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Introduction

“What kind of computer are we going to use to simulate physics?” Richard Feynman
asked in 19821, before adding, about quantum mechanics, “I want to talk about the
possibility that there is to be an exact simulation, that the computer will do exactly
the same as nature”. It means that, to simulate accurately and efficiently quantum
physics, one needs a quantum computer2. Those quantum computers are still under
development3, but the idea arose to use quantum simulators rather than quantum
calculators, and to model quantum matter with quantum systems that share the same
Hamiltonian. So far, such quantum systems are made of ultracold atoms4 photons5 or
ions6.

Even though cold atoms can be used to simulate long-elusive particles, such as the
Higgs mode7 or Weyl fermions8, most of the quantum simulation is focused on aspects
related to condensed matter, in which one of the most spectacular manifestation of
quantum effects is superfluidity.

Superfluidity in quantum fluids

Superconductivity

The first superfluidity effects were discovered with the superconductivity of mercury in
1911. In superconductors, electrons feel effective attractive interactions mediated by
phonons and form Cooper pairs, as was explained in Bardeen-Cooper-Schrieffer (BCS)
theory9. The superfluid character of the Cooper pairs leads to the observed absence
of electric resistance.

Helium

In 1937, Kapitza10, Allen and Misener11 discovered that the viscosity of helium 4 below
the phase transition temperature of 2.2K was exactly zero. This was interpreted12 as
the condensation predicted by Bose and Einstein of bosonic 4He. Years later, in 1972,
helium 3 was also found to undergo a phase transition, at a temperature of 2.6mK,

1[Feynman, 1982]
2[Lloyd, 1996]
3[Ladd et al., 2010]
4[Bloch et al., 2012, Bloch et
al., 2008]

5[Aspuru-Guzik and Walther,
2012]
6[Blatt and Roos, 2012]
7[Endres et al., 2012]
8[Suchet et al., 2015]
9[Bardeen et al., 1957]

10[Kapitza, 1938]
11[Allen and Misener, 1938]
12[Tisza, 1938, London,
1938, Landau, 1941, Tisza,
1947]
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2 Introduction

below which it was superfluid13. Here, the superfluidity was interpreted14 as resulting
from the formation of pairs of fermionic 3He.

Ultracold atoms
For the new quantum fluids that ultracold gases were about fifteen years ago, with
the first Bose-Einstein condensate in 199515 and the degenerate Fermi gas in 199916,
evidences of superfluidity were searched intensively. Among the spectacular effects
of superfluidity are phase coherence17, the presence of vortices and the existence of
a critical velocity for dissipation, and these effects attracted most efforts in the cold
atom community. Vortices are due to the quantization of circulation in quantum fluids
and can be seen via the presence of zero-density lines within the gas. The existence
of a critical velocity is a completely different phenomenon and is based on Landau’s
criterion to create excitations in a quantum fluid flow that lead to dissipation. For Bose-
Einstein condensates, both vortices18 and critical velocity19 were observed in the early
2000s. For fermions, the observation of vortices at MIT20 provided indisputable proofs
on the superfluidity of these systems for various interaction strengths. The critical
velocity for fermions was also measured with different probing techniques21. It is also
worth mentioning the recent realization of Bose-Einstein condensates of polaritons22

and magnons23, that are also superfluids.

Quantum simulation with ultracold atoms

Hubbard models
In was noticed in the early days of ultracold atoms that the high purity of their
environment and their controllability made them systems of choice to simulate various
condensed-matter Hamiltonians24. Observation of superfluidity in ultracold gases was
a prelude to quantum simulation of environments that challenge it. Among them is the
Hubbard model, that predicts a phase transition between a superfluid state and a Mott
insulating state for particles in a lattice when varying the ratio between interaction
energy and tunnel energy. The first realizations of the Bose-Hubbard Hamiltonian
(with bosons in an optical lattice)25 paved the way for theoretical and experimental
studies of Fermi-Hubbard26 and Bose-Fermi Hubbard27 models. Cold atoms provide
unique tools to explore their phase transitions, such as single site and single atom
resolution28 (that would correspond to imaging directly single electrons in a solid).
13[Osheroff et al.,
1972a, Osheroff et al., 1972b]
14[Leggett, 1975]
15[Anderson et al.,
1995, Davis et al., 1995a]
16[DeMarco and Jin, 1999]
17[Bloch et al., 2000]
18[Matthews et al.,
1999, Madison et al.,
2000, Abo-Shaeer et al., 2001]
19[Raman et al., 1999, Onofrio
et al., 2000, Fedichev and

Shlyapnikov, 2001]
20[Zwierlein et al.,
2005, Zwierlein et al., 2006a]
21[Miller et al., 2007, Weimer
et al., 2015, Delehaye et al.,
2015]
22[Amo et al., 2009, Balili et
al., 2007]
23[Nikuni et al.,
2000, Demokritov et al., 2006]

24[Fisher et al., 1989, Jaksch
et al., 1998, Jaksch and
Zoller, 2005]
25[Greiner et al., 2002, Will et
al., 2010]
26[Köhl et al.,
2005, Strohmaier et al.,
2007, Jordens et al.,
2008, Schneider et al., 2008]
27[Günter et al.,
2006, Ospelkaus et al., 2006]
28[Bakr et al., 2009]



Introduction 3

The possibility to visualize directly single-site population gives access to the correlation
functions and enables precise study of quantum phase transitions. Some controllable
disorder29 can also be added to the Hubbard models in various dimensions to study the
localization of particles due to disorder, a phenomenon called Anderson localization.

Charged matter in magnetic fields

More recently, the challenge of simulating the behavior of charged matter in magnetic
fields with neutral atoms was also addressed30. Since cold atoms are neutral, they
are not accelerated by magnetic fields. It is thus required to apply so-called artificial
gauge fields. One of the realization of artificial gauge fields consists in implementing
a global rotation Ω of the gas. The resulting Coriolis force 2MΩ ∧ v (where M is
the mass of the system and v its velocity) has the same mathematical structure as
the Lorentz force qv ∧B31, where q is the charge of the particle. Another possibility
to create artificial gauge fields is to apply a specific laser scheme, designed to imprint
a Berry phase (similar to the phase acquired by a particle evolving in a magnetic
field) on atoms in bulk phases32 or in optical lattices33. This led for instance to the
realization of the Hofstadter Hamiltonian34. These synthetic magnetic fields also offer
the possibility to reach fractional quantum Hall regime for ultracold atoms under a
strong artificial magnetic field.

Transport properties

Since the starting point of most cold atom experiments is a system at equilibrium in
a trapping potential, one natural way to investigate transport properties is to modify
the trapping potential and observe the response of the system to this perturbation35.
However, one key observable of solid-state physics, electric conduction, can not be
simulated with this technique because it requires two reservoirs and a channel con-
necting them. Conduction was observed by engineering such a system with optical
potentials and realizing a population imbalance between the two reservoirs so that the
particles would go from one to the other through the channel36, both in the ballistic
and diffusive regime.

Dipolar gases

The first atoms that were cooled to quantum degeneracy were alkali. They have negli-
gible dipole magnetic moment and only interact with short-range contact interactions.
One workaround to study the effect of long-range interactions is the use of Rydberg
atoms37. Another one relies on dipolar gases, that exhibit long-range, anisotropic in-

29[Roati et al., 2008, Billy et
al., 2008, Kondov et al.,
2011, Gurarie et al.,
2009, Schreiber et al., 2015]
30[Bloch et al., 2008, Dalibard
et al., 2011, Goldman et al.,
2014]

31[Madison et al., 2000]
32[Lin et al., 2009, Wang et
al., 2012, Cheuk et al., 2012]
33[Aidelsburger et al.,
2011, Struck et al.,
2013, Miyake et al., 2013]
34[Aidelsburger et al., 2013]

35[Jin et al., 1996, Ben Dahan
et al., 1996, Ott et al.,
2004, Sommer et al.,
2011, Schneider et al., 2012]
36[Brantut et al., 2012]
37[Schauß et al., 2012, Weimer
et al., 2008, Pohl et al., 2010]
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teractions38. They may challenge the stability of a Bose-Einstein condensate39, or lead
to Rosensweig instability40. Antiferromagnetism can also be simulated41.

Fermi gases with tunable interactions

Ultracold gases can also predict the properties of systems hard to reach experimentally,
such as neutron stars for instance42. Neutron stars are strongly interacting Fermi
systems at a temperature T ∼ 106 − 108 K, well below their Fermi temperature TF ∼
1012 K. Their behavior is similar to that of an ultracold strongly interacting Fermi gas,
and the knowledge of the equation of state of the ultracold Fermi gas gives access to that
of a layer of the neutron star. Strongly interacting Fermi gases are composed of several
fermionic species (for instance, atoms in two different spin-states noted ↑ and ↓). Those
two fermionic species may interact with each other, and interactions are characterized
by the scattering length aff and the interaction strength kFaff , where kF is the Fermi
wave-vector. For small values of 1/|kFaff |, the system is said strongly interacting,
and the 1/|kFaff | → 0 limit is called unitarity. For 1/kFaff � 1 (“BEC regime”),
fermions form tightly-bound pairs with bosonic character that may undergo Bose-
Einstein condensation, while for 1/kFaff � −1 (“BCS regime”), fermions form Cooper
pairs. Superfluidity is possible in the whole BEC-BCS crossover, and is characterized
by pairing between spin-↑ and spin-↓ fermions.

For fermions, the equation of state is thus a function of three parameters: the
temperature, the interaction strength, and the ratio between the two spin-populations1.
In three dimensions2, it has been obtained as a function of temperature at unitarity43,
as a function of interaction strength at zero temperature44, and as a function of spin
imbalance. Indeed, when considering spin-imbalanced gases, one key parameter is
the population imbalance above which superfluidity is lost. This issue, known as
the Clogston-Chandrasekhar limit45, has been investigated both theoretically46 and
experimentally47.

For spin-imbalanced Fermi systems, several exotic, long-elusive phases have been
predicted. Among them is the FFLO phase48, characterized, with other properties,

1For bosons the equation of state is a function only of temperature and interaction strength. It has
been measured as a function of temperature in three dimensions [Ensher et al., 1996, Gerbier et al.,
2004b, Gerbier et al., 2004a], in two dimensions [Hung et al., 2011, Rath et al., 2010, Yefsah et al.,
2011] and in one dimension [van Amerongen et al., 2008, Armijo et al., 2011]. The study of ultracold
gases in more than three dimensions is now considered [Boada et al., 2012, Celi et al., 2014, Zeng et
al., 2015, Price et al., 2015], by seeing the spin degrees of freedom of the atoms as a discrete extra
dimension.

2In two dimensions, the equation of state of fermions has been measured recently [Boettcher et al.,
2016, Fenech et al., 2016].

38[Lahaye et al., 2009]
39[Lahaye et al., 2007, Lahaye
et al., 2008, Ferrier-Barbut et
al., 2016]
40[Kadau et al., 2016]
41[Simon et al., 2011, Greif et
al., 2015]
42[Ho, 2004, Gezerlis and
Carlson, 2008]

43[Thomas et al.,
2005, Stewart et al., 2006, Luo
et al., 2007, Nascimbène et
al., 2010, Horikoshi et al.,
2010, Ku et al., 2012]
44[Shin, 2008, Bulgac and
Forbes, 2007, Navon et al.,
2010]
45[Clogston,

1962, Chandrasekhar, 1962]
46[Bausmerth et al.,
2009, Chevy, 2006, Lobo et
al., 2006]
47[Zwierlein et al.,
2006a, Navon et al., 2010]
48[Fulde and Ferrell,
1964, Larkin and
Ovchinnikov, 1964]
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by Cooper pairs with non-zero momentum and a spatially varying order parameter.
Despite intensive experimental effort, no irrefutable proof of their observation could
be seen, even though some evidence have been put forward49. In three dimensions,
they are predicted to appear only in a narrow range of parameters50 (see Figure 0.1),
so their signature is mainly smeared out when the system is trapped in a harmonic
potential, as it is usually the case for ultracold gases3. The ongoing development of
uniform trapping potentials is thus very promising for the observation of FFLO phases.

Figure 0.1: Mean-field phase diagram of imbalanced Fermi gases, as a function of
inverse scattering length and local spin polarization imbalance P , showing regimes of
magnetized (imbalanced) superfluid (SFM ), FFLO (in red, bounded by PFFLO and
Pc2) and normal Fermi liquid, taken from [Radzihovsky and Sheehy, 2010].

Uniform systems
Harmonic traps were very convenient to measure the equation of state of ultracold sys-
tems. Indeed, the atomic density varies spatially and explores a finite range on a single
cloud, giving access to many points of the equation of state curve from a single ex-
perimental realization. However, the search for phases that appear in a narrow range
of phase diagram (such as the above-mentioned FFLO phase) is made challenging,
because they would appear only in a small portion of the cloud’s volume. On the con-
trary, in box potentials, where the potential and hence the atomic density is constant
on a finite volume (the “box”), it would be possible to “zoom in” into the parameter
subspace of interest. Box potentials were initially reported in51, then more recently
in52, where they have already provided the opportunity to study critical phenomena,

3In one dimensional systems, FFLO phase occupies a larger portion of the phase diagram[Liao
et al., 2010, Mizushima et al., 2005, Orso, 2007, Hu et al., 2007, Guan et al., 2007, Parish et al.,
2007a, Feiguin and Heidrich-Meisner, 2007, Casula et al., 2008, Kakashvili and Bolech, 2009], allowing
possible experimental detection [Kinnunen et al., 2006, Edge and Cooper, 2009].

49[Kontos et al., 2001, Bianchi
et al., 2003]
50[Sheehy and Radzihovsky,

2007, Bulgac and Forbes,
2008, Parish et al., 2007b]
51[Meyrath et al., 2005]

52[Gaunt et al., 2013, Corman
et al., 2014]
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such as Kibble-Zurek mechanism53.

Bose-Fermi mixtures

State of the art
After the discovery of superfluidity in 3He, one natural question that arose was whether
is was possible to make a mixture with the two known superfluids, 3He and 4He.
It turns out that strong interactions between the two species downshift the critical
temperature for superfluidity to about 50µK, while the coldest temperature reached
in mixtures of liquid helium is so far 100µK54. That question thus remained open for
about 50 years before we could realize such a Bose-Fermi superfluid mixture with cold
atoms.

In cold atoms, many degenerate mixtures of bosons and fermions have been realized,
also because one of the first methods to cool fermions was via sympathetic cooling
with bosons. But none of the mixtures was showing simultaneously Bose and Fermi
superfluidity: either the bosons were condensed but the fermions were not superfluid
(for instance because there was only one fermionic spin-state, or because the critical
temperature for superfluidity was too low), or the fermions were superfluid but the
Bose gas not condensed (because of too few atoms for instance).

Mixtures
Bosons Fermions Reference

7Li 6Li [Schreck et al., 2001b, Truscott et al., 2001]
23Na 6Li [Hadzibabic et al., 2002]
87Rb 40K [Roati et al., 2002]
87Rb 6Li [Silber et al., 2005]
4He∗ 3He∗ [McNamara et al., 2006]
87Rb 6Li-40K [Taglieber et al., 2008]

85,97Rb 6Li [Deh et al., 2008, Deh et al., 2010]
84,86,88Sr 87Sr [Tey et al., 2010, Stellmer et al., 2013]

174Yb 6Li [Hara et al., 2011, Hansen et al., 2011]
170,174Yb 173Yb [Sugawa et al., 2011]

41K 40K-6Li [Wu et al., 2011]
162Dy 161Dy [Lu et al., 2012]
23Na 40K [Park et al., 2012]
133Cs 6Li [Repp et al., 2013]

Reported degenerate Bose-Fermi mixtures

Superfluid mixture
Our experiment had already produced mixtures of a Bose-Einstein condensate and of
a degenerate Fermi gas55, and cold bosons in the presence of superfluid fermions56. In
53[Chomaz et al., 2014, Navon
et al., 2015]

54[Tuoriniemi et al.,
2002, Rysti et al., 2012]

55[Schreck et al., 2001b]
56[Nascimbène et al., 2010]
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2014 we were able to achieve simultaneous superfluidity of bosonic 7Li and fermionic
6Li in a mixture by choosing the right combination of atomic states to make use of
the 6Li Feshbach resonance in a magnetic field range where the Bose-Einstein of 7Li is
stable57.

The report of our superfluid mixture raised very fast new questions regarding the
validity of Landau’s argument in the case of a Bose-Fermi superfluid counterflow58.
During my PhD, we addressed a few of them, such as the measurement of the critical
velocity of the mixture or the effect of finite temperature.

In addition to these dynamic studies, we also exploited static properties, such as the
possibility to create a flat bottom potential. Previously reported uniform potentials59

use repulsive laser sheets to create a box for the atoms. The approach that we propose
is completely different. It uses the repulsive interactions between bosons and fermions
to compensate the curvature of the harmonic trap for the Fermi cloud. The flatness of
the trap can be set by the precise tuning of Bose-Bose interactions through a Feshbach
resonance. The effective trapping potential for the Fermi gas then has a flat bottom
and opens the way to probe spin-imbalanced Fermi gases in homogeneous systems,
hence Clogston-Chandrasekhar limit and FFLO phases.

Outline of this thesis

My first contribution to research within the group was to take data regarding the
lifetime and three-body losses of the unitary Bose gas60 (see Appendix C.5). After
an interlude for the implementation a new cooling technique on lithium based of D1
cooling61 (see Appendix C.1) that led to the design and construction of a new lithium
experiment, we turned to the production of a superfluid Bose-Fermi mixture62 (see
Appendix C.2) and the study of its properties63 (see Appendix C.3). This forms the
central part of my PhD work. Among the properties of this novel system, we have
focused both on its superfluidity and critical velocity, and on the implementation of the
flat bottom trap proposed in collaboration with the Trento group64 (see Appendix C.2).

This thesis is organized the following way:

• chapter 1 is dedicated to an introduction to the subject of superfluidity. It gives
a brief overview of the major steps in history of superfluidity, then details some
of its most spectacular physical manifestations. It then turns to the subject of
quantum gases, and to the relation between their interactions and superfluidity.

• chapter 2 describes the lithium machine on which all of the results given in
this PhD were obtained. It was thoroughly described in several PhD theses from
students before me65, so I only go briefly over the different steps that lead to the
realization of a Bose-Fermi superfluid mixture66.

57[Ferrier-Barbut et al., 2014]
58[Castin et al., 2015, Abad et
al., 2015, Zheng and Zhai,
2014, Wen and Li, 2014, Shen
and Zheng, 2015, Chevy, 2015]
59[Meyrath et al.,

2005, Gaunt et al.,
2013, Corman et al., 2014]
60[Rem et al., 2013, Eismann
et al., 2015]
61[Grier et al., 2013]
62[Ferrier-Barbut et al., 2014]

63[Delehaye et al., 2015]
64[Ferrier-Barbut et al., 2014]
65[Schreck, 2002, Tarruell,
2008]
66[Ferrier-Barbut et al., 2014]
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• chapter 3 concerns the study of the Bose-Fermi counterflow. It details the
initiation of the counterflow, its mean-field study, the measurement of the critical
velocity in the BEC-BEC crossover, and the observation of an unexpected phase-
locking of the two clouds at unitarity when increasing the temperature.

• chapter 4 is dedicated to the study of imbalanced Fermi gases in a flat bottom
trap. It explains the theoretical prediction and the conditions to implement it on
our experiment. First results show evidence for a novel superfluid phase with a
shell structure that topologically differs from the standard bulk Fermi superfluid
produced so far.

• chapter 5 describes the new lithium experiment, currently under construction.
It gives details on the desired properties of the new experiment, as well as on its
technical mechanical drawing, planned laser system and magnetic fields configu-
rations.
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1.1 Superfluids

1.1.1 Historical approach

The adventure of superfluidity began with the liquefaction of helium in 1908 by the
Dutch physicist Heike Kamerlingh Onnes: via a succession of compressions and ex-
pansions of gaseous 4He (3He was still unknown back then), he managed to reach
temperatures as low as 1.5K, while 4He undergoes liquefaction at 4.2K. Having such
a cold reservoir of liquid allowed him to cool down different kind of materials, and this
is how he discovered the superconductivity of mercury in 1911: below a temperature
of 4.2K, the resistivity of mercury drops to exactly zero. In 1937, Kapitza [Kapitza,
1938], Allen and Misener [Allen and Misener, 1938] discovered that liquid 4He un-
derwent a phase transition at 2.2K between type I helium (above 2.2K) and type II
helium (below 2.2K), the viscosity of which was found to be zero. These absences of
electric resistance and viscosity are deeply connected, and while superfluidity in 4He
was quickly associated to the Bose-Einstein condensation of bosonic 4He atoms and a
theory proposed by Tisza, London and Landau [Tisza, 1938, London, 1938, Landau,

11



12 Chapter 1. Superfluidity

1941, Tisza, 1947] in 1941, superconductivity relies on the creation of Cooper pairs be-
tween electrons, as detailed in Bardeen-Cooper-Schrieffer (BCS) theory. Years after,
in 1972, Lee, Osheroff and Richardson [Osheroff et al., 1972a, Osheroff et al., 1972b]
showed that 3He becomes superfluid as well, for temperatures below 2.6mK. Such a
low transition temperature is due to the necessity to form pairs of fermionic 3He so
that it can become superfluid. A theory presented by Leggett [Leggett, 1975] adapted
BCS theory to the p-wave pairing occurring in 3He.

Along the years superconductivity was discovered in many different materials, with
even some materials showing unconventional superconductivity, which is not perfectly
understood yet. However, at the very low temperatures needed to reach superfluidity,
most materials are solid, and no other superfluid was discovered until the first real-
ization, in 1995, of Bose-Einstein condensates (BECs) in ultracold atoms [Anderson
et al., 1995, Davis et al., 1995a]. During the past 20 years, intense experimental and
theoretical efforts have been dedicated to the search in cold atoms for some of the most
spectacular signatures of superfluidity, which are detailed below.

1.1.2 Properties of superfluid helium and superfluid atomic gases

Historically, the existence of superfluidity in helium was unexpected. It came out
when Kapitza, Allen and Misener measured the viscosity of helium below 2.2K through
capillary tubes and found out it had a “non-viscous” character [Wilks and Betts, 1987].
A two-fluids model was proposed by Landau [Landau, 1941] and Tisza [Tisza, 1938],
in which helium below 2.2K was composed of two fluids, one is called the normal fluid
and behaves like a Newtonian fluid, the other one is superfluid, has no viscosity and
carries no entropy.

A number of very specific properties have been demonstrated for superfluid helium,
some of which also have been observed in the field of ultracold gases:

• superfluid flow. The flow rate of liquid helium through capillary tubes tends
to increase with decreasing temperature below 2.2K. This is also the case for
cold atoms superfluids: it is possible to build an experiment with two reservoirs
connected by a small channel and measure the resistance of the flow through
it [Stadler et al., 2012]. A theory proposed by Landau [Landau, 1941] connects
the superfluid flow to the fact that it is not possible to create excitations in the
superfluid below a certain critical velocity. The existence of such a critical ve-
locity has been demonstrated in [Onofrio et al., 2000, Raman et al., 1999], even
though this evidence was more qualitative than quantitative, and will be the sub-
ject of our investigations in chapter 3. Landau’s criterion will be demonstrated
in subsection 3.3.2.

• siphon effect. Driven by surface tension, a fluid may wet the walls of its contain-
ers, and for normal fluids the velocity of the film is limited by viscosity. In the
case of superfluids, since the viscosity is zero, the flow is much higher. Superfluid
helium may thus escape an open container.

• phase coherence. Superfluids are described by a single macroscopic wave function
ψ(r). This single wave function implies phase coherence for the superfluid, and
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this was evidenced by the interferences of condensates [Andrews et al., 1997b,
Bloch et al., 2000].

• heat transport. Superfluid helium does not transport heat by conduction but
only by convection. The superfluid component goes from cold places to hot places
while the normal component goes the other way. This process is actually very
efficient, leading to a high thermal conductivity. This results in the spectacular
fountain effect: by blocking the flow of the normal component, any temperature
gradient can be rapidly turned into a pressure gradient of the superfluid, that
may form a fountain. Similar experiments, showing particle flow under a pressure
gradient, have also been demonstrated in ultracold atoms [Brantut et al., 2013].

• second sound. It is possible to create entropy waves, in which the density of
the normal and superfluid components oscillate with opposite phases. These
entropy waves are associated to temperature waves that lead to the specific
heat transport described above. It is analogous to the conventional sound (‘first
sound’) except that instead of being associated to an isentropic density wave,
it is an isobaric entropy-wave, hence its name of ‘second sound’. Evidence of
first and second sound have been given in both 4He and 3He, but also in cold
atom experiments [Andrews et al., 1997a, Stamper-Kurn et al., 1998, Hou et al.,
2013, Sidorenkov et al., 2013].

• vortices. They are typical evidence for superfluidity. Indeed, the wave function
that describes the superfluid can be separated into a module and a phase: ψ(r) =
|ψ(r)|eiφ(r), and the velocity of the superfluid is proportional to the gradient of
the phase φ:

v = ~
m

∇φ,

where m is the mass of the particles composing the superfluid. Since the phase
cannot be multivalued, this leads to [Onsager, 1949, Feynman, 1953, Feynman,
1954] ˛

v · dl = 2πn ~
m
,

where n is an integer. If the density is always strictly positive, the only possible
value for n is zero. Having a non-zero value for n, which means having a non-
zero circulation, necessarily implies the existence of lines of zero density, called
vortices. The number of quanta n associated to each vortex is called its charge.
Two vortices of equal charge repel each other, this is why vortices will arrange
themselves into lattices called Abrikosov lattices. Vortices have been observed in
the 1950’s after their theoretical prediction in superfluid helium [Hall and Vinen,
1956a, Rayfield and Reif, 1964]. As an obvious proof for superfluidity, they were
also sought for and evidenced in the early days of ultracold atoms [Matthews et
al., 1999, Madison et al., 2000, Abo-Shaeer et al., 2001, Zwierlein et al., 2005],
and it was demonstrated as well that vortices were quantized and arranged them-
selves in lattices.

I will now give more details on the nature of the particles that form the superfluids,
and on the mechanisms at the origin of superfluidity.
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1.2 Bosons and fermions

1.2.1 Quantum statistics

Particles that form our universe can be sorted into two categories: bosons and fermions.
Fermions have a half-integer spin and are the building bricks of matter: protons, neu-
trons and electrons are fermions. Bosons have an integer spin and gauge bosons, such
as the photon or the famous Higgs boson, mediate the interactions between particles.
An assembly of fermions, like an atom composed of protons, neutrons and electrons,
may either have a fermionic nature if its total spin is half integer, that is if it is com-
posed of an odd number of fermions, or rather a bosonic nature if it is composed of
an even number of fermions, leading to an integer spin. For instance, 4He and 7Li are
bosons, while 3He and 6Li are fermions.

Bosons and fermions obey different statistics. Indistinguishable bosons will follow
the Bose-Einstein statistics, where the population ni in a state of energy εi with de-
generacy gi for an ensemble of indistinguishable bosons of chemical potential µ is given
by:

ni(εi) = gi
e(εi−µ)/kBT − 1

,

where T is the temperature and kB the Boltzmann’s constant. On the other hand,
indistinguishable fermions with the same chemical potential µ obey the Fermi-Dirac
statistics and

ni(εi) = gi
e(εi−µ)/kBT + 1

.

From this equation, we can see that ni ≤ gi: two identical fermions cannot occupy the
same energy state. This is a reformulation of Pauli principle that for example applies
to electrons. In the high temperature or low-density limit, these two distributions lead
to the same Maxwell-Boltzmann statistics:

ni(εi) = gi
e(εi−µ)/kBT

.

The first implication of this result is straightforward: to observe the effect of the
quantum nature of particles, it will be necessary to go to low temperature and relatively
high atomic densities. Indeed, quantum effects start to appear when the interparticle
distance n−1/3 is on the order on the size of the wave packet describing each particle.
The size of this wave packet is given by the thermal De Broglie wavelength λth =√

~2
2πmkBT

. When nλ3
th & 1, the description in terms of independent particles is not

relevant any more and one has to take into account quantum mechanics and quantum
statistics as matter-waves start interfering.

1.2.2 Low-temperature behavior

At low temperature, bosons macroscopically accumulate in the lowest energy state and
there is a phase transition towards a Bose-Einstein condensate (BEC). For a uniform
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non-interacting system, the transition temperature is given by:

Tc = 1
(g3/2(1))2/3

2π~2

mbkB
n

2/3
b ,

where nb is the density of bosons, mb their mass and gn(z) is the polylogarithm
gn(z) =

∑∞
k=1 z

k/kn. When the system is not uniform but in a harmonic trap with
average trap frequency ω̄ and total number of atoms Nb, this transition temperature
is given by:

Tc = 1
(g3/2(1))1/3

~ω̄
kB
N

1/3
b .

Fermion behavior is very different. At low temperature, identical fermions form a
Fermi Sea, with one particle per energy state. Typical temperature at which Fermi
statistics start to take over thermal effects is the Fermi temperature TF. For a uniform
non-interacting system, the Fermi temperature is given by:

TF = ~2

2kBmf
(3π2)2/3n

2/3
f ,

with nf the fermion density and mf their mass. In a harmonic trap the Fermi temper-
ature is given by

TF = ~ω̄
kB

(6Nf)1/3.

These different behaviors are summed up on Figure 1.1 for particles in harmonic traps.
In liquid bosonic 4He, interactions are everything but negligible, but the transi-

tion towards superfluidity occurs at a temperature relatively close to the critical one
for Bose-Einstein condensation for a system of non-interacting bosons with the same
density (3.2K). Indeed, the superfluidity of 4He can be interpreted as a Bose-Einstein
condensation of interacting bosons.

As for fermionic 3He, the origin of its superfluidity is more complex. Indeed, 3He is
a fermion, and identical fermions cannot occupy the same energy state. However, two
fermions that differ, by the value of their spin for example, can be paired up and form
a composite boson. This is what happens for 3He, and since the critical temperature
for pair formation is much smaller than the critical temperature for condensation, this
explains the very low temperature for superfluidity in 3He (2.6mK). For supercon-
ductivity, similar phenomenon is at play, and electrons pair up in momentum space
to form Cooper pairs thanks to attractive interactions mediated by the phonons of
crystalline structure.

The quantum nature of particles thus has an important role for explaining different
behaviors and phenomena observed in condensed matter. However, one of the difficul-
ties in the quantitative understanding and modeling of condensed matter is its density:
strong interactions between particles lead to behaviors that are very complicated to
predict theoretically. In addition, these interactions can also lead to demixion within
the superfluid. For instance, while (as indicated above) both 3He and 4He have been
successfully cooled down separately to superfluidity, this has not been the case so far
for the mixture of 3He and 4He. Indeed, strong interactions between 3He and 4He
lead to a phase separation of the system into two phases, one of pure 3He, and the
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(a) Bosons (b) Fermions

Figure 1.1: (Top) high temperature and (bottom) low temperature behavior of the
different classes of particles, according to their statistics. Here, the notion of “high”
and “low” temperature is given with respect to the energy spacing ~ω between levels.

second one of a mixture and 4He and only 6% of 3He (see Figure 1.2) [Rysti et al.,
2012, Tuoriniemi et al., 2002]. This demixion phenomenon is used for dilution refriger-
ators but the resulting low density of 3He in the mixed phase has led to a decrease of the
critical temperature for superfluidity down to an estimated temperature of ∼ 50µK,
while the coldest temperatures reached with liquid helium so far are ∼ 100µK. No
double Bose-Fermi superfluid mixture has been reported in condensed matter so far.

For the last 20 years, another kind of systems have shown quantum properties:
ultracold gases. These systems have a very cold temperature (around or below 1µK),
associated with an atomic density high enough to show the effects of quantum statistics,
but low enough to allow a simple description of interactions and prevent solidification.
Their description will be the object of the next section.
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Figure 1.2: Phase diagram of helium mixtures taken from [Rysti, 2013], at the saturated
vapor pressure (SVP) and at 25 bars. In the green area, both isotopes are in the normal
phase, in the blue area, 4He is superfluid while 3He is normal. The λ line indicates
the superfluid transition for 4He. The gray area shows an instable region where phase
separation occurs.

1.3 Superfluidity in ultracold atomic gases

1.3.1 Interactions and scattering length

The nature of superfluidity in ultracold gases is strongly related to the interactions
between particles. For low density gases, the dominant interactions are two-body
interactions. For neutral atoms, these are Van der Waals interactions. They are
characterized by an energy U and a finite range r0: when the distance r between two
particles is much larger than r0, their interaction energy decays as 1/r6, while it is in
the order of U < 0 for distances . r0 and infinitely repulsive at very short distances.
In very dilute gases, when the typical interparticle distance is much larger than the
interaction range n−1/3 � r0, these interactions are modeled by contact interactions
and can be described with a potential proportional to Delta function δ(r). A lot of
details on this subject are given in [Walraven, 2012, Rem, 2013], so I will only recall
the main results. For lithium, magnetic dipole-dipole interactions are negligible with
respect to contact interactions, and will not be considered in the following.

Let us now consider a collision between two particles, in the center of mass frame
defined by (r,θ,φ) the wave function of the systems obeys the Schrödinger equation,
with mr the reduced mass of the two particles and Ek = ~2k2/(2mr) the energy of the
system: [

− ~2

2mr
∆r + U(r)− ~2k2

2mr

]
ψ = 0.
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This equation can be solved into

ψ = ψ0 + fk(θ)
eikr

r
,

where fk(θ) is the scattering amplitude, equal to:

fk(θ) = 1
k

∞∑
l=0

√
4π(2l + 1)Y 0

l (θ)eiδl sin δl,

with Y m
l (θ,φ) the spherical harmonics and δl a phase acquired by the wave function

due to the interaction potential. δl is typically very dependent on the details of the
interaction potential. l is a quantum number describing the scattering. For symmetry
reasons, for identical bosons, l is necessarily even, while it is odd for identical fermions
with in particular δ0 = 0. There are no restrictions on l for distinguishable particles.
Different values of l correspond to different effective scattering potentials Ul, and for
each potential Ul it is possible to define a classical turning point rl, corresponding to
the distance at which incoming classical particles with energy E = ~2k2/(2m) would
have a zero kinetic energy. We have:

rl =
√
l(l + 1)
k

.

In the low energy limit, corresponding to the low-temperature limit, k → 0, and
particles scattering with l > 0 feel a repulsive barrier, so that the phase shift δl>0
actually vanishes: δl>0 = 0. We will thus in the following only consider l = 0 scattering,
also called s-wave scattering, according to spectroscopic vocabulary. For identical
fermions, since δ0 = 0, there is no collision in the low temperature limit. For bosons
or distinguishable particles, fk is equal to

fk(θ) = 1
k
eiδ0 sin δ0,

and we define the scattering length a as:

a = − lim
k→0

fk = − lim
k→0

δ0
k
.

It is the scattering length that accounts for most of the scattering properties. To the
first order in k, the scattering amplitude can be expressed as:

fk(θ) = −a
1 + ika

.

The total scattering cross-section σk, equal to σk = 2π
´ 2π

0 dθ sin θ|fk(θ) + fk(π− θ)|2,
can also be expressed in terms of k:

σk = 4π a2

1 + k2a2

for distinguishable particles, and

σk = 8π a2

1 + k2a2
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for indistinguishable particles. In the limit of small scattering length, the interaction
strength of the system can be written as:

g = 2π~2a

mr
.

Let us now discuss the different interaction cases:

• Between two identical fermions, only p-wave interaction occurs and the scattering
cross-section drops to zero as T 2.

• Between two identical bosons, the scattering length abb can take any value. For
small values of abb, the interaction energy is given by gbbnb where gbb = 4π~2abb

mb
is the interaction strength. For negative values of abb, interactions are attractive
and may lead to a collapse of the gas for large atom number [Bradley et al.,
1997, Sackett et al., 1999, Gerton et al., 2000, Donley et al., 2001, Roberts et
al., 2001]. Large values of abb correspond to strong interactions between bosons.
This will not be discussed in this thesis, but at the beginning of my PhD we
performed experiments relating the lifetime of a Bose gas with abb → ∞ to the
temperature [Rem et al., 2013, Eismann et al., 2015, Rem, 2013]. In the regime
of the diverging scattering length, called the unitary limit, some predictions
were made by Efimov [Efimov, 1970] regarding the existence of a three-body
bound state for specific values of the two-body scattering length [Kraemer et al.,
2006, Berninger et al., 2011], with some log-periodic properties [Huang et al.,
2014, Tung et al., 2014, Pires et al., 2014].

• Between two distinguishable fermions, for example between two fermions with
different spin states, the scattering length aff can take any value. The regime
where aff →∞ is also called the unitary regime, and the scattering cross-section
takes its maximum value 8π/k2. For fermions, the case aff > 0 corresponds
to strong attraction between fermions and leads to the formation of molecules
with binding energy − ~2

mfa2
ff
. Being formed of two fermions, these molecules

have an integer spin and bosonic behavior. The case aff < 0 corresponds to
weak attraction between fermions, as in the Bardeen-Cooper-Schrieffer theory
for superconductivity. The fermion-fermion interactions will be discussed with
more details in subsection 1.3.3.

• It may also be relevant to consider interactions between a boson and a fermion.
In this case, the two colliding particles are obviously distinguishable, and the
scattering length abf may take any value.

Let us now look at the effects of interactions on low-temperature gases.

1.3.2 Bose-Einstein Condensates
Realizing a Bose-Einstein condensate (BEC) of ultracold atoms had been a longstand-
ing goal in the atomic physics community. This requires to obtain a combination
of temperature and densities such that nλ3

th & 1. A Bose-Einstein condensate with
condensed matter thus requires temperature on the order of 1K. However, except for
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helium, all other atomic elements undergo solidification at temperatures well above
1K, preventing condensation. Realizing a gaseous BEC thus requires to go to very low
densities, typically 1014 − 1015 cm−3. At such low densities, the rate of inelastic colli-
sions (proportional to n2) is strongly suppressed, with a typical timescale on the order
of a few seconds or minutes. The gas is thus chemically metastable. The rate of elastic
collisions (proportional to n) is still high enough to ensure thermal equilibrium. The
counterpart is that the Bose-Einstein condensation occurs at even lower temperatures,
on the order of 1µK. Advanced cooling and trapping techniques were developed over
the years by the atomic physics community with notably the Nobel Prize in Physics of
1997 attributed to W.D. Phillips, S. Chu and C. Cohen Tannoudji “for development
of methods to cool and trap atoms with laser light”.

The first BECs were realized in 1995 in the teams of E.A. Cornell and C.E. Wieman,
and of W. Ketterle, also awarded with the Nobel prize in 2001. They were prepared
in harmonic traps, and evidence for the condensation was given by a narrow peak in
the velocity distribution.

To obtain the density distribution in the general case (and for simplicity here in
the T = 0 limit), one should integrate the Gross-Pitaevskii equation:

i~
dψ

dt
= − ~2

2mb
∆ψ + U(r)ψ + gbb|ψ|2ψ,

where ψ is the wave-function of the BEC, and gbb = 4π~2abb/mb. The terms of the
right-hand-side of the equation account respectively for kinetic energy, trapping energy,
and interaction energy.

One has to make a distinction between two different regimes: the ideal-gas limit,
and the Thomas-Fermi limit. In the ideal gas limit, interactions are negligible with
respect to the trapping potential energies (nbgbb � ~ωx,y,z). If we call U(r) =
1
2mb(ω2

xx
2 +ω2

yy
2 +ω2

zz
2) the harmonic trapping potential, the system is described by

the Schrödinger equation:

i~
dψ

dt
= − ~2

2mb
∆ψ + U(r)ψ

The BEC wave function is the ground state of the harmonic oscillator and

nb(r) = Nb
π3/2

e−x
2/l2ho,x

lho,x

e−y
2/l2ho,y

lho,y

e−z
2/l2ho,z

lho,z
,

where lho,α=x,y,z =
√

~
mωα

is the harmonic oscillator length and Nb the atom number in
the BEC. However, non-interacting BECs are difficult to produce because low collision
rate leads to a poor thermalization, and in most cases interactions are not negligible.

In the limit of strong interactions, called the Thomas-Fermi limit, the kinetic energy
term in Schrödinger equation is neglected, and the wave-function obeys:

i~
dψ

dt
= U(r)ψ + gbb|ψ|2ψ.

The atomic density is then

nb(r) = 15
8π

Nb
lTF,x lTF,y lTF,z

max
(

1−
(

x2

l2TF,x
+ y2

l2TF,y
+ z2

l2TF,z

)
,0
)
,
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where lTF,α=x,y,z =
√

2µb
mω2

α
is the Thomas-Fermi radius of the cloud and µb its chemical

potential. The density distribution has a parabolic shape. This expression can be
integrated and inverted to express µb as a function of the other parameters: µ5/2

b =
15~2m1/2

b
25/2 Nbω̄abb, with ω̄ = (ωxωyωz)1/3 the geometric mean of the trapping frequencies.

A common technique to image BECs is to release them from the trap, and let them
expand for a few milliseconds of time of flight ttof before imaging them. For cigar-
shape harmonic traps as it is the case for our experiment, with ωx ≈ ωy ≈ ωρ � ωz,
the initial half-lengths of the BEC x0(t = 0), y0(t = 0), z0(t = 0) are within a ratio
z0(0) = ωρ

ωz
x0(0) = ωρ

ωz
y0(0) and evolve as:

x0(t) = x0(0)
√

1 + τ2, (1.1)

y0(t) = y0(0)
√

1 + τ2,

z0(t) = z0(0)
(

1 + ω2
z

ω2
ρ

(
τ arctan τ − ln

√
1 + τ2

))
,

where τ = ωρttof . This leads to the inversion of the ellipticity of the clouds for long time
of flights (typically ∼ 10− 100ms), and allows to measure the velocity distribution of
trapped clouds. In our experiments, we will only use very short time of flights (. 5ms),
so that the cloud does not have time to expand axially. We do not have access to the
3D local density distribution of atoms, but rather to the integrated density along one
or two directions. The density distributions vary then as:

ñ(y,z) ∝ max
(

1− y2

l2TF,y
− z2

l2TF,z
,0
)3/2

,

for densities integrated along x direction, and

n̄(z) ∝ max
(

1− z2

l2TF,z
,0
)2

,

for densities integrated along x and y.
Let us now discuss the influence of interactions on BECs. A BEC with attractive

interactions (abb < 0) is unstable and collapses on itself above a critical atom num-
ber, on the order of 1000 atoms [Bradley et al., 1997, Sackett et al., 1999, Gerton et
al., 2000, Donley et al., 2001, Roberts et al., 2001]. A purely non-interacting BEC is
stable, but the absence of collisions prevents thermalization between particles. It is
also not superfluid because its critical velocity for superfluidity vanishes. For weakly
interacting BECs with abb > 0, it was shown [Bogoliubov, 1947] that they have an
excitation spectrum compatible with Landau’s criterion for superfluidity and are thus
superfluids. This was evidenced by numerous experiments, for instance with the exis-
tence of quantized vortices [Matthews et al., 1999, Madison et al., 2000, Abo-Shaeer
et al., 2001] and critical velocity [Raman et al., 1999, Onofrio et al., 2000] in a stirred
BEC.
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1.3.3 Fermi superfluids

The realization of Fermi degenerate gases67 (1999) and Fermi superfluids68 (2004) was
achieved after the first BECs. Fermions are difficult to cool because Pauli principle
forbids s-wave collisions, thus preventing thermalization between identical fermions at
low temperature. Standard evaporative cooling techniques cannot be used. There are
two usual workarounds for the last cooling stages: either by sympathetic cooling, for
which a bosonic and a fermionic gas are hold in the same trap, and fermions thermalize
with the bosons that are evaporatively cooled [Schreck et al., 2001b]. The other option
consists in trapping two fermionic states between which collisions are allowed [DeMarco
and Jin, 1999]. At the unitary limit, this option has proven to be very efficient, since
the scattering cross-section is large and unitary limited.

Two-component Fermi clouds can then be prepared at temperatures well below
the Fermi energy. The question of whether they are superfluids then depends on the
temperature and on the interaction parameter kFaff , where kF is the Fermi wave vector
of the gas, defined as ~2k2

F
2mf

= EF and aff the scattering length.

For values of aff such that 1
kFaff

� 1, the system is said to be on the BEC limit.
Indeed, strong attraction between fermions lead them to form pairs that then have a
bosonic behavior and can undergo Bose-Einstein condensation [Zwierlein et al., 2003,
Zwierlein et al., 2004].

For values of aff such that 1
kFaff

� −1, the system is said to be on the BCS limit.
Indeed, weak attraction between fermions lead them to form Cooper-like pairs, as de-
scribed by the Bardeen-Cooper-Schrieffer (BCS) theory. Pairing occurs in momentum
space, between two particles with opposite momentum.

For values of aff such that
∣∣∣ 1
kFaff

∣∣∣ � 1, the system is said to be unitary. Since the
scattering length, characteristic length for the interactions, diverges, the only relevant
length left in the problem is the interparticle distance n−1/3, and results obtained for
such a system are applicable for any system with resonant interactions. This is how
neutron stars and other complex systems can be simulated with ultracold atoms [Bloch
et al., 2012]. The equation of state of a unitary Fermi gas at finite temperature has
been obtained in [Nascimbène et al., 2010].

67[DeMarco and Jin, 1999] 68[Regal et al., 2004b]
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(a) BEC regime (b) BCS regime (c) Unitary regime

Figure 1.3: Representation of the three limit regimes of the BEC-BCS crossover.
Fermionic pairs are circled in blue. On the BEC side, the typical pair size is smaller
than the interparticle distance, while it is larger on the BCS side. At unitarity, both
lengths are comparable.

These three regime span the so-called BEC-BCS crossover. They are represented
on Figure 1.3. Superfluidity has been proven in the whole crossover, via the existence
of vortices [Zwierlein et al., 2005], and of a critical velocity [Miller et al., 2007, Weimer
et al., 2015, Delehaye et al., 2015]. The nature of the superfluid varies in the crossover,
from tightly bound molecules to Cooper pairs [Veeravalli et al., 2008]. A sketch of this
is shown on Figure 1.3. The critical temperature for superfluidity varies as well as a
function of 1/kFaff , from a roughly constant value on the BEC side to an exponentially
small value on the BCS side, with a maximum close to 1/kFaff = 0 [Haussmann et al.,
2007].

In many experiments, fermions were mixed with bosons, that provided both a
cooling agent and a convenient thermometer, but it was not until 2014 [Ferrier-Barbut
et al., 2014] that a Bose-Fermi superfluid mixture was produced in our group with 6Li
(fermions) and 7Li (bosons) atoms. Other fermions involved in Bose-Fermi mixtures
are 40K, 87Sr, 173Yb, 161Dy and 53Cr, but so far Fermi superfluids were produced only
with 6Li and 40K.
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In this chapter I will present the historical machine that we use to produce ultracold
gases of both fermionic and bosonic lithium (6Li and 7Li). It was built by Florian
Schreck and Gabriele Ferrari in 1999 [Schreck, 2002] and rebuilt by Leticia Tarruell
in 2004 [Tarruell, 2008]. All of the results described in this PhD have been obtained
on this machine. Since it has already been described with great details in [Schreck,
2002, Tarruell, 2008, Nascimbène, 2010], and no major change to the experiment has
been made since then, I will not go into deep details and refer the interested reader
to the PhD theses cited above. First I will give a short overview of the main steps
of the experiment, then present some specificities of lithium such as the existence of
Feshbach resonances, before using these properties to describe the different steps of
the experiment.

2.1 General description

For many cold-atom experiments, an initial Magneto-Optical Trap (MOT) stage is
followed by direct loading of another trap, either optical or magnetic, where evaporative
cooling can be performed. However, in the case of lithium, due to a small hyperfine
splitting of the excited states, the temperature at the end of the MOT stage is usually1

not low enough to load efficiently an optical dipole trap directly after the MOT. To
overcome this issue, we transport the cloud to a small appendage allowing for strong
magnetic gradients. Atoms are transfered in a magnetic Ioffe-Pritchard trap where we
do a first evaporative cooling stage of 7Li, that sympathetically cools down 6Li. Atoms
are then transfered into an optical dipole trap where some additional evaporative
cooling stages are performed. 6Li atoms are cooled down very efficiently and they
sympathetically cool 7Li. At the end of this second evaporative cooling stage, physics
experiment are performed in a hybrid optical-magnetic trap. The different stages of
the experiment are shown in Figure 2.1 and will be discussed later in this chapter.

2.2 Lithium

2.2.1 The atom of lithium
Lithium is an alkali with atomic number Z = 3. Its electronic ground state configu-
ration is [He]1s1. It has two natural isotopes: 6Li (natural abundance 7.5%) and 7Li
(natural abundance 72.5%) and one artificial isotope, 8Li with a half-life of 0.838 s. In
the following, we will focus on 6Li and 7Li. Lithium is highly reactive with water and
needs special care when manipulating. 6Li has six nucleons and three electrons, it is
thus a fermion, while 7Li, with seven nucleons and three electrons, is a boson. Some
of its physical properties are given in [Gehm, 2003].

1In the case of very large number of atoms and very powerful dipole trap this is however possible,
as in the group of Chris Vale in Melbourne, Australia.



2.2. Lithium 27

(a) MOT stage. (b) Transfert.

(c) Ioffe-Pritchard trap. (d) Dipole trap.

Figure 2.1: Experimental steps. (a) shows the MOT loading, with the two pairs of coils
involved in this stage: the small MOT coils (M) generating the magnetic field gradient
for the MOT, and the larger Feshbach coils (F), which are used at this stage to shift
the MOT and locate it in front of the exit of the Zeeman slower. The red beams are the
MOT beams. (b) shows the transfer of the atoms in the quadrupole trap from the MOT
chamber to the appendage. Initially, the quadrupole trap is made by the MOT coils,
but the current in the Feshbach coils in anti-Helmholtz configuration is progressively
ramped up, displacing the minimum of the trap and the atoms accordingly. (c) shows
the Ioffe-Pritchard trap. The bars (B) provide the radial confinement. The axial
confinement is made by the greenish Pinch coils (P), while the magnetic field offset
is adjusted by the blue Feshbach coils and can be tuned finely using the gray Offset
coils (O). (d) shows the final configuration in the dipole trap. Radial trapping is
made by a tightly focused far-detuned laser beam, while the Pinch coils make the axial
confinement. The Feshbach and Offset coils are used to tune finely the magnetic field
to the Feshbach resonance.



28 Chapter 2. Lithium Machine and Double Degeneracy

2.2.2 Atomic structure

Like all alkali atoms, since it only has one valence electron, the atomic structure of Li
is quite simple. It is given in Figure 2.2. The ground state is 22S1/2, and its two lowest
excited states are 22P1/2 and 22P3/2. The 22S1/2 → 22P1/2 and the 22S1/2 → 22P3/2
transitions are both in the red, at a wavelength of λ = 671nm. Reasonably high
optical power at 671nm is available from commercial sources. The next excited state,
32P3/2 (not shown in Figure 2.2), can be reached from the ground state with UV light
at λ = 323nm [Duarte et al., 2011], though we do not use it in the experiment. The
fine splitting between the 22P1/2 and the 22P3/2 is equal to 10.5GHz, also equal to the
isotopic shift. This results in a fortuitous coincidence between the D1 lines of 7Li and
the D2 lines of 6Li that is used for the design of the laser system. The fine splitting
(∆f ) is indicated in Figure 2.2, as well as the hyperfine splitting ∆hf . For the 22P3/2
(D2 transition from ground state), the hyperfine states cannot be resolved because the
width of all excited states is Γ = 5.9MHz.

Due to the Zeeman effect, the energy of these levels changes when varying the
magnetic field B. For the J = 1/2 states, it is possible to solve the perturbated
Hamiltonian exactly, and one obtains the Breit-Rabi formula [Breit and Rabi, 1931]:

E(mF ) =− ∆hf

4 + gIµB
~

mFB

±
∆hf

(
I + 1

2

)
2

√√√√√1 + 2µB(gI − gJ)

∆hf~
(
I + 1

2

)2mFB + µ2
B(gI − gJ)2

∆2
hf~2

(
I + 1

2

)2B
2.

Here mF is the magnetic moment −F ≤ mF ≤ F , ahf is the magnetic dipole moment
for the ground state 22S1/2 and gI (resp. gJ) are the nucleic (resp. electronic) Landé
g-factor. Their values and other relevant quantities are shown in Table 2.1 for both
isotopes.

Isotopic properties 6Li 7Li
Natural abundance 7.59% 92.4%

Mass 9.99 · 10−27 kg 11.65 · 10−27 kg
Total electronic spin S 1/2 1/2
Total nuclear spin I 1 3/2

Hyperfine coupling constant ∆hf 152.14MHz 401.75MHz
Electronic g-factor for ground state gS 2.0023010 2.0023010

Nuclear g-factor gI −0.448 · 10−3 −1.182 · 10−3

D1 transition frequency 446.7896THz 446.8001THz
D2 transition frequency 446.7996THz 446.8102THz
Excited state linewidth 5.9MHz 5.9MHz

Hyperfine splitting of ground state 228MHz 803.5MHz

Table 2.1: Some atomic properties of Li

This is used to calculate the evolution of the energy of the ground state 22S1/2 sub-
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Figure 2.2: Schematic representation of 6Li and 7Li atomic structure. Only the first
two excited states are shown. The excited state fine splitting is 10.5GHz for both
isotopes. The wavelengths for the atomic transitions are shown in red, and the green,
blue, yellow and dark gray indicate the transitions used to cool the atoms with the
Zeeman slower and the MOT. The color code for the cooling and repumping frequencies
correspond to the one we use on the experiment, except that the ‘white’ is shown in
dark gray here. The width of the excited states is 5.9MHz.
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levels for both 6Li and 7Li, as shown in Figure 2.3 and Figure 2.42. Note that at zero
magnetic field (as in Figure 2.2) the Zeeman sub-levels are degenerate. The notations
introduced in Figure 2.3 and Figure 2.4 will be used in the following to refer to the
atomic states. Atoms the energy of which decreases when increasing the magnetic field
are called high field seekers, those the energy of which increases with magnetic field
are called low field seekers.
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Figure 2.3: Energy of the Zeeman sub-levels of the ground state 22S1/2 of 6Li as a
function of magnetic field. The magnetic field vector is chosen as the quantization
axis.

2.2.3 Feshbach resonances

The atom of lithium has a very important property: the interatomic interaction can be
tuned via the use of Feshbach resonances. As indicated in chapter 1, low interactions
between atoms are characterized at low energy by the scattering length a between these
atoms. For atoms showing Feshbach resonances, the scattering length can be tuned
simply by varying the magnetic field. This property is used both to cool efficiently the
atoms and to probe strongly-interacting many-body physics.

The principle of the Feshbach resonances is the following [Walraven, 2012, Dalibard,
1999]: consider a collision between two atoms. Each atom has several internal states,

2Courtesy from Daniel Suchet
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Figure 2.4: Energy of the Zeeman sub-levels of the ground state 22S1/2 of 7Li as a
function of magnetic field. The magnetic field vector is chosen as the quantization
axis.

and each combination of states is associated to an interaction potential (displayed in
Figure 2.5 in the center-of-mass frame). In the general case, the potentials may have
bound states. If the only accessible states of a certain potential are bound states, then
this potential is called a “closed channel”. This is the case of the potential shown in
blue in Figure 2.5. However, if scattering levels are accessible for this pair of atoms, the
potential is called an “open channel”,as it is the case for the potential shown in pink
in Figure 2.5. Since the internal states of the particles may change during a collision,
these potentials are coupled to each other. Now, in the low energy physics that apply
with cold atoms, if two particles collide, they come from a scattering state from an
open channel (then called the “entrance channel”) with an energy E slightly higher
than the dissociation limit of the entrance channel. They interact during the collision,
and may go away again from each other. But if there was a level of the closed channel
whose energy was very close to 0 (the energy of the colliding particles), its coupling
to the open channel strongly affects the collisional properties of the system, such that
the scattering length diverges.

And as it turns out, since the internal states depend on the magnetic field, for
some atoms it is possible to tune the energy of the bound channel with respect to
that of the open channel by varying the magnetic field. In other words, we can change
the scattering properties and more particularly the scattering length with the magnetic
field. This phenomenon is called a Feshbach resonance [Feshbach, 1958]. In the vicinity
of the resonance, a good approximation for the scattering length is given by

a(B) = abg

(
1 + ∆B

B −Bres

)
where abg is the collisional background scattering length, ∆B the width of the reso-
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Figure 2.5: Schematic representation of the level crossing that leads to a Feshbach
resonance. The blue curve represents a closed channel and its energy states, the pink
curve an open channel with its energy states, in arbitrary units. We can see that the
highest energy state of the closed channel is very close to zero, the dissociation energy
of the open channel. If one of the potentials is sensitive to magnetic field (say the
open channel for instance), it is possible to bring them to the same energy, and this
results into a resonance phenomenon and a divergence of the scattering length. This
phenomenon is known as a Feshbach resonance.

nance, and Bres the magnetic field at resonance.

This phenomenon of Feshbach resonance may appear between two identical bosons,
as it is the case for 7Li. 7Li shows a number of Feshbach resonances, some of which are
given in Table 2.2. They have been used in our group to vary the interactions within
the gas, and to study beyond mean-field effects [Navon et al., 2010], three-body losses
and Efimov physics [Rem et al., 2013, Eismann et al., 2015]. For 6Li, there is no s-wave
collisions for identical fermions3. However, for fermions in two different spin states, the
scattering length may also vary and encounter Feshbach resonances, as it is the case
for 6Li. Some of the relevant Feshbach resonances for 6Li are given in Table 2.2. There
also exists Feshbach resonances between 6Li and 7Li (see Table 2.3), and even though
we do not exploit them in the current experiment, we plan to use them in the future4.
For the whole range of magnetic fields that we used in the experiments described in
this PhD, the scattering length between 6Li and 7Li is roughly equal for all spin states
and its value is 40.8 a0, where a0 = 52.9 pm is the Bohr radius.

3And the colder the atoms, the more p-wave collisions can be neglected.
4Some of these resonances require to trap low-field seeking states, with a crossed-dipole trap for

instance, currently not implemented in the experiment. The other resonances are around 400G, but
their narrowness (they are only a few mG wide) makes them challenging to study with the current
experiment.
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Atomic levels abg(a0) Bres (G) ∆B (G)
|1b〉 -20.98 738.2 171
|2b〉 -18.24 845.5 -4.52

893.7 237.8
|1f〉 − |2f〉 -1582 832.2 262.3
|1f〉 − |3f〉 -1770 690.43 166.6
|2f〉 − |3f〉 -1642 811.2 200.2

Table 2.2: List of Feshbach resonance parameters for the atomic states used in the
experiment, with the notations for the Zeeman states defined in Figure 2.3 and Fig-
ure 2.4, from [Chin et al., 2010].

Atomic levels |1f〉 |2f〉 |3f〉 |4f〉 |5f〉 |6f〉
|1b〉 230 270 310 530 530 535

550 578 610
|2b〉 310 330 380 660 670 680

600 610 660
|3b〉 360 390 730 820

670 700
|4b〉 450 800

770
|5b〉 690 740
|6b〉 750 805 860
|7b〉 750 800 830
|8b〉 700 750 810

Table 2.3: Indications of the magnetic fields (in G) for the Feshbach resonances between
the different states of 6Li and 7Li, with the notations for the Zeeman states defined
in Figure 2.3 and Figure 2.4. The given magnetic fields are ±10 G approximations.
All of the resonances below 500 G have a width below 5 G. However, there are some
relatively wide resonances between |3b〉 and |4f〉, |5f〉, and between |6b〉 and |1f〉, |2f〉.
They are indicated in blue.

2.3 Loading the MOT

The first step of every cold atom experiment is to load a magneto-optical trap (MOT).
This trap relies on the use of near-resonant laser beams that acts both as a molasses
to slow down the atoms and as a trapping force so that they can be trapped in the
local minimum of a potential created by a magnetic field. Atoms are thus trapped
both in real space and in momentum space. The source of atoms is usually either an
oven (as it is the case here) or a dispenser. They produce a hot atomic vapor that,
depending on the atomic species, may be loaded directly into the MOT (for cesium for
instance), or has to be slowed down (as for lithium). Here this is done by a Zeeman
slower, but a 2D MOT [Dieckmann et al., 1998] have been used successfully in other
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experiments [Tiecke et al., 2009].

2.3.1 Oven

Since lithium has a very low vapor pressure at room temperature, it is necessary to
heat it up to about 500◦C to have a strong enough atomic flux. A drawing of the
oven used to heat up the atoms is given in Figure 2.6. It is composed of a vertical
tube, with a CF40 flange on top, connected to the rest of the experiment through an
horizontal tube. This provides a collimated atom beam. Several heating cables5 and
temperature sensors are wrapped around the oven in order to control its temperature
accurately at different positions6. Currently the temperature at the bottom of the
tube is at 510◦C, and there is a decreasing temperature gradient from the oven to the
experiment in order to recycle lithium atoms. The surface tension of liquid lithium
decreases with temperature, so that it goes from cold to hot surfaces and returns to
the oven. In addition, a thin grid7 inserted in the horizontal tube increases the wetting
of the surface by lithium. However, this recycling strategy is sometimes not efficient
enough, and the tube may get clogged, as it happened a few times without us noticing
it. To remove the clog, we had to heat up the horizontal tube at 600◦C by increasing
the current in the thermocoax cable while monitoring the fluorescence of the MOT.
Important jumps in the fluorescence signal indicated the unclogging of drops from the
tube. Running the experiment with the oven at 600◦C would prevent the tube to clog,
but leads to a important reduction of the trap lifetime, incompatible with the following
steps of the experiment.

Figure 2.6: Drawing of the oven. The lithium is lying at the bottom of the vertical
tube, which is heated up at 500◦C.

2.3.2 Zeeman slower

When they exit the oven, the atoms have a thermal velocity of about 1700 m.s−1, while
the capture velocity of the MOT is approximately 50 m.s−1. It is thus necessary to
slow down the atoms. This is performed by shining a counter-propagating beam on

5Thermocoax SEI 10/50-25/2x CM10
6Temperature controller Omega CN76133
7Alpha Aesar 13477
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atoms exiting the oven. But as soon as the atoms are slowed down, the Doppler effect
brings them out of resonance for the laser beam. A Zeeman slower uses Zeeman effect
to overcome this issue, and creates a magnetic field that compensates the change in
resonance frequency of the atoms. To get a constant deceleration, the magnetic field
has to vary with the square-root of the distance traveled by the atomic beam. Several
designs can be used and in our case we have a spin-flip Zeeman slower, in which the
magnetic field goes from +800G at the entrance of the Zeeman slower to −200G at the
exit. This configuration ensures that the laser beams used in the Zeeman slower will
be off-resonant for atoms in the MOT and reduces power consumption and heating.

Considering now the laser beams, here we have four frequencies mixed together:
two principal and two repumpers.

• The principal light for 6Li, on the D2 line from F = 3/2 to F ′ = 5/2, slows down
6Li atoms (shown in green in Figure 2.2).

• The repumper light for 6Li is necessary to recycle the atoms falling into the
F = 1/2 level of the ground state. This repumper light is on the D1 line of 6Li
(shown in blue in Figure 2.2).

• The principal light for 7Li, on the D2 line from F = 2 to F ′ = 3 slows down 7Li
atoms (shown in yellow in Figure 2.2).

• A repumper is also needed for 7Li, to recycle atoms that fell in the F = 1 level
of the ground state, but we cannot use its D1 lines because it would affect 6Li.
Repumping is thus made on the D2 line, between F = 1 and F ′ = 2 (shown in
gray in Figure 2.2).

All four laser frequencies are recombined on a single mirror just before being sent into
the Zeeman slower tube. The detunings used in the experiment are given in Table 2.4.
The detuning of the beams is very robust and almost never needs to be re-optimized8.

7Li Principal -390MHz
7Li Repumper -400MHz
6Li Principal -390MHz

6Li Repumper -375MHz

Table 2.4: Detunings used for the Zeeman slower, with respect to the transitions
indicated in Figure 2.2. The detunings are quite large because the magnetic field is
varied from +800G to −200G between the two ends of the Zeeman slower and the
beams are resonant with the atoms when they are in the area with B ' 0, where they
still have a velocity of about 250 m.s−1.

8Even though a small drift of the alignment may require some minor adjustments from time to
time.
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2.3.3 MOT
At the end of the Zeeman slower, atoms are slow enough to be captured in a magneto-
optical trap. It is composed of three pairs of counter-propagating laser beams, orthog-
onal to each other, and of a magnetic field gradient. The combination of laser beams
and of the magnetic field traps atoms in real and momentum space. A reading on
optical molasses and magneto-optical traps was given by Jean Dalibard at Collège de
France, year 2014-2015 (lecture notes are available in French). We have a dual-species
MOT, and the laser frequencies used follow the same constraints as for the Zeeman
slower. The four frequencies (Principal and Repumper for each isotope) are recom-
bined on four beam-splitter cubes, resulting into four beams containing each of the
four frequencies. Three of these beams are the MOT beams and are sent on the atoms,
and the last one is sent on a Fabry-Perot for frequency monitoring. The magnetic field
gradient is provided by a pair of coils called the MOT coils, and the MOT is shifted
upward to be located in front of the exit of the Zeeman slower by another pair of coils
called the Feshbach coils, see Figure 2.1a. We load the MOT for about one minute.
At the end of the loading stage, we typically have 4 · 107 6Li atoms and 109 7Li atoms
at a temperature of 3mK. We then switch off the Feshbach coils (that brought the
center of the magnetic trap in front of the Zeeman slower) to do the ‘Shift MOT’.
Then the MOT is compressed (CMOT) by bringing the lasers closer to resonance and
reducing the repumper beam intensities. This increases atomic density and decreases
temperature, ensuring an increase of the phase-space density and a better loading into
the next trap, purely magnetic. Detunings and magnetic field gradients for MOT and
CMOT stages are summed up in Table 2.5. The detunings have to be re-optimized
from time to time due to slow drifts. After the CMOT, we have Nb ∼ 109, Nf ∼ 4 ·107

atoms at a temperature of T = 600µK.

MOT CMOT
7Li Principal -49MHz -30MHz

7Li Repumper -38MHz -21MHz
6Li Principal -35MHz -8MHz

6Li Repumper -12MHz -7MHz
Gradient 25G/cm 25G/cm

Table 2.5: Detunings and magnetic field gradients used for the MOT and CMOT. Val-
ues from May 2015. The detunings are given with respect to the transitions indicated
in Figure 2.2.

2.3.4 Laser system
The frequencies are generated by three master lasers that are locked on atomic transi-
tions. However, these master lasers produce a relatively low optical power which has
to be amplified before being sent on the atoms. We use slave diodes9 that are injected
with a few hundreds of µW and output about 150mW. These are low-cost diodes

9Hitachi HL6545MG, now available from Thorlabs
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manufactured for DVD players, but their natural output wavelength is approximately
660 nm, so they have to be heated at 70◦C to emit at 670 nm. The lifetime of these
diode is rather short (a few months), so we use optical fibers to be able to replace
them without realigning the rest of the experiment. We have one diode for each of the
frequencies for both the Zeeman slower and the MOT, each of them delivering a total
power of 40-50mW on the atoms. We also have two more pre-amplifying slave diodes
after the master laser on the D2 of each isotope. In addition, since a high atom number
of 7Li turned out to be critical for the realization of a double-superfluid mixture, we
thus had to increase the optical power at the 7Li principal frequencies both for the
MOT and the Zeeman slower using Tapered Amplifiers(TAs)10. They are seeded with
10-20mW and produce up to 500mW of output power, resulting in 100-150mW of
power available on the atoms11. This cascade of light sources ensures enough optical
power to perform the experiment, at the price of a relatively poor shot-to-shot stability.

2.4 Magnetic trap, transport, and RF evaporation

2.4.1 Optical pumping

Before loading atoms into a magnetic trap, we have to prepare them in the right spin
states: since Maxwell’s equations prevent a local maximum of static magnetic field, we
can only trap atoms polarized in low-field seeking states. Since we also want them to be
stable against spin-exchange collisions, the only acceptable states are |F = 2,mF = +2〉
for 7Li and |F = 3/2,mF = +3/2〉 for 6Li (indicated as |8b〉 and |6f〉 in Figure 2.4
and Figure 2.3, respectively). However, at the end of the CMOT stage, atoms are
in F = 1/2 (for 6Li) and F = 1 (for 7Li), and are evenly distributed in the Zeeman
sub-levels |1f〉, |2f〉 and |1b〉, |2b〉, |3b〉12. It is thus necessary to perform an optical
pumping stage.

Optical pumping is realized with a beam with σ+ light, with respect to a weak
(∼10G) guiding magnetic field, in which two frequencies are mixed. One of the fre-
quencies is used to transfer 7Li from F = 1 to F = 2 via the F ′ = 2 state of the D2
transition and realizes the so-called ‘hyperfine’ pumping for 7Li. It is tuned to the
F = 1→ F ′ = 2 transition at zero magnetic field. The other frequency has two roles:
first, it pumps the 7Li atoms of the F = 2 manifold to |F = 2,mF = 2〉 state through
the F ′ = 2 state of the D1 transition and realizes the ‘Zeeman’ optical pumping for
7Li. The pumping is made on the D1 transition in order not to disturb the hyper-
fine pumping. Second, it also pumps 6Li atoms from the F = 1/2 to the F = 3/2
manifold, via the F ′ = 3/2 state of the D2 transition, for the hyperfine pumping of
6Li. The detuning for that frequency results from a compromise between these two
roles, and simultaneous optimization of 6Li and 7Li atom numbers leads to a detuning
of −45MHz for the F = 2 → F ′ = 2 D1 transition for 7Li and of +25MHz for the

10We use TA chips from Toptica installed in a home-designed mount.
11180mW in the best conditions. The high fraction of lost power is due to a non-gaussian output

mode of the Tapered Amplifier which makes its coupling into a polarization-maintaining single mode
fiber challenging. In addition, the total output power slowly decays from 500mW to 300mW.

12During CMOT, the intensities of the repumpers are decreased to zero. Atoms thus accumulate in
the F = 1/2 (for 6Li) and F = 1 (for 7Li) states.
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F = 1/2 → F ′ = 3/2 D1 transition for 6Li. There is no Zeeman optical pumping for
6Li because the number of 6Li atoms is not critical at that stage of the experiment.
The full optical pumping sequence lasts 300µs, long enough to give time to magnetic
fields to stabilize, but short enough not to heat up the clouds. A summary of the
optical pumping parameters is given in Table 2.6. Its efficiency is about ∼ 60%.

Isotope Pumping type Transition Detuning (MHz)
7Li Hyperfine D2 F = 1→ F ′ = 2 0

Zeeman D1 F = 1→ F ′ = 2 -45
6Li Hyperfine D2 F = 1/2→ F ′ = 3/2 +25

Zeeman

Table 2.6: Parameters for the optical pumping. The detunings are given with respect
to the transitions indicated in Figure 2.2.

2.4.2 Magnetic trap and transport

2.4.2.1 Magnetic trap

Once the atoms are prepared in the right magnetic states, they are loaded into a
quadrupole magnetic trap. The trap is realized by the MOT coils with current in
opposite directions (as in anti-Helmholtz configuration) and is ramped on in 2ms.
Since the same coils are used for the MOT stage and for the quadrupole trap, at the
end of the MOT the atoms are already at the center of the quadrupole trap. We
use the maximum available current of 500A, leading to a magnetic field gradient of
335 G.cm−1. The number of trapped atoms are Nf = 7 · 107 and Nb = 7 · 108 at a
temperature of ∼ 2mK. Loading efficiency is about 60 %.

2.4.2.2 Magnetic transport

The clouds now have to be transported inside the appendage, an additional very thin
part of the cell that allows the realization of very strong magnetic field gradients. This
is done by moving the center of the magnetic trap: the Feshbach coils, the center of
which is located inside the appendage, are ramped on in anti-Helmholtz configuration
while the current of the MOT coils is decreased to zero in 500 ms. The current in the
MOT coils is finally reversed to give a final push to the atoms and center them in the
appendage. The overall efficiency of the transfer is about 40 %, mainly because part
of the cloud is cut by the walls of the appendage. A scheme of this stage is given in
Figure 2.1b.

2.4.3 Ioffe-Pritchard trap
The simplest magnetic trapping configuration is the quadrupole trap realized using
anti-Helmholtz coils in which atoms are confined near the magnetic field zero. However,
this design suffers from Majorana losses when temperature is decreased: close to a
zero of magnetic field, atoms might undergo a spin flip and go from a low-field seeking
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trapped state to a high-field seeking anti-trapped state... To overcome this issue, several
possibilities have been used in the cold atom community:

• The Time Orbiting Potential (TOP) trap, where the minimum of the magnetic
field is rotated fast enough so that the atoms don’t notice, and see on average a
non-zero magnetic field minimum [Petrich et al., 1995, Anderson et al., 1995].

• The plug, where the position of the magnetic field zero is plugged by a blue-
detuned laser beam that repel the atoms from the center [Davis et al., 1995a].

• The Ioffe-Pritchard trap, which have a non-zero minimum, and is the solution
that was used in our experiment [Pritchard, 1983].

In our experiment, the Ioffe-Pritchard trap is made of four bars parallel to the z
direction that realize a tight radial confinement and of a pair of coils called the Pinch
Coils to realize the axial confinement. Another pair of coils (that turns out to be the
Feshbach coils used for the magnetic transport) is used to tune the bias field, so that
the bias field is high enough to prevent Majorana losses, and low enough not to reduce
the radial confinement. It can be finely adjusted using a third pair of coils called Offset
coils. A scheme of the trap is given in Figure 2.1c.

The loading of the Ioffe-Pritchard trap is not so straightforward due to the different
shapes of the traps: the quadrupole trap at the end of the transport has an aspect
ratio of 2, the axial direction z being more confined than the radial ones x and y, while
the cloud in the Ioffe-Pritchard trap will have an elongated, cigar-like shape with a
much higher aspect-ratio. To ensure good loading efficiency, the cloud is deformed at
the end of the transport by switching on the current in the bars. This has to be done
abruptly to avoid any cancellation of the confinement in one of the radial directions13.
The pinch coils are then ramped up while decreasing the quadrupole to ensure that
axial confinement is always present. The efficiency of the transfer in the Ioffe-Pritchard
trap is hard to evaluate because we cannot count reliably the atoms at this stage: the
clouds are too dense.

2.4.3.1 Doppler cooling

After the Ioffe-Pritchard trap loading, the atoms have a temperature of 3mK. Unfor-
tunately, the collisional scattering cross-section for 7Li vanishes for a relative collision
energy of 6mK and at 3mK it is still too low to ensure efficient evaporation. It is thus
necessary to add another cooling stage of 7Li.

A single beam with σ+ polarization slightly red-detuned from the the D2 transition
|F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉 of 7Li is thus sent on the atoms. This beam cools
in one direction, and thermalization in the other directions is ensured by the collisions
in the quadrupole trap [Suchet et al., 2015]. Doppler cooling is made in two stages of
1 s, and the trap is re-compressed between the first and the second stage by increasing
the bias field to optimize overall cooling. At the end of the Doppler cooling, the

13The 3D quadrupole made by the Feshbach coils have a magnetic field given by B = b′(−xex−yey +
2zez) while the 2D quadrupole made by the bars have a magnetic field given by B = G(xex − yey),
with b′ and G positive. When increasing the bars’ current, G increases, and when G = b′, there is no
more confinement in the x direction.
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temperature is about 300µK, at the price of 25% atom loss, and the collision rate of
about ∼ 15 s−1 is now sufficiently high to allow efficient evaporative cooling [Schreck
et al., 2001a]. The efficiency of the Doppler cooling is very sensitive to the detuning,
which itself depends on the magnetic fields. In practice, the optimization is empirical
and has to be redone daily.

2.4.4 RF evaporation

Evaporative cooling consists in removing the hottest atoms from an assembly of atoms
and in letting the remaining atoms thermalize at a lower temperature [Ketterle and
Druten, 1996]. Since the hot atoms are at the tail of the Maxwell-Boltzmann distri-
bution, they carry a significant amount of energy, and this loss of hot atoms actually
leads to an increase of phase-space density. There exist two main situations to perform
evaporative cooling: either in a magnetic trap, where a finely tuned RF signal transfers
the hot atoms from a trapped to an anti-trapped state [Hess, 1986, Masuhara et al.,
1988, Anderson et al., 1995, Davis et al., 1995a], or in an optical trap, where the depth
of the potential can be lowered so that the hot atoms escape the trap. The latter
will be used later in the experiment, and the former is the one used for this stage.
This is the last cooling stage of 7Li, that will sympathetically cool 6Li: Pauli blocking
prevents collisions between fermions in the same spin state, but collisions between 6Li
and 7Li are allowed and are frequent enough to ensure good thermalization between
6Li and 7Li. This stage is realized in the Ioffe-Pritchard trap with a low bias field
and radio-frequency (RF) field [Pritchard et al., 1989, Davis et al., 1995b] that trans-
fer the hottest 7Li atoms from the trapped |F = 2,mF = 2〉 state to the anti-trapped
|F = 1,mF = 1〉 state. In the process, the remaining 7Li atoms thermalize together
and cool as well the 6Li atoms. The evolution of the RF frequency with respect to
time follows approximately a decaying exponential and goes from 1050MHz down to
840MHz in 22 s. At the end of this evaporation, the temperature is T = 12µK, with
Nf = 2 ·106 and Nb = 6 ·105, with a phase-space density of 10−1 for 6Li and 2 ·10−2 for
7Li and it is possible to load the atoms into an optical dipole trap for the final cooling
stages. The evolution of the RF frequency as a function of time during evaporation
ramp is shown in Figure 2.7.
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Figure 2.7: RF frequency as a function of time during radio-frequency (RF) evaporative
cooling.
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2.5 Optical trap

The final trap is a cigar-shaped trap composed of a far-detuned (λ = 1070nm) optical
dipole trap14 that provides the radial trapping, and of a magnetic trap that provides
axial trapping. A bias field of about 800-1000G is also applied to be in the vicinity of
Feshbach resonances. This final trap is represented in Figure 2.1d.

2.5.1 Generalities on optical traps
In the presence of a laser beam with frequency close to an atomic transition, atoms
experience an AC Stark Shift proportional to the laser’s intensity, and this corresponds
to a potential of

V (r) = ~Γ2

8δ
I(r)
Is

,

where Γ is the natural linewidth of the transition (Γ = 5,9MHz in the case of Li), δ
is the detuning of the laser with respect to the transition (δ = −2π · 1.67 · 1014 Hz for
a λ0 = 1070nm laser beam for a transition at λ = 670nm), I(r) is the laser beam
intensity, and Is is the saturation intensity (here for the D2 line of Li the representative
saturation intensity is Is = 2.5 mW.cm−2). For a blue-detuned laser beam, atoms are
attracted by low-optical-intensity areas, while they are attracted towards high-optical-
intensities for red-detuned beams. For a TEM00 laser beam at the output of an optical
fiber, the mode is Gaussian and

I(x,y,z) = 2P
πw2

0(1 + z2/z2
R)

exp
(
− 2(x2 + y2)
w2

0(1 + z2/z2
R)

)
,

where P is the total laser power, w0 is the beam waist (w0 = 27(2)µm in our exper-
iment), and zR = πw2

0/λ0 is the Rayleigh range (zR = 2,1mm here). Close to the
bottom of the trap, at the first-order approximation, the potential is harmonic with

V (x,y,z) = −U0 + 1
2mω

2
r (x2 + y2) + 1

2mω
2
zz

2,

with

U0 = ~Γ2P

4πδIsw2
0
,

ωr =
√

4U0
mw2

0
,

ωz = 1
2π

λ0
w2

0
ωr.

2.5.2 Loading the hybrid trap
The geometry of the final hybrid optical-magnetic trap is similar to that of the Ioffe-
Pritchard trap, so no sophisticated mode-matching preparation is needed here. We

14IPG laser 120W
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simply ramp up the optical trap power up to 40% of its maximum power while ramping
down the current in the Ioffe-Pritchard bars. The loading efficiency is about 80%, with
Nf = 1.8 ·106 and Nb = 5 ·105 after loading. The optical trap power is then about 8W,
with a waist of w0 = 27(2)µm, leading to trap frequencies of ωr ' 2π · 8 kHz for the
radial direction and ωz ' 2π · 75Hz for the axial direction15. At high laser power, the
axial confinement provided by the dipole trap is sufficient to trap the atoms, but this
is not the case any more at low trap power, where it falls below 1Hz. Some extra axial
confinement is needed, and this is realized via a magnetic trap. To axially trap atoms,
there are two possibilities: either a global minimum of the magnetic field (to trap low-
field seekers), or a saddle point with a maximum in the axial direction and a minimum
in the radial direction (to trap high-field seekers if radial confinement is obtained by
other means). The atomic levels that we want to use for 6Li are high field seekers, so
the second option is preferred: the radial confinement is made by the optical trap. It
is thus possible to tune independently the radial and the axial confinement. To obtain
such a saddle point, we use two pairs of coils: the curve coils (already used in the Ioffe-
Pritchard trap) produce a magnetic curvature of 1.0 G.(cm2)−1.A−1 and a bias field
of 2.28 G.A−1. The Feshbach coils, with current in the other direction, produce a bias
field of −2.28 G.A−1 and a very small curvature of −0.080 G.cm−2.A−1. By imposing
a large current in the Feshbach coils, the minimum of magnetic field becomes negative,
and becomes a maximum in amplitude, trapping the high-field seeking states. With
this configuration, it is thus possible to trap high-field seekers states at a bias field of
832G, in the vicinity of the Feshbach resonance.

2.5.3 Mixture preparation

Once the atoms are loaded into the optical dipole trap, we ramp up the optical trap
power to its maximum value and transfer the atoms to the high-field seekers states,
F = 1 for 7Li and F = 1/2 for 6Li. This is done using adiabatic passage. We apply
two RF frequencies, of 827MHz (for 7Li) and 240MHz (for 6Li) and vary the bias
magnetic field from 13G to 4G in 50ms, crossing the resonance and transferring the
atoms into the desired states. This RF transfer is very robust and never needs to be
re-optimized.

Ultimately, we want to have 7Li atoms in the |2b〉 state and the 6Li atoms in a
mixture of the |1f〉 and the |2f〉 state, while so far the atoms are in |1b〉 and |1f〉, respec-
tively. We first prepare 7Li. The transfer has to be done at a magnetic field below 738G
to avoid crossing of the Feshbach resonance of the |1b〉 state. We increase the current
in the Feshbach coils up to a magnetic field of 656G, and perform another adiabatic
passage, but this time varying the RF frequency from 170.9MHz tp 170.7MHz, cross-
ing again the resonance since the frequency of the transition |1b〉 → |2b〉 is 170.8MHz
at that magnetic field. The ramp is long enough (10ms) to ensure a complete transfer
of 7Li atoms into the |2b〉 state. To prepare the 6Li atoms into the desired states,
the magnetic field is further ramped to 835G, very close to the Feshbach resonance

15We have to operate the laser at full power to obtain a clean TEM00 output mode. To reduce this
power to lower intensities, we first use a Brewster plate that reflects most of the laser power so that
the maximum optical power that can be sent on the atoms is about 20W. We finally adjust the power
during the experimental sequence with a high-power Acousto-Optic Modulator (AOM).
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at 832G. We then perform a last RF sweep from 76.30MHz and 76.25MHz (around
the transition frequency of |1f〉 and |2f〉), but instead of doing an adiabatic passage,
we make a partial Landau Zener sweep: the sweep time is too short for a full transfer,
only part of the atoms are transferred from |1f〉 to |2f〉. We can thus control the ratio
of |1f〉 with respect to |2f〉 by varying the sweep time. The “fermionic polarization”,
or simply “polarization”, is defined as

P = N↑ −N↓
N↑ +N↓

,

where |↑〉 = |1f〉 or |2f〉 is the atomic state with the highest number of atoms N↑ and
|↓〉 the one with the smallest atom number N↓. The transfer efficiency is subject to
fluctuations and the sweep time has to be re-optimized from time to time. A summary
of the different RF pulses is shown in Table 2.7.

Isotope B (G) νRF (MHz) Action
7Li 13→ 4 827 |8b〉 → |1b〉
6Li 13→ 4 240 |6f〉 → |1f〉
7Li 656 170.9→ 170.7 |1b〉 → |2b〉
6Li 835 76.30→ 76.25 |1f〉 → (|1f〉+ |2f〉)

Table 2.7: Summary of the RF sweeps performed to prepare the mixture.

2.5.4 Evaporation
After the mixture preparation, the magnetic field is held at 835G and the optical
evaporation is performed by ramping down the dipole trap power. We now have
Nb = 2 · 105 bosons and Nf = 1.5 · 106 fermions. The unitary Fermi gas has there a
very high collisional cross section and the evaporation is very efficient. The evaporation
ramp lasts for 3.2 s, the evolution of the laser power as a function of time during
evaporation is shown in Figure 2.8. At the end of the evaporation we have typically
Nb = 10−20 ·103, Nf = 60−100 ·103 at a temperature . 80 nK. 7Li is sympathetically
cooled during the process. To ensure complete thermalization between 6Li and 7Li,
one needs to wait about 1 s after the end of the evaporation before performing further
experiments on the mixture.

When we want to perform experiments around 860G with bosons in the |2b〉 state,
we have to evaporate at 860G in order not to cross the 7Li Feshbach resonance at
845G with a cold cloud. The evaporation ramp is then slightly longer to allow for
enough thermalization.

2.5.5 Summary
By means of different magnetic and optical traps, we are thus able to produce ultracold
samples of bosons and fermions. A summary of atom numbers and temperatures
at each step is given in Table 2.8. The bosons are condensed into a Bose-Einstein
Condensate (BEC), as it is obvious from the clear peak in the density profiles. The
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Figure 2.8: Laser power as a function of time during optical evaporative cooling.

superfluidity of the fermions is harder to demonstrate, but several proofs will be given
in the following chapters (chapter 3 and chapter 4). The data obtained on the clouds are
taken in the form of absorption images of the cloud. This technique will be described
in the next section.

MOT CMOT Quadrupole RF evaporation optical evaporation optical evaporation
(end) (beginning) (end)

Nb 109 109 4 · 108 6 · 105 2 · 105 20 · 103

Nf 4 · 107 4 · 107 2 · 107 6 · 106 1.5 · 106 200 · 103

T 3mK 600µK 2mK 12µK 40µK 80nK

Table 2.8: Summary of typical atom numbers and temperatures at the different stages
of the experiment.

2.6 Imaging

2.6.1 Absorption imaging

We use standard in situ absorption imaging to image the clouds by shining on it
resonant light. Atoms absorb the photons and the shadow of the cloud is captured by
a camera (“absorption image”). The atoms that absorbed a photon are now excited
and escape the trap. Another image is then taken after a wait time of 10-20ms without
the atoms (“reference image”). A scheme of the imaging process is shown in Figure 2.9.

If we note y the imaging direction, Ia(x,z) the intensity of the absorption image in
the x− z plane, and Ir(x,z) that of the reference image. The optical density OD(x,z)
is then given by

OD(x,z) = − ln
(
Ia(x,z)
Ir(x,z)

)
,

and the optical density is itself related to the number of atoms via the relation

OD(x,z) = σ

ˆ
dyn(x,y,z),
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Figure 2.9: Imaging process: a resonant beam is shone on the atoms, their shadow
is cast on a camera (“absorption image”), before a second image, without the atoms
(“reference image”) is taken. The cloud is shown here in purple, the CCD camera is
the blue-and-white grid, and the imaging beam is shown in red.

where n(x,y,z) is the atomic density of the cloud and σ the absorption cross-section of
one atom. The cross-section at resonance is known as a function of Clebsch-Gordan
coefficients and can be calculated. However, because of complex optical pumping-like
phenomena and of some experimental difficulties (such as the relatively large spec-
tral bandwidth of the laser, on the order of a few hundred kilohertz, some polariza-
tion fluctuations, or the acceleration of detected atoms increased by the lightness of
lithium), the scattering cross-section is reduced and we have to calibrate it experimen-
tally. This has been done by measuring the Thomas-Fermi radius for both bosons and
fermions: the relation between the total atom number and the Thomas-Fermi radius is
well known, and this procedure gives access to the imaging correction factor [Ferrier-
Barbut, 2014]. We only image in the linear absorption regime, when the optical density
is . 1, so that no additional correction to the atom number needs to be taken into
account [Reinaudi et al., 2007]. A consequence of this low-intensity imaging is that we
cannot image very dense clouds. This can be circumvented using a short time-of-flight,
as will be discussed below.

2.6.2 Imaging system

Our imaging system allows to image in two orthogonal directions. One of the imaging
directions is along the dipole trap direction z, while the other one is along y. Imaging
in the z direction requires some time of flight to reduce the optical density (typically on
the order of 4ms), while imaging in the y direction can be done in situ, even though
we usually have a very short time of flight (on the order of 100µs) to reduce the
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optical density. However, the radial dimensions of the cloud are on the order of the
imaging resolution, about 5µm and no information is lost by integration also along the
x direction. We thus have access to the doubly-integrated density n̄(z). The PixelFly
cameras that we use can operate very fast. Each of these two cameras can take two
images with a time separation as short as 3µs. This allows to take quasi-simultaneous
images of the two fermionic spin states, or of one fermionic spin state with the bosons.
Cameras have a quantum efficiency of 40%, but the short imaging pulse duration that
we use (10µs) reduces the number of photons per pixel to typically one hundred.
This combined with the relatively high readout noise of 7 electrons RMS makes the
overall signal-to-noise ratio not very high. A scheme of the imaging system is given in
Figure 2.10 for fast imaging in the radial direction of both fermionic spin states (time
delay between both images of 10µs) and time-of-flight imaging of bosons (ttof = 4ms
here) in the axial direction from a single experimental realization.

Figure 2.10: Typical imaging scheme. Here, we performed fast imaging of both
fermionic spin states in the radial direction, and time-of-flight imaging of the bosons
in the axial direction. The clouds are in red (fermions) and blue (bosons), imaging
beam directions are shown with red arrows.

During my PhD, we used this system to take either simultaneous images of one
fermionic spin state with the bosons (for dynamic studies of the mixture, see chapter 3),
or simultaneous images of both fermionic spin states, with the bosons in time-of-flight,
as shown in Figure 2.10 (for static studies of the mixture, see chapter 4).

2.6.3 Image processing

As mentioned above, the price to pay for the fast imaging is a relatively low signal-to-
noise ratio, even on the doubly-integrated images. When we only want to know some
general properties of the clouds, such as atom number or center-of-mass position, one
may either integrate over all of the pixels or use an approximate fit function (see
chapter 3). However, when one wants to study precisely the profiles of the cloud, more
image processing is needed. One of the first sources of noise is the presence of fringes on
the absorption image due to interferences with back reflections of the imaging beams.
To reduce the influence of these fringes, the reference image is taken with a short



2.7. Double Degeneracy 47

delay (11ms) with respect to the absorption, but some fringes may remain. To get
rid of them, we use an algorithm16 the principle of which is the following: among a
series of reference images, it finds the best combination to remove as many fringes as
possible. To do that, we consider the absorption image with a mask at the position of
the atoms, then find the linear combination of reference images which best looks like
the remaining of the absorption image. This linear combination is then taken as the
new reference image. The results of this treatment are shown in Figure 2.11. Even
though the effect is no very visible on the 2D images (Figure 2.11a), it clearly reduces
the fringes on the doubly integrated profiles (Figure 2.11b).

(a) Comparison of the 2D images. Top: raw
image. Bottom: processed image.
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(b) Comparison of the doubly integrated pro-
files. In green: raw profile. In red: processed
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Figure 2.11: Effect of the fringe removal algorithm.

This algorithm is not necessary to analyze the data presented in chapter 3, but has
proven to be very useful for the study of chapter 4.

2.7 Double Degeneracy

By means of the methods presented in the first sections of this chapter, we are able
to obtain doubly degenerate Bose and Fermi gases. This sections aims at giving the
tools that we use for basic data analysis.

2.7.1 Bosons

Typical optical density images of the bosonic cloud are given in Figure 2.12 for both
radial and axial imaging. In the axial direction, we have access to the time-of-flight,
singly integrated optical density, while the radial imaging gives access to the in situ
doubly integrated optical density. In practical, even when we imaged in the axial
direction, we only used the doubly integrated optical density. The doubly integrated
optical density of Figure 2.12b is given in Figure 2.13. We model the in situ density

16developed by Shannon Whitlock
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(a) Axial direction.
Time of flight 4ms.

(b) Radial direction.
Time of flight 100µs.

Figure 2.12: Singly integrated optical density images of bosonic clouds.

profile of a thermal cloud at temperature T by17

n̄th(z) = n̄th(0) exp
(
−(z − z0)2

z2
th

)
, (2.1)

where z0 is the position of the center of the cloud, and zth its thermal width, given by

kBT = 1
2mbω

2
zz

2
th.

The measurement of the width of the thermal cloud thus gives access to the tempera-
ture of the whole cloud.

In the Thomas-Fermi limit, the doubly-integrated profile of the condensate can be
described by

n̄c(z) = n̄c(0) max

(1− (z − z0)2

l2TF,z

)2

,0

 , (2.2)

where lTF,z =
√

2µb
mbω2

z
is the Thomas-Fermi radius of the cloud and has already been

defined in subsection 1.3.2. Density profiles of partly condensed clouds can be fitted
using a bimodal fit, taking into account the thermal cloud with equation (2.1) and the
condensate with equation (2.2). This gives access to both the temperature, via the
gaussian fit, and to the condensed fraction Nc/Nb. The relation between condensed
fraction and temperature, Nc/Nb = 1− (T/Tc,b)3, provides a consistency check of the
temperature measurement.

Figure 2.13 shows the doubly integrated of a relatively hot cloud and its associated
bimodal fit, corresponding to a temperature of 230 nK.

For our coldest clouds, no thermal fraction is visible (see Figure 2.14 for instance),
and we assure that the condensed fraction is above 90 %. This implies that the tem-
perature is below 80 nK.

17Even though a description by a polylog function would be more accurate, this one gives similar
results and converges faster.
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Figure 2.13: Doubly integrated density profile of a relatively hot bosonic cloud. Blue
line: experimental profile. Dashed black line: bimodal fit of the density distribution.
Here, the temperature extracted from the thermal cloud width is 233 nK, while the
condensed fraction is ∼ 50 %, corresponding to a temperature of 238 nK.
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Figure 2.14: Doubly integrated density profile of a cold bosonic cloud. Blue line:
experimental profile. Dashed black line: bimodal fit of the density distribution. No
thermal fraction is visible, corresponding to a cloud at a temperature below 80 nK.

2.7.2 Fermions

The shape of the density profile of a two-component Fermi cloud depends on the
interaction strength kFaff : on the deep BEC side, the density profile will be the same
as that of an atomic BEC, while at unitarity it will have the same shape as a non-
interacting Fermi gas. There is no analytical expression in the general case. Moreover,
there is no obvious modification of the profile when crossing the critical temperature
for superfluidity, as it was the case for the bosons with the appearance of the BEC
peak. However, in the regimes studied in this thesis, we stayed relatively close to
unitarity (|1/kFaff < 1), and the profile of the Fermi gas could be well described by
the Thomas-Fermi profile of a unitary Fermi gas:

n̄f(z) = n̄f(0) max

(1− (z − z0)2

l2TF,z

)5/2

,0

 ,
where here the Thomas-Fermi radius lTF,z is given by lTF,z = ξ1/4

√
2EF
mfω2

z
. An example

of the fit of the fermions profile is given in Figure 2.15. The Fermi cloud profile does
not give access to its temperature, but since it is in equilibrium with the bosonic cloud,
they have the same temperature. The Bose gas thus acts as a thermometer for the
Fermi gas. As a result, the temperature for cold Fermi gases is also below 80 nK, which
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is below the critical temperature for superfluidity at unitarity Tc,f = 0.19TF = 170 nK.
The Fermi cloud is thus superfluid.
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Figure 2.15: Doubly integrated density profile of a fermionic cloud. Red line: experi-
mental profile. Dashed black line: Thomas-Fermi fit of the density distribution.

2.8 Conclusion
In this chapter we have presented the lithium experiment. Some visitor in the lab
once said that “this experiment contain[ed] every textbook cooling stage” used in cold
atoms. This is not such a big exaggeration. Learning how to run the machine is thus
a tough task, but is a good way to learn how to cool and trap atoms. The major
specificity of this experiment is the use of crossed-thermalization in two evaporative
cooling stages, the first one where 7Li cools 6Li, and the second one where 6Li cools 7Li.
This way, we could obtain a double Bose-Fermi superfluid mixture of 6Li and 7Li which
was a long sought goal of the helium community. As will be described in chapter 3,
we could for instance probe the effect of the Bose-Fermi interaction on the collective
excitations of the mixture and use this interaction to explore the critical velocity of
the superfluid mixture. However, some of the parts of this lithium experiment start to
be very old, and it was time to build a new experiment that would be more versatile
and reliable. I started this project during my PhD and it is describe in chapter 5.
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The first proof of superfluidity in liquid helium was given in 1938 by Allen and
Misener [Allen and Misener, 1938], and by Kapitza [Kapitza, 1938], by measuring the
viscosity of a flow in a capillary tube and finding that it did not obey Poiseuille law.
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It was soon followed by other striking effects, such as the fountain effect [Allen and
Jones, 1938], or the presence of vortices [Hall and Vinen, 1956b]. Similar phenomena
were also observed for superfluid 3He [Osheroff et al., 1972b, Osheroff et al., 1972a].
Years later, after the first realization of Bose-Einstein Condensates [Anderson et al.,
1995, Davis et al., 1995a] in ultracold atoms, phase-coherence was observed [Andrews et
al., 1997b, Bloch et al., 2000], and the presence of vortices in rotating clouds provided
a proof of the superfluidity of these atomic ensembles [Madison et al., 2000], as well as
the existence of a critical velocity [Raman et al., 1999]. When Fermi superfluids were
realized [DeMarco and Jin, 1999], first evidences of their superfluidity were initially
provided by the appearance of a molecular BEC after projection of the Fermi gas onto
a molecular gas [Regal et al., 2004b]. Later, the observation of vortices [Zwierlein et
al., 2005] and critical velocity [Miller et al., 2007] were definitive proofs, and since
then, other proofs of superfluidity for ultracold gases have been put forward, such as
the existence of second sound [Sidorenkov et al., 2013]. In this chapter, we will probe
the superfluidity of the mixture with a counterflow.

In his original argument [Landau, 1957], Landau showed that an impurity moving
in a superfluid cannot create any excitations below a certain critical velocity vc (see
subsection 3.3.2), such that:

vc = min
p

(
ε(p)
p

)
,

where ε(p) is the dispersion relation of the superfluid. This prediction was successfully
demonstrated in superfluid helium [Wilks and Betts, 1987]. Another way to probe
superfluidity for cold atoms was thus to consider an impurity moving inside a Fermi
superfluid or inside a BEC, and to observe the onset of dissipation for these systems.
For bosons, critical velocity was measured both in 3D [Raman et al., 1999] and in
2D [Desbuquois et al., 2012] using a stirring laser as an impurity: a bosonic cloud
is prepared at low temperature and stirred using a laser. Above a certain stirring
velocity, an onset of heating is observed and this defines the critical velocity. Instead
of a stirring laser beam, other experiments used moving atomic impurities in a static
BEC [Chikkatur et al., 2000] to probe the critical velocity. Experiments with two
BECs flowing into each other have shown that the critical velocity between them was
very small [Hall et al., 1998], and that their motion was damped. In Fermi gases, the
critical velocity has been probed as well, but the measured critical velocity proved to
be ≈ 40% below Landau’s prediction [Miller et al., 2007, Weimer et al., 2015].

The first realization in our group of a Bose-Fermi superfluid mixture raised new
questions regarding the behavior of a rotating Bose and Fermi superfluid mixture [Wen
and Li, 2014], the effect of interactions between BEC’s and Fermi superfluid’s quasi-
particle on their lifetime [Zheng and Zhai, 2014], the damping rate of the counter-
flow [Shen and Zheng, 2015, Chevy, 2015], or the critical velocity of the mixture [Abad
et al., 2015, Castin et al., 2015]. Experimentally, the mixture provided a new approach
to measure the critical velocity, because the Bose superfluid, of relatively small size,
serves as (quasi) local probe of the Fermi superfluid.

In this chapter we describe the measurement of the critical velocity of a Bose-Fermi
superfluid mixture, through the study of its counterflow. We create a Bose-Fermi
superfluid in a harmonic trap as explained in chapter 2, and we excite the dipole
modes of the system, leading to oscillations of the BEC and of the Fermi superfluid.
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The long-lived oscillations of the system are a first evidence for the double superfluidity
and more proofs will be put forward in the following. In a first series of experiments,
we show that the (weak) interactions between 6Li and 7Li do not prevent superfluidity,
unlike in 3He-4He mixtures. The reported observation of long-lived oscillations allow
for precise frequency measurement and provide insightful information on the local
potential, which results in a new method to measure the equation of state. A second
set of experiments is dedicated to the exploration of the limits of superfluidity. The
relative critical velocity between the two clouds is investigated by studying the onset
of dissipation in the BEC-BCS crossover. The measured critical velocity is compared
to both theory [Landau, 1957, Castin et al., 2015] and experiments [Miller et al.,
2007, Weimer et al., 2015]. In a third set of experiments, the robustness of superfluidity
as a function of temperature is probed. We use a more sophisticated frequency analysis
to ensure model-free measurement of the frequencies. We observe an unexpected phase-
locking of the oscillations and explain it by a Zeno-like model.

3.1 Dipole modes excitation

3.1.1 The mixture
At the end of evaporation, the system is composed of a mixture of ultracold bosons
in |2b〉 state and fermions with equal number of atoms in |1f〉 and |2f〉 states. We
typically have Nf = 60− 100 · 103 and Nb = 10− 29 · 103 at a temperature . 80nK1.
Both clouds are in the same hybrid magnetic-optical trap and feel the same trapping
potentials2. Radial confinement is made by the optical trap (with a trapping frequency
of νr = 470Hz), and axial confinement is made mainly by the magnetic trap (with a
trapping frequency of about νz = 15Hz)3. The resulting trap is thus cylindrico-
symmetric. Despite the high aspect-ratio of this cigar-shaped trap, the dynamics are
still 3D, since T � ~ωr/kB ≈ 20nK (where ωr = 2πνr and ωz = 2πνz). An external
magnetic field in the range of 700 to 900G enables us to set the superfluid at the
vicinity of the multiples Feshbach resonances (at 846 and 894G for 7Li and at 832G
for 6Li). This way, the bias field and the magnetic field curvature responsible for axial
trapping can be tuned independently. In the experiments reported here, the axial
confinement is held constant, while the bias field was varied to tune the interaction
strength 1/kFaff between -0.4 and 0.8.

In such superfluid mixtures the Bose gas can serve as an excellent thermometer by
taking advantage of the thermal fraction in the wings of the clouds. However, in the
regime of parameters considered here the condensate fraction is typically above 90%,
such that the thermal component is barely detectable. In this case, we can still infer
an upper bound on the temperature. Indeed, for an ideal4 Bose gas in a harmonic
trap the condensed fractionN0/N is given by N0/N = 1 − (T/Tc,b)3. We can deduce

1It is possible to have hotter clouds with more atoms simply by stopping the optical evaporation
at a higher optical power.

2But not the same trapping frequency as they have different masses.
3The magnetic trapping frequency is 15 Hz, the optical trapping frequency is about 1− 2 Hz. The

trapping frequencies of the two species are within a ratio ωf/ωb =
√
mb/mf because both isotopes are

in the same potential.
4Here, the Bose-Bose scattering length is typically . 100 aB so the Bose gas is not ideal, but the
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that T ≤ 0.5Tc,b, where Tc,b = 0.94 ~ωbN
1/3
b /kB is the critical temperature for Bose-

Einstein condensation, and the upper bound for the temperature is T ≤ 80 nK. The
critical temperature for BEC (resp. Fermi superfluid at unitarity) is Tc,b = 200 nK
(resp. Tc,f = 0.19TF = 170 nK), so both clouds are clearly in the superfluid regime.

We mainly studied the center-of-mass oscillations of the Bose-Fermi mixture by
exciting the oscillation mode (called the “dipole mode”) in the harmonic trap. The
position of the center-of-mass of both the bosonic and the fermionic cloud is recorded
as a function of time. Those measurement were repeated for various sets of parameters,
including:

• The bias magnetic field. This modifies both the fermion-fermion and the boson-
boson interactions via Feshbach resonances. As we will see, this is mostly the
modification of the fermion-fermion interaction that affects the oscillations.

• The amplitude of the oscillations. Since the oscillation frequency of the cloud is
roughly constant, this changes the velocity of the clouds in the trap, and their
relative velocity when they oscillate at different frequencies.

• The temperature of the clouds. Sine both clouds are at thermal equilibrium,
they have the same temperature.

We performed three different kind of experiments, the corresponding parameters
are shown in Table 3.1.

Description in Magnetic field oscillation amplitude Temperature Quantity measured
section 3.2 varied small low frequency
section 3.3 varied varied low damping
section 3.4 835G moderate varied frequency, (damping)

Table 3.1: Summary of the parameter space studied in the oscillation experiments.

3.1.2 Selective excitation of dipole modes

We excite the dipole modes of the system by displacing the centers of mass of both
clouds. The centers of the magnetic and of the optical trap are different, so to excite
the dipole modes of the system, we increase the optical trap power by typically a factor
3, and this displaces axially the minimum of the hybrid trap, and thus the cloud by
a distance d. This is made with a timescale of 150 ms≥ 1/νz, 1/νr in order to be
adiabatic. The optical trap power is then reduced to its initial value, which brings
back the center of the trap to its initial position, with a timescale of 20 ms, greater
than the inverse of the radial frequency, not to excite the radial modes, but smaller
than the inverse of the axial frequency, to excite the dipole modes. A scheme of the
excitation process is shown on Figure 3.1.

corrections to Tc,b due to the interactions are negligible. Indeed, ∆Tc,b
Tc,b

= 1.3abbn
1/3
b � 1 [Pitaevskii

and Stringari, 2003].
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1

2

Figure 3.1: Scheme of the excitation process: first slowly displace the trap by a distance
d, then release the cloud into the initial trap.

The clouds thus acquire some velocity and oscillate in the trap. We let them
evolve during a variable time t before imaging them with double in situ imaging (see
subsection 2.6.1) and measuring their position. With this process, the compression
is very small, and the axial Thomas-Fermi radius of the clouds is modified by less
than 10%. We neglect it in a first approximation. In section 3.6 we show that the
modifications of the radii are periodic, which shows that quadrupole modes are slightly
excited.

3.1.3 Kohn’s theorem
It is very well known that the motion of a single particle in a harmonic trap is a
sinusoid of radial frequency

√
k/m, where m is the mass of the particle and −kr the

restoring force. For N identical non-interacting particles, the result is obviously the
same, and all particles oscillate at the frequency

√
k/m. One may wonder how this

result is affected by the interactions. When considering only the center-of-mass of the
particle ensemble, we can write (with ri the position of particle i and F (ri − rj) the
interaction force between two particles at positions ri and rj):

mr̈i = −kri +
∑
j

F (ri − rj).

The center-of-mass position rCoM thus obeys:

mr̈CoM = −krCoM + 1
N

∑
i,j

F (ri − rj).
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Newton’s third law implies that
∑
i,j F (ri−rj) = 0, so the center-of-mass oscillation of

identical particles in a harmonic trap is independent of the interactions. It was demon-
strated here in the classical regime, but this result also holds in the quantum regime.
Regarding the evolution of the shape of the ensemble, this problem was originally ad-
dressed by Kohn in [Kohn, 1961], who showed that for a gas of electrons in a uniform
and constant magnetic field, the response to an uniform electric field ~E = ~E0 cosωt
was independent of the interactions between the electrons. Its extension in [Brey et al.,
1989] generalized this result to the case of identical particles in a harmonic trap. Later,
in [Dobson, 1994] the "harmonic potential theorem" demonstrates the rigid transport
of of the many-body wavefunction.

In our system, we have interacting atoms and not electrons, but the same results
hold. For an interacting, single species, atomic gas in a harmonic trap, the oscillations
are undamped and at a constant frequency without modification of the shape of the
cloud, whatever the interactions between atoms are. This is indeed what we observe in
our experiments, with either bosons alone or fermions alone in the trap (see Figure 3.2
for instance for an example with bosons). The axial magnetic trap that we use is very
harmonic, and there is (as also shown in Figure 3.2) no anharmonic terms that would
lead to damping.
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Figure 3.2: Axial center-of-mass oscillations of the BEC alone in the harmonic trap.
We see long-lived oscillations with a frequency of 16.08(2) Hz for an initial oscillation
amplitude of 140µm.

3.2 Low temperature, low amplitude

3.2.1 Experiments

We first studied dipole modes of the clouds at low temperature, and for a small ampli-
tude displacement. We typically displace the clouds by less than 100µm. Imaging the
cloud at constant time intervals during the oscillations allowed us to sketch a movie
of the oscillations, which is shown on Figure 3.3, and displays long-lived undamped
oscillations of the mixture.

In the following, we will note ω̃b (resp. ω̃f) the oscillation frequency of the bosons
(resp. fermions) in the mixture, and ωb (resp. ωf) the oscillation frequency of the
bosons (resp. fermions) alone in the trap. Since there is no visible damping on a
timescale of about 4 seconds, precision frequency measurements are possible.
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Einstein Condensate (bottom) at a magnetic field of 835 G. The oscillation period of
6Li (resp. 7Li) is 59.7(1) ms (resp. 66.6(1) ms).

In our experiment, we measure at unitarity ωb = 2π × 15.27(1) Hz and ωf =
2π × 16.80(2) Hz. The ratio ωf/ωb = 1.10 is the expected value, slightly above the
mass ratio

√
mb/mf =

√
7/6 = 1.08 because of magnetic corrections5. However,

when we excite the dipole modes of the superfluid mixture, what we observe is slightly
different (see Figure 3.4).
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Figure 3.4: Evolution of the centers of mass of the mixture at low temperature (≈
100 nK), and for low-amplitude oscillations (d ≤ 50µm). Solid lines are fits to the
data using equations (3.8) and (3.9).

5The magnetic fields that we use in the experiment are all above 750G so both clouds are in the
deep Paschen-Back regime and their energy dependence with magnetic field is ∂E/∂B ≈ µB. The
clouds are thus almost in the same trapping potential and ωb/ωf =

√
6/7. If we take into account

the corrections to energy dependence with magnetic field, this ratio is slightly modified and we obtain
ωb/ωf ≈ 1.10 between 780G and 880G.
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First, the oscillation frequency for the bosons is down-shifted to ω̃b = 2π ×
15.00(2) Hz while ω̃f ≈ ωf . Second, we see a beat associated to an amplitude modula-
tion of about 25% at a frequency ω̃f − ω̃b.

3.2.2 Bose-Fermi interaction

To understand the origin of the frequency shift of the bosons, let us first note that the
number of bosons is much smaller than the number of fermions: Nb � Nf . We can
thus treat the BEC as an impurity immersed in a Fermi superfluid. Similarly to what
will be used in subsection 4.2.1 and to [Lobo et al., 2006], we can say that the BEC
feels now an effective potential

Veff(r) = V (r) + gbfnf(r),

where the gbfnf(r) takes into account the mean-field interaction between the bosons
and the fermions. If we now make a first-order approximation and neglect the back-
action of the bosons on the fermions6, the fermionic density nf(r) is given by the local
density approximation, where µf(r) is the local chemical potential of the fermions and
µ0

f the global fermionic chemical potential

nf(r) = n
(0)
f (µf(r)) = n

(0)
f (µ0

f − V (r)), (3.1)

where n(0)
f (µ) is the equation of state of the Fermi superfluid, known at unitarity for

T 6= 0 [Nascimbène et al., 2010] and at T = 0 in the whole BEC-BCS crossover [Navon
et al., 2010]. If we now take into account the fact that the oscillation amplitude is
small and that the BEC remains close to the center of the superfluid, we can make a
Taylor-expansion of equation (3.1) and obtain:

nf(r) = n
(0)
f (µf(r)) = n

(0)
f (µ0

f )− ∂n
(0)
f

∂µf
V (r) = nf(r = 0)− dn

(0)
f

dµf

∣∣∣∣∣
µf(r=0)

V (r).

The effective potential thus reads

Veff(r) = gbfnf(r = 0) + V (r)

1− gbf
dn

(0)
f

dµf

∣∣∣∣∣
µf(r=0)

 (3.2)

From equation(3.2), we see that the potential remains harmonic, but its frequency is
now given by:

ω̃b = ωb

1− 1
2gbf

 dn
(0)
f

dµf

∣∣∣∣∣
µf(r=0)

 .
Since gbf > 0 and dn

(0)
f

dµf
> 0, we expect a downshift of the oscillation frequency,

consistent with our observations. The value of this downshift can be calculated. Indeed,
6This is justified because of the small Nb/Nf ratio. As it is shown in chapter 4, when the number

of bosons is comparable to the number of fermions, it can strongly affect the Fermi cloud’s profile.



3.2. Low temperature, low amplitude 61

the value of dn
(0)
f
dµ

∣∣∣∣
r=0

is known at unitarity from experiment and theory: the equation
of state of a unitary Fermi gas is given by

µf = ξ
~2

2mf
(3π2nf)2/3,

where ξ = 0.38(1) is the Bertsch parameter. This leads to

nf = 1
3π2

(2mfµf
ξ~2

)3/2
.

dn
(0)
f
dµ

∣∣∣∣∣
µf(r=0)

= mf
π2~2

kF
ξ5/4 ,

with kF the Fermi wave-vector of the Fermi gas. It can also be calculated in the BEC-
BCS crossover from the equation of state [Navon et al., 2010, Astrakharchik et al.,
2004, Carlson et al., 2003]. We now introduce the relative frequency shift δωb

ωb
= ωb−ω̃b

ωb
,

and
δωb
ωb

= 1
2gbf

dn
(0)
f

dµf

∣∣∣∣∣
µf(r=0)

. (3.3)

At unitarity, the predicted oscillation frequency is thus 14.97(2)Hz, very close to our
measured frequency.

We can extend the study to the whole BEC-BCS crossover and measure the fre-
quency shift for different magnetic fields between 860 G and 780 G (corresponding to
1/kFaff between -0.4 and 0.8), we obtain the results shown on Figure 3.5 and com-
pare them to equation (3.3). We can see very good agreement between theory and
experiments, and this could be used as another method to measure the equation of
state. Collective modes can provide precision measurements to probe the equilibrium
properties of a many-body system, as was already done in [Tey et al., 2013].

3.2.3 Sum-rule approach

3.2.3.1 Method

These results can also be found using a sum-rule approach [Stringari, 2004, Miyakawa
et al., 2000, Banerjee, 2007]. The dynamics of the system can be described using a
Hamiltonian

Ĥ =
∑
i,j

(
p̂2

f,i
2mf

+
p̂2

b,j
2mb

)
+ U(rf,i,rb,j), (3.4)

where U is the total (trap+interaction) potential energy of the system. We note |n〉 and
En the eigenstates and eigenvalues of the Hamiltonian. The ground state is |0〉 with
energy E0. We consider an excitation operator F̂f (resp. F̂b) affecting the fermions
(resp. the bosons) and define

F̂ (cf ,cb) = cf F̂f + cbF̂b (3.5)
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Figure 3.5: Evolution of the frequency shift of the dipole mode in the BEC-BCS
crossover. Experiment (red dots) and theory (blue line) from the equation of state
(equation (3.3) and [Navon et al., 2010]), ideal Fermi gas (dashed line) and MIT
prediction at unitarity [Ku et al., 2012] (blue triangle).

the excitation operator for both species, depending on the mixing coefficients cf and
cb. We can define the moments (‘sum-rules’) by

Sk =
∑
n

(En − E0)k
∣∣∣〈n|F̂ |0〉∣∣∣2 .

In particular, S1 and S−1 are defined as:

S1 =
∑
n

(En − E0)
∣∣∣〈n|F̂ |0〉∣∣∣2 ,

S−1 =
∑
n

1
En − E0

∣∣∣〈n|F̂ |0〉∣∣∣2 .
Assuming then that the system is mainly described by its ground state and two

first excited states leads to

(E1 − E0)2 ≤ S1
S−1

≤ (E2 − E0)2,

~2ω2
1 ≤

S1
S−1

≤ ~2ω2
2,

and the extrema of S1/S−1 with respect to cf and cb give access to approximate values
for excitation energies and frequencies of the system (or more precisely, to the upper
bound for the lowest one and to the lower bound for the highest one).
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3.2.3.2 Displacement of the cloud

To push the calculation further, it is necessary to calculate S1 and S−1. Using closure
relation, S1 can be re-written as

S1 = 〈0|F̂ ĤF̂ |0〉 = −1
2〈0|[[Ĥ,F̂ ],F̂ ]|0〉.

If F̂ affects only the position degrees of freedom, as it is the case for the excitation
described in subsection 3.1.2, and if Ĥ has the form Ĥ = p̂2

2m + V (r̂), then S1 can be
calculated exactly. The axial displacement of the system can be described by choosing

F̂f =
Nf∑
i=1

ẑf,i, (3.6)

F̂b =
Nb∑
j=1

ẑb,j , (3.7)

where zα=(f,b),i is the position along z of the i-th atom, and the Hamiltonian is given
by equation (3.4). In this case, using the fact that [[p̂2

z,z],z] = 2~2, we have:

S1 = −1
2〈0|[[Ĥ,F̂ ],F̂ ]|0〉

= −1
2
(
c2

f 〈0|[[Ĥ,F̂f ],F̂f ]|0〉+ c2
b〈0|[[Ĥ,F̂b],F̂b]|0〉

)
= −1

2

(
Nf

2~2

2mf
+Nb

2~2

2mb

)

= −
(

~2

2mf
Nfc

2
f + ~2

2mb
Nbc

2
b

)

S−1 can be calculated using perturbation theory: consider a perturbed Hamiltonian
Ĥ ′ = Ĥ − k F̂ , where k is the restoring force of the trap. The first-order perturbation
theory gives access to the eigenstates |n′〉 of the perturbed system and

|0′〉 = |0〉+
∑
n

〈n| F̂ |0〉
En − E0

|n〉 ,

which leads to:

〈0′| F̂ |0′〉 = 〈0| F̂ |0〉+ 2k
∑
n

| 〈0| F̂ |n〉 |2

En − E0

= 〈0| F̂ |0〉+ 2kS−1.

So S−1 = 1
2k (〈0′| F̂ |0′〉 − 〈0| F̂ |0〉), and F̂ is given by equations (3.5), (3.6) and (3.7).

Using Taylor expansion, 〈0′| ẑα,i |0′〉 can be expressed as:

〈0′| ẑα,i |0′〉 = 〈0| ẑα,i |0〉+
∑
β=b,f

∂ 〈0| ẑα,i |0〉
∂dβ

.



64 Chapter 3. Collective modes of the mixture

Noting 〈zα〉 = 〈0| ẑα,i |0〉 the center of mass of specie α =b,f, this leads to:

S−1 = 1
2k
∑
α,β

Nαcαcβ
∂〈zα〉
∂dβ

.

To sum up, S1 and S−1 are given by

S1 = −
(

~2

2mf
Nfc

2
f + ~2

2mb
Nbc

2
b

)

S−1 = −1
k

{
c2

fNf
∂〈zf〉
∂df

+ c2
bNb

∂〈zb〉
∂db

+ cfcb

(
Nf
∂〈zf〉
∂db

+Nb
∂〈zb〉
∂df

)}
,

where k is the restoring force of the axial magnetic trap, 〈zα〉 is the center of mass posi-
tion of atoms of species α = b,f in the presence of a perturbing potential −k

∑
β dβF̂α

corresponding to a shift of the trapping potential of species β by a distance dβ. It
yields:

S1
S−1

= ~2k
Nfc

2
f /mf +Nbc

2
b/mb

c2
fNf

∂〈zf〉
∂df

+ c2
bNb

∂〈zb〉
∂db

+ cfcb
(
Nf

∂〈zf〉
∂db

+Nb
∂〈zb〉
∂df

)
To study that function, we can introduce the change of variable c′α = cα

√
Nα/mα and

ψ = (a′f ,a′b). S1/S−1 can be re-written in terms of ψ:

S1
S−1

= ~2k
〈ψ|ψ〉
〈ψ|M |ψ〉

,

withM, the effective mass operator, given by

Mαβ = √mαmβ

√
Nα

Nβ

∂〈zα〉
∂dβ

,

and the scalar product defined by 〈ψ|ψ′〉 =
∑
α ψαψ

′
α. The frequencies ω1 and ω2 are

then given by ωi =
√
k/m̃i, where m̃i is an eigenvalue of M. Since the matrix M is

symmetric, usual perturbation theory gives access to its eigenvalues and eigenvectors,
and

m̃1 = mf

(
1− ∂〈zf〉

∂db

)
m̃2 = mb

(
1− ∂〈zb〉

∂df

)
.

Since we have experimentally Nf � Nb, this implies ∂〈zb〉/∂df � ∂〈zf〉/∂db, and we
can identify the excitations frequencies {ω1, ω2} to {ω̃b, ω̃f} and obtain

ω̃f ' ωf

ω̃b ' ωb

(
1 + 1

2
∂〈zb〉
∂df

)
.

The crossed-susceptibility can be calculated using local density approximation, and
we recover the previous results (equation (3.3) for instance) ∂〈zb〉

∂df
= −gbf

dn
(0)
f
dµ

∣∣∣∣
µf(r=0)

.
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The eigenvectors give access to the dynamics of the system. If we note Ψ′i=1,2 = (c′f ,c′b)
the eigenvectors associated to eigenvalues ω1 and ω2, with perturbation theory we get

Ψ′1 =
(

1
√
mfmb

mf−mb

√
Nb
Nf

∂〉zb〉
∂df

)

Ψ′2 =
( √

mfmb
mb−mf

√
Nb
Nf

∂〉zb〉
∂df

1

)
,

and the vectors Ψi=1,2 = (cf ,cb) corresponding to the excitation operator F̂ are

Ψ1 =
√
mf
Nf

(
1

mb
mf−mb

∂〉zb〉
∂df

)

Ψ2 =
√
mb
Nb

(
mf

mb−mf
Nb
Nf

∂〉zb〉
∂df

1

)
.

It is now possible to express the initial condition zf(t = 0) = zb(t = 0) = d on the
(Ψ1,Ψ2) basis, and since the evolution of the eigenvector Ψi occurs at a frequency ωi,
in the experimentally relevant situation it is possible to obtain the time evolution of
the system as

zf(t) = d[(1− ερ) cos(ω̃ft) + ρε cos(ω̃bt)], (3.8)
zb(t) = d[−ε cos(ω̃ft) + (1 + ε) cos(ω̃bt)]., (3.9)

with ρ = Nb/Nf � 1 and

ε = mb
mb −mf

∂〈zb〉
∂df

.

The second factor in the expression of ε might be rather small, the first factor is
actually quite large ( mb

mb−mf
= 14), and the value of ε is ε = 0.25. This actually makes

the amplitude modulation very visible on the center-of-mass oscillations of the bosonic
cloud. These functions (equations (3.8) and (3.9)) perfectly fit the data, as shown in
Figure 3.4. More details on the calculations can be found in supplementary materials
of [Ferrier-Barbut et al., 2014]. This approach validates the description in terms of
harmonic oscillators that will be used in the next paragraph.

3.2.4 Two coupled-oscillators model

To understand the amplitude modulation, it is necessary to take into account the back-
action of the bosons on the fermions. A scheme of the system is given in Figure 3.6.

We now obtain the following system:

Mf z̈f = −Kfzf −Kbf(zf − zb) (3.10)
Mbz̈b = −Kbzb −Kbf(zb − zf), (3.11)
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Kb Kbf Kf

��������������

Figure 3.6: Schematic representation of the system. The fermions (on the right) and
the bosons (on the left) are represented by two oscillators with spring constants Kf
and Kb, and are coupled with a spring constant Kbf .

where Mb = Nbmb (resp. Mf = Nfmf) is the total mass of the bosonic (resp.
fermionic) cloud, Kb = Mbω

2
b (resp. Kf = Mfω

2
f ) is the spring constant of the axial

magnetic confinement for the bosons (resp. fermions), and Kbf is a phenomenological
weak coupling constant describing the mean-field interaction between the bosons and
the fermions. To be consistent with the previous description, we take Kbf = −2Kb

δωb
ωb

.
We can now solve equations (3.10) and (3.11) with initial condition zf(t = 0) = zb(t =
0) = d. We note ρ = Nb/Nf(� 1) and ε = 2mb

mb−mf

(
ω̃b−ωb
ωb

)
. We get, as before,

ω̃f ≈ ωf

ω̃b = ωb

(
1− Kbf

2Kb

)
zf = d[(1− ερ) cos(ω̃ft) + ερ cos(ω̃bt)] (3.12)
zb = d[−ε cos(ω̃ft) + (1 + ε) cos(ω̃bt)]. (3.13)

Our system is analogous to a two-coupled-pendulum system which mass would be
close. This almost exact tuning of the two oscillators leads to the observed strong
modulation of the oscillations.

The adequacy of the T = 0 mean-field model, the absence of dissipation and the
coherent energy exchange between the two gases provide another evidence for the
superfluid character of the two clouds. Limits of superfluidity can be studied in more
details by varying the amplitude of the oscillations, as shown below.

3.3 Low temperature, high amplitude

3.3.1 Experiments

As it was shown previously, the two clouds oscillate in the trap with different frequen-
cies. They gradually get out of phase and acquire some relative velocity with respect
to each other, the maximum value of which is given by (ω̃b + ω̃f)d. By varying the
value of d, we can thus tune the relative velocity between the two clouds and study
the properties of the counterflow. One striking feature is that, though for low relative
velocities we observe no damping (as discussed in section 3.2), above a certain critical
velocity there is an onset of dissipation (see Figure 3.7). The relative motion is damped
down to a value where their relative velocities are smaller than the critical velocity,
and they then reach a steady-state regime similar to that of section 3.2.
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Figure 3.7: Center of mass oscillations at low temperature (≈ 100 nK) for a high
initial amplitude (d ≈ 150µm). The oscillations are initially damped, until the relative
velocity drops below the critical velocity. Then a steady-state regime is reached and
lower amplitude oscillations are long-lived.

We can make a phenomenological fit of the data using the functions defined in
equations (3.12) and (3.13) in the limit of ρ → 0 and with ε fixed, but using a time-
dependent amplitude:

d(t) = d1 + d2e
−γbt

for the bosons and
d(t) = d1 + d2e

−γft

for the fermions. Due to the high number of parameters, the fit procedure is the
following. We first fit te center-of-mass oscillation of the fermions with the function
(d1 + d2e

−γft) cos(ωft). From this, we extract ωf ≈ ω̃f , that we use to fit the center-
of-mass oscillations of the bosons with (d1 + d2e

−γbt)(−ε cos(ω̃ft) + (1 + ε) cos(ω̃bt)).
The value of γb can be extracted for different relative velocities and plotted as a
function of vmax/vF, where vmax is the maximum relative velocity between the two
clouds (see Figure 3.8). This shows clear evidence for a critical velocity, which can
now be measured.

One may wonder what happens to coefficients d1 and d2 when damping is small.
There actually may exist two time scales in the time evolution of the center-of-mass.
The first one corresponds to damping due to friction between bosons and fermions, and
this is the one we want to measure in this experiment. The other timescale corresponds
to residual damping due to some small anharmonicities of the trap, with a timescale
of 5 to 20 s. For high relative velocity between the two clouds, the first timescale is
short, leading to high values of γb, on the order of a few s−1. The residual damping
is then neglected. However, for low relative velocity, both timescale have the same
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Figure 3.8: Damping rate of the bosons as a function of the relative velocity between
the two clouds in the BEC-BCS crossover. Magnetic fields are 780G (1/kFaff = 0.68),
832G (1/kFaff = 0) and +880G (1/kFaff = −0.42).

magnitude, and the measured γb corresponds to some convolution between them. It is
then over-evaluated. In any case, d2 always has a finite value and γb can be measured.

Another way to obtain the critical velocity would have been to extract the ampli-
tude d1 of the long-lived oscillations: the oscillation amplitude goes from d1 + d2 for
short evolution times down to d1. Since after a few γ−1

b , γ−1
f there is no more damping

of the oscillations, their relative velocity is necessarily below the critical velocity. Un-
fortunately, this procedure turned out to be hard to set up, because the value of d1 is
very sensitive to the fitted value of γb and γf , itself subject to noise. The final relative
velocity of the two clouds was not constant for all dataset at a given magnetic field,
even though it was always below the critical velocity. More studies are needed to go
forward on this subject.

It was also tempting to use as well γf to study the critical velocity. However, the
damping rate of the fermionic oscillations seems to be influenced by the ratio Nf/Nb,
which is hard to keep constant, even within a dataset. No clear tendency on γf could
be evidenced, but this could be the subject of future studies.

Another question that may be raised is where does the energy dissipated by friction
goes. It turns out that it is dissipated by residual evaporation, leading to a loss of
atoms. This also results into an evolution of the ratio Nf/Nb as a function of time, as
already mentioned above.

3.3.2 Landau criterion for superfluidity

Here, we will first derive the historical Landau criterion for an impurity inside a su-
perfluid, then its extension by Castin et al. [Castin et al., 2015]. Let us consider an
impurity of mass m moving with a velocity v inside a superfluid. It may dissipate
energy by creating excitations of momentum p in the superfluid and reach a velocity
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v′. Let us note ε(p) the dispersion relation of the excitations. Conservation laws lead
to:

m
v2

2 = m
v′2

2 + ε(p)

mv = mv′ + p

Thus
v · p = p2

2m + ε(p)

and

v ≥

 p2

2m + ε(p)
p

 .
A necessary condition for excitation shedding is v > vc, where

vc = min
p

 p2

2m + ε(p)
p


This sets a lower bound for the velocity needed to create excitations in a superfluid.
For an impurity with a very large mass m→∞, this can be simplified as

vc = min
p

(
ε(p)
p

)
In the case where the superfluid is a homogeneous weakly-interacting BEC, the exci-
tations are phonons. Since the phonon dispersion relation is linear, εb(p) = cs

bp, the
critical velocity is simply the sound velocity cs

b:

vc = cs
b =

√
gn/m.

In the case where the superfluid is a strongly interacting Fermi gas, there exist two
excitation branches. One of them is phonon-like with bosonic statistics[Minguzzi et
al., 2001], and at low momentum its dispersion relation εbf (p) is given by

εbf (p) =
p→0

pcs
f ,

where cs
f is the sound velocity in the Fermi cloud. The second branch is associated

to pair-breaking and has fermionic statistics [Combescot et al., 2006]. Its dispersion
relation is given by

εff (p) =

√(
p2

2mf
− µ

)2
+ ∆2

At unitarity and on the BEC side of the resonance, the critical velocity is given by
the sound velocity, whereas on the BCS side, the pair-breaking excitations domi-
nate [Combescot et al., 2006].

If we now consider a Fermi cloud and take as an impurity a BEC, the situation is
quite similar. We note εb the dispersion relation of the BEC, Mb the mass of the BEC
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and εσf , with σ = f (for pair-breaking excitations) or b (for phonon-like excitations)
that of the fermions. The conservation laws lead to

Mb
v2

2 = Mb
v′2

2 + εb(p) + εσf (q) + p · v

Mbv = Mbv′ + p + q,

where p (resp. q) is the momentum of the excitation created in the BEC (resp. Fermi
superfluid), and p · v is the Doppler shift of the excitation in the BEC. The lowest
relative velocity allowing the creation of excitations corresponds to v = v′ and the
critical velocity is then given by7

vc = min
σ=f,b

p

(
εb(p) + εσf (p)

p

)
,

and on the BEC side of the resonance, this can be further simplified in

vc = cs
b + cs

f ,

the sum of the sound velocities for both superfluids. This formula, obtained in the
case of homogeneous systems flowing into each other at a constant velocity, is all the
more remarkable that it was unexpected. A naive answer would be that the critical
velocity should be somehow the minimum of the two critical velocities, for instance.
The results presented in subsection 3.3.3 and Figure 3.10 show that the adaptation of
Landau’s argument is indeed accurate.

3.3.3 Critical velocity
We measure γb as a function of vmax/vF for six different values of 1/kFaff in the BEC-
BCS crossover and we can extract the critical velocity using a phenomenological fit
shown on Figure 3.8:

γb = Aθ(v − vc)
(
v − vc
vF

)α
where vF is the Fermi velocity defined as 1/2mfv

2
F = EF = ~ωf(6Nf)1/3 and θ(x) is the

Heaviside function defined as

θ(x) =
{

0 if x < 0
1 if x > 0.

Since there is currently no theoretical prediction for the behavior of γb as a function of
vmax/vF for harmonically trapped gases, on Figure 3.8 we chose to fit with α = 1 (as
other previous studies [Miller et al., 2007, Weimer et al., 2015]) because it is consistent
with a χ2 test8. To avoid any loss of generality, the systematic influence of such a

7This is actually a rough estimate: for σ = f , corresponding to the pair-breaking excitations of the
Fermi superfluid, it is only possible to create pairs of excitations that may have different momenta q1
and q2, not necessarily in the same direction.

8We measured the distance between the points and the fit function for different values of α between
0.5 and 2 and the minimum distance was always reached for values close to α = 1.
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choice is evaluated by letting α vary between 0.5 and 2 for all of our dataset (see
Figure 3.9), this gives us lower and higher bounds for the measured critical velocity.
We attract the reader’s attention on the low damping rate on the BCS side, and on
the small critical velocity on the BEC side.
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Figure 3.9: Damping rates of the center of mass oscillations versus maximal relative
velocity in the BEC-BCS crossover in unit of the Fermi velocity vF. Red line: fit with
α = 1. Orange zone: region spanned by the fitting function when varying α from 0.5
to 2. BEC limit corresponds to 1/kFaff � 1 and BCS limit to 1/kFaff � −1.

All of the parameters used to extract vc in the BEC-BCS crossover are given in
Table 3.2.

B (G) 780 800 816 832 860 880
af(a0) 6.4× 103 11.3× 103 24.0× 103 ∞ −16.5× 103 −10.3× 103

1/kFaff 0.68± 0.07 0.39± 0.01 0.18± 0.02 0± 0.002 −0.26± 0.05 −0.42± 0.03
ab(a0) 21.3 30.8 43.3 69.5 76.0 259

cs
b(10−2vF) 9.6± 1.4 9.4± 0.14 11.0± 1.6 11.1± 1.7 11.4± 1.7 15.1± 2.2
vc/vF 0.17+0.06

−0.10 0.38+0.02
−0.04 0.35+0.04

−0.11 0.42+0.08
−0.14 0.54+0.02

−0.06 0.40+0.10
−0.20

A(s−1) 14.8± 1.4 85± 32 24.6± 4.3 17.3± 3.6 30± 11 2.9± 0.5
vc/c

s
f 0.53+0.19

−0.31 1.11+0.06
−0.12 0.99+0.11

−0.31 1.17+0.22
−0.39 1.46+0.05

−0.16 1.05+0.26
−0.53

Table 3.2: Experimental parameters, sound velocity at the center of the Bose gas in an
elongated geometry cs

b =
√
µb/2mb, critical velocity vc/vF, damping rate A(s−1), and

vc/c
s
f for α = 1 in the BEC-BCS crossover. The typical number of bosons and fermions

are constant in the crossover and are respectively 2.5± 0.5× 104 and 2.5± 0.5× 105.

The extracted critical velocity as a function of 1/kFafff is displayed on Figure 3.10,
as well as the sound velocity for an elongated Fermi gas cs

f calculated by integration
over the transverse direction [Capuzzi et al., 2006, Luo et al., 2007, Astrakharchik,
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Figure 3.10: Critical velocity of the Bose-Fermi superfluid counterflow in the BEC-BCS
crossover normalized to the Fermi velocity vF. Red dots: measurements. Red dot-
dashed line: sound velocity cs

f of an elongated homogeneous Fermi superfluid deduced
from its equation of state [Navon et al., 2010, Astrakharchik, 2014] after integration of
the density in the transverse plane, and measured in [Joseph et al., 2007]. Blue bars:
calculated sound velocity cs

b of the elongated 7Li BEC for each magnetic field, (880G,
860G, 832G, 816G, 800G, 780G). Green squares indicate the prediction vc = cs

f + cs
b.

2014, Stringari, 1998, Navon et al., 2010]. The sound velocity cs
b for the Bose gas

is shown for our experimental points9. It is averaged on the whole BEC [Stringari,
1998, Fedichev and Shlyapnikov, 2001]. As for cs

f , it is averaged in the x − y (radial)
plane. However, since both cs

f and v vary as a function of z, the axial position in the
harmonic trap, one may wonder where the ratio v/cs

f is maximal in the Fermi cloud
frame. That position would be the relevant one when studying the critical velocity.

Polytropic equation of state

It is actually possible to show that this ratio is maximum at the center of the cloud. In
the case of a gas with a polytropic equation of state, this can be derived analytically:
in the frame of the Fermi cloud, we can describe the trajectory of the BEC by the
simple harmonic oscillation

zB(t) = Z0 cos(ωBt),

where we have omitted the slow beating of the amplitude Z0 due to the oscillation-
frequency difference between bosons and fermions. The velocity of the BEC is then

9Since csb =
√
µb/mb =

√
gbbnb/mb, it does vary for our dataset, especially since gbb depends on

the magnetic field and notably diverges for a magnetic field of 845.5 G. As it is not a function of kFaff
it would be meaningless to plot it on Figure 3.10.
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v(z) = −Z0ωB sin(ωBt), hence(
v(z)

v(z = 0)

)2
=
(

1− z2

Z2
0

)
,

For a polytropic equation of state, the local sound velocity in the Fermi cloud is given
by [Capuzzi et al., 2006]

cF
s (z)2 = γ

γ + 1
µF(z)
mF

cF
s (z)2 = γ

γ + 1
µF(0)
mF

(
1− z2

z2
TF

)
,

where zTF is the Thomas-Fermi radius of the cloud, and the local chemical potential
µF(z) was obtained using the local density approximation. Combining equations 3.3.3
and 3.15, we then obtain

vB(z)2

cF
s (z)2 = vB(z = 0)2

cF
s (z = 0)2

1− z2/Z2
0

1− z2/z2
TF
,

which is maximum for z = 0 when Z0 ≤ zTF. In the general case, numerical calculations
can be performed using the equation of state. Example of such calculations at unitarity
are shown in Figure 3.11 (where the gas is still polytropic) and are consistent with the
above analytical results.
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Figure 3.11: Calculated cs
f(z), v(z) (left) and ratio v(z)/cs

f(z) (right) using the equation
of state, for a Z0 = 100µm displacement of the BEC in a Fermi cloud withNf = 300·103

atoms at unitarity. The curves obtained for different magnetic fields show similar
evolution.

Our measured critical velocity is consistent with Castin et al. prediction [Castin et
al., 2015], but a χ2 test on our results does not discriminate between a critical velocity
equal to Castin et al. prediction and to the sound velocity of the fermions.

3.3.4 Discussion
One may wonder the origin of the anomalously small value for the critical velocity
at 780G. It turns out that inelastic losses increase on the BEC side of a fermionic
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Feshbach resonance and heat up the system [Regal et al., 2004a]. This is confirmed
by the fact that we were unable to take data at 760G due to a strong reduction of
the lifetime of the mixture. This hypothesis is also supported by the presence of a
clearly visible pedestal in the density profiles of the BEC taken at 780G. At this
value of the magnetic field, we measure a ∼ 60% condensed fraction, corresponding
to a temperature T/Tc,b ∼ 0.5. Even though the two clouds are still superfluids as
demonstrated by the critical behavior around vc, the increased temperature could be
responsible for the decrease of vc.

It is actually surprising how high the critical velocity is, especially when comparing
to other experiments performed in this direction [Weimer et al., 2015, Miller et al.,
2007]. The first point is that the BEC is completely contained in the Fermi superfluid
and probes only its central (superfluid) part and not the outer (non-superfluid) wings,
in strong opposition with the one of the other reported experiments [Weimer et al.,
2015] where the probe was a laser beam piercing the whole cloud, including its non-
superfluid parts. In the other reported experiment [Miller et al., 2007], the probe is a
{20,60}µm moving lattice in a cloud with Thomas Fermi radii of {63,91,82}µm. The
size of the lattice is thus smaller but comparable to the size of the cloud and it may
probe as well its non-superfluid part. Second, the BEC is much smaller than the Fermi
cloud (Thomas-Fermi radii of {73, 3, 3}µm to compare with {350, 13, 13}µm), so it en-
ables us to probe locally the cloud. Third, the interaction between bosons and fermions
is weak, so the presence of the BEC does not causes strong density modifications for
the fermions and thus limits vortex shedding. The production of vortices is known to
be one of the factors reducing the critical velocity in other experiments [Singh et al.,
2015].

3.4 High temperature, moderate amplitude

3.4.1 Experiments

We now study finite-temperature effects in the Bose-Fermi counterflow. To have hotter
clouds, we stop the evaporation at a higher optical power10. We thus have more
atoms, and the radial trap frequencies are different for each temperature, but since
they scale as

√
U , where U is the optical power, they can be inferred from the low-

power trap frequencies without us having to re-calibrate them. The temperature can
be measured using the profile of the Bose gas: either by using the condensed fraction
(scaling as (T/Tc,b)3), for temperature below the transition temperature for Bose-
Einstein condensation, or by fitting the thermal pedestal with a Gaussian function
the width of which gives the temperature of the cloud, for temperatures above the
transition temperature. A typical measurement for the high-temperature oscillations
is shown on Figure 3.12.

We see two remarkable features here: first, the oscillation is damped down to zero
amplitude for both clouds, while the fermions has not been visibly affected in the
previous experiments. Second the two clouds are locked in phase to a high degree and

10We first tried to evaporate at low temperature and then re-compress the cloud, in order to keep
the atom number constant, but this proved to cause strong shot-to-shot fluctuations and forced us to
use another method.
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Figure 3.12: Center of mass oscillations at high temperature (T/TF = 0.4) for a mod-
erate initial displacement (z0 = 80µm). Bosonic and fermionic motions are damped
with the same damping constant, and phase-locking is observed. The dashed lines are
guides to the eye.

oscillate at almost the same frequency, which turns out to be the frequency of the
fermions.

3.4.2 Frequency analysis

Since the data points were taken at non-evenly spaced time positions11, it is not possible
to perform standard Fourier analysis, such as Fast Fourier Transform. Instead, we
have used a Lomb-Scargle algorithm (or ‘least-square analysis’) which measures the
periodogram, ie the weight of the projection of data points on sines and cosines of
fixed frequency.

For N data points {hi = h(ti)}i=1,...,N taken at times {ti}, the periodogram is
defined as

PN (ω) = 1
2σ2

{
[
∑
j(hj − h̄) cosω(tj − τ)]2∑

j cos2 ω(tj − τ)

+
[
∑
j(hj − h̄) sinω(tj − τ)]2∑

j sin2 ω(tj − τ)

}

11The best compromise between the duration of the experimental acquisition and the precision of
the frequency measurement was reached by taking several series of points spaced by approximately
one quarter of an oscillation period, typically series of 6 points spaced by ∼ 15ms, each series being
∼ 500ms apart from each other. This way, a first approximation of the period is given by closely
spaced points, and it is refined by the existence of points farther separated without having to span
precisely the whole ∼ 5 s range.
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where τ is given by

tan(2ωτ) =
∑
j sin 2ωtj∑
j cos 2ωtj

;

its role is to make the periodogram independent of the time origin.

h̄ = 1
N

N∑
i=1

hi

and

σ = 1
N − 1

N∑
i=1

(hi − h̄)2

are the mean and the variance of {hi}i. The periodogram, or power spectrum, gives
access to the statistical significance (ie the probability of rejecting the null hypothesis
when it is true) of each of the evaluated frequencies. In other words, the significance
is the risk (between 0 and 1) that the measured frequency does not have a physical
meaning but rather is some artifact resulting from the noise. For all of the data
presented here, this ‘risk’ is below 1.5%. Noting

Pmax = max
ω

PN (ω),

the significance is proportional to e−Pmax , and here a value of 10 for the power represents
typically a significance of 0.002.
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Figure 3.13: Lomb Scargle periodogram of the position of the bosons for both a cold
(left) sample and a hotter (right) sample. A value of 10 for the powers represents
typically a significance of 0.002 (see text).

This analysis applied to our data points is shown on Figure 3.13 for both a cold and
a hot sample. It shows a clear peak for a value of ωb/ωf ≈

√
6/7 at low temperature,

as expected, but the peak is shifted toward 1 at higher temperatures. We can gather
all of the periodograms obtained at different temperatures, and the result is displayed
on Figure 3.14. We can see that up to a temperature T ≈ 0.34 TF, corresponding to
T ≈ Tc,b, the bosons oscillate at a frequency ωb ≈

√
6/7 ωf that one expects for such

a mixture at low temperature, but that above that temperature, bosons are locked on
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the fermions. It is remarkable that the shift in frequency happens close to the critical
temperature for the bosons, while the superfluidity of the fermions was long gone.

Figure 3.14: Power spectrum of the oscillations for different temperatures, obtained
using the Lomb-Scargle algorithm of the center-of-mass displacement. Above T ≈
Tc,B ≈ 0.34 TF > Tc,F, oscillations of the Bose and Fermi clouds become locked together
at ωF.

It is possible to provide error bars for the determined frequencies, for instance by
measuring the upper and the lower bounds for which the statistical significance is 10
times larger than that of the central frequency. This corresponds to a 10% uncertainty
on ωb. This is shown on Figure 3.15.

3.4.3 Damping

For each temperature, we can extract the damping rate γb. Using the functions defined
in equations (3.13) and (3.12), with as before

d(t) = d1 + d2e
−γb,ft, (3.16)

for clouds at temperatures T < 0.34TF, and

zb(t) = d0e
−γbt cos(ωft)

zf(t) = d0e
−γft cos(ωft)

for clouds at temperatures T > 0.34TF because the oscillations are then damped to
zero amplitude, and fixing the frequencies to those extracted from the Lomb-Scargle



78 Chapter 3. Collective modes of the mixture

○

○ ○

□

□

□

□

◇◇

◇

◇

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.85

0.90

0.95

1.00

1.05

1.10

�/��

ω
�
/ω
�

Figure 3.15: Ratio ωb/ωf as a function of T/TF. The bottom dashed line indicates the
prediction from the mean-field model of section 3.2. The top dashed line corresponds
to ωb/ωf = 1. The blue dots correspond to situations where both the Fermi and the
Bose clouds are superfluids, the yellow squares to a situation where the bosons are still
superfluids but not the fermions, and for the green open diamonds, both clouds are in
the normal phase.
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Figure 3.16: Damping rate of the oscillations of the bosons as a function of temperature
in units of Fermi temperature. Horizontal error bars are mainly statistical and refer to
uncertainties on temperature, and vertical error bars are fit uncertainties. This figure
is preliminary because we have no evidence that γ is only a function of TF and not of
atom numbers or densities, that were not kept constant for this dataset.

algoritm (see subsection 3.4.2), we can obtain the evolution of the damping rate as a
function of temperature, as shown on Figure 3.16.

The fact that the damping rate reaches a maximum at the temperature at which
the phase-locking of the two clouds occurs is consistent with results from a two coupled
oscillator model that will be discussed below.

From T = 0 to 0.34TF, damping increases as T/TF increases: the fact that the
clouds have a relative velocity and some friction leads to an increase of damping up to
T = 0.34TF. Above this temperature, friction is so high that both clouds oscillate at
the same frequency and are (almost) perfectly in phase ((ωf − ωb)/ωb ≈ 0.2%). This



3.4. High temperature, moderate amplitude 79

leads to a reduction of damping at higher temperatures.

3.4.4 Two coupled-oscillator model
We can re-use the model of coupled oscillators introduced in subsection 3.2.4 and
extend it to the case where there is friction between the two clouds. We introduce a
friction parameter Γ, and the motion equations now are

Mf z̈f = −Kfzf −Kbf(zf − zb)− Γ(żf − żb)
Mbz̈b = −Kbzb −Kbf(zb − zf)− Γ(żb − żf).

These equations can be solved analytically. For different values of Γ, we fit the evolution
of zb using equations (3.13) with d(t) as in equation (3.16), and extract the values of
ωb and γb. They are represented on figure Figure 3.17.
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Figure 3.17: Evolution of ωb (a) and γb (b) as a function of Γ, the friction parameter,
for a ratio Mf/Mb = 10. Phase locking accurs when Γ & Γ0 = 0.06, which corresponds
to a maximum of dissipation between the clouds. Above Γ0, the damping is reduced
because the clouds stay in phase.

Assuming that friction is increased when increasing the temperature, the results
from the damped coupled-oscillator model are in qualitative agreement with our data,
where we had indeed noticed the presence of a maximum in damping. Note that since
the number of atoms was not kept constant within the datasets, nor the ratio between
bosons and fermions, this would require more data to be fully exploited. It is also very
difficult to infer the value of Γ from the theory, and this prevents further comparison
with the experiment.

3.4.5 Zeno-like model
The classical coupled oscillator model given above can be completed by a quantum
phenomenological description using a Zeno-like model. Let us now consider that the
bosons and the fermions are two coupled quantum harmonic oscillators. If we neglect
the interspecies interaction and consider that all of the particles have the same mass
m, the system is described by the Hamiltonian:

H = Hf +Hb,
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where Hα=f,b is defined as:

Hα = P 2
α

2Mα
+ Mαω

2Z2
α

2 +Hαint,

with Pα the total momentum of the cloud, Zα the position of its center of mass and
Mα = Nαm its total mass. Hαint affects only the internal variable and commutes with
Zα and Pα. The oscillations of the fermions and that of the bosons are then associated
to two quantum numbers nf and nb, coupled to thermal baths described by φf and φb.
We can thus describe the state of the system as |nf ,nb,φ〉, where φ = {φf ,φb}.

Alternatively, we can make a change of variable, and use

P = Pf + Pb,

Z = (MfZf +MbZb)/M,

p = µ(Pf/Mf − Pb/Mb),
z = Zf − Zb,

M = Mf +Mb,

Mr = MfMb/M.

With these new variables, the Hamiltonian of the system now reads

H = P 2

2M + Mω2Z2

2 + p2

2Mr
+ Mrω

2z2

2 +H int
f +H int

b ,

and the motion can now be described by two new quantum numbers, N and n, where
N represents the number of quanta of the global center of mass motion (bosons and
fermions), and n the number of quanta of the relative motion. The state of the system
is now described by |N,n,ϕ〉. The initial state, where both clouds are displaced and
released together in the trap, corresponds to |N0,n = 0,ϕ〉. If both atomic species had
the same mass, and without interactions, the clouds would remain in-phase, and stay
in the |N,n = 0,ϕ〉 state.

Let us now add the interspecies interactions. They are described by the Hamilto-
nian

Hb,f =
∑

i≤Nf ,j≤Nb

U(zf,i − zb,j),

where zα,i is the z-position of the i-th particle of species α. This Hamiltonian commutes
with P and Z and therefore only couples to the relative variables z and p. It induces
a coupling between the relative motion and the thermal bath.

Let us switch back off the interactions and consider the mass difference between
the two species. If the species α has a mass mα = m + εαδm/2, with εf = −1 and
εb = +1, its add to the Hamiltonian a kinetic energy term

δHK = −δm2m
∑
i,α

εα
p2
i,α

2m ,

where the center-of-mass contribution can be isolated and that can be re-written as

δHK = −δm2m

(
P 2

b
2Mb

− P 2
f

2Mb

)
+ δH int

K ,
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where δH int
K commutes with P and Z. This term δHK thus induces a coupling be-

tween the global degrees of freedom P and Z to the relative degrees of freedom p and
z. In other words, it couples the initial state |N0,n = 0,ϕ〉 to |N0 − 1,1,ϕ〉, then to
|N0 − i,i,ϕ〉, where 0 ≤ i ≤ N0, and create relative center-of-mass displacement from
the global center-of-mass displacement. Without interactions, there is no coupling to
the bath, and the system may oscillate back and forth between the |N0,n = 0,ϕ〉 and
the |0,n = N0,ϕ〉 state ‘forever’.

We can now re-write the full Hamiltonian of the system, including interactions and
mass difference:

H = HCoM +Hrel +H ′int +Hb,f +Hcoh,

with

HCoM = P 2

2M

(
1− ρδm

m

)
+ Mω2

2 Z2,

Hrel = p2

2Mr

(
1 + ρ

δm

m

)
+ Mrω

2

2 z2,

H ′int = H int
f +H int

b + δH int
K ,

Hcoh = δm

m

(
P · p
M

)
,

and ρ = (Mb −Mf)/M . The Hcoh term couples the global and the relative degrees of
freedom, and Hb,f couples the relative motion to the internal degrees of freedom of the
two clouds, i.e. to the bath.

In summary, we know that Kohn’s theorem forbids direct coupling between the
(global) center of mass degrees of freedom and the thermal bath. But is does not
prevent coupling between the relative motion and the bath, and though a |N0,0,ϕ〉
state cannot be directly coupled to a |N0 − 1,0,ϕ′〉 state, this transition is possible
through a |N0 − 1,1,ϕ〉 state. This description is summarized in Figure 3.18, where
the degrees of freedom for the bath (described by ϕ) are omitted for simplicity. We
note Ω the coupling between the global and the relative center of mass motion, and γ
the coupling between the relative motion and the bath.
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2,0 3,1 4,2

N N N

N N N

N N N

 

  

  

g 

W 

Figure 3.18: Radiative cascade of the center of mass motion. In |N,n〉, N (resp. n)
refers to the center of mass (resp. relative) motion of the two clouds (see text).

If γ � Ω, the system stays in the upper line of Figure 3.18 and there is only weak
coupling to the bath. However, if γ � Ω, as soon as the |N0 − 1,1,ϕ〉 state is populated,
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it decays into the |N0 − 1,0,ϕ′〉 state, so that the relative motion is frozen (n ≡ 0) and
the oscillations are damped (N → 0). Here, Ω = ωf − ωb, but γ may depend on
temperature (but is hard to calculate in such a complex system), and this is then
consistent with our observations. At high temperature, we can eliminate adiabatically
the excited states of the relative motion, similarly to optical pumping in quantum
optics, and the system evolves in the |N,0,ϕ〉 manifold.

This model provides a quantum interpretation of the origin of friction between the
two clouds. It can be mapped on a Caldeira-Leggett [Caldeira and Leggett, 1983] used
to study how dissipation arises for a quantum system interacting with a bath, except
that for our system the bandwidth for the frequency distribution of the bath is narrow,
while it is large and continuous for the Caldeira-Leggett model [Onofrio and Sundaram,
2015]. The phenomenon observed here are reminiscent to the synchronization of two
spins immersed in a thermal bath predicted in [Orth et al., 2010, Henriet and Hur,
2015] and may simulate decoherence in quantum networks [Chou et al., 2008] or heat
transport in crystals [Zürcher and Talkner, 1990].

3.4.6 At the origin of the frequency shift

A complementary analysis of the motion of the two clouds can be made by considering
in the analysis that the BEC and its thermal fraction oscillate separately during of
the oscillations. We can fit the data of the high temperature oscillations allowing two
different values for the center-of-mass of the BEC zBEC and for that of the thermal frac-
tion zthermal. Obviously, the determination of zthermal at low temperature is challenging
because the thermal pedestal is very small, while that of zBEC is not defined above
Tc,b. For intermediate temperatures, however, we can perform the spectral analysis of
zBEC and zthermal separately with the periodogram. They are displayed in Figure 3.19
for different temperatures. Results are striking: while the BEC oscillates at ω̃b, the
thermal fraction oscillates at ωf . When the temperature is increased, the BEC reduces
and the thermal fraction increases, and the weight of their respective frequencies on
the global oscillation of the bosonic cloud varies accordingly. This explains the shift
of bosonic oscillation frequency from ω̃b to ωf when increasing the temperature. The
observation of out of phase oscillations of the thermal cloud and the BEC can be com-
pared to second sound experiments presented in [Andrews et al., 1997a, Stamper-Kurn
et al., 1998], where a partly condensed cloud was oscillating in a harmonic trap. They
set in motion only the thermal cloud, that dragged the oscillations of the condensate
with damped out-of-phase oscillations at a frequency ∼ 5% smaller than the trap fre-
quency. Here, in the presence of fermions, the out-of-phase oscillation seems to be
long-lived, at a frequency fixed by the trapping frequencies of the system.

However, what we do not understand so far is why the oscillation frequency of the
bosonic thermal fraction is ωf : for the fermions, the thermal cloud is a non-superfluid
moving impurity and the critical velocity should be cs

f . For the data presented here,
the initial amplitude was 50µm for an oscillation frequency of 18Hz. The maximum
relative velocity between the clouds is then vmax = 11 mm.s−1, while cs

f = 17 mm.s−1

in our experimental conditions. As a result, there should be no friction between the
superfluid Fermi cloud and the thermal fraction and it is surprising that the thermal
fraction oscillates at ωf even below Tc,f = 0.2TF (as in Figure 3.19b). It also has to be
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taken into account the fact that the superfluid fraction of the Fermi gas also shrinks
towards the center of the trap, and that the thermal fraction of the Bose gas, spatially
extended, is likely to explore the non-superfluid part of the Fermi gas. Further studies
could be performed on this subject, for instance using the finite temperature equation-
of-state of the Fermi gas from [Nascimbène et al., 2010] to know the spatial location
of the Fermi superfluid.

3.5 Advanced data analysis: PCA
It is also possible to use a more sophisticated analysis technique to analyze the data of
the dipole modes. This provides a second analysis technique to confirm the previous
study. It has the advantage of being fully model-independent. The analysis technique
used here is based on Principal Component Analysis (PCA)12 and has been used and
described in a very pedagogical way in [Dubessy et al., 2014]. PCA is a well-known
image analysis technique used in various fields. It enables us to study correlations
between a set of images and works in the following way:

• The studied system is a set of images (2D images as in [Dubessy et al., 2014], or
1D profiles, as it will be the case here).

• The average image (AI) of the dataset is computed and subtracted from all of
the images. We then obtain a new ensemble of images.

• Then the covariance matrix of this new ensemble is computed and diagonalized.
The eigenstates represent the directions along which there is variation from the
average image AI, and their associated eigenvalues the relative weight of these
variations. These eigenstates, called Principal Components (PCs), represent typ-
ically variations in position, atom number, shape of the cloud, etc. Any kind of
variation may show up in the PCs, provided that it concerns enough images and
that its variation from the mean is noticeable.

In other words, the PCA consists in a change of basis for the description of the
images. Instead of describing an image via its decomposition on the basis of the pixels
{(1 0 . . . 0),(0 1 0 . . . 0) . . . (0 . . . 0 1)}, we look for another basis {AI, PC1, PC2, . . . PCn−1}
that would give an accurate description of all of the images of the dataset using a min-
imum number of vectors from the basis, and any image of the dataset ID can be
projected on the principal components:

ID = c0AI +
n−1∑
i=1

ciPCi,

with c0 ≥ c1 ≥ c2 ≥ c3 ≥ · · · ≥ cn−1. In practical, the first PCs are sufficient to
describe each image quite accurately, with typically |ci|2∑n−1

i=0 |ci|
2 < 1% for i ≥ 5. It is

actually a very powerful way to increase the signal-to-noise ratio of a dataset: since
most of the physical information is contained in only the first PCs, all of the following

12I would like to thank Romain Dubessy who took the time to come to the ENS to explain me the
subtleties of the PCA.
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Figure 3.19: Spectral analysis of the oscillations of the BEC (blue) and of the ther-
mal fraction (green) for different temperatures. Vertical dashed lines correspond to
ω/ωf =

√
6/7 and to ω/ωf = 1. It is clear that the oscillation of the thermal fraction

occurs at ωf while that of the BEC occurs at ωb. For low temperatures, the thermal
fraction is very small and it is hard to determine accurately its position, while for high
temperatures the BEC is almost gone and it is also hard to locate it accurately, which
explains the low resolution of the frequency determination in those cases.

PCs represent mainly noise, and it is possible to reconstruct a less noisy image ID′ by
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projecting on the truncated basis [Desbuquois, 2013]:

ID′ = c0AI +
5∑
i=1

ciPCi.

The first PCs given by the algorithm for an oscillating BEC in a harmonic trap are
shown on Figure 3.20. The average image AI is shown on Figure 3.20a. As expected,
we identify the first PC (Figure 3.20b) as describing the center-of-mass oscillation of
the BEC. If the cloud were at rest, the second PC (Figure 3.20c) would represent
compression and dilatation of the cloud. Here, however, it is a reminiscence of the
center-of-mass oscillation: since the center-of-mass oscillation was strongly excited,
its contribution to the second PC13 is dominant over the compression and dilata-
tion excitation, only weakly excited. The third PC (Figure 3.20d) represents atom
number fluctuations: its shape is similar to the shape of the cloud. The fourth PC
(Figure 3.20e) is another reminiscence of the center-of-mass oscillation.

Since the PCA algorithm is very fast, it can be used for an efficient analysis of the
dipole mode. Once the Principal Component associated to the dipole-mode excitation
is identified, each profile can be projected onto this component, and the scalar product
between the PC and the profile tells ‘how much the cloud is on the right or on the
left’ for all times. We can then perform some spectral analysis (using for example the
Lomb-Scargle algorithm) to obtain the oscillation frequency. For the dipole mode with
the first PC, this method is very precise (see for instance Figure 3.21).

We can use this method to calculate again the shift of the bosonic frequency due
to the presence of fermions as in section 3.2. The calculated shift is given in Fig-
ure 3.22, very similar to Figure 3.5. For this study, the bare oscillation frequency of
the bosons was inferred from the oscillation frequency of the fermions in the mixture,
ωb =

√
6/7ωf instead of being obtained from interleaved measurements of bosons alone

oscillations, as it was the case for data of Figure 3.5.
It is tempting to apply the same procedure to the second PC to study compression.

However, as it can be demonstrated from numerical simulation, the second PC reflects
both the compression of the cloud and the oscillations of the center-of-mass. Since here
the most excited mode is the dipole mode, its contribution dominates the quadrupole-
like Principal Component and, consistently, the spectral analysis of this component
mainly shows contributions at 2ω̃f and 2ω̃b.

13Indeed, since the density of the cloud is n(x − a(t)), when we do a Taylor expansion for a small
center-of-mass oscillation this leads:

n(x− a(t)) = n(x)
− a(t)n′(x)

+ a2(t)
2 n′′(x)

− . . . .

For a harmonic oscillation, a(t) = a0 cos(ωt), and the term +a2(t)
2 n′′(x) have indeed the second PC

shape and oscillates at 2ω.
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(e) Fourth PC

Figure 3.20: Average (a) and four first Principal Components (b)-(e) given by the
Principal Component Analysis applied to a set of 85 images of an oscillating BEC. First
PC corresponds to center-of-mass oscillation. Second PC is a combination between
compression modes and the second-order signature of the center-of-mass oscillation.
Third PC is related to atom number fluctuations and fourth PC is a third order
signature of the center-of-mass oscillation.
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(a) Lomb Scargle periodogram for the
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Figure 3.21: Lomb-Scargle periodogram of the projection of each profile on the Prin-
cipal Component showing the dipole mode. Here, ωf = 2π · 16.80(5)rad.s−1 and
ωb = 2π · 14.95(5)rad.s−1. Since this is a statistical analysis, the uncertainties are
directly related to the total number of images in the dataset. Here, we had 35 images.
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Figure 3.22: Green squares: shift of the bosonic frequency due to the presence of the
fermions, calculated using the PCA and Lomb-Scargle algorithm. Red dots: data of
Figure 3.5, extracted with the standard method. Blue line: theory, as in Figure 3.5.

3.6 Quadrupole modes

We wanted to see whether it was possible to extract information about the compression
modes of the mixture using the dataset taken to study critical velocity. Even though
it was not possible to use the PCA here for the reasons mentioned above, we could
extract the Thomas-Fermi radius of each of the profiles, for different times, and perform
a spectral analysis on them.

It was checked (see [Ferrier-Barbut, 2014]) that the Thomas-Fermi radius had less
than 10% fluctuations and that they were mainly due to atom number fluctuations.
However, it is possible to use the Lomb algorithm to get the spectral distribution of
the time evolution of these radii. For the bosons, a frequency does not always ap-
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pear in the spectrum and it seems that any periodic variation of the width of the
cloud is smeared out by atom number fluctuations and it is not possible the com-
pare breathing or higher-order modes to their expected behavior [Guéry-Odelin et
al., 1999, Guéry-Odelin and Stringari, 1999, Guéry-Odelin and Trizac, 2015]. How-
ever, for the fermions, there is a much clearer signal (see Figure 3.23a), and it is
possible to extract the frequency of the axial quadrupole mode ωQf and to draw the
ratio ωQf /ωf as a function of 1/kFaff in the BEC-BCS crossover, displayed in Fig-
ure 3.23b. They are compared to the hydrodynamic prediction in elongated harmonic
traps: ωQf =

√
(3γ + 2)/(γ + 1)ωf [Vichi and Stringari, 1999, Astrakharchik et al.,

2005, Combescot et al., 2006, Amoruso et al., 1999, Hu et al., 2004], where γ is the
polytropic exponent of the equation of state14. This leads to ωQf /ωf =

√
5/2 ≈ 1.581

on the BEC side and ωQf /ωf =
√

12/5 ≈ 1.549 at unitarity and on the BCS side. This
has been measured in the BEC-BCS crossover [Bartenstein et al., 2004a, Altmeyer et
al., 2007]. These values are indicated as dashed lines in Figure 3.23b.
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Figure 3.23: (a) Lomb-Scargle periodogram of the time evolution of the Thomas-Fermi
radius of the fermions. There is a clear peak at 24.11Hz. (b) Evolution of the ratio
ωQf /ωf as a function of 1/kFaff in the BEC-BCS crossover. The dashed lines are the
predictions for the molecular BEC (1/kFaff � 1): ωQf /ωf =

√
5/2 ≈ 1.581 and at

unitarity and on the BCS side (1/kFaff = 0 and 1/kFaff � −1): ωQf /ωf =
√

12/5 ≈
1.549. Green squares: measurements of quadrupole frequency for fermions alone, taken
from [Bartenstein et al., 2004a]. Blue circles: measurements of quadrupole frequency
of the fermions in the presence of bosons, with the method explained above.

The values reported here are in good agreement with previous measurements from
the Innsbruck group. They appear slightly downshifted but compatible with the com-
bined error bars. This could be an effect of the presence of bosons in the trap but
further studies would be needed on this subject.

14γ = 1 for the molecular BEC and γ = 2/3 in the unitary limit and on the BCS side [Stringari,
2007, Bartenstein et al., 2004b].
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3.7 Conclusion
We have studied the Bose-Fermi counterflow in various regimes of parameters, at low
and high temperature and in the BEC-BCS crossover. The low temperature study
below the critical velocity showed that one could measure precisely equilibrium quan-
tities (the equation of state) using collective excitations. With respect to measuring
the critical velocity, the use of the BEC as a local probe within the Fermi cloud allows
for more sensitive measurements compared to earlier cases, which were subject to av-
eraging effects over the trap inhomogeneities [Miller et al., 2007, Weimer et al., 2015].
Finally, the phase-locking of the oscillations at higher temperatures arises from the
dissipation between the two clouds. What is remarkable here is that the phase locking
does not result from high dissipation: the friction coefficient is still low compared to
the individual oscillation frequencies, but is comparable to the frequency difference.
Several questions remain open: so far, we have no full explanation for the high critical
velocity that we measure, even though several reasons have been suggested. On an-
other subject, it has been predicted that each component of the mixture conserves its
inherent first sound while only a single second sound should exist, common to the whole
superfluid mixture [Volovik et al., 1975]. It would be very nice to perform experiments
in this direction.
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In the previous chapter we studied the robustness of the Fermi superfluid against
a counter propagating “obstacle”. While in the latter investigation we challenged the
Fermi superfluid by using the BEC as a dynamical perturbation, we now explore an-
other pathway to compete with the fermionic superfluidity, in equilibrium. To this
end we tune the relative spin population of the fermionic component, while the Bose
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superfluid now serves as potential shaper. The effect of spin imbalance in Fermi gases
has been long-studied both experimentally and theoretically. In fact, this topic is still
a subject of debate and covers a scope which extends to solid state condensed-matter.
In particular, this question is formally tightly connected to the one of superconduc-
tors in the presence of an external magnetic field. There, the practical difficulty rises
from the fact that Meissner effect expels magnetic field from a superconductor (so for
a type I superconductor, the value of the magnetic field is strictly zero within the
material while for a type II superconductor, a magnetic field may exist, but it is then
constrained into filaments which are in the normal state). Superconducting regions
and regions with a non-zero magnetic field do not intersect, and there is no Cooper
pairs in non-zero magnetic field regions. However, in ultracold atoms, it is sufficient
to prepare a different number of atoms in two long-lived spin states, labeled ↑ and
↓. As the spin population n↑,↓ is tied to a chemical potential µ↑,↓, the energy cost
for adding or removing a fermion is different for a spin ↑ with respect to a spin ↓.
The difference ∆µ = µ↑ − µ↓, therefore obviously plays the role of magnetic field.
The Fermi gas is then called spin-imbalanced and singlet pairing is frustrated since it
requires equal numbers of up and down particles. The question now is: how robust
is superfluidity with respect to this imbalance? It has been addressed theoretically
very soon after the development of the BCS theory, by Clogston [Clogston, 1962] and
Chandrasekhar [Chandrasekhar, 1962]. In the condensed matter context, the question
regarded the maximum magnetic field that could be imposed on a superconductor with-
out breaking superconductivity. Indeed, such a magnetic field imposes a population
imbalance between the two spin states involved in BCS theory. It was demonstrated
that the pairing that resulted in superconductivity was indeed stable against a finite
population imbalance caused by the magnetic field, but the value of this critical im-
balance was only known in the BCS limit and is exponentially small as the BCS gap.
Aside from the BCS limit, both the value of this population imbalance and what hap-
pened to the gas above this imbalance was unknown. As a result, when ultracold
superfluid Fermi gases were first realized in 2003 [Jochim et al., 2003, Zwierlein et
al., 2003, Greiner et al., 2003, Bourdel et al., 2004], this issue was soon investigated,
both at MIT [Zwierlein et al., 2006a, Zwierlein et al., 2006b, Shin et al., 2006, Shin et
al., 2008, Shin, 2008] and at Rice University [Partridge et al., 2006a, Partridge et al.,
2006b]. There were some discrepancies between these two experiments that could be
solved afterwards, but they paved the way towards a better understanding of imbal-
anced Fermi gases. Another very important (and still unanswered) question is whether
other types of pairing are conceivable. Several possibilities have been put forward, such
as the long-sought Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phases, where there is
pairing between particles with momenta of different amplitudes, resulting in a Cooper
pair with non-zero momentum q. This leads to a spatially modulated order parame-
ter with wavevector q. One of the main issues with the observation of FFLO phases
is that they are predicted to appear only in a narrow range of parameter space, see
Figure 0.1, and that ultracold Fermi gases are usually prepared in harmonic traps.
This implies that the favorable conditions for FFLO could be reached only for a small
fraction of the atoms and that any visible effect would be smeared out by neighboring
regions of the cloud. Other possibilities, also predicted to appear in a narrow range of
parameters, include gapless superfluid state [Liu and Wilczek, 2003] or a state with a
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deformed Fermi surface [Müther and Sedrakian, 2002]. The use of a uniform trap (a
‘box’) would allow to zoom in for a small window of parameters.

During my PhD, we developed an idea to create a locally uniform trap for the Fermi
gas using the repulsive interaction with the bosons. This chapter will be dedicated to
the description of imbalanced gases and to the realization of the flat bottom trap.
In a first section, I will give known results about superfluidity in imbalanced Fermi
gases and explain how we used them to give another proof of the superfluidity of the
ultracold Bose-Fermi mixture. Then, in a second section, I will detail a way to imprint
a flat bottom trap (FBT) on the Fermi gas, and discuss its consequences in terms of
critical polarization in a third section. Finally, in a fourth section, I will detail the
realization of such a FBT in our experiment and give preliminary results.

4.1 Superfluidity in imbalanced Fermi gases

Firstly, let us restrict ourselves to the case of a two-component Fermi gas. The two
components studied here are two of the Zeeman sub-levels of the same atom and have
in particular the same mass. We will first describe the gas in a box, that is a gas which
density is spatially uniform, and then expand the results to a gas in a harmonic trap
which is more realistic experimentally.

4.1.1 Fermions in a box

In the case of an imbalanced Fermi gas in a box, the system will phase-separate into
a fully paired superfluid phase, a normal phase and, possibly, in a very narrow range
of parameters, in a FFLO phase, see Figure 0.1. They can be described by atomic
densities ns for the density of the superfluid, n↑ for that of the majority component
in the normal phase, and n↓ for that of the minority component in the normal phase.
The two phases have different densities and the ratio n↓/n↑ in the normal phase is
fixed by equilibrium conditions.

Let us first consider the superfluid phase (labeled by s). In a superfluid fermions are
paired into Cooper pairs (for weakly attractive systems) or molecules (in the strongly
attractive regime). For all interaction strengths, the densities of both species in the
superfluid phase are thus equal and will be noted ns. On the BCS limit, the chemical
potential of the gas is known: µ = εF, where εF is the Fermi energy of a uniform non-
interacting Fermi gas: εF = ~2

2mf
(6π2ns)2/3. On the BEC limit, it is known as well and

is simply the mean-field interaction of the composite molecules shifted by the molecule
binding energy: µ = − ~2

2mfa2
ff

+ π~2affns
mf

. At unitarity, the scattering length diverges, so
the only remaining energy scale in the system is the Fermi energy εF and the length
scale is the inter-particle distance n−1/3 . As a result, the energy of a superfluid
Fermi gas at unitarity has to be proportional to the energy of a noninteracting Fermi
gas 3

5εF [Heiselberg, 2001], with proportionality factor the Bertsch parameter ξ =
0.38(1) [Ku et al., 2012, Zürn et al., 2013, Zwerger, 2012, Navon et al., 2010]. The
energy density es of the superfluid at unitarity can thus be written as:

es[ns] ≡ ξ
6
5

~2

2mf
(6π2ns)2/3ns = ξ

6
5εFns, (4.1)
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the factor 2 being due to the two components.
Regarding the normal phase, it is relevant to use the notion of fermionic polaron,

introduced in [Chevy, 2006, Lobo et al., 2006]. The polaron is a quasi-particle of
effective mass m∗ composed of a one atom of the minority component (↓) accompanied
by its interaction with the majority component (↑). If only ↑ atoms were present,
the energy density of the system would be the one of a noninteracting Fermi gas:
en[n↑, n↓ = 0] ≡ 3

5εF↑n↑, with εF↑ = ~2

2mf
(6π2n↑)2/3. Now, if we add some ↓ atoms,

and note their binding energy Ebind with the Fermi gas of ↑ particles, we have Ebind =
−3/5εF↑A. Finally, with ε∗F↓ = ~2

2m∗ (6π
2n↓)2/3 the Fermi energy of the polaron of mass

m∗, if several quasi-particles are present, they will have an energy density 3
5ε
∗
F↓n↓ =

3
5εF↑n↑

mf
m∗ x

5/3. We can then write the energy density en of the normal phase as [Lobo
et al., 2006]:

en[n↑, n↓] ≡
3
5εF↑n↑

(
1− 5

3Ax+ mf

m∗
x5/3

)
, (4.2)

where x = n↓/n↑ is the ratio between the densities of the minority and majority
components. The description of the system in terms of majority atoms with non-
interacting polarons is only valid for low ↓ densities with respect to ↑ densities. This
implies x� 1. At higher x, the effect of interactions between quasi-particles also have
to be taken into account [Pilati and Giorgini, 2008, Recati et al., 2008], this is done
by adding an extra term Fx2 in the above equation ((4.2)):

en[n↑, n↓] ≡
3
5εF↑n↑

(
1− 5

3Ax+ mf

m∗
x5/3 + Fx2

)
(4.3)

≡ 3
5εF↑n↑ε(x).

The values of ξ, A, mf/m
∗ and F = (5/9)A2 have been measured [Navon et al.,

2010] and calculated [Prokof’ev and Svistunov, 2008, Combescot and Giraud, 2008,
Mora and Chevy, 2010] at unitarity: ξ = 0.38, A = 0.615 and m∗/mf = 1.20. Though
the above functions are strictly valid only at unitarity, we used them also around
unitarity for specific values of 1/kFaff , using approximate values given in Table 4.1.

1/kFaff 0 0.2 −0.25
B (G) 832.2 817 854
F 0.21 0.25 0.15
5
3A 1.025 1.118 0.866
ξ 0.37 0.22 0.54

m∗/mf 1.20 1.30 1.12

Table 4.1: Summary of the values used to study the imbalanced mixture, extracted
from [Navon et al., 2010, Mora and Chevy, 2010]

Starting with a normal phase with x = 0, adding ↓ atoms will increase x and for
x = xc there will be a first-order phase transition between a pure normal phase and
a system with phase separated superfluid and normal states. At unitarity, matching
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the pressures and the chemical potentials at the interface leads to xc = 0.4 [Recati
et al., 2008, Lobo et al., 2006]. This varies in the BEC-BCS crossover [Shin et al.,
2006, Navon et al., 2010]: on the BEC side, pairing is very robust, and xc → 1, while
it decreases on the BCS side. The limit above which superfluidity is destroyed by a too
large imbalance between the two species is called the Clogston Chandrasekhar limit.
In the condensed matter context where the imbalance was caused by a magnetic field,
it was convenient to use, instead of the density ratio, the local polarization, defined as

p = n↑ − n↓
n↑ + n↓

,

which is also widely used in the cold atom community. The polarization p can be ex-
pressed as a function of the density ratio x, p = 1−x

1+x , and the Clogston Chandrasekhar
critical ratio xc = 0.4 at unitarity corresponds to a critical local polarization pc = 43%.

4.1.2 Fermions in a harmonic trap

Uniform systems are easier to handle theoretically, but the ultracold Fermi gases re-
alized experimentally are usually trapped by harmonic potentials, either optical or
magnetic1. One can re-apply the results obtained above for a uniform system to the
case of a harmonic trap using the local density approximation, or LDA. It is an ap-
proximation that states that a cloud trapped by a potential V (r) can be seen as locally
homogeneous at position r with a chemical potential µ− V (r). This approximation is
valid only if the trapping potential varies slowly enough so that the cloud can follow its
variations. Its violation in some experiments due to sharp boundaries [Partridge et al.,
2006a, Partridge et al., 2006b, De Silva and Mueller, 2006b, Baur et al., 2009] leads to
the study of surface tension effects. In a harmonic trap, the local densities vary, hence
the local polarization p and density ratio x vary as well. As a result, instead of the
local quantities x and p, we rather use the total polarization P , that involves the total
numbers of atoms of each species N↓ and N↑ in the trap:

P = N↑ −N↓
N↑ +N↓

.

Applying the results of subsection 4.1.1 to a harmonic trap implies that the phase
separation found in the homogeneous system translates into a layered structure in a
trap. If the polarization is small, the cloud will separate in three concentric parts (see
Figure 4.1a):

• A fully paired superfluid core: in the center of the cloud, there is a superfluid,
that can be characterized by the presence of vortices [Zwierlein et al., 2006a]. It
implies the equality of the local atomic densities: n↑ = n↓.

• A partially polarized non-superfluid phase, where n↑ > n↓

• A fully polarized phase, where n↓ = 0, and the ↑ atoms obey the ideal Fermi gas
laws.

1Box potentials are becoming more and more popular [Gaunt et al., 2013, Corman et al., 2014].
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When the polarization increases, the central superfluid part shrinks, and when it is
too high (above 76% for a unitary Fermi gas [Nascimbène et al., 2009, Zwierlein et al.,
2006a, Shin et al., 2006]), there is no more superfluid part, the central part of the cloud
is partially polarized and is surrounded by a fully polarized phase (see Figure 4.1b).
Note the density jump in the minority density at the boundary of the superfluid,
corresponding exactly to xc from the homogeneous case. In this whole chapter, the
calculations were made in the isotropic case and at unitarity for a gas with the same
mean trapping frequency ω̄ = ω

1/3
z ω

2/3
r . Adapting them to our cigar-shaped experiment

thus requires a re-scaling of the length scales. For all the theory curves, results will be
plotted in terms of the averaged oscillator length l̄ho =

√
~/mω̄, while the experimental

data that will be shown below will be given in units of axial harmonic oscillator length
lzho =

√
~/mωz. For our experimental values of ωz and ωr, l̄ho = 3.6µm and lzho =

9.8µm.
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(a) Below the critical polarization, a super-
fluid lies in the center of the cloud.
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(b) Above the critical polarization, there is
no superfluid any more.

Figure 4.1: Calculated density profiles (top) and schematic representation (bottom)
of an imbalanced Fermi gas in a spherical harmonic trap. Red (resp. yellow) curves
represent the density of the majority ↑ (resp. minority ↓) component, and the green
curve represents the density difference n↑ − n↓. In purple is the superfluid (SF) phase
where n↑ = n↓, in faded yellow-to-red is the partially polarized (PP) phase with
n↑ > n↓, and in red is the fully polarized (FP) phase where n↓ = 0.
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4.1.3 Application: another evidence of superfluidity in the Bose-Fermi
mixture

The superfluid is associated to pairing, which implies a local equality between ↑ and
↓ densities: n↑ = n↓. Experimentally, we only have access to doubly integrated
densities n̄(z), but it can be shown that dn̄(z)

z dz = −2π ω
2
z
ω2
ρ
n(z), provided the poten-

tial has ellipsoidal symmetry and verifies some weak local density approximation: it
requires that iso-potential lines correspond to iso-density lines. This hypothesis re-
sembles the LDA hypothesis but is weaker. The relation creates a direct link be-
tween n(z) and n̄(z). The ellipsoidal symmetry implies that n(x,y,z) is actually a
function of r =

√
ω2
xx

2+ω2
yy

2+ω2
zz

2

ω̄ , and, with ωρ defined as ωρ = ω
1/2
x ω

1/2
y and ρ as

ω2
ρρ

2 = ωxx
2 + ωyy

2,

n̄(z) =
ˆ
dx dy n

r =

√
ω2
xx

2 + ω2
yy

2 + ω2
zz

2

ω̄

 (ω̄ = ω
1/3
x ω

1/3
y ω

1/3
z )

n̄(z) = π
ω̄2

ω2
ρ

ˆ
ds n(s) (s = ω2

ρ

ω̄2 ρ
2 + ω2

z
ω̄2 z

2, ds = 2ω
2
ρ

ω̄2 ρ dρ+ 2ω
2
z
ω̄2 z dz)

dn̄(z)
ds

= −π ω̄
2

ω2
ρ

n(s)

dn̄(z)
z dz

= −2πω
2
z

ω2
ρ

n(z),

where the ω2
z
ω2
ρ
term accounts for the fact that the potential is not spherical but ellip-

soidal.
As a result, if we consider the density difference, n↑−n↓ = 0 implies d(n̄↑−n̄↓)

dz (z) =
0, i.e. there is a plateau in the density difference, hereafter called the superfluid
plateau. We use this result to provide another evidence of the superfluidity of the Bose-
Fermi mixture. We prepared a BEC with an imbalanced Fermi superfluid at unitarity,
and image both clouds with the simultaneous triple imaging technique explained in
subsection 2.6.2. While the peak of the Bose-Einstein Condensation was clearly visible,
the density difference of the two fermionic spin states showed a plateau, indicating
superfluidity for both species (see Figure 4.2).

In this section, we have shown that an imbalanced Fermi gas phase separates into
a superfluid and a normal phase. In a harmonic trap, this results in a cloud with
concentric layers, the inner one being superfluid if the polarization is low enough.
Although these results were obtained at unitarity, they can be extended in the BEC-
BCS crossover, and we successfully used them to provide another evidence of the
superfluidity of the Bose-Fermi mixture that we produced. Indeed, we observe a fully
paired Fermi gas at the center of the trap. If this itself is not a definitive proof of
superfluidity, it was shown with the observation of vortices in [Zwierlein et al., 2006a]
that fully paired regions in spin-imbalanced Fermi gases were superfluid.
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Figure 4.2: Doubly integrated density profiles of bosons and fermions resulting from
triple simultaneous imaging described in subsection 2.6.2. In blue are the bosons, in
red the majority ↑ component of the fermions, in yellow the minority ↓ component and
in green their density difference. Bosons are imaged axially, fermions radially. Thomas-
Fermi fit of the bosonic profile is shown in dashed blue line. The superfluid plateau in
the density difference is indicated with a dark green dashed line. It implies the local
equality n↑ = n↓ and is associated to pairing and superfluidity. Here, Nf = 180 · 103,
Nb = 38 · 103, and P = 24% at 817G.

In the next sections, we will discuss how we can use the BEC to create an effective
flat bottom trap (FBT) for the fermions, then discuss the effect of that specific trap
on the Clogston-Chandrasekhar limits of the Fermi gas.

4.2 Realization of a flat bottom trap

In the limit of low atom number for bosons, we have shown in chapter 3 that there
were no drastic change in the Fermi cloud’s behavior due to the presence of bosons and
that for instance the dipole mode frequency of the fermions was barely modified when
Nb � Nf and that the superfluidity of the Fermi cloud was not deeply affected by the
presence of bosons. On the other hand, we have seen that even for high bosonic atom
number, the Fermi cloud could still show concentric layers of phases with different
polarization, see Figure 4.2. However, fermions and bosons do have a (weak) repulsive
interaction that induces an energy shift of gbfnf (for the bosons) and gbfnb (for the
fermions). Since the density of the Bose gas is much higher than that of the Fermi
gas, we will focus of the effective trapping potential felt by the fermions (the effective
trapping potential for the bosons is barely modified) [Mølmer, 1998, Amoruso et al.,
1998].

4.2.1 Prediction

Let us consider a mixture of a Bose-Einstein condensate and a two components (noted
again ↑ and ↓) Fermi gas, in the vicinity of a Feshbach resonance for the Fermi gas.
Here, both gases are confined by a harmonic trap with the same potential V (r) =
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1/2mαω
2
αr

2, where α = b or f for bosons or fermions, respectively2. If we assume
mean-field Bose-Bose and Bose-Fermi interactions, using the LDA, the local energy
density E can be written as:

E = gbb
2 n2

b + gbfnb(n↑ + n↓) + e[n↑,n↓],

where gbb = 4π~2abb/mb and gbf = 2π~2abf(1/mb + 1/mf) (within Born approxima-
tion [Zhang et al., 2014]) are the coupling constants for Bose-Bose and Bose-Fermi
interactions, respectively, and we assume that the Bose-Fermi scattering length is the
same for both Fermi gas components. e[n↑,n↓] refers to the Fermi-Fermi interaction. It
is a complicated function in the general case, but is known at unitarity for a balanced
(n↑ = n↓ = nf/2) superfluid Fermi gas, as defined in equation (4.1). For a spin-
polarized Fermi gas at unitarity, the interaction energy is given by [Chevy, 2006, Lobo
et al., 2006] equation (4.3), and this can be extended in the BEC-BCS crossover from
the equation of state with appropriate coefficients (given in Table 4.1).

It is now possible to obtain the chemical potentials as:

µσ=↑,↓ = wσ[n↑,n↓] + gbfnb + V (r) (4.4)
µb = gbbnb + gbf(n↑ + n↓) + V (r), (4.5)

where wσ[n↑,n↓] = ∂e[n↑,n↓]
∂nσ

is the pressure equation of state of the fermions. At
unitarity for a spin-balanced Fermi gas, wσ = ξεFσ.

If we now replace nb in equation (4.4) by its value from equation (4.5), we get:

µσ = wσ[n↑,n↓] + g2
bf
gbb

(n↑ + n↓) + V (r)
(

1− gbf
gbb

)
+ gbf
gbb

µb (4.6)

µb = gbbnb + gbf(n↑ + n↓) + V (r).

With equation (4.6), we see that for gbf = gbb, n↑ and n↓ do not depend on r any
more: the repulsive interaction with the bosons compensates exactly the harmonic
confining potential and the density of fermions is uniform anywhere where the bosons
are present. The influence of gbf/gbb is shown on Figure 4.3.

We see that at the condition gbb = gbf , the potential felt by the fermions is flat
close to the center of the trap. This means that the 3D effective potential for the
fermions is actually a flat bottom trap (FBT), composed of an ellipsoidal region where
the potential is uniform, surrounded by a truncated harmonic potential. The center
of the trap is an ellipsoidal ‘box’.

4.2.2 Experimental conditions

The question now is how to realize the condition gbf = gbb. We want the BEC to be
stable, which requires abb > 0, and the possibility for the Fermi gas to be superfluid,
which requires to be close to a Feshbach resonance for the Fermi cloud.

2In reality, the trap is not isotropic but is rather cigar-shaped with an aspect ratio of ∼ 20. However,
it does not matter here because in first approximation the two clouds feel the same potential, both
radially and axially.
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Figure 4.3: Shape of the potential felt by the fermions for different values of gbf/gbb.

4.2.2.1 Conditions for the magnetic field

In our system, the bosons are 7Li, the fermions are 6Li in two different spin states.
The Bose-Fermi interaction is fixed with a scattering length of abf = 40.8 a0, constant
for a large range of magnetic fields, and equal for all Bose and Fermi spin-states
combinations considered here. However, 7Li has a number of Feshbach resonances (see
Table 2.2), and both for |1b〉 and |2b〉 states it is possible to find a magnetic field where
abb = 44.2 a0, that is where gbf = gbb. However, to be close to a Feshbach resonance
for 6Li, it is favorable to use |2b〉 and a |1f〉 − |2f〉 mixture. Then, one can choose
between two different magnetic fields to achieve the condition gbf = gbb: B = 816.8G
and B = 854.2G, these two possibilities being around the broad Feshbach resonance
for 6Li (at B = 832.2G). They are shown on Figure 4.4 as purple dots. Thus, it will
then be possible to have either a BEC superfluid (with our experimental conditions,
for a magnetic field of B = 816.8G, this corresponds to kFaff = 5 i.e. 1/kFaff = 0.2) or
a BCS superfluid (for a magnetic field of B = 854.2G, this corresponds to kFaff = −4
i.e. 1/kFaff = −0.25) in a flat potential. This makes this combination an exciting
playground to study the physics of Fermi superfluid in a flat trap.

4.2.2.2 Robustness of the flat trap

It is an important question to know the sensitivity of the flat bottom trap with re-
spect to magnetic field variations: it is impossible experimentally to be exactly at the
magnetic field where gbf = gbb. Typically in our experiment we may have . 0.1G day-
to-day fluctuations. To quantify their effect, we compare the residual anti-trapping
energy ∆ defined on Figure 4.5 to the chemical potential of the fermions µf in the case
of a balanced gas. The results are shown on Figure 4.6, for two different ranges of
magnetic field. One can see that, on a 0.3G interval around the target chemical po-
tential, ∆/µf varies by less than 0.5%, to be compared for instance with gap energy at
unitarity of 0.4 εF, or with critical temperature for superfluidity of 0.2TF. A residual
trapping or anti-trapping energy on the order of 0.5 % of µf thus seems small enough
to say that the flat potential conditions are verified.
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Figure 4.4: Evolution of the scattering lengths as a function of the magnetic field. In
red, the ↑ / ↓ scattering length aff divided by 100, in blue, the Bose-Bose scattering
length abb, in brown the Bose-Fermi scattering length abf . The shaded grey areas
indicate the magnetic field values for which the BEC is unstable. The purple circles
indicate the condition gbf = gbb.
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Figure 4.5: Definition of ∆, the residual anti-trapping energy

4.2.2.3 Stability of the mixture with respect to phase separation

Apart from the condition abb > 0, required for the BEC to be stable, one may also
wonder what are the conditions for the mixture to be stable: the compressibility matrix
[∂µα/∂nβ]α,β=b,f must have positive eigenvalues [Viverit et al., 2000]. This requires
(in the case of a balanced Fermi gas):

∂µb
∂nb
· ∂µf
∂nf
≥ ∂µb
∂nf
· ∂µf
∂nb

This corresponds to:
∂µf
∂nf
≥ g2

bf
gbb

,

that is:
∂w(nf)
∂nf

≥ g2
bf
gbb

,
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Figure 4.6: Variations of ∆/µf for different ranges of magnetic fields around the con-
dition gb = gbf .

At unitarity, this leads to nf ≤ 2.7 · 1016 cm−3, which is well verified with our experi-
mental parameters (nf < 1014 cm−3), and this will remain the case for gbf = gbb.

However, if we wanted to study phase-separation between the components of the
mixture, it would be possible to go towards a magnetic field where abb goes to zero.
For the |2b〉 state that we are using, abb = 0 at B = 850G and at B = 578G [Shotan
et al., 2014]. The phase separation occurs when abb is still positive, ie before reaching
the value abb = 0 that leads to the collapse of the condensate. Close to B = 850G, the
phase separation occurs about 50mG away from abb = 0 and preliminary data that we
took there show mainly the collapse of the BEC. However, towards B = 578G, phase
separation should occur below 730G [Ferrier-Barbut, 2014], well before the collapse of
the BEC, but this is then in the deep BEC regime for the fermions and their lifetime
is reduced. We plan to do more experiments to investigate this possibility of phase
separation to make a connection with what is happening in 4He-3He mixtures.

4.2.2.4 Deviations from Paschen-Back regime

In the range [800G-900G], 7Li is not fully in the Paschen-Back regime. This results in a
slightly different magnetic trapping for 7Li and 6Li: Vb,ax = βVf,ax, with β = 0.96 < 1.
The optical trapping stays the same for both isotopes3. This results in the axial
trapping (mainly magnetic) being different for both isotopes while the radial trapping
(mainly optical) is the same. Equation (4.6) can be re-written as:

µσ = wσ[n↑,n↓] + g2
bf
gbb

(n↑ + n↓) + Vf(r)−
gbf
gbb

Vb(r) + gbf
gbb

µb.

It is not possible any more to cancel harmonic trapping simultaneously in all three
directions. For gbb = gbf (at magnetic fields of 816.8G and 854.2G), this results in a
residual axial trapping with a frequency ω′f ≈

√
1− β ωf ≈ 3Hz for the fermions.

Alternatively, when gbb = βgbf (for magnetic fields of 815.2G and 854.0G), ax-
ial trapping is canceled and the residual radial potential is anti-trapping, with anti-
trapping frequencies of 74Hz. The minima of potential would then follow the surface of
a cylinder. To evaluate how important these deviations are from the true flat-bottom

3The isotopic shift is 10.5GHz while the laser frequency is 3.0·1014 Hz, leading to a relative difference
between the two optical trapping potentials of 3 · 10−5.
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trap, one can evaluate the size of ∆, as it was defined in subsubsection 4.2.2.2, with
respect to the fermions chemical potential µf . We have:

∆
µf

=
1
2mfω

′2
f R

2
TF,b

µf

= µb
µf

ω′2f
ω2

b

mf
mb

= (1− β)µb
µf

. 10−4

At 816.8G, the trap is thus radially flat, and has a small residual trapping potential
of 3Hz. However, the above calculation shows that the corresponding change in energy
is small compared to the chemical potential of the fermions, and it was neglected in
both the theoretical calculations and the analysis.

At 854G, the trap is axially flat, with some anti-trapping at a frequency of about
74Hz. Still from the above calculations, the resulting energy change is also small with
respect to µf and was also neglected.

In the following, we will always consider that the bottom of the trap is flat, and
has ellipsoidal symmetry.

4.3 Critical polarizations in a flat bottom trap

4.3.1 Bosons and fermions in a box
If we turn back to the situation of a spin-polarized Fermi gas in a box described in
subsection 4.1.1, in the presence of bosons, the situation is a bit modified [Ozawa et
al., 2014]. The Fermi gas is still separated into a normal and a superfluid phase, an we
note nbn (resp. nbs) the densities of bosons in the normal (resp. superfluid) phase of
the fermions. We can write the total energy densities Es and En of the superfluid and
normal phase:

Es = gbb
2 n2

bs + 2gbfnbsns + es[ns],

En = gbb
2 n2

bn + gbfnbn(n↑ + n↓) + en[n↑, n↓]

At unitarity, we recall equations (4.1) and (4.3) for the energy of fermions in the
superfluid and the normal phases (with x defined as previously x ≡ n↓/n↑):

es[ns] ≡ ξ
6
5

~2

2mf
(6π2ns)2/3ns

en[n↑, n↓] ≡
3
5εF↑n↑

1− 5
3Ax+ mf

m∗
x5/3 + Fx2︸ ︷︷ ︸

ε(x)


≡ 3

5εF↑n↑ε(x),
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and these results can be extended around unitarity using again Table 4.1.
Writing the equilibrium conditions between the superfluid and the normal phase

leads to:

• Fermion chemical potential equality: µ↑ + µ↓ = µs. Since

µ↑ = ∂En
∂n↑

= gbfnbn + εF↑ε(x)− 3
5xε

′(x)εF↑,

µ↓ = ∂En
∂n↓

= gbfnbn + εF↑ε(x) + 3
5ε
′(x)εF↑,

µs = ∂Es
∂ns

= 2gbfnbs + 2ξy2/3εF↑,

leading to, with y ≡ ns/n↑,

ξy2/3 − 1
2ε(x)− 3

10ε
′(x)(1− x) = gbf

(nbn − nbs)
εF↑

. (4.7)

• Boson chemical potential equality: µbs = µbn. Since

µbn = ∂En
∂nbn

= gbbnbn + gbf(n↑ + n↓),

µbs = ∂Es
∂nbs

= gbbnbs + 2gbfns,

leading to
gbb(nbn − nbs) = gbfn↑(2y − (1 + x)). (4.8)

Combining equations (4.7) and (4.8) leads to:

ξy2/3 − 2Gy − 1
2ε(x)− 3

10ε
′(x)(1− x) +G(1 + x) = 0, (4.9)

where G is defined as G ≡ n↑g
2
bf/(εF↑gbb), corresponding to the ratio between

the change in the energy of fermions caused by the induced interaction −g2
bf/gbb

in the static limit and the non-interacting Fermi energy.

• Equality of the pressure Ps of the superfluid phase and Pn of the normal phase
at the boundary.

Ps = 2gbfn↑ynbs + gbb
n2

bs
2 + 4

5εF↑y
5/3n↑,

Pn = gbfn↑(1 + x)nbn + gbb
n2

bn
2 + 2

3εF↑n↑ε(x),

leading to

2Gy2 − 4
5ξy

5/3 −G(1 + x)2

2 + 2
5ε(x) = 0, (4.10)
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Figure 4.7: Solutions x and y to equations (4.9) and (4.10).

The solutions to the system composed of equations (4.9) and (4.10) are shown on
Figure 4.7.

As long as G < Gmax = 0.089, we respect the stability conditions established
in subsubsection 4.2.2.3 and there exist two solutions for x and y. When G goes
to zero, we recover the x = 0.4 of the case without bosons (see subsection 4.1.1).
When G increases, x decreases, which implies the superfluid phase is stabilized by
the interactions with the bosons. The fact that y increases (with respect to its value
without bosons y = 1.05) shows that the density jump at the interface becomes larger
as G increases, as high as 2ns/(n↑ + n↓) ≈ 4.1 when G = Gmax, to be compared with
the value 1.5 of the case without bosons. It is important to notice that these results
do not depend on the bosonic density, and as long as some bosons are present, they
should stabilize the superfluid Fermi gas, but the volume of Fermi gas that is stabilized
will decrease with decreasing number of bosons.

4.3.2 Bosons and fermions in a harmonic trap

We now combine the results from section 4.2 and subsection 4.3.1, and study a mixture
of a BEC and an imbalanced Fermi gas in a harmonic trap with gbf = gbb. This implies
that the bottom of the trap is flat (as shown in Figure 4.3b). In the following, the
region of the trap where the bosons are present, corresponding to where the potential
is flat, will be called ‘the core’. Using the method presented in subsection 4.3.1 enables
us to obtain the density profiles of the clouds4 within the local density approximation
(see Figure 4.8a and Figure 4.8b top for instance). The fact that the flat-potential
conditions do not occur exactly at unitarity but for 1/kFaff = 0.2 and 1/kFaff = −0.25
can also be taken into account using Table 4.1, but since the results do not differ
significantly from the exact unitary case and to avoid any loss of generality, theoretical
profiles are calculated at unitarity.

We can first identify two clear different regimes:

• If the polarization is small, the Fermi superfluid extends farther than the edge
of the BEC (see Figure 4.8a).

4The source code was kindly provided by Tomoki Ozawa.
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• If the polarization is large, the Fermi gas in the core will be all in the normal
phase, thereby one expects a uniform partially polarized gas, surrounded by a
non-uniform partially polarized phase, and then by a fully polarized phase (see
Figure 4.8b).
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(a) For low polarization, a uniform super-
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(b) For high polarization, the core region is
occupied by a uniform partially polarized
(UPP) phase.

Figure 4.8: Schematic representation of an imbalanced Fermi gas in a flat bottom trap.
In purple is the superfluid (SF) phase, in faded yellow-to-red is the partially polarized
(PP) phase, and in red is the fully polarized (FP) phase. The ‘core’ region, occupied
by the bosons - hence the flat trap area - is circled in blue.

We can now define two critical situations:

(i) The superfluid occupies the whole core, but does not extend out of it.

(ii) The core is occupied by a partially polarized phase such that the ratio n↓/n↑ in
the core is equal to the critical ratio for superfluidity (defined previously as x).

The radial density profiles corresponding to these situations are shown in Figure 4.9.
The critical polarization for each of these situations can be computed as a func-

tion of Nf/Nb and depends only weakly on Nb. At unitarity, they are displayed on
Figure 4.10a. They can also be computed for the two values of kFaff corresponding
to our experimental realizations (namely kFaff = 5 and kFaff = −4), and the re-
sults are shown on Figure 4.10b and Figure 4.10c, respectively. We notice that, for



4.3. Critical polarizations in a flat bottom trap 107

n↑
n↓
nb

� � � � � �� ��
�

��

��

��

��

� (l��)

n ↑
�n

↓
(l
�
�
-
�
)

�

���

���

���

���

���

���

���

n b
(l
�
�
-
�
)

(a) Critical situation (i): the superfluid
(with n↑ = n↓) occupies the whole core
and does not expand out of it.
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(b) Critical situation (ii): the partially po-
larized phase in the core is such as n↓/n↑ =
0.40, the critical ratio for superfluidity.

(c) Representation of critical situation (i). (d) Representation of critical situation (ii).

Figure 4.9: The two critical situations evoked in the text. The bosonic density is shown
in blue, the spin-up density in red and the spin-down density in yellow. Calculations
were made at unitarity, for Nb = 80 · 103, Nf = 150 · 103, and the corresponding
polarizations are P = 64% (a) and P = 75% (b). Here gbb = gbf = 10−3 l̄homb/mf . (c)
and (d) are 3D representation of the situations described in (a) and (b) respectively.
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Nf/Nb →∞, we retrieve the critical polarization for superfluidity in a harmonic trap.
For all three cases, we notice that there is a non-zero range of polarization for which
the core can neither be entirely superfluid nor entirely partially polarized. There is
thus a phase-separation inside the core which is then ‘non-homogeneous’.

4.3.3 Breakdown of flat bottom trap prediction

The obvious question now is: what happens in the dashed region of Figure 4.10?
There exist two ways to get there: either starting from the critical situation of (i) and
increasing the polarization, or starting from the critical situation of (ii) and decreasing
the polarization. We then have coexistence of the superfluid and of the normal phase
in the core region. Many scenarios are eligible, including exotic phases such as FFLO
phases [Hu and Liu, 2006, Bulgac and Forbes, 2008, Parish et al., 2007b, Radzihovsky
and Sheehy, 2010].

If we restrict ourselves to simple scenarios which respect the ellipsoidal symmetry
and have a limited number of Superfluid-Normal boundaries, we can suppose the core
is separated into a normal phase and a superfluid phase, with either the superfluid
phase at the center of the core, and the normal phase around it (Superfluid-Normal
scenario, as in Figure 4.11a), or a central normal phase, and a superfluid around it in
the core, and a non-homogeneous normal phase (Normal-Superfluid-Normal scenario,
as in Figure 4.11b). The question is then whether the superfluid lies at the center of
the cloud like a ‘Kernel’ (Superfluid-Normal scenario), or whether it has the shape of
a ‘Shell’ around a normal phase (Normal-Superfluid-Normal scenario).

It is experimentally feasible to be both in the flat potential conditions and close
to the unitary regime, and we can also vary the polarization. We only have access
to the doubly-integrated profiles and not to the radial profiles, but the two scenarios
explained previously have very different signatures in the doubly integrated profiles (see
Figure 4.11c and Figure 4.11d). It should be possible to identify them experimentally.
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Figure 4.10: Critical polarizations for the core to be entirely normal (yellow area) or
entirely superfluid (purple area), for different values of 1

kFaff
in the BEC-BCS crossover.

The intermediate area of inhomogeneous core is in dashed purple-and-yellow.
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(a) Superfluid-Normal scenario, radial den-
sity profile.
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(b) Normal-Superfluid-Normal scenario,
radial density profile.
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(c) Superfluid-Normal scenario, doubly-
integrated density profile.
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(d) Normal-Superfluid-Normal scenario,
doubly-integrated density profile.

(e) 3D representation of Superfluid-
Normal scenario.

(f) 3D representation of Normal-
Superfluid-Normal scenario.

Figure 4.11: Two possible scenarios involving a phase separation in the core. The
calculations were made assuming an equal volume of superfluid and of normal phase
in the core for these figures. The numbers of atoms are Nf = 144 · 103, Nb = 80 · 103

with P = 0.69. (a) and (b) figures show the radial density profiles, and (c) and (d) the
corresponding doubly-integrated density profiles. Majority fermions (↑) are shown in
red, minority (↓) in yellow, the difference (n↑ − n↓) in green and bosons in blue. (e)
and (f) are 3D representations of the two situations.
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4.4 Experiments on imbalanced Fermi gases in a flat bottom
trap

The rich variety of phenomena presented above led us to run the experiment at the
magnetic fields for which a FBT was expected.

We took data for different total atom numbers and polarizations, using simultane-
ous triple imaging, with both fermionic spin states imaged transversally in situ and the
bosons imaged axially after ttof = 4ms of time-of-flight. We have taken 1135 images
at 817G and 288 images at 854G with Bose-Fermi mixture, and 405 images at 817G
with fermions alone, that we took for comparison purposes. In the Bose-Fermi mixture,
the BEC density profile was found to be very close to a Thomas-Fermi distribution,
despite the presence of fermions. On the other hand, as expected, the distribution of
the Fermi component appears to be qualitatively affected by the presence of the BEC.

4.4.1 Bosonic Thomas-Fermi radius

Since the fermionic density is essentially uniform, the shape of the BEC remains a
parabola5. The fermions are imaged in situ and rapidly blown away from the trap,
so the BEC expands during time-of-flight as usual6. We can make a Thomas-Fermi
fit of the bosonic profile and use it to extract the Thomas-Fermi radius after time of
flight ttof , RTF,tof . In the case of cigar-shaped traps, it is related to the in situ axial
Thomas-Fermi radius RTF,b by the relation [Castin and Dum, 1996]:

RTF,b = 1√
1 + ωrttof

ωr
ωz
RTF,tof .

This expression is valid when any confinement is switched off at t = 0. In our case,
we only switch off the optical dipole trap, that realizes mainly the radial confinement,
and let the magnetic trap on. During the time of flight, the atoms feel some weakened
trapping potential in the axial direction (with a new trapping frequency ωz,tof ∼ 2π ·
14Hz), and some anti-trapping potential in the radial direction (with a new frequency
ωr,tof ∼ 2π · 7Hz). The time evolution of the Thomas-Fermi radii is now given by:

RTF,z(t = ttof) = λz(ttof)RTF,z(t = 0),
RTF,r(t = ttof) = λr(ttof)RTF,r(t = 0),

where the λj=r,z obey [Castin and Dum, 1996]:

λ̈r(t) = ω2
r

λz(t)λ3
r(t)
− ω2

r,tofλr(t),

λ̈z(t) = ω2
z

λ2
z(t)λ2

r(t)
− ω2

z,tofλz(t).

5If there is a density jump in the fermionic density, the BEC is not strictly a parabola, but due
to the high nb/nf ratio (see section 4.2), this effect is barely visible on theoretical profiles (see blue
curves in Figure 4.11a and Figure 4.11b), and below our signal-to-noise resolution.

6We checked the the bosonic cloud was not displaced during its time and flight, and thus not pushed
by escaping fermions.
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These equations can be solved numerically, and we find that for a time of flight of 4ms,
λr(ttof) = 11.9 and λz(ttof) = 0.96. These values can be compared with λr = 11.9 and
λz = 1.01, obtained assuming true time of flight, with equations (1.1). The correction
on λr is below our error bars. From the measured time of flight radius in the radial
direction RTF,r(ttof), we obtain the in situ radial Thomas-Fermi radius RTF,r(t =
0) = RTF,r(ttof)/λr(ttof), then the in situ axial Thomas-Fermi radius RTF,z(t = 0) =
RTF,r(t = 0)ωr/ωz. The Thomas-Fermi radius along the axial direction of the BEC
can now be compared to the fermions characteristic lengths.

4.4.2 First observations

One first observation is that the peak density of the fermions is reduced by the presence
of the bosons with respect to a cloud without bosons with the same number of fermions,
as it can already be seen on Figure 4.12. This very simple effect shows that the
bosons do impose some repulsive potential on the fermions, the density of which is
reduced with respect to a cloud in a simple harmonic trap. However, that effect is not
straightforward to quantify, due to the double integration in the two radial directions.
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Figure 4.12: Comparison between the doubly integrated density profile of the majority
component (n̄↑) with bosons (light red curve) and without bosons (dark red curve),
for the same polarization and number of fermions. Dashed lines are a guide to the eye.

We now focus on the influence of the bosons on the density profile difference n̄↑−n̄↓,
where we expect to see signatures of the two scenarios described in subsection 4.3.3.

In Figure 4.13, we compare four distinct situations, yet with the same spin polar-
ization of 60%. The upper raw corresponds to two examples of the fermions-alone
case (called FA 1 and FA 2), and serves as a reference for the samples of the lower raw
(called BF 1 and BF 2) which are Bose-Fermi mixture in the FBT configuration with
the same number of fermions.

The profiles of ∆n̄ = n̄↑ − n̄↓ (green line) show a clear difference depending on
whether or not bosons are present. While the profiles obtained in the absence of bosons
show a nice plateau, signaling the superfluid state, there appears to be differences in
the mixture case. In Figure 4.13c (BF 1), we can see a central bump sitting on flat
shoulders while in Figure 4.13d (BF 2) the superfluid plateau is smaller than in the



4.4. Experiments on imbalanced Fermi gases in a FBT 113

FA 1

� �� �� �� �� ���
�

����

����

����

����

�������� (l��
z
)

�
�
�
�
���

(l �
�z
-
�
)

(a) Nf = 180 · 103, no bosons.
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(b) Nf = 125 · 103, no bosons.
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(c) Nb = 63 · 103, Nf = 180 · 103.
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(d) Nb = 88 · 103, Nf = 125 · 103.

Figure 4.13: Examples of doubly-integrated density profiles for a polarization of 60%.
The top figures correspond to Fermi clouds prepared without bosons, while the bottom
figures to Bose-Fermi mixtures. Red curve is the density of the majority component,
yellow curve that of the minority component and the green curve to the density dif-
ference. The blue-dashed curve represents the reconstructed bosonic density from
the time-of-flight image in another direction (when bosons are present). Units are in
terms of harmonic oscillator length in the axial direction. These clouds were prepared
at 817G.

fermions-alone case (FA 2) and seems to be rounded. As we will see in the following, we
will be able to match these two unusual structures with the Normal-Superfluid-Normal
scenario (described in subsection 4.3.3, with a superfluid shell) on the one hand and
with the Superfluid-Normal scenario on the other (with a superfluid kernel).

We now describe a refined analysis of the density profiles to get a deeper insight
into these unusual structures.

4.4.3 Reconstruction Methods

Both methods described below rely on the isotropy of the atomic distribution, taken
is a general sense: they apply to any ellipsoidal distribution. There is no hypothesis
regarding the harmonicity of the potential and the LDA does not have to be fulfilled.
It only assumes that iso-potential lines for the trapping potential correspond to iso-
density lines for atomic density.
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Double inverse Abel transform

The first method that we used is based on the Abel transform. It was used in [Bulgac
and Forbes, 2007, Shin et al., 2008, Shin, 2008, Horikoshi et al., 2010, Van Houcke
et al., 2012] to extract the equation of state. It relies on a mathematical transform
that physically corresponds to the integration of an axially symmetric image along one
direction. Indeed, if we consider a function f(ρ) in the x−y plane with ρ =

√
x2 + y2,

then F (y) is the integration of this function along x:

F (y) =
ˆ ∞
−∞

f

(√
x2 + y2

)
dx dx = ρ dρ√

ρ2−y2

F (y) = 2
ˆ ∞
y

f(ρ)ρ dρ√
ρ2 − y2 .

This can easily be extended to a cylindrico-symmetric function f(ρ,z) in the x−y−z
space, with still ρ =

√
x2 + y2:

F (y,z) =
ˆ ∞
−∞

f(ρ,z) dx = 2
ˆ ∞
y

f(ρ,z)ρ dρ√
ρ2 − y2 .

But now if f was spherically-symmetric with f(ρ,z) = f(r =
√
ρ2 + z2) = f(r =√

x2 + y2 + z2), then the function F (y,z) = F (
√
y2 + z2) has radial symmetry and

can be integrated along y. We obtain:

F =
ˆ ∞
−∞

F

(√
y2 + z2

)
dy.

A representation of these two steps are given on Figure 4.14.

(a) Integration along x.

⇒

(b) Integration along y.

⇒

(c) Resulting 1D profile.

Figure 4.14: Schematic description of the two integration steps that lead to the double
Abel transform. (a): integration of f(r) along the x direction to obtain F (y,z). (b):
F (R) = F (y,z) integrated along the y direction to obtain F(z). (c): F(z), doubly-
integrated density profile.

The fact that here the potential is ellipsoidal but not spherical is not a problem
because we just need to change the scaling of the z axis (for instance), with z ← ωz

ωr
z.

Here, the doubly-integrated density profiles would correspond to F(z), and singly-
integrated density profiles and radial density profiles can be reconstructed iteratively
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using the inverse Abel transform:

F (R =
√
y2 + z2) = − 1

π

ˆ ∞
R

dF(z)
dz

dz√
z2 −R2

f(ρ =
√
x2 + y2,z) = − 1

π

ˆ ∞
ρ

dF (y,z)
dy

dy√
y2 − ρ2

Although it is mathematically exact, this method implies to take second derivatives
of the experimental profiles which is quite noisy. Moreover the division by

√
z2 −R2

and
√
y2 − ρ2 implies a division by zero close to the center of the cloud, and this

amplifies the noise. It was thus impossible in our case to apply directly this method
and we had to pre-process the data in order to use this analysis. Before discussing
the pre-processing, I will give another mathematical relation between the radial profile
and the doubly-integrated profile, based on a method proposed in [Fuchs et al., 2003,
De Silva and Mueller, 2006a, Cheng and Yip, 2007, Ho and Zhou, 2009] and used in our
group [Nascimbène, 2010] to obtain the equation of state of the Fermi gas [Nascimbène
et al., 2010, Navon et al., 2010]. It turns out to give the same results with much less
amplification of the noise.

Weak LDA method

This method shares the same hypothesis with the previous one : ellipsoidal potential,
non-necessarily harmonic. It was shown in subsection 4.1.3 that:

dn̄(z)
z dz

= −2πω
2
z

ω2
ρ

n(z),

under some weak-LDA hypothesis, namely that the iso-potential lines correspond to
the iso-density lines.

This relation only involves one derivative, and one division by z, such that the
noise is strongly reduced with respect to the double-inverse Abel transform.

However, the experimental data is still too noisy to obtain a clear signal with
the derivative. Several pre-processing methods can be used to smooth the profiles.
To remain as model-free as possible, we chose to use high-order polynomials to fit
the experimental profiles7. These polynomials can then be processed using either
weak LDA method, or inverse-Abel transform. An example of the fit with 16th order
polynomials is shown in Figure 4.15. Discussions on the choice of the order polynomial
are presented in Appendix A.

4.4.4 Evidence for a superfluid shell
The results of Abel Transform and weak LDA method are presented in Figure 4.16
from which we draw the following conclusions: as expected, the inverse Abel method is
much noisier than the weak LDA method (this is amplified by the discretization of the

7It is clear that polynomials are C∞ functions and will not represent the corner points of Fig-
ure 4.11c and Figure 4.11d. However, we considered that using piecewise functions as fit functions
would not provide an objective criteria to discriminate between the Superfluid-Normal and Normal-
Superfluid-Normal scenarios.
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(a) Nf = 180 · 103, no bosons.
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(b) Nf = 125 · 103, no bosons.
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(c) Nb = 63 · 103, Nf = 180 · 103.
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(d) Nb = 88 · 103, Nf = 125 · 103.

Figure 4.15: Example of the polynomial fits on the doubly-integrated density profiles
presented on Figure 4.13 The polarization is 60% for all images. Top row: Thomas-
Fermi fits applied to the fermions-alone (FA) cases. Bottom row: polynomial fit
applied to the Bose-Fermi mixtures (BF). Red: n̄↑(z), yellow: n̄↓(z), green: n̄↑(z) −
n̄↓(z). Dashed thick lines: fits; thin solid lines: experimental data. Dashed blue
line: reconstructed BEC profile. Vertical blue dashed lines indicate the Thomas-Fermi
radius of the BEC when present.

polynomial, necessary for the Abel integrals to converge properly). In the following,
we will thus restrict ourselves to the weak LDA method. The numerical computation
is also much faster.

Regarding the shape of the profiles, we can make additional remarks:

• For the fermions alone (FA) (see Figure 4.16d and Figure 4.16b), the radial den-
sity of the difference n↑(z)−n↓(z) always has a minimum near z = 0. The density
jump at the boundary of the superfluid and normal phase (as on Figure 4.1a)
that one would expect is not seen here because of the C∞ polynomials used for
the analysis.

• For the image with fermions and bosons (BF) (see Figure 4.16c and Figure 4.16a),
the radial density of the difference n↑(z)−n↓(z) shows a minimum at a distance
z 6= 0, close to the Thomas-Fermi radius of the bosons, shown in dashed blue
lines. This is not the case for all BF images, some show a minimum for the
density difference near z = 0, as shown on Figure 4.17.
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(a) Nf = 126 ·103, Nb = 63 ·103, P = 64%,
with weak LDA method.
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(b) Nf = 126 · 103, Nb = 0, P = 64%, with
weak LDA method
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(c) Nf = 126 ·103, Nb = 63 ·103, P = 64%,
with inverse Abel transform.
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(d) Nf = 126 · 103, Nb = 0, P = 64%, with
inverse Abel transform.

Figure 4.16: Comparison of typical radial profiles n(z) obtained with weak LDA
method (figures (a) and (b)) and inverse Abel transform (figures (c) and (d)), for
fermionic clouds with (figures (a) and (c)) and without (figures (b) and (d)) bosons.
Red: n↑(z), yellow: n↓(z), green: n↑(z)−n↓(z). Insets: doubly-integrated density pro-
files with their polynomial fits. Vertical blue dashed lines indicate the Thomas-Fermi
radius of the BEC.
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(a) Nb = 63 · 103, Nf = 180 · 103.
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(b) Nb = 88 · 103, Nf = 125 · 103.

Figure 4.17: Reconstructed radial density profiles of two systems with similar atoms
numbers and a polarization of 60%, that show different behaviors for the radial density
difference.
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These two different behaviors are very reminiscent of the two proposals made in
subsection 4.3.3 regarding what could happen between the two critical polarizations
in the FBT. These images and others suggest that:

• When there are no bosons, there is no FBT and the superfluid always lies at the
center of the cloud, as expected (see Figure 4.1a, and Figure 4.16b).

• For Figure 4.17a, there is a superfluid in the FBT that is forming as a shell around
a partially polarized phase, like in the Normal-Superfluid-Normal scenario (see
Figure 4.11b and Figure 4.11f).

• For Figure 4.17b, there is a superfluid at the center of the FBT, surrounded by a
partially polarized phase, like in the Superfluid-Normal scenario (see Figure 4.11a
and Figure 4.11e).

The fact that the minima in the radial density differences n↑−n↓ do not always go
to zero is a numerical artifact resulting from the polynomial fit: having a radial density
going precisely to zero requires a perfect cancellation the polynomial’s derivative, which
is not favored because the doubly integrated density profile is decreasing from the
center. The radial density going precisely to zero thus requires the cancellation of
both the first and second derivative (inflexion point). The same kind of arguments
explains also why the minimum is local and does not extend on a broader area: the
polynomial would have to be flat on a wide area, and this is not possible with a
polynomial with order greater than one. Some numerical errors may also lead to
a negative radial density difference for the SNN scenario as in Figure 4.17b. The
influence of the order of the polynomial and a consistency check on theoretical profiles
are given in Appendix A.

From the above analysis, we believe that a minimum in the reconstructed profile
of the density difference indicates the presence of a superfluid located around the
minimum. Three situations can be discriminated:

• Either there is a superfluid kernel, surrounded by an unpaired normal phase. In
this case, the radial density difference has a minimum near r = 0.

• Either there is a superfluid shell, surrounding and surrounded by a normal phase.
In this case, the radial density difference has a minimum close to r = RTF,b.

• If the minimum is reached for r = RTF,↑, there is no superfluid and the cloud is
entirely normal.

To evaluate the validity of these assumptions, we show the histogram of the reparti-
tion of rmin/RTF,b at 817G (see Figure 4.18a). It is clearly bimodal, with a first group
of data around rmin/RTF,b = 0 (corresponding to a superfluid kernel), and another one
around rmin/RTF,b ≈ 0.8 (corresponding to a superfluid shell). In addition, we plot
(n↑−n↓)(r=rmin)

(n↑−n↓)(r=0) as a function of rmin
RTF,b

in Figure 4.18b. When (n↑−n↓)(r=rmin)
(n↑−n↓)(r=0) = 1, the

minimum is located precisely at r = 0. Otherwise, this ratio indicates the depth of
the minimum. We can see that the closer to RTF,b the minimum is, the deeper it is.
Similar results were obtained for images taken at 854G. This result can be interpreted
as a signature that the superfluid shell, when it is present, is located close to RTF,b.
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Figure 4.18: (a) Histogram of the values of rmin/RTF,b at 817G. The distribution
is strongly bimodal. Black solid line is a Gaussian fit of the data centered around
rmin/RTF,b = 0.8. Central value is 0.8 and standard deviation 0.2. (b) Evolution
of (n↑ − n↓)(r = rmin)/(n↑ − n↓)(r = 0) as a function of rmin/RTF,b for images at
817G. This shows two different behaviors: either the points are close to (n↑−n↓)(r =
rmin)/(n↑ − n↓)(r = 0) = 1, rmin/RTF,b = 0 (509 points are superimposed here), or
rather towards (n↑ − n↓)(r = rmin)/(n↑ − n↓)(r = 0) . 0.8, rmin/RTF,b ≈ 0.6 ∼ 1.1
(423 points in this area, for a total of 1135 images).

The criteria used to attribute a superfluid kernel, a superfluid shell, or a non-
superfluid character are thus the followings:

• If there is a minimum at r = 0, there is a superfluid kernel.

• If there is a minimum between 0.5RTF,b and 1.5RTF,b and the density difference
ratio (n↑−n↓)(r=rmin)

(n↑−n↓)(r=0) is smaller than 0.68, there is a superfluid shell.

• Else, if no minimum is present, or if it is not deep enough, there is no superfluid.

4.4.5 Parameters influencing the superfluid shell on the BEC side

4.4.5.1 Presence of bosons

Once the criteria have been proposed, it is important to check whether they are perti-
nent and whether we can recover well-established results. We thus apply this method
to images without bosons, hence without a flat bottom trap. We expect to see only
superfluid kernels up to the Clogston-Chandrasekhar limit (76 % at unitarity, ∼ 90 %
at 817G and ∼ 57 % at 854G).

At 817G, we can check that all images with a polarization below 90 % show a
superfluid kernel. The result of this analysis is shown in Figure 4.19.

The fact that nearly 100 % of the images without bosons show a superfluid kernel
and no shell below the critical polarization validates the approach given above. The

8The value of 0.6 is chosen because the histogram as a function of (n↑−n↓)(r=rmin)
(n↑−n↓)(r=0) reveals a minimum

at 0.7. Values above 0.8 correspond to superfluid kernels, and below 0.6 to superfluid shells.
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Figure 4.19: Probability of having a superfluid shell (blue), a superfluid kernel (yellow),
or no superfluid (green), as a function of polarization. Data correspond to 405 images
taken at 817G (1/kFaff = 0.2), without bosons. Shaded areas show 95 % confidence
interval.

rise of the non superfluid curve around 85 % indicates the expected breakdown of
superfluidity for large spin-imbalance.

4.4.5.2 Polarization

Effect on the existence of the superfluid shell

The same analysis as above can be applied to the data obtained at 817G with bosons
and fermions. Results are shown in Figure 4.20.
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Figure 4.20: Probabilities at 817G of having a superfluid shell (blue), a superfluid
kernel (yellow), or no superfluid at all (green), as a function of spin-polarization, with
their 95% confidence intervals.

At 817G (Figure 4.20), is seems that while the superfluid kernel is dominating up
to a polarization of about 60 %, in the [60 %,75 %] polarization range, the probabilities
of the superfluid kernel and superfluid shell are more or less equal. This equipartition
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is in agreement with results from [Ozawa et al., 2014] in which the Superfluid-Normal
scenario (leading to a superfluid kernel) and the Normal-Superfluid-Normal scenario
(leading to a superfluid shell) had similar energies. In this case, we indeed expect
similar occupation probabilities for these two scenarios.

Effect on the size of the superfluid shell

Once the existence of the shell is established, it is possible to use a more adapted
function to fit the data. Theoretical shell predictions of Figure 4.11b show that the
radial density difference n↑(r)−n↓(r) should be first non-zero and constant from r = 0
to r = rS,int, corresponding to the inner normal phase, then equal to zero from r = rS,in
to r = rS,out = RTF,b, then decreasing to zero from r = RTF,b to r = RTF,↑. Here
rS,in and rS,out correspond the the inner and outer radii of the shell. If we recover
the weak-LDA result from subsection 4.4.3 dn̄(z)

z dz = −2π ω
2
z
ω2
ρ
n(z), and apply it to the

radial density difference described above, we obtain that the doubly integrated density
is a continuous piecewise function that is a parabola from z = 0 to z = rS,in, then
a constant from rS,in to rS,out, and finally decays from rS,out to RTF,↑. Graphical
definitions of rmin, rS,in and rS,out are given in Figure 4.21.
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Figure 4.21: (a) Definition of rmin, the minimum position of the reconstructed radial
density difference. (b) Typical fit function used on a doubly-integrated density profile
when a shell has been identified, and definition of rS,in and rS,out. Definition of RTF,↑
is recalled.

To obtain information about the shell, we thus use this model as a fit function, with
rS,in and rS,out as free parameters. Typical shell fitted profiles are shown in Figure 4.22.

In Figure 4.23a is shown the evolution of rS,in − rmin and rS,out − rmin, as well as
rTF,b − rmin, as a function of polarization. We see that rmin, the local minimum of
the reconstructed radial density profile, is as expected roughly in the middle of the
shell. The evolution of the shell thickness rS,out − rS,in as a function of polarization
is also shown in Figure 4.23b. In the [60 %,75 %] polarization range corresponding to
the frequent observation of the superfluid shell, it seems that the thickness of the shell
does not strongly depend on the polarization.



122 Chapter 4. Spin-imbalanced gases and flat bottom trap

BF 1

� �� �� �� �� ���

�

���

����

����

����

����

�������� (l��
z
)

�
�
�
�
���

(l �
�z
-
�
)

(a) Nb = 63 ·103, Nf = 180 ·103, P = 60%.
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(b) Nb = 30 · 103, Nf = 60 · 103, P = 64%

Figure 4.22: (a) Shell fit of BF 1. (b) Shell fit on another typical profile.

●
●●●●●●●●●●●●● ●

●

●

●

●

■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■

■
■
■

■
■

◆◆

◆

◆◆
◆
◆
◆
◆
◆◆

◆
◆◆◆

◆◆

◆

◆
◆

�� �� �� ��

-�

-�

-�

�

�

�

�

������������

r S
-
r �

��
(l �

�z
)

● �����-����

■ ������-����

◆ �����-����

(a)

●

●●
●
●●●

●
●
●
●●

●

●●●●●

●
●●

●

�� �� �� �� ���
�

�

�

�

�

��

������������

r S
��
�
�-
r S
��
�
(l �

�z
)

(b)

Figure 4.23: (a) Evolution of rS,in−rmin (green diamonds), rS,out−rmin (yellow squares)
and rTF,b − rmin (blue dots) as a function of polarization. rmin is the local minimum
of the reconstructed radial density profile, rS,in is the inner radius of the shell, and
rS,out its outer radius. (b) Evolution of the shell thickness rS,out − rS,in as a function
of polarization. Error bars correspond to one standard deviation. lzho = 9.8µm is the
harmonic oscillator length in the axial direction.

4.4.5.3 Influence of atom number

We now turn to the analysis of the effect of atom number on the shell thickness. We
restrict the analysis to images the polarization of which is within the range [60 %,75 %]
where the shell is relevant. Influence of bosonic Nb and fermionic Nf on the shell
thickness is given in Figure 4.24. It seems that shell thickness decreases with increasing
Nb, and increases with Nf but the large error bars do not allow us to conclude.

4.4.6 Parameters influencing the superfluid shell on the BCS side

The same analysis can be performed at 854G, on the BCS side. This magnetic field
is of particular interest because the interaction parameter 1/kFaff ≈ −0.25 is close to
the predicted FFLO conditions (see Figure 0.1). Similar behavior as for 817G can be
observed, with hints both for shells and for kernels (see for instance Figure 4.25a for a
shell and Figure 4.25b for a kernel).

The same reconstruction procedure leads to reconstructed radial density profiles
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Figure 4.24: (a) Evolution of rS,out − rS,in as a function of bosonic atom number
Nb, restricted to the [60 %,75 %] polarization range. (b) Evolution of rS,out − rS,in
as a function of fermionic atom number Nf , restricted to the [60 %,75 %] polarization
range. Dashed lines: linear fits. Dotted lines: mean values. Error bars correspond to
one standard deviation.

shown in Figure 4.25c and Figure 4.25d. As before, depending of the existence of a
minimum close to r = 0 (as in Figure 4.25d), or for a finite r close to RTF,b (as in
Figure 4.25c), we use an adapted piecewise function to know the position and extension
of the superfluid plateau. Fits using such piecewise functions on the profiles are shown
in Figure 4.25e (for a shell) and Figure 4.25f (for a kernel).

Here again, the contrast of the minimum of the density difference (see green curves
in Figure 4.25c and Figure 4.25d) can be plotted as a function of its position, and as
before we find that the minimum is either located close to r = 0 or close to r = RTF,b,
see Figure 4.26b, and the same criteria are used to discriminate between a superfluid
kernel, a superfluid shell, or no superfluid at all.

However, at 854G the statistical analysis is not conclusive, see Figure 4.27. This
can be due to a lower number of images (288 instead of 1135). Another explanation
would rely on the relative sharpness of the FBT condition (see subsubsection 4.2.2.2).
Indeed, the dataset gathers images taken on different days, and since the FBT condition
is sharper at 854G than it is at 817G, it is also possible that day-to-day magnetic field
fluctuations drove the system back and forth across the gbb = gbf condition, or simply
that we made a small mistake in the magnetic field calibration that drove us away
from the FBT condition and into the anti-trapping regime (see Figure 4.3c). This
would explain the apparent prevalence of the superfluid shell in Figure 4.27. We plan
to investigate this situation in much greater detail.

The dependence of the shell parameters at 854G with the polarization and atom
numbers are shown in Figure 4.28. They do not differ significantly from the ones at
817G.

4.4.7 Portrait of the superfluid shell

With the information gathered above, we can draw a portrait of the superfluid shell.
It is presented in Table 4.2.
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Shell example at 854G
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Kernel example at 854G

Figure 4.25: (a) Typical density difference showing the existence of a superfluid shell
at 854G. Here Nf = 110 · 103, Nb = 38 · 103 and P = 52 %. (b) Typical density
difference showing the existence of a superfluid kernel at 854G. Here Nf = 90 · 103,
Nb = 38 · 103 and P = 48 %. (c) and (d) Corresponding reconstructed radial density
profiles with weak LDA method. (e) and (f) Green dashed curves: piecewise functions
used to extract the position and thickness of the superfluid shell (e) or the extension
of the plateau (f). Red and yellow dashed curves are guides to the eye for the doubly-
integrated density of the majority (red curve) and minority (yellow curve) components.
Vertical dashed blue lines indicate the Thomas-Fermi radius of the condensate.
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Figure 4.26: (a) Histogram of the values of rmin/RTF,b. The distribution is strongly
bimodal. Black solid line is a Gaussian fit of the data centered around rmin/RTF,b =
0.9. Central value is 0.9 and standard deviation 0.25. (b) Evolution of (n↑ − n↓)(r =
rmin)/(n↑ − n↓)(r = 0) as a function of rmin/RTF,b for images at 854G. This shows
two different behaviors: either the points are close to (n↑ − n↓)(r = rmin)/(n↑ −
n↓)(r = 0) = 1, rmin/RTF,b = 0 (41 points are superimposed here), or rather towards
(n↑ − n↓)(r = rmin)/(n↑ − n↓)(r = 0) . 0.8, rmin/RTF,b ≈ 0.6 ∼ 1.1 (165 points in this
area, for a total of 288 images).
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Figure 4.27: Probabilities at 854G of having a superfluid shell (blue), a superfluid
kernel (yellow), or no superfluid at all (green), as a function of spin-polarization, with
their 95% confidence intervals.

The parameter range that can be explored in the shell in represented by orange
areas in Figure 4.29. It shows that the mean-field FFLO conditions are probably within
a range accessible in the experiment.

4.5 Conclusion
In this chapter we have introduced a new way to realize an effective flat bottom trap for
fermions. It relies on the idea that a BEC in a harmonic trap has a parabolic profile.
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Figure 4.28: (a) Evolution at 854G of rS,in − rmin (green diamonds), rS,out − rmin
(yellow squares) and rS,TF,b−rmin (blue dots) as a function of polarization. rmin is the
local minimum of the reconstructed radial density profile, rS,in is the inner radius of the
shell, and rS,out its outer radius. (b) Evolution of the shell thickness rS,out − rS,in as a
function of polarization. (c) (resp. (d)) Evolution of rS,out−rS,in as a function of boson
number Nb (resp. fermion number Nf), restricted to the [40 %,60 %] polarization range.
Dashed line is a linear fit, dotted line is the mean value of the shell thickness. Error
bars correspond to one standard deviation. lzho = 9.8µm is the harmonic oscillator
length in the axial direction.

Tunable mean-field interactions between the BEC and another species (here fermionic
6Li) offers the possibility to cancel the trap curvature in the vicinity of the BEC volume.
This method has some universal character, in the sense that it does not depend on
the situation of the other species and could be applied, for instance, to both a single-
component Fermi gas or to a two-component Fermi gas (spin-imbalanced or not). Since
the Bose-Fermi scattering length of ∼ 41a0 is mainly identical for all spin-states and
independent of the magnetic field in a broad range (∼ 700 − 900G) while the boson-
boson scattering length encounters several Feshbach resonances, several combinations
of states can be chosen, leading to different values for the interaction parameter 1/kFaff .
In collaboration with the Trento group, we predicted that for a spin-imbalanced Fermi
gas at unitarity in such a flat bottom trap, the Clogston-Chandrasekhar limit would
be modified and that some new topological superfluid phases, such as a shell-shaped
superfluid, could arise. The experimental implementation of the flat bottom trap,
for two magnetic fields (817G, on the BEC side and 854G, on the BCS side) close
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BEC side BCS side
Magnetic field (G) 817 854
Averaged 1/kFaff 0.2 -0.25

Polarization range for
existence of shells [60 %− 75 %] ∼ [40 %− 60 %] (±10 %)
Probability of shells
in existence range 50(10)% 60(20)%

1/kFaff in shell 0.30(7) -0.37(10)
Shell thickness 50(5)µm 70(5)µm

ns in shell (cm−3) ∼ 1012 − 5 · 1013 ∼ 1012 − 5 · 1013

% atoms in shell
fermions 10-20% 10-20%
↑-atoms 10% 10%
↓-atoms 30-50% 30-50%

Table 4.2: Preliminary portrait of the shell

Figure 4.29: Mean-field phase diagram for FFLO phases. The areas indicated in bright
orange correspond to the areas explored with the experiments presented here. The
faint orange areas correspond to a range of interaction parameters accessible within
the homogeneous area. Adaptation of Figure 0.1 from [Radzihovsky and Sheehy, 2010].
The gray area correspond to phase separation between a fully-paired superfluid and a
polarized normal phase.

to unitarity |1/kFaff | . 0.25 and the numerical reconstruction of the radial profiles
from one-dimensional absorption images were realized. At 817G, in the [60% − 75%]
polarization range, the repeated presence of a minimum in the reconstructed radial
density difference was interpreted as an evidence for a superfluid shell. This superfluid
shell could be seen only in images with a BEC, and is clearly made possible only by
the presence of the bosons. This novel phase is consistent with mean-field theoretical
predictions. It does not provide direct proof of the flat bottom trap, for instance it
could be enhanced by a small anti-trapping potential in the BEC volume. This would
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increase the fermionic density close to the bosonic Thomas-Fermi radius and favor
the shell. The currently ongoing detailed study of the role of gbb/gbf will clarify this
situation and bring better knowledge of the flat bottom trap. Also the 854G condition
on the BCS side of the resonance deserves much more detailed studies.

Another point is that so far we always prepared the clouds at a magnetic field where
gbb > gbf before ramping it to the flat bottom trap condition. Dynamical aspects of
shell formation would be original observations.
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During the first half of my PhD, I had been doing several side projects to improve
the old lithium machine: adapting Cicero (a control software for cold atoms experi-
ments) to the specificities of our experiment1 in order to replace the MS DOS control
computer, building a whole new laser system that would not rely on slave laser diodes,
to increase laser power and run-to-run stability, preparing some beams for transverse
cooling of the atoms flux before the Zeeman slower, etc. Finally, since some of the

1The historical experiment built by Florian Schreck was using Digital-to-Analog Converters (DAC)
to generate analog signals.
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parts of the historical lithium experiment started to be very old, and even though the
two water leaks could be fixed and the broken coil replaced, it seemed that it was
time to, instead of upgrading the experiment, build a complete new experiment that
would be more versatile, more reliable, and would take advantage of a new technique
unveiled in our group: sub-Doppler D1 cooling. Using it, it is possible to skip all of
the magnetic trapping stages of the previous experiment and have (hopefully) a much
simpler and shorter experimental sequence. When it became unavoidable that our lab
closed for a few months due to major construction work taking place at the ENS, we
decided to use this period to start building the new experiment.

The goals are still to be able to produce a superfluid mixture of 7Li and 6Li, but
with a faster experimental sequence, more reliable, with less day-to-day realignment,
and a better optical access. This will enable us further push superfluidity studies in
tailored optical potentials and to search for the famous FFLO phase in spin imbalanced
systems.

This chapter is organized as follow: first, I will give the ideas at the origin of the
new experiment, then describe its mechanical organization, its laser system, and finally
write a few words about computer control and security circuit. The building is on its
way but not over, so this document does not intend to give all of the details of the new
experiment.

5.1 Overview

5.1.1 “Cahier des charges”

The design of the new experiment has to obey several requirements, and to provide
improvements with respect to the old one. Requirements are listed below, with a
proposal for their realization.

• Ultracold mixtures of 6Li and 7Li. This is the main specificity of our experiment,
which led to the first realization of a double Bose-Fermi superfluid mixture, and
there is a lot of experimental competences in the group regarding this point. We
will use a 50/50 mixture of 6Li and 7Li in the oven.

• Fast sequence. This used to be a limitation of the old experiment, with ≥ 30 s
of MOT loading and ≥ 20 s of RF evaporation. The repetition rate was at most
one sequence per minute, usually more like one sequence every two minutes. The
plan is to have a 20 s sequence, with a fast MOT loading and no RF evaporation
(that will be replaced by D1 cooling).

• High optical access for better imaging resolution. For this we need two chambers.
One for the MOT and other pre-cooling stages (“MOT chamber”), and one for
the actual physics experiments (“science chamber”). We already had a similar
situation with the previous experiment, with the appendage acting as the science
chamber, but optical access was strongly reduced by the presence of the Ioffe bars.

• Mechanical stability. On the old lithium experiment, all of the optics were
mounted on high posts, and the MOT mirrors were held on high pillars. Here,
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we plan to use low posts for the optical tables, and to mount the MOT and D1
cooling optics very close to the atoms, directly on the MOT chamber.

• Laser stability. With 10 slave diodes, this was always a big problem as well. To
circumvent it, we plan to use no diode except for two of the three master lasers,
and amplify the optical power with Tapered Amplifiers (TAs)2.

• Day-to-day stability. Within the new lab, it will be possible to have the exper-
iment in one room, and to have the computer control on the other side of the
wall. This way, perturbations of the experiment are minimized, with less dust,
vibrations, etc.

• Relatively simple. With a limited number of traps, and using always 6Li to cool
down 7Li, the experiment should be easier to handle.

• Versatile. We want to be able to study different aspects of the physics of ultracold
gases, be able to install lattices, low-dimensions traps, or an imaging system with
a very good resolution, etc. For this, the space around the science cell is so far
completely empty. We also plan to do the computer control of the experiment
with Cicero, a very convenient and practical software for cold atoms experiments
designed by Aviv Kesheet at MIT. It will be much easier to make changes in the
experimental sequence than with the historical software working with MS-DOS
computers...

With such improvements we are very confident it the fact that we will be able to
observe new original effects in Bose-Fermi mixtures. Most of these improvements rely
on a specific cooling technique, called gray molasses D1 cooling. Let us now detail a
bit more about it before moving to the provisional experimental sequence.

5.1.2 D1 cooling
In the old experiment, the temperature at the end of the CMOT stage is about 600µK.
Even though it has been made successfully by other groups [Fuchs et al., 2007], it is
not straightforward to load directly a MOT of lithium atoms into an optical dipole
trap. Indeed, for the case of lithium (and conversely potassium), the temperature
obtained at the end of the MOT stage are much higher than for other alcali atoms
such as sodium, cesium or rubidium. The naive temperature limit for a two-level atom
in an optical molasses is the Doppler temperature TD = ~Γ/2KB, where Γ is the width
of the excited state. However, the first realization of optical molasses and magneto-
optical traps [Chu et al., 1985, Chu et al., 1986, Lett et al., 1988] showed that the
temperatures reached were well below TD. This could be explained later by taking
into account a three-level structure for the atoms and polarization gradients for the
lasers [Dalibard and Cohen-Tannoudji, 1989, Ungar et al., 1989], and this effect is now
known as Sisyphus cooling. It is widely used in different gray molasses schemes [Chu,

2TAs are optical amplifiers composed of a tapered-shaped gain medium. When they are seeded
with properly aligned single mode frequency laser, the re-emit amplified light at the same frequency, at
the price of a relatively poor spatial mode (max. 50 % coupling efficiency) and a background pedestal
over a few nanometers in the frequency spectrum.
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1991, Weidemüller et al., 1994, Boiron et al., 1998, Aspect et al., 1988, Grynberg and
Courtois, 1994, Boiron et al., 1995]. On the contrary, the efficiency of Sisyphus cooling
is strongly reduced for D2 lines of lithium because excited states are not resolved: the
total hyperfine splittings of 4.5MHz for 7Li and 18.0MHz for 6Li are comparable with
their natural linewidth of Γ = 5.9MHz.

Gray molasses were designed based on Sisyphus cooling more than 20 years ago,
but it was rediscovered only recently by Fermix, the other team of the Ultracold Fermi
group at LKB [Fernandes et al., 2012]. Its principle is the following: consider a near-
resonant laser beam (with detuning ∆) applied to a Λ-like three-level atom with two
degenerate ground states and one excited state, and assume that one of the ground
state is dark while the other one is bright. Which state is dark or bright depends on
the atomic transition and of the light polarization, this may even vary in space (if the
polarization varies). The dark state is transparent for the laser and is not coupled to
the excited state, but may be coupled to the bright state via motional coupling. The
bright state however is coupled to the excited state by the laser and will undergo a light
shift proportional to the laser’s intensity. If the light comes from counter-propagating
beams, the resulting light intensity will be a standing wave and the light shift will be
periodic: δE = ~Ω(r)2

4∆ , with Ω(r) the Rabi frequency associated to the standing wave,
proportional to the square root of the light’s intensity. In the dressed atom picture
that we will use in the following, since the excited to which the bright state is coupled
have a finite linewidth Γ, the bright state also have some effective width Γ′ = ΓΩ(r)2

∆2 .
This is summed up in Figure 5.1.

dark state

bright state

excited state

Figure 5.1: Scheme of the Sisyphus cooling for ∆ > 0 in the dressed atom picture. The
dark state is shown in black, the bright state in blue, with its light shift and effective
linewidth, and the excited state in gray.

The cooling process is now described for the case of a blue-detuned laser beam:
∆ > 0 (here a red-detuned laser beam, with ∆ < 0 would lead to heating). An
atom in a dark state may be transferred to the bright state due to motional coupling.
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This happens when the energy difference between the dark and the bright state is the
smallest, that is in the valleys of the bright state’s potential. The atom then climbs
the valley, and its probability to be pumped into the excited state increases as the
linewidth of the bright state increases, and is maximal at the top of the hills. Once it
is pumped into the excited state, it may decay via spontaneous emission to the dark
state, with a net loss of energy, so that the cloud is cooled down. Another circle may
start again.

This method can be applied to any system with a dark state in the ground states
manifold (this is the case for any transition F → F ′ ≤ F ), provided that the excited
state can be resolved. We thus have to use the D1 line. We have successfully imple-
mented this technique on the F = 2 → F ′ = 2 transition of the D1 line of 7Li and
obtained temperatures of 50µK, more than ten time smaller than in the standard cool-
ing sequence and with the same atomic density[Grier et al., 2013]. The crucial point
is that, now direct loading of an optical dipole trap can be achieved with a reasonable
dipole trap power of ∼ 20 Watts focused over 40µm [Burchianti et al., 2014]. Our
colleagues from Fermix experiment applied it simultaneously to 6Li and 40K [Sievers
et al., 2015]. It is now used in many other groups, such as Mumbai group [Nath et al.,
2013], Institut d’Optique group [Salomon et al., 2013], LENS group [Burchianti et al.,
2014], Ketterle group at MIT (private communication), and others.

5.1.3 Experimental sequence

The organization for the new experimental sequence is the following. We plan to keep
on having 6Li and 7Li mixtures. Both species exit the same oven, are slowed down by
an inverted Zeeman slower, and then trapped into a MOT. The MOT should have more
6Li than 7Li atoms with a loading rate on the order of 10 seconds. After this, we run
a compressed MOT (CMOT) to increase phase-space density. A gray molasses should
then be imposed to the cloud. Here, some uncertainties remain: a D1 blue-detuned
molasses will cool down 6Li atoms, but we haven’t decided yet how we will cool down
7Li atoms. So far, we have three options:

• If the thermalization with 6Li is sufficiently efficient and no further cooling will
be needed.

• If not, we can try to implement a blue-detuned D1 molasses on 7Li. However,
due to a coincidence between 7Li D1 line and 6Li D2 line, this may heat up 6Li.

• The efficiency of far red detuned lithium cooling has also been demonstrated
in [Hamilton et al., 2014]. This can also be implemented in the new experiment.

• In the last case, we can implement a UV-MOT cooling stage, as was shown in
[Duarte et al., 2011]. This technique is the least-favored one, because it requires
special optics and a coherent source at 323 nm, a wavelength range where power
is still limited.

After this D1 cooling stage, the phase-space density will be high enough to allow direct
loading into a far-detuned 200W optical dipole trap for both species to perform optical
transport into the science cell. We plan to do optical transport with focus-tunable
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lenses, as was demonstrated in [Léonard et al., 2014]. This tunable lens is sensitive
to temperature variations and might be subject to thermal lensing. To overcome this,
we plan to do a pre-evaporation stage with the two lowest spin states of 6Li before
transport3, in a dipole trap different from the one that we will use for optical transport.
Since at low magnetic fields, the scattering length between 6Li Zeeman sub-levels is
very small (see Figure 5.2), we need to go at a magnetic field of 300G. There, the
scattering length between the spin states is around −300 aB, which allows efficient
evaporation. The 7Li is sympathetically cooled by 6Li, with interspecies scattering
length of ∼ 40 aB. Some optical pumping on 7Li might be realized at this stage to
ensure state purity of 7Li. In the science cell, we ramp up the magnetic field up to
≈ 800G and resume the evaporation of 6Li down to quantum degeneracy. We then
have several projects in mind, for instance using the high optical access and spatial
resolution of the science cell to load the atoms in a flat potential, as was demonstrated
in [Gaunt et al., 2013, Corman et al., 2014], and investigate the phase diagram of
strongly correlated fermions with and without spin polarization.

Figure 5.2: Evolution of the 6Li scattering lengths as a function of magnetic field for
different Zeeman sub-levels combinations from [Ottenstein et al., 2008]. The labeling
of the levels refer to Figure 2.3.

5.2 Mechanical setup
The mechanical design of the new experiment is represented in Figure 5.3. It will be
detailed in the following sections.

5.2.1 Oven

The oven is composed of a T-like tube4, the same as the one on Figure 2.6. Lithium
will be inserted from the top and heated up at 510◦C in order to get a high vapor

3After the D1 cooling stage, 6Li atoms will be naturally in the two-lowest-spin states of the system:
|F = 1/2,mF = ±1/2〉.

4custom-made from MDC-Vacuum
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Figure 5.3: Scheme of the new Li experiment. The oven is at the extreme left, SAES
pumps are in red, in blue is the atomic beam block rotating mount and motor. The
main cell is the MOT chamber and the science cell is in light blue at the back of the
MOT cell.

pressure. There will be a 50/50 mixture of 6Li and 7Li in the oven. In the previous
experiment, the horizontal part of the tube tended to clog with lithium, leading to low
atomic flux and low atom number in the MOT. The tube can be unblocked by heating
it up for a while, but the major problem consisted in the fact that we never knew
whether the tube was blocked or the experiment just not working so well. To prevent
this in the new experiment, viewports to monitor the atom flux have been planned.
A rotatable stepper motor5 (in blue on Figure 5.3) will be used to block the atomic
jet when the experiment is not running or after the loading stage of an experimental
sequence.

5.2.2 Vacuum system
To ensure a good vacuum in the experiment, we have chosen the following scheme :

• Two turbo pumps can be placed at each end of the experimental apparatus,
which will allow the opening of the part containing the oven (to reload or change
it) and the part containing the last window of the Zeeman slower (to clean it)
without breaking the vacuum of the two main cells. They will not be present
during the day-to-day run of the experiment and are not indicated in Figure 5.3,
only their connexions are shown.

• One 40 L.s−1 ion pump6 will be placed close to the oven.
5Brimrose BRM-275 670002-03
6Agilent Technologies StarCell Vaclon Plus 40
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• Two 200 L.s−1 SAES pumps7 will be placed afterwards to ensure differential
pumping stages.

• One 500 L.s−1 SAES pump8 will pump directly on the MOT chamber

• A last 200 L.s−1 SAES pump9 will ensure a differential pumping stage between
the MOT chamber and the science chamber.

To improve the pumping efficiency of the SAES pumps, we chose to connect them
to larger tubes: the flanges of NEXTORR D200-5 is CF40 and that of NEXTORR
D500-5 is CF63. We will use zero-length reducers10 to connect them to custom-made
tees and crosses11 so that they can pumps into CF63 and CF100 tubes respectively.

5.2.3 Cells and optical transport

We have decided to use a two-cell setup for the new experiment, with some optical
transport between them. This solution has several advantages: a better vacuum in the
science cell, and a better optical access to ensure a high versatility to the new experi-
ment. The MOT cell12 has numerous viewports and we plan to dedicate each of them
to a specific function (MOT beams, D1 cooling, Zeeman slower, imaging, fluorescence,
optical transport, ...). The use of each viewport will be detailed in subsection 5.3.3.
The science cell13 is the place where we will produce and study quantum degenerate
gases. The plan is to have two facing microscopes to have a high spatial resolution
and to be able to imprint custom-made potential on the atoms. The thin 3mm walls
allow the use of some semi-custom commercial microscope.

There will be a ∼ 20 cm optical transport between those two cells. Optical trans-
port is usually performed using a corner mirror on an extremely stable translation
stage. However, a new option have been developed recently in Tilman Esslinger’s
group [Léonard et al., 2014] using focus-tunable lenses14. These lenses are composed
of some optical fluid inside a sealed deformable polymer membrane that has a disk
shape. A flat ring applied on the outer part of the lens with more or less pressure
pushes more or less the fluid towards the center, making use of the membrane elastic-
ity. This changes the curvature radius of the lens and, as a result, its focal length. A
schematic representation is given on Figure 5.4. To ensure best working conditions,
it is only needed to hold the lens horizontally (so that gravity deforms the membrane
homogeneously), and to use a highly stable current controller. The whole system is
extremely cost-efficient.

7NEXTORR D200-5. These pumps are hybrid between ion pumps and getters and have a very
high pumping efficiency for H2.

8NEXTORR D500-5.
9NEXTORR D200-5.

10Lesker RF600x450 and RF450x275M
11MDC Vacuum ZCRT40-63, ZCRT63-100, ZCRT40-63-Conical, ZCRX6-2-63-4-40
12Kimball Physics MCF450-SphCube-E6C8A12
13custom-made from ColdQuanta. It is a 25x25x60mm glass-cell with 3mm thick walls, AR coatings

inside and outside, and a 2◦ wedge at the end to avoid standing waves during optical transport.
14Optotune
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Figure 5.4: Scheme of the process used to change the focal length of the lens. The
gray outer rim is pushed downwards and the liquid is pushed inwards. Making use of
the membrane’s elasticity, the curvature radius is changed, which modifies the focal
length. On the left, the tunable lens is tuned to a large focal length, on the right to a
small one.

The lens is actually being tested15, and even though we have not fully decided the
optical scheme yet, it is likely that we will load the atoms in a first very powerful
dipole trap16 to make a pre-evaporation, then load them into a second weaker dipole
trap that will go through to tunable lens system to transport them. We will probably
use a combination of two focus-tunable lenses in order to be able to move the focal
point of the beam without changing its waist nor moving the lens.

5.3 Laser setup

To cool the Li gases to degeneracy, we will use both the D1 and D2 lines of each
isotope. Since there is a coincidence between the D1 of 7Li and the D2 of 6Li (which
are distant only by 20MHz), and since the hyperfine splitting for the ground state
is at most 800MHz (for 7Li), we only need three master laser to generate all of the
frequencies used in the experiment, the other frequencies are derived from that of the
master’s lasers using Acouto-Optic-Modulators (AOMs) and Electro-Optic-Modulators
(EOMs). We already have one solid-state laser at 670 nm providing a laser power of
800mW and two Toptica17 lasers producing a laser power of 500mW each. The plan
in the new experiment is to have a vast majority of 6Li atoms in the MOT and to use
6Li to evaporatively cool 7Li, so most of the optical power will be dedicated to 6Li.

5.3.1 Laser Scheme

The frequencies needed for the new experiment are given in Table 5.1. Proposed laser
schemes are shown in Figure 5.6, Figure 5.5 and Figure 5.7. The ideas that led to
this design are the following: laser power has always been a problem, so we want to
reuse as much of the optical power as possible. As a result, light for applications that
happen at different times in the experiment can be derived from the same sources
(e.g. MOT beams and imaging beams can be derived from the same sources because
when we image the clouds the MOT is switched off). Some very precise calculations
of the transition frequencies for lithium were realized in [Sansonetti et al., 2011], and
the frequencies listed in Table 5.1 are given with respect to center-of-gravity (cog) of

15Thanks to Thomas Reimann, who takes care of the realization of the optical transport part.
16Made by a 300W laser from IPG photonics, YURT-300-LP-WC
17TA Pro at 670 nm
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the D1 and D2 lines. These centers-of-gravity are within a few megahertz from the
crossovers which serve as experimental reference points.

Function Reference Detuning (MHz)
(with respect to cog)

7Li P ZS D2
7Li −753.3

7Li R ZS D2
7Li +53.5

7Li P MOT D2
7Li −443.5

7Li R MOT D2
7Li +363.5

LFI 7Li D2
7Li −403.5

HFI1 7Li D2
7Li −623.5

HFI2 7Li D2
7Li −803.5

OP 7Li D2
7Li +403.5

7Li P D1 D1
7Li −355.9

D2
6Li +125

7Li R D1 D1
7Li +447.7

D2
6Li +928.6

6Li P ZS D2
6Li −464.1

6Li P MOT D2
6Li −154.1

LFI 6Li D2
6Li −114.1

HFI1 6Li D2
6Li −1314.1

HFI2 6Li D2
6Li −1394.1

OP 6Li D2
6Li +104.1

6Li R ZS D1
6Li −222.9

6Li R MOT D1
6Li +87.1

6Li P D1 D1
6Li −101.1

6Li R D1 D1
6Li +127.1

Table 5.1: Light frequencies needed for the new experiment. Here the letter ‘P’ stands
for Principal, ‘R’ for Repumper. Frequencies are given with respect to the centers of
gravity (cog) of the Li D lines.

5.3.2 Optical realization
We need three master lasers: one for the D2 line of each isotope and one for the D1
line of 6Li. The two master lasers for the D2 line of each isotope will be produced
from Toptica BoosTA system. It is composed of one master diode, producing a power
of about 10mW, that can be locked onto an atomic frequency and whose power is
amplified by a Tapered Amplifier (TA) up to 500mW. However, the TA output mode
is not a Gaussian TEM00 mode, and injecting it properly into a fiber requires some
appropriate beam shaping and may be challenging. In practice, about half of the
power is lost by fiber injection. For the D1 line of 6Li, we plan to use a solid-state
laser built by our group [Eismann et al., 2012]. This laser has a total output power of
800mW in a Gaussian TEM00 mode and was already used in our group for D1 cooling
of 7Li [Grier et al., 2013]. Another version [Eismann et al., 2013, Kretschmar et al.,
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Figure 5.5: Proposed laser scheme for the D2 lines of 6Li for the new experiment.
Golden boxes correspond to Zeeman slowing light, silver boxes to MOT light, blue
cases to D1 cooling light, red cases to imaging light and dashed cases to (so far)
optional beams.
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Figure 5.6: Proposed laser scheme for the D1 lines of 6Li for the new experiment. Same
color code as for Figure 5.5.
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Figure 5.7: Proposed laser scheme for the D2 lines of 7Li for the new experiment. Same
color code as for Figure 5.5.
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2016] has a total output power of more than 2W. Since D1 cooling requires a lot of
optical power18, this repartition seems to be the best choice, even though it would
have been nice to have some narrow-linewidth light on the D2 lines for imaging19 to
improve imaging resolution.

The light emitted by the three master lasers is then split and sent through AOMs
and EOMs to reach the right frequency, and the lights for the MOT and the Zeeman
slowing beam are finally re-amplified by TAs before being combined and sent onto the
atoms.

5.3.3 Mechanical installation

The laser setup around the MOT cell is given on Figure 5.8.

Figure 5.8: Laser arrangement around the MOT cell. The horizontal red beam is the
Zeeman beam. The faint red beams are the MOT beams. The orange beams will be
used for D1 cooling. The yellow beams will be used for absorption and fluorescence
imaging. The green beam will be used for optical transport into the science cell. The
blue beams are for an optional blue MOT. One of the yellow or blue beams will also
be used (with dichroic optics) for the high-power dipole trap and pre-evaporation in
order to use low-power optics on the optical transport path (the tunable lens can only
handle a few watts of optical power, not the few tens of watts needed for an efficient
loading in the optical dipole trap).

18We want to be able to illuminate the clouds with an intensity of several tens of Isat =
2.54 mW/cm−2 (typically I ≈ 50Isat) on the whole volume of the Compressed MOT.

19The solid-state lasers can easily be stabilized to sub-100 kHz linewidth while that of diode lasers
or TAs is usually of several 100 kHz.
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We have also developed a compact design20 to install MOT beams and D1 cooling
beams directly on the MOT chamber: the MOT CF63 windows and the D1 CF16
windows are fixed on the cell using four long setscrews, on which we plan to use extra
nuts to fix some adaptation plates to support a beam-guide system 21. A photo of the
partially-mounted MOT chamber with the setscrews apparent is shown on Figure 5.9.

Figure 5.9: Photo of the partially-mounted MOT chamber. The white plastic covers
are only to protect flanges and viewports from dust and chocks until construction is
achieved. The long setscrews are very visible both on CF63 (MOT beams) and CF16
(D1 cooling beams) flanges. One adapter plate is installed on the top CF63 viewport.
The yellow plug is where the Zeeman slower will be installed.

A scheme of the designed beam guides is shown on Figure 5.10.
We expect this cage mount to be simple to align, very stable, with a compact

design.

20with the help of Cedric Enesa.
21Beam Guide system, with mixed elements from Radiant Dyes (RD) and from Thorlabs(Th).

• For the MOT input: RD fiber plate / RD plate with f ′ = 8mm aspheric lens to collimate fiber
output / RD support with polarizing beam splitter (PBS) cube to clean the polarization / RD
plate with f ′ = 8mm aspheric lens - first lens of telescope / RD plate with λ/4 wave plate /
RD to Th adapters / Th plate with f ′ = 100mm lens - last lens of telescope / Th to Kimball
cell adapter.

• And MOT retro-reflexion: Th to Kimball cell adapter / Th plate with λ/4 wave plate / Th
plate with mirror.

• For D1 input: RD fiber plate / RD plate with f ′ = 8mm aspheric lens to collimate fiber output
/ RD support with polarizing beam splitter (PBS) cube to clean the polarization / RD plate
with λ/4 wave plate / RD to Kimball cell adapter.

• And D1 retro-reflexion: RD to Kimball cell adapter / RD plate with λ/4 wave plate / RD plate
with mirror.
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Figure 5.10: Scheme of the cage mounts for D1 (top) and MOT (bottom) beams. In
red are the Radiant Dyes elements, in dark gray the Thorlabs elements, and in light
gray the home-made elements.

5.4 Magnetic fields

A number of different magnetic fields have to be imposed on the atoms to slow and
cool them. The first one, the Zeeman slower field, has already been evoked in the
previous sections. It is described in more details here, as well as the coils designed
to compensate for stray magnetic fields. The main ideas for the MOT coils will also
be discussed, before writing a few words about the prospective magnetic fields of the
science cell region.

5.4.1 Zeeman slower

The Zeeman slower22 aims at slowing the atoms exiting the oven with an average
velocity of 1400 m/s down to a velocity of about 50 m/s, at which they can be captured
by a Magneto-Optical Trap. We chose to implement a Zeeman Slower in a spin-flip
configuration, i. e. the magnetic field produced by the Zeeman slower crosses zero
before the end of the tube (see Figure 5.13). This has several advantages: a smaller
absolute magnetic field value leading to a smaller power consumption, and it also
prevents the slowing beam to be resonant either for atoms in the MOT or for atoms in
the oven. Inspired by Fermix experiment’s design, we chose to implement the varying

22designed by Shuwei Jin
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magnetic field by solenoids of different lengths, crossed by the same current of about
20 A.

The Zeeman slower tube, composed of a 60 cm long tube and two CF40 flanges (one
rotatable, towards the cell, and one non-rotatable, towards the oven), was first outgased
at a temperature of about 350 ◦C for about two weeks, while pumping with a turbo
pump23. The outgasing is performed in order to desorb as much of the H2 absorbed in
the wall of the tube as possible. The final pressures reached at the end of the outgasing
were: PN2 = 7,0 · 10−10 mbars, PH2 = 2,3 · 10−8 mbars and PH2O = 7,7 · 10−10 mbars
at 350◦C. By decreasing slowly the temperature, we could interpolate a pressure of
PH2 ≈ 6,7 · 10−10 mbars at ambient temperature (with only turbo pumping). This
first outgasing was necessary because once the Zeeman slower is wired up, outgasing
temperatures cannot exceed 200◦C without a risk of damaging the coils.

To wire up a Zeeman slower, it is better to use a lathe (turning machine), both for
rapidity and precision. We used U-shaped supports both as a support for the coils and
to adjust the length of the Zeeman slower. The first layer is made of heating cable24.
It will be used for a second outgasing of the Zeeman slower, up to 200◦C. Temperature
will be monitored thanks to three thermocouples (one in the center, two on the sides)
that go up to 400◦C. This first layer is then covered with Kapton tape to avoid
heating of the coils during the outgasing phase. Then follow two layers of annealed
hollow copper tube for cooling25. We then wrapped the whole tube in aluminum foil in
order to even the tube surface for wiring of the electric layers. The wire for the coils26

has a rectangular shape for easy wiring. A scheme of the Zeeman slower is displayed
in Figure 5.11. We first wired up the inverted Zeeman slower (8 layers of 9 turns) and
wired up a spare 9th layer for security. A picture of the Zeeman slower is shown on
Figure 5.12. We could test the magnetic field produced by the Zeeman slower using
a gauss-meter, and the results are displayed on Figure 5.13 for a current of I = 20A.
The agreement between expected and measured variation is very satisfactory.

Figure 5.11: Schematic cut of the Zeeman Slower. The CF40 tube walls are indicated
in gray. The heating layer for the second outgasing is shown in red, the cooling layers
in blue, and the coils in gold.

23Pfeiffer Vacuum
24Garnisch GmbH, Heating Cable Wigaflex T2-06 1.00 Ω/m
25Euralliage, outer diameter 6mm, inner diameter 4mm.
26APX, CL H 1.60x2.50 GR2 DIN 355, width: 2.5mm (+2×0.17mm insulation), thickness: 1.6mm

(+2× 0.12mm insulation)
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Figure 5.12: Picture of the Zeeman Slower
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Figure 5.13: Measured magnetic field in the Zeeman Slower (blue dots) and expected
variation of the magnetic field (green curve). Dimensions are not respected.

5.4.2 Compensation coils

5.4.2.1 For the Zeeman slower

The end of the Zeeman slower results in a non-zero magnetic field (B ≈ 4 G) in the
middle of the MOT chamber, which is a problem for the MOT. To compensate for
this, a compensation coil will be winded up on the other side of the cell and its current
adjusted to ensure a zero magnetic field at the center of the chamber. The support for
the coil will be fixed directly around the CF40 flange opposite of the Zeeman slower.
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5.4.2.2 In 3 directions

Around the 6 CF63 windows for the MOT beams, we plan to have six small coils in
order to compensate for any residual stray magnetic field. They should be able to
generate a magnetic field of about 2G in any direction. Their support will also be
fixed directly around the CF63 view-ports. Their current will be adjustable separately
and optimized directly on the MOT position and fluorescence.

5.4.3 MOT-Feshbach coils

Now that we have the possibility of zeroing the bias magnetic field in the MOT cham-
ber, we can turn to the realization of the magnetic gradient for the MOT. Due to the
high volume of the MOT chamber it is not possible to put the coils very close to it, so
we use high current and water cooled wires.

5.4.3.1 MOT

A pair of coils with currents in opposite directions will be used to create the magnetic
field gradient necessary for the MOT. It will be approximately 25 G.cm−1, for a current
of about 100A. Because of spatial cluttering, it will not be possible to put the coils in
a real anti-Helmholtz configuration (with the distance between the coils equal to their
radius), but the calculated magnetic field is reasonably linear on a few centimeters,
which is much larger than the diameter of the MOT beams and thus won’t be a
problem. The initial MOT stage will be followed by a compressed MOT stage, where
the current in the coils is increased (to about 200A) in order to increase atomic density.
It is then necessary to switch off rapidly the MOT coils to perform sub-Doppler D1
cooling and then load into a powerful dipole trap. Some square hollow core copper
tube27 was bought for these coils. To ensure a good optical access, some conical coils
are currently being designed.

5.4.3.2 Feshbach fields

Once the atoms are loaded into the dipole trap, we want to transport them. However,
the optical power needed to transport them at a temperature of 50µK is about 150W
and may lead to thermal lensing effects. To transport the atoms with a smaller optical
power, it is necessary to pre-cool them, using evaporative cooling in a dipole trap. At
zero magnetic field, the collisional scattering cross-section of 6Li between two of its
Zeeman sub-levels is very small (see Figure 5.2), and to ensure efficient evaporation we
plan to increase the field to about 300G, where a ≈ −300 a0 for the |1f〉− |2f〉 mixture
and a ≈ −800 a0 for the |1f〉 − |3f〉 mixture. This will be done using the MOT coils
with a current of about 200A in parallel directions. Since the current in the MOT
coils is fixed at zero during the D1 cooling stage that lasts typically 5ms, this leaves
enough time to switch from anti-parallel to parallel current configuration.

27APX, outer side 4mm, inner side 2mm
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5.4.4 Science cell magnetic fields
The objective for the science cell magnetic fields is to be able to generate magnetic
field of up to 1000G in order to exploit the Feshbach resonances of both 6Li and
7Li, and to be able to generate a variable curvature to use a hybrid magnetic-optical
trap. For the Feshbach field we need a pair of coils in Helmholtz configuration, and
for the curvature we only have to be in a non-Helmholtz configuration. The plan is
thus to have a pair of coils in Helmholtz configuration quite close to the cell, maybe
conical, with an inner diameter large enough to have the microscopes going through.
Here also, the conical design would reduce spatial cluttering and leave a better optical
access. Another independent pair of coils, probably farther away from the cell, will be
designed for the curvature field. In the previous lithium experiment, a clever design
of the coils was made so that the bias field of the Feshbach coils (in G.A−1) was the
opposite of that of the curvature coils [Tarruell, 2008]. This resulted in the axial
confinement being very easy to tune. We are currently designing a similar solution for
the new experiment.

5.5 Security and computer control

A security box28 will be used to monitor the temperatures of the critical elements
of the experiment: Zeeman slower, oven, coils, etc. and to overlook the water flux
that is supposed to cool them. In case the temperature gets too high or the flux too
low, the currents will be shut down. The computer control will be made by Cicero,
a software developed at MIT. It is composed of two sub-softwares, Atticus, which
deals with communication between the computer and the experiment through National
Instrument cards, and Cicero itself, to design the experimental sequence. During my
PhD, I modified Cicero so that it can address Digital to Analog Converters (DACs);
the corresponding user’s manual is given in Appendix B. It is a very powerful and
convenient software, with the a good ability to deal with the different time scales of
an ultracold atom experiment.

5.6 Conclusion
The historical lithium experiment has proven its capability to give and produce great
results with however a heavy day-to-day maintainability. The project of building a
complete new one instead of renewing it allowed the construction to be made in parallel
with the running of the old experiment. We could make use of the full man power of
the Ultracold Fermi gases group (including Fermix team) during the shut down due to
construction work, and they were really a great help for the project. From my personal
point of view, it was very exciting and rich to start building a new experiment once I
mastered the old one. The possibilities opened by the new experiment are numerous
and I hope that the future PhD students will take advantage of them.

28Designed by Mihail Rabinovic.
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Summary

The realization during my PhD of the first superfluid Bose-Fermi mixture opened a vast
field of investigation regarding the physics of the mixture. Due to the weak interaction
between the Bose and the Fermi cloud, the BEC acts both as a sensitive probe and as
a precision tool on the Fermi cloud.

Firstly, we investigated the properties of the Bose-Fermi counterflow. In the su-
perfluid regime, the mean-field effect of the Fermi gas on the BEC is evaluated with
precision spectroscopy measurements, in very good agreement with calculations. For
a high-velocity counterflow, the Bose gas acts as a local probe to measure the critical
velocity of the mixture. Our results are in agreement with Landau’s criterion [Castin
et al., 2015] for superfluidity, in contrast with previous experiments [Miller et al.,
2007, Weimer et al., 2015]. At high temperature, we observe an unexpected synchro-
nization of the two thermal clouds, associated to a reduction of dissipation. Further
experiments will make use of the out-of-phase motion of the BEC and its thermal
fraction to explore the second sound of the mixture, predicted to be common to both
components.

Second, we explored the opportunity to use the BEC as a precision tool to engineer
a flat-bottom trapping potential for the fermions and investigated the effect of such
a trap on Clogston-Chandrasekhar limit. We predicted the existence of a finite range
of polarization for which a shell-shaped superfluid was energetically possible, and we
provided first experimental evidences of the observation of such a shell. It topologically
differs both from the habitual bulk superfluids and from toroidal superfluids reported
in Bose systems [Ramanathan et al., 2011, Wright et al., 2013b, Wright et al., 2013a,
Mathey et al., 2014, Yakimenko et al., 2015, Beattie et al., 2013]. This flat bottom
trap can also be used to prepare uniform spin-imbalanced Fermi gases and search for
the FFLO phase, which parameters seem to be within the reach of our experimental
realizations.

Perspectives

Regarding the superfluid shell in the Bose-Fermi mixture, a remaining open question
concerns the dynamics of the shell formation, and the response of the system to a
quench of the potential shape. This can be investigated using rapid magnetic field
ramps.
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The existence of Feshbach resonances between 6Li and 7Li makes possible the re-
alization of a superfluid Bose-Fermi mixture with one of the Fermi gas components
strongly interacting with the Bose gas29. This may have an influence on superfluidity
and on Clogston-Chandrasekhar limit, making it an intriguing system to explore.

Lastly, the ongoing construction of a new experiment opens the way to studies of
other properties of the mixture. The implementation of a box potential will enable
us to obtain fully homogeneous Bose-Fermi mixtures, in which we plan to study for
instance vortex formation and organization. Indeed, for such a Bose-Fermi mixture, the
vortices are expected to arrange in a square lattices, as it is the case for some Bose-Bose
mixtures [Ho and Shenoy, 1996, Liu et al., 2014, Kuopanportti et al., 2012, Jezek et al.,
2004] and in contrast with hexagonal Abrikosov lattices encountered for single Bose or
Fermi superfluids. We also plan to take advantage of the box potential to measure the
critical velocity of a uniform Fermi gas and compare it with Landau’s criterion. Up to
date, there are only few box potentials for fermions30, and the playground is vast.

29With |1f〉, |2f〉 and |4b〉 at 800G for instance, see Table 2.2.
30Martin Zwierlein at MIT is currently implementing one.
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Appendix A

Consistency check of FBT analy-
sis

When doing the polynomial fit to the data, we evaluated the influence of using a non-
adequate function to fit the density profiles and the influence of the order of the poly-
nomial. We used simulated profiles from Normal-Superfluid-Normal and Superfluid-
Normal scenarios that we fitted using polynomials of various order. Results are shown
on Figure A.1.

A compromise has to be found between a too small order leading to an imprecise
description, and a too high order where the polynomial starts to fit the noise leading to
oscillations. We chose to use polynomials of order n = 16. The fact that the minimum
in the density difference does not go to zero for the NSN scenario is very visible on
the analysis of the theoretical profile, as well as the fact that for the SNN scenario the
density difference may be negative close to z = 0.
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Figure A.1: Influence of the order n of the polynomials used to fit the data. The
left column are the doubly integrated density profiles. First raw: theoretical profiles
for NSN scenario. Second raw: theoretical profiles for SNN scenario. Third raw:
Nf = 180 · 103, Nb = 63 · 103, P = 60%. Fourth raw: Nf = 125 · 103, Nb = 88 · 103,
P = 60%. The ↑ density is represented in red, the ↓ in yellow, the density difference
in green, and the blue vertical dashed lines indicate the Thomas-Fermi radius of the
BEC. Here the densities are given in terms of the averaged harmonic oscillator length√

~
mω̄ .



Appendix B

Cicero for Lithium
User’s Manuel

B.1 Introduction - Caution

Introduction

This is meant to be a manual explaining the main changes done to the software Cicero
in order to have it running on the Lithium Experiment that uses Digital to Analog
Converter boxes.

Caution

• Do not name a device using capital letters. The only capital letter should be the
‘D’ of ‘Devbanane’.

• Do not try to run Cicero for Lithium without a FPGA variable timebase. This
will not work.

• The function ‘Output Now’ that could be used to check whether Digital or Analog
channels were working is not fully implemented with DAC channels. (‘Output
now’ is a static method, and since we can’t address several DACs simultaneously,
it cannot be adapted easily).

B.2 Configuration of Atticus
I give here the step-by-step procedure to install Cicero with at least on digital card
dedicated to DAC outputs.

Start by configuring Atticus as explained in Aviv Kesheet’s manual. For the FPGA
:

• Install FPGA XEM3001 drivers, and run software FrontPanel.

• Click on ’Configure PLL button’ and set the frequency of CLK1 to the desired
frequency as master clock. A suitable choice is 10MHz
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• Click on EEPROM Write and Apply buttons to store these settings.

• Wire the variable frequency clock (bus JP2 pin 17) and its ground (bus JP2 pin
19) to the PFI4 of ONE of the NI cards

For the server :

• set UseOpalKellyFPGA to True

• In the connections menu, set a connection between PFI4 (source) and PXI _Trig7
(destination) - this is because the Trig terminals are shared between the cards-,
and between PFI4 (source) and PFI0(destination) - this part is to isolate the
strobe for DAC devices.

In the FPGA menu :

• set UsingVariableTimebase to True

• set MySampleClockSource to DerivedFromMaster

• set the SampleClockRate to the frequency of the master clock (ex : 10000000 for
10MHz)

For all of the NI devices,

• set MySampleClockSource to External

• set SampleClockExternalSource to PXI _Trig7 (or as defined in the devices con-
figuration, so that it is linkable to the clock)

• set SampleClockRate to the FPGA sample clock rate

• set UsingVariableTimebase to True

• set SoftTriggerLast to False

• set StartTriggerType to SoftwareTrigger

Now you have to dedicate one of the digital cards to be DAC card. The DAC card
will not be able to output digital signals any more. For this card:

• set DACChannelsEnabled to True, AnalogChannelsEnabled to False and Digi-
talChannelsEnabled to False.

• The digforDAC Channels should appear in the list of Hardware channels. These
are digital channels that will be used to output the DAC commands Use the
button ‘Exclude Channels’ to get rid of the DigforDAC channels that won’t be
used for DAC Address nor DAC Value.

• In the ServerSettings, edit the ChannelsforAddress and ChannelsforValue lists
with the desired digforDAC channels.

• Be careful, you need exactly 8 channels for address and 16 channels for value.
The order is important.
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• Be careful, the bits are rather mixed up in the DAC boxes. The first 8 bits of
the bus are for Address, then the next 3 bits are lost, then the next 8 bits are
for Value, another 3 bits are lost, the next 8 ones are also for Value, and the last
2 are lost again.

• Now you can see 28 DAC channels appear in the channels list. Exclude the
unused ones. The binary address of DAC boxes is either 110xxxxx or 10xxxxxx,
depending on the generation, which means that you may use channels from 128
(10000000) to 223 (11011111) (the values given here refer to the old lithium
experiment).

• The DAC channels will now appear in Cicero Word Generator. You can bound
them to logical channels in the Add Logical Channel menu, give them a conversion
equation, and all of the features available for Analog Channels in Cicero.

B.3 Changes made to the software

To deal with DAC channels, one need to start with Atticus, and tell it DAC channels
exist, and how to create and configure them. Then I had to add in Cicero some code
so that DAC channels can be programmed and dealt with. After that, i had to explain
Atticus how to output the DAC values.

Atticus 1

First of all, i added two channel types to the preset types (that were digital, analog,
series, gpib) : digforDAC and DAC. The digforDAC is for a real physical channel
(ex:port1, line0), while the DAC channel is somehow a virtual channel, made by the
combination of digforDAC channels with the right value. Then, i allowed some of the
digital card to be specified as being ‘digforDAC’. Usually, when a card is programmed,
its channels appear in the physical channels list. When a card has its ‘digforDACcha-
nnelsEnabled’, its channels also appear in the channels list. You can allow some of
them to be channels for DAC address, and some to be Channels for DAC value. At
the end of the sequence, the computer will parse through the channels and tell each
of the ChannelsforAddress which value it has to output. Well, once you’ve got some
Channels for Address (say, x), the corresponding number of DAC channels (2x) will
appear in the list of available channels. This is the list that will be read by Cicero
Word Generator, so i strongly recommend that you remove all of the unused DAC
channels from this list in order to avoid mistakes.

Cicero

The DAC channels are now created, and Cicero will see them. Not much change has
been made in Cicero itself, I just looked for the occurrences of ’analog’ and copied
them into ’DAC’. The data concerning the sequence is produced the same way as
before. However, on producing the buffers, i had to change a few things, but this was
made in DataStructures.
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DataStructures

How it is done : basically, all of the timesteps of the sequence are saved with

• Which analog channel is on during this timestep ? What are the associated
waveforms ? What is the precision required ?

• Which DAC channel is on during this timestep ? What are the associated wave-
forms ? What is the precision required ?

• Which digital channel is on or off ? Is there pulses ?

Before, the computer had this precision required that more or less set the main
period of this step and just had to check if a channel had to be switch on or off in
the middle of a period. This was used to generate the VariableTimebase data, which
consists in a dictionary of timesteps, to which are linked a list of ‘segments’, each
segment being characterized by a number of counts (= its length divided by the master
sampleclock period). Then this dictionary is given to a function which calculates the
values the channels have to take for each segment, and this is the buffer generation.
Each segment corresponds to one line of the buffer, it’s one ‘clic’ of the clock.

Now, it is divided in several steps.

1. The first step is still the same, working together with the DAC and analog
channels, and taking the precision as the minimum of the two required precisions,
the computer generates a ‘primary’ variable timebase.

2. Then, it generates the DAC buffer the same way the analog buffer was generated
previously. The trouble is, during a ramp for example, several DAC channels
(let’s say 2) may have to change their value at the same time, and this can’t be
done because we need all of the channels of the digforDAC card to address one
DAC channel. So the computer has to talk to a channel, then quickly talk to the
other one.

3. So the next step is to look into the DAC buffer, to find for which segments at
least two DAC channels have to change, which are the DAC channels involved,
and then split the segment into the necessary number of new segments so that the
computer talks to all of the channels without delaying the rest of the sequence.
This outputs a dictionary that links the ‘bad’ segments to the DAC channels
that change in it. A way of skipping this step would be to force the computer to
address all of the 40 DACs at each segment, but we decided this would increase
the buffer size too much.

4. Then, i have to generate this new timebase splitting the segments of the first one
when needed. We have to define how fast the computer switches between the
DAC channels, and this can’t be arbitrary low (see below, about strobe). This
time is called ‘Time needed to update Bus’ or ‘TimeBusUpdate’ in the code.

5. To produce the new DAC buffer, we can’t use the same function as before with
the new timebase segments dictionary because we would meet the same problem
as before with several DACs changing their value at the same time. We have to
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produce a ‘primary’ DAC buffer, with the old variable timebase dictionary, and
then copy ‘manually’ the values into a bigger buffer.

Old Buffer New Buffer
DAC 1 DAC 2 DAC 1 DAC 2

0 0 0 0
1 2 1 0

1 2
0 2.2 0 2

0 2.2
0 0 0 0

6. For the analog and the real digital buffer, it’s fine, we can use the same function
as before (and we have to do it in order to get the right buffer size). It should
also deal appropriately with the pulses.

At the end of this stage, both the variable timebase and the buffers are generated.

Atticus 2

This is now the last part, which consists in outputting correctly the signals. In DaQmx-
TaskGenerator, it takes a sequenceData, that includes mostly the buffers and the time-
base, and creates a task that is loaded on the NI cards. Now, it looks at the buffer, for
each line, finds which DAC signal is concerned, then translates its value and address
into binary, then into bytes, and finally loads all of them on the card. Nothing changed
for the digital or analog cards, we just have to make sure the length of each buffer is
a multiple of 4.

It also goes into the writer for FPGA tasks to make sure the FPGA outputs a
number of signals that is a multiple of 4 (otherwise the NI cards don’t work properly).
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Following the bichromatic sub-Doppler cooling scheme on the D1 line of 40K recently demonstrated
in Fernandes et al. [Europhys. Lett. 100, 63001 (2012)], we introduce a similar technique for 7Li atoms and obtain
temperatures of 60 μK while capturing all of the 5 × 108 atoms present from the previous stage. We investigate
the influence of the detuning between the the two cooling frequencies and observe a threefold decrease of the
temperature when the Raman condition is fulfilled. We interpret this effect as arising from extra cooling due
to long-lived coherences between hyperfine states. Solving the optical Bloch equations for a simplified �-type
three-level system we identify the presence of an efficient cooling force near the Raman condition. After transfer
into a quadrupole magnetic trap, we measure a phase space density of ∼10−5. This laser cooling offers a promising
route for fast evaporation of lithium atoms to quantum degeneracy in optical or magnetic traps.

DOI: 10.1103/PhysRevA.87.063411 PACS number(s): 37.10.De, 32.80.Wr, 67.85.−d

I. INTRODUCTION

Lithium is enjoying widespread popularity in the cold-atom
trapping community thanks to the tunability of its two-body
interactions and its lightness. Both the fermionic and the
bosonic isotopes of lithium feature broad, magnetically tunable
Feshbach resonances in a number of hyperfine states [1].
The presence of these broad resonances makes lithium
an attractive candidate for studies of both the Fermi- and
Bose-Hubbard models [2] and the strongly correlated regime
for bulk dilute gases of Fermi [3] or Bose [4–6] character. Its
small mass and correspondingly large photon-recoil energy
are favorable factors for large area atom interferometers [7]
and precision frequency measurements of the recoil energy
and fine structure constant [8]. Under the tight-binding
lattice model, lithium’s large photon-recoil energy leads to a
larger tunneling rate and faster time scale for superexchange
processes, allowing for easier access to spin-dominated
regimes [9]. Finally, lithium’s small mass reduces the heating
due to nonadiabatic parts of the collision between ultracold
atoms and Paul-trapped ions. This feature, together with Pauli
suppression of atom-ion three-body recombination events
involving 6Li [10], potentially allows one to reach the s-wave
regime of ion-atom collisions [11].

However, lithium, like potassium, is harder to cool using
optical transitions than the other alkali-metal atoms. The
excited-state structure of the D2 transition in lithium lacks the
separation between hyperfine states for standard sub-Doppler
cooling techniques such as polarization gradient cooling
[12–14] to work efficiently. Recently, it has been shown by
the Rice group that cooling on the narrow 2S1/2 → 3P3/2

transition produces lithium clouds near 60 μK, about half
the D2-line Doppler cooling limit [15], and can be used for
fast all-optical production of a 6Li quantum degenerate Fermi
gas. However, this approach requires special optics and a
coherent source at 323 nm, a wavelength range where power
is still limited. Another route is to use the three-level structure
of the atom as implemented previously in neutral atoms

*Corresponding author: agrier@lkb.ens.fr

and trapped ions [16–22]. The three-level structure offers
the possibility of using dark states to achieve temperatures
below the standard Doppler limit, as evidenced by the use
of velocity-selective coherent population trapping (VSCPT)
to produce atomic clouds with subrecoil temperatures [23]. In
another application, electromagnetically induced transparency
has been used to demonstrate robust cooling of a single ion to
its motional ground state [19,24].

In this paper, we implement three-dimensional bichromatic
sub-Doppler laser cooling of 7Li atoms on the D1 transition.
Figure 1 presents the 7Li level scheme and the detunings
of the two cooling lasers that are applied to the atoms after
the magneto-optical trapping phase. Our method combines
a gray molasses cooling scheme on the |F = 2〉 → |F ′ =
2〉 transition [25,26] with phase-coherent addressing of the
|F = 1〉 → |F ′ = 2〉 transition, creating VSCPT-like dark
states at the two-photon resonance. Instead of UV laser
sources, the method uses laser light that is conveniently
produced at 671 nm by semiconductor laser sources or solid-
state lasers [27,28] with sufficient power. This enables us to
capture all of the �5 × 108 atoms from a MOT and cool them
to 60 μK in a duration of 2 ms.

We investigate the influence of the relative detuning
between the two cooling lasers and observe a threefold
decrease of the temperature in a narrow frequency range
around the exact Raman condition. We show that extra cooling
arises due to long-lived coherences between hyperfine states.
We develop a simple theoretical model for a sub-Doppler
cooling mechanism which occurs in atoms with a �-type
three-level structure, in this case, the F = 1, F = 2, and
F ′ = 2 manifolds of the D1 transition in 7Li. The main physical
cooling mechanism is contained in a 1D bichromatic lattice
model. We first give a perturbative solution to the model and
then verify the validity of this approach with a continued
fraction solution to the optical Bloch equations (OBEs).

II. EXPERIMENT

The stage preceding D1 sub-Doppler cooling is a com-
pressed magneto-optical trap (CMOT) in which, starting
from a standard MOT optimized for total atom number, the

063411-11050-2947/2013/87(6)/063411(8) ©2013 American Physical Society
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FIG. 1. (Color online) The D1 line for 7Li. The cooling scheme
has a strong coupling laser (principal beam, black solid arrow) δ2

blue detuned from the |F = 2〉 → |F ′ = 2〉 transition and a weak
coupling laser (repumper, gray solid arrow) δ1 blue detuned from
the |F = 1〉 → |F ′ = 2〉 transition. The repumper is generated from
the principal beam by an electro-optical modulator operating at a
frequency 803.5 + δ/2π MHz, where δ = δ1 − δ2.

frequency of the cooling laser is quickly brought close to
resonance while the repumping laser intensity is diminished
in order to increase the sample’s phase space density [29].
The CMOT delivers 5 × 108 7Li atoms at a temperature of
600 μK. The atoms are distributed throughout the F = 1
manifold in a spatial volume of 800 μm 1/e width. Before
starting our D1 molasses cooling, we wait 200 μs to allow any
transient magnetic fields to decay to below 0.1 G. The light
used for D1 cooling is generated by a solid-state laser presented
in [27]. The laser is locked at frequency ω2, detuned from
the |F = 2〉 → |F ′ = 2〉 D1 transition in 7Li by δ2. It is
then sent through a resonant electro-optical modulator (EOM)
operating at a frequency near the hyperfine splitting in
7Li, νEOM = 803.5 MHz + δ/2π . This generates a small-
amplitude sideband, typically a few percent of the carrier,
at frequency ω1. We define the detuning of this frequency
from the |F = 1〉 → |F ′ = 2〉 transition as δ1 (such that
δ = δ1 − δ2), as shown in Fig. 1. Using about 150 mW of
671-nm light we perform a three-dimensional D1 molasses
as in [25], with three pairs of σ+ − σ− counterpropagating
beams. The beams are of 3.4-mm waist and the intensity
(I ) of each beam is I � 45Isat, where Isat = 2.54 mW/cm2

is the saturation intensity of the D2 cycling transition in
lithium.

We capture all of the atoms present after the CMOT stage
into the D1 gray molasses. The 1/e lifetime of atoms in the
molasses is �50 ms. After being cooled for 1.5–2.0 ms, the
temperature is as low as 40 μK without optical pumping or
60 μK after optical pumping into the |F = 2,mF = 2〉 state
for imaging and subsequent magnetic trapping. In contrast
with [25], we find no further reduction in the steady-state
temperature by slowly lowering the light intensities after the
initial 2.0 ms.

During the molasses phase, we find a very weak dependence
on the principal laser detuning for 3� � δ2 � 6�. For the
remainder of this article, we use a principal laser detuning of
δ2 = 4.5� = 2π × 26.4 MHz. In Fig. 2(a), the temperature
dependence upon the repumper detuning is displayed for

(a)

(b) (c)

FIG. 2. (Color online) (a) Typical temperature of the cloud as
a function of the repumper detuning for a fixed principal beam
detuned at δ1 = 4.5� = 2π × 26.4 MHz. The dashed vertical line
indicates the position of the resonance with transition |F = 2〉 →
|F ′ = 2〉, the dotted horizontal line shows the typical temperature of
a MOT. (b) Magnification of the region near the Raman condition
with well-aligned cooling beams and zeroed magnetic offset fields.
(c) Minimum cloud temperature as a function of repumper power.

typical conditions. For −9 � δ/� � −6, the temperature
drops from 600 μK (the CMOT temperature) to 200 μK as gray
molasses cooling gains in efficiency when the weak repumper
comes closer to resonance. For −6 � δ/� � −1, the cloud
temperature stays essentially constant but, in a narrow range
near the position of the exact Raman condition (δ = 0), one
notices a sharp drop of the temperature. For δ slightly blue
of the Raman condition, a strong heating of the cloud occurs,
accompanied by a sharp decrease in the number of cooled
atoms. Finally for δ � �, the temperature drops again to a level
much below the initial MOT temperature until the repumper
detuning becomes too large to produce significant cooling
below the CMOT temperature.

Figures 2(b) and 2(c) show the sensitivity of the temperature
minimum to repumper deviation from the Raman condition
and repumper power, respectively. The temperature reaches
60 μK in a ±500-kHz interval around the Raman resonance
condition. After taking the data for Fig. 2(a), the magnetic field
zeroing and beam alignment were improved, which accounts
for the frequency offset and higher temperature shown in
Fig. 2(a) relative to Figs. 2(b) and 2(c). The strong influence
of the repumper around the Raman condition with a sudden
change from cooling to heating for small and positive Raman
detunings motivated the study of the bichromatic-lattice effects
induced by the �-type level configuration which is presented
in the next section.

III. MODEL FOR HYPERFINE RAMAN COHERENCE
EFFECTS ON THE COOLING EFFICIENCY

In order to understand how the addition of the second
manifold of ground states modifies the gray molasses scheme,

063411-2
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FIG. 3. The � level scheme. An intense standing wave with Rabi
frequency 	2 and a weaker standing wave with Rabi frequency 	1,
detuning δ1, illuminate an atom with three levels in a � configuration.

we analyze a one-dimensional model based on a �-type
three-level system schematically represented in Fig. 3.

A. The model

This model includes only the F = 1,2 hyperfine ground
states and the F ′ = 2 excited state ignoring the Zeeman
degeneracy; hence, standard gray molasses cooling [26] does
not appear in this model. The states are addressed by two
standing waves with nearly the same frequency ω1 � ω2 �
ω = kc but spatially shifted by a phase φ. The principal
cooling transition F = 2 → F ′ = 2 is labeled here and below
as transition 2, between states |2〉 and |3〉 with a Rabi frequency
	2 = �

√
I/2Isat, where I is the laser light intensity and Isat the

saturation intensity on this transition. The repumper transition
is labeled 1, between states |1〉 and |3〉 with Rabi frequency
	1 much smaller than 	2.

The corresponding Hamiltonian for the light-atom interac-
tion in the rotating wave approximation (at ω) is

Ĥa.l. = h̄	2cos(kz) (|2〉〈3| + H.c.)

+ h̄	1 cos(kz + φ) (|1〉〈3| + H.c.)

+ h̄δ2|2〉〈2| + h̄δ1|1〉〈1|. (1)

The usual formalism used to compute the atom’s dynamics
is to consider the light force as a Langevin force. Its mean value
is F(v), and the fluctuations around this mean will give rise to
diffusion in momentum space, characterized by the diffusion
coefficient Dp(v) � 0. In order to calculate an equilibrium
temperature, one needs F(v) and Dp(v). In the limit of small
velocities the force reads

F(v) � −α v, (2)

with α the friction coefficient. If α > 0 the force is a
cooling force; in the opposite case it produces heating. For
a cooling force the limiting temperature in this regime is
given by

kBT � Dp(0)/α. (3)

However, since our model (1) is a gross simplification of the
physical system, we do not expect to be able to quantitatively
predict a steady-state temperature. Instead, in order to reveal
the physical mechanisms in action, we only calculate the force
F(v) and the excited state population ρ33. Restricting our
analysis to the force and photon scattering rate, �ρ33, suffices
to determine whether the action of the weak repumper serves
to heat or cool the atomic ensemble.

From (1) the mean light force on the atoms is computed by
taking the quantum average of the gradient of the potential,
F = 〈−∇Ĥa.l.〉 = −Tr[ ρ̂ Ĥa.l.], with ρ the density matrix,
yielding the wavelength-averaged force F ,

F(v) = k

2π

∫ 2π
k

0
dz F (z,v), (4)

F(v) = h̄k2

π

∫ 2π
k

0
dz sin(kz)(	2Reρ23 + 	1Reρ12). (5)

The spontaneous emission rate averaged over the standing
wave is simply given by the linewidth of the excited state
multiplied by its population:

�′ = k

2π

∫ 2π
k

0
dz � ρ33. (6)

So, both the force and the spontaneous emission rate are
functions of the density matrix ρ, the evolution of which is
given by the OBEs,

i
d

dt
ρ = 1

h̄
[ĤAL,ρ] + i

(
dρ

dt

)
spont. emis.

. (7)

As we are focusing on the sub-Doppler regime, we assume

v 	 �/k, (8)

with v being the velocity. The inequality holds for T 	 13 mK
for lithium. This inequality allows us to replace the full time
derivative in the left-hand side of (7) by a partial spatial
derivative times the atomic velocity,

d

dt
→ v

∂

∂z
.

Using the notation 	i(z) = 	i cos(z + φi) and setting h̄ =
k = 1 from here on,

iv
∂ρ22

∂z
= −2i	2(z) Im(ρ23) + i

�

2
ρ33, (9)

iv
∂ρ11

∂z
= −2i	1(z) Im(ρ13) + i

�

2
ρ33, (10)

iv
∂ρ23

∂z
=

(
δ2 − i

�

2

)
ρ23 + 	2(z) (ρ33 − ρ22) − 	1(z)ρ21,

(11)

iv
∂ρ13

∂z
=

(
δ1 − i

�

2

)
ρ13 + 	1(z) (ρ33 − ρ11) − 	2(z)ρ12,

(12)

iv
∂ρ21

∂z
= (δ2 − δ1)ρ21 + 	2(z)ρ31 − 	2(z)ρ23. (13)

The solution of these equations yields the expression of
F(v) and �′. This semiclassical model is valid only for veloc-
ities above the recoil velocity vrec = h̄k/m (corresponding to
a temperature mvrec/kB of about 6 μK for lithium). Different
theoretical studies [17,18,20,22,30,31] as well as experiments
[16,32] have been performed on such a � configuration
in standing waves or similar systems. However, in our 7Li
experiment, we have the situation in which the � configuration
is coupled to a gray molasses scheme which involves a different
set of dark states. This fixes the laser light parameters to
values that motivate our theoretical exploration. Thus, we
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concentrate on the situation corresponding to the conditions of
our experiment.

To solve the OBEs (9)–(13), we first introduce a per-
turbative approach that enables us to point out the relevant
physical mechanisms. We further extend the analysis by an
exact approach in terms of continued fractions.

B. Perturbative approach

In our perturbative approach we choose a Rabi frequency
	2 between 2� and 4� and 	1 	 �,	2,δ2 as the ratio of
the repumper to principal laser power is very small, typically
(	1/	2)2 � 0.03, under our experimental conditions. We
further simplify the approach by considering only the in-phase
situation φ = 0; any finite phase would lead to divergencies of
the perturbative approach at the nodes of wave 1. The validity
of these assumptions are discussed in Sec. III C.

We perform an expansion in powers of the Rabi frequency
	1 and the atomic velocity such that the complete expansion
reads

ρij =
∑
n,l

ρ
(n,l)
i,j (	1)n(v)l . (14)

This expansion of ρ allows us to recursively solve the OBEs.
Using an expansion similar to Eq. (14) for the force, we find

α = −
∞∑

n=0

F (n,1)(	1)n. (15)

We plug the perturbative solution of the OBEs into Eq. (5) and
find, to the lowest order (n = 2) in 	1,

α � − (	1)2

2π

∫ 2π

0
dz sin(z)

(
	2Re ρ

(2,1)
23 + Re ρ

(1,1)
13

)
. (16)

The spontaneous emission rate to lowest order in v and 	1

reads

�′ = �
(	1)2

2π

∫ 2π

0
dz ρ

(2,0)
33 . (17)

Figure 4 presents the results from (15) and (17) compared
with the experimental data. It shows that indeed a narrow
cooling force appears near the Raman resonance condition
and that the photon scattering rate vanishes at exact res-
onance, hinting at an increase of cooling efficiency with
respect to the gray molasses Sisyphus cooling mechanism
which achieves a temperature near 200 μK over a broad
range. The strong heating peak for small, positive repumper
detuning is also a consequence of the negative value of
α, and the heating peak shifts towards higher frequency
and broadens for larger intensities of the principal laser. In
contrast, the friction coefficient and scattering rate in the
range −6 � δ/� � −3, which correspond to a repumper near
resonance, do not seem to significantly affect the measured
temperature.

To gain further physical insight into this cooling near the
Raman condition, it is useful to work in the dressed-atom
picture. Given the weak repumping intensity, we first ignore
its effect and consider only the dressing of the states |2〉 and
|3〉 by the strong pump with Rabi frequency 	2. This dressing

FIG. 4. (Color online) Comparison of experimental data with
the perturbative approach results for a detuning of the pump δ2 =
2π × 26.4 MHz = 4.5�. (a) Temperature versus repumper detuning,
experiment; we indicate the MOT temparature by the dotted line.
Panels (b) and (c) show, respectively, the friction coefficient α and
photon scattering rate �′ for 	2 = 3.4� (red dashed curve) and 2.1�

(blue solid curve). The intensity ratio (	1/	2)2 is 0.02. The vertical
dashed line indicates the position of δ1 = 0.

gives rise to an Autler-Townes doublet structure which follows
the spatial modulation of the standing wave:

|2′〉 ∝ |2〉 − i	2(z)/δ2|3〉, (18)

|3′〉 ∝ −i	2(z)/δ2|2〉 + |3〉. (19)

Since the pump is relatively far detuned (in the conditions
of Fig. 4 	2/δ2 � 0.45), the broad state |3′〉 carries little |2〉
character. Conversely, the narrow state |2′〉 is mostly state
|2〉. It follows that |3′〉 has a lifetime �|3′〉 � �, while |2′〉
is relatively long lived with a spatially dependent linewidth
�|2′〉 = �(	2(z)/δ2)2, which is always ��/6 for the param-
eters chosen here. In order to reintroduce the effects of the
repumping radiation, we note that the position in δ of the
broad state is δ|3′〉 � −δ2 − 	2(z)2/δ2 and the narrow state
δ|2′〉 � 	2(z)2/δ2. As coherent population transfer between
|1〉 and |2′〉 does not change the ensemble temperature, we
consider only events which couple atoms out of |2′〉 to |1〉
through spontaneous decay and therefore scale with �|2′〉.
The rates of coupling from |1〉 into the dressed states can
be approximated by the two-level absorption rates:

γ|1〉→|2′〉 ∼ 	1(z)2

2

�|2′〉(z)

[�|2′〉(z)/2]2 + [δ − δ|2′〉(z)]2
, (20)

γ|1〉→|3′〉 ∼ 	1(z)2

2

�

(�/2)2 + [δ − δ|3′〉(z)]2
. (21)

Finally, these results are valid only in the limit |δ| > �	2
2/δ

2
2

(see, e.g., [33]) when state |1〉 is weakly coupled to the radiative
cascade. Near the Raman resonance, the dressed state family
contains a dark state which bears an infinite lifetime under the
assumptions made in this section but is, in reality, limited by
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FIG. 5. (Color online) The cascade of levels dressed by transition
2 with a schematical representation of state |1〉. Traces show typical
cycles of atoms pumped from |1〉 and back depending on the detuning
of wave 1. The detuning of the repumper modulates the entry point
into the cascade of the dressed states, leading either (a) heating or (b)
cooling processes.

off-resonant excitations and motional coupling. This dark state
reads

|NC〉 = (	2|1〉 − 	1|2〉)/
√

	2
1 + 	2

2, (22)

which we must add in by hand.
Using this toy model, we now explain the features of Fig. 4

and Fig. 2. Figure 5 represents the cascade of dressed levels
where each doublet is separated by one pump photon. It gives
rise, for example, to the well-known Mollow triplet. Condition
(8) states that if an atom falls in state |3′〉 it will rapidly decay to
|2′〉 without traveling a significant distance. However, the atom
will remain in |2′〉 long enough to sample the spatial variation
of the standing wave and gain or lose energy depending on the
difference of light shift between the entry and the departure
points, as in most sub-Doppler cooling schemes.

Let us first analyze the spontaneous emission rate shown
in Fig. 4(c). It reaches two maxima, the first one for δ ∼ δ|3′〉
and the second one for δ ∼ δ|2′〉, and it goes to exactly zero at
δ = 0. The two maxima are simply due to scattering off the
states |2′〉 and |3′〉. At δ = 0, �′ goes to zero due to coherent

population trapping in |NC〉. It is the presence of this dark state
which leads to the reduced scattering rate of photons around
δ = 0 and the suppression of the final temperature of the gas
in the region around the Raman condition.

The friction coefficient, Fig. 4(b), displays a more com-
plicated structure with variations in δ. It shows a dispersive
shape around δ|3′〉, remains positive in the range δ|3′〉 < δ < 0,
diverges at δ = 0, and reaches negative values for δ > 0 up
to δ|2′〉, where it drops to negligible values. This structure for
α can be explained using our toy model. Let us consider the
different scenarios corresponding to both sides of δ near 0,
they follow formally from Eqs. (20) and (21) and the spatially
varying linewidth of |2′〉.

For the case of the repumper tuned slightly blue of the
narrow doublet state, δ > δ|2′〉, shown in Fig. 5(a), the atoms
are pumped directly from |1〉 into |2′〉. However, this pumping
happens preferentially at the antinodes of the standing wave
as the repumper intensity is greatest, the linewidth of |2′〉 is
the largest, and the light shift minimizes the detuning of the
repumper from the |1〉 → |2′〉 transition for the φ = 0 case
considered here. On average, the atoms exit this state at a
point with a smaller light shift through a spontaneous emission
process either into the cascade of dressed states or directly back
to |1〉. As a result, we expect heating and α < 0 in this region.

For repumper detunings between δ|3′〉 and 0, Fig. 5(b), we
predict cooling. For this region, the atoms are initially pumped
into |3′〉. Here the light shift modifies the relative detuning,
favoring coupling near the nodes of the light. Spontaneous
decay drops the atoms near the nodes of the longer-lived |2′〉,
and they travel up the potential hill into regions of larger light
shift before decaying, yielding cooling and a positive α. These
sign changes of α and the decreased scattering rate due to |NC〉
in the vicinity of the Raman condition explain the features of
our perturbative model.

We conclude this section by stating that the experimentally
observed change of sign of the force close to the Raman
condition is well described in our perturbative model. The
model further reveals the importance of Raman coherence and
the existence of a dark state. The dark state together with
the friction coefficient associated with cycles represented in
trace 5(b) correspond to a cooling mechanism analogous to
that of gray molasses. In this way, the bichromatic system
provides an additional gray molasses scheme involving both
hyperfine states which complements the gray molasses cooling
scheme on the principal transition. On the other hand, when the
friction coefficient is negative in the vicinity of the two-photon
resonance, it turns into a heating mechanism that overcomes
the standard gray molasses operating on the F = 2 → F ′ = 2
transition.

The perturbative approach successfully revealed the mech-
anisms giving rise to the experimentally observed additional
cooling. However, it also possesses some shortcomings. First,
the divergence of α at δ = 0 is not physical; the assumption
that 	1 is the smallest scale in the problem breaks down when
δ → 0. Alternatively, it can be seen as the failure of our model
based on nondegenerate perturbative theory in the region
where |1〉 and |2〉 become degenerate when dressed with ω1 and
ω2, respectively. Second, we have only addressed the φ = 0
case. Since the experiment was done in three dimensions with
three pairs of counterpropagating beams, the relative phase
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FIG. 6. (Color online) Comparison of results using the perturba-
tive calculation (dashed), and the continued fractions (solid) for the
φ = 0 case, with the same parameters as in Fig. 4 and 	2 = 2.1�.

between the two frequencies varies spatially, and we must test
if the picture derived at φ = 0 holds when averaging over all
phases. In order to address these limitations and confirm the
predictions of the perturbative approach, we now present a
continued-fractions solution to the OBEs which does not rely
on 	1 being a small parameter.

C. Continued fractions approach

The limitations listed above can be addressed by using a
more general approach, namely, an expansion of the density
matrix in Fourier harmonics:

ρij =
n=+∞∑
n=−∞

ρ
(n)
ij einkz. (23)

Injecting this expansion in (9)–(13) yields recursive rela-
tions between different Fourier components of ρ. Kozachiov
et al. [17,30] express the solutions of these relations for a
generalized � system in terms of continued fractions. Here
we use their results to numerically solve the Bloch equations.
We then compute the force F(v) to arbitrary order of 	1 and
extract α by means of a linear fit to the small-v region. We
then compute F(v) and the photon scattering rate �′ averaged
over the phase between the two standing waves.

Figure 6 compares α(δ) obtained through the continued-
fractions approach with the results of the perturbative expan-
sion for the φ = 0 case. The continued-fractions approach has
removed the divergence at δ = 0 and α crosses zero linearly.
The overall friction coefficient is reduced but the two methods
show qualitative agreement in the range of δ considered. At
the Raman condition the interaction with light is canceled due
to the presence of |NC〉; thus, the diffusion coefficient Dp in
momentum space also cancels. To lowest order, the diffusion
and friction coefficients scale as

Dp � δ2, (24)

α � δ; (25)

according to (3) the temperature scales as

T � δ. (26)

Through this qualitative scaling argument, we show that
even though the light action on the atoms is suppressed

FIG. 7. (Color online) 〈F〉φ in units of 1/h̄k� as a function of v

for different values of δ around δ = 0. The horizontal scale is in units
of the thermal velocity at T = 200 μK, vth = √

kBT/m.

when approaching the Raman condition, we expect that the
temperature will drop when approaching from the δ < 0 side,
completing the physical picture derived in the previous section.

Next, we analyze how a randomized phase between the
repumping and principal standing waves, φ, modifies F(v). In
order to take this into account, we calculate the phase-averaged
force:

〈F(v)〉φ = 1

2π

∫ 2π

0
F(v,φ) dφ. (27)

In Fig. 7, the phase-averaged force is plotted for various
detunings near the Raman condition. It can be seen that a
cooling force is present for small detunings, qualitatively
in agreement with our perturbative model and with the
experimental data. The force, however, changes sign to heating
for small blue detuning, close to δ = 0.6 �, also in qualitative
agreement with the experimental data. We note that the
cooling slope very close to zero velocity in the δ = 0.8 �

plot corresponds to a velocity on the order of or below the
single-photon recoil velocity, i.e., is nonphysical.

Finally, for the φ �= 0 case, |NC〉 varies in space and
the motion of the atoms can couple atoms out of |NC〉
even at the Raman condition. In Fig. 8 we verify that the
rate of photon scattering retains a minimum near the δ = 0
region after averaging over φ by plotting 〈�′〉φ = �〈ρ33〉φ
calculated with the continued fractions approach. Overall, the
friction coefficient α and photon scattering rate �′ confirm
the existence of a cooling force associated with a decrease in
photon scattering in the vicinity of the Raman condition for
the 1D bichromatic standing-wave model. Thus, the continued
fractions calculation has confirmed the physical mechanisms
revealed by the perturbative expansion and that the lowest
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FIG. 8. (Color online) Continued fractions solution of the photon
scattering rate �′ = � ρ33 averaged over all relative phases of the
repumper and principal standing waves as a function of the two-
photon detuning δ. Velocity-dependent effects are taken into account
here by computing an average of 〈�′〉φ(v) weighed by a Maxwell-
Boltzmann velocity distribution at 200 μK.

temperatures should be expected close to δ = 0, as seen in the
experiment.

IV. CONCLUSION

In this study, using bichromatic laser light near 670 nm,
we have demonstrated sub-Doppler cooling of 7Li atoms
down to 60 μK with near unity capture efficiency from a
magneto-optical trap. Solving the OBEs for a simplified �

level structure, we have analyzed the detuning dependence

of the cooling force and photon scattering rate. Our analysis
shows that the lowest temperatures are expected for a detuning
of the repumping light near the Raman condition, in agreement
with our measurements. There the � configuration adds a
new set of long-lived dark states that strongly enhance the
cooling efficiency. For 7Li, this addition results in a threefold
reduction of the steady-state temperature in comparison with
an incoherently repumped gray molasses scheme. This atomic
cloud at 60 μK is an ideal starting point for direct loading into a
dipole trap, where one of the broad Feshbach resonances in the
lowest-energy states of 7Li or 6Li could be used to efficiently
cool the atoms to quantum degeneracy [15,34]. Alternatively,
when the atoms are loaded into a quadrupole magnetic trap,
we measure a phase space density of �10−5. This �-enhanced
sub-Doppler cooling in a D1 gray molasses is general and
should occur in all alkali metals. Notably, we have observed its
signature in a number of the alkali-metal isotopes not amenable
to polarization gradient cooling: 7Li (this work), 40K [25], and
6Li [35].
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collisions. An analysis with some similarities to
ours for the bright debris disk of HD 172555
(20) found that dust created in a hypervelocity
impact will have a size slope of ~ –4, in agreement
with the fits of (10) to the IR spectrum of ID8.
After the exponential decay is removed from

the data (“detrending”), the light curves at both
wavelengths appear to be quasi-periodic. The
regular recovery of the disk flux and lack of ex-
traordinary stellar activity essentially eliminate
coronal mass ejection (21) as a possible driver of
the disk variability. We employed the SigSpec al-
gorithm (22) to search for complex patterns in
the detrended, post-impact 2013 light curve. The
analysis identified two significant frequencies with
comparable amplitudes, whose periods are P1 =
25.4 T 1.1 days and P2 = 34.0 T 1.5 days (Fig. 3A)
and are sufficient to qualitatively reproducemost
of the observed light curve features (Fig. 3B).
The quoted uncertainties (23) do not account for
systematic effects due to the detrending and thus
are lower limits to the real errors. Other peakswith
longer periods in the periodogram are aliases or
possibly reflect long-term deviation from the ex-
ponential decay. These artifacts make it difficult
to determine whether there are weak real signals
near those frequencies.
We now describe the most plausible inter-

pretation of this light curve that we have found.
The two identified periods have a peak-to-peak
amplitude of ~6 × 10−3 in fractional luminosity,
which provides a critical constraint for models of
the ID8 disk. In terms of sky coverage at the disk
distance inferred from the IR SED, such an am-
plitude requires the disappearance and reappear-
ance every ~30days of the equivalent of an opaque,
stellar-facing “dust panel” of radius ~110 Jupiter
radii. One possibility is that the disk flux perio-
dicity arises from recurring geometry that changes
the amount of dust that we can see. At the time
of the impact, fragments get a range of kick ve-
locities when escaping into interplanetary space.
This will cause Keplerian shear of the cloud (24),
leading to an expanding debris concentration
along the original orbit (supplementary text). If
the ID8 planetary system is roughly edge-on, the
longest dimension of the concentration will be
parallel to our line of sight at the greatest elon-
gations and orthogonal to the line of sight near
conjunctions to the star. This would cause the
optical depth of the debris to vary within an
orbital period, in a range on the order of 1 to 10
according to the estimated disk mass and par-
ticle sizes. Our numerical simulations of such dust
concentrations onmoderately eccentric orbits are
able to produce periodic light curves with strong
overtones. P2 and P1 should have a 3:2 ratio if
they are the first- and second-order overtones of
a fundamental, which is consistent with the mea-
surements within the expected larger errors (<2s
or better). In this case, the genuine period should
be 70.8 T 5.2 days (lower-limit errors), a value
where it may have been submerged in the perio-
dogram artifacts. This period corresponds to a
semimajor axis of ~0.33 astronomical units, which
is consistent with the temperature and distance
suggested by the spectral models (10).

Despite the peculiarities of ID8, it is not a
unique system. In 2012 and 2013, we monitored
four other “extreme debris disks” (with disk frac-
tional luminosity ≥10−2) around solar-like stars
with ages of 10 to 120My. Various degrees of IR
variations were detected in all of them. The
specific characteristics of ID8 in the time domain,
including the yearly exponential decay, addition-
al more rapid weekly to monthly changes, and
color variations, are also seen in other systems.
This opens up the time domain as a new dimen-
sion for the study of terrestrial planet formation
and collisions outside the solar system. The var-
iability of many extreme debris disks in the era
of the final buildup of terrestrial planets may
provide new possibilities for understanding the
early solar system and the formation of habitable
planets (25).
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SUPERFLUIDITY

A mixture of Bose and Fermi superf luids
I. Ferrier-Barbut,* M. Delehaye, S. Laurent, A. T. Grier,† M. Pierce,
B. S. Rem,‡ F. Chevy, C. Salomon

Superconductivity and superfluidity of fermionic and bosonic systems are remarkable
many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi
superfluidity has been observed separately, but producingamixture inwhich both the fermionic
and the bosonic components are superfluid is challenging. Here we report on the observation
of such a mixture with dilute gases of two lithium isotopes, lithium-6 and lithium-7.We probe
the collective dynamics of this system by exciting center-of-mass oscillations that exhibit
extremely low damping below a certain critical velocity. Using high-precision spectroscopy
of these modes, we observe coherent energy exchange and measure the coupling between
the two superfluids. Our observations can be captured theoretically using a sum-rule
approach that we interpret in terms of two coupled oscillators.

I
n recent years, ultracold atoms have emerged
as a unique tool to engineer and study quantum
many-body systems. Examples include weakly
interacting Bose-Einstein condensates (1, 2),
two-dimensional gases (3), and the superfluid-

Mott insulator transition (4) in the case of bosonic
atoms, and the crossover between Bose-Einstein
condensation (BEC) and fermionic superfluidity
described by the the theory of Bardeen, Cooper,
and Schrieffer (BCS) for fermionic atoms (5). Mix-

tures of Bose-Einstein condensates were produced
shortly after the observation of BEC (2), and a
BEC mixed with a single-spin state Fermi sea
was originally observed in (6, 7). However, realizing
a mixture in which both fermionic and bosonic
species are superfluid has been experimentally
challenging. This has also been a long-sought goal
in liquid helium, where superfluidity was achieved
separately in both bosonic 4He and fermionic 3He.
The double superfluid should undergo a transition
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between s-wave and p-wave Cooper pairs as the
3He dilution is varied (8). However, because of
strong interactions between the two isotopes,
3He-4He mixtures contain only a small fraction
of 3He (typically 6%) which, so far, has prevented
attainment of simultaneous superfluidity for the
two species (8, 9).
Here we report on the production of a Bose-

Fermi mixture of quantum gases in which both
species are superfluid. Our system is an ultracold
gas of fermionic 6Li in two spin states mixed with
7Li bosons and confined in an optical dipole trap.
Using radio-frequency pulses, we prepare 6Li atoms
in their two lowest hyperfine states j1f 〉 and j2f 〉,
whereas 7Li is spin polarized in the second-to-
lowest state j2b〉 (10). For this combination of states,
in the vicinity of the 6Li Feshbach resonance at a
magnetic field of 832 G (11), the scattering length
of the bosonic isotope ab = 70a0 (a0 is the Bohr
radius) is positive, preventing collapse of the BEC.
The boson-fermion interaction is characterized by
a scattering length abf ¼ 40:8a0 that does not
depend on magnetic field in the parameter range
studied here. At resonance, the Fermi gas exhibits
a unitary limited collision rate, and lowering the
optical dipole trap depth leads to extremely ef-
ficient evaporation. Owing to a large excess of
6Li atoms with respect to 7Li, the Bose gas is sym-
pathetically driven to quantum degeneracy.
The two clouds reach the superfluid regime

after a 4-s evaporation ramp (10). As the 7Li Bose
gas is weakly interacting, the onset of BEC is
detected by the growth of a narrow peak in the
density profile of the cloud. From previous studies
on atomic Bose-Einstein condensates, we con-
clude that the 7Li BEC is in a superfluid phase.
Superfluidity in a unitary Fermi gas is notori-
ously more difficult to detect because of the
absence of any qualitative modification of the
density profile at the phase transition. To dem-
onstrate the superfluidity of the fermionic com-
ponent of the cloud, we slightly imbalance the
two spin populations. In an imbalanced gas, the
cloud is organized in concentric layers, with a
fully paired superfluid region at its center, where
Cooper pairing maintains equal spin popula-
tions. This 6Li superfluid core can be detected
by the presence of a plateau in the doubly in-
tegrated density difference (12). Examples of
density profiles of the bosonic and fermionic
superfluids are shown in Fig. 1, where both the
Bose-Einstein condensate (blue circles) and the
plateau (black diamonds in the inset) are clearly
visible. Our coldest samples contain Nb ¼ 4� 104
7Li atoms and Nf ¼ 3:5� 105 6Li atoms. The
absence of a thermal fraction in the bosonic cloud
indicates a temperature below 0.5Tc,b, where
kBTc;b ¼ 0:94ℏwbN

1=3
b is the critical temperature

of the 7Li bosons, and wb (wf ) is the geometric

mean trapping frequency for 7Li (6Li). Com-
bined with the observation of the 6Li plateau,
this implies that the Fermi cloud is also super-
fluid with a temperature below 0:8Tc;f . Here,
Tc;f is the critical temperature for superfluid-
ity of a spin-balanced, harmonically trapped
Fermi gas at unitarity, Tc;f ¼ 0:19TF (13), and
kBTF ¼ ℏwfð3NfÞ1=3 is the Fermi temperature.
The superfluid mixture is very stable, with a
lifetime exceeding 7 s for our coldest samples.
As seen in Fig. 1, the Bose-Fermi interaction is

too weak to alter significantly the density pro-
files of the two species (14). To probe the inter-
action between the two superfluids, we study the
dynamics of the mass centers of the two isotopes
(dipole modes), a scheme used previously for the
study of mixtures of Bose-Einstein condensates
(15, 16),mixtures of Bose-Einstein condensates and
spin-polarized Fermi seas (17), spin diffusion in
Fermi gases (18), or integrability in one-dimensional
systems (19). In a purely harmonic trap and in
the absence of interspecies interactions, the di-
polemode of each species is undamped and can
therefore be measured over long time spans to
achieve a high-frequency resolution and detect
small perturbations of the system. We excite the
dipole modes by shifting the initial position of
the 6Li and 7Li clouds by a displacement d along
the weak direction z of the trap (10). We then
release themand let themevolve during a variable
time t, after which we measure their positions. By
monitoring the cloud oscillations during up to 4 s,
we determine their frequencies with high precision
(Dww ≲ 2� 10−3Þ: In the absence of the other spe-
cies, the oscillation frequencies of 6Li and 7Li are,
respectively, wf ¼ 2p� 16:80ð2Þ Hz and wb ¼

2p� 15:27ð1Þ Hz. In the axial direction, the con-
finement is mostly magnetic, and at high mag-
netic field, both species are in the Paschen-Back
regime, where the electronic and nuclear spin
degrees of freedomare decoupled. In this regime,
the magnetic confinement mostly results from
the electronic spin and is therefore almost iden-
tical for the two isotopes. The ratio wf=wb is then
very close to the expected value

ffiffiffiffiffiffiffiffi
7=6

p
≃ 1:08

based on the ratio of the atomic masses (20).
Contrary to the large damping observed in the

Bose-Bose mixtures (15), we observe long-lived
oscillations of the Bose-Fermi superfluid mixture
at frequencies (w̃b, w̃f ). These oscillations extend
over more than 4 s with undetectable damping
(Fig. 2 and fig. S2). This very weak dissipation
is only observed when the initial displacement
d is below 100 mm, corresponding to a maxi-
mum relative velocity vmax ¼ ðw̃b þ w̃fÞd below
18 mm/s ≃ 0:4 vF, where vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTF=mf

p
. In

this situation, the BEC explores only the central
part of the much broader Fermi cloud. When
vmax > vc ¼ 0:42þ0:05

−0:11 vF ¼ 20þ2
−5 mm/s, we ob-

serve a sharp onset of damping and heating of
the BEC compatible with the Landau criterion for
breakdown of superfuidity (Fig. 2C) (10). For com-
parison, the sound velocity of an elongated Fermi
gas at its center is vs0 ¼ x1=4vF=

ffiffiffi
5

p ¼ 17 mm/s
(21), where x ¼ 0:38 is the Bertsch parameter
(5, 13). The measured critical velocity vc is very
close to vs0 and is clearly above the BEC sound
velocity of ≃5 mm/s at its center.
Two striking phenomena are furthermore ob-

served. First, whereas the frequency w̃f of 6Li
oscillations is almost unchanged from the value
in the absence of 7Li, that of 7Li is downshifted
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Fig. 1. Density profiles in the double superfluid regime. Nb ¼ 4� 104 7Li atoms and Nf ¼ 3:5� 105 6Li
atoms are confined in a trap at a temperature below 130 nK. The density profiles nb (blue circles) and
nf;↑(red squares) are doubly integrated over the two transverse directions.The blue (red) solid line is a fit
to the 7Li (6Li) distribution by a mean-field (unitary Fermi gas) EoS in the Thomas-Fermi approximation.
Inset: Spin-imbalanced Fermi gas (Nf;↑ ¼ 2� 105, Nf;↓ ¼ 8� 104) in thermal equilibrium with a BEC.
Red circles: nf;↑; green squares: nf;↓; black diamonds: difference nf;↑−nf;↓. The plateau (black dashed line)
indicates superfluid pairing (12). Gray solid line: Thomas-Fermi profile of a noninteracting Fermi gas for the
fully spin-polarized outer shell prolonged by the partially polarized normal phase (gray dashed line).

RESEARCH | REPORTS

176



to w̃b ¼ 2p� 15:00ð2Þ Hz. Second, the ampli-
tude of oscillations of the bosonic species displays
a beat at a frequency ≃ðw̃f − w̃bÞ=ð2pÞ, reveal-
ing coherent energy transfer between the two
clouds (Fig. 2B). To interpret the frequency shift
of the 7Li atoms, we note that Nb ≪ Nf ; which
allows us to treat the BEC as a mesoscopic im-
purity immersed in a Fermi superfluid. Similar-
ly to the Fermi polaron case (22), the effective
potential seen by the bosons is the sum of the
trapping potential V ðrÞ and the mean-field in-
teraction gbfnfðrÞ, where nf is the total fermion
density, gbf ¼ 2pℏ2abf =mbf , and mbf ¼ mbmf

mbþmf
is

the 6Li/7Li reduced mass. Neglecting at first
the back-action of the bosons on the fermions,
we can assume that nf is given by the local-density-
approximation result nfðrÞ ¼ nð0Þ

f ðm0f − V ðrÞÞ,
where nð0Þ

f ðmÞ is the stationary equation of state
(EoS) of the Fermi gas. Because the Bose-Einstein
condensate is much smaller than the Fermi cloud
(Fig. 2A), V ðrÞ is smaller than m0f over the BEC
volume. We can thus expand nð0Þf , and we get

VeffðrÞ ¼ gbfnfð0Þ þ V ðrÞ 1 − gbf
dnð0Þ

f

dmf

 !
r¼0

" #

ð1Þ
We observe that the effective potential is still har-
monic and the rescaled frequency is given by

w̃b ≃ wb 1 −
1

2
gbf

dnð0Þ
f

dmf

 !
r¼0

 !
ð2Þ

For a unitary Fermi gas, the chemical potential is
related to the density by mf ¼ xℏ2ð3p2nfÞ2=3=2mf .

In theweakly coupled limit,weget dwb

wb
¼ wb − w̃b

wb
¼

13kFabf
7px5=4

, whereℏkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏmfwfð3NfÞ1=3

q
is theFermi

momentum of a noninteracting harmonically
trapped Fermi gas. Using our experimental pa-
rameters kF ¼ 4:6� 106 m−1, we predict a value
w̃b ≃ 2p� 14:97 Hz, in very good agreement with
the observed value 15.00(2)Hz.
To understand the amplitude modulation, we

now take into account the back-action on the
fermions. A fully quantum formalism using a
sum-rule approach (23–25) leads to a coupled
oscillator model in which the positions of the
two clouds obey the following equations (10)

Mf
::
z f ¼ −Kfzf − Kbfðzf − zbÞ ð3Þ

Mb
::
zb ¼ −Kbzb − Kbfðzb − zfÞ ð4Þ

whereMb ¼ Nbmb (Mf ¼ Nfmf ) is the total mass
of the 7Li (6Li) cloud, Kb ¼ Mbw2

b ðKf ¼ Mfw2
f Þ

is the spring constant of the axial magnetic con-
finement, and Kbf is a phenomenological (weak)
coupling constant describing the mean-field in-

teraction between the two isotopes. To recov-
er the correct frequency shift (Eq. 2), we take
Kbf ¼ 2Kb

dwb

wb
: Solving these equations with the

initial condition zfð0Þ ¼ zbð0Þ ¼ d, and defining
r ¼ Nb=Nf and e ¼ 2mb

mb−mf

w̃b − wb

wb

� �
, in the limit

r; e ≪ 1 we get

zf ¼ d½ð1 − erÞcosðw̃f tÞ þ ercosðw̃btÞ� ð5Þ

zb ¼ d½−ecosðw̃ftÞ þ ð1þ eÞcosðw̃btÞ� ð6Þ

The predictions of Eqs. 5 and 6 agree well with
experiment (Fig. 2B). Interestingly, the peak-to-
peak modulation of the amplitude of 7Li is much
larger than the relative frequency shift, a conse-
quence of the almost exact tuning of the two
oscillators (up to a factor

ffiffiffiffiffiffiffiffi
6=7

p
). Thus, the mass

prefactor in the expression for e is large (=14) and
leads to e ≃ 0:25 at unitarity. This results in
efficient energy transfer between the two modes
despite their weak coupling, as observed.
We now extend our study of the Bose-Fermi

superfluid mixture to the BEC-BCS crossover by
tuning the magnetic field away from the reso-
nance value Bf ¼ 832 G. We explore a region
from 860 G down to 780 G where 1=kFaf spans
the interval ½−0:4;þ0:8�. In this whole domain,
except in a narrow region between 845 and
850 G where the boson-boson scattering length
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Fig. 2. Coupled oscillations of the superfluid mixture. (A) Center-of-mass
oscillations. The oscillations are shown over the first 500 ms at a magnetic
field of 835 G for a Fermi superfluid (top) and a Bose superfluid (bottom).The
oscillation period of 6Li (7Li) is 59.7(1) ms [66.6(1) ms], leading to a
dephasing of π near 300 ms. These oscillations persist for more than 4 s
with no visible damping.The maximum relative velocity between the two clouds
is 1.8 cm/s. (B) Coupled oscillations. Symbols: Center-of-mass oscillation of
7Li (top) and 6Li (bottom) displaying coherent energy exchange between both

superfluids. Solid lines: Theory for an initial displacement d of 100 mm at a
magnetic field of 835 G; see text. (C) Critical damping. Symbols: Damping
rate (blue circles) of the amplitude of the center-of-mass oscillations of the
7Li BEC as a function of the maximal relative velocity between the two
superfluids normalized to the Fermi velocity of the 6Li gas. Data taken at
832 G. From these data and using a fit function given in (10) (solid line), we
extract vc ¼ 0:42þ0:05

−0:11 vF.The red dashed line shows the speed of sound of an
elongated unitary Fermi superfluid v

0
s ¼ x1=4vF=

ffiffiffi
5

p
¼ 0:35vF (20).
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is negative, the mixture is stable and the damp-
ing extremely small.
The frequency shift of the BEC (Eq. 2) now

probes the derivative of the EoS nfðmfÞ in the BEC-
BCS crossover. In the zero-temperature limit and
under the local density approximation, Eq. 2
obeys the universal scaling dwb

wb
¼ kFabf f 1

kFaf

� �
In Fig. 3, we compare our measurements to

the prediction for the function f obtained from the
zero-temperature EoS measured in (26). On the
BCS side, (1=kFaf < 0), the frequency shift is re-
duced and tends to that of a noninteracting
Fermi gas. Far on the BEC side ð1=kFaf ≫ 1Þ, we
can compute the frequency shift using the EoS
of a weakly interacting gas of dimers. Within the
mean-field approximation, we have dnf

dmf
¼ 2mf

pℏ2add
,

where add ¼ 0:6af is the dimer-dimer scatter-
ing length. This expression explains the increase
in the frequency shift when af is reduced, i.e.,
moving toward the BEC side [see (10) for the
effect of Lee-Huang-Yang quantum correction].
The excellent agreement between experiment

and our model confirms that precision measure-
ments of collective modes are a sensitive dynamical
probe of equilibrium properties of many-body quan-
tum systems (27). Our approach can be extended to
the study of higher-order excitations. In particular,
although there are two first sound modes, one for
each atomic species, we expect only one second
sound for the superfluid mixture (28) if cross-
thermalization is fast enough. In addition, the
origin of the critical velocity for the relative motion
of Bose and Fermi superfluids is an intriguing ques-
tion that can be further explored in our system.
Finally, a richer phase diagram may be revealed
when Nb=Nf is increased (29) or when the super-
fluid mixture is loaded in an optical lattice (30).
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EARTHQUAKE DYNAMICS

Strength of stick-slip and creeping
subduction megathrusts from heat
flow observations
Xiang Gao1 and Kelin Wang2,3*

Subduction faults, called megathrusts, can generate large and hazardous earthquakes.The
mode of slip and seismicity of a megathrust is controlled by the structural complexity of the
fault zone. However, the relative strength of a megathrust based on the mode of slip is far from
clear.The fault strength affects surface heat flow by frictional heating during slip.We model
heat-flow data for a number of subduction zones to determine the fault strength.We find that
smooth megathrusts that produce great earthquakes tend to be weaker and therefore
dissipate less heat than geometrically rough megathrusts that slip mainly by creeping.

S
ubduction megathrusts that primarily ex-
hibit stick-slip behavior can produce great
earthquakes, but some megathrusts are ob-
served to creep while producing small and
moderate-size earthquakes. The relation-

ship between seismogenesis and strength of sub-
duction megathrust is far from clear. Faults that
produce great earthquakes are commonly thought
of as being stronger than those that creep (1).

Megathrusts that are presently locked to build
up stress for future great earthquakes are thus
described as being “strongly coupled.” However,
some studies have proposed strong creeping
megathrusts because of the geometric irregular-
ities of very rugged subducted sea floor (2, 3).
Contrary to a widely held belief, geodetic and

seismic evidence shows that very rough subduct-
ing sea floor promotes megathrust creep (2). All
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Fig. 3. Dipole mode frequency shift in the BEC-BCS crossover. Red circles: Experiment. Blue line:
zero-temperature prediction from the equation of state of (26); dashed line: ideal Fermi gas. Blue
triangle: prediction from (13). Error bars include systematic and statistical errors at 1 SD.
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Supplementary material to
A Mixture of Bose and Fermi Superfluids

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon
Laboratoire Kastler-Brossel, École Normale Supérieure,

Collège de France, CNRS and UPMC, 24 rue Lhomond, 75005 Paris, France

Feshbach Resonances

The Bose-Fermi mixture is composed of a 7Li cloud prepared in the |2b〉 state, which connects to the
|F = 1,mf = 0〉 state at low field, together with a 6Li gas in the two lowest energy states |1f〉 and |2f〉
connecting to |F = 1/2,mf = 1/2〉 and |F = 1/2,mf = −1/2〉 respectively.
In Fig. S1 we present the relevant s-wave scattering lengths characterizing the 7Li-7Li, 6Li-6Li and 6Li-
7Li interactions in the 700 G-1000 G magnetic field region of interest. 7Li, |2b〉 exhibits two Feshbach
resonances located at 845.5 G and 894 G. For fermionic 6Li, the two spin-states |1f〉, |2f〉 exhibit one very
broad s-wave resonance at 832.18 G. Note the 1/100 vertical scale for 6Li in Fig. S1. The scattering lengths
are taken from (11,31) in units of Bohr radius a0 as a function of magnetic field B in gauss:

af(B) = −1582
(
1− −262.3

B − 832.18

)
(S1)

ab(B) = −18.24
(
1− −237.8

B − 893.95

)(
1− 4.518

B − 845.54

)
(S2)

For the inter-isotope interaction, coupled-channel calculations by S. Kokkelmans provide a scattering
length abf = 40.8 a0 independent of the magnetic field in this region.
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Figure S1: Magnetic field dependence of the different scattering lengths ab (blue), af (red), and abf (dashed
gray). abf = 40.8 a0 is independent of B. Note the 1/100 vertical scale for 6Li.
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Experimental set-up, mixture preparation

The apparatus and early stages of our experiment have been described in (32). Initially 7Li (resp. 6Li)
atoms are cooled to 40µK in a Ioffe-Pritchard trap in the |F = 2,mf = 2〉 (resp. |F = 3/2,mf = 3/2〉)
states at a bias field of 12.9 G. The trapping potential for the mixture is a hybrid trap composed of an optical
dipole trap (wavelength 1.07µm) with waist 27µm superimposed with a magnetic curvature in which the
bias magnetic field remains freely adjustable. About 3× 105 7Li and 2× 106 6Li atoms are transferred in a
300µK deep optical dipole trap. They are then transferred to their absolute ground state |F = 1,mf = 1〉
and |F = 1/2,mf = 1/2〉 by a rapid adiabatic passage (RAP) using two 50 ms radio-frequency (RF) pulses
and a sweep of the magnetic bias down to 4.3 G. These states connect at high magnetic field respectively to
|1b〉 and |1f〉. We revert the magnetic curvature in order to provide an axial confining potential, the ground
states being high-field-seeking states. The bias field is ramped in 100 ms to 656 G where we transfer 7Li
to the state |2b〉 by a RAP done by an RF pulse with a frequency sweep from 170.9 MHz to 170.7 MHz
in 5 ms. The field is ramped in 100 ms to 835 G where a mixture of 6Li in its two lowest energy states
|1f〉 and |2f〉 is prepared with an RF sweep between 76.35 MHz and 76.25 MHz. The duration of this
sweep varies the Landau-Zener efficiency of the transfer offering control of the spin polarization of the 6Li
mixture. Initial conditions for evaporation at this field are 1.5 × 105 7Li and 1.5 × 106 6Li at 30µK in a
300µK deep trap. The evaporation of the mixture is done near unitarity for the fermions providing high
collision rate. In 3 s the laser power is reduced by a factor 100 and 7Li is sympathetically cooled by 6Li
with high efficiency; the phase-space density increases to BEC by a factor ∼ 2 × 104 for a factor of ten
loss in 7Li atoms. To confirm this sympathetic cooling scheme we have also performed the evaporation
at 850 G where the 7Li scattering length vanishes, demonstrating that 7Li can be cooled down solely by
thermalisation with 6Li. At the end of evaporation, we typically wait 700 ms at constant dipole trap power
to ensure thermal equilibrium between both species.

The trapping potential is cylindrically symmetric, with axial (transverse) frequency ωz (ωρ). The BEC
phase transition is observed at a temperature of 700 nK. Our studies are performed in a shallow trap with
frequencies:

• ωρ,b = 2π × 550(20) Hz, ωρ,f = 2π × 595(20) Hz

• ωz,b = 2π × 15.27 Hz, ωz,f = 2π × 16.8 Hz.

These frequencies are measured by single species center-of-mass oscillations at a field of 832G.
Typical atoms numbers areNb = 4×104 7Li atoms andNf = 3.5×105 6Li in a spin-balanced mixture.

The critical temperature for 7Li Bose-Einstein condensation is Tc,b = ~ω̄b

kB
(Nb/ζ(3))1/3 = 260 nK and the

Fermi temperature for 6Li TF = ~ω̄f

kB
(3Nf)

1/3 = 880 nK. To our experimental precision, the condensed
fraction N0

N
is higher than 0.8, implying Tb

Tc,b
. 0.5. With Tf . Tb, we have Tf

TF
. 0.15 = 0.8Tc,f . This

temperature upper bound indicates fermionic superfluidity, in agreement with the direct observation of the
superfluid core in the spin-imbalanced gas shown in Fig. 1 in the main text and the extremely low damping
observed for small relative oscillations between both isotopes.
The large imbalance in isotope population Nf/Nb ' 10 results from our cooling strategy. At the cost of a
small loss in 6Li numbers, we can also get samples containing Nb ' Nf,↑ ' Nf,↓ ' 105.
To excite the dipole mode of the two superfluids, we take advantage of the fact that the axial position of
the waist of the dipole trap laser beam is slightly off-centered with respect to the minimum of the axial
magnetic confinement. In order to displace the center of the atomic clouds, we slowly increase the laser
power of the dipole trap by a variable factor (between 1.1 and 2). This results in axial displacement and
radial compression of both clouds. The intensity ramp is done in tup = 150 ms, i.e slow compared to the

2
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trap periods. We then return the laser power to its initial value in tdown = 20 ms, fast compared to the axial
trap period but slow compared to the radial period, avoiding excitation of radial collective modes. The
center of mass positions of both clouds are measured by recording in situ images at variable delays after
the axial excitation, up to 4 seconds. Examples of center-of-mass oscillations over a time span of more
than 3.5 s are shown in Fig S2.
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Figure S2: Examples of center-of-mass oscillations. 7Li bosons alone at 832 G (a), 7Li bosons in the
presence of 6Li fermions at 832G (b). 4 second time span for the evolution of 7Li bosons (c) mixed
with 6Li fermions (d) at 835 G. The coherent energy exchange between 7Li and 6Li superfluids with no
detectable damping is clearly visible.

Critical velocity measurement

When we increase the initial amplitude d0 of the oscillations above ' 100µm, we observe first strong
damping of the 7Li BEC oscillations inside the Fermi cloud followed by long-lived oscillations at a lower
amplitude, as shown in Fig. S3. To verify that this damping is not due to trap anharmonicity for large
displacements, we measured oscillations of the BEC in the absence of fermions. For a displacement of
d = 120µm, which corresponds to a velocity of v ' 0.45vF in the presence of the Fermi cloud, we found
a characteristic damping rate of γ = 0.05 s−1. For a much larger initial displacement d = 275µm (v ' vF)
we observe an influence of trap anharmonicity with an effective damping rate γ = 0.26 s−1. Both of these
rates are much smaller than the measured rates in presence of the Fermi cloud for velocities above 0.4 vF

as shown in Fig. 2(c) in main text.
The observed behavior is compatible with a critical velocity vc for relative motion, resulting in damping
for velocities above vc at early times and then undamped oscillations when the velocity is smaller than

3
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vc. We fit our data with Eq. (7) from main text and an amplitude d = d0 exp(−γt) + d′ where d′ is the
amplitude for the long-lived final oscillations. γ is then a damping rate extracted from each data set. Its
variation against maximal relative velocity between the two clouds is shown in Fig. 2(c) of main text. To
extract a critical velocity we use a simple model:

γ(v) = Θ(v − vc)A ((v − vc)/vF)α (S3)

where Θ(x) is the Heaviside function, A and α are free parameters. By fitting Eq. (S3), we obtain a critical
velocity vc = 0.42+0.05

−0.11 vF, an exponent α = 0.95+0.8
−0.3, close to 1, and A = 17(9) s−1. This function is

plotted in solid blue curve in Fig. 2(c) of main text. vc is very close to the sound velocity of an elongated
Fermi gas v′s = ξ1/4√

5
vF = 0.35 vF (21). For comparison, in a nearly isotropic trap and a moving 1D lattice,

the MIT group found a critical velocity vc = 0.32 vF (33).
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Figure S3: Example of dipole oscillations of the 7Li BEC for a large initial amplitude (blue circles). The
blue solid line is a fit to equation (7) from main text with a phenomenological damping rate γ = 3.1s−1.

BEC mean-field and Lee-Huang-Yang limit

Here we evaluate the frequency shift δωb/ωb given by

δωb

ωb

' 1

2
gbf

(
dn

(0)
f

dµf

)

r=0

, (S4)

in the limit where the Fermi superfluid is a molecular BEC of composite Fermi-Fermi dimers. The dimers
have a mass md = 2mf and a binding energy Ed = ~2/mda

2
d, where ad = 0.6 af is the dimer-dimer

scattering length (34). The Lee-Huang-Yang EoS for the molecular BEC reads

nd =
µd

gd


1− 32

3
√
π

√
µda3

d

gdd


 (S5)

where nd = nf/2 is the density of dimers, µd = 2µf +Ed their chemical potential, and gdd = 4π~2ad/md

the coupling constant for the dimer-dimer interaction. Then we have d
dµf

= 2 d
dµd

and thus

dn
(0)
f

dµf

=
4

gd


1− 16√

π

√
µda3

d

gdd


 . (S6)
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This quantity must be evaluated in the center of the trap (r = 0) to infer the frequency shift (S4). The sec-
ond term in (S6) is of first order in

√
ndad. We then evaluate its argument in the mean-field approximation

which gives the usual expression for the chemical potential of a BEC in a harmonic trap:

(µd)r=0 =
~ω̄f

2

(
15Ndad

√
mdω̄f

~

)2/5

. (S7)

Using (S7) and the expression of the Fermi wave-vector:

kF =

√
mdω̄f

~
(6N

d
)1/6, (S8)

with Nf = 2Nd, we can recast our expression for the frequency shift (S6) in the universal units used in the
main text (Eq. (10)):

(
µda

3
d

gd

)

r=0

=
1

8π

(
5

2

)2/5

(adkF)12/5 (S9)
(
dn

(0)
f

dµf

)

r=0

' 2mf

0.6π~2af

(
1− 1.172 (kFaf)

6/5
)

(S10)

δωb

ωb

1

kFabf

' 6.190
1

kFaf

(
1− 1.172 (kFaf)

6/5
)

(S11)

This limit is shown in green in Fig. S4. The mean-field approximation (red curve in Fig. S4) corresponds
to the first term in Eq. (S11).
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Figure S4: Predicted frequency shift (blue line) over a broad range of 1/kFaf . The dashed blue line shows
the ideal Fermi gas limit. On the BEC side the green line shows the Lee-Huang-Yang prediction (S11) and
the red line the mean-field prediction.
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Derivation of the coupled oscillator model using the sum-rule approach

We describe the dynamics of the system by a Hamiltonian

Ĥ =
∑

i,α

[
p̂2
α,i

2mα

]
+ U(rα,i), (S12)

where α = b, f labels the isotopes, and U describes the total (trap+interaction) potential energy of the
cloud.

Consider the operators F̂α =
∑Nα

i=1 ẑα,i, where zα,i is the position along z of the i-th atom of species
α = b, f and take F̂ (af , ab) =

∑
α aαF̂α an excitation operator depending on two mixing coefficients (aα).

We introduce the moments Sp defined by

Sp =
∑

n

(En − E0)p
∣∣∣〈n|F̂ |0〉

∣∣∣
2

,

where |n〉 and En are the eigenvectors and the eigenvalues of the Hamiltonian Ĥ (by definition |0〉 is the
ground state and E0 is its energy). Using the Closure Relation and first order perturbation theory, S1 and
S−1 can be calculated exactly and we have

S1 = −
∑

α

~2

mα

Nαa
2
α (S13)

S−1 = −1

k

∑

α,β

aαaβNα
∂〈zα〉
∂bβ

(S14)

where k is the restoring force of the axial magnetic trap and 〈zα〉 is the center of mass position of atoms α
in the presence of a perturbing potential −k∑β bβF̂α corresponding to a shift of the trapping potential of
species β by a distance bβ . 〈zα〉 satisfies two useful conditions. First, using Hellmann-Feynman’s theorem,
the matrix Nα∂bβ〈zα〉 = ∂2

bαbβ
Ĥ is symmetric. Secondly, if we shift the two traps by the same quantify

bβ = b, the center of mass of the two clouds move by 〈zα〉 = b. Differentiating this constraint with respect
to b yields the condition

∑
β ∂bβ〈zα〉 = 1.

Experimentally, we observe that only two modes are excited by the displacement of the trap center.
We label |n = 1〉 and |n = 2〉 the corresponding modes and we take ~ωn = En−E0, with, by convention,
ω1 ≤ ω2. We thus have for any set of mixing parameters (af , ab),

~2ω2
1 ≤

S1

S−1

≤ ~2ω2
2. (S15)

To find the values of the two frequencies ω1 and ω2, one thus simply has to find the extrema of S1/S−1

with respect to af and ab. Using the sum rules (S13) and (S14), we see that

S1

S−1

= ~2k

∑
αNα/mαa

2
α∑

α,β Nαaαaβ
∂〈zα〉
∂bβ

. (S16)

This expression can be formally simplified by taking a′α = aα
√
Nα/mα and ψ = (a′f , a

′
b). We then have

S1

S−1

= ~2k
〈ψ|ψ〉
〈ψ|Mψ〉 , (S17)
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where the scalar product is defined by 〈ψ|ψ′〉 =
∑

α ψαψ
′
α and the effective-mass operator is given by

Mαβ =
√
mαmβ

√
Nα

Nβ

∂〈zα〉
∂bβ

. (S18)

With these notations, the frequencies ωi=1,2 are given by ωi =
√
k/m̃i, where m̃i is an eigenvalue ofM.

In the weak-coupling limit, the cross-terms ∂bβ〈zα〉 (α 6= β) are small and using their symmetry
properties, we can writeM asM0 +M1 with

M0 =

(
mf 0
0 mb

)
(S19)

M1 =


 −mf

∂〈zf〉
∂bb

√
mfmb

√
Nb

Nf

∂〈zb〉
∂bf√

mfmb

√
Nb

Nf

∂〈zb〉
∂bf

−mb
∂〈zb〉
∂bf


 (S20)

Since the matrixM is symmetric we can use the usual perturbation theory to calculate its eigenvalues and
eigenvectors. We have to first order

m̃1 = mf

(
1− ∂〈zf〉

∂bb

)
(S21)

m̃2 = mb

(
1− ∂〈zb〉

∂bf

)
(S22)

Using the symmetry of Nα∂bβ〈zα〉, we see that in the experimentally relevant limit Nf � Nb, we have
∂bf 〈zb〉 � ∂bb〈zf〉. Thus the frequency of 6Li is essentially not affected by the coupling between the two
species. To leading order, we can identify ω1 (ω2) with ω̃b (ω̃f) and we have

ω̃f ' ωf (S23)

ω̃b ' ωb

(
1 +

1

2

∂〈zb〉
∂bf

)
(S24)

To calculate the frequency ω̃b we need to know the crossed-susceptibility ∂bf 〈zb〉. Since this is in
equilibrium quantity, we can calculate it using the local-density approximation. We then obtain

∂〈zb〉
∂bf

=
kgbf

Nb

∫
d3rz2

(
∂nf

∂µf

)(
∂nb

∂µb

)
(S25)

In the limit Nb � Nf , the bosonic cloud is much smaller than the fermionic cloud. We can therefore
approximate this expression by

∂〈zb〉
∂bf

' kgbf

Nb

(
∂nf

∂µf

)

0

∫
d3rz2

(
∂nb

∂µb

)
(S26)

where the index zero indicates that the derivative is calculated at the center of the trap. The integral can be
calculated exactly and we finally obtain

∂〈zb〉
∂bf

= gbf

(
∂nf

∂µf

)

0

, (S27)
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where we recover Eq. (2) from main text.
To get the dynamics of the system after the excitation, we need to calculate the eigenvectors of the

matrixM. Note ψ′i = (a′i,f , a
′
i,b) the eigenvector associated to the eigenvalue ωi. Using once more first

order perturbation theory, we have

ψ′1 =

(
1

√
mfmb

mf−mb

√
Nb

Nf

∂〈zb〉
∂bf

)
(S28)

ψ′2 =

( √
mfmb

mb−mf

√
Nb

Nf

∂〈zb〉
∂bf

1

)
, (S29)

from which we deduce the vectors ψi=1,2 = (ai,f , ai,b) giving the excitation operator F̂ (ai,f , ai,b). More
precisely

ψ1 =

√
mf

Nf

(
1

mb

mf−mb

∂〈zb〉
∂bf

)
(S30)

ψ2 =

√
mb

Nb

(
mf

mb−mf

Nb

Nf

∂〈zb〉
∂bf

1

)
. (S31)

Note d the initial displacement of the two species and expand the initial condition Z = (zf(0), zb(0)) =

(d, d) over the basis {ψ1, ψ2} as Z =
∑

i ciψi. Since by construction the operator F̂ (ai,f , ai,b) excites
solely the mode ωi we must have at time t Z(t) =

∑
i ci cos(ωit)ψi (we assume that the initial velocities

are zero). After a straightforward calculation, we get

zf(t) = d

[
(1− ερη) cos(ω1t) + ηρε(1 + ε) cos(ω2t)

1 + ε2ρη

]
(S32)

zb(t) = d

[−ε(1− ερη) cos(ω1t) + (1 + ε) cos(ω2t)

1 + ε2ρη

]
(S33)

with ρ = Nb/Nf , ε = mb/(mb −mf)∂bf 〈zb〉 and η = mf/mb. In experimentally relevant situations, we
have ε� 1, ρ� 1 and η ' 1. We can thus approximate the previous equations by

zf(t) ' d [(1− ερ) cos(ω̃ft) + ρε cos(ω̃bt)] (S34)
zb(t) ' d [−ε cos(ω̃ft) + (1 + ε) cos(ω̃bt)] , (S35)

and where according to Eq. (S24), we can take

ε =
2mb

mb −mf

(
ω̃b − ωb

ωb

)
. (S36)
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We study mixtures of a population-imbalanced, strongly interacting Fermi gas and of a Bose-Einstein condensed
gas at zero temperature. In the homogeneous case, we find that the Chandrasekhar-Clogston critical polarization
for the onset of instability of Fermi superfluidity is enhanced due to the interaction with the bosons. Predictions for
the critical polarization are also given in the trapped case, with a special focus on the situation of equal Fermi-Bose
and Bose-Bose coupling constants, where the density of fermions becomes flat in the center of the trap. This
regime can be realized experimentally using Feshbach resonances and is well suited to investigate the emergence
of exotic configurations, such as the occurrence of spin domains or the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase.

DOI: 10.1103/PhysRevA.90.043608 PACS number(s): 67.85.Pq, 03.75.Mn, 03.75.Ss, 05.30.Fk

I. INTRODUCTION

The property of fermions interacting with a Bose fluid has
been a longstanding subject of research in condensed matter
physics, dating back to the study of 3He −4He mixtures [1].
With the recent development of research activity in ultracold
gases, it is now possible to experimentally create mixtures of
degenerate bosonic and fermionic atomic gases [2–11]. Very
recently, the first experimental realization of a superfluid Bose-
Fermi mixture was reported [12], the Fermi gas being at the
unitarity limit.

There are several theoretical works on mixtures of super-
fluid Bose gases interacting with spin-1/2 Fermi gases
[13–17], but the behavior of coexisting superfluid Fermi and
Bose gases in the case of strong Fermi-Fermi interaction has
not yet been considered in the literature. Furthermore, since
spin-imbalanced fermions are predicted to give rise to exotic
phases such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase [18–20], it is of great interest to investigate how their
behavior is modified by the interaction with bosons.

In this paper, we show that in a homogeneous configura-
tion the Chandrasekhar-Clogston critical polarization for the
breakdown of superfluidity is larger than in the absence of
the bosonic component [21]. We then consider the case of a
harmonically trapped configuration: when the Bose-Bose and
Bose-Fermi interactions are equal, the fermionic density in the
region of coexistence with bosons becomes flat, because the
interaction with bosons exactly compensates the external
trapping potential [22]. We investigate the phase diagram of
the trapped gas when the fermion imbalance is varied and
show that, for a finite range of polarization, the fermionic
density in the Bose-Fermi coexistence region can become
inhomogeneous.

II. HOMOGENEOUS SYSTEM

The balanced unitary Fermi gas is known to be fully
superfluid at zero temperature. As one increases the polar-
ization, it has been observed that the system phase separates
into a balanced superfluid phase and an imbalanced normal
phase [23]. The two phases have different densities, and the
equilibrium conditions between the two phases fix the ratio x

between the density of the minority species over the density
of the majority species in the normal phase, which determines
the Chandrasekhar-Clogston limit. At zero temperature, this
critical ratio turns out to be, at unitarity, x ≈ 0.4 [21,24,25].
As we show, this value is modified by the interaction with
bosons. We assume that the Fermi gas is phase separated into
a superfluid phase with density ns for both species and a normal
phase with density n↑ and n↓ for the spin-up (majority) and
spin-down (minority) fermions, respectively. The density of
the coexisting bosons in the Fermi superfluid phase is nbs and
that in the normal phase is nbn. Later we discuss the stability
conditions for such configurations. We assume that both the
bosonic and fermionic species can be described within the local
density approximation and both the Bose-Bose and the
Bose-Fermi interactions are weak enough to be treated within
the mean-field approximation. Then the energy density in the
superfluid phase (Es) and in the normal phase (En) takes the
form

Es = gbb

2
n2

bs + 2gbf nbsns + es[ns],
(1)

En = gbb

2
n2

bn + gbf nbn(n↑ + n↓) + en[n↑,n↓],

where gbb ≡ 4π�2abb/mb, assumed to be positive, and gbf ≡
2π�2abf /mr are, respectively, the Bose-Bose and spin-
independent Bose-Fermi interaction coupling constants. The
Bose-Bose and Bose-Fermi scattering lengths are abb and abf ,
respectively, and mr ≡ mbmf /(mb + mf ), where mb and mf

are the boson and fermion masses, respectively. The Fermi
energy density in the superfluid phase is given by the universal
form

es[ns] ≡ ξ
6

5

�2

2mf

(6π2ns)
2/3ns, (2)

where ξ = 0.370 [25–27] is the Bertsch parameter. For the
normal phase we use the expansion in the parameter x ≡
n↓/n↑ introduced in [21]:

en[n↑,n↓] ≡ 3

5
εF↑n↑

(
1 − 5

3
Ax + mf

m∗ x5/3 + Fx2

)

≡ 3

5
εF↑n↑ε(x), (3)
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FIG. 1. (Color online) Critical ratios x ≡ n↓/n↑ (solid blue line
with left axis) and y ≡ ns/n↑ (dotted green line with right axis) as a
function of G ≡ n↑g2

bf /εF↑gbb.

where εF↑ ≡ (�2/2mf )(6π2n↑)2/3 is the noninteracting Fermi
energy of the majority species, and for the parameters in
ε(x) we use A = 0.615, m∗/mf = 1.20, and F = (5/9)A2,
determined by diagramatic methods and Monte-Carlo cal-
culations [28–30]. Using different sets of parameters would
not change our results significantly. The equilibrium between
the two phases is determined by matching the pressure and
the chemical potentials for both bosons and fermions at the
interface, which leads to the following conditions for x and
y ≡ ns/n↑:

ξy2/3 − 2Gy − 1

2
ε(x) − 3

10
ε′(x)(1 − x) + G(1 + x) = 0,

2Gy2 − 4

5
ξy5/3 − G

(1 + x)2

2
+ 2

5
ε(x) = 0,

(4)

where ε′(x) ≡ dε(x)/dx and G ≡ n↑g2
bf /(εF↑gbb) is a dimen-

sionless parameter independent of the bosonic density. As a
consequence, also the critical ratios x and y are independent
of the boson density, provided there are background bosons
with nonzero densities in both phases. The parameter G

has an important physical meaning, corresponding to the
ratio between the change in the energy of fermions caused
by the induced interaction −g2

bf /gbb in the static limit and
the noninteracting Fermi energy. The existence of two real
solutions for x and y for (4) is ensured for 0 � G � Gmax ≈
0.089, and in Fig. 1 we plot the resulting values of x and y

as a function of G. When G = 0, the critical ratio x ≈ 0.40
coincides with the value obtained in the absence of Bose-Fermi
interaction (gbf = 0). As G becomes larger, the value of x

decreases, reaching the minimum value of x ≈ 0.30, which
means that the superfluid phase of fermions is stabilized by
the interaction with bosons. The ratio y, on the other hand,
increases with G, reaching the maximum value of y ≈ 2.68,
which implies that the density jump at the interface of the
two phases becomes larger; the maximum value of the jump,
corresponding to G = Gmax, is 2ns/(n↑ + n↓) ≈ 4.1, to be
compared with the value ≈1.5 when G = 0.

The nonexistence of real solutions when G > Gmax is
related to the occurrence of dynamical instability in the
fermionic superfluid phase caused by the interaction with
bosons. The dynamical stability of the superfluid phase

requires that the following inequality be obeyed [31]:

δ2es[ns]

δn2
s

− 4
g2

bf

gbb

> 0, (5)

which is equivalent to imposing ξ/3y1/3 > G. We have
checked that the condition for having real solutions for x and
y coincides with the one ensuring dynamical stability. If G

becomes larger than Gmax, the superfluid Fermi gas and the
Bose gas are expected to phase separate.

III. TRAPPED SYSTEM

Let us now consider the case of a trapped quantum mixture.
In the absence of bosons, it is known that as one introduces a
small imbalance between the two species, the central part of
the trap remains superfluid and the outer shell is turned into a
normal state [21,23]. When the imbalance is large enough, the
whole Fermi gas is in the normal state.

In the presence of bosons, the situation can change
significantly. The energy of a highly polarized Fermi gas
interacting with a BEC gas is given, within the local density
approximation (LDA), by

E =
∫

r<Rb

d3r

{
gbb

2
n2

b(r) + [Vb(r) − μb]nb(r)

+ gbf nb(r)[n↑(r) + n↓(r)] + en[n↑(r),n↓(r)]

+ [Vf (r) − μ↑]n↑(r) + [Vf (r) − μ↓]n↓(r)

}

+
∫

Rb<r

d3r{en[n↑(r),n↓(r)] + [Vf (r) − μ↑]n↑(r)

+ [Vf (r) − μ↓]n↓(r)}, (6)

where Rb is the radius at which the boson density vanishes,
and Vb(r) and Vf (r) are the harmonic traps for bosons and
fermions, respectively [32]. The densities of boson, spin-up
fermion, and spin-down fermion are nb(r), n↑(r), and n↓(r),
respectively, and the corresponding chemical potentials are
labeled, respectively, with μb, μ↑, and μ↓.

Taking the variation of the energy with respect to nb(r),
n↑(r), and n↓(r) in the Bose-Fermi coexistence region r < Rb,
which is hereafter referred to as the “core” region, one obtains
the following equations:

nb(r) = {μb − Vb(r) − gbf [n↑(r) + n↓(r)]}/gbb,

δen

δnσ

+ Vf (r) − gbf

gbb

Vb(r) + gbf

gbb

μb − μσ

−(
g2

bf /gbb

)
[n↑(r) + n↓(r)] = 0, (7)

where σ = ↑,↓. The second equation explicitly reveals that,
if gbf Vb(r) = gbbVf (r), the fermion densities are not affected
by the presence of the trap and take a constant value inside
the core [22]. This follows from the fact that the effect of
the trap on the fermions is exactly canceled by the mean-field
interaction with bosons [33]. Conversely, the bosonic density
is not affected by the presence of fermions and, choosing
an external potential of harmonic form, the bosonic density,
for r < Rb, takes an inverted parabola profile, whose shape
is solely determined by the total number of bosons and the
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Bose-Bose coupling constant gbb. If instead gbf Vb > gbbVf ,
the fermions feel an antitrapping potential in the core region
and their density will increases when one moves away from
the center.

When the imbalance is small, most of the fermions are
in the superfluid phase and one can write down a similar
energy functional as (6), but the region r < Rb is filled with
the superfluid phase, while the region r > Rb is divided into an
inner superfluid phase and an outer normal phase. One obtains
the following conditions analogous to Eq. (7):

nb(r) = [μb − Vb(r) − 2gbf ns(r)]/gbb,

δes

δns

+ 2

(
Vf (r) − gbf

gbb

Vb(r)

)
+ 2

gbf

gbb

μb − (μ↑ + μ↓)

− 4(g2
bf /gbb)ns(r) = 0, (8)

in the core. As in the highly polarized case, one can see that in
this region the fermions exhibit a flat density distribution when
gbf Vb(r) = gbbVf (r). The equilibrium between the superfluid
phase and the normal phase in the tail is determined by match-
ing the pressure and the chemical potentials at the interface,
and the critical ratio x = n↓/n↑ is equal to 0.40, which is the
value predicted in the absence of bosons [21,24,25].

For concreteness we provide predictions for the mixture
of 7Li bosons and 6Li fermions reported in [12] where
V (r) ≡ Vb(r) = Vf (r), and we focus on the special case gbf =
gbb. This condition gbb = gbf [corresponding to abb/abf =
(mb + mf )/2mf ], together with that of unitarity for the Fermi
component, are achievable for a magnetic field of B = 817 G,
leading to a fermion-fermion scattering length of 25800aB and
to a boson-boson scattering length abb = 44.2aB , the average
Fermi momentum being kF = 106 ∼ 107m−1.

The density profile of the fermions (both inside and outside
the core) can be obtained by solving (7) or (8) and similar
equations for the region r > Rb. In Fig. 2, we plot two
density distributions for fixed values of Nb = 105 and N↑ =
1.5 × 105 but with two different values of N↓. We choose
abb = 10−3lhomb/mf , where lho ≡ √

�/mf ωf is the harmonic
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FIG. 2. (Color online) Local 3D density profile of the two op-
posite limits where the inhomogeneous phase in the core is about
to appear. We fix Nb = 105 and N↑ = 1.5 × 105. The solid (blue)
lines are spin-up fermions, the dotted (green) lines are spin-down
fermions, and the dash-dotted (red) lines are bosons. The left axis is
for the fermion densities and the right axis is for the boson density.
The number of spin-down fermions is (a) N↓ = 0.22 × 105 and (b)
N↓ = 0.33 × 105. The length is in units of lho, and the density of
particles is in units of 1/l3

ho.
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FIG. 3. (Color online) Critical polarizations for entering the in-
homogeneous core as a function of Nf /Nb for Nb = 105 (solid blue
lines) and Nb = 104 (dashed red lines). The cross corresponds to the
situation of Fig. 4.

oscillator length corresponding to a fermionic trap frequency
ωf = 2π × 420 Hz. Figure 2(a) corresponds to the smallest
value of total polarization of the gas [P ≡ (N↑ − N↓)/(N↑ +
N↓) = 0.74] compatible with the absence of superfluidity,
where the ratio n↓/n↑ in the core is equal to the critical value
determined by Eq. (4) for the value of G in the core region.
A smaller value of P would correspond to the onset of a
superfluid region in the core. Figure 2(b) instead corresponds
to the largest value of total polarization (P = 0.63) compatible
with the presence of a superfluid phase occupying the whole
core region. A larger value of P would correspond to the onset
of a normal region in the core (see also Fig. 3).

For intermediate values of the population imbalance,
coexistence of the superfluid and the normal phase takes
place in the core region, giving rise to inhomogeneity and
new interesting physics. Inhomogeneity in the core can be
reached either by starting with a balanced superfluid gas
and gradually decreasing the number of minority fermions
until the normal part enters the core, or by starting with a
completely polarized gas and gradually increasing the number
of minority fermions until a superfluid phase region in the
core is favorable. In Fig. 3, the two critical polarizations
for entering the inhomogeneous core phase are plotted as a
function of Nf /Nb, where Nf ≡ N↑ + N↓, for two different
values of Nb. The upper region corresponds to the phase with
the whole system being normal [Fig. 2(a)], and the lower region
corresponds to the whole core being superfluid [Fig. 2(b)].
The region between the lines represents the inhomogeneous
core phase. We observe that the critical polarization as a
function of Nf /Nb is not very sensitive to the number of
bosons. The two critical polarization lines approach the value
0.8 as Nf /Nb → ∞. This asymptotic value corresponds to
the critical polarization for the onset of superfluidity in the
absence of bosons [24].

We now discuss the possible scenarios characterizing the
inhomogeneous phase for intermediate values of population
imbalance (see Fig. 3). The simplest possibility, hereafter
called the superfluid-normal (S-N) scenario, is that the core is
phase separated into a central superfluid and an outer normal
phase. The equilibrium condition between the superfluid phase
and the normal phase turns out to be determined by the same
conditions (4) holding for the homogeneous mixture. Another
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FIG. 4. (Color online) Local 3D density and doubly integrated
density profiles for two different configurations for the core, corre-
sponding to the S-N and N-S-N scenarios in the text. We have chosen
Nb = 105 and N↑ = 1.5 × 105 as in Fig. 2. The value of N↓ is instead
0.28 × 105, corresponding to P = 0.69 and Nf /Nb = 1.78, i.e., to
the inhomogeneous core region of Fig. 3. The solid (blue) lines are
for spin-up fermions and the dotted (green) lines are for spin-down
fermions. The dash-dotted (red) lines are for bosons for the local
density, and the dash-dotted (black) lines are the difference n̄↑ − n̄↓
for the doubly integrated density. For the local density, the left axis
is for fermions and the right axis is for bosons. Lengths are in units
of lho.

possibility, hereafter called the normal-superfluid-normal (N-
S-N) scenario, is that the core is phase separated into a central
normal phase and an outer superfluid phase, while the tail is
normal. The two scenarios have very similar energies and can
be easily distinguished in experiments [34] by measuring the
doubly integrated column density n̄σ (z) ≡ ∫

dxdy nσ (x,y,z),
because the superfluid region appears as a flat profile in the
difference n̄↑(z) − n̄↓(z) [35]. This flat, doubly integrated
density profile is due to pairing and should not be confused with
the three-dimensional (3D) flat density profile that is caused by
the Fermi-Bose interaction. Typical density distributions and
corresponding doubly integrated column densities are plotted
in Fig. 4. Another interesting feature of this inhomogeneous
core phase is that the boson density is not a simple inverse
parabola but has a small jump (not visible in the figure) at the
phase boundary between the superfluid and normal fermion.
The two scenarios of Fig. 4 can be energetically separated
by changing the value of gbb as compared to gbf . If, e.g.,
gbb � gbf , the fermions are affected by a small antitrapping
potential in the core and the second scenario, Fig. 4(b),
will take place. The difference should be clearly visible
experimentally, as shown in the doubly integrated densities
in Fig. 4.

The emergence of the inhomogeneous phase is also
compatible with other more exotic possibilities, such as the
emergence of the FFLO phase [18–20]. Indeed, the local
chemical potential for fermions is constant over the flat region;
therefore phases which can exist only within a narrow range
in the chemical potential could be observed in the core.
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We study the dynamics of counterflowing bosonic and fermionic lithium atoms. First, by tuning the
interaction strength we measure the critical velocity vc of the system in the BEC-BCS crossover in the low
temperature regime and we compare it to the recent prediction of Castin et al., C. R. Phys. 16, 241 (2015).
Second, raising the temperature of the mixture slightly above the superfluid transitions reveals an
unexpected phase locking of the oscillations of the clouds induced by dissipation.
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Superconductivity and superfluidity are spectacular
macroscopic manifestations of quantum physics at low
temperature. Besides liquid helium 4 and helium 3, dilute
quantum gases have emerged over the years as a versatile
tool to probe superfluid properties in diverse and controlled
situations. Frictionless flows have been observed with both
bosonic and fermionic atomic species, in different geom-
etries and in a large range of interaction parameters from
the weakly interacting Bose gas to strongly correlated
fermionic systems [1–6]. Several other hallmarks of super-
fluidity such as quantized vortices or second sound were
also observed in cold atoms [7–9].
A peculiar feature of superfluid flows is the existence of

a critical velocity above which dissipation arises. In
Landau’s original argument, this velocity is associated
with the threshold for creation of elementary excitations
in the superfluid: for a linear dispersion relation, it predicts
that the critical velocity is simply given by the sound
velocity in the quantum liquid. This critical velocity has
been measured both in superfluid helium [10] and ultracold
atoms [1,4–6,11]. However, the recent production of a
Bose-Fermi double superfluid [12] raised new questions on
Bose-Fermi mixtures [13–16] and interrogations on the
validity of Landau’s argument in the case of superfluid
counterflow [17–22].
In this Letter, we study the dynamics of a Bose-Fermi

superfluid counterflow in the crossover between the Bose-
Einstein condensate (BEC) and Bardeen-Cooper-Schrieffer
(BCS) regimes and at finite temperature. We show how
friction arises when the relative velocity of the Bose and
Fermi clouds increases and we confirm that damping
occurs only above a certain critical relative velocity vc.
We compare our measurements to Landau’s prediction and
its recent generalization vc ¼ cFs þ cBs , where cFs and cBs are
the sound velocities of the fermionic and bosonic compo-
nents, respectively [18]. Finally, we study finite temper-
ature damping of the counterflow and we show that the
system can be mapped onto a Caldeira-Leggett-like model
[23] of two quantum harmonic oscillators coupled to a bath
of excitations. This problem has been recently studied as a

toy model for decoherence in quantum networks [24] or for
heat transport in crystals [25] and we show here that the
emergence of dissipation between the two clouds leads to a
Zeno-like effect which locks their relative motions.
Our Bose and Fermi double-superfluid setup was pre-

viously described in [12]. We prepare vapors of bosonic (B)
7Li atoms spin polarized in the second-to-lowest energy
state and fermionic (F) 6Li atoms prepared in a balanced
mixture of the two lowest spin states noted j↑i, j↓i. The
two species are kept in the same cigar-shaped hybrid
magnetic-optical trap in which evaporative cooling is
performed in the vicinity of the 832 G 6Li Feshbach
resonance [26]. The final number of fermions NF ¼ 2.5 ×
105 greatly exceeds that of the bosons NB ∼ 2.5 × 104 and
the temperature of the sample is adjusted by stopping the
evaporation at different trap depths. The thermal pedestal
surrounding the 7Li BEC provides a convenient low
temperature thermometer for both species after sufficiently
long thermalization time (∼1 sec). The lowest temperature
achieved in this study corresponds to almost entirely
superfluid clouds with T=Tc;α¼B;F ≤ 0.5, where Tc;α is
the superfluidity transition temperature of species α.
The magnetic field values used in the experiment (780–

880 G) enable us to scan the fermion-fermion interaction
within a range −0.5 ≤ 1=kFaF ≤ 1. Here, aF is the s-wave
scattering length between j↑i and j↓i fermions and the
Fermi momentum kF is defined by ℏ2k2F=2mF ¼
ℏω̄ð3NFÞ1=3 with ω̄ the geometric mean of the trap
frequencies, and NF the total number of fermions of mass
mF. In our shallowest traps, typical trap frequencies for 6Li
are ωx ¼ ωy ¼ 2π × 550 Hz and ωz ¼ 2π × 17 Hz. Since
the bosonic and fermionic isotopes experience the same
trapping potentials, the oscillation frequencies of the two
species are within a ratio

ffiffiffiffiffiffiffiffi

6=7
p ≃ 0.9.

We excite the dipole modes of the system by displacing
adiabatically the centers of mass of the clouds from their
initial position by a distance z0 along the weakly confined z
direction, and abruptly releasing them in the trap. The two
clouds evolve for a variable time t before in situ absorption
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images perpendicular to the z direction are taken. The
measurement of their doubly integrated density profiles
gives access to axial positions and atom numbers of both
species. Typical time evolutions of the centers of mass are
shown in Fig. 1 for different parameter values. Since the

Bose and Fermi components oscillate at different frequen-
cies, they oscillate in quadrature after a few periods. By
changing z0, we can thus tune the maximum relative
velocity between the two clouds and probe the critical
superfluid counterflow.
As shown in Fig. 1(a), the superfluid counterflow

exhibits no visible damping on a ≃5 s time scale for very
low temperature and small initial displacement. A striking
feature is the beat note on the 7Li oscillation amplitude due
to the coherent mean-field coupling to the 6Li cloud [12].
For larger relative velocities, 7Li oscillations are initially
damped [Fig. 1(b)] until a steady-state regime as in
Fig. 1(a) is reached. We fit the time evolution of the cloud
position using the phenomenological law

zBðtÞ ¼ dðtÞ½a cosðωBtÞ þ b cosðωFtÞ�;
dðtÞ ¼ d1 þ d2 expð−γBtÞ: ð1Þ

We measure the damping rate γB as a function of
relative velocity for six different values of magnetic field,
exploring a large region of the crossover going from the
BCS (1=kFaF ¼ −0.42, B ¼ 880 G) to the BEC side
(1=kFaF ¼ 0.68, B ¼ 780 G), see Fig. 2. For these mag-
netic field values, the Bose gas remains in the weakly
interacting (repulsive) regime and the Bose-Fermi scatter-
ing length is aBF ≃ 41a0, constant in this magnetic field
range, and equal for both j↑i and j↓i spin states.
We extract the critical velocity vc using an ad hoc power-

law fitting function γB ¼ AΘðv − vcÞ½ðv − vcÞ=vF�α, where
Θ is the Heaviside function and vF is the Fermi velocity
given by vF ¼ ℏkF=mF. For details, see [27]. vc in the
BEC-BCS crossover is displayed in Fig. 3 (red dots)
and compared to the predictions of Landau and Castin
et al. [18]. In this latter work, dissipation arises by the
creation of excitation pairs and yields a critical velocity

FIG. 1 (color online). Center-of-mass oscillations of bosons
(blue, top) and fermions (red, bottom), for different sets of
parameters at unitarity. Solid lines: fits using Eq. (1) for the
bosons and a similar equation for the fermions. (a) T=TF ¼ 0.03,
T=Tc;b ≤ 0.5, z0 ¼ 10 μm. Superfluid regime, no damping is
observed and ωB ¼ 2π × 15.41ð1Þ Hz ≈ ffiffiffiffiffiffiffiffi

6=7
p

ωF. The observed
beating at ωF − ωB is due to coherent energy exchange between
the clouds. (b) T=TF ¼ 0.03 and z0 ¼ 150 μm. For a larger initial
displacement, initial damping (γB ¼ 2.4 s−1) is followed by
steady-state evolution. ωB ¼ 2π × 14.2ð1Þ Hz ≈ ffiffiffiffiffiffiffiffi

6=7
p

ωF.
(c) T=TF ¼ 0.4 and z0 ¼ 80 μm. At higher temperature, phase
locking of the two frequencies is observed with ωF ≈ ωB ¼
2π × 17.9ð3Þ Hz and γB ¼ γF ¼ 1.4ð5Þ s−1.

FIG. 2 (color online). Damping rate of the center-of-mass
oscillations versus maximal relative velocity in the BEC-BCS
crossover in units of the Fermi velocity vF. Dark blue dots, BEC
side (780 G) 1=kFaF ¼ 0.68; red squares, unitarity (832.2 G)
1=kFaF ¼ 0; light blue diamonds, BCS side (880 G)
1=kFaF ¼ −0.42. Power law fits with thresholds provide the
critical velocity (solid lines).
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vc ¼ Min
p

σ¼f;b

f½ϵBðpÞ þ ϵFσ ðpÞ�=½p�g. In this expression, ϵBðpÞ
denotes the dispersion relation of excitations in the BEC
and ϵFσ ðpÞ refers to the two possible branches of the Fermi
superfluid, phononlike (σ ¼ b), and threshold for pair
breaking excitations (σ ¼ f) [28]. For homogeneous gases,
at unitarity and on the BEC side of the crossover, this
critical relative velocity turns out to be simply the sum of
the respective sound velocities of the Bose and Fermi
superfluids, vc ¼ cFs þ cBs . We thus plot in Fig. 3 the
calculated sound velocities of both superfluids in an
elongated geometry obtained by integration over the trans-
verse direction [29–33] (red dashed line cFs , blue bars cBs ).
Typically, cBs contributes ≃20%–25% to the sum shown as
green squares in Fig. 3. Around unitarity and on the BCS
side of the resonance, our experimental data are consistent
with this interpretation as well as with a critical velocity
vc ¼ cFs that one would expect by considering the BEC as a
single impurity moving inside the fermionic superfluid. By
contrast, we clearly exclude the bosonic sound velocity as a
threshold for dissipation.
Our measured critical velocities are significantly higher

than those previously reported in pure fermionic systems
which, for all interaction strengths, were lower than
Landau’s criterion [4,6]. The main difference with our
study is the use of focused laser beams instead of a BEC as
a moving obstacle. In [6], the laser beam is piercing the
whole cloud including its nonsuperfluid part where the
density is low, and its potential may create a strong density
modulation of the superfluid. These effects make a direct

comparison to Landau criterion difficult [35]. On the
contrary, in our system the size of the BEC (Thomas
Fermi radii of 73; 3; 3 μm) is much smaller than the typical
size of the Fermi cloud (350; 13; 13 μm around unitarity).
For oscillation amplitudes up to �200 μm the BEC probes
only the superfluid core of the fermionic cloud. During its
oscillatory motion along z the Bose gas may explore the
edges of the Fermi superfluid where the density is smaller.
However, it is easy to check that the ratio v=cFs is maximum
when the centers of the two clouds coincide [27]. Finally, as
the mean-field interaction between the two clouds is very
small [27] our BEC acts as a weakly interacting local probe
of the Fermi superfluid.
On the BEC side of the resonance (780 G), however, we

observe a strong reduction of the measured critical velocity
compared to the predicted values. The effect is strikingly
seen in Fig. 2, dark blue dots (see also Supplemental
Material [27]). This anomalously small value for positive
scattering lengths is consistent with previous measurements
[4,6]. Its origin is still unclear but several explanations can
be put forward [35]. First, it is well known that vortex
shedding can strongly reduce superfluid critical velocity.
However, this mechanism requires a strong perturbation.
The density of the Bose gas and the mean-field interaction
between the two clouds are probably too small for vortex
generation through a collective nucleation process. Second,
inelastic losses increase on the BEC side of a fermionic
Feshbach resonance and heat up the system [36]. This
hypothesis is supported by the presence of a clearly visible
pedestal in the density profiles of the BEC taken at 780 G.
At this value of the magnetic field, we measure a ≃60%

condensed fraction, corresponding to a temperature
T=Tc;B ≃ 0.5. Even though the two clouds are still super-
fluids as demonstrated by the critical behavior around vc,
the increased temperature could be responsible for the
decrease of vc.
We now present results of experiments performed at a

higher temperature (0.03≲ T=TF ≲ 0.5) for B ¼ 835 G.
For low temperatures (T=TF ≤ 0.2), the two clouds remain
weakly coupled and, as observed in Fig. 4, the bosonic and
fermionic components oscillate at frequencies in the
expected ratio ≃0.9≃ ffiffiffiffiffiffiffiffi

6=7
p

. A new feature emerges for
T ≳ Tc;B ≈ 0.34TF > Tc;F where both gases are in the
normal phase. In this “high” temperature regime, the
two clouds are locked in phase: 7Li oscillates at 6Li
frequency (Fig. 4) and the two components are equally
damped [Fig. 1(c)]. This remarkable behavior can be
understood as a Zeno effect arising from the increased
dissipation between the two components. Indeed, the
system can be described as a set of two harmonic oscillators
describing, respectively, the macroscopic motion of the
global center of mass of the system (Kohn’s mode [37]) and
the relative motion of the two clouds [27]. These two
degrees of freedom are themselves coupled to the “bath” of

FIG. 3 (color online). Critical velocity of the Bose-Fermi
superfluid counterflow in the BEC-BCS crossover normalized
to the Fermi velocity vF. Red dots, measurements. Red dot-
dashed line, sound velocity cFs of an elongated homogeneous
Fermi superfluid calculated from its equation of state [29,30] after
integration of the density in the transverse plane, and also
measured in [34]. Blue bars, calculated sound velocity cBs of
the elongated 7Li BEC for each magnetic field (880, 860, 832,
816, 800, 780 G). Green squares indicate the prediction
vc ¼ cFs þ cBs . Error bars and cBs are discussed in [27].
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the internal excitations of the two clouds (breathing mode,
quadrupole modes, pair breaking excitations…).
In the spirit of the dressed-atom picture, we can represent

the state of the two harmonic oscillators by the “radiative”
cascade of Fig. 5. Here the states jN; ni are labeled by the
quantum numbers associated to Kohn’s mode (N) and
relative motion (n) of the two clouds and we trace out the
degrees of freedom of the bath. On the one hand, Kohn’s
mode is not an eigenstate of the system for fermions and
bosons of different masses; center-of-mass and relative-
motion modes are coupled and this coherent coupling is
responsible for the dephasing of the oscillations of the two
clouds in the weakly interacting regime. On the other hand,
interspecies interactions do not act on the center of mass of
the whole system, owing to Kohn’s theorem, but on the
contrary lead to an irreversible “radiative” decay of the
relative motion at a rate γ.

In our experiments, the initial state is a pure center-of-
mass excitation jN; 0i. If we neglect the interspecies
coupling, the system evolves in the subspace spanned by
jN − n; nin¼0;…;N of the two coupled oscillators and the
system oscillates at a frequency δω≃ ωB − ωF as the
centers of mass of the Bose and Fermi clouds dephase.
If we now consider the opposite limit where the decay rate γ
is larger than the dephasing frequency δω, the strong
coupling to the bath prevents the conversion of the
center-of-mass excitations into relative motion. As soon
as the system is transferred into jN − 1; 1i it decays towards
state jN − 1; 0i. Similarly to optical pumping in quantum
optics, we can eliminate adiabatically the excited states of
the relative motion and restrict the dynamics of the system
to the subspace jN; 0iN¼0;…;∞ of Kohn’s excitations. This
situation is reminiscent of the synchronization of two spins
immersed in a thermal bath predicted in [38] or to
phenomenological classical two-coupled oscillators model.
In this Letter, we have investigated how a Bose-Fermi

superfluid flow is destabilized by temperature or relative
velocity between the two clouds. In the limit of very low
temperature the measured critical velocity for superfluid
counterflow slightly exceeds the speed of sound of the
elongated Fermi superfluid and decreases sharply towards
the BEC side of the BEC-BCS crossover. In a future study,
we will investigate the role of temperature, of the confining
potential, and of the accelerated motion of the two clouds
[35] that should provide a more accurate model for the
damping rate versus velocity and more insights on the
nature of the excitations. In particular, the ab initio calcu-
lation of the damping rate will require clarification of the
dissipation mechanism at play in a trapped system where
the bandwidth of the excitation spectrum is narrow, in
contrast to a genuine Caldeira-Leggett model [39].
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Supplemental Information

DAMPING RATES IN THE BEC-BCS CROSSOVER

All the center of mass (CoM) damping rates measured in the BEC-BCS crossover and their respective fitting
functions to extract vc are shown in Fig. 1. As indicated in the main text the fit function is γB = AΘ(v − vc)((v −
vc)/vF)α, where Θ is the Heaviside function and vF is the Fermi velocity. The χ2 test reveals that most of our data is
consistent with α = 1 as in [1, 2]. Due to the current absence of theoretical prediction for α in a trapped system, we
allow α to vary between 0.5 and 2, and this induces a systematic correlation between the extracted α and vc that we
include in our error bars on vc shown in Fig. 3 of main text. The fit results for α = 1 are displayed in Tab. I along
with experimental parameters to produce Fig. 3 of main text. The error bars given for vc give the span of vc when
changing α from 0.5 to 2 in the fit function. Note the strong decrease of the damping rate towards the BCS regime.

In addition, cBs depends on the Bose-Bose scattering length which varies with magnetic field and in particular
diverges for a magnetic field of 845.5 G (corresponding to 1/kFaF = −0.13). We therefore show only the values of cBs
at the six magnetic field values used in our experiments.

Following [3] the Bose-Fermi coupling can be characterized by the quantity ∆ =
√

∂µB

∂nF

∂µF

∂nB
/∂µB

∂nB

∂µF

∂nF
. As ∆ increases,

the interspecies interactions affect more and more the properties of the system and for ∆ = 1, the mixture is
dynamically unstable at rest and demixes. For measurements presented here we typically have ∆ ' 15%.
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FIG. 1: Damping rates of the center of mass oscillations versus maximal relative velocity in the BEC-BCS crossover in unit of
the Fermi velocity vF. Red line: fit with α = 1. Orange zone: region spanned by the fitting function when varying α from 0.5
to 2.
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B (G) 780 800 816 832 860 880

aF(a0) 6.4× 103 11.3× 103 24.0× 103 ∞ − 16.5× 103 − 10.3× 103

1/kFaF 0.68± 0.07 0.39± 0.01 0.18± 0.02 0± 0.002 − 0.26± 0.05 − 0.42± 0.03

aB(a0) 21.3 30.8 43.3 69.5 76.0 259

cB(10−2vF) 9.6± 1.4 9.4± 0.14 11.0± 1.6 11.1± 1.7 11.4± 1.7 15.1± 2.2

vc/vF 0.17+0.06
−0.10 0.38+0.02

−0.04 0.35+0.04
−0.11 0.42+0.08

−0.14 0.54+0.02
−0.06 0.40+0.10

−0.20

A(s−1) 14.8± 1.4 85± 32 24.6± 4.3 17.3± 3.6 30± 11 2.9± 0.5

vc/c
F
s 0.53+0.19

−0.31 1.11+0.06
−0.12 0.99+0.11

−0.31 1.17+0.22
−0.39 1.46+0.05

−0.16 1.05+0.26
−0.53

TABLE I: Experimental parameters, sound velocity at the center of the Bose gas in an elongated geometry cB =
√
µB/2mB,

critical velocity vc/vF, damping rate A(s−1), and vc/c
F
s for α = 1 in the BEC-BCS crossover. The typical number of bosons

and fermions are constant in the crossover and are respectively 2.5± 0.5× 104 and 2.5± 0.5× 105.

EVOLUTION OF THE VELOCITIES IN THE TRAP

We demonstrate here that for a Bose-Fermi superfluid mixture oscillating in a harmonic trap, the ratio v/cFs is
maximum when the centers of two clouds coincide. This can be demonstrated in the general case using the equation
of state in the BEC-BCS crossover [4], but we will derive it here for the simpler case of a polytropic equation of state.

In the frame of the Fermi cloud, we can describe the trajectory of the BEC by the simple harmonic oscillation

zB(t) = Z0 cos(ωBt), (1)

where we have omitted the slow beating of the amplitude Z0 due to the oscillation-frequency difference between bosons
and fermions. The velocity of the BEC is then v(z) = −Z0ωB sin(ωBt), hence

(
v(z)

v(z = 0)

)2

=

(
1− z2

Z2
0

)
, (2)

For a polytropic equation of state, the local sound velocity in the Fermi cloud is given by [5]

cFs (z)2 =
γ

γ + 1

µF(z)

mF
(3)

cFs (z)2 =
γ

γ + 1

µF(0)

mF

(
1− z2

z2TF

)
, (4)

where zTF is the Thomas-Fermi radius of the cloud, and the local chemical potential µF(z) was obtained using the
local density approximation. Combining equations 2 and 4, we then obtain

v(z)2

cFs (z)2
=

v(z = 0)2

cFs (z = 0)2
1− z2/Z2

0

1− z2/z2TF

, (5)

which is maximum for z = 0 when Z0 ≤ zTF.

LOMB-SCARGLE ALGORITHM

We use the fit-free Lomb-Scargle periodogram - or Least Square Spectral Analysis - to extract the spectral com-
ponents of the oscillations for different temperatures [6, 7]. This method is an adaptation of the Fourier transform
to the case of unevenly spaced data. For N data points {hi = h(ti)}i=1,...,N taken at times {ti}, the periodogram is
defined as

PN (ω) =
1

2σ2

{
[
∑
j(hj − h̄) cosω(tj − τ)]2∑

j cos2 ω(tj − τ)

+
[
∑
j(hj − h̄) sinω(tj − τ)]2
∑
j sin2 ω(tj − τ)

} (6)
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FIG. 2: Power spectrum of the oscillations for different temperatures, obtained using the Lomb-Scargle algorithm of the center-
of-mass displacement. Above T ≈ Tc,B ≈ 0.34TF > Tc,F, oscillations of the Bose and Fermi clouds become locked together at
ωF. A value of 10 for the power represents typically a significance of 0.002.

where τ is given by tan(2ωτ) =
∑

j sin 2ωtj∑
j cos 2ωtj

making the periodogram independent of the time origin. h̄ = 1
N

∑N
i=1 hi

and σ = 1
N−1

∑N
i=1(hi − h̄)2 are the mean and the variance of {hi}i. The periodogram, or power spectrum (see Fig.

2), gives access to the statistical significance (ie the probability of rejecting the null hypothesis when it is true) of
each of the evaluated frequencies: noting Pmax = max

ω
PN (ω), the signifiance is proportional to e−Pmax , and here a

value of 10 for the power represents typically a significance of 0.002. Fig. ?? of the main text displays the set of
maxima of Fig. 2; error bars correspond to a significance increased by a factor of 10.

RADIATIVE CASCADE MODEL

Consider a mixture of two atomic species labeled by α = 1, 2 of identical masses m and confined in identical
harmonic traps. According to Kohn’s theorem [8], the single-species Hamiltonian can always be written as

Hα =
P 2
α

2Mα
+
Mαω

2X2
α

2
+H

(α)
int , (7)

where Pα is the total momentum of cloud α, Xα the position of its center of mass and Mα = Nαm its total mass (Nα
being the number of atoms). H

(α)
int acts only on the internal excitation modes of the cloud and commutes with the

center-of-mass variables.
Neglecting interspecies interactions, the total Hamiltonian of the system can be written asH = H1+H2. Introducing

the center of mass/relative variables, we have then

H = H1 +H2 =
P 2

2M
+
Mω2X2

2
+
p2

2µ
+
µω2x2

2
+H

(1)
int +H

(2)
int , (8)
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with the usual definitions P = P1 +P2, X = (M1X1 +M2X2)/M , p = µ(P1/M1−P2/M2), x = x1−x2, M = M1 +M2

and µ = M1M2/M . The dynamics of the center of mass and relative variables are described by independent harmonic
oscillators decoupled from the internal degrees of freedom. The decoupled base can therefore be written as |N,n, ϕ〉,
where N (resp. n) is the excitation number of the center-of-mass (resp. relative) motion, and ϕ describes the state of
the internal excitation modes.

Let’s now add the interspecies interactions and the mass difference between the two species.

1. Interspecies coupling: interactions between the two species are described by the Hamiltonian

H1,2 =
∑

i≤N1,j≤N2

U(x1,i − x2,j). (9)

where xi,α is the position of the i-th particle of species α and U is the interspecies interaction potential.

Owing to Kohn’s theorem, this Hamiltonian commutes with P and X and therefore couples the internal degrees
of freedom only to the relative variables (x, p).

2. Mass difference: assume that species α has a mass mα = m + εαδm/2, with ε1 = 1 and ε2 = −1. This mass
difference adds to the kinetic energy a term

δHK = −δm
2m

∑

i,α

εα
p2i,α
2m

. (10)

As before, we can isolate the center of mass contribution and write

δHK = −δm
2m

[
P 2
1

2M1
− P 2

2

M2

]
+ δHK,int, (11)

where δHK,int contributes to the internal energies of the clouds and commutes with the center-of-mass degrees
of freedom.

Let’s now insert these two contributions in the total Hamiltonian. We have

H = HCoM +Hrel +H ′int +H1,2 +Hcoh. (12)

with

HCoM =
P 2

2M
(1− ρδm

2m
) +

Mω2

2
X2 (13)

Hrel =
p2

2µ
(1 + ρ

δm

2m
) +

µω2

2
x2 (14)

H ′int = H
(1)
int +H

(2)
int + δHK,int, (15)

Hcoh =
δm

m

(
P · p
M

)
, (16)

and ρ = (M1 −M2)/M .
This hamiltonian describes two harmonic oscillators (HCoM and Hrel) coupled to a thermal bath (H ′int). The

coupling is ensured by the P · p terms which couples only the center-of-mass and relative degrees of freedom, and
H1,2 that commutes with HCoM, owing to Kohn’s theorem, and couples the relative motion to the internal degrees of
freedom of the two clouds.

The interaction between the relative degrees of freedom and the internal thermal bath described by H1,2
int leads to an

irreversible decay of the relative motion. By contrast, Hcoh reflects the coherent beating existing between the relative
oscillations of the two species due to their oscillation-frequency difference. It can be expressed using the annihilation
operators a and b for the center of mass and relative motions respectively. We have then
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Hcoh = −δm
m

~ω
√

µ

M

(
a− a†

) (
b− b†

)
. (17)

Using the rotating wave approximation, one can eliminate the non resonant terms and one finally gets

Hcoh '
δm

2m
~ω
√

µ

M

(
a†b+ ab†

)
. (18)

This Hamiltonian is similar to the generalized Caldeira-Leggett model [9] used in solid state physics to study heat
transport by phonons in a crystal. The absence of coupling between the bath and Kohn’s mode generalizes to the
decomposition used in [10] for a bilinear coupling between the harmonic oscillators and the bath.

In the experiment, we excite the center of mass motion and the initial state is |N, 0, ϕ〉. The coherent coupling
transfers the system to the state |N − 1, 1, ϕ〉. If the coupling to the bath is strong, the relative motion decays
very fast and the system falls into a state |N − 1, 0, ϕ′〉 (actually, since several states of the bath are involved, it is
more appropriate to describe the state of the two harmonic oscillators by a density matrix rather than a well-defined
quantum state). In this case, just like for optical pumping, we can adiabatically eliminate the intermediate state
|N − 1, 1, ϕ〉 and consider that the dynamics occurs only in the sub-space |N, 0, ϕ〉, where the relative motion is never
excited and the centers of mass of the two clouds are locked. In some sense, this freezing of the system state in a pure
motion of its center of mass can be considered as a manifestation of the quantum Zeno effect.
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The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body
physics, attracting wide theoretical and experimental interest. Here we first present a theoretical
model that describes the dynamic competition between two-body evaporation and three-body re-
combination in a harmonically trapped unitary atomic gas above the condensation temperature. We
identify a universal magic trap depth where, within some parameter range, evaporative cooling is
balanced by recombination heating and the gas temperature stays constant. Our model is developed
for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments
performed with unitary 133Cs and 7Li atoms fully support our predictions and enable quantitative
measurements of the 3-body recombination rate in the low temperature domain. In particular, we
measure for the first time the Efimov inelasticity parameter η∗ = 0.098(7) for the 47.8-G d-wave
Feshbach resonance in 133Cs. Combined 133Cs and 7Li experimental data allow investigations of loss
dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body
loss. We confirm the 1/T 2 temperature universality law up to the constant η∗.

PACS numbers: 05.30.Jp Boson systems
05.70.Ln Nonequilibrium and irreversible thermodynamics
34.50.-s Scattering of atoms and molecules
51.30.+i Thermodynamic properties, equations of state

I. INTRODUCTION

Resonantly interacting Bose systems realized in ultra-
cold atomic gases are attracting growing attention thanks
to being among the most fundamental systems in na-
ture and also among the least studied. Recent theoret-
ical studies have included hypothetical BEC-BCS type
transitions [1–5] and, at unitarity, calculations of the uni-
versal constant connecting the total energy of the system
with the only energy scale left when the scattering length
diverges: En = ~2n2/3/m [6–9]. The latter assumption
itself remains a hypothesis as the Efimov effect might
break the continuous scaling invariance of the unitary
Bose gas and introduce another relevant energy scale to
the problem. A rich phase diagram of the hypothetical
unitary Bose gas at finite temperature has also been pre-
dicted [10, 11].

In experiments, several advances in the study of the

∗Present Address: Toptica Photonics AG, Lochhamer Schlag 19,
82166 Gräfelfing, Germany; These authors contributed equally to
this work.
†These authors contributed equally to this work.
‡Present Address: 5. Physikalisches Institut and Center for In-
tegrated Quantum Science and Technology, Universität Stuttgart,
Pfaffenwaldring 57, 70550 Stuttgart, Germany
§Present Address: Institut für Laserphysik, Universitt Hamburg,
Luruper Chaussee 149, Building 69, D-22761 Hamburg, Germany
¶Present address: Department of Physics, Columbia University,
538 West 120th Street, New York, NY 10027-5255, USA

resonantly interacting Bose gas have recently been made
using the tunability of the s-wave scattering length a near
a Feshbach resonance. The JILA group showed signa-
tures of beyond-mean-field effects in two-photon Bragg
spectroscopy performed on a 85Rb BEC [12], and the
ENS group quantitatively studied the beyond mean-field
Lee-Huang-Yang corrections to the ground state energy
of the Bose-Einstein condensate [13]. Logarithmic be-
havior of a strongly interacting 2D superfluid was also
reported by the Chicago group [14]. Experiments have
also started to probe the regime of unitarity (1/a = 0
directly. Three-body recombination rates in the non-
degenerate regime have been measured in two different
species, 7Li [15] and 39K [16], and clarified the temper-
ature dependence of the unitary Bose gas lifetime. In
another experiment, fast and non-adiabatic projection of
the BEC on the regime of unitarity revealed the establish-
ment of thermal quasi-equilibrium on a time scale faster
than inelastic losses [17].

In a three-body recombination process three atoms col-
lide and form a dimer, the binding energy of which is
transferred into kinetic energies of the colliding partners.
The binding energy is usually larger than the trap depth
and thus leads to the loss of all three atoms. Because
three-body recombination occurs more frequently at the
center of the trap, this process is associated with “anti-
evaporative” heating (loss of atoms with small poten-
tial energy) which competes with two-body evaporation
and leads to a non trivial time dependence for the sam-
ple temperature. In this paper, we develop a theoretical
model that describes these atom loss dynamics. We si-
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multaneously take into account two and three-body losses
to quantitatively determine each of these contributions.
We predict the existence of a magic value for the trap-
depth-over-temperature ratio where residual evaporation
compensates for three-body loss heating and maintains
the gas temperature constant within some range of pa-
rameters. We then apply our model to analyze the loss
dynamics of 133Cs and 7Li unitary Bose gases prepared
at various temperatures and atom numbers. Compar-
ing measurements in these two different atomic species
we find the dynamics to be universal, i.e. in both sys-
tems the three-body loss rate is found to scale universally
with temperature. Excellent agreement between theory
and experiment confirms that the dynamic evolution of
the unitary Bose gas above the condensation tempera-
ture can be well modelled by the combination of two and
three-body interaction processes.

II. MODEL

A former study developed for measuring three-body
decay in trapped 133Cs [18] atoms has proposed a model
to describe the time evolution of the atom number N and
the temperature T taking into account the three-body re-
combination induced loss and the heating associated with
it. This model is valid in the limit of deep trapping poten-
tials (trapping depth much larger than the atom’s tem-
perature) and for temperature independent losses. Here
we generalize this model to include evaporation induced
cooling and the associated atom loss, as well as the tem-
perature dependence of the three-body loss rate.

A. Rate equation for atom number

The locally defined three-body recombination rate
L3n

3(r)/3 leads, through integration over the whole vol-
ume, to the loss rate of atoms:

dN

dt
= −3

∫
L3n

3(r)

3
d3r = −L3〈n2〉N, (1)

where the factor of 3 in front on the integral reflects the
fact that all 3 atoms are lost per each recombination
event. In the following, we neglect single-atom losses
due to collisions with the background gas and we assume
that two-body inelastic collisions are forbidden, a condi-
tion which is fulfilled for atoms polarized in the absolute
ground state.

An expression for the three-body recombination loss
coefficient at unitarity for a non-degenerate gas has been
developed in Ref. [15]. Averaged over the thermal distri-
bution it reads:

L3 =
72
√

3π2~
(
1− e−4η∗

)

mk6
th

×
∫ ∞

0

(
1− |s11|2

)
e−k

2/k2thk dk

|1 + (kR0)−2is0e−2η∗s11|2
, (2)

where kth =
√
mkBT/~, R0 is the three-body parame-

ter, and the Efimov inelasticity parameter η∗ character-
izes the strength of the short range inelastic processes.
Here, ~ is the reduced Planck’s constant, kB is the Boltz-
mann’s constant, and s0 = 1.00624 for three identical
bosons [19]. The matrix element s11 relates the incom-
ing to outgoing wave amplitudes in the Efimov scattering
channel and shows the emerging discrete scaling symme-
try in the problem (see for example Ref. [20]). Details are
given in the supplementary material to Ref. [15] for the
calculation of s11(ka), where a is the scattering length
and k is the relative wavenumber of the colliding part-
ners. Because of its numerically small value for three
identical bosons at unitarity, we can set |s11| = 0 and L3

is well approximated by:

L3 ≈
~5

m3
36
√

3π2 1− e−4η∗

(kBT )2
=
λ3

T 2
, (3)

where λ3 is a temperature-independent constant. Assum-
ing a harmonic trapping potential, we directly express
the average square density 〈n2〉 through N and T . In
combination with Eq. (3), Eq. (1) is represented as:

dN

dt
= −γ3

N3

T 5
, (4)

where

γ3 = λ3

(
mω2

2
√

3πkB

)3

, (5)

with ω being the geometric mean of the angular frequen-
cies in the trap.

To model the loss of atoms induced by evaporation, we
consider time evolution of the phase-space density distri-
bution of a classical gas:

f(r,p) =
n0λdB

3

(2π~)3
e−U(r)/kBT e−p

2/2mkBT , (6)

which obeys the Boltzmann equation. Here n0 is the
central peak density of atoms, λdB = (2π~2/mkBT )1/2

is the thermal de Broglie wavelength, and U(r) is the
external trapping potential. The normalization con-
stant is fixed by the total number of atoms, such that∫
f(r,p)d3p d3r = N .
If the gas is trapped in a 3-D trap with a potential

depth U , the collision integral in the Boltzmann equation
can be evaluated analytically [21]. Indeed, the low-energy
collisional cross-section

σ(k) =
8π

k2 + a−2
(7)

reduces at unitarity to a simple dependence on the rel-
ative momentum of colliding partners: σ(k) = 8π/k2.
However, not every collision leads to a loss of atoms due
to evaporation. Consider

η = U/kBT. (8)
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In the case of η � 1, such loss is associated with a
transfer of large amount of energy to the atom which
ultimately leads to the energy independent cross-section.
This can be understood with a simple argument [22]. As-
sume that two atoms collide with the initial momenta p1

and p2. After the collision they emerge with the mo-
menta p3 and p4, and if one of them acquires a mo-
mentum |p3| &

√
2mU . Then, |p4| is necessarily smaller

than the most probable momentum of atoms in the gas
and |p3| � |p4|. In the center of mass coordinates the
absolute value of the relative momentum is preserved,
so that 1

2 |p1 − p2| = 1
2 |p3 − p4| ≈ 1

2 |p3|. Assuming

|p3| =
√

2mU , we get |p1 − p2| =
√

2mU . Substituting
the relative momentum in the center of mass coordinate,
~k = 1

2 (p1 − p2), to the unitary form of the collisional
cross-section, we find the latter is energy independent:

σU =
16π~2

mU
, (9)

and the rate-equation for the atom number can be writ-
ten as:

dN

dt
= −ΓevN, Γev = n0σUve

−η Vev

Ve
. (10)

The peak density is n0 = N/Ve, where Ve is the effec-
tive volume of the sample. In the harmonic trap Ve can

be related to ω and the temperature T : Ve =
(

2πkBT
mω2

)3/2
.

The ratio of the evaporative and effective volumes is de-
fined by [21]:

Vev

Ve
= η − 4R (3, η) , (11)

where R(a, η) = P (a+1,η)
P (a,η) and P (a, η) is the incomplete

Gamma function

P (a, η) =

∫ η
0
ua−1e−udu∫∞

0
ua−1e−udu

.

Finally, taking into account both three-body recombi-
nation loss (see Eqs. (4),(5)) and evaporative loss, we can
express the total atom number loss rate equation as:

dN

dt
= −γ3

N3

T 5
− γ2e

−η Vev

Ve

N2

T
, (12)

where

γ2 =
16

π

~2ω3

kBU
. (13)

Note that η and the ratio of the evaporative and effec-
tive volumes explicitly depend on temperature and γ2 is
temperature independent.

B. Rate equation for temperature

1. ‘Anti-evaporation’ and recombination heating

Ref. [18] points out that in each three-body recom-
bination event a loss of an atom is associated with an
excess of kBT of energy that remains in the sample.
This mechanism is caused by the fact that recombina-
tion events occur mainly at the center of the trap where
the density of atoms is highest and it is known as ‘anti-
evaporation’ heating. We now show that the unitary
limit is more ‘anti-evaporative’ than the regime of finite
scattering lengths considered in ref. [18] where L3 is tem-
perature independent. We separate center of mass and
relative motions of the colliding atoms and express the
total loss of energy per three-body recombination event
as following:

Ė3b = −
∫ {

L3n
3(r)

3
(〈Ecm〉+ 3U(r))

+
n3(r)

3
〈L3(k)Ek〉

}
d3r. (14)

The first two terms in the parenthesis represent the mean
center-of-mass kinetic energy 〈Ecm〉 = 〈P 2

cm〉/2M and
the local potential energy 3U(r) per each recombination
triple. M = 3m is the total mass of the three-body
system. The last term stands for thermal averaging of
the three-body coefficient over the relative kinetic energy
Ek = (~k)2/2µ where µ is the reduced mass.

Averaging the kinetic energy of the center of mass mo-
tion over the phase space density distribution (Eq. (6))
gives 〈Ecm〉 = 3

2kBT . Then the integration over this term
is straightforward and using Eq. (1) we have:

−
∫
L3n

3(r)

3
〈Ecm〉d3r =

1

2
kBTṄ (15)

The integration over the second term can be easily
evaluated as well:

−
∫

3L3

3
n3(r)U(r)d3r =

1

2
kBTṄ (16)

To evaluate the third term we recall the averaged over
the thermal distribution expression of the three-body re-
combination rate in Eq. (2). Now its integrand has to
be supplemented with the loss of the relative kinetic en-
ergy per recombination event Ek. Keeping the limit of
Eq. (3) this averaging can be easily evaluated to give
〈L3(k)Ek〉 = L3kBT . Finally, the last term in Eq. (14)
gives:

−
∫
n3(r)

3
〈L3(k)Ek〉d3r =

1

3
kBTṄ (17)

Finally, getting together all the terms, the lost energy per
lost atom in a three-body recombination event becomes:

Ė3b

Ṅ
=

4

3
kBT. (18)
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This expression shows that unitarity limit is more
‘anti-evaporative’ than the regime of finite scattering
length (k|a| ≤ 1). As the mean energy per atom in the
harmonic trap is 3kBT , at unitarity each escaped atom
leaves behind (3 − 4/3)kBT = (5/3)kBT of the excess
energy as compared to 1kBT when L3 is energy indepen-
dent. In the latter case, thermal averaging of the relative
kinetic energy gives 〈Ek〉 = 3kBT , thus Ė3b/Ṅ = 2kBT .

Eq. (18) is readily transformed into the rate equation
for the rise of temperature per lost atom using the fact
that E3b = 3NkBT in the harmonic trap and Eq. (4):

dT

dt
=

5

3

T

3
γ3
N2

T 5
. (19)

Another heating mechanism pointed out in Ref. [18]
is associated with the creation of weakly bound dimers
whose binding energy is smaller than the depth of the
potential. In such a case, the three-body recombination
products stay in the trap and the binding energy is con-
verted into heat.

In the unitary limit, this mechanism causes no heat-
ing. In fact in this regime, as shown in the supplementary
material to Ref. [15], the atoms and dimers are in chem-
ical equilibrium with each other, e.g. the rate of dimer
formation is equal to the dissociation rate. We therefore
exclude this mechanism from our considerations.

2. Evaporative cooling

“Anti-evaporative” heating can be compensated by
evaporative cooling. The energy loss per evaporated
atom is expressed as:

Ė = Ṅ (η + κ̃) kBT (20)

where κ̃ in a harmonic trap is [21]:

κ̃ = 1− P (5, η)

P (3, η)

Ve

Vev
, (21)

with 0 < κ̃ < 1.
In a harmonic trap, the average energy per atom is

3kBT = E
N . Taking the derivative of this equation and

combining it with Eq. (20) we get:

3
Ṫ

T
=
Ṅ

N
(η + κ̃− 3) . (22)

From Eqs. (10) and (22), evaporative cooling is expressed
as:

3
dT

dt
= −Γev (η + κ̃− 3)T, (23)

This equation can be presented in a similar manner as in
the previous section:

dT

dt
= −γ2e

−η Vev

Ve
(η + κ̃− 3)

N

T

T

3
, (24)

0 . 1 1

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

T/T
in

N / N i n

 

 

� i n = 6

� i n = 8 . 2
� i n = 9

� i n = 1 0

FIG. 1: N-T phase space representation of ‘anti-evaporation’
heating and evaporative cooling dynamics for different values
of the initial ηin parameter. The “magic” ηm satisfies the
condition dT/dN = 0. For lower values of ηin the “magic”
ηm is not reached during the evolution of the gas.The figure is
drawn for experimental parameters of 133Cs atoms presented
in Sec. III. For these conditions ηm coincides with ηin ≈ 8.

where, as before, the temperature dependence remains in
η.

Finally, combining the two processes of recombination
heating (Eq. (19)) and evaporative cooling (Eq. (24)) we
get:

dT

dt
=
T

3

(
5

3
γ3
N2

T 5
− γ2e

−η Vev

Ve
(η + κ̃− 3)

N

T

)
. (25)

Eqs. (12) and (25) form a set of coupled rate equations
that describe the atom loss dynamics.

C. N-T dynamics and the “magic” ηm

To study atom number and temperature dynamics we
solve Eqs. (12) and (25) numerically for different initial
values of η, referred to as ηin from here on. As an illus-
tration, γ2 and γ3 are evaluated based on parameters of
the 133Cs experiment discussed in Sec. III. The system
dynamics in N − T phase space is represented in Fig. 1.
All represented values of ηin lead to a decrease in temper-
ature for small atom numbers indicating that evaporative
cooling always wins for asymptotic times where the atom
density becomes small. This weakens the three-body re-
combination event rate and effectively extinguishes the
heating mechanism altogether. Large values of the initial
ηin cause initial heating of the system which is followed
by a flattening of the temperature dependence at a cer-
tain atom number (grey dashed and dark yellow dotted
lines) that defines the “magic” ηm. In Fig. 1 the solid

210



5

æ

æ
æà

à

0.000 0.002 0.004 0.006 0.008 0.010
6

7

8

9

10

11

Α

Η
m

FIG. 2: Universal plot ηm vs α = N(~ω̄/kBT )3(1 − e−4η∗)
(bue curve). The blue solid circles correspond to the results
obtained for 133Cs in Fig. 3(a) with η∗ = 0.098. The red
solid squares correspond to the 7Li data of Fig. 3(c) with
η∗ = 0.21.

green line represents the special case when ηm = ηin. Ex-
perimentally, η(T,N) is tuned to satisfy this special case
for a given initial temperature and atom number. As
it is seen in Fig. 1, lower initial values of ηin can never
reach the necessary condition for ηm in their subsequent
dynamics (orange dotted-dashed line).

The value of ηm(T,N) is found by solving the equation
dT/dN = 0, i.e. when T (N) becomes independent on
the atom number up to the first order in N . From the
general structure of this equation, we see that ηm is solely
function of the dimensionless parameter

α = N

(
~ω̄
kBT

)3 (
1− e−4η∗

)
. (26)

Up to a factor (1−e−4η∗), ηm depends only on the phase-
space densityN(~ω̄/kBT )3 of the cloud. We plot in Fig. 2
the dependence of ηm vs α. Since our approach is valid
only in the non-quantum degenerate regime where the
momentum distribution is a Gaussian, we restricted the
plot to small (and experimentally relevant) values of α.

D. 2D evaporation

The above model was developed to explain 3D isother-
mal evaporation in a harmonic trap and experiments with
133Cs presented below correspond to this situation. Our
model can also be extended to 2D isothermal evapora-
tion, as realized in the 7Li gas studied in Ref. [15] and
presented below. In this setup, the atoms were trapped in
a combined trap consisting of optical confinement in the
radial direction and magnetic confinement in the axial di-
rection. Evaporation was performed by lowering the laser

beam power which did not lower the axial (essentially in-
finite) trap depth due to the magnetic confinement. Such
a scenario realizes a 2D evaporation scheme. Here, we ex-
plore the consequences of having 2D evaporation. In the
experimental section we will show the validity of these
results with the evolution of a unitary 7Li gas.

Lower dimensional evaporation is, in general, less ef-
ficient than its 3D counterpart. 1D evaporation can be
nearly totally solved analytically and it has been an in-
tense subject of interest in the context of evaporative
cooling of magnetically trapped hydrogen atoms [21, 23,
24]. In contrast, analytically solving the 2D evaporation
scheme is infeasible in practice. It also poses a rather
difficult questions considering ergodicity of motion in the
trap [25]. The only practical way to treat 2D evapora-
tion is Monte Carlo simulations which were performed
in Ref. [25] to describe evaporation of an atomic beam.
However, as noted in Ref. [25], these simulations follow
amazingly well a simple theoretical consideration which
leaves the evaporation dynamics as in 3D but introduces
an ’effective’ η parameter to take into account its 2D
character.

The consideration is as following. In the 3D evapo-
ration model, the cutting energy εc is introduced in the
Heaviside function that is multiplied with the classical
phase-space distribution of Eq. (6) [21]. For the 2D
scheme this Heaviside function is Y (εc − ε⊥), where εc
is the 2D truncation energy and ε⊥ is the radial energy
of atoms in the trap, the only direction in which atoms
can escape. Now we simply add and subtract the axial
energy of atoms in the trap and introduce an effective 3D
truncation energy as following:

Y (εc − ε⊥) = Y ((εc + εz)− (ε⊥ + εz)) = Y (εeff
c − εtot),

(27)

where εtot is the total energy of atoms in the trap and
the effective truncation energy is given εeff

c = εc + εz '
εc +kBT where we replaced εz by its mean value kBT in a
harmonic trap. The model then suggests that the evapo-
ration dynamics follows the same functional form as the
well established 3D model, but requires a modification of
the evaporation parameter (8):

ηeff = η + 1, (28)

Then, the experimentally provided 2D η should be com-
pared with the theoretically found 3D ηeff reduced by 1
(i.e. ηeff − 1).

III. EXPERIMENTS

In this section, we present experimental T (N) trajec-
tories of unitary 133Cs and 7Li gases, and show that their
dynamics are given by the coupled Eqns. (12) and (25).
The 133Cs Feshbach resonance at 47.8 Gauss and the
7Li Feshbach resonance at 737.8 Gauss have very sim-
ilar resonance strength parameter sres = 0.67 and 0.80
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respectively [26, 27]) and are in the intermediate cou-
pling regime (neither in the broad nor narrow resonance
regime). We first confirm the existence of a “magic” ηm

for unitarity-limited losses for both species, with either
3D or 2D evaporation. Then we will use the unitarity-
limited three-body loss and the theory presented here to
determine the Efimov inelasticity parameter of the nar-
row 47.8-G resonance in 133Cs which was not measured
before.

A. N − T fits

We prepare the initial samples at Tin and Nin as de-
scribed in the Supplementary Materials. We measure the
atom number N(t) and the temperature T (t) from in-
situ absorption images taken after a variable hold time t.
In Fig. 3(a), we present typical results for the evolution
T (N) of the atom number and temperature of the gases,
and we furthermore treat the hold time t as a param-
eter. We also plot the relative temperature T/Tin as a
function of the relative atom number N/Nin for the same
data in Fig. 3(b), and for 7Li in Fig. 3(c). We then per-
form a coupled least-squares fit of the atom number and
temperature trajectories, Eqs. (12) and (25), to the data.
We note that with our independent knowledge of the ge-
ometric mean of the trapping frequencies, ω̄, the only
free fit parameters apart from initial temperature and
atom number are the trap depth U and the temperature-
independent loss constant λ3. The solid lines are the
fits (see Supplementary Materials) to our theory model,
which describe the experimental data well for a large va-
riety of initial temperatures, atom numbers and relative
trap depth. We are able to experimentally realize the full
predicted behavior of rising, falling and constant-to-first-
order temperatures.

B. Magic η

The existence of maxima in the T −N plots confirms
the existence of a “magic” relative trap depth ηm, where
the first-order time derivative of the sample temperature
vanishes. Using the knowledge of η∗ for both 133Cs and
7Li, we can compare the observed values of ηm to the pre-
diction of Fig. 2 (note that in the case of 7Li, we plot ηeff

m

that enters into the effective 3D evaporation model). We
see that for both the 3D evaporation 133Cs data and 2D
evaporation 7Li data, the agreement between experiment
and theory is remarkable.

Furthermore, in the Supplemental Materials we show
that from the three-body loss coefficients and the evap-
oration model, we can predict the trap depth, which is
found in good agreement with the value deduced from
the laser power, beam waist, and atom polarizability.
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FIG. 3: (Color online) Evolution of the unitary 133Cs gas
in (a) absolute and (b) relative numbers. The solid lines are
fits of the data using the theory presented here, and the fitted
initial relative trap depth ηin = U/kBTin is given in the legend.
Error bars are statistical. The condition for (dT/dN)|t=0 is
expected for ηin ≈ ηm ≈ 8.2, very close to the measured data
for ηin = 7.4 (green lines in a) and b)). (c) Evolution of the
unitary 7Li gas. The solid lines are fits of the data using
our 2D evaporation model, and the fitted initial relative trap
depth ηin = U/kBTin is given in the legend. Error bars are
statistical. In 2D evaporation, ηin ≈ ηeff

m = ηm + 1 = 8.5 is
required to meet the (dT/dN)|t=0 condition, and is found in
excellent agreement with the measured value 8.5 (green line
in c)), see text.

212



7

C. Universality of the three-body loss

As the last application we now show the validity of the
L3 ∝ T−2 law for the tree-body loss of unitary 7Li and
133Cs Bose gases. Because both species are situated at
the extreme ends of the (stable) alkaline group, they have
a large mass ratio of 133/7 = 19 and the temperature
range is varied over two orders of magnitude from 0.1µK
to 10µK. We determine the three-body loss coefficients
λ3 from fits to decay curves such as shown in Fig.3. We
present in Fig. 4 the results for the rate coefficient L3,
which varies over approximately two orders of magnitude
for both species. In order to emphasize universality, the
loss data is plotted as a function of (m/mH)3T 2

in, where
mH is the hydrogen mass. In this representation, the
unitary limit for any species collapses to a single universal
line (dotted line in Fig. 4, cf. Eq. (3)).

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì
ì

ì

ì
ì ì

ì

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

ææ

ææ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

1000 104 105 106

10-24

10-23

10-22

10-21

10-20

m3Tin
2 in mH

3 ΜK2

L
3

in
cm

6
�s

FIG. 4: (Color online) The magnitude of three-body loss rate
at unitarity for 7Li (red) and 133Cs (blue) with the respective
±1 standard deviation (shaded areas). On the horizontal
axis, masses are scaled to the hydrogen atom mass mH. The
dashed line represents the unitary limit (Eq. (3) with η∗ →
∞). Solid lines are predictions of universal theory [15] with
η∗ = 0.21 for 7Li and η∗ = 0.098(7) for 133Cs, see text. The
data confirms the universality of the L3 ∝ T−2 law.

For 7Li, we cover the 1-10µK temperature range.
We find for the temperature-independent loss coefficient
λ3 = 3.0(3) × 10−20 cm6µK2s−1, very close to the uni-
tary limit λmax

3 ≈ 2.7×10−20 cm6µK2s−1. It is also close
to the value λ3 = 2.5(3) × 10−20 cm6µK2s−1 found in
[15] with a restricted set of data, and to the predicion
from Eq. (2) with η∗ = 0.21 from [28] (red solid line in
Fig. 4). We cannot measure η∗ here because the 7Li data
coincides with the unitary limit.

Furthermore the quality of the 133Cs temperature and
atom number data enables us to directly measure the
previously unknown η∗ parameter of the 47.8-G Fesh-
bach resonance. The standard technique for obtaining
η∗ is measuring the three-body loss rate L3(a, T → 0) as
a function of scattering length in the zero-temperature
limit, and subsequent fitting of the resulting spectrum to

universal theory. However, for a given experimental mag-
netic field stability, this method becomes hard to put into
practice for narrow resonances like the 47.8-G resonance
in 133Cs. Instead, we use the fits to our theory model in
order to obtain η∗ from λ3. We cover the 0.1-1µK range
and find λ3 = 1.27(7)× 10−24 cm6µK2s−1. Plugging this
number into Eq. (3), we deduce a value for the Efimov
inelasticity parameter η∗ = 0.098(7). The corresponding
curve is the blue line in Fig. 4 and is significantly be-
low the unitary line because of the smallness of η∗. This
new value is comparable to the Efimov inelasticity pa-
rameter found for other resonances in 133Cs, in the range
0.06...0.19 [29, 30].

The plot of the full theoretical expression Eq. (2) for
L3(m3T 2) in Fig. 4 (full lines) requires an additional pa-
rameter describing three-body scattering around this Fes-
hbach resonance, the so-called three-body parameter. It
can be represented by the location of the first Efimov

resonance position a
(1)
− [31]. Because of the lack of ex-

perimental knowledge for the 47.8-G resonance, we take

the quasi-universal value a
(1)
− = −9.73(3)rvdW, rvdW be-

ing the van-der-Waals radius, for which theoretical ex-
planations have been given recently [31–33]. The theory
curve then displays log-periodic oscillations with a tem-
perature period set by the Efimov state energy spacing
of exp(2π/s0) ≈ 515, where s0 = 1.00624, and with a

phase given by a
(1)
− . The relative peak-to-peak ampli-

tude is 7% for 133Cs. As seen in Fig. 4, such oscillations
cannot be resolved in the experimental data because of
limited signal-to-noise and the limited range of tempera-
ture. The predicted contrast of these oscillations for 7Li
is even smaller (∼ 6%). This is a general property of the
system of three identical bosons due to the smallness of
|s11| [15].

IV. CONCLUSIONS

In this article, we developed a general theoretical
model for the coupled time dynamics of atom number
and temperature of the 3D harmonically trapped unitary
Bose gas in the non-degenerate regime. The theory takes
full account of evaporative loss and the related cooling
mechanism, as well as of the universal three-body loss
and heating. It is furthermore extended to the special
case of 2D evaporation. We predict and experimentally
verify the existence of a “magic” trap depth, where the
time derivative of temperature vanishes both in 3D and
2D evaporation.

We compare our model to two different set of experi-
ments with lithium and cesium with vastly different mass
and temperature ranges. The data illustrates the univer-
sal T−2 scaling over 2 orders of magnitude in temper-
ature, and we obtain an experimental value of the Efi-
mov inelasticity parameter for the 47.8-G resonance in
133Cs. The theory further enables an independent deter-
mination of the trap depth. The agreement found here
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with standard methods shows that it can be used in more
complex trap geometries (crossed dipole traps, or hybrid
magnetic-optical traps) where the actual trap depth is
often not easy to measure.

In future work it would be highly interesting to probe
the discrete symmetry of the unitary Bose gas by reveal-
ing the 7% log-periodic modulation of the three-body loss
coefficient expected over a factor 515 energy range.
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Résumé
Les atomes froids sont des outils uniques pour sonder
la physique de la matière quantique. Hautement con-
trôlables, les gaz de Bose et de Fermi ultrafroids sont des
systèmes idéaux pour la simulation quantique et pour ex-
plorer des manifestations spectaculaires des effets quan-
tiques, comme la superfluidité.
Avec des gaz froids de 6Li et de 7Li, nous avons produit le
premier mélange de superfluides bosonique-fermionique,
et étudié ses propriétés en initiant un contre-flot entre les
nuages de Bose et de Fermi (mode dipolaire). La vitesse
critique de superfluidité a été mesurée dans le crossover
BEC-BCS et elle est trouvée proche de la vitesse du son
dans le gaz de Fermi. Nous comparons nos mesures avec
des prédictions théoriques récentes. En élevant la tem-
pérature du mélange, nous avons aussi observé une syn-
chronisation inattendue entre les mouvements des deux
nuages, interprétée comme un effet Zénon induit par la
dissipation.
Finalement, ce mélange de bosons et de fermions offre
la possibilité unique de créer un piège homogène pour
le gaz de Fermi. En ajustant finement les interactions,
nous proposons d’utiliser la répulsion entre les bosons et
les fermions pour compenser la courbure du piège har-
monique pour les fermions. Pour des fermions présen-
tant une polarisation de spin, nous prédisons théorique-
ment l’existence d’un superfluide avec une structure en
“coquille” et fournissons les premières indications expéri-
mentales de l’observation de ce superfluide topologique-
ment original.

Mots Clés
gaz quantiques, condensats de Bose-Einstein, superflu-
ides de Fermi, mélanges Bose-Fermi, vitesse critique,
piège uniforme

Abstract
Ultracold atoms are unique tools to probe the physics
of quantum matter. Indeed, the high degree of tun-
ability of ultracold Bose and Fermi gases makes them
ideal systems for quantum simulation and for exploring
macroscopic manifestations of quantum effects, such as
superfluidity.
In this work, we have realized the first Bose-Fermi super-
fluid mixture, with ultracold gases of 6Li and 7Li. The
properties of the mixture are investigated by initiating
a Bose-Fermi counterflow through their dipole modes.
The superfluid critical velocity is measured in the BEC-
BCS crossover, and is found close to the sound velocity
of the Fermi gas near unitarity. We compare our find-
ings to recent theoretical predictions. Raising the tem-
perature of the mixture, we observe an unexpected syn-
chronization of the motion of the two clouds, interpreted
with a Zeno-like model induced by dissipation.
Finally, this Bose-Fermi mixture offers the unique possi-
bility to create a homogeneous trap for the Fermi gas.
By a fine tuning of the interactions, we propose to use
the Bose-Fermi repulsion to compensate the curvature
of the harmonic trap for fermions. For a spin-polarized
Fermi gas in such a trap, we theoretically predict the
existence of a superfluid with a shell structure and we
provide first experimental evidence for this topologically
new superfluid.

Keywords
quantum gases, Bose-Einstein condensates, Fermi su-
perfluids, Bose-Fermi mixtures, critical velocity, uniform
trap
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Sujet : Mélanges de superfluides

Résumé : Les atomes froids sont des outils uniques pour sonder la physique de la matière quan-
tique. Hautement contrôlables, les gaz de Bose et de Fermi ultrafroids sont des systèmes idéaux
pour la simulation quantique et pour explorer des manifestations spectaculaires des effets quan-
tiques, comme la superfluidité. Avec des gaz froids de 6Li et de 7Li, nous avons produit le premier
mélange de superfluides bosonique-fermionique, et étudié ses propriétés en initiant un contre-flot
entre les nuages de Bose et de Fermi (mode dipolaire). La vitesse critique de superfluidité a été
mesurée dans le crossover BEC-BCS et elle est trouvée proche de la vitesse du son dans le gaz
de Fermi. Nous comparons nos mesures avec des prédictions théoriques récentes. En élevant la
température du mélange, nous avons aussi observé une synchronisation inattendue entre les mou-
vements des deux nuages, interprétée comme un effet Zénon induit par la dissipation. Finalement,
ce mélange de bosons et de fermions offre la possibilité unique de créer un piège homogène pour le
gaz de Fermi. En ajustant finement les interactions, nous proposons d’utiliser la répulsion entre les
bosons et les fermions pour compenser la courbure du piège harmonique pour les fermions. Pour
des fermions présentant une polarisation de spin, nous prédisons théoriquement l’existence d’un
superfluide avec une structure en “coquille” et fournissons les premières indications expérimentales
de l’observation de ce superfluide topologiquement original.
Cette thèse est rédigée en langue anglaise.

Mots clés : gaz quantiques, condensats de Bose-Einstein, superfluides de Fermi, mélanges Bose-
Fermi, vitesse critique, piège uniforme

Subject : Mixtures of superfluids

Abstract : Ultracold atoms are unique tools to probe the physics of quantum matter. Indeed, the
high degree of tunability of ultracold Bose and Fermi gases makes them ideal systems for quantum
simulation and for exploring macroscopic manifestations of quantum effects, such as superfluidity.
In this work, we have realized the first Bose-Fermi superfluid mixture, with ultracold gases of
6Li and 7Li. The properties of the mixture are investigated by initiating a Bose-Fermi counterflow
through their dipole modes. The superfluid critical velocity is measured in the BEC-BCS crossover,
and is found close to the sound velocity of the Fermi gas near unitarity. We compare our findings to
recent theoretical predictions. Raising the temperature of the mixture, we observe an unexpected
synchronization of the motion of the two clouds, interpreted with a Zeno-like model induced by
dissipation. Finally, this Bose-Fermi mixture offers the unique possibility to create a homogeneous
trap for the Fermi gas. By a fine tuning of the interactions, we propose to use the Bose-Fermi
repulsion to compensate the curvature of the harmonic trap for fermions. For a spin-polarized
Fermi gas in such a trap, we theoretically predict the existence of a superfluid with a shell structure
and we provide first experimental evidence for this topologically new superfluid.
This thesis is written in English.

Keywords : quantum gases, Bose-Einstein condensates, Fermi superfluids, Bose-Fermi mixtures,
critical velocity, uniform trap
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