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Speciation by mating preferences L'aspect spatial de l'environnement joue un rôle crucial dans l'apparition et le maintien de la diversité des espèces. En particulier, il est reconnu depuis longtemps qu'un environnement hétérogène facilite la coexistence des espèces [START_REF] Levin | Dispersion and population interactions[END_REF]52]. Une grande partie de la biodiversité que nous observons, à la fois entre et au sein des espèces, est due à la sélection agissant différemment dans des habitats différents, ce qui provoque une spécialisation pour les habitats [START_REF] Hastings | Dynamics of a single species in a spatially varying environment : the stabilizing role of high dispersal rates[END_REF]. Cependant, le développement de modèles mathématiques spatiaux explicites pour l'étude de la spéciation reste un sujet largement négligé [START_REF] Gavrilets | Models of speciation : where are we now[END_REF].

La spéciation est la naissance à partir d'une seule espèce de deux espèces filles distinctes. On différencie en général trois grands types de spéciation. Le premier type de spéciation, appelée allopatrie, résulte de la suppression des flux de gènes entre deux populations par une barrière extrinsèque aux organismes. Il peut s'agir de barrières géographiques telles que des montagnes ou des océans, ou toutes autres barrières physiques comme les vecteurs pour certains parasites [START_REF] Giraud | Speciation in parasites : host switching does not automatically lead to allopatry[END_REF]. En l'absence de barrières géographiques ou physiques, la diversification est entravée par les flux de gênes. Cependant de nombreuses études théoriques ont maintenant identifié des processus évolutifs pouvant entraîner une spéciation [START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF][START_REF] Doebeli | Speciation along environmental gradients[END_REF]. On parle de spéciation sympatrique lorsque la probabilité de croisement entre individus dépend uniquement de leurs génotypes [START_REF] Kondrashov | Sympatric speciation : when is it possible ?[END_REF], ou de spéciation parapatrique s'il y a divergence entre deux populations qui échangent des migrants et donc pour lesquelles il existe des flux de gènes bien que restreints [START_REF] Ravigné | Biologie Evolutive, chapter La spéciation[END_REF].

Bien que le rôle de l'espace semble plus évident dans le cadre de la spéciation allopatrique que dans celui de la spéciation avec flux de gènes, il a maintenant été montré que les facteurs spatiaux jouent des rôles cruciaux pour tous les types de spéciation. Dans [START_REF] Doebeli | Speciation along environmental gradients[END_REF], Doebeli et Dieckmann étudient une population structurée spatialement où les individus évoluent dans un espace phénotypique et spatial et subissent une compétition densité dépendante. Les ressources sont distribuées linéairement dans l'espace géographique de telle sorte que pour chaque position, il existe un unique phénotype maximisant le taux de croissance. A l'aide de simulations numériques, les auteurs observent les formations successives de clusters spatialement et phénotypiquement isolés, ce qui s'interprète comme une succession de phénomènes de spéciation en sympatrie. Initialement, ces résultats ont été interprétés comme un artéfact des effets de bords [START_REF] Polechová | Speciation through competition : a critical review[END_REF]. Mais il a maintenant été montré que les effets de bords ne sont pas cruciaux et que l'apparition de clusters phénotypiques et spatiaux est bien une conséquence directe d'une distribution spatiale hétérogène et d'une diffusion locale [93]. L'hétérogénéité spatiale, générée par le gradient environnemental, semble ainsi faciliter les phénomènes de spéciation par rapport à un environnement homogène.

La combinaison des mouvements spatiaux et des processus de sélection dans un environnement hétérogène est également reconnue pour avoir des effets importants sur le maintien des polymorphismes [START_REF] Levene | Genetic equilibrium when more than one ecological niche is available[END_REF]. Ravigné et al. [START_REF] Ravigné | Implications of habitat choice for protected polymorphisms[END_REF] comparent plusieurs classes de modèles de dispersion-sélection et en déduisent des conditions pour lesquelles l'hétérogénéité spatiale favorise la coexistence de traits. D'une manière générale, ils montrent qu'il peut y avoir un polymorphisme dans un environnement hétérogène dès que l'adaptation à une niche entraîne une perte de valeur sélective (capacité des individus à se reproduire dans un environnement donné) dans les autres niches : la valeur sélective des individus ne doit pas dépendre uniquement de leur génotype mais aussi de la niche dans laquelle ils se trouvent, et la densité des populations doit être régulée localement, c'est-à-dire indépendamment dans chaque niche. Il faut donc que les individus répondent de manière hétérogène à un environnement hétérogène, d'où l'intérêt de modéliser de manière explicite les structures spatiales sur lesquelles évoluent les populations.

Par ailleurs, la dispersion, mouvements des individus d'une unité spatiale à une autre ayant des conséquences potentielles sur les flux de gènes [START_REF] Johnson | Evolution of dispersal : theoretical models and empirical tests using birds and mammals[END_REF][START_REF] Duputié | An empiricist's guide to theoretical predictions on the evolution of dispersal[END_REF], joue également un rôle central dans la dynamique et l'évolution des populations. Premièrement, elle influence la diversité génétique spatiale des populations, joue un rôle important dans l'évolution des communautés [START_REF] Ronce | How does it feel to be like a rolling stone ? ten questions about dispersal evolution[END_REF] et son évolution est fortement corrélée à celle des modes de reproduction des populations [START_REF] Cheptou | Pollination fluctuations drive evolutionary syndromes linking dispersal and mating system[END_REF]. Deuxièmement, comprendre l'évolution de la dispersion est fondamentale pour prédire comment les changements globaux externes peuvent modifier la persistance et la répartition géographique des espèces [START_REF] Duputié | An empiricist's guide to theoretical predictions on the evolution of dispersal[END_REF]. Finalement, les événements de dispersion permettent aux espèces de découvrir et de coloniser de nouveaux habitats favorables et d'étendre leur aire géographique de répartition. On parle alors d'invasion [START_REF] Shigesada | Biological invasions : theory and practice[END_REF]. Ces phénomènes d'invasion permettent aux espèces d'échapper à des catastrophes locales ou à des changements environnementaux globaux en colonisant de nouveaux habitats [START_REF] Thomas | Ecological and evolutionary processes at expanding range margins[END_REF]. De nombreux exemples ont également montré que l'évolution morphologique des espèces peut avoir un impact très fort sur la vitesse d'invasion de ces espèces, comme dans le cas de certains criquets répertoriés en Angleterre [START_REF] Thomas | Ecological and evolutionary processes at expanding range margins[END_REF], ou des crapauds-bufles d'Australie [START_REF] Phillips | Invasion and the evolution of speed in toads[END_REF].

En outre, la variabilité spatiale et temporelle de l'environnement influe sur l'évolution de la dispersion. L'hétérogénéité spatiale est reconnue pour favoriser les individus peu dispersifs [START_REF] Hastings | Can spatial variation alone lead to selection for dispersal ?[END_REF] tandis qu'un fort taux de dispersion permet aux organismes de résister face aux fluctuations temporelles de l'environnement [START_REF] Johnson | Evolution of dispersal : theoretical models and empirical tests using birds and mammals[END_REF].

Il est donc essentiel de développer des modèles spatiaux théoriques et de les étudier finement pour analyser et quantifier l'effet des structures spatiales sur les dynamiques et l'évolution des espèces.

Cette première partie est constituée de trois chapitres et se focalise sur cette problématique. Le modèle individu-centré probabiliste utilisé pour cette étude est un modèle individu-centré structuré spatialement introduit initialement par Champagnat et Méléard [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF].

Dans le chapitre 1, nous étudions un système d'équations aux dérivées partielles non-locales qui modélise la dynamique spatiale et démographique de deux populations en compétition l'une avec l'autre. Ce système est obtenu comme la limite grande population de notre modèle microscopique de base. Nous décrivons le comportement en temps long des solutions de ce système en fonction des paramètres du modèle. En particulier, nous exhibons des conditions sur les valeurs spectrales qui assurent la survie, l'extinction d'une des populations ou encore la coexistence des deux populations en temps long.

Dans le chapitre 2, nous étudions le modèle individu-centré sous deux asymptotiques issues de la théorie des dynamiques adaptatives [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF][START_REF] Dieckmann | The dynamical theory of coevolution : a derivation from stochastic ecological processes[END_REF] : grande population et mutations rares de telle sorte que les échelles de temps démographiques et mutationnelles sont séparées. Dans ce contexte, lorsqu'un mutant apparaît, la population résidente est à l'équilibre démographique. Nous explicitons les paramètres qui caractérisent la probabilité de survie de la population issue de ce mutant. Puis, en étudiant le processus à l'échelle des mutations, nous montrons que le processus converge vers un processus de sauts qui décrit les fixations successives des traits les plus avantagés ainsi que la répartition spatiale des populations portant ces traits. Ce travail nous permet ainsi de généraliser les résultats de Champagnat et al. [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF][START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF] à l'évolution phénotypique d'une population vivant sur un espace explicite. Nous illustrons ce résultat à l'aide de simulations autour de deux questions : comment évoluent les niches spatiales et phénotypiques d'une population ? Comment évolue le coefficient de diffusion d'une population vivant sur un espace hétérogène ? Enfin, dans le chapitre 3, nous généralisons le modèle afin de prendre en compte des interactions de type mutualiste. Nous construisons un modèle structuré spatialement et composé de deux espèces qui interagissent de manière bénéfique l'une sur l'autre. Nous explicitons des paramètres qui assurent la non-explosion de la taille des populations en temps fini, puis nous étudions la limite en grande population de ce modèle. A l'aide de simulations, nous explorons alors les questions de la coévolution de niches spatiales et phénotypiques d'espèces mutualistes. Dans un deuxième temps, nous nous intéressons aux dynamiques d'invasions d'espèces mutualistes introduites dans un espace homogène. L'ensemble des simulations de ce chapitre suggère que les interactions mutualistes ont un impact fort sur les dynamiques évolutives et spatiales des populations.

Modèle microscopique structuré spatialement

Nous introduisons tout d'abord le modèle microscopique à la base des trois premiers chapitres de cette thèse. Ce modèle décrit l'évolution d'une population structurée spatialement. La dynamique du modèle suit un processus diffusif de naissance et mort où la naissance, la mort et le mouvement de chaque individu i dépendent à la fois de sa position X i t , à valeurs dans un ouvert, borné, convexe X ⊂ R d , et de son trait phénotypique U i t , à valeurs dans un compact U ⊂ R q , à l'instant t ≥ 0. En tout instant t ≥ 0, on représente alors la population totale par la mesure finie suivante sur l'espace X × U

ν K t = 1 K N t ∑ i=1 δ (X i t ,U i t ) ∈ M F (X × U ), (1.1) 
où δ y est la mesure de Dirac en y, N t est le nombre d'individus en vie au temps t et K est un paramètre de renormalisation. Ce paramètre K quantifie les ressources disponibles sur un habitat et mesure la force de la compétition entre les individus, il représente la capacité de charge de l'environnement. Le trait phénotypique d'un individu est fixe tout au long de sa vie contrairement à sa position. Chaque individu i de trait phénotypique U i t = u se déplace dans X suivant l'équation différentielle stochastique réfléchie normalement aux bords de ∂X , dX i t =

Chaque individu de caractéristiques (x, u) se reproduit à taux b(x, u). Son descendant naît avec la même position x que son parent au moment de sa naissance. Le trait du nouvel individu est identique à celui de son parent avec une probabilité q K • p, et mute suivant un noyau k(x, u, •) avec une probabilité 1q K • p. Le paramètre q K normalise ainsi la probabilité de mutation. Enfin, chaque individu meurt à taux

d(x, u) + 1 K N t ∑ i=1 c(u, X i t , U i t ),
qui prend en compte un taux de mort naturelle d et un taux de compétition à travers le noyau c.

Remarquons ici que le noyau de compétition ne dépend pas de la position de l'individu qui subit la compétition. D'un point de vue biologique, ceci peut s'interpréter de la manière suivante. Nous pouvons d'une part considérer que la position exhibée pour l'individu correspond à la position de son nid et les mouvements explicités correspondent donc à la recherche d'un emplacement pour un nouveau nid. Or ici, nous nous intéressons à une compétition pour les ressources. Si les individus de l'espèce étudiée réalisent des explorations très rapides pour la recherche de ressources par rapport à celles pour la recherche du nid, on obtient une compétition pour les ressources intégrée sur l'espace à travers un noyau de compétition qui fait intervenir les positions des nids des autres individus, ceux-ci souhaitant protéger l'emplacement de leur nid.

Nous supposons que les fonctions b, d, c et m sont continues, positives et bornées, et que b et d sont lipschitziennes par rapport à la variable de position. Nous faisons également l'hypothèse que b, c et m sont minorées inférieurement par une constante strictement positive et que d n'est pas la fonction nulle. Dans l'ensemble de la thèse, la notation ν, f désigne l'évaluation d'une fonction f par rapport à la mesure ν lorsqu'elles vivent sur le même espace.

Par ailleurs, dans un soucis de condenser les notations, on précisera parfois les traits des individus à l'aide d'une notation en exposant pour toutes les fonctions dépendant des traits.

Champagnat et Méléard, dans [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF], ont introduit le modèle microscopique décrit ci-dessus afin de modéliser la dynamique et l'évolution d'une population vivant dans un espace explicite. Ils ont montré la convergence du processus microscopique vers un processus déterministe dans des limites de grandes populations et de mutations rares, c'est-à-dire lorsque K tend vers l'infini et que q K tend vers 0. Théorème 1.1 ([29]). Supposons que la suite de conditions initiales (ν K 0 ) K>0 converge en loi vers une mesure déterministe ξ 0 et que

sup K E[ ν K 0 , 1 3 ] < +∞.
Alors, pour tout T > 0, la suite de processus (ν K ) K>0 , dans l'espace de Skorohod D([0, T], M F (X × U )), converge en loi vers la fonction continue et déterministe ξ telle que sup t∈[0,T] ξ t , 1 < +∞ et ξ vérifie l'équation suivante au sens faible sur [0, T] × X × U ,

     ∂ t ξ t (x, u) = m u ∆ x ξ(x, u) + b(x, u) -d(x, u) - X
c(u, y, v)ξ t (dy, dv) ξ t (x, u),

∂ n ξ t (x, u) = 0, sur [0, T] × ∂X × U . (1.
3) De plus, si U est fini, pour tout u ∈ U , pour tout t > 0, ξ t (., u) admet une densité par rapport à la mesure de Lebesgue sur X . Introduction dérivées partielles non linéaire de type parabolique. Pour simplifier la présentation, nous ne précisons pas ici le trait u dans les notations. L'équation (1.3) 

devient donc           
∂ t g t (x) = m∆ x g t (x) + a(x)g t (x) -X c(y)g t (y)dy g t (x), ∀x ∈ X ∂ n g t (x) = 0, ∀x ∈ ∂X , ∀t ∈ R, g 0 (x) = g init (x), ∀x ∈ X . (1.4) Ici, g t (x) représente la densité des individus de trait u à la position x et au temps t. La fonction a(x) correspond au taux de croissance intrinsèque des individus à la position x, c'est-à-dire a(x) = b(x, u)d(x, u).

Nous montrons que le comportement en temps long de la solution de l'équation parabolique (1.4) dépend du signe de la valeur suivante

H = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m|∇φ| 2 dx - X a(x)φ 2 (x)dx , (1.5) 
où H 1 est l'espace de Sobolev sur X d'ordre 1. H est donc la valeur propre principale de l'opérateur linéaire L = m∆ x + aId sur L 2 avec des conditions de Neumann aux bords de X . Le résultat suivant explicite la convergence de la solution de (1.4) lorsque t tend vers l'infini.

Théorème 1.2 (Théorème 1.1.4). Supposons que la condition initiale g init appartient à L 2 . Si H > 0, toute solution strictement positive de classe C 2 de (1.4) converge, dans L ∞ , vers l'unique solution strictement positive de

    
-m∆ ḡ(x) = a(x) ḡ(x) -X c(y) ḡ(y)dy ḡ(x), ∀x ∈ X ∂ n ḡ(x) = 0, ∀x ∈ ∂X , ∀t ∈ R.

(1.6)

D'autre part, si H ≤ 0, g t L ∞ -→ t→+∞ 0.
Ce théorème donne donc la condition nécessaire et suffisante sur les paramètres écologiques de la population pour que celle-ci survive en temps long. Cette condition porte sur le paramètre H qui est calculé uniquement à partir du coefficient de diffusion m et du taux de croissance propre a de la population. Le noyau de compétition c n'affecte donc pas la survie de la population, cependant il intervient dans la définition de la limite ḡ et affecte donc la taille de la population à la limite.

Pour prouver ce résultat, nous utilisons la fonction v t (x) = g t (x) exp t 0 X c(y)g s (y)dyds qui est solution d'une équation elliptique linéaire dont le comportement en temps long est bien connu. En particulier, v t e -Ht converge dans L ∞ vers une limite finie lorsque t tend vers l'infini. On en déduit la convergence

g t X g t → t→+∞ ḡ X ḡ .
Finalement, la convergence de la fonction t → X g t vers X ḡ s'obtient en étudiant l'équation qu'elle satisfait. Cette équation correspond à une équation logistique perturbée par une fonction qui tend vers 0 en l'infini.

Nous nous intéressons ensuite à la question d'un noyau de compétition plus général du type c(x, y) qui dépend donc des positions des deux individus en compétition. Le comportement en temps long de l'équation parabolique associée à ce noyau de compétition général est encore inconnu. Coville [START_REF] Coville | Convergence to equilibrium for positive solutions of some mutationselection model[END_REF] apporte une réponse partielle à ce problème de convergence pour des noyaux de compétition qui sont une perturbation du noyau intégral, i.e. du type c(y) + c(x, y). Ici, nous sommes en mesure de prouver l'existence d'une solution strictement positive à l'équation elliptique      -m∆ ḡ(x) = a(x) -X c(x, y) ḡ(y)dy ḡ(x), ∀x ∈ X ∂ n ḡ(x) = 0, ∀x ∈ ∂X , (1.7) lorsque H > 0, sous les hypothèses suivantes sur le noyau de compétition c(•, •) ∈ C( X × X ) est positif et Lipschitzien par rapport à la première variable, si d = 1 : ∃c -> 0/ ∀x ∈ X , c(x, x) ≥ c -, si d > 1 : ∃c -> 0/ ∀(x, y) ∈ X × X , c(x, y) ≥ c -.

(1.8) La démonstration de ce résultat repose sur la recherche de points fixes de l'opérateur qui à toute fonction h ∈ L 2 associe la solution de l'équation elliptique avec des conditions aux bords de Neumann -mδ∆ x gδag + g = h 1δ X c(., y)h(y)dy pour δ > 0 tel que 1δa(x) > 0. Dans le cas d > 1, nous utilisons le théorème de point fixe de Schauder (théorème (4.1) de [START_REF] Cronin | Fixed points and topological degree in nonlinear analysis[END_REF]) tandis que pour d = 1, nous utilisons une méthode adaptée de la preuve du théorème de point fixe de Schaefer (théorème (4.4) de [START_REF] Cronin | Fixed points and topological degree in nonlinear analysis[END_REF]).

Population dimorphique

Dans le cas d'une population dimorphique, U = {u, v}, l'équation (1.3) se réécrit

                                                             
∂ t g t (x, u) = m u ∆ x g t (x, u) + a(x, u) -X c(u, y, u)g t (y, u)dy -X c(u, y, v)g t (y, v)dy g t (x, u),

∂ n g t (x, u) = 0, ∀(t, x) ∈ R + × ∂X , g 0 (x, u) = g u init (x), ∀x ∈ X ,                  ∂ t g t (x, v) = m v ∆ x g t (x, v) + a(x, v) - X c(v, y, u)g t (y, u)dy - X c(v, y, v)g t (y, v)dy g t (y, v), ∂ n g t (x, v) = 0, ∀(t, x) ∈ R + × ∂X , g 0 (x, v) = g v init (x), ∀x ∈ X .
(1.9) Comme pour le cas monomorphique, pour tout (x, u) ∈ X × U , a(x, u) est le taux de croissance naturelle d'un individu de type (x, u), c'est-à-dire a(x, u) = b(x, u)d(x, u). g t (x, u) (respectivement g t (x, v)) désigne la densité d'individus de type u (resp. v) à la position x et au temps t.

Dans un premier temps, nous décrivons les états d'équilibre du système d'équations (1.9). L'existence et la stabilité de ces équilibres dépendent des paramètres écologiques du système à travers les signes des valeurs propres principales des opérateurs

L u = m u ∆ x + a u Id et L v = m v ∆ x + a v Id, c'est-à-dire H w = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m w |∇φ| 2 dx - X a(x, w)φ 2 (x)dx , (1.10) 
pour w ∈ {u, v}. Par ailleurs, on note A u 1 et A v 1 les vecteurs propres associés aux valeurs propres principales H u et H v tels que X A w 1 (x)dx = 1, pour w ∈ {u, v} et enfin, on pose κ ww = X c(w, y, w )A w 1 (y)dy.

Le système d'équations aux dérivées partielles (1.9) admet au maximum quatre états stationnaires positifs : -l'état trivial nul (0, 0), qui décrit l'extinction totale de la population, -l'état d'équilibre monomorphique ( ḡu , 0) pour ḡu = H u κ uu A u 1 , qui est positif et non nul si et seulement si H u > 0, -l'état d'équilibre monomorphique (0, ḡv ) pour ḡv = H v κ vv A v 1 , qui est positif et non nul si et seulement si H v > 0, -enfin, l'état d'équilibre dimorphique ( ĝu , ĝv ) pour ĝu = r u A u 1 et ĝv = r v A v 1 avec deux constantes r u et r v telles que

H u H v = κ uu κ uv κ vu κ vv r u r v , cet équilibre existe (et est non nul) si et seulement si (H v κ uu -H u κ vu )(H u κ vv - H v κ uv ) > 0, H u > 0 et H v > 0.
Nous donnons ensuite un tableau complet des convergences et stabilités en temps long des solutions du système dimorphique (1.9) en fonction des valeurs des paramètres écologiques. 1. Pour toute condition initiale (g u init , g v init ) ∈ (L 2 ) 2 , l'unique solution du système parabolique (1.9) converge dans L ∞ vers l'un des quatre états stationnaires écrits ci-dessus quand t tend vers +∞.

2. Si H u ≤ 0 et H v ≤ 0, toutes les solutions du système convergent vers l'état trivial (0, 0), i.e. la population s'éteint.

3. Si H u > 0, l'équilibre ( ḡu , 0) est asymptotiquement stable si et seulement si H v κ uu -H u κ vu < 0 ou si 5. Si H u > 0, H v > 0, H v κ uu -H 1 κ vu > 0 and H u κ vv -H v κ uv > 0, alors pour toute condition initiale satisfaisant g u init ≡ 0 et g v init ≡ 0, la solution du système converge vers ( ĝu , ĝv ), i.e. il y a coexistence des deux types en temps long.

Le théorème couvre bien l'ensemble des valeurs possibles pour les paramètres H w et κ ww où w, w ∈ {u, v}, excepté le cas dégénéré κ uu κ vvκ uv κ vu = 0 que nous excluons de l'étude. Pour démontrer ces résultats, nous prouvons tout d'abord, comme dans le cas monomorphique, la convergence des densités renormalisées par les tailles des populations X g t (y, w)dy w∈{u,v} . Puis nous étudions le système d'équations différentielles satisfait par ces tailles des populations. Il s'agit d'un système de Lotka-Volterra

(ρ u ) (t) = ρ u (t) (H u -κ uu ρ u (t) -κ uv ρ v (t)) , (ρ v ) (t) = ρ v (t) (H v -κ vu ρ u (t) -κ vv ρ v (t)) .
(1.13) perturbé par des fonctions qui tendent vers 0 lorsque t tend vers l'infini. On peut d'ailleurs remarquer la similarité entre les conditions présentées dans le théorème 1.3 et celles qui donnent les stabilités des équilibres du système (1.13) (voir par exemple p.186 de [START_REF] Champagnat | Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics[END_REF] ou la partie 3.5 dans [START_REF] Murray | Mathematical biology. I[END_REF]).

Pour prouver les stabilités locales dans les cas où plusieurs équilibres sont stables simultanément, nous décomposons les solutions g u t et g v t du système (1.9) dans les bases hilbertiennes de L 2 formées des vecteurs propres des opérateurs compacts L u et L v . Puis nous étudions les systèmes de dimension infinie d'équations ordinaires satisfaits par les coefficients de la décomposition.

Nous illustrons ce théorème à l'aide de simulations. La résolution numérique des équations nous permet d'ailleurs de donner un moyen de calculer numériquement les paramètres propres H w et κ ww .

Les résultats du théorème 1.3 ont un intérêt propre en tant qu'étude de système d'équations non-linéaires et non-locales mais ils sont également la première étape dans un travail de dynamiques adaptatives que nous avons développé dans le chapitre 2.

Théorie des dynamiques adaptatives

La théorie des dynamiques adaptatives a été développée pour prendre en compte le fait que les paysages adaptatifs d'un écosystème évoluent lorsque les individus de cet écosystème évoluent. Lorsqu'un trait mutant apparaît et finit par se fixer durablement dans un environnement, la probabilité de survie et d'invasion des autres traits s'en trouvent modifiée. On peut alors quantifier la capacité d'un individu mutant à s'établir dans un paysage adaptatif donné, on appelle cette quantité la fitness d'invasion du trait dans le paysage. Une mutation est considérée comme avantageuse si sa fitness d'invasion est positive.

La théorie des dynamiques adaptatives prend en compte ces évolutions sous des hypothèses de grandes populations et de mutations rares de telle sorte que les échelles de temps démographique et évolutive sont séparées. La population issue d'un individu mutant atteint un équilibre démographique avant l'apparition d'une nouvelle mutation. Dans ce contexte, Metz et al. [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF] ont introduit le processus de Trait Subtitution Sequence qui détaille les fixations successives de mutations avantageuses dans la population comme un processus de sauts. La convergence du processus microscopique individu-centré vers le processus de Trait Subtitution Sequence a été rigoureusement démontrée par Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] et Champagnat et al. [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF] puis a été généralisée dans différents contextes tels que, entre autres, les populations évoluant dans un chemostat [START_REF] Champagnat | Adaptation in a stochastic multiresources chemostat model[END_REF], les communautés de proies-prédateurs [START_REF] Costa | Stochastic eco-evolutionary model of a prey-predator community[END_REF], les populations structurées par âge [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF].

Certaines études donnent des résultats quantitatifs dans ce cadre de dynamique adaptative pour des populations structurées spatialement [START_REF] Leimar | The evolution of phenotypic polymorphism : randomized strategies versus evolutionary branching[END_REF][START_REF] Berdahl | On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments[END_REF]. Par exemple, Berdahl et al. [START_REF] Berdahl | On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments[END_REF] étudient simultanément l'évolution de la dispersion et l'évolution de la spécialisation pour certains habitats. Cependant ces études utilisent une structure spatiale implicite : l'espace est décrit comme un ensemble de patchs entre lesquels les individus migrent de manière uniforme. Ils ne prennent donc pas en compte le coût que peut représenter un événement de grande dispersion.

Dans le chapitre 2, nous nous intéressons au modèle individu-centré structuré spatialement décrit dans la section 1.2 qui possède donc une structure spatiale explicite. Nous prouvons rigoureusement la convergence du processus individu-centré vers un processus de sauts qui décrit les fixations successives des traits les plus avantagés ainsi que la répartition spatiale des populations portant ces traits. La structure spatiale et l'aléa associé aux mouvements des individus engendrent des difficultés majeures par rapport aux études citées précédemment, notamment, parce que les processus sont alors à valeurs dans des espaces de dimensions infinies.

Résultats du chapitre 2

Ce chapitre est constitué de la prépublication intitulée "Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence" [START_REF] Leman | Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence[END_REF]. Il est dédié à l'étude du processus (ν K t ) t≥0 dans des limites de grandes populations et de mutations rares et sous l'hypothèse de la séparation des échelles de temps écologiques et évolutionnaires comme discuté dans la section précédente 1.4.

Grandes déviations

Le théorème 1.1 donne la convergence du processus (ν K t ) t≥0 vers la solution de l'équation (1.3) lorsque K → +∞. Dans un premier temps, nous nous intéressons aux grandes déviations autour de cette limite. Afin d'étudier le processus ν K , à valeurs mesures, nous utilisons la distance de Kantorovich-Rubinstein sur l'espace

M F (X × U ) W 1 (ν, µ) = sup f ∈C Lip (X ×U ) | ν, f -µ, f | .
Comme X × U est un compact, cette distance est une métrique de la topologie de la convergence faible. Pour cette métrique et pour T > 0, nous prouvons qu'il existe une fonction de taux (ξ, ν) → I T ξ (ν) sur l'espace M F (X × U ) × D([0, T], M F (X × U )) vérifiant le résultat de grandes déviations suivant.

Théorème 1.4 (Théorème 2.5.1). Pour tout α > 0, ξ 0 ∈ M F (X × U ), pour tout compact C ⊂ B W 1 (ξ 0 , α), pour tout ensemble mesurable A ⊂ D([0, T], M F (X × U )) tel qu'il existe M > 0 pour lequel A ⊂ {ν| sup t∈[0,T] ν t , 1 ≤ M}, lim sup K→+∞ 1 K sup ν K 0 ∈C∩M K F log P ν K 0 (ν K ∈ A) ≤ -inf ξ∈C,ν∈ Ā I T ξ (ν), (1.14) où M K F = { 1 K ∑ N i=1 δ (x i ,u i ) , avec N ∈ N, (x i , u i ) ∈ X × U }.
La difficulté majeure de cette partie a ensuite été de donner une formulation non-variationnelle à la fonction de taux I T . Pour cela, nous utilisons des arguments d'analyse convexe adaptés des articles de Léonard [START_REF] Léonard | Large deviations for long range interacting particle systems with jumps[END_REF][START_REF] Léonard | Convex conjugates of integral functionals[END_REF][START_REF] Léonard | Minimizers of energy functionals[END_REF]. Pour tout ν ∈ D([0, T], M F (X × U )) tel que I T (ν) < +∞, nous prouvons l'existence de deux fonctions mesurables et bornées, h ν 1 et h ν 2 , telles que

I T ν 0 (ν) = T 0 E ρ * (h ν 1 )dµ ν s ds + T 0 m ν s , |h ν 2 | 2 ds < +∞, (1.15) 
où µ ν est la mesure finie positive

µ ν t (dx, du, dπ) = b(x, u)δ 1 (dπ) + (d(x, u) + c • ν t-(x, u))δ 2 (dπ) ν t-(dx, du), et ρ * est la transformée de Legendre de ρ(x) = e x -x -1, c'est-à-dire ρ * (y) = ((y + 1) log(y + 1) -y)1 {y>-1} + 1 {y=-1} + ∞ • 1 {y<-1} .
Pour obtenir ce résultat, nous avons utilisé et modifié des résultats de [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF][START_REF] Fontbona | Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion[END_REF] qui s'intéressent à des processus diffusifs et des résultats de [START_REF] Léonard | Convex conjugates of integral functionals[END_REF][START_REF] Léonard | Minimizers of energy functionals[END_REF] qui se concentrent sur des processus avec sauts. Nous les avons adaptés pour les appliquer à notre processus qui fait intervenir à la fois des diffusions et des sauts.

Temps de sortie d'un état stationnaire

Ainsi, les théorèmes 1.1 et 1.4 assurent que, lorsque K → +∞, le processus (ν K t ) t≥0 suit la dynamique de la solution de l'équation (1.3) pendant un temps fini. Le processus représentant une population monomorphique de trait u atteint donc un voisinage de l'équilibre ḡu en temps fini (cf. théorème 1.2). On se pose alors deux questions. Combien de temps le processus reste-t-il au voisinage de cet équilibre ? Comment ce temps est modifié lorsque le processus est couplé avec un processus représentant une population mutante de trait v de petite taille ? Pour répondre à cette deuxième question, Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] utilise des comparaisons entre les processus des populations dimorphiques et monomorphiques, cependant l'aspect spatial de notre modèle empêche ces comparaisons. Champagnat et al. [START_REF] Champagnat | Adaptation in a stochastic multiresources chemostat model[END_REF] et Costa et al. [START_REF] Costa | Stochastic eco-evolutionary model of a prey-predator community[END_REF] ont quant à eux utilisé une méthode faisant intervenir une fonction de Lyapounov dont nous n'avons pas d'équivalent dans notre cas. Nous avons donc développé une méthode originale à l'aide des résultats de grandes déviations pour contourner ce problème. On s'intéresse ici à des conditions initiales ne faisant intervenir que deux traits u et v. Nous supposons qu'à l'instant initial, il n'y a qu'un individu de trait v à la position x 0 et que la mesure représentant la population de trait u, ν K 0 (., u), est proche de ξu (dx) := ḡu (x)dx. On cherche alors à minorer le temps de sortie d'un voisinage de cet état, R K γ , défini pour tout γ > 0 par :

R K γ = inf{t ≥ 0, W 1 (ν K,u t , ξu ) ≥ γ)}.
Introduction par :

S K 1 = inf{t ≥ 0, ∃w ∈ {u, v}, ν K t (X × {w}) = 0}, et T K = inf{t ≥ 0, ν K,v t , 1 ≥ }.
Théorème 1.5 (Théorème 2.6.1). Supposons que H u > 0. Pour tout γ > 0 suffisamment petit, il existe γ > 0, γ > 0, > 0, et V > 0 satisfaisant la propriété suivante : si

ν K 0 = ν K,u 0 + ν K,v 0 avec W 1 (ν K,u 0 , ξu ) < γ et ν K,v 0 , 1 < , alors lim K→+∞ P ν K 0 (R K γ > e KV ∧ T K ∧ S K 1 ) = 1.
Ce résultat s'obtient en adaptant les arguments développés par Freidlin et Wentzell [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF] à l'aide du théorème de grandes déviations 1.4 et de l'écriture non-variationnelle de la fonction de taux. L'aspect spatial de notre étude nous oblige cependant à travailler avec des processus à valeurs dans des espaces infinidimensionnels et rend l'étude déterministe nécessaire pour ce résultat non trivial. En particulier, nous avons besoin du résultat intermédiaire suivant. Pour toute condition initiale (ξ u 0 , ξ v 0 ) ∈ M F (X × {u, v}), on note (ξ u t , ξ v t ) t≥0 la solution de l'équation (1.3) dans le cas où la population est dimorphique, i.e. si U = {u, v}. On montre que, tant que la masse ξ v t , 1 de la population de trait v est suffisamment petite, la répartition ξ u t de la population de trait u reste dans un voisinage de l'équilibre ξu pour la norme W 1 . Précisément, soit γ > 0, alors il existe γ > 0 et > 0 tels que pour toute condition initiale

ξ 0 = ξ u 0 δ u + ξ v 0 δ v avec W 1 (ξ u 0 , ξu ) < γ , pour tout t ≤ t = inf{t ≥ 0, ξ v t , 1 > }, W 1 (ξ u t , ξu ) < γ/2.
Le théorème 1.5 assure que, tant que la population mutante de trait v n'a pas une taille macroscopique et tant qu'aucune mutation n'arrive, le processus de la population de trait u reste dans un voisinage du point ξ u pendant un temps long d'ordre e KV .

Probabilité de survie d'un mutant

Nous nous intéressons maintenant à la fitness d'invasion du mutant v dans le paysage déterminé par l'équilibre démographique de la population de trait u. D'après le théorème 1.3, une population de trait v de petite densité peut survivre au sein d'une population u de densité proche de ḡu si H v κ uu -H u κ vu > 0. Cette quantité est donc la fitness d'invasion d'une population de trait v au sein d'une population résidente de trait u. Notre but est alors d'estimer la probabilité et le temps nécessaire pour que la taille d'une population de trait mutant v favorable devienne macroscopique. La probabilité d'invasion d'un mutant de trait v sera décrite à l'aide d'une fonction φ vu définie de la façon suivante :

1. si H v κ uu -H u κ vu ≤ 0, φ vu ≡ 0, 2. si H v κ uu -H u κ vu > 0, φ vu est l'unique solution strictement positive de l'équa- tion elliptique suivante sur X      m v ∆ x φ + b v -d v - X c vu (y) ḡu (y)dy φ -b v φ 2 = 0, ∂ n φ(x) = 0, ∀x ∈ ∂X .
(1.16)

Cette définition prend donc en compte la fitness d'invasion de la population v, H v κ uu -H u κ vu . D'après le théorème 1.5, on peut approximer le processus de la population de trait u par un processus constant de valeur ξu . De plus, sur {t ≤ T K }, la taille de la population de trait v est suffisamment faible pour que l'on néglige les interactions entre les individus de trait v. Ainsi, le processus de la population de trait v peut être comparé à une diffusion branchante η v dont le premier individu est situé à la position x 0 , le taux de naissance et le taux de mort correspondent aux fonctions

b v (x) et d v (x) + X c vu ḡu ,
respectivement et le déplacement des individus suit une diffusion (1.2) de coefficient de diffusion m v . On montre alors le résultat suivant sur la probabilité et le temps d'extinction de cette diffusion branchante à l'aide de formules de Feynman-Kac et des résultats déterministes de [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF] relatifs à l'équation (1.16).

Théorème 1.6 (Théorèmes 2.4.2 et 2.4.3). Soient, pour tous > 0 et K ∈ N * , T 0 = inf{t ≥ 0, η v t , 1 = 0}, T K = inf{t ≥ 0, η v t , 1 ≥ K}.

Introduction

Ce théorème 1.6 indique donc que la probabilité de survie de la population issue d'un mutant de trait v est positive si sa fitness d'invasion est également positive. De plus, cette probabilité dépend de la position x 0 du premier individu mutant et vaut φ vu . Enfin, le théorème assure que, si elle survit, la population mutante atteint une taille macroscopique en temps O(log(K)).

Échelle des mutations

Les résultats précédents vont alors nous servir à étudier le processus (ν K t ) t≥0 à l'échelle des mutations afin d'observer la dynamique évolutive de la population et de généraliser le résultat de dynamiques adaptatives de [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. La fréquence des mutations est de l'ordre de Kq K . Nous étudions donc le processus (ν K t ) t≥0 dans l'échelle t → t Kq K . En suivant la théorie des dynamiques adaptatives, nous supposons que les mutations sont rares et que Kq K → 0 de la manière suivante : 

log(K) 1 Kq K e KV , pour tout V > 0. ( 1 
∈ U , 1. soit, H v κ uu -H u κ vu < 0, 2. soit, H v κ uu -H u κ vu > 0 H u κ vv -H v κ uv < 0.

Convergence vers le modèle de Trait Substitution Sequence structuré spatialement

Nous sommes alors en mesure de généraliser le processus de Trait Substitution Sequence, décrit par [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF] et [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], dans le cas du modèle structuré spatialement. La difficulté majeure de notre étude réside dans le fait que les processus sont à valeurs mesures, donc à valeurs dans des espaces infini-dimensionnels. A l'aide des résultats décrits ci-dessus et en adaptant les preuves de [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], nous prouvons le résultat suivant de convergence.

Théorème 1.7 (Théorème 2.2.4). Pour tout T > 0, ν K (t/Kq K ) t∈[0,T] converge vers un processus markovien (Λ t ) t≥[0,T] lorsque K → +∞. Pour tout t, Λ t appartient à l'espace { ξu δ u , u ∈ U } ⊂ M F (X × U ). Le processus de saut (Λ t ) t≥0 saute de l'équilibre ξu δ u vers l'équilibre ξv δ v au taux infinitésimal X pb u (x)φ vu (x) ḡu (x)k(x, u, v)dxdv.
Cette convergence a lieu au sens de la convergence des distributions infini-dimensionnelles.

A la limite, le processus est un processus de sauts sautant dans l'ensemble des états d'équilibres associés à chaque trait. Lorsqu'un mutant favorable apparaît et envahit l'espace, la dynamique démographique de la phase d'invasion est instantanée. Le processus saute alors vers l'état d'équilibre caractérisé par le trait du mutant.

Par ailleurs, dans le chapitre 2, nous illustrons ce résultat à l'aide de simulations numériques autour de deux thématiques principales : l'évolution des niches spatiales au cours du temps, et l'évolution du coefficient de diffusion d'une population dans un espace hétérogène. Nous donnons ici un exemple d'évolution du coefficient de diffusion. La figure 1 illustre comment évolue le coefficient de diffusion d'une population vivant sur un environnement spatialement hétérogène et constant dans le temps. On observe une décroissance de ce coefficient de diffusion en fonction du temps. Ainsi, la sélection naturelle favorise les individus peu mobiles dans un environnement hétérogène en espace et constant dans le temps [START_REF] Hastings | Dynamics of a single species in a spatially varying environment : the stabilizing role of high dispersal rates[END_REF]. En effet, comme plus d'individus sont localisés dans les aires favorables, la diffusion a tendance à conduire plus souvent les individus des aires favorables vers les aires défavorables [START_REF] Johnson | Evolution of dispersal : theoretical models and empirical tests using birds and mammals[END_REF]. 

Diffusion coefficient

Fig. 1 -Simulations pour K = 100 000, q K = 10 -5 . On observe l'évolution du coefficient de diffusion en fonction du temps. Initialement, la population est composée de K individus à la position 0.2 et de trait 0.8 ; un point noir correspond à une population de plus de 1000 individus et un point gris une population de taille inférieure.

proie-prédateur ou indirectes au travers de l'accès à une ressource ou un habitat commun. Il est donc important de prendre en compte les différentes espèces et les interactions interspécifiques qui entrent dans la composition d'un écosystème pour appréhender l'évolution d'une population. Bien que parfois contestée, une manière classique de catégoriser les interactions interspécifiques est d'utiliser une grille d'interaction qui résume les effets des interactions sur les différents participants [START_REF] Bronstein | Mutualism[END_REF]. Les effets pouvant être négatifs (-) ou positifs (+), on dénombre trois grands types d'interactions. On ajoute parfois des catégories d'interactions si des effets neutres sont observés. Les interactions de type -/représentent les interactions compétitives tandis que les interactions -/+ représentent des interactions de parasitisme ou de prédation. Ces deux premiers types d'interactions ont fait l'objet de nombreuses études dans le contexte des dynamiques adaptatives [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF][START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF][START_REF] Champagnat | Adaptation in a stochastic multiresources chemostat model[END_REF][START_REF] Costa | Stochastic eco-evolutionary model of a prey-predator community[END_REF][START_REF] Costa | A piecewise deterministic model for prey-predator communities[END_REF]. Nous nous intéressons ici aux troisième type, les interactions +/+, qu'on appelle le mutualisme ou la symbiose. Il s'agit donc d'une interaction de laquelle les deux espèces impliquées retirent un bénéfice. Le mutualisme est une interaction inter-spécifique très présente dans le monde du vivant. Tout organisme vivant sur Terre est impliqué à un moment donné de sa vie dans une interaction mutualiste [START_REF] Janzen | The natural history of mutualisms. The biology of mutualism : ecology and evolution[END_REF].

On distingue plusieurs types de bénéfices échangés entre les partenaires tels que le transport, la protection ou l'apport de ressources. Le transport peut concerner le partenaire lui-même. C'est le cas, par exemple, des oiseaux Indicateurs qui guident par un chant les humains d'une population de chasseurs-cueilleurs de Tanzanie centrale, les Hazdas, vers les nids d'abeilles afin qu'ils y récupèrent le miel [START_REF] Wood | Mutualism and manipulation in hadza-honeyguide interactions[END_REF]. Le transport peut également se référer au transport des gamètes dont l'exemple le plus connu est la pollinisation des plantes à fleurs par les insectes, les oiseaux ou les chauves-souris. La protection correspond au fait de fournir une défense au partenaire. Il peut s'agir de défense directe face à un prédateur comme dans l'exemple des fourmis communes du type Lasius niger qui protègent les pucerons du type Aphis fabae face à la prédation des larves de coccinelles, la protection fournie par les fourmis permet ainsi aux colonies de pucerons de croître plus rapidement [START_REF] El-Ziady | Beneficial effects of the common garden ant, lasius niger l., on the black bean aphid, aphis fabae scopoli[END_REF]. On parle également de protection lorsqu'un des partenaires fournit une résistance supplémentaire à l'autre. Par exemple, de nombreuses herbes sont contaminées par des champignons endophytes qui produisent une substance rendant la plante toxique pour les herbivores potentiels [START_REF] Clay | Fungal endophytes of grasses : a defensive mutualism between plants and fungi[END_REF]. Enfin, les exemples de mutualismes concernant l'apport de ressources ne manquent pas puisque dans les exemples précédemment cités, Indicateurs-Hazdas, fourmis-pucerons, plantes-pollinisateurs, la récompense donnée pour le service fourni est nutritionnelle : les Hazdas laissent aux Indicateurs la cire et les larves d'abeilles dénichées, les pucerons fournissent du miellat aux fourmis et enfin, les pollinisateurs viennent récolter le nectar des plantes. Il existent également des exemples où l'apport de ressources est bilatéral comme c'est le cas pour les mycorhizes, symbioses entre la racine d'une plante et une colonie de champignons [START_REF] Clay | Fungal endophytes of grasses : a defensive mutualism between plants and fungi[END_REF].

Bien que de nombreux organismes soient impliqués dans une ou plusieurs relations mutualistes, il existe divers degrés d'implication dans ces relations. Premièrement, le mutualisme peut être obligatoire ou facultatif en fonction du degré de dépendance de l'organisme face à la relation mutualiste. Dans le cas d'un mutualisme facultatif, les espèces ont la possibilité de se passer de la relation mutualiste mais leur fitness en est bien sûr diminuée. C'est le cas pour les plantes capables de s'autoféconder, il existe alors un risque de consanguinité qui impacte leur fitness [START_REF] Porcher | The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation[END_REF]. D'autre part, une espèce impliquée dans une relation mutualiste est qualifiée de spécialiste si elle ne peut interagir qu'avec un seul ou un nombre restreint de partenaire. Dans le cas contraire, on parle d'espèce généraliste. Enfin, des différences de temps de générations peuvent exister entre les partenaires et peuvent avoir un impact sur leur coévolution. Si les échelles de temps démographiques sont très différentes, comme dans les communautés arbres-insectes, l'évolution des deux espèces ne se fera alors pas dans les mêmes échelles de temps. [START_REF] Bronstein | Mutualism[END_REF].

Ici, nous focalisons notre attention sur les interactions plantes-pollinisateurs, où les plantes et les pollinisateurs se reproduisent dans des échelles de temps similaires, telles que les interactions entre abeilles solitaires et plantes herbacées à fleurs.

Résultats du chapitre 3

Ce chapitre fait l'objet d'un travail en cours, commencé lors d'un séjour au laboratoire d'écologie de l'Université d'Arizona (Tucson, Etats-Unis). Dans ce chapitre, nous cherchons à généraliser le modèle étudié précédemment afin d'ajouter des interactions de type mutualiste avec d'autres espèces.

Modèle mutualiste

Nous développons donc un modèle individu-centré structuré spatialement et composé de deux espèces. Afin de différencier les individus des deux espèces, nous notons (X i t , U i t ) la position et le trait du pollinisateur i à l'instant t et (Y i t , V i t ) la position et le trait de la plante i à l'instant t. Les indices des pollinisateurs sont regroupés dans l'ensemble N A t ⊂ N et ceux des plantes dans N P t ⊂ N. En tout instant t ≥ 0, on représente la population totale à l'aide d'un couple de mesures définies sur l'espace X × U :

(ν A,K t , ν P,K t ) =   1 K ∑ i∈N A t δ (X i t ,U i t ) , 1 K ∑ i∈N P t δ (Y i t ,V i t )   .
Comme précédemment, K représente la capacité de charge.

Les dynamiques démographiques et évolutives propres des pollinisateurs sont décrites par un modèle identique à celui de la section 1.2 dont les taux de naissance, de mutation, de mort et de compétition sont représentés par les fonctions b A , k A , d A et c A I c A respectivement. Les dynamiques spatiales des pollinisateurs suivent une équation différentielle stochastique plus générale que (1.2) :

dX t = 2m A (X t , u)dB t + q A (X t , u)dt -dl t .
(1.18)

Enfin, afin de modéliser l'impact bénéfique des plantes sur les pollinisateurs, on ajoute un terme de naissance qui dépend des positions et des traits des plantes comme suit :

r A K ∑ j∈N P t I r A (X i t , U i t , Y j t , V j t ) = r A X I r A (X i t , U i t , y, v)ν P,K t (dy, dv).
Les dynamiques démographiques, spatiales et évolutives propres des plantes suivent, quant à elles, un modèle microscopique similaire à celui de Fournier et Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. Les taux de naissance, de mutation, de mort et de compétition des plantes sont modélisés par les fonctions b P , k P , d P et c P I c P respectivement. Enfin, la position de chaque plante est fixe tout au long de sa vie, et elle est fixée à sa naissance par le noyau de dispersion D P (y, y )dy qui dépend de la position y de son parent. Comme pour les pollinisateurs, on ajoute un taux de naissance qui dépend de la position et des traits des pollinisateurs,

r P K ∑ j∈N A t I r P (Y i t , V i t , X j t , U j t ) = r P X I r P (Y i t , V i t , x, u)ν A,K t (dx, du).
Finalement, le processus (ν A,K t , ν P,K t ) t≥0 est un processus markovien couplé par des taux d'interactions positives.

Non-explosion en temps fini

Nous cherchons alors un ensemble de paramètres pour lesquels le modèle décrit précédemment est bien défini sur R + , et donc pour lesquels il n'y a pas d'explosion de la taille de la population en temps fini. En effet, les interactions positives peuvent engendrer des boucles de rétroactions positives faisant exploser la taille des populations de chaque espèce. Ici, nous focalisons notre attention sur le cas où les noyaux de compétition, I c A et I c P sont minorés par 1 sur (X × U ) 2 de telle sorte que tout individu exerce une force de compétition sur tous les autres individus en vie. Cette hypothèse simplificatrice nous permet de majorer les tailles des populations de chaque espèce à l'aide d'un processus bi-type

(Z A,K t , Z P,K t ) t≥0 ∈ Z K 2 ,
dont les sauts sont de taille 1 K , et lorsque K tend vers l'infini, ce processus converge vers la solution déterministe d'un système d'équations du type : On s'intéresse ensuite au processus (ν A,K , ν P,K ) dans l'hypothèse de grandes populations, c'est-à-dire lorsque K tend vers +∞. Pour cela, nous avons besoin de la forme plus forte de non-explosion suivante : Dans ce cas, nous montrons alors que si la suite de condition initiale (ν A,K 0 , ν P,K 0 ) K≥0 converge en loi vers le couple déterministe (ξ A 0 , ξ P 0 ) ∈ (R + ) 2 , alors pour tout T > 0, la suite de processus (ν A,K t , ν P,K t ) t∈[0,T] converge en loi, dans l'espace de Skorohod D([0, T], M F (X × U ) 2 ), vers la fonction déterministe (ξ A , ξ P ) ∈ C([0, T], M F (X × U )) 2 , solution faible sur X du système d'équations aux dérivées partielles suivant :

       dn A (t) dt = ( bA + r A n P (t) -d A -c A n A (t))n A (t)
sup K∈N E sup s≤t ν A,K s , 1 + ν A,K s , 1 3 < +∞. ( 1 
∂ t ξ A t (x, u) =∆ x m A (x, u)ξ A t (x, u) + ∇ x q A (x, u)ξ A t (x, u) + b A (x, u) + r A I r A * ξ P t (x, u) U ξ A t (x, u )k A (x, u, du ) -(d A (x, u) + c A I c A * ξ A t (x, u))ξ A t (x, u) (1.23) et ∂ t ξ P t (y, v) = b P (y, v) + r P I r P * ξ A t (y, v) X ×U D(y, y )ξ P t (y , v )k P (y , v, dv )dy -(d P (y, v) + c P I c P * ξ P t (y, v))ξ P t (y, v)
avec pour condition initiale (ξ A 0 , ξ P 0 ).

Évolution de niches spatiales

Nous avons alors développé un programme numérique qui simule de manière exacte le modèle plantes-pollinisateurs décrit ci-dessus pour comprendre l'impact de l'interaction mutualiste sur les deux partenaires.

Dans un premier temps, nous avons réalisé des simulations numériques afin d'étudier la coévolution des niches spatiales des deux partenaires en interaction mutualiste. Nous donnons ci-dessous un exemple qui illustre l'impact du partenaire mutualiste sur l'évolution des plantes. Dans cet exemple, nous supposons que l'espace est hétérogène et que les ressources sont distribuées selon un gradient spatial [START_REF] Doebeli | Speciation along environmental gradients[END_REF]. Le taux de naissance d'une plante de trait v est maximale à la position y = v. Par ailleurs, les plantes peuvent survivre sans l'intervention des pollinisateurs considérés car leur taux de croissance propre est positif. Lorsque les plantes évoluent seules dans l'espace, on observe la création de niches spatiales et phénotypiques caractérisées par le trait de la population monomorphique qui la compose. La figure 2(a) présente l'évolution des traits des plantes évoluant seules. Nous avons représenté l'ensemble des traits des plantes présents à chaque pas de temps par des croix rouges (+). La figure 2(b) présente la répartition spatiale et phénotypique de la population à l'instant t = 15 000. 

Dynamiques d'invasion

Notre deuxième axe d'étude numérique concerne l'impact des partenaires mutualistes lors d'une phase d'invasion. Nous étudions une espèce de pollinisateurs pouvant survivre sans l'intervention des plantes considérées. Nous considérons que ces pollinisateurs sont introduits dans un espace homogène et nous étudions à quelle vitesse ils colonisent l'espace. Nous observons alors que le front d'invasion avance linéairement en temps. On peut donc calculer une vitesse d'invasion, puis étudier l'effet des paramètres sur cette vitesse. La compétition intra-spécifique a une forte influence sur la vitesse du front d'invasion : l'invasion est ralentie lorsque la compétition est forte. Par ailleurs, lorsque la compétition intra-spécifique est faible, la taille de la population est si grande que le comportement du processus se rapproche de celui de la limite grande population d'un point de vue numérique. On retrouve d'ailleurs numériquement les valeurs de vitesses prédites par le modèle déterministe limite (1.23) :

V = 2 m A (b A -d A ).
Nous étudions enfin comment la vitesse est modifiée lorsqu'une population de plantes vit en présence des pollinisateurs. La figure 4 présente une simulation réalisée avec des plantes soumise à un mutualisme obligatoire. La droite horizontale donne la vitesse estimée lorsque les pollinisateurs sont seuls dans l'espace. Nous observons alors l'influence de la variance du noyau de dispersion à la naissance pour les plantes. Lorsque la variance est élevée, on observe une accélération significative de la vitesse de dispersion des pollinisateurs. On en conclut que le mutualisme semble faciliter l'invasion [START_REF] Richardson | Plant invasions-the role of mutualisms[END_REF]. d'Eté Mathématique de Recherche Avancée en Calcul Scientifique (CEMRACS) en 2013. En collaboration avec l'équipe Inria TOSCA, nous avons travaillé sur un algorithme probabiliste pour résoudre l'équation de Poisson-Boltzmann pour des molécules de taille quelconque [START_REF] Bossy | Monte carlo methods for linear and non-linear poisson-boltzmann equation[END_REF]. Nous avons implémenté cet algorithme à l'aide de plusieurs méthodes. Nous avons ainsi pu établir les différentes erreurs et vitesses de convergence de ces méthodes.

Nous présentons le code utilisé pour les simulations des chapitres 2 et 3 de la partie I dans l'annexe 3.B du chapitre 3.

2 Effet de la préférence sexuelle sur la spéciation

Contexte biologique

Il est aisé de comprendre comment la plupart des différences observées au niveau morphologique ou comportemental entre les espèces résultent de l'adaptation à leur environnement ou à leur écosystème. Cependant, quelques caractéristiques exubérantes échappent à ce raisonnement. L'exemple le plus frappant est la queue des paons bleus, Pavo cristatus, qui constitue une traîne pouvant attendre 1,5 mètre de long. Elle limite la capacité du paon à se déplacer et sa couleur bleue vive attire les prédateurs potentiels. Par ailleurs, les femelles de la même espèce sont dépourvues de cet organe. Ceci suggéra à Darwin l'existence d'un mécanisme complémentaire à la sélection de survie, qu'il désigna du nom de sélection sexuelle. Sous l'effet de cette sélection, certains caractères sont sélectionnés en vertu de l'avantage qu'ils confèrent dans l'accès aux partenaires sexuels [START_REF] Cézilly | Biologie évolutive, chapter La sélection sexuelle[END_REF].

En effet, avant la fécondation, il existe une phase de reconnaissance des partenaires sexuels. Les animaux ont développé des systèmes de reconnaissances complexes qui font intervenir des signaux visuels, olfactifs, auditifs, chimiques et des séquences comportementales très élaborées [START_REF] Ravigné | Biologie Evolutive, chapter La spéciation[END_REF]. On parle d'homogamie lorsque les individus s'accouplent préférentiellement avec ceux qui ont un certain degré de ressemblance morphologique et/ou génétique et d'hétérogamie dans le cas contraire. Dans tous les cas, il faut une adaptation entre émetteurs et récepteurs qui sont en étroite interaction dans un environnement où de multiples signaux sont échangés. Ces interactions évoluent sous l'effet de la sélection naturelle et peuvent être à l'origine d'un isolement reproducteur et à terme d'une spéciation.

Les exemples de spéciation intégrant un mécanisme de sélection sexuelle sont très nombreux. Les auteurs de [START_REF] Seehausen | Speciation through sensory drive in cichlid fish[END_REF] mettent en évidence un mécanisme explicatif de la diversité des espèces de cichlidés du lac Victoria (Afrique de l'Est) basé sur la préférence des femelles pour certains coloris que portent les mâles. Chez certaines grenouilles d'Amazonie (Physalaemus petersi), la sélection sexuelle a favorisé la divergence dans les appels d'accouplement entre mâles et femelles, ce qui a entraîné un fort isolement comportemental [START_REF] Boul | Sexual selection drives speciation in an amazonian frog[END_REF]. Notre dernier exemple concerne les populations de criquet hawaïen (Laupala) pour lesquelles une spéciation rapide semble avoir été causée par une conjonction entre l'adaptation à la niche écologique et le choix du partenaire sexuel au travers d'un son émis par les mâles [START_REF] Mendelson | Sexual behaviour : rapid speciation in an arthropod[END_REF].

Cependant, les modèles mathématiques permettant d'étudier théoriquement ces phénomènes manquent encore [START_REF] Gavrilets | Models of speciation : where are we now[END_REF]. De plus, les modèles théoriques existants sont en général étudiés de manière numérique.

Dans ce chapitre 4, nous développons un modèle probabiliste pour étudier finement l'effet de la préférence sexuelle sur la spéciation. La population est divisée en deux patchs entre lesquels une migration est possible. Les individus de type a ou A sont équivalents d'un point de vue démographique, écologique et spatial et ils diffèrent uniquement dans leur préférence sexuelle : deux individus de même type ont plus de chance de se reproduire entre eux. Nous montrons qu'en l'absence de toute autre différence écologique, la préférence sexuelle mène à un isolement reproductif entre les deux patchs.

Résultats du chapitre 4

Ce travail correspond à la prépublication intitulée "A stochastic model for speciation by mating preferences" [START_REF] Coron | A stochastic model for speciation by mating preferences[END_REF], écrite en collaboration avec Camille Coron, Manon Costa et Charline Smadi. Nous y avons ajouté une section concernant une généralisation du modèle où nous prenons en compte des préférences sexuelles asymétriques.

Modèle stochastique

Dans ce chapitre, nous étudions à nouveau un modèle microscopique stochastique structuré spatialement mais de nature différente du modèle précédent. Nous considérons ici une population sexuée haploïde, c'est-à-dire les chromosomes des individus sont chacun en un seul exemplaire. Les individus sont caractérisés par un unique allèle qu'ils portent au niveau d'un locus, cet allèle peut prendre la valeur a ou A. Ces individus vivent dans un espace divisé en deux patchs, notés 1 et 2.

Introduction

La population est représentée par le vecteur de dimension 4

N = N K A,1 , N K a,1 , N K A,2 , N K a,2 .
La dynamique de la population suit celle d'un processus de naissance et mort multitype continu dans N E , où E = {A, a} × {1, 2}. Les taux de sauts sont détaillés cidessous. Un nouvel individu de type α naît dans le patch i à taux

λ α,i (N) = b N α,i β N α,i N α,i + N ᾱ,i + 1 2 N α,i N ᾱ,i N α,i + N ᾱ,i + 1 2 N ᾱ,i N α,i N α,i + N ᾱ,i = bN α,i βN α,i + N ᾱ,i N α,i + N ᾱ,i .
(2.1)

Le paramètre b > 0 représente le taux de naissance individuel tandis que le paramètre β > 1 modélise la préférence sexuelle. Ainsi, deux individus de même type ont une chance β-fois plus grande de donner naissance à un individu viable que deux individus de types différents [START_REF] Hollocher | Incipient speciation by sexual isolation in drosophila melanogaster : variation in mating preference and correlation between sexes[END_REF]. Pour ᾱ = {A, a} \ α, un individu de type α meurt dans le patch i à taux 

d K α,i (N) = d + c K (N α,i + N ᾱ,i ) N α,i ,
ρ α, ī→i (N) = p 1 - N α, ī N α, ī + N ᾱ, ī N α, ī = p N α, ī N ᾱ, ī N α, ī + N ᾱ, ī .
La figure 5 donne une représentation schématique du modèle. 

Étude du système dans la limite de grande population

En utilisant les résultats de convergence en grande population donnés par Ethier et Kurtz [START_REF] Ethier | Markov processes[END_REF], on déduit la convergence du processus renormalisé

Z K = 1 K (N K A,1 , N K a,1 , N K A,2 , N K a,2 )
vers la solution du système déterministe 

               d dt z A,1 (t) = z A,1 b βz A,1 +z a,1 z A,1 +z a,1 -d -c(z A,1 + z a,1 ) -p z a,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z a,1 (t) = z a,1 b βz a,1 +z A,1 z A,1 +z a,1 -d -c(z A,1 + z a,1 ) -p z A,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z A,2 (t) = z A,2 b βz A,2 +z a,2 z A,2 +z a,2 -d -c(z A,2 + z a,2 ) -p z a,2 z A,2 +z a,2 + p z A,1 z a,1 z A,1 +z a,1 d dt z a,2 (t) = z a,2 b βz a,2 +z A,2 z A,2 +z a,2 -d -c(z A,2 + z a,2 ) -p z A,2 z A,2 +z a,2 + p z A,1 z a,1 z A,1 +z a,
K p := z ∈ D, {z A,1 + z a,1 , z A,2 + z a,2 } ∈ b(β + 1) -2d -p 2c , 2bβ -2d + p 2c , (2.5) avec D := {z ∈ R E + , z A,1 -z a,1 > 0, z a,2 -z A,2 > 0},
z(t) -(ζ, 0, 0, ζ) ≤ k 1 e -k 2 t , pour tout t ≥ 0.
Des résultats analogues existent également pour les trois autres équilibres stables de (2.3) et (2.4).

Nous prouvons ces résultats de convergence à l'aide de résultats sur les fonctions de Lyapounov [START_REF] Lasalle | Some extensions of liapunov's second method[END_REF]32]. Dans un premier temps, nous montrons que le compact K p est atteint en temps fini par les solutions de (2.2) et qu'il est invariant sous le système (2.2) en utilisant les équations satisfaites par les sommes et les différences des deux types dans chaque patch :

d dt (z A,i + z a,i ) =(z A,i + z a,i )(bβ -d -c(z A,i + z a,i )) -2(b(β -1) + p) z A,i z a,i z A,i + z a,i + 2p z A, īz a, ī z A, ī + z a, ī , où ī = {1, 2} \ i, et d dt (z A,i -z a,i ) = (z A,i -z a,i ) bβ -d -c(z A,i + z a,i ) .
Puis nous utilisons la fonction de Lyapounov V : D → R :

V(z) = ln z A,1 + z a,1 z A,1 -z a,1 + ln z a,2 + z A,2 z a,2 -z A,2 , (2.6) 
pour déduire la convergence de vitesse exponentielle vers l'équilibre (ζ, 0, 0, ζ).

Influence du taux de migration

Nous avons illustré ce résultat de convergence à l'aide de simulations numériques sur le système dynamique (2.2). La fonction de Lyapounov (2.6), exhibée pour prouver le résultat de convergence vers les équilibres (2.3) et (2.4), nous permet de conclure uniquement dans le cas p < p 0 . Bien que nous ne sommes pas en mesure de prouver le résultat pour un ensemble de paramètres plus général, les nombreuses simulations réalisées nous poussent à conjecturer que le résultat de convergence est valable pour tout p ≥ 0. D'autre part, ces simulations nous renseignent sur l'influence du paramètre p sur le comportement en temps long du système. En particulier, nous calculons le temps T ε (p) nécessaire à la solution (z A,1 , z a,1 , z A,2 , z a,2 ) pour atteindre l'ensemble

S ε = (z A,1 , z a,1 , z A,2 , z a,2 ) ∈ R 4 + , (z A,1 -ζ) 2 + z 2 a,1 + z 2 A,2 + (z a,2 -ζ) 2 ≤ ε 2
, pour différentes conditions initiales et différentes valeurs du paramètre de mutation p. Nous en concluons qu'il existe un compromis entre deux phénomènes opposés qui explique l'influence du paramètre p sur ce temps T ε (p). D'une part, un fort taux de migration aide les populations à s'échapper d'un environnement défavorable. Cependant, la composition de l'espace d'arrivée n'étant pas connue, il existe toujours un risque d'atteindre un habitat encore plus désavantageux [START_REF] Clobert | Dispersal[END_REF].

Temps de spéciation

L'étude du système déterministe constitue également une étape dans l'estimation du temps de spéciation pour le processus N K . Mathématiquement ce temps correspond au temps d'atteinte

T K B ε de l'ensemble B ε := [(ζ -ε)K, (ζ + ε)K] × {0} × {0} × [(ζ -ε)K, (ζ + ε)K],
par le processus N K . Nous prouvons le théorème suivant. Théorème 2.1 (Théorème 4.1.3). Supposons que Z K (0) converge en probabilité vers le vecteur déterministe z 0 ∈ D, avec (z 0 a,1 , z 0 A,2 ) = (0, 0). Alors il existe trois constantes strictement positives ε 0 , C 0 et m, et une constante V > 0 qui dépend de (m, ε 0 ) pour lesquelles, dès que p < p 0 et ε ≤ ε 0 , 

lim K→∞ P T K B ε log K - 1 b(β -1) ≤ C 0 ε, N K T K B ε + t ∈ B mε ∀t ≤ e VK = 1. ( 2 

Préférences sexuelles asymétriques

En dernier lieu, nous nous intéressons à une généralisation du modèle afin de prendre en compte des différences d'effets dans les préférences sexuelles. Cette généralisation est motivée par [START_REF] Smadja | Asymmetrical reproductive character displacement in the house mouse[END_REF] qui décrit un exemple d'espèces de souris domestiques pour lesquelles il existe une asymétrie forte entre les préférences sexuelles. Cette fois, deux individus de même type A (resp. a) ont une probabilité β A (resp. β a ) fois plus grande d'avoir un descendant viable que deux individus de types distincts. Le taux de naissance (2.1) de l'ensemble des individus de type α dans le patch i s'écrit donc maintenant

λ α,i (N) = bN α,i β α N α,i + N ᾱ,i N α,i + N ᾱ,i .
Les taux de mort, de compétition et de migration restent inchangés.

Dans ce cas, le système dynamique limite associé est le suivant

d dt z α,i (t) = z α,i b β α z α,i + z ᾱ,i z α,i + z ᾱ,i -d -c(z α,i + z ᾱ,i ) -p z ᾱ,i z α,i + z ᾱ,i + p z α, īz ᾱ, ī z α, ī + z ᾱ, ī , (2.8) 
où α ∈ {A, a}, i ∈ {1, 2}. Les quatre états suivants

(ζ A , 0, 0, ζ a ), (ζ A , 0, ζ A , 0), (0, ζ a , ζ A , 0), (0, ζ a , 0, ζ a ), avec ζ α := bβ α -d
c , sont des équilibres du système (2.8). On montre alors qu'il existe p 0 > 0 et un ensemble D A,a tels que pour p ≤ p 0 et si la condition initiale converge dans D A,a alors il existe des constantes pour lesquelles lim

K→∞ P T K B A,a,ε log K -ω(A, a) -1 ≤ C 0 ε, N K T K B A,a,ε + t ∈ B A,a,mε ∀t ≤ e VK = 1, où T K B A,a,ε est le temps d'atteinte de l'ensemble B A,a,ε := [(ζ A -ε)K, (ζ A + ε)K] × {0} × {0} × [(ζ a -ε)K, (ζ a + ε)K], et pour tout α, α , ω(α, α ) = b 2 (β α + β α -2) -p + 1 2 b 2 (β α -β α ) 2 + 4p 2 .
(2.9)

Ainsi, le temps nécessaire pour atteindre l'équilibre dépend cette fois de l'équilibre atteint à travers la variable ω(α, α ). Remarquons que pour α = α , c'est-à-dire si le système converge vers un état monomorphique, ω(α, α ) = b(β α -1) et on retrouve alors le résultat donné pour les préférences sexuelles symétriques. Par contre, si le système converge vers un état dimorphique, la vitesse de convergence est inversement proportionnelle à ω(a, A) = ω(A, a) qui décroit avec p.

Bien que le résultat soit similaire au théorème 2.1, la preuve de ce résultat est très différente, en particulier en ce qui concerne la partie déterministe de l'étude. En effet, dans ce cas, les équations satisfaites par les sommes et les différences des types dans chaque patch ne se simplifient pas comme précédemment. Nous n'avons donc pas été en mesure de trouver une fonction de Lyapounov pour l'étude de ce système. Nous utilisons donc une méthode de perturbation des paramètres. Dans un premier temps, nous étudions la dynamique du système lorsque p = 0. La migration est alors nulle, les deux patchs ne sont plus reliés et l'étude du système se ramène à l'étude de deux systèmes de dimension 2. On perturbe ensuite le système pour obtenir un résultat pour p > 0.

3 Perspectives Une question pertinente dans la suite du chapitre 1 est l'étude du comportement en temps long des solutions des équations (1.4) et (1.9) pour un noyau de compétition c général. L'intérêt biologique est clair puisque cela permettrait de prendre en compte des noyaux de compétition dépendant des positions des deux individus en jeu dans la compétition. Cette question est délicate puisque l'unicité de la solution de l'équation elliptique stationnaire (1.7) n'est pas assurée par la preuve donnée dans le chapitre 1. Coville [START_REF] Coville | Convergence to equilibrium for positive solutions of some mutationselection model[END_REF] donne une réponse partielle au problème de convergence dans le cas d'une population monomorphique et de noyaux du type c(y) + ε c(x, y). On pourrait donc s'appuyer sur cette étude, dans un premier temps, pour généraliser le résultat au cas des populations dimorphiques.

Une seconde extension de ce travail serait de pouvoir prendre en compte un nombre plus important de traits. On souhaiterait pouvoir montrer que les conditions de survie et de coexistence se calculent à l'aide de l'étude d'un système de Lotka-Volterra multi-type, comme nous l'avons remarqué pour les populations monomorphiques et dimorphiques. Nous pourrions alors généraliser les résultats du chapitre 2 afin de supprimer l'hypothèse d'Invasion Implique Fixation et d'autoriser la coexistence de plusieurs traits dans le processus limite. Ceci étendrait la polymorphic evolutionary sequence introduite par Champagnat et Méléard [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF] au cas des populations structurées spatialement.

Dans le cadre de la théorie des dynamiques adaptatives, on suppose également que les mutations ont des effets phénotypiques petits. L'évolution phénotypique d'une population est décrite par une équation différentielle appelée équation canonique des dynamiques adaptatives [START_REF] Dieckmann | The dynamical theory of coevolution : a derivation from stochastic ecological processes[END_REF][START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]. Champagnat et Méléard [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF] ont montré que, sous une bonne renormalisation, la trait substitution sequence converge vers la solution de l'équation canonique des dynamiques adaptatives. Une idée naturelle est donc de généraliser ce résultat pour le modèle structuré spatialement étudié dans le chapitre 2 afin d'obtenir une équation canonique spatiale.

Le chapitre 3 propose de nombreuses simulations qui amènent naturellement un grand nombre de questions. La première d'entre elles concerne les dynamiques d'invasion par une espèce. On voudrait pouvoir prouver mathématiquement que la vitesse du front de la diffusion branchante avec une compétition densité-dépendante locale est linéaire en temps. Dans le cas sans compétition, le résultat est connu depuis longtemps et un lien a été établi entre la vitesse de la particule la plus à droite d'un mouvement brownien branchant et la vitesse minimale de propagation des ondes dans l'équation de Fisher-KPP [START_REF] Lalley | A conditional limit theorem for the frontier of a branching brownian motion[END_REF]. Un modèle de mouvement brownien branchant avec de la compétition modélisée sous forme de masse a été étudié par Addario-Berry et Penington [START_REF] Addario-Berry | The front location in bbm with decay of mass[END_REF]. Dans notre cas, la difficulté majeure dans l'ajout de la compétition densité-dépendante, comme nous l'avons définie, vient du fait que la propriété de branchement n'est alors plus vérifiée.

La deuxième question qui fait suite à ce travail sur les dynamiques d'invasion est : comment la vitesse du front d'invasion est modifiée lorsqu'on ajoute des mutations sur le coefficient de diffusion ? Dans [START_REF] Bouin | Invasion fronts with variable motility : phenotype selection, spatial sorting and wave acceleration[END_REF], les auteurs étudient ce problème pour un modèle déterministe de réaction-diffusion pour lequel la mobilité des individus est sujette à variations. On pourrait donc comparer les résultats obtenus avec les résultats prévus par ce travail [START_REF] Bouin | Invasion fronts with variable motility : phenotype selection, spatial sorting and wave acceleration[END_REF]. Puis on pourra se demander comment la vitesse est modifiée dans le cadre d'une interaction mutualiste. Finalement, dans cette thèse, j'ai développé et étudié des modèles probabilistes et déterministes de populations structurées spatialement pour étudier comment un environnement influe sur les dynamiques évolutives des populations. De manière générale, il serait intéressant d'ajouter une variabilité temporelle à l'environnement pour prendre en compte les modifications climatiques à plusieurs échelles : annuelles, centenaires... ou encore pour comprendre comment le changement climatique anthropique actuel peut modifier le processus d'évolution.

Introduction

The spatial aspect of populations is an important ecological issue which has been extensively studied (see [START_REF] Law | The geometry of ecological interactions : simplifying spatial complexity, volume 1 of Cambridge Studies in Adaptive Dynamics[END_REF], [53], [START_REF] Mcglade | Advanced ecological theory : principles and applications[END_REF], [START_REF] Murray | Mathematical biology. I[END_REF], [START_REF] Tilman | Spatial ecology : the role of space in population dynamics and interspecific interactions[END_REF]). The interplay between space and evolution is particularly crucial in the emergence of polymorphism and spatial patterns and the heterogeneity of the environment is considered as essential ( [START_REF] Futuyma | The evolution of ecological specialization[END_REF], [START_REF] Kassen | The experimental evolution of specialists, generalists, and the maintenance of diversity[END_REF]). The combination of spatial motion and mutation-selection processes is also known for a long time to have important effects on population dynamics ( [START_REF] Endler | Geographic variation, speciation, and clines[END_REF], [START_REF] Mayr | Animal species and evolution[END_REF]). Recently biological studies observed that classical models could underestimate the invasion speed and suggested that invasion and evolution are closely related. The ecological parameters can have a strong effect on the expansion of invading species and conversely, the evolution can be conditioned by the spatial behavior of individuals related to the resources available. The paper by Philipps et al. [START_REF] Phillips | Invasion and the evolution of speed in toads[END_REF] shows the strong impact of the morphologic parameters of the cane toads on the expansion of their invasion.

In this context, the study of space-related traits, such as dispersal speed or sensibility to heterogeneously distributed resources, is fundamental and has been the object of mathematical developments. In Champagnat-Méléard [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF], a stochastic individualbased model is introduced where individuals are characterized both by their location and one or several phenotypic and heritable traits. The individuals move, reproduce with possible mutation and die of natural death or because of competition for resources. The spatial motion is modeled as a diffusion and the spatial interaction between individuals is modeled by a convolution kernel in some spatial range. In a large population scale, it is shown that this microscopic stochastic model can be approximated by a nonlinear nonlocal reaction-diffusion equation defined on the space of traits and space. The latter has been studied in Ferrière-Desvillettes-Prévost [START_REF] Desvillettes | Infinite dimensional reactiondiffusion for population dynamics[END_REF] and Arnold-Desvillettes-Prévost [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF] and existence and uniqueness of the solution, numerical simulations and steady states are studied. Propagation phenomena and existence of traveling waves are explored numerically and theoretically for different variants of such models in [START_REF] Alfaro | Travelling waves in a nonlocal reactiondiffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF], [START_REF] Benichou | Front acceleration by dynamic selection in fisher population waves[END_REF], [START_REF] Berestycki | Traveling fronts guided by the environment for reaction-diffusion equations[END_REF], [START_REF] Bouin | Travelling waves for the cane toads equation with bounded traits[END_REF]. This problem has also been studied from an asymptotic point of view using Hamilton-Jacobi equations [START_REF] Bouin | Invasion fronts with variable motility : phenotype selection, spatial sorting and wave acceleration[END_REF], [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF].

Despite several recent attempts to study such models, dynamics of populations structured by trait and space are not completely understood and several interesting and challenging questions remain to be resolved in this field (see for instance [START_REF] Bouin | Invasion fronts with variable motility : phenotype selection, spatial sorting and wave acceleration[END_REF]). In particular, the works quoted above concentrate on the case where the mutations are frequent such that the diffusion in space and the mutations are modeled in the same time scale. Our objective is to understand the framework of adaptive dynamics where the mutations are rare enough such that between two mutations the dynamics is driven by a system of nonlocal reaction-diffusion equations, each of them describing the dynamics and the spatial distribution of one trait. We study the steady states and the long time behavior of such systems. Note that although the existence of steady states for a model with continuous trait and space is provided in [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF], the long time behavior of solutions is not known, to our knowledge, for discrete or continuous traits. However, in the case of a single trait and considering only homogeneous environments, [START_REF] Berestycki | The non-local Fisher-KPP equation : travelling waves and steady states[END_REF] provides a study of steady states and traveling waves. In the case of two traits, [START_REF] Cantrell | Movement toward better environments and the evolution of rapid diffusion[END_REF] and [START_REF] Cantrell | Advection-mediated coexistence of competing species[END_REF] give a precise study of the survival conditions but in the case of a local competition.

Models and main results

In this chapter, we focus on this problem for the simplest case where the population is dimorphic (the population is composed of two-type subpopulations). We will also study the monomorphic case (a single type is involved).

Let us first introduce some notation : The space set X is an open bounded subset of R d with a boundary of class C 3 . We will denote by L k the Lebesgue space on X of order k ∈ N * and by H k the Sobolev space on X of order k ∈ N * . We denote by C 0,1 the space of Lipschitz continuous functions on X . For all x ∈ ∂X , we denote by n(x) the outward normal to the boundary ∂X at point x. For a sufficiently smooth function φ and x ∈ ∂X , we denote by ∂ n φ(x) the scalar product ∇φ(x).n(x).

In the dimorphic case, the spatial density of the population is modeled by the system of nonlinear partial differential equations of parabolic type

                                                              ∂ t g u t (x) = m u ∆ x g u t (x) + a u (x) - X c uu (y)g u t (y)dy - X c uv (y)g v t (y)dy g u t (x), ∂ n g u t (x) = 0, ∀(t, x) ∈ R + × ∂X , g u 0 (x) = g u init (x), ∀x ∈ X ,                  ∂ t g v t (x) = m v ∆ x g v t (x) + a v (x) - X c vu (y)g u t (y)dy - X c vv (y)g v t (y)dy g v t (x), ∂ n g v t (x) = 0, ∀(t, x) ∈ R + × ∂X , g v 0 (x) = g v init (x), ∀x ∈ X . (1.1.1)
where g u t (x) (respectively g v t (x)) denotes the density of individuals of type u (resp. of type v), in position x at time t. The density dynamics is driven by growth rates a u and a v which depend on the spatial position of individuals and on their type.

Laplacian terms describe the diffusion of individuals in space with infinitesimal variances m u and m v . The competition is modeled by nonlocal death rates depending on the environment heterogeneity through the kernels c ww , w, w ∈ {u, v}. We make the following assumptions on the coefficients : for w, w ∈ {u, v}, a w ∈ C 0,1 (X ), and |a w (x)| ≤ a ∞ , for all x ∈ X , (1.1.2)

c ww L 2 < +∞, for w, w ∈ {u, v}, ∃c -> 0/ ∀x ∈ X , c ww (x) ≥ c -, for w ∈ {u, v}. (1.1.3)
We also assume that the initial condition satisfies g w init ∈ L 2 , for w ∈ {u, v}.

(1.1.4)

We will show that this system admits 4 non-negative steady states depending on the ecological parameters. The stability of these states is based on the sign of the principal eigenvalues

H u = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m u |∇φ| 2 dx - X a u (x)φ 2 (x)dx , H v = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m v |∇φ| 2 dx - X a v (x)φ 2 (x)dx . (1.1.5)
We also denote by A u 1 (resp. A v 1 ) the positive eigenfunction associated with the eigenvalue H u (resp. H v ) such that X A w 1 (x)dx = 1 and for w, w ∈ {u, v},

κ ww = X c ww (x)A w 1 (x)dx. (1.1.6)
From (1.1.3), we notice that κ uu = 0 and κ vv = 0. Finally, we make the following assumption on the variables κ ww to exclude the degenerate case

κ uu κ vv -κ uv κ vu = 0. (1.1.7)
We identify now the steady states of Equation (1.1.1). 

(H v κ uu -H u κ vu )(H u κ vv -H v κ uv ) > 0, H u > 0 and H v > 0.
The first steady state is the trivial one (0, 0) describing the population extinction.

The second and third ones describe the long term specialization of the population on a single type : one subpopulation has a non trivial long time behavior and the subpopulation with the other type goes to extinction. The last case describes the co-existence case where individuals with two types exist in a long time scale.

Our main results concern the long time behavior of solutions of (1.1.1). We give explicit conditions determining whether or not the population goes extinct or whether or not there is co-existence of the two types at equilibrium. The first theorem shows the convergence of the solution when time goes to infinity and gives sufficient conditions for convergence to the globally asymptotically stable states. The second theorem explores the more delicate cases, where there are several stable equilibria and different basins of attraction. 1. For any initial condition, as t → ∞, the unique solution of the parabolic system (1.1.1) tends to one of the steady states described in Lemma 1.1.1.

2. If H u ≤ 0 and H v ≤ 0 then for any initial condition and as t → ∞, the solution of (1.1.1) tends to (0, 0), i.e. the population goes extinct.

3. If H u > 0, H v κ uu -H u κ vu ≤ 0 and H u κ vv -H v κ uv > 0,
then for any initial condition such that g u init is not identically zero and as t → ∞, the solution converges to ( ḡu , 0). We thus have fixation of type u in the population.

If

H v > 0, H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv ≤ 0, then for any initial condition such that g v init is not identically zero and as t → ∞, the solution converges to (0, ḡv ). We thus have fixation of type v in the population.

If

H u > 0, H v > 0, H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv > 0,
then for any initial condition such that g u init and g v init are not identically zero and as t → ∞, the solution converges to ( ĝu , ĝv ), i.e. we have co-existence of types u and v.

Next, to give a complete picture of the long time behavior of the solution, let us study the last cases where several equilibria can be reached. 

. If H u > 0 , H v > 0, H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv < 0,
then the steady states ( ḡu , 0) and (0, ḡv ) are both asymptotically stable and ( ḡu , ḡv ) is unstable. Nevertheless some solutions will converge to the latter.

If

H u > 0 , H v > 0, H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv = 0,
then the steady state ( ḡu , 0) is asymptotically stable and (0, ḡv ) is unstable. Nevertheless some solutions will converge to the latter.

If

H u > 0 , H v > 0, H v κ uu -H u κ vu = 0 and H u κ vv -H v κ uv < 0,
then the steady state ( ḡv , 0) is asymptotically stable and (0, ḡu ) is unstable. Nevertheless some solutions will converge to the latter. Remark 1. One can check that, excluding the degenerate case (1.1.7), all the possible values of (H u , H v ) ∈ R 2 are covered by the statements of Theorems 1.1.2 and 1.1.3.

These results are new and interesting by themselves but they will also be the first step in an adaptive dynamics framework, if we want to understand how mutant individuals invade the population at an evolutive scale (see [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], [START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF]). The above theorems provide assumptions based on spectral parameters and competitive kernels under which the solutions of the system (1.1.1) converge to one of the steady states, as time goes to infinity. Equilibria of System (1.1.1) and their stability are characterized by the parameters (H w ) w∈{u,v} and (κ ww ) w,w ∈{u,v} even if these parameters are not sufficient to understand the complete dynamics. As A w 1 , which defines the density landscape of steady states on space X , H w is a spectral parameter depending only on the diffusion part and the intrinsic growth rate of population w. The competitive parameter κ ww can be seen as the mean of the competitive kernel c ww under the specific spectral measure A w 1 (x)dx. Thus, κ ww times the mass of po- pulation w is the competitive pressure that population w , in the case of a stationary density, puts on an individual w. Note that here H w corresponds somehow to the strength of trait w. To determine which trait would persist in long time, one should compare the trait strength values H w weighted by the competition parameters κ ww , as stated in Theorems 1.1.2 and 1.1.3. Furthermore, the conditions presented in Theorems 1.1.2, 1.1.3 can be compared with survival and extinction conditions of the following Lotka-Volterra system (see for example p.186 of [START_REF] Champagnat | Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics[END_REF] or part 3.5 of [START_REF] Murray | Mathematical biology. I[END_REF]) :

(r u ) (t) = r u (t) (H u -κ uu r u (t) -κ uv r v (t)) , (r v ) (t) = r v (t) (H v -κ vu r u (t) -κ vv r v (t)) .
(1.1.9) Indeed, by integrating the equations of System (1.1.1) over X , we will prove that the masses of the two populations satisfy a slightly perturbed system close to (1.1.9)

and with similar conditions for survival and extinction. The system satisfied by the masses is not a closed system in the general case. But it is closed in the case where functions (a w ) w∈{u,v} and (c ww ) w,w ∈{u,v} are constant (homogeneous environment), a w ≡ āw , c ww ≡ cww , for w, w ∈ {u, v}. Thanks to Definition (1.1.5), notice that in this case, H w is equal to āw . Moreover, κ ww = cww . Thus, the masses satisfy exactly System (1.1.9).

Before proving those theorems, we need to consider the case of a monomorphic population where all individuals have the same type.

As above, the density dynamics is driven by a nonlinear partial differential equation of parabolic type with a non-local competition term.

           ∂ t g t (x) = m∆ x g t (x) + a(x)g t (x) - X c(y)g t (y)dy g t (x), ∀x ∈ X ∂ n g t (x) = 0, ∀x ∈ ∂X , ∀t ∈ R, g 0 (x) = g init (x), ∀x ∈ X . (1.1.10)
Here g t (x) denotes the density of individuals in position x and at time t. As before, the Laplacian term models the spatial behaviour of individuals and m is the diffusion coefficient. The intrinsic growth rate is given by a function a(x), which depends on the position x of the individuals. Finally, the last term corresponds to the mortality induced by competition where the function c(y) is the competition kernel.

We prove that there exists at most one steady state for (1.1.10) to which the solution converges in long time. To this end, we make the following assumptions on the coefficients :

a ∈ C 0,1 (X ), and |a(x)| ≤ a ∞ , for all x ∈ X , (1.1.11) 
c ∈ L 2 and there exists c -> 0, for all y ∈ X , c(y) ≥ c -.

(1.1.12)

We also assume that the initial condition satisfies

g init ∈ L 2 . (1.1.13)
To state our result we also need to define the principal eigenvalue of the problem

H = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m|∇φ| 2 dx - X a(x)φ 2 (x)dx . (1.1.14)
We are now ready to state the result : 

     -m∆ ḡ(x) = a(x) ḡ(x) - X c(y) ḡ(y)dy ḡ(x), ∀x ∈ X ∂ n ḡ(x) = 0, ∀x ∈ ∂X , ∀t ∈ R. (1.1.15) Moreover, if H ≤ 0, g t L ∞ -→ t→+∞ 0.
Notice that H > 0 is a necessary and sufficient condition to obtain a positive limit as t → ∞. Hence, only the diffusion parameter and the growth rate a(x) have an influence on the non-extinction of the population in long time. The competition rate affects the total population size at the limit, but not its persistence. We can explicit a simple example where the assumption H > 0 is satisfied : if the growth rate a(x) is a positive function, that is, if the birth rate is greater than the death rate everywhere, then H is positive. Theorem 1.1.4 allows us to conclude that the population will survive, which corresponds to the intuition. Conversely, if a(x) is a negative function, it is easy to deduce that H is negative and that the population goes to extinction.

Remark 2. In [START_REF] Coville | Convergence to equilibrium for positive solutions of some mutationselection model[END_REF], the steady states and the long time behavior of the solution of a similar model are studied using different techniques, specific for the monomorphic case. However, we provide a shorter result for the long time convergence of solutions to (1.1.10), which is easily generalizable to dimension 2.

The first step of our proof is to study the steady states of Equation (1.1.10). In fact, we can prove the existence of a steady state in the case of a more heterogeneous competition term c.

In the end of this section, the function c is a function on X × X and for all x, y ∈ X × X , c(x, y) denotes the competition rate between individuals with respective positions x and y. The dynamics is so the following, on

R + × X ,      ∂ t g t (x) = m∆g t (x) + a(x)g t (x) - X c(x, y)g t (y)dy g t (x), ∂ n g t (x) = 0, ∀(t, x) ∈ R + × ∂X . (1.1.16)
Unfortunately, the long-time behavior of the solution of (1.1.16) with this general competition kernel c(x, y) is not yet understood to our knowledge. Here we prove the existence of a positive steady state. Let us assume that c satisfies

c(•, •) ∈ C( X × X ) is nonnegative
and Lipschitz continuous with respect to the first variable, 

if d = 1 : ∃c -> 0/ ∀x ∈ X , c(x, x) ≥ c -, if d > 1 : ∃c -> 0/ ∀(x, y) ∈ X × X , c(x, y) ≥ c -. ( 1 
     -m∆ ḡ(x) = a(x) - X c(x, y) ḡ(y)dy ḡ(x), ∀x ∈ X ∂ n ḡ(x) = 0, ∀x ∈ ∂X . (1.1.18)
The proofs of the theorems rely on the spectral decomposition of compact operators, fixed point arguments and the study of perturbed Lotka-Volterra type systems.

The rest of the chapter is organized as follows. In Section 1.2 we provide the proofs of our results in the case of a monomorphic population. Section 1.3 is devoted to the two-type case of dimorphic population. We provide the proofs of our main Theorems 1.1.2 and 1.1.3. Finally in Section 1.4, we present some numerical results which are linked with evolution. The appearance of a mutant population within a well-established population can dramatically affect the landscape of that resident population, leading to coexistence or extinction. We will study an example with evolution of spatial niches.

Monomorphic population

Existence of a steady state

In this section, we prove Theorem 1.1.5 and give a necessary and sufficient condition for (1.1.16) to have a steady solution. We need the following lemma which can be derived easily from Krein-Rutman's Theorem (see for instance the chapter 6 of [START_REF] Evans | Partial differential equations[END_REF]) and its proof is left to the reader.

Lemma 1.2.1 (Eigenvalue problem).

There exists a principal eigenvalue H to the following eigenvalue problem :

   m∆φ(x) + a(x)φ = Hφ, ∀x ∈ X , ∂ n φ(x) = 0, ∀x ∈ ∂X . (1.2.1)
This eigenvalue is simple and the corresponding eigenfunction φ is the only eigenfunction which is strictly positive in X . Moreover, H can be computed from the following variational problem given by (1.1.14) :

H = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m|∇φ| 2 dx - X a(x)φ 2 (x)dx . (i) Let H ≤ 0.
We prove by contradiction that there is no nonnegative solution to (1.1.18). To this end, we suppose that 0 ≤ g ∈ C 2 (X ) solves (1.1.18). Supposing that g is non-trivial, from the maximum principle we obtain that g is strictly positive and in particular X ×X c(x, y)g(y)g(x)φ(x)dxdy > 0.

We now multiply (1.1.18) by φ and integrate with respect to x to obtain from (1.2.1),

H X φgdx = X ×X c(x, y)g(y)g(x)φ(x)dxdy > 0.
This is in contradiction with the assumption H ≤ 0.

(ii) We now suppose that H > 0. To prove that (1.1.18) has a steady solution, we construct a mapping

Υ : L 2 → L 2 h → g ,
such that any fixed point of this mapping will be a steady state of our problem, as follows.

Thanks to (1.1.11), we can choose δ > 0 small enough such that 1δa(x) > 0 for all x ∈ X . Let h ∈ L 2 . We define ψ(h) = h 1δ c(•, y)h(y)dy , and Υ(h) = g, where g ∈ H 1 is the unique solution of the following equation

   -mδ∆g(x) -δa(x)g(x) + g(x) = ψ(h)(x), in X , ∂ n g(x) = 0, on ∂X . (1.2.2)
Notice that fixed points of the mapping Υ are steady solutions of our problem and conversely. So the last step is to show that Υ has a fixed point. We establish this result thanks to Schauder's fixed point Theorem (see for instance Theorem (4.1) in [START_REF] Cronin | Fixed points and topological degree in nonlinear analysis[END_REF]). We first notice from the choice of δ that (-mδ∆ + (1δa)Id) -1 is a continuous and compact mapping. As ψ : L 2 → L 2 is a well-defined continuous mapping, we deduce the continuity and compactness of Υ.

We will split the rest of the proof into two cases depending on the dimension d of the domain X . But, first, let us remark that, consequently to Assumptions (1.1.17), there exists a positive constant c + such that c(x, y) ≤ c + , for all x, y ∈ X .

(1.2.3)

• If d > 1, using Lemma 1.2.
1, there exists a positive eigenfunction φ associated with the positive eigenvalue H. We denote by φ + and φ -its maximum and minimum values on X . Then we define

λ + = Hφ + c - and λ -= Hφ - c + (1.2.4)
and choose δ > 0 small enough such that

λ + ≤ φ - 2δc + and 1 -δH > 0. (1.2.5) Let us now introduce the convex closed subset of L 2 Y = g ∈ L 2 |g ≥ 0, λ -≤ X gφ ≤ λ + .
We now prove that Υ maps Y into itself.

Let h be in Y, and g = Υ(h), they satisfy

-mδ∆g(x) -δa(x)g(x) + g(x) = h(x) 1 -δ X c(x, y)h(y)dy , on X . (1.2.6)
As h is a positive function in Y, and using (1.2.5),

ψ(h) ≥ h 1 -δ X c(., y) φ(y) h(y)φ(y)dy ≥ h(1 -δ c + φ - λ + ) ≥ h 2 ≥ 0.
We deduce that g is positive on X thanks to the maximum principle.

Then we multiply (1.2.6) by φ and integrate it over X ,

X (-mδ∆g -δag)φ + X gφ = X hφ -δ X ×X c(x, y) φ(y) h(y)φ(y)h(x)φ(x)dydx.
From an integration by parts, (1.2.1), (1.2.3) and (1.1.17), we find the following inequalities :

X hφ 1 -δ c - φ + X hφ ≥ (1 -δH) X gφ ≥ X hφ 1 -δ c + φ -X hφ .
Thanks to (1.2.5), the two polynomial functions r → r(1

-δ c - φ + r) and r → r(1 -δ c + φ - r)
are increasing on interval [λ -, λ + ], and, as

X hφ ∈ [λ -, λ + ], λ + 1 -δ c - φ + λ + ≥ (1 -δH) X gφ ≥ λ -1 -δ c + φ - λ -.
Finally we obtain from (1.2.4) and (1.2.5) that λ + ≥ X gφ ≥ λ -, thus g ∈ Y.

We conclude from the Schauder's fixed point theorem that Υ has a positive fixed point.

• For d = 1, the previous proof is valid if c is strictly positive in X but we can relax this assumption to the one in (1.1.17) thanks to the following method. We first prove the following lemma Lemma 1.2.2. Assume (1.1.11) and (1.1.17). There exists R > 0 such that for all positive function g ∈ L 2 and t ∈ [0, 1[ satisfying g = tΥ(g), we have g L 2 < R.

Proof. We use an argument which is similar to the one presented in [START_REF] Berestycki | The non-local Fisher-KPP equation : travelling waves and steady states[END_REF]. Let g ∈ L 2 , positive and t ∈]0, 1[ such that g = tΥ(g). g attain its maximum value at a point x 0 ∈ X . As g satisfies Neumann boundary conditions, we have g (x 0 ) = 0 and g (x 0 ) ≤ 0. Using g = tΥ(g) at the point x 0 and since t < 1 and (1

-δa(x 0 ))g(x 0 ) > 0, we get X c(x 0 , y)g(y)dy ≤ a ∞ . (1.2.7)
We then use Taylor-Lagrange's formula for the function g at point x 0 . For all y ∈ X , there exists

ξ ∈]x 0 , y[ or ]y, x 0 [ such that g(y) = g ∞ + (y -x 0 ) 2 g (ξ)/2.
Additionally, using again g = tΥ(g) and that 1 -1/t < 0, we obtain, for all ξ ∈ X ,

g (ξ) ≥ -( g ∞ a ∞ )/m. We deduce that g(y) ≥ g ∞ 1 -a ∞ (y -x 0 ) 2 2m + . There- fore (1.2.7) implies g ∞ ≤ a ∞ X c(x 0 , y) 1 -a ∞ (y -x 0 ) 2 2m + dy -1
< +∞, which is bounded since c(x 0 , .) is positive in a neighborhood of x 0 from (1.1.17) and we conclude easily.

Thanks to this lemma, we choose δ satisfying

δ < min φ - 2Rc + φ L 2 , 1 c + R |X | . (1.2.8)
Then we define the convex closed subset

Y = {h ∈ L 2 |h ≥ 0, h L 2 ≤ R, X hφ ≥ λ -},
where λ -is defined as before by (1.2.4). For h ∈ Y, we have X c(x, y)h(y)dy ≤ c + R |X | < 1 δ which implies that ψ(h) and g = Υ(h) are positive functions. Moreover, following similar arguments as in the case d > 1, and noticing that Assumption (1.2.8) guarantees that X hφ dx ∈ [λ -,

φ - 2δc + ], we obtain that X gφ ≥ λ -.
As we are not sure that Υ(h) L 2 ≤ R, we use the following method inspired by the proof of Schaefer's fixed point theorem : we introduce a new function Υ :

L 2 → L 2 , Υ(h) =    Υ(h), if Υ(h) L 2 ≤ R R Υ(h) L 2 • Υ(h), if Υ(h) L 2 > R.
Thus Υ is a continuous and compact function mapping Y into itself. From the Schauder's fixed point theorem, we deduce that it has a fixed point ḡ. Suppose that

Υ( ḡ) L 2 > R, then Υ( ḡ) = R Υ( ḡ) L 2 Υ( ḡ) = ḡ and Υ( ḡ) L 2 = ḡ L 2 = R. Ho- wever, since ḡ = tΥ( ḡ) with t = R Υ( ḡ) L 2 < 1, this is in contradiction with Lemma 1.2.2. Hence Υ( ḡ) L 2 ≤ R and ḡ is a fixed point of Υ.
That ends the proof of Theorem 1.1.5.

Convergence to steady state solution

We now prove Theorem 1.1.4, i.e. we study the long time behavior of the solution to (1.1.16) for the particular case, where c(x, y) ≡ c(y).

We first check that there exists only one positive steady state in the case H > 0. Let ḡ, h ∈ H 1 be two positive solutions to (1.1.15). Hence ḡ, h are positive eigenvectors of the operator L = m∆(.) + a. which is compact and continuous. As Lemma 1.2.1 implies the uniqueness of a positive eigenvector up to a multiplicative constant, ḡ = s • h with s ∈ R + . Moreover, from (1.1.15), we deduce that the principal eigenvalue H is equal to X c(y) ḡ(y)dy and the same result holds for h. It follows that ḡ = h. We now denote by ḡ the unique solution of (1.1.15). The next step is to show the convergence in L ∞ towards the positive steady state if H > 0 and towards 0 if H ≤ 0. Let us make the following change of variable function

∀(t, x) ∈ R × X , v t (x) = g t (x) exp t 0 X c(y)g s (y)dy ds .
Thus v is a solution of the equation

       ∂ t v t (x) -m∆v t (x) = a(x)v t (x), ∀(t, x) ∈ R × X , ∂ n v t (x) = 0, ∀(t, x) ∈ R × ∂X , v 0 (x) = g init (x), ∀x ∈ ∂X . (1.2.9)
It is well-known from the spectral decomposition of the operator L and the regularizing property of the Laplace operator that v t e -Ht tends uniformly to β ḡ, a principal eigenvector of the operator L, that is, for some positive constant β,

g t (x) exp t 0 X c(y)g s (y)dy ds -Ht L ∞ -→ t→+∞ β ḡ. (1.2.10) 
We divide this limit by an integrated version of it to obtain

g t ρ(t) L ∞ -→ t→+∞ ḡ X ḡdx > 0, (1.2.11)
where ρ(t) = X g t (y)dy, and the r.h.s. is positive since ḡ is a principal eigenvector of L.

It remains to show that ρ(t) has a finite limit when t tends to infinity. Integrating (1.1.10), we find that ρ is a solution to

d dt ρ(t) = X a(y) g t (y) ρ(t) dy - X c(y) g t (y) ρ(t) dy • ρ(t) ρ(t), ∀t ∈ R.
Moreover, using definitions of H and ḡ, -m∆ ḡ = a ḡ -H ḡ holds, that leads to

X a(x) ḡ(x)dx = H X ḡ(x)dx. Therefore (1.2.11) implies X a(y) g t (y) ρ(t) dy -→ t→+∞ X a(y) ḡ(y) X ḡ dy = H and X c(y) g t (y) ρ(t) dx -→ t→+∞ µ := X c(y) ḡ(y) X ḡ dy. Thus, ρ is solution to the equation d dt ρ(t) = ρ(t)(H + D(t) -µρ(t)), where D(t) = X a(y) g t (y) ρ(t) dy -H + X c(y) g t (y) ρ(t) dy -µ ρ(t) -→ t→+∞ 0 Indeed, since c is positive, we have d dt ρ(t) ≤ (a ∞ -c -ρ(t))ρ(t)
, that is sufficient to conclude that sup t∈R + ρ(t) < +∞, and D(t) -→ 0, as t → +∞. Next, we show that ρ(t) tends to H/µ if H > 0 and to 0 if H ≤ 0 thanks to the following lemma. 

(t) = ρ(t)(r + E (t) - µρ(t))
, where E (t) -→ t→+∞ 0, then ρ(t) tends to r µ if r ≥ 0 or to 0 if r < 0 as t tends to +∞.

Finally, we conclude from (1.2.11) and the above lemma that, for H > 0,

g t L ∞ -→ t→+∞ H µ ḡ X ḡ dx = ḡ, since X ḡ dx = H µ ,
and for H ≤ 0,

g t L ∞ -→ t→+∞ 0.
Proof of Lemma 1.2.3. We split this proof into two parts, depending on the value of r.

-If r < 0, there exists

t 0 ∈ R + such that for all t ≤ t 0 , r + E (t) -µρ(t) < r 2 , i.e. ∂ t ρ(t) ≤ r 2 ρ(t) and we conclude with Gronwall's lemma. -If r ≥ 0, fix ε 0 > 0. there exists t 0 such that for all t ≥ t 0 , |E (t)| ≤ ε 0 , that is ρ(t) (r -ε 0 -µρ(t)) ≤ ∂ t ρ(t) ≤ ρ(t) (r + ε 0 -µρ(t)) . That means r -ε 0 µ ≤ lim inf t→+∞ ρ(t) ≤ lim sup t→+∞ ρ(t) ≤ r + ε 0 µ .
As this is true for all ε 0 > 0, we can conclude.

Dimorphic population

In this section we present the proof of the main Theorems 1.1.2 and 1.1.3. Similarly to the case of a monomorphic population, the long time behavior depends on the values of spectral parameters. To this end we use the spectral decomposition of compact operators : Lemma 1.3.1 (Spectral decomposition of compact operators (see chapter VI.4 of [START_REF] Brezis | Analyse fonctionnelle[END_REF])). For w ∈ {u, v}, there exists a spectral basis (λ w k , A w k ) k≥1 , for the operator L w (φ) = m w ∆φ + a w φ with Neumann boundary condition, that is,

(i) λ w k is a nondecreasing sequence with H w := λ w 1 > λ w 2 ≥ λ w 3 ≥ • • • ≥ λ w k ≥ • • • and λ w k → -∞ as t → ∞. (ii) (λ w k , A w k ) are eigenpairs, that is for all k ≥ 1 and w ∈ {u, v},    m w ∆A w k (x) + a w (x)A w k = λ w k A w k , ∀x ∈ X , ∂ n A w k (x) = 0, ∀x ∈ ∂X . (1.3.1) (iii) (A w k ) k≥1 is an orthogonal basis of L 2 .We normalize them by X |A w k (x)|dx = 1.
(iv) The first eigenvalue H w is simple and is given by

H w = -min φ∈H 1 φ ≡0 1 φ 2 L 2 X m w |∇φ| 2 dx - X a w (x)φ(x) 2 dx .
The first eigenfunction A w 1 is positive, unlike the eigenfunctions corresponding to the other eigenvalues. Those eigenfunctions are smooth.

Let us recall the following notation for w, w ∈ {u, v}

κ ww = X c ww (x)A w 1 (x)dx. (1.3.2)

Studies of the steady states

This part is devoted to the proof of Lemma 1.1.1 that identifies the steady states of the equation (1.1.1). The conditions on the existence of the three first steady states are immediate from Theorem 1.1.5. Moreover, it follows from Lemma 1.3.1 that there is no nonnegative steady state other than the ones stated above. We only prove the last point corresponding to the steady state with two positive exponents. We first suppose that r u and r v given by (1.1.8) are positive. It is then easy to verify, from (1.3.1) and ( 1

.1.6), that (r u A u 1 , r v A v 1
) is a steady solution of (1.1.1). We next notice using (1.1.7) that the matrix in (1.1.8) is invertible, and r u and r v are positive if and only if

r w = H w κ w w -H w κ ww κ w w κ ww -κ w w κ ww > 0, for (w, w ) ∈ {(u, v), (v, u)}. This is equivalent to (H v κ uu -H u κ vu )(H u κ vv -H v κ uv ) > 0 and H u , H v > 0. Indeed, if H v κ uu -H u κ vu and H u κ vv -H v κ uv have the same sign, then κ uu κ vv -κ uv κ vu = κ uu H u (H u κ vv -H v κ uv ) + κ uv H u (H v κ uu -H u κ vu )
, has also the same sign if and only if H u > 0. We conclude easily.

Long time behavior of the system (proof of Theorem 1.1.2)

In this section, we prove Theorem 1.1.2. To this end, noticing that the total density of the population is not constant, we will first study the limit of population densities normalized by the masses. Then we will study the long time behavior of a system of differential equations which describes the dynamics of the two masses (see Lemma

1.3.2).
Similarly to the proof of Theorem 1.1.4, we make the following change of variables, for w ∈ {u, v},

v w t (x) = g w t (x) exp t 0 X c wu (y)g u s (y)dy + X c wv (y)g v s (y)dy ds .
Following similar arguments as in subsection 1.2.2, we find a similar limit as (1.2.10) for g w , which leads to

g u t X g u t (y)dy L ∞ -→ t→+∞ A u 1 and g v t X g v t (y)dy L ∞ -→ t→+∞ A v 1 . (1.3.3) 
Let ρ w (t) = X g w t (y)dy for w ∈ {u, v}. We deduce the following limits from (1.3.3), for w, w ∈ {u, v},

X a w (y)g w t (y) ρ w (t) dy -→ t→+∞ H w and X c w w (y)g w t (y) ρ w (t) dy -→ t→+∞ κ w w .
It remains now to understand the behavior of (ρ u (t), ρ v (t)). Integrating (1.1.1) on X and using the previous limits, we find that (ρ u , ρ v ) is a solution to

     d dt ρ u (t) = ρ u (t) (H u + D u (t) -κ uu ρ u (t) -κ uv ρ v (t)) , d dt ρ v (t) = ρ v (t) (H v + D v (t) -κ vu ρ u (t) -κ vv ρ v (t)) , (1.3.4) 
with, for w ∈ {u, v},

D w (t) = X a w (y) g w t (y) ρ w (t) dy -H w + ∑ w ∈{u,v} X c ww (y) g w t (y) ρ w (t) dy -κ ww ρ w (t) -→ t→+∞ 0.
Here we have used the fact that, in view of (1.1.2) and (1.1.3), ρ w is a positive solution to

∂ t ρ w (t) ≤ (a ∞ -c -ρ w (t))ρ w (t)
and hence ρ w is bounded, for w ∈ {u, v}.

To go further we need the following lemma.

Lemma 1.3.2. Let (ρ u (t), ρ v (t)) be a positive solution to      d dt ρ u (t) = ρ u (t) (H u + E u (t) -κ uu ρ u (t) -κ uv ρ v (t)) , d dt ρ v (t) = ρ v (t) (H v + E v (t) -κ vu ρ u (t) -κ vv ρ v (t)) ,
where E w (t) -→ t→+∞ 0 for w ∈ {u, v}.

-

If H u ≤ 0 and H v ≤ 0, then (ρ u (t), ρ v (t)) -→ t→+∞ (0, 0).
Also if at least one of the two eigenvalues is positive and

-if H v κ uu -H u κ vu ≤ 0 and H u κ vv -H v κ uv > 0, then (ρ u (t), ρ v (t)) -→ t→+∞ H u κ uu , 0 , -if H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv ≤ 0, then (ρ u (t), ρ v (t)) -→ t→+∞ 0, H v κ vv , -if H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv > 0 then (ρ u (t), ρ v (t)) -→ t→+∞ (r u , r v ),
where r u and r v are given by ( 1

.1.8), -if H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv = 0, or if H v κ uu -H u κ vu = 0 and H u κ vv -H v κ uv < 0, then (ρ u (t), ρ v (t)
) has a limit which can be H u κ uu , 0 or 0, H v κ vv , depending on the initial condition, on the parameters and on the functions

(E w ) w∈{u,v} , -finally, if H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv < 0, then (ρ u (t), ρ v (t)) has a
limit which can be one of the three non-zero limits, depending on the initial condition, on the parameters and on the functions (E w ) w∈{u,v} .

This lemma and expressions (1.3.3) are sufficient to prove all the statements of the theorem :

(1) One can verify using (1.1.7) that all possible values of (H u , H v ) ∈ R 2 are covered by Lemma 1.3.2 and hence, in all cases, the solution to (1.3.4) has a limit when t tends to +∞ for any initial condition.

(2) If H u ≤ 0 and H v ≤ 0, (ρ u (t), ρ v (t)) tends to (0, 0), so for any initial condition, (g u t , g v t ) tends to (0, 0).

(

) If H u > 0, H v κ uu -H u κ vu ≤ 0 and H u κ vv -H v κ uv > 0, (ρ u (t), ρ v (t)) tends to ( H u κ uu , 0) and X ḡu (x)dx = H u κ uu . Therefore, for any initial condition, (g u t , g v t ) tends to ( ḡu , 0). (4) If H v > 0, H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv ≤ 0, (ρ u (t), ρ v (t)) tends to (0, H v κ vv ) and X ḡv (x)dx = H v κ vv . 3 
Therefore, for any initial condition, (g u t , g v t ) tends to (0, ḡv ).

(5) If H u > 0, H v > 0, H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv > 0, (ρ u (t), ρ v (t))
tends to (r u , r v ) and we have, from Lemma 1.1.1, that r u = X ḡu (x)dx and r v = X ḡv (x)dx. It follows that (g u t , g v t ) tends to ( ḡu , ḡv ) for any initial condition.

Proof of Lemma 1.3.2. We split the proof into several cases depending on the values of H u and H v .

Case 1 : First of all, we will consider that at least one of the two variables is nonpositive. For example, let assume that

H u ≤ 0. Let ε > 0 and t ε > 0 such that for all t ≥ t ε , |E u (t)| ≤ κ uu ε. So for all t ≥ t ε , ∂ t ρ u (t) ≤ ρ u (t)(κ uu ε -κ uu ρ u (t))
. Thanks to the results on the logistic equation, we conclude easily that lim sup

t→+∞ ρ u (t) ∈ [0, ε].
As this is true for all ε > 0, ρ u (t) tends toward 0 when t approaches infinity. Therefore, ρ v solves

∂ t ρ v (t) = ρ v (t)(H v + E (t) -κ vv ρ v (t)) where E (t) = E v (t) -κ vu ρ u (t) -→ t→+∞ 0.
We conclude that ρ v converges and we evaluate its limit thanks to Lemma 1.2.3.

We consider now that H u and H v are positive. We will detail only three cases here, the other ones can be adapted from those three cases. Case 2 : Let H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv > 0 ; the case where H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv < 0, can be studied following similar arguments.

Let ε > 0 be small enough to satisfy min

H u -ε κ uv - H v + ε κ vv , H u -ε κ uu - H v + ε κ vu , H v -ε κ vv , H v -ε κ vu > 0. (1.3.5)
We split (R + ) 2 into the next five disjoint sets drawn on Figure 1.1 :

D 1 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≤ -ε} D 2 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H u + κ uu ρ u + κ uv ρ v ≥ ε} D 3 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≥ ε, -H u + κ uu ρ u + κ uv ρ v ≤ -ε} D 4 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≥ -ε, -H v + κ vu ρ u + κ vv ρ v ≤ ε} D 5 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H u + κ uu ρ u + κ uv ρ v ≥ -ε, -H u + κ uu ρ u + κ uv ρ v ≤ ε}.
There exists

t ε > 0 such that for all t ≥ t ε , max{|E u (t)|, |E v (t)|} ≤ ε 2 . It is then easy to verify that, for w ∈ {u, v}, d dt ρ w ≥ ε 2 ρ w in D 1 and d dt ρ w ≤ -ε 2 ρ w in D 2 . Moreover, ρ v ρ u H u κ uv H u κ uu H v κ vu H v κ vv D 1 ρu > 0 ρv > 0 D 4 D 2 ρu < 0 ρv < 0 D 3 ρu > 0 ρv < 0 D 5 Fig. 1.1 -Plan arrangement for case 2, i.e. H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv > 0 d dt ρ u ≥ ε 2 ρ u and d dt ρ v ≤ -ε 2 ρ v in D 3 .
As

ρ u satisfies d dt ρ u (t) ≥ ε 2 ρ u (t) in D 1 , for all t ≥ t ε , if (ρ u ( t), ρ v ( t)
) belongs to D 1 for some t ≥ t ε , it will quit this domain after a finite time t 0 and reach the set D = D 3 ∪ D 4 ∪ D 5 . Same kind of results holds in D 2 . Thus after a finite time t 0 ≥ t ε , the trajectory of the solution reaches D . Moreover it cannot quit this domain according to the signs of derivatives of ρ u and ρ v at the boundaries of D . The next step is to study the dynamics in D . Suppose that the trajectory belongs to D 3 ∪ D 4 , it cannot stay in that area for all t ≥ t 0 , so there exists t 1 such that (ρ u (t 1 ), ρ v (t 1 )) ∈ D 5 . We denote the entry point in D 5 by x 1 , drawn in Figure 1.2.

According to the derivatives of ρ u and ρ v , the trajectory of the solution does not quit the set :

D x 1 = (ρ u , ρ v ) ∈ (R * + ) 2 , ρ u ≥ ρ u x 1 , ρ v ≤ ρ v x 1 ∩ D , where (ρ u x 1 , ρ v x 1
) are the coordinates of x 1 . This set is represented by the hatched area on the left scheme of Figure 1.2. Moreover, as long as the trajectory stays in

D 3 ∪ D 5 , ρ v satisfies ∂ t ρ v (t) ≤ -ε 2 ρ v (t)
. So two cases can happen : (a) either ρ v (t) -→ t→+∞ 0, and thus ρ u tends to H u κ uu from Lemma 1.2.3, (b) or there exists t 2 > t 1 where the trajectory reaches D 4 . Let us denote

x 2 = (ρ u x 1 , H v +ε-κ vu ρ u x 1 κ vv
). As the trajectory stays in D x 1 , it reaches D 4 ∩ D x 2 , where

D x 2 = {(ρ u , ρ v ) ∈ (R * + ) 2 , ρ u ≥ ρ u x 2 , ρ v ≤ ρ v x 2 } ∩ D .
Moreover, for all t ≥ t 2 , the trajectory stays in D x 2 (see the hatched area on the right scheme of Figure 1.

2).

Iterating the previous step, we construct a decreasing sequence of areas denoted by (D x n ) n≥0 which will be necessarily finite. Indeed, the choice of ε (1.3.5) implies that there exists m ∈ N such that D x 2m ∩ D 4 = ∅. Then we conclude as in the case (a) above.

ρ v ρ u D 1 D 4 D 2 D 3 D 5 x 1 ρ v ρ u D 1 D 4 D 2 D 3 D 5 x 1 x 2 x 3 Fig. 1.2 -Dynamics for the case 2 : H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv > 0
The next case is quite similar except for the end of the proof.

Case 3 : Let H v κ uu -H u κ vu = 0 and H u κ vv -H v κ uv > 0 ;
the case where H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv = 0 and the one where H v κ uu -H u κ vu > 0 and H u κ vv -H v κ uv > 0 can be proven using same kind of arguments.

Let k ≥ 1 and ε > 0 be such that max κ uu κ vu ,

κ vu κ uu < k and min H u -ε κ vu - H v + ε κ vv , H v -kε κ vv , H v -kε κ vu > 0.
We divide the plan (R + ) 2 as presented in Figure 1.3, where D 1 , D 2 , D 3 , D 4 , D 5 and D are defined as follows

D 1 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≤ -kε} D 2 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H u + κ uu ρ u + κ uv ρ v ≥ kε} D 3 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≥ ε, -H u + κ uu ρ u + κ uv ρ v ≤ -ε} D 4 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H v + κ vu ρ u + κ vv ρ v ≥ -kε, -H v + κ vu ρ u + κ vv ρ v ≤ ε} D 5 = {(ρ u , ρ v ) ∈ (R * + ) 2 , -H u + κ uu ρ u + κ uv ρ v ≥ -ε, -H u + κ uu ρ u + κ uv ρ v ≤ kε} D = D 3 ∪ D 4 ∪ D 5 .
The constant k is chosen such that D 1 ∩ D 5 = ∅ and D 2 ∩ D 4 = ∅ and t ε is defined as before. There exists t 0 ≥ t ε such that for all t ≥ t 0 , the trajectory is belonging to

ρ v ρ u H u κ uv H u κ uu = H v κ vu H v κ vv D 1 ρu > 0 ρv > 0 D 4 D 2 ρu < 0 ρv < 0 D 3 ρu > 0 ρv < 0 D 5 D ε ε x ε + x 1 x 2 x 3 x 4 Fig. 1.3 -Arrangement for the case 3, i.e. H v κ uu -H u κ vu = 0 et H u κ vv -H v κ uv > 0 D .
Then we construct a sequence of sets (D x n ) n≥1 as before, but now, this sequence can be infinite. So let D ε be the set

D ε = D ∩ (ρ u , ρ v ) ∈ (R + ) 2 , ρ v ≤ ε κ uu + κ vu κ uu κ vv -κ uv κ vu + 1 and ρ u ≥ H u κ uu -ε κ vv + κ uv κ uu κ vv -κ uv κ vu + 1 .
There exists n such that D x n is included in D ε , i.e. the trajectory is belonging to D ε after a finite time. As this is true for all ε > 0, (ρ

u (t), ρ v (t)) -→ t→+∞ H u κ uu , 0 .
The last case that we detail is a case where several limits are possible.

Case 4 : Let H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv = 0 ; we can deal with the case H v κ uu -H u κ vu = 0 and H u κ vv -H v κ uv < 0 and the one with H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv < 0 thanks to similar arguments. Let k ≥ 1 and ε > 0 such that max κ vv κ uv , κ uv κ vv < k and min H u -ε κ uu - H v + ε κ vu , H v -kε κ vv , H v -kε κ vu > 0.
We divide the plan (R + ) 2 as presented in Figure 1.4, where D 3 , D 4 , D 5 , D are defined as in the case 3 and D ε is defined as follows

D ε = D \ (ρ u , ρ v ) ∈ (R + ) 2 , ρ u > ε κ vu + κ vv κ uv κ vu -κ uu κ vv and ρ v < H v κ vv -ε κ uv + κ uu κ uv κ vu -κ uu κ vv ρ v ρ u H u κ uv = H v κ vv H u κ uu H v κ vu D 1 ρu > 0 ρv > 0 D 4 D 2 ρu < 0 ρv < 0 D 3 D 5 D ε + x 1 x 2 Fig. 1.4 -Arrangement for the case 4, i.e. H v κ uu -H u κ vu < 0 et H u κ vv -H v κ uv = 0
As before, we find t 0 ≥ t ε such that for all t ≥ t 0 , the trajectory of the solution belongs to D . Then there exist two possibilities.

-Either for all ε > 0, there exists τ ε > t ε such that for all t ≥ τ ε the trajectory belongs to D ε , that is, (ρ

u (t), ρ v (t)) -→ t→+∞ 0, H v κ vv .
-Or there exists ε > 0 and τ ε > t ε when the trajectory is belonging to D \ D ε .

Using same kind of arguments as before, we obtain that the trajectory won't quit this set for all t ≥ τ ε , and we construct a sequence of decreasing sets to conclude that (ρ

u (t), ρ v (t)) -→ t→+∞ H u
κ uu , 0 .

Cases with several equilibria (proof of Theorem 1.1.3)

In this section we prove Theorem 1.1.3.

(1) Let us deal with the first case where H u > 0, H v > 0, H v κ uu -H u κ vu < 0, and H u κ vv -H v κ uv < 0. Thanks to the last statement of Lemma 1.3.2, we already know that any solution tends towards one of the non-trivial steady states. We precise the stability of each state.

(1a) This point is devoted to show the asymptotic stability of ( ḡu , 0) if H u > 0 and H v κ uu -H u κ vu < 0. Using symmetric arguments, it then can be shown that if

H v > 0 and H u κ vv -H v κ uv < 0, (0, ḡv ) is stable.
Precisely, we show that if the positive initial condition (g u 0 , g v 0 ) satisfies the following condition : there exist C 1 > 0 and C 2 > 0 such that max w∈{u,v}

{ g u 0 -ḡu L 2 c wu L 2 } ≤ C 1 , (1.3.6)
g v 0 L 2 c uv L 2 ≤ C 2 , (1.3.7)
where the above constants satisfy the following compatibility conditions

C = 2 (C 1 + C 2 ) • max 1, κ vu κ uu + C 1 < min H u -λ u 2 , κ vu κ uu H u -H v , (1.3.8)
then the solution to the equation (1.1.1) tends to the steady state ( ḡu , 0).

Let us express g u in the basis

(A u k , k ∈ N * ), ∀x ∈ X g u t (x) = X ḡu (x)dxA u 1 (x) + ∞ ∑ k=1 α k (t)A u k (x),
and denote for all

t ∈ R + γ(t) = X ḡu (x)dx + α 1 (t).
From (1.1.1) and the representation of g u and ∂ t g u with respect to the basis (A u k , k ∈ N * ), we find the following dynamical system

           d dt α k (t) = α k (t) λ u k -H u - ∞ ∑ =1 α (t) X (c uu A u ) - X (c uv g v t ) , ∀k ≥ 2, d dt γ(t) = γ(t) H u - ∞ ∑ =2 α (t) X (c uu A u ) - X (c uv g v t ) -κ uu γ(t) .
(1.3.9)

Here, we have used the fact that since, from Lemma

1.3.1, L N = X ḡu dxA u 1 + ∑ N k=1 α k A u k tends to g u in L 2 as N → ∞, and since the domain X is bounded, L N tends to g u in L 1 .
We will show that for all t ≥ 0, min w∈{u,v}

∞ ∑ k=1 α k (t) X (c wu (y)A u k (y))dy ≥ -C. (1.3.10)
We notice that this is true for t = 0 thanks to (1.3.6) : for w ∈ {u, v},

∞ ∑ k=1 α k (0) X (c wu A u k ) ≤ ∞ ∑ k=1 α k (0) 2 X |A u k | 2 1/2 ∞ ∑ k=1 ( X c wu A 1 k ) 2 X |A u k | 2 1/2 ≤ g u 0 -ḡu L 2 c wu L 2 ≤ C 1 < C.
The second line is justified using the representation of c wu with respect to the orthonormal basis

{A u k / A u k L 2 } k≥1 which is {( X c wu A u k )/ A u k L 2 } k≥1 .
We prove the result (1.3.10) by contradiction. Denote

t 0 = inf t > 0 min w∈{u,v} ∞ ∑ k=1 α k (t) X (c wu (y)A u k (y))dy ≤ -C
and suppose that t 0 is finite. Thus, for w ∈ {u, v},

∀t ≤ t 0 , ∞ ∑ k=1 α k (t) X (c wu (y)A u k (y))dy ≥ -C. (1.3.11)
In fact, from (1.3.11), we will find a lower bound greater than -C for any t ≤ t 0 which is a contradiction with the fact that t 0 is finite. First, let us deal with the expression ∑ ∞ k=2 α k (t) X (c wu A u k )dx. We multiply the first equation of (1.3.9) by α k . Then, using the positivity of g v , the assumption (1.3.8) and Gronwall's lemma, we get for all t ≤ t 0 ,

α k (t) 2 ≤ α k (0) 2 e 2(λ u k -H u +C)t ≤ α k (0) 2 . Thus, for all t ≤ t 0 , for w ∈ {u, v}, ∞ ∑ k=2 α k (t) X (c wu A u k ) ≤ ∞ ∑ k=2 α k (t) 2 X |A u k | 2 1/2 ∞ ∑ k=2 ( X c wu A u k ) 2 X |A u k | 2 1/2 ≤ ∞ ∑ k=2 α k (0) 2 X |A u k | 2 1/2 ∞ ∑ k=2 ( X c wu A u k ) 2 X |A u k | 2 1/2 ≤ g u 0 -ḡu L 2 c wu L 2 < C 1 .
(1.3.12)

Then, in view of finding a lower bound to γ, we are concerned with X c uv g v t . We multiply the second equation in (1.1.1) by g v and integrate it over X :

1 2 d dt g v t 2 L 2 ≤ H v -κ vu H u κ uu - ∞ ∑ k=1 α k (t) X (c vu A u k ) - X c vv (y)g v t (y)dy • g v t 2 L 2
From Assumption (1.3.11) for w = v, the positivity of g v and the Gronwall's lemma, we get that for all t ≤ t 0 ,

g v t 2 L 2 ≤ exp 2 H v -κ vu H u κ uu + C t • g v 0 2 L 2 ≤ g v 0 2 L 2 , (1.3.13) as H v -(κ vu H u )/κ uu + C is negative by Assumptions (1.3.8). That is, with the as- sumption (1.3.7), for all t ≤ t 0 , 0 ≤ X (c uv g v t ) ≤ c uv L 2 g v t L 2 ≤ C 2 .
We use this inequality and (1.3.12) to show that γ satisfies, for all t ≤ t 0 ,

γ(t) (H u -C 1 -C 2 -κ uu γ(t)) ≤ ∂ t γ(t). Moreover, from (1.3.6), |γ(0) -H u κ uu | • κ uu ≤ C 1 .
Using classical results on logistic equation, we deduce the following lower bound

-C 1 -C 2 κ uu ≤ γ(t) - H u κ uu = α 1 (t), ∀t ≤ t 0 . (1.3.14) 
Finally, we conclude with inequalities (1.3.12), (1.3.14), assumption (1.3.8) and definitions of κ wu : for all t ≤ t 0 , for w ∈ {u, v}

∞ ∑ k=1 α k (t) X (c wu A u k ) ≥ α 1 (t)κ wu + ∞ ∑ k=2 α k (t) X (c wu A u k ) ≥ -(C 1 + C 2 ) κ wu κ uu -C 1 ≥ - C 2 .
This is the contradiction that we wanted to reach, thus, t 0 = +∞.

Moreover, Theorem 1.1.2 guarantees the existence of a limit for (g u t , g v t ). Let us identify that limit. On the one hand, we note that (1.3.13) holds for all t ≥ 0, since t 0 = +∞, and hence X |g v t (x)| 2 dx tends to 0, as t approaches infinity. On the other hand, thanks to the equation (1.3.14), which holds for all t ≥ 0, and

(1.3.8), X |g u t (x)| 2 dx ≥ ∞ ∑ k=2 α k (t) 2 X |A u k | 2 + γ(t) 2 X |A u 1 | 2 ≥ 0 + H u -C 1 -C 2 κ uu 2 X |A u 1 | 2 > 0.
Thus, the limit of g u t L 2 is positive. The limit of the solution is hence the steady state ( ḡu , 0). (1b) Here, we show that if H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv < 0, the steady state ( ḡu , ḡv ) is unstable, precisely in any neighborhood of ( ḡu , ḡv ), there exists a solution to (1.1.1) that does not tend towards ( ḡu , ḡv ), but there also exist some solutions that tend towards it. We use a solution to (1.1.1) with an initial condition which belongs to the subspace vect( ḡu ) × vect( ḡv ). Let us notice, using the form of the equation (1.1.1) satisfied by (g u , g v ), that, if the initial condition belongs to a subspace vect(A u k ) k∈K × vect(A v ) ∈L with K and L subsets of N, then for all t ≥ 0, the solution (g u t , g v t ) belongs to that subspace. Thus, for all t ≥ 0, g u t (x) = α(t) ḡu (x) and g v t (x) = β(t) ḡv (x). We get the following system

       d dt α(t) = α(t) H u -κ uu X ḡu α(t) -κ uv X ḡv β(t) d dt β(t) = β(t) H v -κ vu X ḡu α(t) -κ vv X ḡv β(t) .
We first notice that (1, 1) is obviously a steady state here. Moreover, the determinant of the Jacobian matrix of the linearized dynamical system at point (1, 1) is (κ uu κ vvκ uv κ vu ) X ḡu X ḡv < 0. So the linearized system around (1, 1) is hyperbolic. From Hartman-Grobman Theorem (see part 9.3 in [START_REF] Teschl | Ordinary differential equations and dynamical systems[END_REF]) concerning the linearized system, we can conclude that ( ḡu , ḡv ) is unstable, but that there exists some solutions tending towards it.

(2) It remains to deal with the last uncertain case : [START_REF] Alfaro | Travelling waves in a nonlocal reactiondiffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF] where H v κ uu -H u κ vu = 0 and H u κ vv -H v κ uv < 0 can be studied following similar arguments.

H u > 0, H v > 0, H v κ uu -H u κ vu < 0 and H u κ vv -H v κ uv = 0. The point
Thanks to point (1a), we already know that the steady state ( ḡu , 0) is stable. We prove that the steady state (0, ḡv ) is unstable ; more precisely, we show that in any neighborhood of (0, ḡv ), there exists a solution to (1.1.1) that does not tend to (0, ḡv ) as t → ∞, but there also exist some solutions tending towards it.

To prove that this steady state is unstable, we consider solutions of the form

(g u , g v ) = (α(t)A u 1 , β(t)A v 1
). The dynamics is then given by the following Lotka-Volterra system

     d dt α(t) = α(t) (H u -κ uu α(t) -κ uv β(t)) , d dt β(t) = β(t) (H v -κ vu α(t) -κ vv β(t)) .
In view of the conditions on the parameters in this case, any solution with α(0) > 0, converges to ( H u κ uu , 0) (see [25], p.186 Theorem 1(c)) and thus (α(t)A u 1 , β(t)A v 1 ) converges to ( ḡu , 0). Since one can choose α(0) and β(0) to make (α(0)A u 1 , β(0)A v 1 ) be arbitrarily close to (0, ḡv ), we obtain that this point is unstable.

Finally, in order to find a solution that tends towards the steady state, we consider the initial condition (g u 0 , g v 0 ) = (0, g v 0 ), with a nonnegative and non-trivial function g v 0 ∈ L 2 (X ). Then, since for all t ≥ 0, g u t (x) = 0, it follows from Theorem 1.1.4 that

g v t (x) → ḡv (x) in L ∞ as t → ∞.

Numerics

In this last section, we illustrate the main theorem 

H w = X c ww (x) ḡw (x)dx. (1.4.1)
Thus, with the finite difference method, we resolve numerically the previous parabolic equation. After a long time, the solution is stable, so we consider that it has reached the steady state. We calculate then H w thanks to the simple formula (1.4.1). With same ideas, we can also calculate κ ww for w, w ∈ {u, v}. Thus we can check the conditions of Theorem 1.1.2 for the following numerical examples whose parameters values are given in Figure 1.5.

Let us now describe our numerical simulations. We consider that the growth rates of the two populations are maximal at two different spatial positions. For instance, the space state can represent a variation of resources, as seed size for some birds, and so the two populations are not best-adapted to same resources. Different values of ā2 , the maximum of the growth rate of the mutant population, will be explored, while the other parameters are fixed,

X = [0, 1], u 1 = 0.3, ā1 = 1, u 2 = 0.5,
a u i (x) = max{ āi (1 -20(x -u i ) 2 ), -1}. (1.4.2)
Notice that around the trait u i , the growth rate of the population i is positive but far from this position, it becomes negative. Thus positions around u i are favorable for population i, and we suppose that the intraspecific competition is greater around that position :

c u i u i (x) =    1, if |x -u i | < 0.25, 0.1, else. (1.4.3)
Then, we define the interspecific competition from the previous kernels by

c u i u j = c u j u i = min{c u 1 u 1 , c u 2 u 2 }.
Finally, we suppose that all individuals move with the same diffusion constant m u 1 = m u 2 = 0.01.

As we want to illustrate the invasion of a mutant, we suppose that the initial condition is near ( ḡu 1 , 0), as presented in figure 1.5(a). We resolve numerically the system of parabolic equations (1.1.1) and present the solution after a long time, that is, when the densities are almost stable, see figure 1.5. When ā2 is small, the mutant population is not able to survive (case (b)). But when ā2 is large enough, coexistence (case (c)) and even invasion (case (d)) can appear. On the two last cases, the new population that has invaded the space does not live on the same spatial position as the previous one. From an ecological viewpoint, such examples are very interesting because we observe a change of spatial niche due to a selection event.

Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence This chapter corresponds to the preprint [START_REF] Leman | Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence[END_REF] "Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence". The appendix 2.A has been added to give the detail of the proof of Theorem 2.5.3.

Abstract

We consider an individual-based spatially structured population for Darwinian evolution in an asexual population. The individuals move randomly on a bounded continuous space according to a reflected brownian motion. The dynamics involves also a birth rate, a density-dependent logistic death rate and a probability of mutation at each birth event. We study the convergence of the microscopic process in a long time scale when the population size grows to +∞ and the mutation probability decreases to 0. We prove the convergence towards a jump process that jumps in the infinite dimensional space containing the monomorphic stable spatial distributions. The proof requires specific studies of the microscopic model. First, we study the extinction time of the branching diffusion processes that approximate small size populations. Then, we examine the upper bound of large deviation principle around the deterministic large population limit of the microscopic process. Finally, we find a lower bound on the exit time of a neighborhood of a stationary spatial distribution.

Introduction

The spatial aspect is an important issue in ecology [START_REF] Tilman | Spatial ecology : the role of space in population dynamics and interspecific interactions[END_REF][START_REF] Durrett | Spatial aspects of interspecific competition[END_REF]. The influence of the heterogeneity of the environment on the phenotypic evolution has been explored for a long time [START_REF] Endler | Geographic variation, speciation, and clines[END_REF][START_REF] Futuyma | The evolution of ecological specialization[END_REF][START_REF] Kassen | The experimental evolution of specialists, generalists, and the maintenance of diversity[END_REF]. For example, the emergence of phenotypic clusters under a heterogeneous space has been extensively studied [START_REF] Doebeli | Speciation along environmental gradients[END_REF][START_REF] Polechová | Speciation through competition : a critical review[END_REF]93]. In [START_REF] Doebeli | Speciation along environmental gradients[END_REF]93], the authors suggest that clustering and aggregation of individuals can be a consequence of the spatial competition between individuals and generate structured populations based on isolated patches. In [START_REF] Polechová | Speciation through competition : a critical review[END_REF], the authors draw attention to the influence of the boundary of the spatial environment. The sensibility to heterogeneously distributed resources is also a key point to study the spatial dynamics of population [START_REF] Grant | Unpredictable evolution in a 30-year study of darwin's finches[END_REF]. In this context, the effect of a spatial structure on the evolution of a population is fundamental.

In this chapter, we are concerned with the interplay between spatial structure and Darwinian evolution under three main biological assumptions : rare mutations, large population size and the impossibility of coexistence of two traits for a long time scale. We use an individual-based model first introduced by [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF] which describes a spatially and phenotypically structured asexual population. Our main result describes the convergence of the microscopic model in the mutation scale to a jump process that jumps in an infinite dimensional space containing the spatial profiles of the population. This result is correlated with several works on adaptive dynamics and in particular with the model of Trait Substitution Sequence (TSS) introduced by Metz and al. [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF]. The TSS model describes the succession of invading advantageous phenotypic traits as a jump Markov process in the space of phenotypic traits. The derivation of the TSS model from the microscopic model has been rigorously proved by [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] and then generalized in different contexts, as aged-structured population [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF], multi-resources chemostat population [START_REF] Champagnat | Adaptation in a stochastic multiresources chemostat model[END_REF] or prey-predator population [START_REF] Costa | Stochastic eco-evolutionary model of a prey-predator community[END_REF]. This chapter generalized it in a spatial context. The spatial structured of the population adds new non trivial difficulties. Our processes have values in infinite dimensional spaces and the trajectories followed by the individuals in those spaces are random, contrary to [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF] where the age structure is deterministic.

The dynamics of the process is driven by a birth and death diffusion process, in which the motion, birth, mutation and death of each individual i depend on its location X i t and its phenotypic trait U i t at time t ≥ 0. X i t lays in an open, bounded and convex subset X of R d with a C 2 -boundary. U i t belongs to a compact subset U of R q . The phenotype of an individual does not change during its life time contrary to its location.

The total population is represented at any time t by the finite measure

ν K t = 1 K N t ∑ i=1 δ (X i t ,U i t ) , (2.1.1)
where δ y corresponds to the Dirac measure at y, N t is the number of individuals at time t. The parameter K scales the population size and the biological assumption of large population size is stated into mathematics by the convergence of K to +∞.

Any individual i with phenotypic trait u moves according to a diffusion pro-cess driven by the following stochastic differential equation normally reflected at the boundary ∂X ,

dX i t = √ 2m u Id • dB t -n(X i t )dl t (2.1.2)
where B is a d-dimensional brownian motion, l t is the local time at the boundary ∂X , n is the outward normal to ∂X and m u is a function of the trait.

An individual with location x ∈ X and trait u ∈ U gives birth at rate b(x, u), also denoted by b u (x) when u is fixed. The offspring appears at the location of its parents. Furthermore, a mutation may occur with probability q K p, making the phenotypic trait of the offspring different. The law of the mutant trait is given by a kernel k(x, u, •). The parameter q K scales the mutation probability and the biological assumption of rare mutations is stated by q K → 0.

The natural death rate is d(x, u). The competition exerted by an individual (y, v) on an individual (x, u) depends on the location y and on the two traits through a competition kernel c :

U × X × U → R + . For the population ν = 1 K ∑ n i=1 δ (x i ,u i ) ∈ M F (X × U ), the competitive pressure exerted on individual (x, u) is c • ν(x, u) = 1 K n ∑ i=1 c(u, x i , u i ) = 1 K X ×U c(u, y, v)ν(dy, dv).
Observe that the competition kernel does depend on y. Biologically, it is a way to describe the spatial heterogeneity of the competition induced, for example, by the defense of a specific location. Finally, the total death rate is d(x, u) + c • ν(x, u). As above, we may use notation d u (x) and c uv (y) when u and v are fixed.

Let us state the assumptions on the parameters. andd is not the zero function. 3. The sequence of initial measures (ν K 0 ) K>0 , which belongs to M F (X × U ), converges in law to some deterministic measure denoted by ξ 0 and it satisfies sup K E[ ν K 0 , 1 3 ] < +∞.

(x, u, y, v) ∈ ( X × U ) 2 , 0 < m u ≤ m, b < b(x, u) ≤ b, d(x, u) ≤ d, c ≤ c(u, y, v) ≤ c, k(x, u, v) ≤ k,
4. q K tends to 0 when K tends to +∞.

Before going further, let us set and recall the notation, which we use in the entire chapter. Notation • For all x ∈ ∂X , n(x) denotes the outward normal to the boundary of X at point x.

• For sufficiently smooth f and for all (x, u)

∈ ∂X × U , ∂ n f (x, u) denotes the scalar product ∇ x f (x, u) • n(x). • C k,l n (X × U ) represents the set of functions f ∈ C k,l (X × U ) such that ∂ n f (x, u) = 0 for all (x, u) ∈ ∂ X × U . We define C k,l,j n (X × U × [0, T]) similarly. • For any f ∈ C k,l,j n (X × U × [0, T]), f s is the function on X × U such that f s (x, u) = f (x, u, s).
• For any compact set X, we denote the space of finite measures on X by M F (X).

• For all ν ∈ M F (X) and f ∈ C(X), we denote X f dν by ν, f . • C Lip (X) denotes the set of all positive Lipschitz-continuous functions f on X bounded by 1 and with a Lipschitz constant smaller than 1.

• We define the Kantorovich-Rubinstein distance on M F (X) by : for any ν, µ ∈

M F (X), W 1 (ν, µ) = sup f ∈C Lip (X) | ν, f -µ, f | .
As X is a compact set, this metric is a metrization of the topology of weak convergence. It is equivalent to the 1 st -Wasserstein distance.

• B(ν, γ) represents the ball of center ν and radius γ in M F (X) for the previous distance.

• D([0, T], M F (X)) denotes the space of càdlàg functions from [0, T] to M F (X), equipped with the Skorokhod topology.

• If ξ ∈ M F (X × {u, v}), we identify the two following ways of writing : ξ(dx, dw) =

ξ u (dx)δ u (dw) + ξ v (dx)δ v (dw) and ξ = (ξ u , ξ v ) ∈ (M F (X )) 2 .

Main theorem

A macroscopic approximation of the model described in Section 2.1 has been proved in [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF] as a large population limit. Theorem 2.2.1 (Theorems 4.2 and 4.6 in [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF]). Suppose that Assumption 2.1.1 holds. For all T > 0, the sequence (ν K ) K>0 of processes belonging to D([0, T], M F (X × U )) converges in law to a deterministic and continuous function

ξ, i.e. ξ ∈ C([0, T], M F (X × U )) such that sup t∈[0,T] ξ t , 1 < +∞ and ∀ f ∈ C 2,0 n (X × U ), ξ t , f = ξ 0 , f + t 0 X ×U b(x, u) -d(x, u) -c • ξ s (x, u) f (x, u) + m u ∆ x f (x, u) ξ s (dx, du)ds. (2.2.1)
Moreover, if U is finite, for any u ∈ U and t > 0, ξ t (., u) has a density with respect to Lebesgue measure which is a C 2 -function.

The limiting equation (2.2.1) is a nonlinear nonlocal reaction-diffusion equation defined on the space of traits and locations. In [START_REF] Desvillettes | Infinite dimensional reactiondiffusion for population dynamics[END_REF][START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF], the authors have studied the existence of the steady states of similar equations in the context of frequent mutations. Our study involves a rare mutations assumption and mutation terms disappear in the limit. The stability of the steady states and the long time behavior of the solutions to (2.2.1) have been characterized in Chapter 1 or in [START_REF] Coville | Convergence to equilibrium for positive solutions of some mutationselection model[END_REF] in the particular cases of a monomorphic population (all individuals have a same phenotype) and a dimorphic population (two traits are involved). The stationary states and their stability are described using the following parameters. Definition 2.2.2. For any u ∈ U , we define H u by,

H u = - min φ∈H 1 (X ),φ ≡0 1 φ 2 L 2 (X ) m u X |∇φ| 2 - X (b u -d u )φ 2 , (2.2.2)
where H 1 (X ) is the Sobolev space of order 1 on X . H u is the principal eigenvalue of the operator m

u ∆ x • +(b u -d u )• with Neumann boundary condition on X . Let ḡu ∈ C 1 (X )
be the eigenfunction of the previous operator associated with the eigenvalue H u such that X c uu (y) ḡu (y)dy = H u .

If ḡu ≥ 0, we define the associated measure in M F (X )

ξu (dx) := ḡu (x)dx.

(2.2.3)

Finally, for any (u, v) ∈ U , we set

κ vu := X c vu (y) ḡu (y)dy X ḡu (y)dy -1
.

As proved in Chapter 1, H u > 0 is the condition ensuring that a monomorphic population with trait u is able to survive. In that case, the stationary stable state is described by the positive spatial profile ḡu . The dimorphic case implies four distinct stationary states : the trivial state (0, 0), two monomorphic states and a co-existence state. To ensure the impossibility of coexistence of two traits for a long time which is a principle also known as "Invasion-Implies-Fixation", we set the following assumption Assumption 2.2.3. Let u be in U , for almost all v ∈ U ,

1. either, H v κ uu -H u κ vu < 0, 2. or, H v κ uu -H u κ vu > 0 H u κ vv -H v κ uv < 0.
According to Chapter 1, any solution to (2.2.1) converges either to ( ḡu , 0), or to (0, ḡv ) under Assumption 2.2.3. Furthermore, in Chapter 1, we prove that condition 1 ensures the L 2 -stability of the equilibrium ( ḡu , 0). Thus, if a v-population with a small density function g v is emerging in a u-population with density function ḡu , it will not be able to survive. On the contrary, under condition 2, it will invade and replace the u-population since condition 2 ensures that any deterministic solution to (2.2.1) converges to the stable equilibrium (0, ḡv ) whatever the initial condition is. In the light of the previous considerations, we refer to H v κ uu -H u κ vu as the invasion fitness of the individuals with type v in a resident population with type u. Moreover, we will show that the probability of success of such an invasion can be described by means of the geographical birth position x 0 of the first individual with trait v and the function φ vu defined for all u, v ∈ U by

1. if H v κ uu -H u κ vu ≤ 0, φ vu (x) = 0 for all x ∈ X , 2. if H v κ uu -H u κ vu > 0, φ vu is the unique positive solution to the elliptic equation on X      m v ∆ x φ + b v -d v - X c vu (y) ḡu (y)dy φ -b v φ 2 = 0, ∂ n φ(x) = 0, ∀x ∈ ∂X .
(2.2.4)

We are now ready to state the main result of this chapter. It describes the convergence to a spatial structured TSS under the separation of time scales introduced in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. Theorem 2.2.4. We suppose that Assumptions 2.1.1 and 2.2.3 hold. We also assume that the scaling parameters satisfy Kq K log(K) -→ K→+∞ 0 and Kq K e KV -→ K→+∞ +∞, for any V > 0.

(2.2.5)

Then for any T > 0, ν K (t/Kq K ) t∈[0,T] converges towards a jump Markov process (Λ t ) t≥[0,T]
as K → +∞. At any time t, Λ t belongs to the subspace

{ ξu δ u , u ∈ U } of M F (X × U ),
where for any u ∈ U , ξu ∈ M F (X ) is the spatial pattern defined in (2.2.3). The process (Λ t ) t≥0 jumps from the state characterized by the trait u ∈ U to the state characterized by v ∈ U at the infinitesimal rate

X pb u (x)φ vu (x) ḡu (x)k(x, u, v)dxdv.
This convergence holds in the sense of convergence of the finite dimensional distributions.

The limiting jump process describes an evolutionary phenomenon using a sequence of monomorphic equilibria characterized by their spatial patterns and their phenotypic trait.

Although the structure of Theorem 2.2.4's proof is similar to the one of Theorem 1 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], the spatial structure of the process leads us to deal with infinite dimensional processes. Two key points of the proof have to be approached differently.

The first point concerns the study of the dynamics of a population descended from a mutant which has appeared in a well-established monomorphic population. As long as the mutant population size is small, the competitive terms between mutants can be neglected and the dynamics of the mutant population will be compared with the dynamics of a branching diffusion process. Thus, the first ingredient of the proof is to understand finely the extinction and survival probabilities of a branching diffusion process. We will describe it by means of the eigenparameters defined in Definition 2.2.2 and Assumption 2.2.3. The second point which is approached differently concerns the study of the process when it is close to a monomorphic deterministic equilibrium to (2.2.1) taking into account a small mutant population and the possibility of new mutations. In this way, we avoid the comparisons used in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], where the behavior of the resident population process is compared with the behavior of a theoretical monomorphic population evolving alone. Those comparisons are much more involved when the population is spatially structured. We estimate the exit time of a neighborhood of a monomorphic equilibrium by the resident population by studying a large deviation upperbound of the stochastic process (ν K t ) t≥0 around its deterministic limit (2.2.1) when K is large. The large deviations studies for processes combining diffusion process and jumps in a non-constant size population are still unresolved, to our knowledge. Those studies have thus their own interest.

The next section presents some numerical examples that illustrate Theorem 2.2.4. In Section 2.4, we evaluate the survival probability of a branching diffusion process and we characterize the scale time under which its size is of order K. In Section 2.5, we describe an explicit large deviation upper bound in our infinite dimensional framework by using ideas in [START_REF] Dembo | Large deviations techniques and applications[END_REF][START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF]. Then we study the rate function associated with the large deviation principle. Section 2.6 deals with the exit time of a neighborhood of a stationary state to (2.2.1). Finally, Section 2.7 is devoted to the proof of Theorem 2.2.4. We detail two key propositions. The first one deals with the dynamics of the individual-based process in the case where only one trait is involved. The second one gives the dynamics of the process after the time of the first mutation but as long as only at most two traits are involved.

Numerics

In this section, we illustrate Theorem 2.2.4 with two numerical examples. For both examples, the location space is X = (0, 1) and the trait space is U = [0, 1]. The simulations are computed using an iterative construction which gives an effective algorithm of the process.

The evolution of ecological niches

We consider here a set of parameters similar to the one in [START_REF] Doebeli | Speciation along environmental gradients[END_REF] and Chapter 1 in which, for any trait u, the growth rate is maximal for the location x = u. For instance, the location space state can represent a variation of resources, as seed size for some birds, and two populations with two different traits are not best-adapted to the same resources. For some bird species, a gradual variation of seed size can determine a gradual variation of beak size [START_REF] Grant | Unpredictable evolution in a 30-year study of darwin's finches[END_REF]. Moreover, the maximum value of the growth rate function is the same for all traits but when u decreases, the birth rate function goes faster to 0, as follows :

b(x, u) = max{4 -160(1 -u)(x -u) 2 , 0}, d(x, u) = 1.
That is, the birds with a large trait value are more generalists than the ones with a small trait value : they are able to feed themselves on a larger set of seed size [START_REF] Futuyma | The evolution of ecological specialization[END_REF]. All individuals move with the same diffusion coefficient m u = 0.003. The competition kernel is a constant c = 10 and the mutation kernel k(x, u, w) is the probability density of a Gaussian random variable N (u, 0.05) conditioned on staying in U .

In Indeed, it is profitable to become generalist and feed oneself on a larger range of resources since the maximal encounter rate of a more generalist individual does not decrease [START_REF] Futuyma | The evolution of ecological specialization[END_REF].

The evolution of the diffusion coefficient

The evolution of dispersal is a classical question in evolutionary biology since it has profound effects on geographical distributions and effective population sizes [START_REF] Johnson | Evolution of dispersal : theoretical models and empirical tests using birds and mammals[END_REF].

In this part, we study the influence of a change of the diffusion coefficient m u . Let us assume that the birth and death rates (b, d and c) are independent of the phenotypic traits. Let u, v ∈ U be two traits such that m u > m v . Since ḡu is the eigenvector associated to H u , the minimum in (2.2.2) is reached at ḡu and we deduce easily that H u ≤ H v . Moreover, for all w ∈ U ,

κ wv = X c wv (y) ḡv (y)dy = X c(y) ḡv (y)dy =: κ v .
Hence, the sign of the invasion fitness of the individuals with trait u in a resident population with trait v can be computed easily

H u κ vv -H v κ uv = (H u -H v )κ v ≤ 0,
conversely, H v κ uu -H u κ vu ≥ 0. As a conclusion, the individuals with the smallest diffusion coefficient will be selected. Thus, Theorem (2.2.4) justified the fact that dispersal is selected against in a bounded environment variable in space but constant in time. This evolutionary phenomenon has already been studied in particular cases [START_REF] Hastings | Dynamics of a single species in a spatially varying environment : the stabilizing role of high dispersal rates[END_REF][START_REF] Hastings | Can spatial variation alone lead to selection for dispersal ?[END_REF][START_REF] Perthame | Rare mutations limit of a steady state dispersion trait model[END_REF]90]. Since there are more individuals in the good areas, the passive diffusion leads individuals from the good locations to the bad locations [START_REF] Johnson | Evolution of dispersal : theoretical models and empirical tests using birds and mammals[END_REF]. Finally, spatial variation alone tends to reduce the diffusion rate. This phenomenon seems to hold for a more general competition kernel which depends on the locations of the two competing individuals as observed by means of numerical simulations presented in Figure 2.2. It has been computed using a competition kernel

∀(x, y) ∈ X := (0, 1), c(x, y) = 1 |x-y|≤0.1 , a birth rate b(x) = max{2 -20(x -0.8) 2 , 0}, a death rate d(x) = max{2 -20(x - 0.
2) 2 , 0} and a mutation kernel identical to the previous simulation. The diffusion coefficient depends on u as follows

m u = 0.003 1 + 10(u -0.3) 2 .
Here again, diffusion is selected against. We observe several events of invasion and replacement, the individuals evolve to get a smaller and smaller diffusion coefficient until u ≈ 0.303 associated with the coefficient of diffusion m 0.303 ≈ 0.003.

Survival probability for a branching diffusion process

As explained at the end of Section 2.2, the dynamics of the offspring of any mutant individual will be compared with the dynamics of a branching diffusion process. As a consequence, this section is devoted to the study of the survival probability of such a process. Any individual is characterized by its location X i t ∈ X , solution to (2.1.2) with the diffusion coefficient m > 0. Moreover, each individual with location x ∈ X gives birth to a new individual at rate b(x) and dies at rate d(x). Those rates are assumed to have the following properties : Let M t denote the number of individuals at time t. We describe the dynamics of the diffusion process at each time by the finite measure

η t = M t ∑ i=1 δ X i t .
We denote the probability measure under which η 0 = δ x by P δ x . The next theorem concerns the survival probability of the population assuming that, initially, there is only one individual at location x. This probability is described by means of the solution to an elliptic differential equation on X and the location x. The location x plays a key role since, if the first individual appears in a place where the growth rate is low or negative, it has a high probability to die with no descendants. Let 

T 0 = inf{t ≥ 0, M t = 0}.
= m∆ x φ * (x) + (b(x) -d(x))φ * (x) -b(x)φ * (x) 2 , ∀x ∈ X , ∂ n φ * (x) = 0, ∀x ∈ ∂X , (2.4.1) 
and φ * (x) = lim t→∞ P δ x [T 0 ≥ t] for all x ∈ X . If H ≤ 0, (2.4.1) has no non negative solution, we set φ * ≡ 0, and lim t→∞ P δ x [T 0 ≥ t] = 0 for all x ∈ X .

The second result of this part estimates the probability that the population size is of order K after a logarithmic time log K. For all > 0 and K ∈ N * , we set

T K = inf{t ≥ 0, η t , 1 ≥ K}.
Theorem 2.4.3. Let > 0 and (t K ) K>0 be a sequence of times such that lim K→+∞ t K / log(K) = +∞. Then for all x ∈ X ,

lim K→+∞ P δ x [ T K < t K ] = φ * (x).
The end of this part is devoted to the proofs.

Proof of Theorem 2.4.2. We first study the probability

P δ x [T 0 ≤ t].
We denote the time of the first event (birth or death) of the population by E 1 . The law of E 1 is given by

P δ x [E 1 ≤ t] = E δ x t 0 (d(X s ) + b(X s ))e -s 0 (b(X r )+d(X r ))dr ds . We set I(s) := s 0 (b(X r ) + d(X r ))dr.
Using the Markov property of η, we obtain

P δ x [T 0 ≤ t] = E δ x 1 E 1 ≤t 1 {M E 1 =0} + 1 E 1 ≤t 1 {M E 1 =2} E 2δ X E 1 [1 M t-E 1 =0 ] = E x t 0 d(X s ) + b(X s )P δ Xs [T 0 ≤ t -s] 2 e -I(s) ds ,
where X under P x is solution to (2.1.2) with initial condition x and diffusion coefficient m. Thus g(x, t) = P δ x [T 0 ≤ t] satisfies for all x ∈ X , and all t > 0,

     g(x, t) = E x t 0 d(X s ) + b(X s )g(X s , t -s) 2 e -I(s) ds , g(x, 0) = 0, ∀x ∈ X . (2.4.2)
Using Gronwall's Lemma for bounded functions, we deduce immediately that (2.4.2) has a unique bounded solution.

We now show that there exists a unique C 2 -solution to

       ∂ t f (x, t) = m∆ x f (x, t) -b(x) + d(x) f (x, t) + d(x) + b(x) f (x, t) 2 , ∂ n f (x, t) = 0, ∀(x, t) ∈ ∂X × R + f (x, 0) = 0, ∀x ∈ X , (2.4.3) 
such that f belongs to C 2,1 (X × R + ), is positive and smaller than 1 by using superand sub-solutions arguments. Indeed, let

F(x, f ) = -b(x) + d(x) f + d(x) + b(x) f 2 .
We easily see that f ≡ 0 and f ≡ 1 satisfy :

   ∂ t f ≤ m∆ x f + F(x, f ), ∀(x, t) ∈ X × R + , ∂ t f ≥ m∆ x f + F(x, f ), ∀(x, t) ∈ X × R + , f (x, 0) ≤ f (x, 0) ≤ f (x, 0), x ∈ X , ∂ n f (x, t) ≤ 0 ≤ ∂ n f (x, 0), x ∈ ∂X , t ∈ R + .
That is, f (resp. f ) is a sub-solution (resp. super-solution) to (2.4.3). Moreover, F and

∂ f F belong to C(X × R)
and F is a Lipschitz function with respect to x by means of Assumptions 2.4.1. We apply Theorem 4 of Chapter III in [START_REF] Roques | Modèles de réaction-diffusion pour l'écologie spatiale[END_REF] to deduce that (2.4.3)

admits a solution f ∈ C 2,1 (X × R + ) satisfying 0 ≤ f ≤ 1.
The uniqueness of the solution is a consequence of the maximum principle. The next step is the use of a Feynman-Kac formula to deduce that f is also a solution to (2.4.2). Let X be a solution to (2.1.2) and for all t ≥ 0, and s ∈ [0, t], we set

H(s, X s ) = f (X s , t -s)e -I(s) .
Applying Itô's formula to H(s, X s ), using (2.1.2), (2.4.3) and the fact that ∂ n f (x, t) = 0 for all x ∈ ∂X , we find for all s ∈ [0, t[,

H(s, X s ) = H(0, X 0 ) - s 0 d(X σ ) + b(X σ ) f (X σ , t -σ) 2 e -I(σ) dσ + s 0 √ 2m(∂ x f (X σ , t -σ))e -I(σ) dB σ .
(2.4.4)

The expectation of the last term is equal to 0 as ( r 0 ∂ x f (X σ , tσ)e -I(σ) dB σ ) r∈[0,s] is a martingale. In addition, E x [H(0, X 0 )] = f (x, t). Let us make s tend to t using the dominated convergence Theorem. As lim s→t E x [H(s, X s )] = E x [H(t, X t )] = 0, we deduce that f is a solution to (2.4.2). Since (2.4.2) admits a unique bounded solution, both solutions are equal, i.e.

P δ x [T 0 ≤ t] = f (x, t).
Finally, we deduce the survival probability lim t→+∞ (1f (x, t)) using results on Equation (2.4.3) obtained in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF] and in Theorems 9 and 11 of Chapter III in [START_REF] Roques | Modèles de réaction-diffusion pour l'écologie spatiale[END_REF]. Indeed, it is proved that if H > 0, there exists a unique positive solution φ * to the elliptic equation (2.4.1), and that φ(t, x) = 1f (x, t) = P x (T 0 > t) tends to φ * (x) in C 2 (X ) as t → +∞. Moreover, if H ≤ 0, the unique solution to (2.4.1) is the zero function and φ(t, x) → 0 uniformly in X as t → +∞.

Proof of Theorem 2.4.3. First, we split the studied probability into three parts :

P δ x ( T K < t K ) = P δ x ( T K < t K , log log(K) < T 0 < +∞) + P δ x ( T K < t K , log log(K) ≥ T 0 ) + P δ x ( T K < t K , T 0 = +∞). (2.4.5)
Let us start with the first term of (2.4.5) :

P δ x ( T K < t K , log log(K) < T 0 < +∞) ≤ P δ x (log log(K) < T 0 < +∞) → K→+∞ 0.
The second term of (2.4.5) will be treated using a comparison with a pure birth process. Let us consider a birth process with constant birth rate b and started with only one individual. T K denotes the first time when the population size Ñ of the process is greater than K.

P δ x ( T K < t K , log log(K) ≥ T 0 ) ≤ P δ x ( T K ≤ log log(K)) ≤ P 1 ( T K ≤ log log(K)) ≤ P 1 ( Ñlog log K ≥ K) ≤ e b log log K /( K) → K→+∞ 0.
It remains to deal with the third term in (2.4.5). Note that if H ≤ 0, Theorem 2.4.2 implies that the third term is equal to zero, and the proof is done. From this point forward, we assume that H > 0. Let h be a positive eigenvector of the operator m∆ x . + (bd). with Neumann boundary conditions on ∂X associated with the eigenvalue H. Thanks to Itô's formula, we find η t , e -Ht h = η 0 , h + t 0 η s , e -Hs m∆ x h + (bd)he -Hs -Hhe -Hs ds

+ t 0 M s ∑ i=1 √ 2m∇ x h(X i s )e -Hs dB i s ,
As m∆ x h + (bd)h = Hh and ∇ x h is bounded on X , (e -Ht η t , h ) t≥0 is a martingale. Moreover it is positive, so, it converges a.s. to a non-negative random variable that will be denoted by W. Obviously, {T 0 < +∞} ⊂ {W = 0}. Our aim is to prove that this is an a.s. equality. As done in the previous proof, we denote the time of the first event of the population by E 1 and we set I(s) := s 0 (b(X r ) + d(X r ))dr. Using the Markov property and the independence between individuals, we find an equation satisfied by P δ x [W = 0] :

P δ x [W = 0] = E x +∞ 0 e -I(s) d(X s ) + b(X s )P δ Xs [W = 0] 2 ds . (2.4.6)
Finally, g(x)

:= P δ x [W > 0] = 1 -P δ x [W = 0] is solution to g(x) = E x +∞ 0 e -I(s) b(X s )g(X s )(2 -g(X s ))ds , ∀x ∈ X . (2.4.7)
Let us show that there exists at most one non-zero solution with value in [0, 1] to Equation (2.4.7). Let g 1 and g 2 be two such solutions. We define

γ = sup{ γ > 0, g 1 (x) -γg 2 (x) ≥ 0, ∀x ∈ X }.
Assume first that γ < 1.

g 1 (x) -γg 2 (x) = E x +∞ 0 e -I(s) b(X s ) 2(g 1 -γg 2 )(X s ) -(g 2 1 -γg 2 2 )(X s ) ds . (2.4.8) As γ < 1, g 2 1 -γg 2 2 ≤ (g 1 -γg 2 )(g 1 + γg 2 )
and we find

g 1 (x) -γg 2 (x) ≥ E x +∞ 0 e -I(s) b(X s ) (g 1 -γg 2 )(2 -g 1 -γg 2 )(X s ) ds .
Moreover, by the definition of γ, there exists x 0 ∈ X such that g 1 (x 0 )γg 2 (x 0 ) = 0, so

0 = E x 0 +∞ 0 e -I(s) b(X s ) g 1 (X s ) -γg 2 (X s ) 2 -g 1 (X s ) -γg 2 (X s ) ds . Thus for a.e. s ∈ R + , P x 0 -a.s., b(X s )[g 1 (X s ) -γg 2 (X s )][2 -g 1 (X s ) -γg 2 (X s )] = 0.
Let us note that for all x ∈ X , for i = 1, 2, (2.4.6) implies that

1 -g i (x) ≥ E x +∞ 0 e -I(s) d(X s )ds = P δ x [M E 1 = 0] > 0,
that is, for all x ∈ X , 2g 1 (x)γg 2 (x) > 0. As b is positive, for a.e. s ∈ R + , P x 0 -a.s. g 1 (X s )γg 2 (X s ) = 0. In addition with the fact that γg 2 2 -

g 2 1 = γg 2 2 (1 -γ) -(g 1 - γg 2 )(g 1 + γg 2 ), (2.4.8) implies that, 0 = g 1 (x 0 ) -γg 2 (x 0 ) = E x 0 +∞ 0 e -I(s) b(X s )γg 2 (X s ) 2 (1 -γ)ds .
Using the same argument as before and that 1γ > 0, we deduce that for a.e. s ∈ R + , P x 0 -a.s., g 2 (X s ) = 0. Moreover, under P x 0 , the random variable X s has a density with respect to Lebesgue measure, that is, for Lebesgue-a.a. x ∈ X , g 2 (x) = 0. This is a contradiction with the fact that g 2 is a non-zero solution. Finally if γ ≥ 1, we define instead γ = sup{ γ > 0, g 2 (x)γg 1 (x) ≥ 0, ∀x ∈ X } < 1 and we use symmetric arguments to reach a contradiction. Thus, there is at most one solution to (2.4.7) with values in [0, 1].

The next step is to show that φ * , solution to (2.4.1), is also a solution to (2.4.7).

Let us write f

* = 1 -φ * , it satisfies 0 = m∆ x f * -(b + d) f * + d + b( f * ) 2 , on X , ∂ n f * = 0, on ∂X .
(2.4.9)

We apply Itô's formula to f * (X t )e -t 0 (b(X r )+d(X r ))dr . Then taking the expectation and using Equation (2.4.9), we deduce

f * (x) =E x t 0 e -I(s) [d(X s ) + b(X s ) f * (X s ) 2 ]ds + E x f * (X t )e -I(t) .
Our aim is now to let t tend to infinity. Note that I(t) ≥ bt for all t ∈ R + and that f * is bounded by 1. Hence, we use the dominated convergence Theorem to find those two convergences :

E x f * (X t )e -I(t) ≤ E x e -I(t) → t→+∞ 0 E x +∞ t e -I(s) [d + b( f * ) 2 ](X s )ds ≤ E x +∞ t e -I(s) ( b + d)ds → t→+∞ 0.
Thus, making t tend to infinity, we find for all x ∈ X ,

f * (x) = E x +∞ 0 e -I(s) [d(X s ) + b(X s ) f * (X s ) 2 ]ds . Since φ * ≡ 1 -f * , φ * is a solution to (2.

4.7)

. There exists at most one non-zero solution to (2.4.7), thus we have either

P δ x [W > 0] = φ * (x) for all x ∈ X , or P δ x [W > 0]
= 0 for all x ∈ X . Using Itô's formula, it is easy to check that in the case H > 0, ( η t , e -Ht h ) t≥0 is bounded in L 2 . So this martingale is uniformly bounded and it converges in L 1 to W, hence E δ x [W] = h(x) > 0. Finally,

P δ x [W > 0] = φ * (x) = P δ x [T 0 = +∞] ⇒ {W > 0} = {T 0 = +∞} a.s.
(2.4.10)

On {T 0 = +∞},

log( K) T K ≥ log( η T K , he -H T K . h -1 ∞ e H T K ) T K → K→+∞ H > 0 a.s., as η T K , h ≤ K h ∞ , T K → +∞ when K tends to infinity and W > 0. Hence, lim K→+∞ T K log( K) < +∞ and lim K→+∞ t K log( K) = +∞,
and so, the third term in (2.4.5) satisfies

P δ x ( T K < t K , T 0 = +∞) = P δ x T K log( K) < t K log( K) , T 0 = +∞ → K→∞ P δ x (T 0 = +∞) .
(2.4.11)

Finally, we have shown that the two first terms in (2.4.5) tend to 0 and using additionally (2.4.11), we get lim

K→+∞ P δ x ( T K < t K ) = P δ x (T 0 = +∞) = φ * (x).
That ends the proof in the case H > 0.

Exponential deviations results

In this section, we are concerned by the upperbound of the large deviations from the large population limit (2.2.1) for the process (ν K t ) t∈[0,T] when K tends to +∞ and q K tends to 0. Let us first describe the rate function. It requires specific notation which will be only used in this subsection : let us fix T > 0, -E = X × U × {1, 2}.

ψ is the mapping such that for any function

f ∈ C 2,0,1 (X × U × [0, T]), for any (x, u, π, t) ∈ E × [0, T], ψ( f )(x, u, t, π) = f (x, u, t) if π = 1, -f (x, u, t) if π = 2.
-For all ν = (ν t ) t∈[0,T] ∈ D([0, T], M F (X × U )), we define the positive finite measure

µ ν t (dx, du, dπ) = b(x, u)δ 1 (dπ) + (d(x, u) + c • ν t-(x, u))δ 2 (dπ) ν t-(dx, du).
-Finally, we introduce the log-Laplace transform ρ of a centered Poisson distribution with parameter 1, ρ(x) = e xx -1, and its Legendre transform ρ * , ρ * (y) = ((y + 1) log(y + 1)y)

1 {y>-1} + 1 {y=-1} + ∞ • 1 {y<-1} .
We now define the rate function : for all ξ 0 ∈ M F (X × U ) and ν ∈ D([0, T], M F (X × U )),

I T ξ 0 (ν) :=      sup f ∈C 2,0,1 n (X ×U ×[0,T]) I f ,T (ν), if ν 0 = ξ 0 + ∞, otherwise, (2.5.1) 
where

I f ,T (ν) := ν T , f T -ν 0 , f 0 - T 0 m∆ x f s + m|∇ x f s | 2 + ∂ f s ∂s , ν s ds - T 0 E ψ( f )(x, u, s, π) + ρ(ψ( f )(x, u, s, π)) dµ ν s ds.
When there is no ambiguity, we will write I T (ν) instead of I T ν 0 (ν). The next theorem describe the large deviations upperbound result.

Theorem 2.5.1. Suppose that Assumption 2.1.1 holds. For all α > 0, ξ 0 ∈ M F (X × U ), for all compact set C ⊂ B(ξ 0 , α), for all measurable subset A of D([0, T], M F (X × U )) such that there exists M > 0 with A ⊂ {ν| sup t∈[0,T] ν t , 1 ≤ M},

lim sup K→+∞ 1 K sup ν K 0 ∈C∩M K F log P ν K 0 (ν K ∈ A) ≤ -inf ξ∈C,ν∈ Ā I T ξ (ν), (2.5.2) 
where

M K F = { 1 K ∑ N i=1 δ (x i ,u i ) , with N ∈ N, (x i , u i ) ∈ X × U }. Proof.
We show the following upper bound lim sup

K→+∞ 1 K log P(ν K ∈ A) ≤ -inf ν∈ Ā I T ξ 0 (ν).
(2.5.3) Equation (2.5.2) can be directly deduced from this bound by a similar reasoning as in the proof of Corollary 5.6.15 in Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. To prove (2.5.3), we need the exponential tightness of the process (ν K t ) t∈[0,T] which is described by the following lemma whose proof can be easily adapted from [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF]71,[START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an age-structured population[END_REF].

Lemma 2.5.2. Suppose that Assumption 2.1.1 holds, and that there exists C init > 0 such that sup K∈N ν K 0 , 1 < C init a.s.. Then for all L > 0, there exists a compact subset C L of the Skorohod space D([0, T], M F (X × U )) such that lim sup

K→+∞ 1 K log P(ν K ∈ C L ) ≤ -L. Set τ K M = inf{t ≥ 0, ν K t , 1 ≥ M}. Note that Lemma 2.5.2 is also true for (ν K t∧τ K M ) t≥0 .
Using a proof similar to Theorem 4.4.2 of [START_REF] Dembo | Large deviations techniques and applications[END_REF], we deduce the inequality lim sup

K→+∞ 1 K log P(ν K ∈ A) = lim sup K→+∞ 1 K log P(ν K .∧τ K M ∈ A) ≤ -inf ν∈ Ā sup f ∈C 2,0,1 n (X ×U ×[0,T]) (I f ,T (ν) -H(I f ,T )) ,
where

H(I f ,T ) = lim sup K→+∞ 1 K log E[exp(KI f ,T (ν K .∧τ K M )]. It remains to show that H(I f ,T ) = 0. Let N T = exp KI f ,T (ν K .∧τ K M ) -q K K× T∧τ K M 0 ν K s , pb u (x) U φ( f s )(x, w)k(x, u, w)dw -φ( f s )(x, u) ds ,
where φ(x) = x + ρ(x) = e x -1. Itô's formula implies that (N T , T ≥ 0) is a local martingale. The definition of τ K M implies that N T is bounded. So it is a martingale of mean 1 and there exists a constant

C( f ∞ , M) > 0 such that exp(-q K KC( f ∞ , M)) ≤ E exp KI f ,T (ν K .∧τ K M ) ≤ exp(q K KC( f ∞ , M)).
We conclude easily, since q K tends to 0 when K → +∞.

The main point is now to write the rate function under a non-variational integral formulation which is more workable than (2.5.1). This integral formulation is required to prove the results on the exit time in Section 2.6. It will also be used to bound from above the distance between a solution to (2.2.1) and any ν, as proved below in Proposition 2.5.4. Before writing the non-variational formulation, let us define two functional spaces.

-The Orlicz space associated with ρ * is L ρ * ,T the set of all measurable functions h on E × [0, T] such that

h ρ * ,T := inf α > 0, E ×[0,T] ρ * |h| α dµ ν s ds ≤ 1 < +∞. (2.5.4)
The Orlicz space associated with ρ is defined on the same way.

-L 2 T is the set of functions h ∈ L 2 (X × U × [0, T], R d ) such that h L 2 ,T := T 0 2 ν s , m|h s | 2 ds 1/2 < ∞. (2.5.5) 
Theorem 2.5.3. Suppose that Assumption 2.1.1 holds. Let T > 0 and ν ∈ D([0, T], M F (X × U )), such that I T ν 0 (ν) < +∞, then there exist two measurable functions

(h ν 1 , h ν 2 ) ∈ L ρ * ,T × L 2 T such that for all f ∈ C 2,0,1 n (X × U × [0, T]), ν t , f t = ν 0 , f 0 + T 0 E (1 + h ν 1 (x, u, s, π))ψ( f )(x, u, s, π)dµ ν s ds+ T 0 X ×U ν s , m u ∆ x f s (x, u) + 2m u h ν 2 (x, u, s) • ∇ x f s (x, u) + ∂ f s ∂s (x, u) ds, (2.5.6)
and the rate function can be written as follows

I T ν 0 (ν) = T 0 E ρ * (h ν 1 )dµ ν s ds + T 0 m ν s , |h ν 2 | 2 ds < +∞. (2.5.7)
The proof of Theorem 2.5.3 uses convex analysis arguments which can be adapted from Leonard [START_REF] Léonard | Large deviations for long range interacting particle systems with jumps[END_REF][START_REF] Léonard | Convex conjugates of integral functionals[END_REF][START_REF] Léonard | Minimizers of energy functionals[END_REF]. We detail its proof in Appendix 2.A at the end of this chapter and we give here the main ideas. For all

ν ∈ D([0, T], M F (X × U )), I T (ν) is equal to the Legendre transform Γ * of Γ : (ψ, ∇ x )(C 2,0,1 (X × U × [0, T])) → R : Γ : (g 1 , g 2 ) → T 0 E ρ(g 1 )dµ ν s ds + T 0 ν s , m|g 2 | 2 ds
at a well chosen point l ν . If l ν belongs to the interior of the set domΓ * of linear maps l with Γ * (l) < +∞, we can exhibit l ν by means of the derivative of Γ, the Legendre biconjugate of Γ. Studying directly Γ is difficult. The key point is thus to work on the product space L ρ,T × L 2 T . In this way, we can study the Legendre biconjugate of an extension of Γ on that space, in order to deal with the diffusive part and the jumps part separately. The diffusive part is treated using ideas of Dawson and Gartner [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF] and Fontbona [START_REF] Fontbona | Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion[END_REF] whereas the jumps part is treated using ideas of Leonard [START_REF] Léonard | Convex conjugates of integral functionals[END_REF][START_REF] Léonard | Minimizers of energy functionals[END_REF]. The next step is to deduce the Legendre biconjugate of Γ by restricting the definition domain by means of Proposition 3.3 in [START_REF] Léonard | Convex conjugates of integral functionals[END_REF]. Finally, to deal with points ν for which l ν does not belong to the interior of domΓ * , we use a continuity argument similar to that of Theorem 7.1's proof in [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF].

The last result of this part gives an upper bound on the distance between a solution to (2.2.1) and any ν, this bound is used in Subsection 2.6.2. Proposition 2.5.4. Let T > 0 and M > 0. There exists C(T, M) such that, for any ν satisfying sup t≤T ν t , 1 < M and for all (ξ t ) t≥0 solution to (2.2.1) with the initial condition

ξ 0 = ν 0 , sup t∈[0,T] W 1 (ν t , ξ t ) ≤ C(T, M) I T (ν) + I T (ν) . Proof. Let ν be such that ν t , 1 < M for all t ∈ [0, T]. If I T (ν) = 0, i.e. ν t = ξ t , or if I T (ν) = +∞
, the result is obvious, so let us assume that 0 < I T (ν) < +∞. Let (ξ t ) t≥0 be the solution to (2.2.1) with initial condition ν 0 . The aim is to evaluate W 1 (ν t , ξ t ). Let (P u t ) t≥0 denote the semigroup of the reflected diffusion process which is the solution to (2.1.2) with initial condition x and diffusion coefficient m u . Theorem 2.5.3 implies the existence of (h 1 , h 2 ) ∈ L ρ * ,T × L 2

T satisfying (2.5.6). Then, we find the following mild formulation for (ν t ) t≥0 in a similar way to Lemma 4.5 in [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF] : for all f ∈ C Lip (X × U ),

ν t , f = t 0 E ψ(P . t-s f )(1 + h 1 )dµ ν s ds + t 0 ν s , 2m∇ x P . t-s f • h 2 ds. (2.5.8) 
In addition with a mild equation for (ξ t ) t≥0 , we deduce that for all f ∈ C Lip (X × U ) and for all t ≤ T,

| ν t -ξ t , f | = t 0 E ψ(P . t-s f )(dµ ν s ds -dµ ξ s ds) + t 0 E ψ(P . t-s f )h 1 dµ ν s ds + t 0 ν s , 2m∇ x P . t-s f • h 2 ds ≤ C 1 t 0 sup r∈[0,s] W 1 (ν r , ξ r )ds + ψ(P . t-. f ) ρ,t h 1 ρ * ,t + ∇ x P . t-. f L 2 ,t h 2 L 2 ,t .
(2.5.9) The second line is a consequence of Hölder's inequality (see for example Theorem 6 of Chapter 1 in [START_REF] Rao | Applications of Orlicz spaces[END_REF] about Hölder's inequalities in Orlicz spaces). The next step is to find an upperbound on the two last terms. Theorem 2.5.3 implies that

I T (ν) = T 0 E ρ * (h 1 )dµ ν s ds + T 0 m ν s , |h 2 | 2 ds.
(2.5.10)

We easily deduce that for any t ≤ T,

h 2 2 L 2 ,t ≤ h 2 2 L 2 ,T ≤ 2I T (ν). (2.5.11)
Let us also find an upper bound on h 1 ρ * ,T . Note that for all x ∈ R,

if α ≥ 1, ρ * (|x|/α) ≤ ρ * (|x|)/α ≤ ρ * (x)/α, if 0 < α ≤ 1, ρ * (|x|/α) ≤ ρ * (|x|)/α 2 ≤ ρ * (x)/α 2 .
(2.5.12)

Moreover, the non-variational formulation (2.5.10) implies that I T (ν) ≥

T 0 E ρ * (h 1 )dµ ν s ds. Thus, using (2.5.12) and the definition of the norm . ρ * ,T in (2.5.4), we obtain that if

I T (ν) ≥ 1, T 0 E ρ * |h 1 |/I T (ν) dµ ν s ds ≤ 1, i.e. h 1 ρ * ,T ≤ I T (ν), and if I T (ν) ≤ 1, T 0 E ρ * |h 1 |/ I T (ν) dµ ν s ds ≤ 1, i.e. h 1 ρ * ,T ≤ I T (ν). Thus, for any t ≤ T, h 1 ρ * ,t ≤ h 1 ρ * ,T ≤ I T (ν) + I T (ν) . (2.5.13) 
Let us now find an upper bound on ψ(P . t-. f ) ρ,t . Since X is a convex set in R d and f ∈ C Lip (X × U ), it has been proved in Part 2 of [START_REF] Wang | Gradient estimate on convex domains and applications[END_REF] that P u t f ∈ C Lip (X ). In addition with sup t∈[0,T] ν t , 1 ≤ M, for all α > 0, t ≤ T

t 0 E ρ |ψ(P . t-s f )| α dµ ν s ds ≤ T 0 E ρ 1 α dµ ν s ds ≤ TM[ b + d + cM]ρ 1 α ,
so, for all t ≤ T,

ψ(P . t-. f ) ρ,t ≤ (ρ |R + ) -1 1 TM[ b + d + cM] -1 := C 2 .
Furthermore, since P u t f ∈ C Lip (X ), we get that for any t ≤ T,

∇ x P . t-. f 2 L 2 ,t = t 0 2 ν s , m|∇ x P . t-s f | 2 ds ≤ 2 mMt ≤ 2 mMT := C 3 .
Using the last two inequalities with (2.5.11), (2.5.13) and (2.5.9), we find

sup r∈[0,T] W 1 (ν r , ξ r ) ≤ C 1 T 0 sup r∈[0,s] W 1 (ν r , ξ r )ds + C 2 I T (ν) + (C 2 + 2C 3 ) I T (ν).
We use Gronwall's Lemma to conclude.

Lower bound on the exit time of a neighborhood of the stationary state

In this section, we assume that initially, two traits u and v are involved. The stochastic process starts in a state

ν K 0 = ν K,u 0 + ν K,v 0 such that ν K,u
0 is close to ξu and there exist only a few individuals with trait v. Since the considered initial state is close to the equilibrium ( ξu , 0) and according to Theorem 2.2.1, the dynamics of the stochastic process ν K is close to the equilibrium ( ξu , 0) on a finite interval time when K is large. Our aim is to control the exit time of the stochastic process ν K,u t from a neighborhood of the stationary solution ξu in M F (X ) when K is large and q K is small. We define the exit time by :

for all γ > 0, R K γ = inf{t ≥ 0, W 1 (ν K,u t , ξu ) ≥ γ)}.
(2.6.1) Theorem 2.6.1 gives a lower bound on R K γ . The lower bound involves the first time when a new mutation occurs and the first time when the v-population size is larger than a threshold :

S K 1 = inf{t ≥ 0, ∃w ∈ {u, v}, ν K t (X × {w}) = 0}, (2.6.2) 
for all > 0,

T K = inf{t ≥ 0, ν K,v t , 1 ≥ }. (2.6.3) 
Theorem 2.6.1. Suppose that Assumption 2.1.1 holds and that H u > 0. Let γ > 0 such that γ < H u (κ uu ) -1 , and if H u κ vv -H v κ uv > 0, γ satisfies also the assumption γ < | H u κ uu -

H u κ vv -H v κ uv
κ uu κ vv -κ vu κ uv | . Then, there exist γ > 0, > 0, and V > 0 such that, if

ν K 0 = ν K,u 0 + ν K,v 0 with W 1 (ν K,u 0 , ξu ) < γ and ν K,v 0 , 1 < , then lim K→+∞ P ν K 0 (R K γ > e KV ∧ T K ∧ S K 1 ) = 1.
Thus, a well-established monomorphic population u is minimally affected during the emerging of a mutant population v.

The assumptions on the radius γ of the neighborhood ensure that there exists only one steady state in the neighborhood.

The result is proved using ideas similar to the ones of Freidlin and Wentzell [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF]. In our framework, the difficulties come from the continuous space motion. Firstly, our processes have values in an infinite dimensional space, thus, the required deterministic results are much more involved, see Subsection 2.6.1. Secondly, we deal with two kind of randomness : jump process and spatial diffusion process. The end of the section is devoted to the proof of Theorem 2.6.1.

Stability for the weak topology

This subsection deals with the deterministic solution to (2.2.1). We denote by (ξ t ) t≥0 the solution to equation (2.2.1) with initial condition ξ 0 ∈ M F (X × {u, v}). In this case, ξ t ∈ M F (X × {u, v}) for all t ≥ 0. We prove that, as long as the size of the v-population density is small, the u-population density stays in a W 1 -neighborhood of its equilibrium ḡu .

Proposition 2.6.2. Suppose that Assumption 2.1.1 holds. Let γ > 0. There exist γ > 0 and > 0 such that for any

ξ 0 = ξ u 0 δ u + ξ v 0 δ v with W 1 (ξ u 0 , ξu ) < γ , for all t ≤ t = inf{t ≥ 0, ξ v t , 1 > }, W 1 (ξ u t , ξu ) < γ/2.
The proof of Proposition 2.6.2 implies two main difficulties. First, using ideas similar to Section 1.3.3, we can prove that the solution ξ t to (2.2.1) stays close to ξu if the initial condition admits a density which is close to the density ḡu of ξu for the L 2 -distance. However, this is not sufficient since we will deal with discrete measures later. Thus, we need to enlarge the result for W 1 -distance. Secondly, we are concerned with the trajectories of the u-population process. Even though the v-population size is small, it does have an impact on the death rate of individuals u which we cannot ignore. The proof is divided into three steps. Firstly, we study how fast a solution with initial condition close to ξu moves away from ξu in W 1 -distance during a small time interval [0, t 0 ]. Then, as t 0 > 0, ξ u t 0 admits a density and so, we can compare the W 1 -distance and the L 2 -distance of the densities between ξ u t 0 and ξu . We finally prove a L 2 -stability result adapted from Section 1.3.3.

Proof of Proposition 2.6.2. First, we may assume that ≤ 1 and γ < γ. Hence, there exists M > 0 such that any considered initial state satisfies ξ 0 , 1 < M.

We fix t 0 > 0 and we start with the first step. On the one hand, we can find an upper bound to sup r∈[0,t] ξ u r , 1 . Indeed

ξ u t , 1 ≤ ξ u 0 , 1 + b t 0 ξ u s , 1 ds, (2.6.4) 
and using Gronwall's Lemma, we deduce that sup r∈[0,t] ξ u r , 1 ≤ Me bt , for all t ≥ 0. On the other hand, using (2.2.1) with U = {u, v} and a mild formulation similar to Lemma 4.5 in [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF], we find that ξ u t satisfies : for any f ∈ C Lip (X ),

ξ u t -ξu , f = ξ u 0 -ξu , P u t f + t 0 ξ u s -ξu , (b u -d u -c uu • ξu )P u t-s f ds + t 0 c uu • ( ξu -ξ u s ) ξ u s , P u t-s f ds - t 0 (c uv • ξ v s ) ξ u s , P u t-s f ds.
For any g Lipschitz-continuous, we denote by g Lip the smallest constant such that g/ g Lip ∈ C Lip (X ). Since sup t∈[0,t ] ξ v t , 1 ≤ , P u t f ∈ C Lip (X ) and using the definition of distance W 1 , we obtain that, for all t ≤ t ,

| ξ u t -ξu , f | ≤W 1 (ξ u 0 , ξu ) + ( b + d + c ξu , 1 ) t 0 W 1 (ξ s , ξ)ds + c Lip sup r∈[0,t] ξ u r , 1 t 0 W 1 (ξ u s , ξu )ds + .
(2.6.5)

Finally, (2.6.4), (2.6.5) and Gronwall's Lemma imply that there exist C 1 , C 2 independent of and γ such that sup

r∈[0,t 0 ∧t ] W 1 (ξ u r , ξu ) ≤ (W 1 (ξ u 0 , ξu ) + C 2 )e C 1 t 0 ∧t ≤ (γ + C 2 )e C 1 t 0 .
(2.6.6)

According to (2.6.6), we have to choose γ and such that (γ + C 2 )e C 1 t 0 < γ/2. Note that if for all ξ v 0 ∈ M f (X ), t ≤ t 0 , the proof of Proposition 2.6.2 is complete. In what follows, let us assume that t > t 0 for the initial state ξ v 0 under consideration. The next step is to compare the L 2 -distance and the W 1 -distance between ξ u t 0 and ξu . According to Theorem 2.2.1, for any t 0 > 0, ξ u t 0 has a Lipschitz-continuous density with respect to Lebesgue measure on X that we denote by g u t 0 . In addition with the fact that ḡu ∈ C 1 (X ), we obtain

g u t 0 -ḡu 2 L 2 = X (g u t 0 (x) -ḡu (x)) 2 dx ≤ W 1 (ξ u t 0 , ξu )( g u t 0 Lip + ḡu Lip ). (2.6.7)
Let us bound g u t 0 Lip from above. For any t > 0, we define h u t (x) = g u t (x) exp(

t 0 0 (c uu • g u s + c uv • ξ v s ) ds).
The exponent of the exponential term is posi- tive and independent of x, thus g u t 0 Lip ≤ h u t 0 Lip . Furthermore, according to Part 4 of Chapter 5 in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF], h u t 0 (x) = X Γ t 0 (x, y)ξ 0 (dy) where Γ is the fundamental solution to the system

       ∂ t Γ = m u ∆Γ + (b u (x) -d u (x))Γ on X × R + , ∂ n Γ = 0 on ∂X × R + , Γ(0, dx) = ξ 0 (dx).
As t 0 > 0, Γ t 0 L ∞ (X ) and ∇Γ t 0 L ∞ (X ) are bounded from above and there exists C 3 such that

g u t 0 Lip ≤ h u t 0 Lip ≤ C 3 ξ u 0 , 1 ≤ C 3 M, (2.6.8) 
where M has been defined in the beginning of the proof. Combining (2.6.6), (2.6.7), (2.6.8) and the fact that W 1 (ξ u 0 , ξu ) < γ , we find C 4 ( , γ ) > 0 such that

g u t 0 -ḡu L 2 ≤ (W 1 (ξ u 0 , ξu ) + C 2 )e C 1 t 0 (C 3 M + ḡu Lip ) 1/2 ≤ (γ + C 2 )e C 1 t 0 (C 3 M + ḡu Lip ) 1/2 := C 4 ( , γ ).
Note that C 4 ( , γ ) is a constant which tends to 0 when and γ tends to 0.

We now deal with the last step of the proof. Let H u 2 < H u be the second eigenvalue of the operator m u ∆ x . + (b ud u ). with Neumann boundary condition. Following ideas of Section 1.3.3 but including the v-population process with size lower than , we prove that if and γ satisfy c

+ 3 c uu L 2 C 4 ( , γ ) < (H u -H u 2 )/2, then for all t 0 ≤ t ≤ t , g u t -ḡu L 2 ≤ ḡu L 2 H u ( c + 3C 4 ( , γ ) c uu L 2 ).
Finally, if and γ satisfy max 1, ḡu

L 2 H u • ( c + 3 c uu L 2 C 4 ( , γ )) < min H u -H u 2 2 , γ 2 1 L 2 , then, for all t ≤ t , W 1 (g u t , ḡu ) ≤ g u t -ḡu L 2 1 L 2 ≤ γ 2 .
That ends the proof of Proposition 2.6.2.

Exit time

This subsection is devoted to the proof of Theorem 2.6.1. We split the proof into three lemmas similar to the ones in Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Let γ > 0 satisfying the assumptions of Theorem 2.6.1. We consider and γ as in Proposition 2.6.2 and set = 2 and ρ = γ 3 < γ. R K γ , S K 1 and T K have been defined by (2.6.1), (2.6.2) and (2.6.3) and let us define

τ = inf{t ≥ 0, W 1 (ν K,u t , ξu ) ∈]ρ, γ[}.
Lemma 2.6.3. Under Assumption 2.1.1, we have

lim t→+∞ lim sup K→+∞ 1 K log sup ν K 0 ∈(B( ξu ,γ)×B(0, ))∩M K F P ν K 0 (τ ∧ T K ∧ S K 1 > t) = -∞.
That is, the probability that the process ν K,u stays a long time in the ring B( ξu , γ) \ B( ξu , ρ) is exponentially small. The proof requires a comparison with the deterministic paths of Equation (2.2.1), the difficulty is to prove that there exists a finite time after which all deterministic paths starting in the ring are out of the ring. The fact that the probability is exponentially small is a consequence of Theorem 2.5.1.

Lemma 2.6.4. Under Assumption 2.1.1, there exists V > 0 such that lim sup

K→+∞ 1 K log sup ν K 0 ∈C∩M K F P ν K 0 (W 1 (ν K,u τ , ξu ) ≥ γ, τ ≤ T K ∧ S K 1 ) ≤ -V,
where C = B( ξu , γ ) × B(0, ).

Once again, the proof is based on a comparison with the deterministic paths and application of Proposition 2.6.2 and Theorem 2.5.1.

Lemma 2.6.5. Under Assumption 2.1.1, for all C > 0, there exists T(C, ρ) > 0 such that,

lim sup K→+∞ 1 K log sup ν K,u 0 ∈B( ξu ,γ)∩M K F P ν K 0 sup t∈[0,T(C,ρ)] W 1 (ν K,u t , ν K,u 0 ) ≥ ρ < -C.
(2.6.9)

This lemma means that there exists a small time interval during which any process stays close from its starting point with an exponentially high probability. Since the stochastic process includes a jump part and a diffusive part, we study not only the size of the population process during a small time interval, but also a sum of reflected diffusion processes.

Theorem 2.6.1 is proved using the two last lemmas 2.6.4 and 2.6.5 and we do not give details as it can be adapted from [START_REF] Dembo | Large deviations techniques and applications[END_REF]. The main change is that the proof has to be done on {t ≤ T K ∧ S K 1 } to ensure that the v-process size ν K,v , 1 is small and that no other mutation appears, but Lemma 2.6.4 allows to circumvent this difficulty. There remains to prove the three lemmas.

Proof of Lemma 2.6.3. Note that if W 1 (ν K,u 0 , ξu ) < ρ for all K ≥ 1, the result is obvious. Otherwise, let us define the following set :

A(T) = adh{ν ∈ D([0, T], M F (X × {u, v})), ∀t ∈ [0, T], W 1 (ν u t , ξu ) ∈]ρ, γ[ and ν v t , 1 < }, (2.6.10)
where adhS is the closure of the set S. Observe that {ν K ∈ A(T)} = {τ ∧ T K ∧ S K 1 > T} a.s. and that the set C = adh(B( ξu , γ) × B(0, )) is a compact set of M F (X × {u, v}) as X is bounded. By applying Theorem 2.5.1 with the closed set A(T) and the initial compact set C, we find lim sup

K→+∞ 1 K log sup ν K 0 ∈C∩M K F P ν K 0 (ν ∈ A(T)) ≤ -inf ν∈A(T) I T (ν).
Thus, the proof is complete if we show that inf ν∈A(T) I T (ν)→ + ∞ as T tends to +∞. To this aim, we will first show that any solution to (2.2.1) cannot belong to A(T 0 ) if T 0 is large enough. Precisely, we set δ ∈]0, ρ/2[, and prove that there exists T 0 > 0, such that any (ξ t ) t≥0 solution to (2.2.1) with an initial condition satisfying

W 1 (ξ u 0 , ξu ) ∈]ρ, γ[ and ξ v 0 , 1 < satisfies inf ν∈A(T 0 ) sup t∈[0,T 0 ] W 1 (ξ t , ν t ) ≥ δ.
(2.6.11)

Assume that (2.6.11) holds. Since sup ν∈A(T 0 ) sup t∈[0,T 0 ] ν, 1 is bounded, we can use Proposition 2.5.4 to deduce that there exists C > 0 such that for any ν ∈ A(T 0 ),

δ ≤ C(I T 0 (ν) + I T 0 (ν)). As x → x + √
x is a bijective function from R + to R + , we find a constant C(δ) > 0 which is a lower bound on I T 0 (ν). Finally, for T > T 0 and ν ∈ A(T), we decompose ν as a sum of n := [T/T 0 ] terms : using the non-variational formulation (2.5.7) of I T > 0, we find a sequence (ν i ) i=1..n ∈ A(T 0 ) such that

I T (ν) ≥ n ∑ i=1 I T 0 (ν i ) ≥ C(δ)n -→ T→+∞ +∞.
There remains to prove that (2.6.11) holds. Let W 1 (ξ u 0 , ξu ) ∈]ρ, γ[ and ξ v 0 , 1 < , and let (ξ t ) t≥0 be the solution to (2.2.1) with initial condition ξ 0 = ξ u 0 δ u + ξ v 0 δ v . Using Theorems 1.1.2 and 1.1.4, we know that ξ t ∈ M F (X × {u, v}) converges to a stationary state which is either ξu δ u or ξv δ v or a state with coexistence. The assumptions on γ insure that none of those stationary states belong to (B( ξu , γ) \ B( ξu , ρ)) × B(0, ). Therefore, there exists T ξ 0 such that

W 1 (ξ u T ξ 0 , ξu ) ∈ [ρ -2δ, γ + 2δ] or ξ v T ξ 0 , 1 ≥ + 2δ.
(2.6.12)

However T ξ 0 depends on ξ 0 . Thus, we will use a compactness argument to find a uniform time and conclude. First, using Gronwall's Lemma, we obtain : for M ≥ ξu , 1

+ 2γ + 2 , sup t∈[0,T ξ 0 ] ξ t , 1 ≤ ξ 0 , 1 e bT ξ 0 ≤ Me bT ξ 0 .
(2.6.13)

Then two solutions (ξ t ) t≥0 and (ζ t ) t≥0 to (2.2.1) which are initially close stay close during a short time. Indeed, using a mild equation, for any f ∈ C Lip (X × {u, v})

ξ t -ζ t , f = ξ 0 -ζ 0 , P t f + t 0 ξ s -ζ s , (b -d -c • ζ s )P t-s f ds - t 0 ξ s , c • (ξ s -ζ s )P t-s f ds.
Since P u t f ∈ C Lip (X ) and according to Assumption 2.1.1, we find a constant C 1 such that (bd)P t-s f /C 1 , and c/C 1 belong to C Lip (X × {u, v}). We deduce that for all t ≤ T ξ 0 ,

| ξ t -ζ t , ϕ | ≤ W 1 (ξ 0 , ζ 0 ) + C 1 t 0 sup r∈[0,s] W 1 (ξ r , ζ r )ds + C 1   sup r∈[0,T ξ 0 ] ξ r , 1 + sup r∈[0,T ξ 0 ] ζ r , 1   t 0 sup r∈[0,s] W 1 (ξ r , ζ r )ds. (2.6.14)
Using Gronwall's Lemma and (2.6.13), we conclude that there exists a constant C(T ξ 0 ) such that sup

r∈[0,T ξ 0 ] W 1 (ξ r , ζ r ) ≤ C(T ξ 0 )W 1 (ξ 0 , ζ 0 ).
Choosing α ξ 0 = δ/C(T ξ 0 ), we find for all ζ 0 with W 1 (ξ 0 , ζ 0 ) < α ξ 0 , sup r∈[0,T ξ 0 ] W 1 (ξ r , ζ r ) < δ. In addition with (2.6.12) and (2.6.10), we obtain for all

ζ 0 with W 1 (ζ 0 , ξ 0 ) < α ξ 0 , inf ν∈A(T ξ 0 ) sup t∈[0,T ξ 0 ] W 1 (ζ t , ν t ) ≥ δ. Note that adh((B( ξu , γ) \ B( ξu , ρ)) × B(0, )) is a compact set of M F (X × {u, v}) as X is bounded. It is covered by ∪ ξ 0 ∈(B( ξu ,γ)\B( ξu ,ρ)×B(0, )) B(ξ 0 , α ξ 0 ). We extract a finite cover ∪ n i=1 B(ξ i 0 , α ξ i 0
). Finally, defining T 0 = max i=1..n T ξ i 0 , we conclude : for any ξ 0 with W 1 (ξ u 0 , ξu ) ∈]ρ, γ[ and ξ v 0 , 1 < , we have inf

ν∈A(T 0 ) sup t∈[0,T 0 ] W 1 (ξ t , ν t ) ≥ δ.
Proof of Lemma 2.6.3 is now complete.

Proof of Lemma 2.6.4. Lemma 2.6.3 gives T 1 such that lim sup

K→+∞ 1 K log sup ν K 0 ∈(B( ξu ,γ)×B(0, ))∩M K F P ν K 0 (τ ∧ T K ∧ S K 1 > T 1 ) ≤ -1.
(2.6.15)

Thus we limit our study to the time interval [0, T 1 ]. Since the initial states under study satisfy ν K 0 , 1 ≤ ( ξu , 1 + 2γ + 2 ) and using Lemma 2.5.2, we find N > 0 such that lim sup

K→+∞ 1 K log sup ν K 0 ∈(B( ξu ,γ)×B(0, ))∩M K F P ν K 0 ( sup t∈[0,T 1 ] ν K t , 1 ≥ N) ≤ -1. (2.6.16) Let M ≥ ( ξu , 1 + 2γ + 2 ) ∨ N and A = ν ∈ D([0, T 1 ], M F (X × {u, v})) | ∃t ∈ [0, T 1 ], W 1 (ν u t , ξu ) ≥ γ, sup t∈[0,T 1 ] ν v t , 1 < and sup t∈[0,T 1 ] ν t , 1 < M . (2.6.17)
For all K and ν 0 ∈ M K F ,

P ν 0 (W 1 (ν K,u τ , ξu ) ≥ γ, τ ≤ T K ∧ S K 1 ) ≤ P ν 0 τ ≤ T 1 , sup t∈[0,T 1 ] ν K t , 1 ≥ M + P ν 0 (τ ≤ T 1 , ν K ∈ A) + P ν K 0 (τ > T 1 , τ ≤ T K ∧ S K 1 ) ≤ P ν 0 sup t∈[0,T 1 ] ν K t , 1 ≥ M + P ν 0 (ν K ∈ A) + P ν K 0 (τ ∧ T K ∧ S K 1 > T 1 )
.

Then, we use Theorem 2.5.1, the definition of A (2.6.17), (2.6.15), and (2.6.16) to find lim sup 

K→+∞ 1 K log sup ν K 0 ∈C∩M K F P ν K 0 (ν K τ ∈ B c ( ξu , γ), τ ≤ T K ∧ S K 1 ) ≤ -min 1, inf
ξ v t , 1 < = 2 , then sup t∈[0,T 1 ] W 1 (ξ u t , ξu ) < γ/2.
We deduce immediately that for any ν ∈ A, with ν 0 ∈ C, if ξ is the solution to (2.2.1) with ξ 0 := ν 0 , sup

t∈[0,T 1 ] W 1 (ν t , ξ t ) ≥ sup t∈[0,T 1 ] max{W 1 (ν u t , ξ u t ), W 1 (ν v t , ξ v t )} ≥ γ 2 ∧ .
Finally Proposition 2.5.4 ensures that there exists C > 0 such that for any ν ∈ A, T T 1 (ν) ≥ C.That ends the proof of Lemma 2.6.4.

Proof of Lemma 2.6.5. Let us fix f ∈ C Lip (X ) and study the following difference, using the construction of the process ν K,u :

| ν K,u t , f -ν K,u 0 , f | ≤ 1 K   ∑ i∈N notdead t | f (X i t ) -f (X i 0 )| + ∑ i∈N dead t | f (X i 0 )| + ∑ i∈N born t | f (X i t )|   ,
where 

N notdead
]0, t]. Since f ∈ C Lip (X ), | ν K,u t , f -ν K,u 0 , f | ≤ 1 K   ∑ i∈N notdead t |X i t -X i 0 |   + N dead t + N born t K .
(2.6.18)

(2.6.18) is true for any f ∈ C Lip (X ) so we find the same upper bound for W 1 (ν K,u t , ν K,u 0 ). We use now the stopping time

τ K N = inf{t > 0, | ν K,u t , 1 | > N}. On {τ K N ≥ t}, W 1 (ν K,u t , ν K,u 0 ) is stochastically bounded by 1 K ∑ KN i |X i t -X i 0 | + P (t) K , where {(X i t ) t≥0 } i∈{1.
.KN} are KN independent reflected diffusion processes driven by Equation (2.1.2) with the diffusion coefficient m u and (P (t)) t≥0 is a Poisson process with intensity ( b + d + N c)KN. Finally,

P sup t∈[0,T] W 1 (ν K,u t , ν K,u 0 ) ≥ ρ ≤ P(τ K N ≤ T) + P τ K N ≥ T, sup t∈[0,T] W 1 (ν K,u t , ν K,u 0 ) ≥ ρ , ≤ P(τ K N ≤ T) + P 1 K KN ∑ i=0 sup t∈[0,T] |X i t -X i 0 | ≥ ρ 2 + P sup t∈[0,T] P (t) K ≥ ρ 2 ,
(2.6.19) Using Lemma 2.5.2, we can fix N ∈ N such that lim sup

K→+∞ 1 K log P(τ K N ≤ T) ≤ -C. (2.6.20) 
Let us now consider the second term of (2.6.19). For x = (x 1 , .., x KN ) ∈ X KN , P x denote the probability of (X 1 , .., X KN ) under which (X 1 0 , .., X KN 0 ) is equal to x. Let Υ be the stopping time Υ = inf{s ≥ 0, ∑ KN i=0 |X i s -X i 0 | ≥ ρK/2}. Using the Markov property, we find

P x sup t∈[0,T] KN ∑ i=0 |X i t -X i 0 | ≥ ρK 2 = P x (Υ ≤ T) ≤ P x Υ ≤ T, KN ∑ i=0 |X i T -X i 0 | ≥ ρK 4 + P x Υ ≤ T, KN ∑ i=1 |X i T -X i Υ | ≥ ρK 4 ≤ P x KN ∑ i=0 |X i T -X i 0 | ≥ ρK 4 + E x T 0 P Xs KN ∑ i=1 |X i T-s -X i 0 | ≥ ρK 4 1 Υ∈ds ≤ 2 sup ȳ∈X KN ,s∈[0,T] P ȳ KN ∑ i=0 |X i s -X i 0 | ≥ ρK 4 .
(2.6.21)

The aim is thus to find an upper bound on the last term for any x ∈ X KN and any s ∈ [0, T]. Using Markov's inequality,

P x KN ∑ i=0 |X i s -X i 0 | ≥ ρK 4 ≤ e -Kρ 4 √ T KN ∏ i=1 E x i e |X i s -x i | √ s . ( 2 

.6.22)

If we denote the kernel of the semigroup P u s of the reflected diffusion process by p u s (x, y), Part 3 in [START_REF] Wang | Gradient estimate on convex domains and applications[END_REF] and the fact that X is compact imply that there exist two positive constants C 1 , C 2 such that for any x, y ∈ X ,

p u s (x, y) ≤ C 1 s d/2 e -|x-y| 2 C 2 s .
(2.6.23) Thus, using (2.6.23) and a change of variables, we find that there exists C 3 > 0 independent from s such that

E x i e |X i s -x i | √ s ≤ R d C 1 s d/2 e -|x-y| 2 C 2 s e |y-x| √ s dy ≤ R d C 1 e -|z| 2
C 2 e |z| dz = C 3 < +∞.

(2.6.24)

We deduce with the last line in (2.6.21), (2.6.22) and (2.6.24) that 

P x sup t∈[0,T] KN ∑ i=0 |X i t -X i 0 | ≥ ρK 2 ≤ 2e -K ρ 4 √ T -ln(C 3 )N , ( 2 
T(C, ρ) = T 2 .

Proof of Theorem 2.2.4

We are now ready to prove the main theorem of this chapter. The structure of Theorem 2.2.4's proof is similar to the one of [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. Thus, we do not repeat all the details but only focus on the points that are different. The first proposition concerns the behavior of the first mutation occurrence S K 1 , when the initial state is monomorphic. Proposition 2.7.1. Suppose that Assumptions 2.1.1 and (2.2.5) hold. Let u ∈ U and C u a compact subset of M F (X × {u})

such that 0 ∈ C u . If ν K 0 ∈ C u ∪ M K F (X ), then -for any γ > 0, lim K→+∞ P ν K 0   S K 1 > log K, sup t∈[log K,S K 1 ] W 1 (ν K t , ξu δ u ) ≥ γ   = 0,
-and, lim

K→+∞ P ν K 0 S K 1 > t Kq K = exp -t X pb u (x) ξu (dx) .
Proposition 2.7.1 is proved using similar arguments as those of the proof of Lemma 2 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. It is a consequence of the following lemma.

Lemma 2.7.2. For any α > 0, there exists T α > 0 such that for any ξ 0 ∈ C u , for any t ≥ T α , W 1 (ξ t , ξu ) < α, where (ξ t ) t≥0 is the solution to Equation (2.2.1) with initial state ξ 0 .

Proof. On the one hand, Theorem 1.1.4 implies that the density of ξu is a stable monomorphic equilibrium for the L 2 -distance. Using a proof in three steps as that of Proposition 2.6.2, we prove a W 1 -stability : there exists α such that for any ξ 0 ∈ B( ξu , α ) and for any t ≥ 0, W 1 (ξ t , ξu ) < α. On the other hand, for any ξ 0 ∈ C u , ξ t converges towards ξu . There exists T ξ 0 such that W 1 (ξ T ξ 0 , ξu ) < α /2. Using that P u t f ∈ C Lip (X ) and inequalities similar to (2.6.5) and (2.6.6), we show that for any t ≥ 0 and

ζ 0 ∈ M F (X ), sup r∈[0,t] W 1 (ζ t , ξ t ) ≤ C(t)W 1 (ζ 0 , ξ 0 ),
where (ζ t ) t≥0 is the solution to (2.2.1) with initial state ζ 0 ∈ M F (X × {u}). Consequently, there exists δ ξ 0 > 0 such that for any ζ 0 ∈ B(ξ 0 , δ ξ 0 ), W 1 (ζ T ξ 0 , ξ T ξ 0 ) < α /2. Thus, for any ζ 0 such that W 1 (ζ 0 , ξ 0 ) < δ ξ 0 , for any t ≥ T ξ 0 , W 1 (ζ t , ξu ) < α. Finally, as C u is a compact set, there exists a finite number of balls such that C u ⊂ ∪ n i=1 B(ξ i 0 , δ ξ i 0

). Defining T α = max i=1..n T ξ i 0 , we deduce the lemma.

Proof of Proposition 2.7.1. First, note that the first probability of Proposition 2.7.1 is non-increasing with γ. Thus, it is sufficient to prove the property for any small γ > 0.

Let us assume that γ satisfies the assumptions of Theorem 2.6.1. Therefore, there exist

γ > 0, V > 0, such that sup ν K 0 ∈B( ξu ,γ )∩M K F P R K γ ≤ S K 1 ∧ e KV → K→∞ 0, (2.7.1)
R K γ , S K 1 are defined by (2.6.1) and (2.6.2) respectively. We set 2α = γ , then Lemma 2.7.2 and Theorem 2.5.1 imply that sup

ν K 0 ∈C u P W 1 (ν K T α , ξu ) ≥ 2α → K→+∞ 0. (2.7.2)
Using the Markov property, we deduce if K is sufficiently large such that log(K) > T α ,

P ν K 0 S K 1 > log K, sup t∈[log K,S K 1 ] W 1 (ν K t , ξu ) ≥ γ -P ν K 0 (W 1 (ν K T α , ξu ) ≥ 2α) ≤ E ν K 0   1 {S K 1 ≥log(K),W 1 (ν K Tα , ξu )<γ } sup t∈[T α ,S K 1 +T α ] W 1 (ν K t , ξu ) ≥ γ   ≤ E ν K 0 1 {S K 1 ≥log(K),W 1 (ν K Tα , ξu )<γ } P ν K Tα (R K γ ≤ S K 1 ) ≤ sup ν 0 ∈B( ξu ,γ ) P ν 0 (R K γ ≤ S K 1 ∧ e KV ) + sup ν 0 ∈B( ξu ,γ ) P ν 0 (e KV ≤ R K γ ≤ S K 1 )
.

The second term of the l.h.s tends to 0 when K tends to +∞ according to (2.7.2) and the first term of the r.h.s tends to 0 according to (2.7.1). It remains to deal with the second term of the r.h.s. On {t ≤ R K γ ≤ S K 1 }, the number of mutations M t is stochastically bounded from below by a Poisson process with parameter Kq K ( b u p, ξuγ b u p Lip ) which is positive if γ is small enough. We conclude the proof of the first point with the fact that, under Assumption (2.2.5),

P(e KV ≤ R K γ ≤ S K 1 ) ≤ P(M e KV = 0) → K→+∞ 0.
The second point of Proposition 2.7.1 is easily deduced from this first point and Lemma 2 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF].

The second proposition studies the process with a dimorphic initial state. Let us define :

θ 0 is the first time when the population becomes monomorphic, -V 0 is the phenotypic trait of the population at time θ 0 . 

K 0 ∈ M F (X × {u, v}) is such that ν K,u 0 converges weakly to ξu in M F (X ) and ν K,v 0 = δ x 0 K . Then, lim K→∞ P(V 0 = v) = 1 -lim K→∞ P(V 0 = u) = φ vu (x 0 ).
Moreover, for all η > 0 and all γ > 0,

lim K→∞ P θ 0 ≤ S K 1 ∧ η Kq K = 1, and 
lim K→∞ P W 1 (ν K θ 0 , ξV 0 ) < γ = 1.
Proof. We set γ > 0 small enough to use Theorem 2.6.1 : there exist γ , , V such that sup ν K,u 0 ∈B( ξu ,γ ),ν K,v 0 ∈B(0, )

P ν K 0 R K γ ≥ T K ∧ S K 1 ∧ e KV → K→∞ 1, (2.7.3) 
where R K γ , T K have been defined by (2.6.1) and (2.6.3). Let assume that ≤ γ and that K is large enough such that q K ≤ γ. Then on {t ≤ R K γ ∧ T K ∧ S K 1 }, the process (ν K,v t ) t≥0 is stochastically bounded :

1 K Z in f ν K,v 1 K Z sup ,
Z in f , Z sup are two branching diffusion processes starting with one individual at location x 0 , their birth rates are respectively b v (x)(1γ) and b v (x), and their death rates are

d v (x) + c vu • ξu + 2 cγ and d v (x) + c vu • ξu -cγ. Let us set T sup K = inf{t ≥ 0, Z sup t , 1 ≥ K }, T sup 0 = inf{t ≥ 0, Z sup t , 1 = 0},
and respectively T in f K , T in f 0 associated with Z in f . Using same kind of computations as in Lemma 3 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], we deduce that for all η > 0,

P ν K 0 θ 0 ≤ S K 1 ∧ η q K K , V 0 = u, W 1 (ν K θ 0 , ξu ) < γ ≥ P δ x 0 T sup 0 ≤ η q K K ∧ T sup K -P ν K 0 η q K K ≥ S K 1 -P ν K 0 η q K K ∧ S K 1 ∧ T K ≥ R K γ . (2.7.4) 
(2.7.3) implies that the last term tends to 0 under Assumption (2.2.5). Since the number of individuals is stochastically bounded from above by a birth and death process with birth rate b and competition rate c, Lemma 2 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] implies that for any α > 0, there exists η > 0 such that lim sup K→+∞ P(S K 1 ≤ η Kq K ) ≤ α/3. The main difficulty is to evaluate the first term. Theorem 2.4.2 implies that

P δ x 0 T sup 0 ≤ η q K K ∧ T sup K → K→+∞ P δ x 0 (T sup 0 < +∞) = 1 -φ γ,vu (x 0 ), (2.7.5) 
where φ γ,vu is the solution to the following elliptic equation on X with Neumann boundary condition

m v ∆ x φ γ,vu (x) + [b v (x) -d v (x) -c vu • ξu + cγ]φ γ,vu (x) -b v (x)φ γ,vu (x) 2 = 0.
Let us show that this solution is close to φ vu . Theorem 2.4.2 implies that φ γ,vu is positive if and only if

H v -c vu • ξu + cγ = H v - H u κ vu κ uu + cγ > 0.
(2.7.6)

First case : H v κ uu -H u κ vu < 0 (Point 1 in Assumption 2.2.

3)

We can find γ small enough such that (2.7.6) is not satisfied, thus φ γ,vu ≡ φ vu ≡ 0. In addition with (2.7.4) and (2.7.5), we deduce that for all α > 0, lim

K→+∞ P ν K 0 θ 0 ≤ S K 1 ∧ η q K K , V 0 = u, W 1 (ν K θ 0 , ξu ) < γ ≥ 1 -α.
Proposition 2.7.3 is proved in this case.

Second case :

H v κ uu -H u κ vu > 0 (Point 2 in Assumption 2.2.3) Hence (2.7.6) is satisfied for all γ > 0. Let C be cγ inf y∈X b v (y)φ vu (y) and set L γ ( f ) = m v ∆ x f + (b v (x) -d v (x) -c vu • ξu + cγ) f -b v (x) f 2 . We have L γ (φ vu ) = cγφ vu ≥ 0, L γ ((1 + C)φ vu ) = (1 + C)φ vu [ cγ -Cb v φ vu ] ≤ 0.
As φ γ,vu is the unique solution to L γ ( f ) = 0, we deduce the following inequalities from a comparison theorem (see for example Theorem III.5 in [START_REF] Roques | Modèles de réaction-diffusion pour l'écologie spatiale[END_REF]) : for any x ∈ X ,

(1 + C) φ vu (x) ≥ φ γ,vu (x) ≥ φ vu (x).
(2.7.7)

We split the end of the proof into three steps regarding as the proof of Lemma 3 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF].

Let us fix α > 0. (2.7.4), (2.7.5) and (2.7.7) imply that if K is large enough,

P ν K 0 T K 0 ≤ η q K K ∧ S K 1 ∧ R K γ ∧ T K ≥ 1 -φ vu (x 0 ) -α.
On the other hand, if K is large enough :

P ν K 0 T K ≤ η q K K ∧ S K 1 ∧ R K γ ≥ P δ x 0 T in f K ≤ η q K K ∧ T in f 0 -P ν K 0 η q K K ≥ S K 1 -P ν K 0 η q K K ∧ S K 1 ∧ T K ≥ R K γ .
We use Theorem 2.4.3 to bound from below the first term of the r.h.s and we deal with the two other terms as in (2.7.4). Thus,

P ν K 0 T K ≤ η q K K ∧ S K 1 ∧ R K γ ≥ φ vu (x 0 ) -α.
Thus, the v-process ν K,v reaches a non-negligible size K , before

η q K K ∧ S K 1 ∧ R K γ
, with a probability that tends to φ vu (x 0 ). Once the mutant population has reached a non-negligible size, we can compare the stochastic process and the deterministic limiting process. Under point 2 in Assumption 2.2.3, there exist T > 0 and γ 2 > 0 such that for any ξ 0 ∈ adh(B( ξu , γ) × (B(0, 2 ) \ B(0, )), for any t ≥ T,

ξ t ∈ B(0, γ 2 ) × B( ξv , γ 2 ),
where ξ is the solution to (2.2.1) with a dimorphic initial state ξ 0 ∈ M F (X × {u, v}). This can be proved using similar arguments than those of the proof of Lemma 2.7.2. Moreover, using Theorem 2.5.1 and Proposition 2.5.4,

sup ν K 0 P ν K 0 sup t∈[0,T] W 1 (ν K t , ξ t,ν K 0 ) < γ 2 → K→+∞ 0,
with ξ t,ν K 0 the solution to (2.2.1) with initial state ν K 0 . The two previous results and the Markov property imply that, if K is large enough,

P ν K 0 T K ≤ η q K K ∧ S K 1 ∧ R K γ , S K 1 ≥ η q K K + T, ν K,u T K +T ∈ B(0, 2γ 2 ), ν K,v T K +T ∈ B( ξv , 2γ 2 ) ≥ φ vu (x 0 ) -2α.
Finally, we use the Markov property at time T K + T and we conclude as in Lemma

3 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]. If γ 2 is sufficiently small, we prove that, with a probability that tends to 1, after time T K + T, the u-population process ν K,u will become extinct before its size reaches the threshold √ γ 2 and before the v-process ν K,v moves away from a neighborhood of the equilibrium ξv . That concludes the proof of Proposition 2.7.3 in the second case. Theorem 2.2.4 is deduced from Propositions 2.7.1 and 2.7.3 in a similar way to Theorem 1 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] by using the transition probabilities of the jump process (Λ t ) t≥0 .

2.A Proof of Theorem 2.5.3

Theorem 2.5.3 presents a non-variational formulation of the rate function (2.5.1). The proof requires notions about Orlicz spaces and convex analysis that we detail here. Let us fix T in R + and ν ∈ D([0, T], M F ). All spaces and norms defined in this part will depend on T and ν, but for the sake of simplicity, the dependency won't appear in the notation of this part.

We first define some functional spaces.

-For any space C, we denote by C the algebraic dual space of C, moreover if there exists a norm . on C, we denote by C the topological dual space of C. -We recall that the Orlicz space associated with ρ (resp. ρ * ) is denoted by L ρ (resp. L ρ * ) and is the set of all measurable functions h on E × [0, T] such that

h ρ * ,T := inf α > 0, E ×[0,T] ρ * |h| α dµ ν s ds ≤ 1 < +∞. (2.A.1)
Let us also denote by M ρ (respectively M ρ * ) the closure of the space of all bounded Borel functions in L ρ (resp. L ρ * ). -We denote the linear subspace (ψ,

∇ x )(C 2,0,1 n (X × U × [0, T])) of M ρ × L 2 by G.
We set for all (g 1 , g 2 ) ∈ G :

Γ(g 1 , g 2 ) = T 0 E ρ(g 1 )dµ ν s ds + T 0 ν s , m|g 2 | 2 ds.
Let us first express the link between the convex function Γ and the rate function (2.5.1) in term of Legendre transformation. For any vector space Y and any convex function ψ : Y →] -∞, +∞], the Legendre transform and the Legendre biconjugate of ψ defined on Y are denoted by ψ * and ψ respectively and are defined by

ψ * : l ∈ Y → sup g∈Y { l, g -ψ(g)} ψ : ξ ∈ Y → sup l∈Y { ξ, l -ψ * (l)}.
Let l ν be the linear mapping on G such that for all f ∈ C 2,0,1

n (X × U × [0, T]), l ν (ψ( f ), ∇ x f ) = ν T , f T -ν 0 , f 0 - T 0 ν s , m∆ x f s + ∂ f s ∂t ds - T 0 E ψ( f s )dµ ν s ds. (2.A.2)
According to Definition (2.5.1) of I T ν 0 , the rate function is thus the Legendre transform of Γ on G : I T ν 0 (ν) = Γ * (l ν ) Our aim is thus to write Γ * with a non-variational formulation. We use arguments developed by Leonard in [START_REF] Léonard | Convex conjugates of integral functionals[END_REF][START_REF] Léonard | Minimizers of energy functionals[END_REF][START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF]. As discussed under Theorem 2.5.3, we want to exhibit l ν as a derivative of the Legendre biconjugate Γ. Our first step is thus to study Γ. Since it is difficult to study directly Γ on G which is not a Riesz space (see [START_REF] Léonard | Convex conjugates of integral functionals[END_REF]), we study an extension of

Γ on C b (E × [0, T], R) × C b (X × U × [0, T], R d
) then we will find the convex biconjugate of the restricted function on G by using a restriction result presented in Section 3 of [START_REF] Léonard | Convex conjugates of integral functionals[END_REF]. Hence, for all (g 1 ,

g 2 ) ∈ F 1 × F 2 := C b (E × [0, T], R) × C b (X × U × [0, T], R d ), we define Φ(g 1 , g 2 ) = T 0 E ρ(g 1 )dµ ν s ds + T 0 ν s , m|g 2 | 2 ds, (2.A.3)
such that Γ is a restriction of Φ and Φ can be separated into two parts :

Φ 1 (g 1 ) = T 0 E ρ(g 1 )dµ ν s ds and Φ 2 (g 2 ) = T 0 ν s , m|g 2 | 2 ds. Note that Φ(g 1 , g 2 ) = Φ 1 (g 1 ) + Φ 2 (g 2 ). Obviously, for all (l 1 , l 2 ) ∈ F 1 × F 2 and all (ξ 1 , ξ 2 ) ∈ F 1 × F 2 , Φ * (l 1 , l 2 ) = Φ * 1 (l 1 ) + Φ * 2 (l 2 ), Φ(ξ 1 , ξ 2 ) = Φ1 (ξ 1 ) + Φ2 (ξ 2 ).
Hence we study each part of Φ separately.

Let us first start with Φ 2 . Lemma 2.A.1. For all ξ ∈ F 2 ,

Φ2 (ξ) =      T 0 m ν s , |ξ| 2 ds, if ξ ∈ L 2 + ∞,
otherwise.

(2.A.4)

Before writing the proof, let us give the definition of an effective domain. Let Y be a vector space and ψ : Y →] -∞, +∞] a convex function. The effective domain of ψ, denoted by dom ψ, is dom ψ = {g ∈ Y, ψ(g) < +∞}.

We also recall the following lemma, the proof can be found in [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF].

Lemma 2.A.2 (Lemma 5.4 of [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF]). Let ψ be a convex function on a vector space Y, and . a norm defined on Y. Suppose that there exists a norm . on Y such that there exists r 1 > 0 with sup{ψ(g), g ≤ r 1 } ≤ 1, then dom ψ * ⊂ Y .

If in addition, there exists r 2 > 0, such that inf{ψ(g), g = r 2 } > 0, then dom ψ ⊂ Y .

Proof of Lemma 2.A.1. First, using Lemma 2.A.2, we find the effective domain of Φ2 since both conditions are true with ψ = Φ 2 , Y = F 2 , . = . L 2 and r 1 = r 2 = √ 2. Hence, dom Φ * 2 ⊂ F 2 and dom Φ2 ⊂ F 2 . For all l ∈ F 2 , Hahn-Banach Theorem and Riesz Theorem imply that : there exists k l ∈ L 2 such that for any g ∈ F 2 ,

l(g) = T 0 2m ν s , g • k l ds.
Since F 2 is dense in L 2 , we conclude that, for all l ∈ F 2 associated with k l ∈ L 2 ,

Φ * 2 (l) = sup g∈F 2 [0,T] m ν s , 2k l • g -|g| 2 ds = [0,T] m ν s , |k l | 2 ds, thus dom Φ * 2 = L 2 .
Moreover, dom Φ2 ⊂ F 2 and as above, any ξ ∈ F 2 can be associa- ted with k ξ ∈ L 2 satisfying ξ(l) = T 0 2m ν s , k ξ • k l ds for all l ∈ L 2 . Moreover, for all ξ ∈ F 2 , Φ2 (ξ) = sup

l∈F 2 { ξ, l -Φ * 2 (l) } = sup l∈dom Φ * 2 { ξ, l -Φ * 2 (l) } = sup l∈L 2 T 0 2m ν s , k ξ • k l ds - T 0 m ν s , |k l | 2 ds = T 0 m ν s , |k ξ | 2 ds < +∞.
That ends the proof of Lemma 2.A.1.

Let us now deal with Φ 1 . Theorem 6.3 of [START_REF] Léonard | Convex conjugates of integral functionals[END_REF] gives the formulation of Φ1 . We describe it here.

Let us first decompose ρ by setting

ρ + (t) := ρ(|t|) and ρ -(t) := ρ(-|t|), t ∈ R,
in order to write ρ as a sum of two even functions and to use results of [START_REF] Léonard | Convex conjugates of integral functionals[END_REF]. ρ + and ρ -are convex functions such that the corresponding Orlicz spaces L ρ + and L ρ -are well defined. Furthermore, note that F 1 is a subset of M ρ + and M ρ -. In view of Lemma 2.A.2, we are interested in the topological biduals of M ρ + and M ρ -. Equation (4.4) of [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations[END_REF] ensures that (M ρ + ) = L ρ * + and (M ρ -) = L ρ * -and we recall the representation of the dual space of an Orlicz space (see Theorem 5.1 in [START_REF] Léonard | Convex conjugates of integral functionals[END_REF] or Theorem 2.2 in [START_REF] Kozek | Convex integral functionals on Orlicz spaces[END_REF]).

Theorem 2.A.3. Let θ be a convex function and θ * its convex conjugate such that L θ and L θ * , the corresponding Orlicz spaces, are well defined. Any linear form ξ ∈ L θ * is uniquely decomposed into ξ = ξ a + ξ s , where ξ a belongs to the Orlicz space L θ and ξ s is called the singular part of ξ. We denote by L s θ * the space of all the singular parts of {ξ ∈ L θ * }, thus

L θ * = L θ ⊕ L s θ * . Hence (M ρ + ) = L ρ + ⊕ L s ρ * + and (M ρ -) = L ρ -⊕ L s ρ * - .
Let W denote the cone of all elements in F 1 written as

ξ = ξ a + -ξ a -+ ξ s + -ξ s -, with ξ a -, ξ a + , ξ s + , ξ s -≥ 0, ξ a + ∈ L ρ + , ξ a -∈ L ρ -, ξ s + ∈ L s ρ * + , ξ s -∈ L s ρ * - and ξ a + ∧ ξ a -≡ ξ s + ∧ ξ s -≡ 0.
This decomposition is unique. We put ξ a := ξ a +ξ a -and ξ s := ξ s +ξ s and we denote W a = {ξ a ; ξ ∈ W}, and W s = {ξ s ; ξ ∈ W}.

(2.A.5)

Finally, let us define the functions Ψ a 1 and Ψ s 1 on F 1 by

Ψ a 1 (ξ) =      E T ρ(ξ)dµ ν s ds, if ξ ∈ W a , + ∞, otherwise, (2.A.6)
and

Ψ s 1 (ξ) =                sup{ ξ s + , f ; f ≥ 0, E T ρ * ( f )dµ ν s ds < +∞} + sup{ ξ s -, | f | ; f ≤ 0, E T ρ * ( f )dµ ν s ds < +∞}, if ξ ∈ W s , + ∞, otherwise, (2.A.7)
The biconjugate of Φ 1 is then given by Theorem 6. 

) ∈ F 1 × F 2 , Φ(ξ 1 , ξ 2 ) = Φ1 (ξ 1 ) + Φ2 (ξ 2 ).
The next step is now to restrict the space of definition in order to explicit Γ. Proposition 3.3 in [START_REF] Léonard | Convex conjugates of integral functionals[END_REF] implies that

Γ = Φ| G + ι(.| Ḡ),
where Ḡ is the closure (for the weak-* topology) of G in G and for ξ ∈ G ,

ι(ξ| Ḡ) = 0 if ξ ∈ Ḡ, + ∞ if ξ ∈ Ḡ.
We are now ready to give a formulation of Γ.

Lemma 2.A.5. For all ξ = (ξ 1 , ξ 2 ) ∈ G ,

Γ(ξ 1 , ξ 2 ) < +∞ ⇐⇒ (ξ 1 , ξ 2 ) ∈ Ḡ ∩ (W × L 2 ).
In this case, ξ 1 = ξ a 1 + ξ s 1 with ξ a 1 ∈ W a and ξ s 1 ∈ W s , and

Γ(ξ 1 , ξ 2 ) = Ψ a 1 (ξ a 1 ) + Ψ s 1 (ξ s 1 ) + [0,T]×X m|ξ 2 | 2 dν s ds,
where W, W a , W s are defined by (2.A.5), Ψ a 1 is defined by (2.A.6) and Ψ s 1 is defined by (2.A.7).

The last step is to deduce the non-variational formulation of the rate function from the Legendre biconjugate result above.

Theorem 2.A.6. Let ν ∈ D([0, T], M F ) such that I T ν 0 (ν) < +∞, then l ν ∈ dom Γ * and there exists (h ν 1 , h ν 2 ) ∈ L ρ * × L 2 , such that Γ * (l ν ) = [0,T]×E ρ * (h ν 1 )dµ ν s ds + T 0 m ν s , |h ν 2 | 2 ds < +∞, (2.A.8)
and for all (g 1 ,

g 2 ) ∈ G l ν (g 1 , g 2 ) = [0,T]×E h ν 1 g 1 dµ ν s ds + T 0 2m ν s , h ν 2 • g 2 ds.
(2.A.9) This is the non-variational formulation of the rate function as I T ν 0 (ν) = Γ * (l ν ) and that proves Theorem 2.A.6.

Proof. Since I T ν 0 (ν) < +∞ and I T ν 0 (ν) = Γ * (l ν ), l ν belongs to dom Γ * .

We divide the proof into two cases : either l ν belongs to ridom Γ * the relative interior of dom Γ * which is the set of all l ∈ dom Γ * such that : ∀ f ∈ aff dom Γ * (affine hull of dom Γ * ), there exists α > 0, [l, l + α f ] ⊂ dom Γ * , or it does not belong to ridom Γ * .

First case :

l ν ∈ ridom Γ * .
If we show that l ν writes as a differential of Γ at a point ξ, we could use Proposition [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF] which links Γ * (l ν ) and Γ(ξ). Thus, let us first show that l ν writes as a G-Gâteaux-differential of Γ at a point ξ ∈ dom Γ, that is, there exists ξ ∈ dom Γ such that the limit lim t→0

1.5.1 in
Γ(ξ+tζ)-Γ(ξ) t
exists for all ζ ∈ G and for all ζ ∈ G,

l ν , ζ = lim t→0 Γ(ξ + tζ) -Γ(ξ) t .
Firstly, using Hahn-Banach Theorem (see for example proposition 5.2 of the chapter

1 of [55]), we deduce that the G -subdifferential of Γ * at l ν , ∂ G Γ * (l ν ) = {ξ ∈ G , Γ * (l ν ) + ξ, l ≤ Γ * (l ν + l), ∀l ∈ G },
is not empty. Let us take ξ ∈ ∂ G Γ * (l ν ). Proposition 5.1 and Corollary 5.2 of the chapter 1 of [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF] imply that ξ ∈ dom Γ and l ν ∈ ∂ G Γ(ξ), where

∂ G Γ(ξ) = {l ∈ G , Γ(ξ) + l, ξ ≤ Γ(ξ + ξ ), ∀ξ ∈ G}. (2.A.10) Since ξ ∈ dom Γ, Lemma 2.A.5 ensures that ξ = (ξ 1 , ξ 2 ) ∈ Ḡ ∩ (W, L 2 ) with ξ 1 = ξ a 1 + ξ s 1 . Moreover, since G ⊂ W a × L 2 , for all ζ ∈ G, ζ = (ζ 1 , ζ 2 ) with ζ 1 ∈ W a and ζ 2 ∈ L 2 , and Γ(ξ + ζ) -Γ(ξ) = [Ψ a 1 (ξ a 1 + ζ 1 ) -Ψ a 1 (ξ a 1 )] + [Ψ s 1 (ξ s 1 + 0) -Ψ s 1 (ξ s 1 )] + [ Φ2 (ξ 2 + ζ 2 ) -Φ2 (ξ 2 )] = [Ψ a 1 (ξ a 1 + ζ 1 ) -Ψ a 1 (ξ a 1 )] + [ Φ2 (ξ 2 + ζ 2 ) -Φ2 (ξ 2 )].
In addition with (2.A.10), we deduce that

l ν ∈ ∂ G Γ(ξ) = ∂ G Γ(ξ a 1 , ξ 2 ) Let us now show that Γ is G-Gâteaux-differentiable at (ξ a 1 , ξ 2 ) ∈ Ḡ ∩ (W a × L 2 ). For any (g 1 , g 2 ) ∈ G, 1 t Γ(ξ a 1 + tg 1 , ξ 2 + tg 2 ) -Γ(ξ a 1 , ξ 2 ) = 1 t Ψ a 1 (ξ a 1 + tg 1 ) -Ψ a 1 (ξ a 1 ) + 1 t Φ2 (ξ 2 + tg 2 ) -Φ2 (ξ 2 ) = 1 t E ×[0,T] (ρ(ξ a 1 + tg 1 ) -ρ(ξ a 1 ))dµ ν s ds + 1 t T 0 m ν s , |ξ 2 + tg 2 | 2 -|ξ 2 | 2 ds -→ t→0 E ×[0,T] ρ (ξ a 1 )g 1 dµ ν s ds + T 0 m ν s , 2ξ 2 • g 2 ds.
(2.A.11) According to Lemma 3.2 in [START_REF] Léonard | Minimizers of energy functionals[END_REF], the first integral of the last line is finite as soon as g 1 belongs to F 1 . The second one is finite as soon as g 2 belongs to

F 2 . Since G ⊂ F 1 × F 2 , Γ is G-Gâteaux-differentiable at (ξ a 1 , ξ 2 ) ∈ Ḡ ∩ (W a × L 2 ) with Γ (ξ a 1 , ξ 2 )(g 1 , g 2 ) = E T ρ (ξ a 1 )g 1 dµ ν s ds + T 0 m ν s , 2ξ 2 • g 2 ds, ∀(g 1 , g 2 ) ∈ G.
Proposition 1.5.3 in [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF] implies that the subdifferential of Γ at (ξ a 1 , ξ 2 ) is the singleton that contains the Gâteaux-differential. In addition with (2.A.10), we deduce that

l ν ∈ ∂ G Γ(ξ) = ∂ G Γ(ξ a 1 , ξ 2 ) = { Γ (ξ a 1 , ξ 2 )} ⇒ l ν = Γ (ξ a 1 , ξ 2 ).
Finally, Proposition 1.5.1 in [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF] gives the link between Γ and Γ * at a point (ξ

a 1 , ξ 2 ) ∈ ∂ G Γ * (l ν ), Γ * (l ν ) = l ν , (ξ a 1 , ξ 2 ) -Γ(ξ a 1 , ξ 2 ).
According to Lemma 3.2 in [100], E T ξ a 1 ρ (ξ a 1 )dµ ν s ds is non-negative and finite. Moreover, since for all x ∈ R, ρ (x)xρ(x) = ρ * (ρ (x)),

Γ * (l ν ) = E T [ρ (ξ a 1 )ξ a 1 -ρ(ξ a 1 )]dµ ν s ds + T 0 m ν s , 2ξ 2 • ξ 2 -|ξ 2 | 2 ds = E T ρ * (ρ (ξ a 1 ))dµ ν s ds + T 0 m ν s , |ξ 2 | 2 ds, (2.A.12) Hence, 0 ≤ E T ρ * (ρ (ξ a 1 
))dµ ν s ds < +∞. In addition with the fact that for all x ∈ R,

if κ ≥ 1, ρ * (|x|/κ) ≤ ρ * (|x|)/κ ≤ ρ * (x)/κ, if 0 < κ ≤ 1, ρ * (|x|/κ) ≤ ρ * (|x|)/κ 2 ≤ ρ * (x)/κ 2 ,
we deduce that ρ (ξ a 1 ) belongs to L ρ * . Finally, as ξ belongs to G , ξ 2 belongs to L 2 . That completes the proof for l ν ∈ ridom Γ * .

Second case

: l ν ∈ dom Γ * \ ridom Γ * . By definition, there exists l 1 ∈ ridomΓ * such that [l ν , l 1 ] ⊂ dom Γ * . Let us set l n = 1 n l 1 + n-1
n l ν , for all n ≥ 1. As Γ * is convex and lower semi-continuous, we have

lim n→+∞ Γ * (l n ) = Γ * (l ν ) < +∞. (2.A.13) Moreover, l 1 ∈ ridom Γ * . Let f ∈ affdom Γ * , there exists α > 0 such that [l 1 , l 1 + α f ] ⊂ dom Γ * . As dom Γ * is convex, [l 1 + α f , l ν ] ⊂ dom Γ * , and for all t ∈ [0, 1], t(l 1 + α f ) + (1 -t)l ν ∈ dom Γ * . Choosing t = 1/n, we find that l n + (α/n) f ∈ dom Γ * , that is l n ∈ ridom Γ * .
According to the first case, for all n ≥ 1, there exists

(h n 1 , h n 2 ) ∈ L ρ * × L 2 such that ∀(g 1 , g 2 ) ∈ G, l n (g 1 , g 2 ) = E T h n 1 g 1 dµ ν s ds + T 0 m ν s , 2h n 2 • g 2 ds, (2.A.14) and Γ * (l n ) = [0,T]×E ρ * (h n 1 )dµ ν s ds + T 0 m ν s , |h n 2 | 2 ds < +∞. (2.A.15) Since l ν = 2l 2 -l 1 , let us set h ν i = 2h 2 i -h 1 i for i = 1, 2. Using (2.A.14), we get that h n i = 2 n-1 n h 2 i -n-2 n h 1 i for i = 1, 2 and that l ν (g 1 , g 2 ) = E T h ν 1 g 1 dµ ν s ds + T 0 m ν s , 2h ν 2 • g 2 ds.
This completes the proof for the point (2.A.9). Finally, we conclude with Lebesgue's dominated convergence Theorem. h n 1 ∈ L ρ * , h n 2 ∈ L 2 , and for all n ≥ 1, 

|h n i | ≤ 2|h 2 i | + |h 1 i |, thus Γ * (l n ) = [0,T]×E ρ * (h n 1 )dµ ν s ds + T 0 m ν s , |h n 2 | 2 ds -→ n→+∞ [0,T]×E ρ * (h ν 1 )dµ ν s ds + T 0 m ν s , |h ν 2 | 2 ds. ( 2 

Introduction

Le mutualisme est une interaction entre deux espèces au cours de laquelle les espèces impliquées retirent toutes les deux un bénéfice [START_REF] Louca | Specialized nursery pollination mutualisms as evolutionary traps stabilized by antagonistic traits[END_REF]. Le mutualisme existe partout à différentes échelles, bactériennes ou macroscopiques, et sous de nombreuses formes : protection des individus ou des habitats, apport nutritionnel de la part d'un partenaire, pollinisation [START_REF] Bronstein | Mutualism[END_REF]. Ici, nous focalisons notre attention sur les interactions plantes-pollinisateurs, où les plantes et les pollinisateurs vivent sur des échelles de temps similaires, tels que les abeilles solitaires et les plantes herbacées à fleurs.

L'importance biologique des pollinisateurs est considérable. Environ 80% des plantes à fleurs se reproduisent de manière facultative ou obligatoire par fécondation croisée et la plupart de ces événements de fécondation nécessitent l'intervention de pollinisateurs [START_REF] Richardson | Plant invasions-the role of mutualisms[END_REF]. Cependant, de nombreuses études écologiques mettent en avant la disparition de ces pollinisateurs à cause de l'usage intensif de pesticides et de la réduction de leur habitat [START_REF] Bronstein | Coevolutionary dynamics and the conservation of mutualisms[END_REF]. Comprendre l'impact d'une structure spatiale sur la dynamique des interactions plantes-pollinisateurs devient donc une problématique essentielle à étudier. Cependant, bien que de nombreuses études s'intéressent à ces interactions bénéfiques, peu d'entre elles intègrent une dimension spatiale [START_REF] Wilson | Coexistence of mutualists and exploiters on spatial landscapes[END_REF]. Dans ce chapitre, nous développons donc un modèle probabiliste structuré spatialement où deux espèces interagissent entre elles de manière mutualiste. Cette interaction mutualiste génèrent des difficultés mathématiques non-négligeables. En effet, si l'interaction mutualiste est trop importante, la taille de la population peut rapidement augmenter au point d'exploser en temps fini. May (1976) qualifiait cette rétroaction positive inhérente au mutualisme d'"orgie instable de bénéfices mutuels" [START_REF] Bronstein | Mutualism[END_REF].

Nous axerons notre étude sous deux angles. Premièrement, nous étudierons le modèle sous l'hypothèse de grande population. Nous chercherons à donner des hypothèses suffisantes qui assurent la non-explosion des tailles de population. Puis nous nous attacherons plus particulièrement à explorer la co-évolution de niches spatiales et phénotypiques. Dans un deuxième temps, nous focaliserons notre attention sur l'étude de l'invasion d'un espace par des populations de petites tailles en interaction mutualiste.

Description mathématique du modèle

Les individus sont caractérisés par leur trait phénotypique u ∈ U ⊂ R q et leur position x dans un espace ouvert borné X ⊂ R d . Afin de différencier les individus des deux espèces, nous notons (X i t , U i t ) la position et le trait du pollinisateur i à l'instant t et (Y i t , V i t ) la position et le trait de la plante i à l'instant t. Les indices des pollinisateurs sont regroupés dans l'ensemble N A t ⊂ N et ceux des plantes sont regroupés dans l'ensemble N P t ⊂ N. Pour plus de clarté, on utilise l'indice A comme "abeille" pour désigner les pollinisateurs et l'indice P comme "plante" pour désigner les plantes considérées dans le modèle. En tout instant t ≥ 0, on représente la population totale à l'aide d'un couple de mesures définies sur l'espace X × U :

(ν A,K t , ν P,K t ) =   1 K ∑ i∈N A t δ (X i t ,U i t ) , 1 K ∑ i∈N P t δ (Y i t ,V i t )   .
K représente la capacité de charge.

Paramètres écologiques des pollinisateurs : L'évolution et le déplacement des pollinisateurs sont modélisés à l'aide d'un modèle individu-centré similaire à celui de Champagnat et Méléard [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF], étudié dans les deux chapitres précédents, auquel on ajoute une interaction positive vis-à-vis des plantes. Les pollinisateurs se déplacent au sein de l'espace X suivant une diffusion réfléchie aux bords de X . La position X t d'un pollinisateur de trait phénotypique u ∈ U satisfait l'équation différentielle stochastique : 

dX t = 2m A (X t , u)dB t + q A (X t , u)dt -dl t , ( 3 
(x, u) ∈ X × U , 0 ≤ d A ≤ d A (x, u) ≤ dA .
Son taux de compétition dépend des traits et des positions de tous les pollinisateurs en vie au temps t à travers le noyau de compétition I c A : (X × U ) 2 → R positif, continu et borné. Le taux de compétition vaut ainsi

c A K ∑ j∈N A t I c A (X i t , U i t , X j t , U j t ) = c A X I c A (X i t , U i t , x, u)ν A,K t (dx, du).
De manière simplificatrice, on suppose que les individus se reproduisent de manière asexuée. Chaque pollinisateur donne naissance à de nouveaux individus d'une part suivant un taux de naissance naturelle b A (x, u) continu, positif et majoré par une constante bA > 0. D'autre part, afin de modéliser l'interaction mutualiste, on suppose que, pour tout i ∈ N A t , le taux de naissance du pollinisateur i au temps t dépend également des positions et des traits des plantes en vie au temps t à travers le noyau d'interaction continu, positif et borné I r A : (X × U ) 2 → R. Ce taux d'interaction positive s'écrit alors

r A K ∑ j∈N P t I r A (X i t , U i t , Y j t , V j t ) = r A X I r A (X i t , U i t , y, v)ν P,K t (dy, dv).
Enfin, lorsqu'un pollinisateur de caractéristiques (x, u) ∈ X × U donne naissance, le nouvel individu apparaît à la position x de son parent et son trait u ∈ U est choisi suivant la loi k A (x, u, du ). On suppose que k A possède la forme suivante : il existe

κ A ∈ [0, 1] et un noyau de probabilité borné K A (x, u, u ) tels que k A (x, u, du ) = (1 -κ A )δ u (du ) + κ A K A (x, u, u )du .
Ainsi, le nouvel individu possède le même trait que son parent avec une probabilité 1κ A . Avec probabilité κ A , il acquiert un nouveau trait mutant choisi suivant la loi K A (x, u, u )du .

Ici, remarquons que tous les paramètres dépendent de toutes les variables en jeu. Ainsi en fonction des cas concrets rencontrés, on pourra adapter et ajuster le modèle, les résultats décrits dans la section suivante étant valables pour les paramètres les plus généraux possibles. Par exemple, dans le cas de l'étude d'un espace hétérogène rendu radio-actif par une action anthropologique, le noyau de mutation K A dépendra de la position de l'individu.

Paramètres écologiques des plantes : L'évolution et la dynamique des plantes suivent quant à elles un modèle microscopique similaire à celui de Fournier et Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] additionné d'une interaction positive avec les pollinisateurs. Chaque plante admet un taux de naissance naturelle b P (y, v) continu et borné par une constante bP et un taux de naissance provenant de l' interaction positive avec les pollinisateurs qui viennent les polliniser. Pour tout i ∈ N P t , le taux d'interaction positive avec les pollinisateurs de la plante i s'écrit 

r P K ∑ j∈N A t I r P (Y i t , V i t , X j t , U j t ) = r P X I r P (Y i t , V i t , x, u)ν A,K t (dx,
I c P (Y i t , V i t , Y j t , V j t ) = c P X I c P (Y i t , V i t , y, v)ν P,K t (dy, dv).
Le processus (ν A,K t , ν P,K t ) t≥0 est donc un processus markovien qu'on peut décrire à partir de son générateur infinitésimal de manière similaire aux processus individus-centrés décrits dans les articles [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF][START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. De plus, il existe une construction algorithmique de ce processus qui nous permet de le simuler numériquement dans les sections 3.3 et 3.4.

Limite en grande population

Dans un premier temps, nous souhaitons étudier le système en grande population c'est-à-dire lorsque K tend vers +∞. Le problème majeur pour étudier cette question vient de l'interaction mutualiste entre les deux populations. En effet, si les effets de coopérations entre les pollinisateurs et les plantes sont trop importants, la taille de la population peut exploser en temps fini. Ceci n'est alors pas représentatif d'une situation écologique réaliste. Cette étude nous permet donc d'une part de comprendre le comportement moyen de la population et d'autre part de trouver un ensemble de paramètres qui rendent le modèle réaliste afin de le simuler au mieux dans les sections 3.3 et 3.4.

On focalise notre attention sur le cas où les noyaux de compétition, I c A et I c P sont minorés sur (X × U ) 2 de telle sorte que tout individu exerce une force de compétition sur tous les autres individus en vie. On suppose de plus que les noyaux traduisant le mutualisme, I r A et I r P , sont majorés. Quitte à modifier les valeurs de c A , c P , r A et r P , on fait l'hypothèse suivante

I c A ≥ 1, I c P ≥ 1, sur (X × U ) 2 , I r A ≤ 1, I r P ≤ 1, sur (X × U ) 2 . (3.2.1)
Cette hypothèse simplificatrice nous permet de contrôler les tailles maximales des populations de chaque espèce. En effet, en adaptant la preuve du théorème 2(a) de [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF] qui compare des processus de naissance et mort, on prouve que le processus des tailles des populations est stochastiquement majoré comme suit. 

(Z A , Z P ) → Z A + 1 K , Z P à taux ( bA + r A Z P )Z A (Z A , Z P ) → Z A - 1 K , Z P à taux (d A + c A Z A )Z A (Z A , Z P ) → Z A , Z P + 1 K à taux ( bP + r P Z A )Z P (Z A , Z P ) → Z A , Z P - 1 K à taux (d P + c P Z P )Z P .
La preuve est immédiate. L'hypothèse (3.2.1) assure que les individus sont tous en compétition les uns avec les autres. Ainsi, dans le processus majorant, il existe des termes de compétition, c A et c P , qui vont nous assurer l'existence de conditions de non-explosion en temps fini. Le théorème 2.1 du chapitre 11 de [START_REF] Ethier | Markov processes[END_REF] donne le comportement en grande population du processus majorant Z. On le compare à la solution (n A , n P ) du système dynamique suivant 

       dn A (t) dt = ( bA + r A n P (t) -d A -c A n A (t))n A (

Si c A c P > r A r P , pour toute condition initiale, il existe une unique solution de (3.2.2)

définie sur R + et celle-ci converge vers l'un des trois points fixes positifs non nuls ci-dessus.

3.

Si c A c P < r A r P , il existe des conditions initiales pour lesquelles la solution de (3.2.2) explose en temps fini.

Pour faciliter la lecture, nous prouvons cette proposition dans l'annexe 3.A. Ainsi, si les compétitions intraspécifiques sont plus fortes que les interactions positives entre les deux espèces, le processus limite reste borné sur R + . Le lemme 3.2.2 assure par ailleurs que les processus Z A,K et Z P,K sont alors bien définis pour tout t ∈ R + . On en déduit une condition suffisante pour l'existence des processus (ν A,K , ν P,K ) à valeurs mesures sur tout intervalle de temps fini. 

alors, pour tout T ≥ 0 et pour tout K ∈ N, le processus (ν A,K t , ν P,K t ) t∈[0,T] dans D([0, T], (M F (X × U ) 2 )) est bien défini.
On supposera donc (3.2.5) dans la suite. Notre but est maintenant de prouver la convergence en grande population du processus microscopique (ν A,K t , ν P,K t ) t∈[0,T] . Ceci requiert l'existence de moments du processus des tailles de populations. On la déduit de l'existence des moments de Z étudiée dans le lemme ci-dessous. Lemme 3.2.5. Fixons t > 0 et q ∈ N \ {0}.

Supposons que sup K∈N E[(Z

A,K 0 + Z P,K 0 ) q+1 ] < +∞, et (r a + r p ) 2 < 4c A c P , (3.2.6) alors, (i) sup K∈N sup s≤t E (Z A,K s + Z P,K s ) q+1 < +∞, (ii) et sup K∈N E sup s≤t Z A,K s + Z P,K s q < +∞.
Ce lemme est également démontré dans l'annexe 3.A. Remarquons par ailleurs que l'inégalité (3.2.6) implique l'inégalité (3.2.5) ce qui assure donc l'existence des processus Z A,K et Z P,K sur R + par le lemme 3.2.2. Nous avons alors tous les éléments pour démontrer le théorème suivant qui décrit la convergence des processus (ν A,K , ν P,K ) lorsque la capacité de charge tend vers l'infini. Avant d'expliciter le théorème, nous rappelons les hypothèses sur les paramètres et les fonctions de taux. -La suite de mesures initiales (ν A,K 0 , ν P,K 0 ) K∈N converge en loi, pour la topologie faible de M F (X × U ) 2 , vers un couple de mesures déterministes (ξ A 0 , Alors, pour tout T > 0, la suite de processus (ν A,K t , ν P,K t ) t∈[0,T] converge en loi, dans l'espace de Skorohod D([0, T], M F (X × U ) 2 ), vers la fonction déterministe (ξ A , ξ P ) ∈ C([0, T], M F (X × U )) 2 , solution faible sur X du système d'équations aux dérivées partielles suivant. Pour tout ϕ ∈ C 2,0 (X × U ) pour laquelle la dérivée normale au bord de X ,

ξ P 0 ) et sup K∈N E[( ν A,K 0 , 1 + ν A,K 0 , 1 ) 4 ] < +∞.
∂ n ϕ, est nulle, ξ A t , ϕ = ξ A 0 , ϕ + t 0 X ×U m A (x, u)∆ x ϕ(x, u) + q A (x, u)∇ x ϕ(x, u) + b A (x, u) + r A I r A * ξ P s (x, u) U ϕ(x, u )k A (x, u, du ) -(d A (x, u) + c A I c A * ξ A s (x, u))ϕ(x, u) ξ A s (dx, du)ds (3.2.7)
et pour tout ϕ ∈ C 0,0 (X × U ), 

ξ P t , ϕ = ξ P 0 , ϕ + t 0 X ×U b P (y, v) + r P I r P * ξ A s (y, v) X ×U D(y, y )ϕ(y , v )k P (y , v,
( ν A,K s , 1 + ν A,K s , 1 ) 3 ].
Or cette espérance est bornée d'après les lemmes 3.2.1 et 3.2.5.

3.3.
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Coévolution de niches spatiales

Nous nous intéressons maintenant au modèle dans une limite de grande population et de mutations rares de manière similaire au chapitre précédent. Autrement dit, nous nous plaçons dans un régime où les échelles écologique et évolutive sont séparées [START_REF] Metz | Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF][START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF][START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]. Dans cette section, nous étudions numériquement le modèle et nous sommes particulièrement intéressés par la question de la coévolution des niches spatiales des deux espèces en interaction mutualiste. Nous considérons des paramètres pour les plantes similaires à ceux des articles [START_REF] Doebeli | Speciation along environmental gradients[END_REF]93]. Pour chaque position y, le taux de naissance des plantes est maximal pour le trait v = y. On parle de gradient de ressources pour les plantes. Par ailleurs, nous supposons que, même en l'absence des pollinisateurs considérés dans le modèle, les plantes possèdent un taux de croissance naturelle positif. Autrement dit, les plantes ne sont pas soumises à un mutualisme obligatoire avec les pollinisateurs considérés ici. Les plantes possèdent donc d'autres mécanismes pour se reproduire en cas d'absence de ces pollinisateurs. Il peut s'agir d'autres pollinisateurs, indiquant que l'espèce de plantes considérée est suffisamment généraliste pour interagir avec plusieurs espèces de pollinisateurs, ou d'autres mécanismes tels que l'autofécondation, ou la pollinisation par le vent [START_REF] Bronstein | Mutualism[END_REF]. Les paramètres des plantes sont les suivants :

b P (y, v) = max{2.1(1 -40(y -v) 2 ), 0}, d P (y, v) = 1, c P I c P (y, v, y , v ) = 10 • 1 |y-y |≤0.1 .
Le noyau de dispersion à la naissance est un noyau gaussien conditionné à rester dans X = [0, 1] centré sur la position du parent et de variance 0.02. La probabilité de mutation à la naissance des plantes vaut κ P = 0.0001. Enfin, le noyau de mutation est un noyau gaussien conditionné à rester dans U = [0, 1] centré sur le trait du parent et de variance 0.02. Toutes les simulations présentées dans cette section ont été réalisées pour K = 10 000. La figure 3.1a présente une simulation de l'évolution des plantes lorsqu'elles sont seules. La population initiale est composée de plantes de même trait v = 0.5. La population reste monomorphique pendant un temps, puis on observe une succession de branchements évolutifs qui aboutissent à un polymorphisme, c'est-à-dire à la coexistence de plusieurs populations de traits différents. Les sous-populations, caractérisées par le trait qu'elles portent, coexistent à différentes positions (fig On ajoute ensuite une population de pollinisateurs en interaction avec les plantes. Leurs paramètres sont les suivants

m A (x, u) = 0.003, q A (x, u) = 0, b A (x, u) = 0, d A (x, u) = 1, c A I c A (x, u, x , u ) = 10 • 1 |x-x |≤0.1 .
La probabilité de mutation à la naissance des pollinisateurs vaut κ A = κ P = 0.0001 et le noyau de mutation est un noyau gaussien conditionné à rester dans U = [0, 1] centré sur le trait du parent et de variance σ k A = 0.02. Notons que, contrairement aux plantes, le taux de croissance naturelle des pollinisateurs est négatif. Autrement dit, on suppose que les pollinisateurs considérés ne peuvent pas survivre en l'absence des plantes étudiées dans ce modèle, on parle de mutualisme obligatoire pour les pollinisateurs [START_REF] Bronstein | Mutualism[END_REF]. Enfin, les noyaux d'interaction positive qui modélisent le mutualisme et le lien entre les plantes et les pollinisateurs sont les suivants

r P = 2, r A = 20, I r P (y, v, x, u) = I r A (x, u, y, v) = 1 |x-y|≤0.1 1 |u-v|≤δ .
Ainsi, seuls les individus suffisamment proches spatialement et phénotypiquement interagissent positivement l'un sur l'autre.

On s'intéresse tout d'abord à l'influence du paramètre δ. Lorsque δ = 1 (fig.

3.2a,d), l'interaction positive est indépendante des traits portés par les individus, autrement dit, les individus sont généralistes [START_REF] Bronstein | Mutualism[END_REF]. Comme en l'absence de pollinisateurs, les plantes se repartissent dans des niches monomorphiques. Au contraire, chez les pollinisateurs, on observe très peu d'évolution phénotypique, la population reste monomorphique de trait u ≈ 0.5 et interagit avec les plantes quelque soit leur trait. Au cours du temps, les plantes envahissent les niches petit à petit et la niche spatiale des pollinisateurs s'étale sur l'espace X en conséquence (fig. 3.2d). Finalement, l'interaction positive a peu d'influence sur l'évolution des plantes lorsque le mutualisme est généraliste. Les figures 3.2b,c,e,f présentent des simulations pour δ < 1, ce qui signifie que les individus présentent un certain degré de spécialisation : ils n'interagissent qu'avec les individus possédant un trait proche du leur. Ceci peut par exemple représenter une adéquation nécessaire entre la profondeur des éperons des fleurs Sphingophilous et la longueur de la trompe des papillons qui les pollinisent [START_REF]The pollinators of the malagasy star orchids angraecum sesquipedale, a. sororium and a. compactum and the evolution of extremely long spurs by pollinator shift[END_REF]. Lorsque δ = 0.1 (fig. 3.2b,e), on observe d'une part que les pollinisateurs évoluent très peu et n'interagissent qu'avec les deux clusters de plantes centraux (fig. 3

.2e).

La taille de la niche spatiale des pollinisateurs est donc réduite par rapport au cas δ = 1. D'autre part, on observe ici une influence non négligeable du mutualisme sur l'évolution des plantes. En effet, comme les plantes peuvent survivre seules, on s'attend à observer des niches sur l'ensemble de la diagonale y = v identiquement à la figure 3.1. Pourtant, on n'observe pas de branchement évolutif qui donnerait naissance à des populations de plantes de trait v ≤ 0.4. Ici, l'ajout de l'interaction positive modifie clairement la dynamique évolutive des plantes. Lorsque δ = 0.05 (fig. 3.2c,f), le phénomène est encore accentué : tant que les pollinisateurs restent en vie seuls deux types de plantes coexistent. La figure 3.2f présente la population à l'instant t = 5000, avant l'extinction des pollinisateurs. On voit que les deux niches pour les plantes sont très proches, la différence des traits des deux populations monomorphiques est d'environ 0.1. Cette distance semble être le meilleur compromis pour les deux sous-populations de plantes qui peuvent ainsi interagir toutes deux avec les pollinisateurs présents et diminuer au maximum la compétition qu'elles exercent l'une sur l'autre. Les pollinisateurs de trait u = 0.5 sont alors les plus avantagés puisqu'ils interagissent avec les deux sous-populations de plantes à la fois. Cependant, la distance phénotypique moyenne entre deux sous-populations monomorphiques de plantes dans la figure 3.1b est d'environ 0.2. On peut donc supposer que la distance qui minimise la compétition entre deux clusters de plantes est 0.2. Ainsi, la compétition intraspécifique est ici trop importante par rapport au bénéfice reçu via les pollinisateurs. Finalement, les deux clusters de plantes s'éloignent phénotypiquement l'un de l'autre. La population de pollinisateurs qui n'a visiblement pas le temps de s'adapter à la nouvelle situation disparait puisqu'elle n'interagit plus avec les plantes.

On cherche ensuite à comprendre l'influence de certains paramètres des pollinisateurs sur leur survie lorsque δ = 0.05. Augmenter la probabilité de mutation κ A ou la variance σ k A des pollinisateurs n'entraînent pas leur survie, excepté s'ils deviennent très grand et donc si les deux populations n'évoluent plus dans les mêmes échelles de temps. Ceci confirme la validité de l'interprétation des figures 3.2c,f. La figure 3.3a présente une simulation pour r A = 22, i.e. les pollinisateurs retirent un bénéfice plus important de l'interaction mutualiste avec les plantes. La taille totale de la population de pollinisateurs en est augmentée. Le bénéfice que retirent les plantes de l'interaction positive est donc également augmenté de manière indirecte et semble compenser la compétition intraspécifique que les deux clusters de plantes exercent l'un sur l'autre. Les clusters de plantes ne s'éloignent donc plus dans ce contexte et les pollinisateurs survivent. La figure 3.3b présente une simulation pour m A = 0.0003. La modification de ce paramètre induit également la survie des pollinisateurs. Cela résulte à nouveau de l'augmentation de la taille de la population de pollinisateurs. En effet, les pollinisateurs, qui possèdent un coefficient de migration moindre, s'aventurent moins souvent hors des zones où les plantes du même type sont en vie ce qui augmente leur durée de vie. Cependant, observons que cette fois, il existe un polymorphisme plus important chez les plantes à la fin de la simulation. D'une manière générale, on conclut que bien que le mutualisme ne soit pas obligatoire pour les plantes, l'ajout d'une interaction positive avec les pollinisateurs modifie fortement la dynamique évolutive de celles-ci.

Dynamiques d'invasion

Cette section est consacrée à notre deuxième axe d'étude : l'invasion d'un espace par un couple d'espèces mutualistes. Dans la nature, la majorité des organismes dispersent sous de nombreuses formes, par la marche, la nage, le vol, ou transportés par le vent ou d'autres vecteurs. Un nouvel habitat adapté à l'espèce peut alors être trouvé lors d'un tel événement de dispersion. L'aire de répartition de cette espèce peut être étendue vers ce nouvel habitat si de nouveaux individus s'y établissent durablement et y persistent. On parle alors d'invasion [START_REF] Shigesada | Biological invasions : theory and practice[END_REF]. Les études sur l'invasion cherchent en particulier à prédire [START_REF] Shigesada | Biological invasions : theory and practice[END_REF] :

-quelles espèces sont susceptibles de devenir invasives, -quels habitats sont susceptibles d'être envahis, -quelles sont les conséquences d'une invasion sur l'habitat ou l'espèce en question, -à quelle vitesse et comment une invasion se propage lorsqu'elle a lieu. Dans cette section, nous sommes particulièrement intéressés par cette dernière problématique. La description de la dynamique et de la forme des fronts d'invasion est un défi autant au niveau biologique que mathématique qui peut aider notre capacité à prédire comment les espèces invasives ou les infections se répandent dans l'espace [4,[START_REF] O'malley | Ecological invasion, roughened fronts, and a competitor's extreme advance : integrating stochastic spatial-growth models[END_REF]. De nombreux facteurs entrent en jeu dans le succès d'une invasion. Les études prédictives prennent en général en compte divers facteurs tels que l'origine géographique des espèces, les mécanismes climatiques, les relations taxonomiques. Une des sources principales d'erreur des protocoles prédictifs vient de l'absence de la prise en compte des interactions positives entre l'espèce introduite et les espèces indigènes [START_REF] Richardson | Plant invasions-the role of mutualisms[END_REF], d'où l'intérêt d'étudier les couples d'espèces mutualistes. Dans un premier temps, nous focaliserons notre attention sur le cas d'une seule espèce diffusive, c'est-à-dire l'espèce pollinisatrice seule dans un espace homogène. Nous étudierons l'effet de la compétition intraspécifique sur la vitesse d'invasion. Nous focaliserons notre attention sur l'avancée des individus à l'avant du front. Nous étudierons ensuite comment la vitesse du front est modifiée lorsque nous ajoutons une deuxième espèce qui interagit positivement avec la première.

Invasion par une espèce diffusive

Les premières études mathématiques sur l'invasion d'une espèce seule dans une structure spatiale ont été initiées pour l'étude de la génétique des populations par Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] et Kolmogorov et al. [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son applicationa un probleme biologique[END_REF]. Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] a utilisé une équation de réactiondiffusion pour approximer l'invasion d'une mutation favorable dans une population. Par la suite, cette théorie diffusive déterministe a été utilisée et modifiée pour étudier les phénomènes d'expansions géographiques en écologie [START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Kot | Dispersal data and the spread of invading organisms[END_REF]. Des modèles stochastiques ont également été utilisés pour capturer les phénomènes d'invasion pour des populations de petites tailles [131,[START_REF] Ellner | Speed of invasion in lattice population models : pair-edge approximation[END_REF][START_REF] O'malley | Invasive advance of an advantageous mutation : nucleation theory[END_REF][START_REF] O'malley | Ecological invasion, roughened fronts, and a competitor's extreme advance : integrating stochastic spatial-growth models[END_REF]. Ces modèles s'intéressent cependant à des populations structurées sur un espace discret et supposent que chaque site ne contient qu'un seul individu actif ce qui engendre une compétition de manière implicite. Notre modèle admet une structure spatiale continue, et la compétition écologique est modélisée explicitement à l'aide de noyaux de compétition densité-dépendants. On peut donc étudier directement l'impact de la compétition sur l'invasion. Nous supposons dans cette partie qu'aucune plante n'est présente et que les plantes ne sont pas indispensables à la survie des pollinisateurs. Tous les paramètres associés aux plantes sont donc supposés nuls. Les paramètres pour les pollinisateurs sont les suivants

m A (x) = 0.03, q A (x) = 0, b A (x) = 3, d A (x) = 1, r A = 0, c A I c A (x, x ) = c1 |x-x |≤0.2 . ( 3.4.1) 
La valeur du taux de compétition c varie dans les différentes simulations. L'espace est X = (0, 100). Remarquons que l'espace considéré ici est homogène : les paramètres des individus ne dépendent pas de leur position. Initialement, tous les individus sont proches de la position 0 et on s'intéresse à l'invasion de l'espace positif par la population de pollinisateurs. Dans cette section, nous ne faisons pas d'hypothèse de grande population, les simulations sont réalisées pour K = 1. Par ailleurs, nous n'intégrons pas de mutation dans cette section. La figure 3.4 présente l'avancée des individus dans l'espace géographique pour un taux de compétition c = 0.1. Initialement, 100 individus sont équirépartis entre les positions 0 et 0.2. On observe clairement l'avancée d'un front au cours du temps, on a donc bien invasion de l'espace par les individus. On cherche dans un premier temps à estimer le temps d'atteinte d'une position x 0 pour la première fois par l'individu le plus en avant du front, c'est-à-dire qu'on souhaite estimer la variable aléatoire :

T x 0 = inf{t ≥ 0, ∃i ∈ N A t , X i t ≥ x 0 }, avec inf ∅ = +∞.
Remarquons qu'il est possible que la population s'éteigne avant qu'un individu atteigne la position x 0 . Ainsi, on cherchera en général plutôt à estimer la variable aléatoire T x 0 conditionnée à l'atteinte de la position x 0 en temps fini qu'on note Tx 0 . Sur la figure 3.5, le tracé de gauche présente un histogramme des temps d'arrivée Tx 0 à la position x 0 = 20 avec les mêmes paramètres que pour la figure 3.4. A partir de l'échantillon, on peut calculer µ emp et σ emp , les valeurs estimées de la moyenne et de l'écart type de Tx 0 :

µ emp = 71.2, σ emp = 5.1.
Afin de vérifier l'adéquation de l'échantillon à une loi normale, on trace d'une part sur l'histogramme de la figure 3.5, la densité de la loi normale de moyenne µ emp et de variance σ 2 emp , et d'autre part, à gauche, on trace un diagramme Q-Q qui compare les quantiles de la loi normale centrée réduite et les quantiles empiriques calculés à partir de l'échantillon renormalisé par les valeurs de moyenne et d'écart type empiriques. L'alignement avec la première bissectrice laisse supposer que la distribution suit une loi normale N (71.2, 5.1). L'adéquation à la loi normale est surprenante. En effet, dans le cas du mouvement brownien branchant (B i t ) i∈N t ,t≥0 , c'est-à-dire si il n'y a aucune interaction entre les individus, la fonction de répartition de la loi du temps d'atteinte d'une position x > 0 est qui est solution de l'équation F-KPP

F(t, x) = P(T BBM x ≤ t) = P( max i=1..N t B i t ≥ x),
∂ t F = 1 2 ∆ x F + F(1 -F) avec F(0, x) = 1 x≤0 .
La fonction de densité du temps d'atteinte d'une position x 0 par un mouvement brownien branchant est donc la fonction t → ∂ t F(t, x 0 ). Or cette fonction ne correspond pas à une densité gaussienne, elle est clairement asymétrique (cf figure 3.6). Dans un deuxième temps, on étudie l'avancée du front. Estimer la vitesse à laquelle un front d'invasion avance est une source d'intérêt en écologie [START_REF] Lewis | Spread rate for a nonlinear stochastic invasion[END_REF][START_REF] O'malley | Ecological invasion, roughened fronts, and a competitor's extreme advance : integrating stochastic spatial-growth models[END_REF] pour prédire l'impact de l'introduction d'une espèce étrangère dans un paysage nouveau. La figure 3.7 présente une estimation des temps moyens E[ Tx 0 ] d'arrivées aux positions x 0 = 10, 15, 20, 25 et 30 pour les mêmes paramètres que les deux figures précédentes. Les moyennes empiriques sont calculées à partir de 500 réalisations indépendantes. On remarque tout de suite que les cinq temps moyens empiriques semblent parfaitement alignés. On effectue une régression linéaire, le coefficient de corrélation qui mesure la qualité de l'adéquation au modèle linéaire est supérieur à 0.999. On peut donc conclure que le front avance suivant une vitesse linéaire en temps que l'on peut estimer à l'aide du coefficient de la droite de régression :

V emp = 0.276. Finalement, on étudie l'impact du coefficient de compétition intraspécifique c sur la vitesse du front d'invasion. La figure 3.8 montre que la vitesse décroit avec la valeur du coefficient de compétition intraspécifique. Or la compétition joue un rôle peu important à l'avant du front puisque le nombre d'individus est très faible et donc les individus y ressentent peu l'effet compétitif des autres individus. Par contre, à l'arrière du front où la population est bien établie, la compétition joue un rôle important. Si elle est forte, le nombre d'individus qui survivent à l'arrière du front est fortement amoindri. On en déduit que la compétition, en impactant le nombre de survivants total et donc le nombre d'individus disponibles pour explorer de nouveaux territoires, réduit la vitesse du front d'invasion. Au delà de c ≥ 0.4, la probabilité de survie de la population est si faible (cf. gra- phique de gauche de la figure 3.8) que nous ne pouvons plus estimer de vitesse du front. On peut supposer qu'au delà de cette valeur, la population n'est plus viable. D'un autre côté, lorsque c est très faible, la vitesse estimée est environ 0.45 (cf. Figure

3.8).

Or, lorsque c est petit, nous observons sur les simulations que la taille de la population devient grande en un temps très court. Nous cherchons donc à comparer la vitesse estimée et la vitesse du front prévu par le modèle déterministe de la limite en grande population (3.2.7). Comme l'espace X est grand par rapport aux positions étudiées dans les simulations, on peut considérer que la population évolue sur R. Ainsi, la densité de la population dans la limite en grande population est solution d'une équation différentielle de la forme

∂ t ξ t (x) = m A ∆ x ξ t (x) + (b A -d A -cI c A * ξ t (x))ξ t (x), sur R + × R, (3.4.2) 
où c > 0. Dans [START_REF] Berestycki | The non-local Fisher-KPP equation : travelling waves and steady states[END_REF], les auteurs étudient précisément les vitesses des fronts d'invasion définis par l'équation (3.4.2) et établissent l'expression analytique suivante pour la vitesse minimale des fronts

2 m A (b A -d A ). (3.4.3) 
Avec les paramètres considérés ici, cette vitesse est environ 0.49 et est donc bien proche de la vitesse estimée lorsque c est faible. Notons d'une part que l'expression (3.4.3) ne dépend pas de la valeur de c et que d'autre part, pour toutes les valeurs de c considérées, la vitesse estimée dans notre modèle est inférieure à 0.49. Ainsi, le modèle déterministe associé surestime la vitesse du front. En effet, il ne prend pas en compte le caractère discret des individus [START_REF] O'malley | Ecological invasion, roughened fronts, and a competitor's extreme advance : integrating stochastic spatial-growth models[END_REF], et par là-même, il semble négliger les effet de la compétition sur la vitesse du front d'invasion.

Espèces mutualistes

On souhaite maintenant comprendre comment l'interaction mutualiste impacte la dynamique spatiale d'invasion des pollinisateurs.

Dans cette section, nous ajoutons donc une population de plantes qui interagit avec les pollinisateurs de paramètres (3.4.1). Cette population de plantes est décrite par les paramètres suivants b P (y) = b P , d P (y) = 1, c P I c P (y, y ) = 0.3 • 1 |y-y |≤0.1 , la position des individus à la naissance est choisie à l'aide une variable aléatoire gaussienne centrée sur la position du parent et de variance σ D P . Enfin l'interaction positive entre les deux espèces est modélisée à partir des noyaux

r A = 0.05, r P = 0.25, I r A (y, x) = I r P (x, y) = 1 |x-y|≤0.1 .
Les simulations sont réalisées pour une compétition intraspécifique des pollinisateurs c = 0.1. La sous-section précédente donne la vitesse estimée du front d'invasion pour des pollinisateurs seuls dans l'espace : V emp = 0.276. On compare cette vitesse à celle obtenue pour une population constituée de plantes et de pollinisateurs. Les figures 3.9 et 3.10 présentent les vitesses estimées du front d'invasion des pollinisateurs en fonction de la valeur de σ D P que l'on compare avec V emp . La figure 3.9 présente les résultats lorsque le taux de naissance naturelle pour les plantes est b P = 2. On observe que la vitesse du front est quasiment identique à V emp pour σ D P ≤ 0.08. Par contre, celui-ci est accéléré dès que σ D P ≥ 0.1. On observe une accélération d'environ 10% pour σ D P = 0.1 et de près de 20% pour σ D P = 0.16. En effet, pour σ D P ≥ 0.1, les plantes, qui ont un taux de croissance naturelle positif, avancent plus rapidement que les pollinisateurs et les entraînent avec elles, accélérant ainsi le front d'invasion des pollinisateurs. On peut alors se demander quel est l'impact d'un partenaire caractérisé par un mutualisme obligatoire. La figure 3.10 présente le résultat d'une simulation identique à la précédente pour un taux de naissance naturelle des plantes nul, b P = 0. On observe également une accélération du front d'invasion dès que σ D P ≥ 0.1. L'accélération est moindre par rapport à l'expérience de la figure 3.9 mais elle reste significative. Comme les plantes sont ici soumises à un mutualisme obligatoire, on en déduit que l'accélération est due aux plantes à l'avant du front qui sont envoyées loin en avant et attirent dans leur suite les pollinisateurs bien qu'elles ne puissent pas survivre longtemps seules.

D'une manière générale, on conclut, en accord avec [START_REF] Richardson | Plant invasions-the role of mutualisms[END_REF], que le mutualisme facilite l'invasion.

3.A Démonstration des résultats intermédiaires

Dans cette section, on explicite les preuves de la Proposition 3.2.3 puis du Lemme 3.2.5. Afin de simplifier les notations de cette section, nous noterons les constantes bA , bP , 1er cas : c A c P > r A r P . Nous allons montrer par l'absurde que n A et n P restent bornés sur R + . Supposons que n A (t) converge vers +∞ lorsque t converge vers t ∞ ∈ R + ∩ {+∞}. Notons

I = {t ≥ 0, n A (t) ≥ n A * } = ∅,
où n A * a été défini par (3.2.4). A l'aide d'un calcul direct (voir également l'illustration figure 3.11), on prouve que, si t appartient à I, l'une des deux inégalités suivantes au moins est vérifiée

b A -d A + r A n P (t) -c A n A (t) ≤ 0 (3.A.1) b P -d P + r P n A (t) -c P n P (t) ≤ 0. (3.A.2)
Comme n A (t) converge vers l'infini, il existe t 0 ∈ I pour lequel dn A (t 0 ) dt > 0, i.e.

(3.A.1) n'est pas vérifié pour t 0 et (3.A.2) est vérifié pour t 0 . On pose alors

     y 0 = n P (t 0 ) x 0 = 1 c A (b A -d A + r A y 0 ). (3.A.3)
Montrons que pour tout t ≥ t 0 , la solution (n A , n P ) de (3.2.2) reste dans le compact ainsi n A (t) ne devient pas plus grand que x 0 et la trajectoire ne peut pas sortir du compact. On doit donc avoir n P (t 1 ) = y 0 ,

C 0 = {(x, y) ∈ (R + ) 2 , x ≤ x 0 , y ≤ y 0 }. Premièrement, (n A (t 0 ), n P (t 0 )) appartient à C 0 . De plus, soit t 1 = inf{t ≥ t 0 , (n A (t), n P (t)) ∈ C 0 }. Si t 1 < +∞, (n A (t 1 ), n P (t 1 )) appartient au bord du com- pact C 0 . Si n A (t 1 ) = x 0 , alors dn A (t) dt t=t 1 = n A (t 1 )(b A -d A + r A n P (t 1 ) -c A x 0 ) = n A (t 1 )r A (n P (t 1 ) -y 0 ) ≤ 0, n P n A b A -d A c A b P -d P c P D 2 D 1
dn P (t) dt t=t 1 = n P (t 1 )(b P -d P + r P n A (t 1 ) -c P y 0 )
≤ n P (t 1 )(b Pd P + r P x 0c P y 0 )

≤ n P (t 1 ) b P -d P + r P c A (b A -d A + r A y 0 ) -c P y 0 ≤ n P (t 1 ) c A (c A c P -r A r P )(n P * -y 0 ).
On pourra alors conclure si on peut montrer que y 0 ≥ n P * . Or par définition de t 0 , n A (t 0 ) ≥ n A * et (3.A.2) est vérifié en t 0 , donc b Pd P + r P n A *c P y 0 ≤ 0.

Vue la définition de n P * (3.2.4), on conclut directement que y 0 ≥ n P * . Ainsi, la solution de (3.2.2) reste dans le compact C 0 . Ceci entre en contradiction avec la convergence de n A vers +∞. On a donc prouvé que n A reste borné. En raisonnant de manière symétrique, on peut également prouver le résultat pour n P . Finalement, il ne peut y avoir d'explosion en temps fini, et la solution est définie sur R + . De plus le premier point de la proposition 3.2.3 nous assure que la solution de (3.2.2) converge vers un point d'équilibre. Ceci conclut le point 2 de la proposition 3.2.3. 2ème cas : c A c P < r A r P . Dans un premier temps, on cherche à étudier le champ de vecteur défini par le système dynamique (3.2.2) dans le quart de plan {n A ≥ 0, n P ≥ 0}. Remarquons que toute solution appartenant au cône

C = {(x, y) ∈ (R + ) 2 , b A + r A y -d A -c A x ≥ 0, b P + r P x -d P -c P y ≥ 0}
ne quitte jamais ce cône. Pour s'en convaincre, il suffit de remarquer que dans C, les deux dérivées dn A dt et dn P dt sont positives, la trajectoire ne peut donc pas traverser les droites D 1 et D 2 qui bordent ce cône (voir Figure 3.12). Notre but est en fait de (n A (0), n P (0))

n P n A - b P -d P r P b A -d A r A D 1 D 2 D α
Fig. 3.12 -Exemple de plan de phase du système dynamique (3.2.2)

pour c A c P -r A r P < 0 ; la droite D 1 (resp. D 2 ) est la droite d'équation b A + r A y -d A -c A x = 0 = 0 (resp. b P + r P x -d P -c P y), enfin D α est la droite d'équation b A + r A y -d A -c A x + α(n A * -x) = 0
prouver que nous pouvons trouver α > 0 suffisamment petit pour lequel la trajectoire d'une solution de (3.2.2) reste dans le cône

C α = {(x, y) ∈ (R + ) 2 , b A + r A y -d A -c A x + α(n A * -x) ≥ 0, b P + r P x -d P -c P y ≥ 0}.
Pour cela, il suffit de vérifier qu'en tout point (n A , n P ) de la droite D α , définie par l'

équation b A + r A y -d A -c A x + α(n A * -x) = 0, le vecteur qui dirige la trajectoire n A (b A -d A + r A n P -c A n A ) n P (b P -d P + r P n A -c P n P )
est dirigé vers l'intérieur du cône C α . Or le coefficient directeur de la droite D α vaut c A +α r A . Il nous suffit donc de comparer les quantités

c A + α r A et n P (b P -d P + r P n A -c P n P ) n A (b A -d A + r A n P -c A n A ) . Notons que (n A , n P ) appartient au cône C donc n A ≥ n A * et n P ≥ n P * et d'autre part, (n A , n P ) vérifie b A -d A + r A n P -c A n A -α(n A -n A * ) = r A (n P -n P * ) -(c A + α)(n A -n A * ) = 0.
Ainsi,

n P r A (b P -d P + r P n A -c P n P ) -n A (c A + α)(b A -d A + r A n P -c A n A ) = n P r A (r P (n A -n A * ) -c P (n P -n P * )) + n A (c A + α)α(n A -n A * ) = (n A -n A * ) n P (r A r P -c P (c A + α)) + α(c A + α)n A = (n A -n A * ) n P * + c A + α r A (n A -n A * ) (r A r P -c P (c A + α)) + α(c A + α)n A = (n A -n A * ) (n A -n A * ) c A + α r A (r A r P -c A c P + α(r A -c P )) + n P * (r A r P -c A c P ) + α(n A * c A -n P * c P + αn A * ) . (3.A.4) On peut choisir α > 0 suffisamment petit pour que r A r P -c A c P + α(r A -c P ) > 0 et n P * (r A r P -c A c P ) + α(n A * c A -n P * c P + αn A * ) > 0.
Pour un tel choix de α, l'expression (3.A.4) est positive pour tout n A ≥ n A * . La solution reste donc bien confinée dans le cône C α . En choisissant une condition initiale dans C α , on peut minorer la dérivée pour tout t ≥ 0 par

dn A (t) dt ≥ αn A (t)(n A (t) -n A * ).
La solution de l'équation différentielle

d f (t) dt = α f (t)( f (t) -n A *
) explose en temps fini et minore n A (t). On en conclut que n A (t) explose également en temps fini. Ceci termine la preuve de la proposition 3.2.3 Démonstration du lemme 3.2.5. On utilise une représentation à l'aide de martingales pour montrer ce résultat. Introduisons deux mesures ponctuelles de Poisson indépendantes Q A et Q P sur R + × R + d'intensité ds ⊗ dθ. Ces mesures ponctuelles vont servir à représenter les événements de naissance et de mort des processus Z A,K et Z P,K respectivement. Nous détaillons ici uniquement les formules pour les processus Z A,K , celles pour Z P,K étant similaires,

Z A,K t = Z A,K 0 + 1 K [0,t]×R + 1 0≤θ≤Kθ A 1 (Z s-) Q A (ds, dθ) - 1 K [0,t]×R + 1 Kθ A 1 (Z s-)≤θ≤Kθ A 2 (Z s-) Q A (ds, dθ), (3.A.5) où les fonctions θ A 1 , θ A 2 sont définies par θ A 1 (Z s ) = (b A + r A Z P,K s )Z A,K s , θ A 2 (Z s ) = (d A + c A Z A,K s )Z A,K s .
Pour prouver le point (i), on étudie le comportement de E[(Z A,K t

+ Z P,K t ) q+1
]. En utilisant l'écriture à l'aide des mesures ponctuelles de Poisson (3.A.5), on trouve

E (Z A,K t + Z P,K t ) q+1 =E (Z A,K 0 + Z P,K 0 ) q+1 + t 0 E Z A,K s + Z P,K s + 1 K q+1 -Z A,K s + Z P,K s q+1 × K(b A + r A Z P,K s )Z A,K s + K(b P + r P Z A,K s )Z P,K s ds + t 0 E Z A,K s + Z P,K s - 1 K q+1 -Z A,K s + Z P,K s q+1 × K(d A + c A Z A,K s )Z A,K s + K(d P + c P Z P,K s )Z P,K s ds. (3.A.6)
Par ailleurs, remarquons qu'on peut trouver deux constantes C + , C -> 0 telles que

Z A,K s + Z P,K s ± 1 K q+1 -Z A,K s + Z P,K s q+1 ≤ ± (q + 1) K (Z A,K s + Z P,K s ) q + C ± ((Z A,K s + Z P,K s ) q-1 + 1). (3.A.7)
A partir de (3.A.6) et (3.A.7), on en déduit qu'il existe une constante C > 0 pour laquelle

E (Z A,K t + Z P,K t ) q+1 ≤ E (Z A,K 0 + Z P,K 0 ) q+1 + C t 0 E (Z A,K s + Z P,K s ) q+1 + 1 ds + (q + 1) t 0 E Z A,K s + Z P,K s q (r A Z P,K s -c A Z A,K s )Z A,K s + (r P Z A,K s -c P Z P,K s )Z P,K s ds.
Or sous l'hypothèse (3.2.6), le polynôme

(r A Y -c A X)X + (r P X -c P Y)Y = -c A X 2 + XY(r A + r P ) -c P Y 2 est négatif, donc E (Z A,K t + Z P,K t ) q+1 ≤ E (Z A,K 0 + Z P,K 0 ) q+1 ds + C t 0 E Z A,K s + Z P,K s q+1 + 1 ds.
On déduit alors le point (i) en appliquant le lemme de Gronwall. Puis on déduit le point (ii) à partir du point (i). En effet, en gardant uniquement les termes positifs dans la représentation à l'aide des mesures ponctuelles de Poisson, on trouve

sup s∈[0,t] Z A,K s + Z P,K s q ≤ Z A,K 0 + Z P,K 0 q + [0,t]×R + Z A,K s + Z P,K s + 1 K q -Z A,K s + Z P,K s q × 1 θ≤Kθ A 1 (Z s-) dQ A (ds, dθ) + 1 θ≤Kθ P 1 (Z s-
) dQ P (ds, dθ) . En utilisant à nouveau (3.A.7), puis en prenant l'espérance dans l'expression précédente, on obtient qu'il existe une constante C > 0 telle que

E sup s∈[0,t] Z A,K s + Z P,K s q ≤ E Z A,K 0 + Z P,K 0 q + C t 0 E Z A,K s + Z P,K s q-1 + 1 (b A + r A Z A,K s )Z A,K s + (b P + r P Z P,K s )Z P,K s . Finalement, sup K∈N E sup s∈[0,t] Z A,K s + Z P,K s q ≤ sup K∈N E Z A,K 0 + Z P,K 0 q + C t sup s∈[0,t] sup K∈N E Z A,K s + Z P,K s q+1 + 1 .
Le membre de droite est fini d'après le point (i), ce qui termine la preuve du lemme 3.2.5.

3.B Code C++

Afin de simuler le processus de manière exacte, on utilise l'algorithme suivant. Pour simplifier la présentation de l'algorithme et sans perte de généralité, nous supposons que les noyaux d'interaction I c A , I c P , I r A , I r P sont tous majorés par 1.

Les événements de naissances et morts surviennent à des instants notés (T k ) k≥1 . Considérons que le processus est correctement décrit jusqu'à l'instant T k-1 du (k -1) ième événement. On construit le k ième événement (naissance ou mort) de la façon suivante. Le taux d'événement pour un pollinisateur est majoré par

C A max := bA + r A N P T k-1 + dA + c A N A T k-1 .
De même, le taux d'événement pour une plante est majoré par

C P max := bP + r P N A T k-1 + dP + c P N P T k-1 .
Le taux d'événement est donc majoré par C max := C A max N A T k-1 + C P max N P T k-1 . On construit alors T k de telle sorte que T k -T k-1 sachant F k-1 est une variable aléatoire exponentielle de paramètre C max .

On tire une variable aléatoire uniforme θ 1 ∼ U ([0, C max ]) afin de déterminer à quelle espèce appartient l'individu concerné par l'événement :

-si 

θ 1 < C A max N A T k-1 ,
θ 2 < d * (X I k T k , U I k T k ), on supprime l'individu I k de l'espèce * . -θ 2 := θ 2 -d * . -Si θ 2 < c * N * T k-1
, il y a possibilité d'une mort par compétition intraspécifique. On détermine l'indice du compétiteur de l'espèce * : J k := θ 2 c * . On met à jour la position X J k T k du compétiteur. Si

θ 2 -c * J k < c * I c * (X I k T k , U I k T k , X J k T k , U J k T k ), on supprime l'individu I k de l'espèce * . -θ 2 := θ 2 -c * N * T k-1 .
-Si θ 2 < b * . On calcule le taux de naissance naturelle exact de l'individu I k : si -Dans ce dernier cas, il y a possibilité d'une naissance due à l'interaction avec un individu de l'espèce partenaire. On détermine l'indice J k := θ 2 r * de l'individu de l'espèce * . On met à jour la position Y J k T k de cet individu. Si //vérifie si la position spatiale est bien à l'intérieur du domaine bool isInsidePosition(double const& positionTested) const ; //renvoie la distance entre la position testée et le début de l'intervalle double distanceMinPosition(double const& positionTested, int const& indexDimension) const ; //donne la taille de l'intervalle de position de la n-ème dimension double lengthIntervalPosition(int const& indexDimension) const ; //vérifie si le trait est bien à l'intérieur du domaine phénotypique bool isInsidePhenotype(double const& phenotypeTested, int const& index) const ; //renvoie la distance entre le trait phénotypique testé et le début de l'intervalle double distanceMinPhenotype(std : :vector<double> const& phenotypeTested, int const& indexDimension) const ; //donne la taille de l'intervalle de position de la n-ème dimension double lengthIntervalPhenotype(int const& indexDimension) const ; //calcule la diffusion pour un brownien partant de initialPosition //pendant un temps tInterval, dans le segment minPosition, maxPosition double diffusionBrownian(double const& tInterval, double const& coefDiffusion,

θ 2 < b * (X I k T k , U I k T k ),
θ 2 -r * J k < r * I c * (X I k T k , U I k T k , Y J k T k , V J k T k ),

Introduction

Understanding and modeling speciation mechanisms is a very important stake in ecology. However, exact causes of speciation are often unknown [START_REF] Seehausen | Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria ?[END_REF]. Our motivation is to introduce and study rigorously a stochastic model for speciation by assortative mating. Assortative mating, or mating preference, is a form of sexual selection in which individuals with similar genotypes have a higher reproductive success when they mate among themselves than individuals with different genotypes. As presented in [START_REF] Michael | Sexual selection and speciation[END_REF][START_REF] M'gonigle | Sexual selection enables long-term coexistence despite ecological equivalence[END_REF], this form of selection plays a very important role in speciation. We are interested in the particular case of sympatric speciation which is the process through which new species evolve from a single ancestral species while sharing the same space and resources. In this case, it has been observed that "nonrandom mating is a prerequisite for evolutionary branching" [START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF][START_REF] Ethier | Markov processes[END_REF]. What is more, biological examples of speciation that involve well studied mechanisms of sexual selection are numerous [START_REF] Otte | Speciation in hawaiian crickets[END_REF][START_REF] Shaw | Divergence of mate recognition behavior and its consequences for genetic architectures of speciation[END_REF][START_REF] Mendelson | Sexual behaviour : rapid speciation in an arthropod[END_REF][START_REF] Boul | Sexual selection drives speciation in an amazonian frog[END_REF][START_REF] Seehausen | Speciation through sensory drive in cichlid fish[END_REF]. However, as raised by recent reviews on speciation [START_REF] Doorn | Sympatric Speciation by Sexual Selection : A Critical Reevaluation[END_REF][START_REF] Gavrilets | Models of speciation : where are we now[END_REF], mathematical models allowing to theoretically account for this phenomenon are still needed, and existing models are studied using numerical simulations : for instance in [86] and [START_REF] M'gonigle | Sexual selection enables long-term coexistence despite ecological equivalence[END_REF], the authors obtain speciation scenarios under strong mating preference and constant population size hypotheses, and for reduced range of parameters ; in [START_REF] Van Doorn | Sympatric speciation and extinction driven by environment dependent sexual selection[END_REF] the authors get speciation by combining sexual and ecological selection ; or in [START_REF] Doebeli | A quantitative genetic competition model for sympatric speciation[END_REF][START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF] in addition to assortative mating, individuals vary in their ability to consume the resource.

In this chapter, we consider a population of haploid individuals characterized by their genotype at one multi-allelic locus, and by their position on a space that is divided in several patches. This population is modeled by a multi-type birth and death process with competition, which is ecologically neutral in the sense that individuals with different genotypes are not characterized by different adaptations to environment or by different resource preferences. However, individuals reproduce sexually according to mating preferences that depend on their genotype : two individuals having the same genotype have a higher probability of mating success. Besides, individuals can migrate from one patch to another, at a rate depending on the number of individuals carrying the other genotype and living in the same patch. Such stochastic individual-based models with competition and varying population size have been introduced in [START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF][START_REF] Dieckmann | Relaxation projections and the method of moments[END_REF] and made rigorous in a probabilistic setting in the seminal paper of Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. Then they have been studied notably in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF][START_REF] Champagnat | From individual stochastic processes to macroscopic models in adaptive evolution[END_REF][START_REF] Costa | Stochastic eco-evolutionary model of a prey-predator community[END_REF]. Initially restricted to asexual populations, such models have evolved to incorporate the case of sexual reproduction, in both haploid [START_REF] Smadi | An eco-evolutionary approach of adaptation and recombination in a large population of varying size[END_REF] and diploid [START_REF] Collet | A rigorous model study of the adaptive dynamics of mendelian diploids[END_REF][START_REF] Coron | Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size[END_REF] populations. To our knowledge, there exist few individual-based models that take into account a component of sexual preference. In [START_REF] Rudnicki | Model of phenotypic evolution in hermaphroditic populations[END_REF] the authors considered both random and assortative mating in a phenotypically structured population. The main difference with our approach is that we consider assortative mating for ecologically equivalent populations.

We study both the stochastic individual-based model and its deterministic limit in large population. We give a complete description of the equilibria of the limiting deterministic dynamical system, and prove that the stable equilibria are the ones where only one genotype survives in each patch. We use classical arguments based on Lyapunov functions ( [START_REF] Lasalle | Some extensions of liapunov's second method[END_REF]32]) to derive the convergence at exponential speed of the solution to one of the stable equilibria, depending on the initial condition. Our theoretical results hold for small migration rates but we conjecture using simulations that they hold for all the possible migration rates. This fine study of the large population limit is essential to derive the behavior of the stochastic process. Using coupling techniques with branching processes, we derive bounds for the time needed for speciation to occur in the stochastic process. These bounds are explicit functions of the individual birth rate and the mating preference parameter. Besides, we propose several generalisations of our model, and prove that our findings are robust for those generalisations.

The structure of the chapter is the following. In Section 4.1 we describe the model and present the main results. In Sections 4.2 and 4.3 we state properties of the deterministic limit and of the stochastic population process, respectively. They are key tools in the proofs of the main results, which are then completed. In Section 4.4 we illustrate our findings and make conjecture on a more general result with the help of numerical simulations. Section 4.5 is devoted to some generalisations of the model. Finally, we state in the Appendix technical results needed in the proofs.

Model and main results

We consider a sexual haploid population with Mendelian reproduction ( [START_REF] Griffiths | An Introduction to Genetic Analysis[END_REF], chap. 3). Each individual carries an allele belonging to the genetic type space A := {A, a}, and lives in a patch i in I = {1, 2}. We denote by E = A × I the type space, by (e α,i , (α, i) ∈ E ) the canonical basis of R E , and by ᾱ the complement of α in A. The population is modeled by a multi-type birth and death process with values in N E . More precisely, if we denote by n α,i the current number of α-individuals in the patch i and by n = (n α,i , (α, i) ∈ E ) the current state of the population, then the birth rate of an α-individual in the patch i writes

λ α,i (n) = b n α,i β n α,i n α,i + n ᾱ,i + 1 2 n α,i n ᾱ,i n α,i + n ᾱ,i + 1 2 n ᾱ,i n α,i n α,i + n ᾱ,i = bn α,i βn α,i + n ᾱ,i n α,i + n ᾱ,i .
(4.1.1) The parameter b > 0 scales the individual birth rate while the parameter β > 1 represents the "mating preference" and can be interpreted as follows : two mating individuals have a probability β times larger to give birth to a viable offspring if they carry the same allele α. This modeling of mating preferences (that are directly determined by the genome of each individual) is biologically relevant, considering [START_REF] Hollocher | Incipient speciation by sexual isolation in drosophila melanogaster : variation in mating preference and correlation between sexes[END_REF] or [START_REF] Haesler | Inheritance of female mating preference in a sympatric sibling species pair of lake victoria cichlids : implications for speciation[END_REF] for instance. In the same way, the death rate of α-individuals in the patch i writes

d K α,i (n) = d + c K (n α,i + n ᾱ,i ) n α,i , (4.1.2) 
where K is an integer accounting for the quantity of available resources or space. This parameter is related to the concept of carrying capacity, which is the maximum population size that the environment can sustain indefinitely, and is consequently a scaling parameter for the size of the community. The individual intrinsic death rate d is assumed to be non negative and less than b :

0 ≤ d < b. (4.1.3)
The death rate definition (4.1.2) implies that all the individuals are ecologically equivalent : the competition pressure does not depend on the alleles α and α carried by the two individuals involved in an event of competition for food or space. The frequency of ᾱ-individuals in the patch. It reflects the fact that individuals prefer being in an environment with a majority of individuals of their own type. In particular, if all the individuals living in a patch are of the same type, there is no more migration outside this patch. Remark that the migration rate from patch ī to i is equal for α-and ᾱ-individuals, hence to simplify notation, we denote

ρ¯i →i (n) = ρ α, ī→i (n) = ρ ᾱ, ī→i (n).
Extensions of this model are presented and studied in Section 4.5.

The community is therefore represented at all time t ≥ 0 by a stochastic process with values in R E :

(N K (t), t ≥ 0) = (N K α,i (t), (α, i) ∈ E , t ≥ 0),
whose transitions are, for n ∈ N E and (α, i) ∈ E :

n -→ n + e α,i at rate λ α,i (n), -→ n -e α,i at rate d K α,i (n), -→ n + e α,i -e α, ī at rate ρ¯i →i (n).
As originally done by Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], it is convenient to represent a trajectory of the process N K as the unique solution of a system of stochastic differential equations driven by Poisson point measures. We introduce twelve independent Poisson point measures (R α,i , M α,i , D α,i , (α, i) ∈ E ) on R 2 + with intensity ds dθ. These measures represent respectively the birth, migration and death events in the population N K α,i . We obtain for every t ≥ 0,

N K (t) = N K (0) + ∑ (α,i)∈E t 0 ∞ 0 e α,i 1 {θ≤λ α,i (N K (s-))} R α,i (ds, dθ) - t 0 ∞ 0 e α,i 1 {θ≤d K α,i (N K (s-))} D α,i (ds, dθ) + t 0 ∞ 0 (e α, ī -e α,i )1 {θ≤ρ¯i →i (N K (s-))} M α,i (ds, dθ) . (4.1.5)
In the sequel, we will assume that the initial population sizes (N K α,i (0), (α, i) ∈ E ) are of order K. As a consequence, we consider a rescaled stochastic process

(Z K (t), t ≥ 0) = (Z K α,i (t), (α, i) ∈ E , t ≥ 0) = N K (t) K , t ≥ 0 ,
which will be comparable to a solution of the dynamical system

               d dt z A,1 (t) = z A,1 b βz A,1 +z a,1 z A,1 +z a,1 -d -c(z A,1 + z a,1 ) -p z a,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z a,1 (t) = z a,1 b βz a,1 +z A,1 z A,1 +z a,1 -d -c(z A,1 + z a,1 ) -p z A,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z A,2 (t) = z A,2 b βz A,2 +z a,2 z A,2 +z a,2 -d -c(z A,2 + z a,2 ) -p z a,2
z A,2 +z a,2 + p 

(z (z 0 ) (t), t ≥ 0) = (z (z 0 ) α,i (t), (α, i) ∈ E ) t≥0
the unique solution to (4.1.6) starting from z(0) = z 0 ∈ R E + . The uniqueness derives from the fact that the vector field is locally lipschitz and that the solutions do not explode [32]. We have the following classical approximation result which will be proven in Appendix 4.A : Lemma 4.1.1. Let T be in R * + . Assume that the sequence (Z K (0), K ≥ 1) converges in probability when K goes to infinity to a deterministic vector z 0 ∈ R E + . Then

lim K→∞ sup s≤T Z K (s) -z (z 0 ) (s) = 0 in probability, (4.1.7)
where . denotes the L ∞ -Norm on R E .

When K is large, this convergence result allows one to derive the global behaviour of the population process N K from the behaviour of the differential system (4.1.6). Therefore, a fine study of (4.1.6) is needed. To this aim, let us introduce the parameter The equilibria (4.1.11) and (4.1.12) correspond to the case where reproductive isolation occurs since the gene flow between the two patches ends to be null. Recall that we assumed assortative mating, that is to say β > 1. If β = 1, the dynamics of the solutions are completely different. In particular depending on the initial condition, the solution will converge to different equilibria with a nonzero migration rate, that is without reproductive isolation. In this case, the equilibria of the system which lay in D are exactly the line

ζ := βb -d c , ( 4 
(β + 1) -2d 4c , b(β + 1) -2d 4c , b(β + 1) -2d 4c , b(β + 1) -2d 4c (4.1.13) ζ + √ ∆ 2 , ζ - √ ∆ 2 , ζ, ζ , ζ - √ ∆ 2 , ζ + √ ∆ 2 , ζ, ζ , (4.1.14) ζ, ζ, ζ + √ ∆ 2 , ζ - √ ∆ 2 , ζ, ζ, ζ - √ ∆ 2 , ζ + √ ∆ 2 . ( 4 
L = {u(x) = (ζ -x, x, x, ζ -x), x ∈ [0, ζ/2)}. For any x ∈ [0, ζ],
the Jacobian matrix at the equilibrium u(x) admits 0 as an eigenvalue (associated with the eigenvector (1, -1, -1, 1), direction of the line L) and three negative eigenvalues. The following Proposition states that for each x, we can construct particular trajectories of the system which converge to u(x). Proposition 4.1.1. Let us introduce for any w ∈ (0, +∞) and x ∈ [0, w] the vector v(w, x) = (wx, x, x, wx).

The solution z (v(w,x)) of the system (4.1.6) with β = 1 such that z (v(w,x)) (0) = (wx, x, x, wx) converges when t → ∞ to the equilibrium u(ζx/w).

In particular, the equilibria (4. 1.11) are not asymptotically stable since solutions starting in any neighborhood of (4.1.11) can converge to different equilibria.

As a consequence, we assume β > 1 in the sequel. The following theorem gives the long-time convergence of the dynamical system (4.1.6) toward a stable equilibrium of interest, when starting from an explicit subset of R E + . To state this latter, we need to define the positive real number

p 0 = b(β -1)[b(3β + 1) -4d] -b(β -1) 2 , ( 4.1.16) 
and the two subsets of R E

+ D := {z ∈ R E + , z A,1 -z a,1 > 0, z a,2 -z A,2 > 0}, (4.1.17) 
and, for p < b(β + 1) -2d, -If the initial condition of (4.1.6) lies in K p , there exist two positive constants k 1 and k 2 , depending on the initial condition, such that for every t ≥ 0,

K p := z ∈ D, {z A,1 + z a,1 , z A,2 + z a,2 } ∈ b(β + 1) -2d -p 2c , 2bβ -2d + p 2c .
z(t) -(ζ, 0, 0, ζ) ≤ k 1 e -k 2 t .
Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ).

Notice that the limit reached depends on the genotype which is in the majority in each patch, since the subset D is invariant under the dynamical system (4.1.6). Secondly, when p = 0, the results of Theorem 4.1.2 can be proven easily since the two patches are independent from each other. The difficulty is thus to prove the result when p > 0. Our argument allows us to deduce an explicit constant p 0 under which we have convergence to an equilibrium with reproductive isolation between patches. However, we are not able to deduce a result for all p although simulations suggest that the result holds for all p (see Section 4.4). Indeed, when p increases, there are more mixing between the two patches which makes the model difficult to study.

Let us now introduce our main result on the probability and the time needed for the stochastic process N K to reach a neighborhood of the equilibria defined in (4.1.11).

Theorem 4.1.3. Assume that Z K (0) converges in probability to a deterministic vector z 0 belonging to D, with (z 0 a,1 , z 0 A,2 ) = (0, 0). Introduce the following bounded set depending on ε > 0 :

B ε := [(ζ -ε)K, (ζ + ε)K] × {0} × {0} × [(ζ -ε)K, (ζ + ε)K].
Then there exist three positive constants ε 0 , C 0 and m, and a positive constant V depending on (m, ε 0 ) such that if p < p 0 and ε ≤ ε 0 ,

lim K→∞ P T K B ε log K - 1 b(β -1) ≤ C 0 ε, N K T K B ε + t ∈ B mε ∀t ≤ e VK = 1, (4.1.19)
where T K B , B ⊂ R E + is the hitting time of the set B by the population process N K . Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ).

The assumption on the initial state is necessary to get the lower bound in (4.1.19). Indeed, if (z 0 a,1 , z 0 A,2 ) = (0, 0), the set B ε is reached faster, and thus only the upper bound still holds. Secondly, observe that the time needed to reach a reproductive isolation is inversely proportional to β -1 which, as studied previously, suggests that the system behaves differently for β = 1. Finally, Theorem 4.1.3 gives not only an estimation on the time to reach a neighborhood of the limit, but also it proves that the dynamics of the population process stays a long time in the neighborhood of equilibria (4.1.11) after this time.

Studies of the dynamical system

In this section, we study the dynamical system (4.1.6) in order to prove Theorems 4.1.1 and 4.1.2. In the first subsection, we are concerned with the equilibria of (4.1.6) and their local stability (Theorem 4.1.1). In the second subsection, we look more closely at the case where the migration rate p is lower than p 0 and prove the convergence of the solution to (4.1.6) toward one of the equilibria with an exponential rate once the trajectory belongs to K p (Theorem 4.1.2).

Fixed points and stability

First of all, we prove that all nonnegative and non-zero stationary points of (4.1.6) are given in Theorem 4.1.1. Let us write the four equations defining equilibria (z A,1 , z a,1 , z A,2 , z a,2 ) of the dynamical system (4.1.6) : 

z A,1 b βz A,1 + z a,1 z A,1 + z a,1 -d -c(z A,1 + z a,1 ) -p z a,1 z A,1 + z a,1 + p z A,
(z A,i -z a,i ) bβ -d -c(z A,i + z a,i ) = 0, i ∈ I.
Therefore equilibria are defined by the four following cases : 

       z A,1 = z a,1 or z A,1 + z a,1 = (bβ -d)/c and        z A,2 = z a,2 or z A,2 + z a,2 = (bβ -d)/c. 1st case : z A,1 = z a,
(β + 1) 2 -d -2cz A,1 - p 2 = - z A,2 p 2 , and - z A,1 p 2 = z A,2 b (β + 1) 2 -d -2cz A,2 - p 2 .
By summing, we get P(z A,1 ) = P(z A,2 ) where P is the polynomial function defined by : P

(X) = X b (β + 1) 2 -d -p -2cX 2 ,
whose roots are 0 and b(β + 1) -2d -2p 4c .

Then, either z A,1 = z A,2 or z A,1 and z A,2 are symmetrical with respect to the maximum of P which leads to

z A,1 = b(β + 1) -2d -2p 4c -z A,2 .
In the first case z A,1 = z A,2 , Equation (4.2.1) implies that either z A,1 = 0, which gives the null equilibrium or

z A,1 = b(β + 1) -2d 4c ,
which gives equilibrium (4.1.13). In the second case, we inject the expression of z A,2 in (4.2.1) to obtain that z A,1 satisfies :

-2cX 2 + AX + p 4c A = 0, with A = b(β + 1)/2 -d -p.
The discriminant of this degree 2 equation is A(A + 2p). Therefore, either

z A,1 = A + A(A + 2p) 4c and z A,2 = A -A(A + 2p) 4c , or z A,1 = A -A(A + 2p) 4c and z A,2 = A + A(A + 2p) 4c .
However, these equilibria are not positive.

2nd case : z A,1 + z a,1 = (bβ -d)/c = ζ = z A,2 + z a,2 .
As previously, we obtain

(b(β -1) + p)z A,1 z A,1 ζ -1 = pz A,2 z A,2 ζ -1 , and pz A,1 z A,1 ζ -1 = (b(β -1) + p)z A,2 z A,2 ζ -1 .
By summing these equalities, we get Q

(z A,1 ) = Q(z A,2 ) with Q(X) = X X ζ -1 b(β -1) + 2p .
The discriminant ∆ of the degree 2 Equation (4.2.6) was introduced in Equation (4.1.9). A simple computation gives the sign of ∆ :

∆ = ζ 2 -4C = ζ 2 - pζ 2c(b(β -1) + p) 2 b 2 (β 2 -1) + 2p(b -d) -2bd(β -1) = ζ 2c(b(β -1) + p) 2 2b 2 (β -1) 2 (bβ -d) + 2bp(β -1)[bβ -d + p] + b 2 (β -1) 2 p > 0.
(4.2.7) Thus (4.2.6) has two distinct solutions :

z + A,2 = ζ + √ ∆ 2 > 0 and z - A,2 = ζ - √ ∆ 2 .
Since C > 0, both roots z - A,2 and z + A,2 are strictly positive. We finally deduce from (4.2.5) and ( 4

.2.6) that in both cases z A,2 = z - A,2 and z A,2 = z + A,2 then z A,1 = z a,1 = b 2 (β 2 -1) + 2p(b -d) -2bd(β -1) 4c(b(β -1) + p) .
This gives equilibrium (4. 1.14), by symmetry between patches 1 and 2.

The end of this subsection provides a detailed exposition of the stability of fixed points of (4.1.6). We consider separately each equilibrium and use symmetries of the dynamical system between patches 1 and 2 and between alleles A and a. Equilibrium (4.1.10) : By subtracting (4.2.2) from (4.2.1), we obtain : We consider the equilibrium (ζ, 0, 0, ζ). The Jacobian matrix of the dynamical system at this fixed point is :

d dt (z A,1 -z a,1 ) = (z A,1 -z a,1 ) bβ -d -c(z A,1 + z a,1
      -(bβ -d) b(1 -2β) + d -p p 0 0 b(1 -β) -p p 0 0 p b(1 -β) -p 0 0 p b(1 -2β) + d -p -(bβ -d)      
This matrix admits four negative eigenvalues : -b(β -1), -b(β -1) -2p, and an eigenvalue with multiplicity two -(bβd). The equilibrium is therefore asymptotically stable.

Equilibrium (4.1.12) : We consider the equilibrium (0, ζ, 0, ζ). The Jacobian matrix of the dynamical system at this fixed point is :

      b(1 -β) -p 0 p 0 b(1 -2β) + d -p -(bβ -d) p 0 p 0 b(1 -β) -p 0 p 0 b(1 -2β) + d -p -(bβ -d)      
The eigenvalues of this matrix are all negative : -b(β -1), -b(β -1) -2p, and the eigenvalue with multiplicity two -(bβd). The equilibrium is therefore asymptotically stable.

Equilibrium (4.1.13) : The Jacobian matrix of the dynamical system at this fixed point is : Recall the definition of ζ in (4.1.9) and assume that z A,1 = z a,1 = ζ. We first prove that at this fixed point,

1 4       2(d -b) -p 2(d -bβ) -p p p 2(d -bβ) -p 2(d -b) -p p p p p 2(d -b) -p 2(d -bβ) -p p p 2 
z A,1 + z a,1 = 2 ζ < ζ, (4.2.9) which is equivalent to b 2 (β 2 -1) + 2p(b -d) -2bd(β -1) < 2(b(β -1) + p)(bβ -d).
A straightforward computation leads to

b 2 (β 2 -1) + 2p(b -d) -2bd(β -1) -2(b(β -1) + p)(bβ -d) = -b(β -1)(2p + b(β -1)),
which is negative and thus proves the inequality. From (4.2.9) we deduce that near the equilibrium (4.1. 

= z A,1 + z a,1 + z A,2 + z a,2 satisfies dn dt = n(βb -d) -2b(β -1) z A,1 z a,1 z A,1 + z a,1 + z A,2 z a,2 z A,2 + z a,2 -c((z A,1 + z a,1 ) 2 + (z A,2 + z a,2 ) 2 ). Since (a + b) 2 ≤ 2(a 2 + b 2 ) for every real numbers (a, b), dn dt ≤ n βb -d - c 2 n .
Using classical results on logistic equations, we deduce that lim sup t→+∞ n(t) ≤ 2ζ. (4.2.12)

Let ε be positive, and suppose that for any t > 0, (z A,1 + z a,1 )(t) ≤ ζε, then using (4.2.8) we have for t ≥ 0,

z A,1 (t) ≥ (z A,1 -z a,1 )(t) ≥ (z A,1 -z a,1 )(0)e cεt → t→+∞ +∞. (4.2.13)
This contradicts (4.2.12). As a consequence,

∃ t < ∞, (z A,1 + z a,1 )(t) ≥ ζ -ε. (4.2.14)
In particular, this result holds for ζε 0 = z min where ε 0 = (p + b(β -1))/2c. Furthermore, the dynamics of the total population size in the patch 1 satisfies the following equation :

d dt (z A,1 + z a,1 ) =(z A,1 + z a,1 )(bβ -d -c(z A,1 + z a,1 )) -2(b(β -1) + p) z A,1 z a,1 z A,1 + z a,1 + 2p z A,2 z a,2 z A,2 + z a,2 . 
(4.2.15)

This contradicts (4.2.19). Thus, the total population size of the patch 1 is lower than z maxα after a finite time. Moreover, (4.2.18) ensures that once the total population size of the patch 1 has reached the threshold z max , it stays smaller than this threshold. Reasoning similarly for the patch 2, we finally find a finite time such that the trajectory hits the compact K p and remains in it afterwards. This ends the proof of Lemma 4.2.1.

As D is invariant under the dynamical system (4.1.6), we can consider the function V : D → R :

V(z) = ln z A,1 + z a,1 z A,1 -z a,1 + ln z a,2 + z A,2 z a,2 -z A,2 . (4.2.22)
It characterizes the dynamics of (4.1.6) on K p . Indeed, as proved in the next lemma, V is a Lyapunov function if p is sufficiently small. This will allow us to prove that the solutions to (4.1.6) converge to (ζ, 0, 0, ζ) exponentially fast as soon as their trajectory hits the set K p . Before stating the next lemma, we introduce the positive real number : 

C 1 := 1 2 2b(β -1) + 2p z min - 2p z max , ( 4 
∈ K p , z α i ,i -z ᾱi ,i ≤ z α i ,i + z ᾱi ,i , where α 1 = A, α 2 = a and ᾱi = A \ α i . Thus, V(z) ≥ 0. Now, d dt V(z(t)) = żA,1 (t) + ża,1 (t) z A,1 (t) + z a,1 (t) -żA,1 (t) -ża,1 (t) z A,1 (t) -z a,1 (t) + żA,2 (t) + ża,2 (t) z A,2 (t) + z a,2 (t) - ża,2 (t) -żA,2 (t) z a,2 (t) -z A,2 (t) = -∑ i=1,2 z A,i z a,i z A,i + z a,i 2b(β -1) + 2p z A,i + z a,i - 2p z A, ī + z a, ī , ( 4 
(β -1) p > max z A,1 + z a,1 z A,2 + z a,2 -1, z A,2 + z a,2 z A,1 + z a,1 -1 . ( 4 

.2.26)

Since z belongs to K p , the r.h.s of (4.2.26) can be bounded from above by

z max z min -1 = b(β -1) + 2p b(β + 1) -2d -p . Therefore, the condition (4.2.26) is satisfied if b(β -1) p > b(β -1) + 2p b(β + 1) -2d -p , that is, if p < b(β -1)[b(3β + 1) -4d] -b(β -1) 2 = p 0 ,
and under this condition,

2b(β -1) + 2p z A,i + z a,i - 2p z A, ī + z a, ī ≥ 2C 1 , z ∈ K p , i ∈ I.
Moreover, as the set D is invariant under the dynamical system (4.1.6), z A,1 stays larger that z a,1 , and

z A,1 z A,1 + z a,1 ≥ 1 2 . 
In the same way,

z a,2 z A,2 + z a,2 ≥ 1 2 . 
As a consequence, the first derivative of V satisfies (4.2.24) for every t ≥ 0.

We now have all the ingredients to prove Theorem 4.1.2.

Proof of Theorem 4.1.2

Notice first that

p 0 = b(β -1)[b(3β + 1) -4d] -b(β -1) 2 < b(β + 1) -2d ⇐⇒ b(β + 1) > 2d,
which is true according to Assumption (4.1.3) and as β > 1. This justifies the assumption p < p 0 of the theorem. Lemma 4.2.1 states that any solution to (4.1.6) starting from the set D reaches K p after a finite time. Then, let us show that because of Lemma 4.2.2, any solution to (4.1.6) which starts from K p converges exponentially fast to (ζ, 0, 0, ζ) when t tends to infinity. To do this, we need to introduce some positive constants

C 2 := z 2 min e -V(z(0)) , C 3 := 2 C 2 z max C 4 := z max 2 V(z(0)), C 5 := z(4bβ -2d + 3p)C 4 ,
where we recall that z min and z max have been defined in (4.2.11).

First, we prove that the population density differences z A,1z a,1 and z a,2z A,2 cannot be too small. To do this, we use the decay of the function V stated in Lemma 4.2.2 :

V(z(0)) ≥ V(z(t)) = ln z A,1 (t) + z a,1 (t) z A,1 (t) -z a,1 (t) z a,2 (t) + z A,2 (t) z a,2 (t) -z A,2 (t) ≥ ln z 2 min (z A,1 (t) -z a,1 (t))(z a,2 (t) -z A,2 (t)) . This implies that (z A,1 (t) -z a,1 (t))(z a,2 (t) -z A,2 (t)) ≥ C 2 . (4.2.27)
Now, from the inequality ln x ≤ x -1 for x ≥ 1 we deduce for z in K p ,

V(z) ≤ z A,1 + z a,1 z A,1 -z a,1 -1 + z a,2 + z A,2 z a,2 -z A,2 -1 = 2 z a,1 (z a,2 -z A,2 ) + z A,2 (z A,1 -z a,1 ) (z A,1 -z a,1 )(z a,2 -z A,2 ) ≤ C 3 (z a,1 + z A,2 ), (4.2.28) 
where we have used inequality (4.2.27). Then combining (4.2.24) and (4.2.28), we get

d dt V(z(t)) ≤ - C 1 C 3 V(z(t)), (4.2.29) 
which implies for every t ≥ 0 :

V(z(t)) ≤ V(z(0))e -C 1 t/C 3 . ( 4 

.2.30)

Now, from the inequality ln x ≥ (x -1)/x for x ≥ 1 we deduce for z in K p , 

V(z) ≥ z A,1 + z a,1 z A,1 -z a,1 -1 z A,1 -z a,1 z A,1 + z a,1 + z a,2 + z A,2 z a,2 -z A,2 -1 z a,2 -z A,2 z a,2 + z A,2 = 2z a,1 z A,1 + z a,1 + 2z A,2 z a,2 + z A,2 ≥ 2 z max (z a,1 + z A,2 ). ( 4 
d dt (z A,1 (t) -ζ) 2 = -2cz A,1 (t) (z A,1 (t) -ζ) 2 + 2pz a,2 (t)(z A,1 (t) -ζ) z A,2 (t) z A,2 (t) + z a,2 -2z a,1 (t)(z A,1 (t) -ζ) cz A,1 (t) + (p + b(β -1)) z A,1 (t) z A,1 (t) + z a,1 (t) ≤ -cz min (z A,1 (t) -ζ) 2 + 2pζz A,2 (t) + 2ζz a,1 (t) (cz max + p + b(β -1)) ≤ -cz min (z A,1 (t) -ζ) 2 + ζ(4bβ -2d + 3p)(z a,1 (t) + z A,2 (t)) ≤ -cz min (z A,1 (t) -ζ) 2 + C 5 e -C 1 t/C 3 .
Hence, a classical comparison of nonnegative solutions of ordinary differential equations yields

(z A,1 (t) -ζ) 2 ≤ (z A,1 (0) -ζ) 2 - C 5 cz min -C 1 /C 3 e -cz min t + C 5 cz min -C 1 /C 3 e -C 1 t/C 3 ,
which gives the exponential convergence of z A,1 to ζ. Reasoning similarly for the term z a,2 ends the proof of Theorem 4.1.2.

Stochastic process

In this section, we study properties of the stochastic process (N K (t), t ≥ 0). We derive an approximation for the extinction time of subpopulations under some small initial conditions, and then combine the results of this section with these on dynamical system (Section 4.2) to prove Theorem 4.1.3.

Approximation of the extinction time

Let us first study the stochastic system (Z K (t), t ≥ 0) around the equilibrium (ζ, 0, 0, ζ) when K is large. The aim is to estimate the time before the loss of all aindividuals in the patch 1 and all A-individuals in the patch 2, which we denote by

T K 0 = inf{t ≥ 0, Z K a,1 (t) + Z K A,2 (t) = 0}. (4.3.1)
Recall that ζ = (bβd)c -1 > 0 and that the sequence of initial states (Z K (0), K ≥ 1) converges in probability when K goes to infinity to a deterministic vector

z 0 = (z 0 A,1 , z 0 a,1 , z 0 A,2 , z 0 a,2 ) ∈ R E + .
Proposition 4.3.1. There exist two positive constants ε 0 and C 0 such that for any ε ≤ ε 0 , if there exists

η ∈]0, 1/2[ such that max(|z 0 A,1 -ζ|, |z 0 a,2 -ζ|) ≤ ε and ηε/2 ≤ z 0 a,1 , z 0 A,2 ≤ ε/2, then for any C > (b(β -1)) -1 + C 0 ε, P(T K 0 ≤ C log(K)) → K→+∞ 1, for any 0 ≤ C < (b(β -1)) -1 -C 0 ε, P(T K 0 ≤ C log(K)) → K→+∞ 0.
Remark that the upper bound on T K 0 still holds if z 0 a,1 = 0 or z 0 A,2 = 0. Moreover, if z 0 a,1 = z 0 A,2 = 0, then the upper bound is satisfied with C 0 = 0. In the case where η = 0, the upper bound of the extinction time still holds but not the lower bound. Indeed, as the initial conditions z 0 a,1 and z 0 A,2 go to 0, the extinction time is faster.

Proof. The proof relies on several coupling arguments. Our first step is to prove that the population sizes Z K A,1 and Z K a,2 remain close to ζ on a long time scale. In a second step, we couple the processes Z K a,1 and Z K A,2 with subcritical branching processes whose extinction times are known. We begin with introducing some additional notations : for any γ, ε > 0 and (α,

i) ∈ E , R K,γ α,i = inf{t ≥ 0, |Z K α,i (t) -ζ| ≥ γ}, ( 4.3.2) 
and

T K,ε α,i = inf{t ≥ 0, Z K α,i (t) ≥ ε}. ( 4.3.3) 
Step 1 : The first step consists in proving that as long as the population processes Z K a,1 and Z K A,2 have small values, the processes Z K A,1 and Z K a,2 stay close to ζ. To this aim, we study the system on the time interval

I K,ε 1 := 0, R K,ζ/2 A,1 ∧ R K,ζ/2 a,2 ∧ T K,ε a,1 ∧ T K,ε A,2 ,
where a ∧ b stands for min(a, b).

Let us first bound the rates of the population process Z K A,1 . -We start with the birth rate of A-individuals in the patch 1. Let us remark that as β > 1, the ratio (βx + y)/(x + y) ≤ β for any x, y ∈ R + . Moreover, the function x → (βx + y)/(x + y) increases with x, for any y ∈ R + . Combining these observations with the fact that for any

t < T K,ε a,1 ∧ R K,ζ/2 A,1 , 0 ≤ Z K a,1 (t) ≤ ε and Z K A,1 (t) ≥ ζ/2,
we deduce that the birth rate of A-individuals in the patch 1, K λ A,1 (Z K ), defined in (4.A.1) can be bounded :

bβ ζ ζ + 2ε KZ K A,1 ≤ K λ A,1 (Z K ) ≤ bβKZ K A,1 .
-The migration rate of A-individuals from the patch 2 to the patch 1 is sandwiched as follows for any

t < T K,ε a,1 ∧ R K,ζ/2 A,1 : 0 ≤ K ρ 2→1 (Z K ) ≤ Kpε.
-The death rate of A-individuals in the patch 1 and the migration rate from patch 1 to patch 2 are bounded as follows :

(d + cZ K A,1 )KZ K A,1 ≤ K d A,1 (Z K ) ≤ (d + cε + cZ k A,1 )KZ K A,1 , 0 ≤ K ρ 1→2 (Z K ) ≤ Kpε.
Hence, using an explicit construction of the process Z K A,1 by means of Poisson point measures as in (4.1.5), we deduce that on the time interval

I K,ε 1 , Z K A,1 is stochastically bounded by Y K in f Z K A,1 Y K sup ,
where Y K in f is a N/K-valued Markov jump process with transition rates

Kbβ 1 - 2ε ζ + 2ε i K from i K to (i + 1) K , K d + cε + c i K i K + pε from i K to (i -1) K ,
and initial value Z K A,1 (0), and Y K sup is a N/K-valued Markov jump process with transition rates

K bβ i K + pε from i K to (i + 1) K , K d + c i K i K from i K to (i -1) K .
and initial value Z K A,1 (0). Let us focus on the process Y K in f . Using a proof similar to the one of Lemma 4.1.1, we prove that since the sequence (Y K in f (0), K ≥ 1) converges in probability to the deterministic value z

0 A,1 , lim K→+∞ sup s≤t |Y K in f (s) -Φ in f (s)| = 0 a.s
for every finite time t > 0, where Φ in f is the solution to

Φ (t) = bβ(1 -2ε/(ζ + 2ε))Φ(t) -pε -(d + cε + cΦ(t))Φ(t) (4.3.4)
with initial value z 0 A,1 . Let us study the trajectory of Φ in f . The polynomial in Φ(t) on the r.h.s. of (4.3.4) has two roots

Φ ± in f = 1 2c   bβ 1 - 2ε ζ + 2ε -d -cε ± bβ 1 - 2ε ζ + 2ε -d -cε 2 -4pcε   = ζ 2 - ε 2 2bβ (ζ + 2ε)c + 1 ± ζ 2 - ε 2 2bβ (ζ + 2ε)c + 1 2 - pε c . (4.3.5) As a consequence, Φ > 0 if and only if Φ ∈]Φ - in f , Φ + in f [. Definition (4.3.5) implies that for small ε, Φ - in f ∼ pcε.
Hence, if ε 0 is chosen sufficiently small and for any ε < ε 0 ,

Φ - in f ≤ 2pcε 0 < z 0 A,1 .
Thus, we observe that any solution to (4.3.4) with initial condition Φ in f (0) ∈ [2pcε 0 , +∞[ is monotonous and converges to Φ + in f . Similarly, we obtain that if ε 0 is sufficiently small, then there exists M > 0 such that for any ε < ε 0 , |Φ + in f -ζ| ≤ M ε. We define the stopping time

R K,M Y K in f = inf t ≥ 0, Y K in f ∈ [ζ -(M + 1)ε, ζ + (M + 1)ε] .
As in the proof of Theorem 3/(c) in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], we can construct a family of Markov jump processes Y K in f with transition rates that are positive, bounded, Lipschitz and uniformly bounded away from 0, for which we can find the following estimate (Chapter 5 of Freidlin and Wentzell [START_REF] Freidlin | of Grundlehren der Mathematischen Wissenschaften[END_REF]) : there exists V > 0 such that,

P(R K,M Y K in f > e KV ) = P(R K,M Y K in f > e KV ) → K→+∞ 1.
We can deal with the process Y K sup similarly and find M > 0 and V > 0 such that

P(R K,M Y K sup > e KV ) → K→+∞ 1, with R K,M Y K sup = inf t ≥ 0, Y K sup (t) ∈ [ζ -(M + 1)ε, ζ + (M + 1)ε] . Finally, for M = M ∨ M and V = V ∧ V , we deduce that P(R K,M Y K in f ∧ R K,M Y K sup > e KV ) → K→+∞ 1. Moreover, if R K,(M+1)ε A,1 ≤ R K,ζ/2 A,1 ∧ R K,ζ/2 a,2 ∧ T K,ε a,1 ∧ T K,ε A,2 , then R K,(M+1)ε A,1 ≥ R K Y K in f ∧ R K Y K sup . Thus P(R K,ζ/2 A,1 ∧ R K,ζ/2 a,2 ∧ T K,ε a,1 ∧ T K,ε A,2 ∧ e KV > R K,(M+1)ε A,1 ) → K→+∞ 0. (4.3.6)
Using symmetrical arguments for the population process Z K a,2 and assuming that M is sufficiently large and V is sufficiently small, we prove that

P(R K,ζ/2 A,1 ∧ R K,ζ/2 a,2 ∧ T K,ε a,1 ∧ T K,ε A,2 ∧ e KV > R K,(M+1)ε a,2 ) → K→+∞ 0. (4.3.7)
We have finally proved that the processes Z K A,1 and Z K a,2 stay close to ζ.

Note that if ε 0 is sufficiently small, R K,(M+1)ε A,1 ≤ R K,ζ/2 A,1 and R K,(M+1)ε a,2 ≤ R K,ζ/2 a,2
a.s. for all ε < ε 0 . So we reduce our study to the time interval

I K,ε 2 := 0, R K,(M+1)ε A,1 ∧ R K,(M+1)ε a,2 ∧ T K,ε a,1 ∧ T K,ε A,2 .
Step 2 : In the sequel we study the extinction time of the stochastic processes (Z K a,1 (t), t ≥ 0) and (Z K A,2 (t), t ≥ 0). We recall that there exists η ∈]0, 1/2[ such that ηε/2 ≤ z 0 a,1 , z 0 A,2 ≤ ε/2. Bounding the birth and death rates of (Z K a,1 (t), t ≥ 0) and (Z K A,2 (t), t ≥ 0) as previously, we deduce that the sum (Z K a,1 (t) + Z K A,2 (t), t ≥ 0) is stochastically bounded as follows, on the time interval I K,ε 2 :

N K in f K Z K a,1 + Z K A,2 N K sup K .
where N K in f is a N-valued binary branching process with birth rate b + p 

∀C < (D -B) -1 , P(S N 0 ≤ C log(K)) → K→+∞ 0, ∀C > (D -B) -1 , P(S N 0 ≤ C log(K)) → K→+∞ 1.
Moreover, if S N εK denotes the first time before N reaches a size εK ,

P S N 0 > K ∧ S N εK → K→+∞ 0 (4.3.8)
(cf. Theorem 4 in [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF]). Thus

P(T K 0 < C log(K)) -P S N K in f 0 < C log(K) ≤ P T K 0 > T K,ε a,1 ∧ T K,ε A,2 ∧ K + P T K,ε a,1 ∧ T K,ε A,2 ∧ K > R K,(M+1)ε A,1 ∧ R K,(M+1)ε a,2 ≤ P S N K sup 0 > S N K sup εK ∧ K + P T K,ε a,1 ∧ T K,ε A,2 ∧ K > R K,(M+1)ε A,1 ∧ R K,(M+1)ε a,2
.

The last term of the r.h.s converges to 0 when K tends to 0 according to (4.3.6) and (4.3.7). The second term also tends to 0 according to (4.3.8). Thus,

lim K→+∞ P T K 0 < C log(K) ≤ lim K→+∞ P S N K in f 0 < C log(K) .
We prove similarly that lim

K→+∞ P T K 0 < C log(K) ≥ lim K→+∞ P S N K sup 0 < C log(K) .
We conclude the proof by noticing that the growth rates of the processes N K in f and N K sup are equal to -b(β -1) up to a constant times ε.

Proof of Theorem 4.1.3

We can now prove our main result : Let ε be a small positive number. Applying Lemma 4.1.1 and Theorem 4.1.1 we get the existence of a positive real number s ε such that lim K→∞ P N K (s ε ) -(ζK, 0, 0, ζK) ≤ εK/2 = 1. Using Proposition 4.3.1 yields that there exists C 0 > 0 such that lim

K→∞ P T K B ε log K - 1 b(β -1) ≤ C 0 ε = 1,
where by definition, we recall that T K B ε is the hitting time of B ε . Moreover, the migration rates are equal to zero for any t ≥ T K B ε , so

Z K a,1 (t) = Z K A,2 (t) = 0, for any t ≥ T K B ε .
After the time T K B ε , the A-population in the patch 1 and the a-population in the patch 2 evolve independently from each other according to two logistic birth and death processes with birth rate bβ, death rate d and competition rate c. Using Theorem 3(c) in Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptive dynamics trait substitution sequence models[END_REF], we deduce that for any m > 1, there exists V > 0 such that inf

X∈B ε P X (T K B mε ≥ e KV ) → K→+∞ 1,
which ends the proof.

Influence of the migration parameter p : mumerical simulations

In this section, we present some simulations of the deterministic dynamical system (4.1.6). We are concerned with the influence of the migration rate p on the time to reach a neighborhood of the equilibrium (4.1.11). For any value of p, we evaluate the first time T ε (p) such that the solution (z A,1 (t), z a,1 (t), 

S ↑ = (z A,1 , z a,1 , z A,2 , z a,2 ) ∈ R 4 + , (z A,1 -ζ) 2 + z 2 a,1 + z 2 A,2 + (z a,2 -ζ) 2 ≤ ε 2 ,
which corresponds to the first time the solution enters an ε-neighborhood of (ζ, 0, 0, ζ).

In the following simulations, the demographic parameters are given by :

β = 2, b = 2, d = 1 and c = 0.1.
For these parameters,

ζ = 30 and p 0 = √ 5 -1 1.24.
The migration rate as well as the initial condition varies. The simulations are computed with ε = 0.01 and with initial conditions (z A,1 (0), z a,1 (0), z A,2 (0), z a,2 (0)) such that z a,1 (0) = z A,1 (0) -0.1 with z A,1 (0) ∈ {0.3, 0.5, 1, 2, 3, 5, 10, 15} and (z A,2 (0), z a,2 (0)) ∈ {(1, 30), [START_REF] Bouin | Travelling waves for the cane toads equation with bounded traits[END_REF][START_REF] Bouin | Invasion fronts with variable motility : phenotype selection, spatial sorting and wave acceleration[END_REF]}. Figure 4.3 presents the trajectories of some solutions to the dynamical system (4.1.6) in the two phase planes which represent the two patches. We use the same parameters as in Figure 4.2 and the initial conditions are given in the captions. For each initial condition, we plot the trajectories for three different values of p : 0, 1 and 20.

Description of the figures :

Conjecture : First of all, we observe that for all values under consideration, the time T ε (p) to reach the set S ε is finite even if p > p 0 . Therefore, we make the following conjecture :

Conjecture 4.4.1. For any initial condition (z Influence of p when the initial condition in patch 2 is close to the equilibrium : Figure 4.2(a) presents the results for (z A,2 (0), z a,2 (0)) = [START_REF] Addario-Berry | The front location in bbm with decay of mass[END_REF][START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF], that is if the initial condition in the patch 2 is close to its equilibrium (recall that ζ = 30 with the parameters under study). Observe that for any value of (z A,1 (0), z a,1 (0) = z A,1 (0) -0.1), the time for reproductive isolation to occur is reduced when the migration rate is large. Hence, the migration rate seems here to strengthen the homogamy. This is confirmed by present similar behaviors : when p increases, the number of a-individuals in patch 1 decreases at any time whereas the number and the proportion of a-individuals in patch 2 remain almost constant. These behaviors derive from two phenomena. On the one hand, the a-individuals are able to leave patch 1 faster when p is large. On the other hand, the value of p does not affect the migration outside patch 2 which is almost zero in view of the small proportion of A-individuals in the patch 2.

→ T ε (p) -T ε (0). The initial condition is (z A,1 (0), z A,1 (0) -0.1, z A,2 (0), z a,2 ( 
Influence of p when aand A-population sizes are initially similar in patch 2 : On Figure 4.2(b) we are interested in the case where the Aand ainitial populations in patch 2 have a similar size and the sum z A,2 (0) + z a,2 (0) is close to ζ. Observe that for z A,1 (0) ∈ {5, 10, 15}, the time T ε (p) decreases with respect to p but not as fast as previously. By plotting some trajectories when z A,1 (0) = 10 on Figure 4.3(c), we note that the dynamics is not the same as for the previous case (Fig. 4.3(a)). Here, a large migration rate affects the migration outside the two patches in such a way that the equilibrium is reached faster. Finally, Figure 4.2(b) also presents behaviors that are essentially different for z A,1 (0) ∈ {0.3, 0.5, 1, 2, 3}. In these cases, the migration rate does not strengthen the homogamy. We plot some trajectories from this latter case in Figure 4.3(d) where z A,1 (0) = 1. Observe that a high value of p favors the migration outside patch 2 for the two types a and A since the proportions of the two alleles in patch 2 are almost equal at time t = 0. This is not the case in the patch 1 where the value of p does not affect significantly the initial migration outside patch 1 since the population sizes are smaller. Hence, patch 1 is filled by the individuals that flee patch 2 where the migration rate is high. Therefore, both aand Apopulations increase at first, but the A-individuals remain dominant in patch 1 and thus the a-population is disadvantaged. Finally, the a-individuals that flee the patch 2, find a less favorable environment in patch 1 and therefore the time needed to reach the equilibrium is extended because of the dynamics in patch 1. As a conclusion, similarly to the case of selection-migration model (see e.g. [START_REF] Akerman | The consequences of gene flow for local adaptation and differentiation : a two-locus two-deme model[END_REF]) migration can have different impacts on the population dynamics. On the one hand, a large migration rate helps the individuals to escape a disadvantageous habitat [START_REF] Clobert | Dispersal[END_REF] but there are also risks to move through unfamiliar or less suitable habitat. Thus, a trade-off between the two phenomena explains the influence of p on the time to reach the equilibrium.

Generalisations of the model

Until now we studied a simple model to make clear the important properties allowing to get spatial segregation between patches. We now prove that our findings are robust by studying some generalizations of the model and showing that we can relax several assumptions and still get spatial segregation between patches.

Differences between patches

We assumed that the patches were ecologically equivalent in the sense that the birth, death and competition rates b, d and c, respectively, did not depend on the label of the patch i ∈ I. In fact we could make these parameters depend on the patch, and denote them b i , d i and c i , i ∈ I. In the same way, the sexual preference β i and the migration rate p i could depend on the label of the patch i ∈ I. As a consequence, the dynamical system (4.1.6) becomes (4.5.1) The set D is still invariant under this new system and the solutions to (4.5.1) with initial conditions in D hit in finite time the invariant set

               d dt z A,1 (t) = z A,1 b 1 β 1 z A,1 +z a,1 z A,1 +z a,1 -d 1 -c 1 (z A,1 + z a,1 ) -p 1
K p := z ∈ D, z A,i + z a,i ∈ b i (β i + 1) -2d i -p i 2c i , ζ i + p¯i 2c i , i ∈ I ,
where

ζ i := b i β i -d i c i .
As D is an invariant set under (4.5.1), we can define the function V as in (4.2.22) for every solution of V with initial condition in D. Its first order derivative is

d dt V(z(t)) = -∑ i=1,2
z A,i z a,i z A,i + z a,i 2b i (β i -1) + 2p i z A,i + z a,i -2p i z A, ī + z a, ī .

As a consequence, we can prove similar results to Theorems 4.1.2 and 4.1.3 under the assumption that p 1 and p 2 satisfy p i c¯i(2c i ζ i + p¯i) < c i (b i (β i -1) + p i )(b¯i(β¯i + 1) -2d¯i -p¯i), for i ∈ I.

and we assume p(n A, ī, n a, ī) = p(n a, ī, n A, ī) and p(n A, ī, n a, ī) n A, ī + n a, ī n A, īn a, ī < p 0 , where p 0 has been defined in (4.1.16). Note that the second condition on the function p imposes that as one of the population sizes goes to 0, then so does the migration rate. In particular, this condition ensures that the points given by (4.1.11) and (4.1.12) are still equilibria of the system. Theorems 4.1.2 and 4.1.3 still hold with this new definition for the migration rate.

Number of patches

Finally, we restricted our attention to the case of two patches, but we can consider an arbitrary number N ∈ N of patches. We assume that all the patches are ecologically equivalent but that the migrant individuals have a probability to migrate to an other patch which depends on the geometry of the system. Moreover, we allow the individuals to migrate outside the N patches. In other words, for α ∈ A, i ≤ N, j ≤ N + 1 and n ∈ (N A ) N , ρ α,i→j (n) = p ij n A,i n a,i n A,i + n a,i , where the "patch" N + 1 denotes the outside of the system. As a consequence, we obtain the following limiting dynamical system for the rescaled process, when the initial population sizes are of order K in all the patches : for every 1 ≤ i ≤ N, dz A,i (t) dt = z A,i b βz A,i + z a,i z A,i + z a,i dc(z A,i + z a,i ) -∑ j =i,j≤N+1 p ij z a,i z A,i + z a,i + ∑ j =i,j≤N p ji z A,j z a,j z A,j + z a,j dz a,i (t) dt = z a,i b βz a,i + z A,i z A,i + z a,i dc(z A,i + z a,i ) -∑ j =i,j≤N+1 p ij z A,i z A,i + z a,i + ∑ j =i,j≤N p ji z A,j z a,j z A,j + z a,j (4.5.3) For the sake of readability, we introduce the two following notations :

p i→ := ∑ j =i,j≤N+1
p ij and p i← := ∑ j =i,j≤N p ji .

Let N A be an integer smaller than N which gives the number of patches with a majority of individuals of type A. We can assume without loss of generality that z A,i (0) > z a,i (0), for 1 ≤ i ≤ N A , and z A,i (0) < z a,i (0), for N A + 1 ≤ i ≤ N.

Let us introduce the subset of (R A + ) N D N A ,N := {z ∈ (R A + ) N , z A,iz a,i > 0 for i ≤ N A , and z a,iz A,i > 0 for i > N A },

We assume that the sequence (p ij ) i,j∈{1,..,N} satisfy : for all i ∈ {1, .., N}, (4.5.4) Then we have the following result : Theorem 4.5.2. We assume that Assumption (4.5.4) holds. Let us assume that Z K (0) converges in probability to a deterministic vector z 0 belonging to D N A ,N with (z 0 a,1 , z 0 A,2 ) = (0, 0). Introduce the following bounded set depending on ε > 0 :

B N A ,N,ε := [(ζ -ε)K, (ζ + ε)K] × {0} N A × {0} × [(ζ -ε)K, (ζ + ε)K] N-N A .
Then there exist three positive constants 0 , C 0 and m, and a positive constant V depending on (m, ε 0 ) such that if ε ≤ ε 0 ,

lim K→∞ P T K B ε log K - 1 b(β -1)
≤ C 0 ε, N K T K B N A ,N,ε + t ∈ B N A ,N,mε ∀t ≤ e VK = 1, where T K B , B ⊂ R E + is the hitting time of the set B by the population process N K .

The proof is really similar to the one for the two patches. To handle the deterministic part of the proof, we first show that for every initial condition on D N A ,N , the solution of (4.5.3) hits the set

K N A ,N := z ∈ (R * + ) A N , {z A,i + z a,i } ∈ b(β + 1) -2d -p i→ 2c , ζ + p i← 2c ∀i ≤ N ∩ D N A ,N .
in finite time, and that this set is invariant under (4.5.3). Then, we conclude with the Lyapunov function

z ∈ K N A ,N → ∑ i≤N A ln z A,i + z a,i z A,i -z a,i + ∑ N A <i≤N ln z a,i + z A,i z a,i -z A,i .
As a conclusion, several generalizations are possible and a lot of assumptions can be relaxed in the initial simple model. We can also combine some of the generalizations for the needs of a particular system. However, observe that the mating preference influences the time needed to reach speciation in the same way.

Asymmetrical mating preferences

In this part, we relax the assumption of symmetric genotypes making the parameter β depend on the genotype of the individual. This section is motivated by [START_REF] Smadja | Asymmetrical reproductive character displacement in the house mouse[END_REF] which describes the example of an asymmetrical pattern of preference between two subspecies of the house mouse, Mus musculus musculus and Mus musculus domesticus. After a differentiation in allopatry from a common ancestor in the Indian subcontinent, M. m. domesticus spread into western Europe and M. m. musculus into central Europe. Then a secondary contact between these two subspecies occurred in Europe along a north-south axis, from Denmark to Caucasus. Although the two subspecies are now in contact, a mechanism for subspecies recognition mediated by urinary signals occurs between the two taxa and maintains a reproductive isolation [START_REF] Smadja | Asymmetrical reproductive character displacement in the house mouse[END_REF]. However, the subspecies M. m. musculus is characterized by a stronger assortative preference [START_REF] Smadja | Strong premating divergence in a unimodal hybrid zone between two subspecies of the house mouse[END_REF]. The aim of this part is to understand the influence of an asymmetrical mating preference in the model studied previously.

From now on, two mating individuals carrying the same allele a (resp. A) have a probability β a (resp. β A ) times larger to give birth to a viable offspring than two mating individuals with different genotypes. All the other parameters remain symmetrical. As before, the population is modeled by a multi-type birth and death process and we assume that Let n ∈ N E denote the current state of the population, the birth rate of αindividuals in the patch i writes from now on λ α,i (n) = bn α,i β α n α,i + n ᾱ,i n α,i + n ᾱ,i .

The death and migration rates of an α-individual are still defined by (4.1.2) and (4.1.4) respectively. We assume that the initial population sizes are of order K. Then, in large population, the rescaled stochastic process is close to a solution of the following dynamical system c , for α ∈ {A, a}, are four equilibria to the system (4.6.2). Moreover, the following result, Lemma 4.6.1, on the dynamical system (4.6.2) ensures that we can restrict the study to the trajectories belonging to a compact set. Let us define the weighted sums : Σ i := (β A -1)z A,i + (β a -1)z a,i , for i = 1, 2, Σ := Σ 1 + Σ 2 = (β A -1)(z A,1 + z A,2 ) + (β a -1)(z a,1 + z a,2 ). S is an invariant set for the dynamical system (4.6.2) and any trajectory solution to (4.6.2) hits S after a finite time.

               d dt z A,1 (t) = z A,1 b β A z A,
To state the main result of this part, we define the following constants, for all α, α ∈ A, Theorem 4.6.1. There exists p 0 > 0 such that for all p ≤ p 0 , we can find four open subsets (D α,α p ) α,α ∈A of S with the following properties :

-The four sets D α,α p are the basins of attraction in S of the four equilibria (4.6.3) under the system (4.6.2).

-The adherence of ∪ α,α ∈A D α,α p is equal to S.

-Let 0 > 0 and assume that Z K (0) converges in probability to a deterministic vector z 0 belonging to D A,a p and with (z 0 a,1 , z 0 A,2 ) = (0, 0). Introduce the following bounded set depending on ε > 0 :

B A,a,ε := [(ζ A -ε)K, (ζ A + ε)K] × {0} × {0} × [(ζ a -ε)K, (ζ a + ε)K].
Then there exist two positive constants C 0 and m, and a positive constant V depending on (m, ε 0 ) such that if ε ≤ ε 0 ,

lim K→∞ P T K B A,a,ε log K - 1 ω(A, a) ≤ C 0 ε, N K T K B A,a,ε + t ∈ B A,a,mε ; ∀t ≤ e VK = 1,
where T K B , B ⊂ R E + is the hitting time of the set B by the population process N K . Similar results hold for the three other equilibria of (4.6.3).

In contrast with Theorem 4.1.3, the time needed to reach the equilibrium depends on the traits support {α, α } of the equilibrium trough the constant ω(α, α ). Moreover, when the equilibrium reached is composed of A-individuals in a patch and a-individuals in the other one, this time is inversely proportional to ω(A, a) which is an increasing function with respect to p as soon as β A = β a . Hence, the migration rate p seems here to strengthen the homogamy under any parameters, unlike the symmetrical case (see Section 4.4).

The following three subsections are devoted to the proof of Theorem 4.6.1. Although the mathematical result is really similar to Theorem 4.1.3, the proof uses different mathematical techniques, that is why we present it here. Indeed the asymmetrical sexual preferences make the long time behavior study much more complex. In particular, the dynamical system satisfied by the sums and the differences in each patch is not simple and we use a perturbation theory to deduce the result. First, we study the system in the particular case where p = 0, then we make p grow up to deduce the result for a positive p. Unfortunately, we are not able to give an explicit value for p 0 and an explicit formulation for the sets D α,α p unlike the symmetrical case. The probabilistic tools of the proof are similar to the one presented in section 4.3 except the end of the proof where we deduce the constant of the bound. We thus detail it in Subsection 4.6.3. Finally, we present simulation of the dynamical system (4.6.2) in Subsection 4.6.4 in order to give an idea of the shapes of the sets D α,α p .

Dynamical system without migration

Let us first study the dynamical system when p = 0. Since the two patches evolve independently, we only study the dynamics in the patch 1. From (4.6.2), we derive that We drop the dependency with the patch for the sake of simplicity in this subsection 4.6.1. In contrast with the previous model, the sums and the differences between the numbers of individuals of each type do not give an appropriate computation. Let us now describe the equilibrium of the system. We set for α ∈ A, and ᾱ = A \ α, χ α := (β ᾱ -1)χ, where χ := b(β a -1)(β

       d dt z A (t) = z A b β A z A + z a z A + z a -d -c(z A + z a )
A -1) + (b -d)(β A -1 + β a -1) c(β A -1 + β a -1) 2 .
Using a simple computation, we find the four fixed points of the dynamical system (4.6.7) which are (0, 0), (ζ A , 0), (0, ζ a ), and (χ A , χ a ).

The following lemma describes the stability of the equilibria and the long time behavior of any solution to (4.6.7). is an invariant set under the dynamical system (4.6.7). Any solution which starts in the set D a 0 converges to (0, ζ a ) when t converges to +∞. -Finally, {(z A , z a ) ∈ R, (β A -1)z A -(β a -1)z a = 0} is also an invariant set and any solution which starts in this set converges to (χ A , χ a ) when t grows to +∞.

From (4.6.8) and (4.6.9), we deduce that dW(z A (t), z a (t)) dt = -2b(β A -1)(β a -1) z a z A (z A + z a )Σ .

W is non negative on D A 0 and for any (z A , z a ) ∈ D A 0 , W(z A , z a ) = 0 if and only if z a = 0. W(z A , z a ) converges to +∞ when (β A -1)z A -(β a -1)z a converges to 0 and dW dt is nonpositive on D A 0 and is equal to zero if and only if z a = 0. It ensures that W is a Lyapunov function for (4.6.7) on the set D A 0 which cancels only on D A 0 ∩ {z a = 0}. Furthermore, a simple computation gives that the largest invariant set in D A 0 ∩ {z a = 0} is {(ζ A , 0)}. Hence, Theorem 1 of LaSalle [START_REF] Lasalle | Some extensions of liapunov's second method[END_REF] is sufficient to conclude that any solution to (4.6.7) with initial condition in D A 0 converges to (ζ A , 0) when t tends to +∞.

Similarly, we prove that any solution with initial condition in D a 0 converges to (0, ζ a ). Finally, if Ω(0) = 0, Ω(t) = 0 for all t ≥ 0 according to (4.6.8). In addition with (4.6.7), we derive for all α ∈ A,

d dt z α = z α b β A β a -1 β A + β a -2 -d -c β A + β a -2 β ᾱ -1 z α ,
and we deduce the last point of Lemma 4.6.2 easily. 

Perturbation of the migration rate

In contrast with the model of Section 4.1, we do not succeed to use the function W defined by (4.6.11) to propose a Lyapunov function for the dynamical system (4.6.2) with p > 0. Thus we use a perturbation method to make p grow up and deduce the result for some positive p. First of all, we prove Lemma 4.6.1, that is, we prove that we can restrict the study of the dynamical system (4.6.2) to the compact set S of R 4 which does not contain 0. We recall here the definitions of the weighted sums for the convenience of the proofreading :

Σ i := (β A -1)z A,i + (β a -1)z a,i , for i = 1, 2, Σ := Σ 1 + Σ 2 = (β A -1)(z A,1 + z A,2 ) + (β a -1)(z a,1 + z a,2 ).

Proof of Lemma 4.6.1. The proof is based on the equations satisfied by Σ 1 , Σ 2 and Σ.

From (4.6.2), we find

d dt Σ 1 = Σ 1 b Σ 1 z A,1 + z a,1 -2b(β A -1)(β a -1) z a,1 z A,1 (z A,1 + z a,1 )Σ 1 + b -d -c(z A,1 + z a,1 )
-2(β A + β a -2)p z A,1 z a,1 z A,1 + z a,1 -z A,2 z a,2 z A,2 + z a,2

. (4.6.12)

Since Σ 2 1 -2(β A -1)(β a -1)z a,1 z A,1 ≥ 0 and Σ 1 ≥ (β A ∧ β a -1)(z a,1 + z A,1 ),

d dt Σ 1 ≥ Σ 1 b -d - c (β A ∧ β a -1)
Σ 1 -2(β A + β a -2)p z A,1 z a,1 (z A,1 + z a,1 )Σ 1 . (4.6.13)

We then find an upperbound on z A,1 z a,1 (z A,1 +z a,1 )Σ 1 : Σ 1 (z A,1 + z a,1 ) = (β A -1)z 2 A,1 + (β a -1)z 2 a,1 + (β A + β a -2)z A,1 z a,1 ≥ (β A ∧ β a -1)[z 2 A,1 + z 2 a,1 + 2z A,1 z a,1 ] ≥ 4(β A ∧ β a -1)z A,1 z a,1 .

In addition with (4.6.4) and (4.6.13), we deduce

d dt Σ 1 ≥ Σ 1 b -d 2 - c (β A ∧ β a -1) Σ 1 .
This is sufficient to deduce that if Σ 1 (0) ≤ (β A ∧ β a -1)(bd)/4c, there exists t 1 > 0 such that for all t ≥ t 1 , Σ 1 (t) is higher than this threshold. The same conclusion holds for Σ 2 .

Let us now deal with Σ. Adding the equations (4.6.12) satisfied by Σ 1 and Σ 2 , we find

d dt Σ = ∑ i=1,2
Σ i b β A z A,i + β a z a,i z A,i + z a,i dc(z A,i + z a,i ) -2b(β A -1)(β a -1) z A,i z a,i z A,i + z a,i

≤ ∑ i=1,2 Σ i b(β A ∨ β a ) -d - c β A ∨ β a -1 Σ i ≤ Σ b(β A ∨ β a ) -d - c 2(β A ∨ β a -1)
Σ .

Hence we deduce that any trajectory hits the set S after a finite time. That ends the proof of Lemma 4.6.1.

By means of Lemma 4.6.1, we can restrict the study of the dynamical system (4.6.2) to the trajectories belonging to S. Note that when p = 0, Subsection 4.6.1 insures that the dynamical system (4.6.2) has 9 equilibria which belong to S : We rewrite the dynamical system (4.6.2) considering p as a parameter d dt z(t) = F(z(t), p). (4.6.17)

The solution to (4.6.17) with initial condition z 0 writes t → ϕ p,z 0 (t). Our goal is to understand the dynamics of the flow ϕ p,z 0 associated to the vector field F(z, p) using the flow ϕ 0,z 0 which is described by the previous subsection 4.6.1.

Lemma 4.6.3. There exists p 0 > 0 such that for all p ≤ p 0 , we can find four open subsets (D α,α p ) α,α ∈A of S with the following properties :

-The adherence of ∪ α,α ∈A D α,α p is equal to S. -For all z 0 ∈ D A,a p , the flow ϕ p,z 0 (t) converges to (ζ A , 0, 0, ζ a ) when t tends to +∞. Similar results hold for the three other equilibria (4.6.14).

Proof. The first step is to construct a neighborhood around each equilibrium of the dynamical system (4.6.17) with p = 0 which also includes an equilibrium of the system with p > 0. Let us first focus our study on the equilibrium (ζ A , 0, 0, ζ a ). Subsection (4.6.1) implies that, when p = 0, the equilibrium (ζ A , 0, 0, (4.6.18) Since the matrix (4.6.18) is invertible and F is smooth on S × R + , the Implicit Function Theorem insures that there exists p 1 and a neighborhood V 1 of (ζ A , 0, 0, ζ a ) in S such that there is a unique point z 1 (p) ∈ V 1 satisfying F(z 1 (p), p) = 0 for all p < p 1 . A simple computation ensures that F(z 1 (0), p) = 0. In addition with the uniqueness of z 1 (p), we deduce that z 1 (p) = (ζ A , 0, 0, ζ a ) = z 1 (0). Moreover, from Theorem 6.1 and Section 6.3 of [START_REF] Ruelle | Elements of differentiable dynamics and bifurcation theory[END_REF] (see also Appendice B of [START_REF] Collet | A rigorous model study of the adaptive dynamics of mendelian diploids[END_REF], or [START_REF] Hoppensteadt | Singular perturbations on the infinite interval[END_REF]), we conclude that if p 1 , V 1 are small enough, any solution ϕ p,z 0 with z 0 ∈ V 1 and p < p 1 converges uniformly to ϕ 0,z 0 when p converges to 0, that is, z 1 (0) attracts all the orbits ϕ p,z 0 starting from V 1 . Similarly, we find (p i ) i=2,3,4 and (V i ) i=2,3,4 neighborhoods around the three other equilibria of (4.6.14), (z i (0)) i=2,3,4 , such that, for i ∈ {2, 3, 4}, for all p < p i , z i (0) attracts all the solutions ϕ p,z 0 with z 0 ∈ V i and p < p i . Then, Theorem 6.1 and Section 6.3 of [START_REF] Ruelle | Elements of differentiable dynamics and bifurcation theory[END_REF] ensure also the stability of the local stable and unstable manifolds of a hyperbolic non-attractive fixed points. Thus, we find p 5 , .., p 9 and V 5 , .., V 9 , neighborhoods around the equilibria (4.6.15) and (4.6.16) with the following properties. For all i ∈ {5, .., 9}, for all p < p i , there exists a unique fixed point z i (p) ∈ V i invariant by F(., p) which repulses all the orbits solution associated to F(., p), except the orbits which start from a surface of dimension 3 for the equilibria (4.6.15) or dimension 2 for the equilibrium (4.6.16). Those surfaces are the stable manifolds of (z i (p)) i=5,..,9 in (V i ) i=5,..,9 respectively. Without loss of generality, we can assume that the nine neighborhoods are disjoint.

The second step is to deal with the trajectories outside the nine neighborhoods. Let > 0. Let us first define some slightly smaller neighborhoods. For i = 1, .., 9, we define V ε i = B(z i (0), R i ), where R i = max{r > 0, B(z i (0), r + ε) ⊂ V i },

-The last possibility is ϕ p,z 0 (t 4 ) ∈ W \ ∪ 9 i=5 V i . Thus, the flow (ϕ p,z 0 (t)) t≥t 4 will reach again one of the neighborhoods (V j ) j=5,..,9 . It may have a problem if the trajectory goes from a neighborhood to an other without living W as t → +∞. However, the flow goes out of V i by following the unstable manifold of z i (p) which is close to the unstable manifold of z i (0) (according to the continuity of the unstable manifolds with respect to p, cf Theorem 6.1 in [START_REF] Ruelle | Elements of differentiable dynamics and bifurcation theory[END_REF]). Since ϕ p,z 0 leaves V i by staying in W, the intersection of the unstable manifold of z i (0) and W is not empty. From the definition of W (4.6.19) and Subsection 4.6.1, it is possible if and only if z i (0) = (χ A , χ a , χ A , χ a ) and if ϕ p,z 0 leaves V i through the neighborhood of the stable manifold of one of the equilibria (4.6.15). Thus, the flow (ϕ p,z 0 (t)) t≥t 4 will reach one of the neighborhood (V j ) j =i and then only the two previous possibilities can occur. Finally, we have shown that any solution ϕ p,z 0 to (4.6.17) starting from S and with p ≤ p 11 converges to one of the equilibria (4.6.14), except if it starts from a set with empty interior which is the union of the global stable manifolds of the equilibria (z i (p)) i=5,..,9 .

Let us set p 0 := p 11 , D A,a p = ∪ z 0 ∈V 1 ϕ p,z 0 -1 ([0, +∞)), and define D A,A p , D a,A p , D a,a p in a similar way with the set V 2 , V 3 and V 4 respectively. We have shown that for all p ≤ p 0 , the four non empty interior sets (D α,α p ) α,α =A,a satisfy Lemma 4.6.3.

Extinction time

This subsection is devoted to the probabilistic part of the proof. We estimate the time before the loss of all a-individuals in the patch 1 and all A-individuals in the patch 2 which we denote by

T K 0 = inf{t ≥ 0, Z K a,1 (t) + Z K A,2 (t) = 0}, (4.6.20)
assuming that the process is initiated close to the equilibrium (ζ A , 0, 0, ζ a ). Similarly to Section 4.3, we prove that this extinction time is of order log K but the constant is different. Proof. The proof can be directly adapted from the one of Proposition 4.3.1 except for the end of the step 2 that we detail here. Bounding the death rates, birth rates and migration rates of (Z K a,1 (t), t ≥ 0) and (Z K A,2 (t), t ≥ 0), we are able to compare the evolution of those two processes with the one of

N a (t) K , N A (t) K , t ≥ 0 ,
where (N a (t), N A (t)) ∈ N {a,A} is a two types branching process with type a and A and for which -any α-individual gives birth to a α-individual at rate b, -any α-individual gives birth to a ᾱ-individual at rate p, -any α-individual dies at rate bβ α + p. The goal is thus to estimate the extinction time of such a sub-critical two types branching process. Let M(t) be the mean matrix of the multi-type process, that is, where c a , c A are two positive constants and r is the largest eigenvalue of the matrix G. With a simple computation, we find that r = -ω(A, a). From (4.6.21), we deduce that the extinction time is of order ω(A, a) -1 log K when K tends to +∞ by arguing as in the step 2 of Proposition 4.3.1. That concludes the proof of Lemma 4.6.4.

M(t) =    
We have then all the elements to induce Theorem 4.6.1.

Influence of the migration rate p

Similarly to Section 4.4, we present some simulations of the dynamical system (4.6.2) and we are particularly concerned with the influence of the migration rate p. The simulations are computed with the demographic parameters : the equilibrium reached depends not only on the initial condition but also on the value of p. Indeed, on the example of Figure 4.5, when p is small, the trajectory converges to (0, ζ a , ζ A , 0) as expected, according to Lemma 4.6.2. However, when p is large, only the a-individuals survive. Finally, a large migration rate p can help the more permissive type a (β a < β A ) to invade the two patches. Then, we want to know which equilibrium is reached for a high value of p with respect to the initial condition. In other terms, we want to evaluate numerically the sets D α,α p . Figure 4.6 presents the projections of the four sets on six different planes for p = 5. In order to compare the results for p = 5 and for p = 0, we plot the line solution to (β A -1)z A,1 -(β a -1)z a,1 = 0 on the planes. Indeed, according to Lemma 4.6.2, any solution with initial conditions in Patch 1 above (resp. below) this line converges to a patch filled with a-individuals (resp. A-individuals) only. Generally, we observe that when the number of a-individuals is large in Patch 1, those individuals are favored by a large migration rate. Here again, the migration rate p seems to weaken the homogamy by mixing the populations of the two patches.

β A = 2, β a = 1.

4.A Technical results

This section is dedicated to some technical results needed in the proofs. We first prove the convergence when K goes to infinity of the sequence of rescaled processes Z K to the solution of the dynamical system (4. 1.6) [START_REF] Ethier | Markov processes[END_REF] gives that ( ZK (t), t ≤ T) converges in probability to (z (z 0 ) (t), t ≤ T) for the uniform norm. As a consequence, (Z K (t), t ≤ T) converges in law to (z (z 0 ) (t), t ≤ T) for the same norm. But the convergence in law to a constant is equivalent to the convergence in probability to the same constant. The result follows.

We now recall a well known fact on branching processes which can be found in [START_REF] Athreya | Branching processes[END_REF] -Let Z = (Z t ) t≥0 be a birth and death process with individual birth and death rates b and d. For i ∈ Z + , T i = inf{t ≥ 0, Z t = i} and P i is the law of Z when Z 0 = i. If d = b ∈ R * + , for every i ∈ Z + and t ≥ 0, 

P i (T 0 ≤ t) = d(1 -e (d-b)t ) b -de (d-b)t i . ( 4 
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 13 Théorèmes 1.1.2 et 1.1.3).
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 23 Fig. 2 -(a) Traits des plantes en l'absence de pollinisateurs en fonction du temps. (b) Densité de la population de plantes sur X × U à l'instant final t = 15000.

Fig. 4 -

 4 Fig.4-Vitesse de l'avancée des pollinisateurs en fonction de la variance σ D P de la dispersion des plantes à la naissance pour b P = 0 ; la vitesse est estimée à partir de 200 réalisations indépendantes pour chaque valeur de σ D P ; la ligne horizontale correspond à la vitesse des pollinisateurs en l'absence des plantes.

Fig. 5 -

 5 Fig. 5 -Migrations des individus de type A et a entre les deux patchs.
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 112 Assume (1.1.2), (1.1.3), (1.1.4) and (1.1.7).

Theorem 1 . 1 . 3 .

 113 Assume (1.1.2), (1.1.3), (1.1.4) and (1.1.7).

1

 1 

Theorem 1 . 1 . 4 .

 114 Assume (1.1.11),(1.1.12) and(1.1.13). If H > 0, any positive C 2 -solution to (1.1.10) tends in L ∞ to the unique positive solution to

Lemma 1 . 2 . 3 .

 123 Let µ ∈ R + * , and ρ be a positive solution on R to d dt ρ

Fig. 1 . 5 -

 15 Fig. 1.5 -The numerical resolution of (1.1.1) with parameters given by (1.4.2)-(1.4.3). (a) presents the densities of each population initially. (b), (c) and (d) present the densities at time t = 1000 for different values of ā2 , the red dashed curves represent the density of the resident population and the green continuous curves represent the density of the mutants.

Assumption 2 .

 2 1.1. 1. m, b, d, k and c are continuous and non-negative on their domains and b, d and c are Lipschitz functions with respect to x and y. 2. There exist m, b, b, d, c, c, k ∈ R such that for any

Figure 2 . 1 ,

 21 we observe the evolution of the trait associated with a change of spatial niches and spatial patterns over time. After a short time (a), the spatial distribution of the monomorphic population with trait u = 0.4 stabilizes. Then, in Figures (b), (c) and (d), we observe a phenomenon of invasion and replacement : some individuals with trait u = 0.499 appear, invade and finally replace the previous population with trait u = 0.4. Note the change of spatial niche, see Figure (c). The locations of the population with trait u = 0.499 are slightly larger than the one of trait u = 0.4. Other phenomena of invasion and replacement with a displacement of the spatial niche are detected until the time t = 4500 (Figure (e)). In a second phase, the population evolves to become more and more generalist (Figure (f)) : the length of the spatial niche is increasing at each event of invasion and replacement.

Fig. 2 . 1 -

 21 Fig.2.1 -Simulations with K = 100000, q K = 10 -5 . The initial population is composed of K individuals with trait 0.4 at location 0.5. We observe the evolution of the spatial niches occupied by the individuals over time.

Fig. 2 . 2 -Assumption 2 . 4 . 1 .

 22241 Fig.2.2 -Simulations with K = 100000, q K = 10 -5 ; K individuals start at location 0.2 with trait 0.8 ; on the figures, a black dot represents a population of more than 1000 individuals and a gray dot represents a population of less than 1000 individuals. We observe the evolution dynamics of the trait (left) and of the diffusion coefficient (right).

t

  is the set of indices of the individuals with trait u alive at time 0 and not dead during [0, t] ; N dead t represents the set of indices of the individuals with trait u alive at time 0 and dead during [0, t] ; and N born t is the set of indices of the individuals with trait u born during

Théorème 3 . 2 . 4 .

 324 Sous l'hypothèse (3.2.1) et si c A c P > r A r P , (3.2.5)

Hypothèse 3 . 2 . 6 .

 326 -Les fonctions de taux b A , b P , d A , d P sont continues et bornées sur X × U , et les quatre noyaux d'interaction I sont continus sur (X × U ) 2 et vérifient l'hypothèse (3.2.1).

3 .Fig. 3 . 1 -

 331 Fig. 3.1 -(a) Traits des plantes en fonction du temps. (b) Cliché de la densité de la population de plantes sur X × U à l'instant final t = 15000.

  Fig. 3.2 -(a-c) Traits de la population en fonction du temps pour divers valeurs de δ, les traits des pollinisateurs sont représentés en noir, ceux des plantes en rouge. (e-f) Clichés de la densité des populations sur X × U , sur la gauche sont représentées les densités des pollinisateurs, sur la droite celles des plantes.

Fig. 3 . 3 -

 33 Fig.3.3 -Traits de la population en fonction du temps pour divers valeurs de paramètres précisées en légende, les traits des pollinisateurs sont représentés en noir, ceux des plantes en rouge.

40 Fig. 3 . 4 -

 4034 Fig. 3.4 -Clichés d'une réalisation du processus aléatoire qui représente la population de pollinisateurs au temps t = 10, 20, 30 et 40, avec c = 0.1. Sur chaque figure, l'espace X = [0, 10] est discrétisé avec un pas de 0.2. Sur chaque intervalle de longueur 0.2, l'ordonnée donne le nombre d'individus présents sur cet intervalle à l'instant t.

Fig. 3 . 5 -

 35 Fig. 3.5 -Gauche : Histogramme des temps d'arrivée T20 pour 10000 réalisations indépendantes ; densité de la loi normale N (71.2, 5.1) en bleu. Droite : Diagramme Q-Q de comparaison de l'échantillon renormalisé avec une loi normale ; pour c = 0.1.

Fig. 3 . 6 -

 36 Fig. 3.6 -Densité du temps d'atteinte de la position x 0 = 20 par un mouvement brownien branchant.

Fig. 3 . 7 -

 37 Fig. 3.7 -Temps moyens E[ Tx 0 ] d'arrivées aux positions x 0 = 10, 15, 20, 25 et 30 sur 500 réalisations et droite de régression linéaire en noir ; pour c = 0.1.

Fig. 3 . 8 -

 38 Fig.3.8 -Gauche : Probabilité de survie de la population en fonction de la valeur du coefficient de compétition intraspécifique c estimée sur 100 réalisations pour c ∈ [0, 0.008] et sur 500 réalisations pour c ≥ 0.01. Droite : Vitesse estimée du front d'invasion en fonction de la valeur du coefficient de compétition intraspécifique, l'estimation est calculée à partir des réalisations où la population survit jusqu'à la fin de la simulation (plus de 100 réalisations pour chaque valeur de c).

Fig. 3 . 9 -

 39 Fig.3.9 -Vitesse de l'avancée des pollinisateurs en fonction de la variance σ D P de la dispersion des plantes à la naissance pour b P = 2 ; la vitesse est estimée à partir de 100 réalisations indépendantes pour chaque valeur de σ D P ; la ligne horizontale correspond à la droite d'équation y = V emp .

Fig. 3 . 10 -

 310 Fig. 3.10 -Vitesse de l'avancée des pollinisateurs en fonction de la variance σ D P de la dispersion des plantes à la naissance pour b P = 0 ; la vitesse est estimée à partir de 200 réalisations indépendantes pour chaque valeur de σ D P ; la ligne horizontale correspond à la droite d'équation y = V emp .

  d A et d P par b A , b P , d A et d P respectivement. Démonstration de la Proposition 3.2.3. Le champ de vecteur est localement Lipschitzien. Ainsi, pour toute condition initiale, il existe une unique solution de (3.2.2), d'après le théorème de Cauchy-Lipchitz. De plus, le point 1 de la proposition 3.2.3 découle directement du théorème 3.4.1 de [78]. Le problème est donc de prouver que toute solution existe sur R + ou qu'elle explose en temps fini en fonction des valeurs des paramètres.

Fig. 3 . 11 -

 311 Fig. 3.11 -Exemple de plan de phase du système dynamique (3.2.2) pour c A c Pr A r P > 0 ; la droite D 1 (resp. D 2 ) est la droite d'équation b A + r A yd Ac A x = 0 (resp. b P + r P xd Pc P y = 0)

  l'individu concerné est un pollinisateur, -sinon, l'individu concerné est une plante. Soit * ∈ {A, P} l'espèce choisie et * = {A, P} \ * . Chaque espèce est représentée numériquement par un vecteur de taille variable qui contient l'ensemble des individus. Comme nous avons majoré le taux d'événement, on réalise une étape d'acceptation/rejet pour définir quel type d'événement a lieu à l'instant T k : naissance, mort ou rien.

3 . 4 .

 34 Tirage d'une v.a. uniforme θ 2 ∼ U ([0, C * max ]) ; Etape d'acceptation/rejet pour définir quel type d'événement a lieu à l'instant T k : naissance, mort ou rien : -Si θ 2 < d * , on calcule le taux de mort naturelle exact de l'individu I k : si

  on ajoute un nouvel individu dans l'espèce * . Notons que le trait du nouvel individu peut être différent de celui de son parent avec probabilité κ * ainsi que sa position si l'individu est une plante. θ 2 := θ 2 -b * .
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 41 Fig. 4.1 -Migrations of A-and a-individuals between the patches.

z A, 1

 1 z a,1 z A,1 +z a,1 d dt z a,2 (t) = z a,2 b βz a,2 +z A,2 z A,2 +z a,2dc(z A,2 + z a,2 )p z A,2 z A,2 +z a,2 + p z A,1 z a,1 z A,1 +z a,1 .(4.1.6) More precisely, let us denote by

.1. 8 )

 8 which corresponds to the equilibrium of the α-population size for the dynamical system (4.1.6), in a patch with no ᾱ-individuals and no migration. Let us also define the parametersζ := b 2 (β 2 -1) + 2p(bd) -2bd(β -1) 4c(b(β -1) + p) and ∆ := ζ ζ -2p ζ b(β -1) + p > 0 (4.1.9) (see (4.2.7) for the positivity of ∆). We derive in Section 4.2 the following properties of the dynamical system (4.1.6) : Theorem 4.1.1.(i) The dynamical system (4.1.6) has the following non-null and nonnegative equilibria : -Equilibria for which only one type remains, in only one patch(ζ, 0, 0, 0) (0, ζ, 0, 0) (0, 0, ζ, 0) (0, 0, 0, ζ) (4.1.10)-Equilibria for which each type is present in exactly one patch (ζ, 0, 0, ζ), (0, ζ, ζ, 0) (4.1.11) -Equilibria for which only one type remains present, in both patches (ζ, 0, ζ, 0), (0, ζ, 0, ζ) (4.1.12) -Equilibria with both types remaining in both patches b

( 4 . 1 . 18 )Theorem 4 . 1 . 2 .

 4118412 Then we have the following result : Let p < p 0 . Then -Any solution to (4.1.6) which starts from D converges to the equilibrium (ζ, 0, 0, ζ).

  (dbβ)p 2(db)p This matrix admits two negative eigenvalues -(b(β + 1)/2d), -(b(β + 1)/2d + p) and a positive eigenvalue with multiplicity two b(β -1)/2. The equilibrium is thus unstable. Equilibrium (4.1.14) :

z A, 2

 2 (t), z a,2 (t)) to (4.1.6) belongs to the set

Figure 4 . 2

 42 presents the plots of p → T ε (p) -T ε (0).

Fig. 4 . 2 -

 42 Fig. 4.2 -For different values of the initial condition, we plot p→ T ε (p) -T ε (0). The initial condition is (z A,1 (0), z A,1 (0) -0.1, z A,2 (0), z a,2(0)) where z A,1 (0) ∈ {0.3, 0.5, 1, 2, 3, 5, 10, 15} as represented by the colors of the legend ; and (z A,2 (0), z a,2 (0)) = (1, 30) on the left, and (z A,2 (0), z a,2 (0)) = (15, 16) on the right.

Figure 4 .

 4 3(a) and (b) where examples of trajectories with the same initial conditions as in Figure 4.2(a) are drawn. The two Figures 4.3

  (a) and (b)

Fig. 4 . 3 -

 43 Fig.4.3 -For four different initial conditions, we plot the trajectories in the phase planes which represent the patch 1 (left) and the patch 2 (right) for t ∈ [0, 10] and for three values of p : p = 0 (red), p = 1 (blue), p = 20 (green). The initial condition is given under each pair of plots in the format (z A,1 (0), z a,1 (0), z A,2 (0), z a,2 (0)). Note that the initial conditions on (a) and (c) (resp. (b) and (d)) corresponds to the dark green (resp. light green) curve on Figure 4.2(a) and 4.2(b).

z a, 1 z A, 1

 11 +z a,1 + p 2 z A,2 z a,2 z A,2 +z a,2 d dt z a,1 (t) = z a,1 b 1 β 1 z a,1 +z A,1 z A,1 +z a,1d 1c 1 (z A,1 + z a,1 )p 1 z A,1 z A,1 +z a,1 + p 2 z A,2 z a,2 z A,2 +z a,2 d dt z A,2 (t) = z A,2 b 2 β 2 z A,2 +z a,2 z A,2 +z a,2d 2c 2 (z A,2 + z a,2 )p 2 z a,2 z A,2 +z a,2 + p 1 z A,1 z a,1 z A,1 +z a,1 d dt z a,2 (t) = z a,2 b 2 β 2 z a,2 +z A,2 z A,2 +z a,2d 2c 2 (z A,2 + z a,2 )p 2 z A,2z A,2 +z a,2 + p 1 z A,1 z a,1 z A,1 +z a,1 .

  p i→ < b(β + 1) -2d and b(β -1) + p i→ 2cz + p i← -∑ j =i,j≤N+1 p ij b(β + 1) -2dp j→ > 0.

β A > 1 ,

 1 β a > 1, and bd > 0. (4.6.1)

1 +z a, 1 z A, 1

 11 +z a,1dc(z A,1 + z a,1 )p z a,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z a,1 (t) = z a,1 b β a z a,1 +z A,1 z A,1 +z a,1dc(z A,1 + z a,1 )p z A,1 z A,1 +z a,1 + p z A,2 z a,2 z A,2 +z a,2 d dt z A,2 (t) = z A,2 b β A z A,2 +z a,2 z A,2 +z a,2dc(z A,2 + z a,2 )p z a,2 z A,2 +z a,2 + p z A,1 z a,1 z A,1 +z a,1 d dt z a,2 (t) = z a,2 b β a z a,2 +z A,2 z A,2 +z a,2dc(z A,2 + z a,2 )p z A,2z A,2 +z a,2 + p z A,1 z a,1 z A,1 +z a,1 .

( 4 . 6 . 2 )

 462 With a simple computation, we can see that the four states(ζ A , 0, 0, ζ a ), (ζ A , 0, ζ A , 0), (0, ζ a , ζ A , 0), (0, ζ a , 0, ζ a ),(4.6.3)where ζ α := bβ α -d

Lemma 4 . 6 . 1 .

 461 Assume that p ≤ (bd) (β A ∧ β a -1) β A + β a -2 (4.6.4)and let us defineS := (z A,1 , z a,1 , z A,2 , z a,2 ) ∈ R 4 , Σ i ≥ (β A ∧ β a -1)(bd) 4c for i = 1, 2,andΣ ≤ 2 2b(β a ∨ β A ) (β A ∨ β a -1)d c .(4.6.5)

ω(α, α ) = b 2 (β α + β α - 2 ) + p - 1 2 b 2

 222 (β αβ α ) 2 + 4p 2 . (4.6.6) Note that ω(α, α) = b(β α -1).

  t) = z a b β a z a + z A z A + z a dc(z A + z a ) (4.6.7)

Lemma 4 . 6 . 2 .

 462 -(ζ A , 0) and (0, ζ a ) are two stable equilibria, (0, 0) is unstable and (χ A , χ a ) is a saddle point.-The setD A 0 := (z A , z a ) ∈ R 2 , (β A -1)z A -(β a -1)z a > 0 (4.6.10)is an invariant set under the dynamical system (4.6.7). Moreover, any solution which starts in the set D A 0 converges to (ζ A , 0) when t converges to +∞.-The set D a 0 = {(z A , z a ) ∈ R, (β A -1)z A -(β a -1)z a < 0},

  -1)z A -(β a -1)z a = 0

Fig. 4 . 4 -Figure 4 . 4

 4444 Fig. 4.4 -Schematic view of the phase plan of the dynamical system (4.6.7) Figure 4.4 represents a schematic view of the phase plan of the dynamical system (4.6.7) that sums up the previous study.

  (ζ A , 0, 0, ζ a ), (ζ A , 0, ζ A , 0), (0, ζ a , ζ A , 0), (0, ζ a , 0, ζ a ),(4.6.14)(χ A , χ a , ζ A , 0), (χ A , χ a , 0, ζ a ), (0, ζ a , χ A , χ a ), (ζ A , 0, χ A , χ a ).

( 4 . 6 . 15 )

 4615 (χ A , χ a , χ A , χ a ).

  equilibria (4.6.14) are stable fixed point whereas the equilibria (4.6.15) (resp. (4.6.16)) are unstable with a local stable manifold of dimension 3 (resp. 2).

  ζ a ) is an attractive stable equilibrium. The first derivative D z F evaluated at the point (z, p)= ((ζ A , 0, 0, ζ a ), Ad) -b(β A -1) -(bβ Ad) β a -1) -(bβ ad) -(bβ ad)

Lemma 4 . 6 . 4 . 1 ,

 4641 There exist two positive constants ε 0 and C 0 such that for any ε ≤ ε 0 , if there existsη ∈]0, 1/2[ such that max(|z 0 A,1ζ A |, |z 0 a,2ζ a |) ≤ ε and ηε/2 ≤ z 0 a,1 , z 0 A,2 ≤ ε/2, then for any C > (ω(A, a)) -1 + C 0 ε, P(T K 0 ≤ C log(K)) → K→+∞ for any 0 ≤ C < (ω(A, a)) -1 -C 0 ε, P(T K 0 ≤ C log(K)) → K→+∞ 0.

E

  E N a (t) (N a (0), N A (0)) = (1, 0) E E N A (t) (N a (0), N A (0)) = (1, 0) E E N a (t) (N a (0), N A (0)) = (0, 1) E E N A (t) (N a (0), N A (0)) = (0,1) let G be the infinitesimal generator of the semigroup {M(t), t ≥ 0}. From [6] p.202, we deduce a formula of G which leads to G= -b(β A -1)p p p -b(β a -1)p .Applying Theorem 3.1 in[START_REF] Heinzmann | Extinction times in multitype Markov branching processes[END_REF], we find thatP (N a (t), N A (t)) = (0, 0) (N a (0), N A (0)) = (z 0 a,1 K, z 0 A,2 K)= (1c a e rt ) z 0 a,1 K (1c A e rt ) z 0 A,2 K , (4.6.21)

2 Fig. 4 . 5 -

 245 Fig. 4.5 -Plots of the trajectories in the phase planes which represent Patch 1 (left) and Patch 2 (right) for t ∈ [0, 10] and for three values of p : p = 0 (red), p = 1 (blue), p = 5 (green). The initial condition is (4, 10, 8.5, 15), represented by the black dots. The dark line is the solution to (β A -1)z A -(β a -1)z a = 0

2 Fig. 4 . 6 -

 246 Fig. 4.6 -(a-f) Projections of the sets D α,α p for p = 5 on the planes defined by the values of (z A,2 (0), z a,2 (0)) in the captions. On each plane, the four sets from white to dark grey corresponds to the initial conditions with convergence to (ζ A , 0, ζ A , 0), (ζ A , 0, 0, ζ a ), (0, ζ a , ζ A , 0) and (0, ζ a , 0, ζ a ) respectively. The black line is the solution to (β A -1)z A,1 -(β a -1)z a,1 = 0. (g) The black diamond points correspond to the initial conditions in Patch 2 for the six plots (a) to (f).
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  la solution converge vers l'équilibre (ζ, 0, 0, ζ) exponentiellement vite, i.e. il existe deux constantes positives k 1 et k 2 , dépendantes des conditions initiales, pour lesquelles

  + p et le taux de mort est d + cζ + p = bβ + p, ce qui nous assure le résultat.

	Des résultats symétriques existent pour les équilibres (0, ζ, ζ, 0), (ζ, 0, ζ, 0) et (0, ζ, 0, ζ).
	Ce théorème prouve d'une part qu'en l'absence de toute différence écologique,
	les paramètres b, d, c et p étant identiques pour les deux types et les deux patchs,
	l'homogamie peut entraîner un isolement reproductif et donc engendrer à terme une
	spéciation. D'autre part, il donne un ordre de grandeur sur le temps pour atteindre
	un isolement reproductif en fonction de la taille de la population, celui-ci est d'ordre
	1 b(β-1) log K. On voit donc apparaître l'importance du paramètre d'homogamie β
	dans ce résultat.
	Nous montrons le théorème 2.1 en remarquant que, lorsque la taille de la
	population K est suffisamment grande, la dynamique du processus Z K converge
	vers celle de la solution de (2.2). Ainsi, d'après les résultats de convergence du
	système dynamique, le processus atteint un voisinage de l'équilibre (ζ, 0, 0, ζ) en
	un temps fini. Nous utilisons des résultats de comparaison similaires à ceux de
	Champagnat ([26], Théorèmes 2 et 3) pour prouver que les processus Z K A,1 et Z K a,2
	restent au voisinage de ζ pendant un temps suffisamment long. La difficulté est
	alors d'estimer le temps avant lequel tous les individus de type a dans le patch 1 et
	tous les individus de type A dans le patch 2 disparaissent un fois le voisinage de
	l'équilibre atteint. Pour cela, nous comparons le processus Z K a,1 + Z K A,2 à un processus
	de naissance et de mort sous-critique, renormalisé par K dont le taux de naissance
	est b
	.7)

Lemma 1.1.1. Assume

  

	(1.1.2), (1.1.3) and (1.1.7). Then, the only non-negative steady states
	of Equation (1.1.1) are					
	-the trivial steady state (0, 0),					
	-the state ( ḡu , 0) with ḡu = H u κ uu A u 1 , which is non-negative and non-trivial if and only
	if H u > 0,					
	-the state (0, ḡv ) with ḡv = H v κ vv A v 1 , which is non-negative and non-trivial if and only if
	H v > 0,					
	-the state ( ĝu , ĝv ) where ĝu = r u A u 1 and ĝv = r v A v 1 , with r u and r v positive constants
	satisfying					
	H u H v	=	κ uu κ uv κ vu κ vv	r u r v	.	(1.1.8)
	This steady state exists if and only if				

  Assume (1.1.11),(1.1.17). (i) If H ≤ 0, then there is no non-trivial nonnegative steady solution for (1.1.16). (ii) If H > 0, then (1.1.16) has a strictly positive steady solution ḡ ∈ C 2 (X ), i.e. ḡ solves

.1.17) Theorem 1.1.5 (Existence of a steady state).

  Theorem 2.4.2. Let H be the principal eigenvalue of the elliptic operator m∆ x . + (bd). with Neumann boundary conditions on X , see (2.2.2). If H > 0, there exists a unique positive C 2 -solution φ * to the elliptic equation 0

  Finally, concerning the third term of (2.6.19), let r = log In addition with (2.4.5), (2.6.20) and (2.6.25), we deduce (2.6.9) with

						ρ 2( b+ d+ cN)NT ,
	P sup t∈[0,T]	P (t) K	≥	ρ 2	≤ P e rP (T) ≥ e r Kρ 2
					≤ e -ρrK 2 E[e rP (T) ]
					≤ e (-K( ρr 2 -( b+ d+ cN)NT(e r -1))) ,
					≤ e	-K ρ 2 log

.

6.25) 

and there exists T 1 such that for all

T ≤ T 1 , ρ 4 √ Tln(C 4 )N ≥ C.

ρ 2( b+ d+ cN)NT -1 +( b+ d+ cN)NT , and there exists T 2 ≤ T 1 such that for all T ≤ T 2 , ρ 2 log ρ 2( b+ d+ cN)NT -1 + ( b + d + cN)NT ≥ C.

  Lemma 2.A.4 and Lemma 2.A.1, we can explicit the biconjugate of Φ, since for all (ξ 1 , ξ 2

	Using

3 of [99] : Lemma 2.A.4. For any ξ ∈ F 1 , we have Φ1

(ξ) = Ψ a 1 (ξ a ) + Ψ s 1 (ξ s ).

  .1.1) où B est un mouvement brownien sur R d et l est le temps local du mouvement brownien sur X c'est-à-dire un processus adapté, continu, à variation finie tel que l 0 = 0 et dl t (X t ) = 0 pour tout X t ∈ ∂X . Le comportement aléatoire est donc isotrope et m et qu'il existe deux constantes mA > 0 et qA > 0 telles que pour tout(x, u) ∈ X × U , 0 ≤ m A (x, u) ≤ mA , |q A (x, u)| ≤ qA .Comme pour le modèle des deux chapitres précédents, pour tout i ∈ N A t , le taux de mort du pollinisateur i est composé d'un taux de mort naturelle et d'un taux de compétition. Le taux de mort naturelle d A (x, u) est continu et borné, i.e. il existe dA > 0 et d A ≥ 0 tels que pour tout

A (x, u) est le coefficient de diffusion. Le terme de dérive est décrit par la fonction q A (x, u). On suppose que m A et q A sont lipschitziennes par rapport à x, mesurables par rapport à u

  +∞, et que la solution (n A , n P ) de (3.2.2) de condition initiale (z A Nous cherchons alors des conditions suffisantes assurant l'existence de solutions de (3.2.2) sur R + , autrement dit, nous voulons éviter une explosion des tailles de populations en temps fini. Dans un premier temps, nous détaillons les équilibres du système (3.2.2). Si c A c Pr A r P = 0, nous notons (n A A ( bPd P ) + r P ( bAd A )c A c Pr A r P .

				t)
			dt dn P (t)	= ( bP + r P n A (t) -d P -c P n P (t))n P (t),	(3.2.2)
	lorsqu'elle existe.		
	Lemme 3.2.2. Soit t ≥ 0. Supposons que (Z A,K 0 , Z P,K 0 ) converge vers (z A 0 , z P 0 ) lorsque K
	converge vers 0 , z P 0 ) existe
	sur [0, t] alors le processus (Z A,K s , Z P,K s ) est bien défini pour s ∈ [0, t] et
	lim K→+∞	sup s≤t	|(Z A,K s , Z P,K s ) -(n A (s), n P (s))| = 0 presque sûrement.	(3.2.3)
				= 0
				bP -d P + r P n A * -c P n P * = 0,
	c'est-à-dire			
			n A (3.2.4)
	Le système (3.2.2) admet au maximum quatre équilibres en fonction des valeurs des
	paramètres :			
	-l'équilibre nul (0, 0),	
	-un équilibre ne faisant intervenir que des pollinisateurs : bA -d A c A , 0 , si bA -
	d A > 0, -un équilibre ne faisant intervenir que des plantes : 0, bP -d P c P	, si bP -d P > 0,
	-enfin un équilibre de coexistence : (n A * , n P * ) si n A * et n P * existent et sont stricte-
	ment positifs.	
	Nous pouvons alors décrire la dynamique des solutions du système (3.2.2).
	Proposition 3.2.3.	1. Toutes les solutions du système dynamique (3.2.2) convergent soit
	vers un point fixe, soit vers l'infini.

* , n P * ) la solution du système linéaire suivant bAd A + r A n P *c A n A * * = c P ( bAd A ) + r A ( bPd P ) c A c Pr A r P n P * = c

  on ajoute un individu dans l'espèce * qui peut avoir un trait différent de son parent avec une probabilité κ * et une position différente si * = P.L'algorithme est codé en C++ à l'aide de trois classes et d'un fichier de fonctions. Lors des réalisations des différentes simulations, les seuls fichiers modifiés sont le fichier rateMove.cpp et le fichier main.cpp qui utilise les membres de la classe Population pour analyser les simulations. La classe Geometry représente le produit de l'espace géographique et de l'espace phénotypique. Les membres de cette classe servent à vérifier que les phénotypes et les positions calculés appartiennent bien aux espaces considérés. La classe Entity sert à encoder un individu. La plupart des membres de cette classe servent à calculer les taux de naissance, de mort, de compétition et d'interaction positive associés à l'individu à partir des fonctions données dans le fichier rateMove.h. Les autres membres servent à définir des nouveaux individus lors d'une naissance ou à modifier l'individu. Enfin, la classe Population est construite à l'aide d'un objet

	//calcule le taux de mort const double &deathRate, const double &interRate, int const& typePartner, /* Rate */ Geometry.h :
	double killRateNatural(double const& timeNow, int const& indexEntity, double const& compRate, double const& thetaInitial, // calcule le taux de naissance à partir des traits #ifndef GEOMETRY_H_INCLUDED
	int const& typeEntity) ; const int &indexEndangered, const int &typeEndangered, bool &isMutation) ; double birthRate(double const& traitPosition, std : :vector<double> const& traitPhenotype, #define GEOMETRY_H_INCLUDED
	//suppression de l'individu n°nKilled de l'espece typeKilled //Réalisation d'un événement pour une population constituée de 2 espèces std : :vector<double> const& parameters) ; #include <iostream>
	void killEntity(int const& nKilled, int const& typeKilled) ; void oneStepTwoSpecies(double& timeNow, double const& maxBirthRatebees, //calcule le noyau d'interaction positive #include <cmath>
	//calcule le taux de naissance double const& maxDeathRatebees, double const& maxInterRatebees, double positiveInteractionKernel(double const& traitPosition1, #include <algorithm>
	double birthRateNatural(double const& timeNow, int const& indexEntity, double const& maxCompRatebees, double const& maxBirthRateplants, std : :vector<double> const& traitPhenotype1,std : :vector<double> const& parameters1, #include <stdlib.h>
	int const& typeEntity) ; double const& maxDeathRateplants, double const& maxInterRateplants, double const& traitPosition2,std : :vector<double> const& traitPhenotype2, #include <vector>
	//calcule le noyau d'interaction positive entre deux individus double const& maxCompRateplants) ; std : :vector<double> const& parameters2) ; #include <assert.h>
	double birthRateInteraction(double const& timeNow, int const& indexEntity1, //Réalisation d'un événement pour une population constituée d'une seule espèce //calcule le taux de mort à partir des traits // représente le produit de l'espace des positions et de l'espace des traits
	int const& typeEntity1, int const& indexEntity2, int const& typeEntity2) ; //et indique dans le booléen si il y a eu apparition d'un mutant double deathRate(double const& traitPosition, std : :vector<double> const& traitPhenotype,
	// vérifie si l'individu à ajouter fait partie d'une espèce connue ou non (quitte à l'ajouter) void oneStepOneSpecies(double& timeNow, double const& maxBirthRatebees, std : :vector<double> const& parameters) ; class Geometry{
	bool knownSpecies(int const& typeEntity) const ; double const& maxDeathRatebees, double const& maxCompRatebees, // calcule le noyau de compétition private :
	//ajout de l'individu oneAdded bool &isMutation) ; double competitionKernel(double const& traitPosition1, std : :vector<double> m_minPositions ;
	void addEntity(Entity const& oneAdded) ; } ; std : :vector<double> const& traitPhenotype1, std : :vector<double> m_maxPositions ;
	//supprime tous les individus de la population #endif std : :vector<double> const& parameters1, double const& traitPosition2, std : :vector<double> m_minPhenotypes ;
	void empty() ; std : :vector<double> const& traitPhenotype2, std : :vector<double> m_maxPhenotypes ;
	//met à jour les positions de tous les individus à un instant donne et teste si un Membre oneStepTwoSpecies de la classe Population : std : :vector<double> const& parameters2) ;
	//individu a une position plus grande que la position testedPosition void Population : :oneStepTwoSpecies(double& timeNow, double const& maxBirthRatebees, // calcul du phénotype mutant public :
	bool update_test(double const& timeNow, double const& testedPosition) ; double const& maxDeathRatebees, std : :vector<double> mutantTraitPhenotype(std : :vector<double> const& traitPhenotype, //constructeur de base : espace = [0,1]*[0,1] (Positions*Traits)
	double const& maxInterRatebees, double const& maxCompRatebees, double const& traitPosition,std : :vector<double> const& parameters, Geometry() ;
	//écriture de la population dans un fichier .txt, une ligne par individu double const& maxBirthRateplants, double const& maxDeathRateplants, Geometry const& geometrySpace) ; Geometry(double const& minPosition, double const& maxPosition,
	void writePopulation(std : :string nameFileOut, double const& timeNow) ; double const& maxInterRateplants, double const& maxCompRateplants) double const& minPhenotype, double const& maxPhenotype) ;
	//écriture des traits et du nombre d'individus par traits au temps timeNow /* Move */ { ~Geometry() ;
	void writeTraits(std : :string nameFileOut, double const& timeNow) ; //calcul du taux max d'événement : type 0=pollinisateur ; type 1=plante //calcul du coefficient de diffusion
	//taux pollinisateur double coefDiffusion(double const& traitPosition,
	//Etape d'acceptation/rejet de l'événement : indique par les boolean isDead et isBirth double beeMaxRate(maxBirthRatebees + maxDeathRatebees + maxInterRatebees std : :vector<double> const& traitPhenotype, std : :vector<double> const& parameters) ;
	//s'il y a effectivement naissance ou mort de l'individu indexEndangered * nbrEntitiesInType(1) + maxCompRatebees * nbrEntitiesInType(0)) ; //mouvement pendant un temps timeInterval
	//à partir des taux maximaux de naissance et mort associés à l'individu //taux plante double liveShifting(double const& timeInterval, Geometry const& geometrySpace,
	void chooseEvent(double const& timeNow, double const& birthRate, double plantMaxRate(maxBirthRateplants + maxDeathRateplants + maxInterRateplants double const& traitPosition,std : :vector<double> const& traitPhenotype,
	double const& deathRate, double const& interRate, int const& typePartner, * nbrEntitiesInType(0) + maxCompRateplants * nbrEntitiesInType(1)) ; std : :vector<double> const& parameters) ;
	double const& compIntraRate, const double &thetaInitial, //taux maximal //déplacement à la naissance
	int const& indexEndangered, int const& typeEndangered, double maxRate(beeMaxRate * nbrEntitiesInType(0) double birthShifting(double const& traitPosition,
	bool &isDead, bool &isBirth) ; + plantMaxRate * nbrEntitiesInType(1)) ; std : :vector<double> const& traitPhenotype,
	//Réalisation d'un événement : naissance, mort ou rien, à partir de chooseEvent std : :vector<double> const& parameters, Geometry const& geometrySpace) ;
	void oneStep(double const& timeNow, double const& birthRate, const double &deathRate, //moment de l'événement : v.a. expo(1) #endif
	const double &interRate, int const& typePartner, double const& compRate, double T( -log( 1.0 -((double)rand()+1.0)/((double)RAND_MAX+2.0) ) ) ;
	double const& thetaInitial, const int &indexEndangered, timeNow += T / maxRate ;
	const int &typeEndangered) ; //choix de l'indexEndangered+choix de l'événement en utilisant la function oneStep
	//Réalisation d'un événement : naissance, mort ou rien, à partir de chooseEvent int indexEndangered ;
	//et indique s'il y a eu apparition un nouveau trait dans le booléen isMutation double U( (double)rand()/((double)RAND_MAX+1.0) * maxRate ) ;
	void oneStep_isMutation(double const& timeNow, double const& birthRate, double V(0) ; if (U < beeMaxRate * nbrEntitiesInType(0))

  .1.15) (ii) The only stable equilibria of the dynamical system (4.1.6) are those defined in Equation (4.1.11), for which each of the two alleles is present in exactly one patch, and those given in Equation (4.1.12) for which only one type remains.

  1 and z A,2 = z a,2 .

	From (4.2.1) and (4.2.3) we derive
	z A,1 b

  Let us choose an initial condition near this equilibrium such that z A,1 (0) + z a,1 (0) is smaller than (bβd)/(2c). According to (4.2.8), z A,1 (t) ≥ z A,1 (t)z a,1 (t) will grow up as long as z A,1 (t) + z a,1 (t) is smaller than (bβd)/c. Hence the equilibrium (4.1.10) is unstable.

	) .	(4.2.8)
	Equilibrium (4.1.11) :	

  [START_REF] Bossy | Monte carlo methods for linear and non-linear poisson-boltzmann equation[END_REF], bβdc(z A,1 + z a,1 ) > 0. The instability then derives from Equation (4.2.8). This ends the proof of Theorem 4.1.1.which allows one to write the set K p defined in (4.1.18) asK p := {z ∈ D, {z A,1 + z a,1 , z A,2 + z a,2 } ∈ [z min , z max ]} . Assume that p < b(β + 1) -2d.The set K p is invariant under the dynamical system (4.1.6). Moreover, any solution to (4.1.6) starting from the set D reaches K p after a finite time.Proof. First, Equation (4.2.8) and the symmetrical equation for the patch 2 are sufficient to prove that the subset D is invariant under the dynamical system.Second, we prove that the trajectory reaches the bounded set K p in a finite time and third that K p is stable. The dynamics of the total population size n

	Lemma 4.2.1.

  .2.31) Hence, z a,1 (t) + z A,2 (t) ≤ C 4 e -C 1 t/C 3 , (4.2.32) and the exponential convergence of z a,1 and z A,2 to 0 is proved. Let us now focus on the two other variables, z A,1 and z a,2 . From the definition of the dynamical system in (4.1.6), and noticing that |z A,1 (t) -ζ| ≤ ζ, we get

  ζ-(M+1)ε ζ-Mε , death rate d + cζ + c(M + 2)ε + p and initial state ηεK , and N K sup is a N-valued binary branching process with birth rate

		b	ζ + ε(β -M -1) ζ -Mε	+ p,
	death rate	d + cζ -c(M + 1)ε + p	ζ -(M + 1)ε ζ -Mε	,
	and initial state εK + 1.		

It remains to estimate the extinction time for a binary branching process (N t , t ≥ 0) with a birth rate B and a death rate D > B. Applying (4.A.2) with i = ηεK , we get :

  0)) where z A,1 (0) ∈ {0.3, 0.5, 1, 2, 3, 5, 10, 15} as represented by the colors of the legend ; and (z A,2 (0), z a,2 (0)) = (1, 30) on the left, and (z A,2 (0), z a,2 (0)) = (15, 16) on the right.

  To deal with this model, we use the two weighted quantitiesΩ(t) := (β A -1)z A (t) -(β a -1)z a (t), Σ(t) := (β A -1)z A (t) + (β a -1)z a (t). = Ω b β A z A + β a z a z A + z a dc(z A + z a ) , (4.6.8) d dt Σ(t) = Σ b β A z A + β a z a z A + z a dc(z A + z a ) -2b(β A -1)(β a -1) z a z A z A + z a . (4.6.9)

	From (4.6.7), we find that
	d dt Ω(t)

  stated in Lemma 4.1.1. Proof of Lemma 4.1.1. The proof relies on a classical result of [59] (Chapter 11). Let z be in N E /K. According to (4.1.1)-(4.1.4), the rescaled birth, death and migration ratesλ α,i (z) = 1 K λ α,i (Kz) = λ α,i (z), d α,i (z) = 1 K d K α,i (Kz) = [d + cz A,i + cz a,i ] z α,i , (4.A.1)andρ¯i →i (z) = 1 K ρ¯i →i (Kz) = ρ¯i →i (z), (α, i) ∈ Eare Lipschitz and bounded on every compact subset of N E , and do not depend on the carrying capacity K. Let (Y ,i , (α, i) ∈ E ) be twelve independent standard Poisson processes. From the representation of the stochastic process (N K (t), t ≥ 0) in (4.1.5) we see that the stochastic process (

		(λ) α,i , Y α,i , Y (d)	(ρ)					
	(α,i)∈E	e α,i K	Y α,i (λ)	0	t	K λ α,i (		(d) α,i	0	t	K d α,i (	ZK (s))ds
						+ ∑ (α,i)∈E	(e α,i -e α, ī) K	Y α,i (ρ)	0	t	K ρ α,i (

αZK (t), t ≥ 0) defined by

ZK (t) = Z K (0) + ∑ ZK (s))ds -Y ZK (s))ds ,

has the same law as (Z K (t), t ≥ 0). Moreover, a direct application of Theorem 2.1 p 456 in

  .A.2)

à un pression de compétition pour les ressources ou pour l'accès à un territoire. La sélection sexuelle est, quant à elle, le mécanisme de sélection des individus les plus aptes à trouver un partenaire sexuel. Ces mécanismes entrent parfois en conflit, les pressions de sélection favorisant des aspects différents des individus. Dans cette thèse, nous nous intéressons aux deux types de sélection au travers de modèles probabilistes et déterministes spatiaux.Dans une première partie, nous focalisons notre attention sur l'aspect spatial. Nous étudions des modèles probabilistes et déterministes de populations structurées spatialement et phénotypiquement. On cherche en particulier à comprendre comment une structure spatiale influence l'évolution phénotypique des individus. Par ailleurs, on détermine quels facteurs modifient la répartition spatiale des populations au cours de l'évolution. On s'intéresse également à l'impact d'une interaction de type mutualiste sur les dynamiques spatiales et évolutives des populations.Dans la deuxième partie, nous nous intéressons à l'effet d'une préférence sexuelle dans un environnement écologiquement neutre. A l'aide de l'étude rigoureuse d'un modèle stochastique, on montre que la préférence sexuelle suffit à atteindre un

On choisit l'indice I k dans l'espèce * de l'individu concerné par l'événement de manière uniforme parmi les N * k-1 individus de l'espèce ;

On met à jour la position spatiale X I k T k de l'individu I k ;

Remerciements

Geometry et d'un vecteur de vecteurs d'objets Entity, chaque vecteur représentant une espèce. On expose ici le fichier Population.h commenté et les membres oneStepTwoSpecies, oneStep et chooseEvent de la classe Population qui constituent le coeur de l'algorithme, présenté plus haut. On expose ensuite les fichiers rateMove.h, Geometry.h et Entity.h. 

Population

and

This last equation provides the following possible cases : -z A,2 = 0, which implies z a,2 = ζ, and from (4.2.5) z A,1 = z a,1 = 0 (Equilibrium (4.1.10)), -z A,2 = ζ, which implies z a,2 = 0, and from (4.2.5)

which can be summarized as

where

The case β = 1

This subsection is devoted to the proof of Proposition 4.1.1. Let us first notice that the equilibria (4.1.11) are no longer hyperbolic. Moreover, following a similar reasoning to the one in Section 4.2.1, we obtain that the equilibria of the system which lay in D are exactly the line

The idea for the rest of the proof is to find a solution of the form

where v(w, x) = (wx, x, x, wx) has been introduced in Proposition 4.1.1. Assuming that ψ is solution to the system (4.1.6) with β = 1, we deduce that for all (α, i) ∈ E :

Thus γ(t) satisfies the logistic equation

whose solution starting from 1 is given by 

Confinement and Lyapunov function for a small migration rate

In this subsection, we are mainly interested in Equilibrium (4. 1.11). Recall the definition of D in (4.1.17)

First, we prove that we can restrict our attention to the bounded set K p ⊂ D defined in (4. 1.18). For the sake of readability, we introduce the two real numbers

By noticing that z A,1 z a,1 ≤ (z A,1 + z a,1 ) 2 /4, we get

16) The last term becomes positive as soon as z A,1 + z a,1 ≤ z min . As a consequence, once the total population size in the patch 1 is larger than z min , it stays larger than this threshold. Using symmetrical arguments, the same conclusion holds for the patch 2. Using additionally (4.2.14), we find t min > 0 such that ∀t ≥ t min , z A,i (t) + z a,i (t) ≥ z min , ∀i ∈ I, and n(t) ≤ 2z + 1.

(4.2.17)

We now focus on the upper bound of the set K p by bounding from above the total population size in the patch i, for all t ≥ t min , 

The first term of the last line is negative under Assumption (4.2.19), thus, if α is sufficiently small, Theorem 4.5.1. Assume that Z K (0) converges in probability to a deterministic vector z 0 belonging to D, with (z 0 a,1 , z 0 A,2 ) = (0, 0). Introduce the following bounded set depending on ε > 0 :

Then there exist three positive constants ε 0 , C 0 and m, and a positive constant V depending on (m, ε 0 ) such that if p < p 0 and ε ≤ ε 0 ,

where T K B , B ⊂ R E + is the hitting time of the set B by the population process N K , and

Migration

The migration rates under consideration decrease when the genetic diversity increases. Indeed, let us consider

as a measure of the genetic diversity in the patch i ∈ I. Note that

is known as the "total gene diversity" in the patch i (see [START_REF] Nei | Molecular population genetics and evolution[END_REF] for instance) and is widely used as a measure of diversity. When we express the migration rates in terms of this measure, we get

Hence we can consider that the migration helps the speciation. Let us show that we can get the same kind of result when we consider an arbitrary form for the migration rate if this latter is symmetrical and bounded. We thus consider a more general form for the migration rate. More precisely,

Proof. First, we study the stability of each fixed point.

Equilibrium (0, 0) : Assume that Σ(0) > 0. From (4.6.9), we derive

Hence, as long as

≥ Σ, we conclude that (0, 0) is an unstable equilibrium.

Equilibrium (ζ A , 0) : To specify the stability of Equilibrium (ζ A , 0), we compute the Jacobian matrix of the dynamical system (4.6.7) and evaluate it at the equilibrium (ζ A , 0). We find

The matrix admits two negative eigenvalues, thus (ζ A , 0) is a stable equilibrium.

Equilibrium (0, ζ a ) : Using a similar argument, we conclude that (0, ζ a ) is also a stable equilibrium.

Equilibrium (χ A , χ a ) : Finally, the Jacobian matrix for (χ A , χ a ) writes

Its trace and its determinant are negative. (χ A , χ a ) has thus a positive eigenvalue and a negative eigenvalue, that is (χ A , χ a ) is a saddle equilibrium.

Finally, let us study the long time behavior. From (4.6.8), we deduce that the sign of Ω(t) is the same at all time, and that the set D A 0 is an invariant set under the dynamical system (4.6.7). Observe that the only stable equilibrium that belongs to the set D A 0 is (ζ A , 0). We consider the function W : D A 0 → R :

which is a neighborhood of z i (0) slightly smaller than V i . The five neighborhoods (V ε i ) i=5,..,9 attracts some solutions ϕ 0,z 0 . Thus, we set

which is a neighborhood of the union of the stable manifolds of the unstable equilibria (4.6.16) and (4.6.15) for p = 0. We denote the complement of W in S by W c . Let us first deal with the trajectories of W c . According to Subsection 4.6.1, all the trajectories ϕ 0,z 0 starting from W c converge to a stable equilibrium, i.e. they reach any neighborhood of the set {z i (0), i = 1, ., 4} in finite time.

From the compactness of W c , we find a finite time t 1 > 0 such that ϕ 0,z 0 (t 1 ) ∈ ∪ 4 i=1 V ε i , for all z 0 ∈ W c . Moreover, from Theorem 1.4.7 in [START_REF] Berger | Géométrie différentielle : variétés, courbes et surfaces[END_REF], the flow ϕ is uniformly continuous with respect to p, to the initial condition and to the time. Thus, we can find p 10 < min i=1,..,9 p i such that for every p ≤ p 10 , z 0 ∈ W c ϕ 0,z 0 (t 1 )ϕ p,z 0 (t 1 ) ≤ ε.

In addition with the definition of the neighborhoods (V i ) i=1,..,4 , we find that for all p ≤ p 10 , z 0 ∈ W c and t ≥ t 1 ,

Then we deal with the trajectories of W. According to the definition of W (4.6.19), all the trajectories ϕ 0,z 0 starting from W reach one of the five neighborhoods (V ε i ) i=5,..,9 in finite time. Thus, by reasoning as above, we can find p 11 ≤ p 10 and t 2 > 0 such that for all p ≤ p 11 , z 0 ∈ W, there exists t ≤ t 2 , with

Let us fix p ≤ p 11 , z 0 ∈ W and assume that ϕ p,z 0 (t 3 ) ∈ V i . We have then three possibilities.

-If ϕ p,z 0 (t) ∈ V i for all t ≥ t 3 , then z 0 belongs to the stable manifold of z i (p) in S.

Since we have a global diffeomorphism on S, we can find the stable manifold of z i (p) by iterating the Implicit Function Theorem, and we deduce that this stable manifold is a set with empty interior. -Otherwise, there exists t 4 ≥ t 3 such that ϕ p,z 0 (t 4 ) ∈ V i . If ϕ p,z 0 (t 4 ) ∈ W c , the flow will converge to one of the four equilibria (4.6.14) in the light of the above.

Analyses probabilistes et déterministes pour l'évolution