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M. Laurent MASSOULIÉ INRIA - Microsoft Research
M. Roberto I. OLIVEIRA IMPA, Brésil

Soutenue le 15 septembre 2016 devant le jury composé de :
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m’avoir guidée, avec patience et bienveillance, sur tout le chemin de la résolution d’un problème, depuis
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mère. Et puis je remercie mon frère, qui me fera toujours rire.

Paris, le 5 septembre 2016

3



4



Résumé

Ce document rassemble les travaux effectués durant mes années de thèse. Je commence par une présentation
concise des résultats principaux, puis viennent trois parties relativement indépendantes. Dans la première
partie, je considère des problèmes d’inférence statistique sur un échantillon i.i.d. issu d’une loi inconnue
à support dénombrable. Le premier chapitre est consacré aux propriétés de concentration du profil de
l’échantillon et de la masse manquante. Il s’agit d’un travail commun avec Stéphane Boucheron et Mesrob
Ohannessian. Après avoir obtenu des bornes sur les variances, nous établissons des inégalités de concen-
tration de type Bernstein, et exhibons un vaste domaine de lois pour lesquelles le facteur de variance dans
ces inégalités est tendu. Le deuxième chapitre présente un travail en cours avec Stéphane Boucheron et
Elisabeth Gassiat, concernant le problème de la compression universelle adaptative d’un tel échantillon.
Nous établissons des bornes sur la redondance minimax des classes enveloppes, et construisons un code
quasi-adaptatif sur la collection des classes définies par une enveloppe à variation régulière. Dans la
deuxième partie, je m’intéresse à des marches aléatoires sur des graphes aléatoires à degrés precrits. Je
présente d’abord un résultat obtenu avec Justin Salez, établissant le phénomène de cutoff pour la marche
sans rebroussement. Sous certaines hypothèses sur les degrés, nous déterminons précisément le temps de
mélange, la fenêtre du cutoff, et montrons que le profil de la distance à l’équilibre converge vers la fonction
de queue gaussienne. Puis je m’intéresse à la comparaison des temps de mélange de la marche simple et
de la marche sans rebroussement. Enfin, la troisième partie est consacrée aux propriétés de concentration
de tirages pondérés sans remise et correspond à un travail commun avec Yuval Peres et Justin Salez.

Abstract

This document presents the problems I have been interested in during my PhD thesis. I begin with a
concise presentation of the main results, followed by three relatively independent parts. In the first part, I
consider statistical inference problems on an i.i.d. sample from an unknown distribution over a countable
alphabet. The first chapter is devoted to the concentration properties of the sample’s profile and of the
missing mass. This is a joint work with Stéphane Boucheron and Mesrob Ohannessian. After obtaining
bounds on variances, we establish Bernstein-type concentration inequalities and exhibit a vast domain
of sampling distributions for which the variance factor in these inequalities is tight. The second chapter
presents a work in progress with Stéphane Boucheron and Elisabeth Gassiat, on the problem of universal
adaptive compression over countable alphabets. We give bounds on the minimax redundancy of envelope
classes, and construct a quasi-adaptive code on the collection of classes defined by a regularly varying
envelope. In the second part, I consider random walks on random graphs with prescribed degrees. I first
present a result obtained with Justin Salez, establishing the cutoff phenomenon for non-backtracking
random walks. Under certain degree assumptions, we precisely determine the mixing time, the cutoff
window, and show that the profile of the distance to equilibrium converges to the Gaussian tail function.
Then I consider the problem of comparing the mixing times of the simple and non-backtracking random
walks. The third part is devoted to the concentration properties of weighted sampling without replacement
and corresponds to a joint work with Yuval Peres and Justin Salez.
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Résumé détaillé

Ce texte rassemble des travaux effectués au cours de mes trois années de thèse. Les problèmes auxquels
je me suis intéressée étant assez éloignés, j’ai préféré présenter ces travaux en trois parties indépendantes.
En particulier, elles peuvent être lues dans n’importe quel ordre, et chaque partie comporte son intro-
duction propre. Ici, je tente de résumer de façon succinte les résultats obtenus.

Le profil d’un échantillon (i.i.d.)

Le cadre général de la première partie sera le suivant : on dispose d’un échantillon i.i.d. (X1, . . . , Xn) à
valeurs dans un ensemble dénombrable de symboles X que l’on appellera souvent un alphabet, et qui pour
nous sera l’ensemble des entiers naturels strictement positifs : X = N∗. On note alors (pj)j≥1 la loi de X1.
On utilise souvent la métaphore des urnes : l’échantillon peut être interprété comme le résultat de n lancers
indépendants de boules dans une collection d’urnes, pj correspondant à la probabilité qu’une boule tombe
dans l’urne j. Que peut-on dire du nombre d’urnes occupées ? Du nombre d’urnes contenant r boules ? Si
Kn,r est définie comme le nombre d’urnes contenant r boules après n lancers, la suite (Kn,r)r≥1 est appelée
le profil de l’échantillon. S’intéresser au profil, c’est extraire les informations concernant l’occupation des
urnes, en ignorant le numéro des urnes.

Un cas particulier qui a fait l’objet de beaucoup d’attention est celui d’un nombre fini d’urnes m, où
chaque urne est munie de la probabilité uniforme : p1 = · · · = pm = 1

m . Le profil de l’échantillon dépend
alors de la manière dont on fait dépendre le nombre n de lancers du nombre m d’urnes. Par exemple, si
l’on cherche à savoir combien de boules il faut lancer pour qu’au moins une urne contienne plus de deux
boules (c’est-à-dire pour que Kn,1 devienne strictement plus petit que n), le paradoxe des anniversaires
nous dit qu’il faut prendre n �

√
m. Ou encore, si l’on lance n = m boules, quel est le nombre maximal

de boules contenues par une urne ? Dans ce cas, le nombre de boules contenues par une urne donnée
est approximativement distribué comme une loi de Poisson de paramètre 1, et le maximum de n telles
variables est approximativement logn

log logn . L’étude asymptotique de la variable Kn dans différents régimes
n = n(m) est au coeur de l’ouvrage de Kolchin et al. [106], qui identifient cinq régimes pour lesquels
Kn proprement normalisée converge en loi vers une loi normale ou vers une loi de Poisson. Par exemple,
quand n/N → c avec c ∈]0,+∞[, l’espérance et la variance de Kn sont alors linéaires en n, et la loi limite
de Kn est gaussienne.

La généralisation de ces questions à un nombre infini d’urnes est due (à notre connaisance) à Bahadur
[12], qui s’intéresse essentiellement à la variable Kn. L’analyse systématique du comportement asympto-
tique de Kn, Kn,r, ainsi que d’autres variables d’occupation (notamment le nombre d’urnes contenant un
nombre pair de boules) remonte au remarquable article de Karlin [102]. Entre beaucoup d’autres résultats
dont nous parlerons plus loin, Karlin montre que, dès que le support est infini, la variable Kn vérifie une
loi forte des grands nombres : Kn

EKn → 1 presque sûrement. Un théorème central limite pour Kn a été
établi par Dutko et al. [65], sous la condition VarKn → +∞. Ces résultats reposent crucialement sur la
monotonie de Kn. Obtenir des convergences similaires pour les variables Kn,r, qui ne vérifient pas cette
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propriété de monotonie, s’avère beaucoup plus délicat. Par exemple, si EKn,r ne tend pas vers l’infini, la
loi des grands nombres peut ne pas être vérifiée, car Kn,r fait des sauts de taille 1. Si l’on veut pouvoir
dire quelque chose du comportement asymptotique de ces variables, on doit restreindre d’une certaine
façon la classe des lois considérées. Un cadre général proposé par Karlin [102] est celui des lois dites à
variation régulière. Si l’on définit, pour tout x de ]0, 1],

~ν(x) =
∣∣ {j ≥ 1, pj ≥ x}

∣∣ ,
on dira que la loi (pj)j≥1 est à variation régulière d’indice α ∈ [0, 1] si ~ν(1/·) l’est, c’est-à-dire, si ~ν(1/n) ∼
nα`(n) quand n→ +∞, où ` est une fonction à variation lente. Sous cette condition, l’étude asymptotique
des variables d’occupation est relativement transparente. La théorie de la variation régulière (initiée par
Karamata) permet alors d’obtenir des équivalents simples pour les moments, et fournit un cadre où les
variables Kn,r vérifient la loi forte des grands nombres et un théorème central-limite.

L’étude du profil (Kn,r)r≥1 s’est révélée cruciale en statistiques, notamment dans des cas où la taille
de l’échantillon est relativement petite par rapport à celle de l’alphabet, et où les méthodes d’estimation
classiques telles que le maximum de vraisemblance sont mises en échec [132]. Les champs d’application sont
divers. En écologie, les urnes peuvent par exemple représenter des espèces animales [73]. En linguistique,
elles peuvent correspondre à des mots, ou à des suites de mots. En supposant le nombre d’urnes fini égal
à m, on peut alors chercher à estimer m à partir de l’échantillon [43, 67]. En alphabet infini, la question
correspondante serait de savoir combien de nouveaux symboles on observerait si l’on agrandissait la taille
de l’échantillon [83]. En particulier, si l’on dispose d’un échantillon de taille n, quelle est la probabilité
que le (n + 1)e symbole soit nouveau ? Se poser cette question, c’est s’intéresser à la masse manquante,
que l’on notera Mn,0 et qui est définie comme

Mn,0 =
∑
j≥1

pj1{j 6∈{X1,...,Xn}} ,

la probabilité des symboles qui ne sont pas dans l’échantillon. Un estimateur de la masse manquante
dont les qualités sont encore célébrées aujourd’hui a été proposé par Alan Turing, dans le contexte du
décryptage du dispositif de chiffrage Enigma, utilisé par la marine allemande durant la Seconde Guerre
Mondiale. L’estimateur de Good-Turing [82] consiste à approcher la masse manquante par Kn,1/n, la
proportion des symboles observés une seule fois dans l’échantillon. Cet estimateur peut a posteriori est
considéré comme un estimateur par ré-échantillonnage, de type jackknife.

Dans le Chapitre 1, nous présentons un travail en collaboration avec Stéphane Boucheron et Mesrob
Ohannessian, qui fait l’objet d’un article à parâıtre dans le Bernoulli Journal [22]. Nous nous intéressons
aux propriétés de concentration (non-asymptotique) des variables d’occupation Kn et Kn,r et de la
masse manquante Mn,0. On cherche à obtenir, pour n fixé, des bornes sur la probabilité que ces va-
riables s’éloignent de leur espérance de plus d’un certain seuil t ≥ 0. Ces variables sont des sommes,
pondérées ou non, de variables de Bernoulli, mais celles-ci ne sont pas indépendantes, et c’est là une des
difficultés principales. Il y a deux manières de contourner ce problème : la première consiste à recourir
à la Poissonnisation. On suppose alors que la taille de l’échantillon est elle-même aléatoire, distribuée
selon une loi de Poisson de paramètre n. Dans ce scenario poissonnisé, les variables de Bernoulli sont
indépendantes. Une deuxième méthode consiste à utiliser l’association négative des variables correspon-
dant au nombre de boules dans chaque urne. L’association négative nous permet d’obtenir, pour Kn et
Kn,r̄ (le nombre de symboles apparus plus de r fois), des inégalités de type Bennett, c’est-à-dire une
concentration du type de la loi de Poisson, avec un facteur de variance tendu, celui obtenu par l’inégalité
d’Efron-Stein-Steele. Obtenir des inégalités de concentration pour Mn,0 s’avère plus problématique et la
concentration de cette variable aléatoire n’est pas garantie. Intuitivement, la masse manquante concentre
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bien lorsque les symboles qui n’apparaissent pas dans un échatillon de taille n (et donc contribuent à la
masse manquante) ont tous une probabilité bien plus petite que 1/n. Le cas de la loi géométrique montre
cependant que la masse manquante peut fluctuer largement autour de son espérance. Dans ce cas en effet,
les symboles appartenant à la masse manquante correspondent grosso modo aux symboles plus grands
que j?, le quantile d’ordre 1 − 1/n. Les fluctuations concernent donc majoritairement les symboles se
situant autour de ce quantile. Or la probabilité pj? est elle-même de l’ordre de 1/n, et donc ces symboles,
selon qu’ils apparaissent ou non, peuvent faire fluctuer assez fortement la masse manquante. Rechercher
une inégalité de concentration dans laquelle le facteur de variance soit universellement tendu semble donc
illusoire. L’étude de la transformée de Laplace de la masse manquante nous a cependant conduit à une
représentation intéressante, qui est fonction de toute la suite (EKn,r)r≥1. Contrôler les déviations de la
masse manquante revient alors à contrôler uniformément l’espérance des variables d’occupation. Nous ob-
tenons finalement une inégalité de concentration pour la masse manquante valable pour toute loi (pj)j≥1,
et nous montrons que, si la loi appartient au domaine des lois à variation régulière avec une queue de
distribution plus lourde que celle de la loi géométrique, alors le facteur de variance dans cette inégalité
a effectivement l’ordre de la vraie variance. Nous appliquons ces résultats à l’étude de l’estimateur de
Good-Turing.

Codage adaptatif sur des alphabets infinis

Dans le Chapitre 2, nous présentons un travail en cours avec Stéphane Boucheron et Elisabeth Gassiat.
Le cadre général est inchangé : celui d’un échantillon i.i.d. à valeurs dans N∗, et issu d’une loi inconnue
P = (pj)j≥1. On s’intéresse au problème de l’encodage du message X1:n = (X1, . . . , Xn). Les deux grandes
difficultés ici sont, d’une part, le fait de ne pas connâıtre la loi de la source P qui génère le message, et
d’autre part, l’infinité de l’alphabet X = N∗.

L’inégalité de Kraft-McMillan établit une correspondance entre les code uniquement décodable et les
probabilités : à toute probabilité Qn sur Xn, on peut associer un code préfixe (c’est-à-dire tel qu’aucun
mot de code n’est le préfixe d’un autre) dont la fonction de longueur ` est telle que `(x) ≤ d− logQn(x)e
pour tout x ∈ Xn. Les méthodes de codage arithmétique permettent de construire un tel code. Notre
problème est donc de trouver une loi Qn qui minimise EP [− logQn(X1:n)]. L’entropie de la source elle-
même étant une borne inférieure pour cette quantité, on va en fait s’intéresser à la différence entre les
deux (la redondance), qui n’est autre que la distance de Kullback-Leibler (dite aussi entropie relative)
entre Pn et Qn :

D(Pn, Qn) = EP
[
log P

n(X1:n)
Qn(X1:n)

]
.

Si la source est connue, la probabilité de codage optimale est bien sûr donnée par Pn elle-même. Lorsque
l’on sait uniquement que la source appartient à une certaine classe C, on est ramené à un problème de
codage dit universel. La redondance minimax de la classe est définie comme :

R(Cn) = inf
Qn

sup
P∈C

D(Pn, Qn) ,

et une suite de distributions de codage (Qn) est dite fortement universelle si supP∈C D(Pn, Qn)
n

→ 0
quand n→ +∞. Le cas des alphabets finis a fait l’objet d’une vaste littérature [107, 140, 156]. On sait par
exemple que la redondance minimax de la classe des lois i.i.d. sur un alphabet de taille k est équivalente,
quand n tend vers l’infini, à k−1

2 logn. Lorsque l’alphabet est infini, le théorème de Kieffer implique qu’il
n’existe pas de code universel pour la classe des lois i.i.d.. On doit donc restreindre nos ambitions, et
considérer des classes plus petites. Nous nous placerons dans le cadre du codage adaptatif : étant donné
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une collection de classes de sources, telle que l’on dispose, pour chaque classe, d’un codeur universel,
peut-on construire un unique code qui atteint la redondance minimax sur chaque classe ? Formellement,
une suite de distributions de codage (Qn) est dite adaptative sur la collection de classes (C(α))α∈A si,
pour tout α ∈ A,

sup
P∈C(α)

D(Pn, Qn) = (1 + oα(1))R(C(α)n) .

Si la collection de classes est très vaste, l’adaptivité peut s’avérer très difficile, sinon impossible à obtenir.
On dira qu’une suite de distributions de codage (Qn) est adaptative à un facteur rn près si pour tout
α ∈ A,

sup
P∈C(α)

D(Pn, Qn) = Oα(rn)R(C(α)n) .

Lorsque la suite (rn) crôıt bien plus lentement que R(C(α)n), ce critère, moins contraignant, reste signi-
ficatif. Nous nous intéresserons ici à des classes de loi dite enveloppes, introduites par [39], et définies
comme l’ensemble des lois de probabilités dominées par une fonction d’enveloppe f . Si l’on note Λf la
classe-enveloppe induite par f , un premier problème est de comprendre le comportement asymptotique
de R(Λnf ). En utilisant des arguments de Poissonnisation proposés par Acharya et al. [4], nous obtenons
des bornes inférieures et supérieures sur R(Λnf ), et l’introduction du formalisme de Karlin [102] nous
permet d’interpréter ces bornes de façon transparente. Dans le cas particulier où la fonction f vérifie
une condition de variation régulière, le théorème de Karamata et ses extensions permettent une analyse
asymptotique immédiate. Notre contribution principale est la construction d’un code (Qn), qui est adap-
tatif (à un facteur log logn près) sur la famille des classes-enveloppe à variation régulière : pour tout
α ∈ [0, 1[, et pour toute fonction enveloppe f telle que ~νf (1/n) ∼ nα`(n), il existe cα > 0 tel que

sup
P∈Λn

f

D(Pn, Qn) ≤ (cα + oα(1)) log lognR(Λnf ) .

Le code que nous proposons est largement inspiré des codes de type auto-censurant, tel que le code AC de
Bontemps et al. [35] ou le code ETAC de Boucheron et al. [41]. Il s’agit d’un code préfixe en ligne dont le
principe est le suivant : on code les symboles du message X1:n séquentiellement. Au temps i ∈ {1, . . . , n},
si Xi est un nouveau symbole, c’est-à-dire s’il n’a pas déjà été observé dans X1:i−1, alors on utilise le code
d’Elias pour l’encoder et on intègre ce symbole au dictionnaire courant. Si Xi a déjà été observé, alors
on l’encode par le mélange de Krichevski-Trofimov (kt) sur l’alphabet fini correspondant au dictionnaire
courant, c’est-à-dire l’ensemble des symboles déjà observés (le code kt réalise une estimation bayésienne
de la loi de la source, et le choix du prior de Jeffrey permet l’optimisation de la redondance). Bien sûr,
pour que ce code soit bien décodable, il faut indiquer au décodeur lequel de ces deux codes est utilisé.
Pour cela, on utilise un symbole additionnel, noté 0, et les nouveaux symboles sont en fait codés deux
fois : une fois comme un 0 par kt, et une deuxième fois par Elias. De cette manière, si le décodage par
kt d’un mot de code donne un 0, on sait que le prochain mot de code correspond au code Elias d’un
nouveau symbole.

Ce code peut être compris comme un mélange entre d’une part le codage du dictionnaire, et d’autre
part, le codage du pattern du message [78, 129]. Cependant, une particularité de notre analyse est de
ne pas séparer les deux contributions à la redondance globale du code. Au contraire, une partie de la
redondance due au codage kt nous aide à compenser une partie de l’encodage, par le code Elias, des
nouveaux symboles. C’est ce qui nous permet d’obtenir l’adaptivité à un facteur log logn, au lieu d’un
facteur logn. Une question en suspens est de savoir si l’on peut se passer de ce facteur log logn, ou s’il y
a un coût inévitable à l’adaptivité.
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Marches aléatoires sur graphes aléatoires

Dans la deuxième partie de ce texte, je m’intéresse à un problème complètement différent qui est celui
du temps de mélange de marches aléatoires sur des grands graphes aléatoires.

Pour motiver l’étude du temps de mélange de châınes de Markov, on peut considérer le problème
d’échantillonnage suivant. Soit G = (V,E) un graphe connexe sur n sommets. Supposons que l’on veuille
tirer un sommet dans ce graphe avec probabilité proportionnelle à son degré (qui peut être considéré
comme une mesure de l’importance de ce sommet dans le réseau). Si n est très grand, ce problème
peut s’avérer difficile, en particulier si l’on n’a qu’une connaissance locale et incomplète du réseau. Une
solution approchée consiste à faire partir une marche aléatoire d’un sommet fixé x ∈ V . La marche va
progressivement oublier son point de départ, se perdre dans le réseau, si bien qu’au bout d’un certain
temps, elle se trouvera sur un sommet v avec probabilité très proche de deg(v)

2|E| . On dit qu’elle a mélangé.
Si l’on sait contrôler le temps de mélange de la marche aléatoire sur G, on dispose alors d’une méthode
à la fois élégante théoriquement et bien souvent très efficace en pratique, pour échantillonner selon la
probabilité voulue, appelée probabilité stationnaire de la châıne. C’est le principe général des méthodes
MCMC (Monte Carlo Markov Chains).

Pour une châıne de Markov irréductible et apériodique sur un espace d’état fini Ωn, on définit, pour
tout ε de ]0, 1[, le temps de mélange t(n)

mix(ε) comme

t
(n)
mix(ε) = inf{t ≥ 0, Dn(t) ≤ ε} ,

où Dn(t) correspond au maximum, sur tous les points de départ x ∈ Ωn, de la distance en variation totale
entre la loi de la châıne au temps t partie de x et la loi stationnaire. Si l’on dispose d’une suite de châınes
de Markov sur une suite d’espaces d’état (Ωn), on peut alors s’intéresser au comportement asymptotique
de t

(n)
mix(ε) lorsque n tend vers l’infini. Au début des années 1980, Diaconis and Shahshahani [60] et

Aldous [6] ont découvert un phénomène surprenant, appelé le phénomène de cutoff : le premier terme du
développement asymptotique de t(n)

mix(ε) peut ne pas dépendre de ε. Cela signifie qu’asymptotiquement,
la distance chute abruptement de 1 à 0, en une période de temps négligeable devant le temps de mélange
lui-même et que l’on appelle la fenêtre du cutoff.

Dans la Section 2, nous présentons un travail effectué avec Justin Salez, qui a fait l’objet d’un article
à parâıtre dans les Annales de Probabilités [21]. Nous nous intéressons à la marche sans rebroussement
(� non-backtracking � en anglais) sur des graphes aléatoires à degrés prescrits, générés selon le modèle
de configuration. On se fixe une suite de degrés (deg(v))v∈V telle que N =

∑
v∈V deg(v) est pair. Initiale-

ment, chaque sommet v de V est muni de deg(v) demi-arêtes, et l’on choisit uniformément au hasard un
appariement de ces demi-arêtes, générant ainsi un graphe aléatoire (qui n’est pas nécéssairement simple)
où chaque arête correspond à l’appariement de deux demi-arêtes. La marche aléatoire sans rebroussement
est alors définie comme une châıne de Markov sur l’ensemble des demi-arêtes. Sous certaines hypothèses
sur la suite de degrés, nous montrons qu’avec probabilité tendant vers 1, la marche aléatoire sans re-
broussement présente le phénomène de cutoff. Nous déterminons le temps de mélange t? et la fenêtre ω?
et nous établissons la convergence suivante :

tmix(ε)− t?
ω?

P−→ Φ−1(ε) quand n→ +∞ , (0.1)

où Φ est la fonction de queue d’une variable gaussienne centrée réduite. Si l’on pose

µ = 1
N

∑
v∈V

deg(v) log(deg(v)− 1) ,
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et
σ2 = 1

N

∑
v∈V

deg(v) (log(deg(v)− 1)− µ)2
,

alors on a : t? = logN
µ et ω? =

√
σ2 logN
µ3 . La convergence (0.1) correspond donc à un résultat d’uni-

versalité : pour toute suite de degrés (qui vérifient certaines conditions dites de sparsité), le profil de la
distance à l’équilibre ne dépend des degrés qu’à travers µ et σ2. Prise en des temps de la forme t? + λω?,
la distance converge vers une courbe universelle, celle de la fonction de queue gaussienne Φ(λ). La preuve
de ce résultat repose sur une analyse très fine de la variable aléatoire P t(x, y), la probabilité pour la
marche sans rebroussement partie de x d’être en y au temps t. On cherche à déterminer le temps t à
partir duquel cette variable concentre autour de son espérance, 1/N . Dans le cas d-régulier analysé dans
[113], le problème revient à contrôler le nombre de chemins allant de x à y. Ici, on doit compter ces
chemins de façon pondérée : en effet, les degrés sont hétérogènes et différents chemins de même longueur
peuvent avoir des probabilités bien différentes d’être empruntés par la marche. En utilisant une pro-
priété de pseudo-réversibilité de la marche sans rebroussement, on représente P t(x, y) comme une somme
pondérée de variables de Bernoulli faiblement dépendantes :

P t(x, y) =
∑
i,j

w(i)w(j)Xi,j , (0.2)

où w(i) (resp. w(j)) correspond à la probabilité que la marche partie de x soit en i au temps t/2 (resp.
que la marche partie de y soit en j au temps t/2), et où Xi,j correspond à l’indicatrice de l’évènement
� les demi-arêtes i et j sont appariées �. Pour que cette somme concentre, il faut s’assurer qu’aucune des
variables de Bernoulli n’a trop d’impact sur la somme totale, et donc, qu’aucun des poids w(i)w(j) n’est
trop grand. Intuitivement, pour t trop petit, la variable P t(x, y) n’est pas concentrée, car les chemins de
longueur t/2 autour de x et de y ont encore un � trop grand � poids. Si l’on augmente t progressivement,
les chemins de poids petit deviennent de plus en plus nombreux, jusqu’à couvrir quasiment toute la masse
des chemins possibles, et cette transition a lieu très abruptement. Pour (presque) toutes les paires (x, y),
et pour un seuil θ ≈ 1/N , la masse

∑
i,j w(i)w(j)1w(i)w(j)>θ chute abruptement de 1 à 0 au moment

t? et en une période bien plus petite ω?. On peut décrire précisément la forme de cette chute : pour
t = t? + λω?, la masse

∑
i,j w(i)w(j)1w(i)w(j)>θ est très proche de Φ(λ).

Notons aussi qu’une des difficultés de la preuve réside dans le fait que les variables d’appariement Xi,j

dans (0.2) ne sont pas indépendantes. Grâce à la méthode des paires échangeables (une des variantes de
la méthode de Stein), nous obtenons une inégalité de concentration pour des sommes indéxées par un
appariement aléatoire.

L’utilisation de marches sans rebroussement semble assez naturelle. D’une certaine façon, en suppri-
mant le � bruit � lié aux retours en arrière de la marche simple, elles sont plus en adéquation avec la
structure du graphe du lui-même. D’un point de vue plus pratique, on peut supposer qu’elles permettent
une exploration plus rapide et plus efficace du graphe. Les marches sans rebroussement mélangent-elles
plus vite ? Dans le cas de graphes aléatoires d-réguliers, l’avantage de la marche sans rebroussement sur la
marche simple a été confirmé par Lubetzky and Sly [113], qui ont montré que la marche simple mélangeait
moins vite que la marche sans rebroussement. Dans ce cas, le rapport entre les deux temps de mélange
est précisément donné par d−2

d , qui correspond à la vitesse d’une marche simple dans un arbre d-régulier.
Cette comparaison est-elle toujours valable dans le cas non-régulier ? Remarquons tout d’abord que la
réponse n’est pas immédiate. Certes la marche sans rebroussement est toujours avantagée par sa plus
grande vitesse, mais l’hétérogénéité des degrés introduit un deuxième effet allant dans le sens contraire :
lorsqu’elle entre dans une partie du graphe où les degrés sont relativement petits, elle y est piégée, alors
que, sur un sommet de petit degré, la marche simple a relativement plus de chance de reculer. La marche
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simple a donc tendance à naturellement quitter les chemins de petits degrés et à se diriger vers les som-
mets de plus grands degrés, auxquels la mesure stationnaire donne plus de poids. Dans la Section 3 de la
deuxième partie, je montre que, même dans le cas non-régulier, la marche sans rebroussement mélange
plus vite que la marche simple. La preuve repose sur une comparaison délicate de l’entropie des deux
marches sur un arbre de Galton-Watson.

Tirages pondérés sans remise

Dans la troisième partie de ce texte, nous considérons un problème encore bien différent : celui de la
comparaison entre des tirages avec et sans remise, lorsque les éléments sont munis de poids, et que l’on
tire proportionnellement à ces poids. Il s’agit d’un travail en collaboration avec Yuval Peres et Justin
Salez, soumis à un journal [23]. On considère une population finie de taille N . A chaque élément de la

population sont associés une valeur ν(i) ∈ R, et un poids ω(i) > 0, tel que
N∑
i=1

ω(i) = 1. On s’intéresse

aux propriétés de concentration de la variable

X = ν(I1) + · · ·+ ν(In) ,

où, pour tout n-uplet (i1, . . . , in) d’indices distincts de {1, . . . , N},

P ((I1, . . . , In) = (i1, . . . , in)) =
n∏
k=1

ω(ik)
1− ω(i1)− · · · − ω(ik−1) .

On dit que (I1, . . . , In) correspond à un échantillon pondéré sans remise. En tirant avec remise dans la
population, on obtient un échantillon i.i.d. (J1, . . . ,Jn), où, pour tout j ∈ {1, . . . , N}, P(J1 = j) = ω(j).
On définit alors

Y = ν(J1) + · · ·+ ν(Jn) .

La variable Y est une somme de variables aléatoires i.i.d., et la méthode de Chernoff nous permet
d’obtenir des inégalités de concentration en majorant le logarithme de sa transformée de Laplace.

Dans le cas particulier de poids uniformes, ω(1) = · · · = ω(N) = 1
N , Hoeffding [92] a montré que,

pour toute fonction convexe f : R→ R,

E[f(X)] ≤ E[f(Y )] .

On dit que X est plus petite que Y en ordre convexe. Peut-on obtenir une comparaison similaire dans
le cas de poids non-uniformes ? Si les valeurs et les poids sont classés dans le même ordre, c’est-à-dire si
pour tout (i, j) ∈ {1, . . . , N}2,

ω(i) ≥ ω(j) ⇐⇒ ν(i) ≥ ν(j) ,

alors, on montre que X est plus petite que Y en ordre convexe croissant : pour toute fonction convexe
croissante f : R→ R,

E[f(X)] ≤ E[f(Y )] . (0.3)

En particulier, pour tout λ ≥ 0, E[ eλX ] ≤ E[ eλY ], et toutes les bornes sur P(Y > t) obtenues par la
méthode de Chernoff s’appliquent sans modification à X. Nous montrons comment une telle comparai-
son permet de contrôler simplement le nombre d’arêtes révélées lorsque l’on expose progressivement le
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voisinage d’un sommet dans un graphe aléatoire distribué selon le modèle de configuration.
On peut remarquer que, dans le cas non-uniforme, EX et EY ne sont pas nécéssairement égales.

L’inégalité (0.3) ne permet donc pas d’obtenir une inégalité de concentration de X autour de son
espérance. De plus, lorsque le nombre de tirages n se rapproche du nombre total d’éléments N , la com-
paraison directe avec Y ne capturera sûrement pas le bon ordre des fluctuations. En effet, la variance de
Y est de l’ordre de n, alors que celle de X est plutôt de l’ordre de n ∧ (N − n). Par exemple, dans le cas
extrême où n = N , la variance de X est nulle. Lorsque les poids sont uniformes, Serfling [145] a capturé
ce bon ordre de grandeur pour la variance dans l’inégalité de concentration suivante :

P (X − EX > t) ≤ exp
(
− 2t2

n
(
1− n−1

N

)
∆2

)
,

où ∆ = max
1≤i≤N

ν(i)− min
1≤i≤N

ν(i). Nous avons tenté d’obtenir une inégalité similaire dans le cas de poids

non-uniformes. Si l’on note α = min1≤i≤N ω(i)
max1≤i≤N ω(i) , on montre que, pour α < 1, et pour tout t > 0,

max {P (X − EX > t) ,P (X − EX < −t)} ≤ exp
(
− t

2

2v

)
,

où

v = min
(

4∆2n ,
1 + 4α
α(1− α)∆2N

(
N − n
N

)α)
.

Si α est uniformément borné loin de 0 et 1, on obtient donc une inégalité de concentration sous-gaussienne
pour X, dans laquelle le facteur de variance est soit de l’ordre de n (ce qui est le bon ordre pour des
échantillons de taille n ≤ qN , avec q fixé dans ]0, 1[), soit de l’ordre de N

(
N−n
N

)α, ce qui donne une
amélioration lorsque n

N → 1. Il serait intéressant de savoir si l’on peut se passer de l’exposant α, ce qui
nous permettrait d’obtenir un équivalent de l’inégalité de Serfling pour des poids non-uniformes.
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Part I

Concentration and compression on
infinite alphabets
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In this part, we consider various problems related to sampling over infinite countable alphabets. The
general setting is often referred to as an infinite urn scheme: one may picture n balls being independently
thrown onto an infinite collection of urns, each ball having probability pj to fall in urn j. We start with a
general introduction. In Chapter 1, we are interested in the concentration properties of various functions
of the sample: the number of occupied urns, the number of urns containing r balls, and the missing mass.
This is a work in collaboration with Stéphane Boucheron and Mesrob I. Ohannessian, Concentration
inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications [22],
to appear in the Bernoulli Journal. Chapter 2 is devoted to the different although related problem of
encoding such a sample with as few bits as possible without knowing the underlying distribution. This is
an ongoing work with Stéphane Boucheron and Elisabeth Gassiat.
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Introduction

1 Sampling from an unknown discrete distribution

In this part, we are concerned with inference from i.i.d. samples of an unknown discrete distribution
(say a distribution over a finite or countable set which elements will be referred as symbols). Given
such samples, what can we infer about the distribution? In particular, can we use the sample to learn
something about the unobserved portion of the distribution? Those questions have critical importance
when the sample size is small with respect to alphabet size, which is the case in many applications. In
those situations, classical methods such as maximum-likelihood estimation typically fail to capture any
information about unseen symbols. Consider the following examples: first, assume that, in a sample of
size 100, we observe 40 times symbol a, and 60 times symbol b. A trivial answer, based on empirical
frequencies, would be to assign probability 2/5 to symbol a, probability 3/5 to symbol b, and 0 to any
other symbol. One can show that this is the maximum-likelihood estimator (MLE) of the distribution.
In cases where the number of occurrences of each symbol is approximately linear in the sample size,
this estimation procedure performs well. But assume now that we observe a sequence (a1, a2, . . . , an)
where for all i 6= j, ai 6= aj . The maximum-likelihood estimator (empirical frequencies) is the uniform
distribution over n symbols, and hence completely misses one of the essential feature of the sample: all
symbols are distinct. What would seem likely is that, if we sample another time, we will discover yet
another distinct symbol, an event to which the MLE assigns probability zero.

The problem of estimating an unknown discrete distribution from a small sample has a long history
which can be traced back to the pioneer works of Ronan Fisher and Alan Turing. In the early 1940’s,
a naturalist named Corbet, coming back from a two-year expedition in Malaysia during which he could
collect a sample of butterflies, approached Fisher with the following question : knowing that the sample
contains n1 butterfly species observed only once, n2 species observed twice, and so on, is it possible to
estimate the number of new species that could be discovered if another two-year expedition were to be
launched? The model proposed by Fisher et al. [73] gives a general framework to address this problem.
Around the same time, Alan Turing and Irving Good were working on a related problem, in an effort
to break the Enigma, a encryption device used by the German Navy during World War II. In order to
estimate the probability for the next cypher to be a new one (the missing mass of the sample), they
constructed a simple estimation scheme, known as the Good-Turing estimator, corresponding to the
proportion of symbols occurring only once in the sample [82].

Those works initiated a long line of research, which benefited recently from major contributions of the
theoretical computer scientists. One of the central question is: how well can we estimate the distribution
itself? This turns out to be a special case of density estimation [57, 58]. A common (and pessimistic)
way to address the problem is through the minimax approach: we assume that the true distribution P

lies in some class C, and we aim at constructing a distribution Qn, based on the observations, which
would perform as well as possible (in terms of a given loss function), were the distribution P chosen
adversarially as the worst distribution in the class. Even in the simplest setting where C is the class
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of distributions over a fixed-size alphabet, this problem is not fully understood. There exist a variety
of estimators (Laplace or add-one estimators, Krichevsky-Trofimov or add-one-half estimators...) and
their performance intimately depends one the chosen loss function [89, 101]. One may also be interested
into estimating a functional of the sampling distribution, such as its entropy, or the cardinality of its
support. The specific problem of estimating the support size of a distribution arises in a wide variety of
fields, such as ecology where one is interested in the number of species in a population [83], linguistics
where one looks for an estimate on the number of words in a vocabulary [67], and even numismatics
[71]. Bunge and Fitzpatrick [43] gives a general review of the literature on support size estimation.
The estimation of symmetric functionals of the distribution (that is, functionals which do not depend
on a specific labelling of symbols) has received a lot of attention in the theoretical computer science
community [11, 17, 90, 96, 153]. Typically, one is interested in estimating quantities of the form

∑
f(pi),

one of the most studied symmetric functional being the entropy of the distribution −
∑
pi log pi. Here

again, plugging in the maximum likelihood estimator can be highly sub-optimal. Let us also mention
the problem of testing properties of the distribution: is it uniform? Is it monotone? Log-concave? Uni-
modular? Of particular importance in a small sample regime is the question of the sample complexity,
that is the number of observations, necessary or sufficient, to test those properties with a small error
probability [5, 18, 109].

As highlighted by Orlitsky et al. [132], in situations of under-represented data, one might considerably
benefit from modelling the profile of the sample, instead of the number of occurrences of each individual
symbol. The profile of the sample is the sequence of occupancy counts, defined as the number of symbols
occurring once, the number of symbols occurring twice, three times, and so on. It is sometimes called
the histogram of histograms, or the fingerprint of the sample. Let us go back to the example of the
beginning. Assume that we observe the sequence (2, 1, 3). The MLE of the distribution is thus the
uniform distribution over {1, 2, 3}. However, let us try to take into account more specifically the profile
of the sample: three symbols occur once. Under the uniform distribution over {1, 2, 3}, the probability
of this event is

3!× 1
33 = 2

9 .

However, if instead we choose the uniform on, say, {1, . . . , 5}, we would find

5!
(5− 3)! ×

1
53 = 12

25 >
2
9 .

Orlitsky et al. [132] then propose a new estimate for the distribution, called the high profile, based on
the maximization of the probability of the observed profile. This line of work turned out to be decisive.
Although computing the high profile of a sample is often a deterring task, focusing on the profile prompted
great progress related to the various questions mentioned above. For instance, the profile contains all the
useful information about symmetric properties of a distribution, and the algorithm designed by Valiant
and Valiant [153] to estimate symmetric functionals largely relies on the sample profile. This algorithm
actually returns a distribution which generates, with high probability, a sample whose profile closely
matches the one of the observed sample.

Intuitively, in a sample of size n, one would like to distinguish between “frequent” and “infrequent”
symbols. Frequent symbols’ probabilities could be estimated by maximum-likelihood, or by variants of
the MLE, such as add-constant estimators, which give to symbol j a probability proportional to Xn,j +β,
where Xn,j is the number of occurrences of j and β is a constant term. Those estimators stem from
Bayesian estimation with prior Dirichlet(β, . . . , β). The most popular are Laplace estimators (β = 1) and
Krichevsky-Trofimov (β = 1/2), which are justified by their asymptotic properties over finite alphabets.
However, as observed in several places, such estimators may perform very poorly for infrequent symbols.
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To cope with those rare symbols, one may rather resort to Good-Turing frequency estimation, whose
principle is as follows: let Kn,r be the number of symbols occurring r times in the samples. Good and
Turing proposed to estimate the cumulative probability of symbols occurring r times by (r+1)Kn,r+1

n (in
particular, Kn,1/n corresponds to the Good-Turing estimator of the missing mass). Using the fact that
the mass of symbols occurring r times should be almost equally distributed among those symbols, this
yields the following estimator for the probability of a symbol j occurring r times:

p̂GT(j) = (r + 1)Kn,r+1

nKn,r
.

This suggests the following estimation procedure: choose a threshold r?. If symbol j occurs more than r?

times, estimate its probability by its empirical frequency (possibly with an additive term β). If it occurs
less than r? times, resort to Good-Turing estimation. The problem then becomes that of choosing an
optimal threshold r? [130, 150, 153].

Let us mention that, in a Bayesian perspective, another approach is to choose a prior more adapted
to rare-event regimes than the Dirichlet priors resulting in add-constant estimators. Natural languages,
for instance, are well modelled by power-laws, and the choice of a Poisson-Dirichlet prior (Pitman-Yor
process [138]) in n-gram models has been advocated by [152].

The problem of estimating rare probabilities and of understanding the behaviour of the profile
(Kn,r)r≥1 is also deeply related to data compression. If the sampling distribution were known, the
compression problem would be solved by applying a standard method as Huffmann coding or, if we
want to encode and decode sequences of symbols in an on-line way, by feeding the symbols to an arith-
metic coder fitted to the sampling distribution [51]. If the sampling distribution is not known, we face
a universal coding problem and data compression turns out to be intimately related to estimating the
probability of the sample under the so-called logarithmic loss [44, 45, 51, 52]. Given this strong duality
between compression and probability estimation, it is not surprising that the sample’s profile plays a
crucial role in universal coding [129, 133]. When the alphabet is infinite, Kieffer’s Theorem [104] implies
that there is no universal code for i.i.d. sequences. This negative result prompted several approaches,
one of which consists in encoding the pattern of the sample. For instance the pattern of the sequence
(7, 7, 4, 2, 6, 6, 4) is (1, 1, 2, 3, 4, 4, 2), each symbol being replaced by its rank of appearance in the sample.
We then neglect the particular labelling of symbols [1, 78, 147]. Encoding a sequence may then be done
in two steps: encoding of the pattern and encoding of the dictionary. In this framework, the estimation
of the probability that the next symbol is new, i.e. of the missing mass, turns out to be pivotal, and the
Good-Turing estimator has received a lot of attention in information theory [130, 131].

The asymptotic properties of the Good-Turing estimator have been intensively analysed [70, 76,
122]. However, in our small-sample perspective, it seems relevant to look for non-asymptotic results.
The interest of the statistical learning community for the missing mass problem brought about a new
perspective on the question, that of concentration inequalities [25, 26, 121, 127]. The problems addressed
in [22] and presented in Chapter 1 pertain to this line of investigation. To study the Good-Turing
estimator or other quantities that depend significantly on the small-count portion of the observations,
we need to understand the missing mass and the profile well. Our contribution here is to give sharp
concentration inequalities with explicit and reasonable constants. Those inequalities are distribution-free,
that is, they hold for any sampling distribution. For occupancy counts (the number of symbols occurring
r times), we establish Bennett’s inequalities, in which the variance factor is given the Efron-Stein proxy,
which is typically a tight proxy, capturing the right order of the variance. In the case of the missing mass
(denoted Mn,0), we establish a sub-Gaussian inequality on the left tail, with the tight variance proxy
v−n = 2E[K2(n)]/n2, where K2(n) is the number of symbol occurring twice in a sample of random size
distributed as a Poisson variable with mean n. On the right tail, we establish a Bernstein inequality,
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with scale factor 1/n and variance proxy v+
n = 2E[K2̄(n)]/n2, where K2̄(n) is the number of symbols

occurring more than twice in a sample of size Poisson(n). That is to say, we show that, for all t > 0,

P (Mn,0 − EMn,0 < −t) ≤ exp
(
− t2

2v−n

)
,

and

P (Mn,0 − EMn,0 > t) ≤ exp
(
− t2

2(v+
n + t/n)

)
.

This variance proxy v+
n can significantly improve on the previously established variance factor 1/n [25,

121]. Moreover, we exhibit a vast domain of distributions (namely, distributions with a heavier tail than
the Geometric) for which v+

n actually captures the order of the true variance. One novelty of our analysis
is the consideration of the fundamentally Poissonian behaviour of the variables involved. Indeed, as
sums of (weighted) Bernoulli variables, the missing mass and occupancy counts typically have Poissonian
deviations and it seems relevant to abandon the pursuit of a sub-Gaussian inequality. Instead, looking
for sub-Poissonian (Bennett-type) inequalities allows us to significantly improve the variance factor, to
the price of a small scale-factor 1/n. To see how one may largely benefit from Bennett’s inequalities, the
case of the binomial distribution with parameters n and 1/n is illuminating. As the log-Sobolev constant
of a Bernoulli random variable with mean 1/n is log(n−1)

1−2/n , the best variance factor one could hope for in
a sub-Gaussian inequality is n(1−2/n)

2 log(n−1) ∼
n

2 logn , whereas the true variance is 1 − 1/n. The appropriate
deviations are better captured by a Bennett inequality with variance proxy 1 and scale factor 1 (inducing
a Bernstein inequality with variance factor 1 and scale factor 1/3). We then apply our concentration
inequalities to the study of the Good-Turing estimator.

In Chapter 2, we address the problem of universal compression over infinite alphabets. As mentioned
earlier, when coping with large and possibly infinite alphabets, the problem of rare counts and probabilities
becomes critical to universal compression [133]. The two problems of estimating the missing mass and
coding over infinite alphabets both face the same kind of challenge : universality is not achievable. The
class of all discrete distributions is too large, in the sense that there is no universally consistent estimator
of the missing mass [123], and there is no universal code for this class [104]. One thus has to consider
smaller classes over which universality can be hoped for. Here, we will consider classes of distributions
characterized by regularly varying tails, a framework related to extreme value theory [20, 55]. Following
[35, 39, 41], we consider classes of sources defined by a common dominating envelope. We give new
bounds on the minimax redundancy of envelope classes, and we construct a simple coding scheme which
is (almost) adaptive over the collection of classes characterized by a regularly varying envelope. As
suspected, the analysis of this code intimately relies on the understanding of occupancy counts and of
the probability to discover a new symbol at any given time.

Let us now introduce some notation which will be used in both Chapter 1 and 2.

2 Occupancy counts and occupancy masses

Let X1, X2, · · · , Xn be i.i.d. observations from a fixed but unknown distribution (pj)∞j=1 over a
discrete set of symbols (an alphabet) X = N+ = N \ {0}. We assume that for all j ≥ 1, the probability
pj is strictly positive. The terminology of infinite urn scheme comes from the analogy to n independent
throws of balls over an infinity of urns, pj being the probability of a ball falling into urn j, at any i-th
throw. The sample size n may be fixed in advance; we call this the binomial setting. In the continuous
time version of this setting, the sample size is itself random and distributed as a Poisson variable N with
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mean n, independent of (Xi). This is the Poisson setting. We write all Poisson-setting quantities with
functional notations, instead of subscripts used for the fixed-n scheme.

For each j, n ∈ N+, let Xn,j =
∑n
i=1 1{Xi=j} be the number of times symbol j occurs in a sample of

size n, and Xj(n) =
∑N
i=1 1{Xi=j} the Poisson version. One useful property of Poisson sampling is that

the variables (Xj(n))j≥1 are independent. The collection (Xn,j)j≥1 is often called the type of the sample
(X1, . . . , Xn). In questions of under-represented data, the central objects are sets of symbols that are
repeated a small number r of times. The central quantities are the occupancy counts Kn,r [respectively
Kr(n) for the Poisson setting], defined as the number of symbols that appear exactly r times in a sample
of size n:

Kn,r =
∞∑
j=1

1{Xn,j=r}.

The collection (Kn,r)r≥1 [resp. (Kr(n))r≥1] has been given many names, such as the profile (in
information theory [133]) or the fingerprint (in theoretical computer science [153]) of the sample. Here
we refer to them by occupancy counts individually, and occupancy process all together.

The occupancy counts then combine to yield the cumulated occupancy counts Kn,r [respectively
Kr(n)] and the total number of distinct symbols in the sample, or the total number of occupied urns,
often called the coverage and denoted by Kn [respectively K(n)]:

Kn,r =
∞∑
j=1

1{Xn,j≥r} =
∑
s≥r

Kn,s ,

and

Kn =
∞∑
j=1

1{Xn,j>0} =
∑
r≥1

Kn,r .

In addition to the occupancy numbers and the number of distinct symbols, we also address the rare
(or small-count) probabilities Mn,r [respectively Mr(t)], defined as the probability mass corresponding to
all symbols that appear exactly r times:

Mn,r = P({j,Xn,j = r}) =
∞∑
j=1

pj1{Xn,j=r} .

In particular, we focus on Mn,0 =
∑∞
j=1 pj1{Xn,j=0}, which is called the missing mass, and which

corresponds to the probability of all the unseen symbols.
Explicit formulas for the moments of the occupancy counts and masses can be derived in the binomial

and Poisson settings. The occupancy counts’ expectations are given by

EKn =
∞∑
j=1

(1− (1− pj)n) EK(n) =
∞∑
j=1

(1− e−npj )

EKn,r =
∞∑
j=1

(
n

r

)
prj(1− pj)n−r EKr(n) =

∞∑
j=1

e−npj (npj)r

r!

EMn,r =
∞∑
j=1

(
n

r

)
pr+1
j (1− pj)n−r EMr(n) =

∞∑
j=1

pj e−npj (npj)r

r! .

Formulas for higher moments can also be computed explicitly but their expression, especially in the
binomial setting where a lot of dependencies are involved, often has an impractical form.
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3 Karlin’s formalism

We find it convenient to use the unifying framework proposed by Karlin [102]. Let us encode the
probabilities (pj) into the counting measure ν defined by

ν( dx) =
∑
j≥1

δpj ( dx) , (3.1)

where δp is the Dirac mass at p, and let ~ν : (0, 1]→ N be the right tail of ν, i.e. for all x ∈ (0, 1],

~ν(x) = ν[x,∞[= |{j ≥ 1, pj ≥ x}| . (3.2)

The function ~ν is referred to as the counting function, ~ν(x) corresponding to the number of symbols with
probability larger than x. Clearly, we always have ~ν(x) ≤ 1/x. As shown by Gnedin et al. [80], we even
have

~ν(x) � 1
x
, (3.3)

as x→ 0. We also define the measure ν1 by

ν1( dx) =
∑
j≥1

pjδpj ( dx) . (3.4)

Hence, for x ∈ [0, 1], ν1[0, x] =
∑
j≥1 pj1pj≤x is the cumulated probability of symbols with probability

smaller than x. Note that the expected occupancy counts and masses can be written simply as integrals
against the measure ν. For instance

EK(n) =
∫ 1

0
(1− e−nx)ν( dx) .

One may observe that we may as well integrate from 0 to ∞, and, integrating by parts, we have

EK(n) =
[
−~ν(x)(1− e−nx)

]∞
0 + n

∫ ∞
0

e−nx~ν(x) dx

Using (3.3), the first term is equal to zero and we get

EK(n)
n

=
∫ ∞

0
e−nx~ν(x) dx .

Hence, n 7→ EK(n)/n is the Laplace transform of ~ν and n 7→ EK(n) characterizes the measure ν.
In both Chapter 1 and 2, we will take a particular interest in the class of regularly varying probability

distributions, which can be seen as a generalization of the class of power laws. Even though a large
part of our work is distribution-free, we prefer to state this condition in the introduction so as to fix our
terminology.

Definition 1 (regular variation). The source P = (pj)j≥1 is said to be regularly varying with index
α ∈ [0, 1] if the counting function ~ν(1/·) is regularly varying with index α (denoted ~ν(1/·) ∈ rvα), i.e.

~ν(1/n) ∼
n→∞

nα`(n) , (3.5)
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where ` is a slowly varying function, that is, for all x > 0, `(nx)
`(n) →

n→∞
1.

When α = 0, we will sometimes require extended regular variation, assuming further that there exists
a slowly varying function `0 such that, for all x > 0,

`(xn)− `(n)
`0(n) −→

n→∞
log x . (3.6)

The function `0 is called the auxiliary function and satisfies `0(n) = o(`(n)). We denote condition (3.6)
by ~νf ∈ Π`0 .

For instance, the Geometric distribution belongs to rv0 but does not satisfies extended regular varia-
tion. However, distributions with a slightly heavier tail than the Geometric, such as frequencies propor-
tional to qj1−ε for 0 < q, ε < 1, or the discretized log-Normal distribution, do satisfy it.

As noted above, n 7→ EK(n)/n is the Laplace transform of ~ν. Hence, by Abelian-Tauberian theorems,
the regular variation of ~ν translates into regular variation of EK(n) (and other expectations).

Under the regular variation assumption, Karlin [102] and Gnedin et al. [80] investigated the asymptotic
behaviour of Kn and Kn,r, and established laws of large numbers and central limit theorems for those
variables.
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Chapter 1

Concentration inequalities in infinite
occupancy schemes

This chapter is devoted to the concentration properties of occupancy counts and of the missing mass.
We summarize our results in Section 1. We give distribution-free bounds (Section 2), and then exhibit
a vast domain where these results are tight, namely the domain of distributions with a heavier tail than
the geometric (Section 3). In this domain, the non-asymptotic exponential concentration properties that
we establish are sharp in the sense that the exponents are order-optimal, precisely capturing the scale
of the variance. For this reason, we dedicate a portion of the chapter to establishing bounds on various
variances. Some applications are presented in Section 4, pertaining mostly to the Good-Turing estimator
of the missing mass. All the proofs are grouped in Section 6.

1 Main results

Terminology

Our concentration results mostly take the form of bounds on the logarithm of the Laplace transform.
Our terminology follows closely [40]. We say that the random variable Z is sub-Gaussian on the right
tail (resp. on the left tail) with variance factor v if, for all λ ≥ 0 (resp. λ ≤ 0),

logE eλ(Z−EZ) ≤ vλ2

2 . (1.1)

We say that a random variable Z is sub-Poisson with variance factor v if, for all λ ∈ R,

logE eλ(Z−EZ) ≤ vφ(λ) , (1.2)

with φ : λ 7→ eλ − λ− 1.
We say that a random variable Z is sub-gamma on the right tail with variance factor v and scale

parameter c if

logE eλ(X−EX) ≤ λ2v

2(1− cλ) for every λ such that 0 ≤ λ ≤ 1/c . (1.3)

The random variable Z is sub-gamma on the left tail with variance factor v and scale parameter c, if −Z
is sub-gamma on the right tail with variance factor v and scale parameter c. If Z is sub-Poisson with
variance factor v, then it is sub-Gaussian on the left tail with variance factor v, and sub-gamma on the
right tail with variance factor v and scale parameter 1/3.

26



These log-Laplace upper bounds then imply exponential tail bounds. For instance, Inequality (1.3)
results in a Bernstein-type inequality for the right tail, that is, for s > 0 our inequalities have the form

P{Z > E[Z] +
√

2vs+ cs} ≤ e−s,

while Inequality (1.1) for all λ ≤ 0 entails

P{Z < E[Z]−
√

2vs} ≤ e−s .

We present such results first without making distributional assumptions, beyond the structure of those
quantities themselves. These concentrations then specialize in various settings, such as that of regular
variation.

Main results

We proceed by giving a coarse description of our main results. In the Poisson setting, for each r ≥ 1,
(Xj(n))j≥1 are independent, hence Kr(n) is a sum of independent Bernoulli random variables, and it is
not too surprising that it satisfies sub-Poisson, also known as Bennett, inequalities. For λ ∈ R, we have:

logE eλ(Kr(n)−EKr(n)) ≤ Var(Kr(t))φ(λ) ≤ E[Kr(n)]φ(λ) .

The proofs are elementary and are based on the careful application of Efron-Stein-Steele inequalities and
the entropy method [40].

As for the binomial setting, the summands are not independent but we can use negative association
arguments [64] (see Section 6) to obtain Bennett inequalities for the cumulated occupancy counts Kn,r.
These hold either with the Jackknife variance proxy given by the Efron-Stein inequality, rEKn,r or
with the variance proxy stemming from the negative correlation of the summands, EKn,r. Letting
vn,r = min(rEKn,r,EKn,r), we have, for all λ ∈ R:

logE eλ(Kn,r−EKn,r) ≤ vn,rφ(λ) .

This in turn implies a concentration inequality for Kn,r. Letting

vn,r = 2 min
(

max(rEKn,r, (r + 1)EKn,r+1),EKn,r

)
,

we have, for all s ≥ 0,

P
{
|Kn,r − EKn,r| ≥

√
4vn,rs+ 2s/3

}
≤ 4e−s .

In the Poisson setting, we go one step further and consider the supremum over J ⊂ N+

Z =
∑
r∈J

Kr(n)− EKr(n)√
VarKr(n)

.

Noticing that Z is the supremum of an empirical process and carefully invoking Klein-Rio and Samson
inequalities, we establish Bernstein inequalities for Z.

We obtain distribution-free bounds on the log-Laplace transform of Mn,0, which result in sub-Gaussian
concentration on the left tail, sub-gamma concentration on the right tail with scale proxy 1/n. More
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precisely, letting v−n = 2EK2(n)/n2 and v+
n = 2EK2(n)/n2, we show that, for all λ ≤ 0,

logEeλ(Mn,0−EMn,0) ≤ v−n
λ2

2 ,

and, for all λ ≥ 0,

logEeλ(Mn,0−EMn,0) ≤ v+
n

λ2

2(1− λ/n) .

Those bounds follow from an interesting relation between the log-Laplace transform of the missing
mass and the sequence of expected occupancy counts (EKr(n))r≥2, namely, for all λ ≥ 0,

logE
[

eλ(Mn,0−EMn,0)
]
≤
∞∑
r=2

(
λ

n

)r
EKr(n) .

This inequality implies that controlling the right tail of the missing mass can be done by uniformly
controlling the expected occupancy counts.

These results are distribution-free. But though the variance factor v−n is a sharp bound for the variance
of the missing mass, v+

n may be much larger. This leads us to look for distribution-specific conditions
ensuring that v+

n captures the right order for the variance, such as by using a tail asymptotic stability
condition as in extreme value theory.

Karlin [102] pioneered such a condition by assuming that the function ~ν satisfies a regular variation
assumption, namely

~ν(1/n) ∼ nα`(n) as n→∞ , (1.4)

with α ∈ [0, 1] and ` slowly varying [see also 80, 127]. This condition allows us to compare the asymptotics
of the various occupancy scores. In particular, when α > 0, then EK2(n) and EK2(n) have the same
order of growth, and, divided by n2 they both are of the same order as the variance of the missing mass.
Hence, regular variation provides a framework in which our concentration inequalities are order-optimal.

To handle the case α = 0, we move from Karamata to de Haan theory, and take ~ν to have an
extended regular variation property with an auxiliary function `0 that tends to +∞ (see equation 3.6).
This domain corresponds to light-tailed distributions which are still heavier than the geometric. In this
case, EK2(n) � EK2(n), and v+

n does not capture the right order. However, we manage to show the
sub-gamma concentration of the missing mass only for n large enough, that is, that there exists n0 such
that for all n ≥ n0, for λ > 0, we have

logEeλ(Mn,0−EMn,0) ≤ (vnλ2)/2(1− λ/n) ,

with vn � VarMn,0.
Back to our examples of applications, considerable insight may be gained from these concentration

results. For instance, heavy tails lead to multiplicative concentration for Mn,0 (strong law of large
numbers) and the consistency of the Good-Turing estimator: Gn,0

Mn,0

p−→ 1. Generally, new estimators can
be derived and shown to be consistent in a unified framework, once one is able to estimate α consistently.
For instance, when ~ν(1/.) is regularly varying with index α, α̂ = Kn,1/Kn is a consistent estimator of α.
Then, to estimate the number of new species in a sample twice the size of the original, we immediately
get that K̂2n = Kn + 2α̂−1

α̂ Kn,1 is a consistent estimator of K2n. This methodology is very similar to
extreme value theory [20]: harnessing limiting expressions and tail parameter estimation. These results
strengthen and extend the contribution of [127], which is restricted to power-laws and implicit constants
in the inequalities. Beyond consistency results, we also obtain confidence intervals for the Good-Turing
estimator in the Poisson setting, using empirical quantities.
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Historical notes and related work

There exists a vast literature on the occupancy scheme, as formulated here and in many other varia-
tions. The asymptotic behaviour of Kn and Kn,r has been intensively studied in the finite case with m

urns and uniform probabilities. The number of urns m may then depend in a certain way on the number
of samples n [98, 106]. Of particular relevance to our problem is the pioneer paper of Karlin [102], who
built on earlier work by Bahadur [12], credited as one of the first to study the infinite occupancy scheme.
Karlin’s main results were to establish central limit theorems in an infinite setting, under a condition
of regular variation. He also derived strong laws of large numbers. Gnedin et al. [80] present a general
review of these earlier results, as well as more contemporary work on this problem. The focus continues
to be central limit theorems, or generally asymptotic results. For example the work of Hwang and Jan-
son [94] (effectively) provides a local limit theorem for Kn provided that the variance tends to infinity.
Somewhat less asymptotic results have also been proposed, in the form of variance analysis and normal
approximations, such as in the work of Bogachev et al. [31] and Barbour and Gnedin [13].

Besides occupancy counts analysis, a distinct literature investigates the number of species and missing
mass problems. These originated in the works of Fisher et al. [73], Good [82], and Good and Toulmin
[83], and generated a long line of research to this day [43]. Here, instead of characterizing the asymptotic
behavior of these quantities, one is interested in estimating Kλn −Kn for a λ > 1, that is the number of
discoveries when the sample size is multiplied by λ, or estimating Mn,0: estimators are proposed, and then
their statistical properties are studied. One recently studied property by McAllester and Schapire [122],
McAllester and Ortiz [121], and Acharya et al. [2], is that of concentration, which sets itself apart from
the CLT-type results in that it is non-asymptotic in nature. Based on this, Ohannessian and Dahleh [127]
showed that in the regular variation setting of Karlin, one could show multiplicative concentration, and
establish strong consistency results. Conversely, characterizing various aspects of concentration allows
one to systematically design new estimators. For example, this was illustrated in Ohannessian and Dahleh
[127] for the estimation of rare probabilities, to both justify and extend Good’s [82] work that remains
relevant in some of the aforementioned applications, especially computational linguistics.

2 Distribution-free concentration

2.1 Occupancy counts

2.1.1 Variance bounds

In order to understand the fluctuations of occupancy counts Kn, K(n), Kn,r, Kr(n), we start by
reviewing and stating variance bounds. We start with the Poisson setting where occupancy counts are
sums of independent Bernoulli random variables with possibly different success probabilities, and thus
variance computations are straightforward. There are exact expressions [see for example 80, Equation
(4)], but we may also derive more tractable and tight bounds. We start by stating a well-known connection
between the variance of the number of occupied urns and the expected number of singletons [80][102]. In
the binomial setting, similar bounds can be derived using the Efron-Stein-Steele inequalities, outlined in
Section 6.1.1 [see 40, Section 3.1].

Proposition 2.1. In the Poisson setting, we have

EK1(2n)
2 ≤ Var(K(n)) ≤ EK1(n) .
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In the binomial setting, we have

Var(Kn) ≤ E [Kn,1(1−Mn,0)] ≤ EKn,1 .

Remark 2.1. Despite its easy proof, the bound Var(Kn) ≤ EKn,1 is a much sharper bound than the
obvious self-bounding upper bound presented in [40, Example 3.9], Var(Kn) ≤ EKn. In some scenarii,
for example when the sampling distribution is light-tailed or even geometric, EKn tends to ∞ whereas
EKn,1 and Var(Kn) remain bounded.

Another straightforward bound on Var(Kn) comes from the fact that the Bernoulli variables (1{Xn,j>0})j≥1

are negatively correlated. Thus, ignoring the covariance terms, we get

Var(Kn) ≤
∞∑
j=1

Var(1{Xn,j>0}) =
∞∑
j=1

(1− pj)n(1− (1− pj)n) = EK2n − EKn .

Let us denote this bound by Varind(Kn) = EK2n−EKn, as it is a variance proxy obtained by considering
that the summands in Kn are independent. One can observe that the expression of Varind(Kn) is very
similar to the variance in the Poissonized setting, Var(K(n)) = EK(2n) − EK(n). It is insightful to
compare the true variance, the Poissonized proxy, and the negative correlation proxy, to quantify the
price one pays by resorting to the latter two as an approximation for the first. We revisit this in more
detail in Section 5.1.

We now investigate the fluctuations of the individual occupancy counts Kn,r and Kr(n), and that of
the cumulative occupancy counts Kn,r =

∑
s≥rKn,s and Kr(n) =

∑
s≥rKs(n).

Proposition 2.2. In the Poisson setting, for r ≥ 1, n ≥ 0,

Var(Kr(n)) ≤ min (rEKr(n),EKr(n)) .

In the binomial setting, for r, n ≥ 1,

Var(Kn,r) ≤ min (rEKn,r,EKn,r) .

For each setting, the first bound follows from Efron-Stein-Steele inequalities, the second from negative
correlation. These techniques are presented briefly in Sections 6.1.1 and 6.1.2 respectively.

Remark 2.2. Except for r = 1, there is no clear-cut answer as to which of these two bounds is the
tightest. In the regular variation scenario with index α ∈]0, 1] as explored in [80], the two bounds are
asymptotically of the same order, indeed,

rEKn,r

EKn,r
∼

n→+∞
α ,

see Section 3 for more on this.

Bounds on Var(Kr(n)) can be easily derived as Kr(n) is a sum of independent Bernoulli random
variables. Moreover, noticing that Kn,r = Kn,r − Kn,r+1 and that Kn,r and Kn,r+1 are positively
correlated, the following bound is immediate.

Proposition 2.3. In the Poisson setting, for r ≥ 1, n ≥ 0,

Var(Kr(n)) ≤ EKr(n) .
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In the binomial setting, for r, n ≥ 1,

Var(Kn,r) ≤ min
(
rEKn,r + (r + 1)EKn,r+1,EKn,r + EKn,r+1

)
≤ 2 min (max(rEKn,r, (r + 1)EKn,r+1),EKn,r) .

2.1.2 Concentration inequalities

Concentration inequalities refine variance bounds. These bounds on the logarithmic moment generat-
ing functions are indeed Bennett (sub-Poisson) inequalities with the variance upper bounds stated in the
preceding section. For Kn,r, the next proposition gives a Bernstein inequality where the variance factor
is the Efron-Stein upper bound on the variance.

Proposition 2.4. Let r ≥ 1, and let vn,r = min(rEKn,r,EKn,r). Then, for all λ ∈ R,

logE eλ(Kn,r−EKn,r) ≤ vn,rφ(λ) ,

with φ : λ 7→ eλ − λ− 1.

It is worth noting that the variance bound EKn,r in this concentration inequality can also be obtained
using a variant of Stein’s method known as size-biased coupling [15, 48].

A critical element of the proof of Proposition 2.4 is to use the fact that each Kn,r is a sum of negatively
associated random variables (Section 6.1.2). This is not the case for Kn,r, and thus negative association
cannot be invoked directly. To deal with this, we simply use the observation of Ohannessian and Dahleh
[127] that since Kn,r = Kn,r −Kn,r+1, the concentration of Kn,r follows from that of those two terms.
We can show the following.

Proposition 2.5. Let

vn,r = 2 min (max(rEKn,r, (r + 1)EKn,r+1),EKn,r) .

Then, for s ≥ 0,

P
{
|Kn,r − EKn,r| ≥

√
4vn,rs+ 2s/3

}
≤ 4e−s .

In the favorable Poisson setting, we may go one step further and consider the supremum of the
normalized occupancy process, letting σ2

r = Var(Kr(n)) for each r, we consider

Z = sup
r∈J

Kr(n)− EKr(n)
σr

,

where J ⊂ N∗. As for each r ∈ J , Kr(n) is a sum of independent centered (but not necessarily iden-
tically distributed) random variables, this supremum may be considered as a supremum of an empirical
process with uniformly bounded and centered components. The suprema considered here differ from the
suprema involved in Talagrand’s inequalities (See [40]) as they are build by summing a countable rather
than a finite collection of independent random variables. Nevertheless, the dimension-free nature of Ta-
lagrand’s inequalities suggests that the supremum as well as its normalized countrepart satisfy genuine
concentration inequalities.

Theorem 2.1. Let ν = 2 EZ
minr∈J σr + 1 and ν′ = EZ

minr∈J σr + maxr∈J
EKr(n)
σ2
r

. Then,

EZ ≤
√

2 log |J |+ log |J |
minr∈J σr
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VarZ ≤ min (ν, ν′) .

For t ≥ 0,

P {Z ≥ EZ + t} ≤ exp
(
− t4 log

(
1 + 2 ln

(
1 + t

ν

)))

P {Z ≤ EZ − t} ≤ exp
(
− t2

2 (ν′ + 2t/3)

)
.

The bounds are mostly interesting if J is chosen in such a way that minr∈J σr ≥
√

log |J |/2, then
the expectation bound is not larger than 2

√
2 log |J |, while the variance bound is not larger than 9.

Exponential tail bounds entail that with probability larger than 1− δ, uniformly over J ,

|Kr(n)− EKr(n)| ≤
√

VarKr(n)
(

2
√

2 log |J |+
√
κ′ log 1/δ + κ′′ log 1/δ

)
where κ′, κ′′ are universal constants.

2.2 Missing mass

2.2.1 Variance bound

Recall that Mn,0 =
∑∞
j=1 pj1{Xn,j=0}, and we can readily show that the summands are negatively

associated weighted Bernoulli random variables (Section 6.1.2). This results in a handy upper bound for
the variance of the missing mass.

Proposition 2.6. In the Poisson setting,

Var(M0(n)) = 2EK2(n)/n2 − EK2(2n)/2n2 ≤ 2EK2(n)
n2 ,

while in the binomial setting,

Var(Mn,0) ≤
∞∑
j=1

p2
jVar

(
1{Xn,j=0}

)
≤ 2EK2(n)

n2 .

Note that whereas the expected value of the missing mass is connected to the number of singletons, its
variance may be upper bounded using the number of doubletons (in the Poisson setting). This connection
was already pointed out in [82] and [69].

2.2.2 Concentration of the left tail

Moving on to the concentration properties of the missing mass, we first note that as a sum of weighted
sub-Poisson random variables (following [40]), the missing mass is itself a sub-gamma random variable
on both tails. It should not come as a surprise that the left tail of Mn,0 is sub-Gaussian with the variance
factor derived from negative association. This had already been pointed out by [122] and McAllester and
Ortiz [121].

Proposition 2.7. [121] In the Poisson setting, the missing mass M0(n) is sub-Gaussian on the left tail
with variance factor the effective variance Var(M0(n)) =

∑∞
j=1 p

2
j e−npj (1− e−npj ).

In the binomial setting, the missing mass Mn,0 is sub-Gaussian on the left tail with variance factor
v =

∑∞
j=1 p

2
jVar

(
1{Xn,j=0}

)
or v−n = 2EK2(n)/n2.

For λ ≤ 0,

logE
[

eλ(Mn,0−EMn,0)
]
≤ vλ2

2 ≤ 2v−n λ2

2
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2.2.3 Concentration of the right tail

The following concentration inequalities for the right tail of the missing mass mostly rely on the fol-
lowing proposition, which bounds the log-Laplace transform of the missing mass in terms of the sequence
of expected occupancy counts EKr(n), for r ≥ 2.

Proposition 2.8. For all λ > 0,

logE
[

eλ(Mn,0−EMn,0)
]
≤
∞∑
r=2

(
λ

n

)r
EKr(n) .

This suggests that if we have a uniform control on the expected occupancy scores (EKr(t))r≥2, then
the missing mass has a sub-gamma right tail, with some more or less accurate variance proxy, and scale
factor 1/n.

The next theorem shows that the missing mass is sub-gamma on the right tail with variance proxy
2EK2(n)/n2 and scale proxy 1/n. Despite its simplicity and its generality, this bound exhibits an in-
tuitively correct scale factor: if there exist symbols with probability of order 1/n, they offer the major
contribution to the fluctuations of the missing mass.

Theorem 2.2. In the binomial as well as in the Poisson setting, the missing mass is sub-gamma on the
right tail with variance factor v+

n = 2EK2(n)/n2 and scale factor 1/n. For λ ≥ 0,

logE
[

eλ(Mn,0−EMn,0)
]
≤ v+

n λ
2

2(1− λ/n) .

If the sequence (EKr(n))r≥2 is non-increasing, the missing mass is sub-gamma on the right tail with
variance factor v−n = 2EK2(n)/n2 and scale factor 1/n,

logE
[

eλ(Mn,0−EMn,0)
]
≤ v−n λ

2

2(1− λ/n) .

Remark 2.3. McAllester and Ortiz [121] and Berend and Kontorovich [25] point out that for each
Bernoulli random variable Yj = 1{Xn,j=0}, for all λ ∈ R

logE eλ(Yj−EYj) ≤ λ2

4cls(EYj)
,

where cls(p) = log((1 − p)/p)/(1 − 2p) (or 2 if p = 1/2) is the optimal logarithmic Sobolev constant for
Bernoulli random variables with success probability p (this sharp and non-trivial result has been proven
independently by a number of people: Kearns and Saul [103], Berend and Kontorovich [25], Raginsky and
Sason [139], Berend and Kontorovich [26]; the constant also appears early on in the exponent of one of
Hoeffding’s inequalities [92, Theorem 1, Equation (2.2)]). From this observation, thanks to the negative
association of the (Yj)j≥1, it follows that the missing mass is sub-Gaussian with variance factor

wn =
∞∑
j=1

p2
j

2cls((1− pj)n) ≤
∞∑
j=1

p2
j

2 log((1− pj)−n) ≤
∞∑
j=1

p2
j

2npj
≤ 1

2n . (2.1)

An upper bound on wn does not mean that wn is necessarily larger than EK2(n)/n2. Nevertheless, it is
possible to derive a simple lower bound on wn that proves to be of order O(1/n).
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Assume that the sequence (pj)j≥1 is such that pj ≤ 1/4 for all j ≥ 1. Then

wn ≥
∑

j:pj≥1/n

p2
j

2cls((1− pj)n)

≥
∑

j:pj≥1/n

p2
j (1− 2(1− pj)n)

2n log(1/(1− pj))

≥
∑

j:pj≥1/n

p2
j (1− 2/e)

2npj/(1− pj)

≥ 3(1− 2/e)
8n (1−

∑
j:pj<1/n

pj)

≥ 3
32n

1−
∑

j:pj<1/n

pj

 ,

and the statement follows from the observation that limn→∞
∑
j:pj<1/n pj = 0.

The variance factor wn from (2.1) is usually larger than 2EK2(n)/n2. In the scenarios discussed in
Section 3, (2EK2(n)/n2)/wn even tends to 0 as n tends to infinity.

3 Regular variation

3.1 Definition and motivation

Are the variance bounds in the results of Section 2 tight? In some pathological situations this may
not be the case.

In particular, we may conjecture that Theorem 2.2 is likely to be sharp when the first terms of the
sequence (EKr(n))r≥2 grow at the same rate as EK(n), or at least as EK2(n). We see in what follows
that the regular variation framework introduced by Karlin [102] leads to such asymptotic equivalents.
The most useful aspect of these equivalent growth rates is a simple characterization of the variance of
various quantities, particularly relative to their expectation. We focus on the right tail of the missing
mass, which exhibits the highest sensitivity to this asymptotic behavior, by trying to specialize Theorem
2.2 under regular variation.

Regularly varying frequencies can be seen as generalizations of power-law frequencies. One possible
definition is as follows: for α ∈ (0, 1), the sequence (pj)j≥1 is said to be regularly varying with index
−1/α if , for all κ ∈ N+,

pκj
pj

∼
j→∞

κ−
1
α .

It is easy to see that pure power laws do indeed satisfy this definition. However, in order to extend the
regular variation hypothesis to α = 0 and 1, we need a more flexible definition.

Henceforth, following Karlin [102], we say that the probability mass function (pj)j is regularly varying
with index α ∈ [0, 1], if ~ν(1/·) is α-regularly varying in the neighbourhood of ∞, which reads as

~ν(1/n) ∼
n→∞

nα`(n) ,

where ` is a slowly varying function. We use the notation ~ν(1/·) ∈ rvα.
We now note that when α ∈ (0, 1), the regular variation assumption on (pj)j≥1 is indeed equivalent

to the regular variation assumption on the counting function ~ν [see 80, Proposition 23]: if (pj)j≥1 is
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regularly varying with index −1/α as j tends to infinity, then ~ν(1/·) is α-regularly varying [see also 30].
The second definition however lends itself more easily to generalization to α = 0 and 1.

In what follows, we treat these three cases separately: the nominal regular variation case with α ∈
(0, 1) strictly, the fast variation case with α = 1, and the slow variation case with α = 0.

In the latter case, that is if ~ν(1/n) ∼ `(n), we find that the mere regular variation hypothesis is not
sufficient to obtain asymptotic formulas. For this reason, we introduce further control in the form of an
extended regular variation hypothesis (see equation 3.6).

Remark 3.1. Before we proceed, as further motivation, we note that the regular variation hypothesis
is very close to being a necessary condition for exponential concentration. For example, considering
Proposition 2.8, we see that if the sampling distribution is such that the ratio EK2(n)/EK2(n) remains
bounded, then we are able to capture the right variance factor. Now, defining the shorthand Φ2(t) =
EK2(t) and Φ2(t) = EK2(t) following the notation of [80], we have

Φ′2(t) = 2Φ2(t)
t

.

Hence, Φ2(t)/Φ2(t) = 2Φ2(t)/tΦ′2(t), and if instead of boundedness, we further require that this ratio
converges to some finite limit, then, by the converse part of Karamata’s Theorem [see 55, Theorem
B.1.5], we find that Φ2 (and then Φ2) is regularly varying, which in turn implies that ~ν(1/t) is regularly
varying. We elaborate on this further in our discussions, in Section 5.2.

3.2 Case α ∈ (0, 1)
We first consider the case 0 < α < 1. The next theorem states that when the sampling distribution is

regularly varying with index α ∈ (0, 1), the variance factors in the Bernstein inequalities of Proposition
2.7 and Theorem 2.2 are of the same order as the variance of the missing mass.

Theorem 3.1. Assume that ~ν(1/·) ∈ rvα with α ∈ (0, 1). Then the missing mass Mn,0 (or M0(n)) is
sub-Gaussian on the left tail with variance factor v−n = 2EK2(n)/n2 and sub-gamma on the right tail with
variance factor v+

n = 2EK2(n)/n2. The variance factors satisfy

lim
n

v−n
Var(Mn,0) = 1

1− 2α−2 ,

lim
n

v+
n

Var(Mn,0) = 2
α(1− 2α−2) .

The second ratio deteriorates when α approaches 0, implying that the variance factor for the right
tail gets worse for lighter tails. We do not detail the proof of Theorem 3.1, except to note that it follows
from Proposition 2.7, Theorem 2.2, and the following asymptotics [see also 80, 127]:

Theorem 3.2. [102] If the counting function ~ν is regularly varying with index α ∈ (0, 1), we have
• Number of occupied urns

Kn ∼+∞ EKn a.s. and EKn ∼+∞ Γ(1− α)nα`(n) ,

• Number of urns with r ≥ 1 balls

Kn,r ∼+∞ EKn,r a.s. and EKn,r ∼+∞
αΓ(r − α)

r! nα`(n) .

and the same hold for the corresponding Poissonized quantities.
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Note that all expected occupancy counts are of the same order, and the asymptotics for EK2(n)
follows directly from the difference between EK(n) and EK1(n).

Gnedin et al. [80] observe that, thanks to the general binomial formula, in the regular variation
scenario with 0 < α < 1, the almost sure limits of Kn,r

Kn
define a probability distribution over N. Indeed,

we have

Kn,r

Kn
→

n→∞

αΓ(r − α)
r!Γ(1− α) = (−1)r+1

(
α

r

)
:= Qα(r) a.s. ,

and
∑
r≥1Qα(r) = 1. Let us denote by Qn the empirical occupancy measure, i.e. for all r ≥ 1,

Qn(r) = Kn,r
Kn

The next result outlines that under the regular variation assumption, the sequence (Qn)
almost surely converges towards the scale-free occupancy probability distribution qα with respect to the
total variation distance. It is a direct consequence of Scheffé’s Lemma.

Proposition 3.1. If ~ν ∈ rvα, α ∈]0, 1[, then, almost surely,

dtv(Qn, Qα) = 1
2

+∞∑
r=1
|Qn(r)−Qα(r)| −→

n→∞
0 .

3.3 Fast variation, α = 1
We refer to the regular variation regime with α = 1 as fast variation 1. From the perspective of

concentration, this represents a relatively “easy” scenario. In a nutshell, this is because the variance of
various quantities grows much slower than their expectation.

The result of this section is to simply state that Theorem 3.1 continues to hold as is for α = 1. The
justification for this, however, is different. In particular, the asymptotics of Theorem 3.2 do not apply:
the number of distinct symbols Kn and the singletons Kn,1 continue to have comparable growth order,
but now their growth dominates that of Kn,r for all r ≥ 2. Intuitively, under fast variation almost all
symbols appear only once in the observation, with only a vanishing fraction of symbols appearing more
than once. We formalize this in the following Theorem.

Theorem 3.3. [102] Assume ~ν(1/n) = n`(n) with ` ∈ rv0 (note that ` tends to 0 at ∞). Define
`1 : [1,∞)→ R+ by

`1(y) =
∫ ∞
y

`(u)
u

du .

Then `1 ∈ rv0 and limt→∞ `1(t)/`(t) =∞ and the following asymptotics hold:
• Number of occupied urns

Kn ∼+∞ EKn a.s. and EKn ∼+∞ n`1(n) ,

• Number of urns with one ball

Kn,1 ∼+∞ EKn,1 a.s. and EKn,1 ∼+∞ n`1(n) ,

• Number of urns with r ≥ 2 balls

Kn,r ∼+∞ EKn,r a.s. and EKn,r ∼+∞
n`(n)
r(r − 1) .

and the same hold for the corresponding Poissonized quantities.

1. Sometimes rapid variation is used [80], but this conflicts with [30].
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As the expected missing mass scales like EK1(n)/n while its variance scales like EK2(n)/n2, Theorem
3.3 quantifies our claim that this is an “easy” concentration. To establish Theorem 3.1, it remains to
show that EK2(n) is also of the same order as EK2(n), with the correct limiting ratio for α = 1. For this,
we give the following proposition, which is in fact sufficient to prove Theorem 3.1 for both 0 < α < 1 and
α = 1.

Proposition 3.2. Assume that the counting function ~ν satisfies the regular variation condition with index
α ∈ [0, 1], then for all r ≥ 2,

Kr(n) ∼
+∞

EKr(n) a.s. and EKr(n) ∼
+∞

Γ(r − α)
(r − 1)! ~ν(1/n) .

Thus, when α = 1, EKr(n) and EKr(n) for r ≥ 2 all grow like n`(n), which is dominated by the
n`1(n) growth of EK(n) and EK1(n), as `(n)/`1(n) → 0. Specializing for r = 2, we do find that our
proxies still capture the right order of the variance of the missing mass, and that we have the desired
limit of Theorem 3.1, limn v

−
n /v

+
n = 1

2 .

Remark 3.2. When 0 < α < 1, another good variance proxy would have have been 2EK(n)/n2. For
α = 1, however, singletons should be removed to get the correct order.

We also note that when α = 1, the missing mass is even more stable. If we let vn denote either
2EK2(n)/n2 or 2EK2(n)/n2, then we have the following comparison between the expectation and the
fluctuations of the missing mass, with the appropriate constants:

√
vn

EMn,0
∼


cα√
~ν(1/n)

for 0 < α < 1 ,
c1√
~ν(1/n)

· `(n)√
`1(n)

for α = 1 .

3.4 Slow variation, α = 0
The setting where the counting function ~ν satisfies the regular variation condition with index 0

represents a challenge. Recall that this means that ~ν(z/n)/~ν(1/n) converges to 1 as n goes to infinity,
yet to deal with this case we need to control the speed of this convergence, exemplified by the notion of
extended regular variation that was introduced by de Haan [See 30, 55]. As we illustrate in the end of
this section, one may face rather irregular behavior without such a hypothesis.

Definition 2. A measurable function ` : R+ → R+ has the extended slow variation property, if there
exists a non-negative measurable function `0 : R+ → R+ such that for all x > 0

lim
n→∞

`(nx)− `(n)
`0(n) →

n→∞
log(x) .

The function `0(·) is called an auxiliary function. When a function ` has the extended slow variation
property with auxiliary function `0, we denote it by ` ∈ Π`0 .

Note that the auxiliary function is always slowly varying and grows slower than the original function,
namely it satisfies limn→∞ `(n)/`0(n) =∞. Furthermore, any two possible auxiliary functions are asymp-
totically equivalent, that is if a1 and a2 are both auxiliary functions for `, then limn→∞ a1(n)/a2(n) = 1.

The notion of extended slow variation and the auxiliary function give us the aforementioned control
needed to treat the α = 0 case on the same footing as the 0 < α < 1 case. In particular, in what follows
in this section we assume that ~ν(1/.) ∈ Π`0 , with the additional requirement that the auxiliary function
`0 tends to +∞.
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Remark 3.3. This domain corresponds to light-tailed distributions just above the geometric distribution
(the upper-exponential part of Gumbel’s domain). For the geometric distribution with frequencies pj =
(1 − q)qk−1, j = 1, 2, . . . , the counting function satisfies ~ν(1/n) ∼∞ log1/q(n) ∈ RV0, but the auxiliary
function `0(n) = log(1/q) does not tend to infinity. Frequencies of the form pj = cq

√
j on the other hand

do fit this framework.

Theorem 3.4. [80] Assume that `(t) = ~ν(1/t) is in Π`0 , with `0 →∞. The following asymptotics hold
• Number of occupied urns

Kn ∼+∞ EKn a.s. and EKn ∼+∞ `(n) ,

• Number of urns with more than r ≥ 1 balls

Kn,r̄ ∼+∞ EKn,r̄ a.s. and EKn,r̄ ∼+∞ `(n) ,

• Number of urns with r ≥ 1 balls

Kn,r
P∼ EKn,r and EKn,r ∼+∞

`0(n)
r

,

• Mass of urns with r ≥ 0 balls

Mn,r
P∼ EMn,r and EMn,r ∼+∞

`0(n)
n

.

The same equivalents hold for the corresponding Poissonized quantities.

Remark 3.4. In this case, the expectations (EKn,r)r≥1 are of the same order but are much smaller than
EKn, and the variables Kn and Kn,r are all almost surely equivalent to `(n). It is also remarkable that
all the expected masses (EMn,r)r≥0 are equivalent.

The variance of the missing mass is of order 2EK2(n)/n2 ∼ `0(n)/n2, whereas the proxy 2EK2(n)/n2

is of much faster order 2`(n)/n2, and is thus inadequate. By exploiting more carefully the regular variation
hypothesis, we obtain uniform control over (EKr(n))r≥1 for large enough n, leading to a variance proxy
of the correct order.

Theorem 3.5. Assume that ` defined by `(x) = ~ν(1/x) is in Π`0 with `0(n) → ∞ as n → ∞, and let
vn = 12`0(n)/n2. We have:

(i) Var(Mn,0) ∼ 3`0(n)
4n2 , thus vn � Var(Mn,0).

(ii) There exists n0 ∈ N that depends on ~ν such that for all n > n0, for all λ > 0,

logE
[
eλ(Mn,0−EMn,0)

]
≤ vnλ

2

2(1− λ/n) .

The same results hold for M0(t).

Remark 3.5. By standard Chernoff bounding, Theorem 3.5 implies that there exists n0 ∈ N such that
for all n ≥ n0, s ≥ 0,

P
{
Mn,0 ≥ EMn,0 +

√
2vns+ s

n

}
≤ e−s .
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3.4.1 Too slow variation

We conclude this section by motivating why it is crucial to have a heavy-enough tail in order to obtain
meaningful concentration. For example, even under regular variation when α = 0, but ~ν is not in a de
Haan class Π`0 with `0(n)→∞, the behavior of the occupancy counts and their moments may be quite
irregular. In this section, we collect some observations on those light-tailed distributions. We start with
the geometric distribution which represents in many respects a borderline case.

The geometric case is an example of slow variation: ~ν(1/·) ∈ RV0. Indeed, with pk = (1 − q)k−1q,
0 < q < 1, we have

~ν(x) =
+∞∑
k=1

1{pk≥x}

= |k ∈ N+, (1− q)k−1q ≥ x|

= 1 +
⌊

log(x/q)
log(1− q)

⌋
,

and thus ~ν(x) ∼
x→0

`(1/x), with ` slowly varying.

In this case, Var(K(n)) = EK(2n)− EK(n)→ log(2)
log(1/1−q) .

Proposition 3.3. When the sampling distribution is geometric with parameter q ∈ (0, 1), letting Mn =
max(X1, . . . , Xn),

EMn ≥ EKn ≥ EMn −
1− q
q2 .

In the case of geometric frequencies, the missing mass can fluctuate widely with respect to its expec-
tation, and one cannot expect to obtain sub-gamma concentration with both the correct variance proxy
and scale factor 1/n. Indeed, intuitively, the symbol which primarily contributes to the missing mass’
fluctuations, is the quantile of order 1− 1/n. With F (k) =

∑k
j=1 pj , and F← the generalized inverse of

F ,

j∗ = F←(1− 1/n) = inf{j ≥ 1, F (j) ≥ 1− 1/n}

= inf{j ≥ 1,
∑
k>j

pk ≤ 1/n} .

Omitting the slowly varying functions, when ~ν(1/·) ∈ RVα, 0 < α < 1, j∗ is of order n
α

1−α and pj∗ is of
order n−

1
1−α . The closer to 1 is α, the smaller the probability of j∗. When α goes to 0, this probability

becomes 1/n. With geometric frequencies, j∗ is log(n)
log(1/1−q) and pj∗ is q

n(1−q) . Hence, around the quantile
of order 1− 1/n, there are symbols which may contribute significantly to the missing mass’ fluctuations.

Another interesting case consists of distributions which are very light-tailed, in the sense that pk+1
pk
→ 0

when k → ∞. An example of these is the Poisson distribution P(λ), for which pk+1
pk

= λ
k −→
k→+∞

0 . The
next proposition shows that for such concentrated distributions, the missing mass essentially concentrates
on two points.

Proposition 3.4. In the infinite urns scheme with probability mass function (pk)k∈N, if pk > 0 for all k
and limk→∞

pk+1
pk

= 0, then there exists a sequence of integers (un)n∈N such that

lim
n→∞

P
{
Mn,0 ∈ {F (un), F (un + 1)}

}
= 1 ,

where F (k) =
∑
j>k pj .
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4 Applications

4.1 Estimating the regular variation index

When working in the regular variation setting, the most basic estimation task is to estimate the
regular variation index α. We already mentioned in Section 1 the fact that, when ~ν ∈ rvα, α ∈ (0, 1), the
ratio Kn,1/Kn provides a consistent estimate of α. This is actually only one among a family of estimators
of α that one may construct. The next result shows this, and is a direct consequence of Proposition 3.2.

Proposition 4.1. If ~ν ∈ rvα, α ∈ (0, 1], then for all r ≥ 1

rKn,r

Kn,r

is a strongly consistent estimator of α.

Thus, writing kn = max {r,Kn,r > 0}, at time n, we can have up to kn non-trivial estimators of
α. One would expect these estimators to offer various bias-variance trade-offs, and one could ostensibly
select an “optimal” r via model selection.

4.2 Estimating the missing mass

The Good-Turing estimation problem [82] is that of estimatingMn,r from the observation (X1, X2, · · · , Xn).
For large scores r, designing estimators for Mn,r is straightforward: we assume that the empirical dis-
tribution mimics the sampling distribution, and that the empirical probabilities rKn,r

n are likely to be
good estimators. The question is more delicate for rare events. In particular, for r = 0, it may be a bad
idea to assume that there is no missing mass Mn,0 = 0, that is to assign a zero probability to the set
of symbols that do not appear in the sample. Various “smoothing” techniques have thus developed, in
order to adjust the maximum likelihood estimator and obtain more accurate probabilities.

In particular, Good-Turing estimators attempt to estimate (Mn,r)r from (Kn,r)r for all r. They are
defined as

Gn,r = (r + 1)Kn,r+1

n
·

The rationale for this choice comes from the following observations.

EGn,0 = E [Kn,1]
n

= EMn−1,0 = EMn,0 + EMn,1

n
, (4.1)

and
EGn,r = (r + 1)EKn,r+1

n
= EMn−1,r . (4.2)

In the Poisson setting, there is no bias: EGr(t) = (r + 1)EKr+1(t)
t = EMr(t).

Here, we primarily focus on the estimation of the missing masses Mn,0 and M0(n), though most of
the methodology extends also to r > 0, with the appropriate concentration results. From (4.1) and
(4.2), Good-Turing estimators look like slightly biased estimators of the relevant masses. In particular,
the bias EGn,0 − EMn,0 is always positive but smaller than 1/n. It is however far from obvious to
determine scenarios where these estimators are consistent and where meaningful confidence regions can
be constructed.

When trying to estimate the missing mass Mn,0 or EMn,0, consistency needs to be redefined since the
estimand is not a fixed parameter of interest but a random quantity whose expectation further depends on
n. Additive consistency, that is bounds on M̂n,0−Mn,0 is not a satisfactory notion, because, as Mn,0 tends
to 0, the trivial constant estimator 0 would be universally asymptotically consistent. Relative consistency,
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that is control on (M̂n,0 −Mn,0)/Mn,0 looks like a much more reasonable notion. It is however much
harder to establish.

In order to establish relative consistency of a missing mass estimator, we have to check that E[M̂n,0−
Mn,0] is not too large with respect to EMn,0, and that both M̂n,0 and Mn,0 are concentrated around
their mean values.

As shown in [127], the Good-Turing estimator of the missing mass is not universally consistent in this
sense. This occurs principally in very light tails, such as those described in Section 3.4.1.

Proposition 4.2. [127] When the sampling distribution is geometric with small enough q ∈ (0, 1), there
exists η > 0, and a subsequence ni such that for i large enough, Gni,0/Mni,0 = 0 with probability no less
than η.

On the other hand, the concentration result of Corollary 3.1 gives a law of large numbers for Mn,0

(by a direct application of the Borel-Cantelli lemma), which in turn implies the strong multiplicative
consistency of the Good-Turing estimate.

Corollary 4.1. We have the following two regimes of consistency for the Good-Turing estimator of the
missing mass.

(i) If the counting function ~ν is such that EKn,2/EKn,1 remains bounded and EKn,1 → +∞ (in par-
ticular, when ~ν is regularly varying with index α ∈ (0, 1] or α = 0 and ~ν ∈ Πa with a→∞),

Mn,0

EMn,0

P−→ 1 ,

and the Good-Turing estimator of Mn,0 defined by Gn,0 = Kn,1/n, is multiplicatively consistent in
probability:

Gn,0
Mn,0

P−→ 1 .

(ii) If furthermore EKn,2/EKn,1 remains bounded and if, for all c > 0,∑∞
n=0 exp(−cEKn,1) <∞ (in particular, when ~ν is regularly varying with index α ∈ (0, 1]), then

these two convergences occur almost surely.

Remark 4.1. One needs to make assumptions on the sampling distribution to guarantee the consistency
of the Good-Turing estimator. In fact, there is no hope to find a universally consistent estimator of the
missing mass without any such restrictions, as shown recently by Mossel and Ohannessian [123].

Consistency is a desirable property, but the concentration inequalities provide us with more power,
in particular in terms of giving confidence intervals that are asymptotically tight. For brevity, we focus
here on the Poisson setting to derive concentration inequalities which in turn yield confidence intervals.
A similar, but somewhat more tedious, methodology yields confidence intervals in the binomial setting
as well.

4.2.1 Concentration inequalities for G0(n)−M0(n)

The results of this section are given in the Poisson setting for simplicity. Let us note however that
the same type of result hold in the binomial setting. In the Poisson setting, the analysis of the Good-
Turing estimator is illuminating. As noted earlier, the first pleasant observation is that the Good-Turing
estimator is an unbiased estimator of the missing mass. Second, the variance of G0(n)−M0(n) is simply
related to occupancy counts:

Var(G0(n)−M0(n)) = 1
n2 (EK1(n) + 2EK2(n)) . (4.3)
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Third, simple yet often tight concentration inequalities can be obtained for G0(n)−M0(n).

Proposition 4.3. The random variable G0(n) −M0(n) is sub-gamma on the right tail with variance
factor Var(G0(n) −M0(n)) and scale factor 1/n, and sub-gamma on the left tail with variance factor
3EK(n)/n2 and scale factor 1/n.

For all λ ≥ 0,

(i) logE eλ(G0(n)−M0(n)) ≤ Var(G0(n)−M0(n))n2φ
(
λ
n

)
,

(ii) logE eλ(M0(n)−G0(n)) ≤ 3EK(n)
2n2

λ2

1−λ/n .

We are now in a position to build confidence intervals for the missing mass.

Proposition 4.4. With probability larger than 1− 4δ, the following hold

M0(n) ≤ G0(n) + 1
n

(√
6K(n) log 1

δ
+ 5 log 1

δ

)
.

M0(n) ≥ G0(n)− 1
n

(√
2(K1(n) + 2K2(n)) log 1

δ
+ 4 log 1

δ

)
.

To see that these confidence bounds are asymptotically tight, consider the following central limit
theorem. A similar results can be paralleled in the binomial setting.

Proposition 4.5. If the counting function ~ν is regularly varying with index α ∈ (0, 1], the following
central limit theorem holds for the ratio G0(n)/M0(n):

EK1(n)√
EK1(n) + 2EK2(n)

(
G0(n)
M0(n) − 1

)
 N (0, 1) .

4.2.2 Some simulations

We are interested in the behaviour of the ratio Gn,0
Mn,0

for various sampling distributions. For each
sample size, we collect 1e4 values.

We first consider the Poisson distribution with mean 1, illustrating a phenomenon of concentration
on very few points, and the failure of the Good-Turing estimator to estimate the missing mass.
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The case of the Geometric distribution with parameter 1/2 illustrates the irregular behaviour of the
ratio Gn,0/Mn,0 in the lower part of Gumbel’s domain. Each violin plot represents a density estimate for
Gn,0/Mn,0.
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In contrast, the case of the discretized Pareto distribution with scale, location and shape parameter
equal to 1 confirms the performances of the Good-Turing estimator on heavy-tailed distribution.
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4.3 Estimating the number of species

Fisher’s number of species problem Fisher et al. [73] consists of estimating K(1+τ)n −Kn for τ > 0,
the number of distinct new species one would observe if the data collection runs for an additional fraction
τ of time. This was posed primarily within the Poisson model in the original paper [73] and later by
[67], but the same question may also be asked in the binomial model. The following estimates come from
straightforward computations on the asymptotics given in Theorems 3.2, 3.3 and 3.4.

Proposition 4.6. If the counting function ~ν is regularly varying with index α ∈ (0, 1], letting α̂ be any
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of the estimates rKn,r/Kn,r of α from Proposition 4.1, then any of the following quantities

(τ α̂ − 1)Kn ,
τ α̂ − 1
α̂

Kn,1 , and
(

r∏
k=2

k

k − 1− α̂

)
τ α̂ − 1
α̂

Kn,r , r ≥ 2 ,

is a strongly consistent estimate of Kτn −Kn, the number of newly discovered species when the sample
size is multiplied by τ .

If the counting function ~ν is in Π`0 , with `0(n)→ +∞, then, for each r ≥ 1,

log(τ)rKn,r

is an estimate of Kτn −Kn, consistent in probability.

5 Discussion

To conclude this section, we review our results in a larger context, and propose some connections,
extensions, and open problems.

5.1 The cost of Poissonization and negative correlation

Resorting to Poissonization or negative correlation may have a price. It may lead to variance overes-
timates. [80, Lemma 1] asserts that for some constant c

|Var(K(n))−Var(Kn)| ≤ c

n
max

(
1,EK1(n)2)

This bound conveys a mixed message. As EK1(n)/n tends to 0, it asserts that

|Var(K(n))−Var(Kn)| /EK1(n)

tends to 0. But there exist scenarios where EK1(n)2/n tends to infinity. It is shown in [80] that
EK1(n)2/(nVar(K(n))) tends to 0, so that, as soon as nVar(K(n)) tends to infinity (which might not
always be the case), the two variances Var(Kn) and Var(K(n)) are asymptotically equivalent.

It would be interesting to find necessary and sufficient conditions under which there is equivalence.
Though these aren’t generally known, it is instructive to compare Var(K(n)), Var(Kn) and Varind(Kn)
the variance upper bound obtained from negative correlation by bounding their differences. For instance,
one can show that for any sampling distribution we have:

EK2(2n)
n

≤ Var(K(n))−Varind(Kn) ≤ 2EK2(n)
n

,

and
0 ≤ Varind(Kn)−Var(Kn) ≤ (EKn,1)2

n
− EK2n,2

2n− 1 .

These bounds are insightful but, without any further assumptions on the sampling distribution, they are
not sufficient to prove asymptotic equivalence.

5.2 Extensions of regular variation

The regular variation hypothesis is an elegant framework, allowing one to derive, thanks to Karamata
and Tauberian Theorems, simple and intelligible equivalents for various moments. As we have seen in
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Remark 3.1, regular variation comes very close to being a necessary condition for exponential concentra-
tion. It may however seem too stringent. Without getting too specific, let us mention that other less
demanding hypotheses also yield the asymptotic relative orders that work in favor of the concentration
of the missing mass. For instance, referring back to Remark 3.1, one could instead ask for:

0 < lim inf
t→∞

Φ2(t)
Φ2(t) ≤ lim sup

t→∞

Φ2(t)
Φ2(t) <∞ .

Recalling that Φ′2(t) = 2Φ2(t)
t , and applying Corollary 2.6.2. of [30], one obtains that Φ2 is in the class

OR of O-regularly varying functions and Φ2 is in the class ER of extended regularly varying functions,
that is, for all λ ≥ 1

0 < lim inf
t→∞

Φ2(λt)
Φ2(t) ≤ lim sup

t→∞

Φ2(λt)
Φ2(t) <∞ ,

and
λd ≤ lim inf

t→∞

Φ2(λt)
Φ2(t) ≤ lim sup

t→∞

Φ2(λt)
Φ2(t) ≤ λ

c ,

for some constants c and d. Observe that this result, which is the equivalent of Karamata’s Theorem,
differs from the regular variation setting, in the sense that the control on the derivative Φ2 is looser
than the one on Φ2, whereas, in the Karamata Theorem, both the function and its derivative inherit the
regular variation property.

We can in turn show that Φ(t) = EK(t) is in the class OR and, by Theorem 2.10.2 of [30], this is
equivalent to ~ν(1/·) ∈ OR, as Φ is the Laplace-Stieltjes transform of ~ν.

5.3 Random measures

As noted by [80], the asymptotics for the moments of the occupancy counts in the regular variation
setting is still valid when the frequencies (pj)j≥1 are random, in which case the measure ν is defined by

E

 ∞∑
j=1

f(pj)

 =
∫ 1

0
f(x)ν(dx) ,

for all functions f ≥ 0. We can also define the measure ν1 by

E

 ∞∑
j=1

pjf(pj)

 =
∫ 1

0
f(x)ν1(dx) ,

for all functions f ≥ 0. This measure corresponds to the distribution of the frequency of the first
discovered symbol.

For instance, when (pj)j≥1 are Poisson-Dirichlet(α,0) with 0 < α < 1, the measure ν1(dx) is the
size-biased distribution of PD(α, 0), that is Beta B(1− α, α) [see 138]. Thus we have:

ν1[0, x] = 1
B(1− α, α)

∫ x

0
t−α(1− t)α−1dt

∼
x→0

x1−α

(1− α)B(1− α, α)

and, by [Proposition 13 80], this is equivalent to

~ν(x) ∼
x→0

1
αB(1− α, α)x

−α .
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Thus, denoting by N(x) the random number of frequencies pj which are larger than x, the expectation
~ν(x) = EN(x) is regularly varying. One can also show that the mass-partition mechanism of the distri-
bution PD(α, 0) almost surely generates N(x) to be regularly varying. To see this, refer to [Proposition
10 138] or to [Proposition 2.6 29] which assert that the limit

L := lim
n→∞

npαn

exists almost surely. This is equivalent to

N(x) ∼
x→0

x−αL, almost surely.

The PD(α, 0) distribution can be generated through a Poisson process with intensity measure ν([x,∞]) =
cx−α. Without entering into further details, let us mention that similar almost sure results hold even
when the intensity measure ν is not a strict power, but satisfies the property

ν([x,∞]) ∼
x→0

x−α`(x) ,

with ` slowly varying, [Section 6 81]. Working with a regular variation hypothesis thus gives us more
flexibility than assuming specific Bayesian priors.

6 Proofs

6.1 Fundamental techniques

6.1.1 Efron-Stein-Steele inequalities

Our variance bounds mostly follow from the Efron-Stein-Steele Inequality [66], which states that when
a random variable is expressed as a function of many independent random variables, its variance can be
controlled by the sum of the local fluctuations.

Theorem 6.1. Let X be some set, (X1, X2, · · · , Xn) be independent random variables taking values in
X , f : Xn → R be a measurable function of n variables, and Z = f(X1, X2, · · · , Xn).

For all i ∈ {1, · · · , n}, let X(i) = (X1, · · · , Xi−1, Xi+1, · · · , Xn) and E(i)Z = E[Z|X(i)]. Then, letting
v =

∑n
i=1 E[(Z − E(i)Z)2],

Var[Z] ≤ v .

If X ′1, · · · , X ′n are independent copies of X1, · · · , Xn, then letting
Z ′i = f(X1, · · · , Xi−1, X

′
i, Xi+1, · · · , Xn),

v =
n∑
i=1

E[(Z − Z ′i)2
+] ≤

n∑
i=1

E[(Z − Zi)2] ,

where the random variables Zi are arbitrary X(i)-measurable and square-integrable random variables.

6.1.2 Negative association

The random variables Kn, Kn,r, and Mn,r are sums or weighted sums of Bernoulli random variables.
These summands depend on the scores (Xn,j)j≥1 and therefore are not independent. Transforming the
fixed-n binomial setting into a continuous time Poisson setting is one way to circumvent this problem.
This is the Poissonization method. In this setting, the score variables (Xj(n))j≥1 are independent Poisson
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variables with respective means npj . Results valid for the Poisson setting can then be transferred to
the fixed-n setting, up to approximation costs. For instance, [80] (Lemma 1) provide bounds on the
discrepancy between expectations and variances in the two settings. (See also our discussion in Section
5.1).

Another approach to deal with the dependence is to invoke the notion of negative association, which
provides a systematic comparison between moments of certain monotonic functions of the occupancy
scores. In our present setting, this will primarily be useful for bounding the logarithmic moment gen-
erating function, which is an expectation of products, by products of expectations, thus recovering the
structure of independence. This has already been used to derive exponential concentration for occupancy
counts [see 64, 122, 127, 148]. It is also useful for bounding variances. We use this notion throughout the
proofs, and therefore present it here formally.

Definition 3 (negative association). Real-valued random variables Z1, . . . , ZK are said to be nega-
tively associated if, for any two disjoint subsets A and B of {1, . . . ,K}, and any two real-valued functions
f : R|A| 7→ R and g : R|B| 7→ R that are both either coordinate-wise non-increasing or coordinate-wise
non-decreasing, we have:

E [f(ZA) · g(ZB)] ≤ E [f(ZA)] · E [g(ZB)] .

In particular, as far as concentration properties are concerned, sums of negatively associated variables
can only do better than sums of independent variables.

Theorem 6.2. [64] For each n ∈ N, the occupancy scores (Xn,j)j≥1 are negatively associated.

As monotonic functions of negatively associated variables are also negatively associated, the vari-
ables (1{Xn,j>0})j≥1 (respectively (1{Xn,j=0})j≥1) are negatively associated as increasing (respectively
decreasing) functions of (Xn,j)j≥1. This is of pivotal importance for our proofs of concentration results
for Kn and Mn,0. For r ≥ 1, the variables (1{Xn,j=r})j≥1 appearing in Kn,r are not negatively associated.
However, following [127], one way to deal with this problem is to observe that

Kn,r = Kn,r −Kn,r+1 ,

recalling that Kn,r =
∑∞
j=1 1{Xn,j≥r} is the number of urns that contain at least r balls and that the

Bernoulli variables appearing in Kn,r are negatively associated.

6.1.3 Regular variation theorems

We state some useful properties of regularly varying functions, which are used in this chapter, as well
as in the next one [See 30, 55, for proofs and refinements]..

Theorem 6.3. (Karamata’s Theorem) Let f ∈ rvα and assume that there exists t0 > 0 such that f
is positive and locally bounded on [t0,+∞[.

(i) If α ≥ −1, then ∫ t

t0

f(s) ds ∼
t→+∞

tf(t)
α+ 1 .

(ii) If α < −1, or α = 1 and
∫∞

0 f(s) ds <∞, then∫ +∞

t

f(s) ds ∼
t→+∞

tf(t)
−α− 1 .

Theorem 6.4. (Potter-Drees inequalities.)
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(i) If f ∈ rvα, then for all δ > 0, there exists t0 = t0(α), such that for all t, x : min(t, tx) > t0,

(1− δ)xα min
(
xδ, x−δ

)
≤ f(tx)

f(t) ≤ (1 + δ)xα max
(
xδ, x−δ

)
(ii) If ` ∈ Π`0 , then for all δ1, δ2, there exists t0 such that for all t ≥ t0, for all x ≥ 1,

(1− δ2)1− xδ1

δ1
− δ2 <

`(tx)− `(t)
`0(t) < (1 + δ2)x

δ1 − 1
δ1

+ δ2 .

6.2 Occupancy counts

6.2.1 Variance bounds for occupancy counts

Proof of Proposition 2.1. Note that in the Poisson setting,

dEK(t)
dt = EK1(t)

t
= EM0(t) .

This entails

Var(K(n)) =
∞∑
j=1

e−npj (1− e−npj )

= EK(2n)− EK(n)

=
∫ 2n

n

EM0(t) ds .

Now, as EM0(t) is non-increasing,

EK1(2n)
2 = nEM0(2n) ≤ Var(K(n)) ≤ nEM0(n) = EK1(n) .

Moving on to the binomial setting, let Ki
n denote the number of occupied urns when the ith ball is

replaced by an independent copy. Then

Var(Kn) ≤ E

[
n∑
i=1

(Kn −Ki
n)2

+

]
,

where (Kn − Ki
n)+ denotes the positive part. Now, Kn − Ki

n is positive if and only if ball i is moved
from a singleton into in a non-empty urn. Thus Var(Kn) ≤ E [Kn,1(1−Mn,0)].

Proof of Proposition 2.2. The bound rEKn,r follows from the Efron-Stein inequality: denoting by K
(i)
n,r

the number of cells with occupancy score larger than r when ball i is removed, then

Kn,r −K(i)
n,r =

1 if ball i is in a r-ton

0 otherwise.

And thus, we get
∑n
i=1(Kn,r −K(i)

n,r)2 = rKn,r.
The second bound follows from the negative association of the variables (1{Xn,j≥r})j (negative corre-
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lation is actually sufficient):

Var

 ∞∑
j=1

1{Xn,j≥r}

 ≤ ∞∑
j=1

Var(1{Xn,j≥r}) ≤ EKn,r .

6.2.2 Concentration inequalities for occupancy counts

Proof of Proposition 2.4. Let Xn,j denote the occupancy score of cell j, j ∈ N, then

Kn,r =
∞∑
j=1

I{Xn,j≥r} .

As noted in Section 6.1.2, Kn,r is a sum of negatively associated Bernoulli random variables. Moreover,
the Efron-Stein inequality implies that for each j ∈ N,

Var(I{Xn,j≥r}) ≤ rEI{Xn,j=r} .

Thus we have

logE eλ(Kn,r−EKn,r) ≤
∞∑
j=1

logE eλ(I{Xn,j≥r}−EI{Xn,j≥r})

≤
∞∑
j=1

Var(I{Xn,j≥r})φ(λ)

≤ φ(λ)
∞∑
j=1

rE1{Xn,j=r}

= φ(λ)rEKn,r ,

where the first inequality comes from negative association, the second inequality is Bennett’s inequality
for Bernoulli random variables, and the last inequality comes from the Efron-Stein inequality. The other
bound comes from the fact that Var(I{Xn,j≥r}) ≤ EI{Xn,j≥r}.

Proof of Proposition 2.5. As Kn,r = Kn,r −Kn,r+1,

{Kn,r ≥ EKn,r + x}

⊆
{
Kn,r ≥ EKn,r + x

2

}
∪
{
Kn,r+1 ≤ EKn,r+1 −

x

2

}
.

By Proposition 2.4, Bernstein inequalities hold for both Kn,r and Kn,r+1, with variance proxies ErKn,r

(or EKn,r) and (r + 1)Kn,r+1 (or EKn,r+1 ≤ EKn,r) respectively. Hence,

P {Kn,r ≥ EKn,r + x}

≤ exp
(
− x2/4

2(rEKn,r + x/6)

)
+ exp

(
− x2/4

2((r + 1)EKn,r+1)

)
≤ 2 exp

(
− x2/4

2(max(rEKn,r, (r + 1)Kn,r+1) + x/6)

)
.

The same reasoning works for the alternative variance proxies and for the left tails.

Proof of Theorem 2.1. For each r ∈ J , Kr(n) satisfies a Bennett and thus a Bernstein Inequality with
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variance proxy Var(Kr(n)) = σ2
r and scale proxy 1. Hence, for all λ ∈ R,

logE e
λ
σr

(Kr(n)−EKr(n)) ≤ λ2

2(1− λ
σr

)
.

Then by Corollary 2.6 in [40],

EZ = Emax
r∈J

Kr(n)− EKr(n)
σr

≤
√

2 log |J |+ log |J |
minr∈J σr

.

As summands are not identically distributed, the Bousquet-Rio bound on the variance of suprema of
bounded centered empirical processes is not applicable, but the variance bound can be obtained as a
corollary of the main result from [105] (Theorems 12.9 in [40]) The proof of the two tail bounds consist
in carefully invoking the Klein-Rio and Samson inequalities (Theorems 12.9 and 12.11 in [40]).

6.3 Missing mass

6.3.1 Variance bounds for the missing mass

Proof of Proposition 2.6. In the Poisson setting,

Var(M0(n)) =
∞∑
j=1

p2
j e−npj

(
1− e−npj

)
≤
∞∑
j=1

p2
j e−npj = 2

n2EK2(n) .

In the binomial setting, by negative correlation,

Var(Mn,0) ≤
∞∑
j=1

p2
j (1− (1− pj)n) (1− pj)n ≤

∞∑
j=1

p2
j e−npj = 2

n2EK2(n) .

6.3.2 Concentration inequalities for the missing mass

Proof of Proposition 2.7. Letting Yj = 1{Xn,j=0}, we have, for all λ ∈ R,

logE
[

eλ(Mn,0−EMn,0)
]

= logE
[

eλ
∑∞

j=1
pj(Yj−EYj)

]
≤

∞∑
j=1

logE
[

eλpj(Yj−E[Yj ])
]

≤
∞∑
j=1

Var(Yj)φ(λpj) ,

where the first inequality comes from negative association, and the second is Bennett’s inequality for
Bernoulli random variables.

Noting that limλ→0− φ(λ)/λ2 = limλ→0+ φ(λ)/λ2 = 1/2, the function λ 7→ φ(λ)/λ2 has a continuous
increasing extension on R. Hence, for λ ≤ 0, we have φ(λ) ≤ λ2/2, and

logE
[

eλ(Mn,0−EMn,0)
]
≤

∞∑
j=1

p2
jVar(Yj)

λ2

2 .

Recall that
∑∞
j=1 p

2
jVar(Yj) ≤ 2EK2(n)/n2 (Proposition 2.6).
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Proof of Proposition 2.8. From the beginning of the proof of Proposition 2.7, that is, thanks to negative
association and to the fact that each Bernoulli random variable satisfies a Bennett inequality,

logE
[

eλ(Mn,0−EMn,0)
]
≤

∞∑
j=1

e−npjφ(λpj) .

Now, using the power series expansion of φ,

∞∑
j=1

e−npjφ(λpj) =
∞∑
j=1

e−npj
∞∑
r=2

(λpj)r

r!

=
∞∑
r=2

(
λ

n

)r ∞∑
j=1

e−npj (npj)r

r! .

We recognize that for each r ≥ 2,
∑∞
j=1 e−npj (npj)r

r! = EKr(n), so that

logE
[

eλ(Mn,0−EMn,0)
]
≤

∞∑
r=2

(
λ

n

)r
EKr(n) .

Proof of Theorem 2.2. Using Proposition 2.8 and noticing that for each r ≥ 2, EKr(n) ≤ EK2(n), we
immediately obtain that

logE
[

eλ(Mn,0−EMn,0)
]
≤ EK2(n)

∞∑
r=2

(
λ

n

)r
= λ2EK2(n)/n2

1− λ/n ,

which concludes the proof.

6.4 Regular variation

Proof of Proposition 3.2. By monotonicity of Kn,r, we have the following strong law for any sampling
distribution

Kn,r =
∞∑
s=r

Kn,s ∼+∞

∞∑
s=r

EKs(n) a.s. ,

[see 80, the discussion after Proposition 2]. Recall that Xj(n) ∼ P(npj) and that, if Y ∼ P(λ), then
P [Y ≤ k] = Γ(k+1,λ)

k! , where Γ(z, x) =
∫ +∞
x

e−ttz−1 dt is the incomplete Gamma function. Hence

EKr(n) =
∞∑
j=1

P [Xj(n) ≥ r]

=
∞∑
j=1

1
(r − 1)!

∫ npj

0
e−ttr−1 dt

= 1
(r − 1)!

∫ 1

0

∫ nx

0
e−ttr−1 dt ν( dx) .
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By Fubini’s Theorem, we have

EKr(n) = 1
(r − 1)!

∫ +∞

0
e−zzr−1~ν(z/n) dz .

Finally, by the Tauberian Theorem, we obtain,

EKr(n) ∼
+∞

~ν(1/n)
(r − 1)!Γ(r − α) .

In particular, when 0 < α < 1,
Kn,r ∼+∞

rKn,r

α
a.s. .

Proof of Theorem 3.5. Let us recall Proposition 2.8:

logE
[
eλ(Mn,0−EMn,0)

]
≤
∞∑
r=2

(
λ

n

)r
EKr(n).

Now, bounding each EKr(n) by EK2(n) is not sufficient to get the right order for the variance: EK2(n)
is of order `(n) whereas VarMn,0 is of order `0(n)/n2.

We explore more carefully the structure of EKr(n) and show that these quantities are uniformly (in
r) bounded by a function of order `0(n) for large enough n, that is, that there exists n∗ ∈ N and C ∈ R+

such that for all n ≥ n∗, for all r ≥ 1, EKr(n) ≤ C`0(n).
Before going into the proof, we observe that for r ≥ n/`0(n), the result is true. Indeed, from the

identity
∑∞
r=1 rEKr(n) = n, we deduce that rEKr(n) ≤ n, so that for r ≥ n/`0(n), EKr(n) ≤ `0(n).

Thus we assume that r ≤ n/`0(n).
First, we easily deal with the contribution to EKr(n) of the symbols with probability less than 1/n.

Indeed

Ir1 :=
∫ 1/n

0
e−nx (nx)r

r! ν(dx) ≤
∫ 1/n

0
e−nx (nx)2

2! ν(dx) ≤ EK2(n) .

As EK2(n) ∼ `0(n)/2, for all δ0, there exists n0 such that for all n ≥ n0, for all r ≥ 1, Ir1 ≤ 1+δ0
2 `0(n).

For the the contribution of the symbols with probability larger than 1/n, integration by part and
change of variable yield:

Ir2 :=
∫ 1

1/n
e−nx (nx)r

r! ν(dx)

=
[

e−nx (nx)r

r! (−~ν(x))
]1

1/n
+
∫ 1

1/n
e−nxn

r

r! (rxr−1 − nxr)~ν(x)dx

= ~ν(1/n)e−1

r! +
∫ ∞

1
e−z

(
zr−1

(r − 1)! −
zr

r!

)
~ν(z/n)dz .

As
∫∞

1 e−z
(
zr−1

(r−1)! −
zr

r!

)
dz = −P[P(1) = r] = −e−1/r!, we can rearrange the previous expression:

Ir2 = `0(n)
∫ ∞

1
e−z

(
zr

r! −
zr−1

(r − 1)!

)
~ν(1/n)− ~ν(z/n)

`0(n) dz .

Notice that when z ∈ [1, r], the integrand is negative, so we simply ignore this part of the integral
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and restrict ourselves to

Ir3 :=
∫ ∞
r

e−z
(
zr

r! −
zr−1

(r − 1)!

)
~ν(1/n)− ~ν(z/n)

`0(n) dz ,

which we try to bound by a constant term for n greater than some integer that does not depend on r.
The main ingredient of our proof is the next version of the Potter-Drees Inequality (see Theorem 6.4

in Section 6.1.3 and [55, point 4 of Corollary B.2.15]): for ` ∈ Π`0 , for arbitrary δ1, δ2, there exists t0
such that for all t ≥ t0, and for all x ≤ 1 with tx ≥ t0,

(1− δ2)1− x−δ1

δ1
− δ2 <

`(t)− `(tx)
`0(t) < (1 + δ2)x

−δ1 − 1
δ1

+ δ2 .

Thus, for arbitrary δ1, δ2, there exists n1 such that, for all n ≥ n1, for all z ∈ [1, n/n1],

~ν(1/n)− ~ν(z/n)
`0(n) ≤ (1 + δ2)z

δ1 − 1
δ1

+ δ2 .

As r ≤ n/`0(n), taking, if necessary, n large enough so that `0(n) ≥ n1, we have r ≤ n/n1 and

Ir3 ≤
∫ n/n1

r

e−z
(
zr

r! −
zr−1

(r − 1)!

)(
(1 + δ2)z

δ1 − 1
δ1

+ δ2

)
dz

+
∫ ∞
n/n1

e−z
(
zr

r! −
zr−1

(r − 1)!

)
~ν(1/n)− ~ν(z/n)

`0(n) dz

=: Ir4 + Ir5 ,

with

Ir4 ≤ δ2 + 1 + δ2
δ1

∫ ∞
r

e−z
(
zr+δ1

r! − zr

r! + zr−1

(r − 1)! −
zr−1+δ1

(r − 1)!

)
dz

≤ δ2 + 1 + δ2
δ1

∫ ∞
r

e−z
(
zr+δ1

r! − zr−1+δ1

(r − 1)!

)
dz

= δ2 + 1 + δ2
δ1

(
Γ(r + 1 + δ1, r)

Γ(r + 1) − Γ(r + δ1, r)
Γ(r)

)
,

where Γ(a, x) =
∫∞
x

e−tta−1dt is the incomplete Gamma function. Using the fact that

Γ(a, x) = (a− 1)Γ(a− 1, x) + xa−1 e−x ,

we have

Ir4 ≤ δ2 + 1 + δ2
δ1Γ(r + 1)

(
Γ(r + 1 + δ1, r)− (r + δ1)Γ(r + δ1, r) + δ1Γ(r + δ1, r)

)
= δ2 + 1 + δ2

δ1

(
rr+δ1 e−r

r! + δ1
Γ(r + δ1, r)

Γ(r + 1)

)
.

By Stirling’s inequality, for all r,

rr+δ1 e−r

r! ≤ rδ1(2πr)−1/2 .

Thus, taking δ1 = 1/4, the right-hand term is uniformly bounded by 1. And Γ(r+δ1,r)
Γ(r+1) is also bounded by
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1. Thus

Ir4 ≤ δ2 + 1 + δ2
δ1

(1 + δ1) ,

and

Ir5 ≤ ~ν(1/n)
`0(n)

∫ ∞
n/n1

e−z
(
zr

r! −
zr−1

(r − 1)!

)
dz

= ~ν(1/n)
`0(n) e−n/n1

(n/n1)r

r!

≤ ~ν(1/n)
`0(n) e−n/n1

(n/n1)bn/n1c

bn/n1c!
.

By Stirling’s inequality, this bound is smaller than ~ν(1/n)
`0(n) (2π(n/n1))−1/2, which tends to 0 as n → ∞.

Thus there exists n2 such that for all n ≥ n2, and all r ≤ n/n1, Ir5 ≤ δ2.
In the end, we get that for all δ0 ≥ 0, δ1 with 0 ≤ δ1 ≤ 1/4, and δ2 ≥ 0, there exists n∗ =

max(n0, n1, n2) such that for all n ≥ n∗, for all r ≥ 1,

EKr(n) ≤ `0(n)
(

1 + δ0
2 + δ2 + 1 + δ2

δ1
(1 + δ1) + δ2

)
.

Taking for instance δ1 = 1/4 and δ0 = δ2 = 1/15, we have that for large enough n and for all r ≥ 1,

EKr(n) ≤ 6`0(n) ,

and
logE

[
eλ(Mn,0−EMn,0)

]
≤ 12`0(n)

n2 · λ2

2(1− λ/n) .

Proof of Proposition 3.4. Under the condition of the Proposition 3.4, from [86], with probability tending
to 1, the sample is gap-free, hence the missing mass is F (max(X1, . . . , Xn)).

The condition of the Proposition implies the condition described in [10], i.e. limn→+∞
F (n+1)
F (n)

= 0, to
ensure the existence of a sequence of integers (un)n∈N such that

lim
n→∞

P {max(X1, . . . , Xn) ∈ {un, un + 1}} = 1 .

6.5 Applications

Proof of Corollary 4.1. Let us assume that EKn,1 → ∞. Using the fact that 0 ≤ EGn,0 − EMn,0 ≤
1/n, we notice that as soon as EKn,1 → ∞, EGn,0 ∼+∞ EMn,0. We also recall that, for any sampling
distribution,

|EK(n)− EKn| → 0 ,

and
|EKr(n)− EKn,r| → 0 ,
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[see Lemma 1 80]. Now by Chebyshev’s inequality,

P
[∣∣∣∣ Mn,0

EMn,0
− 1
∣∣∣∣ > ε

]
≤ Var(Mn,0)
ε2(EMn,0)2 ≤ 2EK2(n)

ε2n2(EMn,0)2

∼ 2(EKn,2 + o(1))
ε2(EKn,1)2 .

On the other hand,

P
[∣∣∣∣ Kn,1

EKn,1
− 1
∣∣∣∣ > ε

]
≤ Var(Kn,1)

ε2(EKn,1)2 ≤
EKn,1 + 2EKn,2

ε2(EKn,1)2 ,

showing that if, furthermore, EKn,2/EKn,1 remains bounded, the ratios Mn,0/EMn,0, Gn,0/EGn,0 and
thus Mn,0/Gn,0 converge to 1 in probability. To get almost sure convergence, we use Theorem 2.2 to get
that when EKn,1 →∞,

P
[∣∣∣∣ Mn,0

EMn,0
− 1
∣∣∣∣ > ε

]
≤ 2 exp

(
− ε2(EMn,0)2

2(2EK2(n)/n2 + EMn,0/n)

)
= 2 exp

(
− ε2(EKn,1 + o(EKn,1))2

2(2EKn,2 + EKn,1 + o(EKn,1))

)
.

If EKn,2/EKn,1 remains bounded, this becomes smaller than c1 exp
(
−c2ε2EKn,1

)
. Hence, if exp(−cEKn,1)

is summable for all c > 0, we can apply the Borel-Cantelli lemma and obtain the almost sure convergence
of Mn,0/EMn,0 to 1. Moreover, by Proposition 2.5,

P
[∣∣∣∣ Kn,1

EKn,1
− 1
∣∣∣∣ > ε

]
≤ 4 exp

(
− ε2(EKn,1)2

2(4 max(EKn,1, 2EKn,2) + 2/3)

)
,

which shows that under these assumptions Kn,1/EKn,1 also tends to 1 almost surely.

Proof of Proposition 4.3. The random variable G0(n) −M0(n) is a sum of independent, centered and
bounded random variables, namely

G0(n)−M0(n) = 1
n

∞∑
j=1

(
1Xj(n)=1 − npj1Xj(n)=0

)
.

Bound (i) follows immediately from the observation that each 1Xj(n)=1−npj1Xj(n)=0 satisfies a Bennett
inequality: for all λ ≥ 0,

logE eλ(G0(n)−M0(n)) ≤
∞∑
j=1

Var(1Xj(n)=1 − npj1Xj(n)=0)φ
(
λ

n

)

= Var(G0(n)−M0(n))n2φ

(
λ

n

)
.

55



Bound (ii) follows from the observation that each 1Xj(n)=0− 1
tpj

1Xj(n)=1 satisfies a Bennett inequality,

logE eλ(M0(n)−G0(n)) ≤
∞∑
j=1

Var
(
1Xj(n)=0 −

1
npj

1Xj(n)=1

)
φ (λpj)

=
∞∑
j=1

(
1 + 1

npj

)
e−npjφ(λpj)

=
∑
r≥2

(
λ

n

)r ∞∑
j=1

(
1 + 1

npj

)
e−npj (npj)r

r!

=
∑
r≥2

(
λ

n

)r (
EKr(n) + 1

r
EKr−1(n)

)

≤
∑
r≥2

(
λ

n

)r 3EK(n)
2 ,

which concludes the proof.

Proof of Proposition 4.4. With probability greater than 1− 2δ, by Proposition 4.3,

G0(n)−M0(n) ≤ 1
n

√
2(EK1(n) + 2EK2(n)) log 1

δ
+

log 1
δ

3n

and

G0(n)−M0(n)) ≥ − 1
n

√
6EK(n) log 1

δ
−

log 1
δ

n
.

We may now invoke concentration inequalities for K1(n) + 2K2(n) and K(n). Indeed, with probability

greater than 1− δ, K(n) ≥ EK(n)−
√

2EK(n) log 1
δ which entails

√
EK(n) ≤

√
K(n) + log 1

δ

2 +
√

log 1
δ

2 .

We have 2K2(n) + K1(n) ≥ 2EK2(n) + EK1(n) −
√

4(2EK2(n) + EK1(n)) log 1
δ with probability

greater than 1− δ, which entails

√
2EK2(n) + EK1(n) ≤

√
(2K2(n) +K1(n)) + log 1

δ
+
√

log 1
δ
,

which concludes the proof.

Proof of Proposition 4.5. The covariance matrix Cov(n) of (G0(n),M0(n)) can be written in terms of the
expected occupancy counts as

Cov(n) = 1
n2

(
EK1(n) 0

0 2EK2(n)

)
− EK2(2n)

2n2

(
1 1
1 1

)
.

From [102], we have

Cov(n)−1/2

(
G0(n)− EG0(n)
M0(n)− EM0(n)

)
 N (0, I2) ,

where I2 is the identity matrix, which can be rewritten as

Σ(n)−1/2

(
G0(n)
EG0(n) − 1
MO(n)
EM0(n) − 1

)
 N (0, I2) ,

with Σ(n) = (EG0(n))−2Cov(n).

56



The delta method applied to the function (x1, x2) 7→ x1/x2 yields

(
(1 − 1) Σ(n)

(
1
−1

))−1/2(
G0(n)
M0(n) − 1

)
 N (0, 1) ,

and (
(1 − 1) Σ(n)

(
1
−1

))−1/2

= EK1(n)√
EK1(n) + 2EK2(n)

,

which concludes the proof.

Remark 6.1. The same central limit theorem holds in the binomial setting. The proof is essentially the
same, the only difference being that EGn,0 and EMn,0 are no longer equal. However, the bias becomes
negligible with respect to the fluctuations, that is, for vn either nα`(n) or n`1(n)

√
vn

(
EGn,0
EMn,0

− 1
)
→

n→∞
0 .
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Chapter 2

Adaptive coding on countable
alphabets

This chapter presents an ongoing work with Stéphane Boucheron and Elisabeth Gassiat.

1 Coding on infinite alphabets

The problem we address here is that of encoding a sequence X1:n = (X1, . . . , Xn), where each symbol
takes values in a countable alphabet X , and is generated by a source P = (pj)j≥1. The sequence X1:n is
assumed to be i.i.d.. One says that the source is stationary and memoryless.

A lossless binary source code (or code for short) is a one-to-one map from finite sequences of symbols
in the alphabet X (here X = N+) to finite sequences of binary {0, 1} symbols. Given a source P , the
task of source coding is to minimize the expected codelength:

E[`(X1:n)] =
∑

x1:n∈Xn
Pn(x1:n)`(x1:n).

By the source coding theorem, the Shannon entropy of the source is a lower bound to the expected
codelength of any lossless binary code (in this chapter, log denotes the base-2 logarithm). Therefore,
one way to measure the performance of any particular code is by its expected redundancy, defined as the
excess expected length E[`(X1:n)]−H(Pn). This is meaningful when H(P ) <∞, which we will assume
to be the case.

A code is uniquely decodable if any concatenation of codewords can be parsed into codewords in
a unique way. The Kraft-McMillan inequality asserts that for a uniquely decodable code over X ∗ =⋃
n≥0 Xn, the codelength map x1:n 7→ `(x1:n) satisfies∑

x1:n∈Xn
2−`(x1:n) ≤ 1,

and that conversely, given codelengths that satisfy such an inequality, there exists a corresponding
uniquely decodable code (even a prefix code, i.e. a code such that no codeword is the prefix of an
other codeword). The Kraft-McMillan inequality thus establishes a deep correspondence between codes
over Xn and probability distributions over Xn, and we may refer to an arbitrary probability distribution
Qn on Xn as a coding distribution [51].

When the source is P , the expected code length of a coding distribution Qn is thus given by
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EP [− logQn(X1:n)], and the expected redundancy is the Kullback-Leibler divergence (or relative en-
tropy) between Pn and Qn:

D(Pn, Qn) =
∑

x1:n∈Xn
Pn(x1:n) log P

n(x1:n)
Qn(x1:n) = EP

[
log P

n(X1:n)
Qn(X1:n)

]
.

The theoretically optimal coding probabilities are given by the source Pn itself. By using methods
such as the arithmetic coding, codes corresponding to Pn can be designed to have a redundancy that
remains bounded by 1 for all n. Arithmetic coding allows to encode a message sequentially (online) such
that, for all n ≥ 1, the length of the codeword of x1:n is less than d− logPn(x1:n)e. But this requires
that P is known.

1.1 Universal source coding

In universal coding, one attempts to construct a coding distribution Qn that achieves low redundancy
across an entire source class Cn, without knowing in advance which P ∈ C is actually generating the
sequence. Such a construction is called coding with respect to Cn.

To assess a code with respect to a source class, we study the maximal expected redundancy defined as

R(Qn, Cn) = sup
P∈C

D(Pn, Qn) .

which is essentially as high as the redundancy could grow if P is chosen adversarially at every n.
The infimum of R(Qn, Cn) over all Qn in M1 (Xn) (the set of probability distributions on Xn), is

called the minimax redundancy of Cn:

R(Cn) = inf
Qn∈M1(Xn)

R(Qn, Cn).

The minimax redundancy is a property of the source class C and represents the best a code could hope
for in terms of a guaranteed expected redundancy over the class C.

A code (Qn)n≥1 is said to be weakly universal over C if, for P ∈ C, 1
nD(Pn, Qn) → 0 as n → ∞.

One may require further strong universality with respect to C, by asking that the uniform convergence
1
nR(Qn, Cn)→ 0. A source class C is said to have a non-trivial minimax redundancy rate when R(Cn) =
o(n), that is, when there exists a strongly universal code over C.

A more stringent redundancy measure is the minimax regret (or worst-case redundancy) defined as

R̂(Cn) = inf
Qn∈M1(Xn)

sup
P∈C

sup
x1:n∈Xn

log P
n(x1:n)

Qn(x1:n) .

The class Cnk of stationary memoryless sources of length n over a finite alphabet Ak of size k has been
deeply investigated. Xie and Barron [156] showed that, for k fixed, as n→∞,

R̂(Cnk ) = k − 1
2 log n

2π + log
Γ
( 1

2
)k

Γ
(
k
2
) + ok(1) .

Moreover, the minimax redundancy satisfies R̂(Cnk ) ≥ R(Cnk ) ≥ R̂(Cnk )− log( e). The Krichevsky-Trofimov
coder [107] can be shown to be asymptotically maximin (even though not asymptotically minimax). As we
will use this particular coding procedure in the construction of our code, we recall its general principle here:
the justification of the kt coding distribution comes from Bayesian statistics. The minimax redundancy
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R(Cnk ) indeed has the following Bayesian representation.

R(Cnk ) = sup
π∈M1(Ck)

inf
Qn∈M1(An

k
)

∫
D(Pn, Qn) dπ(P )

= sup
π∈M1(Ck)

∫
D(Pn, Pnπ ) dπ(P ) ,

where, for π ∈ M1(Ck), Pπ is the mixture distribution given by Pπ(j) =
∫
P (j) dπ(P ). With this rep-

resentation, the problem comes down to finding an a priori distribution on Ck which would result, by
mixture, in a “good” coding distribution. The appropriate prior is called the Jeffrey’s prior and, in the case
of stationary memoryless sources over a finite alphabet of size k, is given by the Dirichlet law with param-
eter (1/2, . . . , 1/2). That is to say, we will choose as prior onM1(Ck) =

{
θ = (θ1, . . . , θk),

∑k
j=1 θj = 1

}
,

the distribution π given by

π(θ) =
Γ
(
k
2
)

Γ
( 1

2
)k k∏

j=1
θ
− 1

2
j .

The Krichevsky-Trofimov coding distribution then corresponds to

kt(X1:n) =
∫
θ

Pθ(X1:n) dπ(θ) .

With our usual notation Xn,j =
∑n
i=1 1{Xi=j}, we have

kt(X1:n) =
Γ
(
k
2
)∏k

j=1 Γ
(
Xn,j + 1

2
)

Γ
( 1

2
)k Γ

(
n+ k

2
) ,

and

kt(j
∣∣X1:n) =

Xn,j + 1
2

n+ k
2

.

When the alphabet size is fixed, the per-symbol redundancy thus decreases to 0 very fast (as logn/n),
and we have at our disposal coding procedures such as kt which achieve the minimax redundancy. In
numerous applications however, it might seem unrealistic to assume that the alphabet size is fixed, or
even much smaller than the message length. What can we say when the alphabet X is infinite countable?
In this domain, one first faces an impossibility result: there is no weakly universal code over the class of
stationary memoryless sources over an infinite alphabet, which is a consequence of Kieffer’s Theorem.

Theorem 1.1 ([104]). Let Λ be a class of sources over XN. For P ∈ Λ, we let Pn denote the marginal
distribution of P over the first n coordinates. The two following statements are equivalent

• There exists a coding distribution (Qn)n≥1 on Xn such that

∀P ∈ Λ, D(Pn, Qn)
n

→
n→∞

0 .

• There exists a probability Q? on X such that

∀P ∈ C, EP1 [− logQ?(X)] <∞ .

The class of stationary memoryless sources on N+ clearly do not satisfy Kieffer’s condition: for all Q?

on N+ with infinite support, one can choose an increasing sequence (xn)n≥1 such that − logQ?(xn) ≥ 2n,

60



and then choose the probability P with support (xn)n≥1 defined by P (xn) = 2−n. We then have
EP [− logQ?(X)] =∞.

This prompted several approaches to cope with infinite alphabets [129]. A first approach is to restrict
to source classes satisfying Kieffer’s condition [68, 87]. A second direction consists in modifying the
preformance criterion, and considering the encoding of the sequence’s pattern. For instance, the pattern
of the sequence (8, 19, 4, 4, 19) is (1, 2, 3, 3, 2). If Cnφ denotes the class of all pattern distributions induced
by i.i.d. sources of length n over Xn, then

0.3n1/3 ≤ R(Cnφ ) ≤ R̂(Cnφ ) ≤ n1/3(logn)4 .

(see Acharya et al. [1], Garivier [78], Shamir [147]). Regardless of the alphabet size, patterns can be
compressed with a per-symbol redundancy decreasing to zero.

A third direction, coming from statistical learning theory, is to look for adaptivity.

1.2 Adaptive source coding

Given a possibly very large collection of sources, a universal code attempts to minimize redundancy,
that is the difference between the expected codeword length and the expected codeword length that would
be achieved by a code tailored to the source. Adaptive coding considers a more general setting. Assume
we are facing a collection of source classes, such that for each class, a good universal coder is available
(and each class has a non trivial minimax redundancy rate), is it possible to engineer a single coding
method that performs well over all classes in the collection? The notion of adaptivity comes from the
mathematical statistics language : an estimator is said to be adaptive over a collection of models if it
achieves the minimax over all models [54]. The search for adaptive codes make sense if the the union of
source classes does not have a non-trivial redundancy rate, which is the case of stationary memoryless
sources over an infinite alphabet.

Let (C(α)) be a collection of source classes indexed by α ∈ A. A sequence (Qn)n≥1 of coding proba-
bilities is said to be asymptotically adaptive with respect to a collection (C(α))α∈A of source classes if for
all α ∈ A

R(Qn, C(α)n) = sup
P∈C(α)

D(Pn, Qn) ≤ (1 + oα(1))R(C(α)) (1.1)

as n tends to infinity. If the inequality (1.1) holds with a factor other than (1 + oα(1)) (that may depend
on α) larger than 1 to the right, then we say that there is adaptivity within this factor. Note that Qn
cannot depend on α or else the problem is simply one of universality.

1.3 Regularly varying envelope classes

In our situation, the alphabet X is the set of positive integers N+, and the source P is given by
(pj)j≥1. As outlined earlier, in this countable alphabet setting, the class of all stationary memoryless
distributions has trivial minimax redundancy: there is no universal code (even weakly universal) for
the class of i.i.d. distributions over N+ [87, 88, 104]. This challenge has prompted several approaches:
imposing constraints on the sources classes as in [39] and subsequent papers [3, 34, 35, 41], or redefining
the performance criteria by focusing on pattern coding as popularized in [72, 78, 129, 133]. Here we
pursue the line of research initiated in [39], we deal with collection of so-called envelope classes, but the
adaptive code we introduce and investigate will turn out to be a pattern encoder in the spirit of [129, 133].

We start by recalling the definition of an envelope source class, as introduced by [39].

Definition 4 (envelope classes). Let (fj)j≥1 be a probability distribution on N+ such that f1 ≥
f2 ≥ . . . and let `f ≥ 0. The envelope class Λf defined by the distribution (fj)j≥1 and the integer `f is
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the collection of distributions which are dominated by f after `f :

Λf =
{
P : ∀j ≥ 1, pj+`f ≤ fj

}
.

Envelope classes provide a framework where the search for adaptive coding strategies is feasible. Their
relevance to practical applications may be questioned : Falahatgar et al. [72] point out that in natural
language processing where the (large but finite) alphabet may be considered as the set of words of some
natural language, there is no special reason to privilege any ordering on the alphabet. This is implicitly
done when defining classes with a decreasing envelope. But the tight redundancy bounds established
in [72] reveal that when dealing with infinite alphabets, some ordering has to be assumed if sublinear
redundancy is desired.

We will interested in the full range of regularly varying envelope classes.
Let us denote by νf , ~νf , ν1,f the quantities defined respectively in (3.1), (3.2), (3.4) when the under-

lying distribution is given by the envelope frequencies (fj)j≥1, that is,

νf ( dx) =
∑
j≥1

δfj ( dx) , ~νf (x) = ν[x, 1] , ν1,f [0, x] =
∫ x

0
yνf ( dy) .

We define regularly varying envelope classes as follows.

Definition 5 (regular variation). The envelope class Λf is said to be regularly varying with index
α ∈ [0, 1] if the function ~νf (1/·) belongs to rvα, i.e. if ~νf (1/n) ∼ nα`(n), with ` slowly varying.

By abuse of notation, we will sometimes write f ∈ rvα instead of ~νf (1/·) ∈ rvα. Also the simple
symbol E denotes the expectation with respect to the source P , while Ef will denote the expectation
with respect to the envelope distribution (fj)j≥1.

As observed in the previous chapter, under regular variation, the expected occupancy counts EfKn,
EfKn,r are nicely related to the function ~νf (1/n) (see Theorems 3.2, 3.3 and 3.4 in Chapter 1 for the
asymptotics in the three regimes 0 < α < 1, α = 1 and α = 0 respectively).

The introduction of envelope classes combined with the search for adaptive codes allowed to gain a
lot of insight about redundancies of source classes over infinite alphabets. For instance, Boucheron et al.
[39] showed that, of Λf is an envelope class, and if F (u) =

∑
j>u fj , then

R(Λf ) ≤ inf
u≤n

{
nF (u) log e + u− 1

2 logn
}

+ 2 . (1.2)

This inequality conveys an insightful message: if the envelope (fj)j≥1 is known, the following coding
strategy seems natural. Choose a threshold u such that F (u) ≈ 1

n . Encode symbol j with an appropriate
code for i.i.d. sources over the finite-size alphabet {0, 1, . . . , u} (e.g. Krichevsky-Trofimov). Symbol 0
corresponds to an escape symbol, meaning that it indicates that symbol j is greater than u and that one
has to encode it with another (more costly) procedure, the Elias encoding for integers. The redundancy
of such a censuring procedure should attain the upper bound in (1.2). If the envelope is not known, one
has to choose the threshold u based on the sample only. The principle of the AC-code (auto-censuring)
designed by Bontemps [34] is to choose un = max(X1, . . . , Xn), and Bontemps et al. [35] showed that
this code is adaptive over the collection of envelope source classes with finite and non-decreasing hazard
rate. When the envelope has a heavy tail however, the maximum of the sample can be extremely large,
and the AC-code fails to mimic the tail behaviour of the source. For such envelopes, Boucheron et al.
[41] proposed another procedure to select the threshold, and designed a general code called the ETAC
code (expanding threshold auto-censuring), which is shown to be adaptive, within a logn factor, over the
collection of envelope source classes characterized by a regularly varying envelope with index α ∈]0, 1[.
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The code we propose here aims at taking into account both the case α = 0 (the so-called Gumbel
domain of light-tailed distributions) and α ∈]0, 1[ (the Fréchet domain of heavy tailed distributions). It
achieves adaptivity over those source classes, to the price of a log logn factor.

1.4 The Pattern Censoring Code

The code we construct performs an online encoding or decoding of a sequence of symbols. It pertains
to the family of censoring codes described in [34, 35, 41]: first occurrences of symbols are censored, that is
they are encoded using a general purpose encoder for integers (namely, the Elias code [68]) and implicitly
inserted into a dictionary; symbols that have already been observed are fed to a Krichevsky-Trofimov
encoder (kt) that works on the current dictionary. The Krichevsky-Trofimov encoder actually performs
a variant of pattern coding. Thus, the code does two things: it progressively encodes the dictionary each
time a new symbol occurs, and it encodes the sequence using the kt code on the finite-size alphabet
containing the symbols seen so far.

We now describe it more formally, using the same notations for occupancy counts as in the previous
chapter (Xn,j , Kn...). We start with our input sequence X1:n = (X1, . . . , Xn) of symbols from X = N+.

Encoding:
— The dictionary is initialized with the symbol 0: D0 = {0}.
— At every index i corresponding to an input symbol, maintain a dictionary Di as follows:

Di = {0} ∪ {j ≥ 1, Xi,j > 0} .

Note that, at time i, the size of the dictionary Di is Ki + 1.
— Create a censored sequence X̃1:n such that every symbol Xi that does not belong to Di−1 is

replaced by the special 0 symbol:

X̃i = Xi1{Xi∈Di−1} .

— The variable Kn (the number of distinct symbols in X1:n) then corresponds precisely to the number
of redacted (censored-out) input symbols. Let i1:Kn be their indices. Extract the subsequence
Xi1:Kn

of all such redacted symbols.
— Perform an instantaneously decodable lossless progressive encoding (in the style of Mixture /

arithmetic coding) of the censored sequence X̃1:n, assuming decoder side-information about past
symbols. Call the resulting string CM .

— Perform an instantaneously decodable lossless encoding (in the style of Elias / integer coding) of
each redacted symbol in Xi1:Kn

individually rather than as a sequence, assuming decoder side-
information about past symbols. Call the resulting string CE .

— Interleave the coded redacted symbols of CE just after each coded 0 symbol of CM , to form the
overall code.

Decoding:
— Decode the interleaved CM and CE strings until exhaustion, as follows.
— Decode CM to obtain X̃1:n progressively.
— When a 0 is encountered, decode the single interleaved redacted symbol from CE to take the place

of the 0 symbol in the decoded sequence, then move back to decoding CM .
— Note that at all times the decoder knows the entire past sequence, and therefore the decoder side

past side-information hypothesis is upheld.

We now give the details of the encoding of the censored sequence X̃1:n and of the dictionary Xi1:Kn
.
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We also take additional care in guaranteeing that our code is instantaneously decodable. To encode X̃1:n,
we start by appending an extra 0 at the end of the original censored sequence, to signal the termination of
the input. We therefore in fact encode X̃1:n0 into CM . We do this by performing a progressive arithmetic
coding [141] using coding probabilities Q̃n+1(X̃1:n0) given by:

Q̃n+1(X̃1:n0) = Q̃n+1(0 | X̃1:n,Dn)
n−1∏
i=0

Q̃i+1(X̃i+1 | X̃1:i,Di) ,

where the predictive probabilities Q̃i+1 are a variant of Krichevsky-Trofimov mixtures on dictionary Di:
for j ∈ Di,

Q̃i+1

(
X̃i+1 = j | X̃1:i,Di

)
=
X̃i,j + 1

2
i+ Ki+1

2
,

where, for j ∈ Di, X̃i,j is the number of occurrences of symbol j in X̃1:i. Note that

X̃i,j =

Ki if j = 0,

Xi,j − 1 if j ∈ Di \ {0}.

What these coding probabilities represent, in effect, is a mixture code consisting of progressively enlarging
the alphabet based on the symbols seen so far, and feeding an arithmetic coder with Krichevsky-Trofimov
mixtures over this growing alphabet. Thanks to Ki being determined by the data, the enlargement of
the alphabet is performed online.

The subsequence Xi1:N of redacted symbols is encoded into the string CE as follows. For each i ∈ i1:N ,
we encode Xi + 1 using Elias penultimate coding [68], where the +1 is added to make sure these values
are strictly greater than 1. Thus, if Xi = j and Xi−1,j = 0, the cost of inserting this new symbol in the
dictionary is log(j+1)+2 log log(j+1). Corresponding to the extra 0 appended to the censored sequence,
we append an encoded 1 to CE . Since no other encoded redacted symbol but this one results in a 1,
it unambiguously signals to the decoder that the 0 symbol decoded from CM is in fact the termination
signal. This ensures that the overall code is instantaneously decodable, and that it therefore corresponds
to an implicit coding probability Qn.

Note that, for i ≥ 0, conditionally on the first i symbols X1:i, the expected instantaneous redundancy
of the encoding of symbol Xi+1 is given by

EP
[
log P (Xi+1)

Q(Xi+1|X1:i)

∣∣∣X1:i

]
=

∑
j≥1

pj1Xi,j>0 log
(
pj
(
i+ Ki+1

2
)

Xi,j − 1
2

)

+
∑
j≥1

pj1Xi,j=0 log
(
pj
(
i+ Ki+1

2
)

Ki + 1
2

)
+
∑
j≥1

pj1Xi,j=0 (log(j + 1) + 2 log log(j + 1)) .

The first two sums correspond to the kt code on the censored sequence and the last sum to the Elias
encoding of the alphabet. Let us point out right away that our analysis will have the particularity not
to separate the contributions of those two different codes. Instead, we rearrange the total redundancy as
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follows:

EP
[
log P (Xi+1)

Q(Xi+1|X1:i)

∣∣∣X1:i

]
=

∑
j≥1

pj log
(
ipj

(
1 + Ki + 1

2i

))
+
∑
j≥1

pj1Xi,j>0 log
(

1
Xi,j − 1

2

)
(1.3)

+
∑
j≥1

pj1Xi,j=0 log
(
j + 1
Ki + 1

2

)
+ 2

∑
j≥1

pj1Xi,j=0 log log(j + 1) .

Note that, in the term ∑
j≥1

pj1Xi,j=0 log
(
j + 1
Ki + 1

2

)
the log(j + 1) contribution of Elias encoding is now counter-balanced by the Ki + 1/2 coming from the
encoding of the 0 symbols in the censored sequence. This will turn out to be crucial: this is what allows
us to obtain adaptivity within a log logn factor (which comes from the residual part of Elias code) instead
of a logn factor. Note that the encoding of the 0 symbols in the censored sequence is then pivotal, this
is one of the main differences with the AC or ETAC codes: in those previous codes, zeros were actually
not encoded, and the kt code was working with the counts stemming from the sequence X1:i instead
of X̃1:i. Here, the kt code considers 0 as a proper symbol in the sequence X̃1:i, and this allows us to

gain the term
∑
j≥1 pj1Xi,j=0 log

(
pj
(
i+Ki+1

2

)
Ki+ 1

2

)
, to the price of decreasing the other counts Xi,j by one,

which does not really affects the redundancy.

2 Main result

We analyse the performance of the Pattern Censoring Code (Qn) on regularly varying envelope classes
Λf , with index α ∈ [0, 1[. For an envelope distribution f = (fj)j≥1, let Rf (n) be defined as

Rf (n) = log( e)
∫ n

1

~νf (1/t)
2t dt .

The following result is a consequence of Acharya et al. [4], and allows to relate the minimax redundancy
of Λnf to Rf (n).

Theorem 2.1 ([4]). Let Λf be an envelope source class, with f ∈ rvα and α ∈ [0, 1[. Then

R(Λnf ) � Rf (n) .

If α = 0, this is even an asymptotic equivalence. In the case α = 1, we have

R(Λnf ) � Ef [Kn]� Rf (n) .

Theorem 2.2. Let (Qn) be the coding distribution associated to the Pattern Censoring Code. For all
α ∈ [0, 1[, for all envelope distribution f with ~νf (1/·) ∈ rvα and all integer `f ≥ 0, there exists constants
af , bf > 0 such that

(af + of (1))Rf (n) ≤ R(Λnf ) ≤ R(Qn,Λnf ) ≤ (bf + of (1))Rf (n) log logn . (2.1)

In particular, the Pattern Censoring Code is adaptive, within a log logn factor, with respect to the col-

lection
(

(Λf )f∈rvα
`f≥0

)
α∈[0,1[

.
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Remark 2.1. Let us mention several possible improvements of this Theorem, that we would like to
address in the future. Is it possible that a more sophisticated analysis of the Pattern Censoring Code
could show that, in the case of non-decreasing hazard rate envelopes, this code is properly adaptive and
thus performs as well as the AC Code of Bontemps [34]? Is it possible to take into account the case α = 1,
corresponding to extremely heavy tails? Finally and more generally, can we do without the log logn factor
or is there an incompressible price to adaptivity?

Before analysing the redundancy of the code, we first need to understand the minimax redundancy
of envelope classes Λnf . This is the purpose of the next section, in which we give upper and lower bounds
on R(Λnf ). The techniques mostly rely on Poissonization arguments as introduced in Acharya et al. [4],
and Karlin’s formalism then allows us to directly capture the order of those bounds and to gain insight
on the quantities involved. In particular, we will derive Theorem 2.1. In section 4, we proceed with the
analysis of the code, establishing the right-hand side inequality in (2.1). Most of the proofs are grouped
in Section 5.

3 Minimax redundancy

In this section, we give upper and lower bounds for the minimax redundancy of envelope source classes.
The techniques are very much inspired by [4]. We show that the Poissonization arguments used in this
paper to bound the minimax regret can be extended to minimax redundancy. When particularizing to
regularly varying envelopes, we show that the resulting bounds are tight up to constant factors. When
restricting further to slowly varying envelopes, they are properly tight.

3.1 Properties of minimax redundancy

Recall that the minimax redundancy of a class Cn of stationary memoryless sources is defined as

R(Cn) = inf
Qn∈M1(Xn)

sup
P∈C

EP
[
log P

n(X1:n)
Qn(X1:n)

]
.

The sequence (R(Cn))n≥1 has the following properties (we refer to Gassiat [79]).

Proposition 3.1.
• (R(Cn))n≥1 is increasing.
• (R(Cn))n≥1 is sub-additive: for all n,m ≥ 1,

R(Cn+m) ≤ R(Cn) +R(Cm) .

• The minimax redundancy is equal to the Bayesian redundancy:

R(Cn) = sup
π∈M1(C)

inf
Qn∈M1(Xn)

∫
D(Pn, Qn) dπ(P )

= sup
π∈M1(C)

∫
D(Pn, Pnπ ) dπ(P ) ,

where Pnπ is the mixture distribution given by Pπ(j) =
∫
P (j) dπ(P ).

Moreover, as noted by Acharya et al. [4], the minimax redundancy of a class of i.i.d. sources is equal
to the minimax redundancy of the induced class on types. More precisely, for P ∈ C, let us denote
by τ(Pn) the distribution of the type of a sequence (X1, . . . , Xn) ∼ Pn, i.e. τ(Pn) is the probability
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distribution of the sequence (Xn,j)j≥1. For a class C of sources over X , we define the class τ(Cn) as

τ(Cn) = {τ(Pn), P ∈ C} .

Then we have
R(Cn) = R(τ(Cn)) and R̂(Cn) = R̂(τ(Cn)) .

3.2 Poisson sampling

In Poisson sampling, we assume that the number of symbols is distributed as a Poisson random
variable N with mean n, denoted N ∼ P(n). Let CP(n) be the Poissonized version of Cn:

CP(n) =
{
PP(n), P ∈ C

}
,

where, for all P ∈ C and x1:k ∈ X ∗,

PP(n)(x1:k) = P(N = k).P k(x1:k).

By convention, the empty sequence has probability zero. For j ≥ 1, let us denote by Xj(n) the number
of occurrences of symbol j in a Poisson sample with size P(n). Then Xj(n) is distributed as P(nP (j)),
and a very useful property of Poisson sampling is that the symbol counts (Xj(n))j≥1 are independent.
Let us also note that, as in the fixed-n setting, the redundancy of CP(n) is equal to the type-redundancy:

R(CP(n)) = R
(
τ(CP(n))

)
and R̂(CP(n)) = R̂

(
τ(CP(n))

)
. (3.1)

(see Acharya et al. [4]).
We will often resort to the concentration properties of the Poisson distribution.

Lemma 3.1. Let N ∼ P(n). Then, for all t > 0,

P (N ≥ n+ t) ≤ exp
(
− t2

2(n+ t)

)
,

P (N ≤ n− t) ≤ exp
(
− t

2

2n

)
.

Proposition 3.2. For all class C, the Poissonized minimax redundancy satisfies

R(CP(n)) = inf
(Qk)

sup
P∈C

∑
k≥0

P(N = k)D(P k, Qk) ,

where the infimum is taken over sequences (Qk)k≥0, such that, for all k ≥ 0, Qk is a probability distribu-
tion over X k.

To benefit from the independence property of Poisson sampling, we would like to relate the redundancy
of the fixed-n setting with that of the Poisson-length sample. This was done in Theorem 2 of [4] for the
minimax regret, and in Falahatgar et al. [72], the authors show that R(CP(n)) ≤ 2R(Cn). Proposition 3.3
gives similar bounds in the two directions.

Proposition 3.3. For any class C with R(C) <∞, we have

R
(
CP(n−n2/3)

)
+ oC(1) ≤ R(Cn) ≤ (1− o(1))R

(
CP(n+n2/3)

)
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3.3 Minimax redundancy of envelope classes

In the case of an envelope source class C = Λf , the class τ
(

ΛP(n)
f

)
can be written as

τ
(

ΛP(n)
f

)
=


∞∏
j=1
P(npj) : (pj)j≥1 ∈M1(X ), ∀j ≥ 1, pj+`f ≤ fj

 . (3.2)

Let us define, for λ ≥ 0,

P?(λ) = {P(µ) : µ ≤ λ} ,

the class of Poisson distributions with mean smaller than λ, we have the following bounds.

Lemma 3.2. Let Λf be an envelope class. Then for all n ≥ 0,

∞∑
j=1

R(P?(nfj)) ≤ R
(

ΛP(n)
f

)
≤ `fR(P?(n)) +

∞∑
j=1

R(P∗(nfj)) .

We now have almost all the ingredients to establish our bounds on R
(

Λnf
)

. We first prove the upper

bound, which is simply obtained by using the fact that R
(

Λnf
)
≤ R̂

(
Λnf
)

, and applying the bounds of
[4] on minimax regrets. We then interpret those bounds using Karlin’s formalism, which allows us to
gain insight on the quantities involved.

Proposition 3.4. For any envelope function f , the minimax redundancy of Λnf satisfies

R
(
Λnf
)
≤ log( e)

(∫ 1

1/n

~νf (x)
2x dx+ ~νf (1/n) + nν1,f [0, 1/n]

)
+O(`f logn) . (3.3)

Remark 3.1. Note that, as soon as the support of (fj)j≥1 is infinite, we have R(Λnf )� logn. Hence, one
may neglect the term O(`f logn). Now, Karlin’s formalism combined with the regular variation assumption
on the envelope allows us to evaluate the terms of (3.3). In the case ~νf (1/·) ∈ rv0, Karamata’s Theorem
implies that the dominant term is the first one, which can be written as

Rf (n) = log( e)
∫ n

1

~νf (1/t)
2t dt .

When α = 1, the leading term is now n~ν1,f [0, 1/n], which is of order Ef [Kn] � ~νf (1/n). And when
0 < α < 1, the first three terms are of the same order, that of ~νf (1/n) � Ef [Kn] � Rf (n). Hence, this
establishes the upper bound in Theorem 2.1.

In the other direction, we need a lower bound on R (P?(nfj)), which is given in the following lemma.

Lemma 3.3. For λ ≥ 1, the redundancy of P?(λ) satisfies

R(P?(λ)) ≥ log λ
2 − 5 .

Combining Proposition 3.3, the lower bound in Lemma 3.2, and Lemma 3.3, we obtain the following.

Proposition 3.5. Let m = n− n2/3. For any envelope function f and for large enough n,

R
(
Λnf
)
≥ log( e)

∫ m

1

~νf (1/t)
2t dt− 5~νf (1/m)− 1 .
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Remark 3.2. Assume ~νf (1/·) ∈ rv0. Then the function Rf (n) also is of slow variation. Thus, Rf (m) ∼
Rf (n). Moreover, as noted earlier, ~νf (1/n) = o (Rf (n)). Hence, combining this with Proposition 3.4
and Remark 3.1, we obtain that, if ~νf (1/·) ∈ rv0, then

R
(
Λnf
)

∼
n→∞

log( e)
∫ n

1

~νf (1/t)
2t dt .

Note that the lower bound in Proposition 3.5 might be irrelevant. For instance, when ~νf (1/·) ∈ rvα with
α > log( e)/10, the right-hand side becomes negative. However, an order-optimal lower bound in the case
of heavy-tailed envelopes (that is, when α > 0) was established by Boucheron et al. [41]: the expected
redundancy of a class Λnf is lower-bounded by the expected number of distinct symbols in a sample of size
n drawn according to the envelope distribution (fj)j≥1. Combining the two bounds, we have the following
proposition.

Proposition 3.6. Let m = n− n2/3. For any envelope function f , there exists a constant cf > 0 such,
for large enough n,

R
(
Λnf
)
≥ (Rf (m)− 5~νf (1/m)− 1) ∨ (Ef [Kn]− cf ) .

Recall that, when ~νf (1/·) ∈ rvα for 0 < α < 1, we have: Ef [Kn] � ~νf (1/n) � Rf (n). Hence,
combining Propositions 3.4 and 3.6 establishes Theorem 2.1.

4 Analysis of the Pattern Censoring Code

Before proceeding with the analysis of the code, we first state some useful comparisons between
the expected occupancy counts, the missing mass and the measure ν1, under the source and under the
envelope, as well as some asymptotics which are valid under the regular variation hypothesis on the
envelope. As our code is fundamentally related to occupancy counts and to the occurrences of new
symbols, those will be very helpful to evaluate the contribution of each term to the redundancy.

Lemma 4.1. We always have
EMn,0 ≤

EKn

n
.

Moreover, if P ∈ Λf , then EKn ≤ `f + Ef [Kn], and, if ~νf (1/·) ∈ rvα with α ∈ [0, 1[, then

Ef [Kn] ∼
+∞

Γ(1− α)~νf (1/n) ,

and, for all ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

ν1,f [0, 1/n] ≤ (α+ ε)~νf (1/n)
(1− α)n .

We now proceed with the analysis of the redundancy of the PCC Code. As announced at (1.3), we
rearrange the instantaneous redundancy of symbol i+ 1, given X1:i, as follows

EP
[
log P (Xi+1)

Q(Xi+1|X1:i)

∣∣∣X1:i

]
=

∑
j≥1

pj log
(
ipj

(
1 + Ki + 1

2i

))
+
∑
j≥1

pj1Xi,j>0 log
(

1
Xi,j − 1

2

)

+
∑
j≥1

pj1Xi,j=0 log
(
j + 1
Ki + 1

2

)
+ 2

∑
j≥1

pj1Xi,j=0 log log(j + 1)

:= A+B + C +D .
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We now average over the first i symbols. Starting with term A, we use the fact that for all x ≥ 0,
log(1 + x) ≤ log( e)x and obtain

E[A] ≤
∑
j≥1

pj log(ipj) + log( e)E[Ki] + 1
2i .

Moving on to term B, thanks to Jensen’s inequality for conditional expectation, we have

E[B] = E

∑
j≥1

pj1Xi,j>0E
[
log 1

Xi,j − 1
2

∣∣Xi,j > 0
]

≤ E

∑
j≥1

pj1Xi,j>0 logE
[

1
Xi,j − 1

2

∣∣Xi,j > 0
]

Lemma 4.2. Let X ∼ B(n, p). Then

E
[

1
X − 1

2

∣∣X > 0
]
≤ 1

np
+ 9

(np)2

Resorting to Lemma 4.2, we have

E[B] ≤ E

∑
j≥1

pj1Xi,j>0 log
(

1
ipj

(
1 + 9

ipj

))
≤ −

∑
j≥1

pjP(Xi,j > 0) log(ipj) + log( e)9E[Ki]
i

.

Hence,

E[A] + E[B] ≤
∑
j≥1

pjP(Xi,j = 0) log(ipj) + log( e)10E[Ki]
i

.

Notice that, as soon as pj ≤ 1/i, log(ipj) is less than zero. We may thus only retain the terms with

pj ≥ 1/i. Using log(ipj) ≤ ipj and that, for all x ∈ [0, 1], x2(1 − x)i ≤
(

2
i+2

)2 (
1− 2

i+2

)i
≤ 1/i2, we

have ∑
j≥1

pjP(Xi,j = 0) log(ipj) ≤
∑

j, pj≥1/i

ip2
j (1− pj)i

≤ ~ν(1/i)
i

≤ ~νf (1/i) + `f
i

.

As ~νf (1/·) ∈ rvα with α ∈ [0, 1[, we have, thanks to Lemma 4.1, that there exists i0 ∈ N such that, for
all i ≥ i0,

E[A] + E[B] ≤ 16Γ(1− α)~νf (1/i)
i

. (4.1)
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It now remains to bound the terms C and D. Using that Ki + 1/2 ≥ 1
2 (Ki + 1), we have

C ≤ Mi,0 +
∑
j≥1

pj1Xi,j=0 log
(
j + 1
Ki + 1

)

= Mi,0 +
∑
j≥1

pj1Xi,j=0 log
(

j + 1∑
` 6=j 1Xi,`>0 + 1

)
.

Recall that the variables (Xi,j)j≥1 are negatively associated (see Chapter 1, Section 6.1.2). Hence, for
all j ≥ 1,

E

[
1Xi,j=0 log

(
j + 1∑

` 6=j 1Xi,`>0 + 1

)]
≤ P(Xi,j = 0)E

[
log
(

j + 1∑
` 6=j 1Xi,`>0 + 1

)]
.

Resorting to Jensen’s inequality and noticing that
∑
` 6=j 1Xi,`>0 + 1 ≥ Ki, we get

E[C] ≤ E[Mi,0] +
∑
j≥1

pjP(Xi,j = 0) logE
[
j + 1
Ki

]
.

Lemma 4.3. The variable Ki satisfies

E
[

1
Ki

]
≤ 5

E[Ki]
.

Using Lemma 4.3, we obtain

E[C] ≤ (1 + log(5))E[Mi,0] +
∑
j≥1

pjP(Xi,j = 0) log
(
j + 1
E[Ki]

)
. (4.2)

Bounding the sum in the right-hand side of (4.2) is the difficult part. To control it, we need to use the
regular decay of the envelope. However, bounding this term by the corresponding quantity under the
envelope distribution is not straightforward, because E[Ki], which is always smaller than Ef [Ki] + `f ,
now appears in the denominator. Lemma 4.4 gives a way to relate it to the envelope, and Lemma 4.5
gives an evaluation when the envelope is regularly varying.

Lemma 4.4. If P ∈ Λf ,

∑
j≥1

pjP(Xi,j = 0) log
(
j + 1
E[Ki]

)
≤

∑
j≥~νf (1/i)

fj log
(

j

~νf (1/i)

)
+ 6(Ef [Ki] + `f )

5i .

Lemma 4.5. Assume that ~νf (1/·) ∈ rvα with α ∈ [0, 1[ or ~νf (1/·) ∈ Π`0 . Then there exists i0 ∈ N such
that, for all i ≥ i0,

∑
j≥~νf (1/i)

fj log
(

j

~νf (1/i)

)
≤ 4− α

(1− α)2 ·
~νf (1/i)

i
.

Putting together equations (4.1), (4.2) and Lemma 4.4 and 4.5, we obtain

E[A+B + C] ≤
(

21Γ(1− α) + 4− α
(1− α)2

)
~νf (1/i)

i
, (4.3)

for i large enough.
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As for term D, we have the following bound.

Lemma 4.6. There exists i0 ∈ N such that, for all i ≥ i0

E[D] ≤ 5
2

(
Γ(1− α) + 1

1− α

)
log log(i)~νf (1/i)

i
.

As the bound on ED in Lemma 4.6 is much than the bound on E[A + B + C] in (4.3), we finally
obtain that there exists i0 ∈ N such that for all i ≥ i0,

EP
[
log P (Xi+1)

Q(Xi+1|X1:i)

∣∣∣X1:i

]
≤ cα

log log(i)~νf (1/i)
i

,

with cα = 3
(

Γ(1− α) + 1
1−α

)
.

Hence, for n ≥ i0, we obtain

R(Qn,Λnf ) ≤ C(i0, f) +
n∑

i=i0

cα
log log(i)~νf (1/i)

i

≤ C(i0, f) + log log(n)
n∑
i=1

cα
~νf (1/i)

i
,

which establishes the upper bound in Theorem 2.2.

5 Proofs

Proof of Proposition 3.2. We have

R(CP(n)) = inf
Q∈M1(X∗)

sup
P∈C

D(PP(n), Q).

Let P ∈ C and Q ∈ M1(X ∗). The distribution Q can be written as Q =
∑
k≥0 q(k)Qk, where (q(k))k≥0

is a probability distribution over N, and, for each k ≥ 0, Qk is a distribution over Ck. Hence

D(PP(n), Q) =
∑
k≥0

P(N = k)
∑
x∈Ck

P k(x) log P(N = k)P k(x)
q(k)Qk

= D(P(n), q) +
∑
k≥0

P(N = k)D(P k, Qk) . (5.1)

Maximizing in P and minimizing in (q(k))k≥0 and (Qk)k≥0, we get

R(CP(n)) = inf
(Qk)

inf
(q(k))

D(P(n), q) + sup
P∈C

∑
k≥0

P(N = k)D(P k, Qk)


= inf

(q(k))
D(P(n), q) + inf

(Qk)
sup
P∈C

∑
k≥0

P(N = k)D(P k, Qk) .

The first term is equal to zero for q = P(n), implying that the distribution Q which achieves the minimax
redundancy is also a Poisson mixture. Hence

R(CP(n)) = inf
(Qk)

sup
P∈C

∑
k≥0

P(N = k)D(P k, Qk) .
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Proof of Proposition 3.3. We start with the lower bound on R(Cn). Let m = n − n2/3, and let M be a
Poisson random variable with mean m. By Proposition 3.2,

R(CP(m)) = inf
(Qk)

sup
P∈C

∑
k≥0

P(M = k)D(P k, Qk)

≤ inf
(Qk)

∑
k≥0

P(M = k) sup
P∈C

D(P k, Qk)

=
∑
k≥0

P(M = k) inf
Qk

sup
P∈C

D(P k, Qk)

=
∑
k≥0

P(M = k)R(Ck) .

Using the fact that the sequence (R(Ck))k≥0 is increasing and sub-additive (see Proposition 3.1), we have

R(CP(m)) ≤ R(Cn) +
∑
k>n

P(M = k)
(
R(Ck)−R(Cn)

)
≤ R(Cn) +

∑
k>n

P(M = k)R(Ck−n)

≤ R(Cn) +R(C)
∑
k>n

P(M = k)(k − n) .

Resorting to Lemma 3.1, we have

∑
k>n

P(M = k)(k − n) = E
[
(M − n)1{M>n}

]
=
∫ ∞

0
P
(
M −m > t+ n2/3

)
dt

≤
∫ n

0
e−

n4/3

2(m+n2/3) dt+
∫ ∞
n

e− t
2

6t dt

≤ n e−n
1/3/2 + 6 e−n/6 → 0 .

This establishes the lower bound on R(Cn) in Proposition 3.3. Let us now proceed with the other
direction. Let now m = n+n2/3 and M be a Poisson random variable with mean m. Using the Bayesian
representation of the minimax redundancy (see Proposition 3.1), we have

R(CP(m)) = sup
π∈M1(C)

inf
Q∈M1(X∗)

∫
D(PP(m), Q) dπ(P ) .

Fix π ∈M1(C). Resorting to equation (5.1) in the proof of Proposition 3.2, we have

inf
Q∈M1(X∗)

∫
D(PP(m), Q) dπ(P )

= inf
(Qk),(q(k))

∫ D(P(m), q) +
∑
k≥0

P(M = k)D(P k, Qk)

 dπ(P )

= inf
(Qk)

∫ ∑
k≥0

P(M = k)D(P k, Qk) dπ(P )

=
∑
k≥0

P(M = k) inf
Qk

∫
D(P k, Qk) dπ(P ) .
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We claim that the sequence
(
infQk

∫
D(P k, Qk) dπ(P )

)
k≥0 is increasing. Indeed, let k ≥ 0 and let

Qk+1 ∈ M1(X k). Denote by Q
(k)
k+1 its restriction to the first k symbols. Then, for all P ∈ M1(X ),

D(Qk+1, P
k+1) ≥ D(P k, Q(k)

k+1). Hence for allQk+1 there existQk ∈M1(X k) such that
∫
D(P k, Qk) dπ(P ) ≤∫

D(P k+1, Qk+1) dπ(P ), which gives the desired result. We get

R(CP(m)) ≥ sup
π

∑
k≥n

P(M = k) inf
Qk

∫
D(P k, Qk) dπ(P )

≥ P(M ≥ n) sup
π

inf
Qn

∫
D(Pn, Qn) dπ(P )

≥ P(M ≥ n)R(Cn) .

Now, using again Lemma 3.1, we have

P(M ≥ n) ≥ 1− exp
(
−n

4/3

2m

)
→ 1 ,

which concludes the proof.

Proof of Proposition 3.4. As announced, we start by the obvious fact that R
(

Λnf
)
≤ R̂

(
Λnf
)

. Now
Theorem 14 of [4] states that

R̂
(
Λnf
)
≤ 1 + R̂

(
ΛP(n)
f

)
,

and, by (3.1), R̂
(

ΛP(n)
f

)
= R̂

(
τ(ΛP(n)

f )
)

. Now, using (3.2) and the fact that for j ≤ `f , we still have
the crude bound pj ≤ 1,

τ(ΛP(n)
f ) ⊂

 `f∏
j=1
P?(n)

 ∞∏
j=1
P?(nfj) .

As increasing the class can not reduce the regret, and as, for two classes C1, C2, R̂(C1×C2) = R̂(C1)+R̂(C2),
we have

R̂
(
τ(ΛP(n)

f )
)
≤ `f R̂ (P?(n)) +

∑
j≥1

R̂ (P?(nfj)) .

Now Lemma 17 of [4] provide us with the following bounds: if λ ≤ 1,

R̂ (P?(λ)) = log
(
2− e−λ

)
≤ log( e)λ ,

and, if λ > 1,

R̂ (P?(λ)) ≤ log
(√

2λ
π

+ 2
)
.

For aesthetic purposes (getting the common log( e) constant in front of each terms), we find it worth to
notice that the bound above can be very slightly improved to

R̂ (P?(λ)) ≤ log
(√

2λ
π

+ 3
2

)
.
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Hence, as 3
2 +

√
2
π ≤ e, we obtain

R̂
(
Λnf
)
≤ O(`f logn) +

∑
j,fj≥1/n

log
(

e
√
nfj

)
+ log( e)

∑
j,fj<1/n

nfj .

Now, using the integral representation and integrating by parts gives

∑
fj≥1/n

log
(

e
√
nfj

)
= log( e)~νf (1/n) +

∫ 1

1/n

log(nx)
2 νf ( dx)

= log( e)
(
~νf (1/n) +

∫ 1

1/n

~νf (x)
2x dx

)
.

Also, we may write
∑
j,fj<1/n fj = ν1,f [0, 1/n], which gives the desired result.

Proof of Lemma 3.3. Using the Bayesian representation of the minimax redundancy, we have

R(P?(λ)) = sup
π∈M1([0,λ])

∫
D(P(µ),Pπ) dπ(µ) ,

where Pπ =
∫
P(µ) dπ(µ). In particular, taking π equal to the uniform distribution over [0, λ], we get

R(P?(λ)) ≥
∫ λ

0

1
λ

∑
k≥0

P(P(µ) = k) log P(P(µ) = k)
P(Pπ = k) dµ .

We have

P(Pπ = k) = 1
λ

∫ λ

0

e−µµk

k! dµ = P(P(λ) > k)
λ

≤ 1
λ
.

Hence

R(P?(λ)) ≥ log λ− 1
λ

∫ λ

0
H(P(µ)) dµ .

Using Stirling’s bound k! ≤ e1/12k ( k
e
)k√2πk, we have, for all µ ∈ [0, λ],

H(P(µ))
log( e) = µ− µ lnµ+

∑
k≥0

e−µµk

k! ln(k!)

≤ µ− µ lnµ+
∑
k≥1

e−µµk

k!

(
k ln k − k + ln(2πk)

2 + 1
12k

)

≤
∑
k≥1

e−µµk

k!

(
k ln k + ln(2πk)

2

)
− µ lnµ+ 1

12 .

We use Jensen’s inequality to obtain

∑
k≥1

e−µµk

k! k ln k = µ
∑
k≥0

e−µµk

k! ln(k + 1) ≤ µ ln(1 + µ) ,
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and

∑
k≥1

e−µµk

k! ln k ≤ (1− e−µ) ln
(

µ

1− e−µ

)
≤ lnµ+ 1

e ,

where the last inequality is due to the fact that the function x 7→ x ln x is larger than −1/ e for all x ≥ 0.
We get

H(P(µ))
log( e) ≤ lnµ

2 + µ ln
(

1 + 1
µ

)
+ ln(2π)

2 + 1
2 e + 1

12

≤ lnµ
2 + 3 ,

which is smaller than 3 for µ ≤ 1. Hence

R(P?(λ)) ≥ log λ− 3 log( e)− 1
λ

∫ λ

1

logµ
2 dµ

≥ log λ
2 − 5 .

Proof of Proposition 3.5. Let m = n− n2/3. Thanks to Proposition 3.3, for n large enough

R
(
Λnf
)
≥ R

(
ΛP(m)
f

)
− 1 .

Now, by Lemmas 3.2 and 3.3,

R
(

ΛP(m)
f

)
≥

∞∑
j=1

R (P?(mfj)) ≥
∑

j, fj≥1/m

R (P?(mfj)) ≥
∑

j, fj≥1/m

(
log(mfj)

2 − 5
)
.

Using the integral representation and integrating by parts,

∑
j, fj≥1/m

log(mfj)
2 = log( e)

2

∫ 1

1/m
ln(mx)νf ( dx)

= log( e)
2

(
[−~νf (x) ln(mx)]11/m +

∫ 1

1/m

~νf (x)
x

dx
)

= log( e)
∫ m

1

~νf (1/t)
2t dt .

We obtain

R
(
Λnf
)
≥ log( e)

∫ m

1

~νf (1/t)
2t dt− 5~νf (1/m)− 1 .

Proof of Lemma 4.1. The first inequality is due to the fact that, for all x ∈ [0, 1],

nx(1− x)n ≤ 1− (1− x)n .
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Hence

EMn,0 =
∫ 1

0
x(1− x)nν( dx)

≤ 1
n

∫ 1

0
(1− (1− x)n) ν( dx) = EKn

n
.

The relation between EKn and EfKn is easily obtained by noticing that the function x 7→ 1− (1− x)n

is increasing on [0, 1], which gives

EKn =
∑
j≥1

(1− (1− pj)n)

≤ `f +
∑
j≥1

(
1− (1− pj+`f )n

)
≤ `f +

∑
j≥1

(1− (1− fj)n) = `f + EfKn .

Assume now that ~νf (1/·) ∈ rvα, for α ∈ [0, 1[. As pointed out in the previous chapter, we always have
EfKn = EfK(n) + o(1), so we may move to the simpler Poisson setting without affecting the asymptotic
behaviour. We have

EfK(n) =
∫ 1

0

(
1− e−nx

)
νf ( dx) =

∫ 1

0
n e−nx~νf (x) dx ,

and the equivalence EfK(n) ∼ Γ(1 − α)~νf (1/n) follows from the Tauberian Theorem for monotone
densities (see for instance Bingham et al. [30]). The last statement is obtained by Karamata’s Theorem
(see Section 6.1.3 of Chapter 1), which gives:

ν1,f [0, 1/n] =
∫ 1/n

0
xνf ( dx)

=
[
− ~νf (x)x

]1/n
0 +

∫ 1/n

0
~νf (x) dx

=
∫ ∞
n

~νf (1/t)
t2

dt− ~νf (1/n)
n

.

By Karamata’s Theorem, when 0 ≤ α < 1,∫ ∞
n

~νf (1/t)
t2

dt ∼
n→∞

~νf (1/n)
(1−α)n .

Thus, when 0 < α < 1,

ν1,f [0, 1/n] ∼ α~νf (1/n)
(1− α)n ,

and when α = 0, ν1,f [0, 1/n]� ~νf (1/n)/n. In both cases, we have the desired result.

Proof of Lemma 4.2. Using the fact that, for k ≥ 1,

1
k − 1

2
= 1
k + 1

(
1 + 3

2k − 1

)
≤ 1
k + 1 + 9

(k + 1)(k + 2) ,
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we have

E
[

1
X − 1

2

∣∣X > 0
]
≤ 1

1− (1− p)n
n∑
k=1

(
n

k

)
pk(1− p)n−k

(
1

k + 1 + 9
(k + 1)(k + 2)

)
= 1

1− (1− p)n

(
P (B(n+ 1, p) ≥ 2)

(n+ 1)p + 9P (B(n+ 2, p) ≥ 3)
p2(n+ 1)(n+ 2)

)
≤ 1

np
+ 9

(np)2 .

Proof of Lemma 4.3. The variable Ki is known to be a self-bounding function [38], which implies in
particular that it satisfies a sub-Poisson concentration inequality with variance factor EKi, and thus a
sub-Gaussian inequality on the left tail. Hence

E
[

1
Ki

]
=

∫ ∞
0

P
(

1
Ki

> t

)
dt =

∫ ∞
1

P(Ki < t)
t2

dt

≤
∫ ∞
E[Ki]/2

1
t2

dt +
∫ E[Ki]/2

1

1
t2
P
(
Ki − E[Ki] < −

E[Ki]
2

)
dt

≤ 2
E[Ki]

+ e−E[Ki]/8 ≤ 5
E[Ki]

,

where we used the fact that, for all x ≥ 0, e−x/8 ≤ 3/x.

Proof of Lemma 4.4. We have

∑
j≥1

pjP(Xi,j = 0) log
(
j + 1
E[Ki]

)
≤

∑
j≥1

pjP(Xi,j = 0) log
(

j + 1
Ef [Ki] + `f + 1

)
+ E[Mi,0] log Ef [Ki] + `f + 1

E[Ki]
.

Let us first deal with the second term. Using that E[Mi,0] ≤ E[Ki]/i (see Lemma 4.1), we get that this
term is smaller than g(EKi) with g : x 7→ x

i log
(

EfKi+`f+1
x

)
. Maximizing the function g, we see that

the worst possible source would be one which satisfies E[Ki] = Ef [Ki]+`f+1
2 . Hence, this second term is

always smaller than Ef [Ki]+`f+1
2i . Moving on to first term, we use the following bound:

Ef [Ki] ≥
∑

j≤~νf (1/i)

(1−
(
1− fj)i

)
≥
(

1− 1
e

)
~νf (1/i) .

Hence∑
j≥1

pjP(Xi,j = 0) log
(

j + 1
Ef [Ki] + `f + 1

)
≤ log

(
1

1− e−1

)
E[Mi,0] +

∑
j≥1

pj log
(

j + 1
~νf (1/i) + `f + 1

)
.

Now, for j < ~νf (1/i) + `f , the summands are negative and we simply omit them to get

∑
j≥~νf (1/i)+`f

pj log
(

j + 1
~νf (1/i) + `f + 1

)
=

∑
j≥~νf (1/i)

pj+`f log
(

j + `f + 1
~νf (1/i) + `f + 1

)

≤
∑

j≥~νf (1/i)

fj log
(

j

~νf (1/i)

)
,

where we used pj+`f ≤ fj and the fact that for all a, x, y ≥ 0 with x ≤ y, we have x+a
y+a ≤

x
y .
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Proof of Lemma 4.5. Using the integral representation, we have

∑
j≥~νf (1/i)

fj log
(

j

~νf (1/i)

)
=

∫ 1/i

0
x log ~νf (x)

~νf (1/i)νf ( dx) .

By the regular variation assumption on ~νf (1/·), Potter-Drees Inequality (see Section 6.1.3 of Chapter 1))
implies that: for all ε, δ > 0, ∃i0 ∈ N such that, for all i ≥ i0, for all x ∈ (0, 1/i],

~νf (x)
~νf (1/i) ≤

(
1
xi

)α
+ ε

(
1
xi

)α+δ
.

Taking crudely ε = δ = 1 and bounding α by 1, we obtain that for i large enough and x ∈ (0, 1/i],

~νf (x)
~νf (1/i) ≤ 2

(
1
xi

)2
.

Hence ∫ 1/i

0
x log ~νf (x)

~νf (1/i)νf ( dx) ≤ ν1,f [0, 1/i] + 2 log( e)
∫ 1/i

0
x ln

(
1
xi

)
νf ( dx) .

By Fubini’s Theorem,∫ 1/i

0
x ln

(
1
xi

)
νf ( dx) =

∫ 1/i

0
x

∫ 1
xi

1

1
t

dt νf ( dx)

=
∫ ∞

1

1
t

∫ 1
ti

0
xνf ( dx) dt =

∫ ∞
i

ν1,f [0, 1/t]
t

dt .

Now, the last statement in Lemma 4.1 implies that, for all ε > 0, for i large enough and for all t ≥ i,
ν1,f [0, 1/t] ≤ (α+ε)~νf (1/t)

(1−α)t . Taking ε = 1− α and resorting to Karamata’s Theorem, we have

∫ ∞
i

ν1,f [0, 1/t]
t

dt ≤ 1
1− α

∫ ∞
i

~νf (1/t)
t2

dt ∼ ~νf (1/i)
(1− α)2i

.

In the end, we obtain that for i large enough,

∑
j≥~νf (1/i)

fj log
(

j

~νf (1/i)

)
≤ 4− α

(1− α)2 ·
~νf (1/i)

i
.

Proof of Lemma 4.6. Decomposing the sum, we have∑
j≥1

pj(1− pj)i log log(j + 1) ≤
∑

j≥~νf (1/i)+`f

pj log log(j + 1) + E[Mi,0] log log (~νf (1/i) + `f + 1) ,

and ∑
j≥~νf (1/i)+`f

pj log log(j + 1) ≤
∑

j≥~νf (1/i)

fj log log(j + `f + 1) .

Now, we resort to the integral representation. We notice that, as ~νf (x)� 1/x when x→ 0 (which is true
as soon as the support is infinite, see [80]), then, for large enough i we have ~νf (x) + `f + 1 ≤ 1/x for all

79



x ∈]0, 1/i]. We then integrate by parts to get

∑
j≥~νf (1/i)

fj log log(j + `f + 1) =
∫ 1/i

0
x log log (~νf (x) + `f + 1) νf ( dx)

≤
∫ 1/i

0
x log log

(
1
x

)
νf ( dx)

=
[
−~νf (x)x log log

(
1
x

)]1/i

0
+
∫ 1/i

0

(
log log

(
1
x

)
+ log( e)

ln x

)
~νf (x) dx

≤
∫ 1/i

0
log log

(
1
x

)
~νf (x) dx

=
∫ ∞
i

log log(t)~νf (1/t)
t2

dt .

We used that, as α < 1, the limit of ~νf (x)x log log(1/x) as x → 0 is equal to 0. Now, the function
t 7→ log log(t)~νf (1/t)

t2 belongs to rvα−2. Hence, by Karamata’s Theorem (see Section 6.1.3 of Chapter 1),∫ ∞
i

log log(t)~νf (1/t)
t2

dt ∼
i→∞

~νf (1/i)
(1− α)i log log(i) .

We thus obtain that, for all ε > 0, there exists i0 ∈ N such that, for all i ≥ i0

E[D] ≤ 2(1 + ε)
(

Γ(1− α) + 1
1− α

)
log log(i)~νf (1/i)

i
.

80



Part II

Cutoff for random walks on sparse
random graphs
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This part is devoted to the question of mixing times of random walks on sparse random graphs.
We introduce the problem in Section 1. Section 2 presents an article with Justin Salez, Cutoff for non-
backtracking random walks on sparse random graphs [21], to appear in the Annals of Probability. Section
3 presents an ongoing work with Eyal Lubetzky and Yuval Peres on the comparison of the mixing times
of simple and non-backtracking random walks on sparse random graphs.

1 Introduction

1.1 Mixing times

Let (Xt)t≥0 be a Markov chain a finite state-space Ω, with transition matrix P , which we assume
irreducible and aperiodic. Then, there exists a unique stationary distribution π defined by the equation

πP = π ,

and the chain converges to π, in the sense that, for all (x, y) ∈ Ω2,

P t(x, y) →
t→∞

π(y) .

One natural question is that of quantifying the speed at which this convergence occurs: after a given
number of steps, how close is the chain from equilibrium? To answer such a question, we first need to
select an appropriate metric to measure the distance between two probability distributions. The total-
variation distance between the law of the chain at time t (when started from x) and the stationary
distribution is defined as

Dx(t) = max
A⊂Ω

(
P t(x,A)− π(A)

)
= 1

2
∑
y∈Ω

∣∣∣P t(x, y)− π(y)
∣∣∣ .

As we are looking for a uniform control over all possible starting points, we will consider the worst-case
distance

D(t) = max
x∈Ω
Dx(t) .

The function D(·) decreases from almost 1 at time 0 and tends to 0 at +∞. By the Convergence Theorem,
we know that the decay is exponential in time: there exist C > 0 and α ∈ (0, 1) such that D(t) ≤ Cαt.
In the reversible case, i.e. if for all (x, y) ∈ Ω2, the detailed balance equation

π(x)P (x, y) = π(y)P (y, x)

holds, one can precisely describe the asymptotic rate of this exponential decay. Letting

λ? = max{|λ|, λ eigenvalue of P , λ 6= 1} ,

we have

D(t)1/t →
t→∞

λ? . (1.1)
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The quantity 1−λ? corresponds to the difference between the two largest eigenvalues (in absolute value)
of the matrix P , and is called the absolute spectral gap of the chain. The inverse of the spectral gap,
trel = (1 − λ?)−1, is called the relaxation time. One may observe that, in this setting, the transition
matrix is fixed, and we are interested in the asymptotics for the distance as the time t tends to infinity. In
particular, by (1.1), λ? captures the mixing properties of the chain as t→∞. In the past three decades,
with the growing interest for large-size networks, the perspective changed quite radically and the focus
moved from fixed chains studied as t → ∞, to chains studied on growing state-spaces. This led to a
different asymptotic analysis: some target distance to equilibrium ε is fixed, and we want to understand
the time it takes for the chain to reach this distance, as the size of the state-space tends to ∞. More
precisely, we now consider a sequence of state-spaces Ω(n) (generally we have n = |Ω(n)|), a sequence of
transition matrices P (n), associated with a sequence of distances D(n)(t), and we define, for 0 < ε < 1,
the mixing time as

t
(n)
mix(ε) = min

{
t ≥ 0, D(n)(t) ≤ ε

}
.

For ease of notation, we will often omit the dependence in n.

1.2 The cutoff phenomenon

A remarkable phenomenon was discovered in the early eighties by Diaconis and Shahshahani [60] and
Aldous [6]: there are situations where, as n→∞, the mixing time tmix(ε) does not depend on ε, at least
to first order. The distance remains close to 1 for a certain amount of time and then abruptly drops
to 0. This surprising phenomenon was first discovered in the context of card shuffling: given a certain
procedure for shuffling a deck of n cards, how many shuffles do we need to do for the deck to be mixed?
It turns out that, for certain procedures, there exists a quite precise number of shuffles slightly below
which the deck is far from being mixed, and slightly above which it is almost completely mixed. In 1981,
[60] first singled out this phenomenon for random uniform transpositions, and in 1983, [6] established it
for the random walk on the hypercube {0, 1}n. The term cutoff and the general formalization appeared
shortly after, in the seminal paper by Aldous and Diaconis [7].

Formally, a chain is said to exhibit cutoff if, for all 0 < ε < 1,

t
(n)
mix(ε)

t
(n)
mix(1− ε)

−→
n→+∞

1 . (1.2)

For instance, in the case of the random walk on the hypercube analysed by Aldous [6], the state-space
is {0, 1}n and a transition consists in choosing uniformly at random a vector among {0} ∪ {ei}ni=1 where
0 is the zero vector and where, for 1 ≤ i ≤ n, ei is the vector with 0 at all coordinates except a 1 in
position i, and adding it, modulo 2, to the current state. Then, for all 0 < ε < 1, we have

4t(n)
mix(ε)
n logn −→

n→+∞
1 .

This means that if we rescale time by 1
4n logn, then the distance to stationarity approaches the step

function:

lim
n→∞

D
( c

4n logn
)

=

1 if c < 1,

0 if c > 1.

A classical example of a random walk on a group which does not have a cut-off is the random walk on
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the cycle Cn driven by the uniform distribution on {−1, 0, 1}. It takes Θ(n2) steps for D(t) to reach 1/2,
then it takes another Θ(n2) steps to go from 1/2 to 1/4, and so on. Here, the mixing time is of order n2,
but there is no sharp transition. When the cutoff occurs however, one may properly speak of the mixing
time of the chain, without referring to the target ε anymore, and it is common to take t(n)

mix = t
(n)
mix(1/4).

The rate of convergence in (1.2) is addressed by the notion of cutoff window: a sequence of Markov chains
has cutoff at t(n)

mix with window ωn if ωn = o(t(n)
mix) and

lim
α→+∞

lim inf
n→+∞

D
(
t
(n)
mix − αωn

)
= 1 ,

lim
α→+∞

lim sup
n→+∞

D
(
t
(n)
mix + αωn

)
= 0 .

It may even be possible to describe very precisely the shape of the distance inside the cutoff window. In
the case of the random walk on the hypercube, Diaconis et al. [61] showed that, for all α ∈ R,

D
(

1
4n logn+ αn

)
= φ

(
e−2α/

√
8
)

+ o(1) ,

where φ(x) = 2√
π

∫ x
0 e−t2/2 dt.

Since the pioneered examples of the eighties, cutoff was identified in a variety of contexts. One
celebrated example is the so-called riffle shuffle, as modelled by the Gilbert-Shannon-Reeds transition
matrix, and proved to have cutoff at time 3 log2 n

2 with a constant-order window by Bayer and Diaconis
[19]. For more on card shuffling and cutoff for random walks on finite groups, we refer to see Diaconis
[59], Chen and Saloff-Coste [47], and the survey by Saloff-Coste [144].

Establishing this phenomenon rigorously requires a very detailed understanding of the underlying
chain, and often constitutes a challenging task even in situations with a high degree of symmetry. It is
now believed to be a widespread phenomenon and many natural families of Markov chains are conjectured
to exhibit cutoff. However there are very few general results about it. For instance, the historical case of
random walks on the symmetric group Sn is still far from being completely understood (see [144]). To
cite one of the many open problems in this domain, it is an open question to determine whether every
random walk on Sn driven by the uniform distribution on a minimal generating set exhibits cut-off. In
this direction, Berestycki and Sengul [27] recently established cutoff when the walk is induced by a given
conjugacy class (that is, by the uniform distribution over the permutations with a cycle structure).

Interacting particle systems in statistical mechanics provide a rich class of dynamics displaying cutoff.
One emblematic example is the stochastic Ising model at high enough temperature, for which the cutoff
phenomenon has been established successively on the complete graph (Levin et al. [111]), on lattices
(Ding et al. [62], Lubetzky and Sly [115]), and finally on any sequence of graphs (Lubetzky and Sly
[116]). Other examples include the Potts model (Cuff et al. [53]), the East process (Ganguly et al. [77]),
or the Simple Exclusion process on the cycle (Lacoin [108]).

The problem of singling out abstract conditions under which the cutoff phenomenon occurs, with-
out necessarily pinpointing its precise location, has drawn considerable attention. In 2004, Peres [134]
proposed a simple spectral criterion for reversible chains, known as the product condition:

tmix(1− λ?) →
n→∞

+∞ , (1.3)

that is, the mixing time is much larger than the relaxation time. From the inequality

(trel − 1) log
(

1
2ε

)
≤ tmix(ε) ≤ log

(
1

εminx∈Ω π(x)

)
trel , (1.4)
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valid for any reversible, irreducible and aperiodic Markov chain (see [110, Theorems 12.3 and 12.4]), one
easily sees that, on such chains, condition (1.3) is necessary for cutoff. It can be shown to be sufficient
for `2-cutoff, that is, when measuring the distance between P t(x, .) and π by∥∥∥∥P t(x, .)π(·) − 1

∥∥∥∥2

`2(π)
=

∑
y∈Ω

(
P t(x, y)
π(y) − 1

)2

π(y) .

However, for the total-variation distance, counter-examples of reversible chains satisfying (1.3) without
cutoff have quickly been constructed (see Levin et al. [110, Chapter 18] and Chen and Saloff-Coste [47,
Section 6]). Still, the product condition is widely believed to be sufficient for “most” chains. This has
already been verified for birth-and-death chains (Ding et al. [63]) and, more generally, for random walks
on trees (Basu et al. [16]). The latter result relies on a promising characterization of cutoff in terms of
the concentration of hitting times of “worst” (in some sense) sets. See also Oliveira [128], Peres and Sousi
[135], Griffiths et al. [85] and Hermon [91].

Now, an important family of chains is the family of random walks on expander graphs with degree
d. Let (Gn)n≥1 be a sequence of d-regular graphs with |V (Gn)| → ∞ and let λ(n)

2 be the second largest
eigenvalue of the transition matrix of the simple random walk on Gn. One says that the family (Gn) is
an expander family if there exists α > 0, such that, for all n ≥ 1,

1− λ(n)
2 ≥ α .

Note that one can always make the walk lazy (that is, stay on the current state with probability 1/2, and
move according to P with probability 1/2) to ensure that all the eigenvalues are positive and that 1−λ(n)

2
2

corresponds to the absolute spectral gap of the chain. Then, by the right-hand side of (1.4) and noticing
that, as the graph is regular, the stationary distribution is uniform on Vn, one sees that the mixing time
of the lazy random walk on expanders satisfies tmix = O (log |Vn|). On the other hand, on any d-regular
graph with vertex set V , we have

tmix(ε) ≥ log (|V |(1− ε))
log d .

(This can be seen easily by noticing that the number of states on which the chain can be after t steps
is smaller than dt). Hence, expander graphs achieve the fastest mixing time (up to constant factors)
among regular graphs with bounded degree. Moreover, according to the product condition, they should
exhibit cutoff. However, up to 2010, no explicit example of expander graphs with cutoff was known.
Then, Lubetzky and Sly [114] constructed both a 3-regular expander with cutoff and without cutoff. A
conjecture of Peres (2004) is that, on every transitive expander with bounded degree, the simple random
walk (srw) has cutoff. Recently, Lubetzky and Peres [112] showed that cutoff occurs for nbrw and
srw on all Ramanujan graphs. Ramanujan graphs were introduced by Lubotzky et al. [117], and are
optimal expanders in the spectral sense: any eigenvalue λ of the adjacency matrix is either ±d or satisfies
|λ| ≤ 2

√
d− 1. In light of the Alon-Boppana Theorem [126], such graphs achieve the largest possible

spectral gap and [112] confirmed their remarkable mixing properties.

1.3 Random walks on random graphs with given degrees

A decisive change of perspective was made in 2010, when Lubetzky and Sly [113] considered the srw
on a graph which, instead of being fixed, is itself random. A classical result of Pinsker [136] (see also
[42]) states that random d−regular graphs with d fixed are expanders with high probability (i.e. with
probability tending to 1 as n → ∞). The celebrated result of [75] shows that, with high probability,
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they are even optimal expanders, the second eigenvalue of their adjacency matrix being 2
√
d− 1 + o(1)

(we say that they are weakly Ramanujan). In particular, the srw on such graphs satisfies the product
condition, and should therefore exhibit cutoff. This long-standing conjecture was confirmed only recently
in the impressive work of Lubetzky and Sly [113], who also determined the precise cutoff window and
typical profile of the distance inside the window. Their result relies on refined path counting arguments
and is actually derived from the analysis of the non-backtracking random walk (nbrw) itself, via a clever
transfer argument. Their main theorem is the following. Let Φ be the tail function of the standard
normal: for all λ ∈ R,

Φ(λ) = 1
2π

∫ ∞
λ

e−u
2

2 du .

Theorem 1.1 (Lubetzky and Sly [113]). Let G ∼ G(n, d) be a random regular graph with degree d ≥ 3
fixed. Then, for all 0 < ε < 1,

(i) the mixing time of the nbrw satisfies

t
(n)
mix(ε) = logd−1(dn) +OP(1).

(ii) the mixing time of the srw satisfies

t
(n)
mix(ε) = d

(d− 2) logd−1 n+ (Λ + oP(1)) Φ−1(ε)
√

logd−1 n ,

where Λ = 2
√
d(d−1)

(d−2)3/2 .

The intuition behind this result is as follows: as random regular graphs are locally tree-like, the
probability that the nbrw started from x is at a given vertex y after t steps is about (d − 1)−t if y is
at distance t from x. This becomes close to 1/n when t is equal to logd−1 n. In particular, the walk
mixes when its graph-distance from the origin reaches logd−1 n, which corresponds both to the diameter
and the typical graph-distance between two vertices in G(n, d). For the nbrw which, on a tree, can only
go forward, this happens in precisely logd−1 n steps, and the cutoff window is extremely sharp. Now,
at time t, the height of the srw on a d-regular tree is about d−2

d t. Hence, it reaches distance logd−1 n

at time d
d−2 logd−1 n, with Gaussian fluctuations of order

√
logn. The mixing time of the srw is thus

d/(d− 2) times larger than that of the nbrw. This confirms the practical advantage of nbrw over srw
for efficient network sampling and exploration, and complements a well-known spectral comparison for
regular expanders due to Alon et al. [9], as well as a recent result by Cooper and Frieze [50] on the cover
time of random regular graphs. For other ways of speeding up random walks, see Cooper [49].

A natural question is whether the nbrw and the srw still have cutoff on random graphs which are
not regular. Fix a graphic degree sequence d1, . . . , dn and let G be a random uniform graph on this
degree sequence. Can we describe the mixing time of the random walk on G ? In [21], we focused on
non-backtracking random walks in the more general setting of the configuration model (described below).
We show that, for any degree sequence satisfying some sparsity conditions, the nbrw exhibits the cutoff
phenomenon, and that the cutoff location and window only depends on the degrees through two very
simple statistics: the empirical mean and variance of the logarithmic degrees 1. We also show that the
profile of the distance inside the window approaches a universal shape, namely, that of the Gaussian tail
function. Section 2 is devoted to this result.

1. A weaker version of our result on the nbrw was independently proved by Berestycki et al. [28], namely that tmix(ε) =
t? + OP(

√
log N) (under a more restrictive assumption on degrees). The main result of this paper is to establish the cutoff

for the srw on G and we will go into it more deeply in Section 3.
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Most real-world networks, such as the web graph, are directed: there might be an edge from vertex
u to vertex v but not from v to u. However, studying random walks on random directed graphs is very
challenging: those chains are indeed non-reversible. Moreover, the equilibrium measure itself is hard to
understand. The stationary measure of a vertex may not depend only on its in-degree, but also on its
in-coming neighbourhood, and actually on the whole graph. In a remarkable work, Bordenave et al.
[36] showed that random walks on random directed graphs with given (in- and out-) degrees exhibit the
cutoff phenomenon with high probability. They give the precise location and window, and show that the
rescaled distance inside the cutoff window converges to the Gaussian tail function. They also obtain a
precise description of the stationary measure.

In many practical situations, the use of non-backtracking random walks seems natural. By cancelling
the noise created by backtracks, non-backtracking random walks seem to be more tightly related to the
structure of the graph itself. For instance, the analysis of the non-backtracking matrix turns out to be
decisive in problems related to community detection in the Stochastic Block Model [37, 56, 120, 124].

Berestycki et al. [28] established the cutoff (starting from a typical vertex) for the srw on random
graphs with given degrees. A natural question is to determine whether, as in the regular case, the nbrw
still mixes faster than the srw. Indeed, as noted above, in the d-regular case, all the paths of length
t have the same probability, and mixing occurs when the walk has reached a typical distance from its
origin. In this case, the srw is clearly slowed down, and the delay factor is precisely its speed, (d− 2)/d.
In the non-regular case, different paths can have very different weights, and mixing occurs when t is
large enough to see paths with a “reasonable” weight. In addition to the speed effect, heterogeneous
degrees create another opposite effect: the disadvantage of the nbrw would be to be “trapped” in some
low-degree paths, whereas the backtracking possibility of the srw would prevent it from this kind of
pitfall. The srw is in a way smarter: when it enters a low-degree part of the graph, it has relatively more
chance to backtrack and go explore higher-degree parts of the graph, which are given more weight by the
stationary distribution. It turns out that this second effect is not strong enough to compensate for the
slowdown of the SRW, and that, even in the non-regular case, non-backtracking random walks mix faster.
This confirms the practical advantage of non-backtracking random walks: not only do they discover the
graph faster (at least on random d-regular graphs, Cooper and Frieze [50] showed that the cover time of
nbrw is asymptotic to n logn, which is a general lower bound for the cover time, whereas the one of srw
is larger by a factor d−1

d−2 ), but they also get faster to stationarity. This problem is addressed in Section
3.

2 Cutoff for non-backtracking random walks

Given a finite set V and a function deg : V → {2, 3, . . .} such that

N :=
∑
v∈V

deg(v) (2.1)

is even, we construct a graph G with vertex set V and degrees (deg(v))v∈V as follows. We form a set X
by “attaching” deg(v) half-edges to each vertex v ∈ V :

X := {(v, i) : v ∈ V, 1 ≤ i ≤ deg(v)}.

We then simply choose a pairing π on X (i.e., an involution without fixed points), and interpret every
pair of matched half-edges {x, π(x)} as an edge between the corresponding vertices. Loops and multiple
edges are allowed.

The non-backtracking random walk (nbrw) on the graph G = G(π) is a discrete-time Markov chain
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Figure 2.1 – A set of half-edges X , a pairing π and the resulting graph G

with state space X and transition matrix

P (x, y) =
{

1
deg(π(x)) if y is a neighbour of π(x)
0 otherwise.

In this definition and throughout the paper, two half-edges x = (u, i) and y = (v, j) are called neighbours
if u = v and i 6= j, and we let deg(x) := deg(u) − 1 denote the number of neighbours of the half-edge
x = (u, i). In words, the chain moves at every step from the current state x to a uniformly chosen
neighbour of π(x).

x (x)
u v

Figure 2.2 – The non-backtracking moves from x (in red)

Note that the matrix P is symmetric with respect to π: for all x, y ∈ X ,

P (π(y), π(x)) = P (x, y). (2.2)

In particular, P is doubly stochastic: the uniform law on X is invariant for the chain. The worst-case
total-variation distance to equilibrium at time t ∈ N is

D(t) := max
x∈X
Dx(t), where Dx(t) := 1

2
∑
y∈X

∣∣∣∣P t(x, y)− 1
N

∣∣∣∣ . (2.3)

This quantity is non-increasing in t, and the number of transitions that have to be made before it falls
below a given threshold 0 < ε < 1 is the mixing time:

tmix(ε) := inf {t ∈ N : D(t) < ε} .

2.1 Statement and comments

We are concerned with the typical profile of the function t 7→ D(t) under the so-called configuration
model (see e.g., [154]), i.e. when the pairing π is chosen uniformly at random among the (N − 1)!!
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Figure 2.3 – Distance to stationarity along time for the nbrw on a random graph with 106 degree
3−vertices and 106 degree 4−vertices

possible pairings on X . In order to study large-size asymptotics, we let the vertex set V and degree
function deg : V → N depend on an implicit parameter n ∈ N, which we omit from the notation for
convenience. The same convention applies to all related quantities, such as N or X . All asymptotic
statements are understood as n → ∞. Our interest is in the sparse regime, where the number N of
half-edges diverges at a faster rate than the maximum degree. Specifically, we assume that

∆ := max
v∈V

deg(v) = No(1), (2.4)

As the behaviour of the nbrw at degree-2 vertices is deterministic, we assume that

min
v∈V

deg(v) ≥ 3. (2.5)

Remarkably enough, the asymptotics in this regime depends on the degrees through two simple statistics:
the mean logarithmic degree of an half-edge

µ := 1
N

∑
v∈V

deg(v) log (deg(v)− 1) , (2.6)

and the corresponding variance

σ2 := 1
N

∑
v∈V

deg(v) {log (deg(v)− 1)− µ}2 . (2.7)

We will also need some control on the third absolute moment:

% := 1
N

∑
v∈V

deg(v) |log (deg(v)− 1)− µ|3 . (2.8)
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It might help the reader to think of µ, σ and % as being fixed, or bounded away from 0 and ∞. However,
we only impose the following (much weaker) condition:

σ2

µ3 >>
(log logN)2

logN and σ3

%
√
µ
>>

1√
logN

. (2.9)

Our main result states that on most graphs with degrees (deg(v))v∈V , the nbrw exhibits a remarkable
behaviour, visible on Figure 2.3 and known as a cutoff : the distance to equilibrium remains close to 1
for a rather long time, roughly

t? := logN
µ

, (2.10)

and then abruptly drops to nearly 0 over a much shorter time scale 2, of order

ω? :=

√
σ2 logN
µ3 . (2.11)

Moreover, the cutoff shape inside this window approaches a surprisingly simple function Φ: R → [0, 1],
namely the tail distribution of the standard normal:

Φ(λ) := 1
2π

∫ ∞
λ

e−
u2
2 du.

It is remarkable that this limit shape does not depend at all on the precise degrees.

Theorem 2.1 (Cutoff for the nbrw on sparse graphs). For every 0 < ε < 1,

tmix(ε)− t?
ω?

P−→ Φ−1(ε).

Equivalently, for t = t? + λω? + o(w?) with λ ∈ R fixed, we have D(t) P−→ Φ(λ).

It is interesting to compare this with the d−regular case (i.e., deg : V → N constant equal to d) studied
by Lubetzky and Sly [113]: by a remarkably precise path counting argument, they establish cutoff within
constantly many steps around t? = logN/ log(d− 1). To appreciate the effect of heterogeneous degrees,
recall that µ and σ are the mean and variance of logZ, where Z is the degree of a uniformly sampled
half-edge. Now, by Jensen’s Inequality,

t? ≥ logN
logE[Z] ,

and the less concentrated Z, the larger the gap. The right-hand side is a well-known characteristic length
in G, namely the typical inter-point distance (see e.g., [155]). One notable effect of heterogeneous degrees
is thus that the mixing time becomes significantly larger than the natural graph distance. A heuristic
explanation is as follows: in the regular case, all paths of length t between two points are equally likely
for the nbrw, and mixing occurs as soon as t is large enough for many such paths to exist. In the
non-regular case however, different paths have very different weights, and most of them actually have a
negligible chance of being seen by the walk. Consequently, one has to make t larger in order to see paths
with a “reasonable” weight. Even more remarkable is the impact of heterogeneous degrees on the cutoff
width ω?, which satisfies ω? >> log logN against ω? = Θ(1) in the regular case. Finally, the gaussian

2. The fact that ω? << t? follows from condition (2.4).
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limit shape Φ itself is specific to the non-regular case and is directly related to the fluctuations of degrees
along a typical trajectory of the nbrw.

Remark 2.1 (Simple graphs). A classical result by Janson [95] asserts that the graph produced by the
configuration model is simple (no loops or multiple edges) with probability asymptotically bounded away
from 0, as long as ∑

v∈V
deg(v)2 = O(N) . (2.12)

Moreover, conditionally on being simple, it is uniformly distributed over all simple graphs with degrees
(deg(v))v∈V . Thus, every property which holds whp under the configuration model also holds whp for
the uniform simple graph model. In particular, under (2.12), the conclusion of Theorem 2.1 extends to
simple graphs.

Remark 2.2 (IID degrees). A common setting consists in generating an infinite iid degree sequence
(deg(v))v∈N from some fixed degree distribution Q and then restricting it to the index set V = {1, . . . , n}
for each n ≥ 1. Let D denote a random integer with distribution Q. Assuming that

P (D ≤ 2) = 0, Var(D) > 0, and E
[
eθD

]
<∞ for some θ > 0,

ensures that the conditions (2.4), (2.5) and (2.9) hold almost surely. Thus, Theorem 2.1 applies with the
parameters µ, σ and N now being random. But the latter clearly concentrate around their deterministic
counterparts, in the following sense:

N = nE[D] +OP

(
n

1
2

)
µ = µ? +OP

(
n−

1
2

)
with µ? = E[D log(D − 1)]/E[D]

σ = σ? +OP

(
n−

1
2

)
with σ2

? = E
[
D {log(D − 1)− µ?}2

]
/E[D].

Those error terms are small enough to allow one to substitute n, µ?, σ? for N,µ, σ without affecting the
convergence stated in Theorem 2.1.

2.2 Proof outline

The proof of Theorem 2.1 is divided into two (unequal) halves: for

t = t? + λw? + o(w?), (2.13)

with λ ∈ R fixed, we show that

min
x∈X

E [Dx (t)] ≥ Φ(λ)− o(1) , (2.14)

max
x∈X
Dx (t) ≤ Φ(λ) + oP(1). (2.15)

Note that this actually shows that the maximization over all possible states in (2.3) is irrelevant. The
lower bound (2.14) is proved in Section 2.3.1. The difficult part is the upper bound (2.15), due to
the worst-case maximization: our approximations for a given initial state x ∈ X need to be valid with
probability 1− o(1/N), so that we may then take union bound. Our starting point is the key identity

P t(x, π(y)) =
∑

(u,v)∈X×X

P t/2(x, u)P t/2(y, v)1{π(u)=v} , (2.16)
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which follows from the symmetry (2.2). As a first approximation, let us assume that the balls of radius
t/2 around x and y consist of disjoint trees, as in Figure 2.4.

x
y

t/2 t/2

Figure 2.4 – The tree-approximation

This is made rigorous by a particular exposure process described in Section 2.3.2. Then the weight
w(u) := P t/2(x, u) (resp. w(v) := P t/2(y, v)) can be unambiguously written as the inverse product of
degrees along the unique path from x to u (resp. y to v). A second approximation consists in eliminating
those paths whose weight exceeds some threshold θ > 0 (the correct choice turns out to be θ ≈ 1

N ):

P t(x, π(y)) ≈
∑
u,v

w(u)w(v)1(w(u)w(v)≤θ)1(π(u)=v) .

Conditionally on the two trees of height t/2, this is a weighted sum of weakly dependent Bernoulli
variables, and the large-weight truncation should prevent it from deviating largely from its expectation.
We make this argument rigorous in Lemma 2.5, using Stein’s method of exchangeable pairs. Provided
the exposure process did not reveal too many pairs of matched half-edges, the conditional expectation of
1(π(u)=v) remains close to 1/N , and we obtain the new approximation

NP t(x, π(y)) ≈
∑
u,v

w(u)w(v)1(w(u)w(v)≤θ) .

Now, the right-hand side corresponds to the quenched probability that the product of weights seen
by two independent nbrws of length t/2, one starting from x and the other from y, does not exceed θ.
The last step consists in approximating those trajectories by independent uniform samples X?

1 , . . . , X
?
t

from X : ∑
u,v

w(u)w(v)1w(u)w(v)≤θ ≈ P
[

1
deg(X?

1 ) · · ·
1

deg(X?
t ) ≤ θ

]

≈ P

[∑t
k=1(µ− log deg(X?

k))
σ
√
t

≤ µt+ log θ
σ
√
t

]
≈ 1− Φ(λ) ,

by the central limit theorem (recall that θ ≈ 1/N and t ≈ t? + λω?). Consequently,

Dx(t) =
∑
y

(
1
N
− P t(x, π(y))

)
+
≈ Φ(λ) ,
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as desired. This argument is made rigorous in Lemmas 2.6, 2.7 and 2.8.

2.3 Proof details

2.3.1 The lower bound

Fix t ≥ 1, and a parameter θ ∈ (0, 1). Choose two distinct states x, y ∈ X uniformly at random. Let
P tθ(x, y) denote the contribution to P t(x, y) from paths having weight less than θ. Note that P tθ(x, y) <
P t(x, y) if and only if some path of length t from x to y has weight larger than θ, implying in particular
that P t(x, y) > θ. Thus,

1
N
− P tθ(x, y) ≤

(
1
N
− P t(x, y)

)
+

+ 1
N

1P t(x,y)>θ.

Summing over all y ∈ X and observing that there can not be more than 1/θ half-edges y ∈ X satisfying
P t(x, y) > θ, we obtain

1−
∑
y∈X

P tθ(x, y) ≤ Dx(t) + 1
θN

.

Now, the left-hand side is the quenched probability (i.e., conditional on the pairing π) that a nbrw
{Xk}0≤k≤t on G(π) starting at x satisfies

∏t
k=1

1
deg(Xk) > θ. Taking expectation w.r.t. the pairing, we

arrive at

P

(
t∏

k=1

1
deg(Xk) > θ

)
≤ E[Dx(t)] + 1

θN
, (2.17)

where the average is now taken over both the nbrw and the pairing (annealed law). A useful property
of the uniform pairing is that it can be constructed sequentially, the pairs being revealed along the way,
as we need them. We exploit this degree of freedom to generate the walk {Xk}k≥0 and the pairing
simultaneously, as follows. Initially, all half-edges are unpaired and X0 = x; then at each time k ≥ 1,

(i) if Xk−1 is unpaired, we pair it with a uniformly chosen other unpaired half-edge; otherwise, π(Xk−1)
is already defined and no new pair is formed.

(ii) in both cases, we let Xk be a uniformly chosen neighbour of π(Xk−1).

The sequence {Xk}k≥0 is then exactly distributed according to the annealed law. Now, if we sample
uniformly from X instead of restricting the random choice made at (i) to unpaired half-edges, then the
uniform neighbour chosen at step (ii) also has the uniform law on X . This creates a coupling between the
process {Xk}k≥1 and a sequence {X?

k}k≥1 of iid samples from X , valid until the first time T where the
uniformly chosen half-edge or its uniformly chosen neighbour is already paired. As there are less than 2k
paired half-edges by step k, a crude union-bound yields

P (T ≤ t) ≤ 2t2

N
.

Consequently, ∣∣∣∣∣P
(

t∏
k=1

1
deg(Xk) > θ

)
− P

(
t∏

k=1

1
deg(X?

k) > θ

)∣∣∣∣∣ ≤ 2t2

N
. (2.18)
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On the other hand, since {X?
1 , . . . , X

?
t } are iid, Berry-Esseen’s inequality implies∣∣∣∣∣P

(
t∏

k=1

1
deg(X?

k) > θ

)
− Φ

(
µt+ log θ
σ
√
t

)∣∣∣∣∣ ≤ %

σ3
√
t
. (2.19)

We may now combine (2.17), (2.18), (2.19) to obtain

E[Dx(t)] ≥ Φ
(
µt+ log θ
σ
√
t

)
− 1
θN
− 2t2

N
− %

σ3
√
t
.

With t as in (2.13) and θ = (logN)/N , the right-hand side is Φ(λ) + o(1), thanks to our assumptions on
µ, σ, %. This establishes the lower bound (2.14).

2.3.2 The upper-bound

Following Lubetzky and Sly [113], we call x ∈ X a root (written x ∈ R) if the (directed) ball of radius
r centered at x (denoted by Bx) is a tree, where

r :=
⌊

logN
10 log ∆ ∧ log logN

⌋
. (2.20)

Note that 1 << r << ω? by assumptions (2.4) and (2.9). The first proposition below shows that we may
restrict our attention to paths between roots. The second proposition provides a good control on such
paths.

Proposition 2.3 (Roots are quickly reached).

max
x∈X

P r(x,X \ R) P−→ 0.

Proposition 2.4 (Roots are well inter-connected). For t as in (2.13),

min
x∈R

min
y∈R\Bx

P t(x, π(y)) ≥ 1− Φ(λ)− oP(1)
N

.

Let us first see how those results imply the upper-bound (2.15). Observe that

D(t+ r) ≤ max
x∈X

P r (x,X \ R) + max
x∈R
Dx(t) .

The first term is oP(1) by Proposition 2.3. For the second one, we write

Dx(t) =
∑

y∈R\Bx

(
1
N
− P t(x, π(y))

)
+

+
∑

y∈Bx∪(X\R)

(
1
N
− P t(x, π(y))

)
+
.

Proposition 2.4 ensures that the first sum is bounded by Φ(λ) + oP(1) uniformly in x ∈ R. To see that
the second sum is oP(1) uniformly in x ∈ R, it suffices to bound its summands by 1/N and observe that
|Bx| ≤ ∆r = o(N) by (2.20), while

|X \ R| =
∑
x∈X

P r(x,X \ R) = oP(N).

(The first equality because P is doubly stochastic, the second by Proposition 2.3.)

Proof of Proposition 2.3. Define R :=
⌊

logN
5 log ∆

⌋
and fix x ∈ X . The ball of radius R around x can
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be generated sequentially, its half-edges being paired one after the other with uniformly chosen other
unpaired half-edges, until the whole ball has been paired. Observe that at most k = ∆((∆−1)R−1)

∆−2 pairs
are formed. Moreover, for each of them, the number of unpaired half-edges having an already paired
neighbour is at most ∆(∆ − 1)R and hence the conditional chance of hitting such a half-edge (thereby
creating a cycle) is at most p = ∆(∆−1)R−1

N−2k−1 . Thus, the probability that more than one cycle is found is
at most

(kp)2 = O

(
(∆− 1)4R

N2

)
= o

(
1
N

)
.

Summing over all x ∈ X (union bound), we obtain that with high probability, no ball of radius R in G(π)
contains more than one cycle.

To conclude the proof, we now fix a pairing π with the above property, and we prove that the nbrw
on G(π) starting from any x ∈ X satisfies

P (Xt is not a root) ≤ 21−t, (2.21)

for all t ≤ R− r. The claim is trivial if the ball of radius R around x is acyclic. Otherwise, it contains a
single cycle C, by assumption. Write d(x, C) for the minimum length of a non-backtracking path from x

to some z ∈ C. The non-backtracking property ensures that if d(Xt, C) < d(Xt+1, C) for some t < R− r,
then Xt+1, Xt+2, . . . , XR−r are all roots. Indeed, as soon as the nbrw makes a step away from C on one
of the disjoint trees rooted to C, it can only go further away from it. By (2.5), the conditional chance
that d(Xt+1, C) = d(Xt, C) + 1 given the past is at least 1/2 (unless d(Xt, C) = 1, which can only happen
once). This shows (2.21). We then specialize to t = r.

The remainder of the section is devoted to the proof of Proposition 2.4. By union bound, it is enough
to fix two distinct half-edges x, y ∈ X and establish that, for every ε > 0,

P
(
x ∈ R, y ∈ R \ Bx, P t(x, π(y)) ≤ 1− Φ(λ)− ε

N

)
= o

(
1
N2

)
. (2.22)

To do so, we shall analyse a special procedure that generates a uniform pairing on X together with a
two-tree forest F keeping track of certain paths from x and from y. Initially, all half-edges are unpaired
and F is reduced to its two ancestors, x and y. We then iterate the following three steps:

1. An unpaired half-edge z ∈ F is selected according to some rule (see below).

2. z is paired with a uniformly chosen other unpaired half-edge z′.

3. If neither z′ nor any of its neighbours was already in F, then all neighbours of z′ become children
of z in the forest F.

The exploration stage stops when no unpaired half-edge is compatible with the selection rule. We then
complete the pairing π by matching all the remaining unpaired half-edges uniformly at random: this is
the completion stage.

The condition in step 3 ensures that F remains a forest: any z ∈ F determines a unique sequence
(z0, . . . , zh) in F such that z0 ∈ {x, y}, zi is a child of zi−1 for each 1 ≤ i ≤ h, and zh = z. We shall
naturally refer to h and z0 as the height and ancestor of z, respectively. We also define the weight of z as

w(z) :=
h∏
i=1

1
deg(zi)

.

Note that this quantity is the quenched probability that the sequence (z0, . . . , zh) is realized by a nbrw
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on G starting from z0. In particular,

w(z) ≤ Ph(z0, z). (2.23)

Our rule for step 1 consists in selecting the smallest half-edge (according to the lexicographic order on
X ) among all unpaired z ∈ F with height h(z) < t/2 and weight w(z) > wmin, where

wmin := N−
2
3 . (2.24)

The role of this parameter is to limit the number of pairs formed at the exploration stage, see (2.28)
below. As outlined in Section 2.2, we shall be interested in

W :=
∑

(u,v)∈Hx×Hy

w(u)w(v)1w(u)w(v)≤θ,

where Hx (resp. Hy) denotes the set of unpaired half-edges with height t
2 and ancestor x (resp. y) in F

at the end of the exploration stage, and where

θ := 1
N(logN)2 . (2.25)

Write W for the quantity obtained by replacing ≤ with > in W, so that

W + W =
∑

(u,v)∈Hx×Hy

w(u)w(v) ≥
∑

z∈Hx∪Hy

w(z)− 1,

thanks to the inequality ab ≥ a+ b− 1 for a, b ∈ [0, 1]. Now, let U denote the set of unpaired half-edges
in F. By construction, at the end of the exploration stage, each z ∈ U must have height t/2 or weight
less than wmin, so that ∑

z∈Hx∪Hy

w(z) ≥
∑
z∈U

w(z)−
∑
z∈F

w(z)1(w(z)<wmin).

Therefore, (2.22) is a consequence of the following four technical lemmas.

Lemma 2.5. For every ε > 0,

P
(
P t(x, π(y)) ≤ W− ε

N

)
= o

(
1
N2

)
.

Lemma 2.6. For every ε > 0,

P

(∑
z∈F

w(z)1(w(z)<wmin) > ε

)
= o

(
1
N2

)
.

Lemma 2.7. For every ε > 0,

P
(
W > Φ(λ) + ε

)
= o

(
1
N2

)
.
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Lemma 2.8. For every ε > 0,

P

(
x ∈ R, y ∈ R \ Bx,

∑
z∈U

w(z) < 2− ε
)

= o

(
1
N2

)
.

Proof of Lemma 2.5. Combining the representation (2.16) with the observation (2.23) yields

P t(x, π(y)) ≥
∑

(u,v)∈Hx×Hy

w(u)w(v)1w(u)w(v)≤θ1π(u)=v.

The right-hand side can be interpreted as the weight of the uniform pairing chosen at the completion
stage, provided we define the weight of a pair (u, v) as

w(u)w(v)1u∈Hx1v∈Hy1w(u)w(v)≤θ. (2.26)

With this interpretation, Lemma 2.5 becomes a special case of the following concentration inequality
(which we apply conditionally on the exploration stage, with I being the set of half-edges that did not
get paired, and weights given by (2.26)).

Lemma 2.9. Let I be an even set, {wi,j}(i,j)∈I×I an array of non-negative weights, and π a uniform
random pairing on I. Then for all a > 0,

P

(∑
i∈I

wi,π(i) ≤ m− a

)
≤ exp

{
− a2

4θm

}
,

where m = 1
|I|−1

∑
i∈I
∑
j 6=i wi,j and θ = maxi 6=j(wi,j + wj,i).

Note that in our case, m = W
|I|−1 . Lemma 2.5 follows easily by taking a = ε

|I|−1 and observing that
|I| − 1 ≤ N and W ≤ 1.

Proof of Lemma 2.9. We exploit the following concentration result for Stein pairs due to Chatterjee [46]
(see also Ross [143, Theorem 7.4]): let Y, Y ′ be bounded variables satisfying

(i) (Y, Y ′) d= (Y ′, Y );

(ii) E[Y ′ − Y |Y ] = −λY ;

(iii) E[(Y ′ − Y )2|Y ] ≤ λ(bY + c),

for some constants λ ∈ (0, 1) and b, c ≥ 0. Then for all a > 0,

P (Y ≤ −a) ≤ exp
{
−a

2

c

}
and P (Y ≥ a) ≤ exp

{
− a2

ab+ c

}
.

We shall only use the first inequality. Consider the centered variable

Y :=
∑
i∈I

wi,π(i) −m,

and let Y ′ be the corresponding quantity for the pairing π′ obtained from π by performing a random
switch: two indices i, j are sampled uniformly at random from I without replacement, and the pairs
{i, π(i)}, {j, π(j)} are replaced with the pairs {i, j}, {π(i), π(j)}. This changes the weight by exactly

∆i,j := wi,j + wj,i + wπ(i),π(j) + wπ(j),π(i) − wi,π(i) − wπ(i),i − wj,π(j) − wπ(j),j . (2.27)
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It is not hard to see that (π, π′) d= (π′, π), so that (i) holds. Moreover,

E[Y ′ − Y |π] = 1
|I|(|I| − 1)

∑
i∈I

∑
j 6=i

∆i,j

= 4
|I|(|I| − 1)

∑
i∈I

∑
j 6=i

wi,j −
4
|I|
∑
i∈I

wi,π(i)

= − 4
|I|
Y.

Regarding the square ∆2
i,j = |∆i,j ||∆i,j |, we may bound the first copy of |∆i,j | by 2θ and the second by

changing all minus signs to plus signs in (2.27), yielding

E
[
(Y ′ − Y )2|π

]
= 1
|I|(|I| − 1)

∑
i∈I

∑
j 6=i

∆2
i,j

≤ 8θ
|I|(|I| − 1)

∑
i∈I

∑
j 6=i

wi,j + 8θ
|I|
∑
i∈I

wi,π(i)

= 8θ
|I|

(2m+ Y ) .

Note that taking conditional expectation with respect to Y does not affect the right-hand side. Thus,
(ii) and (iii) hold with λ = 4

|I| , b = 2θ and c = 4mθ.

Proof of Lemma 2.6. We may fix z0 ∈ {x, y} and restrict our attention to the halved sum

Z :=
∑
z∈F

w(z)1(w(z)<wmin)1(z has ancestor z0).

Consider m = blogNc independent nbrws on G(π) starting at z0, each being killed as soon as its weight
falls below wmin, and write A for the event that their trajectories form a tree of height less than t/2.
Clearly, P (A|π) ≥ Zm. Taking expectation and using Markov inequality, we deduce that

P (Z > ε) ≤ P (A)
εm

,

where the average is now taken over both the walks and the pairing. Recalling that m = dlogNe, it is
more than enough to establish that P(A) = (o(1))m . To do so, we generate the m killed nbrws one after
the other, revealing the underlying pairs along the way, as described in Section 2.3.1. Given that the first
` − 1 walks form a tree of height less than t/2, the conditional chance that the `th walk also fulfils the
requirement is o(1), uniformly in 1 ≤ ` ≤ m. Indeed,

— either its weight falls below η = (1/logN)2 before it ever leaves the graph spanned by the first
` − 1 trajectories and reaches an unpaired half-edge: thanks to the tree structure, there are at
most `− 1 < m possible trajectories to follow, each having weight at most η, so the chance is less
than

mη = o(1).

— or the remainder of its trajectory after the first unpaired half-edge has weight less than ∆wmin/η:
this part consists of at most t/2 half-edges which can be coupled with uniform samples from X
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for a total-variation cost of mt2/N , as in Section 2.3.1. Thus, the conditional chance is at most

mt2

N
+ P

 t/2∏
k=1

deg(X?
k) ≥ η

∆wmin

 = o(1),

by Chebychev’s inequality, since log
(

η
∆wmin

)
− µt

2 >> σ
√

t
2 .

Proof of Lemma 2.7. Set m = d(logN)2e. On G(π), let X(1), . . . , X(m) and Y (1), . . . , Y (m) be 2m in-
dependent nbrws of length t/2 starting at x and y respectively. Let B denote the event that their
trajectories form two disjoint trees and that for all 1 ≤ k ≤ m,

t/2∏
`=1

1
deg(X(k)

` )

t/2∏
`=1

1
deg(Y (k)

` )
> θ.

Then clearly, P (B|π) ≥W
m. Averaging w.r.t. the pairing π, we see that

P
(
W > Φ(λ) + ε

)
≤ P (B)

(Φ(λ) + ε)m .

Thus, it is enough to establish that P(B) ≤ (Φ(λ) + o(1))m. We do so by generating the 2m walks
X(1), Y (1), . . . , X(m), Y (m) one after the other along with the underlying pairing, as above. Given that
X(1), Y (1), . . . , X(`−1), Y (`−1) already satisfy the desired property, the conditional chance that X(`), Y (`)

also does is at most Φ(λ) + o(1), uniformly in 1 ≤ ` ≤ m. Indeed,
— either one of the two walks attains length s = d4 log logNe before leaving the graph spanned by

the first 2(` − 1) trajectories and reaching an unpaired half-edge: thanks to the tree structure,
there are at most ` − 1 < m possible trajectories to follow for each walk, each having weight at
most 2−s by (2.5), so the conditional chance is at most

2m2−s = o(1).

— or at least t− 2s unpaired half-edges are encountered, and the product of their degrees falls below
1
θ with conditional probability at most

4mt2

N
+ P

(
t−2s∏
k=1

deg(X?
k) < 1

θ

)
= Φ(λ) + o(1),

by the same coupling as above and Berry-Essen’s inequality (2.19).

Proof of Lemma 2.8. Let τ denote the (random) number of pairs formed during the exploration stage.
For k ≥ 0, we let Uk denote the set of unpaired half-edges in the forest after k∧τ pairs have been formed,
and we consider the random variable

Wk :=
∑
z∈Uk

w(z).

Initially W0 = 2, and this quantity either stays constant or decreases at each stage, depending on whether
the condition appearing in step 3 is satisfied or not. More precisely, denoting by zk (resp. z′k) the half-edge
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selected at step 1 (resp. chosen at step 2) of the kth pair, we have for all k ≥ 1,

Wk = Wk−1 − 1(k≤τ)

(
w(zk)1(z′

k
∈U+

k−1) + w(z′k)1(z′
k
∈Uk−1)

)
,

where U+
k−1 is Uk−1 together with the unpaired neighbours of x and y. Now, let {Gk}k≥0 be the nat-

ural filtration associated with the exploration stage. Note that τ is a stopping time, that w(zk) is
Gk−1−measurable, and that the conditional law of z′k given Gk−1 is uniform on X\{z1, . . . , zk, z

′
1 . . . , z

′
k−1}.

Thus,

E[Wk −Wk−1|Gk−1] = −1(k≤τ)
w(zk)(|U+

k−1| − 2) +Wk−1

N − 2k + 1 .

E
[
(Wk −Wk−1)2|Gk−1

]
= 1(k≤τ)

w(zk)2(|U+
k−1| − 4) + 2w(zk)Wk−1 +

∑
z∈Uk−1

w(z)2

N − 2k + 1 .

To bound those quantities, observe that each half-edge in Uk−1 has weight at least w(zk)
∆ because its

parent has been selected at an earlier iteration and our selection rule ensures that the quantity w(zk) is
non-increasing with k. Consequently,

|Uk−1|
w(zk)

∆ ≤
∑

z∈Uk−1

w(z) ≤ 2.

Combining this with the bound |U+
k−1| ≤ |Uk−1|+ 2∆, we arrive at

E[Wk −Wk−1|Gk−1] ≥ −1(k≤τ)
4∆

N − 2k + 1

E
[
(Wk −Wk−1)2|Gk−1

]
≤ 1(k≤τ)

4∆w(zk) + 2
N − 2k + 1 .

Now recall that w(zk) ≥ wmin and h(zk) < t
2 as per our selection rule, implying

wminτ ≤
∑
k≥1

w(zk)1(τ≥k) ≤
∑
z∈F

w(z)1(h(z)< t
2 ) ≤ t. (2.28)

The right-most inequality follows from the fact that the total weight at a given height in F is at most 2
(the total weight being preserved from a parent to its children, if any). We conclude that

τ∑
k=1

E[Wk −Wk−1|Gk−1] ≥ − 4∆t
wminN − 2t := −m

τ∑
k=1

E
[
(Wk −Wk−1)2|Gk−1

]
≤ 4∆twmin + 2t

Nwmin − 2t := v.

Now, fix ε > 0 and consider the martingale {Mk}k≥0 defined by M0 = 0 and

Mk :=
k∑
i=1

{
(Wi−1 −Wi) ∧ ε− E

[
(Wi−1 −Wi) ∧ ε

∣∣Gi−1
]}
.

Then the increments of {Mk}k≥0 are bounded by ε by construction, and the above computation guarantees
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that almost-surely,

τ∑
k=1

E
[
(Mk −Mk−1)2 ∣∣Gk−1

]
≤ v = N−

1
3 +o(1).

Thus, the martingale version of Bennett’s inequality due to Freedman [74] yields

P (Mτ > 7ε) ≤
(

ev

v + 7ε2

)7
= N−

7
3 +o(1). (2.29)

But on the event {x ∈ R, y ∈ R \ Bx}, all paths from the set {x, y} to itself must have length at least r,
and since r →∞, we must have asymptotically

{x ∈ R, y ∈ R \ Bx} ⊆
{

max
k

(Wk−1 −Wk) ≤ ε
}

⊆ {W0 −Wτ ≤Mτ +m}

With (2.29), this proves Lemma 2.8 since W0 −Wτ = 2−
∑
z∈U w(z) and m = o(1).

3 Comparing mixing times of simple and non-backtracking ran-
dom walks

In this section, we are interested in comparing the mixing times of the nbrw and srw on random
graphs with given degrees. We first present the result of Berestycki et al. [28], which establishes cutoff
for the srw starting from a typical point. Then, we relate the mixing time of each walk to its entropy on
a Galton-Watson tree whose offspring distribution is given by the law of deg(X), where X is a uniformly
chosen half-edge. This representation allows us to show that, from any given starting point, with high
probability, the nbrw mixes faster than the srw.

3.1 The simple random walk

Let G = (V,E) be a random uniform graph on a degree sequence (deg(v))v∈V . We let n = |V | and
N =

∑
v∈V deg(v). It will be convenient to define a random variable Z distributed as the out-degree of

a uniformly chosen half-edge. Equivalently, for all k ≥ 1,

P (Z = k) = (k + 1)|{v ∈ V, deg(v) = k + 1}|
N

.

We assume that Z ≥ 2 (that is, the degrees are larger than 3), and, as before, we let µ = E logZ.
Loosely speaking, the random walk on G can be coupled with a walk on a rooted augmented Galton-

Watson tree (T, ρ) with offspring distribution Z, i.e. a Galton-Watson tree where the root has stochas-
tically one more child. As the quantities involved are much easier to describe in the Galton-Watson
setting, this section will mostly consider srw and nbrw on (T, ρ), even if we do not really explain why
this coupling is relevant.

Consider a srw (Xt) on T started at X0 = ρ. As Z ≥ 2, (Xt) is transient and its loop-erased
trajectory defines a unique infinite ray ξ, whose distribution is called the harmonic measure of the walk:
this is the random location at which the walk escapes to ∞. Let ν be the speed of (Xt):

ν
a.s.= lim

t→∞

|Xt|
t

,

102



where, for x ∈ T , |x| denotes the graph-distance between x and ρ. Thanks to Lyons et al. [119], we have

ν = E
[
Z − 1
Z + 1

]
.

If ∂T denotes the boundary of T , i.e. the set of infinite rays of T starting from ρ, one can endow ∂T

with the following metric d: for all β, η ∈ ∂T , d(η, η) = 0, and, if β 6= η,

d(β, η) = e−|β∧η| ,

where β ∧ η is the youngest common ancestor of β and η, i.e. the vertex common to β and η which is
furthest from ρ. With this metric, the Hölder exponent of the harmonic measure at ξ, which is also its
Hausdorff dimension, is

d a.s.:= lim
t→∞

−1
t

logP(ξt ∈ ξ) . (3.1)

With this notation, Berestycki et al. [28] showed that the srw on G starting from a fixed vertex has
cutoff at time logn

νd with window
√

logn.

Theorem 3.1 (Berestycki et al. [28]). Assume that the variable Z satisfies

EZ ≤ K, and 2 ≤ Z ≤ exp
(

(logn)1/2−δ
)
, (3.2)

for some absolute constants K, δ > 0. For v ∈ V , let Dv(t) denote the total-variation distance to
equilibrium at time t for the srw started at v. Then, for all ε > 0, there exists γ > 0, such that, with
high probability, the random walk started from a uniformly chosen vertex v satisfies

Dv
(

logn
νd − γ

√
logn

)
> 1− ε ,

and

Dv
(

logn
νd + γ

√
logn

)
< ε .

To give a (very) imprecise intuition of the mixing time location of srw, one may interpret the definition
of d at (3.1) as follows: the probability that the random walk is where it is, given that it is at distance
k from the root, is approximately e−dk. Now, the distance at time t is about νt. Hence, the probability
that srw is where it is at time t is approximately e−dνt. For this probability to be close to 1/n, one has
to take t ≈ logn

νd .
Theorem 3.1 implies in particular that for all ε > 0, there exists γ > 0 such that, with high probability

max
v∈V
Dv
(

logn
νd − γ

√
logn

)
> 1− ε .

Hence, for all ε > 0, the mixing time tsrw
mix (ε) (from the worst starting point) is larger than (1+oP(1)) logn

νd . 3

Combining Theorems 2.1 and 3.1, we have,

tnbrw
mix (ε) = (1 + oP(1)) logn

µ
and tsrw

mix (ε) ≥ (1 + oP(1)) logn
νd .

3. In an ongoing work with Eyal Lubetzky and Yuval Peres, we are trying to obtain the cutoff phenomenon for srw from
the worst starting point, which should be the same as from a typical point.
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One may first observe that, as for the nbrw, allowing heterogeneous degrees also slows down the
mixing of the srw, compared to the regular case. Indeed, Lyons et al. [119] showed that, as soon as Z is
not constant,

d < logEZ . (3.3)

This remarkable inequality is referred to as the dimension drop of the harmonic measure: logEZ is the
Hausdorff dimension of ∂T , the boundary of T . Hence inequality (3.3) means that, as n → ∞, the
harmonic measure at level n is supported on an exponentially small fraction of the vertices. In particular,
it implies that

tsrw
mix ≥ logn

ν logEZ .

The right-hand side corresponds to the time when the srw reaches distance logn
logEZ from the origin. Hence,

as in the non-backtracking case, mixing occurs later than the time it takes to the walk to reach the typical
graph-distance from its starting point.

A natural question is to compare tsrw
mix and tnbrw

mix . Does the nbrw mix faster? In the regular case,
this was answered by Lubetzky and Sly [113]: the srw is clearly slowed down, and the delay factor is
precisely the inverse of the speed on a d-regular tree, d/(d − 2). In the non-regular case, the answer is
much less clear. There is still the speed effect which gives an advantage to the nbrw. But now, another
effect comes into play: when the nbrw enters a low-degree path, it is trapped in it, whereas, on such
paths, the srw has relatively more chance to backtrack and escape those low-degree paths in favour of
higher-degree paths. The srw would naturally go to high-degree vertices, which have a higher stationary
distribution.

It turns out that the speed effect still prevails and that, on random graphs with given degrees satisfying
(3.2), with high probability, the nbrw mixes faster (actually, even started from the worst vertex, nbrw
mixes faster than srw started from a typical point).

Theorem 3.2. Assume Z ≥ 2 and E[(logZ)2] <∞. We have

νd < µ .

3.2 Entropies on Galton-Watson trees

The proof of Theorem 3.2 relies on the interpretation of µ (resp. νd) as the limit entropy of the nbrw
(resp. srw) on Galton-Watson tree with offspring distribution Z.

As above, let (T, ρ) be a rooted augmented Galton-Watson tree with offspring distribution Z (except
the root ρ which has offspring distribution Z + 1). Let (Xt) and (Yt) be respectively a srw and a nbrw
on T started at ρ. Conditionally on (T, ρ), let H(Xt) = H(T,ρ)(Xt) be the entropy of the srw on T at
time t, i.e.

H(Xt) =
∑
x∈T

Pρ[Xt = x] log 1
Pρ[Xt = x] ,

and let hXt = E[H(Xt)]. Similarly, let H(Yt) = H(T,ρ)(Yt) be the entropy of the nbrw on T at time t,
i.e.

H(Yt) =
∑
x∈T

Pρ[Yt = x] log 1
Pρ[Yt = x] ,
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and let hYt = E[H(Yt)].
One has

µ
a.s.= lim

t→∞

H(Yt)
t

and νd a.s.= lim
t→∞

H(Xt)
t

, (3.4)

and
µ = lim

t→∞

hYt
t

and νd = lim
t→∞

hXt
t
. (3.5)

(see Lyons et al. [119, Theorem 9.7] for the identity for νd). The fact that hYt /t→ µ is easily obtained:
denote by Tk the set of vertices of T at distance k from the root, and let Fk be the σ-field generated by
the restriction of T up to level k. Also, if y is a child of x in T , we write y ≺ x, and, if x ∈ T , we write
Zx the degree −1 of x (if x 6= ρ, then Zx is the number of children of x and the number of children of
the root ρ is Zρ + 1). We have, for all k ≥ 1,

H(Yk+1) =
∑

y∈Tk+1

Pρ(Yk+1 = y) log 1
Pρ(Yk+1 = y)

=
∑
x∈Tk

∑
y≺x

Pρ(Yk = x)
Zx

log Zx
Pρ(Yk = x)

= H(Yk) +
∑
x∈Tk

Pρ(Yk = x) logZx .

Hence, as, for all x ∈ Tk, the variables Pρ(Yk = x) and H(Yk) are Fk-measurable, and as Zx is independent
of Fk, we have

E
[
H(Yk+1)

∣∣Fk] = H(Yk) + µ .

Together with E[H(Y1)] = E[log(Z + 1)], this yields

hYt = E[log(Z + 1)] + (t− 1)µ ,

and hYt
t → µ.

Remark 3.1. The representation of µ and νd given in (3.4) entails an interesting interpretation of mixing
times for random walks on random graphs: for both walks, mixing occurs when the entropy of the walk
reaches logn, which, under our assumptions on degrees, is asymptotic to the entropy of the stationary
distribution. Let us try to give a very informal intuition. As the stationary entropy is asymptotic to
logn, let us, for simplicity, move to a setting where the stationary distribution is uniform. Consider
an irreducible Markov chain on a finite state-space Ω of size n with transition matrix P and uniform
stationary distribution. Then, if H(P t(x, .)) denotes the entropy of law of the chain after t steps when
started at x, the entropy mixing time can be defined, for all 0 < ε < 1, as

tent(ε) = inf
{
t ≥ 0, ∀x ∈ Ω, H(P t(x, .))

logn ≥ 1− ε
}
.

One has: tent(ε) ≤ tmix(ε) [6]. Hence, entropy mixing is a lower bound for total-variation mixing, and
the asymptotic in (3.4) entails that, in the case of random walks on random graphs with given degrees,
this lower bound is achieved.

Now, the proof of Theorem 3.2 combines (3.5) and the following result due to Benjamini et al. [24]:
the sequence (hXt − hXt−1)t≥1 is non-increasing. This was first observed in the case of random walks
on groups by Kaimanovich and Vershik [100] and the analysis of entropy of random walks on random
stationary environments was pioneered by Kaimanovich [99]. Note that the environment (T, ρ, srw) is
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stationary, in the sense that the law of (T, ρ) is equal to the law of (T,X1), where X1 is the position of
srw started at ρ after one step (this is the reason why we consider an augmented Galton-Watson tree).

Lemma 3.2 (Benjamini et al. [24], Lemma 9). The sequence (hXt − hXt−1)t≥1 is non-increasing.

Proof of Lemma 3.2. Conditionally on (T, ρ), let H(X1, Xt) = H(T,ρ)(X1, Xt) be the entropy of (X1, Xt),
i.e.

H(X1, Xt) =
∑
x,y∈T

Pρ(X1 = x,Xt = y) log 1
Pρ(X1 = x,Xt = y) ,

and hX1,t = E[H(X1, Xt)]. One has

H(X1, Xt) = H(X1) +
∑
x∈T

Pρ(X1 = x)
∑
y∈T

Px(Xt−1 = y) log 1
Px(Xt−1 = y) .

Taking expectation, we obtain

hX1,t = hX1 + E[H(T,X1)(Xt−1)] = hX1 + hXt−1 ,

where the last equality is due to the stationarity of the environment, implying that H(T,X1)(Xt−1) has
the same law as H(T,ρ)(Xt−1). Thus

hXt − hXt−1 = hXt − hX1,t + hX1 = E[H(Xt)−H(X1, Xt)] + hX1 .

Now H(X1, Xt)−H(Xt) can be seen as the conditional entropy of X1 given Xt, written H(X1|Xt). We
have

H(X1|Xt) = H(X1|Xt, Xt+1) ≤ H(X1|Xt+1) ,

because, conditionally on Xt, the knowledge of Xt+1 does not provide more information about X1,
and conditioning on more information can not increase the entropy. Hence H(Xt) −H(X1, Xt) is non-
increasing, and so is its expectation.

To sum up, we have hX1 = hY1 = E[log(Z + 1)]; for all t ≥ 2, hYt −hYt−1 is constant equal to µ, and the
sequence (hXt −hXt−1) is non-increasing. Proving that hX2 −hX1 < hY2 −hY1 would be enough but it does not
hold for Z = 2. We will show that, as soon as Z ≥ 2 and E[(logZ)2] <∞, we have hX3 − hX1 < hY3 − hY1 .
Combined with Lemma 3.2, this will establish that, for all t ≥ 2,

hXt − hX2 ≤
⌈
t− 2

2

⌉
(hX3 − hX1 ) < 2

⌈
t− 2

2

⌉
µ ,

and that limt→∞
hXt
t < µ, proving Theorem 3.2.

Proof of hX3 − hX1 < hY3 − hY1 . First, let us notice that Theorem 3.2 is true when Z is constant (in this
case, d = ν = log(d − 1) and ν = d−2

d < 1). We may thus assume that VarZ > 0. Let us consider the
entropy of srw after three steps in the tree T :

H(X3) =
∑
z∈T

Pρ(X3 = z) log
(

1
Pρ(X3 = z)

)
.

Recall that Tk = {z ∈ T : |z| = k}. As the srw at time 3 can be either at distance 3, or at distance 1
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from the root, we have H(X3) = A+B, with

A =
∑
z∈T3

Pρ(X3 = z) log
(

1
Pρ(X3 = z)

)
,

and
B =

∑
z∈T1

Pρ(X3 = z) log
(

1
Pρ(X3 = z)

)
.

Note that

A =
∑
x≺ρ

∑
y≺x

∑
z≺y

1
(Zρ + 1)

1
(Zx + 1)

1
(Zy + 1) log ((Zρ + 1)(Zx + 1)(Zy + 1))

=
∑
x≺ρ

∑
y≺x

Zy
log(Zρ + 1) + log(Zx + 1) + log(Zy + 1)

(Zρ + 1)(Zx + 1)(Zy + 1) .

Averaging over T3, we have

E[A|T1, T2] = 1
Zρ + 1

∑
y≺x≺ρ

1
Zx + 1

(
E
[

Z

Z + 1

] (
log(Zρ + 1) + log(Zx + 1)

)
+ E

[
Z log(Z + 1)

Z + 1

])
= 1

Zρ + 1
∑
x≺ρ

Zx
Zx + 1

(
E
[

Z

Z + 1

] (
log(Zρ + 1) + log(Zx + 1)

)
+ E

[
Z log(Z + 1)

Z + 1

])
.

Continuing in the same manner, one easily gets

E[A] = 2E
[

Z

Z + 1

]
E
[

Z

Z + 1 log(Z + 1)
]

+ E
[

Z

Z + 1

]2
E [log(Z + 1)] . (3.6)

Turning our attention to B, using convexity of x 7→ x log x and Jensen’s Inequality for conditional
expectation, we obtain

E[B|T1] ≤ −
∑
z∈T1

E [Pρ(X3 = z)|T1] logE [Pρ(X3 = z)|T1] .

Now, for z ∈ T1, accounting for whether X2 = ρ or X2 = y for some y ≺ z, one has

Pρ(X3 = z) =
∑
x≺ρ

1
(Zρ + 1)2

1
Zx + 1 +

∑
y≺z

1
(Zρ + 1)

1
(Zz + 1)

1
(Zy + 1) .

Hence

E [Pρ(X3 = z)|T1] = 1
Zρ + 1E

[
1

Z + 1

]
+ 1
Zρ + 1E

[
1

Z + 1

]
E
[

Z

Z + 1

]
= 1

Zρ + 1E
[

1
Z + 1

]
E
[

2Z + 1
Z + 1

]
= 1

Zρ + 1

(
1− E

[
Z

Z + 1

]2
)
.

Taking average over T1, this yields

E[B] ≤
(

1− E
[

Z

Z + 1

]2
)(

E [log(Z + 1)]− log
(

1− E
[

Z

Z + 1

]2
))

. (3.7)
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Observe that E
[

Z
Z+1

]2
< E

[(
Z
Z+1

)2
]

(because Z is not constant). Combining this observation with an

other application of Jensen’s inequality to x 7→ log x yields

− log
(

1− E
[

Z

Z + 1

]2
)

< − logE
[

1−
(

Z

Z + 1

)2
]

< −E

[
log
(

1−
(

Z

Z + 1

)2
)]

= E
[
log
(

(Z + 1)2

2Z + 1

)]
,

Plugging this into (3.7), we obtain

E[B] <

(
1− E

[
Z

Z + 1

]2
)
E [log(Z + 1)] + E

[
1

Z + 1

]
E
[

2Z + 1
Z + 1

]
E
[
log
(

(Z + 1)2

2Z + 1

)]

<

(
1− E

[
Z

Z + 1

]2
)
E [log(Z + 1)] + E

[
1

Z + 1

]
E
[

2Z + 1
Z + 1 log

(
(Z + 1)2

2Z + 1

)]
,

where the second inequality comes from the fact that Cov
(

2Z+1
Z+1 , log

(
(Z+1)2

2Z+1

))
> 0 (the two functions

are increasing, and, under our assumptions Z ≥ 2 and E(logZ)2 <∞, both have finite second moment).
Hence, recalling the formula for term A at (3.6) and that hX1 = E[log(Z + 1)],

hX3 − hX1 < 2E
[

Z

Z + 1

]
E
[

Z

Z + 1 log(Z + 1)
]

+ E
[

1
Z + 1

]
E
[

2Z + 1
Z + 1 log

(
(Z + 1)2

2Z + 1

)]
= 2E

[
Z

Z + 1 log(Z + 1)
]

+ E
[

1
Z + 1

]
E
[

2Z + 1
Z + 1 log

(
(Z + 1)2

2Z + 1

)
− 2Z
Z + 1 log(Z + 1)

]
:= 2E

[
Z

Z + 1 log(Z + 1)
]

+ E
[

1
Z + 1

]
E [g(Z)] .

It is easy to verify that g′(z) = − log(2z+1)
(z+1)2 < 0 for all z > 0. The function g is therefore decreasing on R+.

Hence, as E[g(Z)2] <∞ thanks to Z ≥ 2 and E(logZ)2 <∞, we obtain that E
[

1
Z+1

]
E [g(Z)] < E

[
g(Z)
Z+1

]
.

We finally get

hX3 − hX1 < E
[

2Z
Z + 1 log(Z + 1) + g(Z)

Z + 1

]
,

and conclude by noticing that, for all x ≥ 2, 2x
x+1 log(x+ 1) + g(x)

x+1 < 2 log(x).

108



Part III

Weighted sampling without
replacement
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This part is devoted to the problem of sampling without replacement in a finite population, when the
items are allowed to have different weights. This is a work in collaboration with Justin Salez and Yuval
Peres, Weighted sampling without replacement [23].

1 Sampling with and without replacement

1.1 The uniform case

The analysis of the concentration properties of sampling without replacement has a long history which
can be traced back to the pioneer work of Hoeffding [92].

Consider a population of N items. Each item is equipped with a value ν(i) ∈ R, and a weight ω(i) > 0
such that

N∑
i=1

ω(i) = 1 .

We are interested in the case where different items can have different weights, but let us first consider
the uniform case where

ω(1) = · · · = ω(N) = 1
N
.

For n ≤ N , let (I1, . . . , In) be a sample drawn without replacement, i.e., for each n-tuple (i1, . . . , in) of
distinct indices in {1, . . . , N},

P ((I1, . . . , In) = (i1, . . . , in)) = (N − n)!
N ! ,

and let (J1, . . . ,Jn) be drawn with replacement, i.e., for each (j1, . . . , jN ) ∈ {1, . . . , N}n,

P ((J1, . . . ,Jn) = (j1, . . . , jn)) = 1
Nn

.

Now let

X = ν(I1) + · · ·+ ν(In) ,

and

Y = ν(J1) + · · ·+ ν(Jn) .

Hoeffding [92] showed that, for all continuous convex functions f : R→ R,

E [f(X)] ≤ E [f(Y )] . (1.1)

One says that X is less than Y in the convex order. In particular, the Laplace transform of X is upper-
bounded by the Laplace transform of Y , and all the Chernoff-type tail estimates known for Y as a sum
of i.i.d. random variables directly transfer to Y . This includes the celebrated Hoeffding and Bernstein
inequalities, see the book [40]. Note that, as, in the uniform case, EX = EY , inequality (1.1) implies
proper concentration results for X around its mean. For instance, thanks to Hoeffding’s inequality, one
has, for all t > 0,

P (X − EX > t) ≤ exp
(
− 2t2

n∆2

)
,
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where ∆ = max
1≤i≤N

ν(i)− min
1≤i≤N

ν(i). If ∆ = O(1), this yields a variance factor of order n. However, one
may notice that the variance of X can be much smaller when the sample size approaches the total number
of items. In the extreme case where n = N , the variable X is deterministic and thus its variance is zero.
More precisely, if σ2 denotes the variance of ν(J1), then

VarY = nσ2 ,

whereas

VarX = n
(

1− n

N

)
σ2 .

This sharpening effect in the variance of X was incorporated in the following remarkable concentration
inequality due to Serfling [145]:

P (X − EX > t) ≤ exp
(
− 2t2

n
(
1− n−1

N

)
∆2

)
.

Bernstein-type concentration inequalities for X were also obtained by Bardenet and Maillard [14].
Another remarkable feature of uniform sampling without replacement is the negative association of

the sequence (ν(I1), . . . , ν(In)), which was established by Joag-Dev and Proschan [97], and also implies
that the Laplace transform of X is upper-bounded by that of Y .

A natural question is to determine whether similar comparisons between sampling with and without
replacement also hold when the sampling procedure is no longer uniform but when different items have
different weights.

1.2 Main results

In the more general setting where the weights are heterogeneous, we have, for each n−tuple (i1, . . . , in)
of distinct indices in {1, . . . , N},

P ((I1, . . . , In) = (i1, . . . , in)) =
n∏
k=1

ω(ik)
1− ω(i1)− · · · − ω(ik−1) ,

and, for each n−tuple (j1, . . . , jn) ∈ {1, . . . , N}n,

P ((J1, . . . ,Jn) = (j1, . . . , jn)) =
n∏
k=1

ω(jk) .

As above, we define

X = ν(I1) + · · ·+ ν(In) ,

and

Y = ν(J1) + · · ·+ ν(Jn) .

Weighted sampling without replacement, also known as successive sampling, appears in a variety of
contexts (see [84, 93, 142, 157]). When n << N , it is natural to expect Y to be a good approximation
of X. For instance, the total-variation distance between P

(
In+1 ∈ ·

∣∣∣(Ik)nk=1

)
and P (J1 ∈ · ) is given by
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n∑
k=1

ω(Ik), which is O(n/N) provided all the weights are O(1/N).

One particular case is when weights and values are arranged in the same order, i.e.

ω(i) > ω(j) =⇒ ν(i) ≥ ν(j) . (1.2)

Under condition (1.2), we have the following stochastic order relation.

Theorem 1.1. Assume that condition (1.2) holds. Then X is less than Y in the increasing convex order,
i.e. for every non-decreasing, convex function f : R→ R,

E [f (X)] ≤ E [f (Y )] . (1.3)

Under the monotonicity assumption (1.2), Theorem 1.1 establishes an exact strong stochastic ordering
between X and Y . In particular, for all λ ≥ 0,

E eλX ≤ E eλY ≤ E
[

eλν(J1)]n .
The Chernoff’s bound

P (Y ≥ a) ≤ exp
(
n logE

[
eλν(J1)

]
− θa

)
, (1.4)

yields a variety of sharp concentration results based on efficient controls on the log-Laplace transform,
and Theorem 1.1 implies in particular that all upper-tail estimates derived from Chernoff’s bound (1.4)
apply to X without modification.

The condition (1.2) describes a sampling procedure which is sometimes referred to as size-biased
sampling without replacement. It arises in many situations, including ecology, oil discovery models, in
the construction of the Poisson-Dirichlet distribution [137, 138], or in the configuration model of random
graphs [32, 33]. In the next example, we show how Theorem 1.1 can be used to obtain upper-tail bounds
on the number of edges revealed when we progressively expose the neighbourhood of a vertex in the
configuration model.

Example 1. Consider a random graph G on a vertex set V and with degree sequence (deg(v))v∈V ,
generated according to the configuration model, as described in Section 2 of Part II. As before, we
denote by X the set of half-edges. Consider the process of progressively revealing the neighbourhood of
a randomly chosen vertex as follows: initially all half-edges are unpaired. Choose uniformly at random a
half-edge z1 in X and let E1 be the set formed by z1 and its neighbours (as in Part II, we say that two
half-edges are neighbours if they are distinct and share the same vertex). Then, at step k ≥ 2, choose
an unpaired half-edge zk of Ek−1 (according to some arbitrary rule), and pair it to an other uniformly
chosen unpaired half-edge z′k. Let Ek be the union of Ek−1 and z′k and the neighbours of z′k (note that it
might be the case that Ek = Ek−1). If at some time k, there is no unpaired half-edge satisfying the rule
in Ek, then we let E` = Ek for all ` ≥ k. Let V be distributed as a size-biased pick in the set V , i.e.

P (V = v) = deg(v)∑
u∈V deg(u) .

Then, for all 1 ≤ k ≤ |V | and ε > 0,

P (|Ek| > kE[deg(V)] + ε) ≤ exp
(
− 2ε2

k∆2

)
,
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where ∆ = maxv∈V deg(v). To see this, note that the variable |Ek| is stochastically dominated by

X =
k∑
i=1

deg(Ṽi) ,

where (Ṽ1, . . . , Ṽk) is a size-biased sample without replacement in V , i.e. for all k-tuple (v1, . . . , vk) of
distinct vertices in V ,

P
(

(Ṽ1, . . . , Ṽk) = (v1, . . . , vk)
)

=
k∏
i=1

deg(vi)
N − deg(v1)− · · · − deg(vi−1) .

Indeed, one may couple |Ek| and X in such a way that |Ek| ≤ X: if (Ṽ1, . . . , Ṽk) be a size-biased sample
without replacement in V , one can generate Ek as follows. Let |E1| = deg(Ṽ1). Then, at each step ` ≥ 2,
either the pair is chosen in E`−1 and |E`| = |E`−1|, or it is chosen outside, and, if τ`−1 denotes the number
of vertices in the graph induced by E`−1, then we let |E`| = |E`−1| + deg(Ṽτ`−1+1). As τk ≤ k, we have
|Ek| ≤

∑k
`=1 deg(Ṽ`).

Now, by Theorem 1.1, X is less, in the increasing convex order than Y =
∑k
i=1 deg(Vi) where (Vi)

is an i.i.d. sequence with the law of V. In particular, all the Chernoff bounds that apply to Y can be
transferred to X. Hoeffding’s inequality then yields the desired result.

Stochastic orders provide powerful tools to compare distributions of random variables and processes,
and they have been used in various applications [125, 146, 151]. As other stochastic relations, the
increasing convex order is only concerned with marginal distributions. One way of establishing (1.3)
is thus to carefully construct two random variables X and Y with the correct marginals on a common
probability space, in such a way that

X ≤ E[Y |X] (1.5)

holds almost-surely. The existence of such a submartingale coupling clearly implies (1.3), thanks to
Jensen’s inequality. Quite remarkably, the converse is also true, as proved by Strassen [149].

Remark 1.1 (The uniform case). When ω is constant, the sequence (I1, . . . , In) is exchangeable. In
particular, E[X] = E[Y ], forcing equality in (1.5). Thus, (1.3) automatically extends to arbitrary convex
functions, as established by Hoeffding [92]. We pointed out in Section 1.1 that another remarkable feature
uniform sampling without replacement was negative association of the sequence (ν(I1), . . . , ν(In)) [97].
However, this result also seems to make crucial use of the exchangeability of (I1, . . . , In), and it is not
clear whether it can be extended to more general weights, e.g. to monotone weights satisfying (1.2). Non-
uniform sampling without replacement can be more delicate and induce counter-intuitive correlations, as
highlighted by Alexander [8], who showed that for two fixed items, the indicators that each is in the sample
can be positively correlated.

In the non-uniform case, EX and EY need not be equal. Hence, Theorem 1.1 does not entail proper
concentration inequalities for X around its mean. The second result of this chapter is to establish a
sub-Gaussian concentration inequality for X, which holds for arbitrary weights (ω(i))Ni=1. Define

∆ = max
1≤i≤N

ν(i)− min
1≤i≤N

ν(i) ,
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and

α = min1≤i≤N ω(i)
max1≤i≤N ω(i) .

The case α = 1 (uniform sampling) was analysed by Serfling [145]. We thus consider α < 1 and show the
following.

Theorem 1.2. Assume α < 1. For all t > 0,

max {P (X − EX > t) ,P (X − EX < −t)} ≤ exp
(
− t

2

2v

)
,

with

v = min
(

4∆2n ,
1 + 4α
α(1− α)∆2N

(
N − n
N

)α)
. (1.6)

Theorem 1.2 holds under the only assumption that α < 1, but the domain of application that we
have in mind is when α is bounded away from 0 and 1. In this domain, when n/N ≤ q, for some fixed
0 < q < 1, equation (1.6) gives v = O(∆2n), which corresponds to the order of the variance factor in
the classical Hoeffding inequality. When n/N →

N→∞
1, it can be improved up to v = O

(
∆2n

(
N−n
N

)α),
hence displaying a sharpening effect in the variance, as identified by Serfling [145] in the uniform case. It
would be interesting to know whether the α appearing in the exponent can be removed.

Finally, in this chapter, we also answer a question raised by [118]. The problem is to compare linear
statistics induced by sampling in Polya urns with replacement number d versus D, for positive integers
d,D with D > d ≥ 1.

Let C be a population of N items, labelled from 1 to N , each item i being equipped with some value
ν(i). Let d < D be two positive integers. For n ≥ 1, let (K1, . . . ,Kn) and (L1, . . . , Ln) be samples
generated by sampling in Polya urns with initial composition C and replacement numbers d and D

respectively, i.e. each time an item is picked, it is replaced along with d− 1 (resp. D− 1) copies. We say
that (K1, . . . ,Kn) (resp. (L1, . . . , Ln)) is a d-Polya (resp. D-Polya) sample. Let

W = ν(K1) + · · ·+ ν(Kn) ,

Z = ν(L1) + · · ·+ ν(Ln) .

Theorem 1.3. The variable W is less than Z in the convex order, i.e. for every convex function
f : R→ R,

E [f (W )] ≤ E [f (Z)] .

Remark 1.2. [118] proved a similar result in the case where the first sample is drawn without replacement
in C and the second is a D-Polya sample, for D ≥ 1.

2 A useful coupling

The proofs of Theorem 1.1 and 1.2 rely on a particular coupling of samples drawn with and without
replacement. This coupling is inspired by the one described in [118] for the uniform case.

First generate an infinite sequence (Jk)k≥1 by sampling with replacement and with probability pro-
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portional to (ω(i))Ni=1. Now, “screen” this sequence, starting at J1 as follows: for 1 ≤ k ≤ N , set

Ik = JTk ,

where Tk is the random time when the kth distinct item appears in (Ji)i≥1.
The sequence (I1, . . . , In) is then distributed as a sample without replacement. As above, we define

X =
n∑
k=1

ν(Ik) and Y =
n∑
k=1

ν(Jk).

3 Proofs

3.1 Proof of Theorem 1.1

Consider the coupling of X and Y described above (Section 2). Under the monotonicity assumption
(1.2), we show that (X,Y ) is a submartingale coupling in the sense of (1.5). As the sequence (J1, . . . ,Jn)
is exchangeable and as permuting Ji and Jj in this sequence does not affect X, it is sufficient to show
that E

[
ν(J1)

∣∣X] ≥ X/n.
Let {i1, . . ., in} ⊂ {1, . . . , N} be a set of cardinality n, and let A be the event {I1, . . . , In} =

{i1, . . ., in}.

E
[
ν(J1)

∣∣∣A] =
n∑
j=1

P
(
J1 = ij

∣∣∣A) ν(ij) .

Let us now show that, for all 1 ≤ k 6= ` ≤ n, if ν(ik) ≥ ν(i`), then P
(
J1 = ik

∣∣∣A) is not smaller

than P
(
J1 = i`

∣∣∣A). First, by (1.2), one has ω(ik) ≥ ω(i`). Letting Sn be the set of permutations of n
elements, one has

P ({J1 = ik} ∩A) =
∑

π∈Sn,π(1)=k

p(π) ,

where

p(π) := ω(iπ(1))
ω(iπ(2))

1− ω(iπ(1))
· · ·

ω(iπ(n))
1− ω(iπ(1))− ω(iπ(2))− ω(iπ(n−1))

Now, each permutation π with π(1) = k can be uniquely associated with a permutation π? such that
π?(1) = `, by performing the switch: π?(π−1(`)) = k, and letting π(j) = π?(j), for all j 6∈ {1, π−1(`)}.
Observe that p(π) ≥ p(π?). Thus

P
(
J1 = ik

∣∣∣A)− P
(
J1 = i`

∣∣∣A) = 1
P (A)

∑
π∈Sn,π(1)=k

(p(π)− p(π?)) ≥ 0 .
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Consequently, by Chebyshev’s sum inequality,

E
[
ν(J1)

∣∣∣A] = n
1
n

n∑
j=1

P
(
J1 = ij

∣∣∣A) ν(ij)

≥ n

 1
n

n∑
j=1

P
(
J1 = ij

∣∣∣A)
 1

n

n∑
j=1

ν(ij)


=

∑n
j=1 ν(ij)
n

,

and E
[
Y
∣∣∣X] ≥ X.

3.2 Proof of Theorem 1.2

We only need to show that the bound in Theorem 1.2 holds for P [X − EX > t]. Indeed, replacing X
by −X (i.e. changing all the values to their opposite) does not affect the proof. Hence, the bound on
P [X − EX < −t] will follow directly.

Theorem 1.2 is proved using the same coupling between sampling with and without replacement as
described in Section 2.

Note that, in this coupling, X is a function of the i.i.d. variables (Ji)i≥1:

X =
+∞∑
i=1

ν(Ji)1{Ji 6∈{J1,...,Ji−1}}1{Tn≥i} . (3.1)

As such, one may obtain concentration results for X by resorting to the various methods designed for
functions of independent variables.

The proof relies on the entropy method as described in Chapter 6 of [40]. We will show that X is such
that, for all λ > 0,

λE
[
X eλX

]
− E

[
eλX

]
logE

[
eλX

]
≤ λ2v

2 E
[

eλX
]
, (3.2)

for v as in (1.6). Then, a classical argument due to Herbst (see [40], Proposition 6.1) ensures that, for
all λ > 0,

logE
[

eλ(X−EX)
]
≤ λ2v

2 ,

and thus, for all t > 0,

P (X − EX > t) ≤ exp
(
− t

2

2v

)
,

that is, the upper-tail of X is sub-Gaussian with variance factor v. Let us establish inequality (3.2). For
t ≥ 1, consider the truncated variable Xt defined by summing only from 1 to t in (3.1), i.e.

Xt =
t∑
i=1

ν(Ji)1{Ji 6∈{J1,...,Ji−1}}1{Tn≥i}

:= f(J1, . . . ,Jt) .

Note that Xt converges to X almost surely as t → +∞. Then, for all 1 ≤ i ≤ t, consider the perturbed
variable Xi

t which is obtained by replacing Ji by an independent copy J′i, i.e.

Xi
t = f(J1, . . . ,Ji−1,J′i,Ji+1, . . . ,Jt) ,
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and let Xi be the almost sure limit of Xi
t , as t→ +∞. Theorem 6.15 of [40] implies that, for all λ > 0,

λE
[
Xt eλXt

]
− E

[
eλXt

]
logE

[
eλXt

]
≤

t∑
i=1

E
[
λ2 eλXt(Xt −Xi

t)2
+
]
. (3.3)

We now show that this inequality still holds when we let t tend to +∞. Let νmax = max
1≤j≤N

ν(j). For all

t ≥ 1, the variable Xt is almost surely bounded by nνmax. Hence, the left-hand side of (3.3) tends to the
left-hand side of (3.2). As for the right-hand side, we have that, for all 1 ≤ i ≤ t,

E
[
λ2 eλXt(Xt −Xi

t)2
+
]
≤ λ2 eλnνmax∆2P(i ≤ Tn) ,

and
∑+∞
i=1 P[i ≤ Tn] = E[Tn] < +∞. Hence, by dominated convergence, the right-hand side also con-

verges, and we obtain

λE
[
X eλX

]
− E

[
eλX

]
logE

[
eλX

]
≤

+∞∑
i=1

E
[
λ2 eλX(X −Xi)2

+
]
.

Recall that (I1, . . . , In) is the sequence of the first n distinct items in (Ji)i≥1 and that X is measurable
with respect to σ(I1, . . . , In), so that

+∞∑
i=1

E
[
λ2 eλX(X −Xi)2

+
]

= E

[
λ2 eλXE

[+∞∑
i=1

(X −Xi)2
+

∣∣∣I1, . . . , In

]]
.

Thus, letting

V := E

[+∞∑
i=1

(X −Xi)2
+

∣∣∣I1, . . . , In

]
,

our task comes down to showing that
V ≤ v

2 a.s. .

Observe that for all i ≥ 1, we have (X − Xi)2
+ ≤ ∆2 and that X = Xi unless i ≤ Tn and one of the

following two events occurs:
— J′i 6∈ {I1, . . . , In};
— the item Ji occurs only once before Tn+1.

Let us define

A =
+∞∑
i=1

E
[
1{J′

i
6∈{I1,...,In}}1i≤Tn

∣∣∣I1, . . . , In
]
,

and

B =
n∑
k=1

E
[
1{∃! i<Tn+1,Ji=Ik}

∣∣∣I1, . . . , In
]
,

so that V ≤ ∆2 (A+B). Since J′i is independent of everything else and since σn := ω(I1) + . . . ω(In) is
a measurable function of (I1, . . . , In), we have

A = (1− σn)E
[
Tn

∣∣∣I1, . . . , In
]
.

We use the following fact.
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Lemma 3.1. For 1 ≤ k ≤ n, let τk = Tk−Tk−1. Conditionally on (I1, . . . , In), the variables (τk)nk=1 are
independent and for all 1 ≤ k ≤ n, τk is distributed as a Geometric random variables with parameters
1− σk−1.

Proof. Let (i1, . . . , in) be an n-tuple of distinct elements of {1, . . . , N} and let t1, . . . , tn ≥ 1. Let also
(Gk)nk=1 be independent Geometric random variables with parameter (1 − ω(i1) − · · · − ω(ik−1)). We
have

P ((τ1, . . . , τn) = (t1, . . . , tn), (I1, . . . , In) = (i1, . . . , in))

= 1{t1=1}ω(i1)
n∏
k=2

(ω(i1) + · · ·+ ω(ik−1))tk−1
ω(ik)

=
n∏
k=1

ω(ik)
1− ω(i1)− · · · − ω(ik−1)

n∏
k=1

P (Gk = tk)

= P ((I1, . . . , In) = (i1, . . . , in))
n∏
k=1

P (Gk = tk) ,

and we obtain the desired result.

Lemma 3.1 implies that

E
[
Tn

∣∣∣I1, . . . , In
]

=
n∑
k=1

1
1− σk−1

.

In particular, A ≤ n. We also have

A ≤ 1
α

n∑
k=1

N − n
N − k + 1 ≤

1
α

(N − n) log
(

N

N − n

)
. (3.4)

It remains to control B. Clearly B ≤ n, which shows that V ≤ 2∆2n. Moreover, for 1 ≤ k ≤ n, we have

P
(
∃! i < Tn+1, Ji = Ik

∣∣∣I1, . . . , In
)

= E

 n∏
j=k

(
1− ω(Ik)

σj

)τj+1−1 ∣∣∣I1, . . . , In

 .
Using Lemma 3.1 and the fact that the generating function of a geometric variable G with parameter p
is given by E

[
xG
]

= px
1−(1−p)x , we obtain

B =
n∑
k=1

n∏
j=k

1
1 + ω(Ik)

1−σj

.

Thanks to the inequality the inequality log(1 + x) ≥ x− x2/2 for x ≥ 0,

B ≤
n∑
k=1

n∏
j=k

1
1 + α

N−j
≤

n∑
k=1

exp

−α n∑
j=k

1
N − j

+ 1
2

n∑
j=k

1
(N − j)2

 .
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The second term in the exponent is always smaller than 1/2. Using Riemann sums, we get

B ≤ 2
n∑
k=1

exp
(
−α log

(
N − k + 1
N − n

))
= 2

n∑
k=1

(
N − n

N − k + 1

)α
≤ 2

1− αN
(
N − n
N

)α
,

Combined with (3.4), this yields

V ≤

(
1
α

(
N − n
N

)1−α
log
(

N

N − n

)
+ 2

1− α

)
∆2N

(
N − n
N

)α
≤

(
e−1

α(1− α) + 2
1− α

)
∆2N

(
N − n
N

)α
≤ 1/2 + 2α

α(1− α) ∆2N

(
N − n
N

)α
,

where the second inequality is due to the fact that log(x)/x1−α ≤ e−1/(1− α) for all x > 0.

3.3 Proof of Theorem 1.3

The proof of Theorem 1.3 relies on the construction of a martingale coupling (W,Z), i.e. of a coupling
of W and Z such that E

[
Z
∣∣∣W] = W .

Consider two urns, Ud and UD, each of them initially containing N balls, labelled from 1 to N . In
each urn, arrange the balls from left to right by increasing order of their label. Then arrange UD and
Ud on top of one another. Each time we will pick a ball in UD, we will pick the ball just below it in Ud.
More precisely, we perform an infinite sequence of steps as follows: at step 1, we pick a ball B1 uniformly
at random in UD and pick the ball just below it in Ud. They necessarily have the same label, say j. We
let K1 = L1 = j, and add, on the right part of UD, D − 1 balls with label j, and, on the right part of
Ud, d− 1 balls with label j and D − d unlabelled balls. Note that, at the end of this step, the two urns
still have the same number of balls, N + D − 1. The first step is depicted in Figure 2.5. Then, at each
step t, we pick a ball Bt at random among the N + (t− 1)(D − 1) balls of UD and choose the ball just
below it in Ud. There are two different possibilities:

• if the ball drawn in Ud is unlabelled and the one drawn in UD has label j, we let Lt = j and add
D − 1 balls with label j on the right part of UD, and D − 1 unlabelled balls on the right part of
Ud, .

• if both balls have label j, and if t corresponds to the ith time a labelled ball is drawn in Ud, we
let Lt = Ki = j and add D − 1 balls with label j on the right part of UD, and d − 1 balls with
label j and D − d unlabelled balls on the right part of Ud;

The sequence (K1, . . . ,Kn) records the labels of the first n labelled balls picked in Ud, and (L1, . . . , Ln)
the labels of the first n balls picked in UD. Observe that (K1, . . . ,Kn) (resp. (L1, . . . , Ln)) is distributed
as a d-Polya (resp. D-Polya) sample. Define

W = ν(K1) + · · ·+ ν(Kn) ,

Z = ν(L1) + · · ·+ ν(Ln) .

Let us show that 1 ≤ i ≤ n − 1, E
[
ν(Li+1)

∣∣∣W] = E
[
ν(Li)

∣∣∣W]. Let {k1, . . ., kn} be a multiset of
cardinality n of elements of {1, . . . , N}, and let A be the event {K1, . . . ,Kn} = {k1, . . ., kn} (accounting
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Figure 2.5 – The ball B1 has label 2 (N = 5, d = 3, D = 4).

1 2 3 4 5 2 2 2

1 2 3 4 5 2 2

B1

D − 1N

d− 1

UD

Ud

unlabelled

for the multiplicity of each label). Denote by Ci the set of D − 1 balls added at step i. Observe that, if
Bi+1 ∈ Ci, then Li+1 = Li. Hence

E
[
ν(Li+1)

∣∣∣A] = E
[
ν(Li)1{Bi+1∈Ci}

∣∣∣A]+ E
[
ν(Li+1)1{Bi+1 6∈Ci}

∣∣∣A] .
We have

E
[
ν(Li+1)1{Bi+1 6∈Ci}

∣∣∣A] = 1
P(A)

N∑
k=1

ν(k)
N∑
`=1

P (Li = `, Li+1 = k,Bi+1 6∈ Ci,A) .

Notice that, on the eventBi+1 6∈ Ci, the ballsBi andBi+1 are exchangeable. Hence P (Li = `, Li+1 = k,Bi+1 6∈ Ci) =
P (Li = k, Li+1 = `, Bi+1 6∈ Ci). Moreover, permutingBi andBi+1 can not affect the multiset {K1, . . . ,Kn}.
Hence

E
[
ν(Li+1)1{Bi+1 6∈Ci}

∣∣∣A] = E
[
ν(Li)1{Bi+1 6∈Ci}

∣∣∣A] ,
and E

[
ν(Li+1)

∣∣∣W] = E
[
ν(Li)

∣∣∣W]. We get that, for all 1 ≤ i ≤ n,

E
[
ν(Li)

∣∣∣W] = E
[
ν(L1)

∣∣∣W] = E
[
ν(K1)

∣∣∣W] = W/n ,

where the last equality comes from the exchangeability of (K1, . . . ,Kn).
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