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Glossary

In this thesis, vectors and matrices are denoted by bold lower-case and bold upper-

case symbols, respectively. Vectors are, by default, column vectors.

Mathematical Notations

a: Scalar

a: Vector

A: Matrix

(.)∗: Complex-conjugate operator

(.)T : Transpose operator

(.)H : Conjugate-transpose operator

(.)+: Moore-Penrose inverse operator

I: Identity matrix

E(.): Expectation operator

.̂: Estimated paramter

diag(a): Diagonal matrix whose diagonal elements are those of vector a

tr(A): Trace of matrix A

Det(A): Determinant of matrix A

B: Frequency band in Hz

∆τ : Time delay between two echoes

∆f : Frequency step in Hz
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List of Abbreviation

NDT: Non-Destructive Testing

UTAS: Ultra Thin Asphalt Surfacing

GPR: Ground Penetrating Radar

PILE: Propagation Inside Layer Expansion

MoM: Method of Moment

TDE: Time Delay Estimation

DOA: Direction Of Arrival
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ESPRIT: Estimation of Signal Parameters via Rotational Invariance Technique

FFT: Fast Fourier Transform

IFT: Inverse Fourier Transform

IFFT: Inverse Fast Fourier Transform

PM: Propagator Method

EVM: EigenValue Method

SSP: Spatial Smoothing Preprocessing

MSSP: Modified Spatial Smoothing Preprocessing

ISS: Improved Spatial Smoothing

RMP: Root MUSIC Polynomial

RRMSE: Relative Root Mean Square Error

SNR: Signal to Noise Ratio

UWB: Ultra Wide Band

EM: Electromagnetic

FDTD: Finite Difference Time Domain

FEA: Finite Element analysis

ETSA: Exponentially Tapered Slot Antenna

LMSE: Least Mean Squares Error

RMS: Root Mean Square

RMSE: Root Mean Square Error
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MPM: Matrix Pencil Method
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1
Introduction

Civil engineering is a field of engineering dealing with the design, construction

and maintenance of roads, bridges, buildings, dams, canals, etc. To test or evaluate the

properties of these structures, two testing methods are available. The first method is the

destructive testing method, which destroys the probed medium. It is favourable when

the number of drilling is small and can be used for the thickness estimation in civil

engineering. Nevertheless, to measure the long distance, the destructive testing cannot

be feasible. Thus, under this condition, Non-Destructive Testing (NDT) is preferred

to inspect, test or evaluate materials, components or assemblies without destroying the

products.

This chapter is organised as follows: in section 1, we present some NDT methods

and how Ground Penetrating Radar (GPR) works as a NDT method in the field of civil

engineering. Section 2 describes the probing media: the pavement layers. Section 3

presents the issue and motivation of this thesis. Recent developments in signal pro-

cessing methods on GPR for pavement survey are discussed in section 4. And finally,

conclusions are drawn.

1.1 Non-destructive testing

NDT is a common way to evaluate the properties of a material without causing

any damage. Compared to destructive testing, NDT is a highly valuable technique that

13



14 CHAPTER 1. INTRODUCTION

can save both time and money in product evaluation, troubleshooting or some research

work. Usual NDT methods include ultrasonic, magnetic-particle, radiographic, eddy

current testing, remote visual inspection and liquid penetration, which are often used

in the field of civil engineering, electrical engineering, aeronautical engineering, foren-

sic engineering, mechanical engineering, petroleum engineering, systems engineering,

medicine and so on.

In the field of civil engineering, for example, ultrasonic testing (UT) is a NDT

method which makes use of the principles of mechanical vibration and the propagation

of ultrasonic waves inside the tested materials [1]. In most cases, UT uses very short

ultrasonic pulse-waves with centre frequencies between 0.1 and 15 MHz, or in some

situations up to 50 MHz, and transmits them into materials to detect internal flaws or

to characterize the materials. UT is particularly used for estimating the thickness of

materials or monitor pipework corrosion. Generally, UT is applied on detecting metal-

lic materials. Although it can also be used on concrete, wood or soil, the resolution

is decreased dramatically. Radiographic Testing (RT) is also used as NDT method. It

is able to detect hidden flaws in materials by using short wavelength electromagnetic

waves. It is able to penetrate in various materials. X-rays may also be used for sensing

various materials, as they can easily penetrate through metal. Nevertheless, X-rays can

be absorbed by plastics, soil and water.

In addition, GPR is one another NDT method which has numerous applications in

various fields. It can be used in the Earth sciences, environmental re-mediation, archae-

ology and so on. This NDT method uses electromagnetic radiation in the microwave

band (UHF/VHF frequencies) of the radio spectrum. GPR uses high-frequency radio

waves to image the subsurface. It detects the reflected signals from subsurface struc-

tures or objects. GPR can be used in a large variety of media, including rocks, soil,

ice, fresh water, pavements and structures. It can detect objects, changes in materials

as well as voids and cracks.

For this PhD thesis, this work is focused on road pavement survey by using the

NDT GPR method in order to make a diagnostic imaging of the pavement structure.

Two kinds of GPR can be used: impulse GPR and step-frequency GPR. Impulse GPR

acquires pulse response in time domain directly. It is one of the simplest method to

generate an impulse waveform and low-cost. However, it has undesirable ringing,

inefficient use of transmit power and limited resolution by pulse width. For a step-

frequency GPR, the transmitting frequency is stepped in linear increment over a fixed

bandwidth, from a start frequency to a stop frequency. The received signal is mixed

and sampled at each discrete frequency step. It can control transmission frequencies,
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with efficient use of power and sampling of wideband signals.

1.2 Probing media

The French national road network is approximately a million miles [2]. Regu-

lar maintenance of the road helps maintaining the safety in a sufficient level for users.

This maintenance is carried out by controlling the existing coatings (measure the thick-

ness, detect and monitor the cracks [3]). Furthermore, NDT of the thickness allows

with verifying the quality of implementation of new pavement [2]. As French traffic

is continuously increasing, the maintenance of the road network requires regularly re-

assessing the design of road structures. In the receipt of a construction, the goal is to

estimate the thicknesses and to verify if the thicknesses are consistent with the require-

ments of the specification. To make the maintenance of the road network effectively,

we need to achieve high-performance measures.

In this study, a GPR (impulse GPR in Fig. 1.1 and step frequency GPR Fig. 1.2)

is used to estimate the thicknesses of pavements. However, in practice, the destructive

sampling by coring is still the most used way to check the thickness of pavement

layers [4]. The coring associated with radar measurements allows to calibrate radar

measurements (explicitly determine the speed of wave propagation in the layer) from a

representative sample of a homogeneous medium. In this case, the destructive surveys

and non-destructive surveys are complementary. The pavement appears as a multilayer

pavement structure. The pavement is schematically made up of a surface layer, a base

course layer, a sub-base layer, a compacted sub-grade and a natural sub-grade (see Fig

1.3). The layers contain a surface layer to contact vehicles tires, and a bonding layer

that facilitates the transfer of superficial loads. The pavement over-layer consists of

aggregates, embedded in a matrix of bitumen or bituminous binder.

The pavement surface layer typically ranges within [1; 10] cm and is directly af-

fected by traffic and climate. The average thickness is about 2 cm for Ultra Thin

Asphalt Surfacing (UTAS). This layer contributes to the sustainability of the pavement

structure. The base course layer and the sub-base layer ensure the dissemination efforts

and are often composed of treated gravel and/or non-treated with hydraulic binders (ce-

ment) or bituminous. The compacted sub-grade layer is a layer of material intended to

improve and homogenize the bearing capacity of the sub-grade. Its thickness may be

significant if the bearing capacity is weak.

In 1980’s, with the development of modified bitumen with polymers and the use of

additives, new types of asphalt concrete appeared, bringing better performance in terms
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of quality and durability. These new asphalt concretes are used for the construction of

new pavements and maintenance works. This technological innovation has reduced the

thickness of the surface and interface layers.

Figure 1.1: Example of an impulse GPR (SIR-3000) [5]

1.3 Issue and motivation

The study of electromagnetic scattering by layered surfaces has a large number of

applications, like in pavement survey. It can be used to measure the thickness, detect

and evaluate damaged zones (interface debonding of pavements and of seal coats of

highway structures). The centimetre-scale wavelengths are often used for the specific

application of pavement survey [6, 7, 8, 9, 10, 11] and more especially for measuring

the thickness of different layers, which permits rapid data collection for pavement

surveys. In road pavement survey, particularly for measuring the thickness of different

layers, the road layers are assumed to be horizontally stratified [3, 10, 12, 13, 14], the

vertical structure of the pavement can be deduced from radar profiles by means of time

delay and amplitude estimations. Echo detection provides the time-delay estimation

associated with each interface, while amplitude estimation is used to retrieve the wave

speed within each layer.
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Figure 1.2: Example of a step frequency GPR [5]
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Figure 1.3: Pavement structure
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Nowadays, the thickness of the new pavement layer of the road network is less than

5 cm, which is too small to be measured by conventional radar techniques. Indeed, the

time resolution depends on the frequency bandwidth. For a conventional GPR (central

frequency is 2 GHz), the minimum thickness which can be measured is around 5 cm.

Then, there exists a need for improving the time resolution of NDT techniques. To

solve this problem, there are 2 solutions. The first solution is to increase the frequency

range of GPR: when the layer thickness is smaller than 5 cm, the frequency band

of GPR should larger than 7 GHz. The second solution is to use signal processing

methods and in particular high resolution methods to improve the GPR time resolution.

For conventional band-limited pulse radar, high-resolution processing is required

whenever layer thickness of the pavement is less than approximately 5 cm [12]. In this

thesis, the work is focused on the second solution: to improve the time resolution of

GPR by signal processing methods.

At usual GPR wavelengths (decimetre range in the air), the interface roughness

may be neglected. Within the scope of using the ultra-wide band capability of the step-

frequency radar technology (and in particular, the upper frequency range, which may

be up to 8−10 GHz), the influence of the interface roughness has to be addressed [15].

For layer thickness measurement, it has been shown that the influence of the interlayer

roughness (the roughness of embedded interfaces) prevails on the surface roughness.

In the civil engineering and GPR literature, generally, signal processing does not take

the roughness into account . When the interface roughness is taken into account, it

is often used to analyse the errors coming from roughness [15, 16]. In addition, the

roughness of only one interface is generally analysed [17, 18]. In the field of SAR,

some research has been carried out to estimate the surface roughness, especially in

[19, 20, 21]. In our study, we also focus on the estimation of interface roughness.

We take the surface and the embedded interfaces roughness into account in the signal

model. We propose some new signal processing methods to jointly estimate the time

delay and a new parameter: the roughness parameter (roughness of the surface and

the embedded interfaces). This new parameter measured by GPR is very important

for road safety, especially for estimating pavement skid resistance. Furthermore, this

new parameter is also expected to be used in analysing the inside of the pavement,

especially to detect the cracks or debonding by highlighting the disaggregation of the

interface materials. Thus, new signal processing methods are proposed to estimate

different parameters of the stratified medium (interface roughness, as well as thickness

of layers). These estimations will make it possible to detect and evaluate damaged

zones (interface debonding of pavements and seal coats of bridges).
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1.4 Recent developments

The methods that estimate the thickness of pavement layers can be divided into 2

categories:

– Conventional methods, such as conventional FFT-based methods. For the thick-

ness estimation, the backscattered echoes should be non-overlapped. It means

that B∆τ > 1, where B is the used radar frequency band and ∆τ is the time

delay between two backscattered echoes.

– High resolution methods (MUSIC, ESPRIT, etc) which allow estimating thin

pavement thickness in civil engineering when the backscattered echoes are over-

lapped, B∆τ ≤ 1.

Processing time resolution of GPR is defined for a given frequency band (B) as the

minimal time shift (∆τ ) between two echoes that the processing is able to distinguish

[12]. Fig. 1.4 gives an example of GPR time resolution with different B∆τ prod-

ucts. In Chapter 2, the differences between conventional methods and high resolution

methods are presented.

For thickness estimation, in the past decade, some authors have already proposed to

use signal processing techniques (high resolution methods) with GPR to estimate the

pavement thickness and especially for small pavement thicknesses [12]. High resolu-

tion methods have been originally proposed in the Direction of Arrival (DOA) finding.

Recently, they have been successfully developed to the spectral analysis and for the

Time Delay Estimation (TDE). Moghaddar et al. [22] proposed a modified MUSIC

algorithm to estimate the time delays and frequency response of electromagnetic scat-

tering where the frequency-dependent amplitudes are taken into account in the signal

model. It allows jointly estimating the time delays and the frequency-dependent am-

plitudes. Qu et al. [23] proposed to use ESPRIT with an improved spatial smoothing

technique for TDE by GPR.

With the development of GPR, especially the ultra wideband GPR, the bandwidths

of radar have been extended up to 8 − 10 GHz. As a consequence, the influence of

interface roughness should not be neglected any more. Indeed, the influence of inter-

face roughness causes a continuous frequency decay of the amplitude of echoes. The

interface roughness has been studied in recent papers [17, 18]. In [18], they combine

a full-waveform GPR model with a roughness model to retrieve surface soil moisture

through signal inversion. In [17], they concentrate on the detection and identification

of a buried target under a rough air-ground interface. Nevertheless, only a single rough

interface is considered in these two cases. In [15, 24], authors consider more sophis-
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ticated electromagnetic modellings for the case of more than one rough interface. In

[15], PILE (Propagation Inside Layer Expansion) based on Method of Moment (MoM)

is used to simulate the radar backscattered signal at nadir from a rough pavement made

up of two rough interfaces separating homogeneous media. In [24], a generalized PILE

to study a medium composed of multiple random rough interfaces is presented. In this

thesis, we propose to make a quantitative analysis by using PILE to study the influence

of interface roughness on the electromagnetic scattering (first-two rough interfaces).

Then, we propose to extend high resolution methods (subspace methods) for new sig-

nal models, which take the interface roughness into account.

1.5 Conclusion

The application of this thesis is to measure the thickness of pavements as well as

interface roughness, particularly for the first two layers of the pavement. In the past

decade, a large number of new signal processing methods have been proposed for layer

thickness estimation. But these methods do not take into account the interface rough-

ness. In this thesis, we propose to extend high resolution methods (subspace methods)

for jointly estimating thickness and interface roughness. For UTAS whose layer thick-

ness varies from 1 to 3 cm, the conventional GPR cannot measure the thickness of these

layers. The objective of this study is to improve the time resolution of radar systems

in order to measure the pavement material made up of thin layers with thickness less

than 3 cm. In addition, the interface roughness is addressed. The influence of inter-

face roughness causes a continuous decay of the amplitude of echoes. The observed

frequency behaviours of the echoes introduce some shape distortion of the radar wave-

form. In narrow frequency bands (less than 2 GHz), these frequency behaviours can

be modelled by an exponential function. In large frequency bands, these frequency

behaviours approach a Gaussian or a mixed function. In this application, the proposed

signal processing methods are used to estimate the time delays of backscattered echoes

from each interface of the layered medium as well as the interface roughness.

Chapter 2 presents the classical signal processing methods for TDE without taking

into account the interface roughness (medium composed of smooth interface). Both

conventional methods (with B∆τ > 1) and high resolution methods (with B∆τ ≤ 1)

are presented. Moreover, some improvements of adaptive spatial smoothing techniques

for high resolution methods are proposed to decorrelate the correlation between the

backscattered echoes.

Chapter 3 presents the influence of interface roughness on the backscattered echoes
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for various frequency bands (narrow band and wide band) by using the PILE method.

Because of the interface roughness, the frequency variations of the magnitude of the

first two backscattered echoes are discussed. The frequency behaviour of the echoes is

modelled by curve fittings.

Chapter 4 presents the proposed high resolution methods (subspace methods), which

are extended to jointly estimate the time delays of backscattered echoes and roughness

parameters of pavements for a narrowband frequency GPR.

Chapter 5 presents both multi-dimension search methods (MLE and generalized

MUSIC) and a one-dimension search method (the modified MUSIC) for the time de-

lays and interface roughness estimation by using wideband frequency GPR.

Chapter 6 validates the proposed algorithms on experimental data from a step-

frequency GPR.

Finally, the dissertation is concluded by a summary of main contributions and sug-

gestions for future work.



2
Time delay estimation

2.1 Introduction

Time delay estimation has been an issue of great research interest for many years.

It has a great number of applications in many fields (radar, sonar, geophysics, medical

imaging, communications and so on). This chapter provides classical signal process-

ing methods for layer thickness estimation by GPR based on TDE. For a dispersive

medium, the layer thickness is dependent on the time delays, the permittivity and the

dispersive parameter (such as Q factor [25]). For a non-dispersive medium (a low-loss

or lossless medium), the layer thickness only depends on the time delays and permit-

tivity. Thus, time delays are important parameters for the quantitative interpretation of

GPR data [10] in the field of civil engineering. For horizontally stratified media, like

the roadways [6] or walls [26], the vertical structure (the layer thickness) of the media

can be deduced from radar profiles by means of echo detection and amplitude estima-

tion. Echo detection provides the time delays associated with each interface, whereas

amplitude estimation is used to retrieve the wave speed within each layer [6]. It must

be highlighted that when the echoes are overlapped, high resolution methods should

be used.

TDE is usually performed by using conventional methods, such as conventional

FFT-based methods (inverse FFT or cross-correlation methods). However, this kind of

method has a time resolution which depends on the bandwidth of GPR. High resolution

23
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methods are required for TDE when the echoes are overlapped. To estimate the thin

pavement thickness in civil engineering, the case of small pavement thicknesses was

studied in recent papers [12]. The main difficulty with data processing lies in the

detection of close backscattered echoes. Some particular pavement materials are made

up of thin layers (thicknesses < 3 cm), they require the use of the high resolution

methods for thickness estimation as conventional methods are limited to distinguish

closely backscattered echoes. In practice, backscattered echoes are correlated. In order

to apply high resolution methods, sub-band averaging techniques should be applied

before using the high resolution methods.

This chapter is organised as follows: section 2 presents the radar data model. Con-

ventional methods and high resolution methods are introduced in section 3 and section

4, respectively. In section 5, we present preprocessing sub-band averaging techniques

with either the propagator method (PM) [27] or the eigenvalue method (EVM) [28].

The preprocessing methods are used to mitigate the influence of the correlation be-

tween the backscattered echoes. Simulation results and a discussion on the perfor-

mance of the proposed algorithms are provided in section 6. Finally, conclusions are

drawn in section 7.

2.2 Signal model for a non-dispersive medium

In the roadway survey, we focus on the first two or three top layers, which are

low-loss media. For pavement materials, the conductivity typically ranges within the

interval [10−3; 10−2] S/m, according to the data provided in [4]. Thus, the media can

be considered as a low-loss media. In addition, for the flat surface case, according to

the work in [29], if the medium is slightly lossy, the dispersivity of the medium can be

neglected. As a consequence, the echoes are simply time-shifted and attenuated copies

of the transmitted signal, as mentioned in [6, 10, 13, 30]. Thus, for a horizontally

stratified lossless medium, the received signal model can be written in the time domain

as [12, 23, 31, 32]:

r(t) =
d

∑

k=1

ske(t− tk) + n(t) (2.1)

For applying spectral analysis techniques to TDE, the received signal is usually formu-

lated in the frequency domain. By using Fourier transform, the received signal model
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can be expressed as:

r(fi) = e(fi)
d

∑

k=1

sk exp(−j2πfitk) + n(fi) (2.2)

where d is the number of backscattered echoes, e(t) and e(fi) are the radar pulse in

the time and frequency domains, respectively; sk represents the reflection coefficient

of the kth scattered echo, n(fi) is an additive white Gaussian noise, with zero mean

and variance σ2; the frequency fi = f1+(i−1)∆f , with i = 1, 2 . . . N , N the number

of used frequencies, f1 the lowest frequency of the studied frequency band and ∆f the

frequency step. Eq. (2.2) can be written in the vector form as follows:

r = ΛAs+ n (2.3)

with the following notational definitions:

1. r = [r(f1) r(f2) · · · r(fN)]T is the (N ×1) received signal vector, called obser-

vation vector, which may represent either the Fourier transform of the measured

GPR signal or the measurements by a step-frequency radar; the superscript T

denotes the transpose operation;

2. Λ = diag (e(f1), e(f2), ..., e(fN)) is a (N×N) diagonal matrix, whose diagonal

elements are the Fourier transform of the radar pulse e(t);

3. A = [a(t1) a(t2) . . . a(td)] is the (N × d) mode matrix;

4. a(tk) = [e−2jπf1tk e−2jπf2tk . . . e−2jπfN tk ]T is the mode vector;

5. s = [s1 s2 · · · sd]T is the (d× 1) vector of echo amplitudes;

6. n = [n(f1) n(f2) · · · n(fN)]T is the (N × 1) noise vector.

According to signal model (2.3) and assuming the noise to be independent of the

echoes, the covariance matrix Y of r can be written as:

Y = E
(

rrH
)

= ΛAE
(

ssH
)

AHΛH + E
(

nnH
)

= ΛASAHΛH + σ2I
(2.4)

where E(:) denotes the ensemble average, S is the (d × d) dimensional covariance

matrix of vector s and I is the identity matrix.
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2.3 Conventional methods

In this section, we present two conventional methods. Firstly, the Inverse Fourier

Transform (IFT) is used for step frequency GPR (the IFT converts a signal from its

frequency domain to a representation in the time domain) and the cross-correlation

method is applied for impulsion GPR (it works directly in the time domain).

2.3.1 Inverse Fourier Transform

By using IFT, the received signal in Eq. (2.2) can be transformed into the time

domain as:

r(t) =

∫ +∞

−∞

r(f) exp(j2πft) df (2.5)

The time delays of echoes can be determined by searching the peaks of r(t). The main

advantage of this method is low computational cost, it can be efficiently implemented

with IFFT algorithm. However, the IFT method cannot resolve closely spaced time

delays because of its resolution capability. In addition, IFT suffers from side-lobe

leakage which can cause misinterpretation of the time delays. It introduces a bias in the

TDE (called short-range leakage) [14]. It should be noted that tapering windows can

sufficiently reduce the side-lobe leakage and that the zero padding is able to mitigate

the short-range effect, but may increase the computational complexity.

As shown in Fig. 2.1, two examples with different B∆τ products are considered,

with B the frequency bandwidth and ∆τ the differential time delay. In the first case,

B∆τ > 1, which means that the two echoes are non-overlapped: the time delays

are well estimated by searching the peaks of the signal envelope. In the second case,

B∆τ ≤ 1, the two echoes are overlapped: only one peak is visible and the time delays

are unable to be estimated by IFT method. As expected, IFT method cannot distinguish

the closely spaced time delays unless the B∆τ product is greater than 1.

2.3.2 Cross-correlation method

The cross-correlation method is particularly suitable for processing of the impulse

GPR. The used observation model corresponds to the time model, defined by Eq. (2.1),

the cross-correlation measures the similarity between the received signal r(t) and the

transmitted signal e(t) as follows:

Γ(τ) =

∫ +∞

−∞

r(t)e∗(t− τ)dt (2.6)
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(a) Non-overlapped case B∆τ > 1
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Figure 2.1: TDE by IFT for non-overlapped echoes (B∆τ = 3) and overlapped echoes

(B∆τ = 0.6), SNR=20 dB and B = 2 GHz
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If the signals are of similar forms, Γ(τ) is maximum for the value of the time delay.

The cross-correlation result is equivalent the matched filter adapted to e(t). The time

delays can be estimated from the peak of Γ(τ). Like the IFT, the time resolution

of the cross-correlation method cannot handle closely spaced time delays. Fig. 2.2
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(b) Overlapped case ∆τ = 0.2 ns

Figure 2.2: TDE by cross-correlation method for non-overlapped and overlapped

cases, SNR=20 dB and B = 2 GHz

presents the results for both overlapped and non-overlapped echoes. Compared to the

non-overlapped case which has two clear distinct peaks for the two time delays, the

overlapped case causes two merged peaks due to the limited resolution of the method.
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2.4 Sub-band averaging techniques

Before we present high resolution algorithms, sub-band averaging techniques are

introduced. Indeed, in practice, received GPR signals are generally coherent. The cor-

relation between echoes impacts the subspace-based high resolution methods and may

be strong enough to degrade their performance. In this situation, the covariance matrix

has to be processed with sub-band averaging techniques which allow to obtain a new

covariance matrix with restored rank. We present the well-known spatial smoothing

preprocessing (SSP) and modified spatial smoothing preprocessing (MSSP) techniques

[32]. Two improved spatial smoothing techniques called here ISSA [23] and ISSB [33]

are also presented in this section.

Figure 2.3: Set of the overlapping frequency sub-bands for the averaging techniques

To apply the sub-band averaging techniques, the influence of radar pulse must be

eliminated from the radar signal. Thus, in the following, the data are divided by the

pulse, then the new observation vector r′ can be written as r′ = Λ−1r = As+Λ−1n =

As + b, with b the new noise vector after the data are divided by the pulse. The new

covariance matrix R0 can be written as:

R0 = E(r′r′H) = Λ−1YΛ−H = ASAH + σ2Σ (2.7)

with

Σ = Λ−1Λ−H = diag(
1

|e(f1)|2
,

1

|e(f2)|2
, · · · , 1

|e(fN)|2
) (2.8)

As shown in Fig. 2.3, N frequencies and M overlapping sub-bands with length L are

considered. Thus, the maximum number of echoes which can be estimated is L − 1.
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These parameters are related to each other by the following expression:

N = L+M − 1 (2.9)

Let r′k denote the (L× 1) data vector of the kth sub-band. It can be written as:

r′k = ALD
k−1s+ bk (2.10)

where bk is the (L×1) noise vector of the kth sub-band, AL denotes the (L×d) mode

matrix (which is independent of parameter k), and D denotes the (d × d) diagonal

matrix expressed as:

D = diag
(

e−2jπ∆ft1 , ... , e−2jπ∆ftd
)

(2.11)

The noiseless cross-covariance matrix between the kth sub-bands and the lth sub-band

Rkl is written as follows:

Rkl = ALD
k−1S(Dl−1)HAH

L (2.12)

The SSP technique estimates the data covariance matrix RSSP as the average of M

frequency overlapping sub-bands as follows [32]:

RSSP =
1

M

M
∑

k=1

Rkk (2.13)

The MSSP method estimates the data covariance matrix RMSSP as follows [32]:

RMSSP =
1

2M

M
∑

k=1

{Rkk + JR∗

kkJ} (2.14)

where J is the (L × L) exchange matrix and the operator ∗ denotes the complex con-

jugate.

The ISSA method estimates the data covariance matrix RISSA as follows [23]:

RISSA =
1

2M

M
∑

k=1

M
∑

l=1

{RkkRll + JR∗

kkR
∗

llJ} (2.15)
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The ISSB method estimates the data covariance matrix RISSB as follows [33]:

RISSB =
1

2M

M
∑

k=1

M
∑

l=1

{RklRlk + JR∗

klR
∗

lkJ} (2.16)

In theory, the ISSB method takes full advantage of all the cross sub-band covariance

matrices Rkl, contrary to ISSA, SSP and MSSP methods which take advantage of only

covariance matrices Rkk.

2.4.1 Extension of spatial smoothing

In the context of this work, theoretically, when the radar pulse and the noise are

taken into account, the two improved spatial smoothing techniques ISSA and ISSB

cannot be used directly. In [23], the authors use a whitening process and neglect the

radar pulse influence in the noise covariance matrix as follows: R0 = ASAH+σ2Σ ≈
ASAH+σ2I. For a “ricker pulse”, this process can bring a small bias in the estimation

[23], but generally, this bias can be higher, following the shape of the radar pulse. Note

that this bias may also be higher in a context of any noise. We propose to take the

radar pulse into account in the processing and use the propagator method (PM) or the

eigenvalue method (EVM) to remove the noise matrix σ2Σ. The noise matrix is not

an identity matrix and contains the radar pulse (see Eq. (2.7)). The noise variance

σ2 can be estimated by PM or EVM and the radar pulse can also be measured by the

signal backscattered from a metallic plane. Thus, the influence of the radar pulse can

be cancelled by removing the noise matrix.

When ISSB method is used in this application, the radar pulse and the noise are taken

into account, so the covariance matrix RISSB is composed of 3 terms: the term coming

only from the signal Ra, the term coming only from the noise Rb, and the interaction

term between the signal and the noise Rc as follows:

RISSB =
1

2M

M
∑

k=1

M
∑

l=1

{R̄klR̄lk + JR̄∗

klR̄
∗

lkJ} = Ra +Rb +Rc
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with R̄kl = E(r′kr
′

l
H) = ALD

k−1S(Dl−1)HAH
L + Σkl (Σkl = E(bkb

H
l )). The ex-

pressions of Ra, Rb and Rc are as follows:

Ra =
1

2M

M
∑

k=1

M
∑

l=1

{ALD
k−1S(Dl−1)HAH

LALD
l−1S(Dk−1)HAH

L + J{ALD
k−1S(Dl−1)H

AH
LALD

l−1S(Dk−1)HAH
L }∗J}

Rb =
1

2M

M
∑

k=1

M
∑

l=1

{{ΣklΣlk}+ J{ΣklΣlk}∗J}

Rc =
1

2M

M
∑

k=1

M
∑

l=1

{ALD
k−1S(Dl−1)HAH

LΣlk +ΣklALD
l−1S(Dk−1)HAH

L + J{ALD
k−1

S(Dl−1)HAH
LΣlk +ΣklALD

l−1S(Dk−1)HAH
L }∗J}

The interaction term Rc must be removed for using ISSB without approximations.

This can also be solved by using PM or EVM. After using PM (or EVM) and then

ISSB, the term coming only from the noise and the interaction term are removed, then

the covariance matrix becomes:

RISSB−PM = Ra

2.4.2 Noise power estimation

In this subsection, we present two methods for estimating the noise variance, one is

EVM and another is PM. EVM is proven to be statistically efficient [28]. PM is shown

to be more efficient than EVM from the computational burden standpoint of view, but

it is less statistically efficient than EVM [27].

For totally uncorrelated echoes, the EVM estimates the noise variance σ2 as:

σ̂2 =
1

N − d

N
∑

k=d+1

λk (2.17)

where λi, (i = d + 1, ..., N ) are the N − d smallest eigenvalues (in theory, λd+1 =

λd+2 = ... = λN = σ2) of the covariance matrix Y in (2.4), σ̂2 is the estimated noise

variance. When the echoes are coherent, the above result remains valid [28].

For PM, the covariance matrix Y can be divided into:

Y =

(
G1 H1

G2 H2

)
(2.18)
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where G1, G2, H1 and H2 are (d× d), ((N − d)× d), (d× (N − d)) and ((N − d)×
(N − d)) dimensional matrices, respectively. The noise variance σ2 can be deduced as

follows [27]:

σ2 =
tr{H2Π}
tr{Π} (2.19)

where Π = IN−d −G2G
+
2 , tr{.} is the trace matrix operator, + is the Moore-Penrose

inverse operator, and Ii is the (i× i) dimensional identity matrix. Matrices G2 and H2

are defined as

G2 = ΛN−dAN−dSA
H
d Λ

H
d

H2 = ΛN−dAN−dSA
H
N−dΛ

H
N−d + σ2IN−d

where ΛdAd and ΛN−dAN−d are (d × d) and ((N − d) × d) dimensional matrices,

respectively. It can be shown that

ΛA =

(
ΛdAd

ΛN−dAN−d

)

=

(
Λd 0

0 ΛN−d

)(
Ad

AN−d

) (2.20)

Under the assumption that the rank of Ad is d, one should notice that the estimated

noise variance has a unique solution only when N − d ≥ d [27].

As the radar pulse is known and the noise variance σ2 is estimated, the new covariance

matrix Rnoiseless can be written as:

Rnoiseless = ASAH ≈ R0 − σ̂2Σ (2.21)

The preprocessing PM or EVM combined with a sub-band averaging technique is

applied. Then, high resolution methods can be used to estimate the time delays of

backscattered echoes. In the following section, we define R as the new covariance

matrix after using sub-band averaging techniques and PM (or EVM).



34 CHAPTER 2. TIME DELAY ESTIMATION

2.5 Subspace methods

2.5.1 Introduction

Subspace methods or high resolution methods are a class of algorithms which

are based on the eigenstructure properties of the data covariance matrix. They are

known because of their high-resolution ability and yield accurate estimates compared

to conventional methods. These algorithms have given rise to a large number of ap-

plications in the areas of array signal processing [34, 35, 36] and spectral analysis

[32, 37] and applications for TDE [12, 15, 23, 38, 39]. In this section, we present

the three most prominent subspace methods: Multiple Signal Classification (MUSIC)

[34], root-MUSIC [35] and Estimation of Signal Parameter via Rotational Invariance

Techniques (ESPRIT) [36]. These algorithms can be applied for both impulse GPR

and step-frequency GPR.

2.5.2 MUSIC

MUSIC algorithm was originally presented as a DOA estimator. Recently, it has

been successfully developed for spectral analysis [40]. In this subsection, we present

MUSIC algorithm for the TDE of radar echoes in order to measure the thicknesses of

a stratified media.

The structure of the covariance matrix R after sub-band averaging techniques and

de-noising can be written in terms of its eigenvalues and eigenvectors as:

R = USΛSU
H
S +UNΛNU

H
N (2.22)

where ΛS is a diagonal matrix which contains the d largest eigenvalues, and its asso-

ciated eigenvectors are in US (the matrix of signal eigenvectors). ΛN is a diagonal

matrix which contains the L − d smallest eigenvalues, and its associated eigenvectors

are in UN (the matrix of noise eigenvectors). Since the mode matrix AL is orthogonal

to UN , the MUSIC pseudo-spectrum can be written as:

PMUSIC(t) =
1

aH(t)UNU
H
Na(t)

(2.23)

The time delay can be estimated by searching the peak positions of the MUSIC pseudo-

spectrum PMUSIC(t). Fig. 2.4 shows the MUSIC pseudo-spectrum to estimate the

time delays of backscattered echoes. The two peaks exactly correspond to the true
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time delays, which means that the time delays are well estimated; on the contrary, the

IFT cannot distinguish these two delays when B∆τ ≤ 1.
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Figure 2.4: Simulation results of IFT and MUSIC for TDE (the true time delays are 1
ns and 1.3 ns, SSP is used for bandwidth B = 2 GHz, B∆τ = 0.6 and SNR= 20 dB)

2.5.3 Root-MUSIC

For MUSIC algorithm, it allows to search through all time to find the true time

delays of echoes. It demands a very large computation time. When the frequency

sampling is uniformly linear, we can use the polynomial rooting for TDE instead of

searching in the time spectrum, this algorithm is called root-MUSIC.

Defining z = exp(−j2π∆ft), the model vector a(t) becomes a(z) = exp(−2jπf1t)
[1 z . . . zL−1]T . Thus, finding the set of tmaximizing PMUSIC(t) is equivalent to find-
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ing the roots of the following polynomial, known as root-MUSIC polynomial (RMP):

P (z) = aH(z)UNU
H
Na(z) = aT (z−1)UNU

H
Na(z) (2.24)

As UNU
H
N is Hermitian, the roots of P (z) are conjugate symmetric. Therefore, if zi is

a root of P (z), so is 1/z∗i . Hence, half of the roots will be inside the unit circle and the

other half of the roots will be outside the unit circle. In practice, time delays will be

estimated from the roots inside and closest to the unit circle. Fig. 2.5 gives an example

of the roots of the RMP. Only the roots inside the unit circle are taken into account and

the estimated time delays are calculated from the roots which are closest to the unit

circle. From Fig. 2.5, the two roots closest to the unit circle coincide with the true

values.

2.5.4 ESPRIT

Among subspace methods, ESPRIT affords a direct parameter estimation with a

lower computational complexity. Like MUSIC, ESPRIT has also been originally pro-

posed for DOA estimation. In this subsection, ESPRIT is also used for TDE.

ESPRIT algorithm divides the mode matrix AL into two overlapping data sub-

bands. Sub-bands comprise of L − 1 samples and overlap with each other by L − 2

samples. The ((L− 1)× d) dimensional mode matrices of each sub-band, A1 and A2,

are related to each other by the (d× d) diagonal matrix D, whose elements depend on

the time-delay to be estimated as:

A2 = A1D (2.25)

such that

AL =

(
A1

−

)
=

(
−
A2

)
(2.26)

As matrix D = diag
(
e−2jπt1∆f , ... , e−2jπtd∆f

)
cannot be estimated from data, ac-

cording to [38], on the basis of the eigendecomposition of the data covariance matrix,

it can be shown that the diagonal elements of D can be retrieved from the similar

matrix Ψ which has the same eigenvalues as D:

Ψ = T−1DT (2.27)
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Figure 2.5: Roots of RMP (the true time delays are 1 ns and 1.3 ns, SSP is used for

bandwidth B = 2 GHz, B∆τ = 0.6 and SNR=20 dB)
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where T is a (d × d) dimensional invertible matrix. From the eigendecomposition of

the signal covariance matrix after sub-band averaging techniques Rsig = ALS̄A
H
L (S̄

is a covariance matrix of vector s after sub-band averaging techniques), we have:

RsigVsig = VsigK (2.28)

where the eigenvectors vk associated with the signal subspace are arranged in the ma-

trix Vsig as columns, matrix K = diag (λ1, λ2, ..., λd); λi is the ith eigenvalue of

covariance matrix Γsig. Because matrix D cannot be estimated from data, ESPRIT

further exploits the linear relation in Eq. (2.25) within the eigendecomposition of the

data covariance matrix in Eq. (2.28). Let us write Eq. (2.28) in each sub-band data as

follows:

Rsig,1Vsig = Vsig,1K (2.29)

Rsig,2Vsig = Vsig,2K (2.30)

where Rsig,j (j = 1, 2) are the ((L − 1) × L) dimensional matrices, defined from the

partitioning of the signal covariance matrix, which are expressed as:

Rsig,1 = A1S̄A
H
L (2.31)

Rsig,2 = A2S̄A
H
L (2.32)

where Vsig,1 and Vsig,2 are the two sub-matrices of Vsig defined as:

Vsig =

(
Vsig,1

−

)
=

(
−

Vsig,2

)
(2.33)

At the first step, the latter definition and the expression of A2 in Eq. (2.25) are substi-

tuted for Eq. (2.30). Some mathematical manipulations lead to the following equation:

A1DT = Vsig,2 (2.34)

where

T = S̄AH

L
VsigK

−1 (2.35)

Similarly, Eqs. (2.29), (2.31) and (2.32) are used to obtain the following expression
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for the matrix A1:

A1 = Vsig,1T
−1 (2.36)

At the second step, substituting Eq. (2.36) for Eq. (2.34) leads to:

Vsig,1T
−1DT = Vsig,2 = Vsig,1Ψ (2.37)

where Ψ is a (d × d) dimensional matrix defined in Eq. (2.27), which shows that Ψ

and D are similar matrices, therefore they have the same eigenvalues. A least squares

solution can be used to calculate Ψ from Eq. (2.37):

Ψ =
(
(Vsig,1)

H
Vsig,1

)
−1

(Vsig,1)
H
Vsig,2

The time delays can be estimated from the eigenvalues of Ψ as follows:

tk = −∠ψk/(2π∆f) (2.38)

where ψk is the kth eigenvalue of Ψ, ∠ is the angle.

2.6 Performance evaluation

In this section, the performance of the high resolution methods: MUSIC, root-

MUSIC and EPSRIT combined with sub-band averaging techniques are tested on sim-

ulated data. In order to use ISS, we select the PM to estimate the noise variance. The

performance of the studied algorithms herein is accessed by the Relative-Root-Mean-

Square Error (RRMSE) on estimated time delays.

2.6.1 Simulation parameters

The performance of the algorithms is evaluated by a Monte-Carlo process of 100

independent runs. The simulation data represent the radar backscattered echoes at nadir

from a layer made up of two interfaces separating homogeneous media. The studied

structure is made up of a layer medium of UTAS with relative permittivity equal to

4.5 overlying a baseband with relative permittivity equal to 7; the layer thickness can

be estimated from the TDE of the first two echoes. The frequency band is 1.0 − 3.0

GHz, with 0.1 GHz steps (21 frequency samples), the radar pulse is a ricker [23]. The
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Figure 2.6: RRMSE on the estimated times of arrival t1 versus SNR, totally uncorre-

lated

four preprocessing ISSA, ISSB, MSSP and SSP with PM are used to reduce the cross-

correlation between echoes, the number of sub-bands (M ) equals to 10. The ideal sit-

uation corresponding to the situation where the echoes are totally uncorrelated is also

studied. It allows determining the best performance and limitations of the algorithms.

For each run, the covariance matrix is estimated from 50 independent snapshots. The

SNR is defined as the ratio between the power of the second echo and the noise vari-

ance. The performance of MUSIC, root-MUSIC and ESPRIT combined with ISSA,

ISSB, MSSP and SSP is assessed from the RRMSE of the studied parameter:

RRMSE(z) =

√
1
U

∑U

j=1 (ẑj − z)2

z
(2.39)

where ẑj denotes the estimated parameter for the jth run of the algorithm and z the

true value, U is the number of Monte-Carlo processes. In the following simulations,

the parameter z can represent either the first (t1) or the second (t2) time delay.

2.6.2 Simulation results

In the simulations, we consider two backscattered echoes corresponding to the time

delays 1 ns and 1.3 ns, which correspond to a layer thickness H ≈ 20 mm. The

two echoes are slightly overlapped with B∆τ product equal to 0.6 [12]. In addition,

a comparison in terms of different SNR is made between the 4 sub-band averaging

techniques.
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Figure 2.7: RRMSE on the estimated times of arrival t2 versus SNR, totally uncorre-

lated

Figs. 2.6 and 2.7 plot the RRMSE on the estimated time delay t̂1 or t̂2 when the

echoes are totally uncorrelated. As expected, it can be seen that the RRMSE con-

tinuously decreases with increasing SNR. Root-MUSIC offers the best performance

compared to ESPRIT and MUSIC, especially for the second echo. However, at high

SNR values, these subspace methods tend toward similar performances (the curves of

RRMSE versus SNR coincide with each other). Figs. 2.8-2.10 provide the RRMSE

on the estimated time delay by MUSIC, root MUSIC and ESPRIT combined with

ISSA, ISSB, MSSP and SSP when the echoes are fully correlated. From the simu-

lation results, we can conclude that the selected subspace methods with ISS, espe-

cially the methods with ISSB give better results at low SNR. The power to decor-

relate the echoes among the four sub-band averaging techniques can be written as

ISSB>ISSA>MSSP>SSP. The main drawback of ISS is that the methods require a

little more computational time to implement than SSP and MSSP.

2.7 Conclusion

In this chapter, we have presented the methods for TDE with impulse GPR and

step-frequency GPR in measuring pavement layers.

For the conventional methods, the IFT and cross-correlation method are presented

(the IFT for step-frequency GPR and the cross-correlation method for impulse GPR).

They offer low computational costs and are able to detect time delays with non-overlapped

echoes. Nevertheless, their ability is limited to detect closely spaced time delays. Be-
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Figure 2.8: RRMSE on the estimated times of arrival tk(k = 1, 2) versus SNR by

MUSIC, fully correlated
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Figure 2.9: RRMSE on the estimated times of arrival tk(k = 1, 2) versus SNR by

root-MUSIC, fully correlated
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cause, this kind of methods has a resolution which depend on the frequency bandwidth,

such as B∆τ .

In order to enhance the GPR performance, high resolution methods are used. they

allow the estimation of thickness of thin pavement. Three well-known algorithms

(MUSIC, root-MUSIC and ESRPIT) are applied for the TDE. In practice, GPR sig-

nals are coherent or highly correlated; thus, the correlation of backscattered echoes is

enough to degrade the performance of high resolution methods. For this purpose, we

have extended the sub-band averaging techniques ISSA and ISSB (with PM) to decor-

relate the backscattered echoes. The solutions do not use any approximation and are

more powerful than traditional SSP and MSSP.

The performance of the high resolution methods (MUSIC, root-MUSIC and ES-

PRIT) combined with sub-band averaging techniques (SSP, MSSP, ISSA and ISSB) is

tested on the simulated data. We have calculated the RRMSE on the estimated time

delays with changes of SNR (from −10 dB to 20 dB). Numerical examples are pro-

vided to show the performance of the algorithms. The simulation results show that the

proposed methods have better results especially at low SNR. In the following chapters,

the influence of interface roughness is considered in the signal model and new signal

processing methods are presented.





3
Rough pavement scattering model

3.1 Introduction

In civil engineering, conventional methods are used to estimate the layer thick-

ness by assuming the interfaces of the layer to be flat (like in the previous chapter).

In contrast to the existing literature, in this chapter, the interface roughness is taken

into account and we propose to extend the previous sensitivity analysis in [15] to

larger bandwidths. The influence of interface roughness on the frequency behaviour

of backscattered echoes in different frequency bands (narrow bands, middle bands and

large bands) is studied.

Compared to flat interfaces, this work requires more sophisticated electromagnetic

modelling of GPR. For GPR, numerical simulation is an efficient way to analyse prob-

ing problems and to study the EM (electromagnetic) wave propagation inside the con-

sidered medium. For example, GPRMax, which is based on the Finite-Difference

Time-Domain (FDTD) method, is an open source software that simulates electromag-

netic wave propagation and is able to handle objects with rough surfaces. It is designed

for simulating GPR but can also be used to model electromagnetic wave propagation

for many other applications. In addition, ray tracing and FEA (finite element analysis)

are also common methods for numerical simulation, which are widely used for sim-

ulating the radar response over typical road diseases (surface cracks, base cracks and

base replacements) [6, 7, 41, 42, 43]. Nevertheless, these methods have a high com-

47
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putational complexity and/or a restricted domain of validity. An effective frequency-

domain numerical method called PILE [24, 44] is used in this thesis to compute the

field scattered by the stratified medium with random rough interfaces. Within the scope

of signal processing, the major interest of PILE relies on its capability to split the total

scattered field into each echo contribution.

The rigorous electromagnetic method PILE provides the simulated data that show

the influence of interface roughness on the backscattered primary echoes of stratified

media. The interface roughness provides a continuous frequency decay of the magni-

tude of echoes. The observed frequency variations of the radar magnitude introduce

some shape distortion in the radar waveform. The latter variations can be modelled by

functions which provide satisfactory results for different bandwidths.

Section 2 briefly recalls the rigorous numerical method PILE for simulating the

scattering of EM waves by layered random rough interfaces. As a result, the fre-

quency behaviour of backscattered echoes is investigated with respect to their mag-

nitude. Magnitude variations are found to prevail on phase variations. The studied

frequency band is extended to f ∈ [0.5; 10.5] GHz in order to deal with existing radar

systems, especially UWB step-frequency radars. The sensitivity of the echo magnitude

to interlayer roughness is also studied in order to better understand how the interlayer

roughness impacts the backscattered echoes. Curve fittings are proposed to model the

latter frequency variations by using a LMSE (least mean squares error) technique in

narrow, middle and large frequency bands in section 3. The parameter responsible

for the frequency variations can be estimated by curve fittings. This new parameter is

called roughness parameter. It will be taken into account in the data model in following

chapters. Finally, conclusions are drawn.

3.2 PILE method

In this section, the rigorous numerical method PILE proposed in [44] is used to

calculate the field scattered from a layered pavement medium with random rough in-

terfaces. This study takes realistic scenarios of a thin pavement structure by taking the

interface roughness into account. It focuses on 2D problems with so-called 1-D sur-

faces. The two surfaces (which are assumed to be uncorrelated between each other) are

slightly rough and are characterized by a Gaussian height probability density function

and an exponential height autocorrelation function [15]. The antenna is assumed to

radiate a vertically polarised plane wave in far field of probed pavement. The antenna

radiation pattern is a tapered Thorsos beam whose parameter is chosen to match the
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pattern of an ETSA antenna (Exponentially Tapered Slot Antenna) used for such mea-

surements [45]. PILE method has several advantages compared with other numerical

methods. Firstly, the formulation of PILE method is simple and it has a straightfor-

ward physical interpretation [44]. Then, compared with other MoM-based numerical

methods, PILE method is appropriate to compute the different backscattered echoes

sk = Ek/Ei, with Ei the incident field, Ek the kth scattered field (see Fig. 3.1, with

k = 1, 2). Finally, compared with asymptotic methods, PILE method affords reliable

results over a large range of interface roughness. In the following, the study is limited

to the first two scattered primary echoes, namely s1 and s2 in Fig. 3.1.

Figure 3.1: Rough pavement configuration

3.2.1 Principle of PILE method

In this subsection, we briefly present the principle of PILE method [44]. Based on

the MoM, the total scattered field is expressed by integral equations and is transformed

into the following linear system [44]:

Zx = b (3.1)
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where x is a (4N × 1) vector representing the unknown total field on the surface (N is

the number of samples for the MoM calculation). Then x can be expressed as:

x =

(
x+

x−

)

with x+ and x− are (2N × 1) vectors containing information of field from upper and

lower interfaces of the layer, respectively. Meanwhile, b is a (4N × 1) incident field

vector with expression:

b =

(
b+

b−

)

with b+ and b− are (2N × 1) vectors containing the information of the incident field

of upper and lower interfaces of the layer, or the information of the incident field inside

medium Ω1 and medium Ω2, respectively (see Fig. 3.1). Obviously, there is no incident

wave inside medium Ω2, hence b− = 0. Z is a (4N × 4N) impedance matrix, with

Z =

(
ZU CU

CL ZL

)

ZU and ZL are (2N × 2N) impedance matrices of the upper and lower interfaces,

respectively. CU and CL can be interpreted as coupling matrices between the upper

and lower interfaces. CL propagates information from the lower interface toward the

upper interface and CU from upper surface toward the lower one.

PILE method provides an efficient way to solve Eq. 3.1 and to split up the total

scattered field into each echo contribution. The detail is shown as follows:

Firstly, we assume the inverse matrix Z−1 to be [44]

Z−1 =

(
G K

P Q

)

with

1. G = [ZU −CUZ
−1
L CL]

−1;

2. K = −GCUZ
−1
L ;

3. P = −Z−1L CLG;

4. Q = Z−1L − Z−1L CLGCUZ
−1
L .
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Then, the unknown vector x = Z−1b is given by

x =

(
x+

x−

)
=

(
G K

P Q

)(
b+

0

)
=

(
Gb+

Pb+

)
(3.2)

The scattered information inside the upper medium Ω1 can be obtained from vector

x+:

x+ = Gb+ = (ZU −CUZ
−1
L CL)

−1b+

= (I− Z−1U CUZ
−1
L CL)

−1Z−1U b+

= (I−M)−1Z−1U b+

(3.3)

where M = Z−1U CUZ
−1
L CL. We define the norm ||M||2 of a complex matrix by its

spectral radius, i.e. the highest value of the matrix eigenvalues. By using the property
1

1−a
= 1+ a+ a2 + a3 + . . . , 0 < a < 1, if 0 < ||M||2 < 1, we can expand vector x+

as follows:

x+ = {
∞∑

i=0

Mi}Z−1U b+ =
∞∑

i=0

yi
+

where y0
+ = Z−1U b+ and yi

+ = Myi−1
+ , i ≥ 1. The expression of vector x+ has

a clear physical interpretation as the total unknown field corresponding to the sum of

each scattered field contribution. Vector yi
+, i = 1, 2, . . . corresponds to each scattered

field contribution, and y0
+ corresponds to the contribution of the direct reflection on the

upper interface without refraction. Similarly, for the lower medium Ω2, the scattered

information comes from x−, x− = Pb+ = −Z−1L CLx+. Scattered information from

the lower medium can be expressed by that from upper field x+.

3.2.2 Simulation parameters of PILE

The simulation parameters have been chosen to represent the realistic thin pave-

ment structures. Firstly, the air-coupled radar configuration at nadir has been selected

for pavement survey at traffic speed. Second, the probing scope is limited to the first

two layers of the pavement structure [15, 46]. The pavement structure is composed of

two layers made up of an UTAS with mean thicknessH = 20 mm and the semi-infinite

base layer, as shown in Fig. 3.1. Media Ω2 and Ω3 have different relative permittiv-

ities ǫr, and are assumed to be homogeneous at normal incidence (θi = 0 degree in

Fig. 3.1) for the GPR wavelengths within the frequency band [0.5; 10.5] GHz. For

pavement materials, the permittivity ǫr typically ranges within the intervals [4; 8], ac-
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cording to [15]. The media are assumed to be lossless [29]. For the simulations, we

take ǫr2 = 4.5 and ǫr3 = 7, respectively.

The vertical profiles of the two rough interfaces ΣA and ΣB are assumed to obey a

Gaussian PDF (probability density function) and an exponential autocorrelation func-

tion like in [15, 46, 47]. Then, the two roughness parameters of the surface ΣA are

the root means square (RMS) height σh and the correlation length Lc. They are within

range [0.6; 1] mm and [5; 10] mm, respectively. For the interface ΣB, larger values have

been chosen for the latter parameters according to [15]. Table 3.1 illustrates the three

cases which are considered in the simulations to study the sensitivity of the signal mag-

nitude relatively to the roughness parameters. It is assumed that the antennas radiate a

vertically polarized plane wave in far field at nadir. At 400 mm above the ground, the

antenna footprint is between 300-500 mm wide. In the simulations, we consider that

the rough surface is of length L = 2400 mm and is illuminated by a Thorsos beam

[48] with attenuation parameter g = L/8 (the Thorsos beam has a Gaussian spatial

distribution of the impinging field that mitigates the edge effects to negligible levels).

The spatial sampling of the two rough interfaces is tailored to the inner wavelength ac-

cording to ∆x = |λ2|/8, where λ2 is the wavelength inside Ω2 with λ2 = λ0/
√
ǫr2 (λ0

is the wavelength in the air) and | . . . | is the modulus. In simulations, we take an in-

cident wave with normal incidence (θi = 0), then calculate the first two backscattered

echoes s1 and s2 from the scattered field, s1 = E1/Ei and s2 = E2/Ei, respectively.

PILE method is performed at each frequency over the selected band [0.5; 10.5] GHz

with sampling step ∆f = 0.1 GHz to get the frequency behaviour of the two primary

backscattered echoes. Finally, for calculating the mean scattered field from the random

rough interfaces, a Monte Carlo process which consists of 100 independent trials of the

random rough surface generation is applied.

case # Upper interface roughness (ΣA) Lower interface roughness (ΣB)

σhA, LcA σhB, LcB)
a (0.5, 6.4) mm (1.0, 15) mm

b (0.5, 6.4) mm (2.0, 15) mm

c (1.0, 6.4) mm (2.0, 15) mm

Table 3.1: Roughness parameters (RMS height and correlation length) of both inter-

faces ΣA and ΣB to be used for the simulations
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3.2.3 Simulation results

Firstly, following [15], we start the numerical simulations at a fixed radar frequency

f to study the influence of the interface roughness on the backscattered echoes. The

centre of frequency band, f = fc = 5.5 GHz, is studied. With 10000 realisations

of the Monte-Carlo process, the histogram of the echoes s1 and s2 are computed. A

comparison with the flat interface is also made. The following three figures (Figs. 3.2–

3.4) give simulation results of computed histogram of s1 and s2 for 3 different cases. 4

sub-figures are plotted for each echo, which represent the histogram of the real part, the

imaginary part, the amplitude and the phase (in degrees), respectively. The mean value

is plotted in a dashed vertical line, and the mean value plus and minus the standard

deviation are plotted in dotted vertical lines. The red line represents a Gaussian PDF

having the same mean value and standard deviation as the data. Then, a comparison

is made with the flat interface in green vertical line. Figs. 3.2–3.4 show that the

histogram of the real part, imaginary part, amplitude and phase of backscattered echoes

are close to Gaussian distributions. Concerning the imaginary part and the phase of

the two echoes, there is a slight difference with the flat case. By contrast, a significant

difference occurs in the real part and amplitude of the echoes: the roughness induces a

decrease of the echoes (real part and amplitude) compared to the flat interface.

It is shown in Figs. 3.2–3.4 that the phase variations of both echoes are small

compared to the magnitude variations, thus in the following we do not take the phase

information into consideration [15, 46]. According to the previous section, PILE pro-

vides the amplitude of the two backscattered echoes s1 and s2 at each frequency over

the frequency band [0.5; 10.5] GHz. As shown in Fig. 3.5, the interface roughness pro-

vides a continuous frequency decrease of the magnitude for both echoes s1 and s2. The

magnitude of echoes suffers more decrease with larger interface roughness (increasing

RMS height). The magnitude of s2 is more sensitive to the lower interface roughness

than to the surface roughness [15, 46]. For the influence of interface roughness, the

frequency decrease of echo magnitude over the band [0.5, 10.5] GHz is given in the

Table 3.2. As expected, it can be seen from Fig. 3.5 that if the RMS heights are the

same, the backscattered echoes have the same frequency behaviour. In the following

subsection, approximate expressions of the echo magnitude variations with respect to

the frequency are derived from curve fittings. This parametrization allows to build a

new data model which takes the interface roughness into account.
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Figure 3.2: Case a: Histogram of the real part, imaginary part, amplitude and phase of

the echoes with 10000 realisations with radar frequency f = 5.5 GHz

sk

Decrease (%) Case
a b c

s1 2.86 2.86 10.95
s2 36.49 82.30 83.32

Table 3.2: Variations of the echoes magnitude within the frequency band f ∈
[0.5; 10.5] GHz for a two layer stratified medium with three roughness scenarios (De-

crease (%)=
sk(f1)−sk(fN )

sk(f1)
× 100, k = 1, 2, f1 = 0.5 GHz, fN = 10.5 GHz)
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Figure 3.3: Case b: Histogram of the real part, imaginary part, amplitude and phase of

the echoes with 10000 realisations with radar frequency f = 5.5 GHz
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Figure 3.4: Case c: Histogram of the real part, imaginary part, amplitude and phase of

the echoes with 10000 realisations with radar frequency f = 5.5 GHz
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Figure 3.5: Frequency behaviour of the first two backscattered echoes s1 and s2 within

the frequency band [0.5; 10.5] GHz for 3 different rough pavements with PILE method
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3.3 Curve fitting

In order to characterise the frequency behaviour of backscattered echoes, curve fit-

tings are made to estimate the parameters of the approximated expression of echoes.

By using PILE method, the frequency behaviour of the first two scattered echoes is

obtained. The next step is to deduce approximated expressions of the frequency be-

haviour of the two echoes, which can be used in the signal processing part.

The LMSE method is used to estimate the parameters of the approximated expres-

sion. The error associated with this method is expressed as follows:

RLMSE =
∑

f

|sk,data(f)− sk,model(f)|2 (3.4)

where sk,data(f) is the frequency behaviour of the kth backscattered echoes computed

from PILE, sk,model(f) is the assumed expression of the frequency behaviour of the kth

echo. To find the best solution to model the frequency behaviour of echo amplitude,

several conditions (different approximated expressions and different frequency bands)

are considered. In the following, we choose three different forms of the backscattered

echo amplitudes:

1. The exponential shape | s(f) |= sk × exp(−bf) with unknown parameter b;

2. The Gaussian shape | s(f) |= sk × exp(−bf 2) with unknown parameter b;

3. The mixed shape | s(f) |= sk × exp(−bf 2 − cf) with unknown parameters b

and c.

In these approximated expressions, sk is the amplitude of considered backscattered

echo for the flat pavement. Curve fittings are carried out with radar data in narrow

bands, middle bands and large bands. In the following, only case c (with σhA = 1.0

mm, σhB = 2.0 mm) is studied, and the curve fitting results of cases a and b are shown

in Appendix A.

3.3.1 Curve fitting results in narrow band

For narrowband frequency, 4 cases are studied: the frequency bands f ∈ [0.5; 1.5] GHz,

f ∈ [0.5; 2.5] GHz, f ∈ [1; 3] GHz, and f ∈ [0.5; 3.5] GHz. Figs. 3.6 and 3.7 present

the fitting results in different narrow bands. In addition, in order to evaluate the fitting

performance, Table 3.3 gives the Root-Mean-Square Error (RMSE) of the curve fitting:
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Figure 3.6: Curve fittings for f ∈ [0.5; 1.5] GHz and f ∈ [0.5; 2.5] GHz

Table 3.3: Curve fittings results in narrow band

Frequency

RMSE % (s1/s2) Model
|s(f)| = sk × exp(−bf) |s(f)| = sk × exp(−bf 2) |s(f)| = sk × exp(−bf 2 − cf)

[0.5, 1.5] GHz 0.0290 / 0.371 0.0307/ 0.179 4.70× 10−3 /0.0284
[0.5, 2.5] GHz 0.0906/1.04 0.0433/0.257 4.97× 10−3/0.0369
[1.0, 3.0] GHz 0.130/1.46 0.0485/0.273 1.49× 10−3 /9.57× 10−3

[0.5, 3.5] GHz 0.171/1.94 0.0605/0.324 4.59× 10−3 /0.0282
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Figure 3.7: Curve fittings for f ∈ [1.0; 3.0] GHz and f ∈ [0.5; 3.5] GHz
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RMSE =

√√√√√
N∑
i=1

(x̄i − xi)2

N

where N is the number of sampling points, x̄i the fitting value at the ith sample point,

and xi the true value at the ith sample point. In narrow bands, the three models per-

fectly match the PILE data. The results are shown in Table 3.3. They highlight that the

mixed model has the smallest RMSE. For the Gaussian model, only slight differences

between the Gaussian model and the PILE data can be observed in the lower frequen-

cies. The performance of the exponential model gets worse with increasing frequency

band; nevertheless, it can be accepted for a frequency bandwidth up to 2 GHz.

3.3.2 Curve fitting results in middle band

For the curve fitting in middle frequency bands, we select two cases: f ∈ [0.5; 4.5]

GHz and f ∈ [0.5; 6.5] GHz. Fig. 3.8 shows the fitting results in the two middle bands,

and the curve fitting errors are calculated in Table 3.4.

Table 3.4: Curve fittings results in middle band

Frequency

RMSE % (s1/s2) Model
|s(f)| = sk × exp(−bf) |s(f)| = sk × exp(−bf 2) |s(f)| = sk × exp(−bf 2 − cf)

[0.5, 4.5] GHz 0.261/3.07 0.0890 /0.348 0.0136 /0.0600
[0.5, 6.5] GHz 0.463/5.63 0.00170/0.346 0.0347/0.108

From the curve fitting results, we observe that the mixed model remains in excellent

agreement with PILE data. Meanwhile, for the Gaussian model, the curve fittings also

have a general good agreement with PILE data. However, for the performance of

the exponential model, substantial deviations have been found. These results are not

surprising as recent work [46] showed that the Ament model, which has a Gaussian

frequency variation shape, is a valid asymptotic electromagnetic model for describing

the backscattered echoes.

3.3.3 Curve fitting results in large band

In large frequency bands, we make curve fittings in two frequency bands: f ∈
[0.5; 8.5] GHz and f ∈ [0.5; 10.5] GHz. The curve fitting results and errors are shown

in Fig. 3.9 and Table 3.5, respectively.

The performance of these three models is similar to that for the middle bands. The

mixed model and Gaussian model show general good agreement in the large frequency
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Figure 3.8: Curve fittings in f ∈ [0.5; 4.5] GHz and f ∈ [0.5; 6.5] GHz

Table 3.5: Curve fittings results in large band

Frequency

RMSE % (s1/s2) Model
|s(f)| = sk × exp(−bf) |s(f)| = sk × exp(−bf 2) |s(f)| = sk × exp(−bf 2 − cf)

[0.5, 8.5] GHz 0.698/7.99 0.270/0.355 0.0562/0.103
[0.5, 10.5] GHz 0.983/9.88 0.367/0.323 0.0669/0.166
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Figure 3.9: Curve fittings in f ∈ [0.5; 8.5] GHz and f ∈ [0.5; 10.5] GHz
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bands. Only slight differences appear in the first echo of the Gaussian model. For the

exponential model, important differences appear in the large frequency bands.

Thus, the mixed model and Gaussian model have a good match with PILE data in

narrow, middle and large bands. However, the curve fitting of echoes also has a general

good agreement with PILE data in the whole frequency range. The exponential model

shows poor performances in these three different conditions except for the frequency

band is smaller than 2 GHz.

3.4 Conclusion

In this chapter, we have presented the impact of interface roughness on the fre-

quency behaviour of backscattered echoes for different bandwidths (narrow, middle

and large bands) by using PILE method. It has been shown that the interface rough-

ness introduces some notable frequency variations of the magnitude of the backscat-

tered echoes, which may degrade the performance of classical time delay processing

techniques.

In order to study the frequency variations of the magnitude of the backscattered

echoes with interface roughness, curve fittings have been made to estimate the param-

eters of the approximated expression of the echoes. The parameter called roughness

parameter accounting for the frequency variations (by assuming an exponential shape,

a Gaussian shape or a mixed shape) is estimated by curve fitting. We propose 3 dif-

ferent signal models which take the interface roughness into account. In the following

chapters, new signal processing methods are proposed to deal with these new signal

models. In Chapter 4, new algorithms are proposed for the exponential model. In

Chapter 5, the Gaussian and mixed models are studied and new algorithms are pre-

sented.



4
Parameter estimation for exponential

model

In the previous chapter, the influence of interface roughness has been addressed.

In the literature, when the interface roughness is taken into account, it is often used

to analyse the errors coming from the roughness [15, 16]. In this chapter, we take the

interface roughness into account in the signal model and focus on the estimation of

time delays and interface roughness. New signal processing algorithms are proposed

in this chapter in order to jointly estimate the time delay and a new parameter: the

roughness parameter (the roughness of the interfaces). The proposed algorithms can

estimate different parameters of the stratified medium (the roughness of the interfaces

as well as the thickness of the layers). These estimations will make it possible to

detect and evaluate damaged zones (interface debonding of pavements and seal coats

of bridges).

It has been established in Chapter 3 that the frequency decrease of the echo mag-

nitude can be approximated in narrow frequency band (less than 2 GHz) by an ex-

ponential function wk(fi) ≈ exp(−bkfi), with bk as the roughness parameter of the

kth interface. This enables a simple parametrization of the frequency variations for

data modelling. To jointly estimate the time delays and roughness parameters, high

resolution methods (subspace methods) are presented. In this chapter, we propose 4

algorithms: a modified 2-D MUSIC, a modified root-MUSIC, a modified matrix pen-

65
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cil method (MPM) and TDRP-ESPRIT. The performance of the proposed algorithms

is tested on the data simulated from PILE method [15, 44, 49]. The simulations will

provide the performance analysis on the proposed methods with respect to the time-

delays, the roughness parameters, the thicknesses and the permittivities.

This chapter is organized as follows: section 2 presents the radar data model and the

preprocessing method SSP which is used to mitigate the influence of the correlation

magnitude between the backscattered echoes. In section 3, we present the modified

2-D MUSIC, the modified root-MUSIC, the modified MPM and TDRP-ESPRIT to

estimate the time delays and roughness parameters. In addition, the permittivity of

layers can be estimated from known time delays. Simulation results and discussions

on the performance of the proposed algorithms are provided in section 4.

4.1 Signal model

4.1.1 Signal model in the whole band

The previous chapter has shown that the frequency behaviour of the backscattered

echoes of rough interfaces can be obtained [47]. Here, we focus on the first two or

three top layers of the roadway, which are low-loss media. For pavement materials, the

conductivity typically ranges within the interval [10−3; 10−2] S/m, according to the data

provided in [4]. Thus, the media can be considered as a low-loss media. In addition,

for the flat surface, according to the work in [29], if the surface medium is slightly

lossy, the dispersivity of the medium can be neglected. As a consequence, the echoes

are simply time-shifted and attenuated copies of the transmitted signal, as mentioned

in [6, 10, 12, 13, 23, 30, 50]. On the same basis, we present a new signal model taking

the interface roughness into account but without considering the conductivity (for the

low-loss media, the dispersivity of medium can be neglected). The new signal model

can be written as:

r(fi) =
d∑

k=1

e(fi)skwk(fi) exp(−j2πfitk) + n(fi) (4.1)

where d is the number of interfaces, e(fi) the radar pulse in the frequency domain, sk

the reflection coefficient of the kth scattered echo with flat interfaces and by assuming

the media to be lossless, which implies that sk is independent of fi. n(fi) is an additive

white Gaussian noise with zero mean and variance σ2. wk(fi) represents the frequency

behaviour of the kth scattered echo at the frequency fi = f1 + (i − 1)∆f , with i =
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1, 2 . . . N , N being the number of used frequencies, f1 the lowest frequency of the

studied frequency band and ∆f the frequency shift. From the previous chapter and

[47], wk(fi) = exp(−bkfi) is assumed to be dependent on the interface roughness

through the parameter bk. Eq. (4.1) can be written in the following vector form:

r = ΛAs+ n (4.2)

with the following notation definitions:

1. r = [r(f1) r(f2) · · · r(fN)]T is the (N ×1) received signal vector, called obser-

vation vector, which may represent either the Fourier transform of the measured

GPR signal or the measurements by a step-frequency radar;

2. Λ = diag (e(f1), e(f2), ..., e(fN)) is a (N×N) diagonal matrix, whose diagonal

elements are the Fourier transform e(f) of the radar pulse;

3. A = [a(t1, b1) a(t2, b2) . . . a(td, bd)] is called the (N × d) mode matrix;

4. a(tk, bk) = [e−2jπf1tk−bkf1 e−2jπf2tk−bkf2 . . . e−2jπfN tk−bkfN ]T is the mode vec-

tor;

5. s = [s1 s2 · · · sd]T is the (d× 1) vector of echoes amplitudes in the case of flat

interfaces and lossless media;

6. n = [n(f1) n(f2) · · · n(fN)]T is the (N×1) noise vector, in which each element

is a white Gaussian noise with zero mean and variance σ2.

According to the signal model (4.2) and by assuming the noise to be independent of

the echoes, the covariance matrix Y0 of r can be written as:

Y0 = E
(
rrH

)
= ΛAE

(
ssH
)
AHΛH + E

(
nnH

)

= ΛASAHΛH + σ2I
(4.3)

where S is the (d× d) dimensional covariance matrix of vector s. In the following, the

data is divided by the pulse as follows:

r′ = As+Λ−1n = As+ b (4.4)

where vector n′ is the new noise vector after the data are divided by the pulse. Thus,

the modified covariance matrix can be written as:

R0 = E(r′r′
H
) = Λ−1Y0Λ

−H = ASAH + σ2Λ−1Λ−H

= ASAH + σ2Σ
(4.5)
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with

Σ = Λ−1Λ−H = diag(
1

|e(f1)|2
,

1

|e(f2)|2
, · · · , 1

|e(fN)|2
) (4.6)

4.1.2 Spatial smoothing preprocessing technique

As shown in section 2.4, in practice, the backscattered echoes come from the same

Tx source but with different paths. Thus, the cross-correlation between the echoes

may be high enough to degrade the performance of high resolution methods. Thus, it

is necessary to mitigate the influence of the cross-correlation magnitude by a sub-band

averaging preprocessing. In this chapter, only the SSP [32], which has been introduced

in Chapter 2, is considered in this section. The other methods can not be used (they are

difficult to be adapted to the new signal model).

When the interface roughness is taken into account, matrix D which is defined in

Eq.(2.10) should be rewritten with the new signal model. D can be expressed as:

D = diag
(
e−(2jπt1+b1)∆f , ... , e−(2jπtd+bd)∆f

)
(4.7)

The data covariance matrix Rk0 of the kth sub-band is written as follows:

Rk0 = E(r′kr
′

k

H
) (4.8)

Rk0 = ALD
k−1S(Dk−1)HAH

L + σ2Σk (4.9)

where Σk is the kth noise sub-band matrix of Σ.

As the radar pulse is known, and the noise variance σ2 is estimated (by EVM or PM

from Chapter 2). Then, the kth sub-band of the new noise-free covariance matrix can

be written as follows:

Rk = Rk0 − σ̂2Σk ≈ ALD
k−1S(Dk−1)HAH

L (4.10)

where σ̂2 is the estimated noise variance. The SSP estimates the modified covariance

matrix RSSP as the averaging over M frequency overlapping sub-bands as follows:

RSSP =
1

M

M∑

k=1

Rk0 (4.11)

RSSP = AL

[
1

M

M∑

k=1

Dk−1S(Dk−1)H

]
AH

L + σ2Σo (4.12)
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where Σo =
1

M

∑M

k=1 Σk.

After taking PM into consideration, the modified covariance matrix is as follows:

RSSP−PM =
1

M

M∑

k=1

Rk ≈ AL

[
1

M

M∑

k=1

Dk−1S(Dk−1)H

]
AH

L

= ALS̄A
H
L

(4.13)

The effective correlation coefficient between the ith and jth echoes after the SSP

can be expressed as:

ρSSP =
sin(Mπ∆f(tj − ti))

M sin(π∆f(tj − ti))
exp(−j(M − 1)π∆f(tj − ti)) exp((M − 1)(−bj − bi))

(4.14)

where ti and tj , bi and bj are the time delays and roughness parameters of ith and

jth echoes, respectively, and M is number of overlapping sub-bands. In this case, the

roughness parameter is also embedded in the effective correlation coefficient. As a

result, Fig. 4.1 shows the ability of SSP to reduce the magnitude of the correlation co-

efficient between echoes with regards to the number of sub-bands. For the parameters

at hand, the influence of interface roughness is found to be slight on the correlation

magnitude for the SSP.
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Figure 4.1: Effective correlation for SSP with the following parameters: N =
101, f1 = 1.0 GHz, ∆f = 0.02 GHz, b1 = 3.83 × 10−12, b2 = 3.93 × 10−11,

t1 = 1 ns, t2 = 1.3 ns.
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4.2 Subspace methods

In this section, we present 4 subspace methods (the modified 2-D MUSIC, the

modified root-MUSIC, the modified MPM and TDRP-ESPRIT) which are extended to

jointly estimate the time delays and roughness parameters.

4.2.1 Modified two-dimensional MUSIC

To estimate two different parameters, a modified 2-D MUSIC algorithm is pro-

posed. Like classical MUSIC algorithm, 2-D MUSIC algorithm uses the principle of

orthogonality between the source directional vectors and the noise subspace. 2-D MU-

SIC extends MUSIC into 2 dimensions. The covariance matrix after preprocessing

SSP and PM can be written as Eq. (4.13). Modified 2-D MUSIC allows us to jointly

estimate both the time delays and the roughness parameters by searching the peaks of

following equation:

PMU =
aH(t, b)a(t, b)

aH(t, b)UNU
H
Na(t, b)

(4.15)

where a(t, b) = [e−2jπf1t−bf1 e−2jπf2t−bf2 . . . e−2jπfLt−bfL ]T , UN being the L×(L−d)
noise matrix whose columns are the L − d noise eigenvectors. The advantage of 2-

D MUSIC is that it is easy to be applied for parameters estimation. However, the

algorithm greatly increases the computational complexity.

Fig. 4.2 presents an example of the modified 2-D MUSIC (the pseudo-spectrum

and the contour) with SSP. By searching the peak positions, the time delays and rough-

ness parameters are estimated. The estimated roughness parameters b̂1 = 3.86× 10−12

and b̂2 = 3.85× 10−11, which corresponds to small errors (0.78% and 2.03%) in com-

parison with the true values.

4.2.2 Modified root-MUSIC

The main drawback of the modified 2-D MUSIC is that it need for searching the

spectrum of both the time delays and roughness parameters, which greatly increases

the computational complexity. Thus, in order to reduce the complexity, a modified

root-MUSIC algorithm has been proposed by [22] enables the time delay estimation of

backscattered echoes, whose the magnitudes are frequency dependent. This algorithm

is applied in this subsection to jointly estimate the time delays and the interface rough-

ness parameters. According to [22], we modify the data covariance matrix in (4.13).
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Figure 4.2: Simulation example on the modified 2-D MUSIC with the following pa-

rameters: N = 51, L = 31, f1 = 1.0 GHz, fN = 3.0 GHz, ∆f = 0.04 GHz,

b1 = 3.83 × 10−12, b2 = 3.93 × 10−11, t1 = 1 ns, t2 = 1.3 ns, SNR = 30 dB for 2
backscattered echoes
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After some normalization, the modified data covariance matrix R̄ can be written as:

R̄ = WALS̄A
H
LW = ĀLS̄Ā

H
L (4.16)

where

– W = diag{exp(bf1), exp(bf2), . . . , exp(bfL)}, where the detail of b is given in

the following paragraph;

– ĀL = [a′(t1, b1) a′(t2, b2) . . . a′(td, bd)];

– a′(tk, bk) = [exp(−j2πf1tk) exp(−bkf1+bf1) . . . exp(−j2πfLtk) exp(−bkfL+
bfL]

T .

Defining the roots of the root-MUSIC polynomial (RMP) which correspond to the kth

backscattered echoes xk = exp(−j2π∆ft+ b∆f − bk∆f), the model vector a′(tk, bk)

becomes a′(xk) = exp(−2jπf1t+bf1−bkf1) [1 xk . . . xL−1k ]T . Then the root-MUSIC

polynomial (RMP) can be written as:

P (xk) = a′H(xk)UNU
H
Na

′(xk) = a′T (x∗k)UNU
H
Na

′(xk) = 0 (4.17)

where UN is the L× (L− d) noise matrix whose columns are the L− d noise eigen-

vectors; the roots of RMP are approximately in conjugate reciprocal pairs. We should

notice that when b = bk, k = 1, 2, . . . d, the roots of the kth backscattered echoes ap-

pear in conjugate reciprocal pairs on the unit circle of the complex plane; as the value

b varies, each root-pair of backscattered echo also moves in the complex plane. There-

fore, the roughness parameter of each backscattered echo is determined when the root

pair is closest to the unit circle with the change of b, which corresponds to finding the

minimum of the root-pair separation of the group, according to [22]. The time delays

of the echoes are then determined from the phase of the roots.

An example is shown in Fig. 4.3 which plots the distance variance between the

root-pairs of RMP with respect to the roughness parameter b. The latter parameter

is estimated from the minimum of the root-pair distance. The roughness parameters

estimated by root-MUSIC are b̂1 = 3.93 × 10−12 and b̂2 = 3.98 × 10−11, with errors

2.61% and 1.27%, respectively.

4.2.3 Matrix pencil method

MPM [51] has been developed from a generalized idea of Pencil-of-Function method.

It can be adapted to estimate the time delays and roughness parameters. We rewrite

the mode vector a(tk, bk) = zk0[1, zk, z
2
k, . . . , z

N−1
k ]T , zk = exp(−j2π∆ftk − bk∆f)
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Figure 4.3: Root-pair separation of the modified root-MUSIC polynomial versus the

roughness parameter – same simulation parameters as in Fig. 4.2

and zk0 = exp(−j2πf1tk − bkf1). In the first step, we deal with the noiseless received

signal vector in Eq. 4.4, defined as r′ = x+ b, with x = As. To motivate the MPM, a

Hankel data matrix of vector x is constructed:

X =




x(1) x(2) . . . x(M + 1)

x(2) x(3) . . . x(M + 2)

. . . . . . . . . . . .

x(N −M) x(N −M + 1) . . . x(N)




(4.18)

where M is the pencil parameter with d ≤ M ≤ N − d [52, 53], which is used to

eliminate the noise effects in the data. The matrix pencil is defined as X2 − λX1, with

X1 and X2 are the two sub-matrices of X, where X1 = X(:, 1 :M) and X2 = X(:, 2 :

M + 1), with a scalar parameter λ. X1 and X2 can be written as:

X1 = Z1S0Z2

X2 = Z1S0Z0Z2

where

Z1 =




1 1 . . . 1

z1 z2 . . . zd

. . . . . . . . . . . .

zN−M−11 zN−M−12 . . . zN−M−1d
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Z2 =




1 z1 . . . zM−11

1 z2 . . . zM−12

. . . . . . . . . . . .

1 zd . . . zM−1d




Z0 = diag{z1, z2, . . . , zd}
S0 = diag{z10s1, z20s2, . . . , zd0sd}

Using the above notation, the matrix pencil becomes:

X2 − λX1 = Z1S0{Z0 − λId×d}Z2 (4.19)

where Id×d is a d × d identity matrix. Because of d ≤ M ≤ N − d, the rank of X1

and X2 is d. Under the condition of λ = zk, k = 1, 2, . . . , d, X2 − λX1 = 0. Then,

the parameters zk can be estimated as the generalized eigenvalues of the matrix pair

[X2,X1], Z = X+
1 X2, Z is a matrix whose eigenvalues are the estimated generalized

eigenvalues of the matrix pair [X2,X1].

In practice, noise is considered, then the received signal vector becomes As + b. The

total least-squares MPM [52, 54] is used for the time delays and roughness parameters

estimation. The details are shown as follows:

1. The singular-value decomposition (SVD) is carried out on X, X = UΦVH .

U and V are the matrices composed of the eigenvectors of XXH and XHX,

respectively, Φ is a diagonal matrix which contains the singular values of X.

2. Let us write the SVD-truncated versions of X1 and X2:

Xd,1 = UdΦdV
H
d,1 (4.20)

Xd,2 = UdΦdV
H
d,2 (4.21)

where Φd is the upper left (d×d) block of Φ which contains the largest d singular

values of X, Ud and Vd are the matrices containing the first d columns of U and

V corresponding to the largest d singular values of X, respectively.

Vd =

(
Vd,1

−

)
=

(
−

Vd,2

)
(4.22)
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3. As the eigenvalues of Z depend on the time delays and roughness parameters,

we calculate Z by a least square solution:

Z = X+
d,1Xd,2 = {UdΦdV

H
d,1}+UdΦdV

H
d,2

= (VH
d,1)

+Φ+
d U

+
d UdΦdV

H
d,2 = (VH

d,1)
+VH

d,2

(4.23)

4. The time delays and roughness parameters can be estimated by calculating the

eigenvalues of Z as follows:

tk = −∠zk/(2π∆f)
bk = − ln |zk|/(∆f)

where zk is the kth largest eigenvalue of Z (k = 1, 2 . . . d), ∠ the angle and |.|
the absolute value.

4.2.4 Time Delays and Roughness Parameters with ESPRIT

As the interface roughness is taken into account in the signal model, ESPRIT al-

gorithm [36] is extended for estimating the time delays and the roughness parameters.

Then, it will be called TDRP-ESPRIT (for Time Delays and Roughness Parameters).

ESPRIT algorithm will be applied on the covariance matrix RSSP in Eq. (4.11) and

RSSP−PM in Eq. (4.13). In the following section, the TDRP-ESPRIT is explained

with matrix RSSP in Eq. (4.13). For the case where the TDRP-ESPRIT is used with

matrix RSSP−PM , the calculation is simplified. ESPRIT algorithm divides the mode

matrix AL into two overlapping data sub-bands. Sub-bands comprise of L−1 samples

and overlap with each other by L − 2 samples. The ((L − 1) × d) dimensional mode

matrices of each sub-band, A1 and A2, are related to each other by the (d×d) diagonal

matrix D, whose elements depend on the time delays and roughness parameters to be

estimated as:

A2 = A1D (4.24)

such that

AL =

(
A1

−

)
=

(
−
A2

)
(4.25)

As matrix D cannot be estimated from data, according to [38], on the basis of the

generalized singular value decomposition (GSVD) of the data covariance matrix, it
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can be shown that the diagonal elements of D can be retrieved from the following

similar matrix Ψ. We try to find matrix Ψ which has the same eigenvalues as matrix

D:

Ψ = T−1ΦT (4.26)

where T is a (d × d) dimensional invertible matrix. The idea of this algorithm is

the similiar with the algorithm presented in section 2.5.4. In this section, ESPRIT is

adapted to the new signal model in Eq. (4.1). According to [38], from the GSVD of

the signal covariance matrix Rsig = AL

[
1

M

∑M

k=1 D
k−1S(Dk−1)H

]
AH

L = ALS̄A
H
L ,

we have:

RsigVsig = ΣoVsigK (4.27)

where the generalized eigenvectors vk associated with the signal subspace are arranged

in matrix Vsig as columns, matrix K = diag (λ1, λ2, ..., λd); λi is the ith generalized

eigenvalue of covariance matrix Rsig. Because matrix D cannot be estimated from

data, ESPRIT further exploits the linear relation in Eq. (4.24) within the GSVD of the

data covariance matrix in Eq. (4.27). Let us write the GSVD in Eq. (4.27) in each

sub-band data as follows:

Rsig,1Vsig = Σo,1VsigK (4.28)

Rsig,2Vsig = Σo,2VsigK (4.29)

where Rsig,j (j = 1, 2) are the ((L − 1) × L) dimensional matrices, defined from the

partitioning of the covariance matrix of the signal, which are expressed as:

Rsig,1 = A1S̄A
H
L (4.30)

Rsig,2 = A2S̄A
H
L (4.31)

where Σo,1 and Σo,2 are two ((L−1)×L) dimensional sub-matrices of Σo defined as:

Σo =

(
Σo,1

−

)
=

(
−
Σo,2

)
(4.32)
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At the first step, the latter definition and the expression of A2 in Eq. (4.24) are substi-

tuted for Eq. (4.29). Some mathematical manipulations lead to the following equation:

A1DT = Σo,2Vsig (4.33)

where

T = S̄AH
LVsigK

−1. (4.34)

Similarly, Eqs. (4.28), (4.30) and (4.31) are used to obtain the following expression

for matrix A1:

A1 = Σo,1VsigT
−1 (4.35)

At the second step, substituting Eq. (4.35) for Eq. (4.33), this leads to:

Σo,1VsigT
−1DT = Σo,2Vsig = Σo,1VsigΨ (4.36)

where Ψ is a (d × d) dimensional matrix defined in Eq. (4.26), which shows that Ψ

and D are similar matrices, therefore they have the same eigenvalues. A least squares

solution can be used to calculate Ψ from Eq. (4.36):

Ψ =
(
(Σo,1Vsig)

H
Σo,1Vsig

)
−1

(Σo,1Vsig)
H
Σo,2Vsig

The time delays and roughness parameters can be estimated by calculating the eigen-

values of Ψ as follows:

tk = −∠ψk/(2π∆f)

bk = − ln |ψk|/(∆f)

where ψk is the kth eigenvalue of Ψ.

When the covariance matrix RSSP−PM is applied, we make an eigendecomposition of

the signal matrix Rsig with RsigVsig = VsigK. Then, the TDRP-ESPRIT algorithm

is applied.



78 CHAPTER 4. PARAMETER ESTIMATION FOR EXPONENTIAL MODEL

4.3 Permittivity estimation

By using the estimated time delays t̂k and roughness parameters b̂k, the echoes

amplitude s can be estimated from the signal model. Then, the permittivity of each

layer can be deduced from [8]. Since the noise is considered as a white Gaussian noise

with zero mean, a least squares method is used to estimate the echoes amplitudes as

follows:

ŝ = (ÂHÂ)−1ÂHΛ−1r (4.37)

with Â =
[
a(T̂1, b̂1) a(T̂2, b̂2) . . . a(T̂d, b̂d)

]
, the (N × d) mode matrix of which the

time delays and the roughness parameters are estimated by high resolution methods

(subspace methods). Then, the permittivity of each layer can be deduced from the

echo amplitudes. In our case, we only study the permittivity of the first layer. It is

given by the following relation [8]:

ǫ̂r =

(
1− ŝ1
1 + ŝ1

)2

(4.38)

where ŝ1 represents the estimated amplitude of the first backscattered echo.

4.4 Performance evaluation

In this section, the performance of high resolution methods: the modified root-

MUSIC, TDRP-ESPRIT and the modified MPM is tested on the data simulated from

PILE method. Because of the high computational load, the performance of 2-D MU-

SIC is not studied, only an example is shown in section 4.2.1. In the following, we

evaluate the performance of the proposed algorithms by calculating the RRMSE on

the estimated time delays and roughness parameters against the SNR. In addition, the

thickness and the permittivity estimations are also analysed.

4.4.1 Simulation parameters

The performance of the proposed algorithms is evaluated by a Monte-Carlo pro-

cess. The simulation data represent the radar backscattered signal at nadir from a

rough pavement made up of two uncorrelated random rough interfaces separating ho-

mogeneous media. The studied pavement structure (see Fig. 3.1) is made up of a layer

medium of UTAS with relative permittivity equal to 4.5 overlying a baseband with

relative permittivity equal to 7. In the simulations, we study 4 pavements with differ-
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Case # Roughness parameters Fitting results Conductivity

(σhA, LcA, σhB, LcB) (b1, b2) (δA, δB)
a (0.5, 6.4, 1.0, 15) mm (1.13, 10.9)× 10−3 GHz−1 (0, 0)
b (0.5, 6.4, 2.0, 15) mm (1.13, 40.4)× 10−3 GHz−1 (0, 0)
c (1.0, 6.4, 2.0, 15) mm (3.83, 39.3)× 10−3 GHz−1 (0, 0)
d (1.0, 6.4, 2.0, 15) mm (3.85, 40.9)× 10−3 GHz−1 (5, 10)× 10−3 S/m

Table 4.1: Parameters of the layered medium pavement and fitting results: for each

case (a, b, c, d), the root mean square height σh and the correlation length Lh of the two

interfaces and the curve fitting results of associated PILE method [44]. The subscript

A represents the first interface and B the second interface. The symbol δ represents

the conductivity.

ent interface roughnesses (the rough interfaces are assumed to have a Gaussian height

probability density function and an exponential height autocorrelation function) [15]

and media conductivities. From curve fitting results of PILE in the previous chapter,

the roughness parameters are estimated and presented in Table 4.4.1. Case 3 and case

4 have same surface layer roughness, but with the different conductivities (for the first

two layers). Case 3 represents lossless media, whereas case 4 represents slightly lossy

media. The fitting results for the lossless media and low-loss media are almost the same

(cases c and d). Indeed, the roughness parameters increase of 0.5% (from 3.83× 10−3

GHz−1 to 3.85×10−3 GHz−1) and 4% (from 39.3×10−3 GHz−1 to 40.9×10−3 GHz−1)

for the first and the second interfaces, respectively. In this case, the conductivity has a

very small influence. The frequency band is 1.0 − 3.0 GHz, with 0.04 GHz steps (51

frequency samples). The preprocessing PM is also used. A comparison of the results

from the modified root-MUSIC, TDRP-ESPRIT and the modified MPM is carried out.

SSP technique is used to reduce the cross-correlation between the echoes, the number

of sub-bands (M ) is equal to 20 (note that SSP and the PM are not used in the mod-

ified MPM). The SNR is defined as the ratio between the power of the second echo

(which is associated to the scattering from the lower interface) at the first frequency

and the noise variance. The performance of the proposed algorithms is assessed with a

Monte-Carlo process of 200 independent runs of the algorithm with independent noise

snapshots and by the RRMSE of the evaluated parameter as follows:

RRMSE(z) =

√
1
U

∑U

j=1 (ẑj − z)2

z

where ẑj denotes the estimated parameter for the jth run of the algorithm, and z the

true value. In the simulations, the parameter z can represent either the first (t1) or
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the second (t2) time delay, the first (b1) or the second (b2) roughness parameter, the

permittivity of the first layer (ǫr), or the thickness (H) of the first layer.

4.4.2 Simulation results

In the first eight simulations (Figs. 4.4–4.11), we consider two backscattered

echoes with time delays 1 ns and 1.3 ns, corresponding to a layer thickness H ≈ 20

mm (the relative permittivity is equal to 4.5). The two echoes are slightly overlapped,

as the B∆τ product is equal to 0.6. A comparison is carried out between the modified

root-MUSIC, the modified MPM and TDRP-ESPRIT. Figs. 4.4, 4.6, 4.8, 4.10 plot the

RRMSE on the estimated time delay t̂1 or t̂2 versus the SNR for the 4 cases depicted

in Table 4.4.1. Figs. 4.5, 4.7, 4.9, 4.11 plot the RRMSE on the estimated roughness

parameter b̂1 or b̂2 versus the SNR for the 4 different cases. For both the time delays

and roughness parameters, as expected, it can be seen that the RRMSE continuously

decreases with increasing SNR. For the TDE, the RRMSE vs. the SNR is similar with

different roughness parameters, which means that the interface roughness has only a

slight influence on the estimation of the time of arrival. For the roughness parameter

estimation, the RRMSE of the roughness parameter of the second echo is smaller than

the first one and we can notice that the larger b is, the smaller RRMSE we have, as it is

easy to detect large roughness. Furthermore, the proposed algorithms can also handle

the low-loss media case (case d) with small RRMSE, as shown in Figs. 4.10 and 4.11.

Comparing the 3 algorithms, the modified MPM offers the best performance espe-

cially at low SNR for both the time delays and roughness parameters estimation for

the 4 different rough pavements. However, at high SNR, these methods tend toward

similar performances.

In the second simulation, the layer permittivity and thickness are assessed by using

estimated time delays and roughness parameters from the TDRP-ESPRIT. Fig. 4.12

shows the RRMSE of the estimated permittivity and thickness of the first layer (ǫ̂r, Ĥ)

vs. the SNR for case 3. RRMSE also continuously decreases with increasing SNR.

According to Fig. 4.12, the RRMSE of the permittivity and thickness is smaller than

5% when SNR = 0 dB, and tends to be much smaller with increasing SNR. From

simulations, it can be seen that the proposed algorithm shows good performance in

parameter estimations.
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Figure 4.4: Case a: RRMSE on the estimated time of arrival tk (k = 1, 2) versus SNR

after SSP
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Figure 4.5: Case a: RRMSE on the estimated roughness parameter bk (k = 1, 2)
versus SNR after SSP
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Figure 4.6: Case b: RRMSE on the estimated time of arrival tk (k = 1, 2) versus SNR

after SSP
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Figure 4.7: Case b: RRMSE on the estimated roughness parameter bk (k = 1, 2)
versus SNR after SSP
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Figure 4.8: Case c: RRMSE on the estimated time of arrival tk (k = 1, 2) versus SNR

after SSP
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Figure 4.9: Case c: RRMSE on the estimated roughness parameter bk (k = 1, 2)
versus SNR after SSP
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Figure 4.10: Case d: RRMSE on the estimated time of arrival tk (k = 1, 2) versus

SNR after SSP
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Figure 4.11: Case d: RRMSE on the estimated roughness parameter bk (k = 1, 2)
versus SNR after SSP
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Figure 4.12: Case c: RRMSE of the estimated permittivity and thickness of the first

layer (ǫr, H) vs. the SNR by TDRP-ESPRIT

4.5 Conclusion

In this chapter, the influence of interface roughness has been taken into account in

the signal model. The frequency behaviour of backscattered echoes can be modelled

by an exponential function, which provides satisfactory results for a narrow frequency

bandwidth (less than 2 GHz). We have proposed to extend the subspace methods

(the modified 2-D MUSIC, the modified root-MUSIC, the modified MPM and TDRP-

ESPRIT) for jointly estimating the time delays and interface roughness by using the

exponential model. Preprocessing methods (SSP and PM) have been applied in order

to enhance the performance of the proposed algorithms.

The proposed algorithms can be applied to road surface layer surveys (for the es-

timation of thin pavement thicknesses) by taking the interface roughness into account.

The performance of the proposed algorithms has been tested on different roughness

pavements. The modified 2-D MUSIC, the modified root-MUSIC, the modified MPM

and TDRP-ESPRIT show a good performance in parameter estimations. In the follow-

ing chapter, more complex but realistic signal models (Gaussian and mixed models)

are presented.





5
Parameter estimation for Gaussian

and mixed models

In the previous chapter, the time delays and roughness parameters estimation has

been carried out by taking into account an exponential frequency behaviour. In this

situation, the high resolution methods can be easily applied for parameter estimation

(time delays and roughness). However, this assumption is only suitable for narrow

frequency bands (less than 2 GHz). With widening of the frequency band, curve fitting

errors increase rapidly, which may bring errors to the interface roughness estimation.

It has been found in Chapter 3 that the frequency behaviour w(f) can be better

approximated by a Gaussian function or a mixed function for UWB radar (B > 2

GHz). In these case, we can assume that the frequency behaviour has an expression

wk(fi) ≈ exp(−bkfi2) for the Gaussian model and wk(fi) ≈ exp(−bkfi2 − ckfi) for

the mixed model, with bk and ck are the roughness parameters of the kth interface.

In order to estimate the time delays and roughness parameters for the Gaussian and

mixed models, firstly we propose multi-dimensional search methods: the MLE and

generalized MUSIC algorithm, however their computational burdens are very high.

Then, to reduce the computational complexity of the multi-dimensional methods, we

propose a modified MUSIC algorithm with one dimensional search for TDE. It can

take into account several possible frequency behaviours, more suitable for UWB GPR.

Finally, the frequency behaviour of backscattered echoes can be estimated.

91
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This chapter is organized as follows: in section 2, the radar data models of the

Gaussian and mixed models are presented. Then, in section 3, we propose multi-

dimensional search methods for the time delays and roughness parameters estimation.

In section 4, a modified MUSIC algorithm is proposed to estimate the time delays with-

out knowing the frequency behaviour. Then, the frequency behaviour of backscattered

echoes is calculated with the estimated time delays. Simulation results and a discus-

sion on the performance of the proposed algorithms are given in section 5. Finally,

conclusions are drawn.

5.1 Signal model

In the previous chapter, the signal model of the echoes backscattered from random

rough inferences has been defined as Eq. (4.1):

r(fi) =
d∑

k=1

e(fi)skwk(fi) exp(−j2πfitk) + n(fi)

the signal model in vector form shares same expression as Eq.(4.2):

r = ΛAs+ n

nevertheless in this section, there are some new definitions:

1. For Gaussian model, the mode matrix is defined as follows:

A = [a(t1, b1) a(t2, b2) . . . a(td, bd)] is the (N × d) mode matrix;

2. a(tk, bk) = [exp(−2jπf1tk−bkf12) exp(−2jπf2tk−bkf22) . . . exp(−2jπfN tk−
bkfN

2)]T is the mode vector;

3. For the mixed model, the mode matrix is defined as follows:

A = [a(t1, b1, c1) a(t2, b2, c2) . . . a(td, bd, cd)] is called the (N × d) mode ma-

trix;

4. a(tk, bk, ck) = [exp(−2jπf1tk−bkf12−ckf1) exp(−2jπf2tk−bkf22−ckf2) . . .
exp(−2jπfN tk − bkfN

2 − ckfN)]
T is the mode vector.

Then, the data are divided by the pulse and the new covariance matrix R0 (same defi-

nition as Eq. (4.5)) is:

R0 = E(r′r′H) = Λ−1YΛ−H = ASAH + σ2Σ
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5.2 Multi-dimensional search methods

In this section, we present 2 multi-dimensional search methods: the MLE and gen-

eralized MUSIC algorithms for the time delays and roughness parameters estimation.

5.2.1 Maximum likelihood estimation

In this section, MLE is applied for both the Gaussian and mixed models.

Gaussian model

For the Gaussian model, the frequency behaviour takes the formwk(fi) = exp(−bkfi2).
As the N -point data sets [r(f1) r(f2) · · · r(fN)] depends on the time delays and rough-

ness parameters. We can rewrite the signal model as:

r(f) =
d∑

k=1

ske(f) exp(−j2πftk − bkf
2) + n(f) (5.1)

The noise being a Gaussian white noise with zero mean and variance σ2, the PDF of

the noise is given by

F [n(f)] =
1

πσ2
exp{−|r(f)−

∑d

k=1 ske(f) exp(−j2πftk − bkf
2)|2

σ2
}. (5.2)

As we haveN sampling points which are independent and equally distributed, the joint

PDF for all observations is:

F (r, tk, bk)

=
1

(πσ2)N
exp{−

∑N

i=1 |r(fi)−
∑d

k=1 ske(fi) exp(−j2πfitk − bkfi
2)|2

σ2
}.

(5.3)

For the MLE, the results are obtained by maximizing a log-likelihood function instead

of the joint density function, and the log-likelihood function is as follows:

L(r, tk, bk) = lnF (r, tk, bk)

= −
∑N

i=1 |r(fi)−
∑d

k=1 ske(fi) exp(−j2πfitk − bkfi
2)|2

σ2
−N ln (πσ2).

(5.4)

The optimal estimation (for the time-delay tk and the roughness parameter bk) is ob-
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tained by finding the solution of the following equations:





∂L(r, tk, bk)

∂tk
= 0

∂L(r, tk, bk)

∂bk
= 0

(5.5)

Mixed model

For the mixed model, by using the same way as for the Gaussian model, the time

delays and roughness parameters can be estimated. The difference comes from the

expression of frequency behaviour: here, wk(fi) = exp(−bkfi2 − ckfi). To replace

wk(fi) in Eq. (5.1), (5.2), (5.3) and (5.4), we can get a new log-likelihood function is

as follows:

L(r, tk, bk, ck) = lnF (r, tk, bk, ck)

= −
∑N

i=1 |r(fi)−
∑d

k=1 ske(fi) exp(−j2πfitk − bkfi
2 − ckfi)|

2

σ2
−N ln (πσ2)

(5.6)

For the mixed model, the optimal estimation is obtained by finding the solution of the

following equations: 



∂L(r, tk, bk, ck)

∂tk
= 0

∂L(r, tk, bk, ck)

∂bk
= 0

∂L(r, tk, bk, ck)

∂ck
= 0

(5.7)

5.2.2 Generalized MUSIC algorithm

In the previous chapter, MUSIC and a modified root-MUSIC have been used for the

time delays and roughness parameters with an exponential frequency behaviour. As the

backscattered echoes are perfectly correlated, sub-band averaging techniques should

be applied. For a large frequency band (B > 2 GHz), the exponential model is not

realistic enough for describing the frequency variations of the amplitude of backscat-

tered echoes. For a large frequency bandwidth, the Gaussian and mixed models are

proposed. In this case, the frequency behaviour of backscattered echoes is no longer

uniformly linear, and sub-band averaging techniques do not work. To solve this prob-

lem, we propose a generalized MUSIC algorithm [55] which is capable of handling

coherent echoes with an arbitrary frequency behaviour. The drawback is that the pro-
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posed algorithm still requires a multi-dimensional search.

We can use the generalized MUSIC algorithm for the time delays and roughness pa-

rameters estimation for both the Gaussian model and the mixed model. Note that we

apply the Gaussian model for the following calculation. From [55], when echoes are

fully correlated, we can find the relationship as follows:

P{a(t1, b1) + ρ1a(t2, b2) + · · ·+ ρd−1a(td, bd)}

= P{a(t1, b1), a(t2, b2), . . . , a(td, bd)}




1

ρ1

. . .

ρd−1




= P{a1, a2, . . . , ad}c = 0

where P = UnU
H
n , Un being the N × (N − d) noise matrix whose columns are

the N − d noise eigenvectors, ρi is the magnitude of reflection coefficient of the ith

backscattered echoes of a flat pavement, ak = a(tk, bk), k = 1, 2, . . . d. Then, the

pseudo-spectrum of the generalized MUSIC can be written as:

PG(t1, b1, t2, b2, . . . , td, bd)

= [min
c

{c
H{a1, a2, . . . ad}HP{a1, a2 . . . ad}c
cH{a1, a2, . . . ad}H{a1, a2 . . . ad}c

}]−1
(5.8)

we can find that the above equation can be computed as the minimum root of the

following quadratic equation in λ:

det[{a1, a2, . . . ad}HP{a1, a2 . . . ad} − λ{a1, a2, . . . ad}H{a1, a2 . . . ad}] = 0 (5.9)

therefore, we can rewrite the pseudo-spectrum of the generalized MUSIC as:

PG =
1

λmin

(5.10)

Eq. (5.9) is a generalized eigenvalue equation and has the root λ = 0 only if {a1, a2,

. . . ad}HP{a1, a2 . . . ad} is singular. Thus, the noise covariance matrix P should be

constructed from at least d noise eigenvectors (otherwise λ = 0 is a root of the above

equation for all echoes). By using the generalized MUSIC algorithm, the parameters

estimation can be solved for the Gaussian model. In the same way, the algorithm can

be easily applied on the mixed model.
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5.2.3 Simulation examples

In this subsection, we provide some simulation examples about the multi-dimensional

search methods. Because of computational complexity of the methods, only one rough

layer is studied. The studied pavement structure is made up of a layer medium of

UTAS with relative permittivity equal to 4.5. Thus, for a flat pavement, the reflection

coefficient of the first backscattered echo is s ≈ 0.3592. A curve fitting is made on the

frequency behaviour of the echo by using the least squares method. Simulation param-

eters come from curve fitting results in Chapter 3. The roughness parameter of echo is

b1 = 1.62 × 10−3 GHz−2 (only the Gaussian model is tested here). We consider the

echo corresponding to the time delay 1 ns, the frequency band is 0.5, 3.5 GHz with 61

frequency samples. The performance of the MLE and generalized MUSIC is assessed

with a Monte-Carlo process of 200 independent runs with 500 independent snapshots

and by the RRMSE of the evaluated parameter as follows:

RRMSE(z) =

√
1
U

∑U

j=1 (ẑj − z)2

z
,

where ẑj denotes the estimated parameter for the jth run of the algorithm, and z the

true value. In the simulation, the parameter z can represent either the (t1) time delay or

the (b1) roughness parameter. Figs. 5.1 and 5.2 provide the RRMSE on the estimated
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Figure 5.1: RRMSE on the estimated time delay t1 versus SNR by both MLE and

generalized MUSIC after 200 Monte-Carlo simulations

time delay and roughness parameter versus SNR, respectively. For both the time delay

and roughness parameter, it can be seen that the RRMSE continuously decreases with
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Figure 5.2: RRMSE on the estimated roughness parameter b1 versus SNR by both

MLE and generalized MUSIC after 200 Monte-Carlo simulations

increasing SNR. We also observe from Figs. 5.1 and 5.2 that the MLE gives a better

performance than the generalized MUSIC. It has smaller RRMSE in the whole SNR

sets (see Figs. 5.1 and 5.2). For multiple layers, the computational load is substantial.

Nevertheless, the methods are theoretically applicable to coherent echoes sets of the

Gaussian and mixed models. To reduce the computational burden, in next section, a

new modified MUSIC which needs only one search dimensional is proposed.

5.3 Modified MUSIC algorithm

In this section, we present a new modified MUSIC algorithm for the TDE with un-

known shape of the frequency behaviour. An interpolation spatial smoothing technique

is used to decorrelate the correlation between echoes.

5.3.1 Interpolation spatial smoothing technique

In practice, the correlation between echoes degrades the performance of the sub-

space methods. In this situation, preprocessing methods like the spatial smoothing

techniques are used to obtain a new covariance matrix with restored rank. This kind

of techniques only work for a uniformly linear frequency behaviour [39]. As the fre-

quency behaviour of backscattered echoes can be various shapes, methods like the

spatial smoothing technique cannot be used directly. In order to solve this problem,

we propose to interpolate the frequency behaviour of backscattered echoes into a uni-
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formly linear frequency behaviour. Then, the spatial smoothing techniques can be

applied. This kind of algorithm is called interpolation spatial smoothing technique

[56, 57].

The mode vector can be written as:

a(t) = [exp(−2jπf1t)w(f1) exp(−2jπf2t)w(f2) . . . exp(−2jπfN t)w(fN)]T

= diag{w(f1), w(f2) . . . w(fN)} [exp(−2jπf1t), exp(−2jπf2t) . . . exp(−2jπfN t)]T

= Cā

The frequency behaviour w(f) depends on the RMS height σh and the correlation

length Lh, thus matrix C also changes with σh and Lc; it may then be expressed as

C(σh, Lc). We propose to interpolate w(f) into a uniform linear frequency behaviour.

The procedure is presented as follows:
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Figure 5.3: Linear interpolation on frequency behaviour w(f)

– Define a set of σh = {σh1, σh2 · · · σhG} and Lh = {Lc1, Lc2 · · ·LcP};
– Compute the model vectors associated with the set of σh and Lc, and arrange

them in a matrix form as follows:

Cr = [C(σh1, Lc1) C(σh1, Lc2) . . . C(σh1, LcP ) C(σh2, Lc1) . . . C(σhG, LcP )],

Cr is called the array manifold of the real array;

– Make an interpolation on the frequency behaviour w(f). Thus, the interpolated

frequency behaviour can be ŵ(f) = e
ln{w(fN )/w(f1)}

fN−f1
f
; Fig. 5.3 gives an example

of interpolation of the frequency behaviour w(f).

Then, place the “virtual elements ŵ(f)” of the interpolated matrix:

Cv =
[
Ĉ(σh1, Lc1) Ĉ(σh1, Lc2) . . . Ĉ(σh1, LcP ) Ĉ(σh2, Lc1) . . . Ĉ(σhG, LcP )

]
.
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Ĉ = Ĉ(σh, Lc) = diag{ŵ(f1), ŵ(f2) . . . ŵ(fN)} and Ĉ has a uniformly linear

frequency behaviour.

– Find the transformation matrix B by a least squares solution of BCr = Cv. The

“best” interpolation matrix Cv is the one which minimizes ||BCr −Cv||2.
After the interpolation, a new covariance matrix can be written as follows:

R̄ = BASAHBH + σ2BΣBH (5.11)

where B is the transformation matrix of interpolation. In the following subsection, a

modified MUSIC algorithm is proposed and applied for the time delay estimation. This

algorithm supposes that the noise is a Gaussian white noise. To ensure this condition,

like in [58], the noise covariance matrix must be removed. As the radar pulse (mea-

sured by the echo backscattered from a metallic plane) and the transformation matrix

B are known, and the noise variance σ2 is estimated, the new noise-free covariance

matrix R can be written as follows:

R = BASAHBH + 0× I ≈ R̄− σ̂2BΣBH (5.12)

where σ̂2 is the estimated noise variance. Then, the SSP technique can be applied (see

Chapter 2).

5.3.2 Minimum eigenvalue search by modified MUSIC

When the interface roughness is taken into account, high resolution methods like

MUSIC or ESPRIT cannot be used directly in theory, due to the unknown frequency

behaviour w(f) of echoes. Therefore, we propose a modified MUSIC algorithm to

estimate first the time delays, and then the interface roughness.

In this section, a modified MUSIC algorithm is proposed, which allows estimating

only the time delays. The mode vector a can be written as follows:

a(t) = [exp(−2jπf1t)ŵ(f1) exp(−2jπf2t)ŵ(f2)
. . . exp(−2jπfLt)ŵ(fL)]T

= diag{exp(−2jπf1t), exp(−2jπf2t) . . . , exp(−2jπfLt)}
[ŵ(f1)ŵ(f2) . . . ŵ(fL)]

T

= Âk

where Â = diag{exp(−2jπf1t), exp(−2jπf2t), . . . , exp(−2jπfLt)} and k = [ŵ(f1)
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ŵ(f2) . . . ŵ(fL)]
T with ŵ(f) the frequency behaviour of backscattered echoes after

interpolation. k is a real vector.

The MUSIC pseudo-spectrum can be written as:

P (t) = [min
k
{k

HÂHUNU
H
NÂk

kHÂHÂk
}]−1 (5.13)

where UN is the L×(L−d) noise matrix whose columns are the L−d noise eigenvec-

tors. Referring to [59], P (t) is equal to the minimum generalized eigenvalue λmin of

ÂHUNU
H
NÂ and ÂHÂ, satisfying (with kmin the corresponding generalized eigen-

vector):

ÂHUNU
H
NÂkmin = λminÂ

HÂkmin = λminkmin (5.14)

The pseudo-spectrum of MUSIC can also be written as the reciprocal of the minimum

eigenvalue of real{ÂHUNU
H
NÂ} [59, 60]:

P (t) =
1

λmin(t)
(5.15)

By using (5.15), we only need to search the spectrum in the time domain without

knowing the influence of frequency behaviour. However, it has a false peak in the

middle of two true values. For example, when two echoes are considered, if we assume

that t1 and t2 (t2 > t1) are the time delays of the echoes, we can prove that t3 =
t2−t1

2

is also a solution of λmin(t) = 0. The proof is shown in Appendix B. In [60], based on

the characteristics of λmin(t) corresponding to the false time delay and the true time

delays, a new pseudo-spectrum of MUSIC is proposed to cancel the false time delay,

which can be expressed as:

P (t) =
λ2(t)

λ1(t)
(5.16)

where λk(t) is the kth eigenvalue of real{ÂHUNU
H
NÂ}, and λL(t) ≥ λL−1(t) ≥

. . . ≥ λ1(t). Nevertheless, the above method only works for the case of two echoes.

For the case where the number of echoes is superior to 2, Eq. (5.16) does not work. For

example, when a true time delay has the same value as a false delay, this true time delay

will also be cancelled. In Appendix B, we show that the number of zero eigenvalues

of real{ÂHUNU
H
NÂ} corresponding to the true time delay is odd and the number

corresponding to the false time delay is even. Based on the above characteristics, we
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propose a generalized pseudo-spectrum for modified MUSIC:

P (t) =





λ2(t)

λ1(t)

λ4(t)

λ3(t)
. . .

λL−1(t)

λL−2(t)
L = 2n+ 1

λ2(t)

λ1(t)

λ4(t)

λ3(t)
. . .

λL(t)

λL−1(t)
L = 2n

(5.17)

where n = 1, 2 . . . and L can be odd or even numbers. The MUSIC pseudo-spectrum
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Figure 5.4: MUSIC pseudo-spectrum for TDE with SNR=30 dB and time delays 1 ns,

1.3 ns and 1.7 ns
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Figure 5.5: MUSIC pseudo-spectrum for TDE with SNR=30 dB and time delays 1 ns,

1.3 ns and 1.6 ns

in Eqs. (5.15), (5.16) and (5.17) are shown in Figs. 5.4 and 5.5. In order to make

a better comparison between the three pseudo-spectrum, an amplitude normalization
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is made in Figs. 5.4 and 5.5. In Fig. 5.4, 3 time delays (1 ns, 1.3 ns and 1.7 ns)

are considered. The modified MUSIC with Eq. (5.15) obtains three false peaks at

1.15 ns, 1.35 ns and 1.5 ns. By using the modified MUSIC with Eq. (5.16) and the

modified MUSIC with Eq. (5.17), the three false peaks are removed. In Fig. 5.5,

we also consider 3 time delays (1 ns, 1.3 ns and 1.6 ns), but the second time delay

is in the middle of the other two time delays. The modified MUSIC with Eq. (5.15)

obtains two false peaks at 1.15 ns and 1.45 ns. By using the modified MUSIC with

Eq. (5.16), the two false peaks are removed, but also the second time delay. Only

the proposed modified MUSIC with Eq. (5.17) can successfully remove the false time

delays and keep the true time delays. Thus, in the following, Eq. (5.17) is used as the

pseudo-spectrum of the modified MUSIC.

5.3.3 Interface roughness estimation

When the time delays are calculated, we propose two ways to calculate the interface

roughness. The first one is to use the MLE to estimate the roughness parameters of

each interface. Another way is to use MUSIC algorithm.

MLE for interface roughness estimation

For the frequency behaviour of backscattered echoes, it has been mentioned in the

previous section that the frequency behaviourw(f) can be approximated by a Gaussian

or a mixed function for UWB radar. It enables a parametrization of the frequency vari-

ations for data modelling. We assume that the frequency behaviour can be expressed

as wk(fi) = exp(−bkfi2) or wk(fi) = exp(−bkfi2 − ckfi), where bk and ck are the

roughness parameters of the kth interface. For flat interfaces, bk = ck = 0. These

parameters can be calculated by the MLE with estimated time delays.

MUSIC for interface roughness estimation

The frequency behaviour of backscattered echoes can also be calculated from as-

sociated eigenvectors of the estimated time delays by using Eq. (5.13):

P = [min
k

{k
HÂH(t̂)UNU

H
NÂ(t̂)k

kHÂH(t̂)Â(t̂)k
}]−1

kmin is a vector whose elements contain the information of the frequency behaviour af-

ter interpolation. After calculating the vector kmin, the estimated frequency behaviour

of the backscattered echoes is B−1kmin, B being a transformation matrix of interpola-

tion.
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5.4 Performance evaluation

In this section, we present the simulation results of the modified MUSIC for the

time delays and interface roughness estimations. Three simulations are made in the

following: the first simulation is to estimate the time delays and interface roughness

from various pavements with different roughness; the second simulation evaluates the

performance of the modified MUSIC by calculating RRMSE variations on the esti-

mated time delay versus SNR; in addition, in the third simulation, we extend the stud-

ied media into a pavement made up of 3 rough interfaces.

5.4.1 Simulation parameters

In the simulations, the performance of the modified MUSIC is tested on the data

provided by PILE method. The simulated data represent the radar backscattered signal

at nadir from a rough pavement made up of two rough interfaces separating homo-

geneous media. The studied pavement structure is made up of a layer of UTAS with

relative permittivity equal to 4.5 overlying a base band with relative permittivity equal

to 7. The thickness of the first layer is approximately 20 mm and the second layer is of

infinite thickness.

In the first simulation, five pavements are studied (the rough interfaces are assumed

to have a Gaussian height probability density function and an exponential height auto-

correlation function) [61, 62] with different root mean square heights σh, correlation

lengths Lh and conductivities of the layers δ:

– case 1: σhA = 0.5 mm, LcA = 6.4 mm, σhB = 1.0 mm, LcB = 15 mm, lossless

media;

– case 2: σhA = 1.0 mm, LcA = 6.4 mm, σhB = 2.0 mm, LcB = 15 mm, lossless

media;

– case 3: σhA = 1.0 mm, LcA = 6.4 mm, σhB = 2.5 mm, LcB = 15 mm, lossless

media;

– case 4: σhA = 1.5 mm, LcA = 6.4 mm, σhB = 3.0 mm, LcB = 15 mm, lossless

media;

– case 5: σhA = 1.0 mm, LcA = 6.4 mm, σhB = 2.0 mm, LcB = 15 mm, low-loss

media (δA = 5× 10−3 S/m, δB = 10−2 S/m).

When the frequency band is 0.5 − 3.5 GHz, with 0.05 GHz frequency step (61 fre-

quency samples), the echoes are slightly overlapped. When the frequency band is

0.5 − 6.5 GHz, with 0.1 GHz frequency step (61 frequency samples), the echoes are
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non-overlapped. The covariance matrix is estimated from 1000 independent snapshots.

The interpolation SSP technique is used to reduce the cross-correlation between the

echoes; the number of sub-bands (M ) is equal to 20. The signal-to-noise ratio (SNR)

is defined as the ratio between the power of the second echo and the noise variance. In

the first simulation, a fixed SNR= 20 dB is used for four different rough pavements.

In the second simulation, we evaluate the performance of the proposed modified MU-

SIC, which is assessed with a Monte-Carlo process of 200 independent runs of the

algorithm with independent noise snapshots and by the RRMSE of the evaluated pa-

rameter as follows:

RRMSE(z) =

√
1
U

∑U

j=1 (ẑj − z)2

z
,

where ẑj denotes the estimated parameter for the jth run of the algorithm, and z the

true value. In the simulation, the parameter z can represent either the first (t1) or the

second (t2) time delay. Only case 2 is considered.

In the third simulation, the performance of the proposed method is tested on a pave-

ment which is composed of 3 rough interfaces (four layers). The simulation parameters

of the pavement are chosen as follows: the permittivities of the first three layers are

εr2 = 4.5, εr3 = 7 and εr4 = 9, respectively. We consider three backscattered echoes

corresponding to the first three time delays 1 ns, 1.3 ns and 1.7 ns, which corresponds

to a thickness of the second layer as approximately 20 mm, of the third layer as approx-

imately 23 mm, and of the fourth layer as infinite. The roughness parameters of the

three rough interfaces are chosen as follows: b1 = 1.60×10−3 GHz−2, b2 = 1.70×10−2
GHz−2 and b3 = 3.00 × 10−2 GHz−2, which are obtained from the signal model, the

MLE is used to estimate the roughness parameters.

5.4.2 Simulation results

For the first simulation, Figs. 5.6-5.11 show the pseudo-spectrum of the modified

MUSIC. Two peaks corresponding to the time delays of the first two scattered echoes

are well estimated. The simulation results demonstrate that the proposed algorithm

can handle cases where both echoes are either overlapped or non-overlapped and for

either lossless or low-loss media. Table 5.1 gives the results of estimated time delays

(t̂k). After the time delays are estimated, the next step is to estimate the interface

roughness. The interface roughness can be determined by the frequency behaviour of

the backscattered echoes. Thus, to estimate the interface roughness is equivalent to
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Parameter t̂1 t̂2
case 1 overlapped 1.000 ns 1.300 ns

case 2 overlapped 0.999 ns 1.303 ns

case 3 overlapped 0.998 ns 1.304 ns

case 4 overlapped 0.996 ns 1.307 ns

case 5 overlapped 1.000 ns 1.306 ns

case 2 non-overlapped 1.000 ns 1.301 ns

Table 5.1: Estimated time delays by modified MUSIC, t̂k representing the estimated

time delays

estimate the frequency behaviour. We compare the estimated frequency behaviours

with the data from PILE in Figs. 5.12-5.17. From the frequency behaviour of the five

different cases, it is shown that the expressions of the echoes are in agreement with

the data from PILE for various roughness parameters with either lossless or low-loss

media.
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Figure 5.6: Case 1: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the two

time delays being 1 ns and 1.3 ns(represented in black dashed line), slightly over-

lapped, B = 3.0 GHz

In the second simulation, we only consider case 2. Fig. 5.18 plots the RRMSE

on the estimated time delays versus SNR for case 2. As expected, it can be seen that

the RRMSE is continuously decreasing when SNR increases. Fig. 5.18 shows that the

proposed modified MUSIC gives a relatively good performance in TDE.

In the third simulation, Figs. 5.19 and 5.20 present the pseudo-spectrum of the

modified MUSIC and the frequency behaviour of backscattered echoes for a rough

pavement with 3 layers estimated by MLE. It can be seen that the three peaks cor-
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Figure 5.7: Case 2: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the two

time delays being 1 ns and 1.3 ns (represented in black dashed line), slightly over-

lapped, B = 3.0 GHz
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Figure 5.8: Case 3: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the two

time delays being 1 ns and 1.3 ns (represented in black dashed line), slightly over-

lapped, B = 3.0 GHz
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Figure 5.9: Case 4: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the two

time delays being 1 ns and 1.3 ns (represented in black dashed line), slightly over-

lapped, B = 3.0 GHz
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Figure 5.10: Case 5: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the

two time delays being 1 ns and 1.3 ns (represented in black dashed line), slightly

overlapped, B = 3.0 GHz
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Figure 5.11: Case 2: Pseudo-spectrum of MUSIC for TDE with SNR=20 dB, the two

time delays being 1 ns and 1.3 ns (represented in black dashed line), non-overlapped,

B = 6.0 GHz
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tered echoes from radar data, slightly overlapped
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Figure 5.13: Case 2: Expression of the frequency behaviour of backscattered echoes by

using the estimated roughness parameter versus the frequency behaviour of backscat-

tered echoes from radar data, slightly overlapped
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Figure 5.14: Case 3: Expression of the frequency behaviour of backscattered echoes by

using the estimated roughness parameter versus the frequency behaviour of backscat-
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Figure 5.15: Case 4: Expression of the frequency behaviour of backscattered echoes by

using the estimated roughness parameter versus the frequency behaviour of backscat-

tered echoes from radar data, slightly overlapped
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using the estimated roughness parameter versus the frequency behaviour of backscat-
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using the estimated roughness parameter versus the frequency behaviour of backscat-
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responding to the time delays of the first three scattered echoes are well estimated

(estimated time delays are t̂1 = 0.999 ns, t̂2 = 1.302 ns and t̂3 = 1.705 ns). Fur-

thermore, the estimated frequency behaviours of backscattered echoes are in relatively

good agreement with the data from the signal model (estimated roughness parameters

are b̂1 = 1.50× 10−3 GHz−2, b̂2 = 1.83× 10−2 GHz−2 and b̂3 = 2.93× 10−2 GHz−2).
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Figure 5.19: Simulation 3: MUSIC pseudo-spectrum for the time delay estimation

with SNR=20 dB, the three time delays are 1 ns, 1.3 ns and 1.7 ns (represented in grey

dashed line)
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echoes by using the estimated roughness parameter versus the frequency behaviour of

backscattered echoes from radar data
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5.5 Conclusion

In the previous chapter, several algorithms have been proposed for the time delays

and interface roughness estimation, by using an exponential model. Nevertheless, these

algorithms cannot be applied for Gaussian and mixed models. Thus, in this chapter,

we presented 2 multi-dimensional search methods: MLE and generalized MUSIC as

well as a one dimensional search method: the modified MUSIC. These methods can

estimate the time delays and interface roughness estimation with both the Gaussian

and the mixed models.

The multi-dimensional search methods can deal with echoes which may be corre-

lated or non-correlated. However, a main drawback is their heavy computational bur-

dens, which is hard to be used in practice. Thus, an one-dimensional search method

called the modified MUSIC combined with interpolation spatial smoothing technique

is proposed, which has low computational complexity and is able to handle several

possible frequency behaviours (more adaptable for UWB GPR).

The performance of the proposed algorithm has been tested on simulated data from

PILE with different interface roughnesses. The proposed algorithm shows good per-

formance in terms of the time delays and interface roughness estimation. They can be

applied to evaluate the pavement. In the following chapter, we test the performance of

the proposed algorithm on the experimental data from GPR.





6
Experiments

6.1 Introduction

In the previous chapters, algorithms were proposed to estimate the time delays and

interface roughness in pavement survey. They have been tested on the simulated data

from PILE based on MoM. In order to strengthen the analysis of the proposed algo-

rithms, in this chapter, they are tested on experimental data from GPR. In the narrow

frequency band (less than 2 GHz), TDRP-ESPRIT algorithm (proposed in Chapter 4) is

applied with the exponential model. In the large frequency band, the modified MUSIC

algorithm presented in Chapter 5 is tested with a Gaussian model. In this experiment,

a step-frequency GPR is used to measure the thickness and the interface roughness of

an UTAS pavement.

6.1.1 Experimental device

An UWB step-frequency radar is used in the experiment. It is composed of Vector

Network Analyser (VNA) and a bistatic antenna device whose transmitter (Tx) and

receiver (Rx) are close to each other with a distance d approximately 20 cm, see Fig.

6.1. The antennas for both Tx and Rx are of the ETSA A5 antennas [5, 45]. The

antennas are about 16.5 cm above the tested pavement, which allows to be in a far-

field condition. The radar frequency bandwidth ranges from 1.4 GHz to 15.0 GHz, with

115
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0.017 GHz frequency step (801 frequency samples). By the ability to select multiple

frequency band, the experimental settings enable testing the algorithms in situations

with resolved and overlapping echoes, respectively.

�
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�� ��
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Figure 6.1: Experimental device

6.1.2 Studied medium

In the experiment, we study a rough pavement (see Fig. 6.2) made of two rough

interfaces separating media, as shown in Fig. 6.3. The studied pavement structure

(pavement thickness is about 11 cm) is made of a layer ΣA overlying a base band ΣB,

which are set on a metallic plane ΣC . The thickness of the first layer is approximately

4 cm and the second layer is about 7 cm. In order to calculate the permittivities, we

have chosen to use the whole frequency bandwidth [1.4, 15] GHz. Then, by using the

following equations [8], we can calculate the permittivity of each layer:

ε2 ≈ (
1− s1
1 + s1

)2

ε3 ≈ (
1− s21 − s2
1− s21 + s2

)2
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where ε2 and ε3 are the permittivities of the medium Ω2 and Ω3, respectively. sk is the

amplitude of kth primary echo k = 1, 2. The permittivities of both materials (Ω2 and

Ω3) are calculated in the whole frequency band, with εr2 = 4.94 and εr2 = 3.97. The

incident wave with incidence angle θi = 31.2◦, then refraction angles θr1 = 13.5◦ and

θr2 = 15.1◦, respectively (
√
ε1 sin θ1 =

√
ε2 sin θ2). The length of the tested surfaces

is about 80 cm with a sample step 4 mm (200 sample points). For each sample point,

10 snapshots are carried out.

Figure 6.2: Studied Pavement

6.1.3 Data set

The antenna is moved slightly between various sample points in order to generate

independent spatial measurements. Fig. 6.4a and 6.4b display the raw experimental

data for both A-scan and B-scan, respectively. The dashed lines represent the enve-

lope of received signals after the Hilbert transformation. The first peak represents the

multiple waves as the wave comes from the test bed and the air-wave between the Tx

and Rx devices, these waves can be cancelled by a time filter. The second, third and

forth peaks in Figs. 6.4a and 6.4b correspond to the first three backscattered echoes

from the first three interfaces. Because of pavement material, the amplitude of second
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Figure 6.3: Rough Pavement Configuration

echo is much smaller than the first and the third echoes. Indeed, the first and third

backscattered echoes are clearly visible in the figures, the second echo is very weak.

6.2 Experimental results

In this section, we present the experimental results of the TDRP-ESPRIT and mod-

ified MUSIC combined with MLE for time delays and interface roughness estima-

tions. Before applying the proposed algorithms, three pre-processing techniques are

performed on the data.

6.2.1 Pre-processing of the Data

Three preprocessing techniques are applied before using algorithms: time filtering,

data whitening and sub-band averaging.

1. Time Filtering. By operating a time filter, three primary backscattered echoes

corresponding to the three interfaces are retained. As shown in Fig. 6.4c, the

multiple echoes and air wave can be then filtered;
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Figure 6.4: Preprocessing of backscattered echoes from UTAS where the echoes are

non-overlapped, B = [1.4, 15] GHz
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2. Data Whitening. In order to apply the proposed algorithms, a whitening proce-

dure by the pulse is necessary. The radar pulse is measured as the backscattered

echo from a metallic plane. The Fig. 6.5 shows the radar pulse at 3 different

height from the metal plane.

3. Sub-band averaging. The data covariance matrix has been estimated from a set

of 10 snapshots. In our study, the echoes are highly correlated. Thus, we should

use SSP to reduce the correlation effect between the backscattered echoes.

After applying these 3 preprocessing techniques, the proposed algorithms are used for

the time delays and interface roughness estimation.

In the experiment, two conditions are considered: estimation in a narrow frequency

band and in a large frequency band. According to Chapter 3, in a narrow band (B < 2

GHz), the exponential model can be used, the TDRP-ESPRIT proposed in Chapter 4

is applied for time delays and interface roughness estimation. The TDRP-ESPRIT is

tested in two different frequency bandwidths B = [1.4, 2.76] GHz (81 samples) and

B = [3.1, 4.8] GHz (101 samples), the number of sub-bands equals 20. In the large

band, the Gaussian model is used. We apply the modified MUSIC in Chapter 5 for

estimating the time delays and interface roughness. The algorithm is also tested in two

different frequency bandwidths,B = [1.4, 6, 5] GHz (301 samples) andB = [4.8, 8.2]

GHz (301 samples), with the number of sub-bands equal to 151 and 101, respectively.
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Figure 6.5: Radar pulse measurement, B = [1.4, 15] GHz
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6.2.2 Time delay estimation

Table. 6.1 presents estimated time delays of three echoes (∆̂τ 1 is the time delay

between the first and second echoes and ∆̂τ 2 is the time delay between the second and

third echoes) by using the TDRP-ESPRIT and modified MUSIC. The layer thickness

can be then calculated by following equation:

H̄k =
c∆τk cos θrk

2
√
εr

where H̄k is the thickness of the kth layer with k = 1, 2, c is the speed of light

in vacuum, θrk is the refraction angle and εr is the permittivity of layer. The es-

timated layer thickness are also shown in the Table. 6.1. For the TDRP-ESPRIT,

when B = [1.4, 2.76] GHz, the relative errors on estimated layer thickness are 5.25%

(first layer) and 11.1% (second layer) respectively; and when B = [3.1, 4.8] GHz, the

relative errors on estimated layer thickness are 9.50% and 6.00%. For the modified

MUSIC, when B = [1.4, 6.5] GHz, the relative errors on estimated layer thickness are

6.50% and 8.00%; and when B = [4.8, 8.2] GHz, the relative errors on estimated layer

thickness are 3.25% and 11.1%. Both of the algorithms give a relatively good perfor-

mance on thickness estimation with a small bias. The algorithms reveals a bit larger

relative error for first layer, one reason is that the second backscattered echo is very

weak. Nevertheless, we consider that the proposed algorithms show good performance

to estimate the thickness.

6.2.3 Interface roughness estimation

Figs. 6.6 – 6.9 show the estimated frequency behaviour by TDRP-ESPRIT in the

narrow band. Figs. 6.10 – 6.13 present the estimated frequency behaviour by MLE

with modified MUSIC in the large band. From these figures, we can conclude that:

1. The amplitude of echoes decreases with the increase of frequency;

2. The echo amplitude suffers more decrease with larger interface roughness.

The result shows that for the first interface, both algorithms allow the roughness es-

timation. Nevertheless, the above estimations are not accurate enough especially for

the second interface roughness. Indeed, the amplitude of the second echo is very small

and the roughness estimation becomes more complex. The amplitude is small due to

the reflection on ΣB is very weak (the material of two layers is similar). Furthermore,

for the second echo, the results can change with frequency band and the number of
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Method

Parameter
∆̂τ 1 ∆̂τ 2 Ĥ1 Ĥ2

TDRP-ESPRIT (B = [1.4, 2.76] GHz) 0.642 ns 1.07 ns 4.21 cm 7.78 cm

TDRP-ESPRIT (B = [3.1, 4.8] GHz) 0.668 ns 1.02 ns 4.38 cm 7.42 cm

Modified MUSIC (B = [1.4, 6.5] GHz) 0.650 ns 1.04 ns 4.26 cm 7.56 cm

Modified MUSIC (B = [4.8, 8.2] GHz) 0.629 ns 1.07 ns 4.13 cm 7.78 cm

Table 6.1: Estimated time delays and thicknesses by the TDRP-ESPRIT and modified

MUSIC, ∆̂τ k representing the estimated time delay and Ĥk representing the estimated

thickness

sub-bands that we choose.
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Figure 6.6: Estimated frequency behaviour of first echo by using TDRP-ESPRIT from

GPR, slightly overlapped, B∆τ = 0.87, B = [1.4, 2.76] GHz

6.3 Conclusion

In the chapter, we present the experimental validation of proposed algorithms (TDRP-

ESPRIT and modified MUSIC) by using a step-frequency GPR. By applying prepro-

cessing techniques (time filtering and SSP), the obtained results validated the proposed

algorithms. Thus, the proposed algorithms can be applied to road surface layer surveys

(for the estimation of thin pavement thickness) by taking the roughness parameter of

both interfaces into account. Furthermore, the proposed algorithms can estimate the

interface roughness. Nevertheless, because of the small difference between the first

two layers (second backscattered echo is very weak), the estimation of the interface

roughness becomes complex. The experiment has shown that the proposed algorithms
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Figure 6.7: Estimated frequency behaviour of second echo by using TDRP-ESPRIT

from GPR, slightly overlapped, B∆τ = 0.87, B = [1.4, 2.76] GHz
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Figure 6.8: Estimated frequency behaviour of first echo by using TDRP-ESPRIT from

GPR, slightly overlapped, B∆τ = 1.14, B = [3.1, 4.8] GHz
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Figure 6.9: Estimated frequency behaviour of second echo by using TDRP-ESPRIT

from GPR, slightly overlapped, B∆τ = 1.14, B = [3.1, 4.8] GHz
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Figure 6.10: Estimated frequency behaviour of first echo by using MLE from GPR,

non-overlapped, B∆τ = 3.31, B = [1.4, 6.5] GHz
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Figure 6.11: Estimated frequency behaviour of second echo by using MLE from GPR,

non-overlapped, B∆τ = 3.31, B = [1.4, 6.5] GHz
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Figure 6.12: Estimated frequency behaviour of first echo by using MLE from GPR,

non-overlapped, B∆τ = 2.14, B = [4.8, 8.2] GHz
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Figure 6.13: Estimated frequency behaviour of second echo by using MLE from GPR,

non-overlapped, B∆τ = 2.14, B = [4.8, 8.2] GHz

give good results for TDE and interface roughness. Noting that when the echoes are

very small, these algorithms should be improved. In perspective, the interface rough-

ness estimated by proposed algorithms will be compared with the photogrammetry

methods.



7
Conclusion and perspectives

7.1 Conclusion

In the field of civil engineering, GPR is widely used as a NDT method for road

pavement surveys, especially for measuring the layer thickness. By assuming the

roadway to be horizontally stratified, the layer thicknesses are then deduced from the

time-delay of the backscattered echoes associated with each interface and the dielectric

constants of the media. In this thesis, the influence of interface roughness is addressed

with the ultra-wide band capability of the step-frequency radar technology (and in par-

ticular, the upper frequency range, which is up to 8− 10 GHz). It is proposed to carry

out the sensitivity analysis to larger bandwidths (for example, [0.5; 10.5] GHz) in or-

der to deal with existing radar systems. It is expected to bring useful information for

monitoring the pavement structure. For layer thickness measurement, it is shown that

the interface roughness provides a continuous frequency decay of the magnitude of the

echoes. The latter variations can be modelled by some functions and are considered in

the scope of the data processing of radar signals. Then, signal processing methods are

proposed to estimate the time delay of backscattered echoes and the interface rough-

ness. Finally, the different proposed methods are tested on both simulated data and

experimental data from wideband (step-frequency) radar.

The thesis has been divided into 6 main chapters:

Chapter 2 has presented some methods (conventional methods and high resolution
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methods) for TDE by using both impulse GPR and step-frequency GPR in order to es-

timate layer thickness. The conventional methods (IFT and cross-correlation method)

are presented. They offer low computational cost, but are unable to detect closely

spaced time delays. To solve such problem, high resolution methods are applied. We

present three well-known algorithms (MUSIC, root-MUSIC and ESRPIT) combined

with sub-band averaging techniques. 4 preprocessing methods have been presented, it

can be seen that the proposed two adaptive ISS (with PM) methods are more powerful

than the traditional SSP and MSSP. The performance of the high resolution methods

with sub-band averaging techniques is tested on various pavement structures, and nu-

merical examples are provided to show the performance of the algorithms.

Chapter 3 briefly recalls the rigorous numerical method PILE for simulating the

scattering of EM waves from layered random rough interfaces. As a result, the fre-

quency behaviour of the backscattered echoes is investigated. Magnitude variations

are found to prevail on phase variations. Sensitivity of the magnitude of the echoes

to interface roughness is studied. It has been shown that the impacts of the interface

roughness on the frequency behaviour of backscattered echoes are as follows:

1. The echo amplitude decreases with increasing frequency;

2. The echo amplitude decrease gets stronger for larger surface roughness;

3. The magnitude of the second backscattered echo is more sensitive to the lower

interface roughness than to the upper surface roughness.

A curve fitting is made to estimate the parameters of the approximate expression of the

echoes. An exponential shape, a Gaussian shape and a mixed shape are proposed to

model the frequency variations; Both the mixed model and Gaussian model match well

with PILE data in the whole frequency range ([0.5; 10.5] GHz). The exponential model

shows a poor performance, expect for a frequency band which is smaller than 2 GHz.

The parameter accounting for the frequency variations (by assuming an exponential

shape, a Gaussian shape or a mixed shape) called roughness parameter can be estimated

by fittings. In the following, this new parameter is taken into accounted in the signal

model.

Chapter 4 is devoted to the signal processing techniques which may estimate jointly

the time delays and interface roughness. In this chapter, the frequency behaviour of

echoes is modelled by the exponential model. A modified 2-D MUSIC, a modified

root-MUSIC algorithm, TDRP-ESPRIT algorithm and a modified MPM are then pro-

posed with the interface roughness taken into account in both the data modelling and

the processing. The SSP method is used to mitigate the influence of the correlation
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magnitude between the backscattered echoes. The performance of the proposed algo-

rithms is tested on different roughness pavements. Simulation results demonstrate that

the proposed algorithms give satisfactory performance for estimating the time delays

and roughness parameters.

With the widening of the frequency band (for example with a step-frequency radar),

the curve fitting error with the exponential model increases rapidly, which may bring

errors to the interface roughness estimation. As a consequence, in Chapter 5 we pro-

pose to use more realistic but more complex signal models: the Gaussian and mixed

models (which are more close to the real data with wide frequency band). When the

frequency behaviour of the echoes is modelled by a Gaussian shape or a mixed shape,

the complexity of the high resolution methods increases greatly. Indeed, the high res-

olution methods proposed in Chapter 4 cannot be used directly. Thus, in order to

solve the above problems, multi-dimensional search methods (MLE and generalized

MUSIC) as well as a one dimensional search method (the modified MUSIC) are pro-

posed for the time delays and interface roughness estimation. The multi-dimensional

search methods can be applied on echoes either correlated or non-correlated. However,

these methods have heavy computational burdens, they are hard to use in practice. In

addition, the modified MUSIC with interpolation spatial smoothing technique is also

proposed, which has lower computational complexity. This method is able to han-

dle unknown frequency behaviour. It is more adaptable for ultra-wideband GPR. The

proposed algorithms are tested on simulated data from PILE with different interface

roughnesses, which give good performances in the time delays and interface rough-

ness estimation.

In Chapter 6, an experiment is made to survey a pavement structure composed of

two rough layers: an UTAS and a base layer. In addition, TDRP-ESPRIT and the

modified MUSIC combined with MLE are tested for the time delays and interface

roughness estimation of this pavement structure.

7.2 Perspectives

Based on the current works, future research may be pursued in the following direc-

tions:

1. Continue working on the roughness estimation and compare the results with

other methods, like the photogrammetry method. Improve the proposed methods

to deal with backscattered echoes with small amplitude;
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2. Extend the studied media (pavements) to multiple layers, for which both experi-

mental and numerical validations (by GPILE) of the proposed algorithms could

be pursued;

3. Extend research works to dispersive media (soil, hydraulic concretes). In this

case, the data model must be rewritten by taking into account the roughness,

time delay and dispersion parameters (Q factor, for example). As a consequence,

new signal processing methods must be proposed;

4. Study more realistic signal models and take multiple reflections into account in

the data model (GPR real world data include multiple reflections between the

layers).



A
Curve fitting results of case a and case

b in chapter 3

Case a

For case a (with σhA = 0.5 mm, σhB = 1.0 mm), 4 cases are studied, with fre-

quency bands f ∈ [0.5; 1.5] GHz, f ∈ [0.5; 2.5] GHz, f ∈ [0.5; 6.5] GHz, f ∈
[0.5; 10.5] GHz. The following figures give the fitting results in different frequency

bands. In addition, in order to evaluate the fitting performances, the following table

gives RMSE of curve fitting:

Table A.1: Curve fittings results for case a

Frequency

RMSE % (s1/s2) Model
|s(f)| = sk × exp(−bf) |s(f)| = sk × exp(−bf 2) |s(f)| = sk × exp(−bf 2 − cf)

[0.5; 1.5] GHz 6.68× 10−3 / 0.0960 8.78× 10−3/ 0.0485 1.27× 10−3 /6.59× 10−3

[0.5; 2.5] GHz 0.0220/0.286 0.0121/0.0644 1.55× 10−3/9.55× 10−3

[0.5; 6.5] GHz 0.119/1.81 0.0433/0.103 7.65× 10−3 /0.0268
[0.5; 10.5] GHz 0.262/4.25 0.0918/0.0890 0.0149 /0.0504

131



132APPENDIX A. CURVE FITTING RESULTS OF CASE A AND CASE B IN CHAPTER 3

0.5 1 1.5 2 2.5
0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Radar frequency f (GHz)

A
tt

e
n

u
a

ti
o

n
 o

f 
fi

rs
t 

e
c

h
o

exponential model in [0.5,2.5] GHz

Gaussian model in [0.5,2.5] GHz

mixed model in [0.5,2.5] GHz

exponential model in [0.5,1.5] GHz

Gaussian model in [0.5,1.5] GHz

mixed model in [0.5,1.5] GHz

radar data

0.5 1 1.5 2 2.5
0.97

0.975

0.98

0.985

0.99

0.995

1

Radar frequency f (GHz)

A
tt

e
n

u
a

ti
o

n
 o

f 
s

e
c

o
n

d
 e

c
h

o

exponential model in [0.5,2.5] GHz

Gaussian model in [0.5,2.5] GHz

mixed model in [0.5,2.5] GHz

exponential model in [0.5,1.5] GHz

Gaussian model in [0.5,1.5] GHz

mixed model in [0.5,1.5] GHz

radar data

Figure A.1: Case a: curve fittings for f ∈ [0.5; 1.5] GHz and f ∈ [0.5; 2.5] GHz
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Figure A.2: Case a: curve fittings for f ∈ [0.5; 6.5] GHz and f ∈ [0.5; 10.5] GHz



134APPENDIX A. CURVE FITTING RESULTS OF CASE A AND CASE B IN CHAPTER 3

Case b

For case b (with σhA = 0.5 mm, σhB = 2.0 mm), 4 cases are studied, with fre-

quency bands f ∈ [0.5; 1.5] GHz, f ∈ [0.5; 2.5] GHz, f ∈ [0.5; 6.5] GHz, f ∈
[0.5; 10.5] GHz. The following figures give the fitting results in different frequency

bands. In addition, in order to evaluate the fitting performance, the following table

gives RMSE of curve fitting:
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Figure A.3: Case b: curve fittings for f ∈ [0.5; 1.5] GHz and f ∈ [0.5; 2.5] GHz
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Figure A.4: Case b: curve fittings for f ∈ [0.5; 6.5] GHz and f ∈ [0.5; 10.5] GHz

Table A.2: Curve fittings results for case b

Frequency

RMSE % (s1/s2) Model
|s(f)| = sk × exp(−bf) |s(f)| = sk × exp(−bf 2) |s(f)| = sk × exp(−bf 2 − cf)

[0.5; 1.5] GHz 6.68× 10−3 / 0.436 8.78× 10−3/ 0.0948 1.27× 10−3 /7.35× 10−3

[0.5; 2.5] GHz 0.0220/1.16 0.0121/0.153 1.55× 10−3/7.31× 10−3

[0.5; 6.5] GHz 0.119/5.68 0.0433/0.375 7.65× 10−3 /0.0206
[0.5; 10.5] GHz 0.262/9.74 0.0918/0.459 0.0149 /0.0423





B
Proof for the Modified MUSIC in

chapter 5

In this appendix, we present why a false peak exists for the modified MUSIC in

Chapter 5. Only the case of two echoes is presented, but the same calculation can be

carried out when the number of echoes is superior to 2. We assume that t1 and t2 are

the time delays of two echoes (t1 < t2) and define t3 = (t1 + t2)/2, ∆t = (t2 − t1)/2,

Φ(t) = ÂH(t)UNU
H
NÂ(t). By definition, the rank of UNU

H
N is L− 2; it has always

2 zero eigenvalues with 2 eigenvectors, aH(t)UNU
H
Na(t) is real valued. Following the

subspace principle, we have 2 equalities, as a consequence:

– aH(t)UNU
H
Na(t) = kT ÂH(t)UNU

H
NÂ(t)k = kTΦ(t)k = 0, for t = t1 or t2.

– kTΦ(t)k 6= 0, for t 6= t1 or t2.

Then we can have the following 3 situations:

Case 1: t = t1 and t2. When t = t1 or t2, aH(t)UNU
H
Na(t) = kT ÂH(t)UNU

H
NÂ(t)k =

kTΦ(t)k = 0. Φ(t) has 2 zero eigenvalues with 2 eigenvectors and k is a real eigen-

vector. For t = t1, we can see also:

kT ÂH(t2 − t1)Â
H(t1)UNU

H
NÂ(t1)Â(t2 − t1)k

= kH
10Â

H(t1)UNU
H
NÂ(t1)k10 = kT ÂH(t2)UNU

H
NÂ(t2)k
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where k10 = Â(t2 − t1)k is another eigenvector. Similarly, k20 = Â(t1 − t2)k is the

second eigenvector for t = t2. k10 and k20 are complex valued and not collinear with

k, any non-zero coefficient linear combination of k and k10 or k and k20 is complex

valued. Therefore, Φ(t) has only one real eigenvector (k) corresponding to one single

zero eigenvalue, and ℜ{kTΦ(t)k}=kT ℜ{Φ(t)}k = 0, only one solution for t1 or t2.

Thus, the number of zero eigenvalues of ℜ{Φ(t1)} and ℜ{Φ(t2)} is 1.

Case 2: t 6= t1, t2 and t3. Φ(t) has 2 zero eigenvalues; we can find easily 2 non-linearly

correlated eigenvectors k1 and k2 corresponding to the zero eigenvalues:

kH
1 Φ(t)k1 = kH

1 Â
H(t)UNU

H
NÂ(t)k1 = 0

kH
2 Φ(t)k2 = kH

2 Â
H(t)UNU

H
NÂ(t)k2 = 0

where k1 = Â(t1 − t)k and k2 = Â(t2 − t)k. Due to t 6= t1, t2 and t3, k1 and

k2 are complex and non-linearly correlated. For these values of t, we can show that

any linear combination of k1 and k2 will always be complex valued. Φ(t) has no real

eigenvector corresponding to zero eigenvalue. Then, kTΦ(t)k 6= 0, ℜ{kTΦ(t)k} =

kTℜ{Φ(t)}k 6= 0, which means that ℜ{Φ(t)} is full rank and that there is no zero

eigenvalue.

Case 3: t = t3. When t = t1 and t2, we have:

kTΦ(t1)k = kT ÂH(t1)UNU
H
NÂ(t1)k = 0

kTΦ(t2)k = kT ÂH(t2)UNU
H
NÂ(t2)k = 0

which are equivalent to

UH
NÂ(t1)k = 0

UH
NÂ(t2)k = 0

For t = t3, any linear combination of above equations leads UH
NÂ(t1)k+αU

H
NÂ(t2)k =

UH
NÂ(t3){ÂH(∆t) + αÂ(∆t)}k = 0. Only when α is equal to 1 or −1, ÂH(∆t) +

αÂ(∆t) is a pure real or imaginary matrix.

For α = 1, UH
NÂ(t3){ÂH(∆t)+Â(∆t)}k = 2UH

NÂ(t3)ℜ{Â(∆t)}k = 2UH
NÂ(t3)k3.

For α = −1, UH
NÂ(t3){ÂH(∆t)−Â(∆t)}k = 2jUH

NÂ(t3)ℑ{Â(∆t)}k = 2jUH
NÂ(t3)k4.

Therefore, kT
3Φ(t3)k3 = kT

4Φ(t3)k4 = 0 with k3 = ℜ{Â(∆t)}k and k4 = ℑ{Â(∆t)}k.

In addition, aH(t)UNU
H
Na(t) is always real valued, thus, t3 is a solution of λmin(t) = 0

and ℜ{Φ(t3)} has only 2 zero eigenvalues with corresponding eigenvectors k3 and k4.
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There is a situation when the number of echoes is superior to 2 with t1, t2 and t3

the time delays (t1 < t2) and t3 = (t1 + t2)/2. Similar to case 1 and case 3, we can

prove that ℜ{Φ(t3)} has 3 zero eigenvalues with corresponding eigenvectors k, k3

and k4. When the number of echoes is superior to 2, the number of zero eigenvalues of

ℜ{Φ(t)} corresponding to true time delays is odd. For false time delays, this number

is even.
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D
Résumé étendu (French extended

abstract)

Introduction

L’auscultation mobilise un grand nombre de recherches dans divers domaines (géo-

physique, géologie, génie civil, militaire, etc). Les besoins peuvent être de nature hu-

manitaire (localisation de mines antipersonnelles par exemple), préventive (détection

de canalisations de gaz) ou commerciale (localisation de gisements pétroliers).

Dans le domaine du génie civil, les méthodes d’auscultation sont couramment utilisées

pour répondre à des besoins de détection, de contrôle, de maintenance des ouvrages en

service, et de réception des ouvrages neufs. Les méthodes de contrôle et d’évaluation

non destructifs (C&END) sont privilégiées pour des raisons de simplicité de mise en

oeuvre et de coût réduit. Elles permettent de réaliser de l’imagerie du milieu sans de-

struction de ce dernier. Parmi ces méthodes (C&END), la technique RADAR, et plus

particulièrement le radar géophysique ou radar géotechnique appelé aussi "GPR" (pour

Ground Penentrating Radar) utilise les propriétés de propagation des ondes électro-

magnétiques (EM) pour déterminer la géométrie, la structure d’un milieu diélectrique.

Elle permet ainsi de détecter, localiser, caractériser et identifier des objets ou couches

à l’intérieur de ce milieu. Cette technique présente l’avantage d’être à grand rende-

ment et sans contact. A ce jour, de nombreux progrès sont encore attendus avec cette

143
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technologie GPR pour la caractérisation de structures. Les enjeux économiques et en-

vironnementaux font du GPR un outil prometteur.

Dans cette thèse, on s’intéresse au développement de méthodes d’auscultation GPR

pour déterminer la géométrie, la structure de milieux stratifiés. On se focalise ici

plus particulièrement sur l’auscultation des chaussées par GPR. Cette thèse a deux

objectifs principaux. Tout d’abord, elle a pour but d’améliorer la compréhension des

mécanismes de diffusion à large bande et à très large bande dans un milieu strati-

fié d’interfaces rugueuses. En effet, avec l’augmentation constante des fréquences

d’utilisation de différents systèmes (radars ultra large bande notamment), les interfaces

de ces milieux ne peuvent plus être considérées comme planes pour les fréquences les

plus élevées. Ainsi, la rugosité des interfaces doit être prise en compte dans la mod-

élisation de la propagation. Une analyse de l’influence de cette rugosité doit alors être

réalisée. Ensuite, avec cette approche "large bande" ou "ultra large bande", de nou-

velles informations sont contenues dans le signal mesuré. Ainsi, le deuxième objectif

de cette thèse est de proposer des méthodes d’estimation conjointe des paramètres de

rugosité et d’épaisseur (et donc des estimations des temps de retard et des permittiv-

ités). Ainsi, cette thèse propose d’étendre des méthodes à sous-espace à des gammes

de fréquences larges bandes et ultra larges bandes afin de pouvoir estimer les différents

paramètres du milieu ausculté.

Estimation des temps de retard

Dans cette thèse, on propose premièrement d’estimer les épaisseurs de couches de

chaussées par GPR. Pour un milieu non dispersif (à faible perte ou sans perte), milieu

étudié dans cette thèse, les épaisseurs des couches dépendents uniquement de deux

types de paramètres : la permittivité des couches et les temps de retard provenant des

deux interfaces des couches. Pour un milieu dispersif, un paramètre supplémentaire

est à prendre en compte : le facteur de qualité (facteur Q) par exemple [25]. Ainsi,

l’estimation des temps de retard est un paramètre très important pour l’interprétation

des données GPR [10].

Dans cette thèse, on se focalise, comme dans [12], sur l’estimation des épaisseurs

des 2 ou 3 premières couches supérieures de la chaussée. Ces couches peuvent avoir

des épaisseurs inférieures à 3 cm (comme les BBUM pour Bétons Bitumineux Ultra-

Minces de 1 à 2 cm d’épaisseur et les BBTM pour Bétons Bitumineux Très Minces de

2 à 3 cm d’épaisseur). En première approximation, la structure de la chaussée est con-
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sidérée comme un milieu stratifié, composé de d couches homogènes horizontalement

et verticalement, et de faible contraste diélectrique. Dans le chapitre 2, on néglige la

rugosité des interfaces aux fréquences usuelles (1 à 2 GHz). Ainsi, le milieu est con-

sidéré comme un milieu composé d’interfaces lisses. La conductivité pour les deux

ou trois couches supérieures de chaussée varie généralement entre [10−3; 10−2] S/m,

selon les données fournies dans [4]. Ainsi, ces milieux sont considérés comme des

milieux à faibles pertes, ce qui permet de négliger la dispersivité du milieu [29]. Sous

l’hypothèse que les mesures GPR sont effectuées en champ lointain, i.e. les antennes

se situent au delà de la limite de Fraunhoffer, le modèle de signal reçu se simplifie à

un modèle à une dimension et une expression analytique du signal peut être déduite

des solutions des équations de Maxwell. En configuration de mesures monostatiques

en champ lointain à incidence normale, chaque interface du milieu donne lieu à une

onde réfléchie. Si le milieu est à faibles pertes, les différents échos sont simplement

des copies retardées de l’impulsion radar e(t). Les amplitudes des échos dépendent du

contraste diélectrique entre les couches du milieu par l’intermédiaire des coefficients

de réflexion de Fresnel [6, 10, 13, 30]. En négligeant les échos multiples (faible con-

traste diélectrique entre les couches), le signal reçu peut s’écrire sous la forme (2.2).

Pour les milieux horizontalement stratifiés non dispersifs, comme les premières couches

de chaussée [6], la structure verticale du milieu (l’épaisseur des couches) peut être dé-

duite à partir de la détection des échos et de l’estimation des amplitudes. La détection

des échos permet de déterminer les temps de retards alors que l’amplitude des échos

permet de déterminer la vitesse des ondes dans chaque couche [6]. L’estimation des

temps de retard est généralement réalisée par des méthodes "conventionnelles", comme

le filtrage adapté (pour des signaux provenant de GPR impulsionel) ou la transformée

de Fourier inverse (pour des signaux provenant de radar à sauts de fréquence). Ces

méthodes ont l’inconvénient de présenter une limite en résolution. Cette limite en ré-

solution temporelle est donnée par le produitB∆τ ≥ 1, avecB la bande de fréquences

en Hz et ∆τ le retard de propagation entre les deux échos en secondes. Lorsque les

échos se chevauchent (cas de mesure des couches de BBTM et BBUM avec un GPR

conventionel de fréquence centrale 1,5 GHz), la détermination des épaisseurs n’est plus

possible (par manque de résolution); ainsi, des méthodes haute résolution deviennent

nécessaires.

Comme dans [5], on propose dans cette thèse de mettre en oeuvre des méthodes à

sous-espace (MUSIC, root-MUSIC, ESPRIT, etc) pour estimer les épaisseurs fines de

chaussées. En pratique, les échos rétrodiffusés provenant du GPR sont corrélés (car les

signaux sont émis par la même source, l’antenne émettrice du GPR) et les méthodes
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HR à sous-espace ne sont pas applicables directement. En effet, pour appliquer ces

méthodes dans notre contexte, il faut utiliser des méthodes de prétraitement. Dans ce

chapitre, quatre méthodes de prétraitement sont analysées avec les méthodes MUSIC,

root-MUSIC et ESPRIT. Ensuite, nous avons proposé d’utiliser deux méthodes de pré-

traitement avec une méthode à sous-espace linéaire. Contrairement à la littérature, la

solution que nous avons proposée n’utilise aucune approximation théorique (section

2.4.1) et améliore donc les résultats dans l’estimation des épaisseurs.

Modèle direct : approche électromagnétique des couches de chaussées minces et

rugueuses

Dans le domaine du génie civil, les méthodes utilisées pour estimer les épaisseurs

des couches supposent que les interfaces sont lisses (comme présenté dans le chapitre

2). Contrairement à la littérature, dans ce chapitre, la rugosité des interfaces est prise

en compte. On propose alors d’analyser les signaux EM avec la prise en compte de

la rugosité des interfaces. Le comportement fréquentiel des échos rétrodiffusés dans

différentes bandes de fréquences est étudié et analysé (section 3.2). Pour mieux ap-

précier la mise en œuvre et la robustesse des méthodes haute résolution qui utilisent

un modèle de signal a priori sur le terrain, nous avons analysé l’influence de la ru-

gosité des interfaces de chaussée sur les signaux électromagnétiques et introduit un

modèle de signal plus réaliste prenant en compte la rugosité. Le but de ces travaux est

d’améliorer la compréhension des mécanismes de diffusion à très large bande dans un

milieu stratifié d’interfaces rugueuses. Pour réaliser cette analyse, nous avons utilisé la

méthode rigoureuse PILE [24, 44]. Cette méthode permet de calculer les échos rétrod-

iffusés d’un milieu stratifié avec des interfaces rugueuses aléatoires. L’intérêt majeur

de la méthode PILE repose sur sa capacité à calculer le champ retrodiffusé associé à

chacun des échos. Cette analyse a montré que la rugosité des interfaces induisait une

décroissance fréquentielle continue de l’amplitude des échos (voir section 3.2). Cette

décroissance a été modélisée par trois modèles, comme suit :

1. le modèle exponentiel | s(f) |= sk × exp(−bf) avec b le paramètre inconnu;

2. le modèle gaussien | s(f) |= sk × exp(−bf 2) avec b le paramètre inconnu;

3. le modèle mixte | s(f) |= sk × exp(−bf 2 − cf) avec b et c les paramètres

inconnus.

Dans ces modèles, sk représente l’amplitude de l’écho pour le cas d’interfaces lisses.

Nous avons montré que le modèle exponentiel ne convenait que pour des bandes

fréquentielles de largeur inférieure à 2 GHz. De plus, les modèles gaussien et mixte
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(après avoir réalisé des ajustements de courbes) sont très proches des données obtenues

par la méthode PILE et peuvent être utilisés pour des bandes de fréquences larges.

Estimation des paramètres pour le modèle exponentiel

Suite à ces travaux, nous nous sommes focalisés sur une nouvelle application pos-

sible avec le GPR : l’estimation de la rugosité des interfaces de chaussée (en utilisant

les travaux du chapitre précédent). Dans ce chapitre, nous proposons d’étendre des

méthodes à sous-espace au modèle exponentiel (et donc à des GPR ayant une bande

fréquentielle inférieure à 2 GHz) afin d’estimer les différents paramètres du milieu aus-

culté : temps de propagation, rugosité, permittivité (4.1). Une première modélisation a

permis de reformuler le modèle du signal. Ainsi, dans ce chapitre, de nouvelles méth-

odes de traitement du signal sont proposées pour estimer conjointement les temps de

propagation et le nouveau paramètre “rugosité des interfaces”. De manière générale,

cette étude a pour objectif de proposer des méthodes d’inversion (par estimation) multi-

paramètres (rugosité, épaisseur).

Pour estimer conjointement les temps de retard et les paramètres de rugosité, quatre

méthodes à sous-espace sont proposées : modified-2-D MUSIC (section 4.2.1), mod-

ified root-MUSIC (section 4.2.2), modified MPM (4.2.3) et TDRP-ESPRIT (section

4.2.4). Modified-2-D MUSIC réalise une recherche à deux dimensions pour estimer

les temps de retard et le paramètre de rugosité (4.2.1). Afin de réduire la charge de

calcul, les méthodes modified root-MUSIC, modified-MPM et TDRP-ESPRIT sont

proposées. De plus, des méthodes de prétraitement (moyennage en sous-bandes et des

méthodes de réduction du bruit) sont aussi apliquées aux méthodes "modified root-

MUSIC" et "TDRP-ESPRIT" afin d’améliorer leurs performances (section 4.1.2). Le

comportement des algorithmes proposés est analysé sur des données simulées. Les

méthodes proposées montrent de bonnes performances dans l’estimation des paramètres

(section 4.4).

Estimation des paramètres pour le modèle gaussien et mixte

Dans le chapitre précédent, l’estimation des temps de retard et des paramètres de

rugosité a été réalisée en utilisant un modèle exponentiel. Dans ce cas, les algorithmes

à sous-espace peuvent être appliqués assez simplement pour estimer les paramètres du

milieu (temps de retard, rugosité et permittivité). Cependant, le modèle exponentiel

ne convient que pour des bandes fréquentielles inférieures à 2 GHz. Pour des GPR

ayant des bandes fréquentielles supérieures à 2 GHz (Radar à ultra large bande par
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exemple), il a été montré dans le chapitre 3 que le comportement en fréquence w(f)

peut être approché par un modèle gaussien ou un modèle mixte (section 3.3). Afin

d’estimer les temps de retard et les paramètres de rugosité pour ces deux types de

modèles (gaussien et mixte), nous avons tout d’abord proposé deux méthodes multi-

dimensionnelles : le maximum de vraisemblance (section 5.2.1) et l’algorithme Gen-

eralized MUSIC (section 5.2.2). Ces deux méthodes estiment les paramètres avec

une recherche multidimensionnelle. Ainsi, les charges de calcul de ces deux méth-

odes sont très grandes. Ensuite, afin de réduire la complexité de calcul, nous avons

proposé un algorithme "modified MUSIC" (section 5.3) qui permet de réaliser une

recherche monodimensionnelle, c’est-à-dire d’estimer seulement les temps de retards.

Cette méthode peut prendre en compte plusieurs modèles fréquentiels (mieux adap-

tés aux GPR ultra large bande). Dans un second temps, après l’estimation des temps

de retard, le comportement fréquentiel des échos rétrodiffusés peut aussi être estimé

(section 5.3.3). L’algorithme modified MUSIC a montré de bonnes performances pour

l’estimation des temps de retard et des paramètres de rugosité d’interface (section 5.4).

Expérimentations

Les méthodes proposées dans les chapitres précédents sont testées sur une structure

de chaussée composée de deux couches avec des interfaces rugueuses (section 6.1.2).

La première couche est un béton bitumineux de 4 cm environ et la deuxième couche

une couche de base de 7 cm environ. Pour ces expérimentations, on utilise un radar

à sauts de fréquence composé d’un analyseur de réseau vectoriel et de deux antennes

ETSA (section 6.1.1). Les algorithmes modified-MUSIC et TDRP-ESPRIT sont testés

pour estimer les temps de retard (et donc l’épaisseur) et les rugosités des interfaces

de la structure étudiée (section 6.2). Les algorithmes proposés donnent de bonnes

performances pour l’estimation des temps de retards. L’estimation de la rugosité de la

première interface est acceptable. En revanche, celle de la deuxième interface reste à

améliorer (une raison à cette difficulté est le faible contraste diélectrique entre les deux

couches qui produit un deuxième écho de très faible amplitude).

Conclusion et perspectives

Dans le domaine du génie civil, le radar géophysique est largement utilisé comme

méthode non-destructive pour ausculter les chaussées (et particulièrement pour es-

timer les épaisseurs de chaussée). Dans cette thèse, on se focalise sur la prise en

compte des rugosités des interfaces. Ainsi, suivant les bandes de fréquences utilisées
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par le radar, trois nouveaux modèles de signal sont proposés. Ensuite, des méthodes

à sous-espace sont étendues à ces nouveaux modèles. Les résultats de simulation et

d’expérimentation montrent globalement de bonnes performances. Enfin, nous pen-

sons que ces travaux de recherche permettront de prendre en compte, très en amont

dans le processus de conception d’un produit, la grande diversité des paramètres du

milieu observé et facilitera ainsi la mise au point de nouveaux capteurs et de systèmes

d’ECND hyperfréquence appropriés et performants pour les applications envisagées.

En perspective à ces travaux, d’autres validations expérimentales plus approfondies

devraient être réalisées. De plus, les méthodes proposées pourront aussi être étendues

aux milieux dispersifs.
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Advanced signal processing techniques for GPR by ta king into account the 
interface roughness of a stratified medium  

Résumé  
Dans cette thèse, on s'intéresse au 
développement de nouvelles méthodes 
d'auscultation GPR pour déterminer la géométrie 
et la structure des chaussées. Cette thèse a deux 
objectifs principaux. Tout d'abord, elle a pour but 
d'améliorer la compréhension des mécanismes de 
diffusion à très large bande dans un milieu stratifié 
composé d'interfaces rugueuses. Avec 
l'augmentation des fréquences d'utilisation de 
différents systèmes, les interfaces de chaussée ne 
peuvent plus être considérées comme planes. 
Ainsi, la rugosité des interfaces doit être prise en 
compte dans la modélisation de la propagation. 
Donc, une analyse de l'influence de cette rugosité 
sur l'onde rétrodiffusée a été réalisée. Elle a 
permis de montrer que la rugosité induit une 
décroissance en fréquence de l'amplitude des 
échos. Cette décroissance a ensuite été introduite 
dans le modèle du signal.  
Dans un second temps, plusieurs méthodes de 
traitement de signal ont été proposées pour 
estimer conjointement les paramètres de rugosité 
et d'épaisseur. D'abord, des méthodes 
multidimensionnelles ont été proposées en 
prenant en compte l'influence de la rugosité. 
Ensuite, afin de réduire la charge de calcul, des 
méthodes monodimensionnelles ont été 
proposées. Ces méthodes ont été évaluées à 
partir de signaux simulés. Les résultats ont montré 
de bonnes performances pour l'estimation des 
temps de retard et des paramètres de rugosité des 
interfaces.  
Enfin, les méthodes de traitement proposées dans 
ce manuscrit ont été testées sur des données 
expérimentales, qui permettent de valider les 
résultats théoriques et de montrer la faisabilité de 
la mesure de couches minces de chaussée et du 
paramètre de rugosité. 
 
Mots clés   
Radar géophysique, estimation de retard, rugosité 
de interface, l’épaisseur 

 

Abstract  
In this thesis, we focus on the development of new 
GPR methods to estimate the pavement structure. 
This thesis has two main objectives. First, it aims 
to improve the understanding of the scattering 
mechanisms for large-band radars in a stratified 
medium composed of rough interfaces. With 
increasing frequencies, pavement interfaces can 
no longer be considered as flat. The interface 
roughness must be taken into account in the 
propagation modelling. Thus, the influence of the 
roughness has been analysed. It has been shown 
that the interface roughness provides a continuous 
frequency decay of the magnitude of the echoes. 
This continuous frequency decay has then been 
introduced into the signal model. Secondly, 
several signal processing methods have been 
proposed to jointly estimate the roughness and 
thickness of pavement. Thus, multidimensional 
methods have been proposed by taking into 
account the roughness. Then, in order to reduce 
the computational burden, one-dimensional 
methods have also been proposed. From 
simulations, it can be seen that the proposed 
algorithms provide a good performance in 
parameter estimations (time delay, permittivity, 
roughness and thickness). Finally, the proposed 
signal processing methods are tested on 
experimental data. The results confirm the 
theoretical prediction. They show the feasibility to 
estimate both the thickness of thin pavements and 
roughness parameter. 
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Ground Penetrating Radar (GPR), Time Delay 
Estimation (TDE), interface roughness, thickness 
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