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Abstract

English Abstract Among commonly used data mining techniques, few are those which are able
to take advantage of the multiway structure of data in the form of a multiway array. In contrast,
tensor decomposition techniques specifically look for intricate processes underlying the data, where
each of these processes can be used to describe the multilinear structure of the data array. The
work reported in the following pages aims at incorporating various external knowledge into the ten-
sor canonical polyadic decomposition, which is usually understood as a blind model. The first two
chapters of this manuscript introduce tensor decomposition techniques making use respectively of
a mathematical and an application framework. In the third chapter, the many faces of constrained
decompositions are explored, including a unifying framework for constrained decomposition, some
decomposition algorithms, compression and dictionary-based tensor decomposition. The fourth
chapter discusses the inclusion of subject variability modeling when multiple arrays of data are
available stemming from one or multiple subjects sharing similarities. State of the art techniques
are studied and expressed as particular cases of a more general flexible coupling model later intro-
duced. The chapter ends on a discussion on dimensionality reduction when subject variability is
involved, as well as some open problems.

French Abstract Parmi les techniques usuelles de fouille de données, peu sont celles capables
de tirer avantage de la complémentarité des dimensions pour des données sous forme de tableaux a
plusieurs dimensions. A 'inverse, les techniques de décomposition tensorielle recherchent spécifiquement
les processus sous-jacents aux données, qui permettent d’expliquer les données dans toutes les di-
mensions. Les travaux rapportés dans ce manuscrit traitent de I’amélioration de l'interprétation
des résultats de la décomposition tensorielle canonique polyadique par l’ajout de connaissances
externes au modele de décomposition, qui est par définition un modele aveugle n’utilisant pas
la connaissance du probléme physique sous-jacent aux données. Les deux premiers chapitres de
ce manuscrit présentent respectivement les aspects mathématiques et appliqués des méthodes de
décomposition tensorielle. Dans le troisieme chapitre, les multiples facettes des décompositions
sous contraintes sont explorées a travers un formalisme unifié. Les thématiques abordées compren-
nent les algorithmes de décomposition, la compression de tenseurs et la décomposition tensorielle
basée sur les dictionnaires. Le quatrieme et dernier chapitre présente le probleme de la modélisation
d’une variabilité intra-sujet et inter-sujet au sein d’un modele de décomposition contraint. L’état
de 'art en la matiere est tout d’abord présenté comme un cas particulier d’'un modele flexible
de couplage de décomposition développé par la suite. Le chapitre se termine par une discussion
sur la réduction de dimension et quelques probléemes ouverts dans le contexte de modélisation de
variabilité sujet.
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A short and non-technical
introduction

For a few years now, people have been asking me the same question again and again: What have
I done during my PhD ? My answer heavily depends on who is asking the question. There has to
be four or five layers of answers, ranging from a very technical explanation of tensor algebra to
a simplified picture of what is data processing and why it is important. But whatever the level
of complexity of the explanations, I always felt the topics covered in my research were not easy
to explain. For a specialist, the wide variety of notations and tricky concepts within multilinear
algebra may hinder mutual comprehension while for an amateur, simply providing some context
seems close to impossible. At least in the few minutes of attention people usually pay before getting
bored. Even though this is no easy task, one of the goals in writing this manuscript is to explain
to a wide audience how tensors can be used in a simple but rigorous manner, also by simplifying
the tools and concepts where it is possible.

The first two chapters of this manuscript respectively deal with the mathematical framework
needed to understand multilinear algebra, and with some real life applications which help picturing
the challenges of multiway array processing. But if possible, I would like anybody to be able to
understand at least the main ideas I have been working on during these three years, and since
chapters[I|and [2]are written for fellow researchers, this introduction serves the purpose of presenting
my work to people who are not familiar with mathematics, informatics or signal processing.

Let us start with discussing what data scientists (a.k.a. signal processing researchers) work
with: “data”. In a very practical way, data can be thought of as a collection of numbers. For
instance, if one is interested in demographics, the population of Paris, Lyon and Marseille in 2010
is approximately given in millions by the following numbers: [2.240 0.484 0.850]. The process of
collecting data is called measurement, observation, data collection or survey depending on the kind
of data being acquired. Of course data have a wider meaning that just a collection of numbers,
and any information obtained from any event can be considered as a datum. For example, our
eyes keep on recording the scenes around us, thus collecting data on our surroundings which are
not stored as a collection of number by our brains. But since data scientists use mathematics and
informatics as tools, unlike human brains, working with numbers is mandatory for us.

Data collection is a very wide research topic, which is highly dependent on the kind of data to be
acquired. Astrophysicists, chemists, doctors, researchers in telecommunications, sociologists and
many more have data collection at the center of their occupations. It is capital to understand to
some extend the physical properties of what is being measured in order to obtain meaningful data.
Say one is again interested in French demographics, then estimating the population of Calcutta,
London and Osaka may not be quite interesting. Also, measuring the temperatures in Paris, Lyon
and Marseille does not bear meaningful information on the demographics of these towns.

Once data have been collected and stored in a data set, it may be handed over to data scientists
who try to extract information from these data. A fact that is misunderstood by non-scientists
while being at the core of data science is that at this stage, the data can be processed with methods
designed for any data set, regardless of where it comes from. So what data scientists really do
is twofold. First, they design mathematical tools with good properties, meaning that they build
their tools to be efficient and as little costly as possible. Think of a metalsmith who needs good
and various hammers to work with different metals. Second, they apply these tools on data that
have been provided, and try to understand what is obtained as a result. So when a data scientist
says that he extracts information from data sets, what is to be understood is that he applies some
general tools to some collected data, but obtains something which is interpreted differently for each
tool and each kind of data set.

11



12 A Short and Non-Technical Introduction

This is why social scientists use the same kind of methods for studying the results of their
surveys than chemists to identify the components in a chemical mixture. These methods are also
used for instance in image processing, video surveillance and radar. Data science is a form of
applied mathematics, but the applied part is generally not what really drives researchers in this
area of research. What we like is to build tools made of mathematics. Sometimes we think about
what kind of data it would be nice to use it on, and sometimes we don’t. Some tools are specific to
one application because there was a specific need for it, and applying it to this application yields
easily interpreted results, just like the brain treats the data collected by our eyes to create what
we see. On the other hand, some tools are made so general that they mine any kind of data with
nice-looking results, which is only possible because the laws of nature can mostly be described by
the same mathematical formalism, like Galileo suggested in his time.

The methods I work with, tensor decomposition methods, are of the latter kind, although they
do not exactly apply to any kind of data. The data I work with have to be arrays of strictly more
than two dimensions, meaning that the numbers can be rearranged in the following format:

Here the cube of numbers is of size 2 by 2 by 2, but what is required is that it is a bloc with more
than two ways, so it can be of size anything by something-else by another-thing. This also means
that any data set containing more than eight numbers is a candidate for tensor decomposition
methods.

Now because a metalsmith can use his hammer on some metal does not mean this will be an
efficient process, and what he needs to know to be a good metalsmith is what kind of metal he
can efficiently use his hammer on. The same goes for data scientists using tensor decomposition
methods. Tensor decomposition methods can be used on a wide panel of data set, but there are
much fewer data sets onto which it can be applied while bearing satisfactory results. They need
to satisfy an additional constraint.

The data should be well described by a small number of ’simpler’ data sets. While the notion
of ’simple’ data set is understood formally as a mathematical property called the rank, let us
illustrate this constraint on the practical example of demographic study of France. Suppose this
time researchers have provided a data set containing the population of all towns in France measured
each year from 1945 to 1980. It is well known that around that time, many people left the
countryside to find work in the growing cities. This means two processes underlying the data may
be identified: the drop in the population of small country towns over time, and the increase in the
population of major towns over time. By extracting the population numbers related to the small
towns, it is possible to build another data set containing only the population of small French towns
between 1945 and 1980. But is it a 'simpler’ data set 7 It is simpler in the way that is understood
in this manuscript only if the decrease of population in all of these small towns is comparable,
that is the populations decrease approximately at the same rate at everyplace it decreases. Then
the extracted data set of population in the small towns can be summarized by the knowledge of
this decrease rate over time, and therefore is ’simple’. In short, a data set is simple if it can be
summarized by a few well chosen numbers, here the amount of decrease of population over time
shared by all small towns. This is illustrated by the figure below.

Note that in this example the data are not considered to be a cube, it hence cannot be studied
using tensor decomposition methods. If it were, then what tensor decomposition does is to extract
the ’simpler’ data from the original cubic data set. In the above example, tensor decomposition
would extract the two trends (increase and decrease) in population as well as which towns they refer
to (small or large). But the knowledge of which town is small and which is large is not required,
which makes tensor decomposition techniques very useful when little is known on the simpler
processes that generated the data. This last point is important, because it means that when a
data scientist has acquired some data which would be efficiently processed by tensor decomposition,
he or she does not need to know anything about the physical meaning of the numbers inside his
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Impact of trend

l o] 3 25| 0 | 1|
1 ¥
2—0 6 5 0 2
1 o 3 25 0 1
1 o 3 25 0 1

o 0 0 0 0 0 |

Population trend

Figure 1: A simple data set (in blue) that can be represented by two sets of numbers (in salmon).
In the demographic example, these numbers stand respectively for a trend in population (decrease)
and a coefficient city per city that corresponds to the impact of the trend on city population. Since
the trend here is a decrease in population, the zeros in the above set characterize major cities
where demographics is not dropping.

cube, or where the data come from.

Now that the tool used in my work and the material onto which it can be used as well as
what can be crafted is specified, it is time for what really motivates the writing of the hundred
or so following pages, that is, my humble contributions. They have been mostly twofold. In both
research topics quickly described below, the core idea I wanted to develop was that data are not
simply a collection of random numbers, and that the simpler structure that is to be extracted
has some physical interpretation which can be useful for the data processing. For instance when
obtaining data in chemistry (and more specifically in fluorescence spectroscopy), the acquired
numbers are always positive. Moreover, the simpler data in this context can be shown to be
related to the concentrations of different chemical components. Concentrations are always positive
because they stand for an amount of something. When using a signal processing tool to extract the
simpler structure, knowing the result should be positive helps with extracting the concentrations
of the chemicals, just like our metalsmith performs much better at crafting when he can mentally
anticipate the results of his hammering with respect to when he cannot. In short, what I aimed for
in my PhD thesis was to use the very general tool known as tensor decomposition while taking into
account application-related external information that improves the performance of the method.

First, I worked on what is called dimensionality reduction. Very practically, the goal of di-
mensionality reduction is to reduce the sizes of the data while leaving the important information
contained inside unaltered. It is feasible if a lot of data are collected while the number of simple
data sets is small. For instance, if the decrease of population in the previous example happens at
a steady rate, then on a plot where population is reported over time, what is obtained is a straight
line with negative slope. Since only two points are necessary to plot a straight line, then in theory
only two numerical values are necessary to summarize the temporal evolution of the population in
small towns. Two values of population each at one point in time summarize all the values that were
originally measured every year for sixty years. Of course many people have already designed signal
processing tools to compute this dimensionality reduction, which can be understood as a prepro-
cessing before the actual tensor decomposition. But what had not been done before was to take
into account the additional information available on the data after the dimensionality reduction
had been computed.

Second, I worked on the simultaneous extraction of useful information from multiple data sets
which are somehow related. For instance, if the demographic evolution of Germany between 1945
and 1980 is provided alongside with the data of our previous example, then because rural exodus
also happened in Germany, similar information is hidden in both data sets and can be mined
simultaneously to increase the accuracy of the methods. The main difficulty here is to describe the
connection the multiple data sets share, since some data sets may not be related, or related in a
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way that is difficult to incorporate in tensor decomposition techniques.

If by reading this introduction a novice (or not so novice) reader could get a glimpse of my
works, and if by any chance he wishes to know more on the topic of tensors, then he or she
can either read the hundred pages or so that follow this non-technical discussion, or find some
complementary information in one of the following books [16,57,[101]. T also apologise for all the
topics that could not be covered in this manuscript, since tensor decompositions cover such a wide
range of topics. Those include telecommunications, sensor arrays, differential equations, audio
processing, algebraic geometry, social sciences, psychometry, rating predictions.



Contributions

Work conducted during the three years of PhD led to the following contributions.

Major contributions

e A nonlinear decomposition model was designed and studied for fluorescence spectroscopy data
when the concentration of the components is high. This collaboration with Xavier Luciani
lead to a journal publication in Chemometrics and Intelligent Laboratory Systems [34] and
a conference paper at EUSIPCO (2014) [29].

e An algorithm that allows to decompose compressed tensors that are constrained in the uncom-
pressed domain called PROCO-ALS was proposed in the IEEE Signal Processing Letters [32]
and presented at ICASSP (2015). Extended results were also presented at GDR ISIS meeting
of 06/08/2016.

e To improve the modeling of joint decomposition of tensors, a flexible coupling for data fusion
involving tensors was developed in collaboration with Rodrigo Cabral Farias. Results were
first communicated at the LVA/ICA (2015) conference [22] and then led to a journal pub-
lication in the IEEE Transactions on Signal Processing [21]. These results were presented
informally at two workshops, JODA (2015) and TDA (2016). Additionally, an application
of flexible couplings to the fusion of EEG and Gaze data led to a conference paper at SAM
(2016) [99].

e A new application of tensor decomposition methods, spectral unmixing, was explored in col-
laboration with Miguel Veganzones. Results were promising and reported in several publica-
tions: one journal publication in IEEE Transactions on Geoscience and Remote Sensing [116]
for the nonnegative decomposition of hypersepctral movies, and three conference papers at
EUPSICO (2015) [117], EUSIPCO (2016) [118] and WHISPERS (2016) [119] respectively
tackling the angle, patch and angle diversity.

Minor contributions

e Joint dimensionality reduction for coupled data sets under various scenarios. This led to one
conference paper at EUSIPCO (2016) 33| and one national conference paper at GRETSI
(2015) [31).

e How to efficiently use dictionaries in a tensor decomposition model is ongoing work, but some
preliminary results are contained in a submitted journal paper [35].

e Although notations habits are quite personal and subjective, I tried to create a formalism for
multiway array processing that could be related to how tensors are defined in mathematics,
and how they are used in quantum physics. This is discussed in a short paper on arxiv [30]
and a submitted paper on a formalism for constrained decomposition [35].

e A fairly important topic to which I contributed very slightly is the derivation of Cramér-Rao
Bounds for structured tensors, reported in a conference paper at ICASSP (2015) [9].

Personally I do not think that these numbers matter, but since nowadays they are used as
a performance index, note that contributions add up to 4 international journal papers plus 1
submitted, 8 international conference papers, 1 national conference papers, 2 contributions for
workshops without proceedings and 1 arxiv paper. As first author, these numbers reduce to 2
international journal papers plus 1 submitted, 2 international conference papers and 1 national
conference paper, 2 contributions for workshops without proceedings and 1 arxiv paper.
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Chapter 1

Multilinear tools and computation

Summary This first chapter deals with formalism, notations and basic tools in multilinear al-
gebra. Definitions and properties are given for real three way arrays and more generally for third
order tensors, but a generalization of notations to higher orders is trivial. It is structured as follows:

e Tensors understood as multiway arrays, allowing simple but narrow definitions.
e Tensors as described in multilinear algebra.
e Computation rules explaining how to manipulate tensors with ease.

e Introducing the models that will be used all along this manuscript, i.e. Canonical Polyadic
Decomposition and Tucker decomposition.

This chapter is meant as both a technical introduction to the manuscript as well as a contribution
to clarify the manipulation of tensors, which becomes natural given some proper notations.

Introduction Not everyone in the tensor community defines and manipulates tensors in the
same fashion. Data scientists tend to refer to multiway arrays and make use of notations from
Harshman or Kiers [59.[70], or more recently, from Kolda [72] or Comon [37]. On the other hand,
mathematicians interested in the numerical and theoretical treatment of tensors define tensors as
vectors from tensor spaces, which will be defined below. This formalism is closer to the historical
definitions given by Whitney and Bourbaki [11}]122].

The reasons for this division may be twofold. For data scientists, tensor decompositions stem
from regression models [64], where the tensor product concept was not initially needed. Moreover,
the use of more intricate tensor notations is difficult to grasp in a general context. However as we
show in this chapter, notations can be made quite natural for finite dimension tensors. Multiway
arrays are simply tensors expressed in a particular instance of isomorphic tensor spaces.

For further readings about possible formalisms, Bro’s thesis [16] gives most tools necessary
for multiway array processing, while Hackbush’s book [57] provides comprehensive definitions and
properties for tensor product spaces. A small paper grouping some tensor formalism concepts with
useful computation rules is available on arxiv [30].

1.1 Multiway formalism

Multiway array processing refers to mining data from tables of more than two dimensions. As
a first naive approach, manipulation of such tables does not require the multilinear algebra tools
that are introduced in the next section. In all the discussion below, we consider real arrays.

1.1.1 Some basic definitions

First let us provide a definition of a three way array.

Definition 1 A three way array T of size K x L x M is an element of the finite-dimension real
vector space REXIXM It js uniquely defined by the set of its coordinates Ty, where 1 < k < K,
1<I<Landl<m<M.

19



20 CHAPTER 1. MULTILINEAR TOOLS AND COMPUTATION

ot

Figure 1.1: A three way array of dimension 2 x 2 x 2

[l
| —
[N
—
(o)
| —
N =
| S
()
—
[N R
[

Figure 1.2: The outer product of three vectors of size 2

In other words, a three way array is a table 7~ with three indices k, [ and m, so that it contains
K LM entries (see Figure . Different words can be used for addressing the ways of an array:
ways, modes, diversities. The word diversities in particular reflects an important aspect of multiway
arrays. Indeed, the core idea behind array processing is to include new information in each mode
that is not redundant with the information contained in other modes. This will be particularly
important when applying tensor decompositions to a given array 7T .

It is important to understand that although matrices are two-way arrays, they are not consid-
ered as multiway arrays since they do not share some crucial properties of multiway arrays that
are recalled in what follows. It is however useful to represent a three way array by its slices, i.e.
matrices obtained by fixing one index of the table. For example, the three way array from Figure
is efficiently represented by the following stack of matrices :

1 2|5 6
[ 3 4|7 8 ] (1.1)
An easy way to build a three way array is achieved by computing the outer product of three
vectors.

Definition 2 The outer product T = a obo c of three vectors a, b and ¢ respectively in R¥, R¥
and RM is a three way array defined by the following coefficients:

Tyim = agbicm (1.2)

Figure provides a graphic explanation of what the outer product does. Since arrays of the same
size can be added by summing their coefficients, it is possible to build arrays by sums of outer
products of vectors. In fact any array can be described by a sum of outer products if enough outer
products are summed. This point will be detailed in length in the section 77?.

A wuseful tool to manipulate arrays is the reshaping operator. Reshaping an array means
transforming the array into another with fewer modes. For three way arrays, reshaping means
putting all the coefficients in a matrix or a vector.

First let us have a look at the matricization.
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E
.

where M; € RE*M and N; e RE*M

Figure 1.3: Three matricizations T';y of a three way array T of size K x L x M

RKXLXM RKxLxM

Definition 3 A matricization of an array in 18 an isomorphism ¢ mapping
to R so that for any array T, ¢(T)ij = Tkim where each couple (i,j) is uniquely mapped to
one tuple (k,l,m) and IJ = KLM.

There are (KLM)! possible matricizations for arrays of size K x L x M. Of course some of
them completely destroy the structure of the data and should not be used in a data mining
context. However, preserving structure still leaves some degrees of freedom with respect to choosing
a matricization to work with. We choose three matricizations denoted T'(;y that preserve the
ordering of coefficients for some slices of the cube as presented in Fig [1.3] while preserving the
order of multiplications of vectors in folded modes. Indeed, the matricization of a three way
array concatenates two modes. For outer products of three vectors, this means transforming the
outer product of two of the vectors into a product computing one larger vector. The product
corresponding to the outer product after matricization is known as the Kronecker product and
extends to matrices:

Definition 4 The Kronecker product of two arrays A € RP1*% and B € RP2*% s denoted by
ARX B € RPP2X0192 gnd is defined by:

allB algB . alqlB
ang

AXB := } . (1.3)
CLPllB apllhB

Thus, for matricizations defined in Fig

lacboc]yy =ao(bXc)
[acboc], =bo(aKc) . (1.4)
[acboc]s =co(alxlb)

This choice of matricization seems natural since outer products, and as we will see later tensor
products, are at the core of all multiway array processing. Matricizations are useful when each
mode of arrays is put in the first mode of a matricization, but preserving the order of the remaining
vectors when moving from arrays to matrices is good practice to clarify computation, especially
for arrays with more than three modes.
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a) columnwise vectorization (MATLAB) b) suggested vectorization

Figure 1.4: Two possibilities for vectorizing an array. Left is the vectorization suggested in [72] and
implemented in MATLAB2014b™ | right is the one used in this manuscript. If Ty, is a coefficient
of T of size K x L x M, then in the vectorized form ¢ it is located at : a) {(—1)KL+(1-1)K+k D)

L(k—1)LM+(1-1)M+m

This definition can be exploited to obtain a compact MATLABR2014b™ code for computing
the three unfoldings:

T,y = reshape (permute (7, [1,3,2]), K, L + M)

T2y = reshape (permute (T, [2,3,1]), L, K « M)
T3y = reshape (permute (T, [3,2,1]) , M, K = L)

Another useful way to reshape an array is to turn it into a vector. This operation is called
vectorization.

Definition 5 A vectorization of arrays in REXL*M s an isomorphism 1 mapping REXLXM o
RY so that for any array T, (T )i = Tiim where i € [1, N| is uniquely mapped to a tuple (k,1,m)
and N = KLM.

We denote vec(T") the vectorization b) of Figure

Once again, we choose the only vectorization among many that preserves the order of vectors
when vectorizing an outer product, see Figure Moreover similarly to matricization, our vec-
torization of outer products preserves column, row and fiber structure, so that outer products are
mapped to Kronecker products :

vec(aoboc) =aXbXec. (1.5)

This is in contrast with the definition of MATLAB, which does not enjoy this convenient property.

1.1.2 Array manipulation

Now that multiway arrays have been defined, that arrays can be built using the outer product and
that we can reshape arrays at will, a natural question to raise is how to manipulate arrays in order
to extend fundamental tools of linear algebra, i.e. how to

e change the basis of representation of an array ?

e define a scalar product and a norm ?
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Euclidian Norm and scalar product

The Euclidian norm of an array can be obtained through its vectorization. For matrices the
Euclidian norm of vectors yields the Frobenius norm after vectorization. Similarly, Euclidian norm
of vectorization of arrays yields a Frobenius (¢3) norm:

Definition 6 The Frobenius norm | T |r of array T is the non-negative quantity defined by the
following equality:
|71 = lvee(T)5 = ) T (1.6)

klm

Defining a scalar product of two tensors of same size follows from this definition using the
parallelogram identity. But let us see it differently. To build a scalar product of two arrays T and
T’ corresponding to the canonical scalar product of vectors, we need to “contract” 7~ and 7~ on
each mode. A formulation with the trace operator is classically used in quantum physics and is
detailed in Appendix [A] Here let us see how to build such a scalar product with outer products,
and since any array can be defined by a sum of outer products, this scalar product generalizes to
all arrays. A scalar product on the space of arrays is the bilinear positive symetric form given by
the following;:

{aoboc|a ob ocd)y:=(a|a)b]|b)lc]|c) (1.7)

where the scalar products on the right are the Euclidian scalar products in R¥, R and RM. This
definition coincides with the scalar product of matrices and yields the Frobenius norm for arrays

R P
defined above. Indeed, let M = )} a,ob, and M' = a;, o b;, , then
r=1 p=1
R,P
(M| My = Tr(MTM') = Z {a, | a'p><br | b;}. (1.8)
r,p

The norm and the scalar product described above are invariant with respect to matricization and
vectorization of arrays.

Change of basis of representation

To change the basis of representation of an array implies that, first of all, an array is not considered
a fixed table of numerical values but rather the expression of an element of R¥*E*M in a given
basis B. It is shown in the next section that any basis B of the vector space of finite dimensions
arrays can be expressed using a basis for each mode of the array, i.e. there exists matrices U,
V and W so that any basis vector in B is the outer product of vectors in the span of U, V' and
W. In other words, to change the basis of representation of an array, it is sufficient to change its
coordinates mode-wise.

Actually it makes a lot of sense to operate on a multiway array mode per mode, since each
mode carries a different modality with its own scale or measurement unit. To affect an array on
only one mode, the N-mode product can be used.

Definition 7 The I-mode product of an array T in REXL*M with o matriz U in RE %K g

denoted by a three way array T o1 U in RK'xLxM defined by the following equality:

K
[T o1 Ul = Z Ur'kThim (1.9)
k=1

and can be understood as a contraction of T with U along the first mode of T and the second
mode of U. A similar definition holds for 2-mode o5 and 3-mode o3 products.

There are natural relationships between the N-mode products and unfoldings of a tensor that are
recalled in Table [.T]in section [L311

Since a change of basis can be computed mode-wise, and since the N-mode product is exactly a
mode-wise computation of linear transformation, changing the basis of representation of a three way
array goes as follows. Given three orthonormal matrices U, V and W defining three orthonormal
bases, we can express array 7 as a new core array G in the new basis as

G=Te U o,V es W', (1.10)
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All the basic computation tools for multiway arrays have now been introduced. Most works on
multiway array processing resort only to these definitions and a few formulas that we introduce in
the third section and are summarized in Tables and However, tensors have not yet been
discussed. Even though the tensor formalism is not utterly necessary when processing arrays of
data, using tensor products allows for a generalization of array processing, along with a deeper
understanding of what operation makes sense or not when processing arrays. In other words, the
root of array processing lies in understanding multilinear algebra.

1.2 Tensor product formalism

7?7

In what follows, tensors are introduced as in Schwartz’s book [101], which itself is based on
works from the group Nicolas Bourbaki [11]. Proofs of all the theorems and properties below can
be found in these two references. The goal here is to give insight on what a theoretical definition
of tensors is, what are intrinsic properties of tensors, and how they relate to multiway arrays.

1.2.1 Tensor product definition

Given two vector spaces & and %, it is well known that a third vector space can be built using
the cartesian product: & x F = {(z,y),z € & and y € F}. A difficulty encountered with the
cartesian product is when bilinear functions over & x .% are to be used. Indeed, suppose one wants
to process data contained in a vector of & x %, then bilinear operators act mode-wise but linear
operators may not. This was actually the main motivation for using tensors, and arrays, in data
processing [113].

However, ideally using linear operators instead of bilinear operators would make it possible to
use the whole arsenal of results and methods of linear algebra. This is exactly what the tensor
product amounts to: it is a bijection from & X .% mapping to a vector space where bilinear
operators become linear. Below is an exact definition. Proofs of existence and uniqueness up to
an isomorphism can be found in |101] p4-5.

Definition 8

o If & and F are vector spaces, there exists a vector space & ® F and a bilinear mapping ®
from & x F to & ® F having the following property:
for any bilinear mapping u from & x F to a vector space 4, there exists a unique linear
mapping v from & @ F to 4 such that u(z,y) = v(z®y) for allz e & and y € F.

o If® : & X F — EQRX.F is another mapping with the same property, there exists a unique
linear bijection w: & @ F — &Q.F such that wo® = ® and @ = w™ o ®'. (uniqueness
of the tensor product up to composition with isomorphisms)

In other words, a tensor product is a canonical bilinear mapping that linearizes the cartesian
product & x Z:
ExXF — EQF
® : (z,y) —» =y
There are two important details in this definition. First, it is not possible to define only & ® %
without adding a definition of the tensor product ®, and conversely a tensor product needs to
be defined as a mapping to a specified space & ® #. In other words, it is necessary to provide
the couple (& ® F#,®). Second, there are infinitely many possible tensor products that may be
built from two vectors spaces. We will often refer to ® as ’the’ tensor product, but actually
we only choose one instance of (£ ® #,®). This matters to some extent in applications when
using matricization and vectorization, as explained further below. However when designing data
processing methods on tensors and arrays, a generic tensor product and tensor product space can
be choosen without loss of generality, and this simplifies computation compared to sticking to
outer products and Kronecker products. Thus in this manuscript, whenever it is possible, the
tensor product formalism will be used.
A direct corollary of Definition [8] is that the scalars can be placed arbitrarily in all vectors
composing a tensor:

(1.11)

AMz®y) = r®y =@y (1.12)
where scalar A belongs to the field of construction of & ® Z.
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1.2.2 Some properties on bases of tensor product spaces

Three fundamental properties are listed below. They are almost mandatory to gain intuition on
what is a tensor product space. Linear algebra is one of the fields in mathematics that can be
really well understood because most reasoning can be done on bases of vector spaces, and those
can be mentally visualized. In tensor algebra, i.e. algebra on tensor spaces i.e. multilinear algebra,
reasoning with bases is also a very good way to get intuition.

Proposition 1 Let {e;} and {f;} be bases of & and F, respectively. Then {e;® f;} is a basis of
& ®F and is called the canonical basis associated with the two given bases. More precisely, let ®
be a bilinear mapping from & x F to & ® F. (£ ® F,®) defines a tensor product space if and
only if there exist two bases {e;} and {f;} such that {e; ® f;} is a basis of & ® F. Then it is true
also for any basis of & and F.

Given two bases for two vector spaces, building a basis of a third vector space through a bilinear
mapping is equivalent to building the tensor product space with this bilinear mapping. This
characterization of tensor products can be used in practice to build a tensor product space from
two vector spaces. The finite dimension case can be very well understood within this framework
as exposed in the next subsection.

However in the infinite dimension case, an interesting example among many is provided in [101].

Example 1 Let C([0,1]) be the vector space of continuous functions from [0,1] to R. Let & be
some finite dimension normed vector space. One possible instance of (C ([0,1]) ® &, Q) is obtained
by setting

o®e:= (P e:x— d(x)e).
This bilinear mapping ® can be shown to define a tensor product by proving it maps any basis of
& to a basis of C([0,1],&), set of continuous mappings from [0,1] to &.

From proposition |1} two important corollaries are easily obtained.
Corollary 1 If & and F have finite dimensions n and m, then & ® F has finite dimension nm.

Corollary 2 The set {e® f, e € & and f € F} spans & ® F. Tensors that can be written as
e® f are called decomposable, or rank-1 tensors.

The second corollary is of particular interest in multiway data mining. Indeed, it states that any
tensor can be written as a sum of rank-1 tensors. However not all tensors are rank-1, which makes
the problem of finding, if it exists, the smallest necessary number of rank-1 tensors to express a
given tensor a fascinating problem. This issue is discussed at length in section [1.4.1

Tensor products can be easily extended to handle more than two vector spaces and all properties
and corollaries above hold. When NN vector spaces &,, are used to build a tensor space, elements
of this tensor space are said to be tensors of order N.

1.2.3 Finite dimension case: back to arrays

There are many fascinating mathematical problems that can be derived from the discussion above,
yet what data scientists are interested in is the processing of multiway arrays. Let us see how
computation on multiway arrays can be casted in the tensor product formalism.

It is quite frequent that arrays and tensors are confused. It is possible to hear that arrays are
supposedly not true tensors, or sometimes that tensors are arrays but not written in a fixed basis,
or some other weird formulation trying to give separate meanings to arrays and tensors. To clarify
this point once and for all, an array of size K x L x M is simply a vector from RE*E*XM and
whether or not it is written in a given basis or not has nothing to do with it being a tensor or not.
Indeed the same goes for vectors in R”™, they are more than just a table of coordinate but that
does not mean an intrinsic formulation of a vector in a vector space is a tensor.

Actually, all arrays are tensors, but not all tensors are arrays. To prove this, it is sufficient to
see that (RE*L*M o) is a tensor space built from RE x RY x RM with o’ being the canonical
tensor product o'(a,b,c¢) =aoboec.

Definition 9 A third order real array T of size K x L x M is a vector of the tensor space
RKXLXM,O') where the tensor product is o'(a,b,¢) = a oboc. Thus the space of arrays is
RX o RF o RM. This definition is equivalent to definition ,
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Again REXLXM is only one instance of a tensor product space R @ RX @ RM, and the outer
product is a particular choice ® := o of tensor product among many. Notations are already
becoming difficult since we need to differentiate between the outer product o (which is the tensor
product for two-way arrays) and the tensor product o’ which is a trilinear function. Similarly,
(RELM ) is a tensor space where the tensor product is defined using the Kronecker product,
X'(a,b,c) = axbXc. RELM is the same “class” of tensor space than RE*EXM gince vectors
and three way arrays are related through the reshaping isomorphism.

Another example of arrays casted as tensors is arrays obtained through matricization. Let T~
in REXEXM he a three way array. The matricization on the first mode is an isomorphism. So
it defines a tensor space (REX*EM ®), but the tensor product is not a simple concatenation of
Kronecker product or outer product. If Matricization is defined correctly as in Figure [[.3] then
here ®(a, b, c) = a o bxlc. Using the tensor formalism makes things quite clear.

It is possible to further play with names and conventions (and enjoy it all the more). A vector
in R! where I = K LM may be an element of a tensor product space (R¥ KR KRM,[x), i.e. a
third order tensor. So vectors can be tensors of any order, matrices are not only tensor of order 2
and arrays are tensors. Clearly, it is crucial to define what are the initial vector spaces considered
to build the tensor space, otherwise the “order” of a tensor is a meaningless concept. Moreover,
when designing methods for mining multiway arrays, the fact that an array is a tensor is sufficient.
In other words, the Kronecker product, outer product, and any other particular instance of a tensor
product is only necessary for numerical computation, but not in theoretical design of methods and
algorithms. As a consequence in this manuscript, restricting the discussion to arrays is avoided
as much as possible to simplify notations. Matricizations and vectorization will be used when
numerical computation of a formula is needed.

1.2.4 Linear operators acting on tensors

Since tensors are vectors of a tensor space, one natural tool to study is linear maps acting on
tensors. We have seen that a subspace of linear maps acting on arrays is defined by mode-wise
linear operators. In other words, using the N-mode product, a subclass of linear operators can be
applied on arrays. An interesting property of tensors stated and proved below, is that whenever
dealing with finite dimension tensor spaces, all linear maps can be decomposed into mode-wise
linear operators. Which means that the set of mode-wise linear operators is a basis of linear maps
on finite dimension tensors, i.e. the set of linear maps acting on finite dimension tensors is itself
a tensor space.

Proposition 2 Let &, &', .% and %' be four finite vector spaces on a field K, of respective
dimensions n,n and m,m. Let ® and @ be two tensor products on & x F and & x F', and
consider the following mapping:

L(E,E) x L(F, F) — LERT,EQ F)
®p : (u,v) > u®p v (T®Y) = u(z) @ v(y)

where L(&,8") is the linear space of linear operators mapping & to &'. L(E Q@ F,8 @ F')
associated with the bilinear mapping ®, is a tensor space, t.e.

LERT,ER F)=L(E,E)Q, L(F,T).

A short proof of this proposition can be found pages 72-73 in [57]. Here a simple proof using
tools presented above is derived. To prove proposition |2|, we only need to check that ®, maps one
basis of L(&,&") x L(F,.F") to a free family of L(&® F, & ® F'), which yields injectivity. Then
we will be able to conclude arguing that these two spaces have the same dimension, so that by
Green’s theorem, ®, is a bijective bilinear map from the cartesian product space to a linear space,
which is exactly what a tensor product is.

Let {e;}, {e}}, {f;} and {f}} be some bases of &, ", and F'. Define the following basis for
L(E,E):

uiej) = dij€;

where ;5 is the Kronecker symbol equal to 1 if and only if ¢ equals j. Define the basis {v;} similarly.
Let us prove that {u; ®, v;} is a free family.
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Given some {);;}, suppose for any 2 ®y in & ® &
Z )\Uul(af) ® Uj (y) =0.
iJ

This is equivalent to
Z )\ijVZ'I/;-eg ® fJI = 0
2]

where v; and v/ are coefficients of z and y in bases {e;} and {f;}. Since this is true for any z,y
and that {e;®' f}} is a basis of £'®' .7, all lambdas have to go to zero, thus proving proposition o

Of course this can be extended to cover non-square linear operators. Proposition [2| means that
the set of linear operators on finite dimension tensors is itself a tensor space £L(&, &) ®, L(F, F').
A useful class of linear maps on tensors is the set of rank-1 linear operators U @ V ® W (in the
whole manuscript the notation ®, is simplified to ® since there is no ambiguity with the tensor
product of the initial tensor space). They are exactly linear operators that act mode-wise on each
mode of an array. That is, the action of U ® V ® W on a tensor T can be computed in the space
of arrays through the N-mode product:

(U@V@W)TZT'1U02V03W. (113)

The notation (U®V @ W) T is naturally inherited from linear algebra notations Uz of the
application of linear operator U on vector .

1.3 Computation rules for finite-dimension tensors

1.3.1 Computation rules

Manipulation of array notations by hand are known to be cumbersome, since computation rules
are supposedly non-intuitive. This is particularly true when using outer and Kronecker products.
However computation is natural when using the tensor product formalism. Proposition [2] paves
the way for composition of linear operators with the following rules:

U@VW)(a®b®c) Ua@VbWe
UVeW)UV'W') = UURQVVQWW''

(1.14)

The first rule comes from the definition of the tensor product among linear operators. The second
rule is simply the composition of separable linear operators, and is also a direct corollary of their
definition sometimes coined as the mixed product rule. If the chosen tensor product for the tensor
space is the outer product, then the tensor product for operators is not a usual product between
matrices, and the generic symbol ® is used throughout the manuscript. Moreover, the outer
product does not need to be written with a specific symbol o since using a generic symbol ® for
vectors does not lead to any ambiguity. However, for the Kronecker product, we stick with the
symbol since the distinction between a tensor product in REQ@RE®@RM and its isomorphic
Kronecker product is necessary when dealing with reshaping.

Most computation rules that are used in multiway array processing are summed up in tables
and Since these rules are quite trivial but proving them all one by one is cumbersome,
we let the reader prove and understand each of them himself. Let us give an example of a typical
computation with the tensor product formalism.

Example 2 Let a,, b. and ¢, be real vectors of finite dimension, r < R for some integer R. Let
1, be the vector of zeros having only the r*" coefficient equals to 1. Then the following holds:
R R

a,®b,.Rc, Al,®B1,®C1,
=1 =1

= R
r=1
=(A®BRC)ZIgr

T

(1.34)
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N
( ) >< @) in the same order (1.15)
AXBT = B) (1.16)
vec (AXBT) = (AR B) vec (X) (1.17)
N
ec <<® Ui> y> (.U ) vec ( (1.18)
i=1
AX +XB=D <o ((AI) + (IBT))vec(X) — vec (D) (1.19)
y X o, U< Y(Z) = UX (1) (1.20)
N N
K@ Uj> y} =U;Y; (U > (1.21)
Jj=1 J#
R N R
’y=2®a Za )®.a(l (1.22)
r=175=1 r=1 J#i
Table 1.1: Some useful properties of reshaping operators
(A®B) (C®D) = (AC®BD), if compatible 1.23)
(U®V®W U'eview ) (1.24)
N
(A.B ) (C @D = AC@ BD) , if compatible (1.26)
Tr (AQB) =Tr(A) B; Try (A® B) = ATr (B) (1.27)
(A®B)" = AT@B” (1.28)
I(k)(ABC)=A®B®C (1.29)
R
Zarb,,z (A@B)1, where A =[a;...ag] (1.30)
r=1
R N N
®.a = A1, ( AjT) = A, (@ Af) (1.31)
r=1 J#i J#i J#i
IR, a,
®5: L= a1®...00,10IQ...Qay (1.32)
N N N
QU;|=[IU:h# ™ where |U| = det (U) (1.33)
1=1 i=1

Table 1.2: Some useful relations
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where A = [a1,...,a,], B and C are defined similarly, and Z is a tensor of size R x R x R with
ones on the diagonal in the canonical basis.

Definition 10 (Khatri-Rao product) Given two arrays A and B in respectively R'*7 and
RI'*7 | the Khatri-Rao product of A and B is an array A® B in R™'*7 obtained by columnwise
Kronecker products:

AQB:[A21B217~-~7A:pB:p]- (135)

The Khatri-Rao product appears along with matricization operators applied on sums of decom-
posable tensors. Indeed, the product of matrix M in RE*N applied on the right to a matricized
diagonal tensor of ones Z selects only rows of M with indices in {R(r—1)+r,r € [1, R]}. It follows
that for A, B and C respectively in RE*E RE*XL and RE*M and for all k,

I (ARBRC)=AOBOC. (1.36)

Below are some further notions that need to be introduced for later.

1.3.2 Trace operators and derivatives

When developing algorithms to mine data stored in multiway arrays, the notion of derivative of
multilinear maps on arrays is necessary. Usually arrays are matricized to obtain a linear algebra
formalism, but this is not mandatory. Using partial traces, it is possible to compute gradients of
norms of transformed arrays without resorting to reshaping.

Definition 11 (Partial Trace) The partial trace Tre over & of tensors in & @ .F is the oper-
ator that collapses the tensor on the mode corresponding to &, but leaving the other modes in-
tact. Formally, Trg is the unique linear operator Trge : L(E®F,ER.F) — L(F,.F) so that
Tre(U®V) =Tr (U) V. Alternatively, if & is implicit, Tre is denoted by Try.

A discussion on the trace and partial trace operators, the Frobenius norm and a scalar product
of tensors is provided in Appendix [A] It is omitted here for simplicity since the definitions of
Frobenius norm and scalar product given for arrays are enough for processing arrays.

The next proposition provides an alternative way to compute the gradient of the cost function
related to tensor decompositions introduced in the next section. The proof of this result can be
found in Appendix [A]

Proposition 3 (Gradient of the Frobenius norm of a linearly transformed tensor) Let
YU, VW)= |(U®V QW)T|r. Then with Tra 3 being the partial trace over the second and
third vector space, the gradient of v with respect to U is computed as follows:

0

i?:Uﬂw4u®V®qu«I®V®wq7ﬁ) (1.37)
where T* is the linear form associated with vector T . The gradient for other variables can be ob-
tained by circular permutation. Another form of this gradient which is often found in the literature

goes as follows:

Al T T T

1.3.3 Array normal distribution

Finally, let us define a probability suitable for describing Gaussian noise for arrays. Once again,
the usual multivariate normal distribution can be used after applying the vectorization operator,
but array normal distributions are directly applicable when dealing with noisy arrays.

Definition 12 (Array normal distribution) Let X be a multivariate random variable in R™M > *"~
X follows an array normal distribution of mean M and with tensor covariance I' = ®fi1 3 if

and only if )
mm(_u“2Q;AﬁF>

p(X|IM,T) = T
(2mL = 1|2

where T™% = iy E;%

and X; are symmetric. It is denoted as X ~ AN (M, T)
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This definition implicitly requires that the covariance is invertible, an assumption which is also
necessary for multivariate Gaussian distributions to obtain a density function.

The main advantage of array normal laws is that the covariance is mode-wise. For example,
suppose an array T is built by drawing each coefficient from identical identically distributed (i.i.d.)
centered Gaussian distributions. Then 7T should follow the simplest array normal law, with zero
mean and diagonal covariance. If 7T is linearly modified mode-wise, then similarly to regular
multivariate Gaussian distributions, the covariance is multiplied on the left and right by the same
linear transformation, but only on the modified mode. In other words, if U, V and W are full
row-rank matrices and T~ follows an array normal law of mean M and diagonal unit covariance,

(U®V®W)’T~AN((U@V@W)M,UUT®VVT®WWT). (1.39)

1.4 Tensor decomposition models

There is a subtle difficulty when learning about multiway data processing. It is often believed that
once data has been shaped into a multiway array, tensor decomposition techniques will work. This
false belief probably takes roots in the fact that hypotheses to be checked by multiway data to
be efficiently mined by tensor decomposition models are fuzzy. Actually these hypotheses depend
on which decomposition is to be applied, and casting these decomposition models in the tensor
algebra language sheds light on these hypotheses. Moreover, designing tensor decomposition models
accounting for some prior knowledge on the data to be processed is a crucial research topic in both
multiway array and signal processing.

In what follows, the two mostly used tensor decomposition models in data mining are intro-
duced. They have proven extremely efficient for environmental data mining [72], but are also the
simplest models that can be thought of and will be used as ingredients for models explored in the
second part of this manuscript.

1.4.1 Canonical Polyadic decomposition

Given a tensor 7 in R @ R @ RM, what is the smallest number of ’simple’ tensors, i.e. rank-1
tensors, that add up to exactly T, and what are their coordinates? Solving this question for T~
along with subsequent theoretical problems means finding the expression of the data in 7 as a
sum of simple components. In other words, it leads to identify the underlying structure of the
data. This decomposition is called the Canonical Polyadic Decomposition of 7. The CPD was
first studied for decomposing polynomials and was known as the Waring problem, while the idea of
decomposing tensors is due to Hitchcock [64] and was later rediscovered in psychometrics [25,/113].
Nowadays literature on the CPD is quite extensive.

Definition 13 Let T in RKQRY®@RM. A Canonical Polyadic Decomposition or PARAFAC
decomposition of T of rank R is defined as follows:

R R
T=(A®B®C)Zk = ), 0,4, @b, ®c, = Y, 0, T, (1.40)

r=1 r=1

where A, B and C respectively in RE*E RL*E qnd RM*E are called the (loading) factors of T,
Sr is a diagonal tensor in REQRTEQRE containing the o,, and T, are decomposable rank one
tensors in RE @ RLE@RM.

The rank of a tensor rank(7") is the smallest R needed to exactly write T as a CPD of rank R.
It coincides with matrix rank for two-way arrays. Actually since matrix CPD is an interesting
degenerate instance of the CPD, let us explore it first.

Matrix case

Let M € R™*™ be a matrix of rank R. It is usually understood that columns and rows of M span
two vector spaces of dimension R, thus R < min(n,m). Then by choosing some basis U for the
column space with full column rank, since each column of M is in the span of U, there is some
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T = a3 ®b1®c;  + -+ ar @ br ®cr

Figure 1.5: Representation of the CPD of T as a decomposition into a sum of rank-1 tensors

matrix N so that M = UN". Since M has column rank R and U is full column rank, IV is also
full column rank. Moreover, it can be checked that

R
UN' = Z Uy O Ty (1.41)
r=1

where u, and n, are the columns of U and IN. Since there cannot be a sum with fewer outer
products of linear combinations of u,. and n, equal to M, otherwise U and IN would not be full
column rank, the right hand side of is a CPD of M of rank R. Conversly, a matrix UN "
where each factor is full column rank is clearly a rank R matrix. This proves that the matrix rank
and tensor rank coincide for two-way arrays.

Now for a matrix of rank R, clearly there are multiple possible CPD’s. In fact for any invertible
matrix P,

M =UNT =UPP~'N7 = (UP@NP—T) Th. (1.42)

This means that there is not a unique set of factors yielding a CPD of M. That is why additional
constraints are often imposed in matrix decompositions. Indeed, in Principal Component Analysis
(PCA), orthogonality constraints are imposed on the factors [95], while in Nonnegative Matrix
Factorization, the factors are set to be non-negative [79].

In the next paragraph, we study existing results on uniqueness of the CPD for tensors of order
higher than or equal to three.

Identifiability of the CPD

A major question to be asked about the CPD of tensors of order three or more is, given a tensor
of rank R, can components in its CPD be uniquely identified ? After a quick look at , it can
be seen that the norms of vectors a.., b, and ¢, may all be pulled into ¢, without modifying the
result. Thus there is a trivial identifiability issue with the norms of the columns of factors that is
called scaling ambiguity:

R R b
Zar®br®cr: Zo—rar®07®cr~ (143)

r=1 r=1

It can be dealt with in practice by either pulling all the norms in ¢,- and normalizing all columns
of factors, or by pulling the norm of columns of two factors in the third factor and setting o, = 1.
Note that the scaling indeterminacy is in fact a parametrization ambiguity since it appears when
the rank one tensors in the CPD are expressed as the tensor product of vectors.

Another source of loss of identifiability of the CPD is the Kruskal rank deficiency of factor
matrices. Indeed, if two rank one components have the same span in one mode, then vectors in
the two other modes are identifiable only up to a rotation. This fact is detailed in section [3.1.2]
dealing with the PARALIND model.

Apart from these observations, a first result is due to Kruskal |77], who proved that should the
number of components R be small enough and without too much collinearity between columns of
factors, components can always be identified from the data, with restrictions stated above. The
bound on tensor rank is proven in an understandable manner in [109]. Moreover, work has been
conducted that provides bounds beyond Kruskal’s [?,49/50]. However, a quick computation of
the number of parameters and equations in shows that there are at most (K + L+ M —2)R
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T = (A ® B ® C) >

Figure 1.6: Representation of the CPD of T as a change of representation basis

independent parameters and K LM equations. A naive bound on the number of components R is
thus given by
KLM

(K+L+M-2)

R<| | (1.44)
which happens to be a generic upper-bound on the rank to ensure identifiability of components in
most cases called non-defective [27]. The minus two parameters comes from the scaling ambiguity
discussed above.

What should be remembered in practice is that a tensor 7T satisfying the strict inequality
(1.44) admits a unique set of factors A, B and C in its CPD with probability one. In data mining
applications, this assumption is often - but not always - verified since [%J is usually very
large and a low rank assumption is made on the noiseless data, as explained below.

Interpretations of the CPD

There are several interpretations of the CPD when applied on multiway data. First, since the CPD
is unique in most applications, it can be used to infer parameters of an underlying multilinear model
without adding further constraints, see Figure [I.5] Therefore, CPD is an instance of the Blind
Source Separation problem [38]. In BSS, observed data are the result of mixing output of a few
sources where neither the sources nor the mixing processes are known. However if this mixing
can be shown to be multilinear, then the CPD of data measurements allows to recover exactly the
underlying sources and mixing.

Another interpretation of CPD is diagonalization of tensors or dimensionality reduction, see
Figure CPD expresses the tensor in a new basis spanning the subspace where data are
embedded, and this basis of a multilinear subspace is usually not orthogonal. In other words, the
bases of observation of each mode are not the ones in which the data are expressed as simply
as possible, and the CPD finds these bases of simple representation for all modes simultaneously.
Therefore, the CPD answers questions about the relationship between all modes of an array, and
is not simply a mode-wise treatment of the data. This last remark was actually the starting
motivation for using CPD in data mining and remains the main asset of CPD.

Approximate CPD

Up until now, only an exact CPD of multiway data has been discussed. However, it is more
realistic to assume that data would be corrupted by noise, or that a multilinear model would
not exactly fit the data. Moreover, since the rank of a CPD refers to a number of meaningful
components contained in the data, it is usually supposed small with respect to the dimensions of
the data array. Thus, exact decomposition of multiway arrays may not be sufficient in many
applications.

More precisely, to apply CPD to real-life problems, there are three hypotheses to be verified.

1. The multiway array of data T is corrupted by additive noise, so that there exist a data array
X and a random variable £ following some probability density so that

T=X+E. (1.45)
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2. The data array of interest X is generated by a small number of components of interest and by
a multilinear process. Therefore, X admits an exact CPD of rank R which can be considered
small with respect to the sizes of the data array:

X = (A®B®C)Zp. (1.46)

This hypothesis is strong since it will not be verified by noiseless data with a small number
of underlying components expressed in a non-multilinear model or in a model poorly ap-
proximated by a multilinear model. The decomposition of X also needs to be identifiable.

3. The noise £ has a high rank, that is, the noise does not have some inherent multilinear
structure. Since all tensors admit a CPD, this condition does not state that £ does not
admit a CPD, but it does imply that the rank of the CPD of £ is as high as expected of a

randomly drawn tensor, i.e. [%J +1

Some examples of applications where all hypothesis are verified can be found in chapter [2]

In many cases the noise £ follows an array normal distribution with zero mean and diagonal
tensor covariance o2 T ®3_ Then hypothesis [3| is met, and under [1| and [2| equation yields the
following distribution on the data:

T ~ AN (A B®C) Xg, 021%%). (1.47)

Even though the existence of X is ensured by the model, the existence of the best rank R
approximation X of T is not guarantied and this poses serious problems in applications. Indeed
the set of rank R tensors is not closed, and the set of tensors that do not admit a best low-
rank approximate is not negligible [47]. In this context additional constraints are needed on the
decomposition so that the intersection of the set of rank R tensors with the constraint space is
closed [83]. This topic is covered in chapter

The next paragraph explains how to recover the factors of X knowing model .

CPD algorithms with Gaussian noise

Let us derive a cost function to be minimized for solving the approximate CPD. The maximum
log-likelihood estimate of X is easily obtained :

X = argmin |7 - X|% (1.48)
st. ¥ =(A®BQ®C)Xg '
Problem (1.48) can be seen as a linear system vec(7) = Mvec(Zr) under the constraint
M = AxBXC: .
X = argmin |vec(T)— Mvec(Zg) |3

st. M =AXBKXC (1.49)

But the linear system without constraints is severely illed-posed, and the Kronecker product equa-
tion is not trivial to solve either. Considering the constrained linear system is thus a difficult way
to write the cost function. Therefore, the cost function to be minimized is chosen to be

7(A,B,C) = |T — (A® B®C) Zg||%. (1.50)

This choice for v is also problematic because 7y is not a convex function. However it is quadratic
with respect to each factor. Therefore, a clever way to solve the approximate CPD using only
linear systems is to minimize v over each mode in an alternate fashion, and to use the fixed modes
as regressor in a linear system. For example, if the optimization is done on A, then B and C are
fixed and used as regressors in a linear system T' = AX where X depends on B and C. When
dealing with three way arrays, the three least square problems are obtained by matricizing the
array in each mode, since

IT-(A®B®C) B} = [T(1)~A(BOC)" |} = |T2)-B(AOGC)" |} = |[T(5—C(AGB)" |}

Lexcept for some rare exceptions referenced in [27]
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Algorithm [I] using these matricizations is called Alternating Least Squares, and is considered
the workhorse algorithm for computing the best approximation of a tensor by a low rank CPD.
However, other powerful algorithms have been adapted in the recent years to minimize 7
based on gradient descent.

All these algorithms have their advantages and their issues, but we believe [[| that differences
in convergence rates and estimation performances mainly lie in the implementation strategy since
all methods have similar complexity, and all are believed to converge to one of many critical point
of v depending on initialization. But implementation does matter and precision and computation
time may vary a lot depending on how well implementation uses properties of tensor algebra,
parallelization, sparsity, the initialization strategy and so on. A nicely implemented toolbox using
the Levenberg Macquardt method and Gauss Newton methods is available onling®| while a toolbox
for ALS applied to CPD and other decomposition models is due to Rasmus Brg* Another widely
used toolbox featuring many basic manipulation functions is the Tensor Toolbox ﬂ The authors
are using personal MATLAB 2014b codes also available publiclyﬂ

Algorithm 1 ALS algorithm for solving the exact coupled CPD problem
INPUT: Multiway array 7T, initials factors A, B and C.
while convergence criterion is not met do

-1
A=Tu (BOC)(B'BECTC)

—1
B=T;(A0C)(ATABCTC)

-1
C=T(AOB) (ATADB'B)

end while

OUTPUT: estimated factors A, B, C.

To find the best approximate CPD of a multiway array of data is equivalent to finding the
structured mean of the distribution knowing the noise structure, but with only one realization
of this distribution. Clearly since only one realization is available, the final estimate or factors A,
B and C will be biased. However the number of parameters grows linearly with the dimensions
of the array whereas the number of equations grows exponentially. Thus with a fairly large array
of data following , a fairly precise estimation of the factors may be obtained in theory. The
question of how precise the approximation can be is tackled by computing the Cramér-Rao bound
of the approximate CPD under Gaussian i.i.d. noise introduced in Appendix

What to do with correlated noise

An issue with ALS methods is that taking correlation into account is seemingly difficult. However
in the particular case of array normal distribution, handling correlated noise is straightforward.
Suppose the following probabilistic model for the data array:

T ~ AN (X,T) (1.51)

where T is an invertible operator in the tensor space of operators, i.e. I' e REXK @ REXL @ RM*M
The definition of array normal distribution requires I" to be invertible just like in regular multivari-
ate Gaussian distribution, otherwise a probability density cannot be evaluated with the Lebesgue
measure. It also required that I' is a rank one tensorﬂ so that there exists U, V and W symmetric
and full rank so that I' = U @ V ® W. This last condition means that the correlation of the noise
happens mode-wise, which may be a natural assumption in some contexts. Thus a mode-wise
preprocessing of the data is enough to whiten the noise:

(U—% Vi @W—%) T ~ AN ((U—%A@)V—%B@W—%C) zR,I) (1.52)

2Since a theoretical comparison of different descent methods for computing and approximate CPD proves very
difficult, the only comparisons that exist are comparing simulations of decompositions using these methods, and
performances depend on implementation. Thus the fact that all methods are equivalent, and in particular ALS and
gradient-based approaches, is simply a belief of ours and is not backed by any evidence other than ignorance.

Shttp://www.tensorlab.net/

4http://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox

Shttp://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

Shttp://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html

"Be careful that I' belongs to a tensor space of operators, i.e. represented by matrices in some canonical basis
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and any algorithm designed for i.i.d. noise can be easily extended to cover correlated noise given
a mode-wise correlation. This also means that processing a data array with a rank one non-
orthogonal operator U ® V ® W correlates the noise mode-wise.

A more difficult situation is encountered when I' is not a rank-1 operator, which is typically
the case when data are missing. Then a good definition of an array normal distribution is not even
available, but it is still possible to resort to a multivariate normal distribution of the vectorization
of 7. By using clever matricization properties and reordering the coefficients in T', it is possible
to use an ALS algorithm with unstructured correlation [65], but it is also possible to vectorize the
data and the CPD model to run a gradient algorithm [2].

There is much more to say about the CPD of a tensor. Many problems encountered both in
theory and in practice are developed later in this manuscript, along with other tensor decomposition
models. In short,

¢ including constraints or prior information on factors in the CPD to improve interpretability
or ensure existence of the best low rank approximate is the main topic of the next part of
this manuscript.

e applications of CPD to real data sets are naively presented in chapter [2, and more complex
models based on the CPD are applied in the second part of this manuscript.

e rank estimation is a serious issue in all applications and is shortly evoked along with com-
pression of tensors in section but a helpful reference is [20].

1.4.2 Tucker decomposition and High Order Singular Value Decompo-
sition

Tucker decomposition is another widely used tensor decomposition model. Basically, a Tucker de-
composition of a tensor 7™ is a non-invertible change of basis UQV@W € RE* 1 @ RE*Fz @ RM * fis
applied on T~ to obtain a smaller array G in R* @ Rf2 @ R called the core of the decomposition.
Similarly to the CPD, an exact Tucker decomposition is not what is typically useful in practice,
and an approximation framework is necessary. First the multilinear rank is introduced, which is a
key notion to understand the Tucker decomposition. Then a definition of Tucker decomposition is
provided along with a discussion on identifiability of the parameters, and the specific case of High
Order Singular Value Decomposition is explored.

Multilinear ranks

The rank of a tensor is a notion intertwined with the CPD. For matrices, the tensor rank coincides
with mode-wise ranks, i.e. column and row ranks. However this is not the case for three way
arrays, that is, the tensor rank is not equal to the dimension of the span of rows, columns and
fibers (coeflicients along the third mode). These three dimensions are called the multilinear ranks
of a tensor and are an intrinsic notion to the Tucker decomposition. More discussion on the
multilinear ranks can be found in pages 175-180 of [57].

Multilinear ranks of a third order tensor are three integers that express the dimensions of the
span of vectors in each mode, i.e. the dimensions of the span of rows, columns and fibers. However
this definition is not easily understood when dealing with tensors that are not arrays. Thus a
coordinate-free definition using the factors of the CPD is provided below.

Definition 14 Let T = (AQ B®C) Xg a tensor in RK @ RE@RM . The multilinear ranks Ry,
Ry and Rs of T are the ranks of the factors in its CPD, Ry = rank(A), Ry = rank(B) and
R3 = rank(C).

This is a proper definition since a tensor cannot admit multiple CPDs with factors of different
tuples of multilinear ranks. The proof goes as follows. We have to show that given two CPDs of
T, the ranks of factors of the same mode are the same. Let T of rank R and order three admit
two different CPDs:

By

R
T=>aPeb"ech = > a? @b @c?. (1.53)

r=1 r=1

We can consider that all vectors bﬁl) ®c$1) are linearly independent, otherwise the rank of 7T~
would be smaller than R. Thus we can find a mapping ¢; 1 so that ¢1’1(b§1) ®c§1)) =1 and
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¢1,1(b£1)®c,(«1)) =0if r # 1. ¢11 is a projection operator on the span of bgl) ®c§1). Then
applying id® ¢1,; on T proves the consistency of the multilinear rank defintion:

R
id@11(T) = ai’ = Y. 611 (6P @c?)a? (1.54)

r=1

which means that agl) is in the span of AP A similar reasoning can be done on all vectors

in the two CPDs, so that rank(A™) = rank(A®), rank(BY) = rank(B®) and rank(CV) =
rank(C?). o

Tensor rank may be larger than the multilinear ranks. An example of third order tensor with
rank 3 but multilinear ranks 2, 2 and 2 is introduced below. Given independent vectors a; and as,

T=a01®a1®a2+a1Ra:®a; +a:®a;1®a; (1.55)

which is proven to be rank 3 but has factors with column rank 2, since A = [a1 a1 az], B =
[a1 az a1] and C = [a2 a; a1]. So it may happen that factors have deficient column rank. In
particular, the rank may be larger than the dimensions of an array whereas this is not true for
the multilinear rank. However for tensors of small rank R with random factors drawn uniformly
A, B and C, multilinear ranks are equal to the rank with probability 1 since the set of column
rank deficient factors has 0 probability. Actually, example (1.55) is a well known particular case
of tensors in quantum physics - the maximally entangled tensor of order 3 - and usually does not
represent a typical data array.

Exact and approximate Tucker decomposition

Given a tensor 7 with multilinear ranks R;, Ry and R3, a natural idea is to project T onto
three subspaces %, ¥ and # of dimensions equal to the multilinear ranks. Thus a more concise
expression of 7 can be achieved. In data mining, these three subspaces are called feature spaces.
Changing the basis so that 7 is written in the tensor product of three feature spaces Z @ ¥ @ #
is exactly what the Tucker decomposition is.

Definition 15 Let T in RE @ R @RM. Suppose T has multilinear ranks Ri, Ry and Rs. Then
the Tucker decomposition of T is given by

T=UVeW)g (1.56)

where G € RE1xR2xRs o cqlled the core tensor and U@V @ W e REXIi1 @ RLx 2  RM*Es g ¢
multilinear operator.

It is not possible to write 7~ without loss in a basis U ® V ® W where the ranks of U, V and
W are smaller than the multilinear ranks Ry, Ry and R3. On the other hand, if the multilinear
rank is known, it is possible to project on a bigger tensor space than the span of U @ V ® W but
this seems pretty useless since this would leave correlated coefficients in the tensor.

However in practice and similarly to the CPD framework, the data 7 has large multilinear
ranks because it is noisy. In fact since under noise the tensor rank will be generic, the multilinear
rank on the first mode of a data array is equal to min (K , E) where R is a generic rank, which in
many practical applications equals [%J + 1. Similar discussion holds for the two other
modes. Thus to define an approximate Tucker decomposition, a probabilistic framework may be
introduced. Again, three hypotheses have to be verified by the data array T~ to successfully apply
an approximate Tucker decomposition.

1. There exist an array X and a noise array € so that

T=X+E. (1.57)

2. Array X has multilinear ranks R;, Ry and R3 small in comparison to the dimensions of the
data, i.e. admits and exact Tucker decomposition

X=U®VW)g (1.58)

with G smaller than X. Since X stands for the cleaned data, this hypothesis only requires
that the data has been generated by a small number of components mode-wise, which is a
much weaker assumption than asking for a small number of components in the CPD.
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3. Array € has a known probability distribution that does not generate a multilinear structure
of small multilinear rank, i.e. the multilinear ranks of £ are as high as expected.

In contrast to the CPD, a best low multilinear rank approximation always exists, so that the
Tucker decomposition can be used in a context where the existence of X is not provided by a
physical underlying model.

Remark These hypotheses are not equivalent to the CPD hypotheses since a tensor X can in
theory have a high rank but small multilinear ranks. In practice, ranks and multilinear ranks of
X are often equal since its dimensions are larger than its rank. However some models suppose
collinear columns in factors of the CPD. In this case the tensor rank and multilinear ranks should
be different but the two sets of hypotheses are almost equivalent. In short, stating that a high rank
tensor is noisy and that the true noiseless data has low multilinear ranks is enough in practice to
apply both Tucker and CPD models given the existence of X.

Identifiability and HOSVD

From a parameter identification perspective, an unfortunate property of the Tucker decomposition
is that there are multiple ways to choose a new basis of representation U ® V ® W, so that neither
these matrices nor the core tensor G are unique in the decomposition. Indeed,

T=UVRW)G=UQRQVEW)(5:®5:®55)G (1.59)

for any invertible linear operators S; so that G’ = (Sl_1 ®S5! ®S§1) G. Usually, orthonormal
bases are chosen so that
UQVIW)UQVeW) =T (1.60)

but this does not solve the identifiability problem.

To obtain a unique decomposition, additional constraints imposed on the core array are nec-
essary, so that multilinear transformations resulting in a loss of identifiability cannot be obtained
from modifying G. An interesting tool is the High Order Singular Value Decomposition [43]. Bases
are chosen orthonormal so as to verify , but additional constraints on the core are imposed.
Slices of G in all modes are imposed to be orthogonal mode-wise. The main advantage of the
HOSVD is that even though the constraints on the core could seem intractable to compute in an
optimization algorithm, they are exactly satisfied if computing the Tucker decomposition as in
Algorithm [2] which only requires three matrix Singular Value Decompositions (SVD).

Algorithm 2 Algorithm for computing HOSVD with SVDs of the matricizations of T~
INPUT: Three-way array T of sizes K x L x M, true multilinear ranks Ry, Ry and R3
1. Compute truncated SVD of T'(;y = UN; with U € REXF

2. Compute truncated SVD of T'3) = VN3 with V € RExR2
3. Compute truncated SVD of T'(3y = W N3 with W € RMxRs

4. 8et G=T o, U 0; V' 03 W'
OUTPUT: Core array G, left orthonormal matrices U, V and W

Even in the presence of noise, Algorithm [2| is known to provide a very good estimation of
subspaces of X although not optimal in the least squares sense [43]. Other constraints on the core
can be applied and especially sparsity constraints [23,[91]. However identifiability in this context
has not been clearly proved even under some conditions on the spark of the factors.

A final remark is that in the exact Tucker decomposition, all the information about how the
modes of the tensor relate to each other is contained in the core G, meaning that the matrices
U,V and W only contain mode-wise information. On the contrary, the factor matrices in the
CPD decomposition mine solely “multilinear” information, that is, the CPD answers question like
“what are the elementary links between mode on and mode two under conditions set by mode
three”.

That is why the Tucker decomposition is sometimes said to be a nice tool for processing arrays
of data, e.g. for compression, but not a meaningful multilinear data mining model like the CPD.
Also, the Tucker model does not allow for identifying parameters.
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Chapter 2

Applications of tensor
decompositions

Summary In this chapter, some applications of tensor decomposition models are described.
In particular, the growing importance of tensor models in chemometrics and hyperspectral image
processing is supported through the use of physics-based models, and the advantages and challenges
of applying multiway data mining models in these areas are explored. Moreover, the application of
tensor decomposition techniques to Electroencephalography (EEG) data is quickly surveyed. This
chapter is structured as follows:

e Explanations are provided on why fluorescence spectroscopy is a common application of the
low rank CPD. Some open challenges and recent works on non-linearity are also surveyed.

e We link tensor decomposition methods and the spectral unmixing problem. Hyperspectral
images have many features that call for specific decomposition models, raising some open
questions.

e Applications of tensor decomposition models to source extraction from EEG data are over-
viewed.

This chapter is based on joint work with Xavier Luciani [29}|34] for the non-linear tensor decom-
position applied to fluorescence spectroscopy, and with Miguel Veganzones for the use of tensors
in spectral unmixing [116H118]. Moreover, the neuroscience section is motivated by a recent work
with Bertrand Rivet [99] and ongoing collaboration with Morten Mgrup.

2.1 Chemometrics

Chemometrics is the application of data mining tools to data collected in chemistry related experi-
ments. It is of course an immensely wide and highly cross-disciplinary topic. In what follows, only
one measurement type is studied, namely fluorescence spectroscopy. As explained below, fluores-
cence data fits rather well the approximate CPD model described in section Pioneer works
in applying tensor decomposition models to fluorescence spectroscopy are due to Andersson, Bro,
Kiers and Smilde [15].

2.1.1 Fluorescence spectroscopy experimental setting

In fluorescence spectroscopy, the object of study is a mixture of several fluorescent chemical com-
ponents. Each of these chemical components have a characteristic spectral response to light stim-
ulation. This means that for an excitation of a component by a laser beam of wavelength A..,
the component emits a characteristic spectrum Se,, (Aem) called the emission spectrum, where Mgy,
belongs to a certain range. Ideally, only the amplitude of the emission spectrum depends linearly
and continuously on A.;. The concatenation of all these amplitude values makes up for the exci-
tation spectra Sez(Aex), where Ag, also belongs to a narrow range outside which the amplitudes
are negligible. Figure gives an example of emission and excitation spectra estimated through
tensor decomposition.

39
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Figure 2.1: Emission and excitation spectra of a peptide, Tryptophan-Glycine, estimated from the
data set introduced in section The blue and red curves correspond respectively to the first
column of factors A and B in model Note that these estimated spectra may have various
shapes depending on some unreported parameters, notably concentration, see |2.1.3
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Figure 2.2: A typical experimental setting for fluorescence spectroscopy measurements with mul-
tiple experiments along the concentration diversity.
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Another characteristic of fluorescence spectroscopy is that, should multiple components be
present in a studied mixture, the emission spectrum emitted by the mixture is the sum of each
individual emission spectrum of each component with independent amplitudes. This means that
we know how the spectra are mixed and scaled when a mixture of chemicals is hit by a laser
beam with known wavelength. Figure shows a typical experimental setting for fluorescence
spectroscopy. In practice, the data are made of values of intensity, that stand for quantified values
of the mixed emission spectra on a grid of wavelengths. Note that not all chemical components
are fluorescent, so that when studying mixtures of chemicals with fluorescence spectroscopy, some
components may not contribute to the final emission spectrum.

In terms of data, one mixture provides with one matrix of intensities called the Fluorescence
Emission Excitation Matrix (FEEM). If there is no noise corruption and if the previous hypothesis
are exactly verified, then a FEEM M is a low rank matrix:

R
M = AXiB' = Z Ara, @b, (2.1)

r=1

where columns of factor matrix A are the emission spectra for each component in the mixture,
columns of factor matrix B are the excitation spectra for each component, R is the number of
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Figure 2.3: Left : FEEM obtained from the 8th experiment from the data set described in section
Right : A normalized reconstructed FEEM matrix for the Tryptophan-Glycine. Warm colors
stand for large intensity of emitted light and cold colors for low or no intensity.

components in the mixture, and A, is some scaling depending on multiple parameters. As explained
in section there is not a unique low rank decomposition for second-order tensors, and this
means that from only one FEEM the actual emission and excitation spectra cannot be recovered
solely using low rank methods. To overcome this difficulty, a solution is to add a concentration
diversity in the measurements, i.e. measure the response to laser stimulation of various mixtures
containing the same components at different concentrationﬂ At low values, concentration acts
linearly on the emission and excitation spectra, which means that the measured intensity will be
twice higher for a component which is twice more concentrated in the mixture. As explained below,
this hypothesis is true only if the absorption of the solution can be neglected, which is often the
case at low concentrations. Then due to the linearity on the concentration mode, the multiple
FEEM can be stacked into a multiway array 7T that follows a low rank model:

R
T=(A®B®C)Zr = ), \a, b, ®c, (2.2)

r=1

where columns of factor C' are the relative concentrations of one component along each experiment
(i.e., the relative height of the columns of same color in Figure . In practice, observation noise
and modeling errors have to be accounted for, so that additive noise is added to model .

In short, if an approximate CPD is applied to fluorescence data, the rank stands for the number
of fluorescent components in the mixture, and the extracted sources are respectively the excitation
spectra, the emission spectra and the concentration profiles of each component in each mixture.
Because these factors have physical meaning, some information is a priori available. First, all
components are non-negative, meaning that the extracted components should not have negative
coefficients. Moreover, the emission and excitation spectra are likely smooth in the range of
measurements.

2.1.2 Data for simulations

Throughout this manuscript, one data set stemming from chemometrics will be used. This data set
was developed by Acar et. al. in the context of data fusion . For this data set, five chemical com-
ponents are mixed at different concentrations: Valine-Tyrosine-Valine (Val), Tryptophan-Glycine
(Gly), Phenylalanine (Phe), Maltoheptaose (Mal) and Propanol (Pro). The original data are com-
posed of three measurement modalities, namely fluorescence spectroscopy (EEM), nuclear magnetic
resonance (NMR) and liquid chromatography - mass spectroscopy (LC-MS), but only the fluores-
cence and NMR data are used here. The concentration profiles for the five chemicals are shared
by all experiments and are given in table 2.1} 28 mixtures are studied.

For the EEM data, excitation wavelengths vary from 210nm to 310nm with intervals of 5nm
while emission wavelengths are recorded from 250nm to 500nm with increments of Inm. This
means that the EEM tensor has sizes 21 x 251 x 28. Only three chemicals used in the experiment
are fluorescent, so that Maltoheptaose and Propanol cannot be observed in the EEM data. This
means that the noiseless rank of the EEM tensor is 3. Reference spectra for Val, Gly and Phe are
not provided in the data set, but some estimated spectra have been provided by the authors and
are presented further in Flgure 4] of section [4.2.6

n chemometrics this is called second order calibration
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Mixture | Val | Gly | Phe | Mal | Pro
1 5.00 0 0 0 0
2 0 5.00 0 0 0
3 0 0 5.00 0 0
4 0 0 0 5.00 0
5 0 0 0 0 5.00
6
7
8

1.25 1 5.00 | 3.75 | 3.75 0
3.75 | 1.25 | 5.00 | 1.25 0
2.50 | 5.00 | 2.50 | 1.25 0
9 5.00 | 3.75 | 2.50 | 3.75 0
10 3.75 | 3.75 | 5.00 0 1.25
11 6.25 | 1.25 | 1.25 0 2.50
12 1.25 | .005 | 2.50 0 5.00
13 2.50 | 6.25 | 2.50 0 2.50
14 5.00 | 1.25 | 3.75 | 1.25 | 3.75

15 1.25 | 2.50 2.50 | 2.50
16 3.75 | 1.25 | 5.00 1.25
17 2.50 0 1.25 | 1.25 | 6.25
18 1.25 0 5.00 | 2.50 0

19 3.75 0 2.50 | 5.00 0

20 2.50 0 3.75 | 1.25 0

21 5.00 0 1.25 | 3.75 0

22 3.75 0 3.75 0 5.00
23 5.00 0 1.25 0 3.75
24 1.25 0 5.00 0 2.50
25 2.50 0 2.50 0 1.25
26 5.00 0 1.25 | 3.75 | 3.75
27 3.75 0 5.00 | 2.50 | 1.25
28 2.50 0 2.50 | 1.25 | 5.00

Table 2.1: Concentration in milliMolar, from [4].

The underlying process that generates the NMR data is not reported in this manuscript, further
information on the NMR system itself can be found for instance here [53]. In short, the idea is
similar to fluorescence spectroscopy, but instead of fluorescence, the physical process that generates
the recorded data is nuclear magnetic resonance. The three diversities are the chemical shift, the
gradient levels and the relative concentrations of the chemical components in the mixtures. The
chemical shifts are expressed in part per million (ppm) and informs on the structure of the molecule.
The location of the peaks of chemical shifts is characteristic of the chemical environment of the
protons. Moreover, according to |4], “the gradient levels encode the diffusion property of the various
molecular species”. There are 8 recorded gradient levels, and 13324 chemical shifts. The NMR
tensor data are therefore 13324 x 8 x 28. The fact that NMR data follows a low rank approximate
model is only checked here through the good results of experiments conducted in further chapters.

Notably, the fluorescence spectroscopy modality features many missing data. Missing data
may have multiple origins, but in fluorescence spectroscopy, they are often caused by Rayleigh and
Raman artifact removal [98]. Missing data is not a topic explored in this manuscript, although
some works on imputing the missing values exist in the litterature [2,[16]. Here, missing data were
simply replaced by realizations of the absolute value of a random variable following a Gaussian
distribution of zero mean and variance 1074,

2.1.3 A non-linear decomposition for fluorescence data

When using low rank techniques to extract information on the spectra and concentration from
fluorescence data, the usual hypothesis is that the linear model fits the data well, and that any
modeling error is minor. The reasoning behind this hypothesis is that physical equations linking
measured intensity, spectra and concentrations can be linearized at low concentrations. The lin-
earization process is clearly explained by Luciani et. al. in [85]. However, it is shown in the same
paper that at higher concentrations, linearization comes at a loss of precision, i.e. the multilinear
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model is not appropriate anymore. A first solution is to dilute the mixtures in order to have low
concentrations at all time when using fluorescence spectroscopy, but dilution may deteriorate the
mixture.

A second solution is to fit the non-linearized model described by the following equation:

R R
Tklm = Z akrblrcmr H e_cmp(blp+b;€p) (23)
r=1 p=1

where B’ is zero-padded to account for coefficients by, where k > L. Note that this model is
a coefficient-wise multiplication of a usual CPD with an exponential correction term, depending
on the concentration and the excitation spectra. This exponential attenuation factor emerges
from the Beer-Lambert modeling of the absorbance of the solution, also called inner-filter effects.
When concentrations are low, clearly the correction term tends to 1, so that the data tensor almost
follows a CP decomposition model. We call this model the Non-Linear Fluorescence Decomposition
(NLFD).

NLFD is thoroughly studied in [34], only the main results are summarized here. First the
scaling ambiguity among the parameters of the NLFD is different from usual CPD. Indeed, only
factors C' and B have free column norms, but columns of factor A cannot be scaled at wish:

R R ,
Toim = (Z ak,.bl,.cmr) [ e—cmr(bin+bi,)
= 5 : (2.4)

(b +b%,)

R R
_ blr)\ —ApCmp X,
= Z akT'TT rCmr | | € P
p=1

r=1

Moreover, it is checked numerically in [29] that the NLFD is not identifiable when only two
modalities are provided. Indeed, it is shown in Proposition 2 of [29] that for matrices, non-linearity
does not restore the identifiability of the parameters in the matrix decomposition model.

To actually compute the NLFD, since an ALS algorithm seems difficult to design, a Levenberg-
Marquardt descent algorithm inspired from [86] is used instead. Moreover, the NLFD written in
2.3|is not exact if the excitation wavelengths and the emission wavelengths do not perfectly match.
Indeed, B’ is a function of A, but is sampled on the grid of A.,, and the two grids may not
coincide so that the values of B’ are not contained in B. This problem is tackled efficiently by
any interpolation method, say linear interpolation, but the NLFD has to be slightly modified to
account for this interpolation.

It is shown both on simulations and on actual fluorescence spectroscopy data in [34] that NLFD
outperforms regular CPD when concentrations are not low. A lesson that can be drawn from these
results is that trying to fit a CPD to any tensor data without understanding its true structure
is typically a terrible idea. Only when the approximate low rank model fits the data well, or is
backed up by a physical model, should the CPD be computed. Otherwise any interpretation of the
estimated factors is very subjective. In that case, studying the physical properties of the process
generating the data may provide a modeling solution, as was introduced in this section.

2.2 Hyperspectral image processing

Hyperspectral and multispectral imaging is concerned with the acquisition and processing of im-
ages recorded at multiple wavelengths. For instance, a usual RGB image is multispectral in the
sense that it contains light intensity data in two (spatial) way arrays for three wavelengths. In
general, hyperspectral images are 2 dimensional scenes recorded for hundreds of wavelengths (see
Figure , while multispectral images typically have a dozen of wavelengths. Throughout this
manuscript, we do not distinguish multispectral and hyperspectral since this has little importance
to what is discussed below. Thus only the terminology “hyperspectral imaging” is used. In what
follows, light is shed onto why approximate CPD can be applied to hyperspectral imaging only
when a fourth way is available, e.g. time, angle or patches. Some challenges emerging from the
spectral unmixing application are surveyed, and the “Snow” data set is described for later use.
More information on general hyperspectral imaging can be found here [8].

Hyperspectral images are snapshots of a given scene at multiple wavelengths, so that the raw
data are usually a three-way array where two dimensions are the spatial dimensions and the third
way stands for the various recorded wavelengths. What is measured is the amount of sunlight that
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Figure 2.4: An example of hyperspectral image, from [g].

is reflected by each material in the scene called the luminance, which is then processed to obtain
reflectance data. The technology for acquiring these images has drastically improved in the recent
years, which explains the recent surge of research papers in this area and makes it an appealing
research topic for data scientists.

2.2.1 On the multilinear modeling of images

Before giving a tensor decomposition model for hyperspectral data, it is first of utmost importance
to stress out when hyperspectral data can be considered as a high-order tensor approximately
of low rank. Indeed, a naive way to build a tensor from an hyperspectral image would be to
consider that the two spatial ways make up for two modalities, and the spectral way stands for
the third diversity. Then the three-way array defining the hyperspectral image is decomposed
using approximate CPD, and extracted components on the wavelength mode are understood as
reflectance spectra. A similar approach based on Tucker decomposition has even been used in
recent research papers .

But there is at least two major loopholes in this modeling approach for hyperspectral images.
First, note that in a low rank CPD, each sub-tensor obtained by fixing an index on one mode is
a low rank tensor of reduced order. Actually the rank of the sliced obtained is necessarily smaller
than the rank of the whole tensor. For instance, if third-order T~ follows a CPD with rank R, then
for TI?Z = Tklm;

T" = (A®B®c,)Xr=(A®B)X} (2.5)

where ¢, is the m-th row of C and ¥, = diag{c,,}3Xr. As a consequence, to apply a CPD or
Tucker decomposition technique to an hyperspectral image amounts to supposing that each image
of the data set is low rank. While it is certainly possible that some images are low rank inside a set
of pictures, typically images are not low rank. This can be checked easily by any interested reader
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Figure 2.5: A context where the LMM applies. Note that the light reflects on each material,
and that the mixing is only effective at the sensor. The illustration is a courtesy of Miguel A.
Veganzones.

by computing the singular values of any image that he believes should be low rank. Since images
are not low rank, the two spatial dimensions do not offer two meaningful diversities. Instead, an
hyperspectral image understood as a third-order tensor is typically of high rank, and applying low
rank techniques like Tucker decomposition or CPD means seriously ignoring the data structure.
To be fair, it is possible that the multilinear rank is strictly smaller than the tensor rank, so
that applying multilinear tools to hyperspectral images could prove useful in theory and under
particular care. But for discrepancy between tensor rank and multilinear rank to occur in natural
images is doubtful. That is why hyperspectral images are considered as second order tensors in
this manuscript, the spatial way being the vectorization of the two original spatial dimensions.
This also means that to use tensor decomposition tools in hyperspectral image processing, a third
diversity is required. Some examples are provided below in section [2.2.2

Another issue with hyperspectral images is whether or not they even follow an approximate
second-order low rank model after the spatial ways are flattened. The questions asked here are
how well does a low rank CPD fit hyperspectral images, and can recovered factors in a CPD
be interpreted physically 7 Of course these two questions arise for any application of low rank
decomposition techniques, and it is often difficult to assess the interpretability of the results. In
hyperspectral image processing, a low rank model should however provide with a good tool for
what is called spectral unmixing, i.e. for estimating the concentrations (called abundances) and
spectra of the different materials present in the scene. Indeed a first order physical model
links the abundances and the spectra to the measured reflectance in a bilinear fashion. For an
hyperspectral image with N pixels and L wavelengths,

R
M = AIzB" = ) a,®b, (2.6)
r=1

where a, € ]Rﬂ\r] stands for the abundances of material r in each pixels, b, € ]Rﬁ is the reflectance
spectrum of material r, and R is the total number of material. This model relies on the hypothesis
that the sunlight reflects on each material independently (see Figure , and implies that the
reflectance of each material at all wavelengths is linearly dependent to the proportion of this
material on each pixel. This model is called the Linear Mixing Model (LMM) in the literature,
although equation is a bilinear model. LMM is typically unrealistic when the mixture of
materials in the scene is intimate , but is nonetheless quite accurate for wide pictures like
images collected from a satellite or an airplane.

As explained in section m it is not possible to identify factors A and B in without
further assumptions. The non-negativity of factors is often used to restore identifiability .
It is also possible to use the fact that rows of A should sum to one, since the sum of relative
concentrations should be one . But if additional data are provided along the images, it can be
used to add a diversity to the hyperspectral data and use tensor decomposition techniques. Below
are introduced some possible additional diversities.
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2.2.2 Examples of third order hyperspectral data
Time diversity

To add a third diversity to hyperspectral data, a first solution is to capture hyperspectral images at
multiple instants [116]. The raw data are then a four-way array but is seen as a third order tensor
T in Rf ®1R4L_ ®R£ where T' is the number of hyperspectral images collected. An example of
such space/wavelength/time data is introduced below in section Since a collection of images
along time is usually called a movie, T can be designated as an hyperspectral movie.

The main question to be asked here is whether T follows an approximate CPD with small
variance or not, or under which conditions. Unlike the LMM, it is not known if a physical model
can justify the low rank CPD. However, a physical interpretation of a low rank CPD applied to
T can be given, which does not prove the approximate CPD model will fit the data well but at
least explains what is possibly obtained as the time factor C' after computing the decomposition.
Suppose the approximate CPD fits the data appropriately, i.e.

T=(A®BQRC)Iz+E. (2.7)

Then column r of C' can be interpreted as the evolution of the rth material distributed on all images
according to the abundances contained in the rth column of A. More precisely, the time evolution
has to be independent of the spatial distribution of the material. This means that movement is not
accounted for in the model, and that the material may not partially disappear at multiple pixel
locations and at multiple time frames.

Since these hypothesis are extremely strong, most hyperspectral movies will not follow an ap-
proximate CPD of rank R where R is exactly the number of different materials in the scenes.
Instead, by increasing the rank of the decomposition, the model is relaxed to let multiple compo-
nents stand for the same material but with different time evolution and abundances. This justifies
the use of particular decomposition methods for mining hyperspectral movies, where colinearity
between columns of the spectral factor B is taken into account. Furthermore, the abundances have
to change significantly along the time axis, so that time really stands for a third diversity. This
means that the sampling rate over time must be consistent with the rate at which the landscape
is changing, e.g. one image a day for snapshots of the Alps. Moreover, estimating the rank of the
decomposition proves quite challenging since it is not directly related to the number of materials
in the scenes anymore.

Angle diversity

Similarly to adding a time diversity, it is possible to add an angle diversity. That is, multiple
images of the same scene are captured but at different capture angles. The measured reflectance of
materials is highly dependent on the surface topography, for instance a flat field of grass will give
a brighter signal than grass on a mountain area with large slope variations. The angle modality
captures these variations and therefore relates to the topography of the surface. It is also likely
that some components will have the same spectral factor but with different angular factors and
abundances that stand for the various sloppy areas of the scene. The application of approximate
CPD to this kind of data is discussed in [117].

Patches diversity

To account for local variability in images, patches have been introduced successfully in image
processing. Patches are built by extracting small sub-images from the original image. They can
be used in a wide variety of ways, including dictionary learning [87], clustering or denoising [4§].
As explained above, images are typically high rank, but flattening along the spatial way is also a
suboptimal way to deal with the spatial diversity since some information is contained in the two-
way structure of images. Patches can be used to build a third diversity which takes into account
two-dimensional variations in the image, while preserving the low rank structure of the flattened
hyperspectral image [118]. Indeed it is shown below how to relate the patch-array’s approximate
CPD with a regularized extended LMM.

First, let us define the patch-array built from an hyperspectral image. Denote by x; € Ri
the i-th pixel of an hyperspectral image. For each pixel x;, a patch is defined by the matrix
P, = [x;,xi,,...,x;5], of B pixels x;, in the neighbourhood of ;, including x; = x;,. A
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neighbourhood of «; can be the set of pixels adjacent to x;, see Figure Each matrix P; € RiXB
is stacked rowwise to define a slice of the patch-array, X € Rf xLxB The above formulation of the
patch-tensor is equivalent to stacking B images X (k) ¢ Rf *L along the third mode, 1 < k < B.
Images X (k) are obtained by shifting the original hyperspectral image along the neighbourhood,

i.e. a shifted image is defined by x® = [ar:(Hdk),...,a:(Nerk)]T, where dj, denotes a spatial
displacement from the center of the patch to the position of the k-th element in the patch. This
yields zero-padding along the border of the hyperspectral image.
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Figure 2.6: Example of a 5 x 5 patch using a sliding window centred in x;. The arrow indicates
the spectral way.

It is possible to derive the approximate CPD of the patch array from a regularized LMM. LMM
does not take into account any two-dimensional structure of the image, and a way to account for
this structure is to add a proximity term relating the abundances and spectra of close pixels.
Moreover, LMM also fails at modeling spectral variability, which is the variation in amplitude of
the spectra along pixels. Spectral variability is also supposedly independent of the abundances.
Since spectral variability is mostly a local phenomenon that lives in the two-dimensional structure
of the image, it has been shown that a good way to model this variability is to add a scalar
parameter to the spectra [52], which can further be defined only on the patches, giving birth to
the following regularized extended linear mixing model:

R
xT; = Z a;rb. + e;
5=t . (2.8)
:Bl‘_] = Z )\jrairbr + eij
r=1

The regularization term is induced by the second equation relating a pixel with the spectral un-
mixing of its neighbors. The variances of errors e; and e;; can be modified to tune the amount
of regularization imposed on the extended LMM. If all variances are equal, then the approximate
CPD of the patch-array with that variance is exactly the maximum likelihood estimation of all
parameters in model where the first row of the factor related to patches is set to 1.

2.2.3 Challenges

The difficulties inherent to hyperspectral image processing using tensor decomposition are quite
different from the issues encountered in chemometrics.

Interpretability

First, interpreting the results is usually more difficult. Indeed, the multilinear model for hyper-
spectral images with a third provided diversity is not backed by a physical model (at least in the
cases explored above). This means that there is no reason to expect that the estimated factors
stand for respectively abundances, spectra and a third diversity. Constraining the set of admissible
solutions is a possible way to ensure that the extracted factors satisfy some important properties
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Figure 2.7: False color images of the 44 time acquisitions (cloud pixels are depicted in black). Note
the apparition and melting of snow along time, with at least one permanent snowy zone at the
summit and intermittent grass-snow zones around it. Clearly the evolution of abundances of snow
over time cannot be represented by a single component but at least by two.
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of the physical underlying sources. This point is discussed in the dictionary-based CPD in section
3. Ol

Big Data

Another common issue with hyperspectral image processing is the dimensions of the tensor de-
composition problem. Time, angle or patches often induce a third way of small dimension, but
the wavelength way is usually quite large (10% to 10%) while the pixel dimension can be dramat-
ically huge (more than 10°). Setting aside the storage of the data, the computation of the CPD
of large constrained tensors is computationally costly. Some solutions are studied in section [3.2.]]
that resort to compression, which however suppose that the HOSVD of the data can be somehow
computed.

2.2.4 Snow data

Along with the fluorescence data set described above, a set of hyperspectral images is used in
this manuscript. This data set labeled as the “Snow data” is a subset of a longitudinal daily
acquisition of MODIS hyperspectral sensor (seven spectral bands) for the same scene in the Alps
(France) during the 2012 snow season. The data has been pre-processed to improve the spatial
resolution to 250m. From the original data set 44 acquisitions are selected with a cloud presence
lower than 30% El Remaining missing data are replaced by absolute values of a white Gaussian
random variable of negligible power. Each image is of 80 x 60 pixels size with seven spectral bands
measuring the radiance at the sensor.

The Snow data is quite small since it is a subset of a bigger acquisition. It is deliberately chosen
small so that classical decomposition methods can be used to compute the approximate CPD, while
it is still large enough to illustrate the advantages of using fast compressed methods introduced in
section Moreover, a dictionary of eight spectra expected to be found in the observed scene is
provided by French weather monitoring institute Meteo France. Yet the ground-truth abundances
and spectra are not known.

2Clouds completely hinder the spectral measurements and therefore induce missing data.
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Figure 2.8: An experimental setting for measuring EEG signals. The electrodes are located all over
the scalp to ensure that brain activity is spatially equally measured. The illustration is a courtesy
of Louis Korczowski.

2.3 Electroencephalography data

Electroencephalography (EEG) is a measurement device used to measure brain electrical activity
that was first used in the 1920’s. A binary number of electrodes are placed on the head (scalp)
of an individual at predetermined localizations (see Figure . These electrodes collect electrical
intensity over time at a high temporal resolution. Because neural activity induces characteristic
electrical responses depending on the task accomplished by the subject, it is possible in theory to
identify these characteristic responses in the temporal activity measured by EEG, thus collecting
precious information on the processes taking place inside the brain of the subject. An example of
characteristic response is the P300, which is generated when the subject is aware of doing a task.
The shape of the P300 may vary between subjects, but it is globally known and can be observed
in the data, as proven by recent experimental designs .

EEG measurements for one subject consist of two-way data. Electrical intensity is measured
through time at multiple spatial locations. So the collected data are a two-way array M € RV*M
where the N rows consist of measured temporal responses at M times slots for each electrode. It
is believed that a linear mixing model for the sources and their spatial distribution on the scalp is
an adequate model , and a multitude of linear source separation methods have been designed
to extract meaningful factors so that

M = AXB' (2.9)

where columns of B are the characteristic time responses, and columns of A represent their spatial
distribution on the scalp. The scaling 3 refers to the relative power of these sources. While the
temporal extracted sources can be interpreted directly, the spatial distribution of the sources is only
obtained on the scalp, so that some additional post-processing (e.g. SLORETA ) is necessary
if one seeks further information on the localization of the sources inside the brain.

Because only two modalities are available from EEG data, it is again necessary to use a third
diversity to apply tensor decomposition techniques. Many approaches have been developed in the
literature to obtain a third diversity, most of which are surveyed in , but let us explore two
in particular. First, multiple trials can be stacked to form a cube of data where each frontal
slice contains the two-way data of one trial. The trial diversity can refer to different subjects
or experimental setting , or truncated sequences of interest of one measurement . In this
context a simple CPD is however difficult to justify because of the variations that exists between the
same sources emitted at different trials . Exploring how to tackle this variability directly in
the decomposition models is the subject of chapter [ Another way to obtain a third modality is to
extract features from the signal. For instance, if the temporal recorded signals are non-stationary,
then a time-frequency study of the EEG data should reveal some information. In this spirit, the
windowed wavelet transform of the temporal signals was used in . In both cases, the major
difficulty with EEG data is the extraction of artifacts, for example due to eye movement, which



50 CHAPTER 2. APPLICATIONS OF TENSOR DECOMPOSITIONS

highly contaminates the raw data and lowers the signal power drastically with respect to the noise
power.
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Challenges in constrained tensor
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Chapter 3

Constrained decompositions
framework

This chapter contains numerous variations on the Tucker and CP decompositions presented in
chapter where factors have known properties. Each model is motivated by examples from
data mining problems. Moreover, algorithms for constrained tensor decomposition are specifically
designed. This chapter is inspired from the author’s following publication [35] and is structured as
follows:

e Different linear and non-linear constraint types are surveyed, along with associated con-
strained decomposition algorithms

e Algorithmic and theoretical issues related to compression under non-linear constraints are
discussed.

e The use of dictionaries is studied through the spectral unmixing of the Snow data introduced

in section 2.4

3.1 Constraints as many faces of Tucker and CP decompo-
sitions

3.1.1 Motivation and general definition
Why constraints

A great strength of the CPD is its uniqueness under mild conditions always verified in practice.
When first learning about this identifiability property of the CPD, one could believe that the CPD
is the ultimate data mining model since for any real data set, estimates of factors obtained from
computing the CPD will match with true underlying factors. As explained in section [1} things are
not so simple. First, the multiway data have to follow approximately a low rank CP model, which
is never really the case as discussed in chapter [2| Supposing this is true, and supposing the true
rank is accurately guessed, optimization problem [L.50] may be quite difficult to solve depending
on the amount of collinearity in factors, see In any case since the CPD is computed from a
noisy observation, estimation error is unavoidable and might be quite large if for instance Signal
to Noise Ratio (SNR) is low, or columns of one factor are almost collinear.

However it is rare that no additional information is available on the factors of the CPD, espe-
cially if they bear some physical meaning. For example, in fluorescence spectroscopy, factors in the
CPD stand for concentration profiles and spectra so that they are expected to be non-negative.
This is tricky but even though factors can be uniquely recovered by computing the CPD, constrain-
ing the set of admissible solutions is absolutely necessary to ensure that the estimated factors are
indeed consistent with the meaning of the CPD model in the application at hand. For example,
suppose some estimated concentration profile in fluorescence spectroscopy is partially negative,
then no physical meaning can be given to this profile. Probably such a negative factor is obtained
because the data are noisy, but also because the low rank CPD model does not explain all the
information in the data so that the best fitting factors A, B and C simply have no reason to stand
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for emission, excitation spectra and concentration profiles. Therefore, imposing non-negativity
constraints on this factor helps to interpret the results.

But constraints do not only make outputs of tensor decomposition models interpretable. As
proved in [81], non-negativity constraints make the low rank CPD approximation problem well
posed by restraining the set of admissible solutions. Moreover, Gorman et al. proved that con-
strained parameter estimation problems have better performance than their unconstrained coun-
terparts if the true parameters satisfy the constraint [56]. In other words, if prior knowledge
is available on the factors in the CPD or Tucker decomposition, it should be included inside the
model, and constraints are actually one way to take this knowledge into account. Note that in some
cases where data has very high SNR and the optimization problem is well-conditioned, imposing
constraints has little to no impact on the estimation error on factors, but their use often come at
the cost of some computation complexity. Thus the decomposition model to be used should be
chosen carefully depending on the application of interest.

General constrained CPD

Definition 16 Let T a tensor following an approzimate rank R CPD [I.]7 An approzimate
constrained CPD of T is the approximate CPD of T where factors belong to known ensembles Sy,
Sp and S¢:

(3.1)

T =(AQB®C)Sx +E
AES/hBESB,CESC

where distribution of random variable € is known.

We refer to the approximate constrained CPD simply as constrained CPD, but constraining the
exact CPD can be useful even when the decomposition is unique, see [106,[107]. In what follows
and for the sake of simplicity, only C' is considered constrained. Generalization to models where
all factors are constrained is straightforward.

In the following, various constraint sets S¢ are defined and properties of these various instances
of constrained CPD are explored. An important aspect of the constrained CPD is that the con-
straint space needs to give good information on the solution to be obtained, since the constraint
is imposed rigorously in the models. In other words, the a priori information on C must yield a
consistent estimator of C' through constrained CPD otherwise model is simply wrong. For
instance, if true factors are non-negative, imposing a non-positivity constraint will (of course) de-
crease estimation performances and interpretability. On the other hand, true underlying sources
may exist in reality, like spectra in spectroscopy, but may not be exactly the factors in the mean of
an approximate CP model since the decomposition models are often somewhat inexact in practice.
In that case the approximate CPD yields a biased estimator of underlying sources, and constraints
help to reduce the research space around the true underlying sources provided they are satisfied
by these sources. A toy example summarizing these issues is given below.

Example 3 Suppose a scalar datum x is observed without noise, stemming from an underlying
parameter y so that y> = x and y > 0. In most cases the model linking y to x is not known so
that an a priori model is used to estimate y from x, say > = x. The parameter § of this a priors
model is not identifiable since both § = s/x and § = —«/x are solutions. Moreover, the estimator
§ = /T is not a consistent estimator of y since the true model is y> = x.

Constraints can be included in the a priori model with various effects. First, one may know
that the true underlying parameter y is positive. Then including a non-negativity constraint § = 0
i the a priori model yields identifiable parameters in the a priori model, but does not decrease
the estimation error. Another kind of constraint on § can be for example y € IN, which is a bad
constraint in the sense that y may not be an integer. Moreover, the set of parameters satisfying
both the constraint and the a priori model is empty. A third possible constraint may be §° = z,
which is not helpfull here since that means the true model is known. But still if the a priori model
is constrained by this equation, the set of admissible solutions is also empty (except if x is 1 or 0).

In the constrained tensor decomposition scenario, the model may also be inexact, and the
constraints are hopefully well matched to the true underlying sources. However it may happen
that even through underlying parameters satisfy the constraints, the CPD is simply a loose model
for extracting the underlying sources and final estimates of the sources will be inaccurate, just
like the last constraint type in the previous example. This means that model design is complex
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and it is not sufficient to input many constraints in the optimization algorithm to obtain a good
final estimation of the underlying sources. Rather, a precise understanding of the physical laws
governing the problem at hand is crucial, since a posteriori it is not always possible to check
whether the constraints were well designed or not. To conclude, if the low rank approximate
CPD model provides a consistent estimator of the underlying sources, then additional constraints
satisfied by the underlying sources can be used to design better models than plain approximate
CPD.

3.1.2 Linear constraints

A first class of meaningful constraints are linear constraints, i.e. when C belongs to some linear
subspace of RM*%_ Linear constraints are often used for compressing multiway arrays. However
linear constraints also cover more subtle problems like collinearity among columns [19] or known
spanning families of the sources, which are typically discretized functions from a special subclass
of continuous mappings (B-splines, harmonics, wavelets...) [112]. Since factor C is a matrix, linear
constraints on C' are of the form C' =}, WiCiH i, where W, and H; are linear operators on the
columns and rows of C, and Ci are score matrices in a feature spac Rank-one linear operators
of the form C = W C_H are particular interest to express changes of basis and collinearity among
columns. In what follows, we first study how to handle W, before dealing with H. The first
formalization of linearly constrained CPD dates back to Caroll and was called CANDELINC [26].

Known basis for CPD factors

Let 7 € REXEXM and consider the following linearly constrained CPD with small tensor rank R:

{T:(A®B®0)2R+s (52)

cC=wC,

for some matrix W and scores C.. W and C. can be known or unknown. Here columns of C are
constrained to live in the span of columns of W.

Since C'is a M by R matrix, columns of W have to span a linear subspace of dimension smaller
than M. Indeed if W has more than M free columns, the span of columns of W is the whole
definition space of C, and is equivalent to an unconstrained approximate CPD. From now
on we suppose that W has column rank lower than M. Moreover, if W is not full column rank,
a smaller matrix W’ can be obtained by removing redundancy in columns of W. Thus we also
suppose that W is full column rank.

Matrix W provides with a basis of representation for columns of factor C. Let us give a toy
example. If columns of C' are spanned by sinusoidal signals, say

5
Cjr = Y Nirsin(ijm/10), (3.3)

i=1

then each ¢, = C., is expressed by coeflicients A, in the basis

sm(ﬂ/150) e sm(7r/2)
W sin(m/5) . . sin(m) . 5.0
sin(m/2) . . sin(mw/2)

In this toy example, since all columns of C' are expressed in the span of W with only five coefficients
each, C. is a small matrix R5* %,

Another example of known basis of representation can be found in the chemometrics literature
[112]. Since factors stand for emission and excitation spectra which are known to be smooth for
used sampling rates for some chemicals, Timmerman et. al. proposed to impose this smoothness
on C by using a basis of discretized B-spline functions W. A B-spline function is a polynomial
function of given degree which is constrained to vanish outside a given interval. Since C' is smooth,
the working hypothesis is that it can be represented by a few spline functions.

IFrom proposition all linear maps on matrices are Kronecker products of linear maps on the columns and rows
of matrices, and (WX V)C. = wcCc.vT.
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Compression

When a basis of representation W for factor C' is known, W can be used to preprocess the tensor
data so that a smaller core tensor G can be decomposed instead of 7. Indeed, (3.2]) can be rewritten
as

T=(ARBWC,)Xr+E& (3.5)

-1
and since W is full column rank, it admits a left inverse wt = (WTW) WT so that under

white Gaussian noise,

(101eW") T =(A0BoC)Sh+(I0I0W')E

3.6
=G+ & (3:6)

—1
where & ~ AN (0, I®I® (WTW) > It W is in RM*R1 G belongs to RE @ RE @ RF! and

because R; is necessarily smaller than R, G is smaller than 7. Moreover, G can be used as a
new data tensor to perform an approximate CPD with known noise covariance. The compression
scheme is summarized in Figure [3.1

A priori knowledge

I
I
I
I
I

¥

Subspace estimation

o HIAlon A UQVOW

\‘l
C
Q

Preprocessing/Compression

Small CPD

*********** > A®B®C Ac®Bc®Cc

o

Decompression

Figure 3.1: Compression scheme (noiseless)

A case of linear constraints often encountered is when W is orthonormal. Then the noise
covariance after preprocessing in (3.6]) remains white, so that a whitening step after compression is
unnecessary. It is possible to learn an orthonormal matrix W from the data tensor 7 as discussed
below.

Collinear columns in factors

Let us now consider linear constraints acting on the right of matrix C, i.e. on the rows of C. The
following linearly constrained model is obtained:

{7¥4A®B®®2R+£ (3.7)

C=C.H

As discussed in the previous paragraph, H can be understood as a basis of rows of C, but this is
not the usual interpretation of . Rather it is often understood as a way to handle correlation
in columns of factor C. Indeed, for to be a constrained decomposition model, the span of
rows of H needs to be a strict subspace of R®. Again, rows of H can be chosen independent
otherwise another constraint matrix H’ can be obtained from H by removing redundancy. For H
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of size Ry x R, Rj is strictly smaller than R. Thus each column of C is a linear combination of
columns of C, with strictly less than R coefficients in H, i.e. C. is a processed version of factor
C where collinearity is removed.

Model was simultaneously suggested in [19] and [42/44], respectively named the PAR-
ALIND model and (L., L,,1) block term decomposition. We choose to follow notations from
PARALIND since they fit better with our formalism, but the block term decomposition bene-
fits from generalization properties to other block terms models, which are not discussed in this
manuscript [42]. A toy example of tensor decomposition where collinear columns can be handled
through PARALIND is given below.

Example 4 Let us build an experiment where factors should have different column ranks. Take a
solution with three fluorescent components at different concentrations. Using a spectrophotometer,
a mizture of the three emission spectra and the three excitation spectra can be acquired in the form
of a matriz. Now by adding a bit of the third component and diluting the whole solution, running
the experiment again gives another matriz. Repeating this several times will result in a collection
of matrices, our measurement tensor, where the two first concentration profiles are collinear. Thus
the column rank of the factor C related to concentration will be two, even though the rank of the
tensor will be three. A better model would thus use a reduced set C. of parameters by setting

']

where X is the ratio between the two parallel concentration profiles. This model is exactly the
PARALIND model discussed above.

S >

1
C—Cc[0

PARALIND provides a modeling response to the problem of collinear columns in CPD factors.
Indeed, assume a factor C' has two colinear columns. Running an ALS algorithm as described in
Algorithm [1] is bound to fail for two reasons. First, the conditioning of the linear system with
respect to A and B is poor since it depends on the conditioning of C. Second, as explained below,
factors A and B are identifiable only up to rotations among some columns.

A significant issue with PARALIND is that H is not identifiable, i.e. multiple pairs (H,C.)
yield the same C'. This issue is adressed in [24]. Also, there can be an inherent ambiguity among
factors A and B. Indeed, assume that the two first columns of C are collinear i.e. ¢; = ¢5. Then
the following holds:

R
T = Z ar®br®cr
r=1
R
=(a1®b1 +a:®b2)®c1 + Y a,.®b-Rc,
r=3
R (3.8)
:AlB-1r®Cl+ Z ar®br®cr
r=3

R
= APP'B/®c, + ) a,®b.®c,
r=3

for any non-singular matrix P and A; = [a1, az], B1 = [b1, ba].

In a more general setting where columns are not collinear two by two, the loss of identifiability
is harder to characterize. Bounds on the identifiability depending on the so-called Kruskal rank
can be found in [77] while tighter bounds are provided in [49]. A matrix has a Kruskal rank & if
any subset of columns is full rank, and if this does not hold for £ + 1. By construction, Kruskal
rank cannot exceed matrix rank. For instance in the above example , factor matrix C has
Kruskal rank 2, and therefore does not satisfy the Kruskal bound for identifiability. Further work
on identifiability of the PARALIND model itself are due to De Almeida et. al. [108] and De
Lathauwer et. al. [42,/46}/104].

Another major issue with PARALIND is that there is no simple way to estimate H from the
data without prior knowledge. This is to be opposed to the linear constraint on the left of C where
W can be estimated as described later in section |3.1.2] Thus a two-step estimation procedure
where H is first estimated from the data before decomposing the tensor is not generically possible.
Moreover, even if H is known, a preprocessing of the data to obtain an unconstrained CPD is also
not possible because H acts on the right of C' and is therefore contracted on both 3 and C. in
the CPD. Thus specific algorithms have to be designed to compute . Algorithm [3| provides a
possible implementation based on ALS, which originates from [19] and [44].
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Algorithm 3 An ALS algorithm for PARALIND.
Given T and initial factors A, B and C,
while convergence criterion is not met do

A=Tu (BOC) (B"BECTC) -
B=T4(A0C)(ATARCTC) -
C.=T5(AOB)H' |H(ATALB'B) H” | ;

—1
H=CIT; (ATADB'B)
c=C.H

end while

Low CPD rank induces compression and collinear columns

When decomposing a tensor using an approximate CP decomposition, as explained in section [1.4.1
the CPD model is low rank. That is, some factors in the CPD have more rows than columns. Thus
rows of these factors will be linearly dependent, since for matrices the rank is always smaller than
both dimensions. In other words, under the assumption that the rank is smaller than all dimensions
of the tensor, it is always possible to find tall matrices U, V and W so that A =UA., B =V B,
and C = WC..

Since low tensor rank hypothesis in the approximate CP models leads to collinearity in the rows
of factors, compression of the data tensor is always possible in this context. If matrix W is exactly
known, then compression as described above can be applied on C without loss of information on
any factor. However, when only the data tensor is provided, which is usually the case, the column
space of factor C can be learned through the HOSVD of the tensor. If the SNR is high, Algorithm
provides a fairly well estimated basis W and the compression does not significantly reduce the
amount of information contained on C' in the data [45]. Other subspace estimation methods can be
used in theory like the QR decomposition. However, because the approximate nature of the CPD
imposes a strict selection of a subspace of the estimated column span, a ranking of the importance
of each basis vector is mandatory.

More generally, a low-rank constraint can be cast on factor C':

Sc = {X e RM*® | rank{X} < min(M, R)}. (3.9)

Here the rank of C' is strictly smaller than both dimensions. Thus not only rows but also columns
of C are linearly dependent. S¢ can be linearized around C' given column and row bases U and V
of C =UC_ V. Therefore, a rank constraint can be seen as two linear constraints on both the right
and left of C', which means that compression and collinear columns should both be considered.

3.1.3 Non linear constraints
Non-negativity

Many applications require nonlinear constraints. One frequently encountered is non-negativity,
which is essential in chemometrics or hyperspectral imaging, see chapter |2l With a non-negativity
constraint on the third mode, the constrained CPD becomes

{ T =(A®B®C)Ip+E

3.10
CeRi\_/[XR ( )

This has been used extensively whenever factors bear physical interpretation in chemometrics
[16]. It is also especially popular for two-way arrays under the Non-negative Matrix Factorization
(NMF) acronym [79], since this constraint for matrices often restores identifiability of the factors.

For higher order tensors, non-negativity constraints ensure that a best low rank approximation
exists [81] for all norms. This is not the only constrained CPD for which the problem of existence
of a best low rank approximation is solved. Indeed, it is sufficient that the set of constrained rank
R tensors {’T =(A®B®RC)Irc REQR*®@RM|Ae€ Sy, BeSp, Ce Sc} is closed, since clo-
sure prevents parameters to cancel out by growing to infinity. However in practice few research
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on the well-posedness of approximate decompositions has been made for other constraints than
non-negativity, some references for orthogonality constraints are [75,/107].

An efficient and simple algorithm for computing non-negative CP decomposition can be built
from the ALS. The so-called Alternating Non-negative Least Squares (ANLS) simply projects the
solution of the linear system over C on the non-negative orthant, see Algorithm [l Below we show
that this can also be seen as an instance of a proximal gradient algorithm used in a block-coordinate
fashion.

Algorithm 4 ANLS / Alternate Outerloop Proximal Gradient algorithm for non-negative CP
decomposition.

Given T and initial factors A, B and C,

while convergence criterion is not met do

-1
A=Tu (BOC)(B'BOCTC)
—1
B=T4(A0C)(ATABCTC)
—11t
C= [T(g) (A©B) (ATADB'B) ]

end while

Example 5 The proximal gradient method for solving constrained optimization problems is closely
related to traditional projected gradient descent methods. Indeed, it is an iterative algorithm that
requires to compute the gradient at any given point of the unconstrained cost function, and then
projects the new estimate on the constraint space. However, to ensure both convergence and satis-
fied constraints, the projection on the constraint space is done using a particular operator called the
proximal operator. It is easy to prove that projected gradient and proximal gradient are equivalent
if an orthogonal projector on the constraint space is known.

For solving the non-negative CPD optimization problem

argmin [T — (AQB®C)Zr|%
c

3.11
st CeREXE (310

the prozimal gradient can be used in a block-coordinate or ALS spirit by computing the gradient and
prozimal operators for each factor sequentially. Since is linear with respect to each factor, a
gradient method with optimal (matriz) step is equivalent to the least squares update, so that without
projections, estimates of factors A, B and C are estimated sequentially as in traditional ALS.

That leaves the computation of the prozimal operator of the non-negativity constraint on C. By
definition, the proximal operator 11y in this case is given by

I, (X) = argmin n(U) + \| X = U|3 (3.12)
U

where n(X) is the characteristic function of the set of matrices with non-negative coefficients, i.e.

B 0 if Uyj 20 VU
() = { +oo  if there exist Uj; <0 (3.13)
It can be seen that TIx(X) = [X]" for all X,\, which means that all negative values in least
squares estimate of C are set to zero while leaving the other values intact. This shows that an
alternate outerloop of prozimal gradient amounts to the ANLS from [28] recalled in Algorithm .

A major issue with ANLS is however that there are no guarantee of convergence of the al-
gorithm, since the cost function is not necessarily decreasing at each iteration. This is due to
the alternate procedure of least squares estimate and projection on the non-negative orthant. To
improve convergence properties of ANLS, it is possible to resort to non-negative least squares up-
dates [78] alternated on each factor. An efficient implementation of this quadratic programming
approach is due to Bro et. al. |18] and is called Fast Non-Negative Least Squares (FFNLS). Other
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works have focused on applying Alternating Direction Method of Multipliers (ADMM) [68] again
alternating on each factor, or using Gauss-Newton second-order methods sped up by conjugate
gradient [120].
Non-negativity constraints can also be used to define the following constrained approximate
Tucker model:
{ T=URVRIW)G+E

W c R¥XR1 (314‘)

This model may be used to find compression matrices that are non-negative so as to avoid the
problem evoked below in section [3:2] However, computing the non-negative Tucker decomposition
is more costly than computing the unconstrained HOSVD through three SVDs. As a consequence
non-negative Tucker may have trouble to handle large data sets. On the other hand, if non-
negativity constraints are imposed on all modes, the model may be identifiable. Remember that
the lack of identifiability is a major drawback of Tucker decomposition, an issue which can here be
fixed using constraints.

Sparsity

Another common non-linear constraint is the ¢y sparsity constraint [23,82] :

6(C) <6 (3.15)

{ T=(A®BQ®C)Ir+E&
for some integer § and the ¢y pseudo-norm can be taken rowwise, columnwise or on all elements.
This means that each of the R components in the CPD contributes only sparsely to tensor T~ on
the third mode. Sparsity constraints are meaningful when at least one of the factor is understood
as a dictionary, and factor C has a small number of non-zero coefficients. To our knowledge, the
impact of sparsity constraints on the existence and uniqueness of a best approximate CPD has not
been studied yet. The question that should be tackled in future works is the following: what are
the conditions for which the set

{T=(A®B®C)Ire RE@R*@RM | l4(A) < a4, lo(B) < 6p, L(C) <dc}  (3.16)

is closed 7

The ¢; norm can be used in a similar fashion, as a relaxation of the £3 norm for the optimization
routine, or as a constraint in itself. For instance, for C' stemming from the decomposition of
hyperspectral data as presented in section rows of C should sum to one which leads to
£1(C) = 1 rowwise. The ¢; norm also serves as a regularizer for dictionary learning with matrices.
Sparsity for dictionary-based CP decomposition is explored in the next section.

To design a simple algorithm for computing , ALS can once again be modified by pro-
jecting the unconstrained linear estimate in each step onto the constraint space. The projection
on factors of given £y pseudo-norm and ¢; norm are computed by the two following operators:

I, s(X) = Y where Y contains only zeros and the ¢ greater values of X
x—0 ifx=06

Hgl’g(X)Z 0 if —d<ax<$d VCL’ZXij
x4+ 6 otherwise

(3.17)

If the sparsity constraint is an equality constraint with non-negativity futher imposed, i.e. each
row of factor C' should sum to 1 exactly and be non-negative, then the constraint space is the
probability simplex and the solution of the projection is given by the solution of the water filling
problem [13/121]. A simple implementation is given by the following pseudo-code from [121]:

A sparse Tucker decomposition can be defined as:

0 (G) <6 (3.18)

{ T=URVIW)G+E&
which became more popular in the recent years within the dictionary learning community [6,[23].
Even though restoring identifiability is the main advantage of imposing sparsity on the core of the
Tucker decomposition, no discussion on identifiability of this model can be found in the literature.



CHAPTER 3. CONSTRAINED DECOMPOSITIONS FRAMEWORK 61

Algorithm 5 Euclidean projection of a vector onto the probability simplex

INPUT: vector y € RV,
1. Sort y into w:uy =+ = uy

-

2. Findp=max{1 <j<N|1-

i=1

(’UJZ‘ — Uj) > 0}

p
3. Define )\ = % (1 - ul>
i=1
OUTPUT: z s.t. z; = max (y; + A,0)

3.2 Compression under non-linear constraints

In the previous section, a method for compressing low rank multiway arrays of data was described.
We stress that compression has many benefits when used as a preprocessing tool for computing
the CPD. First it reduces memory requirements of computing the CPD since only small factors
and a small core tensor are used. However learning the good basis for the compression may be
itself quite costly in terms of memory. Second, on the computation speed side, since the result of
compression through HOSVD is deterministic, it only needs to be run once. On the other hand,
any algorithm for computing the CPD requires multiple initializations. This means that even if
compression is a lengthy process, when using the CPD on the small core, the gain in computation
speed is multiplied by the number of times the CPD algorithm is used. Finally, the loss of accuracy
is usually negligible if the compression basis is well estimated, which is typically true for Gaussian
noise and high SNR [45].

If however constraints are imposed on some factors in the CPD of a tensor T, splitting the com-
pression and decomposition steps into two separate process becomes difficult since constraints are
applied initially in the uncompressed space. To propagate constraints directly on the compressed
space and keep split compression and decomposition processes, it is necessary to design a compres-
sion method accounting for these additional constraints. This has two major consequences. First,
the compression method can no longer be the HOSVD, and typically a compression algorithm
accounting for non-linear constraints will be more costly than three SVDs. Second, compression
has to be computed for every combination of constraints that are applied on the tensor. Indeed, it
is common in data science to try many different models, and check a posteriori which one provides
the best results.

Therefore in this section an alternative method using unconstrained compression is presented,
accounting for constraints only when computing the CPD of the small core tensor. This method
is described in the following published paper [32], where two algorithms were proposed. Only
the algorithm based on ALS is presented here since it is the simplest one and the most effective.
After describing the problem formally and showing a few failed attempts at solving it efficiently,
algorithm PROCO-ALS is detailed. It is shown than any constraint space for which a projector is
known can be handled with PROCO-ALS. Finally, following the ideas developed in PROCO-ALS,
primal-dual proximal algorithms are designed to tackle the compression under constraint problem,
with half-hearted results with respect to PROCO-ALS.

3.2.1 Introduction to compression under constraints
Problem statement

Let T be a tensor that is to be decomposed using the non-linearly constrained CPD model C € S¢.
Let U, V and W be three orthonormal basis of columns of factors A, B and C. Then with
notations from section constrained decomposition (3.1)) can be cast equivalently in a compressed
domain:

{ G=(A.®B.®C.)Ir+E. (3.19)

VVC'C € SC

where €, = (I®I®WT) £ still has variance o2I%3.

The compressed space is defined as the subspace containing C'. whereas the uncompressed space
contains C. In (3.19)), constraints are applied in the uncompressed space whereas the CPD is done
in the compressed domain. This poses a serious issue when running a decomposition algorithm
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directly in the compressed space, since there is no simple way to compute the projection of C,
onto WT(SC) even if projection on S¢ is obvious. This point is detailed in what follows.

A good working example for understanding the intrinsic issues of solving is the non-
negative CPD. It was originally the starting point of the original research described in this section,
although it is now generalized to many other constraint types.

Projecting on the set of non-negative factors is simple. Given a matrix X, the closest matrix
Y with coefficients in the non-negative orthant is obtained by taking the positive partEI of all
coefficients in X

Vi; = max(X;;,0) = Y =[X]". (3.20)

However if compression is used, the transformed set of constraints applied to C. is defined by
WT(S.) = {X e RE*E | WX > 0} where > is the coefficient-wise comparison. If W' were full
rank orthonormal, then a projection Y on WT(SC) of X would be given by

Y =My (s (X) = W' [WX]* (3.21)

since W would be an isomorphism from the non-negative orthant to the transformed constraint
space. Moreover if W' is full column rank, then similarly the projection on the transformed
constraints can be performed by applying (3.21). Indeed, if WW ' = I, then Iy 50y = Owise)
which defines a projector. But when W is obtained through HOSVD of the tensor, it is always
row-rank deficient, that is WWT % I, even though WTW = I. To obtain a projector from
in the general case, [WX]" has to live in the span of columns of W.

Since a projector on the transformed constraint space is not formally available in the context of
compression, it has been suggested by Brie to perform a compression that preserves the constraint
space, inspired by Non-negative Matrix Factorization. This compression can be formalized for
instance as a constrained approximate Tucker decomposition:

{ T=UQVRW)G+E&

G>0,U>0, V>0 W3>0 (322)

where G is smaller than 7. Then a non-negative CPD can be run on non-negative G and applying
operator U ® V ® W will not remove non-negativity during the decompression step. However it is
possible that such a heavily constrained model has no solution, and conditions ensuring that this
model is well-posed are not known.

On the other hand, using HOSVD to compress the tensor in an unconstrained fashion yields a
well-posed optimization problem. This is however not trivial. Indeed, non-negativity constraints
make approximate CPD well-posed since the best low rank approximation exists in a closed space,
but for the compressed non-negative model

{ g = (A('®B('®C(')IR+EC

WC, >0 (3.23)

there may be no solution. That is, the set {C, € Rf**% | WC. = C} may be empty. In appendix
[C] it is proved that this is not the case, i.e. the HOSVD compression can be used in the context
of non-negativity constraints, and the best low rank approximate of the core tensor G exists while
satisfying the transformed constraints. Credits for the proof go to Konstantin Usevich.

A discussion on existing algorithms for constrained compressed CPD

For the sake of argument, two algorithms specific to the non-negative compressed CPD are pre-
sented. In the following it is shown how these algorithms are adapted in this particular context.
Through the mitigated results these algorithms provide, the need for a more general and more
efficient decomposition algorithm is stressed out.

A first solution to compute an approximate compressed non-negative decomposition is to cast
the optimization problem in terms of sequential Quadratic Programming problems. Indeed, with
respect to variable C., implies the following optimization problem:

minimize |G — (A, @ B.®C.) Ig|%

w.r.t. C. . (3.24)
st. WC. >0
2A very small value can be used instead of 0 to avoid numerical complications. For instance, in

MATLAB2014b™ | use “eps”.
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Since the cost function is quadratic (recall the CPD is linear with respect to each factor), (3.24]) is an
instance of the Quadratic Programming framework. A usually good algorithm to minimize (3.24)) is
the active set method, where constraints generate a dual space using the Lagrangian operator, and
only active constraints are used to solve the optimization problem at each iteration. The results
of applying the quadprog toolbox from MATLAB2014b™ to the non-negative tensor compression
problem are shown in Figure [3.2] Performance of the compressed algorithm is compared in both
speed an accuracy with the workhorse algorithm ANLS and other algorithms presented below.
Active set does succeed at solving the compressed constrained tensor decomposition but at the cost
of large computation time. This is expected since the number of constraints is huge with respect
to the number of parameters, and quadratic programming methods require multiple iterations at
each iteration of the compressed ALS. Also the Quadratic Programming framework does not cover
other type of non-linear constraints. A major criticism here is that the MATLAB toolbox was
used as a black box, whereas other algorithms have been reprogrammed manually. In particular,
the quadprog toolbox works only with vectorized data, so that Kronecker products appear in the
vectorized problem formulation. This certainly slows down the active-set method considerably. An
adaptation of the FNNLS algorithm should instead be implemented.

Another solution is to resort to projected algorithms. If used in coordination with ALS in a
similar fashion than ANLS, after finding the best estimate for Cgl/ %) in the compressed domain,
the projection problem under non-negativity constraints is the following:

argmin| X — CM? |3
X .

(3.25)
st. WX eS¢

In the case of non-negativity constraint for instance, no exact projector is known. Thus this
projection may only be computed through iterative algorithms. A well known solution to
is the Dykstra algorithm [14], although a previous simpler algorithm by Hildreth [63] also solves
in an iterative manner. In both methods, constraints are applied sequentially by projecting
on halfspaces defined by rows of W. For non-negativity constraints, Dykstra’s algorithm solves
the following optimization problem:

argmin| X — C{M/? |3
X

(3.26)
s.t. Vie [, M], w; X >0

where w; is the ith row of W. Dykstra’s algorithm projects sequentially on each half-space defined
by w; and tries to find the intersection of all the linear constraints using online correction of the
projected vectors. The point is that a simple projector on a halfspace is known for any w, by
opposition to projection on the transformed non-negative orthant:

.
X —wwX X <0

O pesoy (X) = lwl3 . 3.27

fwa>0) (X) {X Y fwX >0 (3.27)

However constraints are only shown to be satisfied asymptotically so that a great number of
iterations of sequential projections may have to be used in practice. Since is meant to
be solved in each iteration of the ALS algorithm, the running time of these subspace projection
methods is prohibitive, especially since in the compressed CPD, many constraints are imposed
on the compressed factors. Figure [3.2] compares Dykstra’s algorithm applied to non-negative
compressed CPD with other algorithms studied in this section and show that it is quite slow to
project sequentially on each halfspace.

3.2.2 An alternate projection method: PROCO-ALS

Algorithm description and discussion on convergence

A naive approach to solving is to use operator as a projection operator in the general
case, even though it is not stricto-sensus a projection operator on the initial constraint space
since W is not orthogonal on the right, i.e. WWT = I Algorithm |§| obtained by using such
a pseudo-projection in the ALS steps is called PROjected-COmpressed ALS (PROCO-ALS) and
was introduced in [32].

In PROCO-ALS, optimization is done in the compressed space using the ALS algorithm, but
every time a constrained factor is linearly updated, the constraint is applied in the uncompressed
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Figure 3.2: A comparative run for all algorithms presented in this chapter. A rank 4 tensor is
generated randomly through normalized Gaussian distributed factors of dimensions 100 per 4.
SNR is set to 30dB. Tensor is compressed to a 4 x 4 x 4 core tensor through three SVDs. 10 inner
loops where used for the Active set algorithm, 2 for Dykstra algorithm and COADMM introduced
in section [3.2.4] (with p = 0.01) and 5 for the Primal-Dual algorithms, with p = 1.95, 7 = 0.45 and
o = 0.01. Maximal number of iterations is set to 100. Top plot shows the reconstruction error
|7 — T|%. For compressed algorithms, the HOSVD running time is not included.

Algorithm 6 PROCO-ALS
INPUT: array 7, compression matrices U, V', W and initial factors A, B and C.
Compress T into G by G =T e U'e; Ve W'
Compress initial guesses A, =U'A, B,.=V'B,C,=W'C
while convergence criterion is not met do

4.=64)(B.0C,) (BIB.OCTC.)
B.=Giy(4.0C,) (ATa.BCIC.)
CU? = g, (4.0B,) (ATA.OBIB.) |
C.=W'ls, (ch1/2>)

end while
OUTPUT: Uncompressed estimated factors A =UA., B=VB,, C =1ls, (WC,)
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space by decompressing the factor, projecting it onto the constraint space in the uncompressed
domain, and compressing it back. As discussed earlier, this procedure does not ensure that the
compressed factor lies in the transformed constraints space. Moreover, because the cost function
may not decrease at each step of PROCO-ALS, just like ANLS, there is no guaranty that PROCO-
ALS converges to at least a stationary point.

However it is still possible to discuss the convergence of PROCO-ALS. To ensure that a local
minimum of the constrained ALS is also a fixed point of PROCO-ALS, a minimizer C| has to
generate X = IIs (WC.) in the image of WWT. There is no theoretical proof that this is
true. However a sufficient condition is that after a certain number of iterations, W C. is always in
Sc, which is verified in practice, see Experiments below. Indeed, this implies that Iy (s.) = id,
and PROCO-ALS is simply an ALS running in the compressed domain. Since the convergence of
ALS itself is an active research topic, having an algorithm that works in practice but with few
theoretical results on convergence is acceptable. If better convergence properties are needed for
the application at hand, algorithms presented in subsection can be used instead.

An intuition on PROCO-ALS is that the quality of the final estimate after decompression
depends heavily on the compression quality. If no compression is done, PROCO-ALS is exactly a
projected algorithm. If compression is almost without loss, the hope is that an algorithm using
the pseudo-projection Iy (s, achieves similar performances than a projected algorithm. Further
research on how the compression error relates to convergence properties of PROCO-ALS is yet
mandatory.

Finally, it can be shown easily that the pseudo-projection step always decreases the estimation
error on the factors. This does not prove PROCO-ALS converges if ALS converges since ALS
minimizes the reconstruction error, but at least this guarantees the pseudo-projection reduces the
error on the factors.

Proposition 4 In the compression-decompression iteration described above, if C. denotes the true
compressed factor W' C, it holds that

2 2

~(1/2)

My s (CL77) -] <&l -c. (3.28)
Mwise) (€7

X

F

.
The proof starts with a simple well-known lemma

Lemma 1 Let S; and Sy be two convex closed sets of RY, with a non empty intersection, x, be
a vector in Sy N Sa, and p; denote the projector onto S;. Then we have, Y € RV :

||p2 op1T — on < ”w - mOH’

where | - || denotes the Euclidean norm.

The proof of lemma 1 is straightforward: |ps o p1& — @,| = |p2 © p1& — p2 o p1&,| because
x, € S1 N Sy, and since p; are contracting ||pe o p1& — p2 0 p1&,| < ||& — @0l

Apply the lemma with S; = S¢ so that p; = Ils,, and with So = Span{W} being the subspace
spanned by the Ry columns of matrix W. In that case, po = WW?. Then for any non-negative
matrix X, of S; n Sy, and for any matrix X of RE*% we have:

[WW s X — Xo|p < | X = Xo|p.

Yet, as any element of S3, X, can be written as X, = WM,, where M, is a matrix of size
Ry x R. Now apply this result to a general element of Sy, X = WM .. We get the inequality:

IWiTls, WM, — M,|r < |M.— M,|Fr (3.29)

which holds true because W is an isometry, that is, because |[Wy| = |y||. o

This property is verified only for orthonormal compression matrix W. In other words, using
PROCO-ALS directly as presented above is possible for other compression methods than HOSVD,
but orthogonality of the chosen compression matrix is still necessary.
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Figure 3.3: Best run out of 3 runs. Array is 100 x 100 x 100 of rank 4, SNR is set to 30dB. Random
positive initialization is achieved by absolute values of centered Gaussian, and noise follows a white
centered Gaussian distribution. Compression time not included.

Experiments with PROCO-ALS

In order to check the performances of PROCO-ALS, the algorithm is tested on both simulated
data and fluorescence multiway data. Simulated data follow exactly the non-negatively constrained
CPD to check the good behavior of PROCO-ALS with respect to ANLS. The fluorescence data
set is described in section and serves the purpose to compare PROCO-ALS with ANLS,
an algorithm known to be extremely efficient at precisely unmixing interpretable factors with
reasonable computation time.

Figures [3-3] and [3:4] show that PROCO-ALS performs well for data with high SNR, both in
terms of speed and final reconstruction error. These two plots show in particular that a maximal
compression is not necessary to speed-up the tensor decomposition. On the contrary, there is no
significant difference between PROCO-ALS runs with small variations of the compressed sizes, so
that the amount of compression to be used in practice is a parameter that does not need to be
tuned precisely, and can be set a little higher than R. Table shows the reconstruction error on
the factors for different SNR. The loss of accuracy on the recovered factors due to compression is
extremely small here. This is expected since the simulated data follows exactly an approximate
low rank CPD model with Gaussian noise and high SNR, which is the scenario for which PROCO-
ALS is built. Should the noise distribution be non-Gaussian, results could vary drastically since
compression could be significantly lossy.

In order to prove the efficiency of PROCO-ALS as a decomposition algorithm, it is mandatory
to study its performance for decomposing constrained real tensor data. For this experiment,
fluorescence data described in section [2.1.2] are used. Initial guesses for factors are coefficient-wise
absolute values of randomly sampled factors, drawn according to a standard Gaussian distributiorﬂ

First the impact of compression on the final reconstruction error is again studied, along with
the impact of compression on the shape of estimated factors. Since the rank of the fluorescence
data is known to be 4, the tensor can in theory be compressed up to at least 4 x 4 x 4. Moreover,
two of the dimensions are quite small (23 and 28) so that it makes sense to run compression only

3A smarter way to initialize would be to start directly in the intersection of column space of matrices U, V' and
W with the constraint spaces, but this proved unnecessary in our experiments.
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Figure 3.4: Average of the best CPD out of 3 runs for 30 arrays (Figure averaged 30 times).
Arrays are 100 x 100 x 100 of rank 4, SNR is set to 30dB. Random positive initialization is achieved
by absolute values of centered Gaussian, and noise follows a white centered Gaussian distribution.
Compression time not included.

SNR= 30dB SNR= 10dB

Algorithm Sizes A| B | C| A | B |C
4x4x4]115|141]152]|26] 25|33
5xH5xb5|13]12 46|26 |25 ] 3.3
PROCO-ALS Tx7x7]116 1|14 55|25 |24 3.0
10x10x10 | 1.6 | 1.5 | 5.9 | 2.5 | 2.4 | 3.1
20x20x20 | 1.4 | 1.4 (51 (25|24 |29
ANLS \ 100 x 100 x 100 | 1.2 \ 1.1 \ 35|25 \ 2.4 \ 3.0
x107° x10~*

Table 3.1: Mean square error on reconstructed factors for data simulated as in Figure 3.4
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Figure 3.5: Best run for 10 different initializations on the data set presented in section for
rank set to 3. Fluorescence spectroscopy is supposed to recover 3 amino-acids spectra : Val-Tyr-
Val, Trp-Gly, Phe. (a) Reconstruction error |7 — 77| for PROCO-ALS with small and medium
sizes, ALS and ANLS. HOSVD computation time is not included. (b) Factors obtained out of the
best run for each tested algorithm. Each colored plot stands for a column of the recovered factors.

on the second mode of dimension 251 for comparison. Compressed dimensions are then set to 20.
Results are reported in Figure[3.5] Second, computation time for each algorithms is compared also
in Figure with similar results than with synthetic data. Although the maximally compressed
PROCO-ALS is the fastest algorithm by far, it provides different results than the ANLS for one of
the excitation spectra. The difference is small but can be significant depending on the application.
On the other hand, the less compressed PROCO-ALS outputs the same factors as ANLS but at the
cost of computation time. ALS performs also quite well since this data set follows rather precisely
an approximate low rank CP decomposition modeﬂ As a conclusion, there can be a trade-off
between more compression, which improves computation speed, and less compression which may
improve interpretability of the results.

Finally, let us see how well PROCO-ALS satisfies the linear constraints and the non-negativity
constraints on both simulated and real data. Actually, since the projection on the non-negative
orthant is always the last step of the algorithm, the question to be asked is how close from the
column span of W does €' = [WC.]" lie. A way to measure this proximity is by comparing the
norm of C' with the norm of its projection on the column span of W. The following indicator is
used:

(WTW) T wTC)2
ICII%

n(C) = (3.30)
Since any projector is a contraction, 7 is always smaller than 1. Moreover, the closer 7 is from
1, the closer C' is from the column span of W. For both simulated and fluorescence data, n(C)
becomes close to 1 up to machine precision after very few iterations. This proves that PROCO-
ALS is doing its job by finding a solution in the intersection of the column space of W and the
non-negative orthant.

3.2.3 Proximal primal-dual algorithms

The main issue with PROCO-ALS is that there is no guaranty of convergence of the iterates, let
alone convergence to a local minimum of the cost function [3.25] The algorithm itself is based on
the approximation of a projection operator but how well this approximation performs theoretically
is not clear. Thus there is a need for further algorithms to compute constrained compressed CPD
that offer some theoretical guaranty. This section studies the use of proximal algorithms to solve
the compressed constrained CPD.

4ANLS starts faster than ALS since for a few first iterations there are many zeros in the factors in ANLS, so
that matrix multiplications are computed more efficiently and the linear systems can be solved faster. Applying
unconstrained compression to ALS would however make it comparable to PROCO-ALS in terms of speed.
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Proximal algorithms have gained in popularity in the recent years through their efficient han-
dling of large data while ensuring convergence of the iterates to the global minimum of a convex
cost function [13]. There are a multitude of proximal methods to solve convex and non-convex op-
timization problems, among which the proximal gradient, the accelerated proximal gradient FISTA
and the dual counterpart of the Douglas Rachford algorithm i.e. the renowned ADMM, have been
investigated in the constrained tensor decomposition literature [80,/126].

Proximal algorithms solve the following kind of problem:

argminf(x) + g(x)

x 3.31
st. xeS ( )

where f is a differentiable convex function, and the proximal operator of g and a projector on S
can be computed. By computing the proximal operator of S and applying it in some way, proximal
algorithms solve (3.31]). The proximal operator of a function is defined as:

prox{f}(u) = argmin f(@) + |z — ull3 (3.32)

and the proximal operator of S is the proximal operator of its characteristic function (equals 0
when x € S, equals +00 otherwise). The proximal operator of S is an orthogonal projector on S if
such projector exists. An example of a simple alternating proximal gradient algorithm (ANLS) is
provided above in example

When the data tensor is not compressed, any proximal algorithm can be used to solve the
constrained CPD problem. It has been shown numerically [68] that applying a proximal algorithm
to the whole approximate constrained decomposition problem is less efficient than incorporating
the proximal algorithm inside an alternating loop on each factor. Note that this is most likely due
to the non-convex nature of the global optimization problem. Thus proximal methods are applied
in an alternating fashion as in Algorithm [7}

Algorithm 7 Customizable proximal-based algorithm for CPD with C € S¢
INPUT: array 7T, initial factors A, B and C, and proximal algorithm ¢(Y, M, X,S) mini-
mizing |[Y — M X||% under constraints X € S.
while convergence criterion is not met do

-1
A=Tu (BOC)(B"BECTC)
B=T4(A0C) (ATABCTC) -
CT =6 (Tl (A0B),CT,5¢)

end while
OUTPUT: Estimated factors A, B and C

If any proximal algorithm is to be applied in the constrained compressed CPD setting, it is
necessary to compute the proximal operator of w' (S¢) since the constraint applies on WC..
As discussed in the previous subsection, S¢ is often built so that a projector can be computed,
but knowing a proximal operator for the characteristic function of S¢ does not provide a proximal
operator for W' (S¢) unless W is orthogonal on the right [96]. When compressing a tensor, W
is only orthogonal on the left.

To tackle this issue, Combettes, Pesquet [36] and Condat [39] proposed primal-dual proximal
algorithms that do not require explicit computation of the proximal operator of the transformed
constrained set. In particular, algorithm (1) from Condat is simple to implement while providing
competitive results with respect to the complex algorithm from Combettes. In , either f or
g can be chosen to be the decomposition fitting term, while the constraint is WC, € S¢. This
gives birth to two algorithms depending on whether the gradient of the fitting term is used or not,
which we call respectively Gradient Primal-Dual ALS and Proximal Primal-Dual ALS. Gradient
and Proximal Primal-Dual ALS are described below. Results are presented along PROCO-ALS in
the previous subsection, see Figure [3.2]

These algorithms are however not solving the constrained compressed CPD in a satisfactory
manner. First, there are three parameters to tune. While some hints are given in the literature on
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Algorithm 8 Gradient Primal-Dual ALS (to be used in Algorithm [7)

INPUT: second member Y, mixing matrix M, initial primal variable X ) and constraint set
WTSa

PARAMETERS: 7, p, o, iteration number N and initial dual variable Z ©

for i =0..N —1do

X0 = xO 4 oM (Y - MX)— W2
204 = prox{Scl, (2 + oW (2X D - x0)))
XD = px+) (1 = p)x

Z(i+1) = pZ(i+1) + (1 _p)Z(i)

end for
OUTPUT: XW

Algorithm 9 Proximal Primal-Dual ALS (to be used in Algorithm

INPUT: second member Y, mixing matrix M, initial primal variable X ) and constraint set
W'Se

PARAMETERS: 7, p, 0, iteration number N and initial dual variable Z ()

for: =0..N —1do

XOD = prox{|Y - M o [}, (X - r w720
Z*D = prox{S.}, (Z(i) t oW (QX(”U - X@))

Z(z+1) = pZ(z+1) + (1 _p)Z(z)

end for
OouUTPUT: X

how to chose them, there is no best way and using Primal-Dual ALS requires expertise. Second, the
convergence of both Primal-Dual ALS is only ensured at each iteration of ALS, but convergence of
the global algorithm is still not clear. Convergence proofs were the motivation for using proximal
algorithms in the context of constrained CPD, but still call for further research.

Finally, proximal algorithms here do not beat PROCO-ALS in terms of speed. They however
tackle a slightly wider spectrum of problems, including for instance total variation regularization
on the factors of a CPD. Moreover, primal-dual algorithm directly tackle multiple constraints on
the factors, whereas imposing multiple constraints with PROCO-ALS is not straightforward.

3.2.4 ADMM under compression: COADMM

The application of ADMM to constrained compressed CPD is shortly reviewed and applied only
to non-negative CPD, being a good solution for solving (3.19). A trial run is presented in Figure
and comparisons are further conducted below.

Application of ADMM to constrained tensor decompositions has been proposed in [68,80].
In [80], one iteration of ADMM is carried out for each update, while in [68] ADMM is iterated
until convergence for each block. In general ADMM is used to solve the following minimization
problem (see [12] for details):

minimize  f(X) 4+ g(Z)
w.r.t. X, Z (3.33)
subject to DX + EZ =F

where X and Z are real matrix variables, D, E and F are given real matrices and f and g are
convex functions of the elements of X and Z.
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Standard ADMM k-th iterate is [12]
Xkl = argminl, (X, Zk,uk)
x
Z"! = argminlL, (Xk“, Z, u’“) (3.34)
z
= b +p(DXk+1 L EZk —F)

where p,; is a matrix of dual variables, p is a nonnegative scalar and L, is the Lagrangian given
by

L,=f(X)+g(Z)+ §||DX +EZ-F|%+Tx ([u" (DX + EZ - F))). (3.35)

To apply to problem , weset X =C., Z=C,D=W,E=1I, f(C.) = |G3) —
C.(A.©®B.)"|% and ¢g(C) equals zero if all elements of C are nonnegative, otherwise it is equal
to 400, i.e. g is the characteristic function of IRIXIXR. The inner k-th iterate of the descent update
for block C. becomes

o= (e (atom) - [w (w00 ((a7a0) 0 (722) 4 41)

1
cHl = [pu’f + Wc’g] (3.36)
+

pEH = kg ) [WC’;H _ C’”l] '

The update sequence (3.36) can be used in Algorithm [7| to obtain an ADMM-ALS algorithm
to compute the non-negative compressed approximated CPD.

3.2.5 Comparisons with state of the art methods

In order to asses the performance of PROCO-ALS as a fast and efficient tensor decomposition
method, it is necessary to further compare it with state of the art methods. The chosen methods for
comparisons are FNNLS [18], AOADMM [68], ANLS and Tensorlab v3.0 [120], which also features
a speed up compatible with non-negativity constraints based on a structured approximation of
the data. The comparisons also feature COmpressed ADMM described above since it provides an
alternative to PROCO-ALS with better convergence properties. Only simulated data is used in
the following, with one tensor of size 100 x 100 x 100 of rank R = 5, with factors drawn from
a uniform distribution over [0,1], and normalized so that all the energy is pulled in the third
factor C. Additive Gaussian noise is applied on the data. The outputs of the algorithms are also
normalized so that all the energy is pulled on the estimates of the third factor. Finally, the cost
function values over time are averaged over 100 decompositions of the same tensor with random
initializations.

First case: right number of components and high SNR First, let us study the ideal case
where the rank of the tensor R is known, and the SNR is set to a high value, namely 30dB. The
maximal number of iterations in this scenario is set to 100 (250 for tensorlab). Because the SNR
is high, compression should be accurate and therefore the compressed dimensions are set to R on
all modes.

The results are presented in Figure The error plotted on the left is | T — ’%H% with T~
the reconstructed uncompressed tensor, while the error on the right is the squared error on the
factors [|[A — A|% + |B — B|% +||C — C||%. Because the true factors are normalized, this error is
proportional to the relative error by a factor 3R = 15 in these simulations. Also, the permutation
of columns of estimated factors matching at most the true factors is computed before computing
the squared error on the factors.

In the optimal scenario of high SNR and accurate knowledge of R, PROCO-ALS performs as
well as other methods in terms of factor error, but is faster than uncompressed algorithms by an
order of magnitude. It is also faster than the compressed version of AOADMM. Note the slightly
worse results of AOADMM.
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factors.
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Figure 3.7: Simulation results at low SNR. Left: Reconstruction error plotted against time in
seconds, compression time not included. Right: boxplot of the sum of the squared error on each
factors.

Second case: right number of components and low SNR.  In a second experiment, the SNR
is set to 5bdB, but all the other parameters are left unchanged. Only the compressed dimensions
are set a little higher to R + 3.

Results are presented in Figure ??7. Compression at low SNR leads to a substantial increase of
the error on the factors. On the other hand, the convergence time is not affected and compressed
methods still run faster than the uncompressed ones. This means that at low SNR, there is a
trade-off between computation time and accuracy on the factors.

Third case: overestimated number of components and high SNR.  In practice the rank of
the data is not known, so that it is likely that the number of components is not well estimated before
running decomposition algorithms. Therefore it is mandatory to check the performance of proposed
algorithms in this scenario, here with an overestimated number of components R.s; = R+ 1. The
compressed dimensions are set to R + 3, and the maximal number of iterations is set to 200 (still
250 for tensorlab). The SNR is set to 30dB.

Results are presented in Figure[3.8] Five out of six columns of the estimated factors are chosen
that best match the true factors. First of all, there is no impact of overestimating the rank on
the convergence time. However, FNNLS, ANLS and PROCO-ALS seem to perform better than
descent algorithms in this setting, with PROCO-ALS performing surprisingly well. Compressed
ADMM outputs unstable results.
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Figure 3.8: Simulation results at high SNR, but overestimated number of components, compression
time not included. Left: Reconstruction error plotted against time in seconds. Right: boxplot of
the sum of the squared error on each factors.

3.3 Dictionary-based CPD

Constrained CPD is concerned with adding prior knowledge on the factors in the tensor decompo-
sition model. Until now in this manuscript only some global knowledge about the factors has been
used, like non-negativity, sparsity, smoothness. But it may happen that more precise information
is available on the factors. A trivial example is when one of the factor matrices is known. Then it
simply needs to be removed from the set of unknown variables in the decomposition model, thus
reducing the number of unknown parameters. However what if columns of this factor matrix are
only known among a collection of vectors 7 That is, a set of available candidates for this factor is
known, but which among these candidates are columns of this factor is not known. Another way
to understand this problem is to consider that a dictionary of components of one mode is available,
therefore finding the factor on this mode amounts to selecting atoms in this dictionary. This last
section starts with a formal introduction to the dictionary-based CPD, then it presents algorithms
to solve this specific constrained decomposition. An example of application on the Snow data in-
troduced in section shows a great improvement in interpretability of the results with respect
to the fully blind model.

Note that an alternative to using discrete dictionaries is to reparameterize the factors so that
they belong to a certain class of functions. Substantial work on these “continuous” dictionaries
can be found in [51], with discussion on identifiability and efficient algorithms.

3.3.1 Problem statement
Introduction and formal description

It is common in applied tensor decomposition to have at disposal a benchmark of known shapes
for factors. For instance, should the data to be decomposed be a drug test of a professional cyclist,
it is likely that doctors will look for spectral signatures of a set of well-known steroids. Dictionary-
based CPD allows to incorporate these spectra in the CPD to have proper estimation of the relative
concentrations of these components in the mixture.

Another direct application is hyperspectral imaging. In hyperspectral imaging, blind linear
unmixing of spectra and abundances is one of the hot topics and gives birth to many challenges.
Indeed it is thrilling to estimate both the spectral signatures and the abundance map from a single
image provided the number of different materials in the image is small. But even though the
blind approach is appealing, it is often useless if a library of spectral signatures is not additionally
provided to identify the recovered spectra, since it does not automatically label the recovered
components in the spectral factor.

Now if a spectral library (i.e. dictionary of spectral signatures) is available, why not use it
directly inside the unmixing algorithm instead of resorting to blind unmixing ? There is a certain
advantage not to use the dictionary since there may be a few materials in the actual scene that are
not reported in the library. However, using dictionaries in the unmixing process should increase
the interpretation and accuracy of the unmixing of hyperspectral images since a priori information
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is added to the model. Below is discussed how to make use of the knowledge of an over-complete
dictionary into the CPD.
Let us start with the definition of the dictionary-based CPD.

Definition 17 The dictionary-based CPD of a tensor T is the constrained CP decomposition
defined as follows:
T=(A®B®C)Xr+&
C=DS (3.37)
6 (S) =1

where D € RM*P s a known over-complete dictionary, i.e. D » M, and S € {0,1}P*% is the
score matrix. The £y constraint on S is applied columnwise so that each column of S has exactly
one non-zero coefficient. The same column (i.e. atom) in D may be selected multiple times in C.

This model was first proposed by Sahnoun et al. |100] but in the specific context of harmonic
retrieval and without the possibility to select multiple times the same atom. A similar idea based
on the clustering of columns of C' is developed in [123].

In dictionary-based CPD, only one non-zero coefficient is tolerated in each column of S. This
means that each component in C is exactly a column of the given dictionary D. While this
requirement may be restrictive, it makes a lot of sense in hyperspectral applications where the
role of mixing the components spectra is given to the abundances. However variants of this model
can be easily obtained by modifying the constraint on the scores S if multiple atoms are to be
associated with each component. Sparsity constraints are yet mandatory, since the unconstrained
problem has infinitely many solutions. Indeed, D has more rows than columns, so generically it
spans the whole definition space of C. This means that the sparsity constraint penalizes the set
of possible S, and imposes to select only the sparsest.

Relation to dictionary learning

The definition of dictionary-based CPD contrasts with what is usually understood as dictionary
learning in the context of tensors. Indeed, some authors [6,[23] refer to the sparsity constrained
Tucker model as a dictionary leaning problem, where matrices U, V and W are interpreted as
dictionaries, i.e. as a collection of elementary atoms constituting the data. Yet neither the Tucker
decomposition nor the CPD generates over-complete families of atoms if factors are tall. On the
other hand, dictionaries are usually fat matrices and atoms contain redundant information. Thus
it seems weird to impose sparsity constraints on the core tensor in the Tucker model to mimick
a dictionary learning model if the obtained dictionaries are tall. On the other hand if the sparse
core has larger dimensions than the original tensor, then matrices U, V and W are fat, but it
may be very difficult not to over-parameterize this model. Moreover, the identifiability of over-
complete dictionaries is questionable if a single tensor is available for dictionary learning. Similarly
to classical dictionary learning, having multiple data set may be the key to Tucker-based dictionary
learning:

Te=URVW)G,

VE, o (Gr) < Ok (3.38)

Vk, G e R QRY QRM and K’ > K, L' > L, M’ > M

where {7} is a collection of N > 1 tensors of same size generated through the same transformation
matrices U, V and W respectively in RE*X RL*L" and RM*M' | and 6, are given integers. The
£y pseudo-norm is taken coefficient-wise. Whether this joint decomposition is feasible or not has
not been explored in the literature to our knowledge in spite of the great interest this may bear in
machine learning.

Actually, (3.38) is a dictionary learning method implied by definition The approach seems
different at first since the constrained factor is expressed through a dictionary instead of being the
dictionary itself. This usage of dictionaries fits the idea that the underlying parameters are picked
out of some over-complete family of atoms. However, dictionary-based CPD of only one tensor is
not suited for dictionary learning. Indeed suppose in definition [I7] that D is not known. Then
even knowing the true C| it is not possible to recover both D and S of arbitrary sizes even with
the sparsity constraint on the scores S. What can be achieved is to cluster columns of C into a
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few atoms and find an tall dictionary D. On the other hand, if multiple tensors are available, then
learning an over-complete dictionary may be possible. Indeed the following holds:

Ty =(A,®B,®DS;)Xr
=(I®I®D)(Ar®B;®S:) Xr (3.39)
= (IQI®D)G

which is equivalent to the dictionary learning problem stated above if the sparsity constraints
on cores G, are well chosen.

In the remainder of this section, the dictionary is supposed to be known. Learning the dictionary
has yet to be explored in future research.

3.3.2 Algorithmic approaches

The actual computation of the dictionary-based CPD of a data array is a rather complex subject.
The set of admissible solutions with respect to C' is a discrete ensemble made of the columns of
the dictionary D, so that the optimization problem is highly non-convex. In the matrix case, two
well-known algorithm for selecting columns from a dictionary are the Orthogonal Matching Pursuit
(OMP) [88] and the LASSO algorithm [110]. Each of these methods has been studied extensively
so that a wide variety of algorithms now exist to solve the sparse approximation problem.

On the other hand, for dictionary-based CPD, the paradigm is somewhat different. Indeed there
are at least two different ways of understanding the dictionary-based CPD computation. First,
since without the knowledge of the dictionary and the sparsity constraint, factor C can be estimated
by regular unconstrained CPD, one can alternate between estimation of C' by unconstrained least
squares and estimation of S through sparse approximation using Matching Pursuit for instance.
Another way to compute C is by reparametrizing the problem, looking only for S. This can be
done by a LASSO algorithm, but it is also simply possible to estimate S through a regularized
least squares estimation projected on the closest vertex of the ¢; unit ball.

Since there are many possible ways to optimize , only two simple methods described in
algorithms and have been implemented, namely Projected Penalized ALS and Matching
Pursuit ALS. Below, the dictionary-based CPD is applied to the unmixing of the Snow Data.

Algorithm 10 Projected Penalized ALS
INPUT: array 7, initial factors A, B, C and dictionary D.

while convergence criterion is not met do
A and B updates:

-1

A=Tw(BOC) (B'BOCTC)
-1

B=T4(A0C)(ATABCTC)

S first estimate:
D'DS (ATAEBTB) +AS = T3 (AO B)

solved as a Sylvester equation.

S projection step:

Vi< R Sij = 0j [max; C=DS

Si]'] ;

end while
C=DS
OUTPUT: Estimated factors A, B, C' and estimated scores S.

3.3.3 Experiments on synthethic and Snow data

Let us check the ability of the two proposed algorithms to solve the dictionary-based CP decom-
position on both synthetic and hyperspectral data.
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Algorithm 11 Matching Pursuit ALS
INPUT: array 7, initial factors A, B, C and dictionary D.

while convergence criterion is not met do
A and B updates, C first estimate:

-1
A=Tw(BOC)(B'BOCTC)
-1
B =T (A0C) (ATABCTC)
-1
C=T(AOB) (ATADB'B)

S estimate:
for i =1to R do
compute scalar products % for all j.
select closest D; from C; and update according column S;.
end for
C estimate
C =DS

end while
OUTPUT: Estimated factors A, B, C and estimated scores S.

K =30 | K=50
MPALS 99% 97.3%
PPALS | 98.9% 98.9%

Table 3.2: Percentage of perfect decomposition for different number of atoms. Percentages for 1000
runs. Lambda is set to 1072 and maximal number of iterations is 200.

A main question to be asked about PPALS and MPALS is whether or not they are able to find
the right atoms in the given dictionary. Indeed the optimization problem can be written as follows,

argmin||7 — (AQ B®C) Xg|%
A.B,C

(3.40)
st. C=DS and ¢, (S) =1

and the cost function in is not convex since CPD itself is not. Moreover, the fact that
columns of C have to be exactly columns of D makes decomposition algorithm very sensitive to
local minima if the constraint is satisfied at all steps as in PPALS and MPALS.

To study atom selection performance, a dictionary D € Ri{ *D g generated from a coefficient-
wise uniform distribution on [0, 1], then normalized columnwise with the ¢; norm. S is chosen to
be a diagonal matrix, and other factors are drawn from absolute value of coefficient-wise Gaussian
distribution with unit variance. No noise is added, rank is set to 4. The simulated arrays have sizes
30 x 30 x 30. The simulated data were chosen to be non-negative to check performance in a context
inherited from hyperspectral images unmixing. Algorithms PPALS and MPALS are modified to
include non-negativity constraints through projection on the non-negative orthant. Table
shows the amount of perfect recovery of all factors depending on the size of the dictionary. PPALS
behaves better than MPALS because it makes use of the information provided by the dictionary
at every step, while MPALS alternates and is thus further from an optimal algorithm. Notably,
in the noiseless context, either the algorithms converge in very few steps, or they do not find the
true factors and iterate until the maximal number of iteration is reached. Since it performs better
than MPALS, PPALS is used below to compute a dictionary-based CPD on the Snow data set.

Figure[3.9)compares the application of ANLS and dictionary-based CPD computed with PPALS
to the Snow data reported in [116]. The parameters of the CP decomposition model used for Figure
were the following: CP rank R was set to 7, maximum number of iterations was set to 103,
initial values for factors were drawn with a standard Gaussian distribution coeflicient-wise, and A
was set to 1073, Dictionary D was normalized columnwise. Comparison is done with the same set
of parameters and same initial factors.

ANLS provides some interpretable results. By checking the correlation among recovered spectra
and the atoms in the dictionary, it can be seen that some identified materials fit with what is
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Figure 3.9: Recovered factors from non-negative CPD versus dictionary-based non-negative CP
decomposition.

expected to be found in the scene. The abundance maps are well resolved, and exhibit a snowy
mountain surrounded by a plain landscape mainly composed of “green” materials. Even the
temporal factor is meaningful, showing an increase in the amount of snow during the winter
season. However, some spectra do not match with anything expected to be found in the Alps, i.e.
some spectra are not columns of the dictionary. This means that a part of the outputs of ANLS
is either uninteresting spectra or junk. On the other hand, PPALS cannot find other spectra than
what is contained in the dictionary, thus providing clearly interpretable results for all components.
Moreover the abundance maps still make sense and seem to allow for a better separation of spatial
features. Note that the ‘rain forest’ and ‘pasture’ spectra in the dictionary are extremely correlated,
which is the reason why rain forest is identified in the middle of the Alps. This atom should have
probably been removed from the provided dictionary.
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Chapter 4

Understanding subject variability

Summary This chapter deals with the fusion of multiple multiway data sets. The goal is to
broadly extend what is usually understood as data fusion with multiway data by exploring the
possibility to extract complex interactions between multiple multiway data sets, interactions that
make up what we call subject variability. It is structured as follows:

e The subject variability paradigm is exposed, exact coupled CPD is then presented and related
to existing models accounting for more complex subject variability.

e A flexible formulation of the data fusion problem is then introduced, which allows for both
complex coupling relationships and approximate relationships.

e Compression for coupled data sets is shown to provide good performance, even in a partial
coupling context.

e Some open problems related to coupling estimation are exposed.

This chapter is based on some recent publications: the core article on flexible data fusion is joint
work with Rodrigo Cabral Farias [21,22], estimating subject variability in the context of ocular
artifact detection in EEG data is joint work with Bertrand Rivet [99], and the compression of
coupled tensors is a work realized jointly with Rodrigo [33].

Introduction Modern society is building itself around new sensing technologies. From neu-
roimaging measuring the functioning of the brain to chemometrics and bioinformatics quantifying
body function through spectroscopy and genomics, improved sensing technologies in biomedical
engineering have led to an overwhelming mass of data produced every day. Researchers have access
to various measurements on large number of subjects along diverse modalities. A major challenge
of modern data mining is to exploit these multiple diversities inherent to such massive data sets,
and to understand both inter-subject and intra-subject diversity.

When facing large amounts of data on multiple subjects, a natural problem in data processing
is to find a common pattern from those various measurements. Usually this common pattern is
meant to explain the status of subjects in a comprehensive and concise manner. State-of-the-art
data mining methods rely on low dimensional latent representations of high-dimensional data based
on feature representations (latent feature models) and characterizations in terms of prototypical
individuals (latent class models). However, each subject is unique. When designing treatment
for an individual, it is crucial to know how the specific individual will respond to the treatment.
Existing low dimensional feature representations, such as principal component analysis (PCA),
are in general difficult to interpret since they rely on unjustified assumptions (i.e. orthogonality)
not optimally designed to leverage multi-subject and multi-modal data. On the other hand, in-
formation specifically related to one subject may be contained in the large amount of collected
data. People may react differently to a treatment, and understanding this individual variation
could change the face of biomedical engineering. In data processing, individual differences with
respect to main common patterns are what we call subject variability. Subject variability is a hot
topic in biomedical engineering, since understanding subject variability means finding the missing
link between Big Data and individualized biomedical signal processing. In the first section, data
fusion models that tackle subject variability are presented. The remainder of this chapter exposes
contributions on modeling couplings between multiway data sets.

79
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4.1 An introduction to data fusion models accounting for
subject variability

4.1.1 Intra/inter-subject variability

To explain what is understood as subject variability in this manuscript, first consider the following
simple thought experiment. A baseball player is asked to throw N balls in front of him one after
the other, while trying to obtain the same throw. The N trajectories {s;},. are recorded on a
2D grid at a regular scale along the x axis, and in a continuous scale along the y axis so that s;
is a vector containing the height of the ball at each recorded coordinate. Figure provides a
graphical summary of what data would look like and which underlying processes are going to be
estimated.

Having N recordings at disposal, it is very natural to look for a “latent” trajectory s* that
would be hopefully the trajectory the baseball player was picturing when throwing the ballsﬂ A
whole range of methods exist to estimate s*. Here since the physics of the problem is well known,
it is possible to parameterize the trajectory of throws depending on the initial speed and the initial
height and to find the parameters for the best fitting s* in the least squares sense. The distance
to be chosen for finding these optimal parameters depends on the distribution of a trajectory with
respect to the latent one, for instance least squares are optimal with a Gaussian distribution.

Now the latent trajectory is not the only interesting phenomenon that can be extracted from
the data. On the contrary, the player will probably be more interested in knowing how each of his
throws differs from the latent trajectory. Indeed understanding how throws vary can help reduce
the variance of the throws. In other words, understanding the variability of the throws amounts
to recovering the coupling functions f; linking s* to each s;:

si = fi(s¥). (4.1)

Clearly this problem is not feasible without further constraints, even if s* is determined by an
auxiliary method. However, let us be even more greedy with the model and ask that both f; and
s* are unknown. At this stage, some hypotheses on f; are necessary. In particular, finding an
invariant in trajectories helps to reduce the research space for the coupling functions f;.

For instance, assume all trajectories are vertical dilations from each other as in Figure
Adding the knowledge that all trajectories are parabolic, this invariant can be used to parameterize
the coupling functions as follows:

fil@) = A (4.2)
where A; are scalars standing for the amount of dilation of each s; with respect to s*. Since the
hypothesis on the coupling functions are strong, one could think that there is a unique set of \;
and latent trajectory s* so that s; = A;s*. But this is not true.

Actually, when trying to extract information on subject variability without any knowledge on
the latent behavior s*, if the set F of admissible f; is a group for the composition operator o and
is not reduced to the identityﬂ then s* can only be found up to a class of equivalence. Indeed, if
f belongs to F, then supposing s; = f;(s*) for all i € [1, N],

fils*) = fi(fF(f'(s%)))
=fiof(f7'(s%) . (4.3)

— ffquiv (s*equi’u)

Thus given a solution s* to (4.1), the set of solutions for latent trajectories s* is {f(s*) | f € F}.

For f;(x) = Az, the latent trajectory and the coupling functions are thus determined up to a
scaling factor. In other words, only the fractions i‘—] can be interpreted.

There are two ways to get rid of the indeterminacy of f; and s*. It is first possible to set
f1 = id, so that s; = s*, but this is probably not satisfactory if s* is understood as a typical
behavior and should not be chosen arbitrarily. In another spirit, the indeterminacies can be lifted
if additional hypotheses can be made on s*. For the baseball experiment, a parametric estimation

of s* in the least squares sense can for instance be used additionally.

IThe fact that a latent trajectory may not truly exist has to be kept in mind, although this issue will not be
discussed here. We consider the existence of a latent trajectory as a modeling hypothesis.

20f course this hypothesis over-simplifies the problem, and a more reasonable one would be that all throws have
the same initial kinetic and potential energies. But this last invariant is a little more difficult to exploit while having
no pedagogic utility.

3F = {id}.
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Figure 4.1: A snapshot of 2 throws s; and sy by a baseball player, in black. An ideal latent
trajectory s* is represented by dashed red line, while two equivalent latent trajectories s*¢4% for
coupling function fi(x) = Az and fo(x) = Aax are represented by dotted purple line. Note that
there is an infinity of equivalent trajectories, and this includes s;, so and s*. In the meantime,
the helpful player is contemplating his (thin) muscles.

This whole thought experiment instantiates the study of intra-subject variability, since a single
subject (player) emits multiple signals (trajectories) with inherent variability around a latent signal
(latent trajectory) that is modeled and estimated. On the other hand, inter-subject variability
stands for variations of the recorded signals among multiple subjects. For instance if M players
were asked to throw some balls in a given direction, then the latent trajectories s, of each player
can be linked with each others if some players throw the balls in a very similar fashion. A popular
way to study inter-subject variability is clustering. Since clustering groups the players based on the
similarity of their latent trajectories, it requires some a-priori knowledge on a good measurement of
similarity between trajectories and a prior estimation of the s’ . However the goal of this chapter
is to go beyond and show that is is possible to learn both a good similarity measure based on
invariants in the data and the latent trajectories of each player.

In what follows, the coupling relationship is used in the context of multiway data mining.
That is, what stands for trajectory is not raw data, but rather estimated factors in the CPD.
Moreover, intra-subject variability and inter-subject variability can be studied with exactly the
same formalism. Whether the analysis is intra or inter indeed only depends on what is understood
as “subject”. However the inter-subject and intra-subject variability have been considered in
separate models in the literature since these models are often built for specific applications, which
in turn require to model either inter or intra-subject variability.

A general framework for studying variability in tensor decompositions goes as follows. Given
N tensors T; € Rf @ RY @ RM:, and assuming factors on the same modes are linked,

T: =(A;®B;®C,)Ig, +E&;

A = £ (A7), 7 e T

: =f-(B) (B*), fz( e]:(B)
©)

B 7
Ci =£9(C), fFeF©

7

Viel[l,N], (4.4)

where F(A) FB) and F(C) are the set of admissible coupling functions on each mode. Model
(4.4) can be derived from a MAP formulation of the estimation of factors in the CPD of multiple
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tensors as detailed in section [£.2.7]

Depending on the nature of F, a wide range of models can be specified. For instance, if F(4)
is the set of all functions mapping R¥: X% to REX*® and K, R are respectively greater than all
K;, R;, then factors A; are unconstrained and the CPDs are unconstrained on the first mode.
When studying inter-subject variability, it is natural that only one or two of the modes are related
among the tensors, so that the unrelated modes should be unconstrained. On the other hand, if
FA) contains only the identity, then factors A; are exactly shared among the tensors. This is the
topic of the next section.

An even more general setting is obtained if the equalities in are replaced to obtain condi-
tional probability distributions on the data tensors and the factors:

TilA;,B;,C; ~D,”’ ((A;®B;C;)ZIg,)
) A;|A* ~ D (A*
c,jlc*  ~D9(Cc*)

where D;(X) are known probability distributions of mean X, possibly depending on other param-
eters than the low rank CPD of each T7; and the latent factors A*, B* and C*. This probabilistic
model is also derived from the MAP formulation and explored in section

4.1.2 Exactly shared factors

When several multiway data set are obtained from measuring the same phenomenon, and each data
set can be efficiently decomposed as a sum of rank one components, it is likely that similarities
exist among the different components. Indeed components in the CPD can be interpreted as latent
sources. If different devices measure the same phenomenon, the underlying sources generating the
data are the same, but they are observed differently. The most natural idea is probably to suppose
these sources are exactly the same in all the data sets, and that they correspond to factors of the
CPDs along one mode.

In terms of subject variability modeling, this means that factors on one mode are coupled
through fi(c) = id, while the other modes are fully dependent on the modality and therefore are

not shared:
Vie[l,N], {70- z(c‘i@Bi@Ci)IRJ“Si . (4.6)

This model is coined as ‘exact coupled CPD‘ in the remainder of the manuscript.

Exact coupled CPD has been studied for the first time by Harshman [62], but a recent study
of modeling and algorithmic aspects of is due to Acar et. al. [1,4]. The identifiability of all
parameters in model has also been studied recently, without noise £; on all tensors [104].
Little is known of the identifiability in the approximate case. Yet it can be easily understood that
exact coupling reduces the number of parameters, so that if each independent tensor decomposition
problem is well-posed, then the exact coupled model is also well posed. Because the conditions to
have identifiable parameters for the CPD are extremely mild in practice, identifiability of unshared
and shared factors is not an issue for practical applications. An interesting feature of exact coupled
CPD is that, if a second order tensor and a third order tensor are coupled using model , then the
CPD of the second order tensor can be unique (except under scaling and permutation ambiguities
among the factors) if the CPD of the third order tensor is unique. Again in practice, three way
arrays are most often decomposable into a sum of rank one components, so that exact coupled
CPD may restores identifiability of the CPD of the coupled two way array |104].

Moreover there might not be a minimum to the following cost function derived from the maxi-
mum likelihood estimator (if noise tensors &; are i.i.d. Gaussiarﬁ):

N

argmin > |7 - (A;® B;®C) Ix|} (4.7)
Ai,Bi,C i=1

4For the sake of simplicity in this first section of the chapter, noise levels are assumed to be equal for all tensors.
Since there is no reason to have i.i.d. observation noises in practice, noise levels are later accounted for. Algorithm
[[2] can be adapted easily to account for different noise levels, and a noisy version of Algorithm [T3]is provided in

section @
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which in practice is very similar to the best low-rank approximation problem that occurs with the
CPD, see section [[.4.1]

One advantage of exact coupled CPD with respect to other coupled CPD models accounting
for subject variability is that there is no coupling functions f; to estimate, which also means that
the latent factor C™ is well-defined. Recall that in the general case, C* is only defined inside a
class of equivalence.

But the true advantage of exact coupled CPD, and of any model accounting for subject variabil-
ity, is that the estimation error on C' is reduced with respect to running N independent CPD since
coupling reduces the number of parameters and the search space, and inputs prior knowledge in
the model. The argument here is very similar to what is discussed in the constrained CPD section
3.1.1 which is fair since all models introduced in this section are constrained decompositions of
more than one tensor.

Finally, solving the non-convex optimization problem can be done by an alternating
least squares algorithm in the same spirit as solving the approximate CPD of multiway data. It
is referenced in [3] that for this particular optimization problem, a gradient descent algorithm
works better in the case of overfactoring. But since this is supported by no theoretical results,
and if overfactoring is not an issue in the problem at hand, the proposed ALS algorithm [I2] is
satisfactory. Exact coupled CPD is used below in comparison with a flexible coupling model to
decompose fluorescence and nuclear magnetic resonance data of the same chemical mixtures.

Algorithm 12 ALS algorithm for solving the exact coupled CPD problem
INPUT: Multiway arrays T ;, initials factors A;, B; and C.

while convergence criterion is not met do

for i from 1 to N do
A; =T; ) (B; TB.mcTC)
i = i,(l)( z@c) Bl BzBC c

-1
B =T, (A;0C) (AZ-TAi ol CTC)
end for
N N
C= (Z T3 (A:i© BZ)> ( AZ-TAZ- E]BZ-TBZ->
=1 i=1

end while

-1

OUTPUT: estimated factors A;, B;, C.

Before discussing other more complex coupling models, a last subtle difficulty has to be pointed
out. If multiway arrays are modeled using exact coupled CPD , then why was it necessary to
cancel out variables C; in optimization problem by substituting them with C* ? Indeed it is
possible to design an alternating algorithm that extracts C; and estimates C™* at every iteration.

Here it can be argued that a two-step algorithm is less efficient to minimize the cost function
at every iteration than a one-step algorithm like Algorithm [T2] But on the other hand estimating
C* in Algorithm is costly, and a full alternating algorithm might provide faster convergence.
For completeness, a full alternating algorithm is explicited below in Algorithm It is not clear
which algorithm should be preferred over the other.

But what is even harder to determine is whether the latent variables should be estimated or
not in general. In the exact coupling CPD this questions the need for estimating C; and C*
independently. In all models accounting for subject variability introduced in this chapter, whether
or not to include a latent factor in the model is actually a difficult question. See section for
a short discussion on this point.

4.1.3 PARAFAC2

In 1972, after having proposed an exact coupled CPD for mining linguistic data [62], Harshman
gave birth to yet another coupling model called PARAFAC?2 [60]. It is based on the assumption
that intra-subject variability is invariant under left orthonormal transformations, which amounts to
supposing shared autocorrelation of the coupled components. PARAFAC2 is considered nowadays
a complicated variation of the approximate CPD, and many fail to see its area of applications.
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Algorithm 13 Fully Alternating LS algorithm for solving the exact coupled CPD problem
INPUT: Multiway arrays T ;, initials factors A;, B; and C;.

while convergence criterion is not met do
* 1 al
i=1

for 7 from 1 to N do
C,=C* )
A =T, (B;0C)) (BZTB,; o cjci)
T T -1
B;=T; @ (A;0C;) (Ai A EC; Ci)
-1
Ci=T;:3 (A OB (A;I-Ai L] B;I-Bi)
end for
end while

OUTPUT: estimated factors A;, B;, C; and C*.

However PARAFAC2 is as of now one of the most flexible multiway models that can take into
account subject variability efficiently, and has been used notably to process chromatography data
[17]. To cast PARAFAC2 in terms of coupled tensor decomposition is a contribution of this
manuscript.

As stated above, PARAFAC2 models intra-subject variability using the assumption that along
the mode where variability exists, the autocorrelation of the factors is exactly the same. On the
other modes, PARAFAC2 supposes no variability, so that they are exactly the same. Under the
subject variability formalism, the PARAFAC2 model can be written as follows:

Vie [1,N], C"Z = ch* . (48)
PP, =1

Matrices P; € RMi*M stand for some left orthonormal transformations, and M is the dimension
of the latent factor. Noise tensors £; are i.i.d., Gaussian, with unit covariance. A first assumption
made on the intra-subject variability is that the coupling functions are linear. Moreover, since
Cz-TCi = C]TCj for all coupled (i,7), the covariance among the R sources contained in each C;
is shared by all tensors. Conversely, Harshman showed that under these two assumptions,
is equivalent to considering model . Finally, the minimal size that a latent variable C* may
have in PARAFAC2 is R x R, since it must have the same number of columns and column rank
than all C;. Generically, this implies that M should be greater than R. In practice M = R unless
there are further reasons to choose M strictly greater than R, e.g. if some physical interpretation
can be given to C* which requires a certain size. In what follows, we suppose M = R. This choice
is justified in section dealing with joint dimensionality reduction.

In PARAFAC2, the left orthonormal transformations P; cannot be identified. Indeed suppose
a set of P; satisfying is known, then given any left orthonormal matrix @ of adequate sizes,
QP; also satisfies ‘ In other words, since the invariant in the variability is the autocorrelation
of the components, P; can be found only in the orbit of the set of left orthonormal matrices. Of
course the latent factor C* will also only be identifiable up to a left orthonormal transformation.

An efficient algorithm for solving under Gaussian noise was developed when Kiers et al. |71]
proposed to use PARAFAC2 in order to extract temporal signatures from chromatography data.
Indeed variability on the time response, known as retention shifts, is known to be a major drawback
for applying CPD to the unmixing of chromatography data recorded through a spectrophotometer
(see section . To compute PARAFAC2 in an efficient manner, the norms of each component
stored in ¥;, which are not shared, have to be dealt with. For computational purposes, X; is
pulled in a fourth way by introducing vectors A; of size 1 x R as follows:
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T:=(A®BR®C,®X\;)Ir+E&;
Vie [1,N], CZ = PZC* . (49)
PP, =1

Now it can be seen that induces an approximate CPD of a fourth order tensor. Defining
G, =T, e3 PiT, the computation of the PARAFAC2 decomposition of the 7 ; amounts to the
computation of the approximate CPD of G € RE¥ @R ®@RM @RYN which concatenates the third
order tensors G; on the fourth mode:

G=(A®B®C*®A)Ip+E& (4.10)
Al
where A = : and & is white if all £; were white themselves.
AN
Since the definition of G depends on coupling matrices P;, those have to be estimated before-

hand. With white Gaussian noise, estimating the P; in (4.9) in the maximum likelihood sense
yields the following optimization problem for all ¢ in [1, N]:

argmin |T; (3) — P,M,||% (4.11)
PTP,=I

where M; = C* (AOB @)\i)T. Since the Frobenius norm for matrices is related to the trace
operator (see Appendix , minimizing (4.11)) is equivalent to maximizing Tr (PiM iTiT,(3)>'
By computing the SVD of MiTI(S) = UiEiViT, the function to be maximized becomes

T ((VIPU) =) - i [VIPU o (4.12)

r=1

where ¥; = Diag(cg). The function is maximal if the diagonal values of ViTPiUi are as high as
possible, and since it is an orthogonal matrix, this yields Vl-TPZ-Ui = I, so that

P, =V]U,. (4.13)

Once the coupling matrices P; are estimated knowing the other variables, G can be decomposed
using any CPD algorithm, for instance ALS. After this decomposition, coupling are estimated
again, and so on. Since the whole optimization process relies on an alternating scheme, the CPD
of G does not need to be precise; rather when using ALS, only one iteration of least squares for
each factor should be computed. Algorithm computes PARAFAC2 based on the aproximate
CPD of G computed through ALS, and the estimation of coupling matrices through SVD.

It is noted in [17] that PARAFAC?2 is sensitive to the initialization. A good way to initialize
PARAFAC2 can be to run N independant PARAFAC models. Actually, since other models intro-
duced in this chapter are also sensitive to initialization, more results on choosing the initialization
are introduced in section £4.2]

Regarding the identifiability of all parameters in PARAFAC2, except for the fact that coupling
matrices and the latent factor belong to some equivalence set, nothing is known. This is actually
the case for all models introduced in this chapter (except the noiseless exact coupling model). This
is clearly a complicated issue. Indeed, suppose that the coupling matrices P; are known perfectly
beforehand. Then computing the PARAFAC2 model for tensors 7 ; reduces to computing the
approximate CPD of tensor G, and CPD identifiability conditions applied on G give sufficient
conditions for the identifiability of parameters in the PARAFAC2 model. Recall however that
for approximate decomposition and thus for PARAFAC2 with known coupling matrices, little is
known on the existence of a best approximation and uniqueness of the factors.

4.1.4 Other coupling models
Shift-PARAFAC

In a similar spirit to PARAFAC2, Harshman and Song developed a tensor decomposition model
accounting for shifts among coupled factors [61,/66,/67]. A modern formulation of the so-called
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Algorithm 14 PARAFAC2-ALS
INPUT: Tensors T, initials factors A, B, C* and \;

while convergence criterion is not met do
for i =1..N do

U,;3;VT = SVD (C* (AOBOX)T TI(3))

P, =UV]
Gi=Ties P/
end for
vec(T1)T
Define fourth order concatenated tensor G so that G4y =
vee(Tn)T
Compute G = (A®B®C* ®A) IR using one or few steps of ALS

end while

OUTPUT: estimated factors A, B, C* and \;, and estimated coupling matrices P;.

Shift-PARAFAC is however due to Morup et al. [89], who also developed an efficient algorithm for
estimating the parameters of the model.

The idea behind Shift-PARAFAC is that the same process is expressed in all multiway data T ;
but shifted by the following shift operator

5 ] - (.’EZ‘,(;) HN+d>i>0
Ti ((%)KKAJ - { 0 elsewhere ' (4.14)

This definition of the shift operator differs slightly from the definition given in [89] since the signals
are not supposed periodic, and therefore zero-padding is used to fill up unknown values appearing
when shifting border coefficients.

Since Shift-PARAFAC in [89] is used for mining the relations in a collection of matrices, let
us suppose the N data sets are second-order tensors M; € R® @ RY. Then the Shift-PARAFAC
model can be expressed under the subject variability formalism as follows:

. M; =(A®B;)3;r + E;
Vie [1,N], { b — 7("5"(b*) ) Zir (4.15)

r

y Yr
denote by 7; the shift operator acting on the whole factor B;. In Shift-PARAFAC, the latent
factor is identifiable up to any arbitrary shift, since the invariant in the subject variability is the
shift.

If §;, are integers, T; are linear operators. Then similarly to PARAFAC2, the computation of
the Shift-PARAFAC can almost be reduced to an unconstrained CPD once the shift operators 7;
are known. Indeed if G; is defined by G; = M ; 5 7';1, then on their second mode, all G; feature an
observation of B* truncated on the edges. Otherwise each B; can be estimated independently in
an alternate fashion. Finally, to estimate 7, it is possible to modify the coupling relation by using
the discrete Fourier transform. Indeed, should matrices M; be written in the frequency domain,
then the shift operator becomes a complex multiplication. More about this method, notably a
decomposition algorithm, extensive simulations and a discussion on the uniqueness of the exact
Shift-PARAFAC model are found in [89).

where B* = [b},...,b}] is the latent factor and B; = [bgi), ce b,f.i)] are the coupled factors. We

Convolutive CPD

Yet another model for modeling subject variability was again proposed by Morup et al. [90]. Again
the goal was not solely to account for variability, but also to avoid swamps and degeneracies of
the CPD. In Convolutive CPD, shared factors relate to the latent factor through the convolution
of the latent components with unknown functions. It is more general and therefore more flexible
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than the shift CPD, but on the downside the number of parameters is much greater. Since the
Convolutive CPD is one interesting instance of coupled models, it is shortly exposed here although
again the whole study of this model is found in [90].

The convolutive CPD is defined as follows:

M;=(A®B;)Ir + E;

Vie [1,N], bl — g )k ()
k=1

(4.16)

where u,(f7r) is the coefficient of a convolutive filter for delay k£ and vector b,@, and K is the maximal

delay of the filter. Convolutive CPD can be seen as a direct generalization of Shift PARAFAC
where B; is a linear combination of all shifted versions of the latent factor B*.

Similarly to the previous models, it is here possible in theory to reduce the computation problem
to the computation of the CPD of some other tensor. Indeed if deconvolution is achievable for
each bg), then knowing deconvolution operators yields the CPD of a tensor with third mode factor
equals to a matrix of ones. Also there is clearly an indeterminacy on both the coefficients u,(;’r) and
the latent factor B*, although again not as easy to express as other indeterminacies introduced
above.

Registered PARAFAC

Convolutive CP is a very general model, but a direct consequence of this generality is that more
pertinent models can be designed for specific applications. In a recently submitted paper, Rivet et.
al. have designed a coupling model accounting for differentiable deformation of the z axis so that
coupled temporal signals are temporally distorted versions of each other. Though such variability
should be found in numerous applications, the one application that gave birth to this model called
Registered PARAFAC is the detection of artifacts in EEG [99]. For a discussion on EEG multiway
data, see section [2}

A major obstacle to source separation in EEG is indeed the poor signal to noise ratio due to
numerous artifacts in the signal. Notably, eye movement is known to generate a signal more pow-
erful than the signal emitted by sources of interest. In [99], a new coupling model called Registered
PARAFAC is used to estimate these artifacts in the EEG recordings. Registered PARAFAC takes
into account the fact that different artifacts stem from different eye movements which of course
are not all identical over time. On the other hand, CPD supposes that all eye movements generate
the same temporal response.

The coupling functions used to model temporal distortion are shape-preserving diffeomorphisms
fir, t.e. infinitely differe(n)tiable functions. Actually, columns of factors B; are considered as
K3

continuous signals in [0, z,;,,], and the coupling is computed in the continuous time domain. Since

time is the z variable of the signals, the coupling equations are of the form b () = b*(f;(t)).
Moreover, to simplify the problem, the diffeomorphisms f;, verify

dfir
dx

The first two assumptions in are necessary to ensure that the signal is not folded, rewinded
nor forecasted. An exemple of shape-preserving diffeomorphism is given in Figure and Figure
[4-3] presents a simple example of a warped signal. Moreover in this context, coupled signals start
and end at constant values, and the latent signal is fixed to be in [0, 1], but this does not remove
the coupling indeterminacies. To fix the indeterminacies, it is suggested in [99] to choose matrix
B* as the mean of factors B;. The distance used to build the mean of the factors should not be the
Euclidian distance, since two factors in the same class of equivalence should have zero distance. An
elastic metric may yet be chosen, for instance the Fisher-Rao Riemannian metric [74,/97]. Because
under this metric the (Karcher) mean is unique, the latent factor can be uniquely determined from
the estimated factors B;. In other words, to simplify the computation of all parameters, in [99]
the latent factor is evaluated as the mean of the estimated coupled factors, but the metric used to
compute the distances between the estimated factors depends on the estimated coupling functions.
Intuitively, this constraint imposes that the coupling functions f;, are centered around the identity
operator. This is however not mandatory if working with indeterminacies is not a problem.

Since tensor decomposition models are meant to be computed, it is not sufficient to design a
continuous coupling model. Rather, components factors B; are observed on a discrete grid, and

Va e [0,z 1,

max

() >0, 0< fir(z) <1, fir(0)=0, fir(zl) )=1. (4.17)
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Figure 4.2: An exemple of shape-preserving diffeomorphism. Here f;,.(z) = 22.

if an abstract grid is provided for the latent factor B*, coupling functions f;, can be understood
as mappings from one grid to another. Thus once values for f;. are known on the grid, a linear
relationship can be built between b,(f) and b} through interpolation:

b =T,,.b* (4.18)

where T';,. is obtained, for instance, by linearly interpolating values of b} on the grid of bg). We
do not discuss here potential issues with sampling the continuous signals, but possibly a bound
on the derivative of the diffeomorphism could be added to ensure that the Shannon theorem is
verified for all bgi) if it is verified for b’. Working solely in the continuous domain is a perspective
to be explored here.

The Registered PARAFAC model is thus defined by the following system:

. M,=(A®B;)Xr+ E;
Vi e [1,N], {b@:l(“- byt ) Er . (4.19)

Since shape-preserving diffeomorphisms are invertible, similarly to PARAFAC2, a third order
tensor can be built. Its CPD yields factors A, B* and scales ;. However in [99], the estimation
of the diffeomorphisms requires B; to be known since a full alternating algorithm is used. The
estimation of the f;. relies on the Fisher-Rao metric so that the Karcher mean constraint of the
latent factor is satisfied at all points in the optimization process. The complete decomposition
algorithm is provided in [99], but since the focus here is on the models rather than complex
optimization algorithm, it is not reported here.
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Figure 4.3: A triangle signal b* warped into bfni) using the shape-preserving diffeomorphism

fir(z) = 22

4.2 Flexible Data fusion

As demonstrated by the previous section, various tensor decomposition models exist that account
for some variability among subjects, or in other words, that design coupling functions between
related factors in multiple CPDs. However, a general framework that encompass approximate
couplings, transformed couplings and non-Gaussian noise distributions is yet to be provided. The
following section introduces a Maximum A Posteriori (MAP) estimator to optimally decompose
coupled tensors when all these scenarios are intertwined. This sheds a new light on previously
presented coupled CPD models. Further, decomposition algorithms for noisy coupling models are
designed, and optimal performance under Gaussian noise are studied through Cramér-Rao bounds
for coupled models. Finally, we provide an application to the fluorescence/NMR data introduced
in section

4.2.1 Bayesian formulation

Consider two arrays of noisy measurements, 71 and T o, which can be tensors of possibly different
orders and dimensions. Arrays 71 and T are related to two parametric models characterized
by parameter vectors 6, and 65, respectively. For instance, 77 may follow an array normal
distribution with diagonal unit covariance and centered on a small rank tensor (A; ® B1 ® C1) I .
If T3 also follows an approximate CPD model, then vectors of parameters are stacks of vectorized
factors of the CPDs, that is:
vec (A;)
0, =1 vec(B;) (4.20)
vec (C)

for i € {1;2}.

Some parameters contained in each 8; can be shared or related through some known probability
distribution. Then the data sets 71 and T o are said to be coupled. In what follows, the goal is to
find an estimator of all parameters derived from Bayesian statistical tools that optimally uses the
fact that some parameters are linked. The case of more than two coupled data sets brings some
difficult questions that will be quickly over-viewed in section [£.4.1]

In the case where 8; and 05 are not related, they may be obtained separately from each data
set. On the other hand, if parameters are somehow linked, there is some gain to estimate them
simultaneously as shown below.

Here we consider that the coupling between 61 and 05 is flexible. To formalize this we assume
that the pair (61,03) is random and that we have at our disposal a joint probability density
function (PDF) p(8:1,02). This is to be contrasted with models discussed above for which the
relations between factors are deterministic.
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Maximum a posteriori estimator since the pair (61,603) is random, a MAP settingﬂ is
adopted. In this setting, the approximation problem is defined as

argmax p(01,602|T1,T2) = argmax p(01,02,T 1,7 2)
01,0> 01,02

= arg min Y (61, 65)
61,62

where Y(01,05) = —logp(01,02,T1,T2). Conditioning on the parameters leads to a cost function
that can be decomposed into a joint data likelihood term plus a term involving the coupling:

Y(01,02) = —logp(T1,T2|01,02) —logp(61,62) (4.21)

Under the following simplifying hypotheses underlying the Bayesian approach, the MAP estimator
is given as the minimizer of a three-term cost function :

arg r;lin Y(6:,60:) = arg r;lin [—logp(T1|01) —log p(T2|62) —log p(61,02)] (4.22)

H1 Conditional independence of the data: the data arrays T 1 and T o are independent of 85 and 64
respectively, if they are conditioned on 81 and 85. We suppose also that they are conditionally
independent on each other. This results in the following p(7 1|7 2, 61,02) = p(T1]61) and
p(T2|T1,601,62) = p(T2|62).

H2 Independence of uncoupled parameters: all parameters except the coupled parameters are inde-
pendent. In the joint CPD case, this means that p(61,602) = p(C1, C2)p(A1)p(A2)p(B1)p(B2)
if coupling exists only on the third mode.

H3 On the priors: trivially, the joint distribution of the coupled parameters, e.g. p(C1, C3) needs
to be known or, at least, one of the conditional distributions, namely p(C1|C32) or p(C3|CH1).
The marginal priors on the uncoupled and on the conditioning parameters are assumed either
to be known or to be flat on some domain of definition.

H4 Likelihoods: the conditional probabilities (or likelihoods) p(771|61) and p(T 2|62) are known,
at least up to a scale parameter. In a MAP setting, this indirectly sets the weights which
will be given to each data array in T (61, 02).

Hypotheses H3 and H4 are assumed so that all terms in this cost function are defined. H2
is assumed so that the probabilistic dependence of the parameters defines the coupling between
various latent models.

The framework presented above contains as specific cases the following:

e Hybrid estimation: if we consider that the conditional distribution p(C;|C3) is known
and that C3 is deterministic and defined in a domain €¢,, then we have to minimize
Y (01,02) = —logp(T1]01) — logp(T2|02) — log p(C1|C2) subject to Cy € Q¢,, which
is a hybrid (random/deterministic) coupled approximation problem. This is the framework
implicitly considered in [102].

o FEzxact coupled CPD: the exact coupled CPD can be obtained by setting a Dirac’s delta
prior p(61,602) = 6(C1 — C3). The MAP problem becomes a MLE problem with equality

constraints
maximize log p(T1|61) + log p(T2|02)
with respect to (w.r.t.) 0., 0, (4.23)
subject to C,=0C,

which corresponds to the coupled approximation framework with general cost functions.
Different versions of this approach are proposed in [54,/103/124]. Under the assumption of
Gaussian likelihoods, is exactly the exact coupled CPD.

e Ezxactly coupled decompositions: additionally to exact coupling of one of the factors, if the
data sets are not corrupted by noise, the likelihoods are also products of delta functions and
we have to solve an exactly coupled decomposition problem [104], [105].

5We could also consider a minimum mean squared error setting but then we would need to evaluate p(7T 1, T2),
which is typically cumbersome.
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This Bayesian approach provides a theoretical justification to coupled model . Indeed,
knowing the joint probability distributions p(61,62) and the noise distributions on the CP models
yields an optimal estimator of the factors in the maximum a posteriori sense. Therefore, when
designing a flexible coupled CPD accounting for subject variability, what matters is to determine
the distributions D; for all coupled factors and the noise distribution on the data DET). If these
distributions admit density functions, then the framework developed in this section can be applied
in a straightforward manner.

In the next section we give many examples of joint decomposition problems and their MAP or
hybrid MAP/MLE objective functions.

4.2.2 Examples

In what follows we consider that the parametric models underlying the data arrays are two approx-
imate CPD models of rank R, and Ry respectively. We consider that the coupling occurs between
matrices C; and Cs5. We illustrate this framework with three different examples: general joint
Gaussian, hybrid Gaussian and non Gaussian models for the parameters. This section is largely
inspired from [21}/22]. The problem of merging data sets with different sampling rates is tackled
solely in the research paper, while here flexible coupling models are applied to the chemometrics
data set introduced in section R-1.21

Joint Gaussian modeling

A general joint Gaussian model including coupled and uncoupled variables is given by the following
expression:

0,
0>
where M is a matrix defining the structural relations between variables, u is a white Gaussian
vector with zero mean and unit variances, X is a diagonal matrix of standard deviations and p
is a constant vector. A condition for the pair (6;,602) to define a joint Gaussian vector is the left
invertibility of M. Under this condition we have

M [ ] =Xu+p (4.24)

01
[ 0, ] ~N ("Mp,R) (4.25)
where R = (IM)EX(TMT) is the covariance matrix of the joint vector.

Assume that the CPD models 71 and T > are measured with zero mean independent additive
Gaussian noise, with variances o7 and o3, respectively. We have the following MAP objective
function:

7]
01 _TMN”%%
2

(4.26)

1 1
Y(61,62) = ITi~(41 @ B1 ©C) I, [+ 51 Ta- (420 B2 0 Co) T [+
1 2

where | - |g is the R-weighted Frobenius norm. Below is one instance of this approach.

Example 6 A usual problem in multimodal data fusion is that some components are not present
in all modalities, thus we have some components which are shared and some which are specific to
U1

U2
c ] and 05 = [ c ], where ¢1 and ¢y are coupled, whereas uq
1 2

each modality. Suppose 87 = [

and uy are not.

Let us build a simple coupling between ¢ and co, that is the two random variables have the same
mean E[e1] = E[ez]. Further supposing zero mean marginal Gaussian priors, we may describe the
probability densities of parameters as follows:

up = X712y, uy=3X5z% (4.27)
1 —cy = X7z, c2=X525 (4.28)

where 2%, 2%, 2§ and 2§ are zero-mean unit variance independent Gaussian random variables, and
where XY, X5, X7 and X5 define corresponding covariance matrices. Defining block-matrices

Ijolo| o ¢l 0] 0o

0[I|0]| -1 0 (=0 o0
M=\5torr[o "2~ |00 =0 (4.29)

0lo0[0] I 000 |5
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then equations can be grouped in a unique block equation of the form:

U1 Zl

M| & == % [|. (4.30)
U2 Z9
co z5

An interesting point is that to obtain a left-invertible mixing matrix M, it is necessary to
give enough information on the distributions of all parameters. Since the distribution of ¢; — ¢o
is known, it is then sufficient to provide only the prior distribution of one of the two vector of
parameters ¢; and co. However in practice, prior distributions on all factors may not be available.
Rather, it seems natural to only design the conditional coupling relationship p(e;|es), which sole
knowledge does not provide a left invertible mixing matrix. The next paragraph tackles this issue
using an hybrid deterministic-Bayesian framework.

Hybrid Gaussian coupling

When no prior information is given on some parameters, full joint Gaussian modeling is inadequate,
since we cannot define means and variances of the model. Instead, we consider these parameters
as deterministic, while the other parameters are still stochastic with Gaussian priors. This model
is called hybrid Gaussian. This particular case is of outmost importance since most applications
will fall in this category of coupling. Indeed, it covers the scenario where only one factor, say
C, is coupled to another, say Cs, with transformation matrices and independent and identically
distributed (i.i.d.) Gaussian additive noise:

H,C,=H,Cy+T, Ty ~N(0,02) (4.31)

for some transformation matrices H, and Hs. If relation is the only known relationship
between parameters, it means that only the conditional probability p (C1|C?2) is known, and that
C is either deterministic or has a flat non-informative prior. This scenario is exactly the theoretical
framework to which exact coupled CPD, PARAFAC2, Shift-CP and other previously introduced
coupled decomposition models belong.

The hybrid coupling model cannot be written with zero noise variance if the transformation
matrices are tall (i.e. more rows than columns), as the set of feasible parameters may be reduced
to the trivial set. Indeed having tall coupling matrices means that the coupling model has more
equations than parameters. Using zero noise variance as a working hypothesis as in [4] leads to a
bias in the hybrid Gaussian coupling estimation setting when transformation matrices are tall. Tall
coupling matrices may occur when they stand for interpolation operators, as is lengthly discussed
in [22].

Even more critical is the norm of the coupled factors. Without proper normalization, the CP
decomposition is invariant w.r.t. the norm of columns of C; and C5 as it can be incorporated in
the other factors. This means that the variance of T is not well defined in . It is necessary
to add the information on the norm of columns of the coupled factors in the hybrid model 7
or to consider the coupling variance as an unknown parameter. This will also impact algorithms
designed in Section [£:2.3]

Non Gaussian conditional coupling

Non trivial couplings expressing similarity between the factors C; and C5 can be addressed by
considering that Cs is deterministic and that the coupling is given by a conditional non Gaussian
distribution, p (C1|C2).

Impulsive additive coupling As a first example, we can assume that each element in C1 is a
version of C'5 corrupted by i.i.d. impulsive noise:

C,=Cy+T (4.32)

where T';,. follows a Laplacian distribution p(T';.) = (1/26.) exp(—|T';-|/d.) with scale parameter .
or a Cauchy distribution p(Ts,) = 1/{md.[1 + (Wi-/é.)?]}. The objective functions to be minimized
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are then
Y (61,02) = —logp(T1]601) — log p(T 2|02)+

+(1/26.)|C1 — Car (Laplace) (4.33)
MR

— X log{1 +[(C{" = C3")/dc]?}  (Cauchy)

where || |1 is taken coefficient-wise. The first penalty was considered in [102] in a collective matrix
factorization context. Both cost functions imply a small number of large discrepancies between C
and C.

Positive general coupling When C; > 0 and Cs > 0, an additive noise in the coupling may
not be well suited to model noise, since, to ensure Ci" are positive, the support of the additive term
has to depend on the values of C%", which is not a realistic assumption on a perturbation term.
Therefore, other alternatives naturally ensuring positiveness can be considered. For example, the
Tweedie’s distribution [69][Jorgensen1992] which contains Poisson, Gamma and inverse-Gaussian
distributions as special cases (the Gaussian distribution is a limiting special case). In general, the
PDF of the Tweedie’s distribution has no analytical form, thus we cannot directly use it to write
down a coupling term in the MAP objective function. However, if we consider that the coupling
between Cy > 0 and C» > 0 is strong (dispersion ¢, is small), then a saddle point approximation
can be used [69]:

P(CITICI) ~ (2r6.(CIr)P) 2 expl—ds, (CI|CI) /] (4.34)

where . is a shape parameter (8. = 1,2, 3 for the Poisson, Gamma and inverse-Gaussian distri-

butions respectively) and dg, is the beta divergence |125]:

(Czr)l Be
R(B)

where x(8.) = (1 — 8.)(2 — Bc). Under this conditional distribution, assuming that all factors in
the CPD are positive and that the data distributions are also of Tweedie type with shapes 5; and
B2 and dispersions ¢; and ¢9, we have the following hybrid MAP/MLE objective:

ds (CY1C3) = [(CIN)>2<(Cy)P = CT (2= Be) + O (1= Bo)] (4.35)

KiLiM

1
T(6:1,02) = ¢ l Z dg, Ilezm

klm

Xlklm)]

KoLoM
l Z dﬁz Eklm|X2kl7rz)] + . (4'36)

klm

1
2
MR
Z (Be/2)1og (CT7) + (1/c)dp. (C1IC3)]

4.2.3 Algorithms

To compute the maximum a posteriori estimator of the factors in flexible coupled CPD, this section
introduces ALS-based algorithms. ALS can be used when the measurement noise and the coupling
model are jointly Gaussian, since the unconstrained uncoupled cost function is then quadratic in
each factor. If the noise is not Gaussian, some gradient-based algorithms are detailed in [22].

First we provide Algorithm [I5]for the joint Gaussian coupling model, which is the most general
form of coupled CPD when all distributions are Gaussian. Let us rewrite the cost function in a
more convenient manner by supposing the mean p is zero. Then MO = Yu, and

>7'M6O ~ N (0,1) (4.37)

and let us use the following notation: R? = £~ 'M. Then the maximum a priori estimator with
respect to variable A; is given by

1 1 1 1| vec(A
argmin— |T1 1) — ALNT |5 + ?HTZ(D — ANJ |2+ ;HR? [ (A1) ] I% (4.38)
2 c

Ay 1 0A1

where N; = B; ® C; and OAfl is the part of @ that does not contain variables vec (A1). Now to
compute the derivative of the cost function with respect to vec (A1), it is necessary to compute the
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vec (A1)
v

1

derivative of ||R% [ ] |%. This derivative features the columns of R? which are multiplied

by variables in vec (A7), denoted by Ril. Then

0 1| vec(Ar) | _ 53
6vec(A1)R[ 0 | =R, (4.39)

1 1
Here R} is the upper block of R%, but Rp for instance corresponds to another block in R>.
Finally, the update rule for A; is obtained by setting to zero the following derivative of the cost
function:

(4.40)

where for a matrix Q, [Q] A, Is the submatrix formed by columns corresponding to variables A;

in 0, similarly to how R 2, 1s defined. This update rule is used for every factors in an alternate
fashion, as described in Algorlthm 15

Algorithm 15 ALS algorithm for solving the joint Gaussian coupling problem

INPUT: Multiway arrays T ;, initials factors A;, B; and C;, coupling matrix M and coupling
noise variance X.
while convergence criterion is not met do
Update A; by solving linear system (£.40).
Similarly update Ay, B1.B5,C1,C5.
end while
OUTPUT: estimated factors A;, B;, C;.

If specific constraints apply on the coupling functions, then more dedicated and efficient al-
gorithms can be designed that account for the nature of coupling functions. Algorithms
are examples of ALS-based algorithms that use the specific structure of the coupling model in
PARAFAC2 and Exact coupled CPD. Below an algorithm for computing the Hybrid Gaussian
coupling model is developed in Algorithms [I6] and [I7} Using a full alternating method or a joint
estimation of the coupled factors again leads to two types of algorithms, even when only two data
set are coupled. ALS algorithms solving the hybrid coupling problem are based on the resolution
of the system obtained when differentiating with respect to C; and Cs:

H{HC,+C, (A{AE@B{B,) - H{H,Cs =T, 3 (A ®By)

. . . (4.41)
H2H2C2+C2 A2A2|ZIB2B2 —H2H101= 27(3)(A2®B2)

If both C; and C5 are updated simultaneously by solving (4.41]), then Algorithm [16|is obtained,
whereas an alternated update of C; and C5 leads to Algorithm

4.2.4 Normalization of the noisy coupling

A fact that is mostly silenced in this manuscript is that the factors in the CPD can be found only
up to a scaling among each others as stated in section Typically this indeterminacy is not
an issue since either only the relative values of the components have physical interpretation, or
additional information on the norm of factors is available and used to scale the factors at each step
of any iterative decomposition algorithm.

However this fact cannot be ignored when designing an hybrid Gaussian coupling model. Let
us suppose two factors C'; and C are linked through the following equation:

C,=Cy,+T
(4.46)

F~AN( I@I)

1 o2

for some positive real o.. Moreover suppose data tensors T; follow an approximate CPD with
diagonal noise covariance %I ®I®I. Then the same MAP estimator can be obtained as in
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Algorithm 16 Simultaneous ALS algorithm for the hybrid Gaussian coupled model (for unitary
columns in C )
1: INPUT: T, o, o, initial factors A;, B;, C;, coupling matrices H;.
Apply two uncoupled ALS to obtain Ay, By, Cy, As, Bs and Cs.
Permute initialization factors columns to have minimal |H,C; — H2C3|%.
while convergence criterion is not met do
for i=1:2 do

-1
A =T, (B;0C)) (BZBi o cjci)

~1
B; =T (A ©C)) (A;I—Ai K C;I—Ci)
8: end for
9:  Update C; and C4 by solving (4.41)) using the least squares solution to the following linear
system:

1

1 1
G vec([C1: Cs]) = vec ([0213,(3) (AIA1 o BIBl) T2 (A;A2 o BQBQ)D
1 2

(4.42)
where G = [G11, G12; Ga1, Ga2], with
Gu= GSFHH RIz+ ;IuR(AAEBIB)
Ga = 1H2H2.IR+ 1IM.(ATA2E|B2BQ) (4.43)
G2 = ‘H H>XIr .
Gai = —};HEHlIR

10:  Normalize columns of C'; using the ¢5 norm.
11: end while
122 OUTPUT: estimated factors A;, B;, C;.

Algorithm 17 Full Alternating LS algorithm for solving the exact coupled CPD problem
INPUT: T, o, 0, initial factors A;, B;, C;, coupling matrices H;.
Apply two uncoupled ALS to obtain Ay, By, C1, A3, Bs and Cs.
Permute initialization factors columns to have minimal |H;C; — H2Cs2|%.
while convergence criterion is not met do
for i=1:2 do

—1
A =T: ) (B;0C) (BIBimClC))

I

21
B =T, (A;0C) (AZ-TAZ- o CTC)

8: end for

9:  Update C; by solving the following Sylvester equation:

1 1 1
—HIH/Ci+—C (AIA1 o] BIBl) - L aTH,00+ T (410 B (444)
1

c

10:  Normalize columns of C; using the /5 norm.
11:  Update C5 by solving the following Sylvester equation:

HTH202+ C2 (A2A253232)= HTH101+ T2 (3 (A20By)  (4.45)

12: end while
13: OUTPUT: estimated factors A;, B;, C;.




96 CHAPTER 4. UNDERSTANDING SUBJECT VARIABILITY

for all couplings

C,=C5+T\y
Is ~ AN (0, 5101) (4.47)
where X € RT. Indeed,
2
S ZHITi— (A®Bi®C:) In |} + [C1 — Csf}
i=1 (448)

%
2
=3 LT - (0B®S) Tx,

2 2
Pt %H% (C1—-C9) %

As a consequence, if no normalization is imposed on C; directly in the tensor decomposition
model, whatever the coupling noise level is in reality, the algorithm cannot account for it, and
any control on the similarity between the two factors imposed by o, is lost. Thus in the hybrid
coupling model, the coupling relationship has to be written for a particular norm of one of the two
factors, for instance:

C,=Cy,+T
e 3 =1 forall r (4.49)

T~ A/\/(O,J%I@I)

The norm constraint on C; can be applied by a simple projection as in Algorithms [16] and

Another minor issue with normalization in hybrid coupled models is that the usual normaliza-
tion of two out of three factors is too constrained to simply remove the scaling ambiguity. Indeed,
since C; are linked, the norm of columns of C; fixes the norm of columns of Cs. Consequently
in ALS algorithms, normalization can be applied for example on A;, C; and As to remove the
scaling indeterminacy in both CPD.

4.2.5 Bayesian and hybrid Cramér-Rao bounds
Introduction

A lower bound on the MSE can be evaluated using variations of the Cramér-Rao bound (CRB).
CRBs for the simple CPD are developed in Appendix In what follows we will consider the
CRB for two simplifications of the joint Gaussian model, namely the simplified coupling model
and unitary first rows for uncoupled factors.

Simplified coupling model and unitary first rows in both models we consider Gaussian

couplings between components cgl) and 052) of factors C'; and C of the form

Y =Hc? +~,, forre{l,,---, R} (4.50)

where H is a transformation matrix and <, is a zero mean white Gaussian vector with variance
o2. Similarly to [84,/111], to resolve the scale ambiguity of the CP models, we assume that the
components in factors A, B, A’ and B’ are of the form a = [1; a], that is, the elements in their
first row are known and equal to unity. Without proper constraints on the factors, the information
matrices that will be defined later are not invertible and, as a consequence, the bound cannot be

evaluated.

Priors on the factors we consider a Bayesian model and a hybrid model. They differ in the
definition of the priors of all factors except Cs. In the Bayesian model the unknown parts of the
components of A;, B1, A; and By have Gaussian priors of the form

ar = a, +7,, (4.51)

where a, is a constant vector representing the mean of the prior and v, is a zero mean white
Gaussian vector with variance 0%. The components of the factor Cy have a similar prior, except
that the elements in the first row are also unknown:

D~ N (652), a%I) . (4.52)
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Sub matrices | F x o2 | E{F} x 02
(@r,as) (brbs + 1)(cles)I | [brbs + 1+ (J — 1)o%drs] {EIHTHES +[KoZ + tr(HTH)aéQ]} I
~ 7 ~ =T IR — _ =
(ar, bs) (CICS)(as Xb, +I) {CIHTHCS + [Ko’? + tr(HTH)Ué2]} (as bI +1I)
(@r,cs) (bybs +1)(@s Ke]) [B,6s + 1+ (J — Dodrsl(as R H(E)T)
(b1 bs) (@las + 1)(clea)T (@las + 1+ 104 6r) {eT H He, + [Ko? + t(H H)o%, 1} 1
(br, cs) (@ as + 1)(bs K ef) [afa, + 1+ (1—1)0%6,:](bs WH ()T
r, Ca alas + 1)(bbs + I alas +1+ (1 —1)0%85][brbs + 1+ (J — 1)0Zbrs]I
T r T A T B

Table 4.1: Fisher information and average Fisher information sub matrices for pairs of components.
r is the row block index while s is the column block index. The (1) top index is dropped on
parameters related to the first tensor to clarify the computations.

In these conditions, there cannot be an additional prior on C; since p(C1) = p(C1|C2)p(C>) by
the Bayes rule, and both p(C1|C3) and p(C3) have already been provided.

In the hybrid model, we consider that only C is random, all the other factors are deterministic.
Then only the conditional probability p(C1|C>) is defined.

Likelihoods the noise follows the model in (4.26)), so that the log-likelihoods can be written as
a function of the components in the factors as follows

Ly =logp(Y1; A1, B1,C1) =

R R
1 - ~(1 -
— S ) =S aW s Ee P + [yl — Y Eed)?
71 e r=1 r=1 (453)

R R
) = 28 me P + ) - ), c5.1>2>
r=1 r=1
where y indicates the vectorized version of the data array as described in section and the
subscripts indicate the free variables underlying the elements in the measurement vector. For
example, in yl(ilc) we have coordinates from the first tensor which do not contain index 1 in the first
mode and contain only index 1 in the second mode.

Bayesian Cramér-Rao bound

When all factors are random, we can obtain a bound on the estimation MSE through the Bayesian
Cramér-Rao bound (BCRB) [115] pp.4-5]. For a vector of parameters

™
Il

(C1)
vec Ag (454)
vec BQ

(C2)

MSE(6;) > BCRB;; (4.55)

we have

where the BCRB is a matrix given by the inverse of a data related information matrix F' plus a
prior related information matrix P:

1

BCRB = (F + P)~ (4.56)

In what follows, we describe both matrices F' and P. F' is the average Fisher information matrix

iven b
) ' | ElFAl 0 4.57
- [ 0 E[F:] ] (4.57)
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where the expectation is evaluated w.r.t. the prior distributions. The off-diagonal matrices are
equal to zero due to the conditional independence assumption (H1). F is the Fisher information
matrix for the first CP model:

VALl

Fi=ES | VaLly |[ VAL1 VLLi V&L ] (4.58)
Vel

where V3£ corresponds to the gradient of the log-likelihoods for the first tensor w.r.t. to a vector

x. The expectation is evaluated w.r.t. the conditional distribution of the data array given the

parameters. The matrix F’ for the other CP model is given in a similar way. The gradients w.r.t.

~(1
components all) bi ) and cg}), which are parts of the gradients above, are

r o

1 ~
Va,L1=— = [(Ibﬁl) cgl))Tefilgc + (Icgl))Tel(_llc)]
1
1 -
Vi, 6= =y (@ mImE)el, + (el el | (159
1 . (1 '
Ve Ly == 5 (@ mb mD) el + (al BN el

+ OOEDTE + o]
where e!) indicates a vector of the residuals, e.g. egc) = ygc) — Zle [151) cq(nl)7 which cor-
responds here to a Gaussian noise vector. Using the fact that the noise is white and that
(zXyXz) (' Ky' Kz') = (72')(y y')(272), we can easily evaluate the submatrices in F.
They are given in Table where §,s denotes the discrete delta function. Similar expressions are
obtained for F'5.

Using the coupling and priors models (4.50) and and the independence hypothesis on
the uncoupled factors (H2), we can obtain the average Fisher information matrix (F'), which is
also given in Table

The matrix P is the information matrix related to the prior distribution p(), it is given by

P=E [vé log p(8)V] log p(é)] . (4.60)

Using again the prior models and (H2), we have

L 0 0 0 0 0 1
O'Al
0 L 0 0 0 0
7B I IKH
0 0 oz 0 0 %
P=1 9 o 0 I 9 0 (4.61)
UA2
0 0 0 0 I 0
T UBQ T

0 0 _Ig{ 0 0 1(512 H) +é

L < € 2

The off-diagonal sub matrices are the effects of coupling between the two CP models on the
information matrix to be inverted, the larger is o2, the smaller is the influence of these sub matrices.

Hybrid Cramér-Rao bound
If we consider the hybrid model where only C; is random, a bound on the estimation MSE can be

obtained through the hybrid Cramér-Rao bound (HCRB) ( [115} p. 12]). The HCRB is given by

— —1
HCRB = <F01|02 + PC1|C2) . (4.62)

Matrices F€*'€? and PC11C> play similar roles as F' and P for the BCRB. The matrix Feile

is evaluated in a similar way as F with the difference that the expectation is taken w.r.t. the
conditional distribution of the coupled factor p(C1|C3) only, that is

=C1|C2 Ecl\cz [Fl] 0
F = [ 0 F | (4.63)
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The submatrix F'5 is directly the Fisher information for the second CP model and the elements

(1

in Ec,|c,[F1] are similar to the elements in F', except that only the components ¢, * are affected
by the expectation. For the hybrid model E[cs»l)] = c!¥ and E[(cgl))Tcgl)] = (c&Z))THTHcgl) +
Ko26,s.

The prior matrix is evaluated nv;{.r.t. the distribution of the random parameters 6" conditioned

on the non random parameters 6
PC1IC: — By e [vé logp(0|0"")V] log p(é’”|é”)] . (4.64)

For the hybrid coupled CP model we have

00 0 00 0
00 0 00 0
0 0 — o o —IEH

P=1900 0o oo 0 (4.65)
00 0 00 0
0 0 —IEHL o o ZInWEIH)

c

We can still see the off diagonal sub matrices indicating the coupling, but parts of the diagonal
elements are now equal to zero, which means that the hybrid model is less regularized than the
Bayesian model.

4.2.6 Application to joint decomposition of fluorescence and nuclear
magnetic resonance data

Let us illustrate the advantages of flexible coupling models with respect to the exact coupling
model and two uncoupled CPD on the coupled fluorescence/NMR data set. We aim to show that
toying with the coupling intensity o. means controlling the amount of similarity imposed on the
coupled factors.

Recall that in the coupled spectroscopy (EEM)/nuclear magnetic resonance (NMR) data set
introduced in chapter [2, only some components are observed by both measurement modalities.
This means that a coupling constraint is to be imposed only on a part of the columns of Cggps
and Cnpygr. How to determine approximately the number of shared components is explained
below in section Moreoever, the components to be extracted are in theory non-negative, and
therefore non-negativity constraints are additionnaly imposed in the fusion algorithm [I6] through
projection on the non-negative orthant.

It is reported by Acar et. alﬁ that only three components are visible through fluorescence
spectroscopy, and that five chemicals among the five involved in the mixture are visible to NMR.
So in theory the rank Rpgas is 3, Ryargr is b and the number of shared components is 3.

Figures[4.4] and [£.6|below compare results obtained from running two independant PROCO-
ALS, CMTF from Acar et al. (Figure , exact coupling of the shared components computed
through Algorithm (slighly modified to include non-negativity and share only a few components),
and the following flexible coupling model computed through Algorithm
([ Tesv = (Aepm ®BrenCrenm)Is + Eppum
Tnur = (ANMr®BNuRCNMR) Ls + ENMR
Ceeym = CNMR(T = 1,2,3) +T.
lefPM ) =1vi<3
Eppm ~ AN (0,15 ®@I25 ® I2s)

Enmr ~ AN (0, %IS®I13324®128)

NMR

T, ~ AN (07 0—12128®13)

(4.66)

\

where o, is the coupling intensity, which is unknown (it may not even have a physical interpretation)
and will be considered a nuisance parameter standing for flexibility in the equality constraints of
the coupling model. The measurement noise variance on the fluorescence data is fixed to cggy = 1
since the MAP estimator is invariant to a positive scaling. The diagonal tensors are set to identity

6see http://www.models.life.ku.dk/joda/prototype
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since the norm of components will be pulled in A. To balance the two data fitting terms in the
cost function, ong is set to 0.1.

The different models featuring the various coupling intensities are run 20 times, and only the
run that exhibits minimal final cost function value is kept for each algorithm. To speed up the
computation, joint compression was applied as described in the next section, and used to compress
the two coupled data set for all four algorithms. Again the non-negativity constraints are applied
using the pseudo-projection developed for PROCO-ALS described in section [3.2]

Missing data are handled in a very suboptimal manner, by replacing unknown values before the
data are normalized by realizations of the absolute value of a Gaussian random variable of variance
0.01% and zero mean. Therefore these new artificial values are much smaller than the average value
in the EEM and NMR data tensors (respectively 2.2 x 10* and 2.7 x 10%).

Algorithms run until the maximal number of iterations is reached, which is probably not the
best choice of stopping criterion in practice but is not an issue here since we are not interested
in computation time. To ensure conergence is reached, the number of iterations is chosen large.
Number of iterations for the PROCO-ALS is 3000, but is only set to 500 for the joint algorithms
since the results of the two PROCO-ALS are used to initialize the joint algorithms. Estimated
factors are normalized columnwise using the £5 norm after they have been estimated.

The results go as follow: no significant change is observable on the spectra A and B with respect
to the coupling model and the value of ., probably because the data are very simple. Indeed, the
5 first measured mixtures contain only one component, which means even a rank one NMF could
be used on the first measurements. On the other hand, some differences can be observed between
the recovered concentration factors C. Clearly the coupling noise level allows to tune the strength
of the coupling constraint. Observe how increasing the coupling intensity reduces the amplitude
of the differences between columns of Cggy and Cnprr. However for this artifical data set where
the coupling should be exact, noisy coupling only deteriorates the results with respect to exact an
coupled decomposition.

Even though in this simple data set the (noisy) flexible coupling does not prove significantly
useful, it should be tested further on more complex data sets, with potentially non-Gaussian noise.
On the other hand, flexible coupling include linearly transformed couplings, which have been ex-
tensively used in the data fusion literature. This whole section therefore successfully introduces a
theoretical framework which includes both noisy couplings and transformed couplings. In what fol-
lows, compression is applied to coupled models where the coupling happen in a linearly transformed
domain.

4.3 Joint dimensionality reduction

A pitfall of tensor decomposition models accounting for subject variability is that their decomposi-
tion algorithms often have greater complexity than their uncoupled counterpart. For instance, the
step to estimate C™ jointly in Algorithm [16|involves solving a large linear system. If the number
of columns of H; is of the same order of magnitude than the third dimension M, then this step of
Algorithm [16] implies to solve a 2M R x 2M R linear system, which is larger than the usual R x R
linear system for ALS. Moreover the (costly) computation of all Kronecker products is mandatory,
which also heavily slows down the coupled algorithm.

Even if fast algorithms were to be developed, there is always a need for speeding up tensor
decomposition algorithms, since they are typically applied for various choices of parameters, con-
straints type and so on. In the previous chapter, tensors are compressed using HOSVD, which
allows a huge speed up in decomposition time at the cost of an initial costly compression. Since
this compression is only computed once, there is obviously only a gain if decomposition algorithms
are to be run several times. However for coupled models, compression had been very little studied.
Some early ideas on the compression of coupled data sets are introduced in [45]. In this section,
compression for coupled tensor decomposition models is studied. The section is based on a recently
submitted paper [33].

4.3.1 Exact coupling

Suppose that two data sets are acquired in the form of tensors 71 and T, and that these data
sets are coupled through the exact coupling model (4.6):
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Figure 4.4: Estimated spectra and relative concentrations using CMTF in red (courtesy of Evrim
Acar), which handles the partial coupling in an unsupervised manner and computes the CPD using
a gradient-based algorithm. These factors were estimated using fluorescence spectroscopy data and
NMR data, but not the LC-MS data. In blue are plotted the true relative concentrations.



102

Excitation spectra

Chemical shifts

Emission spectra

Gradient levels

CHAPTER 4. UNDERSTANDING SUBJECT VARIABILITY

0.6 0.6 0.6
0.4 -4 041 41 04r f
0.2 -4 021 4 0.2 f
| | | | |
%10 235 260 285 310 %10 235 260 285 310 %10 235 260 285 310
0.8 0.8 0.8
0.6 |- - 0.6 1 0.6 N
0.4 -4 041 41 04r f
0.2 -4 021 4 0.2F f
| | | | | | | | | | | |
00 2 4 6 810 0O 2 4 6 810 0O 2 4 6 8

Uncoupled ALS

10

Hybrid ALS 0. =2 Exact coupled ALS

(a) Top: estimated emission, Bottom: gradient levels

0.25 0.25 0.25
0z 0z oz
AL 015 015
Y
0.4 04 | 01
0.05 \ 0.05 0.05
*, ) 3
0 0 ! 0 -
250 300 350 400 450 500 250 300 350 400 450 500 250 300 350 400 450 500
016 Q.16 0.16
014 014 014
0.12 0.12 0.12
01 ai o1
0.08 Q.08 0.08
0.06 0.06 0.06
0.04 0.04 0.04
0.0z 002 0.0z
o Q o
a 5000 10000 15000 a 5000 10000 15000 0 5000 10000 15000
Uncoupled ALS Hybrid ALS a<=2 Exact coupled ALS

(b) Top: estimated excitation spectra, Bottom: chemical shift

Figure 4.5: Recovered factors. From left to right, uncoupled ALS, flexible ALS (Algorithm
and exact coupled ALS. Ranks are 3 and 5, and o, = 2.
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Ti=(Ai®B1®C1)%1 + &,
T2=(A20B2®C32) %y + &> (4.67)
C,=0C,

where £; and €5 are the independent measurement noises with variances o7 and o3 respectively.
The goal is to compress the two data sets. The first question that comes to mind is whether
the tensors have to be compressed jointly, or if two independent compressions are satisfactory.
As proved below, it turns out joint compression is mandatory to preserve the exact coupling
relationship.

The easiest approach is indeed to compress the two coupled tensors independently, and use
the information of the coupling only in the CPD computation stage. But there are two issues
with this method. First, two independent compressions make no use of the fact that a constraint
links the factors. Thus in theory, it cannot be better than a joint compression scheme in terms of
compression loss. Indeed, suppose W1 and W are two bases for the third mode of 77 and T .
Then exact coupling on the third mode means that Span{W} = Span{W,}. Thus only one basis
W ; is needed to compress the two tensors on the third mode.

Second, since data are noisy, compression bases would be estimated with some error. However,
the coupling relationship is written for the true factors, so that compressing independently would
destroy the coupling relationship in the compressed space. Indeed, defining W,C., = C; for

noiseless compression and VVZ C;,= C’ci for noisy compression,
chcl = W2062 but Wlécl # W2C’c2~ (468)

More precisely, let §; be the estimation error on basis W, and 7; be the differenge between
true compressed factors C,, and compressed factors defined from approximated basis C., then:

Cl = CQ = VV1(jc1 = VVQ(jc2
< - < - . 4.
(Wr+01) (Cortm) = (Wa+82) (Ces +2) (4.69)
This means that even small estimation error makes an exact coupling constraint in the compress
domain inexact. Indeed, the coupled decomposition model in the compressed domain would be:

gl = (AC1 ®Bc1 ®Ccl) E1 + gcl
g2 = (A62 ®BC2 ®CC2) 22 + 862 (470)
C.,=C.+T

and because of the estimation error on the compression basis, some error term I' has to be added
to the coupling model, whose distribution is a priori unknown.

On the other hand, trying to find the shared basis W ; offers some advantages. First, because
more data are used in the estimation process, the estimation error on W; may be reduced. More-
over, any estimation error on the joint basis does not affect the coupling model in the compressed
space:

Ci=Cy=W,Ci=W,C,=C,, =C., (4.71)

where compressed factors are now defined as C., = WJT»Ci. It is not necessary to consider
estimated C’Ci and true compressed factors C.,, since only the estimated compressed factors are
used in the compressed coupled model. Therefore only the notation C., is used from now on.

It is clear that the best basis to jointly compress both tensors W is obtained by a truncated
SVD of the stacked unfolding matrices, as was discussed originally in [45]. If noise levels are
different, then they can be taken into account when stacking the unfolding matrices:

Tio Tae|_y
[ o o ] =W;%;Q;. (4.72)
Since the dimension of the subspace spanned by the coupled components is R, the SVD can be
truncated so that only R singular values and vectors are kept. Moreover by choosing an orthonormal
basis, the observation noise is still white in both tensors. Since we have shown that the coupling
model is direct even in the compressed space, the compressed optimization problem to solve
with no noise in the coupling is the following
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Figure 4.7: Total MSE for estimation of factors C; and C for the five described algorithms. MSE
is averaged on 100 realizations of the CP model and noise, each estimate is the best among six
different initialization points.

minimize UL% 161 - (A, ® B, ®C.,) EIH; + U% |G2 — (A, ® B, ®C.,) EzHiﬂ
w.r.t. A..B..C..3%
subject to C., = C,, . (4.73)
where  T1=U:®9Vi®@W;)G;
To=U20V20W;)G>

Some simulations are now run on synthetic coupled data sets to show that coupled compression
may not significantly deteriorate estimation of all factors, similarly to what is presented in section
Three factor matrices of size 50 x 3 are drawn independently according to a standard Gaussian
distribution, but the third factor is exactly the same for both tensors. Then the tensors are
normalized to have unit Frobenius norm. Five algorithms to compute the CPD are compared.
Three work in a compressed domain of size 3 x 3 x 3. Compression is computed jointly, but then
only two algorithms consider coupling in the compressed domain, one being the weighted average
ALS described below in section while the second one is the (compressed) exact coupled
ALS Algorithm The third one is an uncoupled ALS for each compressed tensor. Two other
algorithms do not compress the initial tensors. One just runs two independent ALS, the other is
the exact coupled ALS Algorithm but in the uncompressed domain. The total mean squared
error (MSE) on the coupled factors is plotted in Figure the SNR of the first tensor is fixed to
approximately 33dB (o7 = 10~%) while the other varies from 0 to 40dB.

It appears from the simulation results that the coupling relationship is crucial in the com-
pression. Indeed, the jointly compressed independent ALS algorithm has smaller total MSE than
the uncompressed independent ALS. Since compression can also be seen as denoising, it can be
concluded that joint data compression helps denoising the noisy data set using information about
the span of coupled factors contained in less noisy data. This is not intuitive, since in theory
compressing should increase estimation error by reducing the amount of information contained in
a data set. Moreover, even without including the coupling knowledge in the ALS algorithm, it is
already efficient to simply compress jointly in order to compute small independent ALS. That is
why an extension of joint compression to more complex models would be of crucial importance.

Joint compression is also used for computing the coupled models of the previous section
and it can be seen on the results that compressing does not hinder the recovery nor the interpre-
tation of the results.

The next sections introduce extensions of coupled compression to more complex setting, al-
though these are still current research topics with some remaining open problems.
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Figure 4.8: Singular values 3 of T’y (3) in blue, 39 of T’y (3 and 3; as in . Noise levels are
o1 = 1 and o9 = 0.1. Vertical lines show where the singular values decrease strongly, suggesting
approximate values for the multilinear ranks which are supposed equal to the tensor ranks for this
data set. The purple vertical line is related to the number of shared components as described in
section

4.3.2 Shared components

Now if the coupling relationship is still exact but only relates a subset of » < R components, i.e. if
the data follow a shared components model as described in Example [6] with 7 coupled components,
then compression can be computed in a similar fashion as described above. In this case however,
C; and C3 each span two subspaces whose intersection is a subspace of dimension r. Therefore
a basis which span contains all columns of both C; and Cy should span three subspaces: the
shared subspace of dimension r, and two subspaces of dimensions R; —r and Ry — r that contain
uncoupled columns of C; and Cs. In short, when computing the truncated SVD of the stacked
weighted matricized arrays as in , Ry + Ry — r singular vectors and values should be kept
instead of 7.

To compute joint compression when only some components are shared, it is therefore necessary
to estimate the number of shared components, or at least to lower bound it. This can be done by
studying the singular value profiles of each data set independently, and estimating the number of
significant singular values for each data set. They stand for multilinear ranks, which are generically
equal to R; and Rs if no collinearity among components is to be found in the data. The number
of significant singular values in the joint SVD (4.72) should similarly stand for Ry + Ry —r. Figure
shows the singular values profiles for the fluorescence/NMR data set.

4.3.3 Linear transformed coupling

If the coupling is noiseless but expressed through a linear transformation H, i.e.
C,=HC, (4.74)
then a simple multiplication by H of the third mode of the second tensor yields exact coupling;:
Yo=(I®IQH)T2=(A2®B>®C1) %2 + &, (4.75)

where £} is correlated on the third mode. That is, £ follows an array normal distribution with Kro-
necker product covariance IRIIKHH?”, which can be handled quite easily in an ALS algorithm
as explained in section [} This means that the exact coupling model can be used in concordance
with correlated noise to tackle linear transformations in the coupling, as long as HH is invertible.
If this is not the case, then the noise distribution after preprocessing is degenerate, i.e. does not
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admit a density function. Finally, factor Cy can be obtained from the estimated factor C; by
computing the left inverse of H. Therefore, an ideal setting for using preprocessing is obtained
when the coupling matrices are square and full rank.

The idea of preprocessing the data before running joint decomposition is appealing at first,
since in exact transformed coupling scenarios like , this allows to remove the linear coupling
function from the coupling model. Actually, this is exactly what is done in PARAFAC2. Indeed,
once the coupling matrices P; are estimated, the data are preprocessed by multiplying P; on the
third mode of each tensor T;. But the lingering problem with preprocessing is that non-square
coupling matrices yield either non-feasibility of the processed tensor decomposition if the noise
distribution is degenerate, or an underdetermined linear system linking the estimated factors and
the actual factors, e.g. C1 and C5 in (4.74).

Yet, if joint compression is to be applied to exact linearly transformed coupling, to apply
the previously developped methodology, it is necessary to first preprocess the data. Indeed before
preprocessing, columns of C'; and C'; do not span the same subspace, so that a joint basis W; does
not exist. However after preprocessing, since the coupling model becomes exact, joint compression
as described in the previous section can be used.

A careful reader will have noticed that the latent factors have been put aside of the discussion
in the last pages. Latent factors C* are again discussed below in section But at this stage,
it is possible to explain why the size of the latent factor C* in PARAFAC2 does not need to be
greater than the rank R. With notations from section suppose the size of the latent space is
some integer M. Clearly M should be greater than R, except if all coupled factors have collinear
columns. However if M is strictly larger than R, then the coupling relationships can be written as
follows:

C,=P,C" =C,=P,W,C! = C,=Q,C} (4.76)

where W ; is the common column space of all PZ.TC’Z-7 and Q; = P;W is left orthonormal. This
proves that another coupling model linking all C; to a small latent factor C¥ of size R x R can
be obtained from the initial PARAFAC2 model with latent factor of size M. That is why, unless
a specific reason is invoked to fix the size of the latent space, C* can always be defined in RF*%.

4.3.4 Noisy coupling

If two data sets are obtained from the same samples but with a slight change in the experimental
setting, then as detailed in this section, it is possible that the shared factors C'; and C5 have some
discrepancies with respect to the true underlying factor C* measured by a probability density. In
other words,
C, C*+Ty
C, = C"+TIy°

where I'; and T’y follow two independent matrix normal distributions with diagonal covariances,
and columns of C* have unit Euclidian norm. Then trying to express the coupling in a direct fash-
ion leads to additional correlated observation noise. Indeed since the tensor product is multilinear,
the following holds:

(4.77)

T1=(Ai1®B1®C") 2 +(A1®B1®'1) X + &

To=(A0B,Q®C*) %5 + (A2 @B QT5) 3 + &5 (4.78)

Now we have an exact coupled decomposition model where the noise is correlated. Moreover,
this correlation depends on the factors to be estimated A; and B;. This can be tackled by first
computing two independent decompositions, then using the estimates of uncoupled factors to write
the correlation model in to find a common representation basis under this correlated noise.
This is however much trickier than the joint compression presented earlier, and an optimal solution
is yet to be found.

4.4 Open problems

Understanding subject variability is a difficult topic, and it should not be surprising that some
difficult issues arise from the previous results. Below we discuss possible strategies to tackle the
design and estimation of the coupling model and the initialization of the coupled algorithms,
although many other questions on tensor data fusion remain unanswered.
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Figure 4.9: A graph representation of the coupling model (4.79).

4.4.1 Finding the coupling relationship and N tensors case: finding the
graph

It is possible to generalize the Bayesian framework developed since section [£.2] to include more than
two data sets and hidden factors. Dealing with multiple tensors T; coupled on the third mode
means knowing at least the joint density probability p (C1,...,Cx). Adding a hidden factor in
the Bayesian framework means considering the joint probability p (C 1,-..,CN,C *)

However in practice things are a little more complicated. Indeed it is difficult to imagine that
the coupling relationship would be available directly to the user. More likely, a coupling model is
imposed by the user on the data, and the amount of fit gives insight on how well the coupling model
was designed. When only two tensors are involved, there is only two possibilities for the coupling.
Either it does not involve a latent factor and all what was presented above can be applied, or it
does involve a latent factor C* and the probability density that has to be known is p (Cl, C,,C *)
With uninformative priors on all factors and if the factors are independent conditionally to the
latent factor, this amount to determining p (C’1|C*) and p (CQ|C*).

It can be convenient to represent the coupling model as a graph, where vertices are the factors
and the latent factors, and the edges represent the coupling type. The following conventions can
be used:

e when only a scalar ¢ is provided on a directed edge, this means the two variables are coupled
through Gaussian i.i.d. noise with variance o2.

e if a matrix H and a scalar o are provided on a directed edge from C; to Cs, separated by
a comma, then the coupling is noisy with i.i.d. noise of variance ¢ and C is transformed
through H.

e a double edge with another matrix Hy means the factor Cy is also transformed in the
coupling relationship.

e for partially coupled factors, dotted edges are used.

This convention does not cover all the possible coupling scenarios, and more work on a pleasant
graphical tool for designing coupling models is mandatory.
For instance, the graph represented in Figure [£.9] illustrates the following coupling model:

C,=C"
Cy=C*+T>
H.C3=H,Cy+T4
Iy ~ AN (0,02 IQ1)
I‘l ~ .AN(O,O’?II)
|C*||* = 1 columnwise

(4.79)

Moreover, supposing Gaussian i.i.d. observation noise on the tensors, the following cost function
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Figure 4.10: A star graph representing a coupling model where one hidden variable C* is a centroid
of all factors C;

can be derived:

0%”7’1 - (Al ® B, ®C*) I s + O_LSHTQ —(A2®B2®Cs) Ir«|%
(4.80)
+ 21T = (A3 @ B3 ®Cs) I, |} + 5[ H1Cs — HaCollf + - Co = C* |7

which can in turn be minimized using similar algorithms than Algorithms [16] and [17}

Another example of coupling design is given by Figure[£.10] In this scenario, a specific algorithm
has been developed based on the Best Linear Unbiased Estimator (BLUE) 33|, and has been used in
simulations reported in section Having in mind possible extensions of coupled decomposition
to IV data sets with large N, we may want to process the data sets in a distributed fashion. In this
context, the update of the coupled factor is the only operation which cannot be parallelized through
the different data sets. A straightforward option to update the coupled factors in a distributed way
is to evaluate the matrices A A; [ BTB and T'; (3 (A; © B;) in parallel, then apply a weighted
consensus algorithm [93] Wlth Welghts given by 1 /0 to retrieve the sums and, finally, solve the
system at each processing node. Another approximate solution is to assume that each step of
uncoupled ALS generates an unbiased estimate of vec (C;) with known covariances. We can then
obtain a better estimate by merging the independent estimators with a scalar BLUE. For two data
sets, assuming estimation covariances D;, the scalar BLUE of C* is given by

(4.81)

In practice, estimation covariances are not available, and we can assume that Tr(D;) /o2

Tr (D;) /o-?-, thus leading to a simple weighted average:

% Lo
¢
cr=="__ (4.82)

N
2

i=1

Q=

Observe from the assumption on the estimation variances that for similar noise levels on the
data sets, estimation performance on all C; must be similar. From the multilinear structure,
this mainly depends on the correlation structure of the columns of the other factors. As shown
in [33] and in simulations reported in section this approximation gives very good estimation
performance for randomly generated factors which have almost orthogonal columns.

Estimating the coupling functions Estimating the coupling model can be quite difficult,
since it means finding the edges of the coupling graph, and as one can see there are quite many
possibilities. Designing a coupling model for intra-subject variability is easier than for inter-subject
variability, since in the first case the same motor source is expressed with small variations, but
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Figure 4.11: Mean of the ratio between the cost function values for the coupled CP ALS using
random initialization (cold start) T, and the results given by uncoupled ALS (warm start) T,,.

for the latter potentially very different sources and models have to account for both variations in
the modelings and in the clusters of coupled data sets and parameters. That is why except exact
coupled CPD, coupled models have been used mostly for studying intra-subject variability.

However once a good coupling model (or many various coupling models) has been fixed, if the
coupling function are not known a priori, then they have to be estimated as well. Estimating
the coupling functions is not an easy task and is heavily dependent on the admissible set F.
PARAFAC2, Shift CP, Convolutive CP and registered CP all estimate the coupling functions in
an alternate fashion, but the identifiability of the coupling functions is not proven for any of these
models. Moreover the tools required to compute the coupling functions in these models are very
diverse, ranging from SVD to Riemmanian manifold optimization. It is not clear which kind of
constraints imposed on the coupling functions leads to an identifiable coupling model. For instance,
if the coupling functions are linear, say f; = H;, then is it necessary to further parameterize H;
to be able to identify it in an alternate fashion 7 Can the constraints of orthogonality imposed
in PARAFAC2 be relaxed 7 To give some answers to these questions is the subject of ongoing
research.

4.4.2 Initialization of decomposition algorithms: Warm start vs Cold
start

Here we give some simulation results to illustrate the gap in performances between coupled algo-
rithms initialized with two independent ALS (or any other classical tensor algorithm) and two ran-
dom guesses. The experiments were done for a Gaussian coupling model of the type Cy; = Cy +T.
The ratio of the averaged cost functions are shown in Fig. for different o.. The tensor dimen-
sions are K1 = Ly = M; = Ky = Ly = My = 10 and R = 3. The noise levels are o1 = 0.03 and
0o = 0.01 and the number of realizations is 100. Using warm start seems better than cold start.
In practice, a much larger number of swamps has been observed in cold start than in warm start.



Conclusions and Perspectives

Tensor decomposition is often considered as an obscure and difficult topic, only understandable
by a few well-informed researchers who try to turn other researchers into tensor-believers. Those
who work with tensor decomposition methods or multiway array processing have therefore tried
to extend a friendly hand to the machine learning and signal processing communities by writing
more or less understandable surveys and tutorials, and providing educational speeches at various
conferences. The same desire to share knowledge on this captivating and important topic has
driven the content of the first two chapters which are meant to give all possible basic tools needed
to understand and apply tensor decomposition techniques. The first chapter introduces the tensor
product formalism that is a key element to mastering the manipulation of tensors as mathematical
objects, some useful formulas and operators for tensor computations as well as exact and approxi-
mate tensor decomposition models. It stresses the absolute need for mastering the wide variety of
mathematical notions surrounding tensor decomposition techniques for efficiently designing models
and algorithms for mining multiway data. On the other hand, the second chapter provides a few
applications of tensor decomposition techniques to environmental data mining and is meant to il-
lustrate what is exposed in theory in the previous chapter. However, it also reveals the importance
of taking into account the underlying physical processes to design efficient decomposition methods.
While this might sound obvious, too often are data mining methods applied without taking the
specifics of the application into account.

Mixing a good understanding of mathematical properties of tensors with a proper use of addi-
tional assumptions on the data motivated the work accomplished during the thesis. Mainly two
directions have been explored: the dimensionality reduction for constrained tensors and the data
fusion for tensors. Chapters [ and [ respectively tackle these issues while introducing a wider range
of related problems and tools along the way. Again the goal is not to solely study dimensionality re-
duction and data fusion, but to increase the community’s knowledge on possible ways to use tensor
decomposition techniques to mine multiway data. That is why as often as possible, a proper the-
oretical framework is proposed to surround the two major contributions of the thesis that are the
PROCO-ALS algorithm and the design of flexible coupling models. PROCO-ALS in an algorithm
that allows the use of compressed tensors to compute the canonical polyadic decomposition, while
enforcing constraints on the original unconstrained tensor. It is presently the fastest method to do
so that can be adapted to tackle any constraints for which a projection on the constraint space can
be computed. It is currently lacking serious convergence results. Flexible coupling models allow
for two types of flexibility when modeling the coupling of tensor decompositions: a deterministic
mapping of the set of parameters, and a distribution for the joint distribution of the parameters
if there is a need to consider them random. This flexibility is properly motivated by a Bayesian
framework, and decomposition algorithms are provided that allow for proof of concept but are
not meant to be state of the art. Both PROCO-ALS and flexible coupling models are expressed
respectively in the reworked frameworks of constrained decompositions and subject variability.

Interestingly, there are more questions to be asked than answers to be found in this manuscript.
Among possible further research topics that may be investigated, the following perspectives will
hopefully be conducted:

e to further provide models accounting for subject variability, and study in particular the
estimation of the coupling model.

e to better understand the properties of PROCO-ALS with respect to the theory of contraction
mappings and alternating projections.

e to develop better algorithms for the dictionary-based CPD and explore possible applications.
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e to promote a healthy use of notations in the tensor community.

e to better formalize the tensorization of hyperspectral data and mine the Mars data from the
Mars Reconnaissance Orbiter mission.

Finally, if this manuscript serves the purpose of clarifying any aspect of multiway data mining
to at least one single non-expert reader, then this alone would be a great satisfaction. For expert
readers, most of the content of the above pages can be found in following publications that occurred
during the PhD [9,121},22,/29,30},3234},/99,/116-119].



Glossary

Objects and Variables

scalar

vector

matrix

tensor or multiway array

coefficient i of vector v

coefficient at row 4 and at column j of matrix M
coefficient klm of multiway array T

matrix of index 7 among N matrices

tensor of index ¢ among N tensors

column ¢ of matrix M ; vector of index ¢ if M not specified

<.

<.

3 ISR AR
> 3

column ¢ of matrix M ;

jth unfolding of tensor T

3r diagonal tensor with R non-zero values

I diagonal tensor of ones with R non-zero values

i Kronecker symbol, equals to 1 iff i=j, else equals 0

3
=
&

=7

Operators

tensor product

Kronecker product

Khatri-Rao product

Hadamard product

outer product of vector; composition of functions
contraction on the ¢th mode
factorial N

(T) trace of tensor T

left inverse of matrix M

vec vectorization as in section m
[@,b]  horizontal concatenation

[a;b]  vertical concatenation

S5z CHOE®

MT transpose of matrix M
[z]* positive part of x

|T] determinant of tensor T~
|z] integer part of real

Probabilistic tools

X~D random variable X follows distribution D
N (m, 02) Gaussian/normal distribution of mean m and variance o
AN (T,T') array normal distribution of mean 7~ and covariance X

2

X* latent variable related to random variable X
XY random variable X conditioned by random variable Y (or deterministic Y abusively).
po(X) probability density of random variable X depending on 6
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Appendix A

Trace and Frobenius norm of
tensors

A common mistake about the trace is thinking that it always amounts to the sum of the diagonal
values of arrays. For instance, given a three-way array 7~ in RE*X*K g naive definition of the
trace would be Tr (7T") = > T};;. However this would be a complete misunderstanding of what the
trace operator is. Indeed, the trace operator acts on linear mappings of a vector space, not on the
vector space itself, but T is a vector of the array vector space. Here is an intrinsic definition of
the trace operator:

Definition 18 Let & a vector space, let &* the space of linear forms on &. The bilinear mapping
e®f = f(o)e on &RE* defines a tensor product space (£ @ E*,®). Then for all (e, f) in & x E*,

Tr(e®f) = f(e). (A.1)

For simplicity purpose, during hand written computation, and since the trace is a scalar product,
it is possible to write Tr (e® f) = {e|f). Since any linear operator U € RV*" can be written as
a sum of orthogonal R rank one linear mappings a, ® b, the trace for matrices is indeed the sum
of diagonal coefficients of U:

\\Mz

R R
= Z bIar = Z Z U” (AQ)

In finite dimensions and for & = R¥ @ R” ®IRM7 supposing the trace is linear, this definition
can be rewritten in a slightly more familiar manner:

£ (R RX) @£ (RL, RL) ®L(r]RM RM) R
Tr : (a®b®c) (d®e® f) — (d"a)(e"b)(fc)

and a formula similar to matrix trace can be obtained for square operators acting on arrays:

(U RV W (Z Ukk) (Z Vll) ( Z W'mm) . (A4)

This definition implies that Tr (77) is not well-defined since T is a vector, and the trace operator
can only be applied to operators. For the matrix case, Tr (U) is the trace of the linear operator U
acting on vectors of some vector space.

The trace operator is useful in a wide range of situations since it is a scalar product. In quantum
mechanics, the trace stands for a physical measurement of a quantum quantity. In multilinear
algebra, it can be used to compute the norm of a tensor:

(A.3)

R R
Definition 19 Let T = Y a, ®b,®c, be a tensor in RK @ RE@RM. Denote by T* = Y. aI@bI@cI
r=1 r=1

the adjoint of T in the dual space L (]RK QREFQRM, ]R). Then the Frobenius norm of T is defined
as follows:

I T3 =Te (TOT*) =<{T|T) = Z ala,)(blby)(clc,) = Y T3, (A.5)

P ijk
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Here the definition of the Frobenius norm is detailed for real finite dimension tensors, but a
generalization to any kind of vector space is trivial.

Another interesting concept is the partial trace defined in section [1.3.2] Partial trace allows
to study a tensor mode-wise without resorting to matricization. There is a simple relationship
between the partial trace and the trace:

Tr(U®V) = Tr, (U) Tra (V). (A.6)

While matricization is intuitive, using partial traces for theoretical computations yields wider
impact. For instance, it is possible to compute the gradient of the norm of a linearly modified
tensor using only partial traces:

Proof of proposition Let us prove that

670(15]) -4 (U®‘0/U® WIT _ Uty (T@VeW)(TIeVeW)T)). (A7)

The differential D, (H,U) is of the form Try (V,H™) since the derivative is taken with respect
to the subset of variables U. So to obtain the gradient of the Frobenius norm =, it is sufficient to
compute the differential of ~:

[(U+HQVW)T]|

(U+H)QVIW)T | (U+H)QVW)T)
|UQVOW)T|2+2Tr (URQVOW)TT*(HRVROW)") .
+o(H)

(A.8)
Further using the fact that Tr (U® V') = Try (Try (U ® V) and that Tre (U I)T) = UTra (T),
the differential of v can be expressed as follows:

Dy(H,U) =Tr; [UTr; [I@VOW)TT*(IQVOW)*| H*]. (A.9)
This means that the gradient of v with respect to U is simply
UTr, [(IQVOW)TT*(IQVQW)*] (A.10)

which coincides with the gradient obtained when the tensor in an unfolded array. o



Appendix B

Cramér Rao bound for
approximate CPD

The Cramér-Rao Bound (CRB) is a lower bound on the variance of unbiased estimators of param-
eters in probabilistic models. It is computed using the Fisher Information Matrix (FIM) defined

as follows:
. [alog(p@w» alog(p(ww»T] (B.1)

00 00

where p(x|@) is the probability density of some data & depending on a deterministic parameter
vector 6. Under regularity conditions [114], the inverse of the FIM lower bounds the covariance of
any unbiased estimator @ of the vector of parameter 6:
—1 AN
[F'], <E|0.; (B.2)
In the context of approximate CPD with Gaussian noise, a probabilistic model on the data can

be written as follows:
T=(AR®B®C)Irp+E&
VGC((‘:) NN(O,O'QIKLM) (BS)
Ali = BM =1Vie [1,R]

The constraints imposed on the first row of A and B remove the scaling ambiguity, thus allowing
the Fisher information matrix to be invertible.

Now let us derive the CRB for the approximate CPD. Computation of the CRB in this context
goes back to [?], here another way of computing the CRB is suggested.

First, note that the CRB is written for a vector of parameters, so that the derivative of the
log-likelihood 5|7 — (A® B®C) Zg|% along factor matrix A should be computed with respect

to vec(A). However it is clear that a(;éc(éci) = vec (F](:%)> where f can be any function mapping

to R. This means that the derivative of the log-likelihood can be computed with respect to each
factor matrix, which leads to the usual derivatives used in alternating least squares:

dlog(p(T1A,B,C)) 1 T - (A®B®C) Iz}
ovec(A) - 2 < 0A - F) (B-4)
_ % (1xmBOC) ) vee (Toy - A(BOCO)T)  (B)

The right-hand term vec <T(1) —A(BQ® C)T) is exactly the random variable vec(E(1y), the
vectorized version of the matricized noise tensor £. To obtain the FIM, it is thus necessary to
compute the expectation of the products of unfolded noise tensors. The FIM is a bloc matrix, and
diagonal blocs can be obtained as follows. For the diagonal bloc corresponding to A F 44,

Faiyo = % Ixx(BG® C)T E [vec(E (1)) vec(E1)T| Ik R(BOC))
=L (IxR(B6OC)") IxR(BOC)) (B.6)
= L (1g (BTB o CTC))
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However the blocs that are not on the diagonal of the Fisher matrix require the computa-
tion of I [vec(E ;))vec(Ej;)T| where i # j. This calls for a permutation operator P;; so that
Pijvec(T;)) = vec(T(;)). Pij can be obtained by computation. Finally, the Fisher information
matrix can be expressed as follows:

L (1xkm(BTBOCTC)) (IkEBOO)) P (ILHAGC) (IKEAOB))Pi3(IyHEAOB)
F=— (IL(AOC)T) PlL,ILH(BOC)) (IL(ATAECTC)) (IL(AOC)T) Pys3 (I E(AQ B))
T (um@aeBT) Pk RMBOOC) (IyERM@AOBT) Pl (ILHAOO) (1B (ATa@BTB))

(B.7)



Appendix C

Proof of existence of compressed
non-negative factors

Proposition 5 Let A € R™*%, m > R be a non-negative matriz, and U = [u1 uR] €
R™*™ be the matrix of its first n left singular vectors, n < R, obtained from an SVD.

1. If uy > 0, then the cone
K:={veR"|Uv >0}

contains at least one nonzero vector.

2. If uy > 0, then the cone K is solid (has nonempty interior), i.e.,

span L = R™.

The proof goes as follows.
1. Let e; = [1 o .- O]T. Since uw; > 0, we have that Ue; > 0.
2. The dual cone of the cone K is equal to
K*={U"a|aeR™, a = 0}.
Since uy > 0, we have that
veK* (v €£0=>a=0=v=0.

Therefore,
K* n=K* = {0},

i.e., the cone K* is pointed}
As shown, for example in [13, p. 53], a dual cone of a pointed cone is a solid cone. o
Corollary 3 1. For a random non-negative tensor T, the set {Ac e R"*E|A = UAC} is nonempty.

2. Generically, the matrices A, B¢, C. in {AC e R EFIA = UAC} have rank R.

The statements 1 and 2 follow from the corresponding statements of Proposition [5) because
U (resp. V and W) is the matrix of left singular vectors of the first (resp. second and third)
unfolding matrix of T .

I Alternatively, K is a pointed cone if K\0 lies in an open half space, i.e. there exists a hyperplane that intersects
K only at 0.
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Appendix D

Signal to Noise Ratios

In this appendix, we present the expressions for the SNR, of two tensors 7 and T o following the
hybrid Gaussian models of Chapter We present the SNR for the direct coupling model with
unnormalized and normalized factors.

Direct coupling we recall briefly the models: the entries factors A;, By, Ay, By and Cs
are drawn independently according to N'(0, 1), the noise tensors £; and £, are drawn from i.i.d.
N(0,0%) and N(0, 03) respectively. The columns of factors are divided by their respective £ norms
in the normalized case. The elements of C'; are drawn from the elements of C'; using a zero mean
Gaussian distribution of variance o2.

In the unnormalized case, the SNR for tensor T writes as follows:

SNR(T2) = 10log;, (R) (D.1)

2
03

while tensor 77 has a more unusual SNR given by:

1 2
SNR(T1) =10 logm <R( J—g UC)) (D.2)
1
In the normalized case we have
R(1+0?)

and

SNR(T2) = 10logy, ( (D.4)

R
KQLQO'%

Note that for » < R shared components, SNR(7 1) changes to 10log;, [’";ij;f]
1
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