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“Anytime you have a 50-50 chance of getting something right, there’s a 90% probability
you’ll get it wrong.”

Andy Rooney

“Essentially, all models are wrong, but some are useful.”
George Box
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Summary

Since the 50s, the air traffic is in constant growth. The actors of air transport - the engine
manufacturers, the aircraft manufacturers, and the airlines - are focused on issues of their
own business. This sometimes proves to be restrictive. Moreover, objectives of reduction
of the climatic impact of the aviation recently appeared and must be taken into account
in the preliminary aircraft design phase.

During this phase, the aircraft manufacturer studies the performances of various con-
figurations. This study is modeled as a deterministic multidisciplinary optimization under
constraints. The criteria are the minimization of the fuel consumption, the global operating
cost of the aircraft or the maximum take-off weight (which measures the global efficiency
of the aircraft). The constraints are defined by the specifications. The degrees of freedom
of this optimization are generally the wing area and the engine size. These studies are
sometimes based on very simplified models. The reasons are mostly the computation time
and the lack of knowledge on the approached concepts.

This thesis introduces a new holistic approach of the aircraft design optimization prob-
lem: we aggregate into the classical models, more accurate models of the propellant part
and the trajectory. For that purpose, we first familiarize with the existing models in order
to understand the interactions between the involved disciplines. We then validate the in-
tegration of the more accurate models in the existing tools, by matching it with existing
aircrafts. A contribution of this thesis is to integrate parameters of the engine and of the
mission into the usual degrees of freedom. The study of the results presents the benefits
brought by this new approach.

We also incorporate the climate impact to the optimization objectives.
Also, during the preliminary aircraft design phase, innovative technologies are studied,

which can be integrated into the propellant system of the aircraft, into its aerodynamic
system, or into its geometry. We select some of them in order to obtain the configuration
with the best possible performances. We suggest applying the holistic approach to a concept
of aircraft with an hybrid fuel-electric propulsion system. The corresponding models are
presented and are added to the existing ones, after validation by the experts. The results
of this optimization are compared with those of a conventional aircraft satisfying the same
specifications.

All the studies led until now are deterministic. Until now, the uncertainties around
the models are taken into account by margins, which are based on engineer know-how. It
can sometimes lead to unexpected disappointing performances. So, we introduce a new
approach which consists in carefully taking into account these uncertainties. For that
purpose, we list, compare and select methods of uncertainty management which could be
applied to our design problem. This is done according to criteria such as the computa-
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tion time, the accuracy, and the hypotheses on the models. We then suggest solving a
chance constrained optimization of the hybrid aircraft concept, by taking into account the
uncertainties coming from the evolution of the technologies required by the hybridization.

Finally, this thesis presents a new approach of aircraft preliminary design via robust
optimization. We suggest finding an optimal plane of which the performances are satisfied
whatever the uncertainty. This approach is complementary to the chance constrained ap-
proach. The implementation of robust optimization requires a particular modeling of the
problem which is described in this thesis.

Key words: Aircraft preliminary design modeling and optimization, uncertainty propa-
gation, chance constrained optimization, robust optimization.
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Résumé

Depuis les années 1950, le trafic aérien est en constante croissance. Les acteurs du transport
aérien - les constructeurs de moteur, les avionneurs, et les compagnies aériennes - sont
concentrés sur des enjeux propres à leur secteur d’activité, ce qui peut s’avérer restrictif.
De plus, des objectifs de réduction de l’impact climatique de l’aviation sont apparus et
vont devoir être pris en compte dès la phase préliminaire de conception d’avion.

Lors de cette phase, l’avionneur étudie les performances de nombreuses configurations.
Cette étude est modélisée sous la forme d’un problème d’optimisation multidisciplinaire
déterministe sous contraintes. Les critères sont la minimisation de la consommation de fuel,
du coût global d’opération de l’avion ou de la masse maximale au décollage (qui mesure
l’efficacité globale de l’avion). Les contraintes sont définies par le cahier des charges. Les
degrés de liberté de cette optimisation sont généralement la surface de la voilure et la taille
du moteur.

Ces études sont effectuées à partir de modèles parfois très simplifiés, soit par volonté
de réduction du temps de calcul, soit par manque de connaissance sur les concepts abordés.

Cette thèse introduit une nouvelle approche holistique du problème d’optimisation de
la conception d’avion: nous agrégeons aux modèles classiques, des modèles plus précis
de la partie propulsive et de la trajectoire. Pour cela, nous nous familiarisons avec les
modèles existants, pour comprendre les interactions entre les disciplines concernées. Nous
validons ensuite l’intégration des modèles plus précis de moteur et de trajectoire aux outils
existants, en se basant sur les données d’avions existants. Une contribution de cette thèse
est d’intégrer aux degrés de liberté usuels, des paramètres de conception du moteur et des
degrés de liberté de la mission. L’étude des résultats présente les gains apportés par cette
nouvelle approche.

Cette thèse contribue également à ajouter la minimisation de l’impact climatique aux
objectifs de l’optimisation. Une modélisation de cet impact est intégrée aux modèles.

Aussi, pendant la phase préliminaire de conception d’avion, des technologies innovantes
sont étudiées, qui s’intègrent au système propulsif de l’avion, à son système aérodynamique,
ou à sa géométrie. Nous en sélectionnons certaines afin de tirer de la configuration les
meilleures performances. Nous proposons d’appliquer l’approche holistique à un concept
d’avion à propulsion hybride électrique-fuel. Les modèles utilisés sont présentés et viennent
compléter les modèles existants, après validation par des experts. Les résultats de cette
optimisation sont comparés à ceux d’un avion conventionnel répondant au même cahier
des charges.

Toutes les études menées jusqu’à présent sont déterministes. Les incertitudes autour
des modèles utilisés ne sont pour l’instant prises en compte que par des marges basées sur
le savoir-faire ingénieur. Cela peut parfois mener à des contre-performances inattendues.
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Dans cette thèse, nous introduisons une nouvelle approche qui consiste à prendre en compte
consciencieusement ces incertitudes. Pour cela, nous recensons, comparons et sélectionnons
des méthodes de gestion des incertitudes qui pourraient s’appliquer à notre problème de
conception, selon des critères de temps de calcul, de précision, et d’hypothèses sur les
modèles. Nous proposons ensuite de résoudre une optimisation probabiliste du concept
d’avion hybride, en prenant en compte les incertitudes liées à l’évolution des technologies
nécessaires à l’hybridation.

Enfin, cette thèse présente une nouvelle approche d’optimisation robuste de la con-
ception d’avion. Nous proposons de trouver un avion optimal dont les performances sont
satisfaites quelle que soit l’incertitude présente. Cette approche est complémentaire à
l’approche probabiliste. L’application de ces méthodes d’optimisation robuste nécessite
une modélisation particulière du problème qui est décrite dans cette thèse.

Mots clés : Modélisation et optimisation de la conception avion, propagation des incer-
titudes, optimisation sous contraintes en probabilité, optimisation robuste.
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Principales contributions classées
par domaine

Dans le domaine de la conception préliminaire d’avions :

• Nous proposons une nouvelle approche globale du problème d’optimisation du di-
mensionnement préliminaire d’avion. Une des principales innovations est d’intégrer,
pas à pas, un nouveau modèle de moteur, un nouveau modèle de trajectoire et un
modèle d’impact climatique, aux modèles utilisés jusqu’à présent.

• Nous incorporons des nouvelles variables de design au problème d’optimisation: aux
deux variables classiques, la surface de la voilure et la poussée du moteur, nous
ajoutons le "wing aspect ratio" de la cellule avion, le "by-pass ratio" du moteur,
l’altitude de croisière, le mach de vol, ainsi que les vitesses de montée et descente
pour ce qui concerne la trajectoire. Cette intégration est validée par une comparaison
des résultats de l’optimisation en ajoutant progressivement les nouvelles variables de
design.

• Nous proposons une configuration d’avion innovante dont l’impact climatique serait
réduit par rapport à un avion conventionnel. Pour cela, nous fournissons une étude
d’une configuration d’avion à propulsion hybride (électricité-fuel), en la comparant
à une configuration d’avion classique respectant le même cahier des charges. Nous
résolvons le problème d’optimisation du dimensionnement de ces deux configurations,
et nous comparons les solutions obtenues pour les trois critères suivants : l’impact
climatique, le cout global d’opération de l’avion et la masse maximale au décollage
de l’avion (critère qui mesure l’efficacité globale de l’avion).

Dans le domaine des méthodes dédiées à l’optimisation du dimensionnement d’avion :

• Nous avons intégré dans un outil de dimensionnement avion une méthode de différen-
ciation automatique, qui permet d’atteindre une meilleure précision dans le calcul des
gradients en comparaison aux méthodes de type différences finies.

• Nous avons comparé et sélectionné des méthodes d’optimisation adaptées au prob-
lème de dimensionnement d’avion : selon la qualité des modèles ou le nombre de
variables de design, nous avons implémenté dans l’outil des algorithmes basés sur les
gradients et des algorithmes de type heuristiques.

Dans le domaine des incertitudes :

• Nous avons développé une nouvelle famille de lois de probabilité, nommée Beta-
Mystique, qui englobe plusieurs familles de distributions uni-modales.
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• Nous proposons une étude détaillée de méthodes de propagation des incertitudes à
travers les modèles. Les critères de comparaison sont la précision des méthodes, le
cout de calcul et les informations disponibles sur les modèles. Cette étude générale
nous permet de sélectionner une méthode adaptée à la résolution du problème de
dimensionnement d’avion sous incertitude.

Dans le domaine des méthodes d’optimisation sous incertitudes appliquées au dimension-
nement d’avion :

• Nous proposons une approche basée sur une optimisation sous contraintes en proba-
bilités du problème du dimensionnement d’avion. Pour cela nous utilisons une méth-
ode nommée S.O.R.A., par-dessus laquelle nous adaptons des techniques permettant
de calculer des bornes précises sur les probabilités, afin d’obtenir une meilleure solu-
tion.

• Nous appliquons cette méthode à l’optimisation sous contrainte en probabilités de
la configuration d’avion hybride, en résolvant le problème suivant : trouver l’année
à partir de laquelle l’avion hybride sera aussi performant qu’un avion conventionnel
avec une probabilité de 95%.

• Nous abordons une approche d’optimisation robuste du problème du dimension-
nement avion, dont la solution satisfait les contraintes pour toutes les réalisations
des variables incertaines.
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Introduction

Air traffic has been regularly growing for the last seven decades. The current number of
passengers per year is around 3 billions and, according to the lower predictions, this num-
ber is expected to double over the next fifteen years. The main three commercial actors of
air transport - the engine manufacturers, the aircraft manufacturers, and the airlines - are
focused on issues of their own business. This sometimes proves to be restrictive, since
there is no global consideration of all the interactions between the engine, the airframe and
the airline operations (trajectory). The aircraft design process deeply involves these three
drivers. This process starts with the conceptual design phase, generally followed by the
preliminary design phase. During the conceptual phase, engineers and researchers define
an aircraft configuration involving new innovative concepts. This can be minimal changes
with respect to the existing aircraft, e.g. add wingtip fence to improve the aerodynamic
performances of the aircraft. This can also be more important changes, as completely
defining a new aircraft configuration, e.g. with the flying wing concept. These innovative
technologies can be integrated into the propulsion system of the aircraft, into its aerody-
namic system, or into its geometry. The preliminary design phase consists in stating some
numerical values on the so defined configuration, with respect to the available knowledge
on the used concepts.

The frame of this thesis is straddling the conceptual and the preliminary design phase.
During the preliminary phase, the aircraft manufacturer studies and compares the per-
formances of various aircraft configurations. The objective is to determine the design
parameters that will lead to the best aircraft with respect to well-selected specifications
and requirements. The specifications (number of seats, range) are the results of a market
analysis since the objective is to sell as many aircraft as possible. The requirements can
be operational, in order to ensure fly-ability, best performances and safety. They can also
be regulatory, e.g. to avoid repeating past incidents.

The preliminary design studies are multi-disciplinary, involving aerodynamics, thermo-
dynamics, geometries, weights, structures, etc. At the beginning of the study, a wide design
space is explored, which can become more complex after down-selection of a few candi-
dates. Finally, the aircraft design study is modeled as a deterministic multidisciplinary
optimization under constraints. The most often used criteria are the minimization of:

• the fuel consumption over a representative mission, or

• the global operating cost of the aircraft, which takes into account charges, the fuel,
maintenances and the flight crew costs, or

• the maximum take-off weight of the aircraft, which measures the global efficiency of
the aircraft.

1
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The constraints are defined by the specifications and the requirements. They can be
landing speed limitations, take-off field limited length, limited time to climb, etc. The
degrees of freedom of this optimization are generally the wing area and a parameter that
drives the engine size and power, namely the sea-level static thrust. This choice is due
to the main impact of these two parameters on the aircraft performances and criteria, via
the used models. It is also due to the simplicity and fastness to handle a bi-dimensional
optimization.

Moreover, as for all human activities, air transportation gets more and more challenged
by competition and ecological matters. New regulatory objectives of reduction of the avi-
ation climate impact recently appeared. This represents a new challenge for the aircraft
designers that must be accounted for in the preliminary phase.

This thesis introduces a new holistic approach of the aircraft design optimization prob-
lem: we aggregate into the classical simple models, more accurate models of the propulsion
system part and of the trajectory part. For that purpose, we first familiarize ourselves
with the existing models in order to understand the interactions between the involved dis-
ciplines. We then validate the integration of the more accurate models in the existing tools,
by matching them with existing aircraft. We also incorporate a climate impact model re-
lated to the finest trajectory model. This allows us to add a measure of the climate impact
to the classical criteria of the optimization.

The following step of this thesis has been to integrate step-by-step additional parame-
ters of the airframe, parameters of the engine and of the mission additionally to the two
usual degrees of freedom (the wing area and the sea-level static thrust). We select a con-
ventional aircraft configuration to which we apply the step-by-step approach. This aims
at validating the results at each addition of degrees of freedom. It helps understanding the
impact of the various design variables on the performances.

A contribution of this thesis is the proposal of new concept of aircraft namely a hybrid
aircraft, with a hybrid fuel-electric propulsion system. We suggest applying the holistic
approach to the preliminary design of this concept.

All the previously mentioned studies, and aircraft design process in general, are de-
terministic. In practice, the uncertainties around the models are taken into account by
margins, which are based on engineer know-how. It can sometimes lead to unexpected dis-
appointing performances, which are directly transformed into cost penalties for the aircraft
manufacturer. So, we introduce in this thesis a new approach which consists in carefully
taking into account these uncertainties, via robust design methodologies. The manuscript
is divided into six parts:

Chapter one is dedicated to the conceptual and the preliminary aircraft design. The
general context of this thesis, which is the future project office of Airbus, is presented.
We underline its role in the aircraft design process. The classical models used to simulate
this process are then described: the geometry, thermodynamics, aerodynamics, weights,
missions and performances. The models developed in the frame of this thesis are intro-
duced: the trajectory simulation, the finest engine and the environmental impact. Then,
the hybrid aircraft configuration is described. The related models are built and validated
by the experts. We underline the importance of studying the way of operating such an
innovative concept, especially energy management. Finally, we propose improvements of
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the first concept idea, in order to take benefit of all the detected synergies and opportunities.

Chapter two deals with the mathematical tools required to solve the aircraft design
problem via the holistic approach. We first present an automatic differentiation method
which has been implemented in the numerical tools. The objective is to obtain the function
gradients with more accuracy than with finite differences techniques. We then introduce
some classical optimization methods: gradient based, derivative free, and surrogate based.

Chapter three presents the step-by-step approach of the aircraft design optimization,
with the introduction of the additional degrees of freedom. We first describe the steps of
this approach. Then, it is applied to the conventional configuration, with an analysis of
the results. Finally, we propose to apply this approach to the hybrid aircraft design opti-
mization satisfying the same specifications. We add in parallel a step-by-step integration
of the hybrid aircraft synergies presented in the first chapter. The conventional and hybrid
aircraft are finally optimized in terms of the climate impact criterion. Results are compared.

Chapter four is dedicated to uncertainty management. We start with the general defini-
tions on uncertainties that we choose to represent by random variables. Then, we introduce
methods that we select to characterize the uncertainty. Finally, we propose a review of
uncertainty propagation methods. For that purpose, we list, compare and select methods
of uncertainty propagation which could be applied to our design problem, namely Monte-
Carlo, Taylor expansion, quadrature and polynomial chaos expansion methods. This is
done according to criteria such as the computation time, the accuracy, and the assumptions
on the models. The selected methods are finally compared through numerical examples.

Chapter five presents a new approach of aircraft preliminary design via a chance con-
strained optimization. The introduction is dedicated to general information on robust
design approaches. A numerical method namely SORA (Sequential Optimization Reliabil-
ity Assessment) is described. We then propose an adaptation of this method to manage
unconventional random variables. We assess the robustness thanks to a method of uncer-
tainty propagation selected among the ones presented in the fourth chapter. We apply this
robust optimization method to the hybrid aircraft design to answer the following question:
according to a given criterion, what kind of hybrid aircraft will be reliably competitive
and when can we expect it? The compared criterion are the fuel consumption, the global
operating costs and the climate impact.

Chapter six presents the first works on another approach of a robust optimization of
a conventional aircraft design. We suggest finding an optimal aircraft of which the per-
formances are satisfied whatever the uncertainty. This approach is complementary to the
chance constrained approach. The implementation of robust optimization requires a par-
ticular modeling of the problem which is described in this chapter.

This manuscript ends with the conclusion and the perspectives of the thesis.
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Chapter 1. Conceptual Aircraft Design for Air Transportation

Air transportation is the mode of transport that has experienced the fastest growth
in the last century. Starting with the first flight of Wright’s brother in 1903, commercial
air transport development really began in the late twenties and early thirties. Important
advances were introduced in aircraft construction methods with the monocoque and the
use of aluminum. At the same time the first airlines appear in Europe and in the U.S.,
followed by several Latin American carriers.

The world war II accelerated the development of aircraft, and hundred of airports were
created. From the forties, technological evolutions impact the air transport with electronics
devices (RADAR - 1944, GPS - 1993, ...), making it always safest, controlled, comfortable
and also profitable. These innovations also helped to manage the growth of the number of
flights around the world. At the same time, engines evolved with the research of the safest,
the more silent, economical and powerful engine. Also in parallel, airlines kept looking for
the best way of managing flight in order to make it more comfortable for the passenger, but
also safest and more economical. The fuel price increase drove the engine manufacturers to
pay more attention to the economical aspect via the engine fuel efficiency. This leads to one
of the best compromise: the turbofans, that are powering most of the current commercial
aircraft. This rising price also drove the airlines to be more careful on flight operations
from the ground to the cruise altitude.

The continuous growth of air traffic number quickly brought the need for a more global
organization of air transportation. It yielded the creation of several organizations: the
Federal Aviation Administration (FAA) in the U.S., the European Aviation Safety Agency
(EASA) or the Direction Générale de l’Aviation Civile (DGAC) in France. These organi-
zations have the role to regulate and oversee all aspects of civil aviation in there country.
However the most important of them is the International Civil Aviation Organization
(ICAO). It is a specialized agency of the United Nations and it codifies the principles
and techniques of international air navigation and fosters the planning and development
of international air transport to ensure safe and orderly growth. One particular concern
of ICAO is the environmental impact of aviation. It is reported in [132] that aviation is
responsible for about 3.5% of the total radiative forcing of all anthropogenic emissions and
scenarii say that it would likely rise to 5% (with a worst-case scenario of 15% of human
emissions) by 2050.

To give a rough idea, the global airline industry performs today around 32 million
commercial flights per year transporting 3 billion passengers and 50 million tonnes of
freight. Airbus global market forecast in [6] predicts a traffic growth of around 4.7% per
year from 2014 to 2033. As we can see in Figure 1.1, it means a global growth of around
250%. This evolution of air transportation leads to an evolution of the challenges. We can
quote the following ones from [166], with their associated goals:

• quality and affordability, by reducing passenger charges, increasing passenger choice,
reducing time to market,

• environment, by reducing CO2 emission by 50%, NOx emission by 80%, perceived
external noise by 50%. These targets have been assessed by the Advisory Council for
Aviation Research and Innovation in Europe (ACARE) in [42], and

• safety, by reducing accident rate by 80%, reducing human error and its consequences.

These challenges have then to be taken into account from the beginning of a new project
of aircraft. This starting point is realized at Airbus Future Project Office. The objective

6



1.1. Aircraft Conception

Figure 1.1: Airbus and ICAO global market forecast until 2033. Revenue passenger
kilometres (RPK) is a measure of the volume of passengers carried by an airline, a revenue
passenger-kilometre is flown when a passenger (excepted airline employees and babies) is
carried one kilometre.

of this chapter is to present in a first part the process of aircraft conception, also called
aircraft design, from a general point of view and with a particular focus on the role of future
project office. The second part of the chapter is dedicated to the presentation of numerical
models that have been selected for the preliminary design of new aircraft configurations.

1.1 Aircraft Conception
Aircraft conception is all but a simple task. From the idea of a new project to the indus-
trialization, around 10 years are necessary. As a comparison, it is around 5 year for a car
and around 1 year for a computer. The operating time is also huge comparing to daily life
objects: the mean is around 30 years for an aircraft, whereas it is around 15 year for a
car and 3 year for a computer. An example of duration of an aircraft project management
is given in Figure 1.2. Aircraft conception is then a major project. Specific management
approach has been created to carry out this project in optimal managing conditions. It
is based on a project life management division that is called Maturity Gates (MG). The
role of this steps is to follow and validate the project maturity. Figure 1.3 presents the
typical maturity gates of a project of aircraft, with the corresponding steps that have to
be reached.

1.1.1 Future Project Office

Airbus, like many other business entity, has to build and sell a range of products: its
aircraft from the different families. From the short range to the long range type and with
a various number of seats, we can find the four following families: the A320, the A330,
the A350 and the A380. Figure 1.4 presents the diagram of the radius of action versus
the number of seats with all current Airbus family products. Target a market segment
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Figure 1.2: Example of an aircraft product life management.

Figure 1.3: Aircraft design process with maturity gates (MG).

amounts to defining a number of characteristics, essentially the two previously mentioned,
but also performances at takeoff, landing, climb, cruise, etc. The objective is to cover with
all families of aircraft the market where we want to be present with the best performed
products. For that, we are constantly on the lookout for a competitive threat, and looking
for improvements in our product range.

Future project office role takes place at the very beginning of the project development.
One of the main work of future project office is to assess the benefits and drawbacks of
various aircraft configurations, to provide the technical arguments to the company strategy,
and to propose the best configuration according to the required top level requirements. The
design phase actually began before MG1. From then, the future project office is responsible
for the following actions:

• scenario analysis (MG1),

• scenario selection (MG2),

• study of most attractive TLARs of the market and find out corresponding capabilities,

8
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Figure 1.4: Airbus aircraft families market positioning.

• study and evaluation of all ideas with regards to best technologies available, by
discussing with partners and customers,

• entry into concept (MG3),

• following first steps of concept.

During these phases, the future project department has various roles:

• technology watching, by monitoring worldwide the technical advances that could lead
to promising applications, and by evaluating what would be the performances of an
aircraft that embeds such technologies,

• competitor positioning watching (look for the aircraft that will rival with our prod-
ucts, compare the performances between our aircraft and the competition, ...),

• innovative platform, by studying innovative configurations in order to evaluate new
technologies. All innovations that bring performances improvement are studied.
Their interest is evaluated according to a global interaction of the following aspects:
technicals (new material, flight command, cabin layout, ...), economical (fuel price,
airlines strategies, ...), environmental (pollution, noise, rules, ...), and last but not
least, safety,

• supporting development, by integrating general work from the whole engineering,
and by helping to ensure the aircraft consistency and the satisfaction of cost and
performance objectives,

• research, by participating in national and European research programs to promote
innovation,
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• design, by writing the specifications, by experimenting numerically aircraft missions
and performances.

The integrator role of future project is a key of aircraft design: the best concept is often
the one that will take benefit of all technologies together. Clearly, the goal is to manage
the concept configuration in order that the sum of one improvement in the propulsive part
and one in the aerodynamic part for instance is greater than these improvements taken
separately. That is the integrator role of future project office: aerodynamics, propulsion,
handling qualities are managed together to ensure the best efficient configuration. To
illustrate this, Figure 1.5 represents some of the various innovative concept planes that
have been studied by future project office.

Figure 1.5: Examples of innovative aircraft configurations.

The evaluation of the performances of all these configurations is done thanks to models
and processes of different levels. The choice of the models is often a trade between the ac-
curacy on the results and the computation time. As an example, for the masses evaluation,
we can find the three following levels of models:

• the more accurate level is considering each part of the aircraft (fuselage, wings, ...)
as a structural mesh,

• the second level relies on semi-empirical modeling with a piece by piece estimate of
the masses, based on a breakdown that can be more or less detailed,

• the last level, called level 0, consists in simple formulas to compute the weight of each
main component (fuselage, wing, ...).

The models that we are going to introduce in Section 1.2 are considered of level 0. These
models allows to evaluate the performances of a new aircraft in around 10 seconds, which
is one of the main required constraint in order to put this design evaluation into an opti-
mization loop.
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1.1.2 Aircraft Design: A Multi-Disciplinary Optimization problem

As mentioned in Section 1.1.1, aircraft design involves the following disciplines: propulsion,
aerodynamics, weights, handling qualities, etc. It can be completed by the non exhaustive
list: electricity, controls, stress, structure, hydraulic, etc. One of the difficulty of aircraft
design is to integrate all these disciplines and the corresponding various requirements. It is
most of the time a question of trades. Requirements of a discipline can be constraints for
another one, and interactions management is a key part of the design. Figure 1.6 is a well
representative caricature that represents the ideal aircraft through each discipline view.
At Airbus, specific departments are specialized in discipline. They are called the center
of competences. Future project communicates with these different departments in order
to integrate and validate concepts around the aircraft project. Like any product intended

Figure 1.6: Caricature of aircraft design according to specific discipline.

for a market, an aircraft is responding to specific requirements. The main performance
requirements of an aircraft are the following ones:

• number of seats,

• range and speed (Mach number),

• initial climb altitude,

• take-off field length,

• approach speed,

• landing distance,

• ...

The first three parameters of the above list are considered as specifications whereas the
last ones are considered as operational constraints: they correspond to real needs for safety
or operations. According to these specifications, an inverse problem has to be solved. The
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Figure 1.7: Future project iterative design process.

objective is to define an aircraft that fulfills all these required performances. It can be
explained by Figure 1.7. It is important to note that these performances are function of
the product. For instance, a short range aircraft has to be compatible with smaller airports,
which may yields more binding landing and take-off field length requirements. Once these
requirements are selected, what will drive the choice of the customer? The response has
to be selected among parameters that impact its profits, but also its reputation. It can be
one of the following:
• the fuel consumption,

• the operating cost of the aircraft,

• the environmental impact,

• the aircraft structural weight,

• a differentiation parameter (the biggest, the fastest, ...).
The aircraft design objective is then to optimize these parameters, for all the above men-
tioned one, optimize means minimize. The global aircraft design approach, from the re-
quirements to the minimization of one of these criteria clearly defines a constrained multi-
disciplinary optimization problem.

A trade between the objectives can also be of interest. Indeed, in the case where two
required criteria are conflicting, the corresponding optimized aircraft configurations can
be very different. The idea can then be to present to the customer various optimized
configurations, that balance both criteria. This allows to let him some freedom of choice
and to decide what is the best trade between the criteria.

12
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1.1.3 Aircraft: How to make it fly?

To make an aircraft fly, i.e. to reach a required altitude and speed, means that it has
to generate sufficient aerodynamic lift to compensate its weight. At the same time, it is
generating aerodynamic drag that has to be compensated by generating sufficient thrust
to maintain the required altitude. This is summarized in Figure 1.8. The target is then a

Figure 1.8: Aerodynamics of flight.

reduction of the weight and a reduction of the drag. However, it is not so simple, interac-
tions between aircraft components have to be carefully studied. Schema from Figure 1.9
represents the cause-and-effect of the aircraft design for flying. It underlines the fact that
any change in one actors of the flight will impact others. The design process objective is
not only to find the right value for the design variable, for example the wing area and the
engine size, but also to find the best ones according to the criteria. It also brings out the
importance of models that will be used in the design process in order to account for the
interactions with the right balance between accuracy and computational cost. All these

Figure 1.9: Cause-and-effect of aircraft design for flighting.
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models are put together to obtain the aircraft design simulation toolbox. They will be
presented in the following sections. The design process can now be implemented according
to the specifications, the requirements and the criteria from Section 1.1.2, the design pa-
rameters, and also some hypothesis around promising technologies, such as in Figure 1.10.
One of the important step in the design process is what is called the mass-mission loop.

Figure 1.10: Aircraft Design Process.

It is presented in Section 1.2.5 and it illustrates the snowball effect that can result from
an increase in the structural mass. This step of the design process well underlines the
complexity of the aircraft design.

1.1.4 The important place of the engine

Engine has a very important part during the aircraft design: it represents more than 25%
of the total mass of the aircraft and it gives the aircraft its propulsion power through the
thrust, as well as all the necessary energies (electrical, hydraulic, thermal).

We can introduce here the “Supreme Propulsion System Family” (Figure 1.11). Engines
can be designed with respect to various expectations that can be summarized by this figure.
It is also important to underline that all these criteria (noise, cost, climatic impact, fuel
efficient, fast) are most of the time contradictory and the best engine is highly depending
on the aircraft needs and requirements. The main objective of engine manufacturers is
then to reduce the difference between the different expectations (noise and consumption,
silent and cheap, high speed and environmentally friendly...). The most used engine for
commercial aircraft is the turbofan engine. It offers a good compromise between all the
previously mentioned expectations. To define a turbofan, we first have to define what is a
turbine engine [136]:

A turbine engine is a container with a hole in the back end, called nozzle, to let air inside
the container escape, and thus provide propulsion. Inside the container is
turbo-machinery to keep the container full of air under constant pressure.

Propulsion is the net force that results from unequal pressures. This force is called thrust.
The following four steps are the basis of any internal combustion engine, with the corre-
sponding engine section that is represented in Figure 1.12:
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Figure 1.11: Supreme Propulsion System Family.

• intake of air by the inlet section,

• compression of the air, by the compressor section,

• combustion, where fuel is injected and burned to convert the stored energy, by the
combustion section,

• expansion and exhaust, where the converted energy is put to use, by the exhaust
section (turbine and nozzle).

Figure 1.12: Basic layout of a jet propulsion turbine system [136].

A turbofan engine is then simply a turbine engine where the first stage compressor
rotor is larger in diameter than the rest of the engine. Figure 1.13 represents a turbofan
engine model. The larger stage is called the fan. Its principle is the following one [136]: the
ambient air that passes through the fan can be divided into two flows, the one that goes
through the compressor stage which is then compressed and processed through the engine
cycle, and the one that does not pass through the core but instead passes along the outside
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engine. This air is called the bypass air, and the ratio of bypass air over core air is called the
bypass ratio (BPR). The total thrust is finally the sum of those from both the hot thrust
provided by the core stream and the thrust provided by the bypass stream. Note that
the turbofan configuration results from an optimization of a pressure ratio efficiency, that
yields a highly performed engine. The engine design process is presented in Section 1.2.3,

Figure 1.13: Single shaft turbofan engine simplified model.

with the main design parameters description. The aircraft whole design process is detailed
in next section.

1.1.5 The importance of the trajectory

Basically, an aircraft is an aerodyne that is using its own velocity in the air to produce a
force that counterbalance its weight. This way of flying requires that an engine produces
the necessary thrust. The airflows around the aircraft, as well as inside the engines, are
driven by aerodynamic laws, whilst the thrust and the fuel consumption are driven by
thermodynamic laws. It is clear that interactions between the aircraft and the surrounding
air mass are a key of air transport operations.

According to this, two parameters have a major impact on these interactions: the
speed of the aircraft through the air and its flying altitude. The speed of the aircraft is
represented by its Mach number:

Mach = v

a
= v√

γRT
, (1.1)

where v is the velocity of the moving aircraft, a is the speed of sound in the medium (in
m/s), which depends on the temperature T (in K), the universal gas constant R (≈ 287.053
J/kg/K), and γ the adiabatic index (γ = 1.4 for the air). This latter relation is made
assuming the air is an ideal gas. The temperature is assumed to follow the International
Standard Atmosphere (ISA) rules (Figure 1.14), which are an average set of conditions set
as an international reference. It also gives an average behavior of the pressure P (in Pa)
(Figure 1.15) as a function of the altitude h (in m). The air density ρ (in kg/m3) can be
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computed via the formula:

ρ = P

RT
. (1.2)

The aerodynamic forces can be expressed as follows:

Figure 1.14: ISA temperature model.

Figure 1.15: ISA pressure model.

F = 1
2 ρ︸︷︷︸
atmosphere

× v2︸︷︷︸
speed

× S × C︸ ︷︷ ︸
shape and orientation

, (1.3)
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= 0.7× P ×Mach2 × S × C, (1.4)

where ρ is the air density, v is the aircraft speed, P the pressure, S a constant value
(in m2) which allows the homogeneity of the formula, and C which is a coefficient that
represents the force response to the shape submitted to the airflow. This response is of
course depending on the shape itself but also of it orientation versus the airflow. For
instance during the aircraft cruise, the lift has to counterbalance the weight, which leads
in the following relation:

mg = 1
2ρ× v

2 × S × Cz, (1.5)

= 0.7× P ×Mach2 × S × Cz, (1.6)

where Cz is the lift coefficient, mostly equal to 0.2 and is in practice fixed for a given cruise.
Thanks to this relation, we can observe the strong link between the speed parameter (Mach)
and the altitude of the aircraft z. When z increases, the air density ρ decreases, which
means that to keep satisfying relation (1.5), the Mach has to increase.

The interactions between the running engine and the atmosphere are in turn very
complex and beyond the scope of this study. Nevertheless, we can note at this stage that
the turbofan engines show a maximal efficiency at a given speed and a given thrust which
is in practice set to match the cruise conditions. Indeed, the cruise Mach is strongly limited
by the speed of sound in the air. Let us present the case of an aircraft that is flying Mach
1, which is equal to the speed of sound. Crossing of the speed leads to a huge change of
the nature of the airflow around the aircraft and consequently to important effects on the
aircraft shape. For proof, we can compare the shape of the Concorde to the one of an
A320, as presented in Figure 1.16. For the subsonic transport aircraft, the higher Mach

Figure 1.16: Concorde versus A320: a difference of shape.

that can be handled without a huge modification of the aircraft shape is around 0.85.
During the cruise, the other aerodynamic relation that involves the thrust and the drag

is the following one:

Thrust = 1
2ρ× v

2 × S × Cx, (1.7)

= 0.7× P ×Mach2 × S × Cx, (1.8)
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where Cx is the drag coefficient. We observe that the thrust is increasing as a function
of the square of the Mach number: the cost of the speed is considerable. This is why the
interest is to fly high, such that ρ decreases. However, the engine need air to run properly
then too high altitudes are not possible.

From all these interactions, it results that the trajectory of the aircraft (in green) in
the 2D-map (altitude z,speed v) generally follows the path presented in Figure 1.17. It
follows iso-ρv2 and iso-Mach.

Figure 1.17: Resulting aircraft trajectory in (z,v)-map.

1.2 Aircraft Design Processes and Models

This section is devoted to the presentation of the models and processes of aircraft prelim-
inary design. For more details see [22].

Let us recall that most important quantities for fly-ability are Wing and Engine: wings
are generating the lift, and engines the thrust. Maximum Take-Off Weight, already men-
tioned in the previous section, directly influences the amount of mechanical structure, but
also the required engine power and the cost of the aircraft. Classical Overall Aircraft De-
sign (OAD) objective is to define consistent values for Wing Area, Engine Size and MTOW.
The process presented at the end of this chapter consists in optimizing the global aircraft
configuration taking as degrees of freedom not only these airframe design components but
also some additional degrees of freedom of the trajectory and of the engine.

1.2.1 Aircraft Design Process description

The Overall Aircraft Design (OAD) process is the name of the global definition of the
aircraft. The steps of this process are illustrated in Figure 1.18. The first step is the selec-
tion of the specifications and requirements: mainly the number of passengers, the range of
the the aircraft, its required performances. An example of specifications for a short range
aircraft is given in Tables 1.1 and 1.2. The design is generally optimized with respect to a
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given criterion, for instance the fuel consumption, the MTOW, the operating cost, which
have to be minimized. At the same time, the design variables are selected, the classical
ones are the Wing Area and the Sea Level Static Thrust of the aircraft. From there, OAD
numerical tools allow to compute a complete aircraft configuration with its performances.
The overall aircraft design process then consists in finding the values of the design variables
that allow the aircraft to satisfy the requirements, and which minimize the criterion. This
optimization, which encompass the aircraft computation, is a deterministic mono-objective
constrained optimization. This optimization process can also be represented with more

Figure 1.18: Overall Aircraft Design Process.

Table 1.1: An example of short range specifications and requirements.

Name Value
Number of Passengers (Npax) 180

Design Range 2000 NM
Cruise Mach number 0.76
Wing Aspect Ratio 9

Number of Electrical Engine 0 or 1
Number of Thermal Engine 2

Engine By Pass Ratio 10
Top of climb Reference Altitude (ZpRef) 35000 ft

Engine Overall Pressure Ratio 40

details, as illustrated in Figure 1.19. Here we dissociate the design into subprocesses. The
first one is the aircraft geometry computation according to design parameters and to re-
quirements. The entire shape of the aircraft is designed through parametric models. At
the same time the engine parameters are computed. The second step is the estimation
of aerodynamic forces and structural masses with the mass-mission loop, detailed in Sec-
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Table 1.2: An example of short range operational constraints.

Name Value
Approach Speed (LdSpeed) < 130 kt

Climb Vertical Speed Ceiling (ClbVz) > 500 ft/min
Cruise Vertical Speed Ceiling (CrzVz) > 300 ft/min

Take-Off Field Length 1 (at Sea Level) (TOFL1) < 2000 m
Take-Off Field Length 2 (in High & Hot conditions) (TOFL2) < 2500 m

tion 1.1.3. Once this loop is done, we have the complete aircraft description. Then the last
step is the computation of its operational performances and of the criteria to minimize.
This is a classical way of designing a new aircraft. One of the objective of this thesis was to

Figure 1.19: Aircraft Design Optimization Process.

integrate to the process semi-empirical models of a thermodynamic engine and of a detailed
mission and to look for global optimum. This integration is developed in the last section.

The multidisciplinary aircraft preliminary design process is the interaction of different
physics. Most important are the geometry, aerodynamics, weights, propulsion, trajectory,
environmental impact, etc. Each discipline is modeled by intrinsic integer or real parame-
ters, and also by various functions of all parameters. The design tool used during this thesis
is an Airbus internal tool named OCCAM, which results of more than ten years of research
and experiments [22, 12]. A complete description of these models can be found in [22]. It
is based on semi-empirical models: some models are taken from physical laws, some others
are extracted by regression from a database of around 60 aircraft. Interpolations are often
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linear, or polynomials according to engineering intuitiveness and knowledge. The models
are organized into a multi-layered toolbox as presented in Figure 1.20: the lower layer con-
tains models computing aircraft components such as fuselage, wings, etc, and the higher
layer contains processes for the optimization. Let us now have a more accurate look on the

Figure 1.20: Aircraft Design: a multi-layers toolbox.

different boxes of Figure 1.19 by presenting their inputs, their outputs, and the parameters
required for their computation. We present the geometry model, the aerodynamics model,
the weights model, the engine model, the mission model and the performances model.

1.2.2 Geometry model

As presented in Figure 1.19, the first step in the aircraft configuration computation is the
geometry. According to design parameters values and specifications, the geometry of the
aircraft is computed: all the dimensions of the fuselage, the wings, the vertical and the
horizontal tail-planes. It is represented by the diagram of Figure 1.21. Various concepts

Figure 1.21: Geometry model inputs, outputs and parameters.

such as the ones presented in Figure 1.22 are integrated in the tool box and can be used.
The different properties offered by these concepts can be then compared by designing
aircraft with each of them. During the process, in parallel with the geometry, the engine
parameters are computed.

1.2.3 Thermodynamic Turbofan Engine model

The objective of the engine model is to compute the fuel consumption, the thrust and the
mass of the engine versus the required flight conditions. A scheme of a turbofan engine is
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Figure 1.22: Examples of different concepts with variable geometry.

recalled in Figure 1.23. The input parameters of a turbofan engine are the following ones:

• A parameter that drives the size of the engine: the Sea Level Static Thrust, the
maximum thrust that can be generated by the engine,

• Three parameters of the engine thermodynamic cycle:

– the Overall Pressure Ratio (OPR), the ratio of total stagnation pressure between
front and rear of the compressor line, a parameter of the thermodynamic cycle,

– the By-pass Ratio (BPR), the ratio between the mass flow rate of air drawn in
by the fan (cold flow) bypassing to the one passing through the engine core (hot
flow),

– the Fan Pressure Ratio (FPR), the ratio of the fan discharge pressure to the fan
inlet pressure,

Figure 1.23: Turbofan engine simplified model.
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• Four parameters that drive the engine maximum thrust given the flight phase (Take-
Off, Climb, Cruise, Landing), with a value less or equal to 1.

The output are the weight of the engine, its nominal thrust Fn (N) and the Specific Fuel
Consumption (SFC) (kg/s/N), as functions of flying confitions (Mach, altitude, temper-
ature Disa). This function will then be used for simulating the aircraft mission. The
International Standard Atmosphere (ISA) is an atmospheric model of how the pressure
and temperature of the Earth’s atmosphere change over a wide range of altitudes. The
variable Disa is used to model a shift in the temperature as a function of the altitude (see
Section 1.1.5). It is the simplest way to model the influence of the local weather conditions.

The engine model is summarized by the diagram of Figure 1.24. An engine is usually
designed such that input design values minimize the engine SFC. It is representative of the
engine fuel efficiency with respect to its thrust. It can be seen as a fuel consumption (kg/s)
per unit of thrust (N). Once engine and geometry of the aircraft have been computed, we

Figure 1.24: Engine model inputs, outputs and parameters.

can go to the next step of the process: computation of aerodynamics.

1.2.4 Aerodynamics model

The aerodynamics of the aircraft aims at producing the required lift and drag of the
aircraft. The objective of the aerodynamics model is to compute the drag as a function of
the required lift and of the flying conditions (Mach number, altitude, temperature Disa).
This function will then be used for the simulation of the aircraft design process.

Aerodynamics model is illustrated in Figure 1.25.

1.2.5 Weights and Mission model

Once the aerodynamics are evaluated, the following step is to compute the weights and the
mission by running the mass-mission loop. This process is iterative as the mission requires
the weights to be computed but the weights also require the amount of fuel and so the
mission. Starting with hypothetic weights we solve the mass-mission loop process to obtain
what is called a converged aircraft, satisfying mission and structural weights requirements.
This is described hereafter.

24



1.2. Aircraft Design Processes and Models

Figure 1.25: Aerodynamics model inputs, outputs and parameters.

For a classical aircraft, the manufacturer structural weights are broken down as in
Figure 1.26. Of course this breakdown varies with respect to the passenger capacity, the
range, the cruise speed. However, the order of magnitude remains similar. The objective

Figure 1.26: Repartition of the Manufacturer Weight Empty of a classical aircraft.

of weights model is to compute the following masses:

• the Manufacturer Weight Empty (MWE), which is detailed in Figure 1.26,

• the Operator Weigth Empty (OWE).

As presented in diagram from Figure 1.27, the inputs of the model are the geometry, the
specifications (number of passengers for example), and the three following aircraft weights:

• Maximum Take-Off Weigth (MTOW), which is the maximum weight above which
the aircraft is no longer allowed to take-off because of structural matters,

• Maximum Zero Fuel Weigth (MZFW),

• Maximum Landing Weight (MLW).
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Figure 1.27: Weigths model inputs and outputs.

All these weights, called characteristic weights of the aircraft, are related, such as presented
in Figure 1.28. The operator’s items are the water, the food, the cabin crew and the cockpit
crew. The equipment is composed of the galleys, the toilets, the storage structures and the
seats. From a structural aspect and from the weights model, we know that the OWE can

Figure 1.28: Characteristic weights of an aircraft.

only be computed by knowing the MTOW. We have:

OWE = f1(MTOW).

As the two weights are unknown, a second equation is required to find the two weights.
This second equation is based on the design mission range requirement: an aircraft is
designed to perform a mission with a required range. The mission model is then necessary,
and is presented in Figure 1.29. Its objective is to compute the fuel over a given mission,
according to the weights of the aircraft, the speeds and altitudes. It yields the following
equation:

OWE = MTOW− Payloadmis − Fuelmis = f2(MTOW ),
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where Payloadmis and Fuelmis are respectively the payload and the fuel of the design
mission. These two equations introduce the mass-mission loop process: its objective is
to determine jointly the MTOW and the OWE of the aircraft. To illustrate this loop we

Figure 1.29: Mission model inputs, outputs and parameters.

can draw f1 and f2 in a graph that is presented in Figure 1.30. The two weights are the
solution of a system such that:

• the aircraft has to be able to fly over the required mission distance the required
amount of fuel,

• the structure is strong enough to sustain the load (aircraft, fuel and passengers).

Figure 1.30: Aircraft Design Mass-Mission loop.

It implies a snowball effect, illustrated by the graph of Figure 1.31. For a given OWE to
be flown over a given mission, the required MTOW can be read from the blue line. For
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a given MTOW, a strong enough structure leads to the OWE that can be read from the
green line. At the left of the intersection of the two lines, the MTOW is not sufficient to
complete the mission and at the right the MTOW is exceeding the required one according
to the OWE: the aircraft is overweighted. Then the ideal aircraft is the one that is at the
intersection of the two lines. Now let us imagine that we change the OWE from a given
delta. Then the new fly-able aircraft has to be at the new intersection and then it yields
an even bigger delta of OWE. For example, for a typical long range aircraft: 1t additional

Figure 1.31: Aircraft Design Mass-Mission loop OWE versus MTOW: a snowball effect.

to the initial OWE, after the mass-mission loop is complete, leads to 1, 4t additional to
the OWE. The main effects are the additional amount of of fuel necessary to carry each
additional kilogram of structure, and the additional amount of structural reenforcement
required to each additional kilogram to take-off. This snowball effect is illustrated in
Figure 1.32. Once the aircraft is converged, i.e. the mass-mission loop has converged, we

Figure 1.32: Aircraft Design Mass-Mission loop snowball effect.

can compute the other operational performances of the aircraft.
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1.2.6 Performance models

Among these performances we can find the constraints that will have to be satisfied during
the optimization process and also various of the criteria to be minimized.

1.2.6.1 Operational constraints

As mentioned in Section 1.2.1, aircraft design process is subject to various operational con-
straints, with the main objective of ensuring both the fly-ability and the safety. Regulatory
constraints are often coming from the History of aviation: when a dangerous situation or
an accident happened, a constraint was set in order to avoid this situation in the future.
Nevertheless they are also defined by aviation infrastructures, particularly by the airports:
a short range aircraft has to be designed to answer to regional airport operability that of-
ten have reduced runway length compare to international airports. To summarize, Figure
1.33 presents the constraints that we can find along the flight mission (see Table 1.2 that
presents an example of values for a short range aircraft).

Figure 1.33: Performances model inputs, outputs and parameters.

1.2.6.2 Criteria

The aircraft design optimization can be driven by various objectives, the ones of interest
in our case are presented in Figure 1.34. The Cash Operating Cost (COC) of the aircraft
is detailed in Figure 1.35. It is based on a defined cost mission, that is well representative
of the future use of the aircraft. We could have selected the Direct Operating Cost (DOC),
that includes the following additional costs: insurance, aircraft price, CO2, NOx and noise
charges, ramp handling, passenger handling, catering, and cabin crew. However doing so
we would have considered hypothesis on the capital cost, and as it is an important unknown
of the DOC, the COC remains an easier choice. The MTOW has already been presented
in Section 1.2.5. In practice the MTOW is a big driver of the COC (but not the only one).
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Figure 1.34: Criteria model inputs, outputs and parameters.

Figure 1.35: COC repartition for a single-aisle aircraft.

Hence as the COC is not always available, MTOW is most used as the aircraft design
optimization objective.

The fule consumption can be evaluated on a shorter mission than the design mission.
Typically, the same mission as for the cost evaluation is used. Let us note that the fuel is
an other big driver of the cost.

The last objective is the Absolute Pulsed Global Warming Potential (APGWP) and is
a measure of the climatic impact of the aircraft in our case. It is presented in detailed in
the Section 1.3.3 with the environmental impact model.

The next section presents with more details the models that we used for our approach.

1.3 Models selection for the Overall Aircraft Design Process

Each model’s way of operating has been presented in the previous section. The selection
of each model is a question of trades that depend on the user willingness. One can requires
an accurate way of solving aircraft design process. In this case accurate models will be
required, which is directly traduced by a higher computation time. At our level one of
the most important criteria is the computation time. On another side, the models have
to give account from the concerned physics. A choice has to be done to select each model
with enough accuracy to satisfy the physical representativeness of the models, but also to
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maintain an affordable computing time.
Consistency between models is also very important: each of the interacting ones has

to remain at a same level of accuracy. It would be a lost in computation time to merge
accurate models with less accurate ones, as the global accuracy of the process will always
be the one of lowest.

Classic overall aircraft design presented in Section 1.1.2 can be done with a very sim-
plified engine model that does not take into account cycle parameters of the engine. The
engine parameters are only driven by its SLSthrust and does not account for the thermo-
dynamics. It makes the engine computation very simple but does not let any freedom of
design or sensitivity to the type of engine. The mission model is also a simple one that does
not model a step by step mission, which is particularly required to compute the climatic
impact of the aircraft.

Several speeds are used to describe the flight trajectory and to define some operational
constraints. The three following speeds will be used in the following sections:

• The Indicated Air Speed (IAS) is shown on the flight deck instrument.

• The True Air Speed (TAS) is the actual aircraft velocity relative to the airmass in
which the aircraft is flying.

• The Calibrated Airs Speed (CAS) is a corrected IAS for instrument and position
error.

Note that at sea level and a standard atmospheric pressure, with no wind effect, all the
speeds are equal to the true speed of the aircraft relative to the earth surface.

Note also that the models that we used to run our studies are based on the very sim-
plest models presented in the previous sections. However, we use little more sophisticated
models, with a finer granularity level. This allows us to better appreciate and analyze the
interactions between all the models and disciplines. All the models are described in [22].

1.3.1 Turbofan engine simple model

At future project level a software is dedicated to the design of engines. It is currently used
by the expert engineers. However the computation of the engine design process with this
software has two drawbacks according to our criteria:

• its number of design parameters is too high,

• its computational time is too high (≈ 1 minute for one engine design, ≈ 20 secondes
for one design point evaluation.

Then, a simplified model was required to satisfy our requirements. The objective is
to introduce it in the overall aircraft design process. A Scilab version of a simple turbo-
fan engine has been developed, based on [15], with a reduction of the number of design
parameters. However, its computation time was still not fast enough.

The first idea was to build a meta-model of this simple version, with a given sample of
the design parameters. The first step of this idea was to generate a sample that brings a
satisfying accuracy of the meta-model. However, the required sample did not bring enough
computational benefit compared to the initial model.
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The second idea was then to build a semi-empirical model from the initial model. The
modeling approach of the model, based on a required set of specifications, is fully described
in Appendix A.

In order to validate the model, we have to define the flight envelope of the aircraft.
The performances of the turbofan engine (thrust, power, fuel consumption, temperatures,
shaft speeds etc.) are crucially dependent upon the local atmospheric conditions. During a
flight, these conditions are varying. Then we define a flight envelope with ranges of Mach,
pressure altitude and temperature where the engine will be operating according to the
aircraft requirements. Figure 1.36 presents a typical flight envelope and more particularly
in red the one we are going to use to proceed the validation tests.

Figure 1.36: Aircraft Operational Envelope for Engine model validation.

After the engine model validation has been done, it can be integrated to the whole
aircraft design process.

1.3.2 Operations modeling

Operation models cover various type of missions. The three following missions are fixed,
with respect to operational requirements, and they allow to compute various performances
of the aircraft. We find:

• the Cost mission is representative of the typical operating mission of the aircraft.
Output are the different costs of the aircraft. In the case of a short range aircraft, it
is 500 NM.

• The Nominal mission, also called the design mission, is the one used to run the
mass-mission loop and to compute the aircraft performances.
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• The Maximum Payload mission, the Zero Payload mission and the Maximum Fuel
mission are also computed but not of interest in our case of study. These missions
can be summarized in a simple diagram, namely the Payload-Range diagram. An
example is presented in Figure 1.37. It illustrates the trade-off relationship between
the payload and the range of an aircraft. The first line is the maximum range that
can be reached at the maximum payload. At this maximum range, any further range
is achieved only by reducing the payload and then increasing the fuel, which follows
the following diagonal line. The last almost vertical line starts with the point at
which the maximum fuel capacity is reached. From this point, only the payload can
be reduced which leads to this slight increase of the range.

Figure 1.37: Example of a Payload-Range diagram.

These missions computation are all based on the Breguet-Leduc equation, that compute
the range of an aircraft mission, according to the structure, the aerodynamics and the
propulsion of the aircraft. This equation is given by:

Range = 1
g
× L

D︸︷︷︸
Aerodynamics

× V

SFC︸ ︷︷ ︸
Propulsion system

× ln
(

1 + FuelBurn

OWE + Payload+Reserves

)
︸ ︷︷ ︸

Structure

,

(1.9)

where:

• g is the gravity acceleration (m/s2),

• L
D is the Lift over Drag ratio,

• V is the ground speed, equivalent to the addition of the True AirSpeed (TAS) and
the wind speed (m/s2),
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• SFC is the Specific Fuel Consumption (kg/s/N),

• OWE is the Operating Weight Empty (kg),

• FuelBurn is the amount of fuel burned during the mission (kg),

• Range (m).

Additionally to these missions, a more detailed model was required to compute the
climatic impact and to integrate the engine model at different points of the trajectory.
Then, Breguet-Leduc equation was not sufficient. So, we have used a step-by-step mission
model which produces the whole trajectory of the aircraft along the mission and with an
accurate value of the speed, the weight, the distance, the altitude at various points of the
trajectory. This allows the computation of the climatic impact, with the models presented
in Section 1.3.3.

However, the current air traffic is subject to many constraints, in order to keep air
transport safe, fast and efficient. Among these constraints, aircraft trajectories must obey
several standards for the three different flight phases: climb, cruise and descent. The
step-by-step mission model has to fulfill the following operations according to the mission
phase. These operations can be found in [5].

1.3.2.1 Climb

A climb is generally operated at a constant IAS and a constant Mach number. For instance
a standard climb profile for the A320 family is : 250kt/300kt/Mach0.78. This example is

Figure 1.38: Example of standard climb profile for an A320, at given Mach/IAS Law [5].

presented in Figure 1.38, the three numbers correspond to the three following phases:

• Below 10,000 feet : climb is done at a constant IAS of 250 knots. This speed is
limited by Air Traffic Management (ATC) laws.

• Between 10,000 feet and the crossover altitude : climb is done at a constant IAS of
300 knots. This phase is maintained as long as the Mach number remains under 0.78.
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• Above the crossover altitude : climb is done at a constant Mach of 0.78. The crossover
altitude is the altitude where 300 knots IAS is equal to Mach 0.78. This last phase
is maintained until the cruise altitude is reached.

1.3.2.2 Cruise

Ideal cruise should coincide with optimum altitude, where the fuel consumption per dis-
tance unit is the lowest. As a general rule, this altitude is not constant. It increases as
weight decreases during cruise. On the other hand, ATC restrictions require some constant
levels of flight cruise: an aircraft must fly by segments of constant altitude. Consequently,
the cruise phase is composed of several segments of increasing altitude: it is a step climb.
The number of segments depends on the range of the mission. In the example of Figure

Figure 1.39: Example of standard cruise profile for an A320.

1.39, there are four segments. The altitude separation between two segments is 2000 feet.
The operational altitudes of this flight are called FL for flight level and for instance FL350
is equivalent to a cruise at 35000 feet.

1.3.2.3 Descent

As for the climb phase, a descent is generally operated at a constant Mach number and a
constant IAS, as presented in Figure 1.40. For instance, a standard descent profile for the
A320 family is: Mach0.78/300kt/250kt, the reverse course of the climb.

1.3.3 Environmental impact modeling

Aircraft environmental impact is highly difficult to assess as it happened in various condi-
tions, it implies chemistry, physics and an important amount of parameters. At the future
project level, we choose a method developed in the frame of a European project named
LEEA (for Low Emission Effect Aircraft) [89] presented in Figure 1.41. It evaluates the
climatic impact of an aircraft as a function of several concrete parameters given in Table
1.3. Emission index of NOx can be computed using Boeing2 method [14] in combination
with the mission flight profile. LEEA takes into account contrail formation and chemi-
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Figure 1.40: Example of standard descent profile for an A320, at given Mach/IAS Law [5].

Figure 1.41: Environmental Impact LEEA modeling

Table 1.3: Description of LEEA input parameters

Name Unit
Altitude of interest ft
Distance flown km

Fuel used kg
NOx Emission Index g/kg

cal changes to the atmosphere. It considers the pollutants from Table 1.4 with the effect
presented in the same table. It uses the same measures of climate impact as the Kyoto
Protocol: the “Global Warming Potential”, which is essentially the radiative forcing due
to a pulse emission integrated forward over time. However four metrics were used and can
be selected as output of LEEA method. They are presented in Table 1.5. The metrics
calculate the climate effect integrated over a time period, named the ’Time Horizon’. In
the literature on climate impact of aircraft, values are often between 20 and 100 years.
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Table 1.4: LEEA: Pollutant and their effect

Pollutant Effects Warming or Cooling
Carbon dioxide Greenhouse effect Warming

Nitrogen oxides Produce ozone Warming
Destroy pre-existing methane Cooling

Contrails Reflect sunlight Cooling
Reflect infrared Warming

Water (vapour) Greenhouse effect. Small effect in troposphere Warmingand larger effect in stratosphere

Here we choose 100 years. The effect of contrails is particularly uncertain. The contrail
multiplier is thus included in LEEA and can be selected between 2 and 10. Usually the
value of 5 is used, and it is the one we choose. In order to remain consistent with the
most used metric, we select APGWP (see Table 1.5) as the environmental objective of the
future aircraft design optimization.

Table 1.5: LEEA Four metrics

Metric Units
Absolute Sustained Global

mW ·m−2 · (km · year−1) · yearWarming Potential (ASGWP)
Absolute Pulse Global

mW ·m−2 · km−1 · yearWarming Potential (APGWP)
Absolute Sustained Global Temperature

mK · (km · year−1)−1
Change Potential (ASGTP)

Absolute Pulse Global Temperature
mK · km−1

Change Potential (APGTP)

1.3.4 Hybrid configuration modeling

Now the core of models have been introduced, we are going to present an innovative
aircraft configuration based on an hybrid electric/fuel way of propelling the aircraft. This
configuration is presented in Figure 1.42. We decide to keep a conventional configuration
and to add an electric engine fan on the rear fuselage of the aircraft. In order to power the
electric engine we first add accumulators. They can be placed in the airplane cargo hold for
instance such that the handling qualities of the aircraft does not change. Secondly electric
generators are placed in the turbofan engines so that we can take additional energy from the
turbofan to power the electric fan. The idea is that an additional fan increases the global
By-Pass Ratio of the propulsion system and thus improves the propulsion performances.
An electric Ratio parameter is then introduced allowing to control the amount of energy
given by the electric generators (as a part of the total thermal energy produced by the
turbofan) to the electric engine. Then a big amount of work was done about how the
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Figure 1.42: Hybrid Aircraft Configuration, version 1.

electric powered aircraft differs from the conventional aircraft. The objective is to take
into account a maximum of the new possibilities brought by the hybridization. Clearly, it
is not possible to envisage accumulators as a long term source of energy during the flight,
as the additional weight of battery is really expensive. Hence it only can be considered
as an additional source that can be used temporarily, with the idea of reducing thermal
engine oversizing by compensation.

1.3.4.1 Electric engine and energy management

As illustrated in Figure 1.43 we propose the following use of the hybrid propelling as a
function of the different flight phases:

• Before taxi-out battery are fully charged, and electric fan is not used during taxi-out.

• During the take-off the battery are used to power the electric fan, along with power
coming from the turbofans. A constraint of take-off rating less or equal than 5
minutes of use of battery is set in order to limit its size.

• During the climb, if required the battery can be used to power the electric fan (for
example at the top of climb, when more power is needed).

• During the cruise, the turbofans are used to charge the battery and power the electric
fan.

• During the descent, the electric fan may be used to complete the battery charge, like
a windmill.

• During the taxi-in, thermal engines can be off and accumulators power the electrical
engine to drive the aircraft to the parking. It is a way of reducing fuel consumption,
but also noise and emissions at the airport.

• In case one engine becomes inoperative, the battery are used to power the electric
fan and limit the extra power required from the remaining thermal engine.
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Figure 1.43: Energy Flows Management (blue arrows) for hybrid aircraft operations.

1.3.4.2 Hybrid Engine model

From this concept we need to build several models. The first one is the new propulsion
model of the electric turbofan, presented in [15]. The others are the different mass penalty
functions due to electric engine and accumulators. We finally modify the impacted func-
tions from the classical aircraft design process. The last one is the operability of the
electrical parts of the hybrid aircraft described in Figure 1.43. New parameters are re-
quired to manage the hybrid propulsion system. The first ones are presented in Table 1.6.
The energy density is the amount of energy stored in a given system per unit mass and
the power density is the amount of power per unit of mass. These values are set according
to last technological assessments given by the electrical expert of airbus future project.
We select as new design parameters, i.e. additional optimization degrees of freedom, the

Table 1.6: Description of the hybrid aircraft technological parameters.

Name Value & Unit
Power Density of Electrical Engine 3.5 kW/kg

Power Density of Electrical Generator 3.5 kW/kg
Energy Density of Accumulators 350 Wh/kg

ones presented in Table 1.7: the electric Fan Power, the electric Ratio and the electric Fan
Diameter. The diagram from Figure 1.44 illustrate the hybrid propulsion model, with the
latter mentioned input, transfer links between the thermal engines, the electric fan and the
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Table 1.7: Description of the hybrid propulsion design parameters.

Name Bounds & Unit
Fan Power [1.5− 4] MW

Generator Electric Ratio [1− 10] %
Fan Diameter [1− 3] m

battery and also the new outputs.

Figure 1.44: Hybrid propulsion model inputs, outputs and parameters.

1.3.4.3 Technologies evolution

Running the processes for the hybrid aircraft we logically observe that current technolo-
gies performances do not allow this configuration to be as efficient as the conventional
configuration. The idea proposed is to add to the models some prediction functions of
the technology improvement as a function of the year for the power density of electrical
engine and the power density of electrical generator (EPD), and for the energy density of
accumulators (EED). Thanks to some assumptions found in literature [158, 48], we propose
for these two entities some evolution models as function of the year. It is represented in
Figure 1.45. As the evolution is given with a prediction error, we will take it into account
in our further studies. So we draw on the latter figure the 99% confidence interval for the
evolution functions, with in green the upper bound and in red the lower bound.

1.3.4.4 Additional improvements of the hybrid aircraft concept

A first hybrid aircraft was designed as previously described. However the benefits in
comparison to an equivalent classical configuration were not obvious. That makes us think
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Figure 1.45: Prediction functions of electrical technologies evolution with their uncertainty
(Gaussian distribution).

of what kind of additional synergies of the hybridization we could use to increase these
benefits. The following strategies were selected:

• We choose a variable pitch electric fan, such that it can generate reverse thrust. Doing
so, the thrust-reverser of the two thermodynamic turbofans could be removed. This
improvement comes with a new constraint that ensures a minimal reverse thrust.

• We place the electric fan so that the carter of the fan could contribute to longitudinal
and lateral stability of the airplane. Hence we can reduce the vertical and horizontal
tail-planes size.

• We also can take advantage of the performance of a Boundary Layer Ingesting electric
fan, by placing it at the rear fuselage such as presented in Figure 1.46. More details
[134]. In our case we assume that it yields a decrease of 5% of the total Specific Fuel
Consumption (SFC) of the propulsion system.

• Finally, to take more benefit of the battery system, we think of removing the Auxiliary
Power Unit (APU) of the aircraft. It is usually used to provide energy for functions
other than propulsion. However we assume that an additional 100 kg of battery were
required to compensate this removal.

1.3.4.5 Final hybrid aircraft concept

Finally a last concept of hybrid aircraft has been selected. It is presented in Figure 1.47. It
differs from the previous one by a reverse sweep of the wings and by the two thermal engines
that are now placed at the rear fuselage. The idea is to compare the improvements of the
hybridization of two different concepts. We will observe if the impact of the hybridization
can be more beneficial depending on the configuration. Results are presented in Chapter 3.
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Figure 1.46: Hybrid aircraft configuration with additional improvements, version 2.

Figure 1.47: Final Hybrid aircraft configuration, version 3.

1.4 In summary

The integration of all models required an accurate analysis. We start by integrating the
engine design to the overall aircraft design process. The first idea was to couple the engine
design process such as presented in Figure 1.48: the objective is to solve the whole loop,
where engine design is done according to thrust requirements that come from aircraft de-
sign, which is operated using engine design parameters. However two problems appear.
First, there was a risk of non convergence of this loop, in particular because the two opti-
mization processes are not minimizing the same criteria but they are sharing one common
parameter, the engine SLSThrust. Secondly, there was a risk that the engine model is too
simple to influence the performances of the whole design process.

The second idea was to put the engine design process at the same place as for the original
aircraft design process as in Figure 1.19 and to merge both optimizations according to the
final criteria. This method required a better understandability of the connections between
the models but finally it results in a consistent physical behavior. However it also increases
computation times. That is what makes us study some surrogate modeling method and
surrogate based optimization (see Chapter 2).

Finally we add to the design the detailed step-by-step mission trajectory. The whole
process can be represented in Figure 1.49, with in circle red the new models integrated to
the overall aircraft design. Chapter 3 is dedicated to the application of this optimization
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Figure 1.48: Overall Aircraft Design Optimization Process: first engine integration.

Figure 1.49: Enhanced Overall Aircraft Design Optimization Process.

process.
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Chapter 2. Mathematical Tools

Aircraft preliminary design relies in a first part on modeling the whole process from
requirements to evaluation of performances. The second part is to optimize this design,
selecting objective and constraints from the performances. As mentioned in the previous
chapter, optimizing a new aircraft configuration can be to minimize the block fuel along a
given flight mission, with respect to operational constraints such as not to exceed a given
length of take-off field, or a given approach speed. The new approach proposed in Chapter 1
leads to the integration and adaptation of optimization methods and mathematical tools.
All along this chapter we will present these tools and methods, each of them responding to
a specific need. In a first section, we briefly present useful tools of automatic differentiation
field. The second section is dedicated to three surrogate modeling methods. Finally the last
section deals with optimization methods. Two main categories are described: derivative-
free optimization algorithms on the one hand, algorithms using gradients on the other
hand. Multi-objective and Pareto front notions are finally addressed in the last section.

2.1 Automatic differentiation
Automatic differentiation appears to be a very useful tool to obtain gradients through the
process of aircraft preliminary design. The idea comes first with the uncertainty propaga-
tion through the process (see Chapter 4). The main idea was to get at each step of the
process, not only a value of a variable, but also its uncertainty. At the end, it comes with
the need of gradient at each step of the process, and then with the implementation of some
automatic differentiation tools.

Automatic differentiation dates back to the fifties. Papers from [23, 147, 75] give a
good survey on the subject, relevant properties and examples of applications. The main
principle of automatic differentiation is well summed up by the following definition [147]:

The basic idea behind the automation of differentiation is very simple: Once a code list
has been obtained for the function considered, then the rules of elementary calculus can be

applied to it line by line to give a list of instructions for evaluation of the derivative.

Benefits of automatic differentiation are to compute derivatives analytically and sys-
tematically, in particular without the numerical error inherent in finite difference approx-
imations. Since the used models are black-box functions, this kind of numerical error is
one of the limit in the use of gradient optimization tools. Automatic differentiation then
brings a more accurate way to compute gradients. As a consequence, it paves the way
to gradient-based optimization. The principle used to obtain gradient is presented in the
following paragraph.

The objective is to apply automatic differentiation methods to the process of aircraft
design, for which models are coded in Scilab language. To produce gradient as an output
at the same level of each variables value we have to go into the line code.

Let (x1, . . . , xn) be the input vector of the process. The main steps towards automatic
differentiation are illustrated on Figure 2.1 and are the following:

1. Create a new type of object such that each input or output variable in the process
comes with a value and its gradient with respect to specific variables, namely here
with respect to the variables (x1, . . . , xn). Scilab enables this via the tlist declaration.

2. Overload the basic operators and functions. Indeed, once a new type of variable
is defined, the next step is that each operation and each function in the process
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2.1. Automatic differentiation

can automatically manage this new type of variable. Typically the most important
operators to be overloaded are:

+,−,×, /, cos, sin, tan, log, exp, x 7→ xa,min,max, x 7→ |x|.

3. Eventually, overload all functions involved in the process. In our case, they include
vectorized operations, insertion, extraction, transposition, all logical operations, all
operations on matrices. Overloading a function consists in adding a method to the
function that enables it to deal automatically with the new type of variable.

Figure 2.1: Automatic differentiation illustration.

Let us now consider the specific example illustrated in Figure 2.1. The objective is to
obtain the gradient of the function f with respect to the input vector x = (x1, . . . , xn).
According to the chain rule, the gradient of f with respect to x is given by:

∇xf = ∇z1f(z1, z2) · ∇xz1 +∇z2f(z1, z2) · ∇xz2. (2.1)

As an illustration of what is happening into the gray box of Figure 2.1, we consider the
example of the multiplication of z1 by z2, i.e. f(z1, z2) = z1 × z2. Then the overloading of
the operation y = z1 × z2 is given by:

y
∂x1y
...

∂xny

 =


z1 × z2

z1 × ∂x1z2 + z2 × ∂x1z1
...

z1 × ∂xnz2 + z2 × ∂xnz1

 .
A careful attention has to be paid to the code: all the functions used with the new type of
variable, have to be overloaded. We also have to overload all the operations dealing with
a scalar. For instance if z1 is a variable of the new type and a a scalar, the overloading of
the operation y = z1 × a is done the following way:

y
∂x1y
...

∂xny

 =


z1 × a

a× ∂x1z1
...

a× ∂xnz1

 .

The last step is then to declare each variable of the vector (x1, . . . , xn) as a new variable,
where the gradient of xi with respect to x is:

∇xxi = (∂x1xi, . . . , ∂xixi, . . . , ∂xnxi) = (0, . . . , 0, 1, 0, . . . , 0) . (2.2)

Doing this, at the end of the process, we obtain variables of the new type, i.e. with their
value and their gradient with respect to x. This is especially useful when we want to use

47



Chapter 2. Mathematical Tools

automatic differentiation for optimizing functions of the process, since we can provide the
value and the gradient of the objective function.

Automatic differentiation can also be used to obtain the Hessian of each variable with
respect to the input vector. The approach is the same:

1. Define a new object with a value, its gradient and its Hessian with respect to the
input vector.

2. Overload functions and operations with corresponding methods to compute the Hes-
sian.

For a function f : (z1, z2) 7→ f(z1, z2), and a process input vector x = (x1, . . . , xn), the
Hessian Hxf is computed as:

Hxf = ∇z1f(z1, z2) ·Hxz1 +∇z2f(z1, z2) ·Hxz2 + ∂2
z2

2
f(z1, z2) · ∇xz1∇>x z1 + ...

...+ ∂2
z2

1
f(z1, z2) · ∇xz2∇>x z2 + ∂2

z1z2f(z1, z2) · (∇xz1∇>x z2 +∇xz2∇>x z1).

As an illustration, let us consider again the example: f(z1, z2) = z1×z2. Then the Hessian
of f is given by:

Hxf = z2 ·Hxz1 + z1 ·Hxz2 +∇xz1∇>x z2 +∇xz2∇>x z1.

As previously done, each variable of the input vector has to be declared as a variable of
the new type, with a value, its gradient and now its Hessian which is, in this case, the null
matrix of dimension n × n. This can be useful for second-order optimization algorithms.
This technique will also be useful in the uncertainty propagation method, where the Taylor
coefficients of the function f are required, see Chapter 4.

2.2 Surrogate modeling
In engineering and more particularly in aircraft design process, the evaluation of perfor-
mances is generally expensive. For example, the evaluation of the fuel consumed by an
aircraft over a given mission requires the computation of the geometry, of the weights,
of the propulsion system and then of the trajectory of the aircraft with respect to some
operational requirements. This involves nested solvers. To sum up, it takes time and
computational resources. Moreover, the functions involved in an engineering process can
also be hard to track: they can be discontinuous, non differentiable, and subject to noise.
When an optimization has to be performed, it can quickly become untractable. Therefore
we choose a practical handling of these functions by using surrogate models. This section
describes various methods used to create surrogate models.

In a general way, meta-modeling consists in the following steps [159]:

• choosing a design of experiment for generating data,

• choosing a model to represent these data,

• fitting the model to the observed data,

• model validation.
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We focus here on the choice of the model. Note that model validation techniques strictly
depend on the choice of the modeling techniques. Most commonly used metrics for vali-
dation can be found in [175]. In the next sections, we present two different models: the
Radial Basis Functions model and then the Kriging model. All the mentioned techniques
rely on solving the scattered data interpolation problem:

Given data (xi, yi)i=1,...,N , where xi ∈ Rn and yi ∈ R, find a (continuous) function f such
that:

f(xi) = yi, i = 1, . . . , N. (2.3)

2.2.1 Radial Basis Functions

Radial Basis Functions are generally used in scattered data interpolation problems. The
main advantage of this approach is to cover a large class of interpolation functions, enabling
to model various situations. Moreover a general theory, namely the radial basis function
theory [32], ensures tractability of models and shows good convergence properties. An
introduction and some examples can be found in [123].

Let us first introduce radial functions: a function h : Rn → R is called radial if there
exists a function Φ : [0,+∞) → R such that h(x) = Φ(‖x‖). A typical radial function is
the Gaussian:

Φ(‖x‖) = exp
(
−c2‖x‖2

)
,

where the parameter c can be tuned.
An interpolating function is defined as a linear combination of well selected radial basis

functions (hj)j=1,...,M :

f(x) =
M∑
j=1

cjhj(x).

Solving the interpolation problem (2.3) leads to a system of linear equations of the form:

Ac = y, (2.4)

where the matrix A is given by Ai,j = hj(xi), i = 1, . . . , N , j = 1, . . . ,M , c = [c1, . . . , cM ]>
and y = [y(xi), . . . , y(xN )]>.

Note that the benefit of radial functions is that the interpolation problem becomes
insensitive to the dimension n of the input space, since the functions are all univariate.
The choice of the function depends on the user interpolation need but also on the resolution
of the system (2.4). RBFs techniques used in our studies, are implemented in Scilab and
described in [13].

2.2.2 Kriging

Kriging has its origins in geostatistics [74] with the research works of D.G. Krige [100] and
has been formalized and developed thanks to [112]. Kriging was almost at the same time
introduced in oceanology by [31] and called the Gauss-Markov interpolation method. The
main idea is to estimate a function at a given point, by computing a weighted average
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of the known values in the neighborhood of the point. The weights are related to spatial
covariance values.

As interpolation, kriging has the following benefits:

• it first minimizes the variance of the estimation,

• it gives an estimate of the estimation error along with the estimate of the variable
itself,

• it helps to compensate for the effects of data clustering treating clusters more like
single points.

However kriging requires to specify a covariance model which may be difficult when data
are sparse. An illustration of the use of kriging is presented in Figure 2.2 for estimating a
function from R to R. The error estimate helps to provide some confidence intervals, here

Figure 2.2: Kriging interpolation of a given function and its confidence interval.

the grey zone of the graphic. Basis of kriging methodology is presented in the following
paragraph.

Let yi = y(xi) be some given observations at points xi, i = 1, . . . , N . We can define
the covariance function C of the process as a measure of how two variables are related. It
is given by:

C(t) = cov (y(x+ t), y(x)) ,

where:

cov (yi, yj) = E [(yi − E [yi]) (yj − E [yj ])]
= E [yiyj ]− E [yi] E [yj ]
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Assume that the covariance function C of the considered process, is known. The goal
is to estimate y0 = y(x0) at a point x0 which is not available. The random variable y at
any location can be written as:

y(x) = m(x) + δ(x),

where m(x) denotes a deterministic component, called the trend, and δ(x) denotes the
stochastic component satisfying: E[δ(x)] = 0. The trend m(x) is the expected value of
y(x).

There are three kinds of univariate kriging methods, depending on the knowledge of
the statistics of the interpolated variable:

• simple kriging which assumes that the mean m(x) is known and constant,

• ordinary kriging which assumes that the mean is unknown,

• universal kriging which assumes that the mean has a functional dependence on spatial
location x (unstationary process).

The most frequently used method is the ordinary kriging and consists in computing an
unbiased estimation y∗0 of the variable y0 such that:

y∗0 =
N∑
i=1

λiyi. (2.5)

The weights λi are the unknowns of the following optimization problem: minimize the
variance σ2

e = var [y∗0 − y0] to obtain an unbiased estimator y∗0 of y0. This constraint is
equivalent to E [y∗0 − y0] = 0 and yields the constraint

∑N
i=1 λi = 1, so that we solve:

min
λ∈RN

σ2
e such that:

N∑
i=1

λi = 1.

Using the Lagrangian L(λ, µ) = σ2
e + 2µ

(
N∑
i=1

λi − 1
)
, we obtain:

σ2
e = var [y0] +

N∑
i=1

N∑
j=1

λiλj cov(yi, yj)− 2
N∑
j=1

λi cov(y0, yi). (2.6)

This leads to solve the following system:
σ2 cov(y1, y2) . . . cov(y1, yN ) 1

cov(y2, y1) σ2 . . . cov(y2, yN ) 1
... . . .

. . . ...
...

cov(yN , y1) cov(yN , y2) . . . σ2 1
1 1 . . . 1 0

 ·

λ1
λ2
...
λN
µ

 =


cov(y1, y0)
cov(y2, y0)

...
cov(yN , y0)

1


Observe that only the right part of the system depends on the point y0 to estimate, and
that the solution λ depends on the covariance function of the process. In practice, this
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function is not known in advance. In the geostatistical literature, the covariance function
is not often used and the semi-variogram function γ(·) is preferred [143]:

2γ(t) = E
[
(y(x+ t)− y(x))2

]
.

In the case of a stationary process, as in most of cases, the semi-variogram function is
defined according to the covariance function by the relation:

2γ(t) = C(0)− C(t).

In practice the semi-variogram can be selected among a list of functions [47]: one of the
most used is the Gaussian function, depending on the scale c0 and the range a0 parameters:

γ(t) = c0

(
1− exp

(
− t

2

a2
0

))
.

In case of multivariate interpolation, cokriging has then be introduced, with the same
rules as those for kriging. More informations about this method, can be found among
many others in [102, 173]. These meta-modeling techniques will be used in Section 2.3.4 for
surrogate based optimization. Before this, we make a review of the optimization methods
that will be used in our aircraft design studies.

2.3 Optimization methods

Aircraft design problems and generally engineering complex problems, are frequently ex-
pressed as optimization problems. In this thesis we focus on continuous optimization
problems, namely:

Minimize f(x)
s.t. x ∈ C, (2.7)

where:

• f : Rn → R is the objective function, or the cost function, assumed at least continuous
over its definition set,

• C⊂ Rn is the constraint set,

• x∈ Rn is the optimization variable.

In the case of aircraft design, the objective function can be the aircraft design mass, the
fuel consumption over a mission or the climatic impact over a mission. Optimization
parameters can be the wing area, the engine thrust, the flight speed and altitude, etc. In
practical problems, the constraint set C is defined by:

C = {x ∈ Rn | g1(x) ≤ 0, . . . , gL(x) ≤ 0, h1(x) = 0, . . . , hM (x) = 0} . (2.8)

where the functions hi : Rn → R, i = 1, . . . ,M , and gj : Rn → R, j = 1, . . . , L, are assumed
at least continuous over their definition sets. Note that the inequality constraints defined
by gj(x) ≤ 0, can include bound constraints xmin ≤ x ≤ xmax. In some other problems,
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C can be defined by an infinity of constraints, as for example in robust optimization, see
Chapter 6.

In the case of aircraft design optimization, the constraint functions are representing
operational constraints, as for instance maximal approach speed or lengths of landing and
take-off field to respect.

The choice of the optimization method to solve Problem (2.7) depends widely on the
properties of the objective function and of the constraint set. A good overview of optimiza-
tion methods and algorithms from theory to practical aspects, can be found e.g. in [27].
Among all these methods, we can distinguish local and global methods. Local methods
aims at finding a local minimum in the following sense:

Definition 2.1. Let f : X ⊂ Rn → R. The point x0 ∈ X is called a local minimum point
of f if there exists a neighborhood Ω ⊂ Rn of x0 such that: ∀x ∈ Ω ∩X, f(x0) ≤ f(x).

Global methods aim to find a global optimum if it exists:

Definition 2.2. Let f : X ⊂ Rn → R. The point x0 ∈ X is called a global minimum point
of f if: ∀x ∈ X, f(x0) ≤ f(x).

An example of a local and a global minimum is presented in Figure 2.3. Note that a
local minimum becomes global when both the objective function and the constraint set are
convex.

Figure 2.3: Illustration of a local and a global minimum of a function f : R 7→ R.

In our engineering design problems, all functions result from black-box processes and
so are not known analytically. This lack of knowledge leads to the incapacity to prove
the existence of an optimal solution, whether local or global. The best that we can do
is to test different methods and to compare the obtained solutions. Nevertheless, thanks
to automatic differentiation techniques (see Section 2.1), the gradients of the involved
functions are available, which enables us to use gradient-based optimization methods, see
Section 2.3.1. Since the aircraft design problem is not necessarily convex, these methods
only leads a priori to local minimum points which is an important but usual drawback. One
way to improve the quality of a given solution, is to apply repeatedly the chosen algorithm,
but there is no guarantee to eventually find a global minimum and the computational cost
is multiplied.
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Section 2.3.2 is dedicated to derivative free optimization or gradient free optimization
methods. They have the main advantage to be robust and not to depend on the differ-
entiability of the involved functions. It works fine in practice, but their computational
time is quite heavy. Section 2.3.3 introduces multi-objective optimization with the Pareto
front notion. It is useful in the case where several objectives have to be minimized at
the same time. Finally this chapter ends with a brief presentation of a method of surro-
gate based optimization. When dealing with computationally expensive or noisy processes,
these sequential methods provide interesting benefits.

2.3.1 Gradient Based methods

When the gradients of the objective and the constraint functions are available and satisfy
some regularity properties, there exist various optimization methods to tackle Problem
(2.7). Most of them are described in [27]. The following three methods have been numeri-
cally implemented and are used for solving aircraft design optimization:

• FSQP (for Feasible Sequential Quadratic Programming) provided by [184],

• DOT (for Design Optimization Tools) from [172],

• IPOPT (for Interior Point OPTimizer) from [174].

The first two methods belong to the class of sequential quadratic programming methods,
and the third one is based on an interior point method. Before presenting briefly the
methods, we start by a short recall of the necessary optimality conditions associated to
Problem (2.7), namely the Karush-Kuhn-Tucker optimality conditions. These conditions
are at the heart of SQP algorithms.

2.3.1.1 KKT optimality conditions

Let us consider a general optimization problem under functional constraints:

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i = 1, . . . , L,
hi(x) = 0, i = 1, . . . ,M.

(2.9)

where the functions f, gi, hj : Rn → R, i = 1, . . . , L, j = 1, . . . ,M , are assumed at least
differentiable. The Karush-Kuhn-Tucker (KKT) conditions are the necessary conditions
for a given point to be optimal [77] for the considered problem.

Let us introduce the well-known Lagrangian function associated to Problem (2.9):

L(x,λ) = f(x) +
L∑
i=1

λ
(g)
i · gi(x) +

M∑
j=1

λ
(h)
j · hj(x), (2.10)

where the vector λ ∈ RM+L, which is the concatenation of λ(g) and λ(h), is the Lagrange
multiplier vector. The KKT conditions associated to (2.9) are:

Theorem 2.1. Let x∗ be an admissible point of the problem (2.9). Assume that the func-
tions f ,g,h are differentiable at x∗ and that the constraints are qualified at x∗. If x∗ is a
local minimum point of f over the constraint set {x ∈ Rn/gi(x) ≤ 0, i = 1, . . . , L, hj(x) =
0, j = 1, . . . ,M} then there exists λ = (λ(g), λ(h)) ∈ RL × RM such that:

∇x∗L(x,λ) = 0, (2.11)
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λ
(g)
i · gi(x

∗) = 0, ∀i = 1, . . . , L, (2.12)
hj(x) = 0, ∀j = 1, . . . ,M, (2.13)

λ
(g)
i ≥ 0, ∀i = 1, . . . , L, (2.14)

Condition (2.12) is referred to as the complementarity relations. Note that there exist
several conditions of constraint qualification in the literature as the Slater conditions or
the Mangasarian-Fromovitz conditions [27]. We here use the simplest one which is the
following:

Proposition 2.1 (Sufficient condition for constraint qualification). The constraints of
Problem (2.9) are said qualified at a point x∗ ∈ Rn if the gradients of active constraints at
x∗, namely:

{∇hj(x∗); j = 1, . . . ,M} ∪ {∇gi(x∗); i = 1, . . . , L}

are linearly independent.

2.3.1.2 Sequential Quadratic Programming methods

Sequential Quadratic Programming (SQP) methods are iterative methods for nonlinear
optimization [184] where the objective function is usually assumed twice continuously dif-
ferentiable while the constraint functions only have to be continuously differentiable. They
consist in replacing the initial optimization problem by a sequence of quadratic optimiza-
tion problems under linear constraints that are easier to solve.

Let us consider the general nonlinear programming problem 2.9) and its Lagrangian L
(2.10). At the current iterate xk, a SQP algorithm defines an appropriate descent direction
dk as the solution of the following quadratic programming subproblem:

min
d

L(xk, λk, σk) +∇L(xk, λk, σk)>d+ 1
2d

T∇2
xxL(xk, λk, σk)d

s.t. g(xk) +∇g(xk)>d ≤ 0,
h(xk) +∇h(xk)>d = 0.

(2.15)

As any Newtonian method, the basic SQP method converges locally with a quadratic
rate. The FSQP algorithm is even more sophisticated and combines linesearch and SQP
method to compute a new descent direction, see [184] for more details.

2.3.1.3 An Interior Point method

This method [34, 176] consists in a primal-dual barrier approach: the idea is to encode the
feasible set using a barrier function. The algorithm thus solves a constrained minimization
problem such as Problem (2.16). Equality constraints and bound constraints on x do not
appear anymore, they are reformulated into equivalent inequality constraints.

min
x∈Rn

f(x)
s.t. gi(x) ≤ 0, i = 1, . . . , L.

(2.16)

The Interior Point algorithm computes the solutions of a sequence of approximate mini-
mization problems called barrier problems. Using a logarithm barrier function and for a
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decreasing sequence of the barrier parameter µ > 0, the associated approximated problem
is:

min
x
fµ(x) := f(x)− µ ·

n∑
i=1

ln (−gi(x)). (2.17)

As µ decreases to zero, the unconstrained minimizers of fµ will approach the local con-
strained minimizer of f . The approximate problem (2.17) defines a sequence of uncon-
strained problems depending on the barrier parameter µ. These problems are easier to
solve than the original constrained problem (2.16). The main benefits and improvements
of this type of methods come from the resolution of the sequence of approximate problems.
In particular, first order optimality conditions of Problem (2.17) are similar to the KKT
conditions of Problem (2.16). See [34] for more details.

2.3.2 Derivative free optimization

Derivative free optimization was first motivated by the absence of computable derivatives in
a lot of engineering optimization problems [45]. A main benefit of derivative free methods
is to handle failing computation of the model functions, which sometimes happens in black-
box computation. Various methods were developed; we focus here on direct search methods
and heuristics methods.

2.3.2.1 Direct Search Methods

Direct search methods are characterized by the fact that they require neither explicit nor
approximate derivatives. They first appeared in [87], with the following description:

We use the phrase “direct search” to describe sequential examination of trial solutions
involving comparison of each trial solution with the “best” obtained up to that time

together with a strategy for determining (as a function of earlier results) what the next
trial solution will be.

This is discussed in [107] with a large overview of direct search methods between 1960 and
2000. The main advantage is the robustness of such algorithms and the main drawback is
that they do not enjoy rapid local convergence. As [107] says:

A carefully chosen, carefully implemented direct search method can be an effective tool for
solving many nonlinear optimization problems.

Global Pattern Search methods [164] then generalized these methods. They appeared
mainly for solving non-linear optimization constrained or unconstrained problems. Among
these methods, we first present the Nelder-Mead algorithm which has been modified to deal
with non-linear constraints and then the Mesh Adaptive Direct Search algorithm, which
brings several improvements to global pattern search methods.

2.3.2.1.a The Nelder-Mead algorithm and constraint management

The original method is also known as Downhill Simplex, Nonlinear Simplex or simply
Nelder-Mead Simplex. It is due to [115] for solving non-linear optimization problems. The
Nelder-Mead method uses the concept of a simplex: a simplex is defined as a convex hull
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of n + 1 vertices in a n-dimensional space, e.g. a line segment in dimension 1, a triangle
in dimension 2. A complete description of the algorithm can be found in [76]. It performs
geometrical operations (reflection, expansion, contraction) on some candidate vertices of
the convex hull in order to move this convex hull in descent directions. Geometrical opera-
tions are illustrated in Figure 2.4. That is, the candidates are first reflected: if this makes

Figure 2.4: Geometrical operations performed by Nelder-Mead algorithm.

an improvement (i.e. a better function value), an expansion will be attempted. Otherwise,
the polytope is reduced. By those geometrical operations, the polytope changes in volume
and in form. The procedure can be summarized into the following basic steps:

• Step 1: Choose an initial polytope (i.e. n+ 1 vertices) of dimension n.

• Step 2: Take as a search direction [Xh, X0], the direction joining Xh (the vertex with
the highest objective function value) and the centroid X0 of all vertices excepted Xh.

• Step 3: If this direction behaves as a descent direction, we replace Xh by a chosen
point in this direction. That point may be chosen closer (reflection) or the furthest
possible (expansion) according to the results of the basic geometrical operations ap-
plied on Xh.

• Step 4: The polytope is eventually updated with the new vertices according to step
3, aiming to “move” it in the descent directions. It may also be reduced.

• Step 5: Stop if a stopping condition (number of steps, size of the polytope, ...) is
satisfied otherwise return to step 2.

An illustration of this algorithm is presented in Figure 2.5. In dimension n = 2 the simplex
is a triangle, and we can see its moves and size evolution until a solution is reached. At
the end, the last polytope should be a small one, whose vertices are very close from each
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Figure 2.5: Example of Nelder-Mead algorithm: the sequence of triangles Tk converges to
the point (3, 2).

other, and so hopefully close to a local minimum.

In order to deal with constraints, we need to define a measure of how much constraints
are violated in order to compare two unfeasible points. This measure/function has the
following property: it gives a lowest value to the point the closest to the constraint boundary
measured with euclidean norm ‖ · ‖, i.e. the point that violates “less” the constraint. We
say that A is better than B if:

• the constraint measure of A is lower than that of B, in the case where both points
are not satisfying constraints, or

• A satisfies the constraints but B does not, or

• both points satisfy the constraints, and the objective function at A is lower than the
objective function at B.

Note that when the process fails, which means the computation of the objective or the
constraint function produces an error, this algorithm handles it, assuming the unavailable
point is worse than any other. Drawbacks of this algorithm is that it can sometimes be
stuck in a local optimum. Moreover, convergence properties of the Nelder-Mead algorithm
[101] are only proved for some strictly convex class of functions in dimensions 1 and 2.

2.3.2.1.b Mesh Adaptive Direct Search (MADS)

The Mesh adaptive direct search method has been introduced in [11]. The main improve-
ment compared to basic global pattern search methods is that the local exploration of
the space of variables is not restricted to a finite number of directions (as for instance for
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Nelder-Mead algorithm). The analysis of [11] shows that the finite number of these direc-
tions, called poll directions, is one of the main limitations of the algorithm convergence.
The main advantage is that MADS aims at ensuring an asymptotically dense set of poll
directions. This yields some hierarchical proofs of convergence depending on properties of
the function f and of the feasible region to first order stationary points but also to second
order ones under reasonable conditions [3].

2.3.2.2 Meta-heuristic methods

Meta-heuristic methods date from the fifties, see [54] for more details. The term Meta-
heuristic designates a computational method that optimizes a problem by iteratively trying
to improve a candidate solution with regard to a given measure of quality. However, as for
most of derivative free optimization algorithms, meta-heuristics do not guarantee that an
optimal solution will be found.

The two meta-heuristic methods presented hereafter, are population based: we start
with a population of individuals, that are some selected points among the domain of
definition of our problem. At each iteration this population evolves in order to look for
the “best” individual i.e. the optimal solution of the problem. The used functions are so
dedicated to select, to evaluate and to add or to remove individuals from the population
at each iteration.

The main benefit of these techniques is the search for global solutions, as the first
population can cover the whole design space. One of the drawbacks is that they depend
a lot on the different functions that are used to improve the individuals. Popular meta-
heuristics include simulated annealing, particle swarm optimization, differential evolution
and genetic algorithms [99, 41, 96]. We test most of these techniques and selected two
of them for application to our study cases: genetic algorithms and differential evolution
algorithms.

2.3.2.2.a Genetic Algorithms

A genetic algorithm is a search heuristic that mimics the process of natural evolution.
It consists in generating solutions to optimization problems using techniques such as in-
heritance, mutation, selection, and crossover. The genetic algorithms method that we
implement are based on the Non-Sorting-Genetic-Algorithms II [51], modified to deal with
constraints.

The principle of genetic algorithms is presented in Figure 2.6. The blue points on the
curve represent the initial population, the red points represent the worst individuals, and
the yellow ones the best ones. Every step of the genetic algorithm has a particular function,
as described in the following list:

Initialization: Many individual solutions are randomly generated to form an initial pop-
ulation. Occasionally, the initial individual solutions may be located in areas where
optimal solutions are likely to be found. The population size depends on the nature
of the problem.

Selection: During each successive generation, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through a fitness-
based process, where fitter solutions (measured by a fitness function) are typically
more likely to be selected.
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Figure 2.6: Genetic Algorithms: principle.

Reproduction (Cross-over and Mutation): The next step is to generate a second
generation population of solutions from those selected through genetic operators:
crossover and/or mutation. For each new solution to be produced, a pair of “parent”
solutions is selected to produce a “child” solution using the above operators. A new
solution is created which typically shares many of the characteristics of its “parents”.
New parents are selected for each new child, and the process continues until a new
population of solutions of appropriate size is generated. These processes ultimately
result in the next generation population of candidate solutions that is different from
the initial generation and in average performs better in term of fitness.

Termination: This generational process is repeated until a termination condition has
been reached. Common terminating conditions are:

• A solution is found that satisfies minimum criteria,
• Fixed number of generations reached,
• The highest ranking solution’s fitness has reached a state such that successive
iterations no longer produce better results.

The genetic algorithm used for our studies is based on the one from [12]. A careful attention
has to be paid concerning the functions used to select, evaluate, or cross the individuals:
the convergence of the algorithm strictly depends on these parameters. The best way to
find the best combination of these parameters is unfortunately to test different values of
them.

2.3.2.2.b Differential Evolution algorithms

Differential Evolution algorithms are search heuristic methods that belong to the class of
evolutionary algorithms [54]. It is very similar to genetic algorithms [78]. It consists in the
following:
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1. randomly generate an initial population;

2. for each individual of this population, select three random individuals different from
the first one;

3. create a new individual from these four individuals;

4. replace the first individual by the new one if it has better performances;

5. do step 2 to 4 until a stopping condition is satisfied.

The algorithm ultimately results in individuals with better performances in terms of a
given objective function and constraint satisfaction. The basic algorithm was not specified
for constrained optimization problems. Based on the basic algorithm [54], we implemented
the same comparison process as for the Nelder-Mead algorithm: in order to deal with
constraints, we introduce a function measuring the degree of constraint violation. However,
even if it is known to be an efficient method, it does not guarantee the optimality of the
solution. The main advantage is that tuning parameters of differential evolution algorithms
is less sensitive than in the case of genetic algorithms.

Another interest of such population based techniques is the possibility to launch multi-
objective optimization as described next.

2.3.3 Multi-Objective optimization: Pareto front

Multi-objective optimization (MOO) denotes the process that consists in optimizing si-
multaneously a collection of objective functions. A survey of MOO can be found in [110].
It allows an additional degree of freedom in comparison to single-objective optimization:
solving a MOO problem will bring not an unique solution but a set of solutions. A con-
sequence of this flexibility is the introduction of new concepts and then methods different
from the one of classical single-objective optimization.

Let us recall the general form of a MOO problem:

min
x∈Rn

F (x) = [f1(x), f2(x), . . . , fk(x)]>

s.t. gi(x) ≤ 0, i = 1, . . . , L.
(2.18)

As mentioned above, solutions to multi-objective problems are not unique and then the
notion of set of solution leads to the concept of Pareto optimality:

Definition 2.3. A point x∗ ∈ Rn is Pareto optimal if and only if there does not exist
another point x ∈ Rn such that F (x) ≤ F (x∗), and fi(x) < fi(x∗) for at least one
function.

Following this definition and given a set of individuals with a given allocation in solution
space, a Pareto improvement is a change to a different allocation that makes at least one
individual better without making any other individual worse. An allocation of individuals
is defined as “Pareto efficient” or “Pareto optimal” when no further Pareto improvements
can be made. This leads to the Pareto front definition: it is the set of individuals that
are Pareto efficient. A representation of a Pareto front in dimension 2 is given in Figure
2.7. All points represent feasible solutions for f1 and f2 functions. Let us now consider a
minimization problem. Point C is not on the Pareto front because it is worse than both

61



Chapter 2. Mathematical Tools

Figure 2.7: Pareto front illustration.

point A and point B. Points A and B are not worse than any other, and hence do lie on
the Pareto front. In our study cases, the objective of MOO problem is to draw Pareto
fronts. It is then the choice of the user to select a solution from this front, according to
the importance of the different objectives. For more information and bibliography around
MOO and its methods, one can see [110]. The method that we will use to draw Pareto front
is based on genetic algorithms [50]. The evaluation of a large population of individuals is
primordial in order to find the best ones in term of Pareto efficiency.

2.3.4 Surrogate Based Optimization

Surrogate based optimization (SBO) or Meta-model based Optimization (MBDO) main ob-
jective is to apply optimization algorithms to engineering problems where classical methods
are not practical. For instance, it can be used when processes are noisy, or when function
evaluations are too expensive. A comprehensive discussion around these techniques can be
found in [144]. The standard engineering practice of SBO is the following one [28]:

• Choose a surrogate model f∗ for f (among the techniques presented in Section 2.2 for
example) and g∗i for gi, i = 1, . . . , L (sample the design space, build the metamodel,
and validate the model).

• Solve the surrogate optimization problem to obtain a solution x∗:

min
x∈Rn

f∗(x) s.t. g∗i (x) ≤ 0, i = 1, . . . , L. (2.19)

• Compute f(x∗) to determine if improvements have been made over the last found
best x.

Techniques have improved this basic approach. The main ones use sequences of surrogates
to identify promising regions in which the use of accurate surrogates leads to better behavior
of the algorithms [157]. The objective is to determine whether or not the model has to be
more accurate in a given design space region, with generally a high need of accuracy close
to the optimum. Example of strategies are presented in Figure 2.8. An additional benefit
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Figure 2.8: SBO algorithms with different strategies: (a) sequential basic approach, (b)
Adaptive method [53], (c) Direct sampling method [175].

of such techniques is the low computational cost for solving the approximate optimization
problem. However the refinement of the surrogate has to be carefully managed, and to be
global enough not to drive the optimization to local optimum. A very interesting review
of recent and promising techniques is proposed in [157].
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This chapter is dedicated to the deterministic optimization of the preliminary design
of two types of aircraft. The first aircraft is a conventional short range aircraft, which
specifications and requirements are presented in the first section. The second aircraft is
the hybrid aircraft concept already presented in Chapter 1, Section 1.3.4. The optimization
tools that will be used have been presented in Chapter 2. The models to which we refer
are the ones described in Chapter 1.

The first section is dedicated to our step-by-step approach. The second section starts
with the optimization of a conventional short range aircraft, from the simplest optimization
with the two classical design variables, to an extend with 12 design variables. Several
optimization objectives are studied and the focus is made on the description and the
analysis of the results. Some conclusions are presented according to comparisons between
the different optimizations.

In the second section, the optimization process is applied to an unconventional aircraft
configuration, already presented in Chapter 1: an hybrid aircraft. The impact of the
selected objective is also studied and by using the conventional aircraft as a baseline we
explain the benefits of such a hybrid configuration.

3.1 A step-by-step approach

3.1.1 Baseline aircraft optimization

This section presents the approach that we select to solve the aircraft design optimization.
First we choose a baseline aircraft, that is a short range aircraft with the specifications
presented in Table 3.1. As mentioned in Chapter 1, the aircraft preliminary design is

Table 3.1: Description of the baseline aircraft specifications.

Name Value
Number of Passengers (Npax) 180

Design Range 2000 NM
Cost Mission Range 500 NM
Cruise Mach number 0.76
Wing Aspect Ratio 9

Number of Turbofan Engine 2
Engine By Pass Ratio 9
Top of Climb altitude 35000 ft

subject to constraints, that are addressing operational needs for safety and operations.
The more important ones, and the only ones that we will use in this study, are selected
according to basic requirements of short range aircraft. They are presented in Table 3.2.
From these requirements, we can formulate the usual aircraft design optimization problem,
which is the following:

Minimize f(x)
s.t. x ∈ C, (3.1)

where:
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Table 3.2: Description of the aircraft design constraints.

Name Value
Approach Speed (LdSpeed) < 120 kt
Climb Vz Ceiling (ClbVz) > 300 ft/min
Cruise Vz Ceiling (CrzVz) > 100 ft/min

Take-Off Field Length 1 (TOFL1) < 2000 m
Second segment limitation 1 (extTOFL1) < 2000 m

Time-To-Climb < 25 min

• the objective function f represents the maximum take-off weight of the aircraft, which
is classically used at early stage of preliminary design as a measurement of the global
efficiency of the aircraft,

• the constraint set

C =
{
x ∈ Rn | g1(x) ≤ Gsup1 , . . . , gl(x) ≤ Gsupl , gl+1(x) ≥ GinfS , . . . , gm(x) ≥ Ginfm

}
,

(3.2)

where gi are the operational constraints and requirements that are listed in Table 3.2,

• the design variables x ∈ R2 usually are the wing area x1 and the sea level static
thrust (SLSthrust) x2. This latter is a driver of the engine power and size through
the corresponding models.

This allows to compute quickly an optimized aircraft. The optimization algorithm used in
this case is a bi-dimensional pattern search which has been specifically tuned by engineers
to be efficient on this particular problem. At the end of this step, we have a reference
optimized aircraft. This one is the first aircraft to be optimized in Section 3.2.

3.1.2 Mass-mission loop release

The mass-mission loop has already been introduced in Chapter 1, Section 1.2.5. For a given
design, its objective is too produce a converged aircraft such that the weights satisfy the
mission range and the structural requirements. This is usually solved within the aircraft
design process thanks to numerical solvers (fsolve from Scilab in our case). This is done at
each aircraft evaluation: it has a non-negligible computational cost and it adds some risk
of non-convergence of the solver that can lead to computational failures.

There is an other way of dealing with the mass-mission loop, which consists in releasing
it from the design process by adding two design variables and two structural constraints.
In practice, it increases the time required for the convergence but may lead to less compu-
tational failures. The two additional design variables are:

• the Maximum zero fuel weight (MZFW), in kg,

• the maxium take-off weight (MTOW), in kg.

The two additional constraints that ensure the convergence of the aircraft, i.e. the struc-
tural load and the mission range requirements are:
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• the step mission take-off weight margin that has to be > 0 kg (DesignMTOW ≥
Operationnal MTOW),

• the MZFW margin that has to be > 0 kg (DesignMZFW ≥ Operationnal MZFW).

3.1.3 Evolution of the aircraft design optimization

The first step of this thesis was to merge models of aircraft airframe, engine and mission.
These models have been presented in Chapter 1. The next step is to introduce degrees of
freedom of these three parts within the same optimization process. We lead this approach
step by step, i.e. adding degrees of freedom progressively. The main reasons of this step-
by-step approach are the following ones.

• We want to keep an eye on the validity of the models behavior.

• We want to ensure the validation the optimization process by following the evolution
of the results.

• We want to study the impact on the aircraft performances of each additional group
of degrees of freedom.

Note that the more degrees of freedom are added, the more the chance that some points
of the design space failed increases. This often happens because of incompatible extreme
values of the design space variables. To deal with this, the optimization algorithm has to
be robust, this is also a reason why we tested various algorithms, from the gradient based
to the heuristics as presented in the Chapter 2.

To follow this step-by-step approach, we consider groups of additional degrees of free-
dom. The usual values of the first four additional variables are written in Table 3.1.
From the basic design group, the wing area, the SLSThrust, the DesignMTOW and the
DesignMZFW, we select the following additional groups:

i) the more detailed design group: the wing Aspect Ratio (WingAR) and the engine
By-Pass Ratio (BPR), which are classical parameters that control the overall aircraft
configuration,

ii) the overall trajectory group: the top of climb altitude (ZpRef) and the cruise
Mach, which are the main parameters of the trajectory,

iii) the detailed trajectory group: the four following speeds of the step-by-step mission:

• the initial speed, denoted StepMisVcas0, usually equal to 250 kt,
• the first step speed, denoted StepMisVcas1, usually equal to 250 kt,
• the second step speed, denoted StepMisVcas2, usually equal to 250 kt,
• the first step descent speed, denoted StepMisVcas3, usually equal to 270 kt,
• the second step descent speed, denoted StepMisVcas4, usually equal to 250 kt.

This last group of parameters allow to finely tune the efficiency of the climb and
descent phases.
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Note that when they are not considered as optimization variables, they are set to their
usual value.

We also select the classical cash operating cost (COC) criterion as a second objective
of the optimization process. Its unit is in $/trip. It is an interesting value for the airlines,
as their business model is based on the minimization of this cost. We will present the
numerical results in tables where are compared the design and the performances of the
different optimized aircraft.

In parallel, a contribution of this thesis was to include the environmental aspects during
the preliminary aircraft design phase. Therefore we propose to add the following additional
objective to the optimization process: a climatic impact measure, the absolute pulsed global
warming potential (APGWP), in W/m2/km/year.

3.1.4 The hybrid aircraft optimization approach

We present in Chapter 1, Section 1.3.4 a new concept of aircraft, with an hybrid propul-
sion system with electricity and fuel. Among the new design parameters brought by the
hybridization of the aircraft, we select three of them as additional degrees of freedom of
the optimization process. They are the main drivers of the electric system:

• the electric fan power,

• the electric fan diameter,

• the generator electric ratio, which is the ratio of mechanical energy produced by the
thermal engine which is used to generate electricity.

As mentioned in Chapter 1, Section 1.3.4, we add some prediction models of the three
following technologies values associated with the hybridization of the propulsion system,
as a function of the year:

• the power density of electrical engine and the power density of electrical generator
(EPD), which is the amount of power per unit mass (in W/kg),

• the energy density of accumulators (EED), which is the amount of energy stored in
a given system per unit mass (in Wh/kg).

We recall in Figure 3.1 the functions that model the predicted evolution of these technolo-
gies values.

For the deterministic studies of this chapter, we decide to fix the year that is driving
the technologies maturity. We will refer the reader to the conclusion of the study found
in [141]: the hybrid configuration should be equivalent to the conventional configuration
with a 0.95 probability in year 2025. So we fix the year to 2025.

We propose to apply the step-by-step methodology detailed in the previous section
to the optimization of this hybrid aircraft. Moreover, as presented in Chapter 1, Sec-
tion 1.3.4, we try to improve this configuration by taking the maximum of benefits from
the hybridization. We can the recall the three improvements that we propose to the basic
hybrid aircraft:

a) remove the thrust reverser from the thermal engines, and use the electric engine in-
stead. The thrust reverser increases the ability of the aircraft to slow down, and it is a
relatively heavy system. The electric fan allow to consider its use as a thrust reverser
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Figure 3.1: Prediction functions of electrical technologies evolution.

by equipping it with variable pitch blades. This synergy comes with the following ad-
ditional constraint. The electric fan take-off nominal thrust has to be higher than 1000
daN, to allow the use of the electric fan as a thrust reverser,

b) remove the Auxiliary Power Unit (APU) and use the electric engine battery to which
we add 100 kg additional one,

c) use boundary layer ingestion (BLI) technology with the electric engine to improve the
global specific fuel consumption (SFC) of the power system by 5%. This is possible by
putting the fan at the rear of the fuselage as presented in Figure 3.2.

Figure 3.2: Electric fan placed such that it can ingest the boundary layer of the fuselage,
in order to reduce the global SFC of the aircraft.

We then propose to also follow a step-by-step approach in order to validate these
additional synergies and to weight their different impact on the aircraft performances.
Therefore, we optimize each hybrid configuration, from the basic one without any of the
synergies, adding one by one the synergies. This yields a matrix of aircraft to optimize,
as represented in Figure 3.3. The abscissa axes represent the increasing number of the
optimization degrees of freedom, the ordinate represents the increasing number of synergies
included in the configuration to optimize. By doing this, we are able to compare the
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Figure 3.3: Matrix representing the panoply of hybrid aircraft to optimize, with variable
number of degrees of freedom (dof) and variable use of the synergies.

criterion evolution from both directions. It is then possible to observe the coupling between
the additional synergies and the increasing number of degrees of freedom. For instance,
if we compare in a first time the criterion value between point A and point B (from
Figure 3.3), and in a second time between point C and point D, we can observe if 16
degrees of freedom allow to take more benefit of the synergies than 7 degrees of freedom,
or not.

We also present tables of numerical results in the following sections. The idea is to put
in the same table the evolution of the optimized aircraft following the path represented by
the arrows in Figure 3.3. Beginning with the basic aircraft, with 7 degrees of freedom, we
will first present a table that shows the evolution of the optimized configuration according
to the increasing number of degrees of freedom (arrow number 1), followed by a table with
the evolution according to the additional synergies with the 16 degrees of freedom (arrow
number 4). Secondly, we will present the other path, from the basic aircraft to the all-
synergies aircraft with 7 degrees of freedom (arrow number 2) in a first table, and then the
effect of the increasing degrees of freedom on this all-synergies aircraft (arrow number 3).

Finally as for the conventional configuration, we present a table with the different
optimized aircraft according to the three criteria.

3.1.5 To sum up

First we list in Table 3.3 all the design variables that can be used for the optimization
process, both for the conventional and the hybrid aircraft. We also present their bounds,
and the dimension n of the problem in the conventional and the hybrid case. Table 3.4
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lists all the constraints.

Table 3.3: Optimization Variables for conventional aircraft, with the additional ones
brought by the hybrid aircraft configuration.

n (conv.) n (hyb.) Name Bounds Unit

Conventional

1 1 Wing Area [100, 250] m2

2 2 Sea Level Static Thrust [6000, 15000] daN
3 3 MZFW [60000, 80000] kg
4 4 MTOW [65000, 85000] kg
5 8 Wing Aspect Ratio [8, 16] no dim.
6 9 Thermal engine BPR [8, 12] no dim.
7 10 Top of climb altitude [25000, 45000] ft
8 11 Cruise Mach [0.6, 0.85] Mach
9 12 Step Mission Vcas 0 [200, 250] knots
10 13 Step Mission Vcas 1 [200, 300] knots
11 14 Step Mission Vcas 2 [200, 300] knots
12 15 Step Mission Vcas 3 [200, 300] knots
13 16 Step Mission Vcas 4 [200, 300] knots

Hybrid
5 Electric Fan Size [1, 2] m
6 Generator Electric Ratio [0.01, 0.1] no dim.
7 Electric Fan Power [1.5, 4] MW

Table 3.4: List of the optimization available constraints.

Name Value

Conventional

1 Approach Speed (LdSpeed) < 120 kt
2 Climb Vz Ceiling (ClbVz) > 300 ft/min
3 Cruise Vz Ceiling (CrzVz) > 100 ft/min
4 Take-Off Field Length 1 < 2000 m
5 Second segment limitation 1 < 2000 m
6 Time-To-Climb < 25 min
7 StepMisMTOW margin > 0 kg
8 MZFW margin > 0 kg

Hybrid (v1, v2, v3) 9 Take-Off Nominal Thrust > 1000 daN

We now have all the tools to solve all the conventional and hybrid aircraft optimizations.
Let Ωn denote the design variables admissible space, which is the Cartesian product of the
intervals defined by the bounds on each variable in Table 3.3. Let f : Ω → R denote the
black box type function computing the selected objective, and gi : Ω→ R, for i = 1, . . . ,m
the black box type functions computing the constraint i from Table 3.4. We only have to
deal with inequality constraints. For a sake of clarity and without any loss of information,
we denote the function gi as follows:
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Table 3.5: List of the selected optimization objectives.

Name Unit
Maximum Take-Off Weight (MTOW) kg

Cash Operating Cost (COC) $/trip
Absolute Pulsed Global Warming Potential (APGWP) W/m2/km/year

• if the constraint is of the type gi(x) ≤ Gsupi , gi(x) = gi(x)−Gsupi ,

• if the constraint is of the type gi(x) ≥ Ginfi , gi(x) = Ginfi − gi(x).

Finally, for each aircraft design case, we consider the non-linear, non-convex and con-
strained following deterministic optimization problem:

min
x∈Ωn

f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,m.

(3.3)

The optimization algorithms used to obtain the optimized aircraft, are one of the fol-
lowing ones (see Chapter 2, Section 2.3):

• the DOT optimization tool,

• the MADS optimization tool,

• the modified Nelder-Mead optimization tool.

Since models are black-boxes, we do not have any proof of convergence. Therefore, we run
several optimization algorithms from several initial points and when no more improvements
are observed in the criterion, we select the solution.

3.2 Conventional Aircraft design optimization results
This section focuses on the deterministic optimization of the conventional aircraft design:
first we optimize the aircraft configuration by increasing the number of design variables of
the optimization. Secondly, we optimize the aircraft with respect to various criteria.

3.2.1 Impact of the increasing number of design variables

This optimization is done by using the step-by-step trajectory modeling presented in Chap-
ter 1, Section 1.3.2. We run four optimizations of the conventional aircraft configuration,
with the MTOW objective and with the increasing number of design variables. We obtain
the results presented in the tables of Figure 3.4. We also represent the most important
parameters evolution with respect to the increasing number of degrees of freedom (dofs)
in Figure 3.5.

We propose to analyze these results between each optimization:

• The first step is the introduction of the additional overall aircraft design dofs (the
BPR and the WingAR). As expected, the BPR is set to its upper bound. The
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Figure 3.4: Conventional aircraft optimization results with increasing number of dofs,
with respect to the MTOW.

WingAR is not set to its maximum value. This is due to the balance between the
two following effects: on one hand, when the WingAR increases, the drag is de-
creasing, and so less fuel is consumed. On the other hand, the WingAR increase
also yields a heavier structure that leads to a higher fuel consumption. However, if
some technology improvements could lead to lighter wings, with the same structural
strength, the optimal WingAR would be higher. In this case, we can also be limited
by the airport infrastructure, that can not afford aircraft with high wingspan. Then
folding wings could be of interest.

The MTOW criterion decreases by 3%: this is mainly due to the decrease of the
fuel consumption (StepMisFuelBlock). This was expected, since the BPR and the
WingAR directly influence the fuel consumption.

In the two cases (4 and 6 dofs), the landing speed (LdSpeed1) constraint is active,
which directly prevents the size of the wing area to decrease. The cruise vertical
speed (CrzVz1) constraint is no longer active in the second case and is probably
replaced by the BPR set on its upper bound.
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Figure 3.5: Conventional aircraft optimization graphs with increasing number of dofs,
with respect to the MTOW.

The APGWP is decreasing, mainly due to the fuel consumption decrease.

• The second step is the introduction of the mission parameters. The top of climb
altitude (ZpRef) is set to its lower bound, and the Mach is set to the value of 0.65.
This is mostly due to the apparition of an additional drag, namely the compressibility
drag, that appears when the Mach is higher than 0.65. In addition, this drag increases
as the Mach increases.
This step is the one with the highest effect on the criterion with a decrease by 6.7%.
This is mainly due to the thrust decrease. The take-off field length (Tofl1) becomes
an active constraint. It is a low speed constraints, whereas the CrzVz1 was a top
of climb constraint. The wing area decreases, since the aircraft is lighter, but the
decrease remains limited by the active landing speed constraint.
The COC increases by 4.3%, due to the Mach decrease, which yields an increase of
the flight duration and so to higher crew costs.
The APGWP is decreasing, mainly due to the decreasing altitude.

• Finally, the last step is the introduction of the climb and descent speeds (Vcas0 to
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Vcas1). This has not much influence on the results, comparing to the first two steps.
However, a decrease of 245 kg of the MTOW is not negligible from an operational
point of view. This leads to

245 kg× 2 trip per day× 365 days ≈ 180 t, (3.4)

of fuel savings in a year. This is significant for the airline.

3.2.2 Comparison of MTOW - Cost - Climatic Impact criteria

In this section, we run optimization with the 13 dofs, and for the three different objectives.
The results are presented in the table of Figure 3.6, and in the spider chart of Figure 3.7.
The first observation is that the optimization with respect to the COC sets the design

Figure 3.6: Conventional aircraft optimization results with all dofs, with respect to the
MTOW, the COC and the AGPWP.

parameters to their maximum values (see the spider chart from the left in Figure 3.7).
This is mainly due to the influence of the flight duration on the cost. The high value of
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Figure 3.7: Spider chart for the conventional aircraft optimization results with all dofs,
with respect to the MTOW, the COC and the AGPWP.

the cruise Mach leads to really high values of the APGWP and the MTOW, comparing
to the two other aircraft. The high Mach yields high flight altitude. The mission block
fuel is less than for the optimized aircraft with respect to the MTOW: the instantaneous
consumption is higher since the Mach is higher, but the flight is performed in less time.
Globally, flying fast and high is better for the mission block fuel than flying slow and low.
The WingAR is set to its upper bound, it yields heavy wings but it is compensated by the
high engine thrust.

The aircraft optimized with respect to the MTOW and the APGWP are quite similar.
For both the aircraft, the Mach is set to 0.65 and the altitude to 25000 kft. However, the
optimal aircraft with respect to the APGWP leads to an equilibrium slightly different to the
one optimized with respect to the MTOW, with a higher wing area but lower SLSThrust.

The results of this section are interesting since they illustrate why the current aircraft
are flying high and fast: the COC is the predominant objective. And even if the MTOW
is a main contribution of the COC, this is not enough to counterbalance the effect of the
flight duration on the cost.

3.3 Hybrid Aircraft design optimization results

This section is dedicated to the deterministic optimization of the hybrid aircraft design.
First, we increase the number of design variables and then the number of synergies. Sec-
ondly, we start by increasing the number of synergies and then the number of design
variables. Thirdly, we compare the results of the optimization for various criteria. Finally,
we present a multi-objective optimization of the conventional and of the hybrid aircraft
with respect to the MTOW and the COC criteria.
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3.3.1 Increased design space and then the number of synergies

We start the optimization of the hybrid aircraft by using no synergy and by increasing
the degrees of freedom, similarly to the optimization of the conventional aircraft in Sec-
tion 3.2.1. Note that the basic optimization of the hybrid aircraft is made with 7 dofs,
since the electric ratio, the fan power and the fan size are added to the basic dofs of the
conventional aircraft optimization. The second section is dedicated to the hybrid aircraft
optimization taking into account step by step each additional synergy.

3.3.1.1 Impact of the increasing number of design variables on the 0-synergies
optimized aircraft

The results are presented in Figures 3.8 and 3.9. We observe the same trends as for the

Figure 3.8: Design variables and performances of the optimized hybrid aircraft with zero
synergy, with the increasing number of dofs, with respect to the MTOW.
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Figure 3.9: Hybrid aircraft optimization graphs 0-synergies, with increasing number of
dofs, with respect to the MTOW.

conventional aircraft optimization, but we pay the price of the additional weights brought
by the hybrid propulsion system on board. The introduction of the three dofs of the hybrid
aircraft does not allow to reach the optimal MTOW of the conventional aircraft (with the
maximum dofs, it is 2.8% higher). Moreover, the introduction of all the dofs allows to gain
around 6 tonnes (8.2 %), whereas it was 7 tonnes (9.8%) for the conventional aircraft.

We also see that it goes to the lower bound of the electric fan size, but the eFanPower
is not set to one of its bounds. The electric ratio increases which seems to indicate that
the additional dofs lead to a more hybrid aircraft.

In all cases the landing speed constraint is active, which bounds below the wing area.
We observe that the wing area of the last aircraft is quite similar to the one of the last
aircraft of the conventional aircraft. We observe that only the last aircraft has an active
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TOFL1 constraint, which is correlated to the slow and low aircraft flight.
Globally, the hybrid aircraft has a huge handicap with the weights of the on board addi-

tional systems. The introduction of the additional dofs drives the aircraft to a configuration
very similar to the optimized conventional aircraft, but with a highest COC (1.5%) and a
highest MTOW (2.8%). Nevertheless, the climatic impact (APGWP) is clearly reduced in
all the cases (19% less comparing the last aircraft).

3.3.1.2 Impact of the synergies on the 16 design variables optimized aircraft

As previously seen, the introduction of the hybridization by an additional 100%-electric
thrust and by a significant amount of electric energy stored on board (by the battery).
This hybridization does not only take part in the thrust and the fuel consumption, but
also brings some synergies used hereafter, and described in Section 3.2.1. The results of
optimization with an increasing number of synergies, are presented in Figure 3.10 and 3.11.

The first step (from 0 synergy to 1 synergy) corresponds to the suppression of the
thrust reverser. It leads to a decrease of the MTOW (by 1.3%), with a direct effect of
reducing the COC (by 2.3%) and the APGWP (by 4.7%). It also allows the Mach to be
higher. This has the interesting direct result of making the COC just below the equivalent
one of the conventional aircraft (optimized with respect to the MTOW with all the dofs).
However, we do not reach the optimal MTOW of the conventional aircraft.

The second step (from 1 to 2 synergies) is the suppression of the APU, with an addi-
tional 1000 kg of battery. In that case, the optimal MTOW becomes close to the one of
the optimized conventional aircraft.

Finally, by taking benefit of the BLI, we obtain a lighter MTOW than the one of the
optimized conventional aircraft (by 1%). Moreover, the APGWP is slightly higher than
the lowest value but really lower than the conventional value (by 21%).
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Figure 3.10: Design variables and performances of the optimized hybrid aircraft for the
16 dofs optimization, with the increasing number of synergies, with respect to the MTOW.
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Figure 3.11: Hybrid aircraft optimization graphs with increasing number of synergies, for
the 16 dofs optimization, with respect to the MTOW.
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3.3.2 Increased the number of synergies and then the design space

In this section, we present the following additional approach: the first step is to observe
the impact of additional synergies on the optimization of the basic hybrid aircraft (with
the first 7 dofs). The second step is to observe the impact of an increasing number of
dofs on the hybrid aircraft with all the synergies. Detailed results (tables and graphs) are
presented in Appendix B.

We propose to present here the evolution of the main parameters - the wing area and
the SLSThrust - and the performances - the MTOW, the APGWP and the COC - for all
the optimized aircraft presented in Figure 3.3. We compare the evolution of each point
with respect to the value of its neighboors, in percentage.

In Figure 3.12, we present the evolution of the SLSThrust, and in Figure 3.13, the
evolution of the wing area.

Figure 3.12: SLSThrust of the optimized hybrid aircraft with respect to the number of
dofs and the number of synergies.

Figure 3.13: Wing area of the optimized hybrid aircraft with respect to the number of
dofs and the number of synergies.

The global tendency of the SLSThrust is to decrease while adding synergies and degrees
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of freedom. The wing area follows the same tendency, with a noticeable decrease when we
add the overall mission parameters ZpRef and CruiseMach (9 to 11). The addition of the
step-by-step trajectory parameters (11 to 16) does not really influence the wing area.

In Figure 3.14, we present the evolution of the APGWP and in Figure 3.15, the evolution
of the COC.

Figure 3.14: APGWP of the optimized hybrid aircraft with respect to the number of dofs
and the number of synergies.

Figure 3.15: COC of the optimized hybrid aircraft with respect to the number of dofs and
the number of synergies.

We observe that the APGWP is really reduced by the introduction of the WingAR and
the BPR (7 to 9) and by the introduction of the step-by-step trajectory parameters (11 to
16). The influence of the synergies on the APGWP does not bring any other information.
We observe that the COC is mainly reduced by the WingAR and BPR introduction (7 to
9), but it increases when the ZpRef and the CruiseMach are added (9 to 11). This is due
to the decrease of the cruise Mach to 0.65 which leads to an increase of the flight duration
and then to higher crew costs.
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Finally, Figure 3.16 shows the evolution of the optimization criterion, the MTOW.
We observe that the main decrease in the MTOW is when we add the ZpRef and the

Figure 3.16: MTOW (criterion) of the optimized hybrid aircraft with respect to the
number of dofs and the number of synergies.

CruiseMach (9 to 11), and when we add the second synergy (the APU suppression). In
other cases, the effects have more or less a similar range.

3.3.3 Comparison of MTOW - Cost - Climatic Impact criteria

In this section, we run the hybrid aircraft optimization with all synergies, with the 16 dofs,
and for the three different objectives. The results are presented in Figure 3.17, and in the
spider chart of Figure 3.18.

We observe the same behavior as for the conventional aircraft: the aircraft optimized
with respect to the COC has even higher cruise Mach and altitude ZpRef. It yields a COC
value lower than 1.8% from the minimal COC of the conventional aircraft. The optimal
MTOW is 1% lower than the optimal one of the conventional aircraft and the APGWP
is 23.6% lower than the optimal one of the conventional aircraft. Nevertheless, we note
that these interesting results are only possible since we took advantage of the opportunities
brought by the hybridization, except for the APGWP which is in all cases better for the
hybrid aircraft.
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Figure 3.17: Variables and performances of the optimized hybrid aircraft for the 16 dofs
optimization, with respect to the MTOW, the COC and the AGPWP.
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Figure 3.18: Spider chart for the hybrid aircraft optimization results with all dofs and all
synergies, with respect to the MTOW, the COC and the AGPWP.
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3.3.4 Hybrid and conventional aircraft COC with respect to MTOW
Pareto front

Finally, to end this study we propose to solve multi-objective optimization of both the
hybrid and the conventional aircraft. We started by computing the 3 dimensional Pareto
front with the following objectives: the MTOW, the COC and the APGWP. However, the
resulting Pareto front was not useful, since the MTOW driven aircraft has a low APGWP,
and vice versa. Then a bi-objective Pareto front appears to be enough. We select then
the MTOW and the COC objectives, and we draw the Pareto front for each aircraft using
genetic algorithms method. They are presented in Figure 3.19.

Figure 3.19: COC versus MTOW Pareto front, for the hybrid and the conventional
aircraft.

We can observe from Figure 3.19 the trading cost between the COC and the MTOW
for the two aircraft. For both the aircraft, two linear tendencies can be seen. For the
conventional one, from a MTOW of 72t to a MTOW of around 69.5t, we have the following
cost: 100kg less has a cost of around 4.5$. In the lower MTOW, 100kg less costs around
13.5$. For the hybrid aircraft, between 72t and 68t of MTOW, a decrease of 100kg has a
cost of 5$, whereas for the lower MTOW, a decrease of 100kg has a cost of around 20$. The
higher trading values for the hybrid aircraft can be explained by its ability to reach lower
value of both the criteria than the conventional aircraft. It shows that every additional
gain in one objective is most expensive in the minimal values of the other.

3.4 Conclusion

In this chapter we describe the optimized hybrid aircraft configuration with respect to the
MTOW. A three-view drawing is given in Figure 3.20. The main characteristics (geome-
try, weights, performances, mission data) of this configuration are given in the tables of
Figures 3.21, 3.22 and 3.23.

A Catia model of the hybrid aircraft has been realized and sent to a 3D printing. The
3D-printed aircraft is shown in the pictures of Figure 3.24. Note that this aircraft has
forward-swept wings. This is our very last proposition for improving the hybrid configu-
ration. Indeed, since we obtain low Mach of operations, this modification leads to an even
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Figure 3.20: A three–views drawing of the optimized hybrid aircraft.

lower MTOW criterion. The interest is coming from the laminarity of such a wing, which
generates less drag, especially with low Mach number.
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Figure 3.21: Optimized with respect to MTOW hybrid aircraft data table (1/3).
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Figure 3.22: Optimized with respect to MTOW hybrid aircraft data table (2/3).
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Figure 3.23: Optimized with respect to MTOW hybrid aircraft data table (3/3).

Figure 3.24: 3D-printed hybrid aircraft.
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Chapter 4. Uncertainty Analysis

All along our studies of aircraft preliminary design, we are dealing with numerical
model, coming from physical laws but also from empirical modeling. These models are
presented in Chapter 1. When coming from physical laws, these models are sometimes
based on a simplistic views of the involved physics. When coming from empirical modeling,
they are often the results of regression through databases of existing aircraft. All the models
are then constructed such that they are surrounded by errors, that can be also named
uncertainties. Until now, studies are yet all deterministic. This uncertainty is managed by
engineers know-how, using a posteriori margins on the results, which can sometimes not
be really accurate.

This chapter is dedicated to the methods that can be used in uncertainty analysis. The
main objective of this chapter is to bring an overview of methods to manage uncertainties
through the models that have an interest in design engineering. The first section introduces
the main definitions used in the field of uncertainty management, around the notion of ran-
dom variables. General information, properties and examples are given. The second section
presents how uncertainties can be quantified and characterized, with the introduction of
a new family of distribution, named Beta-Mystic. The last section is dedicated to the
methods that can be used to propagate uncertainties through function. Various methods
are described: Monte-Carlo propagation method, Taylor expansion methods, quadrature
and reduced quadrature methods, polynomial chaos expansion methods. A particular at-
tention is paid to the conditions of use of the method, with each time the link between the
uncertain input available information and the required accuracy on the uncertain output.
The cost, the accuracy and the limitations of the methods are also presented. At the end
of the last section, some numerical experiments are introduced, to illustrate the methods.
Finally, the conclusion brings out the main characteristics of the methods and propose
some guidelines to select the method according to a non-exhaustive list of criteria.

4.1 Definitions and general information about uncertainties

This section is dedicated to recall some important definitions and principles that will useful
all along this chapter.

4.1.1 Uncertainties

A relevant definition of uncertainties can be found in [121]: “The first meaning of uncer-
tainty has its roots in probability and statistics: the estimated amount or percentage by
which an observed or calculated value may differ from the true value... The second mean-
ing of uncertainty relates to lack of knowledge about physical systems”. According to this
definition, uncertainties can be classified into two kinds:

• Aleatory uncertainty, which describes physical variations caused by intrinsic random-
ness in a system and its environment. It is most commonly represented mathemati-
cally by a probability distribution, and is also referred in the literature as irreducible
uncertainty, variability or inherent uncertainty [153].

• Epistemic uncertainty, which is caused either by a lack of knowledge about the system
or its environment nor by the approximations made during process modeling. That
kind of uncertainty can be reduced by a more accurate knowledge of the system, e.g.
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by a refinement of a model. It is also referred in literature as reducible uncertainty
or subjective uncertainty [153].

As mentioned above, the first kind of uncertainty is intrinsic to the system and then
cannot be reduced. It appears to be often negligible compared to the epistemic uncertainty
as it is the case in the future project studies. The latter uncertainty is coming from modeling
the aircraft preliminary design environment.

As mentioned in Chapter 1, preliminary aircraft design requires models that allow quick
evaluations of new aircraft configurations. It yields that the used toolbox is built with low
level semi-empirical models. The latter are coming either from physical equations, either
from databases of existing aircraft from which interpolations are made, based on engineer
know-how. Then, in most of the cases, model uncertainties can be obtained from a sampling
of the interpolation error distribution. The study of innovative aircraft configurations such
as the hybrid aircraft from Chapter 5 is also bringing new uncertainties as assumptions are
made around hybridization technologies.

4.1.2 About random variables

Definition 4.1. Given Ω a sample space, F a set of events, a (real) random variable
X is a function from Ω to R such that:

∀B interval of R, X−1(B) ∈ F . (4.1)

The set of values taken by X is denoted by: X(Ω) = {X(ω) ∈ R : ω ∈ Ω}.

There are two types of random variables.

Definition 4.2. A random variable that takes a finite or countable number of values, is
called discrete random variable.

Definition 4.3. A random variable that can take any value in an interval, is called a
continuous random variable.

We will focus in this chapter on continuous random variables.

Definition 4.4. Given X a random variable defined on a probability space (Ω,F ,P), where
Ω is the sample space, F is a set of events, and P is a probability measure associated to F .
A probability law of X, denoted PX is the function that associates to all part B of R the
value:

PX(B) = P
(
X−1(B)

)
= P ({ω ∈ Ω : X(ω) ∈ B}) . (4.2)

A probability law can be characterized by its cumulative distribution function or its
probability density function.

Definition 4.5. The cumulative distribution function (cdf) is defined for every real
value x by

FX(x) = P(X ≤ x). (4.3)

It has the following properties:
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• ∀x ∈ R, 0 ≤ FX(x) ≤ 1,

• the function FX converges to 0 in −∞ and to 1 in +∞,

• the function FX is increasing,

• the function FX is continuous right.

Two random variables with the same cumulative distribution function, are following the
same probability law.

Definition 4.6. Given X a random variable with a cumulative distribution function FX
strictly increasing from I ⊂ R in ]0, 1[. The q-quantile, q ∈ [0, 1], of X is the number
xq ∈ I, such that FX(xq) = q, i.e.:

P(X ≤ xq) = q. (4.4)

Definition 4.7. Given X a continuous random variable, the probability density func-
tion (pdf) of X is the positive function fX such that for any two numbers a and b, with
a < b, we have:

P(a < X ≤ b) =
∫ b

a
fX(x)dx. (4.5)

That value is the probability that the random variable X takes on a value in the interval
[a, b]. Observe that since lim

x→+∞
FX(x) = 1, then

∫
R
fX(x)dx = 1. (4.6)

If FX is the cumulative distribution function of X, we have:

FX(x) =
∫ x

−∞
fX(z)dz. (4.7)

The result is that the probability density function is the derivative of the cumulative
distribution function. As the cumulative distribution function, the probability density
function characterizes the probability law, in the sense that two random variables with the
same probability density function are following the same probability law. An example of
Probability Density Function of a continuous variable following a normal law is given in
Figure 4.1.

Random continuous variables have characteristics that will be useful for our studies.

Definition 4.8. The mode of a continuous probability distribution is the value x at which
its probability density function reaches its maximum value.

The example of Figure 4.1 is an unimodal distribution: it admits an unique mode.

Definition 4.9. Given a random continuous variable X with a pdf fX , the expectation
(or mean) of X is defined by:

E [X] =
∫
R
xfX(x)dx. (4.8)
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Figure 4.1: Probability Density Function of a continuous variable.

The mean of X is often denoted µX and has the following properties:

• Linearity: ∀(a, b) ∈ R2, we have E [a+ bX] = a+ bE [X].

• Positivity: if X ≥ Y then E [X] ≥ E [Y ].

Definition 4.10. Given a random variable X, if g is a function from R to R then g(X)
is a random variable. If X is a random continuous variable with a pdf fX , the expectation
of g(X) is defined by:

E [g(X)] =
∫
R
g(x)fX(x)dx. (4.9)

If g is the identity function then E [g(X)] = E [X].

Definition 4.11. The variance of a random variable X, denoted by var(X), is given by:

var(X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 . (4.10)

It is a measure of how far a variable is spread out and it has the following property:

∀(a, b) ∈ R2, var(aX + b) = a2 var(X). (4.11)

Definition 4.12. The square root of the variance, denoted by σX , is called the standard
deviation of X.

var(X) = σ2
X . (4.12)

It has the same dimension as the data and is then comparable to deviations from the mean.

4.1.3 Moments of a random variable

Let us denote X : Ω→ R a random continuous variable and fX its joint probability density
function. The definition of the classical moments of order p of X is:

mp,X = E [Xp] =
∫
R
xpfX(x)dx. (4.13)
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The first order moment corresponds to the previously defined mean, denoted by µX . For
all p ≥ 2, centered moments are defined by:

µp,X = E [(X − E [X])p] . (4.14)

They can be expressed as functions of classical moments via the following formulas:

µ1,X = m1,X , (4.15)
µ2,X = m2,X −m2

1,X ,

µ3,X = m3,X − 3m2,Xm2,X + 2m3
1,X ,

µ4,X = m4,X − 4m3,Xm1,X + 6m2,Xm
2
1,X − 3m4

1,X ,

The first four centered reduced moments of X, also called standardized moments, are
denoted by (µX , σ2

X , γX ,ΓX). They are respectively called the mean, the variance, the
skewness and the kurtosis, and can be expressed by relations (4.16) to (4.19):

µX = E [X] = µ1,X , (4.16)

σ2
X = E

[
(X − µX)2

]
= µ2,X , (4.17)

γX = E
[
(X − µX)3]
σ3
X

= µ3,X
σ3
X

, (4.18)

ΓX = E
[
(X − µX)4]
σ4
X

− 3 = µ4,X
σ4
X

− 3. (4.19)

Skewness and kurtosis give two important characterizations of a distribution. The skew-
ness characterizes the degree of asymmetry of a distribution around its mean. The kurtosis
measures the relative peakedness or flatness of a distribution, relative to a normal distribu-
tion. A representation of the link between the sign of these two parameter values and the
corresponding shape of the distribution is given in Figure 4.2. It is important to note that

Figure 4.2: Skewness and Kurtosis role in the distribution shape.

while the mean and variance are dimensional quantities, the skewness and the kurtosis are
conventionally defined in such a way as to make them adimensional.
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4.1.4 Multidimensional random variables

Definition 4.13. A (real) random vector of dimension n is a vector of Rn whose coor-
dinates are real random variables. It is written X = (X1, . . . , Xn), where each variable Xi

is a real random variable.
Definition 4.14. The distribution of a random vector is characterized by its joint prob-
ability density function. It is a generalization of the concept of probability density
function. The joint pdf is defined such that:

P(X ∈ [a1, b1]× . . .× [an, bn]) =
∫ b1

a1
. . .

∫ bn

an
fX(x1, . . . , xn)dx1 . . . dxn. (4.20)

Definition 4.15. Two random variables are said to be independent if the realization
of one does not affect the probability distribution of the other. Two random variables X
and Y , with probability densities fX and fY , are independent if and only if the combined
random vector (X,Y ) has the following joint cumulative distribution function:

fX,Y (x, y) = fX(x)fY (y). (4.21)

Proposition 4.1. Two random variables X and Y are independent if and only if for any
functions g and h in R:

E [g(X)× h(Y )] = E [g(X)] E [h(Y )] . (4.22)

Definition 4.16. Given (X,Y ) a couple of random variables such that their variances
exist, the covariance of the couple (X,Y ) is defined by:

cov(X,Y ) = E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X] E [Y ] . (4.23)

It is a measure of how much they are changing together.
Definition 4.17. From the covariance of two random variables X and Y , we define the
Pearson’s correlation coefficient by:

ρ(X,Y ) = cov(X,Y )
σXσY

. (4.24)

Proposition 4.2. If X and Y are independent and if their variances exist, then:

cov(X,Y ) = 0, and var (X + Y ) = var (X) + var (Y ). (4.25)

The converse of this proposition is not true. Note that two random variables are said
to be uncorrelated if their covariance is zero. Then, the properties are equivalent to say
that if two variables are independent then they are uncorrelated but the inverse is not true.
The properties of independence of random variables will be used in the further studies.
Definition 4.18. We defined the conditional density of X given Y by:

fX|Y (x|y) = fX,Y (x, y)
fY (y) . (4.26)

Then we have

P(a ≤ X ≤ b|Y = y) =
∫ b

a
fX,Y (x|y)dx. (4.27)

Definition 4.19. We then defined the conditional expectation of X given Y = y by:

E [X|Y = y] =
∫ ∞
−∞

xfX|Y (x|y)dx. (4.28)
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4.1.5 Examples of well-known random variables

4.1.5.1 The Normal Distribution

The Normal or Gaussian distribution is certainly the most common occurring continuous
probability distribution. The normal distribution is depending on two parameters: the
mean µ and the variance σ2. A random variable X is said to follow a normal law of mean
µ and variance σ2, denoted by:

X ∼ N (µ, σ2), (4.29)

if its support is R and its pdf is given by:

f(x;µ, σ) = 1
σ
√

2π
e
−(x− µ)2

2σ2 . (4.30)

Various normal distributions are shown in Figure 4.3.

Figure 4.3: Probability density function for different normal distributions.

4.1.5.2 The Beta Distribution

The Beta distribution is a family of continuous probability distributions whose support is
[0, 1]. A random variable X is said to follow a Beta law of parameters α > 0 and β > 0
and denoted by X ∼ Beta(α, β), if its pdf is:

f(x, α, β) = Γ(α+ β)
Γ(α)Γ(β)x

1−α(1− x)β−1, (4.31)

where: Γ : t 7→
∫∞

0 zt−1e−tdt is the well-known Gamma function. Various Beta distribu-
tions are shown in Figure 4.4.
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Figure 4.4: Probability density function for different beta distributions.

4.1.5.3 The Triangular Distribution

The Triangular distribution is a continuous probability distribution defined by three pa-
rameters: its lower limit a, its upper limit b and its mode c, where a < b and a ≤ c ≤ b. A
random variable is said to follow a triangular law of parameters a, b and c, if its pdf is:

f(x, a, b, c) =



0 if x < a,
2(x− a)

(b− a)(c− a) if a ≤ x < c,

2
b− a

if x = c,

2(b− x)
(b− a)(b− c) if c < x ≤ b,

0 if b < x.

(4.32)

An example of triangular distribution is given in Figure 4.5.

Figure 4.5: Probability density function of a triangular distribution.
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4.1.5.4 The Uniform Distribution

The Uniform distribution is a continuous probability distribution defined by two parame-
ters: its lower limit a and its upper limit b, where a < b. All intervals with the same length
on the support [a, b] are equiprobable. A random variable X is said to follow a uniform
law of parameters a and b and denoted by X ∼ U(a, b), if its pdf is:

f(x) =


1

b− a
if a ≤ x ≤ b,

0 for x < a if x > b.

(4.33)

An example of uniform distribution is given in Figure 4.6.

Figure 4.6: Probability density function of an uniform distribution.

4.2 Modeling uncertainty

This section addresses methods that aim at quantifying and characterizing uncertainties.
Uncertainty quantification is defined as the science of quantitative characterization and
reduction of uncertainties in applications. A part of the work from [22] dedicated to the
uncertainty quantification is presented in Sections 4.2.1 and 4.2.2. Section 4.2.3 presents
a new family of a generic probability distribution law. The objective is to propose a
probability law that well models our uncertainties and that can be used by engineers not
necessarily expert in mathematics. A part of this work has been done in collaboration with
[22].

4.2.1 Uncertainty quantification

In engineering design, modeling a process consists in building models that compute some
parameters as function of some others. Sometimes models are coming from the physics,
when they are available and computationally affordable. If it is not the case, these models
can come from experimentations. In our case, in order to build simple models for aircraft
design process, these experimentations are databases of existing aircraft. We can find all
the masses of the aircraft and of its different parts, its performances, its geometry, etc.

To illustrate this, assume that we want to model the mass of the fuselage without com-
puting finite elements or any computationally expensive method. Then we use databases
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of existing aircraft. Let

f : Rn → R,
x 7→ f (x) , (4.34)

be the fuselage mass, i.e. f is the representation of a fuselage mass model. The selection
of the input parameters x can be done by one or mixing the two following approaches:

• according to engineers know-how,

• with some statistics tools that allow to select the most influential parameters of a
model.

For example, engineers may assume the fuselage mass can be expressed, with a “good” ac-
curacy, as a function of the fuselage length, height and width. Once this is done, a function
of this input vector is chosen. For instance, if x ∈ R2, and if we want to approximate the
model by a polynomial of the second degree, we state:

f(x1, x2) = ax2
1 + bx2

2 + cx1x2 + dx1 + ex2, (4.35)

where a, b, c, d and e have to be tuned such that f is the best representation of the model.
In our case we use some regression technique and the coefficients are tuned via a least
square optimization using the available databases.

Finally we obtain an analytic model f(x), based on an experimental model and with a
“good” accuracy. The objective of uncertainty quantification is to estimate this accuracy.
This can be done by modeling it with a probability distribution. Assuming that we have
a sampling (ỹ1, . . . , ỹN ) from the databases, e.g. the values of the fuselage mass at the
corresponding input vectors (x1, . . . ,xN ), we obtain the uncertainty sampling (ξ1, . . . , ξN )
such that:

ξi = f(xi)− ỹi. (4.36)

An illustration is given in Figure 4.7. The red line has the equation y = x. The blue
points are the points (f(xi), ỹi). The closest these points are to the red line, the more
accurate the analytical model is. The histogram of the model uncertainty is represented
in the right graphic in Figure 4.7.

4.2.2 Uncertainty characterization

Once the uncertainty sampling ξ is obtained, as presented in the previous section, several
choices can be made, depending on the way uncertainty is going to be used. This is the
objective of the uncertainty characterization. The assumption is made that uncertainties
can be well represented by a probability distribution law. Then either we can compute
moments of the distribution, using formulas presented in the later Section 4.1.3, either we
can draw a probability distribution matching the uncertainty histogram (see Figure 4.7),
fitting a known distribution type. The uncertainty characterization depends on what the
uncertainty will be used for.

As presented in Section 4.3, in the case where we want to propagate uncertainty, the
choice of the propagation method is highly coupled to the input uncertainty accuracy.
Information about the input uncertainty can be ranked from the low to the more accurate:
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Figure 4.7: Uncertainty quantification: experimental sampling versus analytical model.

• the mean and the variance of the distribution;

• the mean, the variance and some properties of the distribution (for example uni-
modality, symmetry or finite support);

• the mean, the variance, and some of the higher moments of the distribution;

• the exact nature of the distribution and the corresponding parameters (for example
Normal, Beta, Uniform distribution, or else).

When building the exact nature of a distribution from a data sampling, attention has to
be payed to the underlying consequences. This attention is illustrated in Figure 7.6: con-
sidering a given sampling, we introduced two different sampling intervals and we observe
that two different distributions can approximate the same sampling. It is also important
to recall here that a probability distribution is uniquely defined by its infinite number of
moments. Therefore the knowledge of the first four moments does not allow to compute
an unique distribution, but only a family of distributions. In particular, fitting uncertainty
by a given distribution family (e.g. Beta, Normal, etc), even well-adapted, implies under-
lying assumptions on the sampling: this can either overestimate or underestimate some
probability measures associated to the distribution. This has to be manipulated carefully.
However, it has the benefit of manipulating analytic expressions instead of sampling.

4.2.3 The Beta-Mystic distribution

In this section, we present a distribution that can mimic several most known probability
distribution laws and that is used on later studies. The objective is to find a probability
density function, easy to manipulate, that covers a wide range of distribution shapes and
fulfills the following requirements:

• Compact support,

• Unimodal,

• Continuous.
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Figure 4.8: Example of approximations of the same sampling by two different distributions.
The two graphs have just a different intervals length.

The Beta distribution meets all these requirements and so was retained in a first ap-
proach. However, its drawback was the lack of intuitiveness between the parameters α and
β of the law and the behavior of the distribution shape. This is illustrated in Figure 4.9:
the link between each parameter and the shape is not obvious. For a fixed parameter α or
β, the variation of the other is changing at the same time the symmetry and the peakedness
of the distribution. In our mind it was essential to improve the dissociation of the latter

Figure 4.9: Examples of Beta distributions for different values of α and β.
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two characteristics and to be able to simply control the shape of the distribution by tuning
its parameters.

4.2.3.1 Definition of the Beta-Mystic distribution

Therefore, we introduce a new family, namely the Beta-Mystic distribution.
A random variable X is said to follow a Beta-Mystic distribution, denoted by X ∼

BetaMyst(a, b, Z, P ), where −1 ≤ Z ≤ 1 and 0 ≤ P , if its pdf is:

fX(x; a, b, Z, P ) =
(b− x)q1−1 · (x− a)p1−1

β (p1, q1) · (b− a)p1+q1−1 , if a ≤ x ≤ b,

0 , if x < a or b < x,

(4.37)

where:
W = max

(
ε− 1,min(Z, 1− ε)

)
,

K = 3.3×max(ε, P )
b− a

,

M = 1
2 × (a (1−W ) + b (1 +W )) ,

p1 = 1 +K · (M − a) ,
q1 = 1 +K · (b−M) ,

β(p1, q1) = Γ(p1)Γ(q1)
Γ(p1 + q1) ,

Γ is the Gamma function: Γ(t) =
∫∞
0 xt−1e−xdx,

ε > 0.

In practice, the parameter ε is chosen equal to the computer computation accuracy. Intro-
ducing such a ε avoids computational problems when the P and Z parameters reach their
respective bounds. The introduction of this new Beta-based probability density law allows
the following intuitive control of the distribution shape:

• a and b respectively represent the lower and upper bound of the support,

• Z controls the symmetry of the distribution, Z ∈ [−1, 1],

• P controls the spreading.

The graphs from Figure 4.10 illustrate the evolution of the shape of the distribution law
when P varies between 0 and 10 and Z equals to 0. It shows the wide range of distributions
with different spreading that covers the law. The graphs from Figure 7.7 illustrate the
evolution of the shapes for P varying between 0.5 and 4 and Z varying between −1 and
0. The behavior is symmetric when 0 < Z < 1. Graphs from Figure 4.12 illustrate
the ability of the law to mimic most known probability distributions (Normal, Uniform or
Triangular).

Note that the normal law N (0, σ2) can be approximated by BetaMyst(−6σ, 6σ, 0, 10)
and the Uniform U(a, b) is equivalent to the BetaMyst(a, b, 0, 0).

The Beta-Mystic distribution has already been used for some future project studies:
the first experiments have shown that it can be a very powerful tool to replace current
engineers know-how based margins and to manage models uncertainties.
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Figure 4.10: Evolution of the shape of the distribution law (0 ≤ P ≤ 10 and Z = 0).

Figure 4.11: Evolution of the shape of the distribution law (0.5 ≤ P ≤ 4 and −1 ≤ Z ≤ 0).

4.2.3.2 Characterization of the Beta-Mystic law by its moments

The Beta-Mystic distribution is a four parameters probability distribution law. We here
choose to compute its first four moments. The expression of the mean µ, the variance σ2,
the skewness γ and the kurtosis Γ of a Beta-Mystic distribution of parameters (a, b, Z, P )
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Figure 4.12: Illustration of the flexibility of the Beta-Mystic law.

are simple to obtain as shown by equations (4.38) to (4.41):

µ = p1 · b+ q1 · a
p1 + q1

, (4.38)

σ2 = p1 · q1 · (b− a)2

(p1 + q1 + 1) · (p1 + q1)2 , (4.39)

γ = 2 · (q1 − p1) ·
√
p1 + q1 + 1

(p1 + q1 + 2) · √p1 · q1
, (4.40)

Γ = 6 · (p1 + q1 + 1) · (q1 − p1)2 − p1 · q1 · (p1 + q1 + 2)
p1 · q1 · (p1 + q1 + 2) · (p1 + q1 + 3) , (4.41)

where:

Z̃ = max (−1 + ε,min (Z, 1− ε)) , (4.42)

m = a(1− Z̃) + b(1 + Z̃)
2 , (4.43)

r = 3.3× P
b− a

, (4.44)

p1 = 1 + r(m− a), (4.45)
q1 = 1 + r(b−m). (4.46)

Moreover, for the Beta-Mystic law, these expressions can be inversed in a certain domain
of skewness and kurtosis, shown in Figure 4.13. We then obtain the parameters (a, b, Z, P )
with respect to (µ, σ2, γ,Γ):

a = µ− p1 · fac, (4.47)
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b = µ+ q1 · fac, (4.48)

Z = 2 · µ+ q1 · fac
b− a

, (4.49)

P = p1 + q1 − 2
3.3 , (4.50)

where:

sum = 6 ·
(
γ2 − Γ− 2

)
2 · Γ− 3 · γ2 ,

prod = 6 · (sum+ 1) · sum2

Γ · (sum+ 2) · (sum+ 3) + 30 · sum+ 36 ,

det = sum2 − 4 · prod,
sign = γ

|γ|
,

p1 = sum− sign
√
det

2 ,

q1 = sum+ sign
√
det

2 ,

fac =
√
σ2 · p1 + q1 + 1

p1 · q1
.

(4.51)

4.2.3.3 Limitations of the Beta-Mystic

Some couples of kurtosis and skewness appear to have no antecedent in the domain of the
parameters of the Beta-Mystic law, as represented in Figure 4.13. After some experimen-

Figure 4.13: Couples of skewness and kurtosis from which a Beta-Mystic law cannot be
computed (the red part).

tations and calculations, we notice that we can approximate some of the non-invertible
couples by a Beta-Mystic law without to many loss of information. We propose to replace
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the corresponding values in relations (4.51) by those given by relations (4.52) to (4.55). By
doing so, we set a maximum value reachable by P and a maximum value of kurtosis that
can be reached with the current skewness. Further analysis is required to better manage
this limitation of the Beta-Mystic law. More details can be found in [22].

Pmax = 99, (4.52)

Klimit = min
(

Γ, (9.9 · Pmax + 12) · γ2 − 12
6.6 · Pmax + 10

)
, (4.53)

sum = 6 ·
(
γ2 −Klimit − 2

)
2 ·Klimit − 3 · γ2 , (4.54)

prod = 6 · (sum+ 1) · sum2

Klimit · (sum+ 2) · (sum+ 3) + 30 · sum+ 36 , (4.55)

Pearson distributions presented in [10, 80, 7, 130], are used in a similar way to represent
four moments distributions by a Pearson type distribution under some assumptions. The
same problem appears with non-reversible couples of skewness and kurtosis.

The quantification and characterization of uncertainties, whether with Beta-Mystic law,
whether with moments and some properties of the distributions, can now be realized.

4.3 Review of uncertainty propagation methods
In design engineering, the challenge is to obtain the “best” design according to well selected
input design variables and matching a given number of requirements and performances.

The deterministic approach leads to a design with no clue about its reliability, about its
feasibility and about the accuracy of its performances. Once uncertainties have been char-
acterized, the objective is to take them into account when assessing the performances. In
practical that means that these performances become in their turn uncertain. The finality
of uncertainty propagation is to assess accurately and rigorously these output uncertainties.

Design process generally relies on one or several optimizations in order to minimize, or
maximize, a criterion. Therefore, uncertainty propagation plays an important role in the
resolution of optimization problems under uncertainty.

The community of simulation-based design is increasingly interested in this field [118,
67, 80, 177, 19]. When solving a design optimization problem under uncertainty, the
formulation of the objective and constraint functions, is crucial: they are generally functions
of the output uncertainties as presented in Chapter 5, Section 5.1. Uncertainty propagation
methods are a key tool that provides these output uncertainties. The choice and the
accuracy of the propagation method depend on three main entities: the information on
input uncertainty, the process design functions properties (for instance linear process, or in
the worst case, black-box process) and any additional information on output uncertainty.

Input uncertainty information, as already mentioned in Section 4.2, can be of the two
following kinds:

• Error distributions are entirely available,

• Only moments of input distributions are available.

It is important to note here that as reasonably expected, the accuracy of the output
strictly depends on the accuracy of the input. Figure 4.14 proposes a representation of the
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available output uncertainty information as a function of the available information on input
uncertainty. Abscissa axis represents the input information, from the smallest (i.e. only
the mean of the uncertainty is known), to the most complete (i.e. the entire distribution).
Ordinate axis is likewise but for the output information.

Figure 4.14: Available uncertain output versus available uncertain input [127].

For instance, if only the mean of the uncertain input is known, it would not really have
a sense to try to compute the complete distribution of an uncertain output. To obtain
it, more information about the input uncertainty are needed. Ideally, when input distri-
bution uncertainties are known, some methods allow to compute the output uncertainty
distribution. They will be presented in next Sections.

Moreover, since the beginning of design under uncertainty, engineers and operational
researchers have often worked with objectives and constraints functions represented by a
weighted sum of mean and variance [80, 67]. We can also find multi-objective formulations
in which the objectives are the mean and the variance.

It has been known for a while that such a framework may be inadequate when dealing
with generic (e.g. asymmetric or multi-modal) output distributions [152, 154]. One of the
possible options is to increase the number of output moments to be considered, e.g. by
including skewness and kurtosis [126, 103]. For example Padulo and Liou [129] have shown
that four moments can be readily included in an optimization approach by a straight-
forward numerical procedure, named Bivariate Reduction Quadrature and described in
Section 4.3.4.6.

An open question is to determine the ”best” way to obtain numerically such higher
statistics, when the considered function is not known analytically, which is generally the
case in engineering design. We try to answer this question by comparing several uncer-
tainty propagation methods, and ranking them, when it is possible, in terms of accuracy,
computational cost, required input information and easiness of implementation.

In the first section, we recall the definition of the problem. Then Monte-Carlo propa-
gation methods are presented. Taylor-based method of moments propagation, stochastic
quadrature techniques and multidimensional extension of the Gauss-like quadrature, in-
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cluding full tensorial and reduced quadrature schemes [146, 182, 129] are described in the
next sections. The last presented method brings some proposal for constructing adaptive
non-intrusive methods, in particular by using various of the quadrature techniques. We
finally apply the selected methods to different numerical test cases. This allows to high-
light benefits and drawbacks of the different methods: for each method, we bring out the
required input information as function as the computable output information.

4.3.1 Definition of the problem

Formally we consider a process that encompass models. As shown in Figure 4.15, this
process admits deterministic inputs x and uncertainties Ξ seen as random variables. The
latter also can be seen as inputs, once they have been characterized. An output function f of
this process is a function of x and Ξ, and for any given point x ∈ Rm, the quantity f (x, ξ)
is uncertain. The characteristics of this uncertainty highly depend on the characteristics

Figure 4.15: Process variables and uncertainties modeling.

of the input uncertainty Ξ. For the sake of simplicity, assume that the certain input x is
fixed. Let:

F : Rn → R,
ξ 7→ F (ξ) = f (x, ξ) . (4.56)

The variable ξ will denote the realizations of the random variable Ξ.
The following methods aim at finding the characteristics or the representation of the

output uncertainty F (Ξ). The next section is dedicated to the most well known Monte-
Carlo method applied to uncertainty propagation and moments estimation.

4.3.2 Monte-Carlo Methods

Monte-Carlo methods cover a wide class of computational algorithms that rely on running
a high number of function evaluations for a random sampling input. Typically, processes or
functions are simulated for a given sample of random uncertain inputs in order to obtain a
sample of the output. More details about such methods can be found among many others
in [108, 70, 162].

Monte-Carlo sampling is a reference in terms of propagation method: it can be used
in order to precisely obtain the output distribution in the case where input uncertainty
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distribution is available. Given an input sampling vector (ξi)i=1,...,N , relations (4.57) to
(4.60) from [46] give an estimation of the first four standardized moments (µF , σ2

F , γF ,ΓF )
of the random variable F (Ξ).

µ̂F = 1
N

N∑
i=1

F (ξi), (4.57)

σ̂2
F = 1

N

N∑
i=1

(F (ξi)− µ̂F )2, (4.58)

γ̂F = N

(N − 1)(N − 2)

N∑
i=1

(
F (ξi)− µ̂F

σ̂F

)3
, (4.59)

Γ̂F = N(N + 1)
(N − 1)(N − 2)(N − 3) ·

N∑
i=1

(
F (ξi)− µ̂F

σ̂F

)4
− 3 (N − 1)2

(N − 2)(N − 3) . (4.60)

These formulas will be used as a baseline to compare the following moment propagation
methods. Observe that we have to know exactly the input distribution in order to generate
a Monte-Carlo sampling.

The Monte-Carlo estimation error is roughly proportional to 1/
√
N for a large N .

Monte-Carlo can be considered as the simplest method to handle, but in general any
other applicable method is better than Monte-Carlo. However, Monte Carlo remains very
practical and powerful when the dimension of the inputs becomes too large: it may be
as accurate as any quadrature technique using too many points along each dimension
coordinate.

To illustrate the convergence of the estimation error of moments by the Monte-Carlo
method, we test it on a simple numerical example:

F : ξ 7→ cos

(
π

4 ξ
)
, with Ξ ∼ Beta(2, 5). (4.61)

The Monte-Carlo estimates are shown on Figure 4.16. We can see how the ranges of
the mean, the variance, the skewness and the kurtosis estimates are decreasing when the
number of sampling is increasing. The variance of the estimator of the kth-order moment
is estimated in [106]: it depends on the moment of k2th order. For all variance estimators,
the lead term is in O(1/N).

In the case where the input distribution is not entirely known, Monte-Carlo method
becomes unusable. How to generate a sample of an unknown distribution? This issue can
be partially solved by using a family of distributions like Pearson, Beta or even Beta-Mystic
distributions as follows.

As presented in section 4.2.3.2, it is possible to approximate an uncertain sampling
by a Beta-Mystic distribution using the first four moments of the distribution, thanks to
relations (4.57) to (4.60). However this approach raises the following two limitations:

• The first one is the impact of the Monte-Carlo moments estimation error on the
distribution approximation. The Monte-Carlo sampling size N will affect the mo-
ments approximation and consequently the distribution approximation. When the
evaluation of an individual is computationally expensive, the cost of a more accurate
Monte-Carlo approximation is not affordable.
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Figure 4.16: Convergence of mean, variance, skewness and kurtosis estimate for random
sampling using Monte-Carlo method.

• The second one is that the method approximates a finite number of moments of a
distribution by a given distribution. A finite number of moments only defines a family
of distribution and not an unique one. In the case where the uncertainties are used
to compute risk measures, for instance in robust design optimization, this can lead
to underestimate the risk measure and then to decrease the level of reliability of the
solution. It can also overestimate the measure and then lead to no solutions. This
approximation has to be done conscientiously, depending on the use of the output
distributions.

In all cases, when the objective is for instance to compute probability measures (e.g. a
quantile), the impact of these approximations on the measure should be carefully consid-
ered. To my best knowledge no specific rule exists to quantify the impact of the latter
approximations.

As in practical other methods have some benefits comparing to Monte-Carlo methods,
in term of accuracy, computational cost and flexibility, following sections are dedicated to
a non exhaustive review of alternative propagation methods.

4.3.3 Taylor Expansion methods

Let us consider the function F defined in Section 4.3.1 and denote µξ = (µ1, . . . , µn) the
input mean vector of Ξ = (Ξ1, . . . ,Ξn). We assume that F ∈ C5(Rn,R) admits a Taylor
expansion in some neighborhood of µξ and that F , F 2, F 3 and F 4 are integrable on this
neighborhood. Then as shown in [128, 125], F can be approximated by its Taylor series
expansion at the point µξ = (µ1, . . . , µn), truncated to the fifth order:

F (ξ) = F
(
µξ

)
+

n∑
i=1

(
∂F

∂ξi

(
µξ

))
∆ξi + 1

2

n∑
i=1

n∑
j=1

(
∂2F

∂ξi∂ξj

(
µξ

))
∆ξi∆ξj (4.62)
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+ 1
6

n∑
i=1

n∑
j=1

n∑
k=1

(
∂3F

∂ξi∂ξj∂ξk

(
µξ

))
∆ξi∆ξj∆ξk

+ 1
24

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(
∂4F

∂ξi∂ξj∂ξk∂ξl

(
µξ

))
∆ξi∆ξj∆ξk∆ξl

+ 1
120

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(
∂5F

∂ξi∂ξj∂ξk∂ξl∂ξm

(
µξ

))
∆ξi∆ξj∆ξk∆ξl∆ξm

+ o
(
‖ (∆ξ1, ...,∆ξn) ‖5

)
,

where ∆ξi = ξi − µi, ∀i = 1, ..., n. Now we assume that the first four moments of each
uncertain input variable ξi, i = 1, . . . , n of F are known. Let us denote µi, σ2

i , γi and Γi
the respective mean, variance, skewness and kurtosis of ξi. Let us introduce the first four
moments of F , denoted by µF , σ2

F , γF and ΓF , and defined by:

µF = E [F (Ξ)] , (4.63)
σ2
F = E

[
(F (Ξ)− µF )2

]
, (4.64)

γF = E
[
(F (Ξ)− µF )3]

σ3
F

= µ3,F
σ3
F

, (4.65)

ΓF = E
[
(F (Ξ)− µF )4]

σ4
F

− 3 = µ4,F
σ4
F

− 3. (4.66)

Using the Taylor expansion (4.62) and the definitions of the moments (4.63) to (4.65),
Evans [62] gives relations (4.67) to (4.70) to compute the mean µF , the variance σ2

F , the
centered 3rd-order moment µ3,F and the centered 4th-order moment µ4,F , in the case of
independent random input variables. Skewness γF and kurtosis ΓF can then be deter-
mined thanks to relations (4.63) to (4.66). Note that in the case of dependent random
input variables, it is possible to refer to the independent case by the use of techniques
such as spectral decomposition or Cholesky decomposition [91, 124]. In the formulas, the
derivatives ∂kF/∂ξk are computed at point µξ, which is omitted to lighten the notations.

µF =

M1︷ ︸︸ ︷
F
(
µξ

)
+

M2︷ ︸︸ ︷
1
2

n∑
i=1

(
∂2F

∂ξ2
i

)
σ2
i +

M3︷ ︸︸ ︷
1
6

n∑
i=1

(
∂3F

∂ξ3
i

)
γiσ

3
i +

M4︷ ︸︸ ︷
1
24

n∑
i=1

(
∂4F

∂ξ4
i

)
Γiσ4

i (4.67)

+

M5︷ ︸︸ ︷
1
8

n∑
i=1

n∑
j=1
j 6=i

(
∂4F

∂ξ2
i ∂ξ

2
j

)
σ2
i σ

2
j +

M6︷ ︸︸ ︷
1

120

n∑
i=1

(
∂4F

∂ξ4
i

)
Giσ

5
i

+

M7︷ ︸︸ ︷
1
12

n∑
i=1

n∑
j=1
j 6=i

(
∂5F

∂ξ3
i ∂ξ

2
j

)
γiσ

3
i σ

2
j +o

(
‖ (σ1, ..., σn) ‖5

)
,

σ2
F =

V1︷ ︸︸ ︷
n∑
i=1

(
∂F

∂ξi

)2
σ2
i +

V2︷ ︸︸ ︷
n∑
i=1

(
∂2F

∂ξ2
i

)(
∂F

∂ξi

)
γiσ

3
i +

V3︷ ︸︸ ︷
1
3

n∑
i=1

(
∂3F

∂ξ3
i

)(
∂F

∂ξi

)
Γiσ4

i (4.68)
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+

V4︷ ︸︸ ︷
1
2

n∑
i=1

n∑
j=1
j 6=i

 ∂3F

∂ξ2
i ∂ξj

∂F

∂ξj
+
(

∂2F

∂ξi∂ξj

)2

+ ∂3F

∂ξ2
j ∂ξi

∂F

∂ξi

σ2
i σ

2
j

+

V5︷ ︸︸ ︷
1
4

n∑
i=1

(
∂2F

∂ξ2
i

)2

(Γi − 1)σ4
i +

V6︷ ︸︸ ︷
1
12

n∑
i=1

(
∂4F

∂ξ4
i

)(
∂F

∂ξi

)
Giσ

5
i

+

V7︷ ︸︸ ︷
n∑
i=1

n∑
j=1
j 6=i

(
1
2
∂F

∂ξi

∂4F

∂ξ2
i ∂ξ

2
j

+ 1
2
∂2F

∂ξ2
i

∂3F

∂ξi∂ξ2
j

+ ∂2F

∂ξi∂ξj

∂3F

∂ξ2
i ∂ξj

+ 1
3
∂4F

∂ξ3
i ∂ξj

∂F

∂ξj

)
γiσ

3
i σ

2
j

+

V8︷ ︸︸ ︷
1
6

n∑
i=1

(
∂2F

∂ξ2
i

)(
∂3F

∂ξ3
i

)
(Gi − γi)σ5

i +o
(
‖ (σ1, ..., σn) ‖5

)
,

µ3,F =

S1︷ ︸︸ ︷
n∑
i=1

(
∂F

∂ξi

)3
γiσ

3
i +

S2︷ ︸︸ ︷
3
2

n∑
i=1

(
∂2F

∂ξ2
i

)(
∂F

∂ξi

)2
(Γi − 1)σ4

i (4.69)

+ 3

S3︷ ︸︸ ︷
n∑
i=1

n∑
j=1
j 6=i

(
∂F

∂ξi

)(
∂F

∂ξj

)(
∂2F

∂ξi∂ξj

)
σ2
i σ

2
j +

S4︷ ︸︸ ︷
1
2

n∑
i=1

(
∂F

∂ξi

)2(∂3F

∂ξ3
i

)
(Gi − γi)σ5

i

+

S5︷ ︸︸ ︷
3

n∑
i=1

n∑
j=1
j>i

1
2

(
∂F

∂ξi

)2 ∂3F

∂ξi∂ξ2
j

+ ∂F

∂ξi

(
∂2F

∂ξi∂ξj

)2

+ ∂2F

∂ξ2
i

∂2F

∂ξi∂ξj

∂F

∂ξj
+ ∂3F

∂ξ2
i ∂ξj

∂F

∂ξj

∂F

∂ξi

 γiσ3
i σ

2
j

+

S6︷ ︸︸ ︷
3
4

n∑
i=1

(
∂F

∂ξi

)(
∂2F

∂ξ2
i

)2

(Gi − 2γi)σ5
i +o

(
‖ (σ1, ..., σn) ‖5

)
,

µ4,F =

K1︷ ︸︸ ︷
n∑
i=1

(
∂F

∂ξi

)4
(Γi − 3)σ4

i +

K2︷ ︸︸ ︷
2

n∑
i=1

(
∂3F

∂ξ3
i

)(
∂2F

∂ξ2
i

)
(Gi − 4γi)σ5

i (4.70)

+

K3︷ ︸︸ ︷
12

n∑
i=1

n∑
j=1
j 6=i

(
∂F

∂ξi

)2(∂F
∂ξj

)(
∂2F

∂ξi∂ξj

)
γiσ

3
i σ

2
j +o

(
‖ (σ1, ..., σn) ‖5

)
+ 3σ4

F .

We observe in these equations the existence of the term Gi, which denotes the 5th-order
moment of ξi. This illustrates the need for information about the uncertain input variables
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in order to be able to compute accurate approximation of moments of F . It also shows
the limit of the Taylor expansion method: a more accurate approximation of higher order
moments of F does not only require the higher order derivative of F but also the higher
order moments of ξi. Moreover, to my best knowledge, moments of order 5 are not used in
practice. Hence a first truncation of the equations can be done by keeping only the terms
for which the exponent k of σki is strictly lower than the one of the first term where Gi
appears.

Since in practice the derivatives of f can be expensive to compute, we focus on first
order and second order methods, which only require the calculation of the gradient and/or
the Hessian of the function F . Assuming that the first four moments (µi, σ2

i , γi,Γi) of input
variables are known, we then have:

• First-Order Moments method, applied to aircraft design in [141], for which we only
need: F ∈ C1(Rn,R). Based on relations (4.67) to (4.68) and on the first order trun-
cation, we obtain the following estimation error ε, considering a generic distribution:

εµF = o(σξ),
εσ2

F
= o(σ2

ξ ),

εµF,3 = o(σ3
ξ ),

εµF,4 = o(σ4
ξ ).

• The Second-Order Moments method, for which we only need F ∈ C2(Rn,R). Con-
sidering a generic distribution, the error is the following one:

εµF = o(σ2
ξ ),

εσ2
F

= o(σ3
ξ ),

εµF,3 = o(σ4
ξ ),

εµF,4 = o(σ4
ξ ).

The main advantage of these techniques is the computational efficiency when gradient and
Hessian are available. Limitations appear with the terms of higher order, or with the terms
of input moments of order 5.

Another approach to compute F moments is to use directly the moment definitions by
integrals, from relations (4.16) to (4.19).

4.3.4 Quadrature Propagation Methods

This section presents some of the main used techniques to compute higher order moments
by integrative quadrature rules. Quadrature numerical integration methods aim at com-
puting an approximation of the integral of a function over a space domain. These methods
can be used to compute the first four moments of F by using the following definitions:

µF = E [F (Ξ)] =
∫
Rn
F (ξ)fΞ(ξ)dξ, (4.71)

σ2
F = E

[
(F (Ξ)− µF )2

]
=
∫
Rn

(F (ξ)− µF )2 fΞ(ξ)dξ, (4.72)
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γF = E
[
(F (Ξ)− µF )3]

σ3
F

= 1
σ3
F

∫
Rn

(F (ξ)− µF )3 fΞ(ξ)dξ, (4.73)

ΓF = E
[
(F (Ξ)− µF )4]

σ4
F

− 3 = 1
σ4
F

∫
Rn

(F (ξ)− µF )4 fΞ(ξ)dξ − 3. (4.74)

The next section recalls principle of these methods. The second and third sections are
dedicated to the basic quadrature rules in one and higher dimensions. The fourth section
is dedicated to sparse grid quadrature methods that were developed to improve the com-
putational efficiency. The last two sections present reduced-order quadrature method, that
have the advantage to be easy to implement. They have been provided by the generalized
dimension-reduction methods from [182]. The method involves an additive decomposition
of an N -dimensional function F into at most S-dimensional functions, where S � N .
Among these methods, a Univariate Reduced Quadrature (URQ) from [146] provides good
results in [128, 125], with an interesting balance between cost and accuracy.

4.3.4.1 General principle

Let us denote Ω ⊂ Rn the integration domain and g the function to be integrated, with
g ∈ L1(Rn). A quadrature rule consists in building an approximation of the integral of g
over Ω. This approximation is a weighted sum of the function values at specified points
within the integration domain:

∫
Ω
g(x)dx ≈

N∑
i=1

ωig(x(i)). (4.75)

The first step of the quadrature rule is to choose a sample of points x(i) ∈ Ω, i = 1, ..., N
at which the function will be evaluated. The second step is to compute the weights of each
evaluation, according to the selected quadrature rule.

In practice, when the dimension of x is 1, these methods are widely used since the
number of required evaluations of g in order to obtain a “satisfying” approximation, is
small enough. It becomes problematic when the dimension of x increases.

Conventional methods detailed in [95], are the following ones: Newton-Cotes formulas,
Monte-Carlo methods, Gauss quadrature and Clenshaw-Curtis quadrature. The last two
are the most suitable for probability integrals and will be described in the next section.
Their main advantage is the efficient choices of both the nodes and weights compared to
the first two methods. Note that the accuracy criterion of the quadrature is generally the
exactness of the approximation when g is a low order polynomial.

4.3.4.2 One dimensional quadrature rule

Let us describe quadrature rule in an one-dimensional setting. We consider here the basic
problem of numerically computing the integral of a function g(x) over a finite interval
Ω = [a, b].

Univariate quadrature can be used to approximate the mathematical expectation of
the random variable g(X) as follows:

E [F (Ξ)] =
∫ b

a
F (ξ)fΞ(ξ)dξ ≈

N∑
i=1

ωiF (ξ(i)). (4.76)
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In this expression, ξ(i) are the quadrature nodes and ωi are the quadrature weights. They
both respond to specific rules detailed hereafter.

One of the most accurate and most used quadrature rule in the probability case, is the
Gaussian quadrature [95]. It was originally built such that a n-point Gaussian quadrature
rule yields an exact result for polynomials of degree 2n − 1 or less. Gaussian quadrature
proposes an approximation such that:∫ b

a
F (ξ)w(ξ)dξ ≈

N∑
i=1

ωiF (ξ(i)), (4.77)

where w(ξ) is called a weighting function. Common weighting functions include the fol-
lowing ones:

• Chebyshev-Gauss quadrature, with w(ξ) = (1− ξ2)1/2, and [a, b] = [−1, 1].

• Gauss-Legendre quadrature, with w(ξ) = 1, and [a, b] = [−1, 1].

• Gauss-Jacobi quadrature, with w(ξ) = (1−ξ)α(1+ξ)β, α, β > −1, and [a, b] = [−1, 1].

• Gauss-Laguerre quadrature, with w(ξ) = ξαe−ξ, α > −1, and [a, b] = [0,∞].

• Gauss-Hermite quadrature, with w(ξ) = e−ξ
2 , and [a, b] = [−∞,∞].

By using the latter weighting functions, the nodes of the quadrature are the roots of the
polynomials having the same name. The choice of the quadrature rule depends on the
form of the integrated function, and on the integration space. Once a rule is selected, the
next step is to set the nodes and weights from the rules table [2] or to use an appropriate
algorithm to calculate them as done in [95] for instance. Note that it is often necessary to
use a change of variables in order to apply the method to any integration interval.

Hence, to compute E [F (Ξ)], an appropriate rule has to be selected according to the
probability distribution fΞ, when it is known. For example the Gauss-Hermite quadrature
rule is more appropriated when the distribution follows a Normal law (4.30): its support
is [−∞,∞] and E[F (Ξ)] can be expressed by a simple change of variables as the product
of a new function and the weight function of the Gauss-Hermite quadrature.

The Gaussian quadrature has been extended by the (2n+1)-point Gauss-Kronrod rules
[65], which yields to an exact value of the integral whenever the integrand is a polynomial
of degree less than or equal to 3n+ 1. It has also the advantage to be a nested quadrature,
which means that the node set of each formula, is a subset of the nodes set of its successors.
In other words, when the number of quadrature nodes increases from N to N ′, the node
of the N -quadrature are also the nodes of the N ′-quadrature. It offers really important
computational benefits when applying adaptive quadrature.

Another nested quadrature rule is the Clenshaw-Curtis [40] which in theory, evaluates
the integrand at N + 1 points and exactly integrates polynomials only up to degree N .
However, it appears in practice that this method can have similar accuracy comparable to
that of Gaussian quadrature. In fact, in the case where a function is analytic in a large
neighborhood of [−1, 1], Gauss quadrature outperforms Clenshaw-Curtis [167]. In the case
of non-analytic functions, this latter becomes sometimes better. More details on these
techniques can be found in [64, 30]. For practical applications, nodes and weights values
can be found in [2]. The next section explains how to deal with dimensions higher than 1
to compute integration.
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4.3.4.3 Multivariate quadrature rule

In higher dimensions, a natural approach for multivariate integration consists in product
rules, where N points are selected along each dimension. The quadrature points in the
domain Ω are then selected thanks to the Cartesian product of all the unidimensional set
of points. More precisely, we assume that Ω = Ω1 × . . . × Ωn, where × represents the
Cartesian product and Ωi ⊂ R, ∀i = 1, ..., n.

Finally, applying the same one-dimensional integration rule with N nodes per dimen-
sion and given weights ωi to each mono-dimensional domain Ωi, the integral of g can be
approximated as follows:∫

Ω
g(ξ)dξ ≈

N∑
i1=1

ωi1

 N∑
i2=1

ωi1

... N∑
in=1

ωing (ξi1 , ..., ξin)

 (4.78)

In a generic approach, three-nodes formulas (N = 3) are often adopted to obtain a good
agreement between accuracy and computational cost. However, even with only 3 nodes
per dimension, methods adopting full Cartesian product rules have limited application in
computational robust design. In that case, the number of required function evaluations is
3n. We are confronted to the curse of dimensionality.

4.3.4.4 Sparse grids Quadrature

To overcome the curse of dimensionality, some techniques have been developed, such as
sparse grid and multi-variate quadratures [72]. The following sections are dedicated to
three of them. We start by mentioning sparse grid methods, more particularly Smolyak
quadrature, that highly reduces the number of function evaluations with a controllable
accuracy. Sparse grid quadrature methods are constructed using combinations of tensors
products of one-dimensional quadrature rules over domains Ω ∈ Rn. The main benefit of
these methods is to overcome the curse of dimensionality to a certain extent.

One of the most known sparse grid method is the Smolyak quadrature rule from [43, 160,
120]. It provides a competitive alternative, with an error bound ofO

(
N−rlog(N)(d−1)(r+1)

)
,

where d is the dimension, r estimates the regularity of the integrated function and N is
the number of nodes. Smolyak rule outperforms its competitors in the domain of smooth
integrands. An example of construction is given hereafter.

We consider the case Ω = [0, 1], but the results can be generalized to other domains,
see [86]. For an univariate function g : [0, 1] 7→ R and a sequence of non-decreasing integers
mk, k ∈ N, we denote Umkg a sequence of univariate quadrature rules by:

Umkg =
mk∑
i=1

ωi,kg(xi,k), (4.79)

where ωi,k are the weights and xi,k the nodes of the quadrature. Assuming m1 = 1,
Um1g = g(1/2) and Um0 := 0, we define the difference quadrature formula such that:

∆k = Umk − Umk−1 , for k ≥ 1. (4.80)

If we now consider g : [0, 1]n 7→ R a multivariate function, then the Smolyak method [86]
approximates the integral of g over Ωn such that:∫

Ωn
g(x)dx ≈

∑
|k|1≤l+n−1

∆kg, where l is the level of the quadrature. (4.81)
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In the last expression, k ∈ Nn denotes a multi-index with |k|1 =
∑n
j=1 kj , and such that:

∆kg = (∆k1 ⊗ . . .⊗∆kn) g, with kj > 0. (4.82)

An example of sparse grid is presented in Figure 4.17, in dimension n = 2 with a level l = 3.
The sparse grid contains much fewer nodes than the corresponding full tensor product grid.

Figure 4.17: Example of sparse grid construction with level l = 3 and dimension n = 2
[71]. On the left, product grids ∆(k1,k2), for 1 ≤ kj ≤ 3, j = 1, 2, based on an univariate
rule with m1 = 1, m2 = 3 and m3 = 7 points. On the right the corresponding sparse grid.

Another example of sparse grid methods are Monte-Carlo (MC) and Quasi Monte-Carlo
(QMC) quadrature rules from [117]. By applying Monte Carlo integration with N random
nodes, the absolute value of the error has the average order of magnitude O

(
N−1/2

)
. These

methods have been improved by the so-called quasi-Monte Carlo method [114]. The main
principle yields the construction of pseudo-random sets of nodes that perform significantly
better than the average of MC. This one gives the improved approximation error bound of
O
(
N−1(log(N)s

)
. An example of MC, QMC and sparse grid is illustrated in Figure 4.18.

One of the benefit of the Smolyak rule is to have strong theoretical foundations. This
is a deterministic method that does not call costly functions randomly and its rate of
convergence overcomes both MC and QMC techniques in problems with sufficiently high
smoothness. The Smolyak quadrature rule also retains the polynomial exactness of the
unidimensional quadrature rule, a property for which neither MC nor QMC accounts.
However, in term of computational cost, the number of nodes in high dimensions can still
be too important.

4.3.4.5 Univariate Reduced Quadrature

Univariate quadrature approximates E[F (Ξ)] by a weighted sum of 1-dimensional func-
tions. It is based on Gauss-type quadrature integration method. Details can be found in
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Figure 4.18: Example of four different classes of sparse grid methods for multivariate
integration [86].

[145, 62, 126]. A generalization of these techniques is also presented in [146].
The goal of this reduced quadrature is to compute the higher order moments of F (Ξ)

as a weighted sum of the function values in suitable chosen nodes. The originality of this
approach is to use moment-based quadrature rules. Let us recall the definition of the pth
statistical moment of F (Ξ):

mp = E [F (Ξ)p] =
∫
Rn
F (ξ)pfΞ(ξ)dξ. (4.83)

The generalization of univariate quadrature gives:

mp =
p∑
i=0

(
i

p

)
· Sin ·

(
− (n− 1)F (µ1, ..., µn)

)p−i
, (4.84)

where the coefficients Sin can be calculated using the recursive formula:

Sij =
i∑

k=0

(
i

k

)
· Skj−1 · E

[
F (µ1, ..., µj−1,Ξj , µj+1, µn)i−k

]
. (4.85)

Rahman et al. in [146] introduce a new moment based quadrature method in order to
compute the expectancy appearing in the relation (4.85). The advantage of this kind of
quadrature is to be independent of the input distribution laws. It can then be used with
any arbitrary distribution. Let N be the number of nodes per dimension. The moment
based quadrature rule gives the following approximation:

E
[
F (µ1, ..., µj−1,Ξj , µj+1, µn)l

]
∼=

N∑
i=1

ω
(i)
j F

(
µ1, ..., µj−1, ξ̃

(i)
j , µj+1, µn

)l
, (4.86)

where ξ̃(i)
j , i = 1, . . . , N are the interpolation points of dimension j, and ω(i)

j are the weights.
Both are calculated according to the moments of the input variables. It is important to
note that in this case the number of interpolation points is strictly linked to the available
number of inputs moments. For example mean, variance and skewness are required to
compute a 2-nodes per dimension quadrature. To my best knowledge, no error estimation
has been found in the general case.
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A particular case is the Univariate Reduced Quadrature from [128, 125], which is an
interesting moment based quadrature. It is based on matching moments quadratures for-
mulas to the one of Evans formulas (4.67) to (4.70), in order to compute weights. By
considering two nodes by dimension denoted by ξ(i)

+ and ξ(i)
− , ∀i = 1, ..., n, to which is

added a central point corresponding to the mean µξ, we obtain the following expressions:

µF = W0F
(
µξ

)
+

n∑
i=1

ωi

F (ξ(i)
+ )

h+
i

−
F (ξ(i)

− )
h−i

 , (4.87)

σ2
F =

n∑
i=1

[
ω+
i

F (ξ(i)
+ )− F (µξ)
h+
i

2

+ ω−i

F (ξ(i)
− )− F (µξ)
h−i

2

(4.88)

+ω±i

(
F (ξ(i)

+ )− F (µξ)
) (
F (ξ(i)

− )− F (µξ)
)

h+
i h
−
i

]
,

µF,3 =
n∑
i=1

γiσ
3
i

F (ξ(i)
+ )− F (ξ(i)

− )
h+
i − h

−
i

3

, (4.89)

µF,4 =
n∑
i=1

Γiσ4
i

F (ξ(i)
+ )− F (ξ(i)

− )
h+
i − h

−
i

4

, (4.90)

where:

ξ
(i)
± = µξ + h±i σiei ; h

±
i = γi

2 ±

√
Γi −

3γ2
i

4 ,

W0 = 1 +
n∑
i=1

1
h+
i h
−
i

; ωi = 1
h+
i − h

−
i

,

ω+
i = (h+

i )2 − h+
i h
−
i − 1

(h+
i − h

−
i )2 ; ω−i = (h−i )2 − h+

i h
−
i − 1

(h+
i − h

−
i )2 ,

ω±i = 2
(h+
i − h

−
i )2 . (4.91)

This method has a reduced cost of (2n+ 1) function evaluations, where n is the dimension
of the input vector, and is easy to implement. Assuming that the univariate terms of the
function F are accurately approximated, an error can be computed taking into account the
first non univariate terms of Evans relations (4.67) to (4.70). It yields the following error:

εµF = M5 + o(σ4
ξ ) (4.92)

εσ2
F

= V4 + o(σ4
ξ ) (4.93)

εµ3,F = S3 + o(σ4
ξ ) (4.94)

εµ4,F = o(σ4
ξ ) (4.95)

We highlight the terms M5, V4 and S3 since they include crossed partial derivatives. Thus
if the interactions between variables are reduced, these terms become negligible. The error
on µF , σ2

F and µ3,F then becomes of order σ4
ξ .
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4.3.4.6 Generalized Dimension Reduction and Bivariate Quadrature (BRQ)
methods

Following the same approach than in the previous section, we now present a Bivariate
Reduced Quadrature (BRQ) from [129].

Bivariate quadrature and generalized dimension-reduction method for integration in
stochastic domain, are well explained in [62, 182]. We want to use here a S-variate dimen-
sion reduction technique, which aims at only considering the interactions of order lower
than S between the input variables. For instance the univariate case corresponds to first
order interactions (S=1). Then, quite similarly to the univariate case, the pth moment of
F can be approximated by:

mp =
S∑
i=0

(−1)i
(
n− S + i− p

i

) ∑
k1<...<kS−i

E
[
F
(
µ1, . . . , µk1−1,Ξk1 , µk1+1, . . . ,ΞkS−i , . . . , µn

)p]
.

(4.96)

By definition of the expectation, we have:

E
[
F
(
0, ..., 0,Ξk1 , 0, ..., 0,ΞkS−i , 0, ..., 0

)p]
(4.97)

=
∫
RS−i

F
(
0, ..., 0, ξk1 , 0, ..., 0, ξkS−i , 0, ..., 0

)p
fΞ̃(ξ̃)dξ̃

where ξ̃ = (ξk1 , ..., ξkS−i) ∈ RS−i and fΞ̃ is the joint probability density of Ξ̃. To compute
this (S−i)-dimensional integral, standard Gaussian quadrature rules can be used according
to the distribution of Ξ̃.

An interesting and easy to implement example of bivariate reduced quadrature is the
BRQ method from [129]. This method has a cost of (2n2 + 1) function evaluations. As for
URQ technique, it is based on matching the moments quadrature formulas of F with Evans
formulas (4.67) to (4.70). BRQ method is based on a bivariate Gauss-type quadrature
method, by considering the central point corresponding to the mean µξ as the first node
and two nodes for each dimension, denoted by ξ(i)

+ and ξ(i)
− , ∀i = 1, ..., n, to which are added

ξi±j± , ∀i, j = 1, ..., n. Evans in [62] gives the following quadrature formulas to compute
E
[(
F (Ξ)− F (µξ)

)p]
, p = 1, ..., 4:

E
[
F (Ξ)− F (µξ)

]
=

n∑
i=1

[
ωi
(F (ξ(i)

+ )− F (µξ)
h+
i

−
F (ξ(i)

− )− F (µξ)
h−i

)
(4.98)

+
n∑

j=i+1
ωij
(F (ξ(i+j+))− F (µξ)

h+
i h

+
j

+
F (ξ(i−j−))− F (µξ)

h−i h
−
j

−
F (ξ(i+j−))− F (µξ)

h+
i h
−
j

−
F (ξ(i−j+))− F (µξ)

h−i h
+
j

)]
,

E

[(
F (Ξ)− F (µξ)

)2
]

=
n∑
i=1

[
ωi
((F (ξ(i)

+ )− F (µξ)
)2

h+
i

−

(
F (ξ(i)

− )− F (µξ)
)2

h−i

)
(4.99)

+
n∑

j=i+1
ωij
((F (ξ(i+j+))− F (µξ)

)2

h+
i h

+
j

+

(
F (ξ(i−j−))− F (µξ)

)2

h−i h
−
j
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−

(
F (ξ(i+j−))− F (µξ)

)2

h+
i h
−
j

−

(
F (ξ(i−j+))− F (µξ)

)2

h−i h
+
j

)]
,

E

[(
F (Ξ)− F (µξ)

)3
]

=
n∑
i=1

[
ωi
((F (ξ(i)

+ )− F (µξ)
)3

h+
i

−

(
F (ξ(i)

− )− F (µξ)
)3

h−i

)
(4.100)

+
n∑

j=i+1
ωij
((F (ξ(i+j+))− F (µξ)

)3

h+
i h

+
j

+

(
F (ξ(i−j−))− F (µξ)

)3

h−i h
−
j

−

(
F (ξ(i+j−))− F (µξ)

)3

h+
i h
−
j

−

(
F (ξ(i−j+))− F (µξ)

)3

h−i h
+
j

)]
, ,

E

[(
F (Ξ)− F (µξ)

)4
]

=
n∑
i=1

[
ωi
((F (ξ(i)

+ )− F (µξ)
)4

h+
i

−

(
F (ξ(i)

− )− F (µξ)
)4

h−i

)
(4.101)

+
n∑

j=i+1
ωij
((F (ξ(i+j+))− F (µξ)

)4

h+
i h

+
j

+

(
F (ξ(i−j−))− F (µξ)

)4

h−i h
−
j

−

(
F (ξ(i+j−))− F (µξ)

)4

h+
i h
−
j

−

(
F (ξ(i−j+))− F (µξ)

)4

h−i h
+
j

)]
,

where:

ξ
(i)
± = µξ + h±i σiei, (4.102)

ξ(i±j±) = µξ + h±i σiei + h±j σjej ,

h±i = γi
2 ±

√
Γi −

3γ2
i

4 ,

ωi =

1 +

 n∑
p=1

1
h+
k h
−
k

− 1
h+
i h
−
i

(h+
i − h

−
i )

,

ωij = 1
(h+
i − h

−
i )(h+

j − h
−
j )
.

Finally we can deduce the moments m1,F , m2,F , m3,F and m4,F such that:

m1,F = E
[(
F (Ξ)− F (µξ)

)]
− F (µξ), (4.103)

m2,F = E

[(
F (Ξ)− F (µξ)

)2
]

+ 2m1,FF (µξ)− F (µξ)2, (4.104)

m3,F = E

[(
F (Ξ)− F (µξ)

)3
]

+ 3m2,FF (µξ)− 3m1,FF (µξ)2 + F (µξ)3, (4.105)

m4,F = E

[(
F (Ξ)− F (µξ)

)4
]

+ 4m3,FF (µξ)− 6m2,FF (µξ)2 + 4m1,FF (µξ)3 − F (µξ)4,

(4.106)
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And then using Formulas (4.15) we can calculate the first four centered moments of F .
Concerning the error, we have the following estimation, using Evans formulas (4.67) to
(4.70):

εµF = o(σ4
ξ ), (4.107)

εσ2
F

= o(σ4
ξ ), (4.108)

εµ3,F = o(σ4
ξ ), (4.109)

εµ4,F = o(σ4
ξ ). (4.110)

In practice these methods offer a very good compromise between cost and accuracy, and
their implementation is very easy.

4.3.5 Polynomial Chaos Expansion (PCE) and Stochastic Collocation
methods

This section is dedicated to techniques of uncertainty propagation based on a polynomial
representation of stochastic processes. These techniques rely on expanding F in a series
of random variables. They propose to model stochastic processes of random variables and
are most used in the field of uncertainty quantification and propagation [88, 1, 180, 60, 59,
52]. Polynomial chaos have been first introduced in [179] in 1938 as a part of the set of
homogeneous chaos in the integration theory.

Let us define a polynomial basis (ψk)k∈N, a stochastic process g(Ξ), where Ξ =
(Ξ1, ...,ΞN ) is a set of independent random variables. The polynomial chaos expansion
of the stochastic process is defined by:

g(ξ) =
∞∑
k=0

βkψk(ξ), (4.111)

Any stochastic process can be modeled by a polynomial chaos expansion by choosing a
suitable orthogonal basis of polynomials [181]. Table 4.1 presents the preferred choice of the
basis according to the to-be-modeled distribution. Then, knowing the input uncertainty
distribution, it is possible to accurately build the output uncertainty distribution. Once the
basis has been selected, the knowledge of the coefficients βk in (4.111) fully characterizes
the uncertain process g(Ξ). The next sections present how to numerically compute these
coefficients.

Table 4.1: Correspondence between the orthogonal polynomials and the continuous ran-
dom variables.

Random variables type Orthogonal polynomials Distribution support
Gaussian Hermite [−∞,∞]
Gamma Laguerre [0,∞]
Beta Jacobi [a, b]

Uniform Legendre [a, b]

PCE techniques can be separated into two kinds: intrusive and non-intrusive ones.
Intrusive methods become really complex when there are changes in the process equations.
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4.3. Review of uncertainty propagation methods

Moreover it must be adapted again whenever the process is not the same. Therefore we
choose to focus on non-intrusive methods.

As previously mentioned, PCE is mainly used to compute a distribution process, but
it is important to know that analytic formulas exist to compute the first order moments
of F (Ξ) [1]. The above decomposition (4.111) can be used and we obtain the following
relations:

µF = β0, (4.112)

σ2
F =

∞∑
k=1

β2
k‖ψk(ξ)‖, (4.113)

γF =
∞∑
k=1

β3
k‖ψk(ξ)‖3/2 + 3

∞∑
i=1

β2
i

∞∑
j=1
j 6=i

βj〈ψ2
i (ξ), ψj(ξ)〉+ ... (4.114)

...+ 6
∞∑
i=1

∞∑
j=i+1

∞∑
k=j+1

βiβjβk〈ψi(ξ), ψj(ξ)ψk(ξ)〉,

ΓF =
∞∑
k=1

β4
k‖ψk(ξ)‖2 + 4

∞∑
i=1

β3
i

∞∑
j=1
j 6=i

βj〈ψ3
i (ξ), ψj(ξ)〉+ ... (4.115)

...+ 6
∞∑
i=1

β2
i

∞∑
j=i+1

β2
j 〈ψ2

i (ξ), ψ2
j (ξ)〉+ ...

...+ 12
∞∑
i=1

β2
i

∞∑
j=1
j 6=i

βj

∞∑
k=j+1
k 6=i

βk〈ψ2
i (ξ), ψj(ξ)ψk(ξ)〉+ ...

...+ 24
∞∑
i=1

∞∑
j=i+1

∞∑
k=j+1

∞∑
l=k+1

βiβjβkβl〈ψi(ξ)ψj(ξ), ψk(ξ)ψl(ξ)〉.

However, as demonstrated in [103], the computation of the moments of F (Ξ) using the
latter relations, is not better than previous quadrature techniques. Computing βk gives
the information of the entire distribution, so at a same cost level it is more interesting than
reducing it to its first four moments.

In the following, we first introduce polynomial chaos expansion truncation, which is
the main numerical application of PCE. Then, an example of stochastic collocation is
described. The third section is dedicated to the work from [122] which is used to study the
accuracy on the computation of F (Ξ) depending on input information accuracy.

4.3.5.1 Expansion truncation

Chaos polynomial expansion is an infinite series. Expansion truncation consists in con-
sidering only a finite number M of terms, i.e. a truncated expansion of the expression
(4.111):

F (ξ) ≈
M∑
k=0

βkψk(ξ). (4.116)
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The numberM of terms in the expansion depends on the total number of input parameters
n and on the order d of the expansion, according to the formula [122]:

M = (n+ d)!
n!d! , (4.117)

If ξ ∈ R, the univariate polynomials ψk are selected according to Table 4.1. In the case
where n > 1, assuming that the input parameters Ξ = (Ξ1, ...,Ξn) are independent random
variables, the multidimensional basis can be built as a simple product of the univariate
polynomials Pj , j = 1, . . . , n, selected according to Table 4.1:

ψk(ξ1, ..., ξn) =
n∏
j=1

P
(αkj )
j (ξ1, . . . , ξn). (4.118)

In the previous expression, αkj is the degree of the polynomial of index i in dimension j.
Since the polynomial basis is orthogonal, the coefficients βk can be computed as:

βk = 〈F (ξ), ψk(ξ)〉
〈ψk(ξ), ψk(ξ)〉 , k = 1, ..., n, (4.119)

where the inner product is defined by:

〈F (ξ), G(ξ)〉 =
∫

Ω
F (ξ)G(ξ)fΞ(ξ)dξ. (4.120)

Knowing the polynomials ψk, the denominator part of βk coefficients can be calculated
analytically. However, the numerator has to be computed by a well adapted numerical
integration technique. The latter can for instance be chosen among the quadrature inte-
gration methods from Section 4.3.4. The choice of the quadrature depends on the input
uncertainty Ξ via the choice of the polynomial basis, see Table 4.1.

Drawbacks of the quadrature methods appear at this step. Full tensorial grids suffer of
the curse of dimensionality. Therefore, univariate or bivariate techniques can be of great
interest.

A particular attention should also be paid when computing 〈F (ξ), ψk(ξ)〉. Indeed, the
total degree of the function to be integrated is the sum of the degrees of F and ψk. Then
for a given F , since the degree of the polynomials ψk is becoming high, the number of
quadrature points has to increase in order to maintain the same level of accuracy on the
result. Therefore, adaptive methods could be of interest, since we could increase the number
of points along the dimensions where the polynomials degree is the highest. Unfortunately,
these dimensions are generally not known. An interesting alternative approach relies on
computing the error between two successive integrations with an increasing number of
points. The user can then define a threshold ε and stop to increase the number of points
when the error is smaller than ε.

4.3.5.2 An example of stochastic collocation method

In the case where input distribution of Ξ is not known accurately, it is not possible to build
the output uncertain distribution with a good accuracy. Then, it is possible to use PCE
in order to compute moments of F with a method quite easy to implement. We present in
this section an example of stochastic collocation method to compute these moments. We
focus on non-intrusive Stochastic Collocation methods. Details can be found in [25].
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Based on univariate polynomial interpolation and a suitable set of nodes {ξ(q), q =
1, . . . , N}, we can define the following stochastic expansion of F (Ξ) according to the ran-
dom variable Ξ by:

F (ξ) ≈
N∑
q=1

Pq(ξ)F (ξ(q)), (4.121)

where Pq(ξ) is the application of a tensor product rule to the one-dimensional polynomial
interpolation. If n is the dimension of ξ = (ξ1, . . . , ξn), we obtain the expression of F
thanks to relation (4.122).

F (ξ) ≈
N1∑
q1=1
· · ·

Nn∑
qn=1

Pq1(ξ1) . . . Pqn(ξn)F (ξ(q1)
1 , . . . , ξ(qn)

n ), (4.122)

where the nodes are denoted {ξ(q) = (ξ(q)
1 , . . . , ξ

(q)
n ), q = 1, ..., Ni, i = 1, . . . , n}, and

N = N1+...+Nn. Following Table 4.1, the choice of the collocation points ξ(q) is associated
to the Gauss points, which are the roots of the corresponding orthogonal polynomials.
Following the last expression of F , the expectation of F can be approximated as follows:

E[F (Ξ)] ≈
N∑
q=1

F (ξ(q))E [Pq(ξ)] , (4.123)

where E[Pq(ξ)] is thus the associated quadrature weight, defined by:

E[Pq(Ξ)] =
∫
Dξ

Pq(ξ)FΞ(ξ)dξ. (4.124)

The same way, an estimation of the moments of higher order can be calculated. It relies
on interpolating the function F k rather than F , and then on computing the expectation
of the resulting interpolation. It yields the following expression:

E
[
(F (Ξ))k

]
≈

N∑
q=1

(
F (ξ(q))

)k
E[Pq(Ξ)] (4.125)

In that case, the accuracy of the moment estimate directly depends on the interpolation
error of the function F k. This error tends to increase with the kth-order moment, since the
degree of F k accordingly increases. More interpolation points should then be employed.
Centered moments can be retrieved using relations (4.15).

In this case, the integration method relies on a Gaussian-type quadrature with a tensor
product rule, thus the computation cost depends on the chosen quadrature as mentioned
in Section 4.3.4. As this method relies on univariate interpolation, one advantage is that
it is simple to apply adaptive rules to compute the integration.

Next section presents a recent example of PCE method that is based on arbitrary choice
of polynomial chaos basis. It can be very useful in case no information is known about
the distribution type. This approach is used to study the impact of input uncertainty
information on the accuracy of the output.
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4.3.5.3 An example of arbitrary PCE method

The idea of the arbitrary PCE method [122] is to construct an orthonormal polynomial
basis for arbitrary distributions exploiting only the moments of the input uncertainty. It
also shows that finite-order expansion only requires a finite number of these moments.
Polynomials ψk(ξ) of degree k, where ξ ∈ Ω ⊂ R, are defined by:

ψk(ξ) =
k∑
i=0

p
(k)
i ξi, (4.126)

where p(k)
i are the coefficients in ψk(ξ) and k ∈ [0, d], d being the truncation order of the

polynomial basis. Denoting by mi the ith moment of the random variable ξ, [122] shows
that we can express coefficients p(k)

i by solving the inverse problem:


m0 m1 . . . mk

m1 m2 . . . mk+1
. . . . . . . . . . . .
mk−1 mk . . . m2k−1

0 0 . . . 1





p
(k)
0
p

(k)
1
. . .

p
(k)
k−1
p

(k)
k


=


0
0
. . .
0
1

 . (4.127)

This system implies that any difference between distributions becoming visible only in
moments of order higher than (2d−1), will be invisible to any order d polynomial expansion
technique. Therefore the existence of the moments m0 to m2d is a necessary and sufficient
condition for constructing an orthonormal basis {ψk}k=1,...,d up to degree d. In [122], the
author also presents an explicit form of these polynomial chaos. Using this technique we
obtain the coefficient of the polynomial basis as presented in Table 4.2. We give also the

Table 4.2: Arbitrary PCE method: coefficients of ψ(k) polynomials [122].

0 degree p
(0)
0 = 1

1st degree p
(1)
0 = −m1 , p(1)

1 = 1

2nd degree p
(2)
0 = −m2 −

m1(m1m2 −m3)
m2 −m2

1
, p(2)

1 = m1m2 −m3
m2 −m2

1
, p(2)

2 = 1

expression of the coefficients of ψ(k) polynomials as a function of the normalized moments
µ, σ2 and γ in Table 4.3. The expression of the corresponding coefficients can be found in

Table 4.3: Arbitrary PCE method: coefficients of ψ(k) polynomials as a function of the
normalized input moments.

0 degree p
(0)
0 = 1

1st degree p
(1)
0 = −µ , p(1)

1 = 1
2nd degree p

(2)
0 = −σ2 + µ2 + µγσ, p(2)

1 = −γσ − 2µ , p(2)
2 = 1
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[122] and from relation 4.127 it can be shown that the 5th-order moments of the input are
required to build the 3rd degree polynomials.

The following numerical example aims at underlying the way of convergence of the
output distribution according to the input distribution informations.

Considering the input uncertainty ξ ∈ R, we want to approximate the uncertain output
y = F (ξ) by a polynomial chaos expansion of order 2:

yPC = c0ψ0(ξ) + c1ψ1(ξ) + c2ψ2(ξ), (4.128)

where, according to Table 4.2, we can compute the polynomials as:

ψ0(ξ) = p
(0)
0 = 1, (4.129)

ψ1(ξ) = p
(1)
0 + p

(1)
1 ξ = −m1 + ξ, (4.130)

ψ2(ξ) = p
(2)
0 + p

(2)
1 ξ + p

(2)
2 ξ2. (4.131)

Since the polynomial basis is orthogonal, the coefficients ci are then defined by:

ci =
∫

Ω F (ξ)ψi(ξ)fΞ(ξ)dξ∫
Ω ψ

2
i (ξ)fΞ(ξ)dξ

. (4.132)

It yields:

c0 = 1∫
Ω ψ

2
0(ξ)fΞ(ξ)dξ

∫
Ω
F (ξ)fΞ(ξ)dξ, (4.133)

c1 = 1∫
Ω ψ

2
1(ξ)fΞ(ξ)dξ

(
−m1c0 +

∫
Ω
F (ξ)ξfΞ(ξ)dξ

)
, (4.134)

c2 = 1∫
Ω ψ

2
2(ξ)fΞ(ξ)dξ

(
p

(2)
0 + p

(2)
1

∫
Ω
F (ξ)ξfΞ(ξ)dξ +

∫
Ω
F (ξ)ξ2fΞ(ξ)dξ

)
. (4.135)

In order to compute c0, c1 and c2, we observe that we only have to compute:

E [F (Ξ)] =
∫

Ω
F (ξ)fΞ(ξ)dξ, (4.136)

E [ΞF (Ξ)] =
∫

Ω
F (ξ)ξfΞ(ξ)dξ, (4.137)

E
[
Ξ2F (Ξ)

]
=
∫

Ω
F (ξ)ξ2fΞ(ξ)dξ, (4.138)

and:

E
[
ψi(Ξ)2

]
=
∫

Ω
ψ2
i (ξ)fΞ(ξ)dξ, i = 0, . . . , 2. (4.139)

Observe that with a polynomial expansion of order 2, the computation of relation (4.139)
requires input moments of order 4 since a term in ξ4 appears under the integrand. The
expression of the norm of the polynomial ψk as a function of the normalized input moments
is given in Table 4.4. In the general case, moments until the order 2d are required to apply
the method at any order d of expansion. Two examples are presented in Section 4.3.7.2 in
order illustrate the convergence of the method with respect to the order of expansion of
the polynomial basis.
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Table 4.4: Arbitrary PCE method: coefficients of ψ(k) polynomials as a function of the
normalized input moments µ, σ2, γ and Γ.

k
∫ (∑k

i=0 c
(k)
i ξi

)2
fΞ(ξ)dξ

k = 0 1
k = 1 σ2

ξ

k = 2 σ4 (Γ− γ2 − 1
)

The computation of Equation (4.136) to Equation (4.138) require integration methods.
In the mono-dimensional case, an univariate quadrature is sufficient. However, if ξ ∈ Rn,
with n ≥ 2, an idea is to use a quadrature according to the available input information.
For instance in the case where the first four moments are available, we already know that
polynomial basis of order 2 is sufficient. This means that integrals from Equations (4.136)
would include interactions of order 2. Hence a bivariate quadrature, such as the one of
Section 4.3.4.6, is well adapted and allows to take benefit from all the available information.

4.3.6 Towards adaptive rules

This section introduces adaptive techniques. The main objective is to adapt the number
of nodes according to specific criteria and to provide additional computational relief, for
example if the problem is spatially oriented. Details of such techniques can be found
in [26, 79, 73]. They often use Gaussian unimodal quadrature rules with an intuitive
management of the number of points. In our mind, the idea is to have an error estimate
when:

• we have to select the number points by dimensions. It would in this case trigger
higher order quadrature if needed for example.

• we have to choose the dimension reduction order. It would for example trigger higher
than unidimensional or bi-dimensional integrations, if needed.

These adaptive rules can be applied to the general framework with Equations (4.84) and
(4.86), as it requires the integration of dimension reduced functions with the use of nested
quadrature rules. For example, applied to the univariate case, the use of Gauss-Kronrod
quadrature rule from [66] could be used instead of rules from URQ. It has a cost of 4n+ 1
function evaluations, with a highest results accuracy.

The first idea to compute an error between two integrations: a first one with a given
method and a second one with a more accurate method. Therefore when the difference is
higher than a given threshold ε, we keep looking for a better integration rule. Once the
error is small enough according to the user’s requirements, the gain in term of accuracy
is too small compared to the cost in function evaluations. Numerical examples of such
methods are given in the last section of the chapter. However, the implementation of
these adaptive techniques requires deeper studies in order to limit the number of function
evaluations. One important improvement should consist in finding how to compute two
integrations using for the accurate one the nodes of the first one.
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4.3.7 Numerical examples

4.3.7.1 Moment methods comparison

We choose four test functions in order to compare the different methods presented in
Section 4.3:

1. f1(ξ1) = 4(ξ1 − 0.2)3,

2. f2(ξ1, ξ2) = ξ3
1 + 2ξ2

2 − 0.5ξ1ξ
3
2 ,

3. f3(ξ1, ξ2) = ξ1 cos(ξ2),

4. f4(ξ1, ξ2, ξ3) = exp(ξ1) + 4ξ3ξ
4
2

cos(ξ3)2 + 2 .

Without loss of generality, the uncertain input variable are chosen as random variables
following independent Normal laws, with a mean equal to 1 and a standard deviation
equal to 0.01 (case 1), 0.1 (case 2) and 0.3 (case 3). Since the functions are not linear,
the output distributions will not follow Normal law. Note that in this case that the input
skewness and kurtosis are null, but this does not mean that the output skewness and
kurtosis will be null.

Let n be the dimension of ξ. The output centered-reduced moments µf , σ2
f , γf and Γf

are computed thanks to the following methods:

• Monte-Carlo methods (Section 4.3.2), with N = 2 · 107,

• Univariate Reduced Quadrature (URQ) method (Section 4.3.4.5), with a computa-
tional cost of 2n+ 1 function evaluations,

• Bivariate Reduced Quadrature (BRQ) method (Section 4.3.4.6), with a computa-
tional cost of 2n2 + 1 function evaluations,

• First order moments (FOM) method (Section 4.3.3), with a minimal computational
cost of n+ 1 function evaluations to compute the 1st order derivatives„

• Second order moments (SOM) method (Section 4.3.3), with a minimal computational
cost of 1 + n+ n2/2 function evaluations the 2nd order derivatives,

• Stochastic Collocation (SC) method (Section 4.3.5.2), with a computational cost of
3n function evaluations,

Note that MC mean estimation has the following approximated 95% confidence interval:[
µ− 1.96 σ√

N
,µ+ 1.96 σ√

N

]
, (4.140)

where N is the sampling size. Another moment estimator confidence intervals can be found
in [106], with a lead term in O(1/N).

The four following tables 4.5, 4.6, 4.7 and 4.8 respectively present the mean, the vari-
ance, the skewness and the kurtosis estimations, with respect to the method (in columns),
for the four test functions f1 to f4 (in lines), and with the three different input variances
(in lines).
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Table 4.5: Mean Estimation for normal input distribution N (1, σ2).

Function σ MC URQ BRQ FOM SOM SC
0.01 2.1439 2.144 2.144 2.048 2.144 2.144

f1 0.1 3.008 3.008 3.008 2.048 3.008 3.008
0.3 4.928 4.928 4.928 2.048 4.928 4.928
0.01 2.535 2.52 2.535 2.5 2.535 2.535

f2 0.1 2.85 2.73 2.85 2.5 2.85 2.85
0.3 3.55 3.2 3.55 2.5 3.55 3.55
0.01 0.5376 0.5385 0.5376 0.54 0.5376 0.5376

f3 0.1 0.514 0.523 0.514 0.54 0.513 0.514
0.3 0.465 0.49 0.465 0.54 0.459 0.465
0.01 3.0487 2.97 3.0487 2.93 3.0481 3.0487

f4 0.1 4.156 3.33 4.151 2.93 4.1 4.156
0.3 6.895 4.20 6.81 2.93 6.44 6.93

First let us have a comment on the mean estimation from Table 4.5. As expected that
the FOM method is the less accurate method (and also the less costly) and the SC method
is the more accurate (and also the more costly). It is however interesting to compare the
three other methods. For low input variances, the URQ method produces an output mean
almost as accurate as the SOM method, with a really lower cost. The BRQ method offers
a really good compromise between cost and accuracy, with results close to the one of the
SC method.

Table 4.6: Variance Estimation for normal input distribution N (1, σ2).

Function σ MC URQ BRQ FOM SOM SC
0.01 9.82 9.72 9.72 5.9 7.74 9.82

f1 0.1 0.627 0.627 0.627 0.59 0.61 0.627
0.3 57.4 54.8 54.8 17.7 34.3 57.3
0.01 0.127 0.128 0.127 0.125 0.127 0.127

f2 0.1 1.48 1.52 1.47 1.25 1.46 1.48
0.3 6.22 6.39 6.2 3.75 5.62 6.215
0.01 0.01 0.01 0.01 0.01 0.01 0.01

f3 0.1 0.0984 0.0946 0.0983 0.1 0.108 0.0985
0.3 0.285 0.255 0.282 0.3 0.377 0.285
0.01 0.6596 0.636 0.6592 0.586 0.618 0.6598

f4 0.1 15.42 11.49 14.71 5.86 9.02 15.41
0.3 151 81 121 17.6 46 152

For the variance estimation from Table 4.6, the same remarks can be done. We can
observe that the FOM and SOM method are really more impacted by the increasing input
variance than other methods. We can also observe that the BRQ method has really good
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performances even for the function f4 which produces important output uncertainties.

Table 4.7: Skewness Estimation, with normal input distribution N (1, σ2).

Function σ MC URQ BRQ FOM SOM SC
0.01 2.15 0 1.96 0 1.58 2.12

f1 0.1 0.74 0 0.71 0 0.72 0.74
0.3 3.24 0 1.74 0 1.52 3.03
0.01 0.179 0 0.17 0 0.166 0.179

f2 0.1 0.8 0 0.55 0 0.43 0.79
0.3 1.94 0 0.98 0 0.51 1.83
0.01 0.111 0 0.11 0 0.113 0.111

f3 0.1 0.272 0 0.226 0 0.32 0.274
0.3 0.276 0 0.032 0 0.447 0.326
0.01 0.9795 0 0.9217 0 0.8851 0.9773

f4 0.1 3.41 0 2.26 0 1.59 3.19
0.3 5.95 0 2.756 0 1.24 4.73

Concerning the skewness estimation from Table 4.7, we can observe as expected that the
URQ and the FOMmethods take into account only the first term of the Taylor development
of f (Equation (4.69) for FOM and Equation (4.89) for URQ) which is equal to zero here.
We also observe that the BRQ method is having troubles when the variance increases,
whatever the function is.

Table 4.8: Kurtosis Estimation, with normal input distribution N (1, σ2), N = 2 · 107 for
the Monte-Carlo (MC) propagation.

Function σ MC URQ BRQ FOM SOM SC
0.01 0.86 0 0.17 0 0 0.83

f1 0.1 7.42 0 0.87 0 0 5.6
0.3 17 0 1.13 0 0 9.95
0.01 0.086 0 -0.07 0 0 0.082

f2 0.1 1.84 0 -0.44 0 0 1.3
0.3 8.5 0 -0.37 0 0 4.88
0.01 0.0165 0 0.0165 0 0 0.0156

f3 0.1 0.165 0 0.146 0 0 0.181
0.3 0.472 0 0.4 0 0 0.616
0.01 1.6614 0 0.7703 0 0 1.5817

f4 0.1 21.29 0 4.9 0 0 14
0.3 65 0 7.45 0 0 25.66

Finally about the kurtosis estimation from Table 4.8, we observe that the SC method
tends to be in trouble when the input variance increases. This illustrates the limits of the
BRQ method in the case where the term that contains the 5th-order moment, denoted
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by Gi in Equations (4.70), becomes high in comparison to the other terms, i.e. when
the higher derivatives of the function have a bigger impact on its Taylor development.
Therefore, we obtain the more accurate results only with the function f3, for which higher
order derivatives are not really impacting its Taylor development.

4.3.7.2 Arbitrary Polynomial Chaos

This section is presenting the arbitrary polynomial chaos expansion. We propose to prop-
agate uncertainties through two different polynomial functions. The first one is of degree
2 and the second one of degree 3. For each function, we propagate an uncertainty that is
represented by its moments. The first propagation is done assuming that we only know the
mean and the variance of the input uncertainty. Therefore, as mentioned in Section 4.3.5.3,
we can only use a polynomial expansion of order 1. The second propagation is done assum-
ing we know the mean, the variance, the skewness and the kurtosis of the uncertain input.
Therefore we can use a polynomial expansion of order 2. In the following example we
select two polynomial functions for which we compute the coefficients of the polynomials
analytically, using Equations (4.133) to (4.135).

The graphs from Figure 4.19 are presenting the propagation of the uncertain input Ξ
with mean µΞ = 1, variance σ2

Ξ = 0.4, skewness γΞ = 0.1, and kurtosis ΓΞ = 0.2 through
the function f(ξ) = ξ2 + ξ − 1. The propagation with the arbitrary polynomial chaos
is represented in blue and a Monte-Carlo propagation is presented in red. As expected,
the polynomial of order 2 (in the right graph) completely fit the uncertain output f(Ξ),
whereas the polynomial of order 1 does not. The graphs from Figure 4.20 is presenting

Figure 4.19: Arbitrary polynomials chaos expansion for a polynomial function of degree
2.

the propagation of the uncertain input Ξ with mean µΞ = 1, variance σ2
Ξ = 0.4, skewness

γΞ = 0.1, and kurtosis ΓΞ = 0.2 through the function f(ξ) = 2ξ3−ξ2+ξ−1. It is interesting
to observe how the two expansion behave. Once again the first order polynomial does
not give account for the skewed output uncertainty, whereas the second order polynomial
does. It is interesting to observe the impact of the knowledge of the input uncertainty
on the distribution, especially if the objective is to use the distribution to compute some
probability or quantile measures (see Chapter 5). Indeed, the computation of a quantile
measure from the red sample or from the blue sample can lead to completely different

136



4.4. Conclusion and choice of the method

Figure 4.20: Arbitrary polynomials chaos expansion for a polynomial function of degree
3.

values, especially when the available information are only the mean and the variance of
the input (left graph from Figure 4.20). In that case it could be interesting not to compute
the distribution which would clearly be false, but to compute instead some bounds on the
desired risk measure. These techniques are described in Chapter 5.

4.4 Conclusion and choice of the method
We have presented in this chapter various techniques of uncertainty propagation. The focus
has been made on non-intrusive methods, for the sake of simplicity and adaptability of the
methods to any engineering process. The principal advantage of the presented methods,
is to directly produce output uncertainty as functions of input uncertainty and function
evaluations. The main objective is to underline for each method what is necessary to
compute the output uncertainty in term of knowledge: on the uncertain input, on the
process functions, on the required computation time, and on the required accuracy.

Several issues have been raised along the chapter. First of all, one has to identify the
available information on the uncertain input so that one can know what kind of uncertain
output he will be able to compute. To sum up it can be one of the following, from the
lowest to the highest information accuracy:

• the mean and the variance of the distribution;

• the mean, the variance, and higher moments of the distribution;

• the exact nature of the distribution and the corresponding parameters (for example
Normal, Beta, Uniform distribution, Beta-Mystic, or else).

According to this available input, the same input can be computed. This chapter also
presents the available methods to compute the output uncertainty, according to the avail-
able information on the input, but also according to the need of information for the output
with the objective of the lowest computational cost. The graph from Figure 4.21 presents
the methods that can be used according to the input information and the available out-
put. The abscissa represents the available information on the input, and the ordinates the
reachable information on the output. Once the input information is known, the decision
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Figure 4.21: Available uncertain output versus available uncertain input: choice of the
method [127].

criteria for the choice of the method is a trade between the affordable cost and the required
accuracy. It is important to underline here that the error on uncertainty computation is a
key for a correct use of the uncertainty afterwards. For instance, for the moments based
methods, if we have the first four moments of the input, but we are only interesting in
the mean and the variance of the output, the URQ method, or even the SOM method can
be sufficient in term of computational cost. It is clear that if higher order moments are
required we have to select a more expensive, but more accurate, method (for instance the
BRQ or the SC method). The choice of the method is also based on the information on the
function, the more regular the function is, the more a low computational cost method can
be used. This has been illustrated in the examples of Section 4.3.7.1, where the function
type has an important impact on the higher order moments computation. In fact, what
can be retained from both the Taylor based approximation of moments, the BRQ and URQ
methods, and also the arbitrary polynomial chaos is that computing the uncertain output
with only the first four input moments takes into account only the derivatives of order two
of the Taylor development of the output function. It follows that a careful attention has
to be paid when the higher order derivatives of the output function are significant.

Therefore, limitations of the moments methods come from the available information
about output uncertainty. For instance if any information about the order 5 moment of
the input uncertainty, Equations (4.67) to (4.70) could be used to compute output moments
with a better accuracy, involving order three derivatives. The curse of dimensionality is also
one of the main limit of quadrature methods. The required number of function evaluations
is significantly increasing as the uncertain input space size is. Then, dimension reduction
methods (the URQ and BRQ methods) used to obtain higher order moment from non-linear
functions offer very good compromise between cost, accuracy and adaptability according
to input available information.

Finally, the example from Section 4.3.7.2 well reflects the attention that has to be paid
to the use of the output distribution. As it will be presented in Chapter 5, the output
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uncertainty can be used to compute a risk measure in order to solve robust optimiza-
tion problem, for instance a quantile or a probability. The impact of the input available
knowledge on such a risk measure can therefore become considerable (Figure 4.20). The
corresponding risk measure will have then to take into account this lack of knowledge on
the input uncertainty, some methods are presented in Chapter 5.

To sum up, the choice of the uncertainty propagation method is a question of compro-
mise and carefulness. All the problem parameters have to be delicately taken into account:
available information on the uncertain input, available information of the model functions,
required accuracy on the uncertain output, cost of the method (number of function evalua-
tions), further use of the uncertain output. This chapter enables the identification of these
guidelines that might be helpful particularly for practitioners in the field of optimization
under uncertainty.
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The purpose of this chapter is to present a Chance Constrained Optimization of an un-
conventional configuration of hybrid-powered-aircraft. Chance-constrained programming
is a part of the stochastic programming. A general definition coming from the Stochastic
Programming Society is the following one:

Stochastic programming is a framework for modeling optimization problems that involve
uncertainty.

It is often opposite to deterministic optimization problem that are formulated with certain
parameters. To study the aircraft design uncertain problem, the two following approaches
can be of interest:

• uncertainty intervals, or bounds of uncertainty: these approach are managed with
robust optimization methods. An introduction of these techniques is presented in
Chapter 6, in which we present a robust optimization of an aircraft design according
to the models uncertainties. In that case we find a solution of the problem that is
feasible whatever the uncertainty.

• the other approach is called stochastic programming. It aims at dealing with uncer-
tainty distributions and allows more freedom when solving the problem. The solution
will be feasible in most of the cases, or according to a given probability.

These approaches helped enhancing decision making under uncertainty in many areas.
To my best knowledge, stochastic programming first publications appeared around the
middle of the 20th century with [49]. An alternative approach namely chance constrained
programming, which is presented in this section, appears quite early with [38].

Since then, an important amount of work can be find on stochastic programming,
detailing structural properties of such problems (functions log-concavity as in [138, 140],
derivative properties [168], Gaussian distribution properties [83], ...), numerical approaches
to compute solutions [116, 137], stability and sensitivity of solutions [85], or applications
to various areas [97, 57, 68]. A non exhaustive list of publication until 2007, that already
counts more than 4000 references about stochastic programming, can be find in [171].
Books from Prékopa [139], Marti [111] or Birge [21] give references on the subject. Recent
works from members of the Stochastic Programming society can be found on their website
(http://stoprog.org/resources.php) and give a large scope of techniques, approaches
and examples of the diversity, but also challenges in stochastic programming.

The robustness requirements can be different between the chance constrained program-
ming approach and the robust design approach. It can be probabilities, variability, or both
at the same time. The first section is dedicated to the robust design optimization in a
general matter, with the description of the main principles and a presentation of some risk
measures. The second section presents the chance constrained programming approach,
which is the one we select to solve our aircraft design problem. A formulation with bounds
on the probability measures from [128, 129] is described. The third section is dedicated
to a numerical approach for solving chance constrained optimization problem, namely the
Sequential Optimization Reliability Assessment (SORA) method. Some numerical tests
are proposed to explain our choice of this method. Finally, the fourth section is presenting
the application of these tools to the hybrid aircraft design optimization. The hybrid con-
figuration is compared to a conventional one, both being designed according to the same
set of requirements. Results are commented at the end. Some conclusions and perspectives
are finally proposed.
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5.1. Robust design optimization

5.1 Robust design optimization
It is important to be careful with the terminology as robust design optimization is not
necessary equivalent to robust optimization. Even if the notion of robustness is considered
in both case, the definition of robust design optimization allows a reliability level as for
chance constrained optimization. On the other side, robust optimization often requires a
feasible solution whatever the uncertainty is.

The term Robust Design was introduced by Taguchi [161] around 1960 with a specific
objective: greatly improve engineering productivity by considering what he called “noise
factors” of an engineering process (environmental variation, manufacturing variation or
some components deterioration). In other terms, he wanted to reduce variability to in-
crease quality and robustness from the first design stage. His method was first based on
conventional statistical tools, particularly on design of experiments techniques. Robust
design is complementary to the chance constrained approach, and sometimes they share
the objective of reducing the sensitivity of the solution with respect to environment fluc-
tuations. Robust design optimization can be divide into two groups:

• Reliability based optimization: the objective is to minimize the failure probability of
the solution. This one is close to the chance constrained optimization approach.

• Variance based optimization: the objective is to minimize the variance of the solution.

We could also cite the mean based optimization which consists in minimizing the mean of a
function, with a mean constraint satisfaction, but the interest of this approach is null when
robustness is concerned. An interesting review of robust design optimization techniques
can be found in [19].

The objective of such techniques is illustrated in Figure 5.1. Consider a function with
uncertain inputs (ξ1, ξ2). The deterministic solution is denoted by a red point and the
robust solution by a blue point. The two points are associated with their uncertainty,
represented around the point by a disk and with the projection on the x and y axis. The
disk represent the set of uncertainty around the point, which means that with a given
probability, the red and the blue solutions can take any value in their related disk. We
can see that the deterministic solution point (red) lies on the constraint boundary, and
that a big part of its uncertainty disk lies in the infeasible domain. It is clearly a non
robust solution. The robust solution (blue) satisfies the constraints satisfaction whatever
the uncertainty on (ξ1, ξ2) is: all the point of its uncertain disk are in the feasible domain.
Moreover in this example, the variability of the robust solution is smaller than the one on
the deterministic solution.

Let us first define the classic deterministic optimization problem:

min
x∈Rn

f(x),
s.t. gi(x) ≤ 0, i = 1, 2, ...,M.

(5.1)

Let ξ be the uncertain input of the model. The corresponding optimization problem under
uncertainty is:

min
x∈Rn

F [f(x,Ξ)],
s.t. G [gi(x,Ξ) ≤ 0] ≥ αi i = 1, 2, ...,M,

(5.2)

where G and F are measures of robustness, and (αi)i=1,...,M traduce the robustness require-
ment. One of the main objective of the robust optimization problem is to define them.
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Figure 5.1: Illustration of a deterministic non robust optimum and a robust one.

As an example, let us select the expectation as a robustness measure of the constraints
satisfaction, i.e. G(·) := E(·). This is clearly not a reliable measure: it would mean that
the probability of satisfying the constraint is equal to the probability of the constraint not
to be satisfied. Nevertheless, sometimes some constraints may have less importance than
others and so you can affect a different probability of satisfaction to it. In practice, the
function G can be a given probability measure. The function F is classically the expecta-
tion E [f(x,Ξ)] = µf of f or the variance σ2

f . Since both can be of great interest, a natural
way is to introduce a multi-objective optimization [20] with these two objectives. It would
then be interesting for instance to draw the related Pareto front. It brings additional
freedom when it comes to selecting the optimum, and gives information on the trading
cost between two solutions. This choice of the “required robustness” really depends on the
user requirement. The inconvenient is that multi-objective optimization could be hard to
handle. Hence, another frequently used approach consists in using a combination of µf
and σ2

f , such that:
F [f ] = µf + kσ2

f , (5.3)

where the coefficient k varies according to the most important objective, the mean or the
variance.

The function G is the risk measure, as it defines the acceptable risk for each constraint.
One of the first introduced measure is the mean-variance. It was used in finance [109], but
conceptual difficulties have then been raised (see e.g. [37]). These limitations lead to more
intuitive risk measures based on distribution quantiles [169]. Among the most used, we
find the value at risk, and the conditional value at risk, presented hereafter.

The α-quantile associated with the random variable Ξ is defined by:

qα(Ξ) := inf {ξ|P(Ξ ≤ ξ) ≥ α}, where α ∈ [0, 1]. (5.4)

This measure is used in chance constrained programming methods. In this case, the value
α represents the chance constrained probability of satisfying a constraint.
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5.2. Chance constrained programming

The value at risk (VaR) is equivalent to the α-quantile. It was first introduced to reduce
financial risk in portfolio management [94], in order to reduce the losses. It is defined by:

VaRα(Ξ) := inf {ξ|P(Ξ ≥ ξ) ≤ 1− α}, where α ∈ [0, 1]. (5.5)

An illustration of the VaR is given in Figure 5.2. In this case, α is the probability that Ξ

Figure 5.2: Value at risk.

does not overcome the VaR. Some computational and also conceptual limits of VaR are
discussed in [9], with a special focus on the accuracy of the behavior of the distribution
tail.

This introduces another interesting risk measure: the conditional VaR. It not only
presents superior mathematical properties compared to the classic VaR [170], but also
offers a different point of view of the robustness principle. The conditional VaR, also
named expected shortfall, mean excess loss or tail VaR was introduced in [148] and a
review of its benefits can be found in [18]. It has already been used in robust design
optimization, e.g. in [128]. The definition of CVaR is:

CVaR1−α(Ξ) := E [Ξ|Ξ ≥ VaRα(Ξ)] , (5.6)

where E [Ξ|Ξ ≥ VaRα(Ξ)] is a conditional expectation, defined in Chapter 4, Section 4.1.4.
An illustration of the CVaR is given in Figure 5.3. The blue part of the distribution area
represents the last 10% of Ξ realizations. The CVaR is the value of ξ which corresponds
to the expectation of this 10%.

All these risk metrics are of interest and depend on the robustness requirement of the
user. However, other risk measures exist [149]. Here we focus only to those presented above,
namely the VaR and CVaR. In the case where the solution has to be robust whatever the
risk, all the measures can be of interest. The objective of the optimization problem can
then be to minimize the maximum value of all the risk measures. Some examples of such
applications can be found in [129].

5.2 Chance constrained programming
Among stochastic programming techniques, chance constrained approaches have already
proved their efficiency. Applications can be found in finance [35], electrical engineering
[105], chemical process studies [84], trajectories modeling [24], etc. This section presents a
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Figure 5.3: Conditionnal Value at risk.

chance constrained programming approach that will be applied to aircraft uncertain design
in Section 5.4.

Chance constrained programming consists in solving an optimization problem with a
random objective or/and random constraint functions and to replace classical determin-
istic constraints by probabilities of these constraints to reach a given value. This can be
separated in two cases:

• the individual chance constraints case, where different probabilities are affected to
each constraint satisfaction. Problem (5.2) can then be expressed as:

min
x∈Rn

E[f(x,Ξ)]
s.t. P

[
gi(x,Ξ) ≤ 0

]
> αi, where αi ∈ [0, 1], ∀i = 1, . . . ,M.

(5.7)

• The joint constraints case: the only constraint is the probability that all deterministic
constraints are satisfied. Problem (5.2) then becomes:

min
x∈Rn

E[f(x,Ξ)]
s.t. P

[
gi(x,Ξ) ≤ 0, ∀i = 1, . . . ,M

]
> α, where α ∈ [0, 1].

(5.8)

In the above expressions, we assume that:

• f, gi : Rn × Ω→ R are at least differentiable with respect to x ∈ Rn,

• x ∈ Rn is the deterministic (certain) optimization variable,

• Ξ ∈ Ω ⊂ Rp is a vector of random variables,

• P(.) defines the probability operator,

• E[.] defines the expectation operator,

• α, (αi)i=1,...,M define reliability levels, in practice equal to 0.95 or 0.99.

An illustration of an individual chance constraints problem is given in Figure 5.4.
The constraint gi is evaluated at various design points, x1, x2 and x3, according to some
uncertainties ξ1 and ξ2. The constraints are uncertain. Given a requirement gmax

i (which
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is the deterministic constraint bound, i.e. zero in the case of Problem 5.7), we can see
in the output part of Figure 5.4 that each design point leads in an uncertain output yj .
We can then calculate the probability of satisfying the constraint gi(x, ξ) ≤ gmaxi and
the probability requirement αi to satisfy the constraint will then replace the deterministic
constraint.

Figure 5.4: Uncertain process: feasibility of an uncertain constraint.

Focus will not be made here on structural properties of such problems, as in practice
functions f and gi are black boxes that can eventually be provided with their gradient.
The joint constraints approach, which is not used in our studies, generally offers a better
robustness than the individual constraints approach [81], but it can be more difficult to
handle since the related output distributions are multidimensional ones. We can also notice
the crucial role of the distributions properties in several approaches [83, 4]. For example
when the distributions are Gaussian ones, the problem structure can become easier to
manage.

However in our case, problem structure is not well defined and distributions, if they
are known, are not necessary Gaussian. Techniques to solve problems without regularity
assumptions are often only heuristics with no proofs of optimality.

In our case, we have information on the input distributions Ξ but not on the distribution
of gi(x, ·). This has then to be determined using some uncertainty propagation methods
(see Chapter 4). Once the output uncertainty distribution is assessed, the probability of
satisfying the constraint P

(
gi(x, ξ) ≤ 0

)
can be retrieved from the cumulative distribution

function. Finally the optimization algorithm can be selected among those presented in
Chapter 2. When input uncertainties are not entirely known, e.g. when one has only first
moments of the distribution Ξ, some techniques of robust design optimization still allow
to find robust solutions. The main idea is to consider a family of distributions that have
the properties brought by the available information. Then the goal is to compute a worst
case from all the considered distributions. This has to be done according to the studied
risk measure, after a reformulation of the problem.

5.2.1 Reformulation of a chance constrained optimization problem

Assume that the objective of the optimization is to minimize the expectation of f with
respect to risk measure constraints, selected among the above two. It can be written:

min
x∈Rn

E[f(x,Ξ)]
s.t. or P

(
gi(x,Ξ) ≤ 0

)
> αi, i = 1, . . . ,M.

or E
[
gi (x,Ξ) |gi (x,Ξ) ≥ VaRαi [gi (x,Ξ)]

]
≤ 0, i = 1, . . . ,M.

(5.9)
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And we have the following equivalences:

P
(
g(x,Ξ) ≤ 0

)
> α ⇔ qα (g (x,Ξ)) < 0

⇔ VaRα (g (x,Ξ)) < 0. (5.10)

In the case where uncertainties are not exactly known, a methodology exists that take
into account some available informations, according to the risk measure we want to mini-
mize. The following section describes this methodology, which is based on a reformulation
of the risk constraints.

5.2.2 Bounds on the risk measures

Normality is one of the property that comes to mind when talking about distributions. In
design optimization the assumption of normality for input distributions is current. Some
transformations can also be made in order to obtain this normality (e.g. Box-Cox trans-
formation from [29]). Then, in the simple case where functions of the process are linear,
output uncertainties gi(x,Ξ), are going to be normal. However, when processes are not
linear, there is no reason for obtaining normal distributions. The normality assumptions
about the output can even have an impact on the solution, e.g. by underestimating the
robustness constraint [129].

Here, we want to compute either a value at risk (equivalent to a quantile), either a
conditional VaR, both with a given level of reliability α ∈ [0, 1]. The goal is to compute
these measures. When the distributions are known, these measures can be analytically
computed by using their definitions that can be found in Chapter 4. However, when the
distributions are not fully known, we have to find their best approximation, or to find
bounds on their value, according to the available information.

Here, we assume we can obtain the following information on the output distribution
constraint g(Ξ), by using one of the uncertainty propagation methods presented in Chap-
ter 4:

• the first two moments µg and σg are known, or

• the first four moments µg, σg, γg and Γg are known.

In the case where the first two moments are known, Cantelli inequality [133] states that:

P
[
g(Ξ)− µg ≥ kσg

]
≤ 1

1 + k2 , (5.11)

where k is a real number depending on the required probability level α. It can be rewritten
as:

P
[
g(Ξ) ≥ µg + kσg

]
≤ 1− α,

⇔ P
[
g(Ξ) ≤ µg + kσg

]
≥ α, (5.12)

where: α = 1
1+k , or equivalently k =

√
α

1−α . Then the probability constraint P
(
gi(x,Ξ) ≤

0
)
> αi can be replaced in a conservative way by:

µgi(x) + k(αi)σgi(x) ≤ 0, (5.13)

as Inequality (5.13) implies Inequality (5.12). However this approach can be too conserva-
tive [124], and then not well adapted to accurate robust design. For instance when some
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properties of the distribution are known (normality, unimodalilty, ...), using the above ap-
proximation (5.13) leads to overestimate the constraint. Hence, applying the extensions of
the Cantelli inequality [156], it is possible to use the known properties of the distribution
to reduce the conservatism of this approximation. These properties can be select among
the following ones:

• bounded support, or

• symmetry, or

• unimodality, or

• symmetry and unimodality, or

• normality.

The work from [129], that merges researches from [135, 36, 63], uses some generalizations
of the Cantelli inequality to assess the best probability bound according to the above
properties of the distribution, assuming the mean and the variance are known. Note that
this work also includes the probability bound when the probability measure is the CVaR.
Results are presented in Table 5.1.

In the case where the first four moments are available, with no particular distributional
assumptions [90], Table 5.2 present the value of k with respect to the required probability
measure.

To sum up, this section gives a way for computing bounds on risk measures according
to the available information on the input distributions. This approach ensures robustness
of the solution in a conservative manner.

This allows to replace the probability constraints:

G
(
gi(x,Ξ) ≤ 0

)
≤ αi, (5.14)

by the deterministic constraint:

µgi(x) + k(αi)σgi(x) ≤ 0. (5.15)

Coefficient k(αi) is defined according to the desired risk measure G, the desired level of
reliability αi and the information on the distribution properties, according to Tables 5.1
and 5.2. The adaptability of this approach is of great interest for the formulations of robust
design constraints.

Once the problem is reformulated with the constraint (5.15), a classical approach is
to apply well-suited deterministic optimization algorithms, see Section 2.3. However the
computational time of this approach depends not only on the number of iterations of the
optimization algorithm, but also on the computation of the expectation, variance, skewness
and kurtosis, when required, of each constraint at each iteration. In the case where the
latter computation has a too important cost, some other methods should be applied.

5.3 S.O.R.A. method
In this section, we present a methodology for robust design optimization, which consists
in solving a sequence of deterministic optimization problems, without computing the un-
certainty at each iteration. An adaption of this method with the risk measure bounds
presented above is developed.
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Table 5.1: Value of k for VaR and CVaR upper bounds with known µg and σg.

Validity VaR CVaR
No distributional assumption

0 ≤ α ≤ 1 k =
√

α

(1− α)
Bounded support: y ∈ [a, b]

0 ≤ α ≤ 1
1 + k2

a

k = ka(ka + kb)α
(ka + kb)(1− α)− ka

k = kaα

(1− α)
1

1 + k2
a

≤ α ≤ k2
b

1 + k2
b

k =
√

α

(1− α)
k2
b

1 + k2
b

≤ α k = kb

with: ka = µg − a
σg

and kb = b− µg
σg

and kakb ≥ 1

Symmetry

0 ≤ α ≤ 1
2 k = 0 k =

√
α√

2(1− α)
1
2 ≤ α < 1 k = 1√

2(1− α)
Unimodality

0 ≤ α ≤ 5
6 k =

√
3α

3α− 2 NA

5
6 ≤ α < 1 k =

√
9α− 5

9(1− α) NA

Symmetry and Unimodality

0 ≤ α ≤ 1
3 k = 0 k = 2

√
α

3(1− α)
1
3 ≤ α ≤

1
2 k =

√
3α1

2 ≤ α ≤
2
3 k =

√
2

9(1− α)2
3 ≤ α < 1 k = 2

3
√

1− α
Normality (exact value)

0 ≤ α ≤ 1 k = Φ−1(α) k = φ(Φ−1(α))
1− α

where Φ is the PDF of the standard Gaussian
variable and φ its CDF.

The S.O.R.A. method, for Sequential Optimization and Reliability Assessment, was
introduced by Du and Chen [56], and improved in [183]. It was developed in order to un-
couple the reliability analysis required for a robust optimization, from the optimization. It
has the particularity to only solve a sequence of simple deterministic optimization problems
while taking into account a given requirement of reliability. Since chance constrained opti-
mization is sometimes hard to solve, because of the lack of regularity of the risk measures,
or because of the computational time required for uncertainty computation, the sequential
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Table 5.2: Value of k for VaR and CVaR upper bounds with known µg, σg, γg and Γg.

Validity VaR CVaR

0 ≤ α < 1
2

1 + γg√
γ2
g + 4

 W (V (ky)) = α ky = − α

1− αV (ky)

1
2

1 + γg√
γ2
g + 4

 < α < 1 W (ky) = 1− α,

with:
R(u) = γgQ(u) + ∆u, S(u) = Q(u) + ∆u,
Q(u) = 1 + γgu− u2, ∆ = Γg − γ2

g − 1,

W (u) = ∆
Q2(u)+∆(1+u2) , V (u) = R(u)−

√
R2(u)+4Q(u)S(u)

2Q(u) .

method approach allows to manage these drawbacks.
The principle of the method is described in Figure 5.5. We want to solve the following

chance constrained optimization problem (we choose here the VaR risk measure but the
methodology can be applied with any measure with computable bounds):

min
x∈Rn

f(x, µΞ)
s.t. P

[
gi(x,Ξ) ≤ 0

]
> αi, i = 1, . . . ,M.

(5.16)

Here, we assume without a loss of generality that the minimization of f(x, µΞ) is equivalent
to the minimization of E

[
f(x,Ξ)

]
. Let us first introduce the thresholds si, i = 1, . . . ,M .

They will ensure the robustness of the solution by a smart modification of the inequality
constraints gi, i = 1, . . . ,M . The principle of the method is the following one:

• Step 1: set the thresholds si equal to zero, and set the vector of uncertain input Ξ
equal to its mean µΞ. Then do step 2 to 5 while the solution does not satisfy the
required robustness level evaluated at step 4.

• Step 2: run a first deterministic optimization, a solution xsol is obtained.

• Step 3: compute the output uncertainties gi(xsol,Ξ) using a propagation tech-
nique (see Chapter 4). From these uncertainties, evaluate the probability constraint
P
[
gi(xsol,Ξ) ≤ 0

]
.

• Step 4: if this value is satisfying the robustness criteria, i.e. if: P
[
gi(xsol,Ξ) ≤ 0

]
≥

αi, then it means that the solution is robust for the considered constraint. if it is
not, compute λi according to the required level of robustness αi of the constraint gi,
so that the threshold si = si − λi. This is usually computed assuming gi is following
a Gaussian distribution, by:

λi = Φ−1(αi)σgi , (5.17)

where Φ is the PDF of the standard Gaussian law.

• Step 5: go to step 2 with the new si.
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Figure 5.5: S.O.R.A method principle

5.3.1 Improvement with the risk measure bounds

Classically the reliability assessment is computed using the Most-Probable Point (MPP)
approach presented in [55]. The concept of the MPP is to find the point that contributes
the most to the integral for probability estimation and to evaluate the probability of the
called limit state function gi(xsol,Ξ) to be less or equal to zero. The concept of MPP raises
limitations as mentioned in [8], with some non-sense examples of application.

Here, we choose to apply a reliability assessment based on what is done in [92]. However
it is a good method but only when uncertainties are supposed to follow normal distributions.
We propose then the following extension when uncertainties are not necessary known or
when we only have information on their properties, or their first moments. Following the
results from Section 5.2.2, we compute λi (see Figure 5.5) such that:

λi = k(αi)σgi , (5.18)

where k(αi) depends on the properties of the distribution, on the required risk measure
and on the required robustness level αi, according to Tables 5.1 and 5.2. Doing so, the
conservative property of the bounds is kept and it avoids to underestimate the reliability
of the solution. Moreover, this approach allows to have an accurate reliability assessment
according to the level of information on the distributions.

5.3.2 Numerical example

This section presents an example application of S.O.R.A. method compared to classical
methods of chance constrained optimization. The Rosenbrock function is a non-convex
function defined from R2 to R by:

f(x1, x2) = (1− x1)2 + 100(x2 − x2
1)2. (5.19)
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It has a global minimum at (x1, x2) = (1, 1), where f(x1, x2) = 0. We add the following
arbitrary constraints:

g1(x1, x2) ≤ 0,
g2(x1, x2) ≤ 0, (5.20)

where:
g1(x1, x2) = (x1 + 1)2 + (x2 − 0.3)2 − 1,
g2(x1, x2) = −0.05− 2x1 − 0.8x2 − 0.01f(x1, x2). (5.21)

We denote x = (x1, x2). The deterministic constrained optimization problem is defined
by:

min
x∈R2

f(x) s.t. g1(x) ≤ 0,
g2(x) ≤ 0.

(5.22)

We select a Sequential-Quadratic-Programming method (see Chapter 2) to solve this prob-
lem. We then introduce the uncertainty Ξ = [Ξ1,Ξ2,Ξ3,Ξ4] on the objective and the
constraint functions, which become:

f(x, ξ) = (ξ1 − x1)2 + 100(x2 − x2
1)2ξ2,

g1(x, ξ) = (x1 + ξ3)2 + (x2 − 0.3ξ3)2 − 1,
g2(x, ξ) = −0.05− 2x1 − 0.8x2ξ4 − 0.01f(x1, x2)ξ4.

(5.23)

And so we have the following chance constrained optimization problem:

min
x∈R2

E [f(x,Ξ)] s.t. P
[
g1(x,Ξ) ≤ 0

]
> 0.95,

P
[
g2(x,Ξ) ≤ 0

]
> 0.95.

(5.24)

We assume all the uncertain input are independent and we only know their first four
moments. We select the same moments for all the uncertain input:

µ = 1,
σ2 = 0.0002778,
γ = 0.8,
Γ = 1.

We propose to solve Problem (5.24) by using a classical method, such as the one presented in
Section 5.2.2. In this case, the probabilistic constraints are replaced by their corresponding
bounds (see Table 5.2). The optimizer used is the same as for the deterministic case. Note
that in this case, at each iteration of the optimization process the uncertainty on the
constraints is computed. We compare this method to the S.O.R.A. approach for which the
uncertainty analysis is uncoupled from the optimization.

Results are presented in Table 5.3.
We observe that the two robust optimum are very close to each other. The deterministic

optimum and the robust one are drawn on Figure 5.6, with the deterministic constraints.
In order to validate the results, we put in Table 5.3 the probability that the constraints
are satisfied at each solution. To do that, we select a family of distributions, here the
Beta-Mystic, and we draw a Beta-Mystic distribution that has the four input moments.
We obtain the one presented in Figure 5.7. Then we also draw an Beta-Mystic distribution
with the first four propagated moments of each constraint at the solution points. We obtain
the distribution presented in Figure 5.8.
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Table 5.3: Results of a chance constrained optimization of the Rosenbrock function using
a classical method and the S.O.R.A. method.

Deterministic Chance Chance
Optimization Constrained Constrained

with FSQP with SORA
x1opt -0.416 -0.4590 -0.4587
x2opt -1.112 -1.123 -1.123

E [f(x,Ξ)] 167 179.98 179.92
P
[
g1(x,Ξ) ≤ 0

]
0.55 0.992 0.992

P
[
g2(x,Ξ) ≤ 0

]
0.44 0.999 0.999

Number of function calls 138 2089 491

Figure 5.6: The Rosenbrock constrained function optimization: Comparison of determin-
istic & Chance constrained Optima.

As expected, the deterministic solution is not robust, as it is satisfied with a probability
lower than the required value of 0.95. This illustrates the importance of taking into account
the uncertainty when a robust optimum is required. The table also present the “cost” of
this robustness, which is the highest value of the objective function.

Another interesting observation is the difference of call to the functions. As we could
expect, the deterministic optimization is clearly less computationally expensive than the
two chance constrained optimization. We also notice that the cost of the S.O.R.A. method
is lower than the the classical method, with a same solution accuracy. The improvement
of S.O.R.A. with the probability bounds then shows in this illustration that it gives the
same results as for a classical method, but with a more affordable computational cost.
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Figure 5.7: Uncertain input distribution, using a Beta-Mystic and the first four moments.

Figure 5.8: Uncertain constraints distributions at the robust solution point, using a Beta-
Mystic and the first four moments.

5.4 Hybrid aircraft chance constrained optimization

This section presents an application of the improved S.O.R.A. method to a chance con-
strained optimization of an hybrid aircraft design.

The first objective is to compare the performances of the hybrid aircraft versus the
ones of a conventional aircraft, given a same set of requirements and specifications. The
first work around the chance constrained optimization of the hybrid aircraft [141], shows
that current technologies values on the performances of the electric part of the propulsion
system are not good enough to obtain an hybrid aircraft at least competitive versus the
conventional one. Since research activities on the electric propulsion systems, are in con-
stant progress, we decide to compare the performances of the hybrid aircraft versus the
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conventional aircraft in the next years. We also have in mind that the technologies of the
conventional will progress and get its performances better. Since the hybrid configuration
basis is a conventional aircraft to which we add the electric fan, the battery, and the electric
generator, we assume that any improvement on the conventional aircraft will also apply to
the hybrid one.

The second objective of the study is to take into account the uncertainties linked to the
evolution of the technologies used to hybridize the aircraft, such that the optimum hybrid
aircraft is robust versus the constraints with respect to a given high probability.

The hybrid and conventional aircraft configuration and design process are described
in the first section. The second section is dedicated to the uncertainties coming from
the technologies evolution. We proposed in the third section a formulation of a chance
constrained optimization problem to find when the hybrid aircraft will be competitive
versus the conventional one, with a probability of 0.95.

5.4.1 Conventional and hybrid aircraft configuration

We first select the baseline aircraft for both the conventional and the hybrid configuration.
It is described by the parameters of Table 5.4.

Table 5.4: Description of the baseline aircraft specifications.

Name Value
Number of Passengers (Npax) 180

Design Range 3000 NM
Cost Mission Range 500 NM

Number of Turbofan Engine 2

Then we set the specifications, that mainly are the operational constraints, and are
described in Table 5.5.

Table 5.5: Description of the aircraft design specifications for the conventional and the
hybrid configuration.

Name Value

Conventional

1 Approach Speed (LdSpeed) < 130 kt
1 Climb Vz Ceiling (ClbVz) > 500 ft/min
2 Cruise Vz Ceiling (CrzVz) > 300 ft/min
3 Take-Off Field Length 1 < 1800 m
4 Take-Off Field Length 2 (in high and hot conditions) < 2500 m

The hybrid aircraft concept is the one presented in Chapter 1, Section 1.3.4. The main
characteristics of this concept are recalled:
• it has two conventional thermal engines and an electric fan in its rear fuselage, as

illustrated in Figure 5.9. The electric fan size is set to 1.5m.
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• It has an accurate use of the additional energy brought by the electric fan and some
accumulators during the different flight phases (see Chapter 1, Section 1.3.4).

Figure 5.9: Hybrid Aircraft Configuration for the chance constrained optimization study.

We select the design variables presented in Table 5.6 to run the chance constrained
optimization.

Table 5.6: Optimization Variables for conventional aircraft configuration, with the addi-
tional ones for the hybrid aircraft configuration.

n (conv.) n (hyb.) Name Bounds Unit

Conventional

1 1 Wing Area [100, 250] m2

2 2 Sea Level Static Thrust [6000, 15000] daN
5 8 Wing Aspect Ratio [8, 18] no dim.
6 9 Thermal engine BPR [8, 14] no dim.
7 10 Top of climb altitude [25000, 45000] ft
8 11 Cruise Mach [0.6, 0.85] Mach

Hybrid 6 Generator Electric Ratio [0.01, 0.1] no dim.
7 Electric Fan Power [1, 4] MW

5.4.2 Preliminary uncertainty analysis

The models developed for the aircraft design process are presented in Chapter 1. They
are semi-empirical models. We can assume, according to expert know-how, that the un-
certainties coming from the masses, the geometry, the thermal engines, and the mission
models are of the same magnitude for the hybrid and the conventional aircraft. After some
sensitivity studies, we observe that the most impacting uncertainties are the one coming
from the prediction models of the hybridization technologies. They are the power density
of electrical engine and the power density of electrical generator (EPD), and the energy
density of accumulators (EED). Thanks to several assumptions found in literature [158, 48],
we model the evolution of these values as a function of the year. This is presented in Fig-
ure 5.10). The assumptions proposes a best and a worst evolution cases. From this, we
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quantify the uncertainties coming with the prediction models, which is increased with the
year. We proposed to represent this uncertainty by a Normal distribution. For instance, in
2025 we have the distributions represented in Figure 5.11. We also represent in FIgure 5.10
the 0.99-quantile and the 0.01-quantile measure as function of the year.

Figure 5.10: Prediction functions for the electrical power density evolution and the elec-
trical energy density evolution, with their uncertainties.

Figure 5.11: Prediction functions for the electrical power density evolution and the elec-
trical energy density evolution, with their uncertainties.

5.4.3 Formulation of the aircraft design problem

Now that the uncertainties are defined and the models described, we propose the following
approach to run the chance constrained optimization of the hybrid aircraft. The goal is to
find the closest year from now when the hybrid aircraft will have the same performances
than the conventional one with a 0.95 probability, with respect to the uncertainties on the
technologies evolution. Moreover, we also want to ensure that the same set of requirements
(defined in Table 5.5) with a 0.95 probability, with respect to the same uncertainties. The
performances are compared according to the criteria defined in Table 5.7.
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Table 5.7: List of the performances criterion.

Name Unit
Mission Block Fuel kg

Cash Operating Cost (COC) $/trip
Absolute Pulsed Global Warming Potential (APGWP) W/m2/km/year

Since we want to compare the optimal criterion of the hybrid aircraft design to the one
of the conventional aircraft, the first step is to obtain the optimal value of the selected
criterion, that can be reached by the conventional aircraft. Since we only take into account
in this study the uncertainties from the hybridization technologies evolution, we decide to
solve a deterministic optimization of the design of the conventional aircraft. The problem
is:

min
x∈Ωn

f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,M,

(5.25)

where f is representing one of the objective of Table 5.7, x is the vector of the variables from
Table 5.6 (the conventional case), Ωn is the Cartesian product of the intervals of definition
of each variables, and gi are the constraints from Table 5.5 (also for the conventional case).

Once Problem (5.25) is solved, we have the optimal criteria value of the conventional
aircraft, namely f∗conv. We propose to solve the following chance constrained optimization
of the hybrid aircraft design:

min
x∈Ωn+1

Y (x) = Year
s.t. P [gi(x,Ξ) ≤ 0] ≥ 0.95, i = 1, . . . ,M,

P [f(x,Ξ) ≤ f∗conv] ≥ 0.95,
(5.26)

where Y is representing the year, which is driving the technologies maturity as presented
in Figure 5.10, f is representing one of the objective of Table 5.7, x is the vector of the
variables from Table 5.6 (the hybrid case), gi are constraints from Table 5.5 (also for the
hybrid case), and Ωn+1 = Ωn × [2015,+∞]. The additional input variable is the year.

The whole process is summarized in Figure 5.12. We select a surrogate based optimiza-
tion algorithm, based on Kriging surrogate and the FSQP optimization method, to run
the optimizations.

5.4.4 Chance constrained optimization results

We propose to run the optimization process for the three following objective functions
f of Table 5.7, the Block Fuel, the COC, and the APGWP. We present the results in
Figure 5.13. The first step is the deterministic optimization of the conventional aircraft
configuration (Problem (5.25)), which is presented in the first column for each different
criteria. The second step of the process is the chance constrained optimization of the
hybrid aircraft configuration (Problem (5.26)). Active constraints are indicated in each
case. Note that the active constraints in the chance constrained case are the constraints
for which the probability constraint is active. The minimal year is presented in red. Note
that the criteria figures for the hybrid aircraft are the 0.95-quantile values. This is why the
value indicated for each criterion is equal to the value of the deterministic optimization of
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Figure 5.12: Definition of the hybrid aircraft chance constrained optimization problem.

the conventional aircraft. We can observe that the probability constraints on the criterion
value is active for all optimizations.

Figure 5.13: Hybrid Configuration Chance-constrained Optimization results

The main observation is that the hybrid aircraft most important interest is for the
climatic impact reduction, since its impact becomes with a 0.95 probability equivalent
to the one of the conventional aircraft in 2020. The results also show that under model
uncertainties we would be able to reach an economically viable hybrid-powered-aircraft
with a probability of 0.95 between 2025 and 2026. This is possible thanks to an amount
of work on the implementation of the electricity in aircraft propulsion. Moreover, we find
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the equilibrium, so all steps that are coming next will obviously improve the results.

5.5 Conclusion and perspectives
The presented modified SORA method, with the uncertainty propagation using the first
four moments appears to be very powerful for robust optimization. The method is val-
idated via the chance constrained optimization test case using the Rosenbrock function.
The results show a significant improvement in term of number of calls to the function in
comparison with a classical chance constrained method without degrading the accuracy.

The application to an industrial problem is presented: the chance-constrained optimiza-
tion of an unconventional hybrid aircraft configuration. The results seem to be consistent.
As a matter of fact, the hybrid aircraft configuration chance-constrained optimization
suggests that the technologies evolution needed to reach the equilibrium with current con-
ventional aircraft will occur in around 5 or 10 years, according to the criterion. Moreover,
through these results, it is important to stress the impact of a good adequateness between
the technologies, the way to operate it and how it is implemented within the general ar-
rangement. In other terms, an important work of integration needs to be done to take the
maximum benefit of a new technology.

The next steps of the study is to use more of the synergies proposed by the hybrid
aircraft configuration: we propose for instance to remove the thrust reverser from the
thermal engines, and use the electric engine instead, and to remove the Auxiliary Power
Unit (APU) and use the electric engine battery to which we add 100 kg additional one.
We have seen in Chapter 3 that the introduction of these synergies are really bringing
benefit to the configuration performances. Then we could expect to have an hybrid aircraft
competitive with respect to the conventional one, with a 0.95 probability, sooner than the
presented results.
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Chapter 6. A first step towards a Robust Optimization for Aircraft Design

This chapter is an article recently submitted.

6.1 Introduction
Accounting for uncertainties during the preliminary design phases of an aircraft design is
of crucial importance. The objective is to avoid the mistakes appearing during the test
phase of the aircraft, which can have a huge impact on the performances. For example
when the final mass of the aircraft is assessed, it is important to know the uncertainty
that comes with it. Research in this field started around the end of 20th century, with a
big amount of work on uncertainty quantification [33, 61, 113, 58, 119], and on reliable
optimization techniques [69, 82, 178, 19]. It is a particular concern at Airbus as attested
by the publications [12, 39, 22].

Uncertainties on computed solutions must be known precisely and at the very beginning
phases of the design in order to have a better knowledge of the solution reliability and thus
to control it. However, it raises several problems. Methods have recently been developed
in order to obtain more reliable and accurate designs, in reasonable computational time.
Among them we can find the following ones: robust design methods [161], chance con-
strained optimization methods using min-max objectives and constraints [129, 126, 125],
sequential methods with reliability assessment [92], or surrogate based chance constrained
optimization methods [93]. The main issues are the way of accounting for the uncertainties
and the choice of the optimization algorithms. Solving chance constrained programming
problem relies on a probability of constraint satisfaction. Robust optimization methods
[19] have a wide range of applications, with for instance the minimization of the failure
probability of a solution or the minimization of the variance of a solution. Here we propose
to ensure the robustness of the solution whatever the uncertainty, which means that the
constraints must be satisfied. This is why we resort to robust optimization [16, 17].

The aircraft preliminary design optimization problem can be written in the following
form:

min
X∈Rn

f(X) s.t. gi(X) ≤ 0, ∀i = 1, . . . , l
Xmin ≤ X ≤ Xmax.

(6.1)

In our study, the cost function f can be the fuel consumption over a given mission or the
global cost of the aircraft. The optimization variables X can be selected from the following
non-exhaustive list: the wing area and the sea-level static thrust for the 2D case, the wing
aspect-ratio, the engine By-Pass ratio, the cruise Mach or the reference cruise altitude for
the multidimensional case. The constraint functions gi represent operational constraints,
such as the take-off field length, cruise and climb speed ceiling, landing speed, which are
known to be convex functions. All these functions and their gradients are provided as
black-boxes by SiMCAD, a toolbox developed by Airbus in Scilab. This toolbox is based
on low granularity models for geometry, aerodynamics, propulsion, trajectory and masses.
More details can be found in [22].
The contribution of this paper is to give a complete methodology for the robust optimiza-
tion of the aircraft preliminary design. Indeed, all existing studies are mainly deterministic.
Until now, uncertainties around the models are taken into account by margins chosen ac-
cording to engineers know-how, which can sometimes lead to unexpected disappointing
performances. Taking uncertainties into account could be done in two ways: chance con-
strained optimization as done in [141], and robust optimization. In this paper we investigate
the robust optimization approach. Due to the particular structure of involved functions,
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our approach first consists in approximating the initial aircraft preliminary design problem
(6.1) by a linear program and then to apply dedicated robust optimization techniques,
namely the ones described in [16].

The outline of the paper is as follows. Section 6.2 is dedicated to the modeling of the
uncertain optimization problem in three steps: first we build an affine approximation of
Problem (6.1); then we define uncertainties related to the modeling and present the way
we deal with them; lastly we use the techniques developed by [16, Chapter 1] to obtain
an equivalent tractable formulation. Finally, in Section 3, after a short description of the
Airbus toolbox SiMCAD, two cases of robust optimization of aircraft design are solved and
numerical results are presented.

6.2 Modeling the uncertain linear optimization problem

Engineers knowledge and first computations concur in assuming that objective functions
such as cost or fuel consumption, are almost affine in the design variables, and that the
constraint set could be approximated by a polyhedral set, i.e. by a finite set of affine
constraints. This will enable us in Section 6.2.1 to replace Problem (6.1) by a linear
programming problem of the form:

min
X∈Rn

c>X + d,

s.t. A ·X ≤ b, Xmin ≤ X ≤ Xmax

(6.2)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R. The number of constraints is m+ n.
The next step will be in Section 6.2.2 to deal with uncertainties naturally arising in

the aircraft modeling. The latter will be expressed as uncertainties on the coefficients A,
b, c and d. Lastly we formulate in Section 6.2.3 the uncertain linear optimization problem
and its robust counterpart, and show that it could be rewritten as a deterministic linear
programming problem.

Note that all functions used along the design process are black-box type functions for
which gradients are available.

6.2.1 Polyhedral approximation

Assuming that the objective function f is affine, we can replace f by its first order approx-
imation at X0:

f(X) = f(X0) +∇f(X0)>(X −X0),

where X0 denotes, e.g., the mean point of the bounded domain {X ∈ Rn : Xmin ≤ X ≤
Xmax}. We state:

c = ∇f(X0), d = f(X0)−∇f(X0)>(X −X0).

Let us now focus on building a polyhedral approximation of the constraint set {X ∈
Rn : g(X) ≤ 0}. For each constraint gj(X) ≤ 0, the idea is first to compute a family of
points (Xj

i )i=1,...,mj on the level set L0(gj) = {X ∈ Rn : gj(X) = 0} and then to build a
piecewise linear approximation g

j
of gj :

g
j
(X) = max

{
aj>i (X −Xj

i ) : i = 1, . . . ,mj

}
.
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For a given family of points (Xj
i )i=1,...,mj on the level set L0(gj), we propose two ways for

choosing aji ∈ Rn:

• Approximation by tangent hyperplanes. We state:

aji = ∇gj(Xj
i ), ∀i = 1, ...,mj ,

so that
{
aj
>

i (X −Xj
i ), i = 1, ...,mj

}
is a family of hyperplanes tangent to the con-

straint set {X ∈ Rn : gj(X) ≤ 0}.

• Approximation by secant hyperplanes. Assume: mj ≥ n. For each n-uplet
(X̃j

1 , . . . , X̃
j
n) of points selected among the points Xj

1 , . . . , X
j
mj , the equation of the

hyperplane passing through the points X̃j
1 , . . . , X̃

j
n is of the form:

aj>(X − X̃j
1) = 0.

Since the coefficients aj = (aji )i=1,...,n are defined up to a multiplicative constant,
we arbitrary impose: aj>X̃j

1 = 1, so that aj is solution of the following system:
aj>X̃j

i = 1, i = 1, . . . , n, i.e.: [
X̃j

1 | . . . |X̃
j
n

]>
aj = 1

In both cases, the constraint gj(X) ≤ 0 is then replaced by gj(X) ≤ 0. The latter is
equivalent to: aj

>

i (X −Xj
i ) ≤ 0 for all i = 1, . . . ,mj and can be rewritten as:

AjX ≤ bj , (6.3)

where Aj =
[
aj1| . . . |ajmj

]>
∈ Rmj×n and bj = AjX

j
i ∈ Rmj . Lastly the constraints

gj(X) ≤ 0, j = 1, . . . , l, are now replaced by the affine constraint:

AX ≤ b,

where: A =
[
A>1 | . . . |A>l

]>
∈ Rm×n, b =

[
b>1 | . . . |b>l

]>
and m =

l∑
j=1

mj .

In the case where constraints are affine, the tangent hyperplane approximation can be
used and is easiest to compute. When the constraint functions gj , j ∈ {1, . . . , l}, are not
affine but convex, we have to select carefully the points Xj

i used in the secant hyperplanes
computation: more precisely, we have to choose points on the boundary of the domain
[Xmin, Xmax] to obtain a conservative approximation of {X|g(X) ≤ 0}. In that case, we
get: gj(X) ≤ g

j
(X) for all X and all j = 1, . . . , l, hence:

{X|g(X) ≤ 0} ⊂
{
X|g(X) ≤ 0

}
.

Let us now describe the construction of the points (Xj
i )i=1,...,mj for each level set L0(gj),

j = 1, ...,m. For the sake of clarity we omit the subscript j in the following explanation.
For a given inequality constraint g(X) ≤ 0, we want to find a family of points (Xi)i=1,...,m
such that g(Xi) = 0. This problem is then decomposed into two steps: first computing one
point X1 in a reasonable computational time, and then from this first point, to compute
X2, . . . , Xm such that the family (Xi)i=1,...,m is well-distributed on the level set L0(g).
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6.2.1.1 Computing points on the level set L0(g)

In this section we want to compute at least one point X1 ∈ Rn satisfying: g(X1) = 0.
From an analytical point of view, this problem can be formulated as:

min
X∈Rn

g(X)2. (6.4)

To solve this problem we propose to use a gradient-type algorithm [27]: let us consider
an arbitrary point X̃0 ∈ Rn. By definition of the iso-level curve of g, we have: X̃0 ∈
Lg(X̃0)(g). The gradient descent algorithm generates a sequence of iterates (X̃k) such that:

X̃k+1 = X̃k − 2skg(X̃k)∇g(X̃k), (6.5)

where sk > 0 denotes the step length. In this approach we choose the step sk such that in
case of an affine constraint function g, Algorithm (6.5) converges in one single iteration:
assuming g is affine, we want to compute sk such that: g(Xk+1) = 0 where g can be
expressed as:

g(X) = g(X̃k) +∇g(X̃k)(X − X̃k).

This yields:

sk = 1
2‖∇g(X̃k)‖2

. (6.6)

Finally we obtain the following iteration for the gradient descent method:

X̃k+1 = X̃k −
g(X̃k)

‖∇g(X̃k)‖2
∇g(X̃k).

The stopping criterion of the algorithm can be defined by either of the following conditions:

1. |g(X̃k)| < ε1,

2. |sk+1 − sk| < ε2 and |g(X̃k+1)− g(X̃k))| < ε3.

In the numerical experiments, we choose e.g.: ε1 = ε2 = ε3 = 10−3.

6.2.1.2 Find the family (Xi)i=1,...,m

Once an initial point X1 has been found, the idea is to run through the tangent hyper-
plane (H1): ∇g(X1)>(X − X1) = 0 using orthogonal directions. In dimension 2 and 3 a
small enough step along these directions (according to a subdivision of the minimum and
maximum bounds) is defined. Along each direction a new point is computed from which
we start the previous search algorithm. Once the current point goes beyond the bounds
of the domain, the direction is no longer used. A well-distributed family of (Xi)i=1,...,m
that approximates the level curve L0(g) is obtained. This technique is heuristic and then
improvements are required to develop a better method. Numerical examples in dimensions
2 and 3 works well. In higher dimension it becomes more difficult. A heuristic way could
be to first compute a family of points close to the level curve L0(g) with a low cost, and
then to run the previous algorithm from all these points. For example surrogate modeling
from the real functions could be used to compute the latter family.

However, a general methodology needs to be developed for a better approximation of
the level curve.
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6.2.2 Modeling Uncertainties

In the following, uncertainties on coefficients A, b, c and d are supposed to be known.
In practice, they can be provided by engineers, or obtained by uncertainty propagation
methods. We can then define the linear programming problem taking into account the
uncertain coefficients A, b, c, d. We have the following family of optimization problems:

min
X ∈ Rn

c>X + d,

s.t. A ·X ≤ b, Xmin ≤ X ≤ Xmax

(6.7)

where (A, b, c, d) ∈ U and U ⊂ Rm×n × Rm × Rn × R is the uncertain set. Let us state:

D =
[
c> d
A b

]
, D ∈ R(1+m)×(n+1). (6.8)

In order to remain consistent with the analysis of A. Ben-Tal, L. El Ghaoui and A. Ne-
mirovski in [16], we assume that U admits an affine parametrization such that:

U =
{
D =

[
c> d
A b

]
∈ R(1+m)×(n+1)

∣∣∣D = D0 +
L∑
k=1

ζkD
k, with ζ ∈ Z ⊂ RL

}
, (6.9)

where Z ⊂ RL denotes the perturbation set, D0 is the nominal value, and Dk is the
variation.

In a first approach we consider the worst case situation in which: L = (m+ 1)(n+ 1)
and the variations Dk are defined such that:

Dk
i,j =

{
1 if l = (n+ 1)(i− 1) + j,
0 otherwise. (6.10)

The perturbation set Z is then of the form:

Z =
L⊗
k=1

[
ζinfk , ζsupk

]
. (6.11)

The definition of Z from (6.11) is a worst case approximation of the uncertainty set in the
sense that we probably overestimate the uncertain set. This overestimation must be dealt
with cautiously so that it does not induce infeasibility of the problem.

Note that the definition of the uncertainty set U can be simplified by introducing the
affine transformation ρk:

ρk : [−1, 1] →
[
ζinfk , ζsupk

]
(6.12)

ξ 7→
ζsupk − ζinfk

2 ξ + ζsupk + ζinfk

2 . (6.13)

The uncertainty set U can be rewritten as:

U =
{
D =

(
D0 +

L∑
k=1

ζsupk + ζinfk

2 Dk

)
+

L∑
k=1

ζsupk − ζinfk

2 ξkD
k

∣∣∣∣∣ ξ ∈ [−1, 1]L
}
,(6.14)
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=
{
D = D̂0 +

L∑
k=1

ξkD̂
k

∣∣∣∣∣ ξ ∈ [−1, 1]L
}
, (6.15)

in which

D̂0 = D0 +
L∑
k=1

ζsupk + ζinfk

2 Dk, D̂k = ζsupk − ζinfk

2 Dk. (6.16)

6.2.3 The uncertain linear optimization problem and its robust counter-
part

Following [16], the Problem (6.7) is equivalently reformulated in such a way that uncer-
tainties only appear in the constraints:

min
(X, t) ∈ Rn+1

t s.t. AX ≤ b,

c>X + d ≤ t, Xmin ≤ X ≤ Xmax,
(6.17)

for any (A, b, c, d) ∈ U . By definition, a robust solution of (6.17) is an optimal solution of
its robust counterpart and the robust counterpart of the Problem (6.17) is defined by:

min
(X,t)∈Rn+1

(
sup

(A,b,c,d)∈U
t

)
s.t. AX ≤ b, c>X − t ≤ −d,

Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U ,

which is equivalent to:

min
(X,t)∈Rn+1

t s.t. AX ≤ b, c>X − t ≤ −d,

Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U .

(6.18)

Let A :=
[
a>1 , ..., a

>
m

]>
. The robust counterpart (6.18) can be rewritten as:

min
(X,t)∈Rn+1

t s.t. a>i X ≤ bi, i = 1, . . . ,m

c>X − t ≤ −d,
Xmin ≤ X ≤ Xmax,
∀ (c, d,A, b) ∈ U .

(6.19)

By means of the techniques of [16], the latter can be rewritten into the following determin-
istic linear optimization problem (see appendix A for technical details):

min
X̃∈R2n+1

C ′>X̃ s.t. AX̃ ≤ b,

Xmin ≤ X ≤ Xmax,
(6.20)

where the optimization variables are: X̃ =
(
X>, t,u>

)>
and:

C′ = (0, . . . , 0, 1, 0, . . . , 0)> ∈ R2n+1,
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A =


In 0n −In
−In 0n In

ˆA(0) 0m P (a)

Ĉ(0)
>
−1 P(c)

 ∈ R(2n+m+1)×(2n+1), (6.21)

b =
(
01×2n, b̂(0) −P(b),−P (d) − d̂(0)

)>
∈ R(2n+m+1). (6.22)

The scalars, vectors and matrices ˆA(0), Ĉ(0), P (a), P(c), P (b) and P (d) are defined in
appendix A. Finally we are dealing with a linear program with (2n + 1) unknowns and
(2n+m+ 1) constraints, where m is the number of initial constraints. For example, in
the 2-dimensional case-study, we will have X ∈ R2, u ∈ R2 and t ∈ R.

6.3 Application: Aircraft Preliminary Design Robust Opti-
mization

Preliminary aircraft design is the first step in the passenger transport aircraft design process
[12]. The goal is to choose, among several concepts, the one which would be relevant
according to a well defined objective (cost, fuel consumption or environmental impact).
For each concept, the main aircraft parameters have to be assessed consistently according
to a common set of requirements.

In this section we first briefly present the aircraft preliminary design process and define
the related uncertain optimization problem. We then describe the way to propagate un-
certainties through the models, and finally apply the whole methodology to two real cases
of aircraft design.

6.3.1 The Aircraft Preliminary Design Process

The design process is multidisciplinary since several physics such as geometry, aerodynam-
ics, mass, propulsion, performance and cost analysis are involved.

We use an aircraft toolbox called SiMCAD (Simple Models for Conceptual Aircraft
Design), developed in Scilab [155] and dedicated to research activity in the domain of
Overall Aircraft Design. It is a toolbox of models that allows to run simple, but realistic,
pre-design processes involving all main physics of an aircraft. It offers the possibility to test
multi-disciplinary, multi-level, multi-objective and robust optimization strategies without
having to manage huge amount of data and huge computation time. A complete description
of these models can be found in [22].

More precisely, we use semi-empirical models for the aerodynamics and the masses, and
simplified physical models of operational performances. To sum up, all combined models
count around 180 parameters and 50 functions. They have been validated on existing
aircraft. We now have to choose some optimization parameters that will allow to define an
aircraft configuration. Engineers practice and know-how lead us to choose the Wing Area
that controls the dimension of the wing and the Sea Level Static Thrust (SLSThrust) that
controls the engine size.

Now, the aircraft configuration has to be optimized according to a given objective.
We here choose the Cash Operating Cost (COC) which takes into account the fuel, the
masses, the engine and airframe maintenance, the crew cost and some navigation charges.
We also need to fix some requirements as the range of the aircraft, that correspond to the
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customer demands (see Table 6.1). Operational needs for safety and operations define a
set of inequality constraints described in Table 6.2.

Table 6.1: Description of the baseline aircraft requirements.

Name Value
Number of Passengers (Npax) 180

Design Range 2000 NM
Cruise Mach number 0.65
Wing Aspect Ratio 12

Number of Turbofan Engine 2
Engine By Pass Ratio 10
Top of Climb altitude 35000 ft

Engine Overall Pressure Ratio 40

Table 6.2: Objective and Constraints

Objective f Cash Operating Cost (COC) $/trip
g1 Take-off field length 1 (at Sea Level) (TOFL1) ≤ 2000 m
g2 Take-off field length 2 (in High & Hot conditions) (TOFL2) ≤ 2500 m

Constraints g3 Climb vertical speed ceiling (CLBVZ) ≥ 500 ft/min
g4 Cruise vertical speed ceiling (CRZVZ) ≥ 300 ft/min
g5 Landing Speed (LDSPEED) ≤ 130 kt

Models and functions that drive the aircraft configuration computation, are sequential.
The whole process can be represented from a global point of view by the diagram presented
in Figure 6.1: it shows the way the different physics interact, how an aircraft is computed
from requirements and input variables and how objectives and constraints are computed.

Moreover, the design process is significantly improved when the uncertainty associated
to each criteria is provided. Therefore robust optimization has a high added value com-
pared to a classic deterministic one. As mentioned before, uncertainty quantification has
already been assessed and the most important impact of uncertainty is coming from the
computation of aerodynamic efficiency, specific fuel consumption and structural weight.
Taking these uncertainties into account, we present in this section a two-dimensional and
a three-dimensional application cases. The different steps of our approach are summarized
hereafter:

• Build an affine approximation for the objective and a polyhedral approximation for
the constraints set.

• Quantify and propagate uncertainties with a first order approximation method in
order to obtain L∞ boxes on all ζ’s.

• Build corresponding A, b, c and d in order to obtain the Problem (6.20)
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Figure 6.1: Aircraft Simple Design Process Diagram.

• Solve the linear constrained programming problem (6.20) using the simplex algorithm
[98]. Here we use the linpro function from Scilab.

In each test case, the robust solution, i.e. the solution of (6.20), is compared to the (non
robust) solution of the initial deterministic optimization problem (6.1). The latter is solved
using a Feasible Sequential Quadratic Programming algorithm [184], here the fsqp Scilab
function.

6.3.2 Uncertainty propagation method

The processes involved in the preliminary aircraft design, are bringing uncertainties. They
are based on semi-empirical models in which some equations are replaced by regressions
from databases. Recently, these uncertainties have been quantified [22]. It is now the
time to take them into account in the design process.

To evaluate uncertainties on the coefficients A, b, c, d of the Problem (6.2), several
propagating methods can be used [129, 126, 125, 141]. The Monte-Carlo sampling is
the more accurate one but also the one with the highest computational cost. Moreover
we have to take into account the following important information: the evaluation of the
constraints and the objective functions is computationally expensive and the constraints
and the objective functions are almost affine.

This is why we choose to use a moment based propagation method with a first order
Taylor approximation of the uncertain function: it is a non intrusive method which offers
in our case a good compromise between accuracy and computational cost. The main steps

172



6.3. Application: Aircraft Preliminary Design Robust Optimization

of the propagation method are the following:

• Get or compute the first moments of the model input uncertainty distributions,

• Propagate moments through computation process and get the moments of the output
uncertain values using a first order moment method [104, 163],

• Use these moments to determine the uncertainty set on coefficients A, b, c and d.
This is done by following Moments Methods from [131], that allows to reconstruct
a distribution from its moments. Based on this approach, [22] shows that we can
compute distributions parameters as a function of the moments and thus determine
the distribution support. The bounds of the supports are then the interval of output
uncertainty.

An other example of use of the moment propagation method can be found in [141].

6.3.3 Robust Aircraft Design Optimization

We choose the baseline short range aircraft presented in Section 6.3.1. We start with the
following robust optimization problem:

min
X∈Rn

f(X) s.t. gi(X) ≤ 0, i = 1, . . . , 5,
Xmin ≤ X ≤ Xmax,

(6.23)

where the objective and the constraints are defined in Table 6.2. All constraints are writ-
ten under the standard form: gi(X) ≤ 0, and the optimization variables are defined in
Table 7.1. They have to satisfy box constraints. In the case n = 2 the cruise Mach is set
to 0.65.

Table 6.3: Optimization variables (x1, x2) when n = 2 and (x1, x2, x3) when n = 3.

Name Unit Lower and Upper bounds
x1 Wing Area m2 [100, 170]
x2 Sea-Level Static Thrust daN [9000, 13000]
x3 Cruise Mach Mach [0.65, 0.76]

In what follows, the objective function f denotes the Cash Operating Cost (COC)
computed with respect to the Wing Area x1, the Sea-Level Static Thrust x2 and the
Cruise Mach x3. This function is almost affine in (x1, x2, x3) while the constraint functions
gi are convex.

6.3.3.1 Case n=2

In two dimensions, the formulation of the problem is the following one:

min
(x1,x2)∈R2

f(x1, x2, 0.65) s.t. gi(x1, x2) ≤ 0, i = 1, . . . , 5,

100 ≤ x1 ≤ 170,
9000 ≤ x2 ≤ 13000.

(6.24)
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Figure 6.2: Aircraft 2D Design Problem, with constraints and objective level curves.

For a better understanding of the proposed approach, Figure 6.2 shows a 2D map with
constraints and some level curves of the objective function.

The first step of our approach is to compute the affine approximation of f at the mean
point of the domain of definition, and the piecewise affine approximation of the gi at points
Xi
j , j = 1, ...,mj . For this we apply the method to find points on each constraint level curve.

These points are the crosses from Figure 6.2. They will also be represented in the next
figures. Then, as constraints are convex functions, we choose to build secant hyperplanes.
Observe that the more non-affine the constraint, the higher the number of approximating
hyperplanes. Figure 6.3 shows the polyhedral approximation of the constraints set and
some level curves of the linearized objective. The corresponding hyperplanes equations are
of the form:

a
(i)
1 x1 + a

(i)
2 x2 = 1, i = 1, ...,m. (6.25)

Once we have the equations of the constraints and of the objective, the next step is the
propagation of uncertainty. We consider the following sources of uncertainty:

• from aerodynamic models: Lift over Drag coefficient (LoD) is calculated with an
error of ±1% around its nominal value,

• from mass models: Maximum Overall Empty Weight (MWE) is calculated with an
error of ±1% around its nominal value,

• from propulsion models: Specific Fuel Consumption (SFC) is calculated with an error
of ±1% around its nominal value.

The first order Taylor based propagation method gives as a result the uncertain interval on(
a

(i)
1 , a

(i)
2

)
, i = 1, ...,m. The uncertainty interval is also computed for the affine objective

function coefficients.
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Figure 6.3: Approximation of Aircraft 2D Design Problem, with piecewise affine con-
straints and affine objective.

Finally the original problem is reformulated as a linear programming problem such
as (6.20). We obtain in this case with an initial number of approximating hyperplanes
m = 25, a linear programming problem in dimension 5 with a total of 30 constraints.
Using a classical linear programming solver (linpro from scilab) based on the simplex
method we obtain the solution presented in Figure 6.4. Constraints at the solution point
are also represented on this figure. And we have the following solution:

Xsol =
(
10292 daN, 115.6 m2

)
, with the objective value: COC = 4285 $/pax.

The robust solution Xsol is then compared to the non robust solution Xdet
sol of the initial

deterministic optimization problem (6.1):

Xdet
sol =

(
10121 daN, 114.3 m2

)
, with the objective value: COCdet = 4279 $/pax.

As expected, the price of robustness is a small increase of cash operating cost (COC) value.
The last step is to verify the robustness of the solution Xsol. For that we run from the

obtained solution point Xsol a reliability assessment with the original constraint functions.
Using the previously mentioned propagation method we compute the interval of error on
each constraint (written in the form g(X) ≤ 0). For a constraint g(Xsol) we obtain the
uncertain interval

[
gmin(Xsol), gmax(Xsol)

]
. Then the solution is robust, meaning that

constraints are always satisfied, if and only if gmax(Xsol) ≤ 0. Results are in Table 6.4.
Relative upper bound represents the upper bound divided by the required value of Table
6.2 for each constraint. We observe that active constraints (Take-off field length 1 and
Landing Speed) have the lowest relative reliability margin as expected.
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Figure 6.4: Robust Approximation of Aircraft 2D Design Problem and its solution.

Table 6.4: Constraints reliability assessment at point Xsol (case n = 2).

Constraint Upper Bound (gmax(Xsol)) Relative Upper Bound
Take-off field length 1 - 5.8 -0.003
Take-off field length 2 - 176 -0.07

Climb vertical speed ceiling - 3 -1.2
Cruise vertical speed ceiling - 3.1 -2.0

Landing Speed - 0.02 -0.0003

6.3.3.2 Case n=3

In this case, the cruise Mach number is added to the optimization variables. The formu-
lation of the problem is the following one:

min
(x1,x2,x3)∈R3

f(x1, x2, x3) s.t. gi(x1, x2, x3) ≤ 0, i = 1, . . . , 5,

100 ≤ x1 ≤ 170,
9000 ≤ x2 ≤ 13000,
0.65 ≤ x3 ≤ 0.76.

(6.26)

We follow the same steps as for the case n = 2. We first compute an affine approximation
of f at the mean point of the definition domain, and then a piecewise affine approximation
of the gi at points Xi

j , j = 1, ...,mj . For that we apply the method to find points on each
constraint level curve. Since the constraint functions are known to be convex, we choose
to build secant hyperplanes. Then we consider the same sources of uncertainties from
aerodynamic, mass and propulsion models. Finally we reformulate the problem in order
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to obtain a linear programming formulation such as in Equation (6.20). We obtain in this
case with an initial number of approximating hyperplanes m = 43, a linear programming
problem in dimension 7 with a total of 50 constraints. Using the linpro linear programming
solver from Scilab we obtain the solution:

Xsol =
(
9764 daN, 141.2 m2,Mach 0.76

)
, with: COC = 4080 $/pax.

The robust solution Xsol is then compared to the non robust solution Xdet
sol of the initial

deterministic optimization problem (6.1):

Xdet
sol =

(
9306 daN, 137 m2,Mach 0.76

)
, with: COCdet = 4070 $/pax.

We also run the reliability assessment at the solution. We obtain the Table 6.5 for each
constraint. Reliability is satisfied. Let us finally have an insight into the computational

Table 6.5: Constraints reliability assessment at point Xsol (case n = 3).

Constraint Upper Bound Relative Upper Bound
Take-off field length 1 - 95 -0.05
Take-off field length 2 - 267 -0.11

Climb vertical speed ceiling - 1.1 -0.44
Cruise vertical speed ceiling - 1.2 -0.8

Landing Speed - 0.41 -0.006

cost of the robust design approach: Table 6.6 presents the number of calls to the process
in the deterministic case and in the robust case. Note that the computational effort spent
using the robust approach, comes only from the linearization process.

Table 6.6: Number of calls to the aircraft design process.

Deterministic Optimization with SQP Robust Optimization
2D case 25 160
3D case 55 389

6.4 Conclusion and perspectives
This paper proposes a methodology to apply techniques of robust linear programming to
the aircraft preliminary design problem. Under the assumptions of an affine objective
and convex constraints, the problem is first approximated in a conservative manner by an
uncertain linear program. In the case where the uncertainty set on the output is unknown,
a propagation method can be used. The uncertain linear optimization problem is obtained
and its robust counterpart is formulated. Results are presented for a two and a three
dimensional test cases. In both cases, the obtained solutions are robust.

However this approach raises several limitations. The first issue appears during the
approximation of constraint level curves. The way of building the secant hyperplanes from
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a family of points from the level curve is heuristic. In dimension two and three, a heuristic
method that consists in merging closest points to build hyperplanes and then browse the
level curve going through all directions, allows to construct a good approximation. It may
be more difficult in higher dimension. A further step in the study would be to find a general
methodology to build a piecewise affine approximation of a level curve whatever the design
space dimension is. The second issue is in the case where one only has uncertainties about
model inputs. The choice of the propagation method to build the uncertain set on output is
important. The need of being conservative makes fundamental the accuracy of the output
error interval. An underestimation of this interval could lead to non-robust solutions.

178



Conclusion

The first objective of this thesis was to state, investigate, and solve the highly multidisci-
plinary and multi-objective problem of aircraft design and operation. This objective was
reached by using a step-by-step approach. The first contribution was to incorporate thor-
oughly and progressively new models of the engine, of the mission profile and of the climate
impact, into the usual basic models. We validated each model increment by comparing the
simulation results with existing aircraft data.

The second contribution was to incorporate new design variables into the aircraft design
optimization process. To the two basic degrees of freedom - the wing area and the sea level
static thrust (driving the engine size and power) - , we added the wing aspect ratio from
the airframe, the engine by-pass ratio from the propulsion system, the cruise altitude and
the Mach number from the overall trajectory parameters, and finally speeds of the climb
and descent. We validated the results of the optimization by a step-by-step integration of
these new degrees of freedom.

Another objective of this thesis was to solve the problem of the environmentally efficient
aircraft design. We then incorporated a climate impact model into the processes. From
this model, we selected a representative measure of the climate impact, which was added
as a new criterion of the aircraft design optimization. For that environmental purpose,
we proposed an unconventional aircraft configuration: a hybrid electric-fuel propelled air-
craft. It came with an electric fan on its rear fuselage, electric generators on the thermal
engines, and additional battery. The concept was modeled with an accurate way of using
the batteries, the fan and the generators along the mission. We then optimized both the
conventional and the hybrid aircraft design, with respect to the same specifications. For
that purpose, we applied a step-by-step integration of the degrees of freedom. Moreover,
we compared the optimization in terms of climate impact, operating costs and a criterion
representing the global efficiency of the aircraft, namely the maximum take-off weight. The
analysis of the final results highlighted the proportional impact of each group of degrees of
freedom on the optimized aircraft. We also observed that the cost and the climate impact
are two conflicting criteria. Another interesting result was the environmental efficiency of
the hybrid configuration. Finally, we proposed to take advantage of the hybrid configura-
tion by working on the synergies offered by the electric fan and the batteries. We observed
that this work on the synergies was necessary to obtain a competitive hybrid aircraft.

The other contributions of the thesis are the following:

1. the integration of an automatic differentiation method into the numerical tools, by
overloading all the basic operators and functions of the processes. This allowed to
reach a better accuracy than the classical finite difference methods when computing
gradients and Hessians. Moreover, it may bring significant improvement of conver-
gence of gradient based methods.
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2. The comparison and selection of the optimization methods well-adapted to the air-
craft design problem. Gradient based methods were first used with the gradients
provided by the automatic differentiation tool. However, some points of the de-
sign space appeared to be non computable. This is why we resorted to derivative
free optimization techniques. Genetic algorithms (NSGA II) were tested to solve
mono-objective and also multi-objective optimization. Differential evolution algo-
rithms were modified to deal with constraints, and applied in some studies. An
implementation of the MADS algorithm compiled from C++ also proved to have
good convergence properties in our design studies. Finally the increasing number of
degrees of freedom motivated the study of surrogate based optimization tools.

3. The use of a new family of probability distributions with four parameters, namely
the Beta-Mystic distribution, which covers a wide range of unimodal distributions.

4. A detailed study and comparison of uncertainty propagation methods, with respect to
criteria of accuracy, computing cost and knowledge on the models. The comparison
is made between Monte-Carlo, Taylor expansion, Polynomial chaos expansion, and
quadrature methods. A particular attention is paid to moment based propagation
methods, which have powerful practical applications on design under uncertainties
problems.

5. An approach of the aircraft design optimization under uncertainty. For that, a chance
constrained programming approach was proposed. We brought modifications to a
numerical method of robust design optimization, namely the Sequential Optimization
Reliability Assessment (SORA) method. By using a technique that computes bounds
on probability measures, the SORA method is able to handle a larger variety of
distributions.

6. The application of all the previously mentioned tools to an unconventional aircraft
design chance constrained optimization. We solved the following problem: find the
year from which the hybrid aircraft will perform like the conventional one with a 0.95
probability.

7. The first steps towards another approach of the robust optimization of the aircraft de-
sign. The result is an optimal aircraft which satisfies all realizations of the constraints
within some uncertainty box. A particular attention was paid to the modeling of such
an approach.

Finally, this thesis contributes to sensitize the future project office to uncertainty man-
agement by using probability distributions. It also yields the development and the im-
provement of internal numerical tools, namely SiMCAD and OCCAM, used for solving
the aircraft design problem. All the models developed in the frame of this thesis - the
climate impact, the hybrid aircraft, the thermodynamic engine and the detailed mission
profile - were incorporated into these tools, and validated by the presented studies. In the
frame of some internal projects, this thesis participated in sensitivity studies on the hy-
brid aircraft design parameters, and presented a complete study of this innovative concept.
Moreover, this thesis leads to the integration of the uncertainty propagation methods to
the numerical design tools. In particular the first order, the second order, the univariate
reduced quadrature and the bivariate reduced quadrature methods.
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The results obtained in this thesis yield the following perspectives.
The first one is to continue the robust optimization approach leaded of Chapter 6.

Indeed, the application of the methodology worked fine for the two and three dimensional
cases, and should be generalized to higher dimension.

Another perspective was raised by the robust optimization approach, when it comes to
propagate the uncertainties. It could be interesting to study the impact of the accuracy
of the uncertain output on the selected risk measure, or even on the risk measure bound.
This would allow to be aware of the error that is made when the measure is computed
and then to be aware of the real robustness of the problem solution. For instance, in the
proposed chance constrained optimization, we use the moments of the output uncertainty
to compute the probability measure bounds. The impact of the moment computation error
on the bound should be assessed.

Another point could be to automate the study of a solution in the case of the determin-
istic studies. The neighborhood of the solution is of interest for the various actors of air
transportation. The sensitivity of the results to the design variable is of important matter,
e.g. the sensitivity to the cruise Mach number and the cruise altitude, which are extremely
important quantities for the airlines operations.

Also, the integration of all the tools and methods into internal numerical tools bring
the opportunity to study other aircraft concepts, particularly other configurations of hy-
bridization. This already started with an internship on the optimization of a new concept
of hybrid aircraft, compared to more conventional ones.

Another perspective which could bring important benefits in robust design optimization
is the study of the joint probability case. It could be useful for the practitioners in robust
design to build a joint probability with some dimension reduction methods. In the frame of
this thesis, we did not have the opportunity to study the copulas, which are an interesting
tool to represent multidimensional random variables. This might be a next step.

Finally, very recent methods in the field of robust design could be of interest, particu-
larly when a large number of uncertainty input are involved. These are coupling adaptive
uncertainty quantification tools and direct search optimization algorithms [44]. These
methods showed very interesting convergence properties, with reasonable computing time.
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Chapter 7. Version française raccourcie : Approche novatrice pour la conception et
l’exploitation d’avions écologiques

7.1 Introduction

Depuis les années 1950, le trafic aérien est en constante croissance: actuellement, le nom-
bre de passagers est d’environ 3 milliards par an et, selon les prévisions les plus basses, il
devrait doubler sur les quinze prochaines années. Les acteurs du transport aérien - les con-
structeurs de moteur, les avionneurs, et les compagnies aériennes - sont concentrés chacun
sur des enjeux propres à leur secteur d’activité, ce qui peut s’avérer limitant pour atteindre
les objectifs ambitieux qui devront répondre à la croissance du trafic. En particulier, avec
la place de plus en plus importante de la problématique environnementale, les objectifs
règlementaires récemment mis en place afin de réduire l’impact de l’aviation sur le réchauf-
fement climatique vont devoir être pris en compte dès la phase préliminaire de conception
d’un nouvel avion.

De façon classique, lors de cette phase, le but de l’avionneur est de comparer les per-
formances de nombreuses configurations afin de déterminer les paramètres de conception
qui optimiseront l’avion de demain. L’étude des performances d’un avion est un problème
d’optimisation multidisciplinaire déterministe sous contraintes. Les objectifs de cette op-
timisation sont traditionnellement la consommation de fuel, le cout global d’opération de
l’avion ou encore la masse maximale au décollage de l’avion (qui rend compte de l’efficacité
globale de l’avion). Les contraintes sont définies par les exigences du cahier des charges.
Habituellement, les degrés de liberté de cette optimisation sont fixés: il s’agit de la surface
de la voilure et de la taille du moteur. Des études sont souvent menées sur l’avion optimisé,
afin d’en étudier la sensibilité à d’autres paramètres de la géométrie, du moteur ou de la
mission par exemple. Aussi, les études préliminaires de conception sont lancées à partir de
modèles parfois très simplifiés, soit par volonté de réduction du temps de calcul, soit par
manque de connaissance sur les concepts technologiques abordés.

Dans cette thèse, réalisée aux Avant-Projets d’Airbus, une nouvelle approche holistique
du problème d’optimisation de la conception d’avion est introduite : le but est d’agréger
aux modèles classiques de conception, des modèles plus précis de la partie propulsive et de
la trajectoire. Une fois ces modèles validés en se basant sur des données d’avions existants,
ils ont été intégrés aux outils existants. Afin d’utiliser au mieux cette intégration et de
profiter des synergies de cette approche, une des contributions de la thèse a été d’intégrer
aux degrés de liberté usuels, des paramètres de conception du moteur et des degrés de
liberté de la mission. L’étude des résultats met en évidence les gains apportés par cette
nouvelle approche en comparaison avec l’approche classique.

Cette thèse contribue également à répondre à la problématique de l’impact environ-
nemental de l’aviation en ajoutant la minimisation de l’impact climatique aux objectifs
classiques de la conception d’avion. Une modélisation de cet impact est intégrée aux
modèles existants. Pendant la phase préliminaire de conception d’avion, de nombreuses
technologies innovantes sont étudiées afin de minimiser les critères précédemment cités.
Nous sélectionnons certaines de ces innovations pouvant s’intégrer au système propulsif
de l’avion, à son système aérodynamique, à sa géométrie ou encore à sa mission afin de
tirer de la configuration le maximum de bénéfices en termes de performances. Nous pro-
posons ainsi d’appliquer l’approche holistique à un concept innovant d’avion à propulsion
hybride électrique-fuel. Les modèles construits et utilisés pour optimiser cet avion hybride
sont présentés et viennent compléter les modèles existants après validation par des experts
dans le domaine. Les résultats de cette optimisation sont comparés à ceux d’un avion
conventionnel répondant au même cahier des charges.
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Toutes les études menées jusqu’à présent sont déterministes. Des incertitudes autour
des modèles utilisés existent et sont traditionnellement prises en compte par des marges
basées sur le savoir-faire ingénieur. Cela peut parfois mener à des contre-performances
inattendues. Dans cette thèse nous introduisons une nouvelle approche consistant à pren-
dre en compte consciencieusement ces incertitudes. Pour cela, un des chapitres de la thèse
est consacré au recensement et à la comparaison des méthodes de gestion des incertitudes
qui pourraient s’appliquer à notre problème de conception, selon des critères propres à
nos études (temps de calcul, précision, hypothèses sur les modèles, ...). Nous proposons
ensuite de résoudre une optimisation sous contrainte en probabilité du concept d’avion
hybride, en prenant en compte les incertitudes liées à l’évolution des technologies néces-
saires à l’hybridation. Enfin, cette thèse présente une nouvelle approche d’optimisation
robuste de la conception d’avion: nous cherchons à concevoir un avion optimal vis-à-vis
du cout ou de la consommation en fuel et dont les performances sont satisfaites quelle
que soit l’incertitude présente. Cette approche est complémentaire à l’approche sous con-
traintes en probabilité. L’application de ces méthodes d’optimisation robuste nécessite
une modélisation particulière du problème qui est décrite dans le dernier chapitre de cette
thèse.

7.2 Modélisation, simulation et validation

7.2.1 Description du processus de conception avion

Le processus de conception avion (OAD pour Overall Aircraft Design) est le processus de
définition globale d’un avion. La première étape consiste à sélectionner un certain nombre
de spécifications telles que le nombre de passagers, le rayon d’action de l’avion et les per-
formances attendues. La conception est généralement optimisée par rapport à un critère
donné tel que le cout d’opération de l’avion (COC pour Cash Operating Cost), la con-
sommation en fuel ou la masse maximum au décollage (MTOW pour Maximum Take-Off
Weight) qui est un indicateur de performance de l’avion. Les variables de conception clas-
siques sont la surface de la voilure et la poussée statique au niveau de la mer (SLSthrust
pour Sea Level Static Thrust) qui conditionne la taille des moteurs. Les outils numériques
de l’OAD permettent de calculer la configuration complète d’un avion et ses performances.
Le but est de trouver les valeurs des variables de conception permettant à l’avion de satis-
faire les spécifications demandées tout en minimisant le critère choisi. Cette optimisation
qui englobe le calcul de la configuration de l’avion, est une optimisation mono-objectif
déterministe sous contraintes. Le principe de l’OAD classique est résumé sur la Figure 7.1.
Ce diagramme montre comment les différentes disciplines interagissent, comment un avion
est calculé à partir des spécifications et des variables d’entrée et comment les objectifs et
les contraintes sont calculés.

La conception préliminaire avion est le processus multi-disciplinaire décrivant les inter-
actions entre différents domaines de la physique (cela correspond au cadre vert dans le dia-
gramme de la Figure 7.1). Parmi les plus importants, citons la géométrie, l’aérodynamique,
les masses, la propulsion, la trajectoire, l’impact environnemental. Chaque discipline
est caractérisée par un ou plusieurs paramètres réels ainsi que par des fonctions de ces
paramètres. L’outil de conception utilisé au cours de la thèse est un outil interne à Airbus,
appelé OCCAM et développé en Scilab, qui est l’aboutissement de dix années de recherche
et d’expérimentations au sein du groupe [12, 22]. Une description complète de ces modèles
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Figure 7.1: Diagramme du processus classique de conception avion.

peut être trouvée dans la thèse de J. Birman [?]: il s’agit de modèles semi-empiriques issus
soit des lois de la physique, soit de régressions sur une base de données d’une soixantaine
d’avions.

Un des objectifs de la thèse était d’intégrer au processus de nouveaux modèles semi-
empiriques d’un moteur thermodynamique et de la trajectoire. Le processus de conception
avion décrit par la Figure 7.1 a alors été renforcé au cours de la thèse, cf Figure 7.2. Tout
d’abord, on élargit l’ensemble des paramètres de conception (et donc de l’optimisation) en
prenant en compte à la fois les paramètres de la cellule avion (taille du moteur, surface de la
voilure, allongement des ailes), les paramètres du moteur thermodynamique (rapport entre
les flux d’air froid et d’air chaud - BPR pour By-Pass Ratio) et les paramètres de mission
(altitude de croisière, mach de vol, vitesses de montée et de descente de la trajectoire).

Les contraintes opérationnelles peuvent être nombreuses et variées et doivent garantir
à la fois la capacité à voler et la sécurité des avions. Schématiquement, un avion doit
être capable de décoller des pistes existantes des aéroports actuels, de monter jusqu’à
son altitude de croisière en un temps limité, de s’y maintenir et d’atterrir sur les pistes
existantes. Ceci se traduit en terme de longueur maximale de pistes au décollage ou à
l’atterissage, de masse maximum au décollage, de temps de montée, de vitesse d’approche,
etc.

Quant aux critères de l’optimisation, nous nous sommes intéressés à trois critères clas-
siques particuliers: le cout d’opération (COC) de l’avion, la masse maximum au décollage
(MTOW) et la consommation en fuel. Nous avons ajouté à ces critères une mesure de
l’impact climatique de l’avion APGWP (Absolute Pulsed Global Warming Potential). Ce
critère reconnu par le protocole de Kyoto, est très difficile à évaluer car très dépendant de
différentes disciplines et d’un grand nombre de paramètres. Au niveau des Avant-Projets
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d’Airbus, la méthode choisie pour mesurer cet impact climatique est une méthode dévelop-
pée dans le cadre d’un projet européen nommé LEEA (Low Emission Effect Aircraft) [89].
L’impact climatique est calculé comme une fonction de plusieurs paramètres réels: la quan-
tité de polluants émise, l’altitude d’émission de ces polluants, la distance parcourue en vol
et la consommation en fuel. L’impact environnemental est avant tout lié à la consomma-
tion en fuel mais aussi à l’endroit où les polluants sont émis. A noter que la zone entre
35000 et 37000 pieds est le pire endroit où émettre des polluants azotés et que c’est la zone
dans laquelle volent les avions actuels.

Figure 7.2: Diagramme du processus de conception avion étudié pendant la thèse.

7.2.2 Configuration de l’avion hybride

Répondant au même cahier des charges, nous avons proposé d’appliquer l’approche holis-
tique décrite précédemment à un concept innovant d’avion à propulsion hybride électrique-
fuel représenté sur la Figure 7.3. L’idée a été de conserver une configuration classique
d’avion et d’ajouter un moteur électrique sur le fuselage arrière de l’avion. Afin d’alimenter
ce moteur, des batteries ont été placées au niveau du caisson central de l’avion. Des généra-
teurs électriques ont été montés sur les turboréacteurs de façon à ce qu’ils puissent récupérer
une partie de leur énergie et faire fonctionner le moteur électrique ou recharger les batteries.
Il a ensuite fallu faire des hypothèses sur le mode de gestion de l’énergie pour cet avion en
tirant partie des nouvelles possibilités apportées par l’hybridation. Il faut garder à l’esprit
que ces accumulateurs électriques sont des sources d’énergie additionnelles mais tempo-
raires. Ils permettent de réduire le sur-dimensionnement des moteurs thermodynamiques
en les soulageant lors des phases critiques de la mission (décollage, fin de montée). La
stratégie choisie est résumée sur la Figure 7.4.
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Figure 7.3: Configuration d’avion hybride.

Figure 7.4: Stratégie de gestion des flux d’énergie. Les flèches bleues indiquent les flux
d’énergie électrique.

De nouveaux modèles, par exemple de propulsion électrique, ont été construits et vi-
ennent compléter les modèles existants après validation par des experts du domaine. On
sélectionne alors des variables de conception additionnelles associées à l’hybridation: en
plus des variables décrites au paragraphe précédent, on ajoute la taille du moteur élec-
trique, la puissance du moteur électrique, la densité de puissance du moteur électrique et
des générateurs électriques et la densité d’énergie des batteries. Quelques améliorations du
concept d’avion hybride sont proposées dans la thèse ( voir en détails dans le Chapitre 1).

7.3 De l’optimisation déterministe à l’optimisation sous con-
traintes en probabilité

Une fois le modèle d’avion hybride défini, un des objectifs de la thèse a été de résoudre un
problème d’optimisation globale de l’avion, regroupant les paramètres de tous les modèles
(cellule avion, moteur, mission et le cas échéant, hybridation) pour un avion conventionnel
de référence d’une part et pour l’avion hybride d’autre part, à cahier des charges identique.
Les résultats de l’optimisation sont comparés selon les 3 objectifs suivants: cout global
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d’opération de l’avion, masse maximale au décollage et impact climatique. L’objet de
l’étude a été d’augmenter progressivement le nombre de variables de l’optimisation afin de
mesurer l’impact de chacune sur la configuration optimisée de l’avion conventionnel puis
de l’avion hybride.

7.3.1 Formulation du problème

Considérons le problème d’optimisation de conception avion sous sa forme générique:

min
x∈Rn

f(x) sous: gi(x) ≤ 0, i = 1, . . . , l, (7.1)

xmin ≤ x ≤ xmax.

Dans cette étude, nous avons travaillé avec 3 fonctions objectifs f différentes: le cout
global d’opération de l’avion, la masse maximale au décollage et l’impact climatique.
Pour un avion conventionnel court-courrier de référence, nous considérons 13 variables
d’optimisation décrivant la cellule avion, les moteurs thermodynamiques et la mission, et
8 contraintes opérationnelles portant essentiellement sur la vitesse d’approche, les vitesses
verticales de montée et de croisière, la longueur de piste au décollage, le temps de montée.
Quant à l’avion hybride, nous ajoutons 3 variables associées à l’hybridation: la taille du
moteur électrique, le taux de prélèvement de puissance des générateurs et la densité de
puissance du moteur électrique. Nous obtenons ainsi un problème avec 16 variables de
conception et 1 contrainte opérationnelle sur la poussée des moteurs au décollage.

Du point de vue de l’optimisation, le problème (7.9) est un problème non linéaire, non
convexe mais différentiable presque partout. Les gradients sont accessibles par différen-
tiation automatique, une méthode implémentée au cours de la thèse, ce qui nous permet
d’utiliser des algorithmes d’optimisation numérique différentiable. Les algorithmes utilisés
pour résoudre le problème (7.9) sont les suivants: DOT (Design Optimization Tools) [172],
MADS (Mesh Adaptive Direct Search) [11] et un algorithme de Nelder-Mead modifié pour
intégrer des contraintes et développé en interne aux Avant-Projets pendant cette thèse.

Les résultats de l’optimisation par exemple par rapport au COC (cout global d’opération
de l’avion) montrent que l’avion conventionnel a intérêt à voler "vite" pour minimiser le
cout lié à la durée du vol et "haut" pour minimiser le cout lié à la consommation en car-
burant. Plus précisément, à l’optimum, les variables de l’optimisation sont à saturation.
En particulier, la valeur très élevée du Mach de croisière implique des valeurs très élevée
de l’impact climatique (APGWP) et de la masse maximum au décollage (MTOW). Les
polluants sont émis à la pire altitude possible du point de vue de l’impact environnemen-
tal. Quant à l’avion hybride, il est très nettement handicapé par l’excédent de masse du
système de propulsion hybride. L’optimisation de l’avion hybride donne une configuration
similaire à celle de l’avion conventionnel optimisé avec un cout global d’opération plus
élevé de 1.5%, une masse maximale au décollage plus élevée de 2.6%. En revanche l’impact
climatique (APGWP) est nettement réduit (environ 19% inférieur) par rapport à celui de
l’avion conventionnel.

Ainsi à la question naturelle de savoir si cet avion est compétitif par rapport à un avion
conventionnel, la réponse est clairement non compte-tenu des technologies actuelles. L’idée
a alors été d’ajouter un modèle de prédiction de l’évolution des technologies nécessaires à
l’hybridation en fonction de l’année et prenant en compte l’incertitude sur ces prédictions,
cf Figure 7.5. Ceci se traduit en incertitude dans les modèles.
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Figure 7.5: Prédiction de l’évolution des technologies électriques liées à l’hybridation avec
leurs incertitudes.

Les incertitudes peuvent provenir de deux sources complémentaires: les incertitudes
liées à l’évolution des technologies et celles liées au processus de modélisation. En pratique,
les incertitudes présentes dans les modèles sont prises en compte au travers de marges basées
sur le savoir-faire ingénieur. Cela peut parfois mener à des contre-performances inattendues
qui se traduisent en pénalité (en terme de cout) pour les constructeurs d’avion. De plus
dans le cas de l’avion hybride, nous ne disposons pas de ce savoir-faire ingénieur: il faut
donc s’attaquer au "vrai" problème et non à une représentation moyenne (déterministe)
de celui-ci. Dans la thèse, nous avons pris en compte ces incertitudes par des approches
d’optimisation robuste. Le problème de conception avion peut alors être considéré comme
un problème d’optimisation stochastique pour lequel nous avons proposé deux approches.
La première approche consiste à reformuler le problème en un problème d’optimisation
sous contraintes en probabilité: notons Ξ le vecteur aléatoire modélisant les incertitudes
en entrée. On veut résoudre:

min
x∈Rn

E[f(x,Ξ)] sous: P [gi(x,Ξ) ≤ 0] > pi, i = 1, . . . , l, (7.2)

xmin ≤ x ≤ xmax.

La seconde approche explorée dans la thèse consiste à reformuler le problème de con-
ception avion en un problème d’optimisation robuste selon la terminologie de A. Ben-Tal,
L. El Ghaoui et A. Nemirovski [16]: soit U l’ensemble des incertitudes. Nous considérons
le problème:

inf
x∈Rn

(
sup
ξ∈U

f(x, ξ)
)

sous: gi(x, ξ) ≤ 0, ∀i = 1, . . . , l, ∀ξ ∈ U , (7.3)

xmin ≤ x ≤ xmax.

L’intérêt de cette approche est bien entendu de proposer une solution qui satisfasse toutes
les contraintes imposées lorsque la violabilité des contraintes est interdite. Une formulation
particulière du problème de conception avion est proposée au paragraphe 7.3.4 et permet
d’obtenir algorithmiquement des configurations robustes.

7.3.2 Quantification et propagation d’incertitudes

Avant toute chose, la formulation des problèmes (7.2) et (7.3) met en évidence la nécessité
de savoir quantifier et propager l’incertitude dans les modèles. Plusieurs méthodes ont été
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introduites en détails dans le Chapitre 4 de la thèse pour caractériser les incertitudes et
les propager: un état de l’art conséquent est proposé dans lequel les méthodes de prop-
agation d’incertitudes sont présentées, classées en fonction de leurs spécificités (temps de
calcul, précision, hypothèses nécessaires sur les modèles) et comparées sur des exemples
numériques académiques. Le but de cette étude est de permettre à l’utilisateur de sélec-
tionner une méthode adaptée à son problème de dimensionnement d’avion sous incertitude.

7.3.2.1 Quantification et caractérisation des incertitudes

En conception technique, modéliser un processus consiste à construire des modèles calculant
certaines fonctions d’intérêt en fonction de paramètres d’entrée identifiés au préalable. Ces
modèles peuvent provenir soit des lois de la physique quand c’est possible, soit de régression
sur des bases de données d’avions existants. Plus précisément, le processus de modélisation
se fait en deux temps: tout d’abord, on sélectionne les paramètres d’entrée en se basant
soit sur le savoir-faire ingénieur soit sur des études statistiques permettant d’identifier les
paramètres les plus influents. Ensuite, on choisit un modèle analytique dont on ajuste les
paramètres par des techniques par exemple de régression sur les bases de données existantes.
Le but de la quantification d’incertitudes est d’estimer la précision avec laquelle le modèle
analytique approche le modèle réel. Plus concrètement, étant donné un échantillon de
données (xi, yi)i=1,...,N , on veut estimer l’échantillon:

ξi = f(xi)− yi,

appelé échantillon d’incertitudes. Une fois cet échantillon estimé, on cherche la loi de
distribution de probabilité qui le représente le mieux. En pratique, on fait l’hypothèse que
tout échantillon d’incertitude peut être représenté par une loi de distribution de probabilité.
Pour identifier cette loi, on peut soit calculer les moments de la distribution, soit chercher
graphiquement une distribution correspondant au mieux au diagramme des incertitudes.
Il faut cependant garder à l’esprit que la connaissance d’un nombre fini de moments ne
permet pas de définir une unique loi de probabilité et qu’un même échantillon représenté
à deux échelles différentes, peut être approché par (au moins) deux lois très différentes, cf
Figure 7.6.

Une des contributions de la thèse en collaboration avec J. Birman [22], a été de proposer
une nouvelle famille de loi de probabilité, appelée Beta-Mystique, qui englobe plusieurs
familles de distributions uni-modales. Plus précisément, le but était de proposer une loi
facile à manipuler pour un non-spécialiste, couvrant un large spectre de formes de distri-
butions et vérifiant certaines propriétés: à support compact, uni-modale et continue. La
loi Beta aurait pu faire l’affaire mais le choix de ses paramètres est peu intuitif. La loi
Beta-Mystique est définie de la façon suivante:

Definition 7.1. On dit qu’une variable aléatoire X suit une loi Beta-Mystique de paramètres
(a, b, Z, P ) , avec −1 ≤ Z ≤ 1 et P ≥ 0, si sa fonction de densité est de la forme:

fX(x; a, b, Z, P ) =


(b− x)q1−1 · (x− a)p1−1

β (p1, q1) · (b− a)p1+q1−1 , si a ≤ x ≤ b,

0 , si x < a ou b < x,

(7.4)
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Figure 7.6: Exemple de deux approximations du même échantillon représenté à deux
échelles différentes, par deux distributions différentes.

avec:

W = max
(
ε− 1,min(Z, 1− ε)

)
, K = 3.3max(ε, P )

b− a
, M = 1

2 (a(1−W ) + b(1 +W )) ,

p1 = 1 +K (M − a) , q1 = 1 +K (b−M) , β(p1, q1) = Γ(p1)Γ(q1)
Γ(p1 + q1) ,

ε > 0.

où Γ est la fonction Gamma définie par : Γ(t) =
∫∞

0 xt−1e−xdx.

En pratique, le paramètre ε est choisi égal à la précision de calcul des ordinateurs.
L’introduction de ce paramètre permet d’éviter les problèmes numériques lorsque les paramètres
P et Z atteignent leurs bornes respectives. L’avantage de cette nouvelle loi de probabilité
est que l’on peut facilement contrôler la forme de sa distribution: [a, b] est le support de
la loi, Z contrôle la symétrie de la distribution, Z ∈ [−1, 1], et P contrôle l’étalement de
la loi. La Figure 7.7 illustre la façon dont les paramètres Z et P contrôlent la forme de la
distribution: lorsque Z est fixé, plus P est petit, plus la distribution est large. Si Z = 0,
la distribution est symétrique. A noter par exemple que la loi normale N (0, σ2) peut être
approchée par la loi Beta-Mystique de paramètres (−6σ, 6σ, 0, 10) et que la loi uniforme
U(a, b) est équivalente à la loi Beta-Mystique de paramètres (a, b, 0, 0).

Un autre avantage de la loi Beta-Mystique est de pouvoir être caractérisée par ses 4
premiers moments: son espérance µ, sa variance σ2, sa dissymétrie (skewness) γ et son
aplatissement (kurtosis) Γ. Plus précisément, les 4 moments (µ, σ2, γ,Γ) ont des expres-
sions analytiques simples en fonction des paramètres (a, b, Z, P ) et inversement. Le lecteur
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Figure 7.7: Evolution de la forme de la loi Beta-Mystique en fonction de P ∈ [0.5, 4] et
Z ∈ [−1, 0].

intéressé pourra se référer à [22] ou au Chapitre 4 de cette thèse pour davantage de préci-
sions.

La loi Beta-Mystique distribution a déjà été utilisée pour quantifier les incertitudes
au sein du bureau des Avant-Projets d’Airbus: les premières expériences ont montré qu’il
s’agissait d’un outil très efficace pour remplacer le savoir-faire ingénieur basé sur des marges
et gérer les incertitudes dans les modèles.

7.3.2.2 Propagation des incertitudes

La problématique est la suivante: connaissant certaines informations sur l’incertitude Ξ en
entrée, que savons-nous sur l’incertitude en sortie i.e. sur f(x,Ξ) et g(x,Ξ) ? Autrement
dit, étant donné un modèle F (ξ) = f(x, ξ) où ξ est une réalisation de la variable aléatoire
Ξ, on cherche à déterminer les caractéristiques ou une représentation de l’incertitude F (Ξ)
en sortie. Deux cas se présentent:

1er cas: Ξ suit une loi de probabilité. Plusieurs méthodes sont alors envisageables: méth-
odes de Monte-Carlo, méthodes basées sur le développement de Taylor, méthodes
d’expansion stochastiques, méthodes de quadrature. Toutes ces méthodes sont décrites
en détails dans le Chapitre 4 de cette thèse, classées en fonction de leurs spécificités
(temps de calcul, précision, hypothèses nécessaires sur les modèles) et comparées
sur des exemples numériques académiques. Le but de cette étude est de permettre à
l’utilisateur de sélectionner une méthode adaptée à son problème de dimensionnement
d’avion sous incertitude.

2ème cas: on connait le support [a, b] de Ξ. Dans ce cas, on cherche les supports de
f(x,Ξ) et g(x,Ξ). Une approche naturelle serait d’utiliser des techniques de propaga-
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tion d’intervalles mais celles-ci sont difficile à appliquer à notre problème de configura-
tion avion. L’alternative a été d’appliquer les méthodes de propagation d’incertitudes
décrites dans le premier cas à une distribution de probabilité de support [a, b] et de
récupérer le support de la distribution en sortie pour avoir celui de f(x,Ξ) et g(x,Ξ).

Dans les deux cas, il faut se demander de quel type d’information on a besoin sur l’incertitude
en sortie des modèles: la nature exacte de la distribution de probabilité, les premiers mo-
ments, une mesure de risque ? Le choix de la méthode de propagation est fortement
couplé à la précision que l’on a sur l’incertitude en entrée, la précision que l’on souhaite
sur l’incertitude en sortie et le cout de calcul que l’on peut se permettre. Le guide proposé
dans le Chapitre 4 de cette thèse permet de répondre à ces questions et de sélectionner la
méthode la plus adaptée au problème considéré.

7.3.3 Optimisation sous contrainte en probabilité de l’avion hybride

Considérons le problème de conception avion sous la forme d’un problème d’optimisation
sous contraintes en probabilité (individuelles) de la forme:

min
x∈Rn

E[f(x,Ξ)] sous: P [gi(x,Ξ) ≤ 0] > pi, i = 1, . . . , l, (7.5)

xmin ≤ x ≤ xmax,

où x est la variable (certaine) de l’optimisation et Ξ le vecteur aléatoire modélisant les
incertitudes d’entrée. Les paramètres (pi)i=1,...,l sont les niveaux de fiabilité, choisis en
pratique entre 0.95 et 0.99. Les fonctions f : Rn → R et g : Rn → Rl sont supposées
différentiables en tout point x ∈ Rn. En revanche le problème est a priori non linéaire et
non convexe.

Une des difficultés dans notre cas est que bien qu’ayant des informations sur l’incertitude
en entrée Ξ, on ne sait rien à propos de l’incertitude en sortie. Dans le cas où l’on connait
l’incertitude en entrée, les méthodes de propagation décrites dans le Chapitre 4 de cette
thèse permettent d’évaluer l’espérance de l’objectif et les contraintes en probabilité et ainsi
d’appliquer un algorithme d’optimisation classique. Toutefois cette approche directe étant
très couteuse, des recherches ont été menées sur des méthodes d’optimisation séquentielles
sous incertitude telles que la méthode S.O.R.A. (Sequential Optimization and Reliabilty
Assessment) introduite par X. Du et W. Chen dans [56] et améliorée dans [183]. L’idée
de ces méthodes est de découpler l’optimisation de l’analyse de fiabilité. Dans un premier
temps, on remplace le problème sous contraintes en probabilité (7.5) par une suite de
problèmes déterministes:

min
x∈Rn

f(x, µΞ) sous: gi(x, µΞ) ≤ si, i = 1, . . . , l, (7.6)

xmin ≤ x ≤ xmax,

L’évaluation de la fiabilité (i.e. des contraintes P [gi(xsol,Ξ) ≤ 0]) est effectuée dans un
second temps. Le principe de la méthode est le suivant:

Initialisation: si = 0, i = 1, . . . , l.

Tant que ∃i ∈ {1, . . . , l}, P [gi(xsol,Ξ) ≤ 0] < pi,

1. Résoudre le problème déterministe (7.6). On note xsol la solution obtenue.
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2. Calculer les incertitudes gi(xsol, ξ), i = 1, . . . , l, en utilisant une technique de
propagation d’incertitudes bien choisie et évaluer les probabilités: P [gi(xsol,Ξ) ≤ 0].

3. Pour chaque i = 1, . . . , l, faire
• Si P [gi(xsol,Ξ) ≤ 0] < pi alors le seuil si est mis à jour de la façon suivante:

si = si − k(pi)σgi(xsol), (7.7)

où σgi(x) est la variance de gi(x,Ξ) à x fixé. Le coefficient k(pi) est défini
en fonction de la mesure de risque désirée (ici une probabilité), du niveau
de fiabilité pi désiré et des informations disponibles sur la distribution de
probabilité associée à gi(x,Ξ) (à x fixé).

Revenons sur la mise à jour (7.7) des seuils si dont le but est de décaler les contraintes
violées vers le domaine de faisabilité en intégrant les coefficients de seuil si dont le calcul
est basé sur les informations de fiabilité obtenues à l’itération précédente. Plus précisé-
ment, les contraintes en probabilité P [gi(x,Ξ) ≤ 0] ≥ pi peuvent être remplacées de façon
conservative par la contrainte déterministe:

µgi(x) + k(pi)σgi(x) ≤ 0 (7.8)

Plus précisément, si la contrainte (7.8) est satisfaite alors:

P [gi(x,Ξ) ≤ 0] ≥ P [gi(x,Ξ) ≤ µgi(x) + k(pi)σgi(x)] ≥ pi.

Les contraintes violées (ou ayant une fiabilité trop faible) sont décalées vers le domaine de
faisabilité en intégrant des coefficients de seuil si dont le calcul est basé sur les informations
de fiabilité obtenues à l’itération précédente. La mise à jour proposée est une généralisation
de celle proposée pour les lois de distribution gaussienne dans [92], au cas où les incertitudes
ne sont pas complètement connues (par exemple lorsque l’on ne dispose que des premiers
moments de la loi de probabilité) et pas nécessairement gaussiennes.

7.3.3.1 Application à l’optimisation sous contrainte en probabilité de l’avion
hybride

La méthodologie précédente, testée sur un exemple académique, a ensuite été appliquée
à l’optimisation de l’avion hybride. Nous nous sommes intéressés au problème suivant:
compte-tenu de l’évolution (prédite) des technologies nécessaires à l’hybridation, trouver
l’année à partir de laquelle l’avion hybride sera aussi performant qu’un avion conventionnel
avec une probabilité de 95%, à cahier des charges identique.

La démarche adoptée est la suivante: commençons par résoudre une optimisation déter-
ministe d’un avion conventionnel de référence, i.e. résoudre:

min
x∈Rn

f(x) sous: gi(x) ≤ 0, i = 1, . . . , l,
xmin ≤ x ≤ xmax.

Le cout f représente soit la consommation en fuel, soit le cout globale d’opération de l’avion
(COC), soit une mesure de l’impact climatique (APGWP). On note f∗conv la valeur de la
fonction cout à l’optimum. Nous proposons ensuite de résoudre le problème:

min
(x,t)∈Rn+1

t sous: P [gi(x,Ξ) ≤ 0] ≥ 0.95, i = 1, . . . , l, (7.9)
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P [f(x,Ξ) ≤ f∗conv] ≥ 0.95, (7.10)
xmin ≤ x ≤ xmax, t ≥ 2015.

où la variable t représente l’année qui indique le degré de maturité des technologies néces-
saires à l’hybridation. Les résultats obtenus sont présentés dans le tableau de la Figure
7.3.3.1.

Plus qu’une réelle révolution, cette optimisation est une très bonne validation des études
parallèles menées précédemment quant à la pertinence du modèle et à la sensibilité des vari-
ables de conception. On retrouve par exemple le fait que pour réduire l’impact climatique,
les avions devraient voler moins haut que les 35000 pieds actuels et moins vite, mais que
cela entraine une augmentation significative de la masse maximale au décollage et du cout
global d’opération de l’avion. On observe également que d’ici 2025-2026, l’évolution des
technologies nécessaires à l’hybridation devraient permettre de proposer un avion hybride
qui soit économiquement viable par rapport à l’avion conventionnel avec une probabilité
de 95%. Ainsi même s’il reste un gros travail à faire sur la conception de cet avion, nos
résultats montrent qu’un avion hybride est une piste de recherche à considérer.

7.3.4 Premiers pas vers l’optimisation robuste

Dans la dernière partie de la thèse, nous nous sommes intéressés à une approche différente,
quoique complémentaire, de l’optimisation pour la conception préliminaire d’avions. En se
basant sur le savoir-faire des ingénieurs et sur les simulations réalisées au cours de cette
thèse, il apparait que pour certaines fonctions objectif telles que le cout ou la consommation
en fuel, le problème de conception préliminaire avion décrit au paragraphe 7.3.1, peut être
vu comme un problème d’optimisation sous incertitudes dont la fonction objectif est presque
affine et les contraintes quasiment convexes. Nous avons alors montré que le problème initial
peut être approché de manière conservative par un problème de programmation linéaire
incertain auquel nous pourrons appliquer les techniques de programmation linéaire robuste
décrites dans [16, Chapitre 1]. Cette méthodologie est ensuite appliquée à deux cas réels
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de conception avion dont nous présentons les résultats numériques. Dans ce mémoire, nous
nous contenterons d’en donner les grandes étapes et de présenter les résultats numériques
obtenus. Le lecteur intéressé par les détails pourra se référer soit au Chapitre 6 de la thèse,
soit à l’article [142].

Partons du problème générique de conception d’avion présenté au paragraphe 7.3.1 i.e.:

min
x∈Rn

f(x, ξ) sous: gi(x, ξ) ≤ 0, i = 1, . . . , l, (7.11)

xmin ≤ x ≤ xmax.

où ξ est le vecteur des entrées incertaines du modèle. Les grandes idées sont les suivantes:
basé sur le savoir-faire des ingénieurs et des simulations numériques qui viennent corroborer
ces observations, les fonctions objectifs telles que le cout ou la consommation en fuel, sont
presque linéaires en les variables de conception et l’ensemble des contraintes peut être
approché par un polyèdre convexe. Ainsi en linéarisant la fonction f par rapport aux
variables x de l’optimisation et en remplaçant le domaine admissible par un polyèdre dont
la construction est détaillée dans [142], le problème (7.11) peut être approché par un
programme linéaire incertain de la forme:

min
x∈Rn

c>x+ d sous: Ax ≤ b, (7.12)

xmin ≤ x ≤ xmax.

où les incertitudes sur les coefficients (A, b, c,D) sont supposées connues (données par le
savoir-faire des ingénieurs ou bien par des méthodes de propagation des incertitudes).
Notons U l’ensemble des incertitudes décrit par ces coefficients. Suivant le formalisme de
A. Ben-Tal, L. El Ghaoui et A. Nemirovski [16], on suppose que U admet un paramétrage
affine de la forme:

U =
{
D =

[
c> d
A b

]
∈ R(1+m)×(1+n) : D = D0 +

L∑
k=1

ζkD
k, ζ ∈ Z ⊂ RL

}
,

où Z est l’ensemble des perturbations, D0 la valeur nominale des incertitudes et Dk la base
des variations de ces incertitudes. En première approche, nous avons choisi une situation
pire-cas dans laquelle: L = (1 +m)(1 + n) et:

Dk
i,j =

{
1 si l = (n+ 1)(i− 1) + j
0 sinon.

L’ensemble des perturbations est alors choisi de la forme: Z =
L⊗
k=1

[
ζinfk , ζsupk

]
conduisant

vraisemblablement à une sur-estimation de l’ensemble des incertitudes. En suivant la
méthodologie décrite dans [16, Chapitre 1], le Problème (7.12) est équivalent au problème:

min
(x,t)∈Rn×R

t sous: c>x+ d ≤ t, Ax ≤ b, (7.13)

xmin ≤ x ≤ xmax.

Par définition, une solution robuste du Problème (7.13) est une solution optimale de sa
contre-partie robuste définie par:

min
(x,t)∈Rn×R

(
sup

(A,b,c,d)∈U
t

)
= t sous: c>x+ d ≤ t, Ax ≤ b, ∀(A, b, c, d) ∈ U ,
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xmin ≤ x ≤ xmax.

soit ici:

min
(x,t)∈Rn×R

t sous: c>x+ d ≤ t, Ax ≤ b, ∀(A, b, c, d) ∈ U (7.14)

xmin ≤ x ≤ xmax.

En introduisant des variables d’écart comme expliqué dans [16, Chapitre 1], le problème
(7.14) est équivalent à un problème de programmation linéaire déterministe à 2n+ 1 vari-
ables, 2n+m+ 1 contraintes d’inégalités et n contraintes de boites que l’on peut résoudre
à l’aide d’outils classiques de la programmation linéaire:

min
X∈R2n+1

C̃>X sous: ÃX ≤ b̃, Xmin ≤ X ≤ Xmax. (7.15)

Considérons maintenant deux exemples respectivement en dimension 2 et 3 d’optimisation
de la conception robuste d’avion. La fonction objectif et les contraintes sont définies dans
les Tables 7.1 et 7.2.

Dénomination Unité Sigle [xmin, xmax]
x1 Surface de la voilure m2 WingArea [100, 170]
x2 Poussée statique au niveau de la mer daN SLSThrust [9000, 13000]
x3 Mach de croisière mach [0.65, 0.76]

Table 7.1: Variables de l’optimisation: (x1, x2) si n = 2 et (x1, x2, x3) si n = 3.

Objectif f Cout d’exploitation au comptant (en $/vol) COC
Contraintes g1 Longueur de piste au décollage 1 TOFL1 ≤ 2000 m

(au niveau de la mer)
g2 Longueur de piste au décollage 2 TOFL2 ≤ 2500 m

(in High & Hot conditions)
g3 Vitesse verticale de montée CLBVZ ≥ 500 ft/min
g4 Vitesse verticale de croisière CRZVZ ≥ 300 ft/min
g5 Vitesse à l’atterrissage LDSPEED ≤ 130 kt

Table 7.2: Fonctions objectif et contraintes.

Pour chaque exemple, le démarche est la suivante:

1. Construction du problème linéaire approché (7.12) par linéarisation de la fonction
objectif et des contraintes.

2. Quantification et propagation des incertitudes pour obtenir les boites L∞ sur les ζ
par une méthode de propagation basée sur le développement de Taylor d’ordre 1.

3. Détermination des coefficients (Ã, b̃, c̃, d̃) associés pour obtenir le problème (7.15).
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4. Résolution du problème (7.15) à l’aide de l’algorithme du simplexe (fonction linpro
sous Scilab).

Dans le cas n = 2 par exemple et pour m = 25 contraintes d’inégalités, on obtient la
solution suivante du problème (7.15):

Xsol =
(
10292 daN, 115.6 m2

)
, pour un cout optimal: COC = 4285 $/pax.

Cette solution est alors comparée à la solution (a priori non robuste Xdet
sol du problème

d’optimisation déterministe initial:

Xdet
sol =

(
10121 daN, 114.3 m2

)
, pour un cout optimal: COCdet = 4279 $/pax.

Les deux solutions sont représentées sur la Figure 7.8. Sans surprise, le prix à payer pour
la robustesse de la solution est une augmentation de la valeur du cout optimal.

Figure 7.8: Solutions déterministe et robuste du problème de conception 2D robuste
d’avion.

Pour terminer, nous avons conclu notre étude en vérifiant la robustesse de la solution
Xsol vis-à-vis du domaine admissible initial (avant linéarisation).

7.4 Conclusion
Le premier objectif de cette thèse était d’établir, d’investiguer et de résoudre le problème
hautement multidisciplinaire et multi-objectif de la conception d’un avion et de ses opéra-
tions. Cet objectif a été atteint en appliquant une méthode pas à pas. La première con-
tribution est d’avoir incorporé minutieusement et progressivement des nouveaux modèles
de propulsion, du profil de la mission et d’impact climatique, aux modèles basiques usuels.

199



Chapter 7. Version française raccourcie : Approche novatrice pour la conception et
l’exploitation d’avions écologiques

Nous avons validé chaque ajout de modèle en comparant les résultats de la simulation à
des avions existants.

La seconde contribution a été d’intégrer de nouvelles variables de conception dans le
processus d’optimisation de la conception d’avions. Aux deux degrés de liberté de base, la
surface de l’aile et la poussée statique au niveau de la mer des moteurs (représentatif de
la taille du moteur et de sa puissance), nous avons ajouté l’allongement de la voilure pour
la cellule avion, le taux de dilution pour système de propulsion, l’altitude de croisière et le
Mach pour la trajectoire, et enfin des vitesses de montée et de descente. Nous avons validé
les résultats de l’optimisation par une intégration étape par étape de ces nouveaux degrés
de liberté.

Un autre objectif de cette thèse était de résoudre le problème de la conception d’avions
plus écologiques. Nous avons incorporé un modèle d’impact climatique dans les processus.
A partir de ce modèle, nous avons sélectionné une mesure représentative de l’impact clima-
tique, qui a été ajouté comme nouveau critère de l’optimisation de la conception d’avions.
Dans ce but de réduction d’impact environnemental, nous avons proposé une configuration
d’un avion non conventionnel: un avion à propulsion hybride électrique-carburant. Cet
avion est composé d’un fan électrique sur son fuselage arrière, des générateurs électriques
sur les moteurs thermiques, et des batteries supplémentaires. Le concept a été modélisé
accompagné d’une gestion précise et efficace de l’utilisation des batteries, du fan et des
générateurs tout au long de la mission. Nous avons ensuite optimisé à la fois la conception
de la configuration classique et celle de l’avion hybride, à cahier des charges équivalent.
Pour cela, nous avons appliqué l’intégration étape par étape des degrés de liberté. De plus,
nous avons comparé l’optimisation en termes d’impact climatique, de coûts d’exploitation
et d’un critère représentatif de l’efficacité globale de l’avion, à savoir la masse maximal
au décollage. L’analyse des résultats finaux a mis en évidence l’impact de chaque groupe
de degrés de liberté sur l’avion optimisé. Nous avons également observé que le coût et
l’impact climatique sont deux critères contradictoires. Un autre résultat intéressant était
l’efficacité en termes d’impact environnemental de la configuration hybride. Enfin, nous
avons proposé de tirer tous les bénéfices de la configuration hybride en travaillant sur les
synergies offertes par le fan électrique et les batteries. Nous avons observé que ce travail
sur les synergies était nécessaire pour obtenir un avion hybride concurrentiel.

Les autres contributions de cette thèse sont les suivantes :

1. l’intégration d’une méthode de différenciation automatique aux outils numériques
existants, en surchargeant tous les opérateurs et fonctions de base incluses dans le
processus. Cela a permis d’atteindre une précision meilleure que celle des méthodes de
différences finies classiques lors du calcul de gradients et Hessiens. De plus, cela peut
entraîner une amélioration significative au niveau de la convergence des méthodes
d’optimisation à base de gradient.

2. La comparaison et la sélection de méthodes d’optimisation bien adaptées au problème
de la conception d’avions. Dans un premier temps, les méthodes à base de gradients
ont été utilisées en utilisant les gradients fournis par l’outil de différentiation automa-
tique. Cependant, certains points de l’espace de conception n’étaient pas calculables.
Ceci est la raison pour laquelle nous avons eu recours à des techniques d’optimisation
sans-dérivés. Les algorithmes génétiques (NSGA II) ont été testés pour résoudre le
problème d’optimisation mono-objectif ainsi que l’optimisation multi-objectifs. Les
algorithmes à Evolution Différentielle ont été modifiés pour gérer les contraintes, et
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appliqués dans certaines études. Une mise en œuvre de l’algorithme MADS compilé
à partir du C++ s’est également avéré avoir de bonnes propriétés de convergence
dans nos études. Enfin, le nombre croissant de degrés de liberté a motivé l’utilisation
de méta-modèles avec les outils d’optimisation.

3. Le développement et l’utilisation d’une nouvelle famille de distribution de probabilité
ayant quatre paramètres, nommée la distribution Beta-Mystique, qui couvre un large
spectre de distribution unimodales.

4. Une étude détaillée et une comparaison des méthodes de propagation d’incertitude,
en fonction des critères de précision, du coût de calcul et des connaissances sur
les modèles. La comparaison est faite entre les méthodes de type Monte-Carlo, les
méthodes d”expansion de Taylor, les méthodes d’expansion en polynôme du chaos,
et les méthodes de quadrature. Une attention particulière est portée aux méthodes
basées sur les moments, qui ont des applications pratiques puissantes pour résoudre
des problèmes de conception sous incertitudes.

5. Une approche d’optimisation de la conception d’avions sous incertitude. Pour cela,
une approche sous contraintes en probabilités a été proposée. Nous avons apporté des
améliorations à une méthode numérique d’optimisation robuste, à savoir la méthode
séquentielle nommée SORA. En utilisant une technique qui calcule les bornes sur les
mesures de probabilité, la méthode SORA est capable de gérer une grande variété de
distributions.

6. L’application de tous les outils mentionnés précédemment à la conception sous con-
traintes en probabilités d’un avion non conventionnel. Nous avons résolu le problème
suivant : trouver l’année à partir de laquelle l’avion hybride sera compétitif par
rapport à l’avion conventionnel avec une probabilité de 0,95.

7. Les premiers pas vers une autre approche de l’optimisation robuste de la conception
d’avions. Le résultat est un avion optimal qui satisfait à toutes les réalisations des
contraintes à l’intérieur une certaine zone d’incertitude. Une attention particulière a
été accordée à la modélisation d’une telle approche.

Enfin, cette thèse contribue à sensibiliser le bureau des avant-projets à la gestion
des incertitudes en utilisant les distributions de probabilité. Elle a également permis le
développement et l’amélioration de certains outils numériques internes, à savoir SiMCAD
et OCCAM, utilisés pour résoudre le problème de la conception d’avions. Tous les modèles
développés dans le cadre de cette thèse - l’impact climatique, l’avion hybride, le moteur
thermodynamique et le profil de mission détaillé - ont été incorporés dans ces outils, et
validés par les études présentées. Dans le cadre de certains projets internes, cette thèse a
permis des études de sensibilité sur les paramètres de conception d’avions hybrides, et a
permis de présenter une étude complète de ce concept novateur. En outre, cette thèse con-
duit à l’intégration des méthodes de propagation des incertitudes aux outils de conception
numériques. En particulier, le premier ordre, le second ordre, les méthodes de quadrature
URQ et BRQ.

Les résultats obtenus dans cette thèse donnent les perspectives suivantes.
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La première est de poursuivre l’approche d’optimisation robuste menée dans le Chapitre
4. En effet, l’application de la méthode a bien fonctionné pour les cas en deux et trois
dimensions, et devrait être généralisé en dimension supérieure.

Un autre point de vue a été soulevé par l’approche d’optimisation robuste, par rapport
à la propagation des incertitudes. Il pourrait être intéressant d’étudier l’impact de la
précision de la sortie incertaine sur la mesure du risque sélectionnée, ou même sur la borne
de la mesure du risque. Cela permettrait d’être conscient de l’erreur qui est faite lorsque la
mesure est calculée et ensuite de connaître la vraie robustesse de la solution du problème.
Par exemple, dans l’optimisation sous contraintes en probabilités proposée, nous utilisons
les moments de l’incertitude de sortie pour calculer la borne de la mesure de probabilité.
L’impact de l’erreur du calcul du moment sur la limite devrait être évalué.

Un autre point pourrait être d’automatiser l’étude d’une solution dans le cas des études
déterministes. Le voisinage de la solution est intéressant pour les différents acteurs du
transport aérien. La sensibilité des résultats à la variable de conception est importante,
par exemple la sensibilité au nombre de Mach en croisière et l’altitude de croisière, qui sont
des données extrêmement importantes pour les opérations des compagnies aériennes.

En outre, l’intégration de tous les outils et méthodes aux outils numériques internes
apportent la possibilité d’étudier d’autres concepts d’avions, en particulier d’autres con-
figurations hybrides. Cela a déjà commencé avec un stage sur l’optimisation d’un nouveau
concept d’appareil hybride, en le comparant à d’autres concepts plus classiques.

Un autre point de vue qui pourrait apporter d’importants bénéfices dans l’optimisation
de la conception robuste est l’étude du cas de probabilités jointes. Il pourrait être utile,
pour les praticiens de la conception robuste, de construire une probabilité jointe avec des
méthodes de réduction de dimensions. Dans le cadre de cette thèse, l’étude des copules,
qui sont un outil intéressant pour représenter des variables aléatoires multidimensionnelles,
n’a malheureusement pas pu être menée. Cela pourrait être une prochaine étape.

Enfin, des méthodes très récentes dans le domaine de la conception robuste pourraient
avoir un intérêt, en particulier quand un grand nombre d’entrée incertaines sont impliquées.
Celles-ci couplent des méthodes adaptatives de quantification des incertitudes et des algo-
rithmes d’optimisation par recherche directe [44]. Ces méthodes ont montré des propriétés
de convergence très intéressantes, avec des temps de calcul raisonnables.
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Turbofan engine modeling

This appendix is dedicated to a more detailed presentation of the thermodynamic engine
modeling process that we propose to replace the simple thermodynamic engine.

The simple thermodynamic engine model was computing fast enough to be used within
the overall aircraft sizing loop as long as the Breguet-Leduc based mission simulation was
involved. In that case, the computation time for one single design point was a tenth of
seconds and the optimization of Wing Area and Engine Size took a few minutes. These
performances were acceptable for first runs with this limited number of degrees of freedom
where only airframe and engine size design are involved. It was also sufficient for various
useful sensitivity studies. However, it was clearly not acceptable for a global optimization
involving the engine, the airframe and the trajectory, especially when a complete time
dependent mission simulation is computed.

A short profiling study of the code reveals that the engine model was the major time
consuming model block.

For this reason, an even simpler engine model has been set up on the following specifi-
cations.

A.0.1 Engine model Specifications

Ideally the engine model should satisfy the following specifications:

1. The EM (Engine Model) must has two levels of parameterization:

(a) At design level, its output will have to vary consistently versus:
i. required overall maximum thrust (driving of the engine size),
ii. By Pass Ratio (BPR).

(b) At simulation level, it will have to vary its output according to current flying
condition:
i. Altitude,
ii. Temperature,
iii. Speed,
iv. Selected rating (i.e. engine power level, see below).

2. The EM must run quickly enough to be able to compute one single analysis, including
mission simulation versus time, in at most a few seconds.
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3. The EMmust take account of the general behavior of the consumption versus required
current thrust and particularly, the phenomenon of the bucket (the existence of a
minimum of specific fuel consumption versus thrust).

4. The EM must incorporate calibration factors so that the EM can match as closely
as possible any arbitrary given engine data pack. A data pack is a big set of pre-
computed engine data into which it is possible to interpolate engine thrust and con-
sumption versus any flying conditions. The data pack is in fact a tabulated engine
model.

These specifications are actually quite ambitious regarding the state of art of such
simple models in the literature [151, 165, 150]. The following expression shows a common
formula that can be found with various adaptations in many sources.

Fn = Kfnrating × SLST ×
√

ρ

1.225 × (1−Mach+ 0.5Mach2)×Kfn, (A.1)

SFC = Constant, (A.2)
where the variables can be defined as follows:
• Fn is the resulting maximum thrust in the condition defined by the following vari-

ables,

• SLST is the Sea Level Static Thrust. it is considered as the maximum thrust that
an engine can delivered. This maximum thrust is supposed to be obtained at sea
level and zero speed.

• Kfnrating is a constant lower than 1 defining the ratio of the SLST which is available
in the given flying phase. There is a specific rating for each flight phase:

– Take off: Max Take Off rating (MTO),
– In case of engine failure: Maxi Continuous rating (MCN),
– Climb: Max Climb rating (MCL),
– Cruise: Max Cruise rating (MCR),
– In case were no thrust is required in flight (idle): Flight Idle (FID),
– In case were no thrust is required on ground: Ground Idle (GID).

• ρ is the current air density (kg/m3), and the air density at sea level ρ0 is equal to
1.225 kg/m3,

• Mach is the current Mach number (the ratio between Air Speed and Sound Speed),

• Kfn is a calibration factor to match with any given data,

• SFC is the Specific Fuel Consumption. It is the amount of fuel required to produce
a thrust unit during a time unit (usually in kg/daN/h).

We can see that this model is addressing the requirements (1(a)i), (1(b)i), (1(b)iii),
(1(b)iv), (2) and partially (4) through the Kfn factor and the choice of the constant
SFC.

Nevertheless, the requirements (1(a)ii), (1(b)ii) and (3) are not covered whilst being
very important for our purpose.

After some discussions with experts and various attempts, we have followed the ap-
proach detailed below.
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A.0.2 Modeling approach

The approach will be based on the use of the “mini engine” presented in [15] as it was
very easy with this model to vary the design in term of engine size and bypass ratio and
then to submit the obtained model to various flying conditions. Validation has been done
afterward versus real aircraft information.

A.0.2.1 Thrust Model

The guide lines to build this model were:

• Keep SLST as the overall scale factor for the engine thrust.

• Keep the rating factor Kfnrating and identify it using regressions versus all available
existing aircraft data. This factor will capture the main part of rating balance (see
below).

• Keep the Kfn factor to be able to match with a given engine.

• Keep the term
√

(ρ/1.225) but incorporate a correction factor as a power to better
match the behavior of given engine versus altitude. The term becomes (ρ/1.225)(0.5Kp)

where Kp can be adapted for each rating. Used in conjunction with Kfn, these two
factors will allow matching a given engine rating at sea level as well as thrust evolution
versus altitude.

• Merge the Mach effect and the BPR effect into a polynomial formula. This is justified
by the fact that thrust variation versus speed for a given rating is highly coupled with
BPR.

Rating factors will have the role to capture “the global picture” of power balance between
Take off, drift down, climb cruise and descent while calibration factor Kfn and Kp will
be used to match with a particular engine implementation

The proposed modeling approach for thrust is based on the assumption that effects of
altitude (mainly with ρ) from one side and BPR and speed from another side are indepen-
dent enough so that their contribution in the expression of the model can be inserted as
the product of two independent terms. In practice, this assumption reveals to be accept-
able as it produces a behavior that is consistent with real engine data packs but further
investigation would be necessary to quantify the validity of this assumption and eventually
to merge both effects into one single expression.

Another important point is that the available data concerning real engines are given at
specific conditions of altitude and speed that can be different from an engine to another.
This engines being also of different by pass ratio. As a result of this, the engine model
must be built in a given order:

• First with BPR and Speed effect,

• Secondly, with altitude effect,

• Finally, with rating factor identification.

A consequence of this step by step implementation is that step 1 and 2 cannot be done
by looking for absolute values of thrust but rather relative ones. The final step only will
give to the model its absolute output.
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A.0.2.2 Consumption Model

The guidelines for this model were:

• Look for a simple law to take account of the dependency of fuel consumption versus
altitude, temperature and speed,

• Look for a parametric formula that could reproduce the behavior of the bucket with
the minimum set of tuning parameter.

Thermodynamic approach will be used to propose a formulation for altitude, temperature
and speed dependency but after some tests, theoretical approach had to be modified to
incorporate more empiricism to better match observed data.

Concerning thrust dependency, a pure statistical approach has been selected because
any attempt to make something simpler than the “mini engine” failed.

The implemented of each step of the approach are presented below followed by the final
model obtained.

A.0.3 Development

A.0.3.1 Thrust Model

Speed-BPR Effect

The coupling between speed (quantified by Mach number) and By Pass Ratio has been
quantified using the “mini engine” [15] as it was very easy to vary the design in term of
BPR while keeping constant the maximum sea level static thrust.

We performed sampling by varying bypass ratio in the interval [5, 9] and Mach number
in the interval [0.25, 0.95] for various values of SLST and altitude ZpRef and we observed
a quite robust behavior of the variation of the ratio ηTS = Thrust/SLST versus BPR and
Mach.

The function:

η
(SLST,ZpRef)
TS := (BPR,Mach) 7→ η

(SLST,ZpRef)
TS (BPR,Mach), (A.3)

is robust to the variation of SLST and ZpRef which confirms the assumption of inde-
pendence explained above. The graph from Figure A.1 shows the behavior of the function
that has been selected. The expression of the function is a polynomial function of the two
variables BPR and Mach:

ηTS =
[
Mach2 Mach 1

]
·

MC ·

BPR2

BPR
1


 , (A.4)

where:

MC =

−0.0017 0.0562 0.1693
0.0043 −0.1269 −0.1914
−0.001 0.0279 1.0354

 . (A.5)

The error brought by this model is lower than about 5% in the whole flight domain which
is quite accurate at this stage. However, this result has been figured out using the “mini
engine” [15]. Further validations using real data have been done for one engine and have
given similar result.
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Figure A.1: Thrust Ratio Versus BPR and Mach number.

Altitude Effect

We are here dealing with the following term function of ρ:(
ρ

ρ0

)0.5Kp
, with ρ0 = 1.225 kg/m3. (A.6)

In the context of model identification the Kp factor disappears and the question is to
adjust, eventually, the power of 0.5. After several tests on existing engine data packs,
it appears that a power of 0.75 instead of 0.5 seems to better represent the behavior of
modern engines with high bypass ratio.

Subsequently, we put the following term for the altitude effect:(
ρ

ρ0

)0.75Kp
. (A.7)

After this step, the expression of the function is:

ηTS =
[
Mach2 Mach 1

]
·

MC ·

BPR2

BPR
1


 , (A.8)

ρ = Pamb
287.05× Tamb

, (A.9)

Fnbasic = SLST × ηTS ×
(
ρ

ρ0

)0.75Kp
, (A.10)

where:

MC =

−0.0017 0.0562 0.1693
0.0043 −0.1269 −0.1914
−0.001 0.0279 1.0354

 , (A.11)
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Kp = 1. (A.12)

In the last expressions:

• Fnbasic is the nominal thrust computed by the function,

• Pamb is the ambient pressure,

• P0 is the pressure at the seal level, P0 = 101325 Pa.

All is now in place to perform the final step which consists in calibrating each rating.

Rating factor identification

For turbofans, ratings are level of thrust that are predefined at design stage. They are
fraction of the maximum available thrust of the engine. The Thrust that can deliver a
turbofan is mainly driven by its architecture and the temperature of the gas resulting from
fuel combustion. It is used to deal with the temperature at the exhaust of the combustion
chamber, called T4, as a physical indicator of the level of power, i.e. the level of thrust.
The T4 temperature is constrained by material resistance and is tightly driven by engine
internal systems. Ratio between rating thrust and maximum thrust is in fact driven by
T4 temperature and more specifically by the margin between current value of T4 and its
maximum value. So, thrust rating of the engine corresponds physically to T4 margins
versus maximum T4 value.

There exist as many different engine ratings as specific flight phases. This is due to the
fact that each flight phases has specific requirements in term of power and duration. From
the most power demanding to the less one, we have:

• Take off phase: very short (a few minutes) but requires very high thrust. Rating
is MTO (Max Take Off). This level of power cannot be sustained more than a few
minutes without damaging the engine. Time period in between inspection visits takes
count of the cumulated time when MTO has been run.

• Drift down: No time limit (except available fuel). In case of engine failure, remaining
working engines are set to most powerful regime that can be sustained. Rating is
MCN (Maxi Continuous). This level of power can be sustained as long as necessary
to fly the aircraft safely to a destination. Time period in between inspections takes
count of the cumulated time when MCN has been run.

• Climb: No time limit (except available fuel). Rating is MCL (Max Climb). Corre-
sponding level of power may be a little bit lower than for MCN to save maintenance
cost.

• Cruise: No time limit (except available fuel). Rating is MCR (Max Cruise). Except
for very short missions (less than 500NM) for which cruise segment may be shorter
in time than climb segment, this is the nominal level of power. In fact, most of the
time, the required thrust is lower than MCR.

• Descent: No time limit (except ground level). Rating is FID (Flight Idle). This level
of power is adjusted to ensure energy for airplane systems (avionics, hydraulics, air
conditioning), thrust is no longer driven but is an outcome of the required power.
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This level of power is the most unpredictable one as it is not driven by flight me-
chanics considerations, in compensation, it has very limited effects on global fuel
consumption.

The balance between these different ratings is driven by engine architecture which
has been selected to satisfy airplane requirements. For a given set of requirements and
implemented technology, this balance has a direct effect on engine component life and thus
on maintenance costs. As said previously, rating factors will have the role to capture “the
global picture” of power balance between Take off, drift down, climb cruise and descent
while calibration factor Kfn and Kp will be used to match with a particular engine
implementation. To identify rating factors, we have used existing aircraft data in the
department data base in order to find regressions for the following ratios:

• MTO thrust versus SLST at sea level ISA conditions,

• MCN thrust versus Max thrust in specific airplane conditions,

• MCL thrust versus Max thrust in specific top of climb conditions,

• MCR thrust versus Max thrust in specific top of climb conditions.

Flight conditions are given for each aircraft consistently with the engine thrust. Rating
factors have been computed by least square minimization of the differences between data
base values and model values for the whole population of aircraft. For each rating, we give
below the value resulting from the least-square optimization and the corresponding scatter
plot showing the performance of the resulting factor in term of error. Data Base values
are plotted on horizontal axis whilst Model values are plotted on vertical axis.

Figure A.2: MTO rating factor = 0.835.

The FID rating factor is arbitrary put at a value of 0.01 as no data were available in
the data base. Globally, we can observe a quite good robustness of this part of the model
within the range of values even if in some cases, the discrepancy between data base value
and model value can reach about 10%. The shape of the error which increases accordingly
to the value itself indicates an extensive behavior of the model (the bigger the engine,
the larger the prediction error). This behavior about complex systems such as engine or
aircraft is not surprising. It is often coupled with the increase of the number of degrees of
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Figure A.3: MCN rating factor = 0.720.

Figure A.4: MCL rating factor = 0.650.

Figure A.5: MCR rating factor = 0.590.

freedom for design increases parallel to the size of the object. In this case, the capacity
of a simple model to predict a quantity related to the overall system decreases when the
number of undetected degrees of freedom increases. Nevertheless, such error is acceptable

210



as this stage. The final expression of the model is:

ηTS =
[
Mach2 Mach 1

]
·

MC ·

BPR2

BPR
1


 , (A.13)

ρ = Pamb
287.05× Tamb

, (A.14)

if rating== ’MTO’,

Fn = 0.835× SLST × ηTS
(

ρ

1.225

)(0.75KpTON )
, (A.15)

elseif rating==’MCN’,

Fn = 0.720× SLST × ηTS
(

ρ

1.225

)(0.75KpMCN )
, (A.16)

elseif rating==’MCL’,

Fn = 0.650× SLST × ηTS
(

ρ

1.225

)(0.75KpMCL)
, (A.17)

elseif rating==’MCR’,

Fn = 0.590× SLST × ηTS
(

ρ

1.225

)(0.75KpMCR)
, (A.18)

elseif rating==’FID’,

Fn = 0.010× SLST × ηTS
(

ρ

1.225

)(0.75KpFID)
, (A.19)

end.
(A.20)

where:

MC =

−0.0017 0.0562 0.1693
0.0043 −0.1269 −0.1914
−0.001 0.0279 1.0354

 . (A.21)

In the last expressions:

• Fn is the nominal thrust,

• factors KpTON , KpMCN , KpMCL, KpMCR, KpFID are equal to 1 except when
matching with specific engine is required.

A.0.3.2 The phenomenon of the bucket

The bucket is the point of Thrust where the Specific Fuel Consumption is minimal. Physi-
cally, the existence of this minimum results from a balance between engine propulsive and
thermal efficiency. It can be observed in the example of Figure A.6 which presents the
variation of SFC versus the thrust Fn for two different real engines.

Several characteristics of the bucket phenomenon appear in these graphs:

• the bucket is a flat minimum but can be more or less flat depending on the engine,
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Figure A.6: Illustration of the existence of the bucket SFC for two different engines.
Graphs are presenting SFC as a function of the thrust Fn at different Mach numbers.

• its location within the thrust ladder is not fixed from an engine to an other,

• the left part of the SFC curve is more or less looking like an hyperbole. However,
the SFC behavior at very low thrust is not necessarily accurate.

• the right part of the SFC curve can be modeled as an oblique asymptote.

To these characteristics, we have to add that:

• the most important point is the couple (Fn, SFC) corresponding to the cruise design
point which is common to engine and airframe design,

• this couple of values is generally well known for a given aircraft.

Here also, we will assume that the effect on SFC of flying conditions (altitude ZpRef and
Mach) from one side and thrust level from the other side can be modeled independently.
This assumption will be confirmed on the way.

Identification of the variation of bucket SFC versus By Pass Ratio

Looking for a correlation between BPR and best cruise SFC (named BucketSFC), we
found that the following simple affine function is able to predict the Bucket SFC with a
precision of about 5% according to the available set of 48 engines. This is quite satisfactory.
The graph from Figure A.7 shows the distribution of the calibration factor kSFC that
allows to match with the set of available engines.

BucketSFC = kSFC × 1.03× −0.026×BPR+ 0.76
36000 . (A.22)

Identification of bucket behavior versus flying conditions
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Figure A.7: Probability distribution of the calibration factor kSFC over the database of
available engines.

From propulsion experts, we obtained that the variation of the SFC versus flying
conditions can be captured by the term:

SFCfactor =
(
Tamb
T0

(
1 + 0.2×Mach2

))n
, (A.23)

where:

• Tamb is the ambient temperature,

• T0 is equal to 288.15 Kelvin,

• n is a power that is theoretically 0.5, but is more likely to be 0.6 in practice.

This term is defined so that the ratio SFC/SFCfactor becomes more or less independent
from flying conditions. Note that the term Tamb(1+0.2×Mach2) is what aerodynamics ex-
perts call the total temperature. Another advise was to use an expression of the SFCfactor
enriched with the contribution of total pressure as follows:

SFCfactor =

(
Tamb
T0

(
1 + 0.2×Mach2

))0.5

(
Pamb
P0

(
1˘0.2×Mach2

))3.5 , (A.24)

The term Pamb(1˘0.2 ×Mach2)3.5 is the total pressure. Various experiments have shown
that the best expression seems to be the following compromise between the two formulas:

SFCfactor =
(
Tamb
T0

)0.6 (
1 + 0.2×Mach2

)4.1
. (A.25)

By best expression, we mean the expression that gives the most physical results, i.e. the re-
sults which offer the best matching with real data. Note that the exponent 4.1 corresponds
to 0.6 + 3.5.
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Graphs from Figure A.8 are presenting on the left side the SFC variation at a given
altitude versus Mach number and thrust. On the right side it presents the SFCfactor
variations versus the same input. We can see that the variations versus Mach number are
very well damped for thrust values higher than about 30% of its range which corresponds
to main using domain. Only flight idle is in the domain where Mach effect is not very well
damped but this also corresponds to the domain where only a very limited amount of fuel
is burnt.

Figure A.8: Graph presenting SFC (on the left) and SFCfactor (on the right) as a function
of the Thrust at different Mach numbers.

The same graphs when altitude is varying are showing the same behavior as illustrated
in Figure A.9 for the SFC and in Figure A.10 for the SFCfactor .

Identification of the SFC behavior versus thrust

A first physical analysis of the phenomenon of the bucket has been done during the
development of the “mini engine” model [15]. This analysis shown that the existence of a
minimum of specific fuel consumption versus thrust is due to a balance between:

• propulsive efficiency, which is high at low thrust and low at high thrust,

• thermodynamic efficiency which is low at low thrust and high at high thrust.

Propulsive and thermodynamic efficiencies are the consequence of all assumptions and
choices taken during the engine design. However, a simple formula that would be param-
eterized by a limited number of main drivers can not capture these efficiencies. So, it
has been decide to set up an arbitrary functional expression with the minimum required
parameters to be able to match the shape of the curve with most frequent real evolutions
of SFC versus the thrust.

By analyzing the main characteristics of the shape and how it changes from an engine
to another, a minimum of four parameters have been selected as presented in Figure A.11.

Function expression selection
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Figure A.9: Graphs presenting SFC as a function of the thrust Fn at different Mach
numbers for various altitude ZpRef .

The behavior at the left of the bucket looks more or less as an arc of hyperbole and the
behavior at the right can be matched by an oblique asymptote, so we selected a rational
function to merge those two effects in one single expression:

SFC =
1 + k1

(
Fn

k0
+ k2

(
Fn

k0

)2
)

1 + Fn

k0

, (A.26)

where:

• k0 is the parameter that controls the bucket thrust,

• k1 is the parameter that controls the bucket SFC,

• k2 is the parameter that controls the flatness (by the way of the oblique asymptote).

In addition, the SFC at zero thrust has been anchored to 1 as this part of the curve
has poor contribution to the final result. This choice simplifies the expression of the
function. In reality, only the evolution of BucketSFC and BucketThrust are known, so
only two parameters can be tuned. This is not a problem because flatness is an arbitrary
characteristic that can be adjusted a posteriori. As a result of this, the parameter k2 will
be fixed to the default value of 0.001 which seems to fit with quite a lot of engines. The
parameter k1 will control the level of SFC at the bucket and the parameter k0 will control
the bucket thrust. Following formulas are giving the expressions of these parameters:

k0 = 0.001, (A.27)
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Figure A.10: Graphs presenting SFCfactor as a function of the Thrust at different Mach
numbers for various altitude.

Figure A.11: Selection of the parameters driving the SFC behavior as a function of the
Thrust.

k1 = BucketSFC − 2
√
k0(1−BucketSFC), (A.28)

k2 = BucketThrust√
1 + (1− k1)

k0
− 1

. (A.29)

The graph from Figure A.12 shows the contribution of different terms when BucketThrust =
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20000 N and BucketSFC = 0.6. By gathering all the components described above, we

Figure A.12: Contribution of the hyperbole and the asymptotic term in the expression of
SFC versus the thrust.

obtain the final model for Specific fuel consumption:

Equation Name & Goal

Bucket
(Ref)
SFC = 1.03× −0.026×BPR+ 0.76

36000 × kSFC(Ref), Reference bucket SFC
[Pstd, Tstd] = fatmosphere(0, ZpRef), Cruise altitude standard conditions
[Pamb, Tamb] = fatmosphere(0, Zp), Current altitude conditions

SFC
(0)
factor =

(
1 + 0.2× CruiseMach2

)4.1
×
(
Tstd
T0

)0.6
, Reference cruise SFC factor

SFC
(1)
factor =

(
1 + 0.2×Mach2

)4.1
×
(
Tamb
T0

)0.6
, Current SFC factor

SFCfactor =
SFC

(1)
factor

SFC
(0)
factor

, Factor capturing Zp & Mach dependencies

BucketSFC =
(
Bucket

(Ref)
SFC × SFCfactor

)
× kSFC, Bucket SFC in current conditions

BucketThrust = Bucket
(Ref)
Thrust ×

Pamb
Pstd

, Bucket thrust in current conditions
Ksi = 0.001, Flatness (0 < Ksi < 1)
ζ = BucketSFC − 2

√
Ksi× (1−BucketSFC), Adapt level of SFC

k0 = BucketThrust√
1 + 1− ζ

Ksi
− 1

, Adapt bucket thrust

SFC =
1 + ζ

Fn

k0
+Ksi

(
Fn

k0

)2

1 + Fn

k0

, Rational function

In the last expressions:

• T0 is equal to 288.15 Kelvin,
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• Tamb is the ambient temperature,

• Tstd is the standard temperature at cruise altitude,

• Pamb is the ambient pressure,

• Pstd is the standard pressure at cruise altitude,

• fatmosphere(∆isa, Z) is the function computing the pressure and the temperature at
a given altitude Z and in ∆isa conditions (see [22]),

• CruiseMach is the reference cruise Mach,

• Mach is the current Mach,

• Fn is the current nominal thrust,

• ZpRef is the reference cruise altitude,

• Zp is the current cruise altitude,

• BPR is the engine by-pass ratio,

• SFC is the Specific Fuel Consumption,

• kThrust(Ref), kSFC(Ref), kSFC and Ksi are calibration factors which are used to
match a given engine model.

The shape of SFC curve evolves as presented in Figure A.13: when altitude, Mach and
thrust vary, this behavior is very similar to what can be observed on most of real turbofans.
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Figure A.13: Graphs presenting SFC as a function of the Thrust at different Mach
numbers for various altitude.
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Appendix B

Preliminary aircraft design
deterministic optimization

This appendix presents the numerical results of the following approach of the deterministic
optimization of the hybrid aircraft. The first step is to observe the impact of the additional
synergies on the optimization of the basic hybrid aircraft (with the first 7 dofs), which is
presented in the first section. The second step is to observe the increasing number of dofs
on the hybrid aircraft with all the synergies, which is presented in the second section.

B.0.4 Impact of the synergies on the 7 design variables optimized aircraft

The result of this approach are presenting in the table from Figure B.1 and graph from
Figure B.2.
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Figure B.1: Design variables and performances of the optimized hybrid aircraft for the 7
dofs optimization, with the increasing number of synergies, with respect to the MTOW.
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Figure B.2: Hybrid aircraft optimization graphs with the increasing number of synergies,
for the 7 dofs optimization, with respect to the MTOW.
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B.0.5 Impact of the increasing number of design variables on the all-
synergies optimized aircraft

The result of this approach are presenting in the table from Figure B.3 and graph from
Figure B.4.

Figure B.3: Design variables and performances of the optimized hybrid aircraft with all
synergies, with the increasing number of dofs, with respect to the MTOW.
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Figure B.4: Hybrid aircraft all-synergies optimization graphs with increasing number of
dofs, with respect to the MTOW.
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Appendix C

Robust counterpart of the
uncertain optimization problem

This appendix is dedicated to the conversion of the uncertain optimization problem to
its equivalent robust counterpart. Let us define: Pk = ζsup

k
−ζinf

k
2 . We have the following

equivalences:

∀(A, b, c, d) ∈ U :
{
∀i = 1, . . . ,m, a>i X ≤ bi,
c>X − t ≤ −d,

⇔ ∀(A, b, c, d) ∈ U :
{
∀i = 1, . . . ,m,

∑n
j=1 ai,j · xj ≤ bi,∑n

j=1 cj · xj − t ≤ −d,

⇔ ∀ξ ∈ [−1, 1]L:

∀i = 1, . . . ,m,
∑n
j=1 â

(0)
i,j · xj +

∑n
j=1 P

(a)
i,j · ξi,j · xj ≤ b̂

(0)
i + P

(b)
i · ξb,∑n

j=1 ĉ
(0)
j · xj +

∑n
j=1 P

(c)
j · ξj · xj − t ≤ −d̂(0) − P (d) · ξd,

⇔ ∀ξ ∈ [−1, 1]L:

∀i = 1, . . . ,m,
∑n
j=1 ξi,j · P

(a)
i,j xj − ξb · P

(b)
i ≤ B̂(0)

i ,

ξd · P (d) +
∑n
j=1 ξj · P

(c)
j xj ≤ D̂(0),

⇔


∀i = 1, . . . ,m,

∑n
j=1 max

−1≤ξi,j≤1

[
ξi,j · P (a)

i,j xj
]
− min
−1≤ξb≤1

[
ξb · P

(b)
i

]
≤ B̂(0)

i ,

max
−1≤ξd≤1

[
ξd · P (d)

]
+
∑n
j=1 max

−1≤ξj≤1

[
ξj · P (c)

j xj
]
≤ D̂(0),

⇔

∀i = 1, . . . ,m,
∑n
j=1 P

(a)
i,j |xj |+ P

(b)
i ≤ B̂(0)

j ,

P (d) +
∑n
j=1 P

(c)
j |xj | ≤ D̂(0),

⇔ ∃u ∈ Rn:


∀j = 1, . . . , n, |xj | ≤ uj ,
∀i = 1, . . . ,m,

∑n
j=1 P

(a)
i,j uj + P

(b)
i ≤ B̂(0)

i ,∑n
j=1 P

(c)
j uj + P (d) ≤ D̂(0),

⇔


∀j = 1, . . . , n, xj − uj ≤ 0,
∀j = 1, . . . , n, − xj − uj ≤ 0,
∀i = 1, . . . ,m,

∑n
j=1 P

(a)
i,j uj + P

(b)
i ≤ B̂(0)

i ,∑n
j=1 P

(c)
j uj + P (d) ≤ D̂(0),
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⇔


∀j = 1, . . . , n, xj − uj ≤ 0,
∀j = 1, . . . , n, − xj − uj ≤ 0,
∀i = 1, . . . ,m,

∑n
j=1 P

(a)
i,j uj +

∑n
j=1 â

(0)
i,j · xj + P

(b)
i − b̂

(0)
i ≤ 0,∑n

j=1 P
(c)
j uj +

∑n
j=1 ĉ

(0)
j · xj − t+ P (d) + d̂(0) ≤ 0,

⇔ AX̃ ≤ b.

In the above equations we have: X̃ =
(
X>, t,u>

)>
, and:

∀i = 1, . . . ,m , B̂(0)
i = b̂

(0)
i −

n∑
j=1

â
(0)
i,j · xj ,

D̂(0) = −d̂(0) −
n∑
j=1

ĉ
(0)
j · xj + t,

C′ = (0, . . . , 0, 1, 0, . . . , 0)> ∈ R2n+1,

A =


In 0n −In
−In 0n In

ˆA(0) 0m P (a)

Ĉ(0)
>
−1 P(c)

 ∈ R(2n+m+1)×(2n+1),

b =
(
01×2n, b̂(0) −P(b),−P (d) − d̂(0)

)>
∈ R(2n+m+1),

Â(0) =


â

(0)
1,1 . . . â

(0)
1,n

... . . .
...

â
(0)
m,1 . . . â

(0)
m,n

 , P(a) =


P

(a)
1,1 . . . P

(a)
1,n

... . . .
...

P
(a)
m,1 . . . P

(a)
m,n

 ,
Ĉ(0) = (ĉ(0)

1 , . . . , ĉ(0)
n ) , P(c) = (P (c)

1 , . . . , P (c)
n )>,

ˆb(0) = (b̂(0)
1 , . . . , b̂(0)

m ) , P(b) = (P (b)
1 , . . . , P (b)

m ).
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