on the workspace shape and quality. Hay and Snyman (2004) considered

the optimal design of parallel manipulators to obtain a prescribed workspace whereas

Ottaviano and Ceccarelli (2001) proposed a formulation for the optimum design of 3-dof

spatial parallel manipulator architectures for given position and orientation workspaces.

Hao and Merlet (2005) discussed a multi-criteria optimal design methodology based on

interval analysis to determine the possible geometries satisfying two compulsory require-

ments of the workspace and accuracy. Ottaviano and Ceccarelli (2000) based their study

on the static analysis and the singularity loci of a manipulator in order to optimize the

geometric design of the Tsai manipulator for a given free from singularity workspace.

Similarly, Ceccarelli et al. (2005) dealt with the multi criteria optimum design of both pa-

rallel and serial manipulators with the focus on the aspects of workspace, singularity, and

stiffness. Gosselin and Angeles (1988, 1989) studied the design of a planar and a 3-dof

spherical parallel manipulators by maximizing the workspace volume while taking into

account the condition numbers of these manipulators. Pham and Chen (2003) suggested

maximizing the workspace of a parallel flexure mechanism with the constraints on a global

and uniformity measure of manipulability. Stamper et al. (1997) used the global condition

index based on the integral of the inverse condition number of the kinematic Jacobian

�



28 Chapter 2. Multiobjective Design Optimization of Parallel Kinematics Machines

matrix over the workspace, to optimize a spatial 3-dof translational parallel manipulator.

Stock and Miller (2003) formulated a weighted sum multi-criteria optimization problem

with manipulability and workspace as two objective functions. Menon et al. (2009) used

the maximization of the first natural frequency as an objective function for the geometri-

cal optimization of the parallel mechanisms. Similarly, Li et al. (2009) proposed dynamics

and elastodynamics optimization of a 2-dof planar parallel robot to improve the dynamic

accuracy of the mechanism. They proposed a dynamic index to identify the range of na-

tural frequency with different configurations. Krefft and Hesselbach (2005) also presented

multi-criteria elastodynamic optimization of parallel mechanisms while considering works-

pace, velocity transmission, inertia, stiffness and first natural frequency as optimization

objectives. Chablat and Wenger (2003) proposed an analytical approach for the architec-

tural optimization of a 3-dof translational parallel mechanism, Orthoglide 3-axis, based

on prescribed kinetostatic performance in a given Cartesian workspace.

In this chapter, we propose a methodology to deal with the multiobjective design optimi-

zation of PKMs. The mechanism mass, conditioning number of the kinematic Jacobian

matrix and accuracy characteristics are considered as objective functions. The propo-

sed approach is highlighted by means of a 3-dof planar parallel manipulator and Pareto

frontiers are obtained using a multiobjective genetic algorithm.

2.2 Performance Measures and Indices

The estimation of the manipulators performance is very important for proper manipula-

tors application, design and selection. Angeles (2002) defines a performance index of a

robotic mechanical system as a scalar quantity that measures how well the system be-

haves with regard to force and motion transmission. Different authors have proposed va-

rious performance characteristics and indices to compare and evaluate manipulators’ per-

formance. Workspace (Wenger and Chablat, 2000; Liu et al., 2004; Stamper et al., 1997;

Kosinska et al., 2003), dexterity (Merlet, 2006c), manipulability (Yoshikawa, 1985; Merlet,

2006b; Kucuka and Bingulb, 2006), accuracy (Merlet, 2006b), stiffness (Pashkevich et al.,

2009b) are widely used performance characteristics of robot manipulators.

2.2.1 Workspace

Workspace is one of the most important issues as it defines the working volume of the

robot/manipulator and determines the area that can be reached by a reference frame

located on the moving platform or end-effector (Liu et al., 2004; Stamper et al., 1997;

Kosinska et al., 2003). The size and shape of the workspace are of primary importance for

the global geometric performance evaluations of the manipulators (Wenger and Chablat,

2000). Merlet and Mouly (1998) have defined different types of workspaces which include,
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constant orientation workspace, maximal or reachable workspace, inclusive orientation

workspace, total orientation workspace and finally the dextrous workspace. The constant

orientation workspace is the region which can be reached by the end-effector with constant

orientation. The region which can be reached by the end-effector with at least one orien-

tation is the maximal or reachable workspace. The inclusive workspace is the region that

can be attained by the end-effector with at least one orientation in a given range. Total

orientation workspace defines the region which can be reached by the end-effector with

every orientation of the end-effector in a given range and finally the dextrous workspace

describes the region that can be reached by the end-effector with any orientation of the

end-effector. Chablat et al. (2004) introduced the concept of regular dextrous workspace,

which is defined as regular-shaped workspace within the Cartesian workspace in which

the velocity amplification factors remain within a predefined range. This ensure good and

homogeneous kinematic performance throughout the dextrous workspace.

In the literature, different methods to determine workspace of parallel manipulators have

been proposed (Gosselin, 1990b; Merlet and Mouly, 1998; Merlet, 1995). These include,

analytical methods (Kohli and Spanos, 1985; Abdel-Malek and Yeh, 1997), numerical, ite-

rative and statistical methods mainly based on the discretization of the pose parame-

ters (Lee and Yang, 1983; Rastegar, 1990; Alciatore and Ng, 1994; Cleary and Arai, 1991;

Ferraresi et al., 1995; Kumar and Waldron, 1981), optimization methods (Lee and Cwiakala,

1985) etc. Some of the research works on the workspace analysis can be reported as

(Merlet, 2006c; Gosselin, 1990b; Merlet and Mouly, 1998; Chablat et al., 2004; Gosselin,

1990a; Tsai and Soni, 1981; Gupta and Roth, 1982).

2.2.2 Manipulability

The concept of manipulability of a manipulator was introduced by Yoshikawa (1985).

The manipulability quantifies the manipulator velocity transmission capabilities or, equi-

valently, dexterity of the robot (Merlet, 2006c). The manipulability µ is defined as the

square root of the determinant of the product of the manipulator kinematic Jacobian

matrix, J, by its transpose (Yoshikawa, 1985).

µ =
√

det (JJT ) (2.1)

The manipulability measures how much the end-effector moves for a given infinitesi-

mal joint angles motion. Manipulability measure is very useful for manipulator design,

task planning and fast recovery ability from the singular points for robot manipulators

(Kucuka and Bingulb, 2006).

The manipulability is equal to the absolute value of the determinant of the Jacobian in case

of square Jacobian matrix (Angeles, 2002). Hence, using the singular value decomposition,
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the manipulability can be written as,

µ = σ1σ2 · · · σi · · · σn (2.2)

where σi are the singular values of the Jacobian matrix.

Since the value of the determinant depends on the used units, the manipulability will

have different values for different units, i.e. it is not units invariant. Another shortcoming

of manipulability is that it mixes translational and rotational motions. Consequently, it

has been proposed to calculate the manipulability index for translational and rotational

motions by splitting the Jacobian into corresponding parts (Merlet, 2006b).

2.2.3 Condition Number of the Kinematic Jacobian Matrix

In numerical analysis, the condition number of a matrix is used to estimate the error gene-

rated in the solution of a linear system of equations by the error in the data (Strang, 1976).

Salisbury and Craig (1982) are the pioneer to use the condition number of the Jacobian

matrix to design mechanical fingers of the articulated hands. Later on, Angeles and Rojas

(1987) used it as a kinetostatic performance index of the robotic mechanical system and

applied it to the design of a 3-dof spatial manipulator and a 3-dof spherical wrist. In terms

of the Jacobian matrix of a robot manipulator, the condition number is an error ampli-

fying factor of actuators affecting the accuracy of the Cartesian velocity of the end-effector

(Kucuka and Bingulb, 2006).

According to Angeles (2002), for a Jacobian matrix J, whose all entries have the same

units, condition number κ (J), based on the 2-norm, can be defined as the ratio of the

largest σl to the smallest σs singular values of J, i.e.,

κ (J) =
σl
σs

(2.3)

κ (J) ranges from 1 to infinity, 1 for isotropic postures and infinity at singularity.

The conditioning index (CI), bounded between zero and unity, is defined as the reciprocal

of the condition number, i.e., 1/κ, is also used to evaluate the control accuracy, dexterity

and isotropy of the mechanism (Gosselin, 1990b; Kucuka and Bingulb, 2006; Angeles,

2002). It can be used to evaluate the distance to the singular configurations. CI = 1

when the robot reaches an isotropic configuration and CI = 0, when it reaches a singular

configuration. Therefore, the larger the CI, the further the distance to singularity. The

main advantage of the condition number or conditioning index is that it is a single number

used to describe the overall kinematic behavior of a robot. It is used as an index to describe

(Merlet, 2006b),

– the accuracy and dexterity of a robot;
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– the closeness of a pose to a singularity. It is, in general, not possible to define

a mathematical distance to a singularity for robots whose dof is a mix between

translation and orientation; hence, the use of the condition number is as valid as

any other index;

– a performance criterion for optimal robot design and robots comparison;

– a criterion to determine the useful workspace of a robot.

Condition number is also used for trajectory planning and gross motion capability of a

robot manipulator in the workspace (Kucuka and Bingulb, 2006)

However, a major drawback of the condition number is that, for a robot having both trans-

lational and rotational dof, the matrix involved in its calculation will be heterogeneous

with respect to units used (Merlet, 2006c). Hence, the value of the condition number for

a given robot and pose will change according to the unit, while clearly the kinematic ac-

curacy is constant (Kucuka and Bingulb, 2006; Merlet, 2006b). Ma and Angeles (1991b)

suggested to use a normalized inverse Jacobian matrix by dividing the rotational elements

of the matrix by a length, called the characteristic length, such as the length of the links

in a nominal position or the natural length, defined as that which minimizes the condi-

tion number for a given pose. However, the choice of the characteristic length remains

arbitrary as it just allows us to define a correspondence between a rotation and a transla-

tion (Merlet, 2006b). For planar robots, Chablat et al. (2002); Alba-Gomez et al. (2005)

selected a characteristic length that makes sense geometrically.

2.2.4 Accuracy

One of the promising feature of parallel mechanisms over their serial counterparts is

their high accuracy owing to their closed kinematic chains (Brog̊ardh, 2007; Chanal et al.,

2006). Therefore, the accuracy, reflecting the maximum position and orientation errors

over a given portion of the workspace (Merlet, 2006a), is a pertinent performance measure

for PKM. The accuracy of a PKM can be affected by several factors, like, manufacturing

errors, backlash, components compliance and active-joint errors (Briot and Bonev, 2008;

Caro et al., 2009). For a properly designed, manufactured and calibrated PKM, active-

joint errors also known as input errors are the most significant source of accuracy decline

(Merlet, 2006a).

Accuracy analysis is closely related to the singularity (Merlet, 2006b), therefore, singula-

rity performance measures can also be used to reflect the accuracy of a PKM. For example,

dexterity index (Gosselin, 1992), the condition numbers (Pittens and Podhorodeski, 1993;

Rao et al., 2003), and the global conditioning index (Gosselin and Angeles, 1991) can be

used to optimize the accuracy of a PKM. Merlet (2006b) discussed these performance

indices in order to examine the positioning accuracy of the end-effector while using the

Jacobian and inverse Jacobian matrices of a PKM. Others main sources of positioning
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errors for PKMs are listed in (Merlet, 2006c).

2.2.5 Robustness and Sensitivity

According to Taguchi (1993), robust design is a technique that reduces variations in a

product by reducing the sensitivity of the design of the product to sources of variations

rather than by controlling their source. A design is said to be robust when its performance

are as least sensitive as possible to the variations in their design variable and design

environment parameters (Caro et al., 2005).

Sensitivity analysis is used to determine the sensitivity of a model to the variations in

the design and structural parameters of the model. Sensitivity analysis helps to determine

the parameters or factors contributing to the variability of the performance of the system

and allow the designer to determine the design tolerances of the parameters to make the

system more accurate and sufficiently robust.

Inspired by the Taguchi idea, several researchers put their efforts for the robust de-

sign and sensitivity analysis of different PKMs (Caro et al., 2006, 2009; Binaud et al.,

2008; Bai and Caro, 2009). A state of the art of robust design is presented in (Caro,

2003). Han et al. (2002) described the gross motion of a 3-UPU parallel mechanism by

kinematic sensitivity analysis whereas Fan et al. (2003) analyzed the sensitivity of a 3-

PRS parallel kinematic spindle of a serial parallel kinematics machine. Wang and Masory

(1993) studied the effect of manufacturing tolerances on the accuracy of Stewart Platform.

Caro et al. (2006) introduced two complementary methods to analyze the sensitivity of a

3-dof translational parallel kinematic machine (PKM) with orthogonal linear joints: the

Orthoglide. On the one hand, a linkage kinematic analysis method is proposed to have

a rough idea of the influence of the length variations of the manipulator on the location

of its end-effector. On the other hand, a differential vector method is used to study the

influence of the length and angular variations in the parts of the manipulator on the

position and orientation of its end-effector. Besides, this method takes into account the

variations in the parallelograms. It turns out that variations in the design parameters

of the same type from one leg to another have the same effect on the position of the

end-effector. Moreover, the sensitivity of its pose to geometric variations is a minimum

in the kinematic isotropic configuration of the manipulator. On the contrary, this sensiti-

vity is a maximum close to the kinematic singular configurations of the manipulator. In

a recent work, Caro and Wenger (2008) developed the sensitivity coefficients of a 3-RPR

manipulator in algebraic form.

2.2.6 Stiffness

Higher stiffness of parallel robots is one of the major merit over their serial counter

parts. The stiffness of a PKM mainly depends on its geometric configuration and the
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stiffness of its components. (Weck and Staimer, 2002) PKMs are claimed to offer better

accuracy, lower mass/inertia properties and higher structural stiffness (Merlet, 2006c).

These features are induced by their specific kinematic structure, where the links act in

parallel against the external force/torque, eliminating the cantilever-type loading and

increasing the manipulator stiffness (Pashkevich et al., 2009b; Tsai, 1999).

Generally, the stiffness analysis evaluates the effect of the applied external torques and

forces on the compliant displacements of the end-effector. This property is defined through

the“stiffness matrix”K, which gives the relation between the translational/rotational dis-

placement and the static forces/torques applied to the robot end-effector. The inverse of

K is called the “compliance matrix”. As follows from mechanics, K is a 6×6 semi-definite

non-negative matrix, where structure may be non-diagonal to represent the coupling bet-

ween the translation and rotation motions (Pashkevich et al., 2009b; Duffy, 1996).

The stiffness of a PKM depends on the force/torque direction and on the manipulator

configuration. Hence, to provide the designer with integrated performance criteria, va-

rious scalar indices are usually computed (such as the best/worst/average stiffness with

respect to the rotation or translation). They are typically derived using the singular-

value decomposition of K. Furthermore, since matrix K varies throughout the workspace,

corresponding global benchmarks must be computed (Pashkevich et al., 2009b).

The actuators forces/torques, F, required to cause a change in the position δX (angu-

lar/translational) of the end-effector can be written as:

F = KδX (2.4)

Several approaches exist for the computation of the stiffness matrix, which differ in the

modeling assumptions and computational techniques. Examples can be the finite element

analysis (FEA), the matrix structural analysis (MSA), and the virtual joint method (VJM)

approach.

Recently, Pashkevich et al. (2009b) introduced new stiffness modeling method, which com-

bines advantages of the traditional approaches. It is based on a multidimensional lumped-

parameter model that replaces the link flexibility by localized 6-dof virtual springs that

describe both the linear/rotational deflections and the coupling between them. The spring

stiffness parameters are evaluated using FEA-modeling to ensure higher accuracy. In ad-

dition, it employs a new solution strategy of the kinetostatic equations, which allows

computing the stiffness matrix for the over-constrained architectures, including the singu-

lar manipulator postures. This approach gives almost the same accuracy as FEA but with

essentially lower computational effort because it eliminates the model re-meshing through

the workspace (Pashkevich et al., 2009b).

This model states that the deformations δti of the extremity of the ith leg of the manipu-
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lator are related to the efforts fi applied on its extremity by the relation:

[

Si
θ Ji

q

Ji
q 0

][

fi

δqi

]

=

[

ti

0

]

, Si
θ = Ji

θ

(

Ki
θ

)−1
JiT
θ (2.5)

where the sub-matrix Si
θ describes the spring compliance relative to the end-effector,

δqi represents the passive joints displacements of the ith leg, Ki
θ is the stiffness matrix

corresponding to the stiffness of all the elements of the ith leg and Ji
θ, J

i
q are the Jacobian

matrices relating the displacements of the extremity of the leg i to the spring deflections

δθi and passive joint displacements δqi, such as,

δti = Ji
qδqi, Ji

q =

[

∂ti
∂qi

]

, Ji
θ =

[

∂ti
∂θi

]

(2.6)

Matrices Ki
θ , Ji

q and Ji
θ can be obtained with the help of modified virtual joint method

(VJM), based on the lump modeling approach. According to this approach, each kinematic

leg can be decomposed into a sequence of rigid links and virtual springs. Virtual springs

describe elastic deformations of the links or joints and take into account the stiffness of

the mechanical transmissions and the control loop.

Finally, the stiffness matrix, Ki, of the i
th leg, relates the deformations ti to the force fi

as

fi = Kiti (2.7)

The stiffness matrix of the entire manipulator of n kinematic chains can be found by

simple addition:

K =
n

∑

i=1

Ki (2.8)

2.2.7 First Natural Frequency

Natural frequencies of a mechanism are an important measure of system performance

with respect to mechanism vibratory behaviour which directly influences the mechanism

accuracy and precision. In fact, the analysis of the natural frequencies depicts the system

dynamic characteristics which cannot be detected by the kinematic analysis, like dynamic

singularities, where the system dynamic performance degenerates (Krefft and Hesselbach,

2005). Since natural frequencies are directly related to the resonance phenomenon, so in

order to avoid any resonance, natural frequencies of a system are desired to be as large as

possible. Accordingly, the first natural frequency of any system is crucial. Hence, one of the

design objective can be the maximization of the first natural frequency of the mechanism.

Natural frequencies of a PKM can be determined by solving the eigenvalue problem of
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the equation of motion of the mechanism, as:

∣

∣K− ω2M
∣

∣ = 0 (2.9)

K andM being, respectively, the stiffness and the mass matrix of the mechanism. ω (rad/sec)

is the vector of the natural angular frequencies of the mechanism and | . | denotes the ma-

trix determinant. Assuming that ω1 is the first natural angular frequency:

ω1 = min (ω) (2.10)

The first linear natural frequency fn1 can be defined as:

fn1 = ω1/2π (2.11)

In general, it is considered that the first natural frequency has to be out of the range

of normal use of the machine, and especially for machine tools, greater than 100 Hz

(Briot et al., 2009). The first natural frequency depends on the pose of the tool. This

criterion is mainly a local index, however, in (Briot et al., 2009), the smallest first natural

frequency throughout the workspace of the mechanism is considered as a global index.

2.2.8 Summary of Performance Measures and Indices

Many performance measures and indices exist to characterize a PKM. In the context of

design optimization, we can use these indices either as objective functions or constraints.

Generally, a global performance index is used as an objective function whereas a local

performance measure is used as a constraint, see Table 2.1. In the scope of this study, we

Table 2.1 – Summary of performance indices/measures

Performance Index Used as a Constraint Used as an Objective
Workspace size X

Condition number X

Global condition number X

Stiffness X

Natural frequency X

Accuracy X

Sensitivity X

Mechanism mass/inertia X

will choose a set of indices to realize the multiobjective design optimization of a mechanism

as an illustrative example.
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2.3 Case Study: Multiobjective Design Optimization

of a 3-PRR Planar Parallel Manipulator

Planar parallel manipulators (PPMs) are distinguished by the feature that all their compo-

nents and corresponding motions, including end-effector, generate planar motions. These

mechanisms are simple with their simple kinematics and control-loop. Their obvious de-

merit is their unsuitability to carry out a large payload whose the weight is normal to the

plane of motion.

A family of three degrees of freedom planar parallel mechanisms, which has been the

research topic of many researchers (Gosselin et al., 1996; Williams II and Joshi, 1999;

Kang et al., 2001; Jiang and Gosselin, 2008; Briot et al., 2008) is classified as RRR, RPR,

PRR, PPP etc, where R and P stands for revolute and prismatic joints, respectively. Out

of this set of mechanism, the subject of this work is the type, PRR. However, a similar

approach can also be applied to other mechanisms.

ρ1

ρ2

ρ3

O

P

R

r

Lb

φ

A1

A2

A3

B1

B2

B3

C1

C2
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Figure 2.2 – 3–PRR architecture
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2.3.1 Architecture of 3-PRR PPMs

A three-degree-of freedom PPM with three identical chains is shown in Fig. 2.2. Each

kinematic chain is of PRR–type and consists of one actuated prismatic joint, P ; two

revolute joints, R; and two links. This 3-PRR manipulator is intended to position and

orient the equilateral triangle-shaped platform C1C2C3 in the plane i.e., two translational

and one rotational dof. The geometric center of the platform C1C2C3, denoted by P , is the

operation point of the manipulator. Displacements of the three prismatic joints (ρ1,ρ2,ρ3)

are the input variables whereas the position (xp,yp) of point P and the orientation (φ) of

the platform are the output variables. The base-platform of the manipulator is also an

equilateral triangle with A1, A2 and A3 as triangle summits and point O as the geometric

center of the base-triangle, which is also the origin of the reference frame. Prismatic

actuators are located at points Ai (i = 1,2,3) with orientation angles αi of 0
◦,120 ◦ and

240 ◦ i.e., aligned with the sides of the base-platform.

Parameters describing the manipulator geometry are:

– R: radius of the circumscribed circle of triangle A1A2A3 with center O (R = OAi);

– r: radius of the circumscribed circle of triangle C1C2C3 with center P (r = PCi);

– Lb: length of the intermediate bars (Lb = BiCi).

2.3.2 Kinematic Modeling of 3-PRR

Knowing the geometric parameters of the mechanism (R, r, Lb), the inverse kinematic

model (IKM) provides the relation between the actuators displacements (ρi) for a specified

position (xp, yp) and the orientation (φ) of the moving platform, i.e.,

ρ = f (xp) (2.12)

where

ρ =
[

ρ1 ρ2 ρ3

]T

xp =
[

xp yp φ
]T

(2.13)

A quadratic equation can be developed with the known geometry to describe Eq. 2.12 as

given by (Chablat et al., 2002), i.e.,

aiρ
2
i + biρi + ci = 0 (2.14)
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where ai, bi and ci are given by:

a1 = 4 (2.15a)

b1 = −
(

4xp − 4r cosφ+ 2R
√
3
)

(2.15b)

c1 =
(

2xp − 2r cosφ+R
√
3
)2

+ (2yp − 2r sinφ+R)2 (2.15c)

a2 = 4 (2.15d)

b2 = 2xp + r
(

cosφ−
√
3 sinφ

)

−R
√
3 +

√
3
(

2yp − r
(√

3 cosφ− sinφ
)

+R
)

(2.15e)

c2 =
(

2xp + r
(

cosφ+
√
3 sinφ

)

−R
√
3
)2

+
(

2yp − r
(√

3 cosφ− sinφ
)

+R
)2

− 4L2
b

(2.15f)

a3 = 4 (2.15g)

b3 =
(

2xp + r
(

cosφ−
√
3 sinφ

))

+
√
3
(

2yp + r
(√

3 cosφ+ sinφ
)

− 2R
)

(2.15h)

c3 =
(

2xp + r
(

cosφ−
√
3 sinφ

))2

+
(

2yp + r
(√

3 cosφ+ sinφ
)

− 2R
)2

− 4L2
b

(2.15i)

It should be noted that Eq. 2.14 has eight solutions (for i = 1, 2, 3) corresponding to

the eight working modes of the mechanism (Chablat and Wenger, 1998). The choice of

the working mode can also be used as a design parameter of the mechanism as the lo-

cation of the singular configuration depends on the chosen working mode, as shown in

(Chablat et al., 2002).

Similarly, direct kinematic model (DKM) defines the position and orientation (xp, yp, φ)

of the platform as a function of the actuators displacements, ρi, i.e.,

xp = f (ρ) (2.16)

DKM of the 3–PRR PPM can be obtained by means of the mechanism geometry which

gives six assembly modes (Gosselin and Merlet, 1994).

2.3.3 Kinematic Jacobian Matrix of 3-PRR PPM

The kinematic Jacobian matrix defines the relationship between the actuators and mobile

platform velocity vectors. Let p = [xp yp]
T be the position vector of the center point

of the mobile platform P . For the ith kinematic chain, a close loop vector equation can be
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written as,

−→
OP =

−−→
OAi +

−−→
AiBi +

−−→
BiCi +

−−→
CiP (2.17)

Equation (2.17) can be expressed algebraically as:

p = Rrai + ρiai + Lbbi − rei (2.18)

where ai, bi, ei and rai are the unit vectors, as depicted in Fig. 2.3. ai and rai are constant

unit vectors whereas ei is a function of platform orientation φ. Their relations are given

in Annex ??. bi can be obtained from Eq. 2.18 as,

O

P

A1 A2

A3

B1

B2

B3

C1

C2

C3

ρ1

ρ2

ρ3

a1

a2

a3

b1

b2
b3

e1

e2

e3

ra1 ra2

ra3

p φ

Figure 2.3 – 3–PRR planar parallel manipulator

bi =
1

Lb

(p−Rrai − ρiai + rei) (2.19)

Upon differentiation of Eq. 2.18 with respect to time we get,

ṗ = ρ̇iai + Lbḃi − rėi (2.20)
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ḃi and ėi can be written as,

ḃi = β̇iEbi ėi = φ̇Eei (2.21)

β̇i is the angular velocity of the ith intermediate link and E is the right angle rotation

matrix given by,

E =

[

0 −1

1 0

]

(2.22)

Accordingly, Eq. (2.20) becomes,

ṗ = ρ̇iai + Lbβ̇iEbi − rφ̇Eei (2.23)

Upon multiplication of Eq. (2.25) by bT
i and using the identity bT

i Ebi = 0, we get:

bT
i ṗ = bT

i ρ̇iai − rφ̇bT
i Eei (2.24)

Rearranging above equation,

bT
i ṗ+ rbT

i Eeiφ̇ = bT
i aiρ̇i (2.25)







bT
1 rbT

1Ee1

bT
2 rbT

2Ee2

bT
3 rbT

3Ee3







[

ṗ

φ̇

]

=







bT
1 a1 0 0

0 bT
2 a2 0

0 0 bT
3 a3













ρ̇1

ρ̇2

ρ̇3






(2.26)

Aẋp = Bρ̇ (2.27)

where

A =







bT
1 rbT

1Ee1

bT
2 rbT

2Ee2

bT
3 rbT

3Ee3






B =







bT
1 a1 0 0

0 bT
2 a2 0

0 0 bT
3 a3






(2.28)

Therefore, the prismatic joints rates are expressed in terms of the moving platform twist

as follows:

ρ̇ = B−1Aẋp = Jpẋp (2.29)
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Jp is the kinematic Jacobian matrix of the manipulator.

J = B−1A =
1

ai.bi







b1 rk (b1 × e1)

b2 rk (b2 × e2)

b3 rk (b3 × e3)






(2.30)

The singular configurations of the 3–PRR PPM can be obtained by means of a singularity

analysis of J as explained in Chablat et al. (2002).

2.3.4 Dexterity of the 3-PRR PPM

The terms of the direct Jacobian matrix of the 3-PRR PPM are not homogeneous as

they do not have same units. Accordingly, its condition number is meaningless. Indeed,

its singular values cannot be arranged in order as they are of different nature. However,

the concept of characteristic length was used as used in Chablat et al. (2002) to analyze

the kinetostatic performance of manipulators with multiple inverse kinematic solutions,

and therefore to select their best working mode.

Accordingly, for 3–PRR PPM, the normalized Jacobian matrix, J̃p is given by:

J̃p =
1

ai.bi







b1 rk (e1 × b1) /lch

b2 rk (e2 × b2) /lch

b3 rk (e3 × b3) /lch






(2.31)

lch =
√
2r sin γ being the characteristic length of the manipulator (Chablat et al., 2002),

used to obtain dimensionally homogeneous Jacobian matrix. r is the moving platform

radius and γ = π/2.

When γ is equal to π/2, i.e., when BiCi is perpendicular to CiP , the manipulator finds

itself at a configuration furthest away from the parallel singularities.

Consequently, the condition number of Jp, can be used as a dexterity index of the mani-

pulator.

2.3.5 Stiffness Matrix

The stiffness model of the 3-PRR PPM is obtained by means of the refined lumped mass

modeling presented in Pashkevich et al. (2009b), as discussed in Sec. 2.2.6.

Let us consider a general schematic of the 3-PRR PPM that is composed of a mobile

platform connected to a fixed base by means of three identical kinematics chains, as

shown in Fig. 2.4. Each kinematic chain contains an actuated prismatic joint “P” and two

passive revolute joints “R”.

According to the flexible model described in Pashkevich et al. (2009b), each kinematic

chain of the 3-PRR manipulator can be considered as a serial architecture as shown in
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Base

PPP

R

R

R

R

R

R

Mobile Platform

Figure 2.4 – Schematic diagram of a 3-PRR

Fig. 2.5 that contains sequentially:

Ac RR Rigid BodyRigid Body

L r

Base Platform
(Rigid)

1-dof 6-dof 6-dof
SpringSpringSpring

Figure 2.5 – Flexible model of the single kinematic chains of the 3-PRR PPM, Ac stands for
actuating joint and R for revolute joint

– a rigid link between the manipulator base and the ith actuated joint (part of the base

platform) described by the constant homogeneous transformation matrix Ti
Base;

– a 1-dof actuated joint, defined by the homogeneous matrix function Va(q
i
0) where

qi0 is the actuated coordinate;

– a 1-dof virtual spring describing the actuator mechanical stiffness, which is defined by

the homogeneous matrix function Vs1 (θ
i
0) where θ

i
0 is the virtual spring coordinate

corresponding to the translational spring;
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– a 1-dof passive R-joint at the beginning of the leg allowing one rotation angle qi2 ,

which is described by the homogeneous matrix function Vr1(q
i
2)

– a rigid leg of length L linking the foot and the movable platform, which is described

by the constant homogeneous transformation matrix Ti
L;

– a 6-dof virtual spring describing the leg stiffness, which is defined by the homoge-

neous matrix function Vs2 (θ
i
1 · · · θi6), with θi1, θi2, θi3 and θi4, θ

i
5, θ

i
6 being the virtual

spring coordinates corresponding to the spring translational and rotational deflec-

tions;

– a 1-dof passive R-joint between the leg and the platform, allowing one rotation angle

qi3, which is described by the homogeneous matrix function Vr2(q
i
3);

– a rigid link of length r from the manipulator leg to the geometric center of the

mobile platform, which is described by the constant homogeneous transformation

matrix Ti
r;

– a 6-dof virtual spring describing the stiffness of the moving platform, which is defined

by the homogeneous matrix function Vs3 (θ
i
7 · · · θi12), θi7, θi8, θi9 and θi10, θ

i
11, θ

i
12

being the virtual spring coordinates corresponding to translational and rotational

deflections of link CiP ;

– a homogeneous transformation matrix Ti
End characterizes the rotation from the 6-

dof spring associated with link CiP and the manipulator base frame;

The corresponding mathematical expression defining the end-effector location subject to

variations in all above defined coordinates of the ith kinematic chain can be written as

follows:

Ti =Ti
BaseV

i
a

(

qi0
)

Vs1

(

θi0
)

Vr1

(

qi1
)

Ti
LVs2

(

θi1 · · · θi6
)

Vr2(q
i
2)T

i
rVs3

(

θi7 · · · θi12
)

Ti
Base

(2.32)

From Pashkevich et al. (2009b), the kinetostatic model of the ith leg of the 3-PRR PPM

can be reduced to a system of two matrix equations, namely,

[

Si
θ Ji

q

Ji
q 02×2

][

fi

δqi

]

=

[

δti

02

]

(2.33)

where the sub-matrix Si
θ = Ji

θK
i
θ

−1
Ji
θ

T
describes the spring compliance relative to the

geometric center of the moving platform. Ji
θ of size 6× 13 is the Jacobian matrix related

to the virtual springs whereas sub-matrix Ji
q of size 6 × 2 takes into account the passive

joint influence on the moving platform motions.

Ki
θ

−1
matrix, of size 13×13, describes the compliance of the virtual springs and takes the
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form:

Ki
θ

−1
=







Ki
act

−1
01×6 01×6

06×1 Ki
leg

−1
06×6

06×1 06×6 Ki
pf

−1






(2.34)

where,

– Ki
act: 1× 1 stiffness matrix of the ith actuator;

– Ki
leg: 6× 6 stiffness matrix of the ith intermediate leg;

– Ki
pf : 6× 6 stiffness matrix of the ith platform.

The compliance matrices of the intermediate legs and the ith link of the moving platform

are calculated by means of the stiffness model of a cantilever beam, namely,

Ki
−1=





































L
EA

0 0 0 0 0

0
L3

3EIz
0 0 0

L2

2EIz

0 0
L3

3EIy
0 − L2

2EIy
0

0 0 0
L

GIx
0 0

0 0 − L2

2EIy
0

L

EIy
0

0
L2

2EIz
0 0 0

L

EIz





































(2.35)

where,

– L : length of the beam (L = Lb for intermediate legs and L = r for the platform

links);

– A: cross-sectional area of the beam (ALb
= πr2j , Ar = πr2p);

– Iz = Iy: polar moment of inertia about y and z axis, (for intermediate legs and the

moving platform links, their expressions are πr4j/4 and πr4p/4, respectively;

– Ix = Iz + Iy: polar moment of inertia about x-axis or longitudinal axis of the beam;

– E : modulus of elasticity of the material;

– G : modulus of rigidity of the material, (G = E/ (2− 2ν), ν being the Poisson ratio).

If fi is the wrench exerted on the ith leg of the 3-PRR PPM at the geometric center of the

moving platform and δti is the corresponding translational and rotational displacements

vector then the motion-to-force mapping is obtained from Eq. 2.33 by using Cartesian

stiffness matrix Ki of the i
th leg,

fi = Ki δti (2.36)
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Finally, the Cartesian stiffness matrix K of the 3-PRR PPM is found with a simple

addition of Ki matrices, namely,

K =
3

∑

i=1

Ki (2.37)

2.4 Multiobjective Optimization of PKMs-Problem

Formulation

In general, PKMs design process simultaneously deals with two groups of criteria, one

related to the kinematic properties while the other relates to the kinetostatic/dynamic

properties of the mechanism. Both of these groups include a number of performance mea-

sures that essentially vary throughout the workspace but remain within the prescribed

bounds. Kinematic aspects are comparatively less complex and are usually based on the

concept of critical points whereas kinetostatic aspects work with detailed description of

the structure and often requires extensive computing efforts. One of the major design

issues of kinetostatic design is the computation of the stiffness matrix (Pashkevich et al.,

2009a). Keeping in view these complexities and the fact that the kinematic and kineto-

static properties are usually mutually inclusive, a multiobjective optimization approach

is proposed, with simultaneous consideration of performance measures/criteria from both

kinematic and kinetostatic domain. The proposed approach, on the one hand, deals with

the geometric/kinematic design in order to determine the PKM geometry including the

link lengths and the joint limits and on the other hand, it considers the kinetostatic design

to determine the size and the mass properties of the links.

Multiobjective optimization is formulated to determine the optimum geometric parame-

ters of a PKM in order to maximize its workspace as well as to minimize the mass of the

mechanism in motion. The proposed approach operates with the workspace discretization

and the considered performance measures and constrains are evaluated/verified for each

of the workspace grid point.

2.4.1 Optimization objectives

The mass in motion of the mechanism is considered to be the first objective of the optimi-

zation problem. Mass and inertia are functions of PKM dimensions, i.e., the link lengths,

cross-sectional area, thickness. Hence, in general, the total mass of a PKM, mt, is compo-

sed of the mass of the moving platform, mpf , the mass of the nb intermediate links/joints,

mb, and the moving mass of the ns actuators/sliders, ms, i.e.,

mt = mpf + nbmb + nsms (2.38)
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Since the actuators are fixed, their mass is considered to be constant while the mass of the

other two components can easily be calculated by using the geometry of the components

and the density d of their material.Consequently, the first objective of the optimization

problem can be written as:

f1 (x) = mt → min (2.39)

x being the vector of geometric design parameters of the PKM. Maximization of the regu-

lar dextrous workspace is another important aspect of a manipulator design as it defines

the size of the operational space. The quality of the workspace that reflects the shape,

size, presence of singularities is of prime importance in PKM designs. Workspace based

design optimization of PKMs can usually be solved with two different formulations. The

first formulation aims to design a manipulator whose workspace contains a prescribed

workspace and the second approach aims to design a manipulator, of which the works-

pace is as large as possible. However, maximizing the workspace may result to poor design

with regard to the manipulator dexterity and manipulability (Stamper et al., 1997). This

problem can be solved by properly defining the constraints of the optimization problem.

Here, multiobjective optimization problem of PKMs is based on the formulation of works-

pace maximization, i.e, to determine the optimum geometry of PKM in order to maximize

a regular-shaped workspace. Workspace size can be defined by its geometric shape para-

meters like the radius of a circular/spherical workspace or the sides of the cube for a cubic

workspace. If Wc represents the size of the PKM workspace then the design objective will

be:

f2 (x) = Wc → max (2.40)

Other performance measures like the first natural frequency of the manipulator and the

actuators forces can be used either as design objectives or constraints (see Table 2.1).

2.4.2 Optimization Constraints

Besides, the geometric and actuators constraints of the PKM, conditioning of the kine-

matic Jacobian matrix and accuracy obtained from the stiffness characteristics of the

mechanism are considered. Constraining the conditioning of the Jacobian matrix guaran-

tees singularity free workspace whereas limits on accuracy consideration ensure sufficient

mechanism stiffness.

Throughout the workspace, with all possible orientation of the end-effector, the minimum

of the inverse condition number of the kinematic Jacobian matrix is considered to be
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higher than a minimum allowable value, κ−1
min, i.e.,

κ−1 (J) > κ−1
min (2.41)

The position and orientation accuracy is assessed by using the stiffness parameters of the

mechanism. Let (δx, δy, δz) and (δφx, δφy, δφz) be the position and orientation errors of

the end-effector subjected to external forces (Fx, Fy, Fz) and torques (τz, τy, τz). Then the

constraints will be:

δx 6 δxmax δy 6 δymax δz 6 δzmax

δφx 6 δφmax
x δφy 6 δφmax

y δφz 6 δφmax
z

(2.42)

where (δxmax, δymax, δzmax) and
(

δφmax
x , δφmax

y , δφmax
z

)

are respectively the maximum

allowable position and orientation errors of the end-effector. These accuracy constraints

can be expressed in terms of the components of the mechanism stiffness matrix.

2.4.3 Problem Statement

Multiobjective Optimization problem for PKMs can be stated as:

Find the optimum design parameters x of a PKM, in order to minimize the mass in

motion of the mechanism and to maximize its regular shaped workspace subject to some

design constraints, i.e., the inverse condition number of the kinematic Jacobian matrix

and accuracy are higher than prescribed values, throughout the whole workspace.

Mathematically, this problem can be written as:

minimize f1(x) = mt

maximize f2(x) = Wc

over: x

subject to:

κ−1 (J) > κ−1
min

δx 6 δxmax δy 6 δymax δz 6 δzmax

δφx 6 δφmax
x δφy 6 δφmax

y δφz 6 δφmax
z

(2.43)

x being the vector of design parameters of the mechanism.

2.5 Multiobjective Optimization Problem Formula-

tion for a 3–PRR Planar Parallel Manipulator

Multiobjective optimization is formulated to determine the optimum geometric parame-

ters of the mechanism in order to minimize its mass in motion and maximize its regular
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shaped workspace.

2.5.1 Optimization Design Parameters

Along with the above mentioned geometric parameters (R, r, Lb) of the 3-PRR PPM, the

dimension of the circular-cross-section of the intermediate bars defined with radius rj and

the circular-cross-section of the platform bars defined with rp are considered as design

variables, also called decision variables. The platform is assumed to be made up of three

circular bars, each of length r. Hence, the design parameters vector x is given by:

x =
[

R r Lb rj rp

]T

(2.44)

2.5.2 Optimization objectives

The multiobjective optimization problem aims to determine the optimum geometric pa-

rameters of a PKM in order to maximize its workspace as well as to minimize the mass

of the mechanism in motion. Here, the workspace of the mechanism is discretized and

the considered performance measures and constraints are evaluated and verified for each

point.

2.5.2.1 Mass in motion of the mechanism

The mass in motion of the mechanism is considered to be the first objective function

of the optimization problem. Mass and inertia are functions of manipulator dimensions,

i.e., link lengths, cross-sectional area, thickness. Hence, in general, the mass in motion mt

of the mechanism is composed of the mass of the platform, mpf , the mass of the three

intermediate bars, mb, and the mass in motion of the three prismatic actuators, ms:

mt = mpf + 3mb + 3ms (2.45)

Since the actuators are fixed, their mass is considered to be constant while the mass of the

other two components can easily be calculated by using the geometry of the components

and the density d of their material, given as,

mpf = πr2prd, mb = πr2jLbd (2.46)

Consequently, the first objective function of the optimization problem is written as:

f1 (x) = mt → min (2.47)

x being the vector of the geometric design parameters of the mechanism.
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2.5.2.2 Regular workspace size

The quality of the workspace that reflects the shape, size, presence of singularities is

of prime importance in PKM design. In the scope of this work, a circular workspace

defined with its radius Rw is considered. Furthermore, at each point of the workspace,

an angular rotation range ∆φ= 20 ◦ of the platform about the Z-axis can be achieved.

A 3-dimensional schematic of the regular shaped workspace is shown in Fig. 2.6, where

xc, yc are the coordinates of the center of the regular dextrous workspace and φc is the

orientation of the platform at its home-posture (see Fig. 2.3).

Rw

∆φ

(xc, yc, φc)

Figure 2.6 – 3-PRR workspace

Consequently, in order to maximize the manipulator workspace, the second objective of

the optimization problem can be written as:

f2 (x) = Rw → max (2.48)

2.5.3 Optimization constraints

Besides, the geometric and actuators constraints of the PKM, conditioning of the kine-

matic Jacobian matrix and accuracy obtained from the stiffness characteristics of the

mechanism are considered. Constraining the conditioning of the Jacobian matrix guaran-

tees singularity free workspace whereas limits on accuracy consideration ensure sufficient

mechanism stiffness.

2.5.3.1 Geometric Constraints

The first constraint is related to the mechanism assembly, namely,

Lb + r > R/2 (2.49)
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In order to avoid prismatic joints intersection, the lower and upper bounds of the prismatic

lengths are defined as follows:

0 < ρi <
√
3R (2.50)

2.5.3.2 Condition number of the kinematic Jacobian matrix

For the design optimization of 3-PRR PPM, the minimum of the inverse condition number

of the kinematic Jacobian matrix, κ−1 (J), is supposed to be higher than a prescribed value,

say 0.1, throughout the manipulator workspace, for any rotation of its end-effector, i.e.,

min
(

κ−1 (J)
)

> 0.1 (2.51)

2.5.3.3 Accuracy constraints

The position and orientation accuracy is assessed by using the stiffness parameters of the

mechanism. Let (δx, δy, δz) and (δφx, δφy, δφz) be the position and orientation errors

of the end-effector subjected to external forces (Fx, Fy, Fz) and torques (τz, τy, τz). The

constraints related to the accuracy of the manipulator are defined as follows:

δx 6 δxmax δy 6 δymax δz 6 δzmax

δφx 6 δφmax
x δφy 6 δφmax

y δφz 6 δφmax
z

(2.52)

(δxmax, δymax, δzmax) being the maximum allowable position errors and
(

δφmax
x , δφmax

y , δφmax
z

)

the maximum allowable orientation errors of the end-effector. These accuracy constraints

can be expressed in terms of the components of the mechanism stiffness matrix and the

wrench applied to the end-effector. Let us assume that the accuracy requirements are:

√

δx2 + δy2 6 0.0001m (2.53a)

δz 6 0.001m (2.53b)

δφz 6 1 deg (2.53c)

If the end-effector is subjected to a wrench, whose components are ‖Fx,y‖= Fz = 100N

and τz=100Nm, then the accuracy constraints can be expressed as:

kmin
xy > ‖Fx,y‖ /

√

δx2 + δy2 = 106 N.m-1 (2.54a)

kmin
z > Fz/δz = 105 N.m-1 (2.54b)

kmin
φz

> τz/δφz =
10

π/180
N.m.rad-1 (2.54c)
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2.5.4 Multiobjective Optimization Problem Statement

Multiobjective optimization problem for a 3–PRR PPM can be stated as:

Find the optimum design parameters x of a 3–PRR PPM in order to minimize the mass

in motion of the mechanism and to maximize its regular shaped workspace subject to some

design constraints, i.e., the inverse condition number of the kinematic Jacobian matrix and

accuracy are to be higher than prescribed values throughout the manipulator workspace.

Mathematically, the problem can be written as:

minimize f1(x) = mt (2.55)

maximize f2(x) = Rw

over x =
[

R r Lb rj rp

]T

subject to : g1 : Lb + r >
R

2

g2 : 0 < ρi <
√
3R

g3 : κ
−1 (J) > 0.1

g4 : k
min
xy >

Fx,y
√

δx2 + δy2
= 106

g5 : k
min
z >

Fz

δz
= 105

g6 : k
min
φz

>
τz
δφz

=
10

π/180

xlb 6 x 6 xub

where xlb and xub are the lower and upper bounds of x, respectively.

2.5.5 Optimization Results

The multiobjective optimization problem formulated with Eq. (2.55) is solved by means of

modeFRONTIER ESTECO (2008) and by using its built-in multiobjective optimization

algorithms. MATLAB code is incorporated in order to analyze the system and to get the

numerical values for the objective functions and constraints that are analyzed in mode-

FRONTIER for their optimality and feasibility. A screen-shot of the modeFRONTIER

model, with five design variables, six constraints and two objective functions, is shown in

Fig. 2.7. The lower and upper bounds of the design variables are given in Table 2.2. The

manipulator is supposed to be built of steel with a density equal to d=7850 kg/m3 and a

Young modulus equal to E=210×109N/m2.

modeFRONTIER is a platform for multi-objective design optimization that integrates
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Design Variable R r Lb rj rp
Lower Bound (lb) [m] 0.05 0.05 0.05 0 0
Upper Bound (ub) [m] 4 4 4 0.1 0.1

Table 2.2 – Lower and upper bounds of the design variables

various CAE (Computer Aided Engineering) tools. Using a variety of optimization tech-

niques, the optimization process can be modeled by specifying objectives, constraints and

design variables in a graphical user interface environment. The main modeFRONTIER

blocks are the External Script and the Scheduler blocks. The External Script block is

used to solve or analyze the problem by accessing external applications like MATLAB,

CATIA, NASTRAN, etc. The Scheduler block, composed of DOE (Design Of Experi-

ments) and Scheduler components, is the starting point of the logic flow and is the main

governing body of the optimization process. It is used to generate and evaluate different

design alternatives. The DOE is used to generate a data base of design configurations as

the initial population for the optimization algorithms. It gives a preliminary exploration of

the design space by means of a variety of DOE -algorithms. Schedulers take DOE data as

input and use it as an initial population. These schedulers are basically optimization algo-

rithms based on various optimization techniques, designed to handle both mono-objective

and multi-objective problems. The Logic End blocks are used to complete the logic flow

process and to identify a termination point for the process flow. Several of these blocks

can be placed within a project, both to indicate successful and unsuccessful endings.

For each design iteration, workspace coordinates limits are calculated based on the set of

design parameters of the mechanism. Then, workspace discretization is performed with

respect to its x, y coordinates and with respect to the orientation angle φ of the moving

platform. The constraints of the problem are evaluated at each grid point of the workspace.

Table 2.3 – modeFRONTIER algorithm parameters

Scheduler MOGA-II

Number of iterations 200

Directional cross-over probability 0.5

Selection probability 0.05

Mutation probability 0.1

DNA string mutation ratio 0.05

DOE algorithm Sobol

DOE number of designs 30

Total number of iterations 30× 200 = 6000

A multiobjective genetic algorithm (MOGA) is used to obtain the Pareto frontier based

on the mechanism mass and the workspace radius. modeFRONTIER scheduler and Design
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R

r

Lb

rj

rp

Inputs
(Design Variables)

Outputs

LbrR

ρi

κ−1 (J)

kxy

kz

kδφz

Mass

Rw

g1

g2

g3

g4

g5

g6

f1

f2

Objective Functions

Constraints

Logic Ends

External Script
(MATLAB Code)

Scheduler Block
DOE Scheduler

Figure 2.7 – modeFRONTIER model for 3–PRR PPM Optimization

Of Experiments (DOE) parameters are given in Table 2.3. MATLAB is used to process

and analyze the system for any individual of the current population (generated by the

modeFRONTIER scheduler). Corresponding to each population set, MATLAB returns

the output variables that are analyzed by modeFRONTIER for the feasible solutions

according to the given constraints. At the end, the Pareto-optimal solutions are obtained

from the generated feasible solutions.

The Pareto frontier is shown in Fig. 2.8 whereas the design parameters and the correspon-

ding objective functions for two extreme and one intermediate Pareto optimal solutions,

as shown in Fig. 2.8, are depicted in Table 2.4.

The designs associated with the three foregoing solutions are shown in Fig. 2.10.

Figure 2.11 illustrates the variational trends as well as the inter-dependency between the

objective functions and design variables by means of a scatter matrix. The lower triangular

part of the matrix represents the correlation coefficients, ξ, whereas the upper one shows

the corresponding scatter plots. The diagonal elements represent the probability density
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Figure 2.8 – Pareto frontier for 3-PRR optimization problem

charts of each variable. The correlation coefficients vary from -1 to 1. Two variables are

strongly dependent when their correlation coefficient is close to 1 or -1 and independent

when the latter is null.

Figure 2.11 shows that:

– Both objectives functions mt and Rw are strongly dependent as their correlation

coefficient is equal to 0.907;

– Both objectives functions mt and Rw are strongly dependent of all design variables

as all of the corresponding correlation coefficients are greater than 0.7;

Design
ID

Design Variables Objectives

R [m] r [m] Lb [m] rj [m] rp [m] mt [kg] Rw [m]

I 1.412 0.319 0.620 0.026 0.023 44.5 0.110

II 3.066 1.283 1.896 0.036 0.056 484.8 1.207

III 3.872 1.947 1.977 0.039 0.096 1545.6 1.609

Table 2.4 – Three Pareto optimal solutions
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Figure 2.9 – Design variables as a function of Rw for the Pareto-optimal solutions

– Rw (ξ>0.830) is slightly more dependent than mt (0.7116 ξ60.981) of the design

variables;

Figure 2.9 illustrates the design variables R, r, Lb, rj and rp as a function of Rw for

the Pareto-optimal solutions. It is noteworthy that the higher Rw, the higher the design

variables. It is apparent that the variations in variables R, r, Lb and rj with respect

to (w.r.t.) Rw are almost linear whereas the variations in rp w.r.t. Rw is rather quadratic.

As a matter of fact, it should be due to the fact that the higher the size of the mechanism

the higher the bending of the moving platform links whereas the intermediate links are

mainly subjected to tension and compression. Finally, the three sets of design variables

corresponding to the Pareto-optimal solutions depicted in Fig. 2.8 are shown in Fig. 2.9

by means of the green, pink and red symbols.

2.6 Conclusion

In this chapter the problem of dimensional synthesis of parallel kinematics machines was

addressed. A multiobjective design optimization problem was formulated in order to deter-
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Regular Workspace

(a) ID–I

Regular Workspace

(b) ID–II

Regular Workspace

(c) ID–III

Figure 2.10 – CAD Designs of three Pareto-optimal solutions

mine optimum structural and geometric parameters of any parallel kinematics machine.

The proposed approach is similar to that used in Altuzarra et al. (2009) but we took

into account the mass and the regular workspace instead of considering the entire vo-

lume of the manipulator. The proposed approach was applied to the optimum design of

a three-degree-of-freedom planar parallel manipulator with the aim to minimize the mass
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Figure 2.11 – Scatter matrix illustrating the correlations between the objective functions and the
design variables

in motion of the mechanism and to maximize its regular shaped workspace.

It is apparent that other performance indices can be used as constraints. However, they

cannot necessarily be used as objective functions as the latter are usually formulated as

a sum of an index over all the manipulator workspace. As an other constraint, we could

use the collisions between the legs of the manipulator as illustrated in Lou et al. (2008).

In this chapter, actuators are considered to be fixed and their selection has not been

considered. Accordingly, the next chapter deals with the actuators selection based on the

kinematic and dynamic analysis of the PKMs.
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This chapter focuses on the kinematic and dynamic analysis of the Orthoglide 5-axis,

a spatial Parallel Kinematics Machine (PKM) developed for high speed operations. The

analysis is carried out firstly for the 2-dof spherical wrist of the Orthoglide 5-axis and

then for the complete mechanism. Finally, some test trajectories are used to analyze the

results and a procedure is proposed for the motors selection.

3.1 Orthoglide 5-axis

The Orthoglide 5-axis, illustrated in Fig. 3.1, is a hybrid PKM composed of a 2-dof sphe-

rical wrist mounted on a 3-dof translational parallel manipulator (Chablat and Wenger,

2005). The Orthoglide 3-axis is a Delta-type PKM (Clavel, 1988) dedicated to 3-axis ra-

pid machining applications developed at the Institut de Recherche en Communications et
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Figure 3.1 – Prototype of the Orthoglide-5axis (IRCCyN)

Cybernétique de Nantes (IRCCyN) (Wenger and Chablat, 2000). This mechanism is com-

posed of three identical legs. Each leg is made up of a prismatic joint, two revolute joints

and a parallelogram joint, also called Π joint. Each leg generates two constraint moments,

i.e., constrains two rotation of the mobile platform. Therefore, the intersection of three

legs constrains its three rotations in order to come up with pure three-dof translational

motion. A photograph of the Orthoglide 3-axis is shown in Fig. 3.2.

Orthoglide 3-axis gathers the advantages of both serial and parallel kinematics architec-

tures such as regular dexterous workspace, homogeneous performance, good compactness

(Pashkevich et al., 2005), good dynamic performances and high stiffness (Pashkevich et al.,

2009b).

The two-dof spherical wrist implemented in Orthoglide 5-axis is derived from the Agile

Eye, a three-dof spherical wrist developed by Gosselin and Hamel (1994). This two-dof

spherical wrist was designed to be more stiff (Chablat and Wenger, 2007). A CAD model

of the Orthodlide 5-axis spherical wrist is shown in Fig. 3.3. It has a closed kinematic

chain, composed of five links connected by means of revolute joints. The two revolute

joints connected to the base are actuated ones. It is apparent that the revolute joints

axes intersect, this common intersection being necessary to obtain a spherical wrist. The

dimensions of the Orthoglide 5-axis were determined in order to get a 0.5 × 0.5 × 0.5

m3 cube within the overall workspace of the prototype. The geometric parameters of the
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Figure 3.2 – Orthoglide 3-axis (courtesy: CNRS Photothéque/CARLSON Leif)

Motor-I

Motor-II

Proximal-I Proximal-II

Terminal

Fixed Frame or Base

Figure 3.3 – Spherical wrist of Orthoglide 5-axis
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Figure 3.4 – Orthoglide 5-axis workspace

manipulator are function of the size of the prescribed cubic Cartesian workspace, namely,

its edge length Lworkspace (Pashkevich et al., 2009b), as shown in Fig. 3.4. The base frame

Fb is defined with the unit vector ei in the direction of the ith prismatic joint, namely, X,

Y and Z, the origin O being the intersecting point of ei (Fig. 3.4). Two points Q+ and

Q− are defined in such a way that the velocity transmission factor is equal to 1/2 and 2 at

these two points, respectively (Chablat and Wenger, 2003). A cube is then constructed,

Q+Q− being its diagonal. It should be noted that the cubic workspace center, i.e., point

C, and the origin O of the reference frame coincide, as shown in Fig. 3.5. In the scope of

this study, Lworkspace is equal to 0.500m. Accordingly, the Cartesian coordinates of points

Q+, Q− and C for this workspace are given in Table 3.1. Similarly, the prismatic actuator

bounds, ρmin and ρmax, can be evaluated (Pashkevich et al., 2009b).
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Table 3.1 – Orthoglide 5-axis workspace parameters

Workspace size Lworkspace = 0.500m
Point Cartesian coordinates [m]
O (0, 0, 0)
C (−0.077, − 0.077, − 0.077)
Q+ (0.183, 0.183, 0.183)
Q− (−0.317, − 0.317, − 0.317)

X [m]
Y [m]

Z
[m

]

C

O

Q+

Q−

X Y

Z

-0.2
0
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Figure 3.5 – Orthoglide 5-axis cubic workspace (0.5× 0.5× 0.5 m3)

3.2 Trajectory Planning

In order to analyze the kinematic and dynamic performance of the Orthoglide 5-axis, two

test trajectories are proposed. The inverse kinematic and dynamic problems of the mani-

pulator are solved for both the Orthoglide 3-axis and the wrist for these test trajectories.

The Orthoglide 5-axis has a quasi-cubic workspace free of singularity and any trajectory

can be carried out throughout the workspace. As a remainder, the cubic workspace center,

i.e., point I , and the origin Ob of the reference frame do not coincide. The position vector

of the cubic workspace center point I is expressed as dr = [dx dy dz]T . Here, the

geometric centre of the path of the test trajectories is supposed to be point I.

The test trajectories are defined as follows:

– Semi-circle of radius R in the vertical plane or in the Y Z-plane,

– Circle of radius R in the horizontal plane or in the XY -plane with a constant

orientation of vector v with the Z-axis.

For these two test trajectories, the velocity of the end-effector, i.e., point P , along the
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path is constant. Accordingly, for a given test trajectory, the position and velocity of the

end-effector can be evaluated as a function of time.

3.2.1 Trajectory-I: Semi-circle of radius R

The semi-circular trajectory-I, in a plane perpendicular to XY -plane, is defined by radius

R, trajectory angle ψ with Y -axis, trajectory plane orientation angle φ (angle between

the trajectory plane and X-axis) and vector v orientation angle δ, as shown in Fig. 3.6.

v

dr

δ

δi = π/6

δf = 5π/6

R

X
Y

Z

P

ψ
φ

I

O

Tool Tip

0.5 m

0.
5
m

0.5
m

Wrist Tool Axis

Wrist Tool Axis

Figure 3.6 – Orientation of vector v (Traj I)

Position vector p and wrist orientation vector v are given by:

p =







px

py

pz






=







dx+R cosψ cosφ

dy +R cosψ sinφ

dz +R cosψ






(3.1)

v =







vx

vy

vz






=







− cos δ cosφ

− cos δ sinφ

− sin δ






(3.2)

where δ varies from π/6 to 5π/6 while ψ varies from 0 to π.

Trajectory time t is calculated by using the constant velocity Vp of the end-effector and
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the length of the trajectory, i.e.

t =
R (ψf − ψi)

Vp
(3.3)

ψf and ψi being the initial and the final values of the trajectory angle (0 and π respecti-

vely).

3.2.2 Trajectory-II: Circle of radius R

In this case, the angle of vector v with the vertical or Z-axis is γ and vector v goes

through a circular trajectory in horizontal plane, defined with radius R and angle ψ, as

shown in Fig. 3.7.

vdr

ψ

γ
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Y

Z
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I

Tool Tip
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5
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Figure 3.7 – Orientation of vector v (Traj II)

Position vector p and wrist orientation vector v are given by:

p =







px

py

pz






=







dx+R cosψ

dy +R cosψ

dz






(3.4)

v =







vx

vy

vz






=







sin γ sinψ

sin γ cosψ

− cos γ






(3.5)
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with ψ varying from 0 to 2π, the trajectory time being t =
2πR

Vp
.

3.3 Kinematics and Dynamics of the 2-dof Spherical

Wrist of Orthoglide 5-axis

A spherical mechanism can orient or move the end-effector about the center of rotation of

the mechanism. A typical 3-dof spherical manipulator provides the three dimensional (3D)

rotations like a human hand. However, in most machining applications only 2D rotations

are sufficient. Rotation about the axis of symmetry of the end-effector is not necessary

and if required, can be provided independently.

Several researchers have worked in the domain of spherical mechanisms mainly for the

applications of end-effector orientations. One of the earlier spherical mechanisms is that

presented in the work of Asada and Granito (1985) which is a 3-dof spherical wrist with

coaxial motors and three kinematics chains. Craver (1989) analyzed a spherical robotic

shoulder module. Other major publications to the research and development of the sphe-

rical mechanism are the work of Gosselin and Angeles (1988, 1989); Gosselin and Lavoie

(1993) where optimum kinematic designs of different types of spherical parallel mecha-

nisms are presented. The Agile Eye, one of the most famous spherical mechanisms desi-

gned by Gosselin and Hamel (1994), is a 3-dof parallel mechanism developed to control

the orientation of a camera. Several mechanisms have been derived for diverse applications

from the Agile Eye. Spherical mechanisms can be implemented in several domains like,

in radar applications (Dunlop and Jones, 1999), camera manipulations (Caron, 1997) and

surgical applications (Lum et al., 2006). Cavallo and Michelini (2004) introduced a 3-dof

spherical parallel mechanism composed of three identical kinematic chains to orient the

propeller and duct of a small autonomous underwater vehicle (AUV). Main contributions

for the design and analysis of spherical mechanisms are reported in (Asada and Granito,

1985; Gosselin and Angeles, 1988, 1989; Gosselin and Lavoie, 1993; Gosselin and Hamel,

1994; Innocenti and Castelli, 1993; Alizade et al., 1994; Tsai, 1999; Karouia and Hervè,

2002; Merlet, 2006c).

In this section, the kinematic and dynamic analysis of the 2-dof spherical wrist of Ortho-

glide 5-axis is presented. Here, we focus on the evaluation of the velocities, accelerations

and the torques required by the actuators of the spherical wrist. First, the kinematics of the

spherical wrist is studied and then its dynamics is analyzed by means of the Newton-Euler

approach. The geometric and inertial parameters are determined with a CAD software.

The performance of the manipulator is emphasized by means of several test trajectories.

Finally, the actuators are selected from the catalogue based on the velocities and torques

required by the actuators to carry out the test trajectories.

As already mentioned, the Orthoglide 5-axis wrist is derived from the Agile Eye, hence
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it follows identical kinematic and dynamic behaviour as discussed in (Caron, 1997) for a

camera manipulator. Therefore, in order to derive the kinematic and dynamic models of

the Orthoglide 5-axis wrist, we used a similar approach and nomenclature as presented

by Caron (1997). However, subsequent modifications are made, as the architecture of the

Orthoglide 5-axis wrist is not the same as that of the said camera manipulator with regard

to the distal and the proximal-II geometry and application. Moreover, the influence of the

external and/or machining forces on the dynamic performance is also considered.

3.3.1 Spherical Wrist Kinematic Model

3.3.1.1 Notations and symbols for the spherical wrist analysis

Following nomenclature is used exclusively for the kinematic and dynamic analysis of the

Orthoglide wrist:

t : Terminal

d : Distal

p1 : Proximal-I

p2 : Proximal-II

ei : Unit vector along the ith articulations

a to h : Forces

A to H : Components of forces

m to r : Moments

M to R : Components of moments

fg : Gravitational force

Fg : Components of gravitational force

fc : Machining or cutting force

Fc : Components of Machining or cutting force

g : Vector of gravitational acceleration

m : Mass of the components

j : Inertial force

J : Components of inertial force

a : Acceleration vector of center of mass

k : Inertial terms

K : Components of inertial terms

I : Inertia matrix

li : Distance between the geometric center and center of mass along

the ith direction

Li : Distance between the geometric center and the point of application of

the force along the ith direction

Lc : Distance between the machining tool tip and the wrist geometric center
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ω, ω̇ : Angular velocity and acceleration

αi : Angle between Zi and Zi+1

Ri (Xi, Yi, Zi) : Reference frame associated with the ith articulation

v : Orientation vector of the end-effector

3.3.1.2 Reference frames and Wrist DH–parameters

The spherical wrist of the Orthoglide 5-axis is composed of a closed kinematic chain made

up of five components: proximal-I, proximal-II, distal, terminal and the base. These five

links are connected by means of revolute joints, of which axes intersect at the center of the

mechanism. Besides, only the two revolute joints connected to the base of the wrist are

actuated. The distal has an imaginary axis of rotation passing through the intersection

point of other joint axis and perpendicular to the plane of proximal-II. A unit vector ei

and a reference frame Ri are associated to each joint, the Zi-axis and ei being coincident.

The angle between e1 and e2 is denoted by α0 and the angle between ei and ei+2 is denoted

by αi, for i = 1 · · · 4. Reference frame R1 is defined in such a way that Z1-axis coincides

with e1, and e2 lies in the X1Z1-plane. Similarly R2 has its Z2-axis in the direction of e2,

and e1 lies in the X2Z2-plane. Reference frame Ri (i = 3, 4, 5, 6) with Zi = ei are defined

by the rotation of frame Ri−2 and following the Denavit-Hartenberg (DH) conventions.

DH-conventions for the Orthoglide wrist are summarized as follows:

– Zi: axis of the i
th joint;

– Xi: common perpendicular to Zi−2 and Zi;

– Yi: respecting the right hand rule;

– ai: distance between Zi and Zi+2;

– bi: distance between Xi and Xi+2;

– αi: angle between Zi and Zi+2 about Xi+2;

– θi: angle between Xi and Xi+2 about Zi.

As all joint axes intersect at a common point, the origin of all frames are the same

i.e., ai = bi = 0. Figure 3.8 shows the orientations of reference frames attached to the

Orthoglide wrist according to the DH-convention. The corresponding DH-parameters are

given in Table 3.3.

3.3.1.3 Kinematics of the Orthoglide wrist

The kinematic equations of the Orthoglide wrist are developed with the help of the refe-

rence frames defined above and the DH-parameters. Vector v depicts the orientation of

the wrist end-effector (cutting tool etc), which is defined in reference frame R5 by means
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Y6

X1

X2

X3

X4

X5

X6

Y1

Y2

Y3

Y4

Y5

Z1

Z2

Z3

Z4

Z5

Z6

e1

e2

e3

e4

e5

v

θ1

θ2

θ3

θ4

α1

α2

α3

α4

Motor-I

Motor-II
Proximal-I

Proximal-II

Terminal

Distal

Figure 3.8 – Orientations of reference frames according to DH-Conventions for the Orthoglide
Wrist

of the three angles β1, β2 and γ illustrated in Fig. 3.9-(a):

– β1 being the angle between e5 and the projection of v to e3 − e5-plane;
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Table 3.3 – DH-parameters for Orthoglide wrist

i ai bi αi

θi

time t home configuration

0 0 0 π/2 - -

1 0 0 π/2 θ1 −π/2
2 0 0 π/2 θ2 π/2

3 0 0 π/2 θ3 π/2

4 0 0 π/2 θ4 −π/2

– β2 being the angle between v and e3 − e5-plane;

– γ being the angle between v and e3.

The expression of v in R5 is then defined as,

v5 =
[

sin β2 sin β1 cos β2 cos β1 cos β2

]T

(3.6)

Since vectors v and e5 coincide (Fig. 3.8), i.e. v = e5, β1 = β2 = 0 and γ = π/2. The

orientation of vector v is defined in reference frame R1 by the Pan (φ1) and Tilt (φ2)

angles as shown in Fig. 3.9-(b). With the definitions of φ1 and φ2, the components of v

in R1 are given by:

v1 =
[

cosφ1 cosφ2 sinφ1 cosφ2 sinφ2

]T

(3.7)

with,

φ1 = tan−1 vy1
vx1

φ2 = tan−1 vz1
√

v2x1 + v2y1

(3.8)

Finally, the inverse kinematic problem of the wrist can be derived from v, α, β1, β2, γ, φ1

and φ2. The relations for the joints variables (θ1, θ2, θ3, θ4) are summarized in Table 3.4

Caron (1997).

From Table 3.4, θ1 and θ2 can have two solutions but while considering the geometry of

the mechanism only one of the latter is possible. These relations are given in Table 3.5.

Similarly, analytical relations of joints rates, i.e. joints velocities and acceleration can be

obtained with the help of the previous relations of joint displacements and unit vectors ei.

These relations are given in Annex A, however, numerical techniques, like finite difference

method can also be used to obtain joint velocities and accelerations.
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Table 3.4 – Relations of θ1, θ2, θ3, θ4

θ1 = tan−1

(

2T

1− T 2

)

T =
−B ±

√
B2 − 4AC

2A

A = vzcα1 + vysα1 − cγ

B = 2vxsα1

C = vzcα1 − vycα1 − cγ

θ3 = tan−1

(

a× e+ b× d

a× d− b× e

)

a = sβ2

b = sα3cβ1cβ2 − cα3sβ1cβ2

d = vxcθ1 + vysθ1

e = −vxsθ1cα1 + vycθ1cα1 + vzcα1

θ2 = tan−1

(

2T

1− T 2
2

)

ux = sθ1sα1cα3 + sθ1cθ3cα1sα3 + cθ1sθ3sα3

uy = −cθ1sα1cα3 − cθ1cθ3cα1sα3 + sθ1sθ3sα3

uz = cα1cα3 − cθ3cα1cα3

A2 = uxsα0cα2 + uysα2 + uzcα0cα2 − cα4

B2 = 2 (uxcα0sα2 − uzsα0sα2)

C2 = uxsα0cα2 − uysα2 + uzcα0cα2 − cα4

T2 =
−B2 ±

√

B2
2 − 4A2C2

2A2

θ4 = tan−1

(

s4
c4

) s4 =
uxcθ2cα0 + uysθ2 − uzcθ2sα0

sα4

c4 =
a4 + b4 + d4

sα4

NB:- c and s stands for cosine and sine functions respectively

Table 3.5 – Summary of θ1, θ2, θ3, θ4 relations

θi Functional relation Possible solutions Feasible solution Home config.

θ1 θ1 = f (vx, vy, vz, α1, γ) 2 (θ11, θ12) θ11 with T =
−B +

√
B2 − 4AC

2A
−π/2

θ2 θ2 = f (θ1, θ2, αi) i = 0 · · · 4 2 (θ21, θ22) θ22 with T =
−B −

√
B2 − 4AC

2A
π/2

θ3 θ3 = f (vx, vy, vz, θ1, α1, α3, β1, β2) 1 (θ3) θ3 π/2

θ4 θ4 = f (θ1, θ2, θ3, αi) i = 0 · · · 4 1 (θ4) θ4 −π/2
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Y1

X1

Z1

v

φ1

φ2

(a) v in R1

X5

Y5

Z5

β1

β2γ

v

Vx

Vy

Vz

e3

e5

(b) v in R5

Figure 3.9 – Definition of v in frames R1 and R5

3.3.2 Spherical Wrist Dynamic Model

Dynamic analysis is of primary importance to investigate the forces and moments applied

to the actuators to carry out a desired task or motion by the manipulator.

As a first step, the wrist joints displacements are calculated from the kinematic model

as discussed in the previous section. Velocities and accelerations of each component are

obtained with the help of kinematic modeling. Similarly, the first and second derivatives of

the unit vectors e1, e2, e3, e4 and e5 are calculated. Detailed relations of these calculations

are obtained from Caron (1997) and given in Annex A. Finally, a system of equilibrium

equations, obtained from the free body diagrams of each wrist component, is used to get

the relations of actuators torques. A flow chart of the torques calculations methodology

is given in Fig. 3.10. In the following sections, the simplified equilibrium equations for the

Orthoglide wrist are developed by means of the Newton-Euler approach.

3.3.2.1 Equilibrium Equations

In order to draw the Free Body Diagrams (FBD) and consequently to write the equilibrium

equations for terminal, distal, proximal-I and proximal-II, Newton-Euler approach is used

with the following assumptions:

– friction forces are neglected;

– a spherical joint is assumed between the distal and the terminal link to obtain an

isostatic mechanism;

– a planar joint between the distal and the proximal -2 is considered.
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Geometric and inertial properties of the wrist

Motors inertia, Reduction ratio

Given Trajectory

kt, kd, kp1, kp2

kt, kd, kp1, kp2

e1, e2, e3, e4, e5 (in frame R1)

ωt, ωd, ωp1, ωp2

ω̇t, ω̇d, ω̇p1, ω̇p2

ë1, ë2, ë3, ë4, ë5

at, ad, ap1, ap2 (accelerations)

fgt, fgd, fgp1, fgp2

Jt, Jd, Jp1, Jp2

Components of fgt, Jt, kt along e3, e5 and e3 × e5
Components of fgd, Jd, kd along e4, e5 and e4 × e5

Components of fgp1,Jp1,kp1 along e1, e3 and e1 × e3
Components of fgp2, Jp2, kp2 along e2, e4 and e2 × e4

Simplified Equilibrium Equations

Torque Actuator-I

Torque Actuator-II

Figure 3.10 – Flow chart of wrist dynamic model
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With these assumptions, the FBD of terminal, distal, proximal-1 and proximal-2 are

drawn, as shown in Figs. 3.11 to 3.14. The forces and moments exerted on the four

moving wrist components are summarized below:

– two forces a and b and one moment m are exerted on the terminal;

– two forces c and c are exerted on the distal link;

– two forces g and h and two moments n and p are exerted on the proximal-1;

– two forces e and f and a moment r are exerted on the proximal-2.

These forces and moments are resolved into orthogonal components with respect to the

attached unit vectors. A set of 24 equilibrium equations is written for the moving compo-

nents of the wrist.

3.3.2.2 Terminal-Equilibrium Equations

There are two forces a and b and one moment m acting on the terminal. The components

of these forces and moments are shown in the terminal FBD in Fig. 3.11. The equilibrium

equations corresponding to the FBD of terminal are given by:

(a) CAD model

v

e1

e2

e3

e4

e5

Be3

Be5

Be3×e5

Ae3

Ae5

Ae3×e5

Me5

Me3×e5

(b) FBD

Figure 3.11 – CAD model and FBD of terminal
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∑

Fe3
= Ae3

+ Be3
+ F t

ge3
= J t

e3
(3.9a)

∑

Fe5
= Ae5

+ Be5
+ F t

ge5
= J t

e5
(3.9b)

∑

Fe3×e5
= Ae3×e5

+ Be3×e5
+ F t

ge3×e5
= J t

e3×e5
(3.9c)

∑

Me3
= −Lt

e5
Be3×e5

− lt
e3×e5

F t
ge5

+ lt
e5
F t
ge3×e5

= Kt
e3

(3.9d)
∑

Me5
=Me5

− Lt
e3
Ae3×e5

− lt
e3
F t
ge3×e5

+ lt
e3×e5

F t
ge3

= Kt
e5

(3.9e)
∑

Me3×e5
=Me3×e5

+ Lt
e5
Be3

+ Lt
e3
Ae5

+ lt
e3
F t
ge5

− lt
e5
F t
ge3

= Kt
e3×e5

(3.9f)

where F t
ge3

, F t
ge5

, F t
ge3×e5

are the gravity terms, Kt
ge3

, Kt
ge5

, Kt
ge3×e5

are the inertial terms

(function of angular velocity, acceleration and inertia matrix) and J t
ge3

, J t
ge5

, J t
ge3×e5

are

the inertial forces (function of linear acceleration and mass) on the terminal along e3, e5

and e3× e5 directions, respectively. Other variables used in these equations are defined in

the next section.

3.3.2.3 Distal-Equilibrium Equations

Only two forces c and d act on the distal. Components of these two forces are shown in

FBD of distal in Fig. 3.12. Equilibrium equations corresponding to this FBD are given

by:

 

(a) CAD model

v

e1

e2

e3

e4

e5

Ce4

Ce5

Ce4×e5

De4

De5

Cg

Cm

X4

(b) FBD

Figure 3.12 – CAD model and FBD of Distal
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∑

Fe4
= Ce4

+De4
+ F d

ge4
= Jd

e4
(3.10a)

∑

Fe5
= Ce5

+De5
+ F d

ge5
= Jd

e5
(3.10b)

∑

Fe4×e5
= Ce4×e5

+ F d
ge4×e5

= Jd
e4×e5

(3.10c)
∑

Me4
= −Ld

e5
Ce4×e5

+ ld
e5
F d
ge4×e5

− ld
e4×e5

F d
ge5

= Kd
e4

(3.10d)
∑

Me5
= −ld

e4
F d
ge4×e5

+ ld
e4×e5

F d
ge4

= Kd
e5

(3.10e)
∑

Me4×e5
= Ld

e5
Ce4

+ Ld
e4
De5

+ Ld
e5
De4

+ ld
e4
F d
ge5

− ld
e5
F d
ge4

= Kd
e4×e5

(3.10f)

where F d
ge4

, F d
ge5

, F d
ge4×e5

are the gravity terms, Kd
ge4

, Kd
ge5

, Kd
ge4×e5

are the inertial terms

and Jd
ge4

, Jd
ge5

, Jd
ge4×e5

are the inertial forces on the distal along e4, e5 and e4×e5 directions,

respectively.

3.3.2.4 Proximal–I-Equilibrium Equations

There are two forces g and h and two moments n and p acting on the proximal-I. Fig. 3.13

shows the FBD of proximal-I with the components of these forces and moments. Equili-

brium equations corresponding to the FBD are given by:

∑

Fe1
= Ge1

+He1
+ F p1

ge1
= Jp1

e4
(3.11a)

∑

Fe3
= Ge3

+He3
+ F p1

ge3
= Jp1

e3
(3.11b)

∑

Fe1×e3
= Ge1×e3

+He1×e3
+ F p1

ge1×e3
= Jp1

e1×e3
(3.11c)

∑

Me1
= Ne1

+ Pe1
+ Lp1

e3
Ge1×e3

+ lp1
e3
F p1
ge1×e3

− lp1e1×e3
F p1
ge3

= Kp1
e1

(3.11d)
∑

Me3
= Pe3

− Lp1
e1
He1×e3

− lp1
e1
F p1
ge1×e3

+ lp1e1×e3
F p1
ge1

= Kp1
e3

(3.11e)
∑

Me1×e3
= Ne1×e3

+ Pe1×e3
+ Lp1

e1
He3

+ Lp1
e3
Ge1

− lp1
e3
F p1
ge1

+ lp1
e1
F p1
ge3

= Kp1
e1×e2

(3.11f)

where F p1
ge1

, F p1
ge3

, F p1
ge1×e3

are the gravity terms, Kp1
ge1

, Kp1
ge3

, Kp1
ge1×e3

are the inertial terms

and Jp1
ge1

, Jp1
ge3

, Jp1
ge1×e3

are the inertial forces on the proximal–I along e1, e3 and e1 × e3

directions, respectively.

3.3.2.5 Proximal–II-Equilibrium Equations

Two forces e and f and a moment r act on the proximal-II. Components of these forces

and moment are shown in the FBD of proximal–II in Fig. 3.14. Equilibrium equations
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(a) CAD model

v

e1

e2

e3

e4

e5

Ge1

Ge3

Ge1×e3

He1

He3
He1×e3

Ne1

Ne1×e3

Pe1

Pe3
Pe1×e3

(b) FBD

Figure 3.13 – CAD model and FBD of Proximal-1

(a) CAD model

v

e1

e2

e4

e5

e2 × e4
Fe2

Fe4

Fe2×e4

Ee4

Ee2×e4

Re2

Re4

Re2×e4

X3

d1

d2
rp2

rp2

(b) FBD

Figure 3.14 – CAD model and FBD of Proximal-2
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corresponding to the FBD are given by:

∑

Fe2
= Fe2

+ F p2
ge2

= Jp2
e2

(3.12a)
∑

Fe4
= Fe4

+ Ee4
+ F p2

ge4
= Jp2

e4
(3.12b)

∑

Fe2×e4
= Fe2×e4

+ Ee2×e4
+ F p2

ge2×e4
= Jp2

e2×e4
(3.12c)

∑

Me2
= Re2

− Lp2
e2×e4

Ee4
− lp2e2×e4

F p2
ge4

+ lp2
e4
F p2
ge2×e4

= Kp2
e2

(3.12d)
∑

Me4
= Re4

− Lp2
e2
Fe2×e4

− d3Ee4
+ lp2

e2
F p2
ge4

− lp2
e4
F p2
ge2×e4

= Kp2
e4

(3.12e)
∑

Me2×e4
= Re2×e4

+ Lp2
e2
Fe4

+ d3Ee4
+ lp2

e2
F p2
ge4

− lp2
e4
F p2
ge4

= Kp2
e2×e4

(3.12f)

where,

d1 = rp2 cos (−θ1 − π/2) d2 = rp2 sin (−θ1 − π/2)

rp2 being the radius of proximal-II. F p2
ge2

, F p2
ge4

, F p2
ge2×e4

are the gravity terms, Kp2
ge2

, Kp2
ge4

,

Kp2
ge2×e4

are the inertial terms and Jp2
ge2

, Jp2
ge4

, Jp2
ge2×e4

are the inertial forces on the proximal–

II along e2, e4 and e2 × e4 directions, respectively.

Be3

Be5

Be3×e5

Ce4

Ce5
Ce4×e5

X4

X4

Terminal Distal

e5e5
vv

(a) Terminal-Distal

E4De4

De5

Ee2×e4

Proximal-IIDistal

(b) Distal–Proximal-II

e3 e3

Ae3

Ae5

Ae3×e5

Me5

Me3×e5

Ge1

Ge3

Ge1×e3
Ne1

Ne1×e3

Proximal-ITerminal

(c) Terminal–Proximal-I

Figure 3.15 – Compatibility Free body diagrams

3.3.2.6 Equations of Compatibility

Along with equilibrium equations, compatibility equations, i.e., action-reaction equili-

brium equations at terminal–distal, terminal–proximal-I and distal–proximal-II interac-
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tion points, as shown in Fig. 3.15, are also written.

Be3
= −Ce4

(e4 · e3)− Ce4×e5
[(e4 × e5) · e3]− Ce5

(e5 · e3) (3.13a)

Be5
= −Ce5

(3.13b)

Be3×e5
= −Ce4

[e4 · (e3 × e5)]− Ce4×e5
[(e4 × e5) · (e3 × e5)] (3.13c)

Ge1
= −Ae5

(e5 · e1)− Ae3×e5
[(e3 × e5) · e1]− Ae3

(e3 · e1) (3.13d)

Ge3
= −Ae3

(3.13e)

Ge1×e3
= −Ae5

[e5 · (e1 × e3)]− Ae3×e5
[(e3 × e5) · (e1 × e3)] (3.13f)

Ne1
= −Me5

(e5 · e1)−Me3×e5
[(e3 × e5) · e1] (3.13g)

Ne1×e3
= −Me5

[e5 · (e1 × e3)]−Me3×e5
[(e3 × e5) · (e1 × e3)] (3.13h)

Ee4
= −De4

(3.13i)

Ee2×e4
= −De5

[e5 · (e2 × e4)] (3.13j)

3.3.2.7 Actuators Torques Calculations

The system of equations so obtained can be solved to calculate the torques experienced

by the wrist actuators i.e. Pe1 and Re2. A list of necessary calculations or simplified

equilibrium equations are given below.

Be3×e5
=

(

−Kt
e3
− lt

e3×e5
F t
ge5

+ lt
e5
F t
ge3×e5

)

/Lt
e5

(3.14a)

Ce4×e5
=

(

−Kd
e4
+ ld

e5
F d
ge4×e5

− ld
e4×e5

F d
ge5

)

/Ld
e5

(3.14b)

Ce4
= (−Be3×e5

− Ce4×e5
[(e4 × e5) · (e3 × e5)]) / [e4 · (e3 × e5)] (3.14c)

Be3
= −Ce4

(e4 · e3)− Ce4×e5
[(e4 × e5) · e3]− Ce5

(e5 · e3) (3.14d)

De4
= Jd

e4
− Ce4

− F d
ge4

(3.14e)

De5
=

(

Kd
e4×e5

− Ld
e5
Ce4

− Ld
e5
De4

− ld
e4
F d
ge5

+ ld
e5
F d
ge4

)

/Ld
e4

(3.14f)
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Ce5
= Jd

e5
−De5

− F d
ge5

(3.14g)

Be5
= −Ce5

(3.14h)

Ae3
= J t

e3
− Be3

− F t
ge3

(3.14i)

Ae5
= J t

e5
− Be5

− F t
ge5

(3.14j)

Ae3×e5
= J t

e3×e5
− Be3×e5

− F t
ge3×e5

(3.14k)

Me5
= Kt

e5
+ Lt

e3
Ae3×e5

+ lt
e3
F t
ge3×e5

− lt
e3×e5

F t
ge3

(3.14l)

Me3×e5
= Kt

e3×e5
− Lt

e5
Be3

− Lt
e3
Ae5

− lt
e3
F t
ge5

+ lt
e5
F t
ge3

(3.14m)

Ne1
= −Me5

(e5 · e1)−Me3×e5
[(e3 × e5) · e1] (3.14n)

Ee4
= −De4

(3.14o)

Ge1×e3
= −Ae5

[e5 · (e1 × e3)]− Ae3×e5
[(e3 × e5) · (e1 × e3)] (3.14p)

Pe1
= Km1

e1
η21 +Kp1

e1
−Ne1

− Lp1
e3
Ge1×e3

− lp1
e3
F p1
ge1×e3

+ lp1e1×e3
F p1
ge3

(3.14q)

Re2
= Km1

e1
η21 +Kp2

e2
+ Lp2

e2×e4
Ee4

+ lp2e2×e4
F p2
ge4

− lp2
e4
F p2
ge2×e4

(3.14r)

where Km1
e1

, Km2
e2

are the inertia and η1, η2 are the reduction ratios of actuator-I and II,

respectively.

3.3.2.8 Wrist Dynamic Parameters

The input parameters of the dynamic model of the Orthoglide wrist are:

– mass of each component (mt, md, mp1, mp2);

– distance between wrist geometric center and center of mass of each component (l);

– distance between wrist geometric center and the point of application of force (L);

– inertia matrices of wrist component (I t, Id, Ip1, Ip2);

– inertia of actuators (Km1, Km2);

– reduction ratios of actuators (µm1,µm2).

The mass and inertial parameters are determined by means of a CAD software. The

geometric parameters (l or L) along the corresponding unit vectors are determined from

the drawings or CAD models of wrist components, as shown in Fig. 3.16. Numerical values

of these wrist parameters are given in Table 3.6

3.3.2.9 Wrist Motors Parameters

In the preliminary design stage, FFA 20-80 harmonic drive motors are selected for both

actuators. Motors specifications, taken from the motor catalogue, are given in Table 3.7.

Subsequently their inertia is incorporated in the dynamic equations.
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Figure 3.16 – Orthoglide Wrist Parameters
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Table 3.6 – Orthoglide wrist parameters

Terminal

Mass mt 4.026 kg

lt
e3

0 m Lt
e3

0.060 m

lt
e5

-0.015 m Lt
e5

0.120 m

lt
e3×e5

0 m Lt
e3×e5

0 m

I t =









11877753.77 −13179.19 4277.05

−13179.19 6250584.07 16030.45

4277.05 16030.45 11891806.12









10−3 kg.m2

Proximal–I

Mass mp1 1.178 kg

lp1
e1

0 m Lp1
e1

0.100 m

lp1
e3

-0.015 m Lp1
e3

0.060 m

lp1e1×e3
0 m Lp1

e1×e3
0 m

Ip1 =









6520212.98 −0.01 0.01

−0.01 10613268.62 0

0.01 0 4359403.54









10−3 kg.m2

Proximal–II

Mass mp2 1.7159 kg

lp2
e2

0 m Lp2
e2

0.130 m

lp4
e2

0 m Lp2
e4

0 m

lp2e2×e2
0.072 m

d rp2 sin (−θ1 − π/2)

Lp2
e2×e4

rp2 cos (−θ1 − π/2)

Ip2 =









13018906.53 2.01 −0.37

2.01 16870339.12 −6371.34

−0.37 −6371.34 29589152.59









10−3 kg.m2

Distal

Mass md 0.04094 kg

ld
e4

0 m Ld
e4

0.010 m

ld
e5

-0.120 m Ld
e5

0.120 m

ld
e4×e5

0 m Ld
e4×e5

0 m

Id=









600144.89 0 0

0 5550.32 0

0 0 602694.90









10−3 kg.m2
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Table 3.7 – Motors parameters of the Orthoglide Wrist

FFA 20-80 Harmonic Drive
Nominal speed 2500 rpm
Maximum speed 6500 rpm
Maximum torque at output shaft 74 Nm
Continuous torque 23 Nm
Moment of inertia 0.00262 kg.m4

Rated power 800 W

3.3.3 Results: Kinematic and Dynamic Analysis of Wrist

The kinematics of the Orthoglide wrist is analyzed for the test trajectories presented

in Sec. 3.2. The velocity of the end-effector i.e. point P (on the tip of the wrist tool),

throughout the trajectory, is taken as constant i.e. Vp = 1 m/s.
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Figure 3.17 – Joints positions, velocities and accelerations (Traj-I, R=0.200m, φ = 90◦)

Figures 3.17 and 3.18 display the plots of position, velocity and acceleration of the wrist

joints for the test trajectory-I for φ = 90◦ and φ = 45◦, respectively, with R = 0.250 m.

Similarly, Fig. 3.19 shows the joints angles, rates and accelerations for trajectory-II with

R = 0.200 m and γ = 45◦.

Figure 3.17 is the case where wrist end-effector moves in the Y Z-plane (φ = 90◦) so

only one of the wrist actuator with joint displacement (θ1) works, while Figs. 3.18 and

3.19 represent the cases where both of actuators work. Compared to Traj-I, both wrist
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Figure 3.18 – Joints positions, velocities and accelerations (Traj-I, R=0.200m, φ = 45◦)

actuators experience greater velocities and accelerations for Traj-II (max velocity=5 m/s

and max acceleration=22 m/s2). This can be explained by the higher order variations of

rotation angles in Traj-II than to linear variations of rotation angles in Traj-I.

For the same test trajectories, the dynamic model is used to calculate the actuators

torques, as shown in Fig. 3.20.

Table 3.8 – Kinematics and dynamics peak values for Traj.-II (without external forces)

γ
[deg]

Radius
[m]

Max Velocity Max Acceleration] Max Torque Max Power

[rad/s] [rad/s2] [Nm] [W]

θ̇1 θ̇2 θ̇3 θ̇4 θ̈1 θ̈2 θ̈3 θ̈4 τ1 τ2 P1 P2

30

0.250 2.31 2.31 2.00 2.00 7.29 7.29 9.21 9.21 0.68 1.22 0.64 1.20

0.150 3.84 3.84 3.33 3.33 20.24 20.24 25.59 25.59 0.90 1.67 1.58 2.77

0.100 5.77 5.77 5.00 5.00 45.54 45.54 57.58 57.59 1.35 2.55 3.89 6.43

0.050 11.53 11.53 10.00 10.00 182.15 182.15 230.30 230.35 3.75 7.29 24.33 37.46

45

0.250 3.99 3.99 2.83 2.83 13.96 13.96 15.92 15.92 0.94 1.73 1.26 2.43

0.150 6.65 6.65 4.71 4.71 38.78 38.78 44.22 44.22 1.23 2.37 3.86 5.97

0.100 9.98 9.98 7.07 7.07 87.26 87.26 99.48 99.48 1.79 3.62 11.14 14.69

0.050 19.96 19.96 14.14 14.14 349.03 349.03 397.94 397.94 5.58 10.38 80.14 92.25

60

0.250 6.90 6.90 3.46 3.46 34.05 34.05 27.36 27.36 1.11 2.16 3.17 5.22

0.150 11.49 11.49 5.77 5.77 94.59 94.59 75.99 75.99 1.54 3.03 13.47 15.78

0.100 17.24 17.24 8.66 8.66 212.82 212.82 170.98 170.98 3.31 4.72 44.17 45.04

0.050 34.48 34.48 17.32 17.32 851.30 851.30 683.92 683.92 12.94 13.84 347.23 320.89
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Figure 3.19 – Position, velocity and acceleration of articulations (Traj-II, R=0.200m, γ = 45◦)
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Figure 3.20 – Actuators torques vs time (Traj-I and II, R=0.200m)

Trajectory-II is analyzed for different radii (R = 0.050, 0.100, 0.150, 0.250 m) and for

γ = 30, 45, 60 degrees. For each case, maximum values of actuators velocity, acceleration
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and torques are calculated, as summarized in Table 3.8, where τ1 and P1 (resp. τ2 and P2) is

the torque and the power requirement of actuators 1 (resp. 2). Bar charts of peak torques

and powers versus trajectory radii and orientation γ are shown in Fig. 3.21. Similarly,

Fig. 3.22 shows the actuators torques for different values of γ with R = 0.250 m. From

Table 3.8, it is apparent that the lower R and the higher γ, the higher the required

actuators torque and power. Accordingly, a trajectory with a radius R equal to 0.050 m

and an orientation γ equal to 60◦ is more critical than the other test trajectories; it requires

higher maximum velocities, accelerations and torques. Furthermore, the peak values of

velocities and accelerations of both actuators are the same for all test trajectories.
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Figure 3.21 – Actuators maximum torques and powers vs trajectory radii and γ (Traj. II)
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Figure 3.22 – Actuators torques with different values of γ (R = 0.250 m, Traj-II)

3.3.3.1 Results Verification–Virtual Work Approach

In order to verify the results obtained with the Newton-Euler approach, the principle of

virtual work is used. As a matter of fact, variations in kinetic and potential energies, i.e.,

∆KE and ∆PE are evaluated during a time interval ∆t. The total energy variation ∆E

over ∆t is defined as ∆E = ∆KE + ∆PE. The total virtual work W is calculated as

the product of the mean torques and the corresponding angular displacement during each

time interval ∆t, i.e.,

W = τ̄1∆θ1 + τ̄2∆θ2 (3.15)

τ̄1 and τ̄2 being the mean torques of actuators 1 and 2, respectively, during time ∆t.

In the light of principal of virtual work, the difference between the global virtual work

W and ∆E should be null due to the energy conservation. Accordingly, we computed

the difference between W and ∆E and checked the dynamic model of the wrist, i.e.,

∆W = ∆E −W . This difference is highlighted in Fig. 3.23 for the above considered test

trajectories. It turns out that ∆W is null in all cases. Consequently, the dynamic model

of the wrist makes sense. The relations to calculate the kinematic and potential energies

of the wrist components are given in Annex A.
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Figure 3.23 – Energy balance for wrist dynamics (Traj-I and II)

3.3.4 Effect of Machining Forces on Actuators Torque

So far we have not taken into account the effect of the machining or cutting forces on the

wrist dynamics. To cater for these forces we redraw the free body diagram of the terminal

as shown in Fig. 3.24. The distance between the tool tip and geometric center of wrist is

taken as Lc and cutting force, fc, is resolved in its three orthogonal components, i.e.,

fc =
[

Fce3 Fce5 Fce3×e5

]T

(3.16)

For the FBD shown in Fig. 3.24, rewriting the fore-mentioned equilibrium equations for

terminal (Eqs. 3.9), we get,

∑

Fe3
= Ae3

+ Be3
+ F t

ge3
+ Fce3 = J t

e3
(3.17a)

∑

Fe5
= Ae5

+ Be5
+ F t

ge5
+ Fce5 = J t

e5
(3.17b)

∑

Fe3×e5
= Ae3×e5

+ Be3×e5
+ F t

ge3×e5
+ Fce3×e5

= J t
e3×e5

(3.17c)
∑

Me3
= −Lt

e5
Be3×e5

− lt
e3×e5

F t
ge5

+ lt
e5
F t
ge3×e5

+ LcFce3×e5
= Kt

e3
(3.17d)

∑

Me5
=Me5

− Lt
e3
Ae3×e5

− lt
e3
F t
ge3×e5

+ lt
e3×e5

F t
ge3

= Kt
e5

(3.17e)
∑

Me3×e5
=Me3×e5

+ Lt
e5
Be3

+ Lt
e3
Ae5

+ lt
e3
F t
ge5

− lt
e5
F t
ge3

− LcFce3 = Kt
e3×e5

(3.17f)
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Figure 3.24 – Terminal FBD with machining forces

With these new set of equilibrium equations, some of the actuators equations, presented

earlier (Eqs. 3.14), containing the terms of the terminal, will change accordingly. Modified

set of actuators equations is:

Be3×e5
=

(

−Kt
e3
− lt

e3×e5
F t
ge5

+ lt
e5
F t
ge3×e5

+ LcFce3×e5

)

/Lt
e5

(3.18a)

Ce4×e5
=

(

−Kd
e4
+ ld

e5
F d
ge4×e5

− ld
e4×e5

F d
ge5

)

/Ld
e5

(3.18b)

Ce4
= (−Be3×e5

− Ce4×e5
[(e4 × e5) · (e3 × e5)]) / [e4 · (e3 × e5)] (3.18c)

Be3
= −Ce4

(e4 · e3)− Ce4×e5
[(e4 × e5) · e3]− Ce5

(e5 · e3) (3.18d)

De4
= Jd

e4
− Ce4

− F d
ge4

(3.18e)

De5
=

(

Kd
e4×e5

− Ld
e5
Ce4

− Ld
e5
De4

− ld
e4
F d
ge5

+ ld
e5
F d
ge4

)

/Ld
e4

(3.18f)

Ce5
= Jd

e5
−De5

− F d
ge5

(3.18g)

Be5
= −Ce5

(3.18h)

Ae3
= J t

e3
− Be3

− F t
ge3

− Fce3 (3.18i)

Ae5
= J t

e5
− Be5

− F t
ge5

− Fce5 (3.18j)

Ae3×e5
= J t

e3×e5
− Be3×e5

− F t
ge3×e5

− Fce3×e5
(3.18k)

Me5
= Kt

e5
+ Lt

e3
Ae3×e5

+ lt
e3
F t
ge3×e5

− lt
e3×e5

F t
ge3

(3.18l)

Me3×e5
= Kt

e3×e5
− Lt

e5
Be3

− Lt
e3
Ae5

− lt
e3
F t
ge5

+ lt
e5
F t
ge3

+ LcFce3 (3.18m)

Ne1
= −Me5

(e5 · e1)−Me3×e5
[(e3 × e5) · e1] (3.18n)

Ee4
= −De4

(3.18o)

Ge1×e3
= −Ae5

[e5 · (e1 × e3)]− Ae3×e5
[(e3 × e5) · (e1 × e3)] (3.18p)

�



90 Chapter 3. Kinematics, Dynamics and Motors Selection of Orthoglide 5-axis

Pe1
= Km1

e1
η21 +Kp1

e1
−Ne1

− Lp1
e3
Ge1×e3

− lp1
e3
F p1
ge1×e3

+ lp1e1×e3
F p1
ge3

(3.18q)

Re2
= Km2

e1
η22 +Kp2

e2
+ Lp2

e2×e4
Ee4

+ lp2e2×e4
F p2
ge4

− lp2
e4
F p2
ge2×e4

(3.18r)

In order to analyze the effects of machining or cutting forces, three equal components of

fc are assumed to simplify the problem, i.e.,

Fce3 = Fce5 = Fce3×e5
= Fc

Actuators torques are calculated while considering the machining forces of different ma-

gnitudes and for trajectory radius of 0.150 m with γ = 45◦ and Lc = 0.060 m. Results

are presented in Fig. 3.25.
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Figure 3.25 – Actuators torques vs Time with machining forces (γ = 45◦ R = 0.150 m, Traj-II)

Similarly, three values of moment arm of machining forces Lc are taken, i.e., Lc= 0.06,

0.110 and 0.15m and maximum actuators torques and powers are calculated for different

values of Fc. Results are presented in Table 3.9 and are shown in Fig. 3.26.

Figure 3.26-(c) shows that for the machining forces of 125 N and 150 N, actuators torques

exceed the motors continuous torque (23 Nm) but still they remain well below the maxi-

mum motors torque (74 Nm). Hence, for the given test trajectories, considered motors

can work for a range of machining forces. These results also represent the considerable

influence of the length of the moment arm Lc of the machining forces (or the tool length)

�



3.3 Kinematics and Dynamics of the 2-dof Spherical Wrist 91

Fc [N]

τ m
a
x
[N

m
]

τ1
τ2

0 10 20 30 40 50 100 125 150
0

2

4

6

8

10

12

14

(a) Lc= 0.060m

Fc [N]

τ m
a
x
[N

m
]

τ1
τ2

0 10 20 30 40 50 100 125 150
0

5

10

15

20

25

(b) Lc= 0.110 m

Fc [N]

τ m
a
x
[N

m
]

Motors continuous torque=23 Nm

τ1
τ2

0 10 20 30 40 50 100 125 150
0

5

10

15

20

25

30

(c) Lc= 0.150m

Figure 3.26 – Actuators maximum torques with respect to machining forces (Traj-II, R=0.150m)
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Table 3.9 – Maximum actuators torques and powers with machining forces (γ = 45◦, R =
0.150 m, Traj-II)

Fc

[N]

Lc = 0.060 m Lc = 0.110 m Lc = 0.150 m

Max Torque Max Power Max Torque Max Power Max Torque Max Power

[Nm] [W] [Nm] [W] [Nm] [W]

0 1.23 2.37 3.86 5.97 1.23 2.37 3.86 5.97 1.23 2.37 3.86 5.97

10 1.88 2.98 6.86 8.46 2.47 3.52 9.38 10.59 2.95 3.96 11.42 12.36

20 2.59 3.63 9.89 11.03 3.79 4.71 14.99 15.48 4.76 5.57 19.08 19.16

30 3.31 4.28 12.95 13.70 5.13 5.90 20.61 20.55 6.59 7.19 26.78 26.17

40 4.04 4.93 16.02 16.38 6.47 7.08 26.27 25.69 8.42 8.81 34.53 33.36

50 4.76 5.57 19.08 19.16 7.81 8.27 31.95 30.96 10.25 10.43 42.29 40.63

100 8.42 8.81 34.53 33.36 14.53 14.21 60.38 57.86 19.41 18.52 81.05 77.89

125 9.89 10.11 40.74 39.16 17.21 16.58 71.75 68.86 23.99 22.57 100.4 96.71

150 12.09 12.05 50.04 48.02 21.24 20.14 88.80 85.42 28.57 26.62 119.8 115.59

on the actuators torques. It should be kept in mind that, in these results, Fc is not the

total machining force but is the constant component of fc. Magnitude of total machining

force will be equal to
√

F 2
c + F 2

c + F 2
c =

√
3Fc.

3.3.5 Conclusions

In this section, we dealt with the kinematics and dynamics of the spherical wrist of

Orthoglide 5-axis. The kinematic and dynamic performance of the wrist were analyzed

and its actuators primarily selection was proposed by means of several test trajectories. A

methodology was introduced to evaluate the velocities, accelerations and torques required

by the actuators. The influence of the machining forces as well as the tool length on the

wrist actuators torques and powers were also studied. It turns out that the primarily

selected motors with a continuous torque of 23 Nm and of power equal to 800 W are

suitable for the wrist of the Orthoglide 5-axis prototype. Finally, the following points

should be considered for further analysis:

– the friction between the links;

– the planar joint between distal and proximal-II should be analyzed more precisely;

– the weight of the machining tool;

– more complex, sharp and random trajectories should be analyzed;

– real machining forces instead of constant machining force components.
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3.4 Kinematics and Dynamics of the Orthoglide 3-

axis

The Orthoglide 5-axis mechanism is composed of a 3-dof translating manipulator and a

2-dof spherical wrist. In the previous sections, we carried out the kinematic and dynamic

analysis of the spherical wrist. In this section, the kinematic and dynamic of the 3-dof

translating manipulator, Orthoglide 3-axis, is analyzed, thanks to the thesis research work

of Guégan (2003). Eventually, a preliminary selection of the motor is proposed based on

the analysis.

3.4.1 Kinematic Analysis of the Orthoglide 3-axes

The geometric parameters of the Orthoglide 3-axis are defined as a function of the size of

a prescribed cubic Cartesian workspace that is free of singularities and internal collision.

The kinematic architecture of the Orthoglide-3axis is shown in Fig. 3.27 where A1B1,

A2B2 and A3B3 represent the prismatic joints and P is the end-effector. Due to its Delta-

linear architecture, the Orthoglide 3-axis is a translating parallel manipulator with 3-dof.

A simplified model of the Orthoglide 3-axis is illustrated in Fig. 3.28 (Pashkevich et al.,

2006) in which three links of length L are connected by means of a spherical joint to end-

effector P at one end and to the corresponding prismatic joints Ai at the other end. θx, θy

and θz are the angles between the links and the corresponding prismatic joints axes. The

input position vector of the prismatic joint variables is represented by ρ = (ρx, ρy, ρz)

and the output position vector of the end-effector by p = (px, py, pz).

Using these notations, the inverse kinematic relations for a spherical singularity free works-

pace can be written as (Pashkevich et al., 2005).

ρx = px +
√

L2 − p2y − p2z

ρy = py +
√

L2 − p2x − p2z

ρz = pz +
√

L2 − p2x − p2y

(3.19)

Due to the Orthoglide geometry and manufacturing technology, the displacement of its

prismatic joints is bounded (Pashkevich et al., 2005), namely,

0 6 ρx,y,z 6 2L (3.20)

The kinematic performance of the Orthoglide 3-axis is analyzed by means of the foregoing

test trajectories with constant velocity of the end-effector i.e. Vp = 1 m/s. Accordingly

the actuated prismatic joints positions, rates and accelerations are plotted in Figs. 3.29

to 3.31, for both test trajectories with trajectory radius of 0.2 m.

Figure 3.29 shows the kinematic performance required by the prismatic actuators when
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Figure 3.27 – Schematic of the Orthoglide 3-axis

end-effector P moves in Y Z-plane. Even if P does not move along X-axis, the displa-

cement of the prismatic actuator mounted along X-axis is not null. Figures 3.30 and

3.31 display the required kinematic performance of the motors when P follows Traj.-I

(φ = 45◦) and Traj.-II (γ = 45◦), respectively, for R = 0.200m. The maximum velocities

and accelerations of the prismatic actuators required for the three test trajectories are

summarized in Table 3.10. It can be noticed that the maximum prismatic joint velocity is

equal to 1.07m/s whereas maximum acceleration is equal to 6.33 m/s2 for the considered

trajectories.

Table 3.10 – Maximum prismatic joints rates and accelerations for test trajectories (R =
0.200m)

Test Max Absolute Velocity Max Absolute Acceleration
Trajectory [m/s] [m/s2]

Traj-I, φ = 90◦ 0.12 1.01 1.06 0.62 6.32 6.32

Traj-I, φ = 45◦ 0.77 0.77 1.07 4.51 4.51 6.33

Traj-II, γ = 45◦ 0.77 0.77 1.07 4.51 4.51 6.33
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Figure 3.28 – Simplified model of the Orthoglide 3-axis (Pashkevich et al., 2006)
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Figure 3.29 – Actuated prismatic joints position and rates of the Orthoglide 3-axis for Traj-I with
R = 0.200m and φ = 90◦
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Figure 3.30 – Actuated prismatic joints position and rates of the Orthoglide 3-axis for Traj-I with
R = 0.200m and φ = 45◦
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Figure 3.31 – Actuated prismatic joints position and rates of the Orthoglide 3-axis for Traj-II
with R = 0.200m and γ = 45◦
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3.4.2 Dynamics of the Orthoglide 3-axes

The dynamic analysis of the Orthoglide 3-axis is performed in order to evaluate the torques

required by the three actuated prismatic joints. Here, we take advantage of the dynamic

model developed by Guégan (2003). The geometric and dynamic parameters used in the

analysis are defined in (Guégan, 2003) which are obtained from SYMORO+ (SYmbolic

MOdeling of Robots), a software for the automatic generation of symbolic model of robots

(Wisama and Denis, 1997). Figure 3.32 illustrates a leg of the Orthoglide with the defi-

nition of the parameters and the frames attached to all its components (Guégan, 2003).

Parameters of the arm used in the dynamic model are the masses of different components,

P
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Figure 3.32 – Orthoglide leg parameterization for the dynamic analysis

dimensions of parallelogram (D4i, R2i), and the radius of gyration of component C2. These

parameters for Orthoglide 5-axis, obtained by means of SolidWorks CAD software and

from the geometry of the mechanism, are given in Table 3.11. The dynamic performance

of the Orthoglide 3-axis is then evaluated for different test trajectories. The actuators

forces required to follow the above discussed test trajectories are shown in Fig. 3.33.
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Table 3.11 – Parameters of the Orthoglide 5-axis arm

Parameters Symbol Value Units Source

Mass of the platform (wrist) Mp 22.86 kg SolidWorks

Mass of the member C1i M1i 6 kg SolidWorks

Mass of the members C2i and C4i M2i, M4i 2.4 kg SolidWorks

Mass of the members C3i and C7i M3i, M7i 1.8 kg SolidWorks

Length of the parallelograms D4i 0.7765 m Geometry

Width of the parallelograms R2i 0.200 m Geometry

Radius of gyration of member C2 ρgyr 0.0705 m SolidWorks

Trj-I, φ = 90◦

[N
]
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Figure 3.33 – Orthoglide 3-axis actuators forces for Traj-I and II (R=0.2 m)

3.4.3 Motors selection for the Orthoglide 5-axis

Based on the kinematic and dynamic models of the Orthoglide 3-axis, a methodology is

adopted for the primarily selections of the Orthoglide 5-axis motors. The hit and trial

approach is used to consider several motors from the catalogues. These motors are then

tested for the Orthoglide prismatic actuators for various test trajectories while taking

into account the motors and the mechanism parameters. The kinematic and dynamic

performance of the mechanism are analyzed for each motor and based on these results, a
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primary selection is proposed for the prismatic actuators of the Orthoglide 5-axis. In the

following sections, we will consider, one by one, different steps or aspects of the procedure.

3.4.3.1 Ball Screw Parameters

The selected ball screw for the prismatic joints of the Orthoglide 5-axis is of a diameter

of 0.025 m, length of 0.800 m, pitch of 0.025 m and is made up of steel. It has a friction

moment of 0.5 Nm and its efficiency is equal to 85%. Therefore, the moment of inertia Ibs

and the friction force Ff of the ball screw can be computed, as summarized in Table 3.12.

Table 3.12 – Ball screw calculation for Orthoglide 5-axis

Material density dbs 7870 kg.m−3

Length lbs 0.800 m

Radius rbs 0.0125 m

Pitch pbs 0.025

Friction Moment/Torque Mf 0.5 Nm

Efficiency ebs 85%

Mass mbs mbs = (πr2bslbs) dbs kg

Inertia Ibs Ibs = 0.5mbsr
2
bs = 2.4145× 10−4 kg.m2

Friction force Ff Ff = 2πebsMf/pbs = 106.8 N

3.4.3.2 Motors Selection from Catalogues

Four motors with different characteristics have been tested, as shown in Table 3.13. These

are MaxPlusPlus (MPP) Series Servo motors and are taken from the catalogue of Parker

Hannifin Corporation.

Table 3.13 – Motors Parameters from Catalogue

No.
Motor
Model

Speed
[rpm]

Power
[W]

Continuous
Torque [Nm]

Maximum
Torque [Nm]

Rotor Inertia
[kg.m2]

Voltage
[V]

M1 MPP0921C 5000 600 1.6 5.0 4.41x10−5 230

M2 MPP0922C 4200 1100 2.9 9.3 7.80x10−5 230

M3 MPP0923D 5000 1600 4.0 12.8 1.13x10−4 230

M4 MPP1002D 4900 1600 4.6 14.5 2.599x10−4 230

3.4.3.3 Actuators Inertia

So far we know the inertia of the lead screw and motor. A timing belt is used between

motor and lead screw with a reduction factor equal to two (η = 2). The coupling inertia
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is supposed to be null, i.e., Icoupling = 0. Hence, the inertia reflected to the motor Imr is

equal to:

Imr = Irotor + Icoupling + Ibs/η
2 (3.21)

The inertia of the actuators of the Orthoglide 5-axis is,

Mai = υ2Imr (3.22)

υ = 2π/pbs being the transmission factor of the ball screw.

3.4.3.4 Preliminary Motors Tests

An important consideration about the motors selection is the comparison of the motor

inertia with that of the lead screw inertia or inertia reflected to the motor. A standard

practice is to compare the motor inertia with the reflected inertia of the ball screw:

1.5 Im >
Ibs
η2

(3.23)

Direct comparison can also be performed to have a rough idea of motor size compared to

the lead screw, i.e.,

1.5 Im > Ibs (3.24)

The results of the comparison for the four considered motors are given in Table 3.14.

Maximum linear output speed of the lead screw is also given for two reduction factors,

which is calculated from the relation,

Vout =
Vmpbs
60η

(3.25)

It can be seen from Table 3.14 that the inertia of motors M1, M2 and M3 is too small

Table 3.14 – Preliminary Motors Tests

No.
Motor
Model

Motor
Speed
[rpm]

Power
[W]

Rotor
Inertia
[kg.m2]

Output Speed, Vout [m/s]

1.5Im > Ibs

1.5Im > Ibs/η
2

η = 1 η = 2 η = 4/3 η = 2 η = 4/3

M1 MPP0921C 5000 600 4.410E-05 2.08 1.04 1.56 X X X

M2 MPP0922C 4200 1100 7.800E-05 1.75 0.875 1.31 X X X

M3 MPP0923D 5000 1600 1.130E-04 2.08 1.04 1.56 X X X

M4 MPP1002D 4900 1600 2.599E-04 2.04 1.02 1.53 X X X

to satisfy the direct motor inertia comparison tests while with a reduction factor of 2,

all motors satisfy the reflected inertia test. It should also be noted that motor M2 is not
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capable of providing required velocity of 1 m/s at the output with a reduction factor of 2.

The other three motors marginally satisfy the required velocity condition for η = 2 and

safely satisfy the latter for η = 4/3.

3.4.3.5 Orthoglide Arm Dynamic

Although the preliminary motors selection suggests to eliminate motor M2, to go further

inside, the results of the dynamic model are obtained for all of four motors. Table 3.15

and Fig. 3.34 shows the maximum values of the forces experienced by the actuators and

corresponding required power of the motors, for both trajectories (for η = 2). These

results show that motor M1 do not have sufficient power required by the mechanism for

the considered trajectories. Motor M2 satisfies power requirements but is not able to

provide required velocity, as discussed above. Motors M3 and M4 satisfy both velocity

and power constrains, as shown in . So, for further analysis we will only consider motors

M3 and M4.

Table 3.15 – Power requirements with different motors (η = 2)
Trajectory I Trajectory II

Motor
Traj

Radius
[m]

Max Actuator
Force [N]

Max Actuator
Power [W]

Max Actuator
Force [N]

Max Actuator
Power [W]

F1 F2 F3 P1 P2 P3 F1 F2 F3 P1 P2 P3

M1

20 329 136 652 220 20 650 327 327 632 220 210 80
0.100 624 146 658 340 20 660 625 625 633 380 340 80
0.050 1155 161 782 580 20 680 1162 1159 646 670 580 80

(600 W) 0.025 2187 188 1945 1040 20 1000 2206 2195 669 1250 1040 80

M2

0.200 342 135 676 220 20 680 340 340 656 230 220 80
0.100 648 144 681 350 20 680 650 649 649 390 350 80
0.050 1201 157 852 600 20 690 1208 1204 657 700 600 80

(1100 W) 0.025 2276 181 2101 1080 20 1070 2294 2284 669 1300 1090 80

M3

0.200 356 134 702 230 20 700 354 354 680 230 220 80
0.100 673 142 705 360 20 710 675 674 675 400 370 80
0.050 1248 153 924 620 20 710 1255 1251 673 720 630 80

(1600 W) 0.025 2367 173 2262 1130 20 1150 2385 2375 671 1350 1130 80

M4

0.200 414 135 809 250 20 810 413 413 784 260 250 90
0.100 778 137 804 420 20 810 780 779 789 460 420 90
0.050 1446 138 1229 720 20 790 1453 1450 810 820 720 90

(1600 W) 0.025 2751 141 2937 1320 20 1470 2769 2760 854 1540 1320 90

Although with η = 2, M3 and M4 motors are able to provide required velocity but

the difference between the required velocity and the available velocity at the output is

very small (about 0.02 m/s), this may cause some problems in the vicinity of singular

configurations. For safety reason, the reduction factor was reduced to η = 4/3 and results

obtained for M3 and M4 are shown in Table 3.16 and in Fig. 3.35. By decreasing reduction

factor, although we have gained extra output velocity but at the expense of increased

inertia, the power requirement for the same trajectories increased. Furthermore, motor

M4 is out of power for sharp trajectories of radius 0.025 m while motor M3 satisfies all

the trajectories. So, this implies the selection of motor M3. The comparisons and results
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Figure 3.34 – Max power requirement with four motors (Traj-II, η = 2)

Table 3.16 – Power requirements for M3 and M4 motors (η = 4/3)

Trajectory I Trajectory II

Motor Traj
Radius
[m]

Max Actuators
Forces [N]

Max Actuator
Power [W]

Max Actuator
Force [N]

Max Actuator
Power [W]

F1 F2 F3 P1 P2 P3 F1 F2 F3 P1 P2 P3

M3
(1600W)

0.200 386 134 757 240 20 760 384 384 733 250 240 90

0.100 727 138 756 390 20 760 729 728 734 430 390 90

0.050 1350 145 1081 670 20 750 1356 1353 743 770 670 90

0.025 2565 156 2609 1230 20 1310 2582 2573 765 1450 1230 90

M4
(1600W)

0.200 444 138 864 270 20 860 443 443 837 280 260 100

0.100 832 138 855 440 20 850 834 833 848 480 440 100

0.050 1547 141 1386 770 20 830 1555 1551 880 870 770 100

0.025 2949 147 3285 1420 20 1640 2966 2957 948 1640 1420 100
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Figure 3.35 – Max Power Requirement for M3 and M4 motors (Traj-II, η = 4/3)

presented so far suggest the selection of motor M3, which is able to provide the required

power and velocity. A reduction factor equal to 4/3 is safer to get the required actuators

velocities for the considered test trajectories.

Table 3.17 – Effect of the variation of wrist mass for M3 (η = 2)

Trajectory I Trajectory II

Motor

Traj
Radius
[m]

Mass
Change
[kg]

Max Power
[W]

Average Rate of
Change of

Power [W/kg]

Max Power
[W]

Average Rate of
Change of

Power [W/kg]

R dm P1 P2 P3

∂P1

∂m

∂P2

∂m

∂P3

∂m
P1 P2 P3

∂P1

∂m

∂P3

∂m

∂P3

∂m

M3

0.2

0 228 17 702

2.33 0.10 10.15

233 224 85

2.18 2.20 1.26
5 240 18 753 244 235 91

10 251 18 804 255 246 97

15 263 19 854 266 257 104

0.100

0 366 17 705

5.02 0.12 10.65

404 367 82

5.83 5.01 1.22
5 391 18 758 434 392 88

10 416 18 811 463 417 94

15 441 19 865 492 442 101

0.050

0 624 17 707

9.53 0.17 11.51

724 625 82

12.14 9.50 1.21
5 671 18 764 784 672 88

10 719 19 822 845 720 94

15 767 20 879 906 767 100

0.025

0 1130 18 1150

18.14 0.30 16.36

1349 1131 82

24.20 18.18 1.23
5 1221 19 1232 1470 1222 88

10 1312 21 1313 1591 1312 94

15 1403 23 1395 1712 1403 100
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3.4.4 Effect of the variation of Wrist mass

In the previous analysis, the wrist mass is the sum of the mass of the wrist components

evaluated with Solidworks and the mass of the spindle, which is about 23 kg. In order

to analyze the effects of the variations in the wrist mass, dm, or extra loads, power

requirements for different test trajectories was determined with various wrist masses. The

results obtained for motors M3 and M4 are given in Tables 3.17 and 3.18, respectively.

Table 3.18 – Effect of the variation of wrist mass for M4 (η = 2)

Trajectory I Trajectory II

Motor

Traj
Radius
[m]

Mass
Change
[kg]

Max Power
[W]

Average Rate of
Change of

Power [W/kg]

Max Power
[W]

Average Rate of
Change of

Power [W/kg]

R dm P1 P2 P3

∂P1

∂m

∂P2

∂m

∂P3

∂m
P1 P2 P3 d∂P1

∂m

∂P3

∂m

∂P3

∂m

M4

0.200

0 254 17 809

2.33 0.10 10.15

262 250 96

2.17 2.20 1.26
5 266 18 860 273 261 103

10 277 18 911 283 272 109

15 289 18 961 294 283 115

0.100

0 416 17 804

5.02 0.11 10.65

456 417 94

5.83 5.01 1.22
5 441 17 857 485 442 100

10 467 18 910 514 467 106

15 492 19 964 543 492 112

0.050

0 721 17 789

9.53 0.14 11.51

821 721 93

12.14 9.54 1.2
5 768 18 847 882 769 99

10 816 18 905 943 816 105

15 863 19 962 1003 864 111

0.025

0 1320 17 1471

18.14 0.24 16.26

1539 1321 93

24.20 18.16 1.16
5 1411 18 1552 1660 1411 99

10 1502 19 1634 1781 1502 105

15 1593 20 1716 1902 1593 111

From these results, it can be seen that the effect of variations in the wrist mass is maximum

for sharper trajectories (R = 0.025 m), with maximum effect of 24.2W/kg. Since with

motor M3, we need a maximum power of 1349 W for 0.025 m radius trajectories (for

dm = 0), it has a power margin of 1600-1349= 251 W, which implies that motor M3

can bear an extra load of up to 251/24.2=10.4 kg for 0.025 m radius trajectories. Motor

M4, being already at power margin for 0.025 m trajectories, can not accommodate any

increase of wrist mass, while for less sharp trajectories it can work with a mass increment

of up to 15 to 20 kg, but of course with less power margin compared to M3.

3.5 Conclusion

This chapter dealt with the kinematic and dynamic analysis of the Orthoglide 5-axis, a

five-degree-of-freedom manipulator. First, it turned out that kinematic and dynamic ana-

�



3.5 Conclusion 105

lysis of the translating part and the spherical wrist of the manipulators can be decoupled.

The geometric and inertial parameters of the manipulator were determined by means of

a CAD software. We came up with the dynamic model of the spherical wrist by means of

a Newton-Euler approach. Besides, this model checked with the principle of virtual work.

Then, the required motors performance were evaluated for some test trajectories. Various

simulations results showed that the FFA 20–80 harmonic drive motors of 800 W and the

MPP0923D servo motors of 1600 W, primarily selected for the wrist and Orthoglide 3-

axis, respectively, are suitable for the prototype of the Orthoglide 5-axis. In future works,

friction forces as well as payload need to be considered in the dynamic analysis with more

complex test trajectories.

In the next chapter, we will discuss the the path placement optimization problem in order

to optimize or improve the performance of a given PKM by means of better placement of

the tasks in its workspace.
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This chapter deals with the single and multi-objective path placement optimization for

Parallel Kinematics Machines (PKMs) based on energy consumption, actuators torques

and shaking forces. It proposes a methodology to determine the optimal location of a given

test path within the workspace of a PKM in order to minimize the electric energy used

by the actuators, their maximal torque and the shaking forces subject to the geometric,

kinematic and dynamic constraints. The proposed methodology is applied to the Ortho-

glide 3-axis, a three-degree-of-freedom translational PKM, as an illustrative example. The

optimization problem is formulated firstly as single-objective and then as multiobjective.

The electric energy consumption is taken as the sole optimization objective function for

single-objective optimization whereas electric energy consumption, actuators torques and

shaking forces are considered for multiobjective formulation.
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4.1 Introduction

Optimal trajectory planning of manipulators has been a relevant area for roboticists for

many years. Indeed, several authors have worked on trajectory planning based on dif-

ferent optimization objectives. A review of trajectory planning techniques is given in

(Ata, 2007). Trajectory planning deals with the determination of the path and velo-

city/acceleration profiles (or the time history of the robot’s joints), the start and end

points of the trajectory being predefined and fixed in the workspace. As a matter of

fact, this approach is suitable for most of practical robotic applications. A path is a

continuous curve in the configuration space connecting the initial configuration of the

manipulator to its final configuration (Rajan, 1985). Trajectory planning usually aims at

minimizing the travel distance (Tian and Collins, 2003), travel time (Chan and Zalzala,

1993; Cao et al., 1994; Pledel, 1995) and/or the energy consumed (Shugen, 1995; Field,

1995; Hirakawa and Kawamura, 1997; Khoukhi et al., 2007), while satisfying the geome-

tric, kinematic and dynamic constraints of the mechanism.

Another less explored aspect of trajectory planning is the placement of a given path within

the workspace. It aims at determining the optimum location of a predefined path to be

followed by the end-effector of the manipulator within its workspace with respect to one

or many given objective(s) and constraint(s). This path can be the shape of a component

to be machined, a welded profile or an artistic/decorative profile etc. In such situations,

the trajectory planner cannot alter the shape of the path but he/she can only play with

the location of that path within the workspace of the manipulator in order to optimize

one or several criterion(a). Such an approach can be very interesting in many robotic

applications. For example, in machining, a workpiece can be better located within the

workspace of the robot to perform a given operation more efficiently with respect to the

energy consumed.

The path placement problem has not been extensively studied in the past. Nevertheless,

some researchers proposed to solve it with respect to various optimization objectives. Se-

veral performance criteria for path placement problems can be considered simultaneously

(multiobjective) or individually, such as travel time, different kinetostatic performance

indices (such as, manipulability or the conditioning number of the normalized kinematic

Jacobian matrix), kinematic performance (velocity, acceleration), accessibility, collisions,

wear and vibration reduction, energy consumption and so on.

Nelson and Donath (1990) proposed an algorithm for the optimum location of an assem-

bly task in the manipulator workspace while taking the manipulability measure as the

optimization criterion. They considered that the location of the assembly task within

the workspace that results in the highest manipulability is a locally optimal position for

performing the assembly. However, Aspragathos (1996); Aspragathos and Foussias (2002)

mentioned that the manipulability index and the dexterity, usually quantified by the
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condition number of the normalized Jacobian matrix of the manipulator, can characterize

the motion ability of the manipulator, but these criteria cannot depict the ability of a ma-

nipulator to move in a given direction. Hence they introduced a criterion to characterize

the best velocity performance of the robot end-effector with the path location. They used

the concept of the orientation of the manipulability ellipsoid relative to the desired path

and used genetic algorithm to come up with an optimal solution.

Fardanesh and Rastegar (1988) proposed an approach for optimal positioning of a prescri-

bed task in the workspace of a 2R-manipulator. The optimal location of the task is consi-

dered to be the location that yields the minimum cycle time. In another study, Feddema

(1996) formulated and solved a problem of robot base placement for a minimum joint

motion time within a work cell. The proposed algorithm considered the kinematics and

the maximum acceleration of each joint in order to obtain a 25% cycle time improvement

for a typical example.

Hemmerle and Prinz (1991) presented an algorithm for optimum path placement of a

redundant manipulator by defining a cost function related to robot joints motion and

limits. The proposed approach did not consider the path as a whole but discrete points

of that path, hence cost function considers the performance only at the node points and

not the path in-between the nodes.

Chou and Sadler (1993) developed an optimization technique for the optimum placement

of a robotic manipulator based on the actuators torque requirements. Pamanes and Zeghloul

(1991) considered multiple kinematic indices to find the optimal placement of a manipu-

lator by specifying the path with a number of points and then assigning an optimization

criterion to each point. The objective was to find the path location in order to have op-

timal values of all the criteria assigned to the path points. In (Pamanes et al., 1991),

the problem of optimal placement with joint-limits and obstacle avoidance is addressed.

Lately, a general formulation was presented to determine the optimal location of a path

for a redundant manipulator while dealing with mono- and multiobjective optimization

problems (Pamanes et al., 2008).

With a general literature survey, it comes out that although several performance indices

are introduced or considered, there is no emphasis on the dynamic aspects reflecting the

energy consumption by the PKM actuators. Another less explored but important criterion

of optimal path placement can be the minimization of the shaking forces and moments

experienced by the base of the PKM. Shaking forces and moments can affect the perfor-

mance of a PKM in terms of excessive loads, accuracy, wear, fatigue, etc. Accordingly, we

introduce two indices characterizing the variations and the maximum value of the shaking

forces. The maximum actuators torque is also considered as another objective of optimum

path placement. Hence, in this chapter, we propose an approach to optimize the location

of a given path to be followed by the end-effector of a PKM within its workspace, in order

to minimize the electric energy consumed by its actuators, minimize the shaking forces
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and/or moments and minimize the maximum actuators torques. The proposed approach

is applied to the Orthoglide 3-axis for some test paths and the results are presented while

formulating either a mono-objective or a multi-objective optimization problem.

4.2 Path Placement Optimization

The problem aims at determining the optimal location of a predefined path in order to

optimize some objective functions. The entire path is supposed to be known within the

framework of this research work. The path location can be defined in a similar way as

to define the location of a workpiece with respect to a manipulator reference point. The

path location optimization problem is composed of three sets, namely, the set of design

variables, the set of objective functions and the set of design constraints. Accordingly, the

optimization problem aims at determining the design variables characterizing the path

location, in order to minimize or maximize the objective functions subjected to the design

constraints.

4.2.1 Design Variables: Path Location Parameters

In order to formulate and describe the problem, two reference frames are defined: i) the

path frame Fp and ii) the base frame Fb, as shown in Fig. 4.1(a). The path frame Fp, is

attached to the given/required path at a suitable point such as the geometric center of the

path. As Fp is attached to the path, the end-effector trajectory parameters remain constant

in this reference frame, no matter where it is located. In other words, the path is fully

defined and constant in Fp. It can also be named workpiece frame as it characterizes the

position and the orientation of the workpiece within the manipulator workspace. The base

frame Fb can also be called global or manipulator frame. It is attached to the manipulator

base and is used to locate a workpiece (or Fp) with respect to the manipulator coordinate

system. The location and orientation of Fp with respect to Fb can be defined in such a

way that the whole path lies within the workspace. The position of Fp with respect to Fb

is defined with the Cartesian coordinates of the origin of Fp. The relative orientation of

the two frames is characterized by means of Euler angles. However, keeping in view the

constraints of the manipulator wrist, Euler angles are uniquely defined in the context of

milling operation with the parameterization given in Fig. 4.1(b). It allows to avoid the

singularity of Euler parameters. As a matter of fact, any trajectory defined in Fp can be

expressed/transformed in the base frame Fb by means of a transformation matrix. For

instance, point P , of Cartesian coordinates xPp
, yPp

, zPp
in Fp can be expressed in Fb as

follows:

[

p
]

Fb

= bTp

[

p
]

Fp

(4.1)
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bTp being the transformation matrix from Fp to Fb. Let Op

(

xOp
, yOp

, zOp

)

be the origin

of the path frame with respect to Fb and let (φ, θ, ψ) be the Euler angles characterizing

the orientation of frame Fp with respect to frame Fb, as shown in Fig. 4.1(b). Then, the

transformation matrix bTp is expressed as:

bTp =













cosφ cos θ cosφ sin θ sinψ − sinφ cosψ cosφ sin θ cosψ + sinφ sinψ xOp

sinφ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cosφ sinψ yOp

− sin θ cos θ sinψ cos θ cosψ zOp

0 0 0 1













(4.3)

The path placement is specified with bTp. Let x = [xOp
yOp

zOp
φ θ ψ]T define the

path placement within the workspace of the manipulator in the reference frame Fb. The

components of x are then the design variables of the optimization problem at hand.

In the context of a general machining process like milling operation, the feature to be

machined in the workpiece is defined with respect to its frame, namely Fp. Likewise,

the machining operation conditions such as machining velocity and acceleration are fully

defined in Fp. Finally, the part to be machined is defined by the designer and located in

Fb whereas the machining operation conditions and robot trajectory planning depend on

the machining process and are defined in Fp. In the scope of this paper, we introduce a

methodology to help the production engineer well locate the workpiece, namely Fp, within

the robot base frame Fb in order to minimize the actuators electric energy consumption,

actuators peak torques and the effects of the shaking forces to the manipulator base.

4.2.2 Optimization Objectives

The path placement optimization is performed with the aim of minimizing four objective

functions, namely,

1. The electric energy consumption;

2. variations in the shaking forces;

3. the maximum shaking forces;

4. maximum actuators torques.

In the following sections, the mathematical formulations of these objective functions are

given.

4.2.2.1 Electric Energy Consumption

The energy used by the motors depends on their corresponding velocities and torques. As a

matter of fact, the electric current in the motors varies with motors velocities and torques.
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Accordingly, the motor self-inductance phenomenon appears. The current I drawn by the

motors and the motor electromotive potential Ve can be calculated as a function of the

required torque τ and the angular velocity ω of the actuators, namely,

I =
τ

Kt

(4.4)

Ve = Keω (4.5)

Kt being the torque sensitivity factor or motor constant expressed in [Nm/A] and Ke the

back electromotive force constant expressed in [V.(rad/sec)−1].

The total electric power PT is composed of (Lacroux, 1994):

– The resistive power loss (Joule effect):

PJ = RI2 (4.6)

– the inductive power loss:

PL = LI
dI

dt
(4.7)

– the power used to produce the electromotive force:

PEM = VeI (4.8)

Accordingly, the total electric power PT can be expressed as follows:

PT = PJ + PL + PEM (4.9)

R being the motor winding resistance expressed in Ohm [Ω] and L the motor inductance

coefficient expressed in Henry [H].

Finally, the energy E consumed by a motor can be evaluated by integrating PT over the

total trajectory time T, namely,

E =

∫ T

0

PTdt (4.10)

PT being the instantaneous electric power at instantaneous time t, defined in Eq. (4.9).

It should be noted that Eq. (4.4) allows us to consider the energy used by the actuators

while they do not move but still produce a torque to keep the manipulator at a certain

stationary configuration (with respect to that particular direction or actuator), like resis-

ting the gravity. Finally, the total energy Et consumed by n actuators can be written as:
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Et =
n

∑

i=1

Ei (4.11)

Ei being the total electric energy required by the ith actuator, given by the Eq. (4.10).

Consequently, the first objective of the path placement optimization problem can be writ-

ten as:

f1 (x) = Et → min (4.12)

It is noteworthy that energy calculation model presented in this section is suitable for

the brushless motors, which are generally used for PKMs. However, depending on the

motors/derives in application, energy calculation model can be developed accordingly.

4.2.2.2 Shaking Forces

Shaking or dynamic forces and moments are the inertial forces and moments exerted on the

base of a machine/manipulator due to the uneven mass distribution. These forces/moments

may deteriorate system performance by introducing excessive vibration, noise and wear.

Furthermore required input torques and forces may also increase to cater for these sha-

king effects. Fatigue life of the manipulator components is also an aspect that can suffer

from shaking forces and moments. Hence, in order to overcome these drawbacks and to

improve system performance in terms of accuracy, precision, fatigue life, vibration reduc-

tion, motion planning and control, the study of the shaking forces and moments is of

prime importance.

A mechanism is said to be force balanced if, for any motion of the mechanism, no reaction

force other than gravity is transmitted to its base. Likewise, a mechanism is force and

moment balanced if neither reaction force nor moment is transmitted to the base, for any

arbitrary motion of the mechanism (Wu and Gosselin, 2004; Moore et al., 2009).

Dynamic balancing of robotic manipulators has been an area of research for some de-

cades and several authors have contributed to this domain by formulating and analy-

zing the problems for either some particular applications or for more general prospects

(Wu and Gosselin, 2004; Moore et al., 2009; Chiou and Chang, 1998). Usually, these re-

search works aim at helping the designer to come up with manipulators that are dyna-

mically balanced. Here, we will use this concept in order to optimize the path location

within the workspace of the manipulator so that the shaking forces be as low as possible.

For the purpose of simplicity, dynamic forces are exclusively considered in the framework

of this research work while dynamic moments are left for future works.

In order to assess the effect of shaking forces, two indices are proposed, namely,

1. Shaking force variation index: Iδf

Shaking force variation index, Iδf , considers the maximum variation in the shaking
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forces along the trajectory, i.e.,

Iδf = max (dFsh) (4.13)

where dFsh =
∑n

i=1
dF i

sh is the sum of the variations in the n shaking forces, n being

the number of limbs or kinematic chains. The variation in the shaking forces for the

ith actuator is given by,

dF i
sh =

√

[max(Fi
x)−min(Fi

x)]
2 +

[

max(Fi
y)−min(Fi

y)
]2

+ [max(Fi
z)−min(Fi

z)]
2

(4.14)

where Fi
x, F

i
y and Fi

z are the matrices of dimensions 1×Nt, representing the respec-

tive force profile along trajectory, Nt being the number of time steps.

The variations in the shaking forces will have a strong influence on the base platform

vibrations. Hence, the second objective function of the path optimization problem

can be written as,

f2 (x) = Iδf → min (4.15)

2. Maximum shaking force index: If

Maximum shaking force index, If , characterizes the magnitude of the maximum

shaking forces experienced by the base platform along the trajectory, i.e.

If = max (Fsh) (4.16)

where Fsh =
∑n

i=1
Fi

sh is 1×Nt dimensional vector representing the sum of the sha-

king forces experienced by the n actuators with Nt time steps.

The magnitude of the maximum shaking forces gives an idea of the maximum extra

loads experienced by the actuators resulting from the shaking forces, for a par-

ticular trajectory. Hence the knowledge of the maximum shaking forces can help

the designer in actuators selection to cater for these excessive loads on the system.

Accordingly, the third objective function of the path optimization problem can be

written as,

f3 (x) = If → min (4.17)

4.2.2.3 Maximum Torque

In order to reduce the actuators loads, the magnitude of the maximum torque τmax ex-

perienced by the manipulators actuators is considered. The maximum torque τmax expe-
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rienced by the actuators is defined as,

τmax = max (τ1max
, . . . ,τnmax

) (4.18)

τimax
being the magnitude of the maximum torque experienced by the ith actuator along

the trajectory. Consequently, the fourth objective function of the path optimization pro-

blem can be written as,

f4 (x) = τmax → min (4.19)

4.2.3 Optimization Constraints

The path placement optimization problem is subjected to geometric, kinematic and dy-

namics constraints. Geometric constraints include joint limits and the boundaries of the

workspace. Kinematic constraints deal with the maximum actuators velocities whereas

dynamic constraints are related to actuators wrenches, namely,

qil 6 qi 6 qiu

|q̇i| 6 q̇iu

|τi| 6 τiu

(4.20)

qi is the ith actuator displacement (qil and qiu are their corresponding lower and upper

bounds). q̇i is the i
th actuator rate (q̇iu is the upper bound or maximum acceptable actuator

velocity) and τi is the ith actuator torque with τiu being the upper bound or maximum

actuator torque.

For a given path placement vector x, these constraints can be evaluated by means of the

PKM kinematic, velocity and dynamic models. It is noteworthy that geometric constraints

guarantee that the whole path lies within the prescribed workspace. Similarly, the bounds

on actuators rates and torques (q̇iu and τiu respectively) ensure that the PKM does not

meet any singular configuration while following the path.

4.2.4 Problem Statement and Solution

The goal of this research work is to help the path planner find the best location of the

path to be followed by the end-effector of a PKM or robot in order to minimize the four

objective functions defined in the foregoing subsections. In this vein, a mono-objective

and a multiobjective optimization problems are formulated.
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4.2.4.1 Mono-Objective: Minimization of the Energy Path Placement

The goal of mono-objective optimum path placement problem is set to find the best

location of a given path in order to minimize the energy consumed by the PKM actuators.

It can be formulated as:

“For a predefined path in Fp, find the optimum location and orientation of Fp with respect

to Fb, defined by the decision variables x, in order to minimize the electric energy used by

the manipulator actuators to generate that path, while respecting the geometric, kinematic

and dynamic constraints of the manipulator.”

It can also be formulated mathematically as follows:

min
x

Et =
n

∑

i=1

Ei (x) subject to:











qil 6 qi 6 qiu

|q̇i| 6 q̇iu (i = 1 · · · n)
|τi| 6 τiu

(4.21)

4.2.4.2 Problem Resolution– Mono-objective

To solve the problem, a general optimization approach is proposed. As illustrated in

Fig. 4.2, the approach can be summarized in three constituent elements or phases, namely,

preparation phase, evaluation phase and optimization phase. Detail process can be listed

as:

1. Manipulator geometric, dynamic and electric parameters are used as the known

input data of the optimization problem;

2. definition of the base reference frame Fb;

3. definition of the path reference frame Fp at a suitable reference point of the path;

4. complete description of the given path in Fp. At this stage, displacement, velocity

and acceleration profiles of end-effector are defined in Fp;

5. with an initial guess of design variables x0 =
[

xOp0
yOp0

zOp0
φ

0
θ
0
ψ

0

]T

, Fp

is located with respect to Fb;

6. the transformation matrix bTp is calculated from x;

7. using bTp, trajectory parameters are calculated in Fb, i.e., calculation of the Carte-

sian velocities and accelerations of the end-effector;

8. the actuated variables qi are calculated by means of the Inverse Kinematic Model

(IKM) of the manipulator;

9. the actuators velocity q̇i and acceleration q̈i profiles are derived from the Inverse

Velocity Model (IVM) of the manipulator;

10. the actuators torques τi are derived from the Inverse Dynamic model (IDM) of the

manipulator;
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Preparation Phase
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Definition of base frame Fb

Electric motors parameters

Path definition
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Figure 4.2 – Flowchart of mono-objective path placement optimization process
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11. the current I and voltage Ve required by each actuator are calculated by using the

actuators torques, velocities, the motors torque sensitivity factor Kt and the back

electromotive force constant Ke, as defined in Eqs.(4.4) and (4.5);

12. the electric power PTi
consumed by the ith actuator is obtained from the current,

voltage and actuators electric constants, as defined in Eq. (4.9);

13. the electric energy Ei consumed by the ith actuator is then calculated by integra-

ting the consumed power PT i over total trajectory time T , as given by Eq. (4.10).

Subsequently, the total electric energy Et used by the manipulator is obtained by

adding up the energy consumed by all actuators;

14. the constraints and the convergence criteria are verified at each iteration j. The

convergence criteria are up to the user. It can be the constraints or objective function

tolerances, the number of iterations and so on;

15. the optimization algorithm (iterative process) is used to find out the optimum design

variables, namely, x∗=[x∗Op
y∗Op

z∗Op
φ∗ θ∗ ψ∗]T in order to minimize Et.

Finally, the optimum path placement is obtained by means of the position of point Op

and the orientation of Fp with respect to Fb, defined by (x∗Op
, y∗Op

, z∗Op
) and (φ∗, θ∗, ψ∗),

respectively.

4.2.4.3 Multiobjective Path Placement Optimization

Multiobjective path placement optimization problem with the aforementioned optimiza-

tion objectives can be stated as:

“For a predefined path in Fp, find the optimum location and orientation of Fp with respect

to Fb, defined by the decision variables x, in order to minimize the objective functions

f1, f2, f3 and f4 while respecting the kinematic, velocity and dynamic constraints of the

manipulator”

Mathematically, for k objective functions, the problem can be formulated as follows:

min
x

(f1(x), . . . ,fk(x)) subject to:











qil 6 qi 6 qiu

|q̇i| 6 q̇iu (i = 1 · · · n)
|τi| 6 τiu

(4.22)

4.2.4.4 Problem Resolution–Multiobjective

To solve the problem, a general optimization approach based on Multi-Objective Genetic

Algorithm (MOGA) is proposed as illustrated in Fig. 4.3. This approach can be broken

down into four constituent elements or phases:

1. Preparation Phase: Manipulator geometric, dynamic and electric parameters along

with the definition of the required path are used as the known input data of the
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optimization problem. The base frame Fb is defined. The path to be followed by

the end-effector of the robot is defined in the path frame Fp. The terms of the

transformation matrix from Fp to Fb are the decision variables of the optimization

problem.

2. Evaluation Phase: At this stage, the inverse kinematic model (IKM), the inverse

velocity model (IVM) and the inverse dynamic model (IDM) of the manipulator are

determined for each set of design parameters obtained from the generated population

of the genetic algorithm. Accordingly, the objective functions and the constraints of

the optimization problem are evaluated.

3. Optimization Phase: A Multi-Objective Genetic Algorithm (MOGA) is used to ge-

nerate the initial populations, evaluate the objective functions and constraints in

order to generate new populations by carrying out the reproduction, cross over and

mutation operations. Finally, after a certain number of generations, the MOGA gives

a population of feasible solutions.

4. Solutions Phase: The Pareto optimal solutions are obtained from the final feasible

population.

4.3 Case Study: Application to the Orthoglide 3-axis

The proposed path placement optimization approach is applied to the Orthoglide 3-axis

as a case study. The Orthoglide 3-axis has a quasi-cubic workspace and a trajectory can

be carried out within the boundaries of the workspace. However, changing the location

of the workpiece or path in the workspace can affect various performance indices of the

manipulator. The energy used by the three prismatic actuators can also vary for the same

path carried out at different locations within the prescribed cubic workspace. Here, we

expect to find the best location of a given path or trajectory profile in order to minimize the

total electric energy used by the actuators. In this vein, various test paths are considered

and an optimization algorithm is used to come up with the optimal location of the paths

within the manipulator workspace.

As discussed in Sec. 3.1, the Orthoglide 3-axis geometric parameters are function of the

size of the prescribed cubic Cartesian workspace, defined by its edged length, Lworkspace.

Pashkevich et al. (2009b).

In the scope of this study, Lworkspace is equal to 0.200m. Accordingly, the coordinates of

points Q+, Q− and C for this workspace are given in Table 4.1. Similarly, the prismatic

actuator bounds, ρmin and ρmax, can be calculated Pashkevich et al. (2009b). Table 4.2

shows the lower and the upper bounds of the prismatic joints displacements and their

maximum allowable velocity and torque for the Orthoglide 3-axis.
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Figure 4.3 – Flowchart of multiobjective path placement optimization process
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Table 4.1 – Orthoglide 3-axis workspace parameters

Workspace size Lworkspace = 0.2 m

Point Cartesian coordinates in Fb [m]

Ob (0, 0, 0)

C (−0.027, − 0.027, − 0.027)

Q+ (0.73, 0.73, 0.73)

Q− (−0.127, − 0.127, − 0.127)

X [m]
Y [m]

Z
[m

]

C
Ob

Q+

Q−

Xb

Yb

Zb

-0.10-0.0500.05-0.10 -0.05 0 0.05

-0.12
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-0.08

-0.06

-0.04
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0
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0.04

0.06

Figure 4.4 – Orthoglide 3-axis cubic workspace (0.2× 0.2× 0.2 m3)

4.3.1 Objective Functions Formulation for the Orthoglide 3-axis

4.3.1.1 Electric Energy

The electric energy Ei used by each actuator is calculated by means of Eqs. (4.4) to

(4.10). As the Orthoglide 3-axis has three 3-phase Sanyo Denki synchronous servo motors

(reference : P30B0604D), Eq. (4.9) is multiplied by 3 to cater for the power consumed

by the each phase of the motor in order to calculate the electric power PT i used by each

actuator, i.e.,

PTi
= 3(RI2 + LI

dI

dt
+ VeI) (4.23)

Table 4.2 – Orthoglide 3-axis actuators parameters (i = x,y,z)

ρimin
0.126m

ρimax
0.383m

vimax
1.00m.s−1

τimax
1.274Nm
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4.3.1.2 Shaking forces

Shaking forces fsh at the base platform of a manipulator depend on the mass and the

acceleration of the center of mass of each moving element. For a system of w masses fsh

can be expressed as:

fsh =
w
∑

j=1

mj c̈j (4.24)

where mj is the mass and c̈j is the acceleration of the center of mass of the jth element. In

order to calculate the shaking forces at the Orthoglide 3-axis base-frame, three reference

frames, corresponding to each leg, are defined at points A1, A2 and A3, as shown in

Fig. 4.5. The shaking forces for each leg are calculated independently in the respective

F0

X0

Y0

Z0A1

X1

Y1

Z1

A2

X2

Y2
Z2

A3

X3

Y3
Z3

Fb

Ob

Xb

Yb

Zb

Figure 4.5 – Definition of the reference frames

reference frame. Each leg is supposed to be composed of six components, namely,

M1: foot of length Lf ,

M2: the small side of the parallelogram joint attached to the foot. Its length is equal to d,

M3,M4: the longer sides of the parallelogram joint. Their length is equal to Lb,

M5: the small side of the parallelogram joint attached to the end-effector,

M6: the link between M5 and the end-effector of length e.

Besides these leg elements, there are two other moving masses: the mass of the moving

part of the prismatic actuator, Ma and the one of the end-effector Mp. The mass of each
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Figure 4.6 – Orthoglide 3-axis ith leg

memberMj is denoted bymj and the center of mass with respect to the pointAi (i = 1,2,3)

of each element is denoted by Cji, (j = 1 . . . 6,a,p), as shown in Fig. 4.6. Mass of each

element and geometric parameters of the Orthoglide 3-axis are presented in Table 4.3.

Assuming the material of the leg components is homogeneous with center of mass at their

geometric center, vectors cji of the j
th element of the ith leg can be expressed in terms

of the geometric (Lb, Lf , d, e, λ) and the configuration (q1i, q2i, q3i) parameters of the

Orthoglide, as shown in Fig. 4.6. Subsequently, acceleration c̈ji of each element can be

calculated. These relations are given in the Annex B. Knowing the mass and acceleration

Table 4.3 – Parameters of the Orthoglide 3-axis Leg

Parameter Value Parameter Value

ma 0.300 kg Lb 0.310m

m1 0.248 kg d 0.080m

m2, m5 0.095 kg Lf 0.150m

m3, m4 0.117 kg e 0.031m

m6 0.010 kg λ 45 ◦

mp 0.932 kg

of each element of the ith leg, the shaking forces at the base point of the leg (point Ai)
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can be calculated by using Eq. (4.24), i.e,

f ish = (m1 +ma) c̈1i +m2c̈2i +m3c̈3i +m4c̈4i +m5c̈5i +m6c̈6i +mpc̈pi (4.25)

The total shaking force at the base frame of the Orthoglide 3-axis can be obtained by

summing up the forces experienced at points A1, A2 and A3. With the definitions of

reference frames at points Ai, the total shaking force in the reference frame F0, of origin

point A1, as shown in Fig. 4.5, can be written as:

f0sh =







F 1
x + F 2

z + F 3
y

F 1
y + F 2

x + F 3
z

F 1
z + F 2

y + F 3
x






(4.26)

The magnitude of the shaking force experienced by the ith actuator at point Ai, can be

written as:

F i
sh =

√

(F i
x)

2 +
(

F i
y

)2
+ (F i

z)
2 (4.27)

Accordingly, two shaking force indices, defined in Sec. 4.2.2.2, can be calculated for the

given discrete time steps.

4.3.1.3 Maximum Torque

The magnitude of the maximum torque τmax experienced by the Orthoglide actuators can

be written as:

τmax = max (τ1max
, τ2max

, τ3max
) (4.28)

with τimax
= max(τi), τi being the 1×Nt dimensional vector of the ith actuator for Nt

trajectory points.

4.3.2 Test Path and External Forces

In order to apply the methodology proposed for path placement optimization, a rectan-

gular test path is proposed. The test path is defined by the length L and the width W of

the rectangle, as shown in Fig. 4.7(a). Path reference frame Fp is located at the geometric

center of the rectangle. This type of path can be the example of the generation of a rec-

tangular pocket like that of Fig. 4.7(b)). The position of Fp in the base frame Fb is defined

with the Cartesian coordinates of the origin of Fp, Op(xOp
, yOp

, zOp
) and the orientation of

Fp with respect to Fb is given by Euler’s angles, as depicted in Fig. 4.1(b). For the sake of

simplicity, only one of the three rotation angles is considered, i.e., rotation about Zb-axis
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while XbYb and XpYp planes are considered to be always parallel. Accordingly, there are

four path placement variables, i.e., xOp
, yOp

, zOp
and φ, as illustrated in Fig. 4.7(a).
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(a) Rectangular test path
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(b) Rectangular pocket

Figure 4.7 – Test path characterization

The magnitude of the end-effector velocity is supposed to be constant along the path.

Hence, for given path dimensions, position vector pFp
= [xPp yPp zPp]

T and velocity
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vector vFp
= [ẋPp ẏPp żPp]

T in the path frame can be evaluated as a function of time.

Figure 4.8 shows the position and velocity profiles in Fp for a 0.05m×0.10m rectangular

path and for a constant end-effector velocity of 1.0m.s−1. Position and velocity vectors

defined in Fp can be expressed in Fb by means of the transformation matrix defined in

Eq. (4.3), namely,
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


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Figure 4.8 – Test trajectory for a rectangular path of size 0.05× 0.10m2

with x = [xOp
yOp

zOp
φ]T being the decision variables vector of the optimization

problem. For a matter of simplicity and not to deal with tangent and curvature dis-

continuities, we consider that the path is composed of four independent line segments.

Therefore, we do not pay attention to the discontinuities between the segments.

In order to analyze the effect of external cutting/machining forces in the generation of a

given path, a groove milling operation is considered as shown in Fig. 4.9. With constant
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feed rate or end-effector velocity vp of magnitude 0.66m.s−1, i.e., 40m.min−1, the following

components of cutting forces are considered, (Majou et al., 2007):

Ff : component in the feed direction = 10N

Fa: component along the axis of cutting tool = 25N

Fr: component perpendicular to Ff and Fa= 215N

Xb

YbZb

Fa

Fr

Ff

Vp

Figure 4.9 – Cutting forces (Majou et al., 2007)

4.4 Results and Discussions

The optimal path placement process introduced in this chapter is highlighted for Ortho-

glide 3-axis by means of the rectangular test paths presented in the previous section. The

path placement optimization problem for the Orthoglide 3-axis is formulated and solved,

separately, both for mono-objective and multi-objective formulations. The kinematic, ve-

locity and dynamic models of the manipulator are used to evaluate the required actuator

displacements, velocities and torques. It should be noted that within the prescribed works-

pace, the Orthoglide 3-axis is free of internal collisions and that there is not any limit on

the passive joints. Therefore, the geometric constraints for the path placement problem

are the upper and lower limits of the prismatic joints variables. The kinematic constraints

are the maximum velocities that the prismatic actuators can produce whereas the dy-

namic constraints are the limits of the torque/force that the actuators can produce. The

kinematic and dynamic constraints are obtained from the catalogue, as given in Table 4.2.
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As already mentioned, the decision variables are the Cartesian coordinates of the origin

of Fp and the orientation angle of Fp with respect to Fb.

4.4.1 Results: Mono-Objective Path Placement Optimization

for Orthoglide 3-axis

Mono-objective path placement optimization problem, presented in Eq. 4.21, is formulated

for Orthoglide 3-axis as follows,

min
x

Et =
n

∑

i=1

Ei (x) subject to:











ρmin 6 ρx,y,z 6 ρmax

|vx,y,z| 6 vmax

|τx,y,z| 6 τmax

(4.29)

where x =
[

xOp yOp zOp φ
]T

. The subscripts x, y and z are used for three prismatic

actuators or three Cartesian directions. ρmin and ρmax are respectively the minimum and

maximum displacements of the prismatic joints as presented in Table 4.1.

The optimization problem is solved by using the MATLAB fmincon function, which is a

general constrained optimization solver using the derivative-based search algorithms. The

optimization process was performed with different starting points and it turned out that

MATLAB fmincon function always converges to the same solution no matter the starting

point. Furthermore, to study the variation pattern of energy requirements at different

points within the workspace, a workspace discretisation is carried out with respect to the

path placement variables and the energy is calculated for each of the discrete point for a

given path while verifying the constraints.

The optimization process is performed for different rectangular test paths with constant

aspect ratio of 2, i.e., L/W = 2. With the help of the optimization algorithm, the location

of the path corresponding to minimum and maximum energy consumption is obtained,

i.e., the best and the worst path locations with respect to the electric energy consumption.

Figures 4.10 and 4.11 show the location of different rectangular paths with the minimum

and maximum energy consumption in the Orthoglide 3-axis cubic workspace. The magni-

tude of the energy used for both the best and the worst cases and the corresponding gain

of energy is given in Table 4.4 and is illustrated in Fig. 4.12. In Fig. 4.12, % saving is

the percent energy saving between the best(minimum) and the worst(maximum) energy

consumption.

It can be seen from Figs. 4.10 and 4.11 that the energy consumption is a minimum when

the path is located in the vicinity of the isotropic configuration with φ = 0 ◦ and is a

maximum when the path is located in the vicinity of point Q− with φ = 45 ◦. From

Fig. 4.12, it can be noticed that the smaller the path, the higher the energy saving. This

higher gain for the smaller path is due to the higher range of displacement of the path
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Table 4.4 – Minimum and maximum energy used for a given rectangular path

Rectangular path dimensions [m]
Emin [J] Emax [J] % gain

Width (W ) Length (L)

0.02 0.04 15.26 44.46 65.68

0.03 0.06 22.88 61.35 62.71

0.04 0.08 30.41 76.31 60.15

0.05 0.10 38.55 89.80 57.07

0.06 0.12 46.83 102.11 54.13

0.07 0.14 56.82 113.46 49.92

0.08 0.16 65.94 121.17 46.89
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Figure 4.10 – Locations of rectangular path of different sizes (Wm × Lm) that yield a minimum
energy consumption

within the manipulator workspace.

In order to view the energy variation trends in the workspace, a test path of size 30m× 60m

is taken and the energy required for the generation of this test path is evaluated for several

positions and orientations. Figure 4.13 shows the variations in the energy used with res-

pect to xOp and zOp for a constant orientation φ of 0 ◦ and for three different values of yOp.

Figure 4.14 illustrates the isocontours of the energy required by the motors with respect

to xOp and yOp for given values of zOp and φ, namely, zOp = 0 and φ = 0 ◦. From Fig. 4.13,

it is apparent that the energy required is not sensitive to variations in zOp. The reason

being that the path lies in the XbYb-plane and the actuators displacements along Zb-axis

is not significant. Figures 4.13 and 4.14 also show that the energy required by the motors

is a minimum when the path is located in the neighbourhood of the isotropic configuration
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Figure 4.11 – Locations of rectangular path of different sizes (Wm × Lm) that yield a maximum
energy consumption
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Figure 4.12 – Emin and Emax and percentage saving as a function of the rectangular path width
(L = 2W )

and is a maximum when the latter is located in the neighbourhood of singularities.

Figures 4.15 and 4.16 show the variations in the energy used with the path orientation

in different areas of the cubic workspace. It can be seen that the energy used is usually

maximum when φ = 45 ◦. However, for some path locations, the energy consumption is

�



132 Chapter 4. Single and Multiobjective Path Placement Optimization

xOp [m]zOp [m]

E
[J
]

E vs xOpzOp (φ = 0 ◦, W = 0.03m, L = 0.06m)

yOp = 0m

yOp = −0.102m

yOp = 0.048m

-0.10

-0.05

0

0.05

24

26

28

30

32

34

36

38

40

-0.20

-0.10

0

0.10
20

25

30

35

40

45

Figure 4.13 – Energy as a function of xOp and zOp for a 30m×60m rectangular path
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Figure 4.14 – Energy vs xOp and yOp for 30m× 60m rectangular path
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Figure 4.15 – Energy as a function of xOp and yOp for different orientations (zOp = 0)

maximum for a path orientation other than 45 ◦. For example, the energy required at the

upper right corner of the workspace is higher for φ = 30 ◦ than φ = 45 ◦.
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Figure 4.16 – Energy as a function of xOp and φ for yOp = zOp = 0

Figure 4.17 shows the comparison of trajectory parameters of 0.03m× 0.06m test path for

minimum and maximum energy locations. It makes sense that when E = Emax the range

of actuators displacement is larger than when E = Emin. Similarly actuators experience
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Figure 4.17 – Comparison of 0.03m× 0.06m trajectory parameters for Emin and Emax locations

higher values of maximum velocities and torques when E = Emax as shown in Fig. 4.17(b-

c), which results in higher energy consumption for each actuator, as shown in Fig. 4.17(d).

These results mean that the actuators may reach their performance limits due to an

inappropriate location of the path in the workspace.

4.4.2 Results: Multi-objective Path Placement Optimization for

Orthoglide 3-axis

Multi-objective optimum path placement problem, presented in Eq. 4.22, is formulated

for Orthoglide 3-axis as follows,

min
x

(f1 : Et,f2 :Iδf ,f3 :If ,f4 :τmax) subject to:











ρmin 6 ρx,y,z 6 ρmax

|vx,y,z| 6 vmax

|τx,y,z| 6 τmax

(4.30)

The problem can be modeled in any multiobjective optimization environment. Over here,

MATLAB along with modeFRONTIER softwares are used to implement and demonstrate

the proposed methodology for Orthoglide 3-axis. A screen-shot of the modeFRONTIER

model, with four design variables, four constraints and four objective functions, is shown

in Fig. 4.18.
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A multiobjective genetic algorithm (MOGA) is used to obtain the Pareto frontiers
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Figure 4.18 – modeFRONTIER model

Table 4.5 – modeFRONTIER algorithm parameters

Scheduler MOGA-II

Number of iterations 100

Directional cross-over probability 0.5

Selection probability 0.05

Mutation probability 0.1

DNA string mutation ratio 0.05

DOE algorithm Sobol

DOE number of designs 40

Total number of iterations 40× 100 = 4000

for a rectangular test path of dimensions 0.03m×0.06m with an end-effector velocity

Vp=0.66 m.s−1. modeFRONTIER scheduler and DOE parameters are given in Table 4.5.

MATLAB is used to process and analyze the system for any individual of the current

population (generated by the modeFRONTIER scheduler). Corresponding to each popu-

lation set, MATLAB returns the output variables that are analyzed by modeFRONTIER

for the feasible solutions according to the given constraints. At the end, the Pareto-optimal

solutions are obtained from the generated feasible solutions.
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The Pareto frontiers obtained are shown in Fig. 4.19. Maximum and minimum (optimum)

values of each objective, corresponding design parameters and percentage variation (%∆)

are given in Table 4.6. Path locations in the Orthoglide 3-axis workspace for maximum

and minimum objective functions are shown in Fig. 4.20.

Table 4.6 shows that the variation in the shaking forces (Iδf ) can be significantly reduced

Table 4.6 – Design parameters that correspond to the Pareto solutions for which the objective
functions are either a minimum or a maximum

Objective xp [m] yp [m] zp [m] φ [deg] Value ∆ %∆

Et [J]
Emax −0.0276 −0.0348 −0.0789 37.2 56.49

33.54 59.38
Emin 0.0141 −0.0044 0.0097 1.44 22.94

Iδfmax −0.0204 −0.0693 −0.0019 0.63 2.445
Iδf [N]

Iδfmin 0.0009 −0.0011 −0.0164 45.0 0.034
2.41 98.60

If [N]
Ifmax 0.0389 −0.0801 −0.1114 40.1 2.620

0.456 17.39
Ifmin 0.0009 −0.0011 −0.0164 45.0 2.164

τmax 0.0381 −0.0056 0.0714 24.0 1.135
τmax [Nm]

τmin 0.0053 0.0069 −0.1166 42.0 0.849
0.287 25.24

(almost to zero) with an appropriate path placement. As a matter of fact, up to 60% of the

energy consumption can be saved with a proper path placement. Maximum shaking forces

If and maximum actutators torque τmax can be reduced to 17% and 25%, respectively.

Figure 4.21 shows the shaking forces experienced by three prismatic actuators of Ortho-

glide 3-axis for minimum energy consumption and minimum Iδf path locations. It can be

seen that although the maximum values of the shaking forces for both Pareto-points are

almost the same, their variations can be reduced considerably with proper path location.

The smoother the shaking force variations, the lower the vibrations in the mechanism.

From Table 4.6 and Fig. 4.20-(a) it can be noted that optimum points with respect to

Et, Iδf and If lie in the neighbourhood of the isotropic configuration of the manipulator

(xp = yp = zp ≈ 0) whereas for τmax, zp attain their minimum value, i.e., at the base of

the workspace. Similarly with respect to orientation, φ, Et is minimum for φ ≈ 0 ◦ and

the other three objectives are minimum for φ ≈ 45 ◦.

Figure 4.22 summarizes the variational trends as well as the inter-dependency between the

objective functions and design variables by means of a scatter matrix. The lower triangular

part of the matrix represents the correlation coefficients whereas the upper one shows the

corresponding scatter plots. Diagonal elements represents the probability density charts

of each variable. The correlation coefficients vary from -1 to 1. Two variables are strongly

dependent when their correlation coefficient is close to -1 or 1 and independent when the

latter is null. From Fig. 4.22,

– Et, Iδf and τmax strongly dependent as the correlation coefficients between Et and

Iδf , Et and τmax and Iδf and τmax are equal to -0.822, -0.785 and 0.819, respectively.
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Figure 4.19 – Pareto frontier for the Orthoglide 3-axis path placement problem
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Figure 4.21 – Shaking forces experienced by three actuators for Emin and Iδfmin

However, the lower Et, the higher τmax and Iδf .

– the correlation of If with Et, Iδf and τmax is very low as the corresponding correlation

coefficients are equal to -0.113, 0.185 and -0.065, respectively.

– φ has strong and direct correlation with Et (0.907) whereas it has strong and inverse

correlation with Iδf and τmax (−0.966, −0.828, respectively);

– xp, yp, zp have very week or unpredictable relations with respect to all objectives

and parameters.

As Iδf and τmax are linearly related, the lower Iδf , the lower τmax, no matter the scale

of variation of both functions. Et and τmax are antagonistic. Likewise, Et and Iδf are

antagonistic. Regarding the design variables, the path orientation φ is the most influential

for the considered test path. Finally, the foregoing results are only valid for the Ortho-

glide 3-axis manipulator and the given test path. However, the methodology illustrated

in this section is appropriate for any manipulator and test path.

4.5 Conclusions

An approach to optimally locate a given trajectory profile, path or task within the works-

pace of a manipulator presented. The electric energy consumed by the actuators to carry
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Figure 4.22 – Scatter matrix for objective functions and design variables

out that given path is considered as the primary optimization criterion. The minimiza-

tion of the effects of the shaking forces and minimization of the actuators peak torques

are considered as other optimum path placement criteria, hence obtaining a multiobjec-

tive optimization problem. The electric energy requirement is calculated with the help

of the required actuators torques and velocities along with motors electric parameters.

Kinematic, velocity and dynamic modelings are used to evaluate the actuators velocities,

accelerations and torques to realize the given path at a certain location in the workspace.

To guarantee the feasibility of the solution, actuators performance limits such as their

joint limits, maximum velocities and torque capabilities are used as the constraints of the

optimization problem.

The proposed methodology is applied to a single and a multiobjective optimization pro-

blems for the Orthoglide 3-axis, a 3-dof translating parallel manipulator having a regular

cubic workspace. Rectangular shaped test paths are considered as illustrative examples.
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Such paths are similar to that used to realize a pocketing operation.

The use of the electric energy instead of mechanical energy as an optimization criterion

is pertinent. Although actuator electric energy consumption depends on the mechanical

energy requirements, the electric energy evaluation is more comprehensive than its me-

chanical counterpart. The general approach used to calculate the mechanical energy with

the help of manipulator velocity and dynamic models, i.e., by using actuators torques and

velocities, may lead to an under estimation of the energy requirements in the case where

actuators are experiencing torques whereas they do not move. Besides, usual mechanical

energy calculations do not consider the resistive energy loss in the motors windings neither

the energy loss due to the variations in the actuators velocities. Those variations affect the

current requirements and hence induce electromotive forces in the actuators. Accordingly,

the electric energy formulation takes into account all these energy losses.

The energy required to perform a given task depends on the position and the orientation

of the task within the workspace of the manipulator. Accordingly, some electric energy

can be saved by properly selecting the position and the orientation of the task. Indeed, a

misplaced task can cause excessive energy consumption and can force the actuators to go

over their performance limits.

For the Orthoglide 3-axis, the optimum path location is found to be in the neighbourhood

of the isotropic configuration but there is no general rule to predict the exact optimal

position and orientation of a task particularly for a complicated three dimensional task

or for an irregular workspace. However, a detailed analysis of the energy variation wi-

thin the workspace for a given task can lead to the optimal position/orientation of that

particular task. Numerical optimization algorithms are useful for such a comprehensive

analysis in which all the problem constraints and performance measures can be considered

simultaneously.

Variations in the shaking forces experienced by the base platform of a manipulator are also

path location dependent. However, the lower the effects of the shaking forces, the higher

the energy consumption. Magnitude of the maximum shaking forces can also be reduced

with path location but to a lower extent compared to the reduction of variations in shaking

forces. Similarly, the magnitude of the maximum actuators torques can be reduced with

an appropriate path location. However, the lower the shaking forces effects and the higher

the maximum actuators torques, the higher the energy consumption. Hence, the user has

to make a compromise.

In future works, other objective functions have to be considered such as the stiffness and

the manipulability of the manipulator for the realization of more complex tasks and in case

of irregular workspaces. Furthermore, to have a complete picture of shaking effects, along

with shaking forces, shaking moments should also be considered. Finally, the optimal path

placements obtained should be checked experimentally.
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1 Conclusions

Parallel manipulators, also known as parallel kinematics machines (PKMs), have attrac-

ted attention for their high speed, better accuracy, low mass/inertia properties and high

structural stiffness. These are attractive features for the innovative machine-tool archi-

tectures; however practical utilization for the potential benefits requires an extensive and

efficient analysis of their structure, kinematics and dynamics.

PKMs design, like any other product design, goes through many phases and requires,

as a prerequisite, a designer’s knowledge as well as years long experience for a design

to be appreciable. A designer is faced with a great amount of variables and parameters,

each one needed to be analyzed carefully. While some are more important than others, to

know how important they are with respect to each other can be an exhaustive task. Still,

there are times when less important variables play the most important role in the failure

of an engineering structure. It is only natural that while dealing with a very complex

design of enormous proportions, it is not possible for a designer to take into account all

the variables simultaneously. An optimization process, however, does not require such an

experience and it is faster than conventional design processes. Design optimization based

on numerical algorithms and techniques can be applied to various engineering systems to

help a designer come out with a proposal that is more efficient, light weight, reliable, safe,

cost effective and that satisfies the user too. This requires not only the final product to

be optimized but also the optimization of manufacturing process as well as the optimum

use/application of the product. This requires not only the final product to be optimized

but also the optimization of manufacturing process as well as the optimum use/application

of the product.

PKMs design, like any other product design, goes through many phases and requires,

as a prerequisite, a designer’s knowledge as well as years long experience for a design

to be appreciable. A designer is faced with a great amount of variables and parameters,

each one needed to be analyzed carefully. While some are more important than others, to

know how important they are with respect to each other can be an exhaustive task. Still,
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there are times when less important variables play the most important role in the failure

of an engineering structure. It is only natural that while dealing with a very complex

design of enormous proportions, it is not possible for a designer to take into account all

the variables simultaneously. An optimization process, however, does not require such an

experience and it is faster than conventional design processes. Design optimization based

on numerical algorithms and techniques can be applied to various engineering systems to

help a designer come out with a proposal that is more efficient, light weight, reliable, safe,

cost effective and that satisfies the user too. This requires not only the final product to

be optimized but also the optimization of manufacturing process as well as the optimum

use/application of the product.

In the third chapter, we dealt with the kinematic and dynamic analyses of the Ortho-

glide 5-axis, a five-degree-of-freedom manipulator. First, it turned out that kinematic and

dynamic analysis of the translating part and the spherical wrist of the manipulators can

be decoupled. The geometric and inertial parameters of the manipulator were determined

by means of a CAD software. We came up with the dynamic model of the spherical wrist

by means of a Newton-Euler approach. Besides, this model has been checked with the

principle of virtual work. Then, the required motors performance were evaluated for some

test trajectories. Various simulations results showed that the FFA 20-80 harmonic drive

motors of 800 W and the MPP0923D servo motors of 1600 W, primarily selected for the

wrist and Orthoglide 3-axis respectively, are suitable for the Orthoglide 5-axis. In future

works, friction forces as well as payload will be considered in the dynamic analysis and

further test trajectories will be performed.

In the fourth chapter, an approach to optimally locate a given trajectory profile, path or

task within the workspace of a PKM is presented. The electric energy consumed by the

actuators to carry out that given path is considered as the primary optimization crite-

rion. The shaking forces effects as well as the the actuators peak torques are considered

as other optimum path placement criteria, hence obtaining a multiobjective optimization

problem. The electric energy requirement is calculated with the help of the required ac-

tuators torques and velocities along with motors electric parameters. Kinematic, velocity

and dynamic modeling is used to come up with the trajectory parameters like actuators

velocities, accelerations and torques to realize the given path at a certain location in the

workspace. To guarantee the feasibility of the solution, actuators performance limits such

as their joint limits, maximum velocities and torque capabilities are used as the constraints

of the optimization problem.

The use of the electric energy instead of mechanical energy as an optimization criterion

is pertinent. Although actuator electric energy consumption depends on the mechanical

energy requirements, the electric energy evaluation is more comprehensive than its me-

chanical counterpart. The general approach used to calculate the mechanical energy with

the help of manipulator velocity and dynamic models, i.e., by using actuators torques and
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velocities, may lead to an under estimation of the energy requirements in the case where

actuators are experiencing torques with a null velocity. Besides, usual mechanical energy

calculations do not consider the resistive energy loss in the motors windings as well as the

energy loss due to the variations in the actuators velocities. Those variations affect the

current requirements and hence induce electromotive forces in the actuators. Accordingly,

the electric energy formulation takes into account all these energy losses.

Variations in the shaking forces experienced by the base platform of a manipulator also

vary with the path locations. However, the lower the effects of the shaking forces, the

higher the energy consumption. Magnitude of the maximum shaking forces can also be

reduced with path location but to a lower extend compared to the reduction of the va-

riation of shaking forces. Similarly, the magnitude of the maximum actuators torques can

be reduced with appropriate path location. However, the energy consumption may in-

crease with the minimization of the shaking forces effects and maximum torque. Hence, a

trade-off has to made by the designer.

Futures works:

In the framework of this thesis, some optimization issues were tackled like design optimi-

zation, actuators selection for a given application and path placement optimization. Here

is a list of tasks that should be done following the foregoing results:

– Multi-objective design optimization of several PKMs by using other different design

criteria than the ones proposed in Chapter II, such as their first natural frequency.

The cross-section type parameters could be used as decision variables to find the

optimal components shapes.

– The multi-objective design optimization results should be validated experimentally

by means of some prototypes realizations.

– In the design optimization of the 3-PRR planar parallel manipulator presented in

Chapter II, only one working mode of the manipulator was considered. Later on,

the manipulator working mode will be used as a discrete decision variable of the

optimization problem in order to come up with more general results. The joints

stiffness will be considered as well as decision variables of the design optimization

problem.

– A Graphical User Interface (GUI) will be developed to help the designer distinguish

between the Pareto optimal solutions obtained from the foregoing multi-objective

design optimization problem.

– In order to get a more realistic dynamic modelling of Orthoglide 5-axis, the friction

forces as well as the payload have to be considered. It will be done later on in order

to test more complex trajectories.
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– As far as the multi-objective path placement problem is concerned, other objec-

tive functions have to be considered such as the stiffness and the manipulability of

the manipulator for the realization of more complex tasks and in case of irregular

workspaces. Furthermore, to have a complete picture of shaking effects, along with

shaking forces, shaking moments should also be considered. Finally, the optimal

path placements obtained will be checked experimentally.
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Hervé, J.-M. and Sparacino, F., 1992, “Star. A new concept in robotics,”Proceedings

of the 3rd International Workshop on Advances in Robot Kinematics , Ferrara, Italy,

pp. 176–183.

Hirakawa, A. and Kawamura, A., 1997, “Trajectory planning of redundant manipu-

lators for minimum energy consumption without matrix inversion,” Proceedings of

the IEEE International Conference on Robotics and Automation, New Mexico, pp.

2415–2420.

Hunt, K. H., 1978, Kinematic Geometry of Mechanisms , Oxford, Cambridge.

Husty, M. L., 1996, “An algorithm for solving the direct kinematics of general

Stewart-Gough platforms,”Mechanism and Machine Theory 31, no. 4, pp. 365–380.
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A
Orthoglide Wrist

Kinematics and

Dynamics Relations

This annex presents the mathematical relations used for the kinematic and dynamic calcu-

lations of the Orthoglide wrist. The nomenclature and methodology is taken from (Caron,

1997) and is described in Chapter 3. The sequence of relations are given by:

g =
[

0 −9.81 0
]T

(A.1)

Q0 =







cosα0 0 sinα0

0 1 0

− sinα0 0 cosα0






(A.2)

φ̇ =
[

φ̇1 φ̇2

]T

(A.3)

φ̈ =
[

φ̈1 φ̈2

]T

(A.4)

S =







0 − sinφ1

0 − cosφ1

1 0






(A.5)

Ṡ =







0 − cosφ1

0 − sinφ1

0 0






φ̇1 (A.6)

ω = Sφ̇ (A.7)

ω̇ = S× φ̈+ Ṡ× φ̇ (A.8)

The relations of e1, e2, e3, e4 and e5 in frame R1 are:

[e1]1 =
[

0 0 1
]T

(A.9)

[e2]1 = Q0 [e1]1 (A.10)

[e3]1 =
[

sin θ1 sinα1 − cos θ1 sinα1 cosα1

]T

(A.11)



164 Annexe A. Orthoglide Wrist Kinematics and Dynamics Relations

[e4]1 =







sinα0 cosα2 + sin θ0 cosα0 sinα2

− cos θ2 sinα0

cosα0 cosα2 − sin θ2 sinα0 sinα2






(A.12)

[e5]1 =







sinα1 cosα3 sin θ1 + cosα1 sinα3 sin θ1 sin θ3 + sinα3 cos θ1 sin θ3

sinα1 cosα3 sin θ1 − cosα1 sinα3 sin θ1 sin θ3 + sinα3 cos θ1 sin θ3

cosα1 cosα3 − sinα1 sinα3 cos θ3







(A.13)

Time derivatives relations of different vectors

ωt = θ̇1e1 + θ̇3e3 (A.14)

ωd = θ̇2e2 + θ̇4e4 (A.15)

ωp1 = θ̇1e1 (A.16)

ωp2 = θ̇2e2 (A.17)

ė1 =
[

0 0 0
]T

(A.18)

ė2 =
[

0 0 0
]T

(A.19)

ė3 = θ̇1 (e1 × e3) (A.20)

ė4 = θ̇2 (e2 × e4) (A.21)

ė5 = ω × e4 (A.22)

Accelerations and Inertias of the Wrist Components

Terminal:

at = lte3ë3 + lte5ë5 + lte3×e5 (ë3 × e5) + 2 (ė3 × ė5) + (e3 × ë5) (A.23)

f tg = mtg jtg = mtat kt = Itω̇t +
(

ωt × Itωt
)

(A.24)

Components of f tg, j
t and kt are:

F t
ge3 = f tg.e3 F t

ge5 = f tg.e5 F t
ge3×e5 = f tg. (e3 × e5) (A.25)

J t
e3 = jt.e3 J t

e5 = jt.e5 J t
e3×e5 = jt. (e3 × e5) (A.26)

Kt
e3 = kt.e3 Kt

e5 = kt.e5 Kt
e3×e5 = kt. (e3 × e5) (A.27)

Distal:

ad = lde4ë4 + lde5ë5 + lde4×e5 (ë4 × e5) + 2 (ė4 × ė5) + (e4 × ë5) (A.28)

fdg = mdg jdg = mdad kd = Idω̇d +
(

ωd × Idωd

)

(A.29)

�
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Components of fdg , j
d and kd are:

F d
ge4 = fdg .e4 F d

ge5 = fdg .e5 F d
ge4×e5 = fdg . (e4 × e5) (A.30)

Jd
e4 = jd.e4 Jd

e5 = jd.e5 Jd
e4×e5 = jd. (e4 × e5) (A.31)

Kd
e4 = kd.e4 Kd

e5 = kd.e5 Kd
e4×e5 = kd. (e4 × e5) (A.32)

Proximal–I:

ap1 = lp1e1 ë1 + lp1e3 ë3 + lp1e1×e3 (ë1 × e3) + 2 (ė1 × ė3) + (e1 × ë3) (A.33)

fp1g = mp1g jp1g = mp1ap1 kp1 = Ip1ω̇p1 +
(

ωp1 × Ip1ωp1
)

(A.34)

Components of fp1, jp1 and kp1 are:

F p1
ge1 = fp1g .e1 F p1

ge3 = fp1g .e3 F p1
ge1×e3 = fp1g . (e1 × e3) (A.35)

Jp1
e1 = jp1.e1 Jp1

e3 = jp1.e3 Jp1
e1×e3 = jp1. (e1 × e3) (A.36)

Kp1
e1 = kp1.e1 Kp1

e3 = kp1.e3 Kp1
e1×e3 = kp1. (e1 × e3) (A.37)

Proximal–II:

ap2 = lp2e2 ë2 + lp2e4 ë4 + lp2e2×e4 (ë2 × e4) + 2 (ė2 × ė4) + (e2 × ë4) (A.38)

fp2g = mp2g jp2g = mp2ap2 kp2 = Ip2ω̇p2 +
(

ωp2 × Ip2ωp2
)

(A.39)

Components of fp2, jp2 and kp2 are:

F p2
ge2 = fp2g .e2 F p2

ge4 = fp2g .e4 F p2
ge2×e4 = fp2g . (e2 × e4) (A.40)

Jp2
e2 = jp2.e2 Jp2e4 = jp2.e4 Jp2

e2×e4 = jp2. (e2 × e4) (A.41)

Kp2
e2 = kp2.e2 Kp2

e4 = kp2.e4 Kp2
e2×e4 = kp2. (e2 × e4) (A.42)

Kinetic and Potential Energies of the Wrist Components

Kinetic Energy (Ek):

Kinetic energy relations for the two motors (m1 and m2) and four wrist components are

given by:

Em1
k = 0.5Im1

[

ωp1 (3)
]2

(Motor-I) (A.43)

Em2
k = 0.5Im2

[

ωp2 (1)
]2

(Motor-II) (A.44)

Et
k = 0.5

(

ωt
)T

Itωt (Terminal) (A.45)

Ed
k = 0.5

(

ωd
)T

Idωd (Distal) (A.46)

�



166 Annexe A. Orthoglide Wrist Kinematics and Dynamics Relations

Ep1
k = 0.5

(

ωp1
)T

Ip1ωp1 (Proximal-I) (A.47)

Ep2
k = 0.5

(

ωp2
)T

Ip2ωp2 (Proximal-II) (A.48)

Im1 and Im2 being the inertia of motors m1 and m2, respectively.

Potential Energy (Ep):

Potential energy relations are given by:

Et
p = −mt

[

g ·
(

lte3e3 + lte5e5 + lte3×e5e3 × e5
)]

(Terminal) (A.49)

Ed
p = −md

[

g ·
(

lde4e4 + lde5e5 + lde4×e5e4 × e5
)]

(Distal) (A.50)

Ep1
p = −mp1

[

g ·
(

lp1e1e1 + lp1e3e3 + lp1e1×e3e1 × e3
)]

(Proximal-I) (A.51)

Ep2
p = −mp2

[

g ·
(

lp2e2e2 + lp2e4e4 + lp2e2×e4e2 × e4
)]

(Proximal-II) (A.52)
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B
Position and

Acceleration of the

Orthoglide Leg Elements

Expressions of cji , j = 1 . . . 6, a, p and i = 1, . . . ,3, used for the calculations of the

shaking forces for the Orthoglide with reference to Fig. 4.6 and discussed in Sec. 4.3.1.2,

(C and S respectively stand for sine and cosine functions):

cai = [0 0 q1i]
T (B.1)

c1i =

[

0
Lf

2
Sλ q1i +

Lf

2
Cλ

]T

(B.2)

c2i = [0 LfSλ q1i + LfCλ]
T (B.3)

c3i =

[

Lb

2
Cq3iCq2i LfSλ+

d

2
− Lb

2
Sq3i q1i + LfCλ+

Lb

2
Cq3iSq2i

]T

(B.4)

c4i = c3i + [0 d 0]T (B.5)

c5i = [LbCq3iCq2i LfSλ− LbSq3i q1i + LfCλ+ LbCq3iSq2i]
T (B.6)

c6i = c5i + [0 0 e/2]T (B.7)

cpi = c5i + [0 0 e]T (B.8)

Twice differentiating Eqs. B.1 to B.8, result:

c̈ai = [0 0 q̈1i]
T (B.9)

c̈1i = c̈ai (B.10)

c̈2i = c̈ai (B.11)

c̈3i =













Lb

2
(−q̇22iCq3iCq2i − q̈2iCq3iSq2i + 2q̇2iq̇3iSq2iSq3i − q̇23iCq2iCq3i − q̈3iCq2iSq3i)

Lb

2
(q̇23iSq3i − q̈3iCq3i)

q̈1i +
Lb

2
(−q̇23iCq3iSq2i − q̈3iSq3iSq2i − 2q̇2iq̇3iSq3iCq2i − q̇22iCq3iSq2i + q̈2iCq3iCq2i)













(B.12)
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c̈4i = c̈3i (B.13)

c̈5i =







Lb(−q̇22iCq3iCq2i − q̈2iCq3iSq2i + 2q̇2iq̇3iSq2iSq3i − q̇23iCq2iCq3i − q̈3iCq2iSq3i)

Lb (q̇
2
3iSq3i − q̈3iCq3i)

q̈1i + Lb(−q̇23iCq3iSq2i − q̈3iSq3iSq2i − 2q̇2iq̇3iSq3iCq2i − q̇22iCq3iSq2i + q̈2iCq3iCq2i)







(B.14)

c̈6i = c̈5i (B.15)

c̈pi = c̈5i (B.16)
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