
HAL Id: tel-01373266
https://hal.science/tel-01373266v1

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Programming and Learning in a Control
Language for Autonomous Robots Performing Everyday

Activities
Alexandra Kirsch

To cite this version:
Alexandra Kirsch. Integration of Programming and Learning in a Control Language for Autonomous
Robots Performing Everyday Activities. Computer Science [cs]. Technische Universität München,
2008. English. �NNT : �. �tel-01373266�

https://hal.science/tel-01373266v1
https://hal.archives-ouvertes.fr

Lehrstuhl für Bildverstehen und wissensbasierte Systeme
Institut für Informatik

Technische Universität München

Integration of Programming and Learning
in a Control Language for Autonomous Robots

Performing Everyday Activities

Alexandra Kirsch

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Michael Beetz, Ph.D.

2. Prof. Rachid Alami,
LAAS/CNRS, Toulouse/Frankreich

Die Dissertation wurde am 07.08.2007 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 07.01.2008 angenommen.

Abstract

Robots performing complex tasks in changing, everyday environments and required to im-
prove with experience must continually monitor the way they execute their routines and
revise them if necessary. Existing approaches, which use either monolithic or isolated,
nonrecurring learning processes, cannot sufficiently focus their learning processes to sat-
isfy these requirements. To meet this challenge we propose to make learning an integral
part of the control program by providing a control language that includes constructs for
specifying and executing learning problems.

Our Robot Learning Language (RoLL) makes learning tasks executable within the
control program. It allows for the specification of complete learning processes including
the acquisition of experience, the execution of learning algorithms and the integration of
learning results into the program. RoLL is built upon the concept of experience, which is
a learning task specific symbolic summary of a problem solving episode. This means that
experiences do not only record the observed data, but also include the robot’s intentions
and the perceived execution context. The experience acquisition in RoLL is designed in
a way that experiences can be defined outside the primary control program, using hybrid
automata as a tool for declaratively specifying experience and anchoring it to the pro-
gram. The rich experience concept enables convenient abstraction and an economic use
of experiences. RoLL’s design allows the inclusion of arbitrary experience-based learning
algorithms. Upon the completion of the learning process RoLL automatically integrates
the learned function into the control program without interrupting program execution.

RoLL enables the plug-and-play addition of new learning problems and keeps the
control program modular and transparent. RoLL’s control structures make learning an
integral part of the control program and can serve as a powerful implementational platform
for comprehensive learning approaches such as developmental, life-long and imitation
learning.

Zusammenfassung

Roboter, die komplexe Aufgaben in dynamischen, alltäglichen Umgebungen lösen und
die sich durch Erfahrung verbessern sollen, müssen ständig überwachen wie sie ihre Rou-
tinen ausführen und diese wenn nötig korrigieren. Existierende Ansätze, die entweder
monolitische oder isolierte, einmalige Lernprozesse benutzen, können ihre Lernprozesse
nicht genügend fokussieren um diesen Anforderungen zu genügen. Um dieser Heraus-
forderung gerecht zu werden, schlagen wir vor Lernen zu einem integralen Teil des Kon-
trollprogramms zu machen, indem wir eine Kontrollsprache bereitstellen, die Konstrukte
zum Spezifizieren und Ausführen von Lernproblemen enthält.

Unsere Sprache RoLL (Robot Learning Language) macht Lernprobleme im Kontroll-
programm ausführbar. Es ermöglicht die Spezifikation von kompletten Lernprozessen
einschlies̈lich der Beschaffung von Erfahrungen, der Ausführung von Lernalgorithmen
und der Integration des Lernergebnisses in das Programm. RoLL baut auf dem Konzept
der Erfahrung auf, die eine lernproblemspezifische symbolische Zusammenfassung einer
Problemlösungsepisode ist. Dies bedeutet, dass Erfahrungen nicht nur eine Aufzeich-
nung der beobachteten Daten sind, sondern auch die Absichten des Roboters und den
wahrgenommenen Ausführungskontext einschlies̈en. Der Erfahrungserwerb in RoLL is
so entworfen, dass Erfahrungen aus̈erhalb des eigentlichen Kontrollprogramms definiert
werden können, wobei hybride Automaten als Werkzeug für die deklarative Spezifikation
von Erfahrungen und deren Verankerung im Kontrollprogramm benutzt werden. Das aus-
drucksstarke Erfahrungskonzept ermöglicht eine komfortable Abstraktion und ökonomis-
che Verwendung von Erfahrungen. Das Konzept von RoLL erlaubt die Einbindung von
beliebigen erfahrungsbasierten Lernalgorithmen. Sobald ein Lernprozess beendet ist, in-
tegriert RoLL die gelernte Funktion automatisch in das Kontrollprogramm ohne die Pro-
grammausführung zu unterbrechen.

Mit RoLL können dem Programm jederzeit neue Lernprobleme hinzugefügt wer-
den, wobei der Code modular und verständlich bleibt. Die Kontrollstrukturen von RoLL
machen das Lernen zu einem integralen Bestandteil des Kontrollprogramms und sie kön-
nen als mächtige Implementierungsplattform für umfassende Lernansätze wie Entwick-
lungslernen (developmental learning), lebenslanges Lernen (life-long learning) und Ler-
nen durch Imitation dienen.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scenario . 2
1.3 Technical Challenges . 10
1.4 Approach . 11
1.5 Contributions . 13
1.6 Reader’s Guide . 14

2 Integrated Robot Learning 16
2.1 System Overview . 16
2.2 General Robot Operation . 21
2.3 Scope of this Work . 22

3 Language Preliminaries 25
3.1 RoLL Language Levels . 25
3.2 Reactive Plan Language . 28
3.3 BDI Control Language . 34
3.4 Summary . 38

4 Hybrid Automata for Learning in Autonomous Systems 39
4.1 A Model for Robot Learning . 39
4.2 Types of Hybrid Automata . 43
4.3 Modeling the Program Execution . 47
4.4 Experiences as Hybrid Automata . 55
4.5 The Learning Process . 58
4.6 Summary . 59
4.7 Related Work on Hybrid Modeling in Autonomous Systems 60

5 Robot Learning Language 61
5.1 Experience-based Learning . 61
5.2 Experiences . 68

5.3 Learning Problems . 93
5.4 Summary . 98
5.5 Related Work on Programming Data Acquisition and Learning Capabilities 99

6 Evaluation 102
6.1 Evaluation Criteria . 103
6.2 Comprehensive Example . 104
6.3 Empirical Results . 109
6.4 Further Applications of RoLL . 121
6.5 Extending RoLL . 124
6.6 Discussion . 126
6.7 Related Work on Robot Learning . 127

7 Conclusion 132
7.1 Summary . 132
7.2 Related Visions for Robotics and AI . 133
7.3 RoLL’s Contributions to More Sophisticated Autonomous Robots 135

A RPL Language Overview 137
A.1 Basic Concepts . 137
A.2 Relation to Lisp . 138
A.3 RPL Language Constructs . 139

B Hybrid Automaton Definitions 141

C RoLL Reference 144
C.1 Experience Data . 145
C.2 Raw Experiences . 145
C.3 Problem Generation . 149
C.4 Abstract Experiences . 152
C.5 Learning Problems . 154
C.6 RoLL Extensions . 157

D RoLL Extensions 158
D.1 Experience Classes . 158
D.2 Learning Problem Classes . 162
D.3 Learning Systems . 163

List of Figures 172

Drawing Conventions 174

Bibliography 176

Chapter 1

Introduction

Tell me, and I will forget.
Show me, and I may remember.
Involve me, and I will understand.

Confucius around 450 BC

1.1 Motivation

With rapid progress in hardware development, researchers attempt more and more to bring
robotic applications into human working and living environments. However, the transi-
tion from well-defined industrial robot environments to complex, dynamic, and uncertain
domains is extremely hard. Most researchers agree that machines working in human envi-
ronments must — like humans — adapt their behavior to changing situations and enhance
their performance by learning.

In recent years, machine learning has contributed a lot to the success of hitherto
unimaginable robotic systems operating in real-world scenarios (Thrun et al. 2006).
Learning enables robots to adapt to specific environments and frees programmers from
tedious and error-prone parameter tuning. Despite its momentousness, in most robotic
applications learning is seen as an external resource of the system rather than integrated
component. Once the learning is done, the learned software piece is integrated into the
main code — most of the time manually — and never touched again, so that the systems
are still unable to adapt to changing environment situations and don’t show the desired
flexibility.

In the light of such observations Mitchell (2006), one of the leading machine learning
researchers, states his vision of machine learning by proposing the following longer term
research question:

2 1.2 Scenario

Can we design programming languages containing machine learning primi-
tives? Can a new generation of computer programming languages directly
support writing programs that learn? In many current machine learning appli-
cations, standard machine learning algorithms are integrated with hand-coded
software into a final application program. Why not design a new computer
programming language that supports writing programs in which some sub-
routines are hand-coded while others are specified as “to be learned.” Such
a programming language could allow the programmer to declare the inputs
and outputs of each “to be learned” subroutine, then select a learning al-
gorithm from the primitives provided by the programming language. Inter-
esting new research issues arise here, such as designing programming lan-
guage constructs for declaring what training experience should be given to
each “to be learned” subroutine, when, and with what safeguards against ar-
bitrary changes to program behavior.

Mitchell (2006)

For autonomous robots or other physically embedded systems the issue of integrating
learning into a programming language is even more important than for other systems using
machine learning, because the experience cannot be provided by the programmer, but must
be acquired by the robot itself. For example when a robot is to learn how to navigate, no
programmer can tell it which commands to use, because if this information was known,
there would be no need to learn.

In this work we present a robot control language that explicitly supports learning in the
program. It comprises all functionality connected with learning: gathering the experience,
abstracting it, performing the actual learning process, and integrating the learning result
into the program. Our Robot Learning Language (RoLL) supports arbitrary experience-
based learning algorithms and can be extended easily with new developments in machine
learning.

1.2 Scenario

In order to get a better intuition of how learning should be integrated into control pro-
grams, let’s regard a typical scenario a household robot such as the one depicted in Fig-
ure 1.1 is confronted with daily. One task is to pick up an object, e.g. a cup, which might
be implemented composed of atomic subtasks. The picking up task includes going to the
object, gripping and lifting it.

1. Introduction 3

1.2.1 The Challenge

For gripping an object, the robot has to navigate to a location that is easy and safe to reach
and from where it can pick up the cup easily. Although the exact position of the cup is
known, the robot has to decide where to navigate in order to grip it. First of all, there
are physical restrictions as to where the robot can position itself. The cup is originally
standing on some other object, possibly the worktop, so the robot must take care not to
collide with the supporting object. But then there are still plenty of options. Should the
robot stand directly in front of the cup? Then it might clash with the worktop. So it’s
probably better to move away a bit. But how much is “a bit”? Should the robot reach for
the cup from a front position or from the side? This decision depends on the orientation
of the cup, surrounding objects and which arm the robot intends to use.

The arm the robot intends to use? Another open question to decide. Not only that its
answer relies on the position the robot chooses for starting the gripping process (we have
a cyclic dependency here!), but we should also consider the later action of putting the cup
down on the table. The case gets even worse when the arms aren’t equally dexterous.

But not only decisions inside the picking up routine are crucial. There are situations
where picking up an object is not possible, because it is out of reach for the robot. The
higher-level plan should know about this. It should further know in which situations the
robot fails to pick up the cup. Such a situation might arise when the state estimation is not
accurate enough and the robot misses the object when gripping. A solution in the view
of the top-level plan would be to add special sensing actions for determining the exact
position of the cup and then start the picking up.

All these questions cannot be answered without considering the situation at hand.
Studies in the cognitive neuroscience of motion control state that where skilled people
grasp objects depends on aspects such as the clutteredness of the scene, the location of the
objects, and the subsequent tasks to be performed. The grasp points for a bottle are cho-

Figure 1.1 Household robot working in everyday environments.

4 1.2 Scenario

sen differently depending on whether the bottle stands solitarily or in the mid of a bunch
of other bottles. The grasp points also vary depending on whether the bottle should be
carried somewhere else or be used to fill a glass.

The question now is how to implement a robot program that adapts to the circum-
stances in the environment and performs sophisticated every-day activities reliably.

1.2.2 Solution Ideas
The first approach to make a robot pick up things is to regard the task as a control problem
and program it by hand. However, we have shown that there are many open parameters
apart from the control parameters steering the motors, which can hardly be determined
analytically, as they involve many aspects of the current situation in the world. Besides,
information about the routine like the time it will take to complete it or how often failures
occur cannot be determined without observing the program execution. Researchers in
autonomous robots agree that learning is the only way to make such routines flexible
enough for human environments.

Instead of regarding the picking up process as composed of simpler actions, one could
treat it as an atomic action, which is the view most planners have towards picking up. One
could imagine a reinforcement learning approach, where the robot tries to grip objects
and based on the information if it has succeeded adapts its control function. We have
demonstrated some of the problems a robot has to deal with and which are critical for
the success of the action. But when a reinforcement learning robot realizes that a try
didn’t work, it cannot attribute this failure to one of these aspects. Instead, it more or less
randomly adapts its control function and tries again. The single problems of deciding on

Figure 1.2 Plan for picking up objects. Learnable parameter choices inside the plan defi-
nition are marked in bold font. Predictive models for this plan are shown as questions of
the higher-level plans using pick-up.

(define-plan pick-up (object)
...
(navigate-to gripping-position)
...
(grip object used-arm)
...
(lift object velocity))

Time
needed?

Success
probability?

Occupied
space?

Which
Failures?

Failure
recovery tries?

1. Introduction 5

a hand to use and where to stand are still there, they are just not represented explicitly.
Thus, the learning is an unguided search in a huge state space. This needs a tremendous
amount of trials and therefore time.

The critical questions in the pick up action can easily be identified by humans. So
why not use this knowledge for speeding up the learning process? Figure 1.2 shows
the plan for picking up objects and highlights the important parameters that have to be
chosen. Besides, it illustrates the models a higher-level plan might be interested in. The
atomic actions navigate-to, grip, and lift are also interesting parts to be enhanced by
learning.

So instead of regarding picking up as a monolithic action, we use the structure of the
program and learn small, easily learnable parameter decisions and models, which demands
for much less experience than the approach ignoring the structural information. Learning
such simpler functions is usually done by controlling the robot with a dedicated program
for acquiring learning data, which is then fed into a learning algorithms producing an
executable function. Then the program is equipped with this resulting function, never
being modified again. With this procedure the programmer is freed from tedious parameter
tuning and the decisions are adapted to the specific environment. However, real-world
environments are highly dynamic. For example, when a coffee machine is added to the
kitchen, the gripping and therefore the picking up task gets more difficult because of
additional space restrictions. Or the robot might be equipped with a new arm, or the
lower-level actions like gripping have been changed. When learning is performed only
once, changes in the environment or to the robot cannot be reacted to appropriately.

As a consequence, control routines should be equipped with learning capabil-
ities, which continually reconsider and adapt particular control decisions and
subtasks.

The only way to fulfill these demands is to integrate learning capabilities into the
language the program is written with. This allows a smooth interaction of programming
and learning to use learned functions in a program where the structure of the activity
is predefined. When learning is part of the program it is not performed as an external
component, but an integral part of the execution. This allows to repeat the learning process
at any time. This is why we developed RoLL, an extension of a robot control language
with constructs for declaratively defining and automatically executing learning problems.

1.2.3 The Vision
We assume a learning robot to be equipped with a control program containing functions
to be learned. At first, these decision functions are provided by simple heuristics, which

6 1.2 Scenario

work in some situations and fail in others. Our robot constantly monitors the execution.
The intention of picking up an object is the start signal for an interesting episode, which
ends as soon as the robot has lifted the object to its desired position.

An episode is the behavior of the robot and the change in the environment
over a specified time interval. The time interval is identified with by active
processes of the robot control program and conditions in the environment.

During an episode, the robot can make an experience. Figure 1.3 illustrates that an
experience is not just a data stream. It comprises the robot’s intentions, beliefs, active
processes, failures and internal parameterizations. All this is what we understand by the
execution context.

During the episode, the robot records several aspects of its activity performed in the
world. At the start of the episode it notes the original object position and object type,
the robot’s position, the arm used for the picking up task, and the time stamp. All the
time while the episode is valid, the arm position is recorded in each control loop cycle.
Besides, all occurrences of failures are memorized with the associated time and failure
type. Finally, when the end of the episode is detected, the time stamp is stored.

An experience is a compact, (partly) symbolic summary of a problem-solving
episode for the purpose of learning. It may contain information about the in-
tentions, the beliefs, and the perceptions of the robot. The experience also
can contain information about events that happened in the episode and per-
formance aspects such as resources needed or failures that occurred. In other
words an experience should be comprehensive enough to generate explana-
tions for the generated behavior.

As we work with a realistic robot, actions of observed episodes might fail. It may
happen that the robot fails to grip the object or it slips from the robot’s gripper while
lifting it. The end of the episode is then detected, but the observed data might not be
useful for learning all the problems described in the following. Therefore, such an episode
should at least be marked as being interrupted. Other undesired effects during experience
acquisition can be caused by low battery voltage or inaccurate state estimation.

At night, when the day’s work is done, the robot uses its time to evaluate the experi-
ences he has made during the day by learning from them. From the data observed during
the gripping episode the robot can learn a variety of things. First, it can find a better strat-
egy to select a hand when an object is to be gripped. It might have some experiences of
when the lifting didn’t work and a failure occurred. And it has seen different gripping
episodes and can compare the times that they took.

1. Introduction 7

Figure 1.3 Illustration of an experience. It includes intentions, internal parameters and
beliefs of the robot as well as program failures and other active processes. The episode
can be described with constraints on the same kinds of values, in this case on an internal
process.

When I was picking up the cup from the table

o I wanted to bring it to the cupboard;

o I was holding a fork with my left arm;
o there was a plate standing nearby on the table;
o it took me 12 seconds;

o I used my right arm;

o I needed two trials for grasping;
o I didn’t collide with anything;

o I was busy cleaning away the meal;
o I was preparing a cake in the oven.

What I
intended to do

What I
believed about

the world
What I

decided to do

What went
wrong

What else I
was doing

8 1.2 Scenario

The raw experiences collected during robot execution are converted to learn-
ing task specific abstract experiences to make them usable for the learning al-
gorithm and reduce the necessary number of experiences to be acquired. Raw
experiences store all information about episodes that are useful for learning
and can be abstracted in different ways to generate specific abstract experi-
ences for different learning tasks.

To compare different gripping episodes, a good abstraction of the data would be to
calculate the relative position of the object with respect to the robot. The duration of the
task can be calculated from the start and end time stamps. By choosing only such gripping
tasks that perform superior to other gripping episodes, a set of experiences — composed
of the relative object position and the arm used — can be selected, which is then passed
to a decision tree learner. The resulting function can select the best arm depending on the
situation. When new experiences are available, the function can be updated with the new
knowledge.

Other interesting functions to be learned from the observed experiences are models of
the execution of the gripping routine. These include (1) the time it takes to grasp the object
and lift it to the desired position, (2) the failures that might occur (possibly with hints how
to avoid such situations), and (3) the space needed for moving the arm while gripping. All
of these problems need different abstractions of the original raw experiences. Whereas the
first problem would consider the relative position of the object toward the robot and the
time the action takes, the second would probably take into account the absolute object and
robot positions (because there might be objects in the way, which can only be captured

Figure 1.4 Embedding the learning result into the program. The learned function is rep-
resented in an abstracted form and has to be converted to the signature of the control
decision.

LEARNED
FUNCTION

CONTROL
DECISION

object-id left/right

object-robot-distance
× relative-angle
× object-type

0/1

state variables

1. Introduction 9

with absolute position values) and the failure type. The third problem would evaluate the
arm trajectory, i.e. the arm positions that where protocolled during the episode. It would
consider an abstract description of this trajectory, for instance the bounding cuboid, as
well as the situation description with the relative position of the object. For the second
problem, a decision tree learner would be an appropriate approach, the other two learning
tasks should rather be tackled with neural nets or extensions of classical decision trees like
model trees.

In order to use the learned result, it must be embedded into the program. As the
learning has been performed on abstracted data, the same abstraction must be calculated
before calling the output of the learning system as illustrated in Figure 1.4. When the robot
calls the function telling it which hand to use, the input from the control program’s view
are the robot’s current position (given as a global state variable) and the object to grip.
The learned function, however, expects a relative position of the object with respect to the
robot and the type of object to be gripped. For calculating this mapping, the abstraction
given in the learning process can be used. After calling the learned function, the result
must also be converted to a form expected for the control decision. In the example, the
left and right arm had to be mapped to 0 and 1 for the learning system to be learned,
whereas the program works with the symbols left and right.

Embedding the learning result into the program means to make it available in
the program and make sure that the calling parameters fit the ones expected
by the learned function.

The next morning, the robot will perform better than the day before. When gripping
objects it can now choose the hand to be used based on the experiences of the previous day.
It can also forestall and avoid failures, predict if it might collide with other objects, and
it has a notion of how long the action will take (which is useful for planning its activities
and as an indication that an unknown failures has occurred).

Instead of making experiences during the normal execution, the robot could have used
its free time to move around the kitchen and try certain actions. For instance, if it hasn’t
performed many gripping tasks during the day, it might carry objects around during the
night to observe the experiences then.

1.2.4 The Bottom Line

We have pointed out the challenges of learning in the real world. The main problem in
current systems is that learning is usually regarded as a way to improve a program from
an external point of view. This approach cannot be accepted for continual, adaptable robot

10 1.3 Technical Challenges

learning. We think that learning parts of the control program must be initiated and exe-
cuted by the program itself. A natural way to allow this is to extend a control language
with constructs for learning. Embedding learning capabilities into a control language
makes learning problems executable at run time and enables a smooth transition between
programming and learning. Instead of solving a complicated, monolithic learning prob-
lem, several simpler ones can be solved and combined in the program. Also, before learn-
ing at all, simple heuristics for models or parameterizations can be programmed before
they are replaced by more accurate learned ones.

1.3 Technical Challenges
The integration of a general learning procedure into a robot control language, which
should be defined by declarative constructs poses several challenges both on the con-
ceptual and on the implementational side. In particular they comprise

o the definition and automatic acquisition of experiences, as well as their abstraction
and management,

o the integration of learning results into the normal control program, and
o to find a general mode of operation applicable to all experience-based learning

mechanisms, so that the system works with arbitrary learning algorithms.
The first vital concept in learning are experiences. In the scenario we have illustrated

that experiences are not mere chunks of data, but should contain the robot’s intention and
the execution context. This requires deep insight into the control program. In current
systems, special data recording code is added to the primary program, which is clearly
unacceptable for a programming language that should allow to add an arbitrary number of
learning problems at run time. This demand poses two fundamental questions: (1) How
can experiences be specified declaratively? and (2) How can the desired data be recorded
without changing the rest of the program?

The specification of experiences must enable the programmer to define the desired
execution context both from the robot’s inner state and from its percepts, for example
to specify an episode where a cupboard door is open and the robot is navigating. Having
detected an episode, the robot must be told which data to record and at which intervals. All
these instructions must be captured in a declarative specification to make it independent
of the control program and to allow an intuitive specification of experience abstractions.
Our solution is to use the concept of hybrid automata for modeling the control program
and specify the experiences based on this model.

RoLL converts the experience specification into executable code. The code for ob-
serving and recording experience data runs in parallel to the main process and be able
to observe all relevant aspects of the execution. This includes the robot’s belief about
the environment situation, its execution status (i.e. which goals are currently tried to be

1. Introduction 11

achieved with which routines) and local variables in the routines. This is only possible
with a programming language that admits insight into its control status and keeps track of
its internal behavior. Such a language is RPL, which we use as a basis for RoLL.

The integration of learning results is not just a conversion from an external result for-
mat to a LISP function. Because the experience is abstracted before learning, the call
of the resulting function must take into account these conversions. The data conversion
needed for calling the function appropriately is very similar to the abstraction defined for
the learning process, but some data that was observed during experience acquisition must
be replaced by explicit input values of the result function. To avoid redundant specifica-
tions of abstractions, the integration must access the initial abstraction specification and
combine it with a user statement as to which data is obtained in the same way as in the
experience acquisition process and which is provided by the input.

With the demands on the definition of raw experiences and function integration, the
concept of abstract experiences must on the one hand be similar to raw experiences and
offer interfaces for experience abstraction. On the other hand it must allow to reconstruct
the abstraction process in order to generate the embedded result function.

One important objective for RoLL was to support arbitrary experience-based learning
algorithms. This doesn’t only raise the question of how to enable a modular extension with
new learning systems, but also makes it crucial to find a general schema of how learning
problems are executed. The language should not be too specific in order to allow different
learning systems. On the other hand, it should be possible to define all aspects of learning
problems in the declarative constructs.

In sum, the challenges of developing a robot control language that includes learning
constructs comprise the implementation of a modular experience acquisition and the de-
sign of a language that enables to define all aspects declaratively in a uniform framework.

1.4 Approach
The language we present — RoLL (Robot Learning Language) — offers constructs for
declaratively specifying all stages of the learning process: experience acquisition, expe-
rience preparation for learning, the call of the learning algorithm, and the inclusion of
the learned function into the control program. Although we have motivated continual
learning by a special class of learning problems (models and parameterization decisions),
RoLL can be used for any kind of robot learning. As different problems suggest the use
of different learning algorithms (e.g. decision trees for choosing the hand for gripping,
neural networks for estimating the time needed to fulfill a navigation task), RoLL doesn’t
rely on a special learning algorithm, but supports the modular integration of any kind of
experience-based learning paradigm.

Figure 1.5 gives a flavor of what RoLL looks like and how it works. The box on the

12 1.4 Approach

right contains the RoLL program, shown here in a simplified form. The left-hand side
shows the learning steps when the program is executed. The program code consists of
specifications needed for several learning problems (for example a learning system), the
definition of a specific learning problem, and a control program. The control program
executes some normal activity invoked by execute top-level plan. The execution of
this plan is observed by the acquire-experiences command. When the daily activity has
finished, the command learn uses the experiences with the specified learning algorithm,
transforms the learning result to an executable function and integrates it into the control
program.

The code specifying the experience acquisition should not be interwoven with the
primary program. For finding an appropriate specification we needed a formal framework
for declaratively describing the experience that is to be acquired. For this purpose, we use
the concept of hybrid automata for partly modeling the control program and aspects of the
environment and on the basis of these models describe the data wanted as an experience.
Hybrid automata have shown to be a very effective concept for modeling continuous as
well as discrete behavior of programs when executed in an environment. This allows the

Figure 1.5 Usage of RoLL. The program on the right side invokes the learning steps on
the left side by calling the RoLL commands acquire-experiences and learn.

raw
experience

learned
function

learning
result

learning
system

abstract
experience

General Definitions
abstract experience class: aec
learning problem schema: lps
learning system: ls
experience class for ls: lec

Problem-specific Definitions
raw experience: re
abstract experience: ae
of class aec
abstract from raw experience re

learning problem: lp
learn target function
specified as lps

using experience of class lec
abstracted from experience ae

applying learning system ls

Control Program
do continuously
do in parallel
acquire experiences re
execute top-level plan

learn lp

ACQUIRE
EXPERIENCES

LEARN

1. Introduction 13

specification of a rich variety of experiences in RoLL including instantaneous changes in
the environment or the internal program state as well as continuous observations.

1.5 Contributions
This work develops a novel robot control language with integrated learning capabilities.
The main contributions are

o establishing a theoretical foundation of experiences using hybrid automata, and
o designing and implementing an extension of a robot control language resulting in a

smooth interaction between programming and learning.
Both contributions are evaluated by applying the resulting language RoLL to different
robot learning problems.

Many researchers don’t regard the first contribution of analyzing what experiences
are and how they can be represented explicitly as a pressing problem. Robot learning has
been used in several applications and the architecture of learning agents is described in text
books (cf. Figure 2.1). This knowledge is enough when single learning problems have to
be solved, when experiences are obtained by writing special code that records the desired
data from inside the program and this data is finally fed into a learning algorithm. When
this process is to be automated, all parts of the learning process must be made explicit
and be described declaratively. Therefore, finding a general description of experiences is
a vital prerequisite for developing control languages that include learning capabilities.

The most difficult part is to describe experiences without having to modify the control
program. To do this we model the execution of the control program using hybrid automata
and define the required experience data according to this abstract description. We use
hybrid automata further to describe the abstraction of experiences. The learned behavior
models can be represented by hybrid automata, too, so that the complete learning process
can be viewed in this framework. In this work, we use hybrid automata only as a tool for
modeling aspects of the control program and defining components of learning problems.
We do not make use of automatic verification techniques or stability proofs — topics
which are amply discussed in the literature on hybrid automata.

The second contribution of this work is the specification and implementation of the
language RoLL. It allows to define, execute and repeat complete learning processes. In
particular, it enables a modular, declarative definition of experiences, which enables the
automatic acquisition of experiences by observing the primary program. Another difficult
subject is the integration of the learning result into the program. Not only compatibility
between different systems must be ensured, there is also the issue of calling the learned
function with the appropriate input, which must be converted similarly to the abstraction
defined for the learning problem. RoLL is very flexible with respect to different learning
systems, methods for storing and managing experiences, and learning problem types.

14 1.6 Reader’s Guide

We used the implemented language on an autonomous household robot for learning
while it was performing its activities. We show that RoLL enables the acquisition of expe-
riences during the primary activity, its abstraction, the learning process and the embedding
of the learned function into the control program. We demonstrate that the development of
autonomous robots can be accelerated and enhanced by learning on the job and that our
language constructs allow a declarative, general and easy to understand specification of
learning problems.

1.6 Reader’s Guide
This work introduces the language RoLL by first explaining its formal and implementa-
tional foundations, presenting the language and evaluating it.

Chapter 2 gives an informal overview of RoLL and the basic concepts that are needed
throughout the work. This chapter is intended as a reference for the overall ap-
proach.

Chapter 3 presents the starting point for this work, which is the language underlying the
learning concepts of RoLL. This underlying language consists of two layers: RPL,
a robot control language developed by McDermott (1993) and the implementation
of a belief-desire-intention architecture on top of RPL.

Chapter 4 explains the formal basis for RoLL by introducing the theory of hybrid au-
tomata and their application as a framework for robot learning.

Chapter 5 provides a detailed explanation of the language RoLL. We primarily show the
concepts and their role in the learning process. A complete specification of the
language is given in Appendix C.

Chapter 6 demonstrates the advantages of RoLL by providing a complete code example.
Besides, we present some learning problems solved with RoLL and on the basis of
them point out cases where RoLL is particularly useful.

Chapter 7 concludes by classifying continual robot learning in the context of a wider
perspective of future AI and robotics approaches.

Appendix A is a short reference of the language RPL including only the concepts needed
for this work.

Appendix B summarizes the definitions of hybrid automaton concepts.

1. Introduction 15

Appendix C is a complete reference of RoLL. Together with the code example from Chap-
ter 6 it can serve as a programming manual.

Appendix D shows how RoLL can be extended in several dimensions. It is intended as an
example and tutorial for the RoLL extensions. At the same time it is a reference of
the currently implemented extensions.

Some aspects of former versions of this work have been published in (Müller, Kirsch,
and Beetz 2004), (Beetz, Kirsch, and Müller 2004), (Kirsch 2005), (Kirsch, Schweitzer,
and Beetz 2005), (Kirsch and Beetz 2005), and (Kirsch and Beetz 2007).

Chapter 2

Integrated Robot Learning

This chapter gives an informal overview, first of how single learning problems are exe-
cuted in RoLL, second how the learning is executed continually while the robot is per-
forming its normal activities. Beside the system functionality we define the scope of this
work.

2.1 System Overview

The central concept in our learning approach is the term “experience”. In our framework,
an experience is more than the data stored in log files, which is commonly used for learn-
ing. An abstract description of the experience concept was given in the scenario in the
last chapter. In more technical terms we define an episode as all the available data ob-
servable during a stretch of time in the execution of the robot control program within the
environment. An experience is a summary of the internal and external state changes ob-
served during and associated with an episode. By summary we mean that not all available
information is recorded, but only the one necessary for learning. State changes include
events in the environment, the robot’s control commands, its internal beliefs, decisions
and intentions, as well as failures and the robot’s reaction to them.

This notion of experiences enables operations on them, which are needed to reduce
the number of experiences to be acquired and make the learning more efficient. One such
operation is the abstraction of an experience into a form more suitable for learning. This
can either be done in a linear fashion, where each raw experience is converted into one
abstract one or in a network of experiences, where the raw observations are transformed
to produce several abstract views. What is more, when the context of the experience is
preserved, semantically sound methods for deciding which experiences are most useful
can be applied to learn only with the most expressive experiences, thus enhancing the
learning process as a whole (Kirsch, Schweitzer, and Beetz 2005).

2. Integrated Robot Learning 17

To implement this notion of experiences in the learning process, our approach is based
on two concepts: (1) the architecture of a learning agent as described by Russell and
Norvig (2003) for a structured view on the learning process and (2) hybrid automata for
a theoretically grounded, well-understood underpinning of experiences and their impact
throughout the learning process.

In the following, we first explain the agent architecture providing a structure of the
learning process. Then we give a glimpse of what a program written in RoLL looks
like and how the learning process is performed. We use hybrid automata for justifying
and explaining the language constructs of RoLL, which would go into too much detail
in this overview chapter. The use of hybrid automata as a theoretical underpinning for
experiences is explained in chapters 4 and 5.

2.1.1 Architecture of a Learning Agent

The principal operation of RoLL is derived from the architecture of a learning agent de-
scribed by (Russell and Norvig 2003) and depicted in Figure 2.1. It shows the basic inter-
action of the agent and the environment by exchanging percepts and control signals. The
interpreted percepts are stored in global state variables. The agent architecture consists of
several components, of which only the performance element is essential for controlling the
robot. The other components are needed for learning or providing additional information
to the controller.

The critic element can be regarded as an abstract sensor supplying the performance
element with more abstract information than is contained in the state variables. This

Figure 2.1 Architecture of a learning agent after Russell and Norvig (2003).

E
N
V
I
R
O
N
M
E
N
TState Variables

Critic

Performance
Element

Learning
Element

Problem
Generator

E
xp

er
ie

nc
e

D
at

ab
as

e
L

ea
rn

in
g

Sy
st

em
s

18 2.1 System Overview

includes the knowledge about the robot’s own behavior in the form of models. In the
context of learning the critic element’s job is to detect episodes, record data and abstract,
store, and manage experiences.

The learning element controls the learning process as such. It decides when and what
to learn, what experience to use and which learning algorithm to employ. We assume that
different learning algorithms are provided as external learning systems, so that new sys-
tems can be added and the learning process is not restricted to a special set of algorithms.

The problem generator instructs the performance element what tasks to fulfill in order
to acquire useful experience. In this context, there are two questions: “Which experiences
are needed?” and “How should the the robot choose its actions to achieve its primary goals
and at the same time acquire useful experiences?” For the first question a tight interaction
with the critic element is necessary for knowing which experiences are already present.
Further, a deep insight into the impact of the robot’s actions is needed in order to know be-
forehand that the proposed task will provide the desired experience. The second question
is the well-known trade-off between exploration and exploitation. Intensive exploration
will provide more experience for learning, whereas it might degrade the performance of
the job at hand. A higher degree of exploitation usually gives better results of the primary
task, but doesn’t help to improve the performance in the future.

2.1.2 Learning Process
The architectural description of the learning process is mirrored in the way RoLL works.
We now go into how RoLL solves single learning problems. In Figure 2.2 the left-hand
side depicts the learning procedure in RoLL with references to the elements of the learning
architecture. All operations in the context of experiences are handled by the critic element,
the learning part is performed by the learning element, and the performance element is on
the one hand used to produce observable episodes (together with the problem generator)
and on the other hand receives the learning result. On the right side of Figure 2.2 the code
pieces are shown that generate the respective behavior illustrated on the left.

A typical learning problem is specified and solved in two steps: first acquire the neces-
sary experience, then use this experience to learn and enhance the control program. This
process is usually repeated to make the learning result better and adapt the control pro-
gram to changed environmental situations. The activity of these two steps is invoked by
calling the commands acquire-experiences and learn, one possible control program
could be the following:
do continuously
do in parallel
acquire-experiences re
execute top-level plan

learn lp

2. Integrated Robot Learning 19

Figure 2.2 Learning process with reference to the elements of the learning architecture of
Figure 2.1. On the right-hand side the corresponding code defining the learning process is
shown.

experience gathering step

experience
recording

monitoring plan
execution

raw experience

experience
abstraction

learning step

experience
preparation

learning

integration

raw experience: re
observe execution of plan p
recording variables
(x,y) continuously
(a,b,c) in case of success

abstract experience: ae
of class aec
abstract from raw experience re

learning problem: lp
learn target function
specified as lps

using experience of class lec
abstracted from experience ae

applying learning system ls

20 2.1 System Overview

This program executes some top-level plan, e.g. doing household work. In parallel
it observes the experiences defined declaratively as raw experiences. In this example,
only one experience is observed, but RoLL supports the parallel acquisition of several
experiences. Here we assume that the top-level plan ends at some point, let’s say in the
evening of each day. Then the experiences observed during the day are used for learning
and improving the top-level plan before it is executed again.

The commands acquire-experiences and learn only tell the program when to ob-
serve and learn. The questions what to observe and how to learn are answered by declar-
ative specifications, which are made independent of the control program and are depicted
in Figure 2.2.

Let’s have a closer look at the two steps involved in the learning process. The most
intricate step of the experience acquisition is the observation of raw experiences during the
execution of the control program. The observation process is independent of the robot’s
primary activity, but it needs access to all relevant information including local variable
values and the execution state of the program. This process is modeled by hybrid automata
and will be described in detail in the following chapters.

The freshly observed experiences must then be converted to a form that is suitable
for the learning process. In principle, the raw experience can directly be transformed to
an abstract experience, which can be passed to the learning system. But there are sev-
eral practical reasons why the abstraction should take place in several stages, depending
on the problem. One consideration is that experiences should be stored permanently so
that the learning process can be repeated and build on former experience. Besides, for
as experiences are valuable, they should be used for several learning problems. These
requirements suggest to store the experiences permanently in an intermediate state that is
abstract enough not to contain too many unnecessary details, but detailed enough to be
usable for different learning problems. Therefore, the abstraction process usually looks
as shown in Figure 2.3: The first conversion is performed directly after learning, its result

Figure 2.3 Typical experience abstraction steps. The raw experience is abstracted to an
intermediate step, which is stored permanently. This experience can be retrieved from the
experience database for different learning problems and be abstracted again for learning.

raw
experience

learning
experience

abstract
experience

ex
pe

ri
en

ce
da

ta
ba

se

2. Integrated Robot Learning 21

being stored in a database or some other storage device. When a problem is to be learned
the experiences are retrieved from the permanent storage and adapted further to the learn-
ing problem and the learning system. The whole process can include an arbitrary number
of abstraction stages.

The second step — the learning step — starts with the last operation on experiences
by transforming them to a format accepted by to the learning system. Then the actual
learning takes place by applying a specified learning algorithm to the experiences. The
final step is to integrate the learning result into the program. This doesn’t only involve
the conversion of the learning result to a LISP function. Another question is how to use
this function, because the learning has been performed on some abstraction, which is
not necessarily the way in which the function is intended to be used. For example, when
calling a navigation routine, the current position of the robot is known and the only input is
a goal position. However, for learning one might have chosen an abstraction that involves
the distance of the current and goal points. For calling the learned function, the input must
be converted so that it fits the learning result.

After that the program runs with the modifications induced by integrating the learning
result. The cycle starts again for more enhancements to the program.

2.2 General Robot Operation

We have just described an automated learning process specified in RoLL. We now give a
wider picture of how single learning processes are integrated into the robot’s overall mode
of operation.

During the robot’s activity its main contribution to learning is the acquisition of expe-
riences. It observes all its doings on all levels of abstraction and records data that should
be useful for learning later. It can for example record the outcome of actions in order to
learn models.

But not only passive observation of experience is possible. Instead of only monitoring
the robot’s main process, it can further learn routines and plan parameters in an online
way, so that its functions are updated each time the respective action is performed. This
mode of operation is possible in RoLL, although we are more concerned with passive
experience acquisition and offline learning in this work.

Besides, the robot constantly monitors its activity using the models it has already
learned. On the one hand, this helps to detect execution failures, on the other hand, the
robot can identify plans and routines that need to be improved. It is also possible that the
robot detects its models’ predictions not to be accurate enough, maybe because the envi-
ronment has changed slightly. With this information, learning problems can be identified
and scheduled for (re-)learning.

Equipped with new experience and a list of learning problems to be performed, the

22 2.3 Scope of this Work

robot’s idle time is dedicated to learning. The first thing to do is to use the newly acquired
experience for learning some of the problems scheduled for learning.

Some learning problems, however, require additional experiences, which cannot all
be observed during normal execution. Especially when optimizing routines or plan pa-
rameters, more examples are needed. Therefore, the robot generates tasks allowing the
observation of experience that is still missing for a problem at hand. These tasks can ei-
ther be executed in simulation or in the real world according to the circumstances. The
examples acquired in this way are then used for learning. Furthermore, the robot can
use its idle time to perform online learning, e.g. reinforcement learning, on small, easily
learnable problems.

Another method for not having to generate excessive amounts of experiences is their
sophisticated management. By this we mean that experience should be stored permanently
and in a less abstract form, so that it can be used for several learning problems, possibly for
ones that have not even been identified yet. Experience handling also includes bookkeep-
ing about the acquisition time of the experience. Thus, more recent experiences should be
given more weight than older ones.

Overall, the robot’s control program is composed of learned and programmed parts.
During its normal activity experiences are acquired and necessary learning problems iden-
tified. These and previously recognized problems are learned either with the experience
observed during the active time or with experience gathered by performing well-chosen
tasks in the idle time. During operation there is no difference between learned and pro-
grammed parts of the program.

2.3 Scope of this Work
To our knowledge there is no other existing system that combines learning and program-
ming in such a general way. This work can only be the beginning of a development in the
direction of considering learning as an integral part of a robot’s control program. We will
now define the scope of this work in the light of the overall picture we have just given.

The structure of our control programs allows a seamless integration of learning and
programming, because learning facilities are part of our robot control language. The lan-
guage distinguishes plans, routines, functions providing plan parameters, and models as
data structures. It makes no difference if any of these are programmed or learned, the
usage is exactly the same. All of these types store certain additional information, which
includes the origin and possibly status like programmed, to be learned, or learned. Thus,
all of the basic types of subroutines can either be learned or programmed. Besides, for-
merly programmed parts can be replaced by learned ones without any changes to the rest
of the program.

During program execution all relevant aspects of the execution can be observed in-

2. Integrated Robot Learning 23

cluding percepts, internal local variables, low-level control commands, and the program’s
internal state, i.e. active processes and the calling structure of these processes. This moni-
toring takes place independently of the program that defines the robot behavior. Therefore,
observing processes can be specified, added and removed without changing any of the ac-
tivity generating part and it is possible that several monitoring processes are active at the
same time. This modularity is an important requirement for making the whole program
robust and easy to modify, even by the program itself. The monitoring facility can not
only be used for acquiring experience for learning, but also for inspecting and evaluating
the robot’s activity.

In contrast to the overall approach described in the previous section we focus on learn-
ing during execution, mostly neglecting the generation of artificial experiences at idle
times. However, we provide simple means for problem generation, where the program-
mer specifies in advance which parts of the state space should be explored. This is enough
for imitating current learning approaches where the tasks to be performed are also pre-
programmed. In the future this construct should be enhanced so that the robot itself can
decide which actions provide useful learning experiences.

In our approach the learning problems are currently predefined and not generated au-
tomatically when needed. Therefore, the robot cannot decide to replace a programmed
routine by a learned one when it realizes that the programmed routine performs subopti-
mally unless such a problem is already defined. Besides, the decision if a problem should
be learned is either given beforehand or coded into the top-level program. So it is possible
to acquire experiences, test the learning result and then decide if more learning is nec-
essary. But this functionality must be programmed manually and is not part of the basic
operating mode of RoLL.

As we have pointed out, experience is valuable when learning on the job. Therefore
we store it in a database for later use. The experience gathered once can be added to later
and it can be used for several different learning problems by defining different ways of
abstraction. We also store a time stamp when the experience was acquired. In future work
this management information will help to pick out the most informative experiences for
learning.

The learning process itself is performed automatically according to the problem spec-
ification given by the user. Once a function has been learned it is integrated into the
program and is ready to be used henceforth. From this point on it is treated as any other
part of the program. If the necessity arises, it can be replaced by a newly learned function
using the same learning problem specification or a modified one. At the moment, the pro-
grammer decides when the learning is to take place. In the future, the language could be
enhanced to identify idle times suitable for performing the learning process.

RoLL is not restricted to special learning algorithms. We currently provide interfaces
to a neural network learner and different kinds of decision trees. But the language offers
constructs for easily including additional learning systems.

24 2.3 Scope of this Work

In sum, RoLL offers much of the functionality needed to tightly integrate learning
capabilities into the robot control program. More sophisticated features like automatic
detection of learning problems, target-oriented experience generation, and scheduling of
learning in idle times are not supported explicitly, but can all be programmed manually
within RoLL.

Chapter 3

Language Preliminaries

So far we have explained RoLL’s functionality in an informal way. In doing so, we have
implicitly assumed certain features of the original robot control language. In this chapter
we describe these features in detail and show the available prerequisites for the implemen-
tation of our language extensions for learning.

3.1 RoLL Language Levels

In the last chapter we have presented the architecture of a learning agent (Figure 2.1 on
page 17). Not all the activity of such an agent consists of learning. Therefore RoLL
only comprises the architectural parts concerned with learning as depicted in Figure 3.1.
The underlying control program must however fulfill certain requirements to be extensible
with learning capabilities.

3.1.1 Prerequisites on the Performance Element

For non-learning operation the performance element is sufficient (possibly supported by
parts of the critic element). This is also the part of the agent where things are modified
when learning. Thus, the first prerequisite of the performance element is that the parts of
the control program that are to be learned can be modified during execution. This means
that it must be possible to overwrite existing procedure definitions and add new ones at
execution time.

A secondary claim is to have additional information on procedures like if they have
been learned, programmed or are still to be learned. We provide these requirements by
representing plans, routines, and functions as data structures in an object-oriented frame-
work. Their execution part is either a method or a function stored inside the data structure.

26 3.1 RoLL Language Levels

One of our main learning goals is to acquire models of the robot’s environment and its
own actions. These models should not only be used for prediction but mainly to improve
the robot’s performance. Therefore a program structure that makes ample use of models
is an appropriate combination for the learning facilities provided by RoLL (although not
a stringent prerequisite).

An ideal framework fulfilling these demands is the belief desire intention (BDI) ar-
chitecture. According to the agent’s belief it decides what it wants to achieve. By using
models it then decides how to reach its desires.

Figure 3.1 Classification of RoLL language levels based on the architecture for learning
agents.

E
N
V
I
R
O
N
M
E
N
TState Variables

Critic

Performance
Element

Learning
Element

Problem
Generator

E
xp

er
ie

nc
e

D
at

ab
as

e
L

ea
rn

in
g

Sy
st

em
s

R
oL

L
E

xt
en

si
on

s

RoLL
Core

RPL

BDI

BDI

3.1.2 Requirements for Experience Acquisition

Figure 2.2 on page 19 makes it obvious that the experience acquisition is a central part
of the learning process. We have described the kinds of data we want to acquire: the
current external state and local variables from the robot’s internal state. While the first
can be achieved easily by making the state variables global, the second is more tricky,
especially with the claim that we don’t want any special data acquisition code in our
control program. A parallel process must be able to observe everything that is going
on in the observed process, for example which hand the robot uses for gripping or how
many people it expects for dinner (according to its knowledge and its models). Similarly,
it must be possible to detect the start and end of processes inside the control program.

3. Language Preliminaries 27

For example, we might be interested in the robot’s navigation behavior. The monitoring
process must be notified each time the robot’s navigation routine is used.

In short, we need a sophisticated process management allowing parallel execution
with a notification mechanism when certain program parts are activated and introspection
methods for accessing all local variables within the program. This functionality is pro-
vided by the Reactive Plan Language (RPL) by Drew McDermott, which we use as the
basis of our implementation.

3.1.3 RoLL Language Hierarchy
The complete RoLL system consists of several language layers as shown in Figure 3.2.
RPL constitutes the basic language layer (which is itself implemented as an extension to
LISP). On top of this, we implemented the BDI layer to provide the necessary features
of the performance element. Relying on the BDI constructs, the RoLL core language is
the one that is the main subject of this work. These are the elements of the problem- and
user-independent language. The functional aspects of the different layers are shown in
Figure 3.1.

RoLL can and needs to be extended along several dimensions in order to be applicable
to a wide variety of problems. One such dimension are the learning algorithms (called
learning systems in RoLL, see Figure 3.1).

Another RoLL extension consists of the storing mechanisms of experiences. We use a
relational database, because the data is easily accessible, manageable and can be cleaned
by data mining before it is used for learning. But this is not mandatory. It is also possible

Figure 3.2 Hierarchy of RoLL language levels.

RPL

BDI

RoLL core

RoLL extensions

applications

28 3.2 Reactive Plan Language

to store the experiences in log files or not to store them at all and use them for learning
directly.

A third dimension of extendability of RoLL is not depicted in the figure. We have
already mentioned some classes of learning problems: low-level routines, parameter set-
tings, models, and functions selecting the appropriate routine. But RoLL is not restricted
to those. In future work, it might be possible to tailor plan transformations to the learning
paradigm (in fact, plan transformation is nothing else than learning, but the techniques
used are still very different). Then one simply has to define a new learning problem class
and tell the system how to integrate a learned plan into the program.

Figure 3.1 is a summary of the functional components in the light of the architecture
of a learning agent. RPL provides the means for monitoring the program and the envi-
ronment and serves as the underlying language of the BDI layer, which is used for im-
plementing the programmed part of the control program. The core functionality of RoLL
comprises experience acquisition and abstraction, the learning process and the integration
of the learning result into the program. RoLL can be extended along several dimensions
including experience storage systems such as databases and learning systems.

In the following we first introduce RPL and detail its features relevant for RoLL. Then
we describe our intermediate-level BDI language that provides the basic architectural
framework for the robot’s normal activity, allowing the modification of the control pro-
gram during execution. Finally we will give a summary of all the language levels RoLL
is composed of.

3.2 Reactive Plan Language

The basic layer of the RoLL language consists of the reactive plan language RPL. We first
introduce the concepts of reactive planning in general, before presenting the RPL concepts
necessary for implementing RoLL. A summary of the RPL commands used in this work
can be found in Appendix A.

3.2.1 Reactive Planning

When research on planning started, the execution of plans was thought to be much easier
than the generation of plans (Gat 1997). However, it soon became clear that plan execution
in real-world systems, especially on autonomous robots is a huge challenge. Actions can
fail or produce unexpected outcomes and there might be unanticipated events during the
execution.

Because of these problems, new models of plan execution were developed (Firby 1987;
Agre and Chapman 1987; Payton 1986) under the name of “reactive planning”. These

3. Language Preliminaries 29

systems monitor the environment and check for possible execution flaws. The program
reacts to unexpected events by changing the course of the lower-level commands.

These systems are employed for the execution layer of three-layer architectures (Gat
1997; Bonasso and Kortenkamp 1995), where the bottommost layer consists of the robot’s
basic skills in the form of a library. The top layer is the planner, producing plans that
are made of very abstract actions like go to the table that aren’t related to the actions
implemented as low-level skills. Therefore an intermediate-level layer is necessary for
executing the abstract plans on the robot, which is usually implemented as a reactive
planning (or rather reactive execution) system.

The success of systems using this architecture can be mostly attributed to the execu-
tion systems, because the planning layer is often largely neglected. This shows that the
execution is indeed a crucial part of autonomous robot control.

One of the best-known reactive planning systems is RAPs (Reactive Action Packages)
developed by Firby (1989). Although RAPs are often used as execution layer in three-
layer architectures, impressive results were achieved using RAPs without a planning layer
on top of it. The Robot Chip (Firby, Prokipowicz, and Swain 1995; Firby et al. 1996) was
able to pick up trash from the floor and remove it. Another very successful architecture
is the Procedural Reasoning System (PRS) (Ingrand, Georgeff, and Rao 1990; Ingrand et
al. 1996; Myers 1997). It has been applied to fault diagnosis and control of spacecraft
(Georgeff and Ingrand 1989) and mobile robot control (Georgeff and Lansky 1987).

The Reactive Planning Language (RPL) (McDermott 1993; 1992), which forms the
basis of RoLL, originally implemented the same ideas. However, McDermott (1990)
denies the need of an additional planning layer, which abstracts away from execution
details. The main idea of RPL can be summarized as follows:

This language embodies the idea that a plan is simply a program for an agent,
written in a high-level notation that is feasible to reason about as well as
execute.

(McDermott, Cheetham, and Pomeroy 1991)

Instead of using a planner working on an abstract level, the whole program consists
of plans on different levels of abstractions. The plan generation of traditional planning
is replaced by a transformational planner (Beetz and McDermott 1997). This approach
subsumes the working of a traditional planner on the top level, but is more powerful as it
works on all other levels of abstraction, too. All the plans in a program are written in a
way that they can be reasoned about and modified.

To make this possible RPL keeps track of its execution status at all times. This means
the program itself knows what plan it is executing, what goal the plan is trying to fulfill,
and what data is used in the plan execution. This is the feature that makes RPL an ideal
starting point for developing RoLL, because an experience consists both of data and the
execution context in which it was observed.

30 3.2 Reactive Plan Language

RPL is implemented as a set of LISP macros, which means that the whole functionality
of LISP is included. It also provides the possibility to define macros, so that it can be
extended easily — a good starting point for implementing RoLL.

3.2.2 Language Overview
In the following we give a brief introduction to RPL, mainly addressing issues that are
relevant for the language levels added for learning.

Besides the data structures of LISP, RPL has a special kind of variables called fluents.
Fluents are variables whose values change over time. This is not unusual, but for fluents
a change of value can be detected by other parts of the program. One application of this
mechanism is to build networks of fluents. For example, when x and y are fluents, where
the value of y is defined to be twice the value of x, y is adapted automatically whenever x
changes, so that the condition of having twice its value is maintained. Fluent networks can
be composed of arbitrary LISP functions with the construct fluent-net1. An example of
a fluent network representing the robot’s distance to the table is shown in Figure 3.3. The
declaration creating this net is

(fluent-net `(sqrt (+ (expt (- ,robot-x table-x) 2)
(expt (- ,robot-y table-y) 2)))).

The whole expression is quoted, except for the variable containing the input fluents to the
whole net. So when the robot changes its position, the new fluent is updated automatically.
But if someone moves the table, this change will not be noted by the fluent net at once,

Figure 3.3 Fluent network calculating the robot’s distance to the table. The behavior is
determined depending on whether the table coordinates are given as fluents and if they are
evaluated at recalculation.

distance-to-tablesqrt+

expt
−

robot-x

table-x
2

expt
−

robot-y

table-y
2

1fluent-net is not a construct of the original RPL, but a later amendment for the development of RoLL.

3. Language Preliminaries 31

because the table is represented by a normal, non-fluent variable value. Only when the
robot changes its position again, the new table position is taken into account. In contrast

(fluent-net `(sqrt (+ (expt (- ,robot-x ,table-x) 2)
(expt (- ,robot-y ,table-y) 2))))

produces a fluent, where the table is assumed to stay where it is. If it is moved, this
change will never be detected, because the table coordinates are evaluated at the time the
fluent is created. Of course, the problems of a moved table can be avoided if the table
coordinates are represented as fluents, too. In this case the second definition produces a
fluent that is updated every time the robot or the table changes its position. On the other
hand, fluents have more computational overhead than other values so that for immobile
objects a non-fluent representation is the more efficient choice.

In real-world problems, failures are unavoidable and should therefore be detected and
corrected. RPL represents failures as LISP classes, so that specialized failure classes can
be defined. The construct (fail :class failure-class) represents a plan2 that fails
with the specified failure class. Failures can be handled implicitly by special RPL control
structures or explicitly by the with-failure-handling construct3 consisting of three
parts: the perform part is the normal plan; the monitor part observes the perform part and
generates a failure event if necessary; and the recover part, where reactions to failures can
be defined. Such reactions include another try of the same plan or trying to achieve the
goal with a different plan. Failures can also be handled implicitly by the control structures
that we introduce in the following.

Unlike classical plan languages, where the plan is a partial order of actions, RPL
provides a rich variety of control structures. The most straightforward one is (if c a b),
a plan that executes subplan a when condition c holds and b otherwise. Furthermore, plans
can be executed sequentially or in parallel. There are several modes of parallel execution,
depending on the overall reaction if one subtask fails. So (par a b) only succeeds if
both a and b succeed, whereas (pursue a b) succeeds as soon as one of the subtasks has
finished successfully.

There are special control structures for monitoring tasks. One such control structure is
(with-policy policy body), which executes body as long as policy is inactive. When
policy is running, body is blocked. This construct is very useful, when a certain situation
must hold while the robot is executing its main plan. For example, when the robot is to
bring a cup to the table. Its main plan is the navigation towards the table. The policy
watches over the cup in its hand. As soon as the cup is lost, the policy tries to recover it,
while the navigation is stopped. Only after successful retrieval of the cup the main activity
can proceed. If the policy or the body fails, the whole plan fails.

2Remember that every program (part) in RPL is a plan (see the beginning of this section).
3with-failure-handling is another extension, not included in the original RPL.

32 3.2 Reactive Plan Language

Moreover, RPL allows different kinds of loops (e.g. loop, n-times) and constructs
that never terminate, such as whenever. (whenever fluent action) executes action
each time the value of fluent changes from false to true. The whenever construct can be
applied very effectively in combination with with-policy to monitor a plan.

Similarly to whenever, (wait-for fluent) waits until fluent becomes true. But
this plan step only reacts once to the change in the fluent. For waiting for a certain time
instead of a fluent value, RPL provides the construct wait-time.

3.2.3 The RPL Task Network
RPL is not only a sophisticated representation for plans. Since it was designed for plan
transformations, it provides explicit access to its internal control status from within the
program, so that a planner can understand the program and modify it during its activity.

This feature of understanding the program structure is mainly due to the explicit
task network, which corresponds to the stack in normal programs, but is accessible from
within the program and including tasks that have not yet started their activity. The plan
(seq a b) is represented as a task with two subtasks. By this representation we have ac-
cess to information about the plan itself, like its execution status (Has it started yet? Was
it finished successfully?). Besides, we can address its subtasks and get information about
them, too. In the following we will describe the information that can be obtained from the
internal task description of a plan and then show how to navigate through the task tree in
order to inspect other tasks.

First of all, a task has a status like active, done, failed or evaporated. This informa-
tion can be useful when acquiring experience to find out if the observations are valuable
(when the task has failed it is often better to discard the recorded data). Another useful
feature of tasks is that they activate fluents when they start or end. Thus, the constructs
(begin-task tsk) and (end-task tsk) return fluents that can be used as waiting con-
ditions in wait-for or whenever.

More importantly, a task contains an explicit list of all of its local variables, called the
environment. Let us consider the following plan:

(let ((hand-to-use (determine-best-hand object)))
(grab-object object hand-to-use))

Assume that the variable object is known as an input variable from the plan containing
this piece of code. The decision which hand to use for gripping is done by a function
determine-best-hand that has access to the current values of the state variables. The
variable hand-to-use is stored in the task’s environment, so that it can be inspected by
other processes and for example be recorded as training data. After the execution this
information is lost and cannot be retrieved from the values of primitive percepts and com-
mands, because it had emerged from the execution context.

3. Language Preliminaries 33

A task also keeps track of its sub- and super-tasks. Therefore it is easy to navigate from
one task to another one in the task network as shown in Figure 3.4. All subtasks of RPL
control structures can be addressed by identifiers depending on the control structure. For
example in the plan (if c a b) the task for plan a can be addressed by (if-arm true).
In a loop construct the iterations can be addressed by numbers, e.g. (iter 3) denotes the
third iteration of a loop.

Another way to distinguish a unique task is to label it and later address it by this name.
For example, in the task for (seq a (:tag second-step b) c) the second plan step
can either be addressed by (step 2) or by its name second-step.

It is noteworthy that only individual, uniquely defined RPL plans can be addressed. In
the plan (loop a b c) there is a group of processes b, one for each iteration of the loop.
RPL doesn’t arrange for addressing all of these iterations at once, which could be useful
if we wanted to count how often the process is executed within the loop.4

3.2.4 RPL’s Role in RoLL
RPL is an important prerequisite for the implementation of RoLL. The BDI level described
in the next section is based upon RPL and extends its functionality for our purposes.

The explicit structure of RPL plans and the possibility to have access to the execution
status from within the program are vital for the experience acquisition in RoLL. Because
of the task network and the information kept therein, the experience acquisition can take
place completely independent from the rest of the program, something which no other

Figure 3.4 RPL code tree of the plan (par α (if c β γ) δ) indicating the path names of
the different subtasks.

(par α

(if c β γ)
δ)

α

(BRANCH 1)

(if c β γ)

β

(IF-ARM TRUE)

γ

(IF-ARM FALSE)

(BRANCH 2)

δ

(BRANCH 3)

4Nevertheless, RoLL provides this functionality, because it is indispensable for experience acquisition.

34 3.3 BDI Control Language

system can provide at present. With the concept of fluents, instantaneous reactions to
changes in state variables are possible.

3.3 BDI Control Language
On top of RPL we built a language layer according to the belief-desire-intention model of
agency. RPL was designed primarily for robot planning and plan execution, learning was
not an issue. Because of the requirements pointed out in section 3.1 we had to extend RPL
in a way that parts of the program can be learned and that the learned models are applied
in a natural way. The language level described in this section can be used without the
learning capabilities of RoLL, but as models play a central role, learning is very useful.

3.3.1 Belief-Desire-Intention Architectures
The belief-desire-intention (BDI) model of agency (Bratman, Israel, and Pollack 1991;
Pollack and Horty 1999) is based on a proposition by Bratman (Bratman 1987) that an
agent should have three mental attitudes: beliefs, desires and intentions.

Beliefs are the information that the agent has about its environment and its own in-
ternal state. In any realistic application the agent’s belief is not complete, there is always
information missing or imprecise. In some cases, this restriction comes from the agent’s
inability to sense certain information. For example, most robots lack the ability to smell
so that our kitchen robot cannot smell that the cake has been in the oven too long. Another
lack of information arises from inaccurate sensors. A good example is the information
obtained by image processing. Depending on light conditions and reflections objects can
be overlooked or hallucinated. Even if they are detected correctly, their position can be
determined only with a certain limited accuracy. Finally, there are things the agent can-
not know, because of physical restrictions or because the information is not yet available.
An agent cannot know for sure how many people will attend dinner until they are all
assembled, although it can make a good guess according to the family’s habits and the
information it has received.

The second concept of the BDI model are desires. A rational agent has to settle on
some objectives it wants to achieve, although it might not be sure how to achieve them.
Desires can be thought of the agent’s motivation to do something. In the household domain
typical desires would be not to break things, to fulfill the given tasks in a timely fashion,
and to use resources economically.

The actual procedure of fulfilling desires is governed by intentions, the deliberative
component of the agent program. Goals can often be achieved in different ways, so that
the robot’s intentions are a result of deliberation based on its desires and beliefs. For
example, when the agent wants to have the table set at the right time, it reflects according

3. Language Preliminaries 35

to its beliefs from where it can fetch the plates. Are they stored in the cupboard or are they
in the dishwasher? Maybe they are still dirty and have to be washed before they can be
used. In all of these situations the agent has to choose intentions according to the situation.
However, the situation may change while the agent executes its intentions. While setting
the table in the kitchen, it might receive the information that a guest is coming. What
should it do? Revise its intention and set the table in the dining room instead, thereby
risking not to have the table ready on time or keep to its intention to set the kitchen table,
where there might not be enough room for all the people to eat comfortably.

Rao and Georgeff (Rao and Georgeff 1995) argue that all of these three mental states
are necessary for agents working in real-time. The main problem BDI systems try to solve
is when to reconsider intentions. One extreme would be to check the choice of current in-
tentions in every cycle of the control program. This is of course very resource intensive
and not applicable in real-time systems. The other end would be a strategy of blind com-
mitment where intentions, once they are decided on, are executed to the end, no matter
what happens during the execution. This option holds the danger of doing the wrong
things, because the situation has changed so much that the original plan is not sensible
any more. BDI systems try to find methods that only reconsider the intended course of
action in situations where this reconsideration is reasonable (Schut and Wooldridge 2001).

BDI architectures have been used in several interesting projects over the last two
decades (Georgeff et al. 1999). Applications range from software applications like com-
puter game design (Li, Musilek, and Wyard-Scott 2004), workflow management (Pollack
and Horty 1999), and air traffic control (Rao and Georgeff 1995) to hardware-based sys-
tems like space shuttle fault diagnosis (Georgeff and Ingrand 1989) and autonomous robot
control (Georgeff and Lansky 1987).

The concept of BDI agents can be employed as part of a reactive planning architecture
(see Section 3.2.1). Firby’s (1989) RAPs already implement the idea that goals can be
achieved by different routines that should be chosen according to the execution context.
The Procedural Reasoning System (Georgeff and Lansky 1987) explicitly implements the
concepts of BDI.

3.3.2 BDI in RoLL
The focus of our work is different from the typical BDI application in that we are not
so much interested when to reconsider intentions, but more how to choose them in the
first place according to learned models. Besides, the BDI model makes agent concepts
very explicit so that we represent them as objects instead of procedures and therefore
make them easily modifiable by learning. Figure 3.5 shows the architecture of the BDI
language layer based on the more general architecture in figure 2.1 on page 17.

We represent the beliefs by the global state variables and the part of the critic element
that works during normal execution, that is, the part that manages and maintains models

36 3.3 BDI Control Language

about the environment and the agent’s abilities. State variables represent the agent’s per-
cepts and can therefore be regarded as the low-level interface to the environment. Because
the percepts are subject to constant change that should trigger agent behavior, we represent
state variables by RPL fluents. For efficiency reasons it is also possible to declare a state
variable to be non-fluent, which makes sense for values that are rarely changed, like the
position of furniture. Unlike pure RPL fluents, state variable cannot only contain single
values, but can be built up hierarchically as objects in order to give them more meaning
and better possibilities for doing calculations with them. For example, we describe the
agent’s position by a class 2d-pose, which contains the x- and y-coordinates and the ori-
entation. Each of the slots and the whole object itself are fluents, so that both a change
in the overall position as well as changes in the primitive values are noticed by other pro-
cesses. If the robot turns, the fluents and processes depending on the x- and y-coordinate
data are not updated, whereas the ones involving the orientation or the pose as a whole are
notified by the change.

Goals define the agent’s objectives in a declarative way. They include a description of
the goal state itself (e.g. be at position (x,y)) and several parameters that are indispensable
for the practical execution in continuous state spaces with nondeterministic, failure-prone
actions like a timeout specifying the maximum duration until the goal is to be achieved and
a success tolerance, so that for a navigation task not the exact point needs to be reached
(which would be impossible), but all the positions in a certain range are accepted. The

Figure 3.5 Architecture of a BDI agent.

E
N
V
I
R
O
N
M
E
N
T

State Variables

Critic

Performance Element

arbitration

GOAL

goal
routine

low-level
routine

3. Language Preliminaries 37

success tolerance depends on the context in which the goal is to be executed, for example
it is crucial to reach a location accurately when the objective is to grasp an object. When,
in contrast, the robot navigates somewhere in order to find an object, because it has seen
it previously near this location, the accuracy is of minor importance.

For achieving goals, the language contains the concept of routines. There are two
kinds of routines: goal routines, which can be thought of as plans posing new sub-goals,
and low-level routines, which correspond to primitive actions that are executed directly.
If a routine is implemented as a goal routine or a low-level routine depends on the de-
sign. Low-level routines are simple feedback loops calling one function over and over
again. These routines can be learned directly with neural nets or reinforcement learning
in the RoLL framework. However, they act as black boxes and their internal structure
is not accessible. In contrast, goal routines have a finer structure with explicit subgoals,
which allows more freedom in the achievement of those subgoals and a structure that can
be modified by transformational planning. By the way, low-level routines can also be
implemented outside of our language and be provided as an abstract command interface.
This makes sense for very primitive actions like navigation and simple arm movements.
Of course, these external routines cannot be replaced by learned ones later, since they are
outside of the systems. It is however possible to learn models of them and thereby acquire
knowledge about them. This enables well-informed choices between an external routine
and one implemented within the language according to the goal and the current belief.

Routines are not only represented by executable code, but by objects containing ad-
ditional information. Every routine specifies which goals it can achieve. This is not a
guarantee that it will always achieve the specified kinds of goals, but it has the capabilities
to fulfill them in certain circumstances. Besides, routines store information about their
status with respect to learning, if they have been programmed, learned or are still to be
learned.

Now we have described the components of the BDI language layer, but how does it
work? First of all, an agent has certain top-level goals. These can be imposed by a user
command or by a default plan that directs the robot’s daily jobs. For achieving a goal,
the routines that are able to reach it — at least in principle — are gathered. Among
these routines the agent chooses one by calling an arbitration function. This function can
either be learned directly and might contain a decision tree that selects the best routine
in the current belief state. Or, the different routines are equipped with models about
their performance with respect to the situation and based on these estimates, the most
appropriate routine is selected. This selection is not only based on the belief state, but
also on the goal. As in the navigation example above, sometimes a routine is better if it
is fast, albeit not too accurate. When trying to reach other objectives like a subsequent
grasping goal, it is more important that the routine be accurate, the time for reaching it
being a secondary criterion.

In contrast to a full-fledged BDI system, we do not reconsider the choice of a routine

38 3.4 Summary

before it has stopped (either successfully or not). This corresponds to the strategy of blind
commitment. Our focus lies on using explicit, learned models or arbitration functions
and adapting them during execution. The expansion to a more intelligent reconsideration
strategy is subject to future work.

Besides integrating the concepts of BDI agents into the language, this level of the
RoLL framework includes some other useful features as an extension to RPL. The whole
BDI concept is implemented in an object-oriented way. Although RPL uses the LISP
object system for some features like the failure concept, it is not integrated for plans. In
contrast, our routines are implemented as objects containing information on their learning
status and the goals they can achieve. The execution component of routines is imple-
mented by a one common RPL method execute invoking the routine behavior. We have
also demonstrated how fluents can be combined with the object system by allowing fluents
for all compositional levels of state variables.

Another convenient extension is the use of explicit units for numbers in the program.
So a navigation goal is not posed by declaring “go to position (2,10) with orientation
2.13”, but by saying “go to position (2m,10m) with orientation 122 degrees”. This seems
quite trivial, but really makes life easier, especially when dealing with different units, for
example radian and degrees for angles. The Mars Climate Orbiter (Mishap Investigation
Board 1999) has proven that misunderstandings about units can lead to disastrous failures.

In sum, the BDI language level is a language built upon RPL that includes the basic
concepts of belief-desire-intention agents. It can be regarded as a stand-alone language,
but can be used more efficiently in the combination with RoLL, as RoLL allows the learn-
ing of the models indispensable for the BDI concept to work. Our implementation es-
tablishes necessary prerequisites for integrating learned parts smoothly into the existing
code.

3.4 Summary
We have explained the different language levels RoLL builds upon. Everything is based
upon RPL. The BDI level contains useful extensions to RPL and implements the con-
cepts of the belief-desire-intention model of agency. The RoLL core level contains the
indispensable learning components concerning the experiences and the learning process
as such. RoLL extensions are necessary to make the system work, but the question which
ones are used or even included is subject to the user’s preferences. On top of all this,
different applications can use the RoLL system with all its extensions.

Having now presented the prerequisites of the underlying language levels, the next
chapter addresses the theoretical background of the RoLL core language and Chapter 5
will describe the core language and extensions in detail.

Chapter 4

Hybrid Automata for Learning in
Autonomous Systems

Chapter 2 has provided a general understanding of the steps involved in continual robot
learning and the language elements of RoLL. One challenge of this work was the design of
the language so that all these aspects can be expressed declaratively and comprehensively.
In this chapter we introduce a formal framework — hybrid automata — providing the basis
for the RoLL constructs. After motivating the need of such a formalism and its relation to
RoLL, we introduce hybrid automata and variants of them. After that, we show how the
language levels described in the last chapter can be modeled by hybrid automata as a basis
for the experience acquisition of RoLL. Finally, we show how the whole learning process
can be described in the framework of hybrid automata.

4.1 A Model for Robot Learning

The design of RoLL required declarative language constructs for all steps of the learning
process: the identification of program parts that can be learned, the acquisition, abstrac-
tion, and management of experiences, the learning process itself, and the integration of the
learned function into the control program. The specifications needed for learning should
be comprehensible and universal so as to comprise all possibilities arising in arbitrary
learning problems.

The biggest challenge lay in the experiences, how to describe their acquisition in terms
of observations and how to abstract them for learning. Experiences are composed of
external and internal observations. The first correspond to the agent’s belief state, the
latter comprises its execution status (i.e. which goals and routines are currently active) and
its internal state (i.e. the local program variables). Another dimension lies in the timely
distribution of data that is to be recorded. For some experiences, one-time observations

40 4.1 A Model for Robot Learning

are necessary, like “How many people were in the room at the beginning of the meal?”. In
other cases, continuous observations are more appropriate, for example “How often does
the robot lose the knife while it is cutting something?”. Of course, combinations of those
two cases are required as well.

The basic idea for describing the experience acquisition is to define an abstract model
of the execution of the agent program within the environment including the internal state.
On the basis of this model, episodes are identified and the relevant data for an experience
is described.

4.1.1 Hybrid Systems

We have seen that it must be possible to model both discrete changes (the meal starts) and
continuous processes (the cutting activity). A hybrid system is characterized exactly by
these two aspects (Branicky 1995), so that the description of the outside happenings as
well as the agent’s internal state can be modeled in a natural way by the notion of hybrid
systems. The external process contains discrete state jumps in the form of events like
going through a door. Here the state of being in one room changes abruptly to the state of
being in the next room. Inside the robot discrete changes correspond to procedure calls of
any kind. Continuous effects are numerous in the environment, for example the process of
boiling water. The water constantly changes its temperature until it reaches its maximum
temperature, from where on it remains steady. Inside the program, the execution of a plan
or routine is a continuous process.

The interaction of subsystems with continuous and ones with discrete behavior oc-
curs in many contexts, for example chemical processes, traffic control, manufacturing, in
short in all real-world domains that are manipulated by discrete control (Alu et al. 1999;
Branicky, Borkar, and Mitter 1998; Henzinger and Wong-Toi 1996). Because hybrid sys-
tems are so common and the motivations for modeling them are diverse, there is a rich
assortment of literature on the topic (Antsaklis 2000), many of which examine theoretical
properties and automatic verification of hybrid systems (Alur, Henzinger, and Ho 1996;
Alur, Dang, and Ivancic 2002; Branicky 1993).

For developing RoLL we are neither interested in formal properties of hybrid sys-
tems in general nor in proofs about the behavior of a hybrid system. What we need is a
well-understood, comprehensible framework for modeling a hybrid system. One way of
specifying hybrid systems are hybrid automata (Alur et al. 2001; Henzinger 1996), which
we chose as the underlying framework for RoLL. One reason is that automata are an os-
tensive tool for modeling hybrid systems. Besides, their definition can be extended in a
straightforward way to encompass hierarchical and probabilistic concepts.

4. Hybrid Automata for Learning in Autonomous Systems 41

4.1.2 Hybrid Systems for Automated Robot Learning

Hybrid automata form the basis of the RoLL language design. The main motivation was
the specification of raw experiences, but we show that the hybrid automaton concept can
be carried over to other aspects of learning and even to the implementation of the robot
control program.

Figure 4.1 illustrates the use of hybrid automata in the learning process on the basis of
the learning architecture presented in Figure 2.1 on page 17. The first step in the learning
procedure is the acquisition of raw experiences. For defining the experience, an experience
automaton is defined and anchored to the control program executed in the environment.
Based on this hybrid model, the data to be observed is defined. This data can stem from

Figure 4.1 Architecture of a learning agent when using hybrid automata.

State Variables

Critic

experience
automatonexperience

acquisition
. . .

experience
abstraction

. . .

Performance
Element

Learning
Element

Problem
Generator

E
xp

er
ie

nc
e

D
at

ab
as

e
L

ea
rn

in
g

Sy
st

em
s

model automaton

?

?

anchoring

Function

42 4.1 A Model for Robot Learning

external observations (the state variables) or from internal information about the program
execution (active processes and local variables). Each detected run of the experience
automaton is identified as an episode. Data associated with the episode can be recorded
once at the beginning or end of the automaton execution or constantly during the interval
the automaton is active. With a hierarchical nesting of hybrid automata this provides a
rich description of the data observed. In Figure 4.1 different episodes of data are shown
in different shades of gray. The vertical lines separate the data observed during the run
of sub-automata and can therefore be thought of as sub-episodes. The thin zigzagging
lines visualize external data, the thick straight lines the data gathered from the program
execution status.

In the experience abstraction step the structure of the hybrid automata is maintained or
adapted to a structure that is semantically sound in the abstracted experience. Not only the
automaton structure is changed in the abstraction process, but also the data representing
an automaton run. This transformation of automata gives a very expressive language for
abstracting experiences. In the figure, the hierarchical structure of the abstract experience
is changed and internally and externally observed values are combined (indicated by wider
zigzags).

The abstraction level used for learning can require a specific structure of the automaton
of the learning experience, for example when learning with a neural network the learning
system may assume that the data representing the beginning of the automaton execution
contains the input values of the net and the data observed at the end of the automaton run
represents the output value.

In the current implementation of RoLL the learned function is integrated into the con-
trol program without any more reference to hybrid automata. However, the things we want
to learn in RoLL are mostly models of the robot behavior. These models can best be repre-
sented in the light of hybrid systems. For closing this gap, one would only have to model
the control program with a hybrid automaton skeleton, i.e. specify the structure, but omit
quantitative details as shown in the model automaton in Figure 4.1. This automaton can
then be replenished with learned prediction models to make accurate behavior predictions
possible and allow a uniform access for using the models.

If we describe our program as a hybrid system, we soon realize that the system can
be modeled in several ways. One way would be to describe the top-level program by a
sequence of several continuous processes. The processes correspond to sub-plan invo-
cations, which are typically extended over a period of time. Then we have one hybrid
system, where the discrete changes occur when one sub-plan has finished and another one
starts and continuous processes are captured as a black box in the sub-plans. However, we
might want a deeper understanding of why a sub-plan produces the continuous behavior
we observe. This can be done by having a look inside the sub-plan, which is built up in the
same way as the top-level plan: it contains calls to sub-plans, which again show continu-
ous behavior. This means that the continuous behavior of plans can either be specified by

4. Hybrid Automata for Learning in Autonomous Systems 43

a black box view or by opening the box and having a look at the hybrid system contained
inside.

External processes or situations produced by the agent’s behavior also exhibit a hi-
erarchical structure. For example the task of setting the table can be interpreted by one
continuous state that has a certain duration and whose result is that the table is set. On
the other hand, we could have a closer look and describe the process of table setting as
a sequence of continuous actions: getting the plates, carrying them to the table, putting
them down, etc. The single actions in this hybrid systems can in their turn be expanded to
get more insights.

Another noteworthy point is that the same processes can be described by different
hybrid systems, depending on the information wanted. For example, we can regard the
process of setting the table from an internal point of view and be interested in questions
like “In which sub-plans do failures occur?” or “Which sub-plans are invoked how of-
ten?”. For these questions the internal calling structure of the table setting plan must be
known and observed. On the other hand we could discard all the internal information we
have and put ourselves in the place of an external observer that doesn’t know anything
about the internal program structure. This description could give answers to questions
like “How long does it take to set the table?” or “How many objects are moved?”. In
both cases, the robot performs the same actions, but the models of this activity are quite
different.

In sum, we can understand the robot’s program and its execution in the world as a
hierarchical hybrid system, which we want to use as a basis for specifying the experience
that should be acquired. Of course, for this specification it would be unmanageable to
model the whole program as a completely expanded hierarchy of hybrid systems, and it
isn’t necessary after all. We allow to specify the interesting parts of the agent program and
its execution as a hybrid system with subsystems to an arbitrary granularity. The hybrid
automaton model then serves as a basis for describing the desired experiences.

4.2 Types of Hybrid Automata
Hybrid automata are a means of modeling hybrid systems, which are ones that contain
both continuous and discrete change, for example autonomous robots. Originally hybrid
automata were developed for system verification (Alur et al. 1993; Alur, Henzinger, and
Ho 1996). The focus of these works is to guarantee certain features of the modeled system,
whereas we only use them as a modeling tool. Therefore our definition of hybrid automata
differs slightly from the classical approaches.

We have sketched the purposes for which we need hybrid automata: (1) modeling
of the control program within the environment for experience acquisition; (2) automaton
transformations on experiences; (3) modeling the agent program for identification and

44 4.2 Types of Hybrid Automata

integration of control program parts to be learned. Overall, hybrid automata constitute the
formal underpinning of RoLL and are used as the basis for the RoLL syntax, especially in
the context of experiences.

These applications require several extensions to the classical definition of hybrid au-
tomata. As argued in Section 4.1 our view of the system is hierarchical, which we have
to model with the hybrid automata. The third purpose additionally requires a probabilistic
notion of hybrid systems. In the following we describe different types of hybrid automata
needed in this work. After that we give a brief summary of the automaton types and
their application in RoLL. As a reference, all the definitions presented in this chapter are
summarized in Appendix B.

4.2.1 Basic Hybrid Automata
A hybrid automaton (HA) is defined by a tuple H = 〈V , M, f low, T , act, cond〉. V
is a finite set of variables. The data state of H is a function σ : V → D assigning each
variable vi ∈ V a value from some basic set D, e.g. the real numbers. The set of all data
states is called Σ.

The interaction between continuous change and discrete jumps is represented by the
set of modes M and the set of transitions T ⊆M×M between modes. The modes capture
continuous behavior, whereas transitions model discrete modifications of the data state.
For example, when modeling a control program, a mode corresponds to the execution of a
procedure and transitions model procedure calls. The program state of a hybrid automaton
H is a function γ : M→ {0,1} assigning a value 0 or 1 to each mode. Stated differently
γ is the characteristic function of the set of active modes in H . The set of all program
states is Γ.

An automaton state θ of a HA H is a tuple of a program state and a data state over
the variables V of the automaton: θ ∈ Γ×Σ. The set of all automaton states is called Θ.

The f low function describes the continuous behavior of the system. It gives the
changes of the data state depending on the time. As robots usually work with discrete
time, which is determined by the percept update cycle, we can define f low as a func-
tion assigning each mode a function that maps the old data state σ to a new one σ ′:
f low : M→ (Σ→ Σ). In the literature the f low function is often restricted to linear dif-
ferential equations. This makes the verification of hybrid systems feasible. In our case
such restrictions are unnecessary, because we either draw samples from the continuous
behavior as experiences or learn the f low function for later predictions. In both applica-
tions we don’t need a mathematically suitable representation like differential equations.
In most cases the function can even be unknown, which makes it necessary that we allow
the value UNKNOWN instead of a function: f low : M→ UNKNOWN.

The functions act and cond specify the effects and occurrence conditions of transi-
tions. act : T ×Σ→ Σ returns a new data state σ ′ when the transition occurs from the

4. Hybrid Automata for Learning in Autonomous Systems 45

current data state σ . The cond function assigns a predicate to each transition. When this
predicate is true, the mode jump occurs, otherwise the program state remains unchanged.
Normally, the definition of hybrid automata contains an additional function giving the in-
variant of a mode. Transitions occur when invariants are violated. As we aren’t interested
in assertions about mode properties, we model the invariants in the form of jump condi-
tions. Therefore discrete changes solely depend on the cond function of the transitions.

A hybrid automaton works as follows. We start with a given automaton state, i.e.
the variables have certain values and one mode is active. The current mode is connected
to other modes by a set of transitions. In every time step (as we have pointed out we
can assume discrete time) the variable values are adapted according to the f low function.
When a jump condition from the current mode to another mode is fulfilled, the program
state shifts so that the previously active mode becomes inactive and the new mode is
activated. If jump conditions to several modes are fulfilled simultaneously, all transitions
are executed and the target modes are all activated. The data state is modified according to
the act functions of the applicable transitions. Now we have another automaton state and
the process starts anew, possibly in parallel if the automaton state contains several active
modes.

We have now presented the common definition of hybrid automata. Unfortunately the
behavior that can be represented by this notion is not enough for RoLL. In the following
we extend this plain variant of hybrid automata in different ways.

4.2.2 Hierarchical Hybrid Automata
As motivated in Section 4.1 we need a hierarchical version of hybrid automata (HHA).
The hierarchical structure of RPL plans cannot be described in a meaningful way without a
hierarchical structure. Alur et al. (2001) present a hierarchical version of hybrid automata,
which is constructed for automatic verification. For the hierarchy we need, we simply
equate automata with modes. This has several implications for the definition.

The set M denotes the set of direct sub-automata of H . The variables of an automaton
are also variables of the subautomata: ∀M ∈M : V H ⊆V M

1. Because of the hierarchical
activation of modes, M must contain a starting mode SH and a terminating mode TH ,
unless M is empty, i.e. the automaton is only described by a f low function. The starting
mode is activated as soon as the parent automaton H becomes active. The execution of
the parent mode ends when the terminating mode is activated.

As a consequence, we define the program state of a HHA γ : M∪H →{0,1} assign-
ing a value 0 or 1 to each mode and the automaton itself, which is characteristic function

1The notation V H denotes the set of variables of automaton H . We use it only when a clarification is
necessary as to which set of variables is meant. This notation is applied analogously for other parts of the
automaton definition.

46 4.2 Types of Hybrid Automata

of the set of active automata in H .
The f low function is now defined as f low : Σ→Σ in every automaton. This means that

the flow function is not associated to a mode in the definition of the parent automaton, but
each automaton has exactly one flow function describing its behavior. The flow functions
of the modes are defined in the automaton definitions of the modes, being automata in their
turn. As a consequence, even the top-level automaton can be described by the changes it
effectuates in the data state or by its structure, i.e. sub-automata and transitions between
them. There is a unique connection between the automaton structure given as modes and
transitions and its flow function. Normally, this interrelation is very complicated so that
the flow function has the value UNKNOWN in the higher layers of the automaton. When
the modeling becomes very detailed, it makes sense to replace further explicit modeling
by the f low function, which is then easy to approximate.

Besides the hierarchical composition of modes and the resulting reinterpretation of
the f low function, the definition of hybrid automata applies unchanged to the hierarchical
version. For a complete definition of hierarchical hybrid automata (HHA) see Appendix B.

Figure 4.2 depicts a HHA with two subautomata. S starts at the same time as the
whole automaton, whereas T is the terminating mode. The variables var1 and var2 of
automaton H can also be modified by the f low functions of S or T or the act function
assigned to the transition between the two. The overall flow function f lowH is a com-
position of the flow functions f lowS and f lowT in combination with the behavior of the
automaton, i.e. the functions cond specifying when the state transition takes place and act,
which effectuates the state transition.

Figure 4.2 Hierarchical hybrid automaton.

H var1
var2

S

flow: f lowS

T

flow: f lowT

cond
act

flow: f lowH

4.2.3 Probabilistic Hybrid Automata
In order to model real systems appropriately, probabilistic state transitions are indispens-
able (Beetz and Grosskreutz 2005; Henry 2002). The probabilistic hybrid automaton
(PHA) model assumes that the discrete mode jumps don’t occur according to proposi-
tional rules as the cond function would require, but are governed by probability distri-
butions on the possible successor modes. We therefore modify our original definition of

4. Hybrid Automata for Learning in Autonomous Systems 47

HA by replacing the function cond with the function prob : T ×Σ→ [0,1] assigning to
each transition a probability table, which means that a transition only occurs with the
probability given in the probability table according to the current state. For a given jump
condition σ from a given mode M , the probabilities of different outcomes must sum up
to 1: ∑M ′ prob((M ,M ′),σ) = 1.

With this extension, mode jumps occur depending on certain conditions in the data
state, but only with a certain probability. This is more realistic for real-world applications.
In the context of RoLL we use HHA mainly for experience acquisition. In this case, it is of
no importance why a transition occurred, we are only watching the automaton. Therefore
the probabilistic extension is not necessary here. It becomes crucial when we embed the
learning language into a wider context, where we also model the functions to be learned
as HHA. Here we can identify the learning problem of getting the transition probabilities
in order to be able to predict the robot’s behavior in the future.

4.2.4 Summary of Automaton Types

In this work we don’t use basic hybrid automata as defined in Section 4.2.1. Therefore,
when talking about hybrid automata, we always mean the hierarchical version described in
Section 4.2.2. Of course, probabilistic hybrid automata can be applied to the hierarchical
variant, so that PHHA are the second kind of automaton that we use in this work.

The most important context for hybrid automata is the experience acquisition in RoLL.
By defining a skeleton automaton (only containing the mode hierarchy), we can structure
and identify experiences. PHHA are a basis for giving the whole learning process a univer-
sal underpinning, for identifying learning problems, and integrating and using the learned
functions. The functions f low and prob are different models of the agent behavior that
can be used during execution. For example, it would be interesting to know the probability
with which a certain plan fails (the probability of the transition to the failure mode) or a
general picture of what happens while the agent sets the table, for example the rate and
order in which the pieces of tableware are moved, the time needed, how often cupboards
are opened. All are aspects of the flow function, although taken together they are still only
an approximation of the real f low function.

4.3 Modeling the Program Execution

For specifying experiences in RoLL it is necessary to have a model of the control program
and the environment, because these are the sources of experience data. This model pro-
vides a basis for the description of which experiences are wanted. In this section we set
the formal basis for modeling the robot control program by showing how RPL programs

48 4.3 Modeling the Program Execution

can be regarded as hybrid automata. The other language levels described in Chapter 3 are
covered as well.

Beside the specification of experience, hybrid automata can also represent prediction
models for the robot to use. In this case probabilistic hybrid automata are needed to draw a
realistic picture of the agent behavior. This use of hybrid automata in the learning process
is sketched briefly in Section 4.3.5. A complete description of the role of hybrid automata
in the learning process can be found in Section 4.5.

4.3.1 RPL Programs as Hybrid Automata

RPL programs can be modeled as hierarchical hybrid automata straightforwardly. Let
P = 〈V , M, f low, T , act, cond〉 be an automaton to model an arbitrary RPL plan. The
set V is composed of two disjoint subsets W and F , where the first contains the normal
variables and the former comprises all fluents. The modes correspond to the subtasks of a
plan. The most primitive components of plans are LISP expressions that are represented
by modes without submodes.

Transitions represent the relations of the subtasks. A task can have several subtasks
when they are executed in parallel, sequentially or in conditional constructs like if. The
cond and act functions depend on the construct that is to be regarded, see examples on
pages 51 and 54.

The f low function of LISP constructs describes the effects of its execution on the
data state. The continuous effects of RPL constructs are composed of the effects of their
sub-automata. Figure 4.3 illustrates this compositionality with the sequential composition
statement seq of RPL. The sub-automata are chained in a way that when the first one has
finished the second one starts. The flow function of the overall automaton first corresponds
to the flow function of the first sub-automaton f lowa and after the transition has occurred
it is identical to f lowb.

Figure 4.3 Sequential composition in RPL as hybrid automaton.

(seq a b)

a

flow: f lowa

b

flow: f lowb

(end-task a)

flow: flow=
{

f lowa while a ∈ γ

f lowb else

4. Hybrid Automata for Learning in Autonomous Systems 49

4.3.2 BDI Language Level

The BDI language presented in Section 3.3 on page 34 is implemented in RPL so that
everything that can be expressed in this language can be modeled with hybrid automata.
However, we have presented special control structures like goals and routines that make a
more convenient notation appropriate.

Figure 4.4 shows a summary of the special control structures and therefore special au-
tomaton types encountered in the BDI language. Functions are automata that are executed
instantaneously and change the data state in the specified way. Low-level routines can
either be provided by an outside system or be implemented within the BDI language. In
the first case the f low function (or some aspects of it) can be learned from experience,
but the inner structure is not known. Low-level routines are the most basic units of a
control program. The overall flow function of the program can only be determined if the
flow functions of the low-level routines are known, which should be relatively simple,
because low-level routines only capture very primitive behavior. For a special kind of
low-level routines the structure is known however. These are the ones that operate in a

Figure 4.4 Modeling of BDI language concepts with hybrid automata. The specific con-
cepts are depicted in different ways as automata to distinguish them more clearly. Func-
tions are henceforth depicted as boxes with sharp corners, low-level loop routines with
widely rounded corners, and goals by a double line. Ordinary low-level routines are not
distinguished by a special drawing mode, but can easily be discerned by not containing
any sub-automata.

Function

flow: identity flow: identityΣ← f (Σ)

flow: Σ← f (Σ)

(a) Function.

Low-level loop routine

Function
Σ← f (Σ)

flow: model

(b) Low-level loop routine.

Low-level routine

flow: model

(c) Low-level routine.

G

arb

routine1

routine2

routine3

(d) Goal.

50 4.3 Modeling the Program Execution

single feedback loop, where the function setting the commands can either be learned or
programmed. Here the structure is more open, but it is usually not enough for determin-
ing the flow function. The direct influences of the data state are given by the constant
assignment of Σ← f (Σ), but the effects on the observable state variables caused by the
execution of the routine in the environment are not known.

Goals are represented as data structures in the BDI language, but in order to achieve
a goal the command achieve is executed. Its functionality is shown in the automaton
structure in Figure 4.4(d). Depending on the judgment of the arbitration function, one of
the possible routines that could reach the goal is chosen and executed.

We haven’t mentioned goal routines here, although they are an important control con-
cept in the BDI language level. The reason is that they can be treated as normal RPL
procedures. Their f low function is theoretically a result of the compositions provided
by the RPL constructs and on the bottom the models of the low-level routines. In prac-
tice the flow function of higher-level goal routines should also be learned, because the
composition becomes infeasible.

4.3.3 Modeling Programs for Experience Acquisition

Figure 4.5 shows a detailed example of how plans are modeled in the language underlying
RoLL. The goal is to make water boil. The presented plan contains several subgoals:
container-filled, entity-on-entity and hot-plate-temperature. All of these
goals are achieved by an appropriate routine chosen by arbitration functions. The second
plan step is modeled in more detail than the others. The routine move-entity-on-entity
first has to find the objects needed and ascertain their identity. After recognizing the ob-
jects, a function put-on-pose determines a good position where the top object should be
placed on the bottom object. After that the goal entity-at-place is established, whose
execution is again modeled in detail.

The routine move-entity-to-place demonstrates how failure recovery is modeled
with hybrid automata. When an entity-lost-failure is detected (by a process which
is not shown in the figure for reasons of simplicity), the automaton state shifts to the
recovery mode. In this case the recovery simply consists of trying to move the object
again. After three trials, no more attempts are made and the routine terminates with the
status failed.

Knowing the structure of RPL programs in terms of hybrid automata is important
for specifying experiences in RoLL. The automaton in Figure 4.5 is a non-probabilistic
hierarchical hybrid automaton. In fact, for specifying experiences even the conditions and
the transitions are superfluous, but they describe the working of the plan more clearly in
the example.

4. Hybrid Automata for Learning in Autonomous Systems 51

Figure 4.5 Plan for making water boil modeled with hybrid automata.

container-filled(c)

entity-on-entity(c,h)

arb

move-entity-on-entity(c,h) entpos

entity-found(c)

entity-found(h)

put-on-pose(c,h)

flow: entpos← f(c,h)

entity-at-place(c,entpos)

known(pos(c))

known(p
os(h))

hot-plate-temperature(t)

filled(c)

on(c,h)

(a) Top-level plan for boiling water.

entity-at-place(e1,epos)

arb

move-entity-to-place(e1,epos) entity-lost-failure
entity-lost-count

perform

entity-picked-up(e1)

entity-put-down(e1,epos)

in-hand(e1)
recover

entit
y-los

t-fai
lure

inc(e
ntity

-lost
-coun

t)

entity-lost-count<3

(b) Subplan for placing entities.

52 4.3 Modeling the Program Execution

4.3.4 Modeling the Environment with Hybrid Automata
Hybrid automata describing the program associate the automaton activity with processes
in the control program. But for defining episodes, not only the internal program structure
is important, but also the situation of the environment. However, the processes in the world
are not as clearly defined as the program processes. For example, the time when a person
is in the kitchen could be described as such a process. In contrast to the program process,
we don’t know about the person’s intentions and must therefore define this episode by
means of observation.

Therefore, the anchoring of the experience automaton to changes in the environment
is defined by the concept of invariants. The classical definition of hybrid automata assigns
invariant conditions to automaton modes. When the invariant of a mode is violated, a
transition is activated. We have deliberately omitted this detail in the definition, because
for most of our concepts we don’t need invariants and invariants can be simulated by the
condition function as shown in Figure 4.6. Instead of defining an invariant, the violation
of the invariant is defined as a jump condition.

Defining environment automata by invariants means that a model automaton is identi-
fied only by a condition on the sensor data, which is given as an RPL fluent. As long as
the condition holds the automaton is active, whereas the activation is stopped as soon as
the condition becomes false.

This treatment of environment conditions in hybrid automata is much simpler than the
definition of program automata. On the other hand, it is easy to understand and the concept
of fluents allows arbitrarily complex expressions, so that any condition can be expressed.
Besides, the invariants specifying outside conditions can be combined with the complex
automata defining the program execution. Like program automata, the automata using
invariants can be nested, which allows a fine-granular definition of episodes to observe.

Figure 4.6 Simulating invariants in hybrid automata.

H

inv: invariant
I

(a) Automaton with invariant. A transition
takes place when the invariant is violated.

H I
¬invariant

(b) Equivalent automaton, where the invariant
is simulated by a transition condition.

4.3.5 Prediction Models of the Control Program as Hybrid Automata
Hybrid automata are not only a means of specifying experiences. They can also be used as
a framework for prediction models of the program. The modeling of the language layers

4. Hybrid Automata for Learning in Autonomous Systems 53

with HA presented in sections 4.3.1 and 4.3.2 makes some simplifying assumptions that
are fine for modeling experiences, but are inadequate when predictions of the program
behavior are needed.

As an instance, it would be useful for the robot to know the delays in switching from
one action or sub-plan the next one. Figure 4.7(a) shows a hybrid automaton modeling
the phenomenon that after one subprocess has terminated, the second doesn’t start imme-
diately, but some time elapses before it is activated using the following plan:

(seq
(pursue action1

(wait-for cond))
action2)

This plan consists of two sub-plans. The first, action1 is executed until a certain condi-
tion cond holds. After that, action2 is performed. Both actions are modeled by a mode
containing their behavior, in this case as a black box view represented by the f low func-
tion. Because the determination of the condition being fulfilled and the process switch
both take time, the change of processes is not instantaneous. This fact is taken into ac-
count by the virtual mode action-delay. Its behavior is the same as that of action1,
because the process change has not yet taken place. Depending on the given probability
distribution, the delay lasts between one and three seconds.

The probability distribution of the transition from the action-delay mode to action2
is not known a priori and should be determined empirically. Experience-based learning
with RoLL can replenish this information. By the way, the automaton for modeling the
agent program for the experience acquisition for this learning problem would look slightly
different. The action-delay automaton cannot be sensed as such, so that the experience
automaton would only contain the two action modes.

Probabilistic hierarchical hybrid automata cannot only model uncertainty produced by
the program execution, which is in most cases predictable. A deeper source of uncertainty
are of course environment processes. Figure 4.7(b) shows a model for situations when
the agent loses objects that it has in its hand. The transitions from an automaton to itself
are omitted in the figure. When there doesn’t occur a transition to the other automaton, a
transition to the currently active one is performed. In this way the postulation that the truth
values sum up to 1 is fulfilled. This automaton is a representation of when objects slip
from the robot’s gripper. It can be used to forestall failures and make actions more reliable,
for example by using both hands, when valuable or fragile things have to be carried.

The examples of this section should demonstrate how realistic robot behavior can be
modeled with hybrid automata. The embedding in the learning process is described in
more detail in Section 4.5. The following section takes up the use of hybrid modeling in
the context of experience acquisition, which is an important prerequisite for understanding
the RoLL constructs concerned with experiences.

54 4.3 Modeling the Program Execution

Figure 4.7 Realistic modeling of robot behavior with probabilistic hybrid automata.

(seq
(pursue action1 (wait-for cond))
action2)

~v
delay

action1

flow: f1

action-delay

flow: f1

action2

flow: f2

cond
true: 1

false: 0

delay← 0

delay
0: 0
1: 0.2
2: 0.7
3: 1

delay
0: 1
1: 0.8
2: 0.3
3: 0

delay← delay + 1

flow: ~v←

f1(~v) if cond=false
f1(~v) if cond=true with given probabilities
f2(~v) else

(a) Modeling the delay of state transitions in the program.

hold-in-hand in-hand
wet

visible

in-hand-automaton not-in-hand-automaton

wet
true: 0.9

false: 0.2

in-hand← false

visible
true: 0.8

false: 0.05

in-hand← true

(b) Automaton for modeling the slipping and grasping of an object.

4. Hybrid Automata for Learning in Autonomous Systems 55

4.4 Experiences as Hybrid Automata
We have shown how the control program can be modeled by means of hybrid automata. In
the following we describe the next steps of the experience acquisition and handling pro-
cess. First, we define what an experience is in the context of the hybrid automaton model.
Second, we lay the foundation for experience abstraction by introducing the concept of
automaton transformations.

4.4.1 Experience Acquisition
Recall the definitions of the state of a hybrid automaton from Section 4.2. We differen-
tiated between the data state σ containing the values of the variables in V , the program
state γ representing the set of currently active automata in the hierarchy, and the automaton
state θ as the combination of data and program state.

When we think in terms of programs, accessing the data state is straightforward, it is
represented by variables, whereas the program state is usually not represented explicitly.
Similarly, the concepts of episodes and experiences can be defined more straightforwardly
for the data state than for the program state of automata.

Therefore, we map the program and consequently the whole automaton state to the
data state. First we define the set of all automata contained in a hybrid automaton H as

AH = H ∪
⋃

M∈MH

AM

Now we extend the set of variables VH with new variables XH = {va|a ∈ AH }. Each
of these variables is mapped as a constant to its respective automaton. The program state
now corresponds to the data state σXH : XH → AH ,va→ a over the new variables. The
complete automaton state2 ϑH is represented by the data state over the set of all variables
σ = σVH ∪σXH .

This transformation of automaton to data state corresponds to the unique possibilities
of RPL to represent its execution status within the program. An automaton without an
internal representation of its program state models systems appropriately that don’t know
anything about what they are doing, like most computer programs or a robot that can set
the table correctly, but when asked what it is doing is unable to tell you that it is trying
to bring a cup to the table. For the acquisition of experiences it is important that the
program state be represented in the variables, so that all internal aspects of the execution
can be observed. For example, we might be interested in how often the robot fails when
executing carrying tasks.

2We type θ for an automaton state represented as a tuple of data and program state and ϑ for an
automaton state represented as a data state.

56 4.4 Experiences as Hybrid Automata

The automaton state changes constantly during execution. We call the mapping τ→ ϑ

from time points to automaton states during the run of automaton H an episode e of
H . It contains empirical evidence of how the automaton actually worked in contrast to
the structural description of the automaton definition. If we compare hybrid automata to
finite automata, an episode corresponds to the words accepted by the finite automaton.
In the finite automata domain, a language can be defined either by an automaton or by
a description of the language. In our case the language would be the set of all episodes
through the hybrid automaton. Of course, we can only obtain finite sets of episodes, so
that they can never be an unambiguous definition of the automaton, but they can be seen
as an approximation to the real automaton behavior.

A complete episode of an automaton execution would be unmanageable for experi-
ence collection. We can limit the flood of information along two dimensions. The first
we have already mentioned in Section 4.1, namely the partial definition of automata.
Instead of modeling the complete program, we only model the sub-automata we are
interested in. The other dimension is reduction of data by state projection. Given a
set of variables V and a data state σ , we define a projection of a set W ⊆ V on σ as
σW : W → D, σW (v) = σ(v),v ∈W .

Figure 4.8 illustrates the experience acquisition in terms of episodes. It shows the
variables v0 . . .v5 of a partially specified automaton along the timeline. An experience
(the crosshatched areas in Figure 4.8) is defined by an episode (the areas hatched from
bottom left to top right) and a state projection (the areas hatched from top left to bottom
right).

We have defined experiences abstractly in Section 1.2 on page 2. Now we can define
a raw experience in more technical terms. The first component is a sketch of a hybrid
automaton that corresponds to parts of the hybrid automaton represented by the control
program and only contains the hierarchical structure of modes without specifying tran-
sitions or any of the functions of a hybrid automaton, thus specifying an episode to be
observed. The second constituent of a raw experience is the data observed while the spec-
ified experience automaton is active.

We define the activation period of an automaton as being represented by a closed

Figure 4.8 Discrete illustration of an episode and state projection therein.

v0
v1
v2
v3
v4
v5

time

4. Hybrid Automata for Learning in Autonomous Systems 57

interval [begin,end], whose first point is called begin and whose last point is called end.
Often, the state at the beginning or end of an automaton run is of particular interest. We
therefore allow — besides the normal episodes through an automaton — data acquisition
events, where information is only recorded once. The data projection at these events can
differ from the one of the trace that is captured in the interval during automaton execution.

4.4.2 Automaton Transformations

After having obtained raw experiences, these must be abstracted for facilitating the learn-
ing process. In the framework of hybrid automata, the abstraction corresponds to a trans-
formation of automata.

The hierarchical structure of the hybrid automata we use is the basis of two types of
abstractions. Either the structural representation of an automaton can be collapsed into a
flow function or the other way round an automaton that is only characterized by its flow
function can be expanded into subautomata. This is the natural way of moving through the
hierarchy of automata. The second transformation of expanding an automaton can only
be approximated or presumed, because if the structure of the automaton were known, the
expansion would be unnecessary.

Another type of transformation is the already mentioned possibility of partial speci-
fication. An automaton can be transformed to a more abstract one by neglecting some
details of the internal structure and simplifying it. This amounts to reducing the number
of modes in the automaton. However, the remaining modes needn’t correspond exactly to
previous ones, but can be obtained by combining the purpose of two former modes into
one. In the example of Figure 4.5(a) on page 51, the two modes entity-found, each as-
certaining the location of one object, could be abstracted into one that finds all the entities
needed for the task.

To summarize, an automaton transformation is a mapping from one HA H with a set
of episodes EH to HA I with episodes EI using any of the three following operations:

o abstract: 〈MH ,EH 〉 → 〈 f lowI ,EI 〉
o expand: 〈 f lowH ,EH 〉 → 〈MI ,EI 〉
o restrict: 〈MH ,EH 〉 → 〈MI ,EI 〉

The episodes must be adapted according to the structural transformations.

The definitions just presented should serve as a reference for the next chapter, where
we present the RoLL constructs for defining and abstracting experiences. Their syntax is
built along the lines of the hybrid automaton model.

58 4.5 The Learning Process

4.5 The Learning Process
In this chapter we have presented the theoretical background of RoLL. We have sketched
several aspects of hybrid automata in the learning process. Now we give a summary of
these concepts and draw a complete picture of the learning process from the viewpoint of
hybrid automata.

Let us recall the steps that are necessary for learning from Figure 2.2 on page 19: expe-
rience acquisition (possibly guided by a problem generator), abstraction and management,
the learning process and embedding the learned routine into the control program.

The first part of this process is depicted in Figure 4.9. The robot control program
corresponds to a huge hybrid automaton, which integrates not only the working of the
program, but also its execution in the environment. For specifying the wanted experience,
a partial model of the control program is needed, the experience automaton. It is specified
in the form of a hierarchical hybrid automaton, which is anchored to the control program,
so that the transitions in the automaton are triggered by events (i.e. changes in variable
values) in the program. The declarative specification of an experience by the experience
automaton is translated back to executable code by RoLL. When performed in parallel to
the primary control program it produces a data structure containing the desired experience
data.

In the domain of hybrid automata, the experience automaton can be abstracted as
described in Section 4.4.2. This produces other automata representing different, more
abstract aspects of the experience automaton. The transformations specified on automata
are used by RoLL to produce code that automatically converts raw experiences to abstract

Figure 4.9 Relation of hybrid modeling to program execution and experience acquisition.

Plan &
Environment

Aquisition
Code

HHA
Experience
Automaton

abstract
experience
levels

conversion
code

M
od

el
R

ea
lit

y

4. Hybrid Automata for Learning in Autonomous Systems 59

ones and stores them as desired by the programmer.
In its current version, this is the scope of where RoLL makes explicit use of hybrid

automata. But the rest of the learning process can be considered in the light of hybrid
automata as well. Figure 4.1 on page 41 illustrates this procedure.

We have provided examples of realistic models of parts of the control program in
Section 4.3.5 on page 52. By modeling the structure of the agent program, we would
have a universal representation of models of the robot’s behavior in the world. On the one
hand this representation would allow a simple, integrated access to models. On the other
hand, it would enable a uniform way of identifying problems to be learned. For example,
when a plan is to be tested for possible flaws, the robot applies performance models of
the routines needed in this plan. Because of the universal accessibility there is no need to
know if the model is present or not. It is worth while to give it a try. If there is no such
model, it is a good candidate to be scheduled for learning. If it already exists, so much the
better, it can be used immediately.

The learning problem as such gains a lot of meaning if the function that is to be learned
is defined in the light of hybrid automata and the learned function is accessed in this
context, too. By knowing if a low-level routine, an arbitration function or a prediction
model is to be learned, the integration can be performed more smoothly and universally.
Besides, this knowledge is useful for the problem generator. A model needs other kinds
of experiences than a routine. By coordinating the problem generator and critic element,
the parts of the state space for which there is not enough experience collected yet can be
explored in a target-oriented way.

4.6 Summary

We have defined several variants of hybrid automata, the most important for our work
being hierarchical hybrid automata. The theory of hybrid automata serves as a formalism
to define experiences, experience abstractions and learning problems.

For specifying raw experiences the execution of the robot program in the world is
modeled by hybrid automata and anchored to the control program, so that the automaton
is activated according to its definition. The data to be observed is defined as a projection
on the detected episode.

Experience abstraction can be viewed as a transformation of hybrid automata. This
allows a uniform syntax for all kinds of experiences and their conversions.

Finally, we have pointed at a wider scope, where hybrid automata appear in the learn-
ing process. When the learning problems are defined in terms of hybrid automata, their
semantics is clear to the program, so that an automatic choice and specification of learning
problems becomes possible.

60 4.7 Related Work on Hybrid Modeling in Autonomous Systems

4.7 Related Work on Hybrid Modeling in Autonomous
Systems

Hybrid automata have been used for a variety of purposes in the context of model-based
robot control, planning and languages for autonomous robots.

Beetz and Grosskreutz (2005) model a control program with hybrid automata, in order
to make predictions about plan execution scenarios. This makes it possible to forestall plan
failures and to compare different plans for achieving a certain goal. This method of plan
projection is especially relevant for transformational planning in real-world environments,
where the plans cannot be analyzed without knowledge of the environment. Accurate
models are necessary to predict the execution result of the plans.

For implementing systems that require a high degree of autonomy and reliability, the
program should contain declarations of what state the system should be in rather than a
predefined sequence of actions (Williams and Nayak 1996b; Williams et al. 2003). When
such a program is equipped with models about the underlying hardware, model-based
programs are much more robust than traditional ones, because they recognize hardware
failures and can choose between several solutions that achieve the same system state. This
allows fast reconfiguration when hardware failures are detected. Since robustness and
autonomy are crucial factors for space exploration projects, model-based programming
has been applied in several ones like Remote Agent (Muscettola et al. 1998), Living-
stone (Williams and Nayak 1996a), the Mission Data System Project (Volpe and Peters
2003) and others (Barrett 2003; Ingham, Ragno, and Williams 2001; Knight, Chien, and
Rabideau 2001). These systems control the hardware directly and have thereby shown
impressive reliability. However, for more complicated robotic applications that are to ful-
fill higher-level tasks in real-world environments, this approach cannot be carried over
directly, because the search space of finding configurations (or plans) for achieving cer-
tain goals gets larger. On the other hand, the execution of high-level robot plans can
be enhanced significantly by using models of the robot’s behavior (Fox et al. 2006;
Infantes, Ingrand, and Ghallab 2006). This is one of the main motivations for RoLL,
to learn models of all parts of the robot program and update them continually.

Hybrid automata have also been used by Fox and Long (2006) for designing the plan
language PDDL+. PDDL is the language used in the annual planning competitions (Mc-
Dermott 2000). Therefore, it is developed further regularly for integrating more sophisti-
cated concepts into the planning language and make the planning tasks more challenging.
Fox and Long (2006) extend PDDL in a way that actions needn’t be instantaneous as as-
sumed by most planning systems, but can have a longer duration. In contrast to our work,
PDDL+ doesn’t only make use of the well-understood framework for modeling contin-
uous actions, but also uses reachability findings for proving the existence of plans in a
certain domain.

Chapter 5

Robot Learning Language

With the background from the last two chapters on the underlying language levels and the
theory of hybrid automata, it is now time to present RoLL, the Robot Learning Language.
We first give a brief overview of the steps involved in specifying and executing a learning
problem. The most crucial part of RoLL in its current form are experiences, which have
already come up several times. In this chapter we show the RoLL mechanisms for col-
lecting, abstracting, storing and managing experiences. Of course, the learning process
as such plays an important role, too. We will explain, what kinds of functions can be
learned with RoLL, how different learning systems can be used, and how the result of the
learning process is integrated into the control program. The main focus of this work is to
describe the concepts of RoLL, not its syntax, which is however apparent in the examples.
A reference of the RoLL syntax is provided in Appendix C and a complete code example
is presented in the next chapter.

5.1 Experience-based Learning

RoLL is designed to support any kind of learning involving data that a robot can acquire by
itself. This is what we call experience-based learning, which is the most common method
of learning on real-world robotic systems. It does not include the enhancement of knowl-
edge by pure logical deduction for instance. In the following we structure experience-
based learning methods according to several criteria and sketch their support in RoLL.
Then we give an overview of how learning is performed and the main parts of the lan-
guage.

62 5.1 Experience-based Learning

5.1.1 Classification of Learning Problems

Learning problems can be classified along several dimensions. One common criterion is
the differentiation of supervised versus unsupervised learning. In the supervised learning
paradigm the agent is provided with experience in the form of input-output pairs from a
teacher. In contrast, the output is not given in unsupervised learning. The task here is to
find correlations in the set of input data. RoLL doesn’t differentiate between supervised
and unsupervised learning. The experience acquisition works in both scenarios identi-
cally. However, we assume that experiences for supervised learning are not provided by a
teacher, but are acquired by the robot itself, which is a very realistic assumption for robot
learning.

Another way to differentiate classes of learning problems are the online and offline
learning paradigms. Offline learning takes place before the function is needed in the pro-
gram. This means that first all required experiences are collected, then they are processed
by a learning system and integrated permanently into the control program. Online learn-
ing takes place while the robot is performing its work. RoLL supports both online and
offline learning, because it separates the experience acquisition from the learning process
and thus allows arbitrary interaction between the primary program and the learning part.
The rate of online- or offline-ness can be adapted, so that the border between those two
paradigms is not fixed.

Somehow related to the question of online and offline learning is the issue of ac-
tive versus passive experience acquisition. An integral feature of reinforcement learning
and other online techniques is action selection while learning. This means that the robot
chooses actions that lead to useful experience or maximum reward. The task of deter-
mining these actions is performed by the problem generator element of the architecture in
Figure 2.1 on page 17. In the current implementation of RoLL this issue is not supported
to its full extend. We only provide means for simple a priori problem generation (see
Section 5.2.3), which corresponds to the state of the art in current robotic systems. The
alternative way for getting experiences is simply watching the robot while it is doing its
normal activity. In this passive scenario, the critic element only watches what is going on
and uses this information for later learning.

The learning in online/offline mode with active and passive experience acquisition is
pictured in Figure 5.1. We assume that the robot has times where it doesn’t have to fulfill
any jobs given by the user. The middle column depicts the robot’s busy and free time.
The columns on the left and right illustrate how different learning modes interact with the
primary activity. Active periods can be used for passive experience acquisition. When
there is free time, this experience is used for learning.

An alternative would be to wait for a leisure time slot and then explore interesting parts
of the state space actively. The active exploration can either be used for offline learning
or in the context of online learning, where the succession of experience collection and

5. Robot Learning Language 63

learning is very fast. In contrast to the offline learning paradigm, where all actions aim
at acquiring experiences, the problem generation for online learning normally takes into
account the robot’s goals to be achieved as well as the need for useful experiences.

The figure shows offline and online learning in their pure form, but this is not necessary
when working with RoLL. The offline learning task with passive experience acquisition
could be continued in the next cycle of normal robot activity by collecting more experi-
ences. This procedure can be repeated until the learning result is satisfactory.

5.1.2 Learning Process

The process of learning in RoLL is similar to that described by psychologists. Kolb (1984)
distinguishes four phases in human learning, which are repeated cyclically:

1. Concrete Experience
2. Reflective Observation
3. Abstract Conceptualization
4. Active Experimentation
After making an observation, we reflect on the possible implications of this observa-

tion. Then the observation is regarded in the context of previous experiences and knowl-
edge (abstract conceptualization). Finally, the conclusions drawn from this process are
tested by active experimentation, which provides new experience. By repeating this cycle,
experiential learning is a continual process.

Figure 5.1 Integration of different learning paradigms in the normal control flow.

offline online

Observe

Learn

pa
ss

iv
e

Observe

Learn

ac
tiv

e

Observe

Learn

Observe

Learn

Observe

Learn

64 5.1 Experience-based Learning

Figure 5.2 shows the learning cycle concept in RoLL. The basic version depicted in
Figure 5.2(a) contains only two steps: an experience gathering step and a learning step.
Viewed in Kolb’s model, the experience gathering step comprises the first two steps of
the human experiential learning cycle, because it includes not only the recording of obser-
vations, but also the abstraction process for generating more meaningful experiences for
learning. The abstract conceptualization step corresponds to the learning step in RoLL.
The new experiences are used for modifying the program according to the observations.
The step of active experimentation is a natural step when the program is modified, every
subsequent action can be viewed as an experimentation with the newly learned function.
Viewed in a narrower sense, active experimentation can comprise reflection of what steps
to take next in order to observe useful experience and is therefore part of the RoLL ex-
perience gathering step. This sophisticated functionality of the problem generator is not
implemented to great depth in RoLL, but it can be added for specific problems. On the
other hand, active exploration is not always necessary, as Polly B. Berends puts it:

Everything that happens to you is your teacher. The secret is to learn to sit at
the feet of your own life and be taught by it.

For humans it is natural to incorporate newly observed experiences at once. However,
the running of a learning algorithms can be quite slow and even inappropriate, as many
learning algorithms need a lot of training data to work properly. Therefore, the experience
gathering step in RoLL can comprise the observation of several experiences before the
learning step is started. Sometimes, a complete learning problem can be solved in just one
cycle, which is in fact the current approach for neural network learning on robots: acquire
lots of data and then use it for training a neural net.

Learning in several cycles is particularly important for online learning algorithms like
reinforcement learning. In this case, the execution time of a single cycle is very short,
often only gathering one new experience. The learning takes much more cycles than in
offline learning scenarios.

Although people learn constantly and never really stop improving, at some point the
learning of a specific aspect slows down significantly, because it is already performed
skillfully. An example are basic everyday motor skills, which are hardly advanced after
childhood. In robot learning, an analogous process should take place. When some skill
has been learned satisfactorily, the learning should be stopped or run at larger intervals, so
that resources are available for other learning problems.

In order to decide when a problem has been learned to a sufficient level, the learn-
ing process itself can be observed and evaluated. One way of doing this is to expand the
abstract conceptualization step to not only draw conclusions from the observations in the
form of learning results, but also to evaluate these results by comparing the experiences
that were used for learning with the result of the learning process. Figure 5.2(b) illus-

5. Robot Learning Language 65

trates this procedure. An example of this kind of evaluation is cross validation in neural
networks.

Another way of evaluating the learning results is to observe the robot using it and
evaluate its performance. In this case (see Figure 5.2(c)), the complete process consists
of two cycles after Kolb: the active experimentation step of the first cycle takes care to
produce good observations for the evaluation step, which works analogous to the learning
step, replacing the learning system by an evaluation system and the function integration
by feedback on the learning result.

Let us now have a closer look at what happens in the RoLL learning process, which
is depicted in Figure 5.3. The right-hand side shows a RoLL program. It consists mainly
of declarative definitions, some of which are applicable for several learning problems,
some for a specific problem. The control program itself is only a small part of the overall
program. The figure shows a very simple program where one learning problem is learned
while the robot is performing its normal top-level plan, so that we have a case of passive
experience acquisition.

There are two commands that make the program learn, whose functionality roughly
corresponds to the learning steps in Figure 5.2(a). The left-hand side of Figure 5.3 depicts
what these commands do. The acquire-experiences construct is run in parallel to the
normal control program and observes desired data. In the perspective of our learning

Figure 5.2 Learning cycle of experience-based learning.

experience
gathering step

learning step

(a) Basic learning cycle.

experience
gathering step

learning step

evaluation step

(b) Learning cycle with eval-
uation.

experience
gathering step

learning step

experience
gathering step

evaluation step

(c) Learning cycle with eval-
uation based on experience.

66 5.1 Experience-based Learning

architecture from Figure 2.1 on page 17 this involves the critic element, whose job is to
detect relevant episodes. For active experience acquisition the top-level plan would have to
be replaced by problem-generating code setting parameters in the actual control program.

The logical experience gathering step of Figure 5.2 usually comprises more than what
acquire-experiences does, because the observed data is only abstracted until it is writ-
ten to a permanent storage device (see Section 5.2.1 for a detailed explanation). The last
stages of abstraction are performed when calling the command learn, but this is just an
implementational detail. The logical learning step starts after the learning experience has
been generated. In the definition of a learning problem, the experience gathering step

Figure 5.3 The learning process in RoLL. The right-hand side shows a typical RoLL
program, whereas on the left the steps of the learning process involving the commands
acquire-experiences and learn are illustrated. The functional elements marked as
“external components” are usually provided by external programs, but can also be imple-
mented within RoLL.

raw
experience

abstract
experience

learning
experience

learning
result

learning
system

learning
data

learned
function

;;; general definitions
(define-abstract-experience-class aec ...)
(define-learning-problem-class lpc ...)
;; learning system
(defclass ls (learning-system) ...)
(define-abstract-experience-class lec ...)
(defmethod do-learning ...)
(defmethod integrate-learned-function ...)

;;; problem-specific definitions
(define-raw-experience re ...)
(define-abstract-experience ae
:parent-experience re
:specification ...
:experience-class aec)

(define-learning-problem lp
:function lpc
:use-experience (:parent-experience ae

:specification ...
:experience-class lec)

:learning-system (ls ...)
...)

;;; control program
(def-rpl-method execute (...)
(loop
(pursue
(acquire-experiences re)
(execute top-level-plan))

(learn lp)))

ACQUIRE
EXPERIENCES

LEARN

external
components

RoLL
process

5. Robot Learning Language 67

is described by the define-raw-experience and define-abstract-experience con-
structs.

The learning step is specified with define-learning-problem, which describes what
kind of function is to be learned and selects the learning system and an appropriate bias.
This information is used when the command learn is called from the control program.
Usually the learning takes place outside the RoLL program by using external learning
software. It consists of transforming the abstracted experience to a form that is readable
for the learning algorithms, the parameterization of and call to the learning software, and
a transformation of the output obtained from the learning system to a RoLL function. The
definition of the learning system and an interface for calling it is an example of the general
specifications applying to several learning problems.

The simple program in Figure 5.3 doesn’t comprise an evaluation step, but it would
work in the same way as the learning steps. It usually involves some kind of experiences,
either the ones that were used for learning or newly acquired ones. In both cases the
data must be prepared in a way that an evaluation system can use it. Evaluation systems
can be functions performing statistical calculations or even learning systems like decision
trees that can classify the cases in which the learned function works well and when it has
problems. The evaluation can also be included in the primary learning system, for example
error statistics or cross validation in neural networks. Other than the learning result, the

Table 5.1 Summary of RoLL constructs with references to explanations, examples and
specifications.

Concept Language Construct Reference

Problem-specific Constructs
raw define-raw-experience 5.2.2 (74) / 6.2.1 (104) / C.2 (145)
experience problem-parameters 5.2.3 (82) / 6.2.1 (106) / C.3 (149)

with-problem-parameters 5.2.3 (82) / 6.2.1 (106) / C.3.2 (149)
acquire-experiences 5.2.2 (81) / 6.2.1 (106)

abstract define-abstract-experience 5.2.4 (87) / 6.2.2 (107) / C.4 (152)
experience define-experience-conversion 5.2.4 (90) / 6.2.2 (107) / C.4.2 (153)
learning define-learning-problem 5.3.3 (96) / 6.2.3 (108) / C.5 (154)

learn 5.3.3 (96) / 6.2.3 (108)

Problem-independent Constructs
experiences define-experience-class 5.2.4 (91) / C.6.1 (157) / D.1 (158)
learning define-learning-problem-class 5.3.1 (94) / C.6.2 (157) / D.2 (162)

learning system definition 5.3.2 (94) / C.6.3 (157) / D.3 (163)

68 5.2 Experiences

judgment of the evaluation system is not integrated permanently, but used for deciding if
the learning should be continued. If the evaluation provides enough information, this can
also be used for the problem generator to know which regions of the state space should be
explored in more detail.

5.1.3 RoLL Constructs

Table 5.1 lists the language constructs defined in RoLL. As an guideline they are divided
into general and problem-specific constructs and they are related to more abstract con-
cepts. As a reference, the relevant sections in this chapter, examples in the next chapter or
Appendix D, and a link to the syntax specification in Appendix C are provided.

5.2 Experiences

Experiences play a central role in the learning process. Figure 5.4 shows a detailed view of
the experience acquisition step in the learning cycle. First, experiences must be observed
while the robot is acting. This involves the performance element for the robot activity, the
critic element for the observations, and possibly the problem generator for instructions
how to control the robot. After a useful observation has been made, the experience is
abstracted and stored by the critic element. In RoLL, an experience is a data structure
that can be created and processed by different operations on it. Before describing the
two stages of the experience gathering step we give an overview of the experience data
structure and its subclasses.

Figure 5.4 Experience acquisition in the learning cycle.

experience gathering
experience
recording

experience
abstraction

learning step

5. Robot Learning Language 69

5.2.1 Experience Classes

Experiences are represented as a data structure in RoLL. Its definition is based on hierar-
chical hybrid automata. Recall that an experience is a trace through a hybrid automaton
observed during an episode, which is specified by a hybrid automaton. This means that
the data structure specifying an experience must contain (1) the automaton structure and
(2) a specification of the desired data based on the automaton definition.

The automaton structure in experiences only contains modes and their relationship in
the hierarchy. Transitions can be observed and deducted from the experience, but they are
not specified in the structure. The modes of an automaton are supposed to run in parallel.
The automaton structure can correspond to the task structure of the control program, to
some hierarchical description of external events or an arbitrary logical conceptualization
(see also Sections 5.2.2 and 5.2.4).

Hybrid automata, and therefore episodes are specified in a LISP class. The data ob-
served during one episode is represented as an instance of such a class.

Data Addressing

The data of an experience is attributed to the (sub-)automata of this experience. Each
automaton can contain data for the two events when the automaton starts and ends, and it
can comprise a stream of data that corresponds to the time while the automaton is active.
Figure 5.5 illustrates these data sources in experiences. The distribution of data in one

Figure 5.5 Illustration of experience data types. Data can be recorded once at the begin-
ning and end of the automaton execution or continuously in between.

automaton pose
velocity

automatoninterval→ velocity

automatonbegin→ pose automatonend→ pose

(a) Illustration of experience data. The example contains the robot’s pose at the beginning and
end of the automaton activity, as well as a stream of its velocity during the activation time of the
automaton.

automaton pose
velocity

automatonbegin → pose
automatonend → pose
automatoninterval→ velocity

(b) Graphical illustration used from now on. In the automaton we mark that something is to be
recorded at the beginning or end of an automaton by small boxes and the recording of interval
data by filling the automaton box with gray.

70 5.2 Experiences

automaton works also in the hierarchy of nested automata. This means that all kinds of
events and arbitrary periods of time can be indicated by a skillful choice of the automaton
structure. Figure 5.12 on page 88 shows an example for data specification in a nested
automaton.

The data in an experience is addressed in a uniform way, no matter if the purpose is to
write into the structure (as is done during raw experience acquisition) or to read data from
it. For addressing a piece of data one has to specify (1) the automaton mode it is associated
with, (2) one of the events begin or end, or the interval slot of the chosen mode, and
(3) the name of the parameter. The specification (:var pose (:begin automaton)),
for instance, returns the value of the pose slot in the begin event of the mode automaton.

There are some more details to the retrieval of data from an experience. First, intervals
are data streams, which means that we must provide options for getting the whole stream
as a list or single data points, for example the first value of the stream. This is done by pro-
viding additional keywords like :all-instances for the whole list or :first-instance
for getting only the first value from the stream. The default is to return all instances, be-
cause this is the original motivation of recording interval data. For only getting certain
instances, one could have defined events instead. Another dimension for ambiguity lies in
the fact that modes can be activated several times during data gathering. Since only the
hierarchical structure of the automaton is given, it can happen that some modes are acti-
vated more often than others, we don’t assume any linear execution. If an automaton is
activated several times, the data slots contain multiple occurrences of the automaton run.
With the keyword :all-occurrences, all of them can be addressed as a list of values.
With :only-occurrence, which is the default, an assumption is made that the automaton
is only activated once and therefore only contains one occurrence. If several occurrences
are detected, a warning is returned. Besides, single occurrences can be addressed by a
number specifying the n-th occurrence of the experience.

To summarize, a value in an experience can be addressed by specifying
o the automaton name,
o the data source: begin, end or interval,
o the variable name,
o optionally the desired occurrence and instance.
The syntax of specifying and addressing experiences is listed in Appendix C. In the

following we show some classification criteria of experiences along several dimensions:
their degree of abstraction, the time of their existence and how they are stored.

Stages of Abstraction

We have already mentioned raw and abstract experiences. Raw experiences are the ones
that are created when experiences are collected. They contain the data from state vari-

5. Robot Learning Language 71

ables and local variables. For facilitating learning, often a more abstract representation is
needed.

The first abstraction step can take place at the time the experience is acquired. For ex-
ample, if you need the robot’s distance to some fixed point instead of its absolute position,
you can calculate this value when collecting the raw experience and only store the ab-
stracted value. Other things cannot be computed at the time of the experience acquisition.
For example, if the duration of an action is needed, you would define an automaton cor-
responding to the action and observe the global time variable at the begin and end events.
For calculating the duration, you need both values, but at the time you record the time at
the beginning of the automaton execution you don’t know the second value yet. When
recording the end time, the starting time is already recorded and cannot be deleted from
the experience any more. In this case the abstraction must take place at a later time.

There are other reasons why experiences should be collected in a rather system-near
way and be abstracted later. Often, raw experiences can be used for several abstract ones.
For example, when we want to learn models of a navigation routine, we would like a
model predicting the time needed for a task and one for forecasting possible failures. For
both learning problems, similar experiences are needed. In both cases, the robot’s original
and goal position are of interest, only the output values of the functions to be learned
differ. Here it would be advisable to collect raw experiences that contain the necessary
information for both learning problems and later abstract them into two different abstract
experiences.

Figure 5.6 shows that abstract experiences can also be generated from several kinds
of raw experiences. This doesn’t mean that the abstract experience is calculated from two
instances of raw experiences, but that from any instance of any of the two raw experience
classes R2 and R3 an abstract experience of type A2 can be generated. An example would
be to learn a model of the robot’s navigation capabilities when it has several routines for
navigation. There could be raw experiences for each navigation routine protocolling the
time needed for the task. Each of these experiences is valuable for the abstract experience,
so that the number of abstract experiences is the sum of the number of all instances of the
raw experience classes.

In both cases — abstracting a raw experience into several abstract ones and getting ab-

Figure 5.6 Experience abstraction network.

R1 R2 R3 R4

A1 A2 A3 A4 A5

72 5.2 Experiences

stract experiences from several raw experience classes — the raw experience acquisition
could in theory be modeled in a way that there is a one-to-one relationship between raw
and abstract experience. For example, we could watch the robot every time it navigates
instead of protocolling the behavior of the particular navigation routines. But often, sev-
eral things should be learned and the abstraction network provides an opportunity not to
record redundant data and use the raw experiences economically.

Up to now we have talked about raw and abstract experiences in a way that suggests
that there are only two stages of abstraction. This is not the case in RoLL. There can be
an arbitrary number of abstraction steps involved until the experience is used for learning.
Usually, there are about three stages: the raw experience, an intermediate level for perma-
nent storage and a preparation for the learning step as shown in Figure 5.13 on page 92.
In online learning mode there might be only one or two steps of abstraction, because the
experience is not stored permanently. In cases where the experiences are used for lots
of learning problems, there might be more intermediate steps. The structure of the expe-
rience abstraction network is a matter of design involving issues such as the number of
learning problems and their relationships as well as storage capacities.

Volatility of Experiences

Because there can be many processing stages and not all experiences are needed perma-
nently, experience classes can be differentiated as being permanent or transient. Per-
manent experiences are stored in a database or a file, so that they can be retrieved later.
Transient experiences only exist long enough to pass their data on to the next experience
processing step. After that they can be filled with new values. This is usually the case for

Figure 5.7 Processing chain of transient and permanent experiences.

T1 T2 P1 P2 P3

push pull

(a) Typical processing chain starting with transient experiences and
ending with permanent ones.

T1 T2 P1 T3

P2

P3

(b) Processing chain with a transient experience in a later process-
ing step.

5. Robot Learning Language 73

raw experiences. When the activation of the specified automaton ends, the experience is
immediately transformed to the next abstraction step. After that, the values are overwritten
by new ones of the next episode.

The different nature of permanent and transient experiences requires different strate-
gies of processing as depicted in Figure 5.7. The transformation of transient experiences
works in a push principle. Because the transient experience must prepare for new data, it
has to get rid of the current values. Therefore, as soon as a transient experience is com-
plete it calls the transformation function to produce the next step in the abstraction chain.
In contrast, permanent experiences are stored without any knowledge of how they are to
be processed further. Here we implemented a pull principle, so that the desired set of
experiences is provided on demand, for example when the learning is to start.

Usually the first processing steps involve transient experiences and the later ones work
on permanently stored experiences as shown in Figure 5.7(a). The number of steps de-
picted there is rather high, they are only necessary in complex abstraction networks. Fig-
ure 5.7(b) shows an example where transient experiences can also make sense in later
processing steps, namely when a common abstraction step leads to different permanent
abstractions. Instead of coding abstraction steps twice, they can be performed in one
transformation, which makes the abstraction process more modular.

Good learning performance is often not achieved with lots of experiences, but with
meaningful experiences, or as John Dewey put it:

The belief that all genuine education comes about through experience does
not mean that all experiences are genuinely or equally educative.

(Dewey 1938)

Therefore it is advisable to filter experiences in the course of abstraction. In the case of
transient experiences this is rather difficult, because only one experience is given at a time.
In contrast, permanent experiences provide an opportunity to extract only a subset of the
most meaningful experiences. This selection process can be very complex and we haven’t
investigated much in this direction. But the permanent storage is a good starting point
for sophisticated management of experiences. This can include temporal restrictions, e.g.
that recent experiences are more reliable than older ones, or restrictions on the state space
distribution.

Storage

Permanent experiences can be stored in several ways, for example in text files or in a
database. Files are a very simple and compact way of storing experiences, but the retrieval
can be difficult, if there is a complex parsing procedure needed. Besides, the experiences
cannot be addressed separately.

74 5.2 Experiences

A more sophisticated storage is provided by databases, where experiences cannot only
be retrieved separately and by a standardized interface, but can also be manipulated and
filtered with data mining mechanisms. Because learning often requires great amounts of
data, a good abstraction step should be chosen for the storage in a database so that not all
raw data sets are stored.

The RoLL core language doesn’t impose a certain form of storage. By defining an ex-
perience class as a permanent experience and thereby specifying how experience is written
and retrieved any kind of storage can be used. The default for permanent experiences is
the storage in a relational database with a determined database schema, which is described
in detail in Appendix D.1.2.

We have now given an overview what experiences are, what subtypes there are and
how they are processed. In the following we inspect the steps involved in experience
acquisition and processing in more detail and describe the language constructs specific for
these steps.

5.2.2 Raw Experience Detection
Raw experiences are the direct observations of beliefs and internal robot parameters during
execution. Normally, they are represented as transient experiences in a data structure
inside the program that is passed to the next abstraction step immediately.

Figure 5.8 shows the processes involved in raw experience acquisition. The robot
is controlled by the performance element, possibly guided by advice from the problem

Figure 5.8 More detailed view on the experience gathering step of the learning cycle. The
experience gathering is split in an experience recording and and experience abstraction
step. For recording experiences two independent processes are active: one for controlling
the robot and one for monitoring.

experience gathering
experience
recording

experience
abstraction

learning step

monitoring plan
execution

raw experience

5. Robot Learning Language 75

generator. An independent monitoring process observes internal and external parameters
that are changed by the control program. It records relevant data and stores it into the
experience data structure. The controlling and monitoring processes operate without direct
process communication. The monitoring process starts in a sleeping state and is activated
by certain events given in the raw experience specification.

In the following, we explain the relevant input for specifying raw experiences com-
pletely and declaratively. First we concentrate on the specifications necessary for defining
the observational aspects of the experience, i.e. we disregard the activity of the perfor-
mance element, which is treated in the next section.

Experience Automaton

We represent an experience by a combination of an automaton defining an episode and the
data associated with it. The automaton for raw experiences is defined along two dimen-
sions: the hierarchical structure and its correlation to the program being executed.

The automaton structure itself is described by a hierarchy of subautomata. The mode
transitions are not modeled explicitly. The reason is that the transitions happen when
the program is executed. The additional specification of transitions might pose another
constraint of when the automaton corresponds to the program parts to be observed. We
didn’t consider this extra complexity to be necessary, because (1) usually subprograms
operate in the same way every time they are active, i.e., they call their subroutines in the
same order; (2) the additional constraints on execution order can be modeled by events
and the handling of the experience data when it is complete (see page 78); and (3) the
syntax for specifying experiences would have become more complex.

Figure 5.9 shows the hierarchical definition of an experience automaton — the picture
of an automaton on the left and the illustration of the hierarchy of automata on the right.
The automaton with the name entity-at-place has two subautomata: pick-up and put-down.
The order in which these automata are expected to be activated is not specified. Each
subautomaton contains one other mode.

Figure 5.9 Hierarchy of a raw experience automaton.

entity-at-place

pick-up

grip

put-down

drop

entity-at-place

pick-up

grip

put-down

drop

76 5.2 Experiences

In this example we see that automata are identified by unique names. In simple cases
where only one automaton without submodes is needed, it can be declared anonymous.

Anchoring

One of the main challenges of experience acquisition is the detection of episodes — inter-
esting time periods, in which to record data. From each episode for a raw experience class,
one experience instance can be obtained. In RoLL episodes are defined by anchoring the
experience automaton to the control program execution, so that the automaton activation
is connected to events during the run of the program.

There are two sources of anchoring as illustrated by Figure 5.10: events in the envi-
ronment and events inside the program. We have shown in Section 4.3 how the control
program can be modeled in the framework of hybrid automata. This means that we only
have to associate a subautomaton of the program with the specified experience automa-
ton. To do this, we must access the RPL task network and navigate through it to find the
desired automaton represented in it.

Possible introductory points to the task network supported by RoLL are the activation
of a (BDI) goal to be achieved, the execution of a routine, or the execution of a globally
tagged task. Global tags are an addition to pure RPL that are activated independent of the
task context. For example, if a normal RPL tag is positioned inside a loop construct, it
only comprises the first iteration of the tagged code. Other iterations of the same code are
represented by other instances in the RPL task tree and are therefore addressed differently.

Figure 5.10 Description of the HHA structure for raw experience acquisition. The arrows
indicate how the experience automaton can be anchored in the automaton defined by the
robot program and in the environment process.

environment
environment process

raw experience

program

5. Robot Learning Language 77

In contrast, a global tag is activated every time the piece of code is executed.
After addressing an RPL task via the goal, routine or a global tag, other program parts

are accessible by navigating through the task tree with the sub expression, which is given
a path description and a task. The path description is defined in RPL, see Appendix A and
Figure 3.4 on page 33 for more detail.

The anchoring of experience automata in the program structure is very important for
learning models of the robot activities. It allows to specify experience that is recorded
while the robot is performing a navigation task, for instance. We can also capture more
subtle details of the execution of a routine by specifying its subautomata and record the
interactions between them.

Other experiences rely more on the state of the environment, for example when learn-
ing models of user preferences. In this case, the experience automaton should be described
in terms of state variables, which are the internal representation of the environment in the
program. In the light of hybrid automata, we represent “environment automata” by giving
an invariant. Thus, the environment activity can also be described as an automaton whose
activity lasts as long as the invariant stays intact. For example, we might be interested in
the automaton that is active while a human is in the room. This same automaton could
be described by the two events of a human entering and leaving the kitchen, but in our
framework we specify the invariant condition as someone being inside the kitchen.

To summarize, the hierarchical structure of an experience automaton can be anchored
to the control program in two ways: (1) by connecting it to the program structure, which
corresponds to matching the automaton structure to parts of the program and (2) by asso-
ciating it with environmental conditions, which corresponds to matching it with an imag-
inary environment automaton. Both the environment and program automaton don’t exist
completely, or they exist in different forms. According to the needs at hand, both kinds
of automata can be modeled to an arbitrary level of detail. Of course, both methods can
be combined so that for instance experiences can be recorded for navigation tasks where
people are present in the room.

Experience Data

We have shown how the automaton structure is defined and how it is associated with the
imaginary program and environment automata. In the light of Figure 4.8 on page 56, this
limits the experience on the timeline, focusing the robot’s attention to episodes. Now we
have to reduce the theoretical amount of available data during this time by restricting the
variables that are to be recorded.

We have seen in Figure 5.5 on page 69 that variable values can either be stored once
at the beginning or end of the automaton execution or continuously during its activation.
For the events and the interval there can be different sets of variables to be recorded. In
the figure, the robot’s velocity is recorded continuously, whereas its pose is only saved at

78 5.2 Experiences

the beginning and end of the automaton activity.
The values to be recorded can stem from global variables like state variables, which are

accessible from all over the program. Another source of data are local variables that are
changed during program execution, for example the path a robot has chosen for navigation
in the current situation. This is possible, because the local variables are accessible via the
RPL task tree. The addressing of local variables therefore involves navigating through the
task tree like in the specification of anchoring the automaton to the program.

Together with an arbitrary hierarchical structure, very refined experiences can be de-
fined easily. For example, we want to capture the behavior of a routine for picking up
objects. We might be interested in the robot’s arm trajectory and the time it needs to fulfill
its task. This can be defined only by looking at the top-level automaton for the pick-up
routine. Besides, an interesting information would be the number of trials in grasping
the object or how often and under which conditions it was lost in the attempt of lifting
it. For this data, the representation of the automaton must be refined further so that the
lower-level grasping routine is represented as well.

Stability with Respect to Failures and Unexpected Events

By giving the structure and data of the experience automaton, the raw experience is com-
pletely specified and can be acquired automatically. However, in real-world robotics
things often don’t go as planned. For one thing, there is the RPL failure system. If failures
occur during the execution of the observed program part, the recording is stopped or if the
failure is repaired, its occurrence is added as a temporary information. RoLL permits to
add specifications of what to do if such an event has been encountered.

The straightforward reactions are to discard the experience or to store it in spite of
the failure. But more refined behaviors are possible in RoLL. Before storing it, the data
can be modified, added to or be deleted partially. So when a failure has occurred during
execution, but has been repaired, the time recorded for completing the task is certainly
not correct. The safest reaction would be not to store it permanently. If experiences are
scarce in the domain, it might however be advisable to adjust the recorded time according
to some heuristics and store the cleaned data. Or, one could discard the time as invalid
and only record the other data, which might still be significant.

Beside program failures, there are other events that can be disturbing to experience
execution, but pose no problem in the normal run of the program, for example if the dog is
jumping around the robot. This class of events could in theory be handled by environment
invariants, so that only experiences are recorded when there is no dog in the kitchen.
However, parts of these experiences might be useful in spite of the disturbance and can
thus be used or modified before saving. So in every automaton, events can be defined by
fluents. If the fluent becomes true, the recording mechanism notes that this type of event
has happened. After the experience is complete the decision what to do with it is made in

5. Robot Learning Language 79

the same way as with failures. Depending on the event, the data can be stored, possibly in
a modified form, or discarded.

Finally, we shouldn’t count on the recording mechanism to work 100 percent reliably.
The update of fluents within the program can sometimes be delayed, maybe because the
computer is busy with other activities that have nothing to do with the program execution.
Or some state variable changes might not be detected by the state estimation process. In
these cases, the stopping criteria of an automaton might be overlooked. Then the automa-
ton activation would only stop when the automaton is activated and terminated the next
time, which of course makes the data unusable. A straightforward way to solving this
problem is to introduce a timeout restricting the time of automaton activity. If it takes
longer, the recording is stopped and the timeout event is notified, so that an appropriate
reaction what to do with the data can be defined as in the other cases.

Beside the monitoring of events, RoLL offers another mechanism for preventing the
recording of unusable data. Instead of defining all the events that could hinder the obser-
vation of experiences, one could have a look at the recorded data itself at the end of the
episode. RoLL allows to test if certain data slots in the experience automaton have been
filled with data. If some value is missing, the same reactions as for events are available, in-
cluding the possibility to complete the missing value by heuristic calculations from other
recorded values.

At the moment, we are only describing passive experience acquisition, where the robot
control process works completely independent from the experience recording process.
When thinking of active experience acquisition, the two modules should work closer to-
gether. In the light of failure and event handling, the critic element should inform the
performance element that the experience was not completely useful, so that the problem
generator might consider this information and for example pose the same problem again.
In the current version of RoLL this mechanism is not implemented, because the problem
generation in general has been treated only roughly. A better support of active experience
acquisition is subject to future work.

RoLL Syntax for Raw Experiences

We have now described all the necessary information for specifying experiences. The
complete syntax of the define-raw-experience construct can be found in Appendix C.
Here we only show two examples of how the specification of raw experiences looks like
in RoLL and review the points just described.

The first example is presented in Listing 5.1. The experience we define here has the
name navigation-time-exp (line 1). It consists of only one automaton. Instead of
giving it a name, we provide the keyword :anonymous. Any keyword symbol can be
given for an anonymous automaton, whereas symbols in other packages are interpreted as
automaton names. The automaton corresponds to the program automaton for the routine

80 5.2 Experiences

b21-go2pose-pid-player (line 4). When the automaton is activated, the current time,
the robot’s pose (an object consisting of its x- and y-positions and the orientation) and
the goal pose demanded by the goal are recorded (lines 5–8). This latter pose is not
stored in a global variable, but is a local variable of the routine. It can be accessed by
the :internal-value keyword (line 8). For getting the desired pose the functions goal
and pose must be applied to the internal value. When the automaton stops, the time of
this event is also recorded. If the execution of the automaton is either aborted by some
more urgent process or fails, the timestamp at the end of the activity is set to 0 and the
information is stored (lines 10–12).

Listing 5.2 shows a more complex example for observing the activity of gripping ob-
jects. In this case we have omitted the data part (the begin, end, and interval parts) of the
experience and only show the structure, anchoring and event handling. The hierarchy of
automata is the same as in Figure 5.9 on page 75. The outermost automaton is defined by
the goal entity-at-place (line 4). The subautomata are all defined in terms of the task
path from the parent process to the subprocess. The keyword :parent is an abbreviation
for giving the name of the parent automaton. Because in this example several automata are
involved, they must all be identified by a unique name. The experience handling is more
complex here. It is formulated in the form of a LISP cond expression. The first condition
to be tested (line 21) is if the fail event has occurred in any automaton during execution.
If this has happened, the information is discarded. The next condition (line 23) tests if the
abort event has been noted for the put-down automaton. If the put-down automaton has
been aborted, some data is modified (indicated by dots) and stored. Another possibility
for deciding what to do with the recorded data is illustrated in the third condition (line 26).
It tests if all the desired data at the end event of the main automaton has been recorded. If
this is not the case, some data is modified and then stored. The default case — if nothing
has failed, the put-down automaton has not been aborted and the data at the end of the

Listing 5.1 Definition of a raw experience for recording the time of a navigation task.

1 (roll:define-raw-experience navigation-time-exp
2 :specification
3 (:anonymous
4 :rpl (:routine-execution ’b21-go2pose-pid-player)
5 :begin ((timestep [getgv ’statevar ’time-step])
6 (start-pose [getgv ’statevar ’b21-pose])
7 (goal-pose
8 (pose (goal (:internal-value "ROUTINE" :this :exact)))))
9 :end ((timestep [getgv ’statevar ’time-step])))

10 :experience-handling (((or (:event :abort) (:event :fail))
11 (roll:replace-data (:var timestep :end) 0)
12 :store)))

5. Robot Learning Language 81

main automaton has been recorded — is to store all the data.

In this section we have shown how raw experiences are defined in RoLL, namely
by giving the automaton structure, its anchoring in the control program and the desired
data. To make the collection more reliable, several mechanisms for manipulating data
before it is stored are implemented. With the declarative specification they can be recorded
automatically using the construct acquire-experiences, which takes an experience data
structure as an argument and creates a process that runs in parallel to the control program.
After one experience has been recorded, it is immediately processed to a more abstract
one.

Listing 5.2 More complex example for observing the activity of gripping objects.

1 (roll:define-raw-experience used-arm-cup-exp
2 :specification
3 (main
4 :rpl (:goal-subtask (:goal-execution ’entity-at-place))
5 :children
6 ((pick-up
7 :rpl (:achieve-subtask (:sub ((tagged pick-up) (try 0) (step 2)
8 (process-body) (step 1))
9 :parent))

10 :children ((grip
11 :rpl (:sub ((tagged grip)) :parent))))
12 (put-down
13 :rpl (:achieve-subtask (:sub ((tagged put-down) (try 0)
14 (step 2) (process-body) (step 1))
15 :parent))
16 :children
17 ((drop
18 :rpl (:sub ((tagged drop) (try 0) (step 2)
19 (process-body) (step 1))
20 :parent))))))
21 :experience-handling (((:event :fail)
22 :discard)
23 ((:event (:abort put-down))
24 ...
25 :store)
26 ((not (:available (:end main)))
27 ...
28 :store)))

82 5.2 Experiences

5.2.3 Problem Generation

The difference between active and passive experience acquisition lies in the way the per-
formance element works during experience recording. In the former case the robot is
controlled in a way such that the actions will provide good learning experience. When
experience is acquired passively, the actions are selected according to the agent’s normal
utility criteria regardless of their use in observing experiences. Put another way, active
experience acquisition needs the problem generator of the agent architecture depicted in
Figure 2.1 on page 17, whereas passive experience gathering does without.

The main focus of this work is learning with passive experience acquisition. It seems
natural that an agent should observe its activities while performing them, because humans
usually learn in the same way. Besides, learning and the recording of experiences in
particular, are executed without degrading the robot’s normal activities. On the other
hand, active experience acquisition provides experience data that is tailored better to the
learning problem. The needed data can be gathered faster and less data is required, because
redundant experiences can be avoided. We can assume a household robot to have idle
times, so that active experience acquisition could be performed primarily in these time
periods. In this way, the overall robot performance would not decrease.

For gathering experiences actively, a special control program containing a set of free
parameters is executed. By varying the parameters different experiences can be observed.
The relation between program parameters and observed experiences is non-trivial and
usually non-deterministic. Therefore it is difficult to determine good program parameters
a priori. This means that the problem generator should create parameterizations at run
time depending on the experiences already acquired. Information about the already exist-
ing experiences can be got from the critic element, where the experiences are stored and
managed. The main challenge here is to define the set of needed experiences for learning
on an abstract level, determine if the available set of experiences fits this specification,
and what must be done to acquire missing experiences. To our knowledge this topic of
defining experiences and establishing connections between the program executed by the
performance element and the observed experiences has not been subject to any research
and is certainly not straightforward.

Other interesting questions arise when active and passive experience acquisition are
combined, a topic that has received much attention, especially in the context of reinforce-
ment learning (Thrun 1998a; Cohn 1996; Yu, Bi, and Tresp 2006). The agent has to find
an appropriate trade-off between exploration (active experience acquisition) and exploita-
tion (passive experience acquisition) when it has to learn, but also execute its primary
tasks. If exploration is performed excessively, only the learning component benefits from
the robot’s actions, whereas the main task is achieved suboptimally, if it is achieved at all.
On the other hand, pure exploitation may lead to poor learning results and prevents the
observation of certain parts of the state space.

5. Robot Learning Language 83

Beside the challenges posed by active experience acquisition, it can, on the other hand,
make the observation of experience data easier. When recording data passively, all infor-
mation about the primary process executed by the performance element must be got from
the internal program structure and changes in state variables. When acquiring experience
actively, the main program is written only for the purpose of observing experiences, so
that communication between the execution process and the monitoring can provide extra
information. This means that the primary process can tell the critic element explicitly
when it should start and stop recording data. Furthermore, failures or other unexpected
events can be registered by the observing process and be reported to the executing process,
so that problems can be repeated if no meaningful data could be extracted from their first
execution.

Overall, there is a lot to be said and done about active exploration. RoLL is mainly
designed for passive experience gathering, but provides basic facilities for active acqui-
sition, which correspond to the state of the art for pure active experience acquisition and
makes available the means for implementing more sophisticated modes of problem gen-
eration. It is possible to implement dedicated control programs for experience acquisition
and define parameterizations for them a priori. In terms of process communication, inter-
esting program parts can be registered by a global tag, so that their execution can easily
be detected by the monitoring process. Combinations of active and passive acquisition are
not provided by RoLL explicitly, but can be implemented for specific problems.

Problem Generator

For exploring the world actively, we assume that the performance element runs a given
program subsequently with different parameterizations. For example, when we want to
learn the time prediction model of the robot’s navigation routine, we might run a program
that navigates the robot to different places in the world. The task where to go is specified
by a vector containing the x- and y-coordinates of the goal position and possibly a goal
orientation, constituting the free parameters to be varied. The navigation program is then
executed several times with different target locations.

Thus, the complete experience-gathering plan is given by a program specification and
a list of parameters. The simple problem generator implemented in RoLL can produce
parameter vectors before the execution starts. In the following we introduce a simple
language allowing the specification of such vectors.

First of all, for each variable we have to specify how many and which values are
to be tested. One possibility is to generate values randomly, only giving the possible
range of values. In the navigation example this would correspond to sending the robot to
uniformly distributed positions in the world. Another option is to specify fixed values by
hand, for example only allowing angles of 35, 123 and 260 degrees for the goal positions.
Thirdly, the state space can be discretized and be tested completely within this simplified

84 5.2 Experiences

representation. In the kitchen, for instance, we could define the limits of the kitchen
and use only the positions every 0.5 m. Then the problem generator would generate all
positions on the specified grid.

The possibilities for specifying values apply to each variable separately. This means
we can define goal positions by placing a grid on the coordinates in x-direction, deter-
mine y-coordinates randomly and predefine some values for the target angle. So for every
parameter variable the problem generator produces a list of values to be used in the per-
formance element. The lists of the single variables must then be combined into a list of
vectors containing a parameterization for each variable. If two variables depend upon

Figure 5.11 Working of the problem generator in RoLL illustrated by an example.

(problem-parameters
:parameters ((x :random :min 1.0 :max 2.0 :samples 2)

(y :predefined ’(4 5 6))
(z :cover :min 0.0 :max 3.0 :interval 0.6))

:relation (:indep (:dep x y) z))

(:indep (:dep x y) z))

((1.6697415 6 0.0)
(1.6697415 5 0.6)
(1.6697415 4 1.2)
(1.3288624 6 1.8)
(1.3288624 5 2.4)
(1.3288624 4 3.0))

(:dep x y)

((1.6697415 6)
(1.6697415 5)
(1.6697415 4)
(1.3288624 6)
(1.3288624 5)
(1.3288624 4))

x

(1.6697415 1.3288624)
y

(4 5 6)
z

(0.0 0.6 1.2 1.8 2.4 3.0)

5. Robot Learning Language 85

each other, the single lists are combined by a cross product operation. In contrast, if they
are independent, the lists are combined item-wise (see examples below). The dependency
relations of variables can be nested and combined arbitrarily.

By generating values for a variable, sometimes the number of generated problems
is fixed. This is the case for a list of predefined values and for a complete coverage
of a discretized state representation. For random values there are no restrictions on the
number of samples generated. In some cases, the number of randomly generated values
can be determined by the combination mode of different variables. If two variables are
independent, the number of samples for one of them is fixed and the other one is generated
randomly, then the overall number of problems is equal to the length of the value list of the
first variable. If the number of desired random values cannot be determined automatically,
it must be specified explicitly.

Ambiguities can arise when two lists of values with a predetermined length are to be
combined as independent variables, if the lengths of both lists are not equal. One option
is to use the smaller number of values and discard the superfluous ones, the other one to
use the higher number and repeat values from the shorter list.

Figure 5.11 demonstrates how the declarative specification of the problems is trans-
formed to a list of parameters. In the first step, the value lists of the specified parameters
are generated. These lists are then combined step by step according to the dependency
relation. More examples can be found in Section C.3.3.

Overall, the problem generator in RoLL proposes a powerful language for specifying
parameter settings for different runs of experience acquisition. Although its functionality
doesn’t comprise all the possible features of problem generation, it provides the means
of performing active experience acquisition in a way it is done in most state-of-the-art
robotic systems.

Process Communication

When acquiring experience actively, explicit communication between the performance el-
ement and the critic element could be established for facilitating the detection of episodes
and reacting to failures or unexpected events. RoLL doesn’t provide explicit means for
this kind of communication, but it does include means to include them for specific prob-
lems.

The detection of episodes can be facilitated by setting a global tag around the code
that is to be detected as an episode. Then it isn’t necessary to navigate through the task
tree and the interesting time period of the execution is identified unambiguously.

If there are events that can easily be detected by the execution module, but are difficult
to register by the monitoring module, a global fluent can be introduced that is changed by
the execution module and whose values are observed by the monitoring module. Events
detected that way can be used for deciding what to do with recorded data after an episode

86 5.2 Experiences

has ended.
Communication from the monitoring process to the execution module is not possible

directly. However, events detected by the critic element can be coded into the acquired ex-
perience. The execution module has access to all recorded experiences and by examining
if an experience has been recorded and what data it contains it can conclude if there were
any problems detected during the recording in the last episode. If some unwanted effect
has occurred, the episode can be repeated.

Overall, although there is no explicit communication between the performance and
critic elements, RoLL provides means for interchanging information between the two
modules. As active experience acquisition is usually not too complex, the standard func-
tionality of RoLL suffices in most cases. For special problems, there are ways to establish
communication between the observing and executing processes.

Extendability to More Sophisticated Problem Generation

At the beginning of this section about problem generation we have explained what chal-
lenges are posed on sophisticated experience acquisition. Although it is difficult to find a
general solution and good representation for the desired set of experiences, solutions for
specific problems can be found and implemented with RoLL.

We have explained that it is extremely difficult to represent the desired experiences
in a general way and ensure that the wanted distribution of data is acquired by a dex-
terous coordination of the execution and monitoring modules. This involves a thorough
understanding of the underlying state space of the problem and knowledge of how the
robot’s activities relate to the acquired experiences. Then the execution module could
check the available experiences and notice what parts of the state space must still be ex-
plored, whereupon it selects appropriate problems to execute. After that it checks again if
the desired experiences have been observed.

We have also mentioned the possibility to mix active and passive experience acquisi-
tion. This can be simulated in RoLL, too. The control program can be written in a way
that the state space is explored actively first and later a gradual transition to passive expe-
rience acquisition takes place. The drawback of this approach is that the code for active
acquisition is never removed from the program and adds complexity to it that is not nec-
essary after the learning process has ended or switched completely to passive observation.
On the other hand, different exploration strategies can enhance learning and RoLL makes
it possible to test different strategies against each other.

Without providing explicit means for active experience acquisition that goes beyond
the methods used in current systems, RoLL enables the implementation of additional fea-
tures for specific problems. This can be the starting point for a more thorough investi-
gation of the features needed for active experience acquisition and representations of the
experiences needed for learning.

5. Robot Learning Language 87

5.2.4 Experience Abstraction

Up to now we have only described the first step in getting experiences for learning, that
is to say, the gathering of the raw experiences. Usually unsuitable for learning, these
experiences must be converted to a more abstract form. This process can be performed in
several steps or by only one conversion, depending on the learning system, the problem
and interdependencies between learning problems.

In the following we first present an example of how experiences are abstracted for
giving an intuition of how the abstraction process takes place and what challenges are
connected with it. After that we provide an overview of the demands and design criteria
of the language constructs involved in experience conversion. Finally, we explain the
operations on experiences that lead to more abstract representations and how they are
implemented in RoLL.

Example

As an example we have a look at the learning problem of a function deciding which of its
two grippers a kitchen robot should use for grasping an object. Figure 5.12 shows the steps
involved in the abstraction process. Every experience consists of a hybrid automaton and
data. The automaton structure is depicted on the left for each abstraction step and the data
associated with it on the right. The automata are depicted according to the representation
in Figures 4.4 on page 49 and 5.5 on page 69.

On page 81 we have already presented the automaton for the raw experiences of this
problem. It comprises a hierarchy of automata each corresponding to a part of the control
program. The outer automaton is linked to the goal entity-at-place. When this goal
is to be achieved, two routines are called sequentially (although the order is not included
in the representation of experiences!): pick-up and put-down. The pick-up routine
comprises the whole process of moving to the object, grasping and lifting it. The grasping
procedure as such is performed by the routine grip. Similarly, the pure action of releasing
the object is performed by the routine drop.

In our problem we are interested in the time from when the robot starts to touch the
object for gripping until it has lifted it to the carrying position and the period between
moving the object to the final position and removing the arm. Therefore, we need data
at the beginning of the grip and drop routines and when the pick-up and put-down
routines are finished. The data we need comprises the initial position of the entity to be
carried, its desired goal position and the place where it is actually placed by the robot.
Besides, the time needed for performing the lifting and dropping processes is important
for comparing the performance of the robot hands. Finally, we must record which hand
is used in the gripping process. Our robot cannot hand over objects between gripping and
releasing, so the side chosen for gripping is the same as for putting down the object.

88 5.2 Experiences

Figure 5.12 shows how the raw experience must be defined for getting all this infor-
mation. When the gripping process starts for fulfilling the entity-at-place goal, the
current positions of the object and the robot, the hand that is used (left or right) and the
time when the action starts are recorded. The time of when the routine pick-up is finished
is also important for determining the duration of the whole gripping action. Similarly, the
duration of the dropping process, the intended position of the object, the actually reached
object position and the robot’s position while setting down the object are logged.

Now we can convert the raw experiences into abstract ones. The automata for the
abstract experiences are depicted as a function automaton. In fact, the automaton type is
irrelevant for RoLL. In the illustration we wanted to underline the different automata for
raw and abstract experiences. Whereas the automaton structure of the raw experience cor-
responds directly to the processes of the program, the structure of the abstract experience
can best be seen as a function mapping the initial situation and the arm used to the time
needed for gripping an object in the described situation with the specified hand1. The de-

Figure 5.12 Experience abstraction for the learning problem of determining which hand
to use for gripping.

entity-at-place

pick-up entity

grip

put-down entity

drop

gripbegin → entity pose, robot pose,
side, timestep

pick-upend → timestep
dropbegin → entity goal pose,timestep
put-downend→ entity pose, robot pose,

timestep

abstract experience

abstract experiencebegin→ entity robot distance,
handle orientation,
side

abstract experienceend → time difference

learning experience
learning experiencebegin→ entity robot distance,

handle orientation
learning experienceend → side

1Abstract experiences in general are not restricted to this simple automaton type. They can be nested
analogously to raw experience automata.

5. Robot Learning Language 89

scription of the initial situation is reduced to the distance between the robot and the entity
and the relative orientation of the object with respect to the robot. It is noteworthy that the
abstract experience doesn’t make use of all the data contained in the raw experience. This
can happen when raw experiences are used for different abstract experiences or when it is
not yet clear which data is needed for the best learning results. In the example presented
here we noticed that using the information of putting the object down enhances the learn-
ing result significantly (see Chapter 6 for details). For keeping the example simple, we
present here the version where we used only the information of the gripping process.

The experience obtained by the first abstraction step could be used for learning a model
of the gripping routine — how long does it take the robot to grip an object in the specified
situation with a certain gripper? If we want a decision function to choose the gripper, we
should go one step further and produce an abstract experience where the situation of the
robot and the object is mapped directly to the gripper to be used. For this, it has to be
decided for each gripping situation, which side is the best according to the time that was
needed. This means that compared to the former abstraction step, the learning experience
contains only half of the data, the disadvantageous examples having been discarded.

As we have seen, experiences are always represented as an automaton and data cor-
responding to it. RoLL provides constructs for defining the experience types and for
translating one experience type into another.

Design Criteria

The main problem in designing language constructs for experience abstraction is the great
variety of possible demands. As they depend on the learning problem and all possible
cases can hardly be foreseen, the language should be general enough to allow all algebraic
and conditional translations between experience data.

Furthermore, we have described the different classes of experiences, transient and
persistent, which can be saved in a variety of ways, like in a database or a log file. The
conversions between them must be specified in a declarative manner for being independent
of the underlying experience class.

Besides, the experience conversion should fit into the context of the whole language.
The syntax should be logical and comprehensible and as similar to the definition of raw
experiences as possible, while considering the peculiarities of abstract experiences. There-
fore, the natural choice for representing abstract experiences is within the framework of
hybrid automata.

Although it is possible to abstract experiences in several steps, the choice of how
many steps are needed should be determined by the programmer and not be restricted by
the language. Therefore, it must be possible to describe complex transformations, so that
no superfluous transformation steps must be added.

90 5.2 Experiences

Operations on Experiences

Up to now we have used the words “abstraction”, “conversion” and “transformation” syn-
onymously. However, conversion or transformation can be more than just pure abstraction.
Experiences can be converted along two dimensions. It is possible to take one experience
instance and transform it to another experience instance of a different type. This is what
we call “abstraction” in the narrower sense. Another possibility is to map a set of expe-
rience instances to another set of experience instances of the same or another experience
class. We call this process “filtering” of experiences. It can for instance be used to reduce
several original experiences to only one result experience, for example by calculating the
average of several values. Notwithstanding the name, the result set of a filtering operation
can be larger than the initial set of experiences.

Put in a simplified way, abstraction primarily works more on the automaton structure,
whereas filtering affects the data traces. The operations on automata were defined in
Section 4.4.2 as abstract, expand and restrict operations, which rely on the hierarchical
structure of the hybrid automata. In RoLL, the distinction of these operations is not made
explicit, primarily for not restricting transformations in any way and for making factitious
conversion steps unnecessary.

The filtering operation is only supported in a rudimentary fashion by RoLL. Only the
operation of discarding an experience instance is implemented explicitly. This is due to
the fact that filtering relies strongly on the underlying experience storage system and on
the problem at hand. With knowledge of the used experience class it is however possible
to add filtering mechanisms to given problems.

For experience conversion in RoLL, first of all the structure of the resulting experience
must be defined very similar to the way raw experiences are specified. After that a con-

Listing 5.3 Abstract experience definition, where experience and conversion are combined
in one specification.

1 (define-abstract-experience abstraction-stage-1
2 :parent-experience raw-experience-for-gripping
3 :specification
4 (:function
5 :begin ((entity-robot-distance
6 (distance (:var entity-pose (:begin grip))
7 (:var robot-pose (:begin grip))))
8 (handle-orientation
9 (relative-orientation (:var entity-pose (:begin grip))

10 (:var robot-pose (:begin grip))))
11 (side (:var side (:begin grip))))
12 :end ((time-difference (- (:var timestep (:end pick-up))
13 (:var timestep (:begin grip)))))))

5. Robot Learning Language 91

nection between experiences is established by defining conversions between experiences,
always in the direction from raw to more abstract experiences. On page 71 we mentioned
the possibility to get instances of an abstract experience type from several types of raw
experiences or to use a raw experience for generating different kinds of abstract ones. This
is the reason why the definition of the experience structure and the conversion are different
concepts. However, in most problems there is a one-to-one relation between raw and ab-
stract experience. Therefore, RoLL offers a simpler method for specifying the experience
structure and the conversion in one definition.

Listing 5.3 shows a simple example of an abstract experience definition, where we
specify the experience structure and the conversion in one definition. Therefore, after
naming the experience abstraction-stage-1, the first parameter gives the raw expe-
rience type serving as the starting point for the conversion (line 2). Then follows an
automaton specification that looks almost identical to automaton definitions for raw ex-
periences. Only the source of the data is given in a different manner. Here the val-
ues are not observed, but calculated from values of the raw experiences. These val-
ues are addressed by the special syntax explained in Section 5.2.1 on page 70. For
example (:var entity-pose (:begin grip)) addresses the value of the parameter
entity-pose that was recorded at the activation of the grip automaton. These values can
be combined by any LISP expression, for example by the function distance (lines 6,7 in
the example), which calculates the Euclidean distance of two points in 3D space. For a
complete overview of the syntax for abstract experience specifications see Appendix C.

Experience Processing in Different Experience Classes

We have presented the declarative part of experience conversion. Now we explain in more
detail how the definitions are executed taking into consideration the need of abstracting
away from different storage systems and the differentiation of permanent and transient ex-
periences. Including different types of storage systems into RoLL can be done by defining
an experience class, which takes care of the interface between the external storage and the
experience processing in RoLL.

The conversion process between experiences of different levels of abstraction is de-
picted in Figure 5.13. Each experience, no matter if transient or permanent, is represented
by one reference instance of the according LISP class2 (in the figure depicted as data
boxes called E1, E2, E3, and E4).

The abstraction process is divided into two operations to be supported by all storage

2The notion of experience classes and instances is a little tricky. When an experience is specified a LISP
class is generated and the episode data is stored in instances (or only one reference instance) of this class.
The generated classes of experiences representing an episode are derived from more general experience
classes defining the storage system to be used. The storage defining classes is what we normally refer to as
“experience classes” in this work.

92 5.2 Experiences

systems: deliver-experience and convert. First an experience is filled with the data it
may contain according to its structure. It is then informed that the information is complete
by the call of deliver-experience. The experience then has to store the experience
away in order to be open for new experience data. The storage can involve external storage
systems like databases or files as in the case of E1 and E2 in the example. E3 — a transient
experience — doesn’t really store the data, but passes it on to the next level of abstraction.

The second method every experience class must provide is the method convert, which
receives the instances of the two experiences to be converted, e.g. E3 and E4, and destruc-
tively replaces the values stored in the instance of E4 by the values computed from the data
in the instance of E3 and the abstraction specification between E3 and E4. For persistent
experiences, the conversion is regarded as a two-step process: retrieving the data from the
external storage system and abstracting it according to the given specification. The expe-
rience class E1 implements this procedure in a straightforward way: it retrieves the data
from the external storage medium and stores it in its reference instance. The conversion
method applied between E1 and E2 is the same as if E1 was a transient experience.

Some storage systems provide more functionality than just saving the data. For exam-
ple, when using a relational database sophisticated calculations can be performed in the
query. Instead of first reading the data as it is and then converting it by means of LISP,

Figure 5.13 Conversion process for different experience classes.

instance of E1

instance of E2

instance of E3

instance of E4

external
storage

system of
E1

external
storage

system of
E2

convert

deliver

retrieve

deliver

retrieve & convert

deliver
convert

5. Robot Learning Language 93

one can do the whole abstraction or only parts of the calculations involved in the external
process. This procedure is shown in Figure 5.13 between experience classes E2 and E3.
In some cases, the external system can perform operations more optimal (e.g. cross prod-
uct on tables in a database) and the calculations might reduce the data passed between the
external and the LISP process.

The operations deliver and convert are the minimum operations required for an
experience class to support. As experience conversion only considers one experience
instance at a time, it naturally restricts the possibility to compare experiences to others
from the same class. However, if the storage system gives access to all experiences and
allows operations on them, this functionality can be added as an additional operation on
this class of experiences. For example, when using a database, experiences can be filtered
and smoothed by data mining mechanisms.

To summarize, the RoLL operations connected with experiences comprise the observa-
tion of raw experiences, the generation of action sequences to observe useful experiences,
and the abstraction process, which can work with user-defined experience classes.

5.3 Learning Problems
We have described in detail the RoLL language constructs concerned with experiences.
Now we explain the learning part. As mentioned in Section 3.1 on page 25, a robot control
program includes a variety of function types to be learned, e.g. routine and environment

Figure 5.14 Learning step in the learning cycle.

experience
gathering step

learning step
experience
preparation

learning

integration

94 5.3 Learning Problems

models, arbitration functions, etc. RoLL offers the specification of different kinds of
learning problem classes. This is important for the integration of the learning results into
the program. A routine model must be added to the program in a different way than a
routine. Secondly, the functionality of RoLL doesn’t rely on a specific learning algorithm
(or learning system) like a decision tree learner or neural network simulation, but rather
offers the possibility to add new ones. Finally we show, how a learning problem is defined
in RoLL. The specification of learning problems is declarative, like that of experiences.
The declarations are then transformed to executable code automatically.

Figure 5.14 shows the learning part in the context of the whole learning procedure.
First of all, the experience, which has already been abstracted, must be adapted to a syn-
tactic form suitable for the learning system. The learning is then performed with the
specified learning system, which is usually an external program. Finally, the learned func-
tion is integrated into the control program. This is done automatically, depending on the
learning system and the learning problem class.

5.3.1 Learning Problem Classes
Robot programs have a variety of functions that can be learned. These include models of
the environment and robot behavior, arbitration functions for deciding which routine can
achieve a goal, and low-level control routines. The latter aren’t actually functions (return-
ing a value), but plans (controlling the robot). But a low-level routine can be implemented
as a control loop, the control commands being generated by a function in every iteration.

Beside these standard types of learning problems, the architecture of a specific robot
might make other kinds of learning problems necessary, for example functions determin-
ing parameters during run-time like the hand to use for gripping or the exact position to
put an object at.

Because not all classes of learning problems can be foreseen, RoLL offers a way to add
new ones. Learning problem classes differ in their signature, i.e. the parameters they take,
and the way the resulting function is integrated into the control program. For example, for
learning a model of some control routine, the learning problem must be given the name of
the routine and a specification of what kind of model is to be learned (time or failure, for
instance). In RoLL, models are tightly coupled to the routine they describe. Therefore, a
learned model must be associated with the routine it characterizes. The integration of any
routine model is described in the learning problem class, so that for each learning problem
of this type the integration can be performed automatically.

5.3.2 Learning Systems
RoLL is not designed for a specific learning paradigm. Any experience-based learning
algorithm can be used with RoLL. In fact, the core layer of RoLL doesn’t include any

5. Robot Learning Language 95

learning system. This means that learning can only take place after at least one learn-
ing system has been added. In our experiments we have used two external programs as
learning systems: SNNS (Stuttgart Neural Network Simulator) (Zell and others 1998)
for neural network learning and WEKA (Witten and Frank 2005) for different kinds of
decision tree learning (classical decision trees, regression and model trees).

Each learning system requires the input data to be in a special format. As RoLL al-
lows the definition of different classes of experiences with different kinds of data storage
(as described on Page 73), this data format can be implemented as an experience class.
The only difference to other experience classes is that there is no need to read from the
underlying storage to get the data back into the program, as is required from other experi-
ence types. Only the transformation of the generic experience format to the format of the
learning system must be specified (i.e. the method deliver-experience).

A learning system may demand a special semantic format for the experience automa-
ton. For example, the already integrated learning systems for neural networks and deci-
sion trees assume that the experience consists of only one automaton with a begin and
end specification. The variables stored in the begin part are used as input values, the ones
from the end part as output values. For other kinds of learning, e.g. unsupervised learning,
other data formats can be postulated by the experience for a learning system.

Usually, the conversion from an abstract experience to the experience used by the
learning system is not only a shift of data types, but contains changes in data, too. Often,
data for use in neural nets should be normalized to a certain range of values, depending
on the settings used in the network. In other cases, where no normalization is necessary,
the conversion can be a pure transformation from one experience type to another.

Beside the experience type, a learning system in RoLL must provide the call to an
external program or the working of a learning algorithm implemented in LISP. Usually,
learning algorithms can be adapted to the problem by a set of parameters. The learn-
ing system can specify a set of such parameters and use them when calling the learning
algorithm.

External learning systems usually provide their results in a form other than a LISP
function. The learning system has to take care to convert this format to executable LISP
code. This can involve the call of a foreign function, like a C function, or the parsing of a
decision tree file, for instance. The embedding of the learned function is specified by the
learning system and the learning problem class. The learning system has to provide exe-
cutable LISP code, whereas the learning problem class defines how this code is integrated
into the program.

When a function has been learned, it should be available for use from that time on,
even when the system has to be restarted. This means that the result of a learning process
should be written to a file that is automatically loaded when the system starts. As RoLL
doesn’t assume a certain directory structure for projects, the user has to take care that an
appropriate path is specified in the learning system.

96 5.3 Learning Problems

5.3.3 The Learning Problem

Once the learning problem class and an appropriate learning system have been added to
RoLL, learning problems can be defined and executed. Every learning problem can be
addressed by a unique name. For performing the learning process, the function learn
must be called with the learning problem as an input parameter. The learn function
should only be called after the experiences have been acquired. In the current version
of RoLL the scheduling of experience acquisition and learning is performed manually,
therefore both processes are treated independently.

For specifying a learning problem, it is necessary to state what is to be learned by
giving a learning problem class with appropriate parameters. For example, for learning the
time model of the routine navigate, the specification according to the learning problem
class of routine models is (:model navigate :time). The order in which the parameters
navigate and :time are to be given is not part of RoLL, but is defined by the learning
problem class :model.

Secondly, the experiences that are to be used for learning must be specified. The
experience given in the learning problem must be of a type that is understood by the
learning system.

The learning system to be used is the third component of the learning problem speci-
fication. It also includes the parameterization of the learning algorithm for the problem at
hand.

Finally, the abstracted values used for learning must be associated to the input values
of the resulting function. We explain this point in more detail, because it is an important
step in the context of experience abstraction.

Consider a low-level navigation routine to be learned. The raw experiences might
be gathered by controlling the robot in a random way and recording pairs of start and
end points together with the low-level navigation commands, which is a vector of the
form 〈x0,y0,ϕ0,x1,y1,ϕ1,rot0, trans0〉 with the robot’s position at time 0, its position at

Figure 5.15 Illustration of experience abstraction for learning a navigation routine.

distance
ϕ ′0

ϕ0

ϕ ′1
ϕ1

x0

y0

x1

y1

5. Robot Learning Language 97

time 1 and the commands given at time 0. After observing such a vector, we can expect
the robot to reach position 〈x1,y1,ϕ1〉 from position 〈x0,y0,ϕ0〉 if it gives the command
〈rot0, trans0〉.

This experience representation might not be suitable for learning, because absolute
positions are given and therefore identical navigation situations are treated as distinct
cases if the positions are translated or rotated in 2D space. Therefore, the experiences
are abstracted to a form 〈distance,ϕ0,ϕ1,rot0, trans0〉, the correlation to the original ex-
perience being depicted in Figure 5.15. Now the signature of the learned function is
distance×ϕ ′0×ϕ ′1→ rot0× trans0. However, in a world with many obstacles, the orig-
inal representation with absolute positions might be more appropriate, since navigation
paths must be chosen according to the location of the obstacles. So for learning a nav-
igation routine, different experience abstractions are possible. The call to the learned
function should be the same, no matter which abstraction is used for learning, in the ex-
ample x0× y0×ϕ0× x1× y1×ϕ1→ rot0× trans0. However, the functions produced by
the learning system expect to be called according to the abstracted experience.

Figure 5.16 illustrates this phenomenon. The function F is the one that is intended to
be learned with the signature x×y× z→ v×w, whereas f is the function produced by the
learning algorithm with the signature h× i→ j× k. The experience data is prepared for
learning by a multi-step abstraction process involving abstractions A0, A1 and A2.

When F is called, it gets the originally intended input values x, y and z, which must
be converted with the same abstractions as the learning experience and can then be used
to call f . The output of f is not exactly what the caller of F expects. Therefore, the
output values 〈 j,k〉 must be transformed to 〈v,w〉 by applying the abstraction chain A0,
A1, A2 backwards. This whole procedure has two tricky parts: (1) How can the original
abstraction definitions be used, i.e. how do the values 〈x,y,z〉 correspond to the values of
the raw experience? and (2) How can the reverse abstractions be calculated?

Figure 5.16 Abstraction in the context of the whole learning process.

〈x,y,z〉 F

〈a,b,c〉

〈e, f 〉

〈h, i〉 f 〈 j,k〉

〈g〉

〈d〉

〈v,w〉

A0

A1

A2 A−1
2

A−1
1

A−1
0

98 5.4 Summary

To illustrate the first question, consider again the example of the navigation routine
to be learned. The position 〈x1,y1,ϕ1〉 is obtained by random control of the robot. In
contrast, for the resulting function, these values come from the goal position, which is
given as the input. Thus, for applying the abstractions, which have already been specified,
RoLL must be told that the pose 〈x1,y1,ϕ1〉 of the raw experience corresponds to the goal
position of the function F . The position 〈x0,y0,ϕ0〉 needn’t be specified further, because
in both cases it denotes the robot’s current position. Then the abstraction steps for the
input values of f are generated automatically.

RoLL also offers the possibility to specify the complete input abstraction explicitly.
This means to ignore the already defined abstractions for the experiences and to define a
function converting the input of F to the input of f . However, one has to take care that
when the experience abstraction is changed, the input abstraction to the learned function
must be changed as well. Therefore, the automatic generation is to be preferred.

For the back transformation of output values, RoLL only offers the manual method of
specifying a function that converts 〈 j,k〉 to 〈v,w〉. This is because for the input conversion
the abstractions are known, but for the output conversion the reverse abstractions would
have to be generated. This might be possible in simple cases, for example for algebraic
expressions, but can be really hard when complex LISP functions with conditionals and
recursion or loops are involved. Therefore, the reverse abstractions for A0, A1, A2 would
have to be specified by hand, which is however more costly than just defining the complete
back transformation of the output values.

The specification of the starting point for abstracting the input values and the trans-
formation of the output values of f defines the signature of F . A good signature for F is
one that corresponds closely to the input given by the learning problem class. For exam-
ple, routine models are always called with the routine and the goal it is to achieve. The
output should fit the chosen kind of routine, e.g. the time needed for performing the task.
The input and output abstractions must map these input and desired output values to the
abstractions used in the experience abstraction process.

To summarize, a learning problem consists of an instantiation of a learning problem
class, a set of experiences, a learning system with parameters suitable for the problem
at hand, and a specification of the input and output abstractions, which represents a con-
nection between the learning problem class and the experience abstraction. The learning
problem definition for the example presented in this sections is shown in Listing 6.3 on
page 109.

5.4 Summary
When programming with RoLL, all parts of a learning process are specified declaratively.
At some point, the learning process then has to take place. Figure 5.3 on page 66 il-

5. Robot Learning Language 99

lustrates the cooperation of learning problem specific and learning problem independent
components defined in RoLL and how the learning process takes place.

Before anything can be learned, experiences must have been acquired by running the
plan acquire-experiences during program execution and thereby observing the nec-
essary experiences. The experiences are defined by an experience automaton, which is
anchored to the control program execution. The robot can either be controlled by the nor-
mal program or by one using the problem generator for parameterizing the program. After
one episode has been identified, the experience is converted to more abstract ones.

After that, the learning process is performed by calling the function learn, which
executes the following steps:

1. convert experiences to learning data of the chosen learning system,
2. invoke the learning algorithm with the data and the chosen parameters,
3. integrate the learning result into the RoLL program.
After the learning process has taken place, the learned function is loaded each time

the LISP environment is loaded, provided that the generated function has been written to
a directory where it is loaded automatically.

5.5 Related Work on Programming Data Acquisition and
Learning Capabilities

Two fundamental contributions of RoLL are that learning problems are executable and
its sophisticated mechanism for experience acquisition. In the following we first present
related work on experience and data acquisition in different contexts and then give a survey
of languages that incorporate some form of learning.

5.5.1 Experience Acquisition
Learning experiences draw their data from two sources: from observations of the outside
world and from inside the control program. The former is also practiced in observation
and state estimation tasks, the latter is often necessary for debugging purposes and system
evaluation.

Let’s first have a look at existing systems that observe the environment. When com-
plex processes are to be monitored, often a variety of sensors is used, which are intercon-
nected in sensor networks. Gehrke and Madden (2004) and Madden et al. (2005) work
on declarative languages that allow a specification of which data is needed and in which
time intervals it is required. Because the sensors are often small and fragile and the band-
width for communication is restricted, the focus of this research is on generating efficient
plans for answering SQL-like queries about the environment observed with the sensors.

100 5.5 Related Work on Programming Data Acquisition and Learning Capabilities

In contrast to our experience acquisition, the sensor networks don’t have to take care of
the episodes when the data is to be acquired. When the query is asked, the network tries
to answer it as soon as possible or does so in certain intervals. But there is no need to
recognize situations that are particularly interesting to observe.

The recognition of situations was examined by Dousson, Gaborit, and Ghallab (1993)
and Dousson (1994). Their objective is the surveillance of real-world processes such as
failure situations in airplanes. They introduce the concept of chronicles, which are tempo-
ral constraints on the world state. An interesting observation is that a common temporal
logic representation of chronicles can be used to define situations and to represent plans
(Ghallab 1998). This concept is implemented in a system called IxTeT (Laborie and
Ghallab 1995). The temporal logic works on discrete events rather than a data stream.
Situations are described by event patterns and temporal constraints on them. This allows
to define very specific situations declaratively.

The acquisition of data from inside the program is in some way simpler, because the
data is unambiguously there and no misinterpretation of sensor values is possible. On
the other hand, a program is usually not written for observation. The processes and local
variables are used, but not displayed. Therefore in practice there are two possibilities to
collect the data from within the program: (1) to protocol continuously every variable that
might be of interest for learning during the program execution or (2) to add special code
to the control program specifying which data is to be recorded at which times.

The first approach is put into practice in the XAVIER project (O’Sullivan, Haigh, and
Armstrong 1997) of Carnegie Mellon University. Here all the data is recorded at runtime
and replayed for analysis later. However, the execution context of the program is lost when
the data is replayed. This allows only an outside view of the robot by way of the control
commands, but it cannot explain why the robot came to the decision. Besides, for longer
runs of the robot and many variables to be observed, the amount of data gets enormous.
To filter the data needed for learning is then a problem of its own.

The Common Lisp Instrumentation Package (CLIP) (Anderson et al. 1994) is a LISP
package facilitating the second approach, i.e. add extra code for every kind of experience.
Its goal is to provide a standardized framework for data collection, where the functionality
of the program is clearly separated from the data collection. This separation, however,
only goes as far as the data collection code is clearly identifiable, whereas it is still inside
the actual program code. CLIP is not addressed especially for learning data, but for any
kind of experiments like debugging or giving user feedback. Although the data is specified
declaratively and the acquisition code is easy to add and delete from the code, it still
resides inside the program and has to be added at the appropriate places in the code. When
using this approach, we would have to decide a priori which experiences are needed for
learning. When a new learning problem is added, additional data acquisition code must
be included at the appropriate places.

5. Robot Learning Language 101

5.5.2 Learning Capabilities in Programming Languages
There are only few projects where the issue of combining programming and learning is
addressed. Thrun (2000) has proposed a language CES offering the possibility to leave
“gaps” in the code that can be closed by learned functions. Besides the learning capabil-
ities, CES supports reasoning with probabilistic values and the gradient descent learning
algorithm implemented in CES computes probabilistic values. The main motivation for
CES was to allow a compact implementation of robot control programs instead of explicit
learning support. Therefore, CES only uses a gradient descent algorithm and doesn’t offer
explicit possibilities to integrate other learning algorithms. Besides, the training examples
have to be provided by the programmer, experience acquisition is not supported on the
language level (Thrun 1998b).

Andre and Russell (2001) and Andre (2003) propose a language with the same idea as
CES of leaving some part of the program open to be replaced by learning. In this case rein-
forcement learning is used to fill in the choices that are not yet specified by programming.
Since this work only considers reinforcement learning as the only learning technique, the
issues of experience acquisition and program operation get straightforward: The agent
executes the program, when it encounters a choice that has to be learned it selects one op-
tion according to the current rewards assigned to actions and the exploration/exploitation
strategy, watches the reward to be gained by this choice and adapts its reward function on
actions. Although programmable reinforcement learning agents are a powerful approach
to integrate reinforcement learning into the normal control flow, it cannot be generalized
to other learning techniques.

The language IBAL proposed by Pfeffer (2001) is motivated by representing the agents
belief in terms of probabilistic models. Bayesian parameter estimation and reinforcement
learning are offered as an operator in such a program. Markov Decision Processes (MDPs)
are defined explicitly and declaratively and they can be solved by updating the reward
after every run similar to the approach by Andre. The focus of IBAL is not on learning
in general, but on programming with probabilistic models. The learning is merely an
additional operation and only supports a certain class of learning algorithms.

DTGolog (Boutilier et al. 2000) is a decision-theoretic extension of Golog. Like
in IBAL MDPs are specified explicitly and the solution of them is left to the program.
The space of policies can be restricted by programming, so DTGolog supports a very
close interaction between programming and learning. Boutilier et al. also emphasize that
the best results can be obtained by a smooth interaction of programming and learning
compared to learning or programming alone.

Chapter 6

Evaluation

We have proposed a programming language supporting the integration of learning into
control programs for autonomous robots.

In this chapter we will make clear that combining learning and programming in gen-
eral and the concepts of RoLL in particular are an important contribution to successful
robot learning. In Chapter 1 we made some assumptions about how learning problems for
autonomous robots should be designed. We state that robots should learn simple control
decisions instead of huge, monolithic problems. They should further observe experience
during their normal activity and use them economically. Besides, we are convinced that
the best performance can be gained by combining learning and programming.

To this end, we designed the language RoLL, which provides declarative specifications
for all parts of learning. It offers modular extensions to make it applicable for arbitrary
learning algorithms and problems. The constructs that initiate the experience acquisition
and the learning process allow a flexible interaction of programming and learning. More-
over, the experience acquisition methods of RoLL can be used for other applications than
learning, for example the evaluation of plan performance.

The main focus of our evaluation lies on presenting a comprehensive example of how
to specify and execute a learning problem in RoLL. Apart from that, we present some
empirical results of learning problems we have solved with RoLL. In these problems, we
don’t want to present the quality of the learning result, because it depends largely on the
choice of the experience abstraction and learning bias and doesn’t mirror the merits of
using RoLL. Rather, we demonstrate some advantages of embedding learning capabilities
into a control language instead of performing the learning by hand.

Because of its sophisticated experience acquisition concept, RoLL is also useful for
other applications than learning. We show some examples in the field of transformational
planning, including cases where experience specifications are generated automatically.

As robot learning is an active field of research, we attach great importance to the
extensibility of RoLL. We point out how new findings in the respective fields can be used

6. Evaluation 103

in RoLL and how it can contribute to explore new methods in robot learning.
Before starting the evaluation by presenting code and empirical results, we summarize

the points we want to emphasize in this chapter.

6.1 Evaluation Criteria
Integrating learning into robot control languages provides several advantages that are ob-
vious from a software engineering point of view. First of all, when a learning process is
described in terms of a programming language, it can be executed automatically. Next to
the comfort gained by this, the whole process can be repeated at a later time or be used on
different robotic systems. For example, learning prediction models of navigation routines
is important for many kinds of robots. The control signals for the robot’s velocity are
similar for most robots, so that the learning problem implemented for one specific robot
can easily be carried over to another one.

Furthermore, when learning is included in the language, the interaction between pro-
gramming and learning can be achieved in a very natural way. Functions that are best
be learned, because they rely on environmental conditions, can be combined with pro-
grammed heuristics, which are often hard to incorporate into the learning process directly.

If learning is executable and specified explicitly, even more ambitious goals can be
achieved in the long run. One problem in learning is that the result depends strongly
on the parameterization of the learning algorithm. This choice could be performed by
meta-learning algorithms (Abraham and Nath 2000; Abraham 2003; Younger, Hochreiter,
and Conwell 2001) or heuristics. The same is true for preparing the experiences with
good abstractions (Bonnlander 1996; Herrera et al. 2006). Besides, the execution of the
learning problems can be scheduled automatically, for example considering the idle times
of the robot, so that problems with higher priority are learned first.

RoLL is distinguished by a declarative, compact syntax. In the next section we show
examples demonstrating this point. Although we cannot present statistically meaningful
tests, we can claim that RoLL is easy to understand and use. Several students have used it
successfully, in some cases without any instruction except some examples.

Moreover, RoLL separates the code for learning, especially that for acquiring expe-
riences, from the normal program code. The learning specifications don’t affect the rest
of the program, so that learning problems can be added and removed without changing
anything else.

Finally, RoLL is very flexible. The learnable program parts, experience storage types
and learning systems can be added in a modular way. This means that RoLL doesn’t
depend on specific external programs or system settings and can be adapted to new devel-
opments in robot learning.

Although an empirical evaluation of these benefits is hardly possibly, we demonstrate

104 6.2 Comprehensive Example

some practical applications of RoLL in Section 6.3 and thereby justify the assumptions we
made about robot learning in Chapter 1. In particular, we stated that robots should learn
simple problems rather than complicated, monolithic ones, that the experience should be
observed during normal execution, and that the combination of programming and learning
yields better results than learning or programming alone.

We show how a set of raw experiences can be used for several learning problems or for
different solutions of the same learning problem, thereby demonstrating how experiences
are used economically. Also, RoLL allows the comparison of different learning algorithms
and parameterizations, which facilitates their manual adjustment and enables the use of
meta-learning methods. We further show that experience observed during normal activity
is more useful than artificially acquired one. In addition, we provide an example where
learning and programming are combined. The presented examples should give a flavor of
how important learning is for intelligent autonomous robots to be adapted to their envi-
ronment, although this point has already been emphasized by others (Thrun et al. 2006;
Riedmiller and Gabel 2007; Petkos, Toussaint, and Vijayakumar 2006).

The best way to show the benefits of a programming language like RoLL are programs
written in the language. To appreciate the modularity and simplicity of the declarations,
we present a complete example of a learning problem specification and how the learning
is integrated into the program.

6.2 Comprehensive Example
The following example of a complete learning problem including experience specifica-
tions assumes that the RoLL core language has been supplied with the learning problem
class, the experience class for storing experiences in a database, and a learning system for
regression tree learning. The definitions of these parts are explained in Appendix D.

The problem to be learned is a time prediction model for a navigation routine, which
is called b21-go2pose-pid-player. It takes the robot from its current position to a goal
position, which is specified by 2D coordinates and an orientation. In our robot imple-
mentation there is a state variable timestep, which gives the time as an integer based on
LISP’s internal real time and a scaling factor according to the speed-up of the simulation.1

We present the learning process according to the steps in Figure 2.2 on page 19.

6.2.1 Raw Experience Acquisition
For accessing the time needed for a navigation task, the navigation routine must be ob-
served to acquire a raw experience like the one defined in Listing 6.1. The experience

1This means that if the simulation is sped up by a factor n, the internal time is also accelerated by n,
thereby ensuring that the program reacts identically for different simulator settings.

6. Evaluation 105

automaton is anchored to the control program by defining the activity of the routine
b21-go2pose-pid-player as an episode (line 4). For describing the task at hand, the
start and goal positions must be known (lines 6–8). In addition, the time stamps of the
starting and stopping time points are recorded (lines 5, 9). The goal position is stored in
the routine description, which is bound in the lexical scope of the RPL task corresponding
to the navigation routine (line 8).

Once an experience has been recorded, the specification tells RoLL to check whether
the observed process has been aborted or has failed. In this case, the experience is not
used for learning (lines 10,11).

The experience can be identified by its name navigation-time-exp. All experi-
ences are stored in a global hash table and can be retrieved with the function getgv (get
global variable). For observing instances of the specified experience, the RoLL command
acquire-experiences is called with the desired experience object.

The definition of raw experiences is very explicit and declarative. The anchoring to
the program is established clearly and also the data associated with the episode is well-
structured and understandable. The simplicity of the specification enabled us even to
generate experience definitions automatically in the context of transformational planning
in order to parallelize the execution of multiple plans (Bachmann 2007). In spite of the
simplicity, complex, hierarchical experiences can be specified just as easily as the example
in Listing 6.1. The most complex automaton we used included 11 sub-automata and
recorded over 60 variables (see Section 6.4).

For learning a model of the navigation routine, both passive and active experience
acquisition are conceivable. Here we demonstrate the difference in terms of definition. In
Section 6.3.1 we show an empirical comparison between the two strategies.

Listing 6.1 Raw experience definition for navigation time model.

1 (roll:define-raw-experience navigation-time-exp
2 :specification
3 (:anonymous-automaton
4 :rpl (:routine-execution ’b21-go2pose-pid-player)
5 :begin ((timestep [getgv ’statevar ’time-step])
6 (start-pose [getgv ’statevar ’b21-pose])
7 (goal-pose
8 (pose (goal (:internal-value "ROUTINE" :this :exact)))))
9 :end ((timestep [getgv ’statevar ’time-step])))

10 :experience-handling (((or (:event :abort) (:event :fail))
11 :discard)))

106 6.2 Comprehensive Example

Passive Experience Acquisition

Passive experience acquisition means that the robot’s actions are not tailored to the learn-
ing problem. Rather, the robot performs standard activities. In this case, we use a plan
for setting the table. The two processes — observation of the experience and the plan for
table setting — are executed in parallel.

(pursue
(roll:acquire-experiences (getgv :experience ’navigation-time-exp))
(execute (make-instance ’set-the-table-controller)))

The acquire-experiences command can be used anywhere in the program. How-
ever, one motivation for using RoLL is not to modify the program for learning. Therefore,
it is best to run the observation process in parallel to the top-level control program. It
identifies the interesting parts of the execution automatically.

Active Experience Acquisition

Setting the table involves few navigation commands. Therefore the overall state space
needed for a full modeling of the navigation routine can be observed only partially. A
different approach is to generate the navigation tasks to be performed with the means
provided by RoLL.

1 (pursue
2 (roll:acquire-experiences (getgv :experience ’navigation-time-exp))
3 (roll:with-problem-parameters
4 (:parameters ((x-goal :random :min 0.4m :max 3.62m :samples 50)
5 (y-goal :random :min 0.4m :max 3.72m)
6 (az-goal :random :max 359.9deg))
7 :relation (:indep x-goal y-goal az-goal))
8 (achieve (make-instance ’b21-at-pose
9 :pose (make-instance ’2d-pose

10 :x x-goal
11 :y y-goal
12 :az az-goal)))))

The control program navigates to different positions in the kitchen (lines 8–12). The
parameters defining the goal positions (x-goal, y-goal, az-goal) are generated ran-
domly (lines 4–6).

The problem generator of RoLL is only one way to implement active experience acqui-
sition. Any function returning the necessary parameters — possibly taking into account
existing experiences and the robot’s overall reward function — can be used for this pur-
pose. For active experience acquisition as it is done in most current systems, the RoLL
problem generator is a simple, yet powerful tool for defining and using different parame-
terizations for control programs.

6. Evaluation 107

6.2.2 Experience Abstraction

The position values in the raw experience are absolute values. We make the simplifying
assumptions that objects in the kitchen don’t affect the navigation time and that the robot
has means to decide if a location is accessible. With these premises, learning with absolute
positions is not advisable, because navigation tasks that are only shifted or rotated on the
2D plane are treated as different cases. Therefore, we use the abstraction depicted in
Figure 5.16 on page 97, which uses the distance of the two points and the angles relative
to the connecting line between the two points.

In the definition in Listing 6.2, we use the construct with-binding for calculating
intermediate values (lines 4–8). Its syntax and functionality correspond to that of the LISP
let*. The binding of intermediate values is not necessary, but makes the definition better
readable. The auxiliary values include the start and goal point from the raw experience,
the duration of the navigation task, and the angle of the connecting line of the two points.
Based on these values, the distance of the two points and the normalized orientations are
calculated (lines 10–12).

When an instance of the raw experience is recorded, it must be processed further
immediately. In contrast, we write the abstract experiences to a database, which must
be specified in the experience (lines 14–17). The access to the database is performed
by the experience class and is hidden from the programmer of the abstract experience.
Likewise, the data is retrieved automatically.

Because the operations for the conversion are not restricted in any way, the abstrac-

Listing 6.2 Abstract experience and conversion specification for navigation time model.

1 (roll:define-abstract-experience navigation-time-abstract-exp
2 :parent-experience navigation-time-exp
3 :specification
4 (roll:with-binding ((p1 (:var start-pose :begin))
5 (p2 (:var goal-pose :begin))
6 (timediff (- (:var timestep :end)
7 (:var timestep :begin)))
8 (offset-angle (angle-towards-point p1 p2)))
9 (:anonymous-automaton

10 :begin ((dist (euclid-distance p1 p2))
11 (start-phi (ut:difference-radian [az p1] offset-angle))
12 (end-phi (ut:difference-radian [az p2] offset-angle)))
13 :end ((navigation-time timediff))))
14 :experience-class roll:database-experience
15 :experience-class-initargs
16 (:database (make-instance ’roll:mysql-database
17 :host "..." :user "..." :user-pw "..." :name "...")))

108 6.2 Comprehensive Example

tion is very flexible and general. As the language construct for experience abstraction
is defined analogous to the raw experience specification, it organizes the data in a natu-
ral way while enabling complex structures for abstract experiences. The modular storing
mechanism, which in particular offers the storage of experiences in a database, enables
experiences to be understood more thoroughly and to be used not only for learning, but
also for program debugging and evaluation.

6.2.3 Learning Problem Definition
Finally, we define the learning problem as shown in Listing 6.3. The function to be learned
is the time model of the routine b21-go2pose-pid-player (line 2). As an experience we
use the same abstraction as the one presented in the last section (lines 5–10). But the
experience type of the former was a database experience, which doesn’t comply with
the format required by the WEKA learning system. Therefore, the experience used for
learning is defined to be of class weka-experience (line 11). The WEKA experience type
requires the specification of the WEKA types for the input and output variables (lines 12–
16).

As a learning system we use the WEKA M5’ algorithm, which supports model and
regression tree learning. Beside some path specifications (lines 18–21), we adjust the
algorithm to learn a regression tree instead of a model tree (line 22).

The input to a routine model is always the routine object addressed by the variable
routine. For calling the learned function, the same abstractions as for the experiences
must be performed. In the learning problem specification we inform RoLL that this ab-
straction can be used for calling the learned function, but in the raw experience definition
the variable goal-pose is not obtained from the local variable of a certain process, but
should be set to the goal pose as contained in the routine variable given to the model
(lines 23–25). The result value of the regression tree is exactly what the learned function
should provide, so no conversion is necessary (line 26).

Like the experience specifications, the structure of the learning problem is very ex-
plicit. The aspects influencing the learning result (experiences and learning system) are
separated clearly from the ones specifying the program part to be learned (function, input-
conversion, output-conversion). Therefore, the parts controlling the success of the learn-
ing process can be modified and adapted by meta-learning algorithms (for the learning
system) or by automatic feature selection (for the learning experience).

To initiate the learning process, the learning problem must be executed by calling the
function learn:

(roll:learn (getgv :learning-problem ’b21-go2pose-time-model))

After the learning has been completed, the learned model is loaded at once and then
every time with the rest of the robot program and used for example as a time-out criterion

6. Evaluation 109

for the execution of the navigation routine.
The call of the learn command can be added at arbitrary places of the code. This

enables the learning of multiple, interacting problems by specifying an order in which the
problems are to be learned. Besides, the robot’s primary activity can be considered. For
example, idle times can be used for performing the learning tasks. When idle times are
identified automatically, the learning can be added to the program by plan transformations
(for a similar transformation problem see page 123).

6.3 Empirical Results
In the following we present some empirical results from learning problems we have solved
with RoLL. The examples demonstrate some advantages of automatic learning instead of
manual implementation or learning huge monolithic tasks and show that our approach of
learning small problems with passive experience acquisition on autonomous robots is a

Listing 6.3 Learning problem definition for navigation time model.

1 (roll:define-learning-problem
2 :function (:model b21-go2pose :time)
3 :use-experience
4 (:parent-experience navigation-time-abstract-exp
5 :specification
6 (:automaton
7 :begin ((dist (:var dist :begin))
8 (start-phi (:var start-phi :begin))
9 (end-phi (:var end-phi :begin)))

10 :end ((navigation-time (:var navigation-time :end))))
11 :experience-class roll::weka-experience
12 :experience-class-initargs
13 (:attribute-types ’((dist numeric)
14 (start-phi numeric)
15 (end-phi numeric)
16 (navigation-time numeric))))
17 :learning-system (roll:weka-m5prime
18 :root-dir (append *root-dir* ’("learned" "src"))
19 :data-dir (append (pathname-directory
20 (user-homedir-pathname))
21 ’("weka"))
22 :build-regression-tree T)
23 :input-conversion (:generate
24 (:in-experience navigation-time-exp
25 :set-var goal-pose :to (pose (goal routine))))
26 :output-conversion (navigation-time))

110 6.3 Empirical Results

promising one.
For our experiments we used a simulated household and robot based on the Gazebo

simulator2 (Beetz et al. 2007). The decision to use a simulator was made, because a
kitchen is a complex environment where the robot needs sophisticated actuators, espe-
cially arms and grippers. Such equipment, together with the kitchen itself, is expensive
and hard to maintain. The simulation is much cheaper, better available and more flexible
concerning different robot hardware and different environments. Besides, we can adapt
the features of the environment according to our research focus. For example, for cooking
or setting the table our robot needs to open and close cupboard doors. However, for open-
ing and closing doors in a kitchen, sophisticated motor control is necessary, in which we
are not particularly interested. Therefore we added automatic doors to the kitchen that can
be remote-controlled by the robot. This is an assumption that could very well be fulfilled
in a real kitchen, but the simulation could be implemented with much less effort.

On the other hand, the danger of a simulation is that interesting aspects of the envi-
ronment are abstracted away from and the results gotten in simulation aren’t applicable to
realistic settings. To avoid this danger, we chose the Gazebo simulator, which includes the
physical simulation engine ODE. All objects in the kitchen and the robot are composed of
solid entities, whose interaction is simulated very realistically by ODE. The interface be-
tween our robot program and the simulator is the same as between the program and a real

Figure 6.1 Realistic simulation of a household robot working in a kitchen using the
Gazebo simulator.

camera

laser

sonar

arms

gripper

cooker

oven

sink

chair
table

pot

spoon
knife

cupplate

colander

fork

refrigerator

cupboards

2http://playerstage.sourceforge.net/gazebo/gazebo.html

6. Evaluation 111

robot. This is possible with Player (Gerkey, Vaughan, and Howard 2003), which makes
available a device-layer providing a network interface to the hardware (or simulated hard-
ware) underneath. This enables the use of the same control program in simulation and on
a real robot, which we are currently building.

As we aren’t concerned with state estimation, we assume that the robot’s position (2D
Cartesian coordinates and orientation) are given as percepts (which is quite realistic for a
laser-equipped robot in a known environment) and the position of all objects in the robot’s
field of view can be determined accurately as 3D Cartesian coordinates and 3D orientation.
The simulation is realistic with respect to non-determinism in the robot’s actions. Because
there are several processes involved (Gazebo, Player, the robot program) the execution of
a robot control program in a given situation in the simulator never causes exactly the same
result. This is due to the delays in normal process and network communication and makes
the simulation very convincing.

The following experiments were performed on the simulated kitchen robot shown in
Figure 6.1. Its most sophisticated plans comprise setting the table and boiling pasta. The
learned functions were fully integrated into this control program and are used in our cur-
rent robot program.

6.3.1 Time Model of the Navigation Routine
We have already shown the code for defining the learning problem for a time prediction
model of a navigation routine. Here we present two experiments for this problem. The
first one compares different learning algorithms for the problem, the second shows that
passive experience acquisition can be more appropriate than active acquisition for robots
in real-world environments.

Comparison of Learning Systems

As a reference for the quality of the learning result we use a programmed function. We
have applied this programmed function for some time for determining the time-out crite-
rion when the routine is called. For this application its accuracy is absolutely sufficient.

For our experiment, we generated a set of 20 test navigation problems (randomly with
RoLL’s problem generation facilities) and chose three learning systems (neural network,
model tree, and regression tree). Then we started with an empty set of experiences and in
each cycle added 40 actively acquired, randomly generated experiences to the set of train-
ing experiences. After each iteration, the function was learned with each learning system
and the learned functions predicted the time needed for the test navigation problems. Then
the average of the relative error of the prediction was calculated for each learning system.

Figure 6.2 depicts the result of this experiment. The first interesting observation is the
prediction error of the programmed function. As the same 20 test problems are used for

112 6.3 Empirical Results

all evaluations, this line should be straight. However, we had the robot perform the test
problems for each evaluation. Since our simulation is non-deterministic the navigation
times differ, but the predictions are the same.

The first observation is that all learning systems produce results in about the same
range of accuracy as the programmed function. The learning result of the model tree
varies considerably in the number of experiences provided. The results of the regression
tree is the less surprising. With a small number of examples, the error is high and gets
small with more experience. Training with more than 400 experiences doesn’t improve the
result further. The development of the results of the neural net is very unexpected, because
with only 40 experiences it is as good as with 400. One explanation is that the figure only
shows an average value. In figure 6.3 the development for only one test navigation task is
shown. The results are much more what one would expect.

This experiment is not meant to make any general statement about the different learn-
ing algorithms. It is only intended to show that the learning result depends on the used
algorithm and that the systems and their parameters can easily be reconfigured with RoLL.

For testing the different learning systems, only the learning problem had to be defined
several times. Apart from comparing learning systems, different parameterizations of
one learning system (e.g. the structure and learning functions of a neural network) can

Figure 6.2 Prediction error relative to needed time for navigation routine comparing dif-
ferent learning systems.

iteration1 5 10 15 20 25 30 35

mean relative error

0.1

0.2

0.3

programmed
model tree
regression tree
neural net

6. Evaluation 113

also be contrasted, which works exactly the same way. Besides, the RoLL constructs
for learning can be used for evaluation, too. For generating the test problems, we could
resort to the RoLL problem generation and observe the time required for this navigation
tasks with the normal experience acquisition techniques. In all, these is the functionality
needed for meta-learning: learning the same problem with different learning systems or
parameterizations and comparing them. Because of the explicit structure of the learning
problem definition, the parameters for the learning system can be adapted automatically.

Getting examples from the real-world distribution

Currently, our household robot can only perform a few high-level household activities
such as preparing pasta or setting the table. If these high-level plans only contain a small
subset of all possible navigation tasks, there is no need to learn a model for the whole state
space. Therefore, we compared the learning performance using an artificially (actively)
acquired set of experiences and one that was observed while the robot was performing one
of its high-level tasks.

As high-level plans we used setting the table, which involves seven navigation tasks,

Figure 6.3 Absolute prediction error for one test sample.

iteration1 5 10 15 20 25 30 35

mean absolute error
in 1/100 s

100

200

300

400

500

0

-100

-200

-300

programmed
model tree
regression tree
neural net

114 6.3 Empirical Results

and a plan for boiling water, which is like cooking pasta, only without pasta (of course,
this is not really useful, but suffices for our purposes), involving eleven navigation tasks.
As a learning system we chose a regression tree, because it performed well in the last test.

The experiment was similar to the one for comparing learning systems. In each itera-
tion, the set of experiences was extended by one3 observation of the navigation tasks in the
table setting plan and 30 actively acquired experiences respectively. Then the table setting
plan was executed once and the time predictions of the two learned and the programmed
function were compared with the observed navigation times.

Figure 6.4 shows the results. It is obvious that the function trained with experience
observed during plan execution performs much better than the one with the general expe-
riences, although it uses less learning data in each iteration.

Interestingly, the regression tree trained with artificial experiences seems to be worse
than the one from the previous experiment (c.f. Figure 6.2). This is probably due to the
fact that the navigation tasks in setting the table are very similar, so that the overall error
mirrors the error on this class of navigation tasks and is therefore more comparable to the

Figure 6.4 Prediction error relative to needed time for navigation routine comparing active
and passive experience acquisition.

iteration1 5 10 15 20 25 30 35

mean relative error

0.1

0.2

0.3
programmed
active acquisition
passive acquisition

3In the first iteration the plan must be performed twice, because the regression tree algorithm needs
more than 10 experiences to work.

6. Evaluation 115

single case of Figure 6.3. Besides, in the previous experiment, in each iteration 40 new
experiences were added, while this time we only added 30.

What we did when learning with experience drawn from the table setting plan is pure
overfitting of the function. We cannot expect it to work properly for other plans in the
household. But we wanted to know how much work is needed to adapt the function to
another plan. Therefore we first repeated the experiment shown in Figure 6.4 for 15 itera-
tions, then we changed the plan from table setting to boiling water and iteratively acquired
experiences and tested the functions on the boiling water plan. Figure 6.5 illustrates the
results.

As expected, the prediction error of the specialized function is higher for the water
boiling plan than for the table setting plan and decreases with more experiences from the
water boiling plan. Also, the performance of the the function trained with actively ac-
quired experiences isn’t affected by the change in the test set. Surprisingly, even without
any experience from the water boiling plan, the function learned with “natural” experi-
ences is still more accurate than the one covering the whole state space. An explanation
could be that the navigation tasks in the table setting and water boiling tasks are similar
and probably are for most navigation tasks in a kitchen, which is an indication that passive

Figure 6.5 Prediction error relative to needed time for navigation routine comparing active
and passive experience acquisition with different plans.

iteration1 5 10 15 20 25 30 35

mean relative error

0.1

0.2

0.3

0.4

0.5
programmed
active acquisition
passive acquisition

116 6.3 Empirical Results

experience acquisition can outperform active acquisition, because large parts of the state
space aren’t needed for good predictions.

This problem demonstrates that learning on the job is often more convenient for robot
problems than generating artificial problems to gather experience from. There is no reason
for a robot to learn about situations that it never encounters. Rather, it should concentrate
on the problems it is faced with every day. This makes learning problems more manage-
able and successful.

6.3.2 Optimized Gripping Procedure
The second experiment is designed to demonstrate how RoLL provides deeper under-
standings of learning problems and how learning problem definitions can be adapted and
optimized easily, a requirement for enabling meta-learning. The task was to learn which
hand the robot should use when gripping a cup. The raw experience definition for this
experiment is depicted in Figure 5.12 on page 88 and includes the original cup and robot
locations, the goal position of the cup (when acquiring experience the cups were gripped
and put down at another position), the position where the robot placed the cup and the
times when the gripping and put-down routines started and stopped.

For deciding which hand to use for gripping, one might only consider the situation
before the gripping takes place (which is what we do in the programmed function used
as a reference for comparison). In fact, we first learned the function only considering the
initial gripping position and the time it would take to grip the cup. But we suspected that
when the cup is put down later, the hand influences the performance, too. This is why we
gathered more data in the raw experience than we needed for the first learning trial.

Choosing a Hand for Gripping

Instead of learning a function deciding on the hand to use, we learned time prediction
models for gripping the object with each hand. When a hand is to be chosen, the predicted
gripping times for both hands are compared and the faster side is chosen. This approach
is more flexible than learning the decision function directly. For example, there might be
more information in specific situations, e.g. that one of the hands can grip a certain kind
of object more reliably than the other. The choice of the hand can then be extended from
pure time considerations to other aspects.

The abstracted experience only includes the distance between the robot after it has
positioned itself in front of the cup and the relative angle of the cup with respect to the
robot. As learning system we used neural networks.

The resulting decision function was evaluated against a programmed one, which we
have been using successfully for some time. We put the cup and the robot at fixed positions
and varied the position of the cup handle relative to the robot (i.e. we varied the angle

6. Evaluation 117

of the cup handle)4. All gripping tasks were executed 10 times for avoiding accidental
outliers. Figure 6.6 shows the results of this experiment. The graph at the bottom indicates
which hand was chosen by each routine for the given tasks5. In many cases, the two
functions don’t agree in their choice. The graph above shows the time needed to grip the
object with the chosen hand. Here we see that the task always takes about 10 seconds, no
matter which hand is used. So there is hardly any difference in performance between the
two functions.

This evaluation shows that the hand used for gripping a cup affects the performance
only minimally. Therefore, we learned new models that consider not only the gripping
task, but also that of putting down the object. To do this, we only had to define a new
abstraction of the raw experience, which already included the information we needed, and
to define new learning problems for the time models of each hand.

Figure 6.6 Comparison of functions for deciding which hand to use considering only the
pick-up task.

angle

time in 1/100 s

750

1250

-3 -2 -1 0 1 2 3
right hand

left hand

programmed
learned

4We also varied the relative positions of the robot and the cup, but these results are hard to be displayed
graphically. The results were comparable to those shown in Figure 6.6

5Our programmed function considers more parameters than the turning angle of the cup shown in the
graphic, so that for some angles it chooses different hands in different runs. The graph shows the “average”
hand chosen on a scale between 0 and 1.

118 6.3 Empirical Results

Considering the Next Action

In the second attempt we used the information of gripping and putting down the cup for
selecting the hand. As in the first trial we trained two neural networks, one for each side,
predicting the time needed to fulfill a task. The chosen abstraction was even simpler, we
used only the relative orientation of the cup with respect to the robot for the gripping and
the putting-down tasks. The position of the robot when it is gripping or putting down an
object is selected by a function and therefore the distance to the cup is usually similar.

Again we evaluated the result against the programmed function, which is a little unfair,
because the programmed function doesn’t consider the putting-down process. On the other
hand, it was very easy to learn the new models, whereas we would have had to do a lot of
parameter tweaking for upgrading our programmed function.

The bottom graph in Figure 6.7 shows that again the two functions returned different
results in many cases. But this time, the choice has a much higher impact. As the initial

Figure 6.7 Comparison of functions for deciding which hand to use considering both the
pick-up and put-down tasks.

angle

time in 1/100 s

2500

3500

4500

-3 -2 -1 0 1 2 3
right hand

left hand

programmed
learned

6. Evaluation 119

position of the cup doesn’t matter much in the choice of the hand, this time we depict the
different turning angles of the cup’s goal positions. The times needed this time are higher
than before, because we observe both the gripping and putting down processes. The time
differences observed by using different hands often amount to about 10 seconds and most
of the times the choice of the learned function is to be preferred.

With this second learned function, we performed another, more realistic test. We
made the robot set the table for four people using only cups and recorded the time needed
to complete the overall task. We defined ten initial situations, where the cups were kept
at different locations. For each situation, the table had to be set several times to avoid
incidental results caused by variations in the simulation. The table setting with the pro-
grammed routine needed about 4.32 minutes on average, whereas the average for the
learned one was only 3.85 minutes. Table 6.1 shows all the observed times for each initial
situation and the time difference.

With this learning problem of choosing the hand for gripping, we want to emphasize
several advantages of RoLL. We have shown that the learned function performs at least
as well, usually better, than the programmed one. When we discovered that the putting
down task should be considered, the learning and experience specifications hardly had
to be changed. Compared to reprogramming the manually implemented function, the
effort was minimal. Besides, this problem is an example of how experiences can be used
for different versions of a learning problem. This technique can be applied equally for
distinct learning problems that need similar experience data. Finally, we have argued that
the combination of programming and learning is more powerful than just learning alone

Table 6.1 Comparison of learned and programmed hand choosing function when setting
the table with four cups. The times for the two functions are an average for all runs from
the same initial situation, given in 1/100 s.

situation programmed learned time difference
1 24861.3000 22509.7000 2351.6016
2 25288.3000 24568.2000 720.1016
3 28470.5000 23663.2000 4807.3010
4 26318.2500 22655.2000 3663.0508
5 28813.3333 21627.6364 7185.6953
6 24210.6000 21488.0000 2722.5996
7 23360.6667 21916.3000 1444.3672
8 27907.5000 24397.4615 3510.0370
9 25610.1538 23699.8182 1910.3359
10 24232.8000 24251.0000 -18.1992

Avg 25907.3400 23077.6516 2829.6891

120 6.3 Empirical Results

(because it is inflexible) or programming alone (because it performs worse).

6.3.3 Choosing an Arm Trajectory

Next we present evidence of how difficult the handling of experiences and the choice of a
set of experiences for learning can be. The modular structure of RoLL is used to identify
properties of the experience set, which is necessary to formulate problems adequately.

A problem in our kitchen was that gripping objects in the corner of the kitchenette
often failed, because the arm got stuck when the robot tried to move its arm from its
navigation pose (where the gripper is below the worktop) to a position above the worktop.
To improve this, we defined two trajectories for the arm to move. The question was then,
which trajectory should be used in which situations.

Because the arm trajectory depends on which arm to use and vice versa, the arm to be
used depends on which trajectory would be applied to each arm, the problem was tackled
in a combined approach. For observing experiences, a cup was set at a random position in
the range of the corner. In each situation all four possibilities of gripping (two arms and
two trajectories for each side) were performed. We recorded the time it took to perform the
task or when the gripping failed, which kind of failure had occurred. For each experiment
we chose the fastest combination of parameters as the target value.

With these experiences we trained a decision tree, but the result was disappointing.
Figure 6.8 shows the reason. When only the trajectories are examined, without consider-
ing the arm, the simpler trajectory works in almost all cases. A decision tree ignores the
very few examples for the more complicated trajectory considering them as outliers.

The question is now, why the gripping was so bad in the first place. Presumably the
general function for selecting the arm doesn’t work properly in the corner. The trajectory
seems to be only of secondary impact. For being sure that the robot can grip objects at all
positions the most stable reaction would be to add a failure recovery step that tries to use

Figure 6.8 Experiences for choosing the trajectory. The dots indicate the cup’s position,
the orientation is not shown, but was chosen randomly, too. The areas near the table edge
were banned as possible cup positions.

Trajectory 1
Trajectory 2

6. Evaluation 121

the more complicated trajectory if the simple one didn’t work.
Another possibility would be to select the learning experience in a different way.

Kirsch, Schweitzer, and Beetz (2005) have shown that the best set of experiences can-
not be determined when considering the experiences in isolation. Rather, the whole set
of experiences should be taken into consideration. In Figure 6.9 one can identify two ar-
eas where the more complicated trajectory might be more useful than in other situations.
When all positions in this area can be reached with Trajectory 2 without much efficiency
loss, they should better be considered as experiences for using Trajectory 2. The learning
algorithm would then be able to identify the regions where the complicated trajectory is
the safer choice.

As in the learning problem for selecting which hand to use, RoLL helped to find out
that the problem was formulated wrongly. There are ways to improve the gripping perfor-
mance in the kitchen corner, but not by choosing the arm trajectory. Not only the learning
capabilities are important here, but also the insight into the experiences, which can easily
be gained with RoLL.

This learning problem is also a good example for using experiences for several learning
problems. When cups were placed in the far end of the corner, the robot couldn’t reach
them with any combination of parameters. With this information the robot can learn which
positions are unreachable for it.

Figure 6.9 Candidate areas for using Trajectory 2.

Trajectory 1
Trajectory 2

6.4 Further Applications of RoLL
Although RoLL is designed primarily for performing complete learning tasks, its sophis-
ticated experience acquisition and managing concepts allow it to be used in other contexts
of robot control. Beside classical learning, robot behavior can be improved by transfor-
mational planning. The Traner project (Transformational Planner for Everyday Activity)
in our research group examines how a robot can adapt default plans to specific situations
(Müller, Kirsch, and Beetz 2007). We describe several tasks in the transformational plan-
ning approach, where experiences are needed. Besides, we show how RoLL can be used

122 6.4 Further Applications of RoLL

to evaluate and debug robot control programs. All these applications clearly demonstrate
the flexibility and generality of the RoLL constructs.

6.4.1 Transformational Planning
In contrast to the classical planning approach, where plans are generated from abstract
actions, the basic idea of transformational planning is to provide a robot with a library
of default plans (Müller and Beetz 2006) for standard situations and adapt these plans
to specific situations. In the approach described by Müller, Kirsch, and Beetz (2007),
the robot chooses a plan from the plan library when confronted with a problem. After
executing the plan, it evaluates its performance according to certain criteria like the time
needed to fulfill the task. If the plan hasn’t shown satisfactory results it is transformed
using predefined transformation rules. The resulting plan is then tested in simulation and
evaluated again. This procedure is continued until the plan performs satisfactorily.

One question in this approach is how to select promising transformation rules. One
criterion is the syntactical structure of the plan. Transformation rules are defined to match
only certain plan structures. Besides, the transformation rules are provided with an ap-
plicability criterion stating when the transformation is most useful. For example, when a
robot performs tasks several times while executing the plan, a good transformation would
be to use all the robot’s resources in order to perform the task less often. One instance
of this rule is when the robot carries several cups to the table while setting it, a good
transformation would be to use both grippers instead of only one as in the standard plan.

So one application of experience acquisition in plan transformation is the observation
of the plan execution with respect to the applicability conditions of the transformation
rules. In the example, the robot would have to monitor which processes are executed
using which objects. Besides, the evaluation criteria like the time needed or the number of
failures that occurred during the execution must be recorded. The evaluation of the plans
presented by Müller, Kirsch, and Beetz (2007) was performed using the RoLL constructs
for experience acquisition and storing the data as permanent experience in a database.

An important problem in everyday environments is when to integrate auxiliary goals
like opening and closing cupboard doors or cleaning up. The default behavior of a robot
might be to close the cupboard every time it has taken something out. This can, however,
result in very undesirable behavior. Imagine a robot that is to take two cups out of the
cupboard. It opens the door, picks up one cup, closes the door, opens it again, takes out
the second cup and then finally closes the cupboard again. It is extremely hard to find a
general solution to this kind of problems. Plan transformations can handle these questions
in a natural way by applying a transformation rule that tells the robot to close all doors at
the end of the plan (which might not be the optimal solution for the whole plan, but when
applied to parts of the plan can deliver impressive results). For knowing, which doors
are opened, the robot must monitor its execution and remember the open doors. For this,

6. Evaluation 123

we used the experience acquisition capabilities of RoLL. The plan transformation rule
automatically builds the acquisition code into the plan, the experience definition being
predefined. The raw experiences are converted to an abstract experience that represents
the data in a list containing the doors to be closed at the end of the plan.

Another interesting problem is how to execute a set of plans efficiently by interleaving
their execution. In a master’s thesis, Bachmann (2007) has investigated how idle times
in one plan can be used to perform steps of other plans. As an example, the robot had
to prepare pasta and set the table simultaneously. The prerequisites for doing this were
(1) to have accurate models of how long plan steps will take, and (2) to have knowledge
about idle times during plan execution. To make the approach general, the experience
needed for these two problems was acquired with automatically generated definitions of
raw experiences. First the plan was analyzed with respect to its subplans. For all subplans,
raw experience definitions were generated to acquire the data for learning time prediction
models. This shows that the experience definitions in RoLL are declarative enough even to
be generated automatically. The models were used to transform the sequential execution of
two plans into a parallel execution. A similar transformation could be defined to intertwine
the learning of predefined problems with the normal execution.

6.4.2 Plan Evaluation
RoLL cannot only be used to improve programs either by learning or plan transforma-
tion, but it can help to get a better understanding of complex plans and their execution.
Figure 6.10 graphically displays an episode of the robot setting the table. The picture in

Figure 6.10 Navigation trajectories of default and optimized plan. The data was recorded
by the RoLL experience acquisition facilities. The original positions of the cups and plates
are indicated in black, the goal positions on the table in dark gray.

(a) Default Plan. (b) Optimized Plan.

124 6.5 Extending RoLL

Figure 6.10(a) shows the navigation paths using a default plan from the plan library, where
the plates and cups are carried to the table one by one. The improvements of transforming
this plans to stack plates and carry the stack to the table, to use both arms for carrying
the cups, and to navigate to a more convenient position at the table are clearly visible in
the picture in Figure 6.10(b). The robot has to perform much less navigation tasks. In
the same experience acquisition, the occurrence of failures and when they happened were
observed.

This example is a complex instance of experience acquisition with an interesting au-
tomaton structure. The main episode is identified by the table setting task. During this
episode, sub-episodes are defined by the navigation, grip and drop routines. During the
navigation the robot’s position is recorded continuously to provide the trajectories shown
in Figure 6.10. When the gripping started, the original object positions were observed,
and at the end of the dropping routine, the final positions were gathered. Besides, failures
were monitored and stored with the context they occurred in.

In total, the raw experience automaton comprises three levels of hierarchy, 11 sub-
automata, and protocols more than 60 variables. While the raw experience is structured
along the program structure given by the routines used during the table setting task, the
abstract experience is structured along abstract concepts such as failures, manipulated ob-
jects, and arm movements. In all, the abstract experience contains more than 100 variables
in 7 sub-automata on two levels of hierarchy.

6.5 Extending RoLL
We have demonstrated the benefits of RoLL by providing a complete code example, pre-
senting the results of different learning problems, and a description of applications that do
not directly involve learning. It is obvious that our language offers declarative specifica-
tions of all parts of the learning problem, especially experience acquisition. All specifica-
tions have an explicit structure, so that they can be modified by automatic procedures, for
example by plan transformations or meta-learning mechanisms.

The field of robot learning is an active field of research. Therefore, RoLL cannot
be expected to comprise all the functionality that might be needed for robot learning in
the future. All currently available mechanisms for robot learning can be used in RoLL,
so that it is a self-contained system comprising all aspects of experience-based learning.
However, some mechanisms haven’t been fully understood, for example meta-learning,
continual learning, or automatic feature detection (see Section 6.7 for an overview on the
state of the art of these topics). As a consequence, RoLL provides the flexibility to be
extended when new findings enable more sophisticated robot learning and can serve as a
tool for exploring new methods.

Apart from the explicit extensions offered by RoLL (learning system, experience class,

6. Evaluation 125

and learning problem class), RoLL includes all the functionality of LISP. This means that
any feature that is not implemented in RoLL can be programmed for a specific learning
problem with LISP functions, or, if the issue has been understood thoroughly and can be
formulated for general purposes, RoLL can be enhanced further using LISP macros. One
objective of this work was to provide a useful tool for making robot learning more efficient
and for better understanding the challenges in this context.

One challenge of robot learning is how to select actions that give rise to interesting
experiences — or how to implement a sophisticated problem generator. This question is
anything but trivial. It doesn’t only involve the question whether to choose an action that
presumably results in the highest reward or one that returns information about the state
space. How can the robot know that an action will result in experience it needs? The
representation of raw experiences can be very different from the abstract feature language
used for learning. It is this latter state description where the robot can detect if parts of
the state space are unexplored, but for getting the experience, this high-level description
must be translated into the representation of the raw experience. For example, the robot
might want to know in which situations it drops things most likely. If it doesn’t want to
wait until it has broken every object in the kitchen, it should use objects made of plastic
or some other robust material and try situations in which it is likely to drop things. But
how can it provoke such situations? In order to know which activities are most promising
for getting the experience it would need a model of when things are likely to be dropped,
which is exactly what it is trying to learn.

Closely related to the issue of problem generation is the management of already ac-
quired experiences. Usually robots don’t act for longer periods of time. This is different in
a realistic kitchen scenario, where they should operate for months or years. For continu-
ally adapting all models and routines to the environment, it would be impossible to collect
experiences all the time. Instead, the robot should check from time to time if its control
program is still adapted to its environment. The new experiences must be compared and
weighed with respect to older ones, so that newer observations could be given more impact
without discarding the old ones completely. A good knowledge and understanding also
contributes to reasonable problem generation. Only when experiences can be understood
on a high level, the robot can decide which observations must still be made.

Furthermore, the learning problems we have solved were integrated into the control
program by an explicit call to acquire-experiences and learn. A better approach
would be to declare learning problems, possibly provided with an indication as to their
priority, and schedule experience acquisitions and learning processes automatically, so
that the robot can use idle times for learning and active experience acquisition. This
would of course require a good understanding of when the robot has time to spare and
models of the time a learning process needs to run.

Finally, defining learning problems is still an art when it comes to deciding on a learn-
ing algorithm and its parameters. There are already some approaches for generating the

126 6.6 Discussion

learning bias (see Section 6.7), thus enabling more automatic learning. A related ques-
tion is the choice of appropriate abstractions, which is also discussed below. When the
parameterization of learning problems could be fully automated, this would allow robots
to create new learning problems when needed. This means, the programmer would be
freed of the task to decide which parts of the program are to be learned. One would rather
specify a simple programmed plan and let the robot itself decide which parts should be
subject to optimization.

These issues have not yet been examined in great detail. One contribution of RoLL
is to make these problems explicit. Another merit is that RoLL is an ideal tool for re-
search in these areas, because it provides the basic learning mechanisms and comes with
the complete LISP language to enhance and modify them. So there is a mutual depen-
dency between RoLL and researchers in robot learning. The latter can profit from RoLL’s
capabilities to develop more sophisticated approaches and future developments of RoLL
depend on their results.

6.6 Discussion
In this evaluation we corroborated the claims we made for RoLL. Unfortunately, we can-
not compare our approach to other languages, because to our knowledge, there is no other
programming language that incorporates the whole learning process including experience
acquisition.

Besides, it is impossible to verify the value of such a language by empirical tests,
because such tests could only consist in solving learning problems. However, on the one
hand, a successful learning process wouldn’t prove the value of RoLL, because the same
learning problems can be solved without it as is being done in current robotic projects.
On the other hand, successful learning depends on parameters to be chosen for the given
problem, such as the learning system, its parameterization, the experience abstraction,
and the raw experiences. Thus, a badly learned problem can be seen as proof that robot
learning is difficult, but not as a flaw of RoLL.

The difficulty of showing the virtues of RoLL is an instance of the general problem
of comparing programming languages. Every problem that can be solved in LISP, can in
principle be solved in assembly language as well. So how can the advantages of a high-
level programming language like LISP be proven? One way is to compare the run-time
of benchmark problems. But there is no proof that the quality of the implementations
in the two languages is comparable (we don’t want to compare programmers’ skills) and
this criterion would probably favor assembly language, which is not what we would want
to show. The most striking argument in favor of LISP in contrast to assembly language
would clearly be the program code. This is why we provided a detailed example and
pointed out the benefits of the RoLL concepts.

6. Evaluation 127

6.7 Related Work on Robot Learning
We have shown some examples of improving a robot’s capabilities by learning. As this
is not the main topic of this work, the presented learning problems are unpretentious.
To demonstrate how learning methods can contribute to the success of robotic systems,
we present some examples where learning contributed largely to the success of robotic
systems.

Another facet of our evaluation was to show the flexibility of RoLL in using differ-
ent ways of experience acquisition, switching learning systems, and comparing different
parameterizations of learning problems. The goal of this work is not to solve any open
questions on robot learning, but RoLL is certainly a convenient tool for developing and
testing new methods for experience acquisition (especially problem generation), experi-
ence management, and learning algorithms. Therefore we will point to some methods that
enhance learning and can be implemented in RoLL either in the form of a program for
specific problems or for a general solution as an extension of RoLL.

Although RoLL emphasizes the combination of programming and learning, we think
it appropriate to present some work on developmental robotics. This approach holds the
opposite view of completely programming robots: it assumes that all behavior should be
learned from the start like in small children. This field of research is interesting in the con-
text of RoLL, because (1) RoLL provides an ideal programming environment for develop-
mental learning, and (2) many topics mentioned before concerning experience acquisition
or the chaining of learning problems have been studied in developmental robotics.

6.7.1 Case Studies
Learning on autonomous robots has been practiced strongly in the last years. Here we
only present some examples of successful applications without trying to be exhaustive.

In the RoboCup domain complex tasks have been dealt with. Stone and Sutton (2001)
learn a keep-away task in the simulation league by using SARSA-learning and linear tile
coding, along with various adaptations such as predefined hand-coded skills and a reduc-
tion in the number of players. Work described by Takahashi and Asada (2001) focuses
on stronger integration of control and perception, with a hierarchical learning approach,
applied to the complex tasks in the middle-size league. Röfer (2005) employ evolution-
ary algorithms for developing an omnidirectional gait for the Sony AIBO robot. Gabel
et al. (2006) and Lange and Riedmiller (2005) have employed learning algorithms both
in the simulation and middle-size leagues to improve the robots’ skills and for adaptive
vision.

Another work on learning control for real robots is the one by Smart (2002), in which
a robot improves its behavior through reinforcement learning in the real world learn-
ing parameters that would have to be tweaked by programmers otherwise. Crites and

128 6.7 Related Work on Robot Learning

Barto (1996) describe a reinforcement learning approach to controlling multiple eleva-
tors.

The most impressive robotic application of the last years has surely been Stanley, the
winning car of the DARPA Grand Challenge (Thrun et al. 2006). In contrast to other
teams, who tried to program every possible contingency, the strategy of Thrun et al. was
to make the robot flexible enough so that it can handle all kinds of situations autonomously
by learning from experience.

6.7.2 Methods
RoLL is the first approach to integrate full learning capabilities into a robot control lan-
guage. When designing and using RoLL, one gets aware of how many intricate issues
there are in the context of learning, some are presented by Blumberg (2002), where the
learning process in animals is examined. Some of these problems have already been ad-
dressed in current research, like exploration strategies, others not so much, for example
the management of experiences over longer periods of time. We now present some as-
pects of the learning process that have been explored more or less thoroughly, but aren’t
integrated as a general concept into RoLL. Because RoLL offers a complete programming
environment, all of these techniques can be used. When such approaches are employed
in several learning problems and a general concept has been recognized, RoLL can be
extended by way of LISP macros to incorporate these ideas in a general way.

We deliberately omit references to learning algorithms, because the field is too wide.
The learning system concept of RoLL is so general that it can handle all kinds of learn-
ing algorithms, as long as they rely on experiences that are accessible from within the
program.

Exploration Strategies

The problem generator element in RoLL can only precompute situations that are to be
explored. But usually the problem and its domain are unknown — that’s why there is a
learning problem. Thrun (1998a) gives a general survey of the differences in passive and
active exploration. Although random generation of experiences has been used in many
problems, the number of experiences can be reduced significantly when the state space is
explored wisely.

In the field of reinforcement learning this problem is known as the trade-off between
exploration and exploitation. The choice of the next action should help to explore the state
space further. On the other hand, the already learned results make the robot’s primary
activity more efficient. An overview of this research branch is provided by Thrun (1992).

Cohn (1996) has shown in connection with neural network learning that by thorough
experiment design not only the number of experiences is reduced, but that the performance

6. Evaluation 129

of the learning algorithm is enhanced.

Experience Abstraction

Another issue, on which the learning success heavily depends, is the choice and com-
position of the attributes used for learning, i.e. the feature language the experiences are
translated to. Caruana and Freitag (1994) propose a greedy selection process of attributes
for decision tree learning. Bonnlander (1996) compares different methods of choosing
input values for neural network learning.

The choice of input variables gets harder for continuous domains. Herrera et al. (2006)
describe a decision theoretic method for selecting a set of attributes with continuous val-
ues. A more complex task is the attribute selection when not only a subset of a given set
of values is to be chosen, but when the possibility of operations between attributes is pro-
vided. This problem has been explored by Stulp, Pflüger, and Beetz (2006), who perform
a greedy search in the space of given attributes and arithmetical combinations thereof. As
the search space is extremely large, only abstractions for very simple problems can be
found with this method.

Meta-learning

A very interesting field in the context of RoLL is the topic of meta-learning — automati-
cally finding the bias for learning problems. On the one hand, RoLL offers an ideal tool
for developing meta-learning methods, on the other hand, the integration of meta-learning
facilities into RoLL would make the learning process more autonomous and enhance the
learning performance. Vilalta and Drissi (2002) give a survey of the field.

Meta-learning is concerned with finding an optimal bias, i.e. the parameters guiding
the performance of the learning system including the learning algorithm itself (Gordon
and Desjardins 1995). Abraham and Nath (2000) describe a method for finding appro-
priate architectures for neural networks depending on the problem. They use a hybrid
approach of genetic algorithms and simulated annealing search. Abraham (2003) reports
on a method to choose the complete bias for neural network learning — the network
structure, activation function, weight initialization function, and the learning function —
automatically using evolutionary algorithms. Younger, Hochreiter, and Conwell (2001)
use neural networks for the meta-learning process to find biases for neural networks.

More general than finding parameters for a certain learning paradigm is the choice of
the learning algorithm from a wider set of learning algorithms. Pfahringer, Bensusan, and
Giraud-Carrier (2000) describe an approach for classifying learning problems into classes
and based thereon chose a learning algorithm. Instead of trying to find one algorithm for
a learning problem, Brodley (1995) developed a procedure that combines the results of
different learning systems to yield a hybrid classifier adapted to the specific problem.

130 6.7 Related Work on Robot Learning

Perturbations in the rewards can seriously affect reinforcement learning (RL) results.
Anderson et al. (2006) supervise the RL process in a metacognitive loop and react to
perturbations. This makes the learning process more stable and reliable in uncertain envi-
ronments.

To our knowledge, there is no approach combining all method of exploration, ex-
traction of useful features for the learning experience and meta-learning. One reason is
certainly that there was no common framework for specifying, performing and testing
learning problems. With RoLL these techniques and combinations of them could be ex-
plored to more depth and finally be integrated as language features.

Multiple Problem Learning

Most research in machine learning is focused on improving the performance of single
learning problems. However, an agent performing sophisticated real-world tasks has to
learn many different things: control routines, prediction models, optimization parameters,
and plans. But learning many problems requires a lot of resources, because each problem
needs experiences and time to learn. There have been some research efforts to explore
ways in which learning problems can build on former learning results and how experiences
can be re-used.

Mitchell (1990) applies explanation-based learning to compute plans into reactive
rules. With a library of stimulus-response rules, the robot can act reactively to most situa-
tions. Only when there is no rule matching the situation, a plan is generated. This plan is
then compiled to a reactive rule, which makes the robot more responsive without the need
of planning.

Singh (1992) addresses the decomposition of reinforcement learning problems. Often
RL is applied to big, monolithic problems with huge state spaces. The learning of such
problems takes lots of experiences and time and the prospect of success is doubtful. This
is why Singh explores how RL problems can be decomposed into elementary problems.
Once these elementary tasks have been learned, their solutions are utilized for composite
problems.

The most general research on performing multiple learning problems for constant im-
provement goes under the name of “lifelong learning” introduced by Thrun (1994) and
Thrun and Mitchell (1993). The basic assumption is that it is necessary to solve learning
problems building on other learned functions for a robot to evolve during longer execu-
tion periods like days or weeks. Thrun and Mitchell mainly address the problem of how
to acquire general knowledge that is usable for several learning tasks so that only few
problem-specific experiences are required. Two algorithms are presented for perform-
ing this knowledge transfer and also the problem of enabling robots to work in multiple
environments is addressed.

6. Evaluation 131

6.7.3 Developmental Robotics
The field of developmental or epigenetic robotics is inspired by the learning capabilities of
children. The basic idea is to build robots that learn their complete behavior by themselves
(Weng 2004; Weng et al. 2001). So this is exactly the other end of the scale from a
viewpoint of traditional robotics, where programming is the basic principle, enriched only
by occasional learning. Beside the focus on robotic development, a lot of research is
directed on the autonomous acquisition of language skills (Mukerjee and Sarkar 2006).
The methods are often derived from findings in psychology.

When all the behavior is to be learned, not only one, but a whole set of learning
problems has to be solved. This makes research in developmental learning especially
interesting for RoLL (and vice versa) and runs along the lines of the approaches described
in Section 6.7.2 (Bonarini et al. 2006). Other aspects of learning discussed in the previous
sections are examined in the light of developmental learning: meta-learning (Valsalam,
Bednar, and Miikkulainen 2006), knowledge transfer across several learning problems
(Fei-Fei 2006), recognition of social behavior models (Crowley, Brdiczka, and Reignier
2006), and active experience acquisition (Oudeyer et al. 2005; Oudeyer, Kaplan, and
Hafner 2007).

The behavior of self-developed robots does not exceed walking or simple communi-
cation tasks. No application in the scale of a household robot has been reported on in this
field. This shows clearly that by learning alone — at least with the current state of the
art — robots perform better with traditional approaches. On the other hand, purely pro-
grammed robots neither show the desired behavior and by far lack flexibility, especially
in unknown situations and environments. RoLL proposes an approach in-between: easily-
programmable, well-understood control strategies can be programmed, while environment-
specific, flexible functions, models and routines are supplemented through learning.

Chapter 7

Conclusion

After giving a short summary, we provide a perspective of the overall research visions
related to this work. We conclude by explaining the contributions of RoLL in this wider
context.

7.1 Summary

This work presents a novel robot control language RoLL that allows to integrate learning
capabilities smoothly into robot programs. The motivation of this work came from a
machine learning perspective to develop a programming language supporting learning as
proposed by Mitchell (2006) and from the need in autonomous robot research to develop
constantly improving robots.

Developing a declarative language that includes the possibility of automatic experi-
ence acquisition demands a uniform formal framework. We use hierarchical hybrid au-
tomata for modeling the program execution in the environment and define the experiences
based on this model. An experience is a summary of the robot’s internal state observed
during an episode, which is specified according to the execution model. This view on
experiences is maintained for abstract experiences. Besides, not only experiences, but
the whole learning process can be described by hybrid automata when the models to be
learned are described in the hybrid automaton framework.

On the basis of the architecture for learning agents and the hybrid automaton view on
learning, we have presented the language RoLL, which contains learning constructs as an
extension to the existing robot control language RPL. The constructs comprise the com-
plete learning process with experience acquisition and abstraction, learning with arbitrary
experience-based algorithms and integrating the result into the program. This procedure is
a very general view on learning so that different learning paradigms can be used. It allows
active and passive experience acquisition as well as online and offline learning.

7. Conclusion 133

The experience acquisition is independent of the primary control program and very
powerful with respect to the episode detection and data that can be observed. The moni-
toring process has access to all internal information of the robot like its program state, lo-
cal variables and its belief about the external state. The integration of the learning results
is performed automatically based on the abstraction used for learning and the specified
learning problem class.

The field of machine learning and especially methods to use learning on autonomous
robots is evolving very quickly. Open research questions include intelligent problem gen-
eration and meta-learning. To allow a broad range of learning procedures to be used with
RoLL, some aspects of the learning process are explicitly open for modular extension.
This is the case for learning systems, experience storage systems and learning problem
types. Developments in learning along other lines, e.g. problem generation, can be pro-
grammed with the underlying LISP language. To adapt it permanently to the latest findings
in the field, RoLL can be extended using LISP macros.

We have demonstrated the usability and elegance of RoLL by presenting an example
for a complete learning problem. We have further shown empirical results of learning
problems solved with RoLL. In this context we pointed out some advantages of using
RoLL compared with the manual method like repeatability, automatic evaluation, and
using different abstractions.

7.2 Related Visions for Robotics and AI
After the success of early AI programs, the field was faced with ambitious expectations,
which is mirrored in the great number of science fiction stories, where intelligent comput-
ers, robots and cars support humans in their daily activities (or take over the world . . .).
Although there are some successes like speech recognition, navigation systems and inter-
net search engines, most of these visions are far beyond the current state of the art.

One reason is that the shift from coarse simulations and games to technical devices
operating in the real world is much more intricate than everybody thought. But this is not
the only explanation. Marvin Minsky argues in a 2001 talk that the field has drifted to very
specialized research areas like neural networks or genetic algorithms, which are unques-
tionably interesting to be explored, but should not replace the work on other interesting
questions.

So the question is why we didn’t get HAL in 2001? I think the answer is I
believe we could have. I once went to an international conference on neural
nets. There were 40 thousand registrants. I don’t know how many go to an
international conference on genetic algorithms or genetic programs, but there
are many thousands of people working on that. Tens of thousands of people

134 7.2 Related Visions for Robotics and AI

try to make slightly better rule-based systems. That’s another very useful
representation. But very few try to make a system that will in some very
smart ways make new rules on the basis of experience. That’s the obvious
thing to do.

Minsky (2001)

Besides, he emphasizes the necessity for a robot to have models of itself and to im-
prove with experience.

Making and using models of yourself, like revealing the course of your ability
to solve a problem. You might say well, maybe I need to take a course in this.
Or if I don’t get better at this, my friends will hate me. Really if I did get
better at this, I’d just be a nerd of some sort and my friends would hate me
even more. And so on. Hearing conversations in your mind. Making new
goals. Adjusting your level of wakefulness, whatever that means.

Minsky (2001)

This attitude is slowly gaining ground in the research directions of influential deci-
sion makers. Under the name of “Cognitive Systems” there are already a few projects
striving to build integrated technical systems that use the findings of the specialized re-
search, which has been performed over the last two decades, and bring together findings
from computer science, mechanical and electrical engineering, as well as results from psy-
chology and neuroscience. The goal is to have “systems that know what they’re doing”
(Brachman 2002), or more specifically that learn, reason, react to unknown situations,
take advice and explain their doings.

The Defense Advanced Research Projects Agency’s Information Processing Technol-
ogy Office (DARPA ipto) supports several projects in this direction. We only mention the
ones that explicitly demand research on learning.

The Project “Personalized Assistant that Learns (PAL)” aims at supporting humans in
everyday environments. Such systems must be able to reason, accept user commands in a
natural way, explain their doings, learn from and reflect on their experience and respond
to surprise. A main issue is the automatic improvement of the basic functionality by
acquiring experience and deciding what to learn. This mission is awarded to to SRI’s
CALO (Cognitive Assistant that Learns and Organizes) project1 and the RADAR project
at CMU2. The functionality to be supported by CALO includes meeting preparations,
assistance in creating documents, and managing information (Myers 2006).

A very important area of robotic applications are ground vehicles. In the DARPA
ipto project “Learning Applied to Ground Robots (LAGR)” the performance of robotic

1http://calosystem.org
2http://www.radar.cs.cmu.edu/

7. Conclusion 135

vehicles is enhanced by constant learning from own experience and by imitating human
behavior. The “Integrated Learning (IL)” project addresses the issue of learning with
scarce experience. The idea is to use all available sources of information, not just the
experience at hand to improve learning results. Ideally, only one example suffices to
improve the behavior.

Other funding agencies are aware of the growing need to develop cognitive applica-
tions. The Deutsche Forschungsgemeinschaft (DFG) has accepted the cluster of excel-
lence Cognition for Technical Systems (CoTeSys)3 to be supported over the next years
(Buss, Beetz, and Wollherr 2007). This cluster brings together researchers from different
fields and different institutions to develop fully functioning cognitive technical systems in
different application domains.

To reach these ambitious goals, learning must be an integral part of the systems. In
order to respond to previously unknown situations such situations must be detected in the
first place. This is possible when the system has models telling it what a normal situation
would be and compare them to the circumstances at hand and it needs ways to monitor its
behavior constantly. The models must be learned and updated continually. The response
to the changed situation can be achieved by integrating new observations into the set of
previous ones. Users expect an intelligent system to adapt to their preferences and not to
make the same mistake twice.

7.3 RoLL’s Contributions to More Sophisticated
Autonomous Robots

After having related the challenges of and work on cognitive systems, we point out the
issues where RoLL can contribute to achieving these ambitious objectives.

One feature of cognitive systems is that they are to serve as reliable personal assistants
over long time periods while adapting to the needs of the user. As the preferences of users
and their tasks and responsibilities change over time, it is out of the question to learn only
at the beginning and then stop the learning process. Continual learning involves many
open questions:

o How should learning problems be scheduled to build upon each other?
o How does a robot recognize a stream of data as an experience?
o How can experiences be used for different learning problems?
o What are interesting experiences?
o How are the learning steps integrated into a program?

3http://www.cotesys.org

136 7.3 RoLL’s Contributions to More Sophisticated Autonomous Robots

o How can the learning be performed automatically? This involves the choice of the
learning algorithm and bias as well as the generation of an appropriate abstraction.

o How must a program be constructed so that the learning results can be integrated?
o How can the program find out which problems it must learn?
None of these issues has been solved completely, some even haven’t been examined

at all. Although RoLL doesn’t give answers to all of these questions, it provides solutions
to some of them and methods for investigating these issues to greater depth. The concept
of experiences is well-defined and understood in RoLL. Experiences can be specified and
acquired automatically. The basis of more sophisticated experience management is pro-
vided by an interface to a database for storing experiences. Using data mining methods,
experiences can be analyzed and understood by the learner. This allows a more economic
use of experiences and goal-directed methods for observing them actively.

Furthermore, RoLL enables a smooth interaction between programming and learning.
Routines or functions are replaced by learned ones without the rest of the program being
changed. And the experience acquisition is integrated in a way that doesn’t disturb normal
program development, but can be added when needed. With the combination of declara-
tive specifications and automatic execution, RoLL is a first step on the way of automating
the learning process completely. With enhancements from meta-learning the programmer
doesn’t have to be a specialist in learning algorithms and can be freed more and more from
tedious parameter tweaking.

RoLL can also be seen as a tool for developing better learning algorithms and to ex-
amine general properties of known learning algorithms, which is not only important for
robotic applications, but for machine learning in general. Learning problems can be re-
peated and tested with different parameterizations so that learning algorithms can be eval-
uated comfortably. Other open questions of learning can be explored similarly, like how
to acquire experience actively, how to use results of one learning problem in another or
how to perform learning successfully with only few experiences. As RoLL comes with
the whole functionality of LISP, new methods can be added easily and be combined with
and tested against known methods.

Beside all this, the most fundamental contribution of RoLL to cognitive systems is its
implementation of a first programming language to include full learning capabilities. This
breaks the traditional distinction between programming and learning, which is present
in almost all current systems. Only when learning is seen as an integral, indispensable
component of the control system, cognitive systems have a chance of success.

Appendix A

RPL Language Overview

This chapter gives a short introduction to RPL and a reference to RPL language constructs
used in this work. For a better understanding of RPL and a more detailed description of
the language see (McDermott 1993).

A.1 Basic Concepts

RPL is defined as a macro extension of LISP. Its basic control concept are tasks that are
managed in a control loop similar to the way operating systems work. This means that
RPL makes sure that each task gets a chance to run, that they work in parallel and interact
without blocking each other. The unique feature provided by RPL is that the hierarchy
of active tasks, their status and interaction can be accessed by the program at run-time.
As the task descriptions also contain all local variable bindings, one task can examine
the variable state of another. The status of a task can be categorized with these values:
created, enabled, active, done, failed, evaporated, current, passed. Figure 3.4 on page 33
shows the code tree for a plan and how its parts can be addressed (see also the description
of the path-sub construct).

Another distinctive feature of RPL is the concept of failures. The handling of failures
is implicit in many control structures. For example, when there are several ways to reach
a goal, the robot can pursue all of them at once and stop when one has succeeded. If one
option fails, there is still a chance that one of the other possibilities achieve to produce the
desired effect. In other cases, a higher-level control structure fails, when only one of its
subplans fail, propagating the error higher up in the hierarchy in the hope that higher-level
plans can deal with the failure appropriately. This is why RPL has several constructs for
indicating parallel execution (par, pursue, try-all), each handling failure and success
conditions differently.

Furthermore, RPL uses the concept of fluents to handle variables that change their

138 A.2 Relation to Lisp

value continuously. These are mostly variables associated with values in the real world
like the robot’s current position. Several control structures explicitly react to changes in
fluents without having to check on variable values explicitly all the time. Such commands
include whenever and wait-for. Fluents are also used for indicating the state of tasks.
Each task is associated with fluents for when it begins and ends. These fluents are set
from false to true when the respective event happens and reset to false shortly afterwards.
Even more interesting than single fluents is the possibility to build networks of fluents. A
composite fluent is calculated from the current values of other fluents. When one of the
constituent fluents changes its value, the resulting fluent is recalculated (see Figure 3.3 on
page 30).

A.2 Relation to Lisp
RPL is a macro extension of LISP and therefore supports all LISP commands. However,
the working of LISP is not captured in the internal RPL representation. When RPL en-
counters a command it doesn’t know it assumes it is pure LISP code and interprets it as
such. The interpretation of LISP code is a black box to RPL. Thus, inside LISP code no
RPL commands are allowed. For example

(progn
(setf c (+ a b))
(wait-for f))

is illegal unless there exists a LISP function with the name wait-for, the RPL wait-for
cannot be used here, because the LISP construct progn is not known by RPL. Therefore
the RPL context is left and control is passed to LISP.

Because programmers are used to certain LISP constructs, RPL offers commands with
the same name and identical behavior, but in the context of RPL execution. These are let,
let*, if, when, cond, unless, and loop1. It depends on the context if the LISP or RPL
commands are used. For example in

1 (def-rpl-method execute ((ctr controller))
2 (let ((a (create-fluent "x" nil))
3 (b (1+ (if global-c global-x global-y))))
4 (if (> b 2)
5 (set-value a t)
6 (setf b (1+ b)))))

the let in line 2 and the if in line 4 are both executed in RPL mode, because the RPL
context is never left on the way. In contrast, the if in line 3 is executed as LISP code.

1In the original RPL only let, let*, if, loop are defined, the others have been added for RoLL.

A. RPL Language Overview 139

A.3 RPL Language Constructs
We now list some RPL commands used in this work ordered by functional aspects. The
descriptions are copied from (McDermott 1993) and (McDermott 1992), some annotations
being added.

Fluents
Basic Operations:
(create-fluent pat v) Create a new fluent with initial value v. The pat is for mnemonic

purposes in printing the fluent.

(changed-fluent f compare-fcn) A fluent that is momentarily set to true whenever
the value of fluent f changes. The compare-fcn is an equality test that is used to
tell whether the value has changed.

Constructs Reacting to Fluent Changes:
(whenever p -body-) Do -body- once every time p goes from false to true (including

once if it’s true when the whenever starts).

(wait-for p) p should evaluate to a fluent. Wait until p becomes true.

(wait-time t)2 Wait for t seconds.

Control Flow
Loops:
(loop -body-) Do actions in -body- in sequence, then repeat. The body may contain

tests of the form while e or until e. If e evaluates to the right Boolean value,
the loop exits.

(n-times n -body-) Like loop, but quits after n iterations if no other test has caused
it to exit.

Parallel Execution:
(par a1 a2 ...an) Do actions in parallel. Succeed if they all succeed; fail if one fails.

(pursue a1 a2 ...an) Do actions in parallel. Succeed if one succeeds (the others
evaporate), fail if one fails.

(try-all a1 a2 ...an) Do actions in parallel. Succeed if one succeeds (the others
evaporate), fail if all fail.

2Although wait-time doesn’t involve fluents, it is listed here because of its similarity to wait-for.

140 A.3 RPL Language Constructs

(with-policy p -body-) Do -body-, but also do p, never allowing -body- to run
unless p is blocked. Fail if either -body- or p fails, succeed if -body- succeeds.

Others:
(no-op) Succeed. That is, do nothing.

(seq a1 a2 ...an) Do each action in order.

(evap-protect a b) Normally means the same as (seq a b), but if a should evapo-
rate because the plan containing it gets swapped out, then b gets executed anyway.

Task Inspection
Task Surveillance:
(begin-task t) A Boolean fluent that gets value true when task t becomes active.

(end-task t) A Boolean fluent that gets value true when task t becomes finished,
evaporated, or failed.

Task Addressing:
(:tag l a) This is not an executable form. It’s equivalent to a, but if it occurs in a

top-level plan or procedure body, then l (a symbol) will be bound to the task for
a at the highest level in the plan where there is a single task for a, i.e., the highest
non-iterative context, or the whole plan.

(path-sub -name-prefixes- task) The syntactic sub-sub-. . . -task of task arrived at
by using the elements of -name-prefixes- in reverse order. For example, for ad-
dressing the task γ from the top-level task in Figure 3.4 on page 33, let’s assume the
top-level task is bound to the variable tk, use
(path-sub ((if-arm false) (branch 2)) tk).

Appendix B

Hybrid Automaton Definitions

Hybrid Automaton
A hybrid automaton (HA) is defined by a tuple H = 〈V , M, f low, T , act, cond〉 with

o a finite set of variables V .
o a set of modes M
o a flow function assigning each mode a function that describes the continuous change

in the mode f low : M→ (Σ→ Σ)
o a set of transitions T ⊆M×M between modes;
o an action function act : T ×Σ→ Σ assigning each transition a change in the data

state;
o jump conditions cond assigning a predicate to each transition.

Hierarchical Hybrid Automaton
A hierarchical hybrid automaton (HHA) is a tuple H = 〈V , M, f low, T , act, cond〉
with

o a finite set of variables V .
o a flow function f low : Σ→ Σ describing the continuous change in the set of vari-

ables during the execution of H .
o a set of modes or subautomata M. The variables of the parent automaton are also

variables of the subautomata: ∀M ∈M : V H ⊆ V M . Unless M is the empty set,
SH ∈M is the starting mode, TH the terminating mode.

o a set of transitions T ⊆M×M between modes;
o an action function act : T ×Σ→ Σ assigning each transition a change in the data

state;
o jump conditions cond assigning a predicate to each transition.

142

Probabilistic Hierarchical Hybrid Automaton
A probabilistic hierarchical hybrid automaton (PHHA) is specified by a tuple
H = 〈V , M, f low, T , act, prob〉 with

o a finite set of variables V .
o a flow function f low : Σ→ Σ describing the continuous change in the set of vari-

ables during the execution of H .
o a set of modes or subautomata M. The variables of the parent automaton are also

variables of the subautomata: ∀M ∈M : V H ⊆V M .
o a set of transitions T ⊆M×M between modes;
o an action function act : T ×Σ→ Σ assigning each transition a change in the data

state;
o a probability function prob : T×Σ→ [0,1] assigning to each transition a probability

table, which means that a transition only occurs with the probability given in the
probability table according to the current state. For a given jump condition σ from
a given mode m, the probabilities of different outcomes must sum up to 1:

∑
m′

prob((m,m′),σ) = 1.

Data State
A data state of a set of variables V is a function σ : V →D assigning each variable vi ∈V
a value from some basic set D, e.g. the real numbers. The set of all data states is called Σ.

Program State
A program state of a HHA H is a function γ : M∪H → {0,1} assigning a value 0 or 1
to each mode and the automaton itself. Stated differently, γ is the characteristic function
of the set of active automata in H . The set of all program states is Γ.

Automaton State
An automaton state θ of a HA H is a tuple of a program state and a data state over the
variables VH of the automaton: θ ∈ Γ×Σ. The set of all automaton states is called Θ.

Interval
An interval is a connected portion of the real line. If the endpoints a and b are finite and
are included, the interval is called closed and is denoted [a,b].

A non-empty subset X of R is an interval iff, for all a,b ∈ X and c ∈ R,a ≤ c ≤ b
implies c ∈ X .

B. Hybrid Automaton Definitions 143

Automaton Activation Period
The time during which an automaton is active is called automaton activation period. It is
represented by a closed interval [begin,end], whose first point is called begin and whose
last point is called end.

Episode
An episode eI

H of an automaton H is a function mapping the real values of an interval I
to program states of H .

State Projection
Given a set of variables V and a data state σ , a projection of a set W ⊆V on σ is
σW : W → D, σW (v) = σ(v),v ∈W .

Automaton Transformation
An automaton transformation is a mapping from one HA H to HA I using any of the
three following operations:

o abstract: H → f lowH

o expand: H →MH

o restrict: H → N, where N ⊂MH

Appendix C

RoLL Reference

Table 5.1 on page 67 shows a summary of the RoLL constructs. This chapter provides a
detailed reference manual on their usage.

For describing the language constructs we use a BNF-like notation, which is explained
in Table C.1. Each construct is specified formally using this notation. Additionally,
the purpose of the construct and a short description are provided. A complete example
of a learning problem definition using these expressions is presented in Chapter 6.2 on
page 104. The usage of the constructs for extending RoLL’s functionality is shown in
Appendix D on page 158.

Table C.1 Explanation of the notation for RoLL constructs.

define-... Constructs and their syntactical components of RoLL are written in
typewriter font.

optional An optional expression is illustrated in gray.
default Default values are indicated by underlining.

〈lisp expression〉 A construct from LISP or RPL giving the type or a short specification;
〈name lisp type〉 A construct from LISP or RPL giving an explanation with a significant

name and providing the desired LISP type.
〈expression〉 An expression that is defined later or has been defined on the same

page.
〈expressionpage〉 An expression that has been defined on the page indicated.

a→ b ‘a’ may be of the form ‘b’.
a | b Alternative construct, either ‘a’ or ‘b’.

a+ → a | aa+.
a∗ either nothing or a+;

C. RoLL Reference 145

C.1 Experience Data
The addressing of data from experiences is solved in a uniform way in RoLL. Before
explaining the single constructs, we define the access to experience data as a reference in
later definitions.
〈automaton data〉 → :begin | :end | :interval

| (〈event〉 〈automaton〉 〈occurrence specification〉)
| (:interval 〈automaton〉 〈occurrence specification〉

〈instance specification〉)
〈event〉 → :begin | :end
〈automaton〉 → 〈automaton name symbol〉
〈occurrence specification〉 → :first-occurrence | :last-occurrence

| :only-occurrence | :all-occurrences
| 〈nth occurrence integer〉

〈instance specification〉 → :first-instance | :last-instance
| :all-instances | 〈nth instance integer〉

Purpose: Access data of experiences.
Description: Access the begin, end or interval slots of an automaton. If the automaton

is anonymous, it needn’t be named explicitly. If the automaton is named in the
definition, it must be addressed by its name. For events, an optional occurrence
specification may be given, for intervals the instance can be specified additionally,
see explanation on page 69.

〈automaton var data〉 → (:var 〈variable symbol〉 〈automaton data〉)

Purpose: Access detailed data of experience structure.
Description: Access single variables from the begin, end or interval slots of an experience

automaton.

〈crude automaton data〉 → :begin | :end | :interval
| (〈event〉 〈automaton〉) | (:interval 〈automaton〉)

Purpose: Access data of experience structure in situations where occurrence and interval
specifications make no sense.

Description: Like automaton data, but no occurrence or interval specifications allowed.

C.2 Raw Experiences
(define-raw-experience 〈experience name symbol〉
:specification 〈experience automaton〉
:experience-handling (〈handling instruction〉+))

146 C.2 Raw Experiences

Purpose: Declaratively define a raw experience.
Description: Define an experience automaton including the data to be acquired during an

episode. Experience handling describes how to treat the data in case of special
occurrences like failures while the automaton is running.

C.2.1 Experience Automaton
〈experience automaton〉 → (〈automaton identifier〉

:rpl 〈task〉
:invariant 〈fluent〉
:maximum-duration 〈number〉
:events ((〈fluent〉 〈event name symbol〉+)+)
:interval 〈recording data〉
:begin 〈recording data〉
:end 〈recording data〉
:children (〈experience automaton〉+)

〈automaton identifier〉 → 〈dummy name keyword symbol〉
〈automaton name non-keyword symbol〉

Purpose: Describe an experience automaton.
Description: The automaton defines the episodes to be observed either by an invariant

(the automaton being active when the given fluent is not nil) or an RPL task
specification. The data is attributed to the begin and end events or the complete
interval of the automaton execution. Maximum duration and the specification of
unwanted events by fluents are the available options for handling failures. With
the children slot, a hierarchy of automata can be defined.

Episode Specification

〈task〉 → (:goal-execution 〈goal symbol〉)
| (:routine-execution 〈routine symbol〉)
| (:goal-subtask 〈task〉)
| (:achieve-subtask 〈task〉)
| (:sub 〈subtask path〉 〈task〉)
| (:tagged 〈tag name symbol〉)
| (:recover 〈failure task〉)
| (:monitor 〈failure task〉)
| (:perform 〈failure task〉)
| (:try 〈failure task〉)
| :parent
| 〈supertask symbol〉

〈failure task〉 → (:failure-handling 〈subtask path〉 〈task〉)
| (:failure-handling-default 〈task〉)

C. RoLL Reference 147

Purpose: Describing the program part to be observed.

Description: There are several possibilities: (1) reacting to a routine or goal execution,
(2) addressing a subtask of another task specified in the same way, (3) a task
defined by a parent automaton (either the direct parent or any other addressed by
its name), if such an automaton exists. For defining explicit paths from one subtask
to another the notation of RPL is used as illustrated by Figure 3.4 on page 33 and
explained in the RPL manual (McDermott 1993).
When a task is defined by with-failure-handling, it must be addressed as a
failure-handling task definition (failure-handling-default does the same,
but assumes a certain program structure). The subtasks are then addressed by
recover, monitor, perform, and try (summarizing monitor and perform).

Data Specification

〈recording data〉 → (〈variable definition〉+)
〈variable definition〉 → (〈variable symbol〉 〈value description〉)
〈value description〉 → 〈symbol〉

| (:internal-value 〈local variable〉 〈task〉 〈search hint〉)
| (〈operator symbol〉 〈value description〉+)

〈local variable〉 → 〈string〉 | 〈symbol〉
〈search hint〉 → :exact | :prefix

Purpose: Specifying the data to be observed.

Description: Each data slot is given a variable name. The values bound to these names
are either drawn from a LISP expression (either symbol or LISP function) or from
a local variable inside a task. Both sources can be combined by arbitrary LISP
expressions.

C.2.2 Event Handling

〈handling instruction〉 → (〈handling condition〉 〈handling reaction〉)

Purpose: Defining how to prepare the data for further abstraction.

Description: Depending on predefined or user-defined events that have occurred during
execution, the data can be manipulated or deleted. The syntax is oriented at the
LISP cond construct.

148 C.2 Raw Experiences

〈handling condition〉 → T
| (:event 〈monitored event〉)
| (:available 〈automaton data〉)
| (:available 〈automaton var data〉)
| (:all-available 〈automaton name symbol〉)
| :all-available
| (〈operator symbol〉 〈handling condition〉+)

〈monitored event〉 → 〈event id〉 | (〈event id〉 〈automaton name symbol〉)
〈event id〉 → :timeout | :success | :evap | :fail | :done | :abort

| 〈event name symbol〉

Purpose: Describing a handling condition of the experience.

Description: There are two ways to differentiate situations: (1) based on the events that
were monitored during the automaton activity, and (2) the data available in the
experience. A combination of both with arbitrary LISP operations or functions is
possible. Monitored events are the RPL status of tasks when the automaton ends
and events defined by the user in the automaton definition.
If a condition is defined as an event without providing an automaton name, the
condition is fulfilled when any automaton in the hierarchy has produced such an
event. When an automaton name is given, only the event occurrence in this au-
tomaton can fulfill the condition.

〈handling reaction〉 → :discard | :store | 〈data manipulation〉+ :store
〈data manipulation〉 → 〈data replacement〉 | 〈conditional replacement〉
〈data replacement〉 → (set-data 〈automaton data〉 〈LISP expression〉)

| (add-data 〈automaton data〉 〈LISP expression〉)
| (replace-data 〈automaton var data〉 〈LISP expression〉)
| (replace-data 〈automaton data〉 〈LISP expression〉)
| (erase-data 〈automaton data〉)

〈conditional replacement〉 → (〈cond〉 〈handling condition〉 〈data replacement〉+)
〈cond〉 → when | unless | if

Purpose: Specify the reaction to a condition.

Description: The data can be discarded or stored completely, or it can be manipulated
before being stored by deleting data, or adding to or replacing data by arbitrary
LISP expressions. The manipulation can be guided by conditions described in the
same way as the handling conditions on the top level.

C. RoLL Reference 149

C.3 Problem Generation

C.3.1 Defining Problems
(problem-parameters
:parameters (〈parameter〉+)
:relation 〈relation〉)

Purpose: Generate a list of problems.
Description: Problems are a vector of values attributed to some variables. With the con-

struct problem-parameters a list of such problems is generated according to the
specification.

〈parameter〉 → (〈variables〉 〈parameter source〉)
〈variables〉 → 〈variable symbol〉 | (〈variable symbol〉+)
〈parameter source〉 → :random :min 〈min value〉 :max 〈value number〉

:samples 〈quantity integer〉
| :cover :min 〈min value〉 :max 〈value number〉

:interval 〈value number〉
| :predefined 〈value T〉+

〈min value〉 → 0.0 | 〈value number〉
Purpose: Define how values are generated.
Description: For each variable define a list of values, which can either be random, cover-

ing a range of values systematically or by giving an explicit list.

〈relation〉 → (〈relation keyword〉 〈relation argument〉+)
〈relation keyword〉 → :dep | :indep | :indep-min | :indep-max
〈relation argument〉 → 〈variable symbol〉 | 〈relation〉
Purpose: Combine the individual variable value lists into problems.
Description: Every problem consists of one value for each variable. The individual lists

can either be combined with a cross product (:dep) or by taking one element of
each list (:indep). :indep and :indep-max are synonymous.

C.3.2 Using Generated Problems
(with-problem-parameters (:parameters (〈parameter〉+)

:relation 〈relation〉)
〈body RPL code〉)

Purpose: Use a parameter list inside RPL code.
Description: Runs the body code in a loop, binding the variables defined in the parame-

ters slot to one problem per loop run. Using the variables in the body, the code is
executed with different parameterizations.

150 C.3 Problem Generation

C.3.3 Examples

The syntax and working of the problem generator can best be explained by examples. The
RoLL specification of the problem generator contains two parts: (1) the parameters and
a description of what kind of values they should each adopt in subsequent program runs
and (2) the relation between the parameters. The default relation between parameters is
dependency.

Here is the first example of a problem generator specification:

(problem-parameters
:parameters ((x :random :min 1.0 :max 2.0 :samples 2)

(y :predefined ’(4 5 6)))
:relation (:dep x y))

With this declaration six pairs of parameter values are generated in total. For the param-
eter x two random values in the range between 1.0 and 2.0 are generated, for example
1.7654 and 1.286. The three possible values for parameter y are given in the specification.
The two value lists for both parameters are then combined according to the relation speci-
fication. In this case the parameters are defined to be dependent, which corresponds to the
cross product of the two lists, so that the resulting list of values would be ((1.8595252
6)(1.8595252 5)(1.8595252 4)(1.6935984 6)(1.6935984 5)(1.6935984 4)). In
each run of the acquisition program, one pair is used, so that in the first run, parame-
ter x takes the value 1.7654 and y is bound to the value 4. In this example the relation
specification is redundant, because the dependency of both values is the default.

In the following example we see how the number of problems is determined automat-
ically. It is almost identical to the previous one.

(problem-parameters
:parameters ((x :random :min 1.0 :max 2.0)

(y :predefined ’(4 5 6)))
:relation (:indep x y))

Here the two parameters are declared to be independent and for parameter x the number of
needed samples is not given. The overall number of problems is determined by parameter
y and the number of needed samples for x is set automatically to three. A possible result
of this specification is ((1.2603241 4)(1.228759 5)(1.1549773 6)).

Now what happens if we declare x and y to be independent, but additionally specify
that we want only two different values for x as we have done in the first example? The
overall number of problems could be two, because for parameter x only two values are
generated, but then we have to omit one of the values for y. Contrariwise, if we want all the
possible values of y to be used, one of the values of x must be utilized twice. This ambigu-
ity has to be resolved by the programmer. The relation specification (:indep-min x y)
produces the first variant, for example ((1.6880503 4)(1.7453804 5)), whereas with

C. RoLL Reference 151

the declaration (:indep-max x y) a list of three problems is generated: ((1.3849926
4)(1.7848289 5)(1.3849926 6)).

If two parameters are to take the same values, the declaration can be abbreviated.
For example, if a parameter u is to take the same possible values as y, we could declare
((y u) :predefined ’(4 5 6)). In this case with predefined values we could as well
have copied the declaration for y and used it for u. If the values are determined randomly,
however, the two declarations have different results.

(problem-parameters
:parameters (((x y) :random :min 1.0 :max 2.0 :samples 2)))

This specification produces two random values, which are both used for parameters x and
y, so that the resulting problem list might look like this: ((1.7241 1.7241)(1.7241
1.8092)(1.8092 1.7241)(1.8092 1.8092)). In contrast, the following specification
generates two separate lists of random values, which are then combined. The result could
be ((1.3703 1.3379)(1.3703 1.8953)(1.8114 1.3379)(1.8114 1.8953)).

(problem-parameters
:parameters ((x :random :min 1.0 :max 2.0 :samples 2)

(y :random :min 1.0 :max 2.0 :samples 2)))

Finally, we present a more complex example with different relations between the vari-
ables. We also see how a range of discretized values is covered completely.

(problem-parameters
:parameters ((x :random :min 1.0 :max 2.0 :samples 2)

(y :predefined ’(4 5 6))
(u :cover :min 0.0 :max 2.0 :interval 0.6)
(w :cover :max 2.0 :interval -0.6))

:relation (:indep-max (:dep x u) (:indep-min y w)))

The value specification of parameters x and y is the same as in the examples before, the
number of possible values for x is restricted to two. The additional parameters u and
w cover a range between 0.0 and 2.0 (the specification :min 0.0 is redundant, as 0.0
is the default minimum value). The discretization step is 0.6 for both values, but the
discretization of u starts at 0.0, which gives the values 0.0, 0.6, 1.2, and 1.8. In contrast,
the values for w are 2.0, 1.4, 0.8, and 0.2.

Now let’s have a closer look at the dependencies between the variables. Parameters
x and u depend upon each other. As x provides two values and u four values, we get a
total of eight problems for the combination. y and w are declared to be independent and
the lower possible number of values is to be used. This means that three problems are
proposed for the combination of y and w, one of the values of w being discarded. The
overall combination of the sublists for x/u and y/w are to be combined as independent lists
using the maximum number of problems that can be generated. The result is a list of eight

152 C.4 Abstract Experiences

values (the ordering of the values is x, u, y, w as specified by the dependency relation):
((1.4037962 1.8 4 2.0) (1.4037962 1.2 5 1.4)
(1.4037962 0.6 6 0.8) (1.4037962 0.0 4 2.0)
(1.4152595 1.8 5 1.4) (1.4152595 1.2 6 0.8)
(1.4152595 0.6 4 2.0) (1.4152595 0.0 5 1.4))

We see that two random variables have been generated for parameter x: 1.4037962 and
1.4152595. They are combined in a cross product with the four values of u. The values for
y and w are added independently, but the value 0.2, which would be possible for w is never
used, because it was discarded when combining the lists of y and w with the minimum
independence relation.

Finally, we should mention how the generated values can be used in the program that
controls the robot during experience acquisition. The construct problem-parameters
used in the examples generates a nested list of values as shown. They can be bound to
variables by LISP constructs such as destructuring-bind and be used in the program.
One has to take care of the order in which the values are arranged in the generated list. A
more elegant way is provided by the RoLL construct with-problem-parameters, whose
syntax is similar to the problem-parameters construct, but includes a loop and a let
expression, so that in each run of the loop the parameter variables are bound to new values,
which can be used in the body of the construct.

C.4 Abstract Experiences

C.4.1 Experience Definition
(define-abstract-experience 〈experience name symbol〉
:specification 〈abstract automaton〉
:experience-class 〈experience class〉
:experience-class-initargs 〈keyword pair〉+)
〈experience class〉 → ’transient-abstract-experience | 〈class name symbol〉
〈keyword pair〉 → 〈key keyword symbol〉 〈value T〉
〈abstract automaton〉 → (〈automaton name symbol〉

:begin (〈variable symbol〉+)
:end (〈variable symbol〉+)
:interval (〈variable symbol〉+)
:children (〈abstract automaton〉+))

Purpose: Define an abstract experience.

Description: The definition is analogous to the raw experience. This definition only
gives the structure of the automaton including the variable names without the data
source to the variables. Because an abstract experience can be generated from sev-
eral raw experience classes (see Figure 5.6 on page 71), the conversion is defined

C. RoLL Reference 153

separately. A shortcut definition for an abstract experience with the conversion is
presented below in Section C.4.3.

C.4.2 Experience Conversion
(define-experience-conversion
:from-experience 〈experience name symbol〉
:to-experience 〈experience name symbol〉
:operations 〈conversion〉)

Purpose: Specify an abstraction step.
Description: Establishes an abstraction between two experiences, the operations being

defined in the form of the abstract experience automaton.

Basic Conversion Operations

〈conversion automaton〉 → 〈abstract data automaton〉
| (with-binding 〈binding definition〉

〈conversion automaton〉)
| (with-filter 〈filter definition〉

〈conversion automaton〉)
| (with-cross-product 〈cross product definition〉

〈conversion automaton〉)
〈abstract data automaton〉 → (〈automaton identifier146〉

:begin 〈abstraction data〉
:end 〈abstraction data〉
:interval 〈abstraction data〉
:children 〈abstraction data〉)

〈abstraction data〉 → (〈variable assignment〉+)
〈variable assignment〉 → (〈variable symbol〉 〈value source〉)
〈value source〉 → 〈symbol〉

| 〈automaton var data〉
| (〈operator symbol〉 〈value source〉+)

Purpose: Operations involved in experience conversion.
Description: The automaton definition is analogous to raw experiences. The source of

the variable values is now the content of the raw experience (the experience given
in the from-experience declaration).

Sophisticated Conversion Operations

〈binding definition〉 → (〈variable assignment〉+)
〈filter definition〉 → (〈binding definition〉 :where 〈condition LISP expression〉)
〈cross product definition〉 → (〈binding definition〉 :where 〈condition LISP expression〉)

154 C.5 Learning Problems

Purpose: Special operations for abstraction.
Description: These operations make the definition of abstract experiences more comfort-

able and powerful. In detail, the options are

o local bindings: defining local variables using the values from the raw experi-
ence, comparable to a let expression;

o filter: a way to omit unwanted experiences, similar to the event handling strat-
egy of the raw experience, but can decide on the basis of abstracted values;

o cross product: specify a set of variables to create the cross product from, thus
making several experiences out of one. The result can be restricted to experi-
ences fulfilling the given condition.

C.4.3 Combined Definition of Abstract Experience and Conversion
(define-abstract-experience 〈experience name symbol〉
:parent-experience 〈automaton name symbol〉
:specification 〈conversion automaton153〉
:experience-class 〈experience class〉
:experience-class-initargs 〈keyword pair〉+)

Purpose: Compact definition of abstract experience and conversion.
Description: Abbreviation for one-to-one relationships of experiences. The syntax is al-

most identical to the pure abstract experience definition, the only addition being
the parent experience. The automaton is defined like the one in the conversion
specification.

C.5 Learning Problems
(define-learning-problem
:function 〈function specification〉1
:use-experience 〈experience name symbol〉 | 〈conversion automaton153〉
:learning-system (〈class symbol〉 〈keyword pair152〉+)
:input-conversion 〈abstraction data153〉

| (:generate 〈conversion〉+)
:output-conversion (〈LISP expression〉+))

Purpose: Define a learning problem.
Description: Specify all parts of a learning problem:

1see specification of learning problem class on page 157

C. RoLL Reference 155

o the function to be learned, the syntax being defined by the learning problem
class;

o the experience, which can either be defined outside the learning problem def-
inition with define-abstract-experience or as an anonymous experience
inside the learning problem definition;

o the learning system to be used and the bias given as initialization arguments of
the learning system class;

o the conversion between the function produced by the learning algorithm and
the desired one (see below for more explanation).

C.5.1 Function Conversion
The problem of integrating the learned function into the program and the need to rerun
the abstraction process is explained on page 97 and in Figure 5.16. Because the inverse
abstraction is not known (the conversion from 〈 j,k〉 to 〈v,w〉 in Figure 5.16), the output
conversion is given as a list of LISP expressions, the outer brackets replacing an explicit
progn. This conversion can return any LISP expression including several return values.

The initial abstraction (from 〈x,y,z〉 to 〈h, i〉) can either be given as a list of variable
definitions in the style of a let expression or it can be generated from the already existing
experiences and conversions.
〈conversion〉 → (:in-experience 〈experience symbol〉 〈substitution〉+)

| (:in-conversion 〈raw experience symbol〉
〈abstract experience symbol〉
〈substitution〉+)

〈substitution〉 → :set-var 〈variable symbol〉 :to 〈LISP expression〉
| :replace 〈variable symbol〉 :by 〈LISP expression〉

Purpose: Describe the input conversion based on the abstraction chain of the learning
experience.

Description: Variable substitutions can take place in any experience or conversion defini-
tion. (An abstract experience definition that integrates a conversion specification
counts as an experience.) They can either replace the initial definition of a vari-
able or substitute all occurrences of a variable in the abstraction definition (see
example below).

Consider the example in Figure C.1. It shows the abstraction chain defined for learn-
ing, the learning experience being e4. There are two experiences as possible sources to e3.
The data of the experiences is shown in a slightly simplified version at the right hand side.
When defining a learning problem using e4 as experience, a possible input conversion is
this:

156 C.5 Learning Problems

(:generate
(:in-experience e1 :set-var a :to input-value)
(:in-experience e3 :replace (:var d e2) :by 5))

The first thing this definition tells us is that the right branch of the experience tree is in-
teresting for the abstraction generation, because variables in e1 and e3 are substituted. The
definition must provide a possible solution. It would be incorrect to declare substitutions
in both arms of the tree.

With this structural information, a compact experience definition ranging from e1 to
e4 is generated as shown in the figure. It now remains to substitute the variables. The
:set-var . . .:to construct replaces the right side of a variable definition. This means
instead of binding a to (:internal-value ...) it should be bound to input-value
instead. The command :replace . . .:by does a substitution on all occurrences of one
expression by another. This means that in the definition of e3, where d is used in a calcu-
lation, it is replaced by 5. The resulting abstraction is

(f (* 10 (- 5 (1- input-value))))

Figure C.1 Collapsing the course of abstractions into one. If there are several paths of
abstraction, the one where the substitutions are defined is chosen.

e4

e3

e2

e1

e1: ((a (:internal-value ...))
(b statevar-pos-x))

e2: ((c (-1 (:var a e1)))
(d (expt (:var b e1) 2)))

e3: (e (- (:var d e2) (:var c e2)))
e4: (f (* 10 (:var e e3)))

eΣ
eΣ: (f (* 10 (- (expt statevar-pos-x 2)

(1- (:internal-value ...)))))

C. RoLL Reference 157

C.6 RoLL Extensions

C.6.1 Experience Classes
(define-abstract-experience-class 〈class name symbol〉 (〈superclass symbol〉+)
(〈slot definition〉∗))

Purpose: Define a new experience class.
Description: The definition is similar to a class definition in LISP. In addition, at least

the following methods should be provided for the specified class:

o deliver-experience

o make-conversion-code

C.6.2 Learning Problem Classes
(define-learning-problem-class 〈lp-class name symbol〉 (〈superclass symbol〉+)
(〈slot definition〉∗)
:definition-schema (〈keyword symbol〉 〈argument symbol〉∗)
:name-generation 〈LISP expression〉
:initargs (〈keyword pair152〉)+)

Purpose: Define a new learning problem class.
Description: The definition is similar to a class definition in LISP. The definition schema

is the pattern after which the function in the learning problem must be defined. The
keyword gives an identifier, the rest are arguments. The arguments are bound to
slots in the slot definitions whose initargs comply with the argument name, if such
slots exist. The initargs declaration establishes the connection between arguments
and slots explicitly. The name-generation declaration should contain a functional
expression returning a string. The generated name is used as an identifier for the
learning problem.

C.6.3 Learning Systems
New learning systems aren’t defined by a RoLL construct. Rather, a learning system is a
class (derived from the RoLL class learning-system) defined with the LISP defclass
construct and an experience class definition for storing the learning data. To integrate the
learning system, the following methods must be added:

o do-learning

o integrate-learned-function

Appendix D

RoLL Extensions

In Chapter 5 and Appendix C we have introduced the language constructs of RoLL for
specifying experiences, their abstraction, and the learning process. We have mentioned
several ways to customize and extend the basic functionality of RoLL, so that it can be
adapted to new developments in learning algorithms and new kinds of learning problems.
These extensions are

o experience classes,
o learning problem classes, and
o learning systems.
In the following, we explain the language constructs of RoLL and the steps to be taken

for defining these modules by first presenting the approach and then giving a detailed
example. The following sections are also intended as a reference for the set of extensions
implemented so far.

D.1 Experience Classes
Experience classes are defined in a class hierarchy as shown in Figure D.1. The general
classes of experiences can be classified along a logical line into raw and abstract experi-
ences and along a data processing criterion into transient and persistent experiences. As
raw experiences come in as a stream of data, they are defined to be transient. This means,
they don’t store the data only until they are passed on to the next level of abstraction.
We don’t expect that new classes of raw experiences are defined by the user, because the
process of experience acquisition is very complex and an integral part of RoLL.

Abstract experiences are usually of a persistent character. They can either store ex-
periences for longer times or be the interface for the learning data of the chosen learning
algorithm. When there are complex relationships between abstractions, as shown in Fig-
ure 5.6 on page 71 and Figure 5.7 on page 72, the use of transient abstract experiences can

D. RoLL Extensions 159

be useful. In any case, RoLL allows the definition of new classes of abstract experiences.
For permanently storing and managing experiences, we suggest to use the database expe-
rience presented below. If no database is available or especially huge sets of experiences
are to be stored, log files are an alternative. Examples for abstract experiences containing
the data for the learning algorithm are presented in Section D.3.

D.1.1 Process of Defining Experience Classes

For defining a new class of abstract experiences, one has to follow three steps as shown in
Figure 5.13 on page 92:

1. define an experience class,
2. specify how incoming data is to be stored,
3. specify how to retrieve the data and transform it to the next abstraction step.
The first step simply consists in defining a LISP class derived either from one of the

classes roll:transient-abstract-experience for transient experiences or
roll:persistent-abstract-experience for persistent ones. This class definition may
contain any slots necessary for storing or retrieving the data, e.g. a directory where a log
file is to be stored.

Secondly, each experience class must define the method roll:deliver-experience,
which receives the reference instance of the class as input and takes care that the data
contained in it is not lost. After calling this method, the reference instance will be used to
store other data.

The third step is irrelevant for experiences used as input for the learning system. All
other experience classes must provide a method that retrieves an experience and converts
it according to the abstraction specification.

Figure D.1 RoLL standard experience classes. The framed classes are the ones new ex-
perience classes can be derived from.

experience

transient-experience abstract-experience

transient-abstract-experience persistent-abstract-experience

persistent-experience

raw-experience

160 D.1 Experience Classes

D.1.2 Database Experience
For storing experiences permanently, relational databases offer a lot of functionality that
makes the management and filtering of experiences possible. For one thing, all experi-
ences are available without having to be read from a file and can be modified either by
SQL queries or by data mining mechanisms working directly on the database. Besides,
additional information concerning the experience instances can be stored, e.g. the time
when the experience was made, so that newer experiences can be trusted more than older
ones. Moreover, there are lots of tools and frontends available to visualize the contents of
SQL databases, which helps to get a better understanding of experiences.

The definition of a database experience presented in the following is not the only
way of defining an abstract experience using a relational database as storage method.
It uses a specific way of linking LISP to the database and defines a specific mapping
from experiences to tables. Besides, it stores the time when an experience was made as
additional management information.

Class Definition

(roll:define-abstract-experience-class
database-experience (roll:persistent-abstract-experience)

((table-name-prefix :accessor table-name-prefix)
(database-spec :accessor database-spec)
(db-signature-set :initform nil :accessor db-signature-set)
(db-update-fun :initform nil :accessor db-update-fun)
(last-episode-nr :initform nil :accessor last-episode-nr)))

The class database-experience contains information about the database access, a
naming convention for easily finding the tables produced by LISP in the SQL tables, and
information for converting LISP to SQL types and guaranteeing unique keys.

Storing Data

(defmethod roll:deliver-experience ((experience database-experience))
(let ((data (funcall (eval (db-update-fun experience)) experience)))
(clsql:with-database (db (database-spec experience))
(mapcar #’(lambda (str) (clsql:execute-command str :database db))

data))))

For storing experiences in a database, the first design decision is how to map the
automaton structure of the LISP experience class with begin, end and interval slots to
database tables. Figure D.2 shows how tables are created from an experience definition.
For each data chunk (the data recorded in one automaton at one of the times begin, end,
or interval) one table is created, whose name is composed of

D. RoLL Extensions 161

o the name of the experience (in the example cup-experience),
o the name of the automaton (entity-at-place, grip, pick-up),
o the recording time (begin, end, interval).
The signature of the table always contains the episode number (a running number

counting the number of instances available of this experience type) and the occurrence
number (according to the definition in addressing experience data explained on page 70).
For interval tables, the instance number of the data set is also stored. The rest of the table
structure is computed from the variables that are to be recorded according to the names
provided in the experience definition. The SQL data types are derived automatically from
the LISP types when the first experience is to be stored, although this may be ambiguous
(especially the LISP value nil can be translated to false or null, so that the data type
can either be Boolean — this is what we chose — or any SQL type).

Beside the tables generated from the experience definition, the database experience

Figure D.2 Mapping between automaton structure and database tables.

entity-at-place

pick-up entity

grip

put-down entity

drop

cup-experience:
entity-at-placeinterval→ robot pose
gripbegin → entity pose, side,

timestep
pick-upend → timestep

cup-experience-time-management
episode-nr time

.

cup-experience-entity-at-place-interval
episode-nr occurrence-nr instance-nr robot-pose

.

cup-experience-grip-begin
episode-nr occurrence-nr entity-pose side timestep

.

cup-experience-pick-up-end
episode-nr occurrence-nr timestep

.

162 D.2 Learning Problem Classes

adds another table, whose name is composed of the experience name and the suffix -time-
management, where the episode number and the time when the experience was made are
stored.

Retrieving and Converting Data

(defmethod roll:make-conversion-code ((from database-experience)
(to experience)
operations from-var to-var
&optional)

...)

The simplest way to convert database experiences into other classes of experiences is
to read an episode from the database, store it in the reference instance of the experience
class in LISP and then use the standard conversion from one experience instance to another
one. However, databases offer a wide variety of operations that can help to reduce the
data transferred between the LISP and database processes and make computations faster.
One basic operation of databases is calculating the cross product of tables. Therefore, if
the abstraction contains a cross product operation, it is executed directly in the database.
Although other operations, like arithmetic, are possible as well, we decided to perform
those in LISP.

The method make-conversion-code should return code that generates the method
convert like a macro, because it depends on the automaton and data structure of the
experience.

D.2 Learning Problem Classes

For RoLL it is important to know what kind of function is to be learned, e.g. a prediction
model for a routine or the function choosing commands for a low-level routine. Different
kinds of functions need different parameters to be defined unambiguously. For example,
for learning a low-level routine, the name of the routine must be given. When a model of
a routine is to be learned, not only the routine, but also the type of the model (e.g. time
prediction) must be specified.

This information is necessary for integrating the learning result appropriately into the
program. The integration is done in accordance with the learning system, which means
that the generic function integrate-learned-function is determined by the learning
system and the learning problem class. Here we only show the definition of learning
problem classes, an example of integrating learned functions is described in the next sec-
tion.

D. RoLL Extensions 163

The two examples in Listing D.1 show how a learning problem class is to be defined.
The specification looks similar to a LISP class definition. After the name the parent classes
are given, usually this is the RoLL class learning-problem. Then slots containing the
parameters of the learning problem class can be defined. The definition schema specifies
the way in which the learning problem class is chosen when specifying a learning problem
(compare the definition of a learning problem in Section 6.3 on page 109). The variables
in this schema can either correspond to the initargs of the slots defined in the learning
problem class or a mapping between the variables in the definition scheme and the initargs
of the slots can be established with the parameter :initargs.

The parameter :name-generation describes how to generate a unique name for a
learning problem instance of the specified class. For example, the learning problem shown
in Listing 6.3 on page 109 can be addressed by the name b21-go2pose-time-model.

D.3 Learning Systems
The most important dimension of extending RoLL is the possibility to use any experience-
based learning algorithm. For RoLL it is of no importance if the learning system is imple-
mented in LISP or in an external program as long as it can be called from LISP. The main
differences between learning systems are

o the bias (i.e. the parameters controlling the learning process),
o the format of the input data, and
o the output format.
The procedure of defining a new learning system is oriented along these differences:

Listing D.1 Definition of learning problem classes.

; prediction models for routines
(roll:define-learning-problem-class model-learning-problem

(roll:learning-problem)
((routine :initarg :routine :initform nil :accessor routine)
(model-type :initarg :type :initform nil :accessor model-type))
:definition-schema (:model routine type)
:name-generation (format nil "~a-~a-model" routine model-type))

; low-level routines
(roll:define-learning-problem-class routine-learning-problem

(roll:learning-problem)
((rname :initarg :rname :initform nil :accessor rname))
:definition-schema (:routine routine-name)
:name-generation (format nil "~a-routine" routine-name)
:initargs (:rname routine-name))

164 D.3 Learning Systems

1. Define a class derived from roll:learning-system, containing all the parame-
terization needed for running the learning process. This class is the interface for
choosing and parameterizing the learning system later.

2. Define an experience class whose storage format fits the requirements of the learn-
ing system. For a learning experience class, only steps 1 and 2 of the procedure
described on page 159 are necessary since the data needn’t be read back into the
RoLL system.

3. Implement the invocation of the learning process with the bias given by the user.
4. Specify how to integrate the result of the learning process into LISP. This step con-

sists of two problems: conversion of the output from the learning system to exe-
cutable LISP code, and integration of this code into the program in a way that fits
the chosen learning problem class. As these two steps are strongly interwoven, they
have to be specified in one method integrate-learned-function. This requires
knowledge of both the learning system and the learning problem class.

Although RoLL doesn’t assume a specific format for the output of the learning system,
it requires that the result of the learning process be written to a LISP file, so that it can
be loaded in later runs of the system. Therefore, each learning problem is provided the
information of where to put the file containing the learned function (a slot inherited from
the class roll:learning-system, the information being provided by the programmer)
and the LISP package of the function to be learned. Besides, a unique identifier for each
learning problem is generated according to the rules of the learning problem.

In the following we present the learning systems implemented so far. Both make use
of external programs. The first employs several decision tree algorithms of the WEKA
machine learning software, the second provides access to the Stuttgart Neural Network
Simulator (SNNS).

D.3.1 Learning System WEKA

The WEKA (Witten and Frank 2005) machine learning project is a toolkit providing dif-
ferent learning and data mining algorithms implemented in Java. We only include the
algorithms for decision tree learning, these are J48 for classical decision trees and M5’ for
model and regression trees (Belker 2004).

Learning System Class

As the WEKA software supports a variety of learning algorithms, we arrange the learning
algorithms in a class hierarchy similar to the structure in WEKA. This approach simplifies
the integration of new WEKA algorithms and exploits features of the class hierarchy.
Figure D.3 depicts the hierarchy graphically, whereas Listing D.2 shows the code for

D. RoLL Extensions 165

defining these classes in RoLL.
The input for all WEKA classifiers is given in the attribute-relation file format (arff)

and the result is stored in an output file with the extension .weka, whose format differs
however when using different learning algorithms. The output produced by WEKA is
no executable code, but must be converted to a function in some programming language.
Once this conversion is done, the WEKA output file can be deleted or be kept for inspec-
tion. This decision can be controlled by a flag in the weka class.

The next step in defining the classes for decision tree learning is a class called weka-tree.
The class definition subsumes parameters that are valid in all tree learning algorithms.
Besides, the output format of the different tree learning algorithms is similar, though not
identical. By defining the weka-tree class, some of the parsing can be handled on the
level of the general tree class.

Finally, we define two classes weka-J48 and weka-m5prime for different decision tree
learning algorithms. The differences are mainly in the call to WEKA and the parsing of
the resulting tree given in the WEKA result file. The J48 algorithm is an enhancement
of the well-known C4.5 algorithm and trains classical decision trees. The M5’ algo-
rithm handles both model trees and regression trees, the choice being made by the flag
build-regression-tree.

Figure D.3 Class hierarchy for WEKA tree learning algorithms.

weka

weka-tree

weka-J48 weka-m5prime

WEKA Experience

The input format to all WEKA classifiers is independent of the chosen algorithm. All
classifiers assume that the data is composed of input and output values. Therefore, the
automaton structure of a weka-experience assumes that only one automaton with begin
and end values and no interval values is given.

For defining input data files WEKA requires a name for the relation to be learned,
the types of the attributes (input and output), and the data itself. The relation name is
stored in the weka-experience class (see Listing D.3) and is set automatically to the
generated name of the learning problem. The types of the attributes must be specified
manually. They could be set automatically like the SQL data types of the database expe-

166 D.3 Learning Systems

Listing D.2 Class definitions for WEKA tree learning algorithms.

;; all learning algorithms supported by WEKA
(defclass weka (roll:learning-system)
((arff-file :initarg :arff-file :reader arff-file)
(weka-output-file :initarg :weka-output-file

:reader weka-output-file)
(delete-weka-output-file :initarg :delete-weka-output-file

:initform nil
:reader delete-weka-output-file)))

;; tree learning algorithms
(defclass weka-tree (weka)
((use-unpruned-tree :initarg :use-unpruned-tree

:initform nil
:accessor use-unpruned-tree)

(minimum-number-of-instances
:initarg :minimum-number-of-instances
:initform nil
:accessor minimum-number-of-instances)))

;; classical decision tress
(defclass weka-J48 (weka-tree)
((pruning-confidence-threshold
:initarg pruning-confidence-threshold
:initform nil
:accessor pruning-confidence-threshold)
(reduced-error-pruning :initarg reduced-error-pruning

:initform nil
:accessor reduced-error-pruning)

(number-of-folds :initarg number-of-folds
:initform nil
:accessor number-of-folds)

(use-binary-splits-only :initarg use-binary-splits-only
:initform nil
:accessor use-binary-splits-only)))

;; regression and model trees
(defclass weka-m5prime (weka-tree)
((use-unsmoothed-predictions :initarg :use-unsmoothed-predictions

:initform nil
:accessor use-unsmoothed-predictions)

(build-regression-tree :initarg :build-regression-tree
:initform nil
:accessor build-regression-tree)))

D. RoLL Extensions 167

rience presented in Section D.1.2, but the mapping is sometimes ambiguous and can only
be determined after the first experience instance (i.e. the actual data) is known.

The conversion of the learning data to the attribute-relation file format works identi-
cally to the conversion from an experience to a more abstract one. The experience data is
converted episode-wise as shown in Figure 5.13 on page 92. When the reference instance
of the weka-experience is filled with data, its content is written to a file in the required
format. The writing of the attribute-relation file is done in two steps: first only the data is
written to a file arff-tmp-file specified in the WEKA experience class. The final data
file is created before the learning process starts (see next section).

Performing the Learning Process

Invoking the WEKA learning software from RoLL is very simple. The two steps to be
performed for all algorithms provided by WEKA is to complete the missing information
(the attribute names and types) in the data input file and then to call WEKA with the
chosen algorithm. This call to WEKA differs for each algorithm. It must contain the
correct WEKA class and add the specified parameters to the method invocation. The
output of the learning process is written to the output file specified in the learning problem
specification. The definition of the general learning procedure for all WEKA algorithms
and the specific call to the M5’ algorithm are shown in Listing D.4.

Listing D.3 Definition of experience class for WEKA algorithms. The data is stored in
the attribute-relation file format required by WEKA.

;; weka-experience class
(roll:define-abstract-experience-class weka-experience

(roll:learning-experience)
((arff-tmp-file :initform nil :accessor arff-tmp-file)
(relation-name :initform nil :accessor relation-name

:initarg :relation-name)
(attribute-types :initform nil :accessor attribute-types

:initarg :attribute-types)))

;; storing experience data
(defmethod roll:deliver-experience ((experience weka-experience))
(ensure-directories-exist (arff-tmp-file experience))
(with-open-file (stream (arff-tmp-file experience)

:direction :output :if-exists :append
:if-does-not-exist :create)

(format stream "~{~,5f,~}~{~,5f~^,~}~%"
(roll:get-automaton-data experience :begin)
(roll:get-automaton-data experience :end))))

168 D.3 Learning Systems

Integrating the Learning Results

The most laborious part in the definition of a new learning system is the integration of the
learning result back into RoLL. In the case of WEKA there are no tools translating the
output of the learning process to a C or LISP function, which could easily be embedded
into the program. Instead, the tree learning algorithms produce a well-readable text file
containing the tree structure. We parse this tree in LISP and return executable code, which
must then be written to a file either in the form of a LISP function or method or a lambda
function in the correct context, according to the learning problem class.

Listing D.4 Definition of learning process for WEKA algorithms, in particular M5’.

;; invocation of WEKA classification algorithm
(defmethod roll:do-learning ((ls weka) (experience weka-experience))
;finish arff file
(port:run-prog "/bin/bash"
:args (list

"-c"
(format
nil
"echo -e \"@relation ~a\\n\\n~{@attribute ~{~a~^ ~}\\n~}
\\n@data\"; cat ~a"
(relation-name experience)
(attribute-types experience)
(namestring (arff-tmp-file experience))))

:output (arff-file ls)
:if-output-exists :supersede)
(port:run-prog "rm"
:args (list (namestring (arff-tmp-file experience))))

;run specific learning algorithm
(run-weka ls))

;; call to WEKA for M5’ algorithm
(defmethod run-weka ((ls weka-m5prime))
(port:run-prog "java"
:args (append

’("weka.classifiers.trees.M5P")
(when (use-unpruned-tree ls) ’("-N"))
(when (use-unsmoothed-predictions ls) ’("-U"))
(when (build-regression-tree ls) ’("-R"))
(when (minimum-number-of-instances ls)
(list (format nil "-M ~a"

(minimum-number-of-instances ls))))
‘("-t" ,(namestring (arff-file ls))))

:output (weka-output-file ls) :if-output-exists :supersede))

D. RoLL Extensions 169

The solution for integrating WEKA results into the RoLL program is shown in List-
ing D.5. The method integrate-learned-function is specialized to the WEKA learn-
ing system and any kind of learning problem. It parses the WEKA output and produces a
general frame for the LISP file that is to contain the resulting function.

The function definition according to the learning problem class is done by the method
make-weka-function-call, which takes the learning problem object and the function
body generated by parsing the WEKA output file. In Listing D.5 we show the integration
for the learning problem class for routine models presented in Section D.2. In this case
the function code is surrounded by a lambda function, which is placed in the model slot
of the routine specified in the learning problem.

The resulting file is loaded directly after the learning process and then every time the
LISP system is started. A prerequisite is of course that the learned file is written to a
directory where it is loaded automatically. This can easily be achieved by loading files
with the ASDF system.

Listing D.5 Integration of WEKA results when learning a prediction model for a routine.

(defmethod roll:integrate-learned-function
((ls weka) (lp roll:learning-problem))

(with-open-file (str (learned-function-file ls)
:direction :output :if-exists :supersede)

(format str "(in-package ~s)~2%"
(package-name (learned-function-package ls)))

(format str "~s"
(make-weka-function-call
lp
‘(let ((,(first (second (learning-signature ls)))

,(parse-weka-output ls)))
,@(output-conversion lp)))))

(when (delete-weka-output-file ls)
(port:run-prog "rm"
:args (list (namestring (weka-output-file ls))))))

; make-weka-function-call for model-learning problem
(defmethod make-weka-function-call ((lp model-learning-problem)

function-body)
(let ((routine-var (gentemp "ROUTINE")))
‘(add-model ’,(routine lp) ,(model-type lp)
(make-instance ’routine-model
:execution-entity #’(lambda (,routine-var)

(let* ,(make-learning-conversion-code
(input-conversion lp)
‘((:input ,routine-var)))

,function-body))))))

170 D.3 Learning Systems

D.3.2 Learning System SNNS

SNNS (Stuttgart Neural Network Simulator) is an interface for defining and training neu-
ral nets. It supports a great variety of network architectures and learning algorithms. The
interface presented here only considers layered feed-forward networks. Next to a graphi-
cal user interface, SNNS offers a batch mode and tools for creating network structures on
the command line. We use the latter method for making SNNS usable in RoLL.

The steps for defining SNNS as a RoLL learning system are the same as for the WEKA
tree learning algorithms just presented. We will therefore omit the code and only explain
the most important aspects.

Learning System Class

The bias of neural networks contains numerous parameters. Even when restricting the
interface to layered feed-forward networks as we do, SNNS offers lots of possibilities
for customization, which are described in detail by Zell and others (1998). The following
parameters are supported in the RoLL interface (we refer to the pages of the SNNS manual
in brackets):

o unit activation fun (pp. 316, 249)
o unit output fun (p. 317)
o net initialization function (pp. 82, 245)
o net learning function (pp. 67 ff., 145ff., 246)
o number of cycles to train the network
o hidden layers
Besides, for running SNNS a number of files are required:
o a pattern file for storing the learning data,
o a network file containing the structure of the network,
o a batchman file containing instructions for SNNS what to do,
o a result file, which is a copy of the pattern file with additional information about the

errors for each training example,
o a C file containing the learned network as a C function,
o a library file — the compiled C file.
The use of these files is explained below. The most important consideration when

providing these paths is that the library file, i.e. the compiled result file, must be placed in
a directory where it is loaded by the RoLL system at start-up, so that the learned function
is available every time the system is started.

D. RoLL Extensions 171

SNNS Experience

SNNS expects the input data in form of a so-called pattern file. Next to the learning data it
contains information about the number of learning examples and the signature, i.e. which
of the given values are to be used for input and which ones represent output variables. The
input and output variables are drawn from the experience definition, which must contain
one automaton with the input variables in the begin slot and the output variables in the
end slot.

In contrast to the WEKA experience, the SNNS experience format doesn’t require ad-
ditional information like the types of the input values, which are assumed to be floating
point numbers. The method of writing the patterns is very similar to the WEKA experi-
ence format. The additional information about the number of patterns is likewise added
just before the learning process starts.

Performing the Learning Process

For running SNNS, three files must be created out of the parameters given in the learning
system class: a pattern file, a network file, and a batchman file.

The pattern file is finished when the learning starts, but is mostly composed of the data
written in the experience conversion process.

The network file describes the structure of the network. The number of input and
output variables is computed from the experience, whereas the number of hidden layers
and the number of neurons contained in them is given in the learning system parameters.
Besides, the user-defined unit activation and output functions are set in the network. Other
network structures are supported by SNNS, but not by this RoLL interface.

The batchman file tells SNNS how to perform the learning process. SNNS offers a
rich language for controlling the learning process and evaluating the result. However, we
implemented a simple loop training the network as many times as given in the learning
system specification and then stop. Beside the trained network we also save the result
file, so that the error values can be checked manually. If a learning problem requires a
more sophisticated control, the interface can still be used without creating the batchman
file automatically, but using a hand-coded batch program.

Integrating the Learning Results

When the learning process is done, the trained network is saved in a format specific to
SNNS. This file can be converted to C with the tool SNNS2C. The generated C function
is then compiled to a shared object library, which can be integrated into LISP using the
universal foreign function interface (UFFI). The foreign function call is then added to the
RoLL program according to the chosen learning problem class.

List of Figures

1.1 Household robot . 3
1.2 Learnable parts of a plan . 4
1.3 Illustration of an experience . 7
1.4 Embedding the learning result . 8
1.5 Usage of RoLL . 12

2.1 Architecture of a learning agent . 17
2.2 Learning process . 19
2.3 Experience abstraction steps . 20

3.1 Classification of language levels based on the agent architecture 26
3.2 Hierarchy of RoLL language levels . 27
3.3 Fluent network . 30
3.4 RPL code tree . 33
3.5 Architecture of a BDI agent . 36

4.1 Learning architecture with hybrid automata 41
4.2 Hierarchical hybrid automaton . 46
4.3 Modeling RPL constructs . 48
4.4 BDI language concepts as hybrid automata 49
4.5 Plan for making water boil . 51
4.6 Invariants in hybrid automata . 52
4.7 Behavior modeling with hybrid automata 54
4.8 Episode with state projection . 56
4.9 Experience acquisition with hybrid automata 58

5.1 Operating modes for learning . 63
5.2 Learning cycle . 65
5.3 The learning process in RoLL. 66
5.4 Learning cycle: experience acquisition 68
5.5 Experience data definition . 69

5.6 Experience abstraction network . 71
5.7 Experience processing chain . 72
5.8 Learning cycle: experience detection . 74
5.9 Raw experience automaton . 75
5.10 Anchoring of experience automata . 76
5.11 Problem generator . 84
5.12 Example of experience abstraction . 88
5.13 Abstract experience classes . 92
5.14 Learning cycle: learning . 93
5.15 Experience abstraction for navigation routine 96
5.16 Abstraction in the context of the learning process 97

6.1 Simulated household robot . 110
6.2 Comparison of learning systems (average values) 112
6.3 Comparison of learning systems (one problem instance) 113
6.4 Comparison of active and passive experience acquisition for one plan . . 114
6.5 Comparison of active and passive experience acquisition for two plans . . 115
6.6 Choosing the arm for gripping based on pick-up experience 117
6.7 Choosing the arm for gripping based on pick-up and put-down experience 118
6.8 Experiences for trajectory selection problem 120
6.9 State space regions for trajectory selection problem 121
6.10 Evaluating plans with RoLL . 123

C.1 Combining abstraction definitions . 156

D.1 RoLL experience classes . 159
D.2 Mapping between automaton structure and database tables 161
D.3 Class hierarchy for WEKA tree learning algorithms 165

Drawing Conventions

Control Flow and Architecture Diagrams

process

implicit process

processing step

implicit processing step

data

function

implicit process communication

next processing step

process call

data flow

Hybrid Automata

general HHA var1
var2

S

flow: f lowS

T

flow: f lowT

cond
act

flow: f lowH

Hybrid automaton with subautomata S
and T , variables var1 and var2, a tran-
sition 〈S ,T 〉 with jump condition and
act function, and a f low function.

function

flow: Σ← f (Σ)

Function of the BDI language layer,
shown as an automaton with sharp cor-
ners.

low-level loop routine

flow: model

Low-level loop routine of the BDI layer,
illustrated by rounded corners with a
larger radius. Other low-level routines
are depicted as standard automata.

goal routine

arb

routine1

routine2

routine3

flow: flow(arb())

Goal of the BDI language layer, de-
picted as an automaton with double
lines.

automaton var 1
var 2

Experience automaton recording data
continuously during the automaton run.

automaton var 1
var 2

Experience automaton recording data
once at the beginning of the automaton
activity.

automaton var 1
var 2

Experience automaton recording data
once at the end of the automaton activ-
ity.

Bibliography

Abraham, Ajith (2003). Meta-learning evolutionary artificial neural networks. Neurocom-
puting .

Abraham, Ajith and Baikunth Nath (2000). Optimal design of neural nets using hybrid al-
gorithms. In Pacific Rim International Conference on Artificial Intelligence, pp. 510–520.

Agre, Philip E. and David Chapman (1987). Pengi: An implementation of a theory of
activity. In National Conference on Artificial Intelligence (AAAI), pp. 268–272.

Alu, R., J. Esposito, M. Kim, V. Kumar, and I. Lee (1999). Formal modeling and analysis
of hybrid systems: A case study in multirobot coordination. In Proceedings of the World
Congress on Formal Methods, pp. 212–232.

Alur, R., C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, and J. Schug
(2001). Hybrid modeling and simulation of biomolecular networks. In Fourth Interna-
tional Workshop on Hybrid Systems: Computation and Control, pp. 19–32.

Alur, R., C. Courcoubetis, T. A. Henzinger, and P-H. Ho (1993). Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. Lecture Notes
in Computer Science 736: 209–229.

Alur, R., T. Dang, and F. Ivancic (2002). Reachability analysis of hybrid systems via
predicate abstraction. In Fifth International Workshop on Hybrid Systems: Computation
and Control.

Alur, R., T. Henzinger, and P. Ho (1996). Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering 22(3): 181–201.

Alur, Rajeev, Radu Grosu, Insup Lee, and Oleg Sokolsky (2001). Compositional refine-
ment for hierarchical hybrid systems. Lecture Notes in Computer Science 2034.

Alur, Rajeev, Thomas A. Henzinger, and Pei-Hsin Ho (1996). Automatic symbol verifi-
cation of embedded systems. IEEE Transactions on Software Engineering 22(3).

Anderson, Michael L., Tim Oates, Waiyian Chong, and Donald R. Perlis (2006). Enhanc-
ing reinforcement learning with metacognitive monitoring and control for improved per-
turbation tolerance. Journal of Experimental and Theoretical Artificial Intelligence 18(3).

Bibliography 177

Anderson, Scott D., David L. Westbrook, David M. Hart, and Paul R. Cohen (1994).
Common Lisp Interface Package CLIP.

Andre, D. and S. Russell (2001). Programmable reinforcement learning agents.
In Proceedings of the 13th Conference on Neural Information Processing Systems,
pp. 1019–1025, Cambridge, MA. MIT Press.

Andre, David (2003). Programmable Reinforcement Learning Agents. Ph.D. diss., Uni-
versity of California at Berkeley.

Antsaklis, Panos J. (2000). A brief introduction to the theory and applications of hybrid
systems. Proceedings of the IEEE 88(7): 879–887.

Bachmann, Marc (2007). Concurrent execution of robot plans for every-day activities
using learned prediciton models. Master’s thesis, Technische Universität München.

Barrett, A. (2003). Domain compilation for embedded real-time planning. In Proceedings
of the ICAPS’03 Workshop on Plan Execution.

Beetz, M. and D. McDermott (1997). Expressing transformations of structured reactive
plans. In Recent Advances in AI Planning. Proceedings of the 1997 European Conference
on Planning, pp. 64–76. Springer Publishers.

Beetz, Michael, Jan Bandouch, Alexandra Kirsch, Alexis Maldonado, Armin Müller, and
Radu Bogdan Rusu (2007). The assistive kitchen — a demonstration scenario for cog-
nitive technical systems. In Proceedings of the 4th COE Workshop on Human Adaptive
Mechatronics (HAM).

Beetz, Michael and Henrik Grosskreutz (2005). Probabilistic hybrid action models for
predicting concurrent percept-driven robot behavior. Journal of Artificial Intelligence
Research 24: 799–849.

Beetz, Michael, Alexandra Kirsch, and Armin Müller (2004). RPL-LEARN: Extending
an autonomous robot control language to perform experience-based learning. In 3rd In-
ternational Joint Conference on Autonomous Agents & Multi Agent Systems (AAMAS).

Belker, T. (2004). Plan Projection, Execution, and Learning for Mobile Robot Control.
Ph.D. diss., Department of Applied Computer Science, University of Bonn.

Blumberg, Bruce (2002). Exploring Artificial Intelligence in the New Millennium, chapter
D-Learning: What Learning in Dogs Tells Us About Building Characters That Learn What
They Ought to Learn. Morgan Kaufmann.

Bonarini, Andread, Alessandro Lazaric, Marcello Restelli, and Patrick Vitali (2006). Self-
development framework for reinforcement learning agents. In Proceedings of the Fifth
International Conference on Development and Learning.

178 Bibliography

Bonasso, R. P. and D. Kortenkamp (1995). Characterizing an architecture for intelligent,
reactive agents. In Working Notes: 1995 AAAI Spring Symposium on Lessons Learned
from Implemented Software Architectures for Physical Agents.

Bonnlander, Brian (1996). Nonparametric selection of input variables for connectionist
learning. Ph.D. diss., University of Colorado.

Boutilier, Craig, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun (2000).
Decision-theoretic, high-level agent programming in the situation calculus. In Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on on Innovative Applications of Artificial Intelligence, pp. 355–362.

Brachman, Ronald (2002). Systems that know what they’re doing. IEEE Intelligent Sys-
tems pp. 67 – 71.

Branicky, Michael S. (1995). Studies in Hybrid Systems: Modeling, Analysis, and Con-
trol. Ph.D. diss., Massachusetts Institute of Technolgy.

Branicky, M.S. (1993). Topology of hybrid systems. In Proceedings of the 32nd IEEE
Conference on Decision and Control, pp. 2309–2314.

Branicky, M.S., V.S. Borkar, and S.K Mitter (1998). A unified framework for hy-
brid control: model and optimal control theory. IEEE Transactions on Automatic Con-
trol 43(1): 31–45.

Bratman, Michael E. (1987). Intention, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA.

Bratman, Michael E., David Israel, and Martha Pollack (1991). Plans and resource-
bounded practical reasoning. In Cummins, Robert and John L. Pollock, editors, Philoso-
phy and AI: Essays at the Interface, pp. 1–22. The MIT Press, Cambridge, Massachusetts.

Brodley, Carla E. (1995). Recursive automatic bias selection for classifier construction.
Machine Learning 20(1–2): 63–94.

Buss, Martin, Michael Beetz, and Dirk Wollherr (2007). CoTeSys — cognition for techni-
cal systems. In Proceedings of the 4th COE Workshop on Human Adaptive Mechatronics
(HAM).

Caruana, Rich and Dayne Freitag (1994). Greedy attribute selection. In International
Conference on Machine Learning, pp. 28–36.

Cohn, David A. (1996). Neural network exploration using optimal experiment design.
Neural Networks 9(6): 1071–1083.

Crites, Robert H. and Andrew G. Barto (1996). Improving elevator performance using
reinforcement learning. In Touretzky, D.S̃. M.C̃. Mozer, and M.Ẽ. Hasselmo, editors,
Advances in Neural Information Processing Systems 8. MIT Press.

Bibliography 179

Crowley, James L., Olivier Brdiczka, and Patrick Reignier (2006). Learning situation
models for understanding activity. In Proceedings of the Fifth International Conference
on Development and Learning.

Dewey, John (1938). Experience and Education. Collier Books, New York.

Dousson, Christophe (1994). Suivi d’Evolutions et Reconnaissance de Chroniques. Ph.D.
diss., Université Paul Sabatier, Toulouse.

Dousson, Christophe, Paul Gaborit, and Malik Ghallab (1993). Situation recognition:
representation and algorithms. In 13th International Joint Conference on Artificial Intel-
ligence (IJCAI’93), pp. 166–172.

Fei-Fei, Li (2006). Knowledge transfer in learning to recognize visual objects classes. In
Proceedings of the Fifth International Conference on Development and Learning.

Firby, R., P. Prokopowicz, M. Swain, R. Kahn, and D. Franklin (1996). Programming
CHIP for the IJCAI-95 robot competition. AI Magazine 17(1): 71–81.

Firby, R. James (1987). An investigation into reactive planning in complex domains. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

Firby, R. James, Peter N. Prokipowicz, and Michael J. Swain (1995). Plan representa-
tion for picking up trash. In Seventh International Conference on Tools with Artificial
Intelligence.

Firby, Robert James (1989). Adaptive Execution in Complex Dynamic Worlds. Ph.D.
diss., Yale University. Technical Report YALEU/CSD/RR #672.

Fox, Maria, Malik Ghallab, Guillaume Infantes, and Derek Long (2006). Robot intro-
spection through learned hidden markov models. Artificial Intelligence 170(2): 59–113.

Fox, Maria and Derek Long (2006). Modelling mixed discrete-continuous domains for
planning. Journal of Artificial Intelligence Research 27: 235–297.

Gabel, Thomas, Roland Hafner, Sascha Lange, Martin Lauer, and Martin Riedmiller
(2006). Bridging the gap: Learning in the RoboCup simulation and midsize league. In
Proceedings of the 7th Portuguese Conference on Automatic Control.

Gat, Erann (1997). On three-layer architectures. Artificial Intelligence And Mobile
Robots .

Gehrke, Johannes and Samuel Madden (2004). Query processing in sensor networks.
IEEE Pervasive Computing 3(1): 46–55.

Georgeff, M. P. and A. L. Lansky (1987). Reactive reasoning and planning. In AAAI-87
Proceedings, pp. 677–682. American Association of Artificial Intelligence.

180 Bibliography

Georgeff, Michael P. and François F. Ingrand (1989). Monitoring and control of spacecraft
systems using procedural reasoning. In Proceedings of the Space Operations Automation
and Robotics Workshop.

Georgeff, Mike, Barney Pell, Martha Pollack, Milind Tambe, and Mike Wooldridge
(1999). The belief-desire-intention model of agency. In Müller, Jörg, Munindar P. Singh,
and Anand S. Rao, editors, Proceedings of the 5th International Workshop on Intelligent
Agents V : Agent Theories, Architectures, and Languages (ATAL-98), Vol. 1555, pp. 1–10.
Springer-Verlag: Heidelberg, Germany.

Gerkey, Brian, Richard T. Vaughan, and Andrew Howard (2003). The Player/Stage
Project: Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th
International Conference on Advanced Robotics (ICAR2003), pp. 317–323.

Ghallab, Malik (1998). Chronicles as a practical representation for dealing with time,
events and actions. In 6th Italian Conference on Artificial Intelligence (AIIA’98), pp. 6–10.

Gordon, Diana F. and Marie Desjardins (1995). Evaluation and selection of biases in
machine learning. Machine Learning 20(1–2): 5–22.

Henry, Melvin Michael (2002). Model-based estimation of probabilistic hybric automata.
Master’s thesis, Massachusetts Institute of Technology.

Henzinger, Thomas (1996). The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS ’96), pp. 278–292, New
Brunswick, New Jersey.

Henzinger, Thomas A. and Howard Wong-Toi (1996). Using hytech to synthesize control
parameters for a steam boiler. In Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control, pp. 265–282.

Herrera, L. J., H. Pomares, I. Rojas, M. Verleysen, and A. Guilén (2006). Effective input
variable selection for function approximation. In International Conference on Artificial
Neural Networks, Lecture Notes in Computer Science, pp. 41–50. Springer.

Infantes, Guillaume, Felix Ingrand, and Malik Ghallab (2006). Learning behaviors models
for robot execution control. In Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI).

Ingham, M., R. Ragno, and B. C. Williams (2001). A reactive model-based programming
language for robotic space explorers. In International Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space (i-SAIRAS), Montreal, Canada.

Ingrand, François F., Michael P. Georgeff, and Anand S. Rao (1990). An architecture for
real-time reasoning and system control. In Proceedings of DARPA Workshop on Innova-
tive Approaches to Planning, San Diego, CA.

Bibliography 181

Ingrand, François Félix, Raja Chatila, Rachid Alami, and Frédérick Robert (1996). PRS:
A high level supervision and control language for autonomous mobile robots. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, pp. 43–49, Minneapolis.

Kirsch, Alexandra (2005). Towards high-performance robot plans with grounded action
models: Integrating learning mechanisms into robot control languages. In ICAPS Doc-
toral Consortium.

Kirsch, Alexandra and Michael Beetz (2005). Combining learning and programming for
high-performance robot controllers. In Autonome Mobile Systeme 2005.

Kirsch, Alexandra and Michael Beetz (2007). Training on the job — collecting expe-
rience with hierarchical hybrid automata. In Hertzberg, J., M. Beetz, and R. Englert,
editors, Proceedings of the 30th German Conference on Artificial Intelligence (KI-2007),
pp. 473–476.

Kirsch, Alexandra, Michael Schweitzer, and Michael Beetz (2005). Making robot learning
controllable: A case study in robot navigation. In Proceedings of the ICAPS Workshop on
Plan Execution: A Reality Check.

Knight, Russell, S. Chien, and Gregg Rabideau (2001). Extending the representational
power of model-based systems using generalized timelines. In The 6th International Sym-
posium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS), Mon-
treal, Canada.

Kolb, D. (1984). Experiential Learning: Experience as the Source of Learning and De-
velopment. Financial Times Prentice Hall, New York, NY.

Laborie, Philippe and Malik Ghallab (1995). IxTeT: an integrated approach for plan
generation and scheduling. In 4th IEEE-INRIA Symposium on Emerging Technologies
and Factory Automation (ETFA’95), pp. 485–495.

Lange, Sascha and Martin Riedmiller (2005). Evolution of computer vision subsystems
in robot navigation and image classification tasks. In D. Nardi, M. Riedmiller, C. Sammut
and J. Santos-Victor, editors, RoboCup-2004: Robot Soccer World Cup VIII. Springer,
LNCS.

Li, Yifan, Petr Musilek, and L. Wyard-Scott (2004). Fuzzy logic in agent-based game
design. In Proceedings of the 2004 Annual Meeting of the North American Fuzzy Infor-
mation Processing Society, pp. 734–739.

Madden, Sam R., Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong (2005).
TinyDB - an acquisitional query processing system for sensor networks. ACM Trans.
Database Systems 30(1).

McDermott, D. (1992). Transformational planning of reactive behavior. Research Report
YALEU/DCS/RR-941, Yale University.

182 Bibliography

McDermott, Drew (1990). Planning reactive behavior: A progress report. In Workshop
on Innovative Approaches to Planning, Scheduling and Control, pp. 450–458.

McDermott, Drew (1993). A reactive plan language. Technical report, Yale University,
Computer Science Dept.

McDermott, Drew (2000). The 1998 AI planning systems competition. AI Maga-
zine 21(2): 35–55.

McDermott, D.V., W.E. Cheetham, and B.D. Pomeroy (1991). Cockpit emergency re-
sponse: The problem of reactive plan projection. In IEEE International Conference on
Systems, Man, and Cybernetics.

Minsky, Marvin (2001). It’s 2001. where is hal? Game Developers Conference Talk,
http://technetcast.ddj.com/tnc_play_stream.html?stream_id=526.

Mishap Investigation Board (1999). Mars climate orbiter. Phase I Report.

Mitchell, Tom M. (1990). Becoming increasingly reactive. In National Conference on
Artificial Intelligence.

Mitchell, Tom M. (2006). The discipline of machine learning. Technical report CMU-
ML-06-108, Carnegie Mellon University.

Mukerjee, Amitabha and Mausoom Sarkar (2006). Perceptual theory of mind: An inter-
mediary between visual salience and noun/verb acquisition. In Proceedings of the Fifth
International Conference on Development and Learning.

Müller, Armin and Michael Beetz (2006). Designing and implementing a plan library
for a simulated household robot. In Beetz, Michael, Kanna Rajan, Michael Thielscher,
and Radu Bogdan Rusu, editors, Cognitive Robotics: Papers from the AAAI Workshop,
Technical Report WS-06-03, pp. 119–128, Menlo Park, California. American Association
for Artificial Intelligence.

Müller, Armin, Alexandra Kirsch, and Michael Beetz (2004). Object-oriented model-
based extensions of robot control languages. In 27th German Conference on Artificial
Intelligence.

Müller, Armin, Alexandra Kirsch, and Michael Beetz (2007). Transformational planning
for everyday activity. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS).

Muscettola, Nicola, P. Pandurang Nayak, B. Pell, and B. Williams (1998). Remote Agent:
To boldly go where no AI system has gone before. Artificial Intelligence 103(1-2): 5–48.

Myers, K. L. (1997). User guide for the procedural reasoning system. Technical report,
Artificial Intelligence Center, SRI International, Menlo Park, CA.

Bibliography 183

Myers, Karen (2006). Building an intelligent personal assistant. AAAI Invited Talk.

O’Sullivan, Joseph, Karen Zita Haigh, and G. D. Armstrong (1997). Xavier.

Oudeyer, Pierre-Yves, Frédéric Kaplan, and Verena V. Hafner (2007). Intrinsic motiva-
tion systems for autonomous mental development. IEEE Transactions on Evolutionary
Computation 11(2): 265–286.

Oudeyer, Pierre-Yves, Frédéric Kaplan, Verena V. Hafner, and Andrew Whyte (2005).
The playground experiment: Task-independent development of a curious robot. In pro-
ceedings of the AAAI Spring Symposium Workshop on Developmental Robotics.

Payton, David (1986). An architecture for reflexive autonomous vehicle control. In Pro-
ceedings of the International Conference on Robotics and Automation (ICRA).

Petkos, Georgios, Marc Toussaint, and Sethu Vijayakumar (2006). Learning multiple
models of non-linear dynamics for control under varying contexts. In International Con-
ference on Artificial Neural Networks, Lecture Notes in Computer Science, pp. 898–907.
Springer.

Pfahringer, Bernhard, Hilan Bensusan, and Christophe Giraud-Carrier (2000). Meta-
learning by landmarking various learning algorithms. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML’2000, pp. 743–750, San Fran-
cisco, California. Morgan Kaufmann.

Pfeffer, Avi (2001). IBAL: A probabilistic rational programming language. In IJCAI,
pp. 733–740.

Pollack, Martha E. and John F. Horty (1999). There’s more to life than making plans:
Plan management in dynamic, multi-agent environments. AAAI Magazine 20(4).

Rao, A. S. and M. P. Georgeff (1995). BDI-agents: from theory to practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco.

Riedmiller, M. and T. Gabel (2007). On experiences in a complex and competitive gaming
domain: Reinforcement learning meets robocup. In Proceedings of the 3rd IEEE Sympo-
sium on Computational Intelligence and Games (CIG 2007), pp. 17–23. IEEE Press.

Röfer, Thomas (2005). Evolutionary gait-optimization using a fitness function based on
proprioception. In RoboCup 2004: Robot World Cup VIII, Lecture Notes in Artificial
Intelligence, pp. 310–322. Springer.

Russell, Stuart and Peter Norvig (2003). Artificial Intelligence - A Modern Approach.
Prentice Hall, Upper Saddle River, New Jersey.

Schut, Martijn and Michael Wooldridge (2001). Principles of intention reconsideration.
In Proceedings of the fifth international conference on Autonomous agents.

184 Bibliography

Singh, Satinder Pal (1992). Transfer of learning by composing solutions of elemental
sequential tasks. Machine Learning 8(3–4).

Smart, W. (2002). Making Reinforcement Learning Work on Real Robots. Ph.D. diss.,
Department of Computer Science, Brown University.

Stone, P. and R. Sutton (2001). Scaling reinforcement learning toward RoboCup soccer.
In Proc. 18th International Conf. on Machine Learning, pp. 537–544. Morgan Kaufmann,
San Francisco, CA.

Stulp, Freek, Mark Pflüger, and Michael Beetz (2006). Feature space generation using
equation discovery. In Proceedings of the 29th German Conference on Artificial Intelli-
gence (KI).

Takahashi, Y. and M. Asada (2001). Multi-controller fusion in multi-layered reinforce-
ment learning. In International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI2001), pp. 7–12.

Thrun, S. (2000). Towards programming tools for robots that integrate probabilistic com-
putation and learning. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), San Francisco, CA. IEEE.

Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Stro-
hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian,
and P. Mahoney (2006). Stanley, the robot that won the DARPA grand challenge. Journal
of Field Robotics .

Thrun, Sebastian (1992). The role of exploration in learning control. In White, David A.
and Donald A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy, and Adap-
tive Approaches. Van Nostrand Reinhold.

Thrun, Sebastian (1994). A lifelong learning perspective for mobile robot control. In
Proceedings of the IEEE/RSJ/GI Conference on Intelligent Robots and Systems.

Thrun, Sebastian (1998a). Exploration in active learning. In Arbib, Michael, editor, The
handbook of brain theory and neural networks, pp. 381–384. MIT Press, Cambridge, MA,
USA.

Thrun, Sebastian (1998b). A framework for programming embedded systems: Initial
design and results. Technical report CMU-CS-98-142, Carnegie Mellon University, Com-
puter Science Department, Pittsburgh, PA.

Thrun, Sebastian B. and Tom M. Mitchell (1993). Lifelong robot learning. Technical
report IAI-TR-93-7, University of Bonn.

Bibliography 185

Valsalam, Vinod, James Bednar, and Risto Miikkulainen (2006). Establishing an ap-
propriate learning bias through development. In Proceedings of the Fifth International
Conference on Development and Learning.

Vilalta, Ricardo and Youssef Drissi (2002). A perspective view and survey of meta-
learning. Artificial Intelligence Review 2(18): 77–95.

Volpe, R. and S. Peters (2003). Rover technology development and infusion for the 2009
mars science laboratory mission. In Proceedings of 7th International Symposium on Arti-
ficial Intelligence, Robotics, and Automation in Space (i-SAIRAS).

Weng, Juyang (2004). Developmental robotics: Theory and experiments. International
Journal of Humanoid Robotics 1(2): 199–236.

Weng, Juyang, James McClelland, Alex Pentland, Olaf Sporns, Ida Stockman, Mriganka
Sur, and Esther Thelen (2001). Autonomous mental development by robots and animals.
Science 291.

Williams, Brian C., M. Ingham, S. H. Chung, and Paul H. Elliott (2003). Model-based
programming of intelligent embedded systems and robotic space explorers. Proceedings
of the IEEE: Special Issue on Modeling and Design of Embedded Software 9(1): 212–237.

Williams, Brian C. and P. P. Nayak (1996a). Livingstone: Onboard model-based configu-
ration and health management. In Proceedings of AAAI-96.

Williams, Brian C. and P. Pandurang Nayak (1996b). Immobile robots: Ai in the new
millennium. AI Magazine 17(3): 16–35.

Witten, Ian H. and Eibe Frank (2005). Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2nd edition.

Younger, A. S., S. Hochreiter, and P. R. Conwell (2001). Meta-learning with backpropa-
gation. In Proceedings of the International Joint Conference on Neural Networks (IEEE-
2001).

Yu, Kai, Jinbo Bi, and Volker Tresp (2006). Active learning via transductive experimental
design. In Proceedings of International Conference on Machine Learning.

Zell, Andreas et al. (1998). SNNS User Manual. University of Stuttgart and University of
Tübingen. Version 4.2.

