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viii Résumé en Français

Modèles Stochastiques pour la Gestion des
Opérations de Service
Ce mémoire présente l’avancement de mes travaux de recherche. Dans ce qui suit, je commence
par décrire l’évolution de mes travaux dans le temps tout en précisant leurs contextes ainsi que
les liens éventuels entre eux. Je résume brièvement ensuite mes résulats de recherche à ce jour.
Finalement, je présente mes projets en cours ainsi que mes perspectives de recherche.

1 Evolution de Mes Travaux

Mes activités de recherche ont commencé en 2002 avec mon master recherche en génie industriel
au Laboratoire Génie Industriel (LGI) de l’Ecole Centrale Paris (ECP). J’ai poursuivi ensuite
avec ma thèse, que j’ai soutenue en 2006. Les résultats de recherche de mon master et ma thèse,
qui se sont effectués sous la direction de Yves Dallery, portaient sur l’analyse et l’optimisation
du centre d’appels de Bouygues Telecom. J’ai travaillé sur des problèmes stratégiques et opéra-
tionnels proposés par nos partenaires: Fabrice Chauvet et Rabie Nait-Abdallah (recherche et
développement), et Olivier Belma et Thierry Prat (système d’information et de télécommunica-
tion). Pendant ma thèse, j’ai aussi travaillé sur l’analyse des files d’attente en général.

Après ma thèse, j’ai été recruté en 2007 en tant qu’assistant au laboratoire LGI à ECP.
Au LGI, j’appartiens à l’équipe 2 Aide à la Décision pour les Systèmes de Production et de
Service et je me positionne au niveau du premier project de recherche Gestion des Opérations
de Service. J’ai continué après ma thèse à travailler sur les centres d’appels en élargissant les
sujets traités. Ceci a pu avoir lieu grâce à mes partenaires industriels (Bluelink, Interact-iv.com,
Digiway Consulting, etc.), et mes collègues Ger Koole (VU University Amsterdam) et Zeynep
Aksin (Koç University) que j’ai fréquemment et régulièrement rencontrés entre 2007 et 2009.
Durant cette période, Ger Koole a aussi passé un séjour sabbatique de plusieurs mois au LGI.

En partant d’une problématique de gestion des opérations, mon approche de recherche con-
siste à construire premièrement un modèle - souvent stochastique - puis à développer une analyse
quantitative dans le but de trouver des éléments de réponse à la question posée au départ. J’ai
été ainsi fréquemment confronté à des questions challengeantes liées au processus stochastiques.
Ceci m’a motivé à dépasser les modèles spécifiques de centres d’appels et essayer d’aller plus
loin dans des analyses théoriques qui soient utiles pour des contextes plus larges de systèmes de
service.

En 2007, j’ai obtenu avec Zeynep Aksin un financement de TÜBİTAK (l’agence scientifique
et technologique de Turquie). Ceci nous a permis d’avancer considérablement sur nos projets
d’analyse de centres d’appels avec annonce de temps d’attente. En même temps, j’ai collaboré
étroitement avec Yves Dallery, Ger Koole et Auke Pot de VU University Amsterdam. Nous avons
principalement travaillé sur des problématiques de routage d’appels. Avec Ger Koole, on était
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en contact avec Bluelink (fournisseur de service de Air France KLM) et Digiway Consulting
(société de conseil pour les centres d’appels). Cette dernière nous a fourni des données et
nous a motivé Ger et moi à travailler sur les problèmes de planification des agents avec des
paramètres d’arrivées incertains. On a ainsi profité à l’époque d’un financement CSC (bourse
du gouvernement Chinois) pour lancer la thèse de Shuangqing Liao sur ce sujet en 2008. La
thèse a été co-encadrée par Christian van Delft de HEC Paris, étant donné son expertise sur la
programmation stochastique. Shuangqing a soutenu sa thèse en 2011.

En 2008, j’ai fait un postdoc à University of Minnesota sous la direction de Saif Benjaafar.
J’ai travaillé sur l’analyse de modèles de files d’attente avec un nombre fini d’arrivées hétérogènes.
L’application de ces modèles est liée aux systèmes de service générés par des évènements. J’ai
continué depuis à travailler sur ce sujet avec Saif. En 2010, son thésard Rowan Wang nous a
rejoint pour travailler sur plusieurs extensions. Au cours de la même année, ils m’ont tous les
deux rendu visite pendant deux mois à ECP.

Après mon postdoc, je suis revenu à ECP toujours sur mon poste d’assistant, puis j’ai été
recruté en 2010 sur un poste de Chef Travaux (contractuel, équivalent Maître de Conférences).
En 2010, j’ai obtenu un financement d’Interact-iv.com, une société qui fournit des solutions
logicielles et matérielles aux centres d’appels. Le financement m’a servis à recruter le thésard
Benjamin Legros pour travailler sur des problématiques de routage dans les centres d’appels
multi-compétences et multi-canaux. Ceci a permis d’intensifier considérablement mes résultats
de recherche sur les problématiques opérationnelles, et en même temps d’accentuer mes contri-
butions théoriques sur les files d’attente. Benjamin a soutenu sa thèse en 2013. En 2010 et 2011,
j’ai aussi travaillé avec Ger Koole et son thésard Alex Roubos sur la modélisation des abandons.
Avec Alex, j’ai aussi travaillé sur l’analyse de performance de files d’attente multi-classe.

Plus tard, en 2012, j’ai obtenu avec Céline Gicquel et Abdel Lisser de l’Université Paris
Sud un financement doctorale de Digiteo, sur lequel on a recruté Mathilde Excoffier pour con-
tinuer à travailler sur la problématique assez riche de planification, en utilisant et comparant
plusieurs approches d’optimisation stochastique. En 2012, j’ai également eu la chance de gag-
ner un financement ANR Jeunes Chercheurs qui m’a permis de recruter en 2013 les 2 postdocs
Benjamin Legros and Mahdi Fathi. Avec Benjamin et Mahdi, j’ai continué à travailler sur des
problématiques opérationnelles de centres d’appels.

En résumé, après ma thèse, j’ai étendu mes travaux et contribué à la littérature des centres
d’appels sur plusieurs niveaux. En parallèle, j’ai contribué à la littérature sur les processus
stochastiques avec des applications aux systèmes de service qui peuvent être modélisés par des
files d’attente. Ceci m’a permis d’avancer pas à pas dans la direction de mon objectif de recherche
qui est de contribuer à la littérature sur les modèles stochastiques et la gestion des opérations
de service.

Récemment en 2013, j’ai commencé à travailler sur les services d’urgence dans le cadre
de la thèse de Karim Ghanes, pour laquelle on a obtenu un financement de l’Agence Régionale
Santé Ile-de-France. Nous sommes en collaboration avec quelques services d’urgence de la région
Parisienne sur des problématiques d’optimisation des processus et des ressources. Un service
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d’urgence est un système de service complexe ayant d’importants facteurs humains et impacts
sociétaux. Cela constitue pour moi une excellente opportunité pour continuer à avancer dans
mes contributions aux opérations de service.

2 Motivation et Positionnement de Mes Travaux

En premier lieu, mes travaux s’intègrent dans la discipline de gestion des opérations. Ils
s’intègrent également dans la discipline de recherche opérationnelle. Sur le plan national, mes
recherches sont principalement rattachées à la section CNU 61 (génie industriel), mais aussi
26 (mathématiques appliquées). Les communautés de référence à l’échelle nationale sont GDR
MACS et ROADEF. Celles à l’échelle internationale sont INFORMS, POMS et IIE.

Mes intérêts de recherche aux systèmes de service sont liés à la croissance importante observée
dans ce secteur et le besoin d’améliorer leur organisation en termes de délai d’accès et de coûts
d’exploitation engendrés. En France, comme dans les pays les plus développés ayant accédé à
l’économie post-industrielle, les services représentent jusqu’à 70% des richesses produites et sont
devenus le principal moteur de croissance économique. Depuis plusieurs décennies, les systèmes
manufacturiers de biens ont fait l’objet de beaucoup de travaux de recherche au détriment des
systèmes de service.

En plus des enjeux économiques, les systèmes de service sont caractérisés par les aspects
humains liés aux comportements, et à la satisfaction des usagers et des personnels impliqués.
Ces aspects sont au coeur des préoccupations de mes travaux. L’objectif ultime de mes travaux
est de développer des recommandations et insights utiles aux managers, i.e., qui leur permettent
de rendre leurs systèmes plus réactifs.

3 Synthèse de Mes Résultats

Mes principaux résultats de recherche sont classés en deux parties. Une première concerne
les centres d’appels, et une suivante qui englobe mes contributions théoriques aux méthodes
d’analyse de chaînes de Markov et de files d’attente avec applications aux systèmes de ser-
vice. Les deux familles de résultats sont détaillées respectivement sur les Parties II et III de ce
manuscrit. Dans ce qui suit, je les présente brièvement.

3.1 Centres d’Appels

Les centres d’appels, ou en général les centres de contacts, sont des systèmes de service consid-
érés de nos jours comme l’outil de relation clientèle privilégié. Ils remplissent de plus en plus de
fonctions; ils interviennent sur toute la chaîne de service clients, depuis l’avant-vente, jusqu’à
l’après vente, en passant par l’assistance et la fidélisation des clients, mais aussi sur la qualifica-
tion de prospect, la télé-vente et l’information. Aujourd’hui, les centres d’appels intéressent tous
les secteurs d’activité; les opérateurs téléphoniques, les compagnies d’assurances et les banques
à distance, mais également les services publics, les hôpitaux ou les collectivités locales. Grâce à
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l’évolution des technologies de couplage de l’informatique et de la téléphonie, nous avons connu
un réel décollage de cette activité.

Compte tenu de leurs enjeux économiques importants et de leurs complexités, tout un champ
de recherche s’est développé depuis plusieurs années. Mes travaux se situent dans ce contexte.
Ils couvrent la modélisation des centres d’appels ainsi que les 3 horizons de gestion des opérations
: long terme, moyen terme, et court terme.

• Modélisation de Centre d’Appels: En se basant sur des données réelles, j’ai travaillé
sur les temps de patience des clients, en proposant deux nouvelles modélisations. J’ai
également proposé plusieurs définitions de qualité de services liés aux abandons, calculé
leurs expressions, et discuté les avantages et les inconvénients de chacune. J’ai également
démontré l’intérêt pour les managers de choisir la bonne métrique à appliquer.

• Problématiques Long-Terme: Dans un contexte mono-compétence, j’ai travaillé sur le
développement de nouvelles architectures de centres d’appels qui permettent une meilleure
gestion des ressources humaines. Dans un contexte multi-compétences, je me suis intéressé
au développement d’architectures qui offrent de la flexibilité à travers des répartitions
intelligentes des compétences entre les équipes de téléconseillers.

• Problématiques Moyen-Terme: J’ai travaillé sur des modèles d’optimisation des em-
plois de temps des agents tout en considérant un processus d’arrivée des appels double-
ment stochastique. On permet en effet la possibilité d’avoir des paramètres incertains pour
l’arrivée afin de tenir compte des erreurs de prévision. J’ai travaillé sur des approches de
résolution issues de la programmation stochastique et la programmation robuste.

• Problématiques Court-Terme: Quant aux problématiques opérationnelles sur le court
terme, j’ai travaillé sur plusieurs questions de gestion temps-réel telles que l’estimation
et l’annonce du temps d’attente tout en intégrant les impacts du phénomène d’abandon,
et le routage dynamique des appels entrants vers les agents. J’ai également étudié des
problématiques d’optimisation de l’ordonnancement des tâches dans le nouveau contexte
de centre d’appels multi-canaux (appels entrants, appels sortants et back-office).

3.2 Processus Stochastiques et Applications

Les analyses quantitatives menées dans le cadre des travaux cités ci-haut sont surtout basées
sur les chaînes de Markov et les files d’attente. Comme déjà mentionné, cela m’a motivé à aller
chercher de nouvelles contributions théoriques génériques qui dépassent le cadre des centres
d’appels, et concernant un large spectre d’applications aux systèmes de service. Mes résultats
peuvent être structurés comme suit:

• Analyse de Chaînes de Markov: J’ai travaillé sur le calcul des moments de plusieurs
types de variables aléatoire de temps de premier passage, ordinaires et conditionnels, dans
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un processus de naissance et de mort de forme générale. J’ai également travaillé sur le
calcul de la distribution d’une somme arbitraire de variables aléatoires Erlang.

• Files d’Attente avec Impatience: Pour une file d’attente mono-classe avec des aban-
dons généralement distribués, j’ai travaillé sur des approximations contrôlées des perfor-
mances. La méthode consiste à approximer la fonction du hasard avec une fonction par
palier. J’ai également développé une méthode exacte basée sur les transformées de Laplace
pour l’analyse d’une file d’attente multi-classe avec priorité non-préemptive et dont la dis-
cipline de service par classe peut être premier arrivé, premier servi ou dernier arrivé,
premier servi. Je me suis aussi intéressé à prouver des résulats de monotinicité de pre-
mier et deuxième ordres dans une file d’attente avec clients impatients et une capacité du
système finie.

• Contrôle Dynamique: Je me suis intéressé à une file d’attente connue sous le nom de
modèle du serveur lent. J’ai développé un nouveau résultat de contrôle optimal sur ce
modèle, en ajoutant la possibilité qu’un serveur peut avoir un échec de service. J’ai aussi
travaillé sur l’uniformisation des chaînes de Markov à sauts non bornés. En utilisant une
approche de modélisation non classique, on aboutit à une représentation du processus qui
est exacte et naturellement bornée.

4 Travaux en Cours et Perspectives

Tout d’abord, je souhaite continuer à travailler sur les nouvelles problématiques riches de cen-
tres d’appels, intensifier mes travaux sur la gestion des opérations des services d’urgence, et
poursuivre mes travaux sur les processus stochastiques et leurs applications aux services.

Je voudrais contribuer à ces branches de litérature tout en essayant d’incorporer le plus
possible les facteurs clés de comportements humains et d’avancées technologiques. Je voudrais
également accentuer l’utilisation de données réelles dans mes modèles. Heureusement, les récents
développements dans les systèmes d’information ont rendu disponibles de larges quantités de
données. C’est une opportunité, qui permettra sans doute d’enrichir les modèles existants et
aboutira à des recommendations plus précises et donc des études plus impactantes pour la
pratique.

Dans ce qui suit et en suivant la structure (1) centres d’appels, (2) services d’urgence, et (3)
processus stochastiques et applications, je décris mes travaux en cours ainsi que mes perspectives
pour les années à venir.

4.1 Centres d’Appels

Dans la période à venir, je voudrais surtout travailler sur des problématiques sur les niveaux
tactiques et opérationnels de centres d’appels. Les problématiques opérationnelles sont surtout
liées au contexte grandissant des centres d’appels multi-canaux.
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Au sujet du niveau tactique, je travaille actuellement sur la planification des agents avec
des paramètres incertains, dans un contexte multi-vacation. Mon approche est basée sur la
programmation par contraintes probabilistes, où le manager doit estimer un niveau de risque
acceptable pour le non respect du niveau de service.

En ce qui concerne le niveau opérationnel, nous avons obtenu récemment des données sur des
centres d’appels qui passent de la publicité pendant l’attente en ligne. Pour certaines entreprises
utilisant des centres d’appels (notamment les annuaristes), le modèle économique basé sur les
numéros surtaxés est en train de disparaître pour être remplacé par un nouveau modèle basé
sur la publicité en faisant intervenir de tierces parties. Mon objectif ici est d’analyser l’impact
de ce nouveau modèle économique sur les performance d’un centre d’appels, en termes d’attente
et de comportement d’abandon.

Toujours sur le niveau opérationnel, je voudrais développer et analyser de nouveaux modèles
de centres d’appels qui soient adaptés à la multiplication de l’utilisation des canaux (autres que
le téléphone). On va se concentrer en particulier sur le système de chat en pleine expansion en
ce moment vu son efficacité à priori (un agent peut traiter plusieurs clients à la fois). On va
aussi s’intéresser à l’option de rappel et à l’analyse de son utilité pour lisser la variabilité de la
demande.

4.2 Services d’Urgence

Dans un contexte économique difficile, les managers de services d’urgence essayent continuelle-
ment de réduire le gap entre les resources disponibles et la demande, dans le but de satisfaire
les patients à moindre coût. Mes travaux s’intègrent dans ce cadre.

Je travaille actuellement sur une analyse critique des indicateurs de performances de conges-
tion dans les services d’urgence. Il s’agit d’identifier les avantages et les inconvénients d’utiliser
une métrique au lieu d’une autre. Ceci pourrait faire émerger des propositions de combinaisons
d’indicateurs de performances.

Je suis aussi sur l’optimisation, sous contrainte de budget, des ressources humaines (médecins
juniors et séniors, infirmières, et brancardiers) et matérielles (box de déchoquage, lits, etc.).
L’approche d’optimisation utilisée est basée sur la simulation à évènements discrets.

En plus des ressources, je vise également à travailler sur l’optimisation des processus qui
pourraient améliorer la performance du service d’urgence en termes d’attente des patients. On
pense en particulier à se focaliser sur les modes de triage et de routage des patients.

4.3 Processus Stochastiques et Applications

Je voudrais continuer à contribuer à l’analyse de modèles théoriques. Comme déjà mentionné,
l’intérêt de tels modèles provient de leur généricité pour pouvoir être utilisés dans de nombreuses
applications. Je suis assez méfiant quant à l’utilisation trop rapide de résultats théoriques dans
le cadre d’une application spécifique. Par exemple, l’application de résultats théoriques pour
les centres d’appels ou les service d’urgences, sans une bonne appropriation au préalable des
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caractéristiques spécifiques de leurs contextes, ne garantit pas des résultats appropriés et utiles.
J’ai commencé à explorer la problématique d’optimisation des rendez-vous de clients arrivants

à un système de file d’attente. L’objectif est de trouver le bon compromis entre les deux notions
contradictoires de temps d’attente des clients et de temps libre de la capacité. Je vais travailler
sur des modèles qui intègrent l’hétérogénéité des clients en termes de ponctualité et d’absence,
et je vais analyser l’impact de tels comportements sur les performances du système.

Je voudrais également travailler sur des stratégies de collaboration de partage de ressources
entre plusieurs acteurs. Jusqu’à maintenant, tous mes travaux concernent le cas mono-acteur.
En pratique, il serait aussi intéressant de penser à des schémas de mutualisation des ressources
ainsi que des solutions de contractualisation entre acteurs indépendants. L’outil d’analyse à
mobiliser est la théorie des jeux.

Les résultats exposés ci-dessous émergent d’un travail collectif avec des doctorants, postdocs
et collègues, sans eux, rien n’aurait pu avoir lieu. Par souci de brièveté, je n’ai pas cité ces
personnes dans ce résumé. Par contre, elles sont toutes citées sur les différentes parties du
manuscrit là où je décris d’une façon plus détaillée mes travaux.
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My passionate interest in research started during my master of science in industrial engi-
neering at Ecole Centrale Paris in 2003. I can still remember my motivation and enthusiasm for
my first research projects. At that time, I realized that an academic career is exactly what I
want to pursue. I had thereafter the opportunity to pursue my PhD thesis with the same group
(Laboratoire Génie Industriel, LGI). That was a very positive experience. I was a part of a
wonderful team: Yves Dallery and Mohamed Salah Aguir from LGI, and the call center research
group of Bouygues Telecom. I had the chance to see how research results can be really useful
for practice. Starting from discussions with Bouygues Telecom, research questions were raised,
and then it was amazing to see how step by step we ended up with a better understanding
of the problem, solutions that have been implemented by the company and followed by a step
back concretized as a contribution to the scientific literature. My postdoctoral and research
visiting experiences with Saif Benjaafar (University of Minnesota), Ger Koole (VU University
Amsterdam) and Zeynep Aksin (Koç University) allowed me thereafter to work with the top
researchers in my field. I owe all my results to them and to Yves Dallery, and I can never thank
them enough. I was then appointed as an assistant professor at LGI where I enjoyed and I
am still enjoying a nice equilibrium between my teaching and research activities. Today, based
on my experience, and my teaching and research results, I feel myself ready to state my case
towards the HDR (Habilitation à Diriger des Recherches) qualification. This would allow me to
be more autonomous and enlarge my responsibilities, which is an important step forward in my
career. This is the subject of this dissertation.

The ultimate goal of my research is to provide academicians and practitioners with useful
recommendations and insights. My contributions concern the operations management of call
centers, and the analysis of stochastic models with applications to services. These are also
the main topics of this dissertation. More recently, I have started to work on the operations
management issues of emergency departments as well as other service applications. The related
ongoing work is described in the last part of the dissertation. The objective of this dissertation
is to synthesize and provide perspectives of my research work. It is divided into four parts as
shown in Figure 1.

In Part I, I present my education and qualifications, my teaching and research outputs, my
academic and industrial collaborations, as well as my administrative and editorials activities.

In Part II, I summarize my contributions to the literature on the operations management
of call centers. The biggest part of my contributions pertains to this literature. In Chapter
II.1, I give a background on call centers followed by a summary of my contributions on the
modeling of call centers with impatient customers. My remaining results on call centers can be
classified according to the standard three decision levels. Chapters II.2 and II.3 deal with my
contributions to the strategic and tactical decisions, respectively. Those related to operational
decisions are significant and are further classified into two families: delay information issues,
and job routing issues. They are described in Chapters II.4 and II.5, respectively.

In Part III, I summarize my theoretical contributions to the analysis of stochastic processes.
The studies have applications for the analysis of a wide range of service systems. This part is
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divided into three chapters. Chapter III.1 deals with the computation of first passage times in
birth-death processes. Chapter III.2 summarizes my contributions to the performance analysis
of queueing systems with impatience. Chapter III.3 describes my results related to the dynamic
control of queueing systems.

In Part IV, I present my ongoing work and research perspectives. Section 1 describes my
future projects on call center operations. I will extend my previous work on planning under
uncertain arrival parameters. I will also work on call center settings with advertisement during
the waiting in the queue. Another set of studies concern new multi-channel issues. The topic in
Section 2 is about emergency departments. I present my ongoing survey on the key performance
indicators, also, my ongoing work on the optimization of human resources. I then describe my
future project on the analysis of the impact of changing the service process on the emergency
department performance. Finally, Section 3 focuses on two future projects related to the analysis
of stochastic models and their applications to services. The first project deals with queueing
systems with appointment-driven arrivals. The second one concerns collaboration strategies
between independent queueing service systems.

It goes without saying that my contributions are the result of my collaborations with doctoral
students, postdoctoral students and many colleagues, to which I want to express my heartfelt
gratitude. Throughout the dissertation, their names are highlighted. I would like also to express
my gratitude to my excellent department LGI and at the first place to its head Jean Claude
Bocquet.  
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1 Personal Details

• Oualid JOUINI

• Born on December 22, 1978 in Tunisia

• Tunisian-French dual citizenship

• Married, 1 child

• Professional Address: Ecole Centrale Paris, Laboratoire Génie Industriel, Grande Voie des
Vignes, 92290 Châtenay-Malabry

• Email: oualid.jouini@ecp.fr

• Phone: +33 1 41 13 15 02

• Webpage: http://www.lgi.ecp.fr/~jouini/

2 Education

PhD in Industrial Engineering, Ecole Centrale Paris

• Defended on December 11, 2006, obtained with higher distinction

• Subject: Stochastic models for the analysis of call centers

• PhD advisor: Yves Dallery

• PhD Examination committee:

- Philippe Chevalier (president), Professor, Université Catholique de Louvain, Belgium

- Yannick Frein (reviewer), Professor, INPG, Grenoble

- Ger Koole (reviewer), Professor, VU University Amsterdam, The Netherlands

- Fabrice Chauvet (examiner), HDR, Head of the department of Simulation and Optimiza-
tion, Gaz de France, Paris

- Yves Dallery (PhD advisor), Professor, Ecole Centrale Paris, Paris.

Master of Science in Industrial Engineering, Ecole Centrale Paris

• Graduated on September 2003

• Ranking: 1 out of 10

• Research intership subject: Optimization of call centers (funded by Bouygues Telecom)

• Supervisors: Yves Dallery and Mohamed Salah Aguir.
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Engineering Diploma in Industrial Engineering, Ecole Nationale d’Ingénieurs de
Tunis (Tunisia)

• Graduated on June 2001

• Ranking: 4 out of 60

• Internship subject: Layout optimization for the manufacturing of electronic equipments in
the telecommunication company Omniacom (Tunisia).

3 Professional Experiences

• Since 2010: Assistant Professor, Laboratoire Génie Industriel, Ecole Centrale Paris

- Supervision of research projects

- Teaching in industrial engineering, operations management, stochastic models, and sim-
ulation of production systems

- Co-manager of the professional master PMTI (Purchasing Manager in Technology and
Industry), 100% in English

- Member of the team Decision Aid for Manufacturing and Service Systems, and member
of the transverse group Industrial Engineering and Healthcare Management.

• 2008: Postdoc at the Department of Industrial and System Engineering, University of
Minnesota (USA).

• 2007-2009: Teaching and Research Assistant, Laboratoire Génie Industriel, Ecole Cen-
trale Paris.

4 Research Activities

My research interests are in stochastic modeling and service operations management with main
applications to call centers and emergency departments. My primary goal is to assist managers
to face the challenging task of organizing their processes more effectively and efficiently. I try
to do that through deriving useful guidelines and recommendations. This pushes me always to
account for the important features, in particular human modeling features, in order to be as
close as possible to reality.

4.1 Research Supervision

I have participated in the supervision of 2 postdoctoral students, 5 PhD students, and about
25 research projects of master students. The details on the supervised postdoctoral and PhD
students are given in Sections 4.1.1 and 4.1.2, respectively. I would like also to mention that, in
the coming months, I will participate in the supervision of:
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• The PhD student Guillaume Lamé

- Starting in January 2015

- Subject: Modeling and optimization of the clinical pathways at Henri-Mondor Hospital

- Funded by the French ministry of higher education and scientific research

- Expected supervision rate: 50%.

• A postdoctoral student, recruitment in progress

- Expected to start in January 2015

- Subject: Stochastic bilevel optimization

- Funded by the Digiteo project SUN

- Expected supervision rate: 40%.

4.1.1 Supervision of Postdoctoral Students

Table 1 provides a summary of the supervised postdoctoral students. The details are given
thereafter.

Table 1: Summary of the supervision of postdoctoral students
Student Research topic Supervision

rate
Research outputs

Mahdi
Fathi

Analysis of emergency call
centers

100% 1 ISI journal paper; 1 international
conference communication

Benjamin
Legros

Optimal routing solutions
for blended call centers

100% 5 submitted or under revision pa-
pers for ISI journals; 1 interna-
tional conference paper; 2 interna-
tional conference communications

Mahdi Fathi, postdoc

• From December 2013 to November 2014

• Research topic: Analysis of emergency call centers

• Funded by the JCJC ANR project OPERA

• Publications:

- 1 accepted paper in an ISI Web of Science journal

- 1 international conference communication.
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Benjamin Legros, postdoc

• Ongoing, from January 2014 to August 2015

• Research topic: Optimal routing solutions for blended call centers

• Funded by the JCJC ANR project OPERA

• Publications:

- 5 submitted or under revision papers for ISI Web of Science journals

- 1 international conference paper

- 2 international conference communications.

4.1.2 Supervision of PhD Students

Table 2 provides a summary of the supervised PhD students. The details are given thereafter.

Table 2: Summary of the supervision of PhD students
Student Research topic Supervision

rate
Research outputs

Shuangqing
Liao

Staffing and shift-scheduling
of call centers under call ar-
rival rate uncertainty

30% 1 ISI journal paper; 2 international
conference papers

Benjamin
Legros

Optimization of multi-skill
and multi-channel call cen-
ters

70% 2 ISI journal papers; 3 interna-
tional conference communications

Mathilde
Excoffier

Stochastic programming
approaches for workforce
scheduling of call centers
with uncertain demand
forecasts

40% 1 book chapter; 1 international
conference communication

Lisa Peng Collaboration in service sys-
tems

50% 1 national conference communica-
tion

Karim
Ghanes

Optimization of emergency
healthcare systems

70% 1 submitted paper to an ISI jour-
nal; 1 international conference pa-
per; 1 national conference commu-
nication

Shuangqing Liao, PhD student

• Duration: 3.5 years. Defended on July 1, 2011

• Research topic: Staffing and shift-scheduling of call centers under call arrival rate uncer-
tainty
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• Funded by China Scholarship Council

• Supervision rate of 30%. Co-supervised with Yves Dallery, Ger Koole (VU University
Amsterdam) and Christian van Delft (HEC Paris)

• Examination Panel:

- Professor Abdel Lisser, University Paris Sud, president

- Professor Zeynep Aksin, Koç University, Turkey, reviewer

- Professor Jean-Philippe Vial, Université de Genève, Switzerland, reviewer

- Professor Christian van Delft, HEC Paris, co-supervisor

- Professor Ger Koole, VU University Amsterdam, The Netherlands, co-supervisor

- Dr. Oualid Jouini, Ecole Centrale Paris, co-supervisor

- Professor Yves Dallery, Ecole Centrale Paris, supervisor

• Publications:

- 1 accepted paper in an ISI Web of Science journal

- 2 international conference papers.

Benjamin Legros, PhD student

• Duration: 3.5 years. Defended on December 13, 2013

• Research topic: Optimization of multi-skill and multi-channel call centers

• Funded by Interact-iv.com

• Supervision rate of 70%. Co-supervised with Yves Dallery and Ger Koole (VU University
Amsterdam)

• Examination Panel:

- Professor Stephen Chick, INSEAD, president

- Professor Zeynep Aksin, Koç University, Turkey, reviewer

- Professor Raik Stolletz, University of Mannheim, Germany, reviewer

- Professor Rob van der Mei, CWI, Amsterdam, The Netherlands, examiner

- Sébastien Thorel, Interact-iv.com, examiner

- Professor Ger Koole, VU University Amsterdam, The Netherlands, co-supervisor

- Dr. Oualid Jouini, Ecole Centrale Paris, co-supervisor

- Professor Yves Dallery, Ecole Centrale Paris, supervisor

• Publications:

- 2 accepted papers in ISI Web of Science journals

- 3 international conference communications.
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Mathilde Excoffier, PhD student

• Ongoing. Started in October 2012

• Research topic: Stochastic programming approaches for workforce scheduling of call cen-
ters with uncertain demand forecasts

• Funded by the Digiteo project SPACE

• Supervision rate of 40%. Co-supervised with Céline Gicquel and Abdel Lisser from Uni-
versité Paris Sud

• Publications:

- 1 book chapter

- 1 international conference communication.

Lisa Peng, PhD student

• Ongoing, started in February 2013

• Research topic: Collaboration in service systems

• Funded by the Collaboration in service systems

• Supervision rate of 50%. Co-supervised with Zied Jemai and Yves Dallery

• Publications:

- 1 national conference communication.

Karim Ghanes, PhD student

• Ongoing, started in January 2013

• Research topic: Optimization of emergency healthcare systems

• Funded by ARS Ile-de-France

• Supervision rate of 70%. Co-supervised with Zied Jemai and Ger Koole

• Publications:

- 1 submitted paper to an ISI journal

- 1 national conference communication.

4.2 My Publications

A summary of my research outputs is given in Table 3. The complete lists are detailed thereafter.
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Table 3: Summary of my research publications
Papers in international peer reviewed journals (ISI Web of Science) 18
Peer reviewed book chapters 1
Papers in professional magazines 2
Papers in international peer reviewed conference proceedings 13
Communications in international peer reviewed conferences 23
International patents 1

Papers in International Peer Reviewed Journals (ISI Web of Science)

1. B. Legros, O. Jouini and G. Koole. A Flexible Architecture for Call Centers with Skill-
Based Routing. International Journal of Production Economics. In Press (DOI:
10.1016/j.ijpe.2014.09.025), 2014.

2. M. Fathi, F. Zandi and O. Jouini. Modeling the Merging Capacity for Two Streams of
Product Returns in Remanufacturing Systems. Journal of Manufacturing Systems.
In Press (DOI: 10.1016/j.jmsy.2014.08.006), 2014.

3. B. Legros, O. Jouini and G. Koole. Adaptive Threshold Policies for Multi-Channel Call
Centers. IIE Transactions. In Press (DOI:10.1080/0740817X.2014.928965), 2014.

4. O. Jouini, Z. Aksin, F. Karaesmen, M.S. Aguir and Y. Dallery. Call center Delay An-
nouncement Using a Newsvendor-Like Performance Criterion. Production & Opera-
tions Management. In Press (DOI: 10.1111/poms.12259), 2014.

5. R. Wang, O. Jouini and S. Benjaafar. Service Systems with Finite and Heterogeneous
Customer Arrivals. Manufacturing & Service Operations Management, 16:365-
380, 2014.

6. O. Jouini and A. Roubos. On Multiple Priority Multi-Server Queues with Impatience.
Journal of the Operational Research Society, 65:616-632, 2014.

7. S. Ioannidis, O. Jouini, A.A. Economopoulos and V.S. Kouikoglou. Control Policies for
Single-Stage Production Systems with Perishable Inventory and Customer Impatience.
Annals of Operations Research, 209:115-138, 2013.

8. M.Z. Babai and O. Jouini. Operations Management in Service Systems (Editorial). IMA
Journal of Management Mathematics, 24:135-136, 2013.

9. A. Roubos and O. Jouini. Call Centers with Hyperexponential Patience Modeling. In-
ternational Journal of Production Economics, 141:307-315, 2013.

10. O. Jouini, G. Koole and A. Roubos. Performance Indicators for Call Centers with Impa-
tience. IIE Transactions, 45:359-372, 2013.
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11. O. Jouini. Analysis of a Last Come First Served Queueing System with Customer Aban-
donment. Computers & Operations Research, 39:3040-3045, 2012.

12. S. Liao, G. Koole, C. van Delft and O. Jouini. Staffing A Call Center with Uncertain
Non-Stationary Arrival Rate and Flexibility. OR Spectrum, 34:691-721, 2012.

13. O. Jouini, Z. Aksin and Y. Dallery. Call Centers with Delay Information: Models and
Insights. Manufacturing & Service Operations Management, 13:534-548, 2011.

14. O. Jouini, A. Pot, G. Koole and Y. Dallery. Online Scheduling Policies for Multi-class
Call Centers with Impatient Customers. European Journal of Operational Research,
207:258-268, 2010.

15. O. Jouini, Y. Dallery and Z. Aksin. Queueing Models for Multi-Class Call Centers with
Real-Time Anticipated Delays. International Journal of Production Economics,
120:389-399, 2009.

16. O. Jouini, Y. Dallery and R. Nait-Abdallah. Analysis of the Impact of Team-Based Orga-
nizations in Call Centers Management. Management Science, 54:400-414, 2008.

17. O. Jouini and Y. Dallery. Moments of First Passage Times in General Birth-Death Pro-
cesses. Mathematical Methods of Operations Research, 68:49-76, 2008.

18. O. Jouini and Y. Dallery. Monotonicity Properties for Multi-server Queues with Reneg-
ing and Finite Waiting Lines. Probability in the Engineering and Informational
Sciences, 21:335-360, 2007.

Peer Reviewed Book Chapters

1. M. Excoffier, C. Gicquel, O. Jouini, A. Lisser. A Stochastic Programming Approach for
Staffing and Scheduling Call Centers with Uncertain Demand Forecasts. Lecture Notes
in Communications in Computer and Information Science, SPRINGER-VERLAG,
2014.

Papers in Professional Magazines

1. O. Jouini and G. Koole. Including Abandonments in Call Center Staffing Models. Softi-
gator, Business Networking to Call Center professionals, February 2008.

2. O. Jouini and G. Koole. Team-Based Organizations in Call Centers. Softigator, Busi-
ness Networking to Call Center professionals, June 2008.
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Papers in International Peer Reviewed Conference Proceedings

1. K. Ghanes, O. Jouini, Z. Jemai, M. Wargon, G. Koole, R. Hellmann, V. Thomas. A
Comprehensive Simulation Modeling of an Emergency Department: A Case Study for
Simulation Optimization of Staffing Levels. Proceedings of the Winter Simulation
Conference, 2014, Savannah, USA.

2. B. Legros, O. Jouini, G. Koole. Imbricating Tasks in a Multi-channel Contact Center.
Proceedings of ICMSAO, 2013, Hammamet, Tunisie.

3. S. Ioannidis, O. Jouini and Y. Dallery. Production and Sales Control in Systems with
Flexible Capacity and Perishable Items. Proceedings of SMMSO, 2013, Kloster Seeon,
Germany.

4. O. Jouini, Z. Aksin, F. Karaesmen and Y. Dallery. Data-Based Analysis of Delay Esti-
mators and Announcements in a Call Center. Proceedings of SMMSO, 2011, Izmir,
Turkey.

5. S. Liao, C.van Delft, G. Koole and O. Jouini. Shift-Scheduling of Call Centers with Un-
certain Arrival Parameters. Proceedings of MOSIM, 2010, Hammamet, Tunisie.

6. S. Liao, C. van Delft, G. Koole and O. Jouini. Call center capacity allocation with newsboy
model. Proceedings of CIE39, 2009, Troyes, France.

7. O. Jouini and S. Benjaafar. Appointment Scheduling with Non-Punctual Arrivals. Pro-
ceedings of INCOM 2009, Moscow, Russia.

8. O. Jouini and Y. Dallery. Stationary Delays for a Two-Class Priority Queue with Impatient
Customers. Proceedings of VALUETOOLS, 2007, Nantes, France. "

9. O. Jouini and Y. Dallery. Modeling Multi-class Call Centers with Delay Information.
Proceedings of IESM, 2007, Beijing, China.

10. O. Jouini and Y. Dallery. Estimating and Announcing Waiting Times in Multiple Cus-
tomer Class Call Centers. Proceedings of INCOM, 2006, Saint-Etienne, France.

11. O. Jouini and Y. Dallery. Real-Time Scheduling Policies for Multi-class Call Centers.
Proceedings of IEEE-SSSM, 2006, Troyes, France.

12. O. Jouini and Y. Dallery. Predicting Queueing Delays for Multi-class Call Centers. Pro-
ceedings of VALUETOOLS, 2006, Pisa, Italy.

13. O. Jouini and Y. Dallery. Stochastic Models of Customer Portfolio Management in Call
Centers. Proceedings of the German Operations Research Society, 2004, Tilburg,
The Netherlands.
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Communications in International Peer Reviewed Conferences

1. K. Ghanes, O. Jouini, Z. Jemai, M. Wargon, G. Koole, R. Hellmann, V. Thomas. Simulation-
Based Optimization of an Emergency Department Staffing Levels. Euro Mini Confer-
ence on Stochastic Optimization and Energy applications, 2014, Paris, France

2. B. Legros, O. Jouini, G. Koole. Optimal Scheduling of Calls in Call Centers with a Call
Back Option. 20th Conference of the International Federation of Operational
Research Societies, 2014, Barcelona, Spain.

3. O. Jouini, B. Legros, G. Koole. On the Scheduling of Jobs in a Contact Center with Idling
Times during the Call Service. StochMod14, Mannheim, Germany, 2014.

4. B. Legros, O. Jouini, G. Koole. Threshold Policy for Call Centers with a Call Back Option.
14th International Conference on Project Management and Scheduling, 2014,
Munchen, Germany.

5. R. Wang, O. Jouini and S. Benjaafar. Service Systems with Finite and Heterogeneous
Customer Arrivals. 44th annual meeting of the Decision Sciences Institute, 2013,
Baltimore, USA.

6. M. Excoffier, A. Lisser, C. Gicquel, O. Jouini. Stochatic Programming Approaches for
Staffing in Call Centers with Uncertain Forecasts. EURO-INFORMS Joint Interna-
tional Meeting, 2013, Rome, Italy.

7. B. Legros, O. Jouini, G. Koole. Call Centers with a Call Back Option. EURO-INFORMS
Joint International Meeting, 2013, Rome, Italy.

8. B. Legros, O. Jouini, G. Koole. Optimal Routing in a Multi-Channel Call Center. In-
forms Annual Meeting, 2013, Minneapolis, USA.

9. O. Jouini, Z. Aksin, F. Karaesmen and Y. Dallery. Data-Based Analysis of Delay Estima-
tors and Announcements in a Call Center. Informs Annual Meeting, 2012, Phoenix,
USA.

10. R. Wang, O. Jouini and S. Benjaafar. Service Systems with Finite and Heterogeneous
Customer Arrivals. MSOM Annual Conference, 2011, Michigan, USA.

11. O. Jouini and S. Benjaafar. Queueing Systems with Appointment-Driven Arrivals, Non-
Punctual Customers, and No-Shows. Informs Annual Meeting, 2011, Austin, USA.

12. S. Ioannidis, O. Jouini, A. Economopoulos, and V. Kouikoglou. An (s 1, s) Inventory
System with General Product Lifetimes and Customer Impatience. EURO Working
Group on Stochastic Modeling, 2010, Nafplio, Greece.

13. Y. Wang, O. Jouini and S. Benjaafar. Queueing Systems with Finite Arrivals. Informs
Annual Meeting, 2009, San diego, USA.
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14. O. Jouini and G. Koole. Performance Models of a Single-skill Call Center. Informs
Annual Meeting, 2009, San diego, USA.

15. O. Jouini and S. Benjaafar. Appointment-driven Queueing Systems with Non-punctual
Customers. Informs Annual Meeting, 2009, San diego, USA.

16. Z. Aksin, O. Jouini and Y. Dallery. Call Centers with Delays Announcement. Informs
Annual Meeting, 2008, Washington DC, USA.

17. G. Koole and O. Jouini. Call Center Performance Indicators. Informs Annual Meeting,
2008, Washington DC, USA.

18. O. Jouini, K. Haj Youssef and Y. Dallery. Quoting Customer Lead Times in a Make-to-
Stock System. STOCHMOD08, 2008, Istanbul, Turkey.

19. G. Koole and O. Jouini. Call Center Performance Indicators Calculations and Simulations.
STOCHMOD08, 2008, Istanbul, Turkey.

20. Z. Aksin, O. Jouini and Y. Dallery. Call Centers with Delays Information: Models and
Insights. Informs Annual Meeting, 2007, Seattle, USA.

21. O. Jouini, A. Pot, Y. Dallery and Ger Koole. Real-Time Dynamic Scheduling Policies for
Multi-class Call Centers with Impatient Customers. Informs Annual Meeting, 2007,
Seattle, USA.

22. A. Pot, O. Jouini, G. Koole and Y. Dallery. An Online Policy for Call Centers. Applied
Probability Society of Informs Conference, 2007, Eindhoven, The Netherlands.

23. O. Jouini, M.S. Aguir and Y. Dallery. Analysis of a Skill-Based Routing Call Center
Model. Applied Probability Society of Informs Conference, 2007, Eindhoven, The
Netherlands.

International Patents

1. O. Jouini and Y. Dallery (Ecole Centrale Paris). F. Auriol, O. Belma, F. Chauvet, R. Nait-
Abdallah and T. Prat (Bouygues Telecom). International Patent. Client Portfolio-Based
Call Center Architecture. International publication number WO 2006/003306, World
Intellectual Property Organization.

4.3 Evidence of Research Esteem

The evidence of my research esteem is described through the following collection of indicators.
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4.3.1 Research Grants

I have participated to several research projects funded by companies, institutions, and councils.
In what follows, I mention those where I was the principal investigator or the principal co-
investigator. A summary of these projects are given in Table 4, and the details are given below.

Table 4: Summary of funded research projects
Project Topic Grant

Digiteo, SUN Stochastic optimization of uncertain bilevel
problems

102 000 e

Agence Régionale de Santé
Ile-de-France

Optimization of emergency departments 150 000 e

ANR Jeunes Chercheurs,
OPERA

Operations management in call centers 125 000 e

Digiteo, SPACE Stochastic programming approaches for work-
force scheduling of call centers with uncertain
demand forecasts

100 000 e

Interact-iv.com Optimization of multi-channel call centers 73 000 e

Digiteo project SUN: Stochastic optimization of uncertain bilevel problems

• From January 2015 to December 2016

• Partner: Université Paris Sud

• Co-investigator with Abdel Lisser (Université Paris Sud)

• Funded by Digiteo, postdoctoral funding, total grant: 102 000 e.

Project with Agence Régionale de Santé Ile-de-France: Optimization of emergency
departments

• From January 2013 to December 2015

• Partner: Hospital Saint Camille

• Principal investigator. Collaboration with Ger Koole and Zied Jemai

• Funded by ARS: 150 000 e.

ANR project OPERA : Operations management in call centers

• From October 2012 to September 2015
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• Principal investigator and coordinator. Collaboration with Ger Koole, Zeynep Aksin, Zied
Jemai and Yves Dallery

• Funded by the ANR Jeunes Chercheurs program: 125 000 e.

Digiteo project SPACE: Stochastic programming approaches for workforce schedul-
ing of call centers with uncertain demand forecasts

• From September 2012 to August 2015

• Partner: Université Paris Sud

• Co-investigator with Céline Gicquel and Abdel Lisser (Université Paris Sud)

• Funded by Digiteo, PhD thesis funding, total grant: 100 000 e.

Interact-iv.com: Optimization of multi-channel call centers

• During 2011-2012

• Principal investigator

• Funded by the consulting company Interact-iv.com: 73 000 e.

4.3.2 Participation to Scientific Conference Committees

• Member of the scientific committee of EURO Working Group on Stochastic Modeling,
since 2012.

• Member of the scientific committee of the 3rd International Symposium & 25th National
Conference on Operational Research, Volos, Greece, June 2014.

• Member of the program committee of Euro Conference on Stochastic Programming and
Energy Applications, Paris, September 2014.

4.3.3 Organization of Conference Tracks and Special Sessions

• Chair of the special session "Operations Management in Service Systems" in the interna-
tional conference on Computers and Industrial Engineering, Troyes, 2009.

• Chair of the special session "Optimization in Service Systems" in MOSIM’10, Tunis,
Tunisia, 2010.

• Co-chair of the track "Operations Management" in the 5th International Conference on
Modeling, Simulation And Applied Optimization, Hammamet, Tunisia, 2013.

• Co-chair of the track "Service Systems" in IIE Annual Conference, Nashville, USA, 2015.



18 Presentation of the Candidate

4.3.4 Research Visiting Positions

• May-June 2014: Singapore University of Technology and Design, Pillar of En-
gineering Systems and Design, Singapore. Collaboration with Saif Benjaafar and Rowan
Wang on the analysis of service systems with a finite number of non-punctual and hetero-
geneous customers.

• Mai-July 2007, June 2009, November 2013: Koç University, College of Admin-
istrative Sciences and Economics, Turkey. Collaboration with Zeynep Aksin and Fikri
Karaesmen on various subjects related to delay information models for call centers.

• July 2010: University of the Aegean, Department of Mathematics, Greece. Col-
laboration with Ioannidis Efstratios and Vassilis Kouikoglou on the analysis of perishable
inventory systems.

• 3 month from 2007 to 2009: VU University Amsterdam, Department of Applied
Mathematics, The Netherlands. Collaboration with Ger Koole, Alex Roubos, Auke Pot
on various subjects related to the optimal routing of jobs in call centers.

4.3.5 Academic Collaborators

• Yves Dallery, Ecole Centrale Paris. He is my PhD advisor. Collaboration until now on
call centers issues, collaboration on 1 funded project, co-supervision of 3 PhD students, 7
published papers.

• Ger Koole, Auke Pot and Alex Roubos, VU University Amsterdam, The Netherlands. Col-
laboration on various call centers topics. Co-supervision of 2 PhD students, collaboration
on 3 funded projects, 5 published papers, 4 submitted papers.

• Zeynep Aksin, Fikri Karaesmen, Koç University, Turkey. Collaboration on call center
models with delay information, 3 published papers, 1 working paper.

• Saif Benjaafar (University of Minnesota, USA) and Rowan Wang (Singapore Management
University, Singapore). Collaboration on service systems with finite arrivals, 1 published
paper, 1 working paper.

• Stratos Ioannidis Efstratios and Vassilis Kouikoglou, Technical University of Crete, Greece.
Collaboration on inventory problems with perishable items and impatient customers, 1
published paper, 1 working paper.

• Céline Gicquel and Abdel Lisser, Université Paris Sud. Collaboration on call center plan-
ning and stochastic bilevel optimization, collaboration on 2 funded projects, co-supervision
of 1 PhD student and 1 postdoctoral student, 1 book chapter, 1 working paper.
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• Zied Jemai, Ecole Nationale d’Ingénieurs de Tunis, Tunisia. Collaboration on cooperation
in service systems and on emergency departments, collaboration on 2 funded projects,
co-supervision of 2 PhD students, 3 working papers.

• Christian van Delft, HEC Paris. Collaboration on call center staffing with uncertain
parameters, co-supervision of 1 PhD student, 1 published paper.

4.3.6 Distinctions

• M. Excoffier, C. Gicquel, O. Jouini, A. Lisser. A Stochastic Programming Approach for
Staffing and Scheduling Call Centers with Uncertain Demand Forecasts. Finalist for the
Best Paper Award. ICORES, Angers, France, 2014.

• Merit based scholarship from TÜBİTAK, The Scientific & Technological Research
Council of Turkey, 2007.

• O. Jouini, Z. Aksin and Y. Dallery. Call Centers with Delay Information. Honorable
mention for the excellence in paper content. IESM Conference, 2007, Beijing, China.

• O. Jouini, M.S. Aguir and Y. Dallery (Ecole Centrale Paris), Z. Aksin and F. Karaesmen
(Koç University), F. Chauvet, R. Nait-Abdallah and T. Prat (Bouygues Telecom). Improv-
ing Call Center Operations at Bouygues Telecom. Semi-Finalist for the INFORMS
Edelman Award, 2005.

5 Teaching Activities

My teaching and student supervision activities belong to the teaching department Science de
l’Entreprise at Ecole Centrale Paris. I am involved in the following programs: the engineering
program (1st, 2nd and 3rd year levels), the master of science in industrial engineering OSIL, the
professional master on supply chain MIPSC, and the professional master on purchasing PMTI.
The hourly volume I teach per year at Ecole Centrale Paris is around 135. The details for the
courses I am responsible on at Ecole Centrale Paris are given in Table 5. I also regularly give
lectures in operations management for undergraduate students at EMLyon and Neoma Business
School (around 18 hours per year), and doctoral lectures in stochastic processes at HEC Paris
(around 21 hours per year).

I would like to underline the coherence between my teaching and research topics. I think
that this coherence has and will have an added value on both activities. On the one hand, it
allows to continuously enrich the contents treated in my lectures. On the other hand, it allows
me to improve the communication of my research work by popularizing it.

For the different programs at Ecole Centrale Paris, I supervise each year professional projects,
innovation projects, national and international internships in companies, and national and in-
ternational internships in academic institutions. This corresponds to about 100 hours per year.
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Table 5: Summary of the courses I am responsible on at Ecole Centrale Paris

Course Program Volume Period

Processus stochastiques et files d’attente 2nd year 36h Since 2008

Modèles stochastiques et applications 3rd year - OSIL 24h Since 2014

Modélisation et simulation des systèmes
de production

3rd year - OSIL -
MIPSC - PMTI

24h Since 2009

Prévision de demande 3rd year - OSIL 24h Since 2010

Introduction au génie industriel 1st year 6h Since 2008

Jeu de supply chain MIPSC 12h Since 2009

Decision aid tools PMTI 9h Since 2010

6 Administrative and Editorial Activities

6.1 Administrative Responsibilities

• From 2010 to 2013: Co-manager of the professional master PMTI (Purchasing Manager
in Technology and Industry, 100% in English) with Eric David at Ecole Centrale Paris:

- Definition of the program (lecturers, case studies, industrial visits, seminars, etc.)

- Recruitment of the professors

- Coordination of the link with the company partners of the master

- Coordination of the link with the department of studies at Ecole centrale Paris

- Recruitment of students, population of 20 students

- Accompanying the student for their choice of projects, internships, career orientation,
etc.

- Distinctions delivered by SMBG: The innovation award in 2011; second rank for
the launching program in 2012; Second rank among French purchasing programs in 2013.

• June 2012: Chair Organizer of the EURO Workshop on Stochastic Modeling at Ecole
Centrale Paris, http://www.lgi.ecp.fr/StochMod2012/pmwiki.php

- 70 participants

- Advertisement for the workshop

- Managing of the workshop budget, registration, social program, transportation, etc.

- Organization of the plenary talks

- Coordination of the abstracts review process.
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6.2 Editorial Activities

• Since 2010: Member of the Editorial Board of the journal International Journal of In-
formation Systems in the Service Sector.

• Since 2012: Associate Editor for the journal IMA Journal of Management Mathematics.

• 2013: Organization of a special issue on "Operations Management in Service Systems" for
the journal IMA Journal of Management Mathematics, with Zied Babai (Kedge Business
School).

• Since 2014: Associate Editor for the journal Supply Chain Forum, an International
Journal.

• Reviewing of proposals: I am involved in the review process of the following research
councils:

- ANR (Agence Nationale de la Recherche), France

- NWO (The Netherlands Organization for Scientific Research), The Netherlands

- CNCS (National Research Council), Romania

- Canadian Network of Centres of Excellence, Mitacs Proposals, Canada.

• Reviewing of papers. I regularly review papers for the following journals:

- Management Science

- Manufacturing & Service Operations Management

- Operations Research

- Productions & Operations Management

- International Journal of Production Economics

- European Journal of Operational Research

- IIE Transactions

- Journal of the Operational Research Society

- International Journal of Production Research.
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Overview on My Research Activities
In what follows, I give an overview on my research activities. I describe their progress over time,
the link between them, as well as their context (PhD thesis, collaboration with colleagues and
companies, research contract, etc.).

My research activities started when I joined Ecole Centrale Paris in 2002 to carry out my
master of science in industrial engineering within Laboratoire Génie Industriel (LGI). I started
thereafter a PhD and received my degree in 2006. For both of them, my master and PhD,
my research results concerned the analysis and optimization of the Bouygues Telecom call cen-
ter, under the supervision of Yves Dallery. I have worked on strategic and operational issues
proposed by our partners from Bouygues Telecom, namely Fabrice Chauvet and Rabie Nait-
Abdallah (research and development), and Olivier Belma and Thierry Prat (information and
telecommunication systems). I have also contributed to the literature on the analysis of queue-
ing systems. We addressed theoretical questions that are motivated by the issues encountered
during the quantitative analysis of call center models.

After my PhD, I was appointed in 2007 as a teaching and research assistant with the same
group LGI. I belong to team 2 of LGI Decision Aid for Production and Service Systems and
my concern is related to the first research project of Team 2 Service Operations Management. I
have continued after my PhD to work on call centers by considering a broad panel of call center
operations management (OM) issues thanks to our industrial partners (Bluelink, Interact-iv.com,
Digiway Consulting, etc.), and to the colleagues Ger Koole (VU University Amsterdam) and
Zeynep Aksin (Koç University) that I have frequently and regularly visited from 2007 to 2009.
During that period, Ger Koole has also spent several months at LGI as a visiting professor.

Starting from an OM issue, my approach consists of first building a stochastic model, and
then developing a quantitative analysis to obtain response elements for the addressed question.
I was then often confronted to challenges related to the theory of stochastic processes. This have
motivated me to attempt to contribute to that literature in order to serve not only my specific
call center issues, but also a wide range of service system situations.

In 2007, I obtained with Zeynep Aksin a merit based scholarship from TÜBİTAK (the
scientific and technological Research council of Turkey). This helped us to continue our projects
on the analysis of call centers with customer delay information. At the same time, I was closely
collaborating with Yves Dallery, Ger Koole and also Auke Pot from VU University Amsterdam.
We have mainly worked on call routing issues. We have been also in contact, Ger Koole and I,
with Bluelink (the service provider of Air France KLM) and Digiway Consulting (a consulting
company for call centers). The latter gave us valuable data and motivated us to work on agent
planning problems with parameter uncertainty. Thanks to a funding from the China Scholarship
Council, we have launched the PhD thesis of Shuangqing Liao on this subject in 2008. We have
collaborated for the supervision of the PhD thesis with Christian van Delft from HEC Paris who
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is an expert of stochastic programming. Shuangqing has defended her PhD in 2011.
During 2008, I pursued a postdoc at University of Minnesota with Saif Benjaafar, where I

have worked on the analysis of queueing systems with a finite number of heterogenous arrivals,
with application to event-driven service systems. Since then, I continued to work with Saif on
this topic. In 2010, his PhD student Rowan Wang joined us to work on related extensions.
During the same year, they both visited me two months at Ecole centrale Paris.

After my postdoc, I came back to Ecole Centrale Paris, and I was appointed there in 2010 as
an assistant professor. In 2010, I obtained a funding from Interact-iv.com, which is a company
working on software and hardware solutions for call centers. The funding served to launch the
PhD thesis of Benjamin Legros on routing problems for multi-skill and multi-channel call centers.
This allowed to intensify my results on call center operational issues, and also theoretical results
on queueing systems. Benjamin has defended his PhD in 2013. In 2010 and 2011, I have worked
with Ger Koole and his PhD student Alex Roubos on the modeling of customer abandonment
times. With Alex, I have also worked on the performance analysis of multi-class queueing
systems.

Later on, in 2012, I obtained with Céline Gicquel and Abdel Lisser from Université Paris
Sud a PhD funding from Digiteo that allowed us to recruit Mathilde Excoffier and continue the
work on the rich problem of planning using further stochastic optimization approaches. In 2012,
I also obtained a funding from Agence Nationale Recherche, thanks to which, I have recruited
in 2013 the two postdocs Benjamin Legros and Mahdi Fathi and I have continued to extend my
work on call centers operational problems.

In summary, after my PhD, I have extended my work and contributed to the literature on
various call center issues. In parallel, I continued to contribute to the theoretical literature on
stochastic processes with application to services that can be modeled as queueing systems. This
has allowed me to make a step by step progress towards reaching my research objective which
is to contribute to the literature on stochastic modeling and operations management of service
systems.

Recently, in 2013, I have started to work on emergency department operations under the
PhD thesis of Karim Ghanes. We obtained for it a funding from Agence Régionale Santé Ile-
de-France. We are since collaborating with real emergency departments on the optimization of
resources and processes. An emergency department is a complex service system with important
human features and societal impacts. This constitutes for me an excellent opportunity to carry
on my progress on contributing to the OM of service operations.

I described above the timeline of my past research. In the remaining parts of the dissertation,
I describe the structure of my research and synthesize the results. Part II summarizes my
contributions to the literature on the operations management of call centers. Part III summarizes
my theoretical contributions to the analysis of stochastic processes. The chapters of Parts II
and III start with the motivation and the positioning of my contributions within the existing
literature, and end with short-term avenues for future research. Finally, Part IV summarizes
my ongoing work and research perspectives.



Part II

Operations Management in Call
Centers
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Call centers, also known as telephone, customer service, contact or customer interaction
centers, have emerged as the primary vehicle for firms to interact with consumers, transforming
consumer service jobs once characterized by variety and personal relationships into routinized
and high speed operations. Call centers are used to provide services in many areas and industries:
banks, insurance companies, emergency centers, information centers, help-desks, tele-marketing
and more.

The continued growth of both importance and complexity of modern call centers has been
came along an extensive and growing literature. Numerous related academic surveys focusing on
various disciplines were published. The main disciplines related to call centers are Mathemat-
ics and statistics, operations research, operations management, information technology, human
resource management, as well as psychology and sociology.

My contributions, synthesized in this part, are pertaining to the operations management liter-
ature on call centers. My general objective is to take a step back and enhance our understanding
of the complex environment of call centers, so as we gain useful guidelines for practitioners. To
the contrary to traditional work where usually a pure queueing analysis is performed, my re-
search approach consists of developing and analyzing stochastic models that incorporate both
customer and agent behavior key features. In call centers, customers and agents are human
beings, and the human element is shown to have a significant impact on system performance.
Therefore, incorporating human behavior into the quantitative analysis of models would yield
more realistic and useful insights.

We distinguish three main issues dealing with the operations management in call centers.
The first issue involves strategic or long-term decisions for the design of the facility. The second
issue is related to medium-term aggregate planning of services. The third issue deals, in turn,
with short-term decisions made on a daily or weekly basis. As illustrated in Figure 2, my
research results are related to literature streams on these three decision levels, in addition to
the literature on call center modeling. 

Multi-skill call centers, full-flexible call centers (Chapter 2) Multi-channel staffing (Chapter 3) Delay information (Chapter 4) Call routing (Chapter 5)  
Call center modeling (Chapter 1) 

Design issues Personnel planning issues Operational issues  
Figure 2: My contributions to the operations management literature of call centers



Chapter II.1

Modeling of Call Centers

1 Introduction

A call center is a service system. It is a facility designed to support the delivery of some interac-
tive service via communications channels. The definition of a call center is continuously changing
with technological development, but the core fundamentals of a customer making a call (via a
phone, email, web site, fax or Interactive Voice Response) to a center (collection of resources)
will remain constant. Due to the uncertainty governing the call center environment (customers
and agents behaviors), the literature has standardly addressed its issues using stochastic models,
and in particular queueing models.

This chapter summarizes my contributions to the literature on call center queueing modeling.
After introducing a brief background, I describe my contributions on the performance indicators
for call centers with customer impatience. The importance of modeling abandonments in call
centers is emphasized by Garnett et al. (2002), Gans et al. (2003), and Mandelbaum and Zeltyn
(2009). Empirical evidence regarding abandonments in call centers can be found in Brown et al.
(2005) and Feigin (2005). This work has been done with Ger Koole and the PhD student Alex
Roubos. Based on real-life data, we propose new models for the patience time distribution.
We also study a number of different service level definitions, including all those used in prac-
tice. Through a quantitative analysis, we emphasize for call center managers the importance of
choosing the right metrics.

2 Call center Background

The most important call centers equipments are the Interactive Voice Response (IVR), the Au-
tomated Call Distributor (ACD), and the Computer Telephone Integration (CTI). These tech-
nologies have grown cheaper, more reliable, and more sophisticated. Moreover, these advances
enabled various call center tasks which require multiple skills and channels.

In multi-skill call centers, the call assignment strategy of Skills-Based Routing (SBR), is
used to assign incoming calls to the most suitable agent. The report of Holman et al. (2007)
made on 2500 call centers in 17 countries with 475,000 employees points out that 56% of call
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centers use SBR strategies. These strategies are an enhancement to the ACD systems. Next, the
development of alternative channels goes together with an adaptation to impatient customers
with higher expectations. The recent report of ICMI (2013), based on the analysis of 361 large
contact centers, presents the increasing use of new channels and the related research issues. In
particular, it points out that outbound tasks require intensive integration with inbound ones in
most call centers. Although the inbound calls remain present in most call centers (98%), emails
are also widely used (89%). Moreover, outbound calls (76%), Web (70%) and chats (40%) are
important and developing channels.

Figure II.1.1 depicts an operational scheme of a simple call center as a queuing system. The
trunk lines connect calls to the center while a group of agents serve incoming calls. An arriving
call that finds all the trunk lines occupied receives a busy signal and is blocked from entering the
system. Otherwise it is connected to the call center and occupies one of the free trunk lines. If
some of the agents are available, the call is served immediately. Otherwise, it waits in the queue
for an agent to become available. Callers who become impatient hang up, or abandon, before
getting into service. Some of the blocked and abandoned calls become retrials that attempt to
reenter service. The remaining of them are lost. Finally, it is also possible that served caller
may return to the system.

 

queue 

returns 

abandon 

lost calls 

agents 
lost calls 
 
busy 

retrials 

retrials 

arrivals 

Figure II.1.1: Operational scheme of a simple call center

Key performance indicators (KPIs) are critical for the successful management of call centers.
The right metrics identify the causes of problems and generate solutions that change the results.
It is almost impossible to develop a universal set of KPIs that will work equally well in every
situation in every call center. Every business unit is different, with its unique structure and
problems. Still, it is possible to formulate a set of KPIs useful for most call centers. Correct
measurement of such KPIs will offer call center managers valuable information.

KPIs can be classified into two families: those that are product related and those that
are process related. Product-related metrics are performance indicators mostly related to the
content of the call, while process-related metrics are performance indicators that are related to
call center operations. The most well-known call center product-related metrics that managers
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can use to improve customer experience are: First Call Resolution; Turnover; Attendance and
Punctuality; Contact Quality; and Customer Satisfaction. The most familiar process-related
metrics used in call centers are: Probability of Blocking; Probability of Abandonment; Short
Abandonments; Service Level; Average Speed of Answer; Longest Delay in Queue; and Agent
Occupancy.

On the one hand, basing an entire service strategy on the number of calls handled per hour or
on the average speed of answer will inevitably lead to shortcomings in the quality. On the other
hand, focusing too strongly on quality metrics while disregarding process-related measurements
can still have an adverse effect on customer experience.

3 Performance Indicators with Impatience

We focus in what follows on metrics related to queueing delays. These are classic process-related
metrics that lie at the heart of effective call center and customer relations management. They are
the clearest indication of what customers experience when they attempt to reach the call center.
We in particular focus on metrics related to the important feature of customer impatience.

One important point has to be clarified before impatience can be included in queueing
models. That is, we need additional information concerning the patience, the willingness to
wait until service commences. Similarly as for the input of the Erlang C model (simple queue
with Markovian assumptions), the patience has to be determined from historical data. However,
a number such as the average patience cannot be determined by simply averaging over the
abandonment times. Indeed, the time at which other calls got connected tells us something about
their patience, which should be taken into account. Statistical techniques exist to deal with these
so-called censored data. Not using these methods can lead to a significant underestimation of
patience, because the abandonments occur mostly among the very impatient customers. We
conduct a statistical analysis on real call center data in order to characterize the statistical
distribution of times before abandonments.

By taking abandonments into account, the computations become more difficult. Moreover,
even when patience times are assumed to have an exponential distribution (the Erlang A model),
there exist only expressions for some metrics, such as the conditional waiting time given service.
In this work, we give a comprehensive list of the metrics including abandonments, and explicitly
derive the expressions for the probability distributions of these metrics. By doing so, we obtain
existing results and derive new ones, such as the conditional waiting time given service of the
customers who do not have short patience times.

3.1 Statistical Analysis and Modeling of Abandonments

To analyze the patience, we need to know how long customers have spent waiting, and whether
an abandonment occurred at the end of the waiting time. From customers that have abandoned,
we know exactly what their patience is. However, from customers that did not abandon (but
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received service), we only know that their patience is greater than the time they have waited.
To be more precise, we observe the minimum of the patience and the virtual waiting time, and
we also know which one we observe. This is called right-censored data. Techniques exist to deal
with censored data, one of which is the Kaplan-Meier estimator (see Kaplan and Meier, 1958).
In our statistical analysis, we use data obtained from several real call centers. The data originate
from a large banking call center located in the US, from a bank located in the Netherlands, from
a bank located in Israel, and from a Dutch university medical center.

The result of the Kaplan-Meier estimator is the empirical cumulative distribution function
F (t) of the patience. By taking the derivative we can obtain the probability density function
f(t), and the hazard rate h(t) = f(t)/(1−F (t)). The empirical hazard rates are smoothed three
times using a moving-average filter with a span of five, to produce better-looking lines. The
patience on all four data sets can, for the most part, be characterized in the same way. In the
first couple of seconds the hazard rate is high, indicating very impatient customers who are not
willing to wait at all. The hazard rate quickly becomes constant thereafter, which suggests that
the patience from then on is exponential.

Model 1: A way to model this customer behavior is to extend Erlang A by including the
possibility of balking. Let T denote the random variable measuring the patience times. The
distribution of T consists of a discrete mass at zero corresponding to very impatient customers,
and a remaining exponential distribution for customers with a positive patience. We denote by α

the probability that a customer, arriving to a busy system, will immediately balk. This feature
models a non-negligible portion of the customers who immediately hang up once they know
that they have to wait for service. On the other hand, with probability 1 − α, customers who
find a busy system will accept to join the queue. For these customers, the patience thresholds
are independent and exponentially distributed with rate γ. Hence, the cumulative distribution
function is FT (t) = α + (1 − α)(1 − e−γt), for t ≥ 0.

Model 2: Another way to model customer patience is by the hyperexponential distribution
with two phases. The hyperexponential distribution is a mixture of two exponential distributions
such that with probability p it is exponential with parameter γ1 and with probability 1 − p it
is exponential with parameter γ2. If T is hyperexponential, its cumulative distribution function
FT is given by FT (t) = p(1 − e−γ1t) + (1 − p)(1 − e−γ2t), for t ≥ 0. The statistical analysis shows
that the hyperexponential distribution fits the empirical patience very well. The parameters of
the random variable T are obtained by minimizing the mean squared error between F (t) and
FT (t).

3.2 Analysis of Call Center Metrics

Consider a call center model with a single class of customers and s statistically identical, parallel
servers. We assume that arrivals follow a Poisson process with rate λ, and that service times
are exponentially distributed with rate µ. The queueing discipline is first-come first-served
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SL1
# answered ≤ τ

# offered

SL2
# answered ≤ τ

# offered − # short abandonments

SL3
# answered ≤ τ

# offered − # abandoned ≤ τ

SL4
# answered ≤ τ

# answered

SL5
# virtually answered ≤ τ

# offered

SL6
# sojourn in queue ≤ τ

# offered

SL7
# abandoned

# offered

Table II.1.1: Service levels.

(FCFS). In addition, we let customers be impatient. As discussed earlier, we denote by T the
random variable measuring patience times, and we consider two different ways to model T . Let
τ be the acceptable waiting time and a be the threshold of short abandonments. In practice,
reasonable values for τ and a are for example 20 and 5 seconds, respectively. For some managers,
customers who immediately balk or those who enter the queue and quickly abandon before a

are not really considered as unsatisfied. Therefore, such customers may not be accounted for in
the service-level metric of the call center.

In Table II.1.1, we define seven service levels. We denoted them by SLi, for i = 1, . . . , 7. We
present them, as is customary in call centers, in terms of the numbers of calls that arrive in a
certain time period.

What should be the right metric? SL1 and SL4 do not give information about abandonments.
SL5 is hard to understand by managers and is also not directly measurable using historical data.
For this reason it is, according to our experience, never used in call centers. However, this
service-level definition dominates the Erlang A literature. SL6 does not differentiate between
waiting prior to service or to abandonment. SL7 does not give information about waiting.

SL2 and SL3 exclude short abandonments which is a good aspect. The main drawback
of these two metrics, similarly to all other metrics that use the parameter τ , is that they do
not give any information on how long callers that have exceeded τ still have to wait. They
entice managers to give priority to callers who have not yet reached the acceptable waiting time,
thereby increasing even more the waiting time of callers that have waited longer than τ . Even
though they have perverse effects, these metrics are regularly used in practice. One way to
avoid unwanted behavior is to add an objective on the performance of the customers who wait
more than τ , or to use a different service-level objective. One possibility is to use the time that
waiting exceeds τ . In contrast with the expected waiting time (the average speed of answer) it
is sensitive to waiting-time variability. Another intuitive and simple solution is to use FCFS in
all cases.
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Let VQ be the random variable denoting the virtual waiting time of a tagged, infinitely
patient customer. In other words if the tagged customer finds a busy system upon arrival, this
customer does not balk, neither abandon while waiting in the queue. Note that “answered”
means VQ ≤ T and “abandoned” means VQ > T . Let WQ be the random variable measuring
the sojourn time of a customer in the queue. This sojourn time will end either as a result of
an abandonment or a start of service. Thus WQ = min{VQ, T}. One may give the expressions
for the service levels in Table II.1.1 as a function of the random variables VQ, WQ, and T . For
example, SL1 = P(VQ ≤ τ, VQ ≤ T ). One may then explicitly derive all service level expressions
using results from Baccelli and Hebuterne (1981) and Zeltyn and Mandelbaum (2005).

In practice, managers usually use SL1 which is not appropriate since we are penalized with
customers who are very impatient. These customers do not really experience frustration. A
better metric would be SL2 which ignores short abandonments. An even better metric could
be SL3 which ignores abandonments within the acceptable waiting time. An additional benefit
from using these last two metrics is shown by the numerical experiments. The required staffing
levels are indeed lower than those for SL1.

To go further and confirm the interest of SL2 and SL3, it is worth to look on the behavior of
the probability of abandonment. We observe that the performance in terms of abandonments
after τ are acceptable for the metrics SL2 and SL3 (while they do need lower staffing levels).
This comment is particularly relevant for large call centers, due to the benefit of pooling on
performance.

3.3 Concluding Remarks and Future Research

We have analyzed various process-related call center metrics that include customer abandon-
ment. We derived new results for new metrics considering short abandonments or abandonments
within the acceptable waiting time. In practice, many managers choose not to count short aban-
donments against the call center performance metrics. Although the models used here are simple,
we have shown their robustness using real call center data.

We have presented two models for customer patience that have a very good agreement with
reality. The method to derive the call center metrics works for empirical patience distributions
as well. The benefit of using our models is that the Markovian property is preserved. This is
especially useful when one wants to consider other service-time distributions.

There are several avenues for future research. It would be useful to extend the analysis to
the case of more than one customer type with non-identically distributed patience and service
times. Another interesting and challenging extension of the current analysis is to consider a
non-stationary arrival process.
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Design of Call Centers

1 Introduction

This chapter describes my contributions to the literature on the design of call centers. The design
of call centers is concerned with structural long-term changes. The strategic decisions involve
the allocation of resources (equipments) as well as the layout and location of the facilities.
Included in this category of decisions are those specificating how to partition customers into
classes and how the different communication channels are to be used for serving the customers:
for example, which types of customers are to be answered by automates, internal agents, external
agents (outsourcing), etc.

There are two important aspects in the design of call centers. The first one deals with the
issue of skills: should agents be cross-trained with all skills (full-flexible call centers) or should
the agents only be trained for a subset of skills? In the later case, what are the subsets of skills
that will be considered and how many agents will have each subset of skills? A typical example
of such multi-skill call centers is an international call center where incoming calls are in different
languages (Gans et al., 2003). Related studies include those by Garnett and Mandelbaum (2001),
Akşin and Karaesmen (2007) and references therein. The second aspect deals with the issue of
the level of pooling in call centers, i.e., are the agents all gathered into a single large team or
are they partitioned into a set of independent teams? This issue is encountered in general in
multi-skill call centers but in particular in full-flexible call centers, i.e., call centers in which all
agents have all skills (all agents are flexible enough to answer all requirements of service).

My research results can be divided into two parts, each of which is related to one of two
above families of strategic questions. My focus was on:

• The analysis of the impact of a team-based organization in call center management

• The study of flexibility in the architecture of skill-based routing call centers.

The motivation for the analysis of team-based organization started with my collaboration with
the French mobile phone company Bouygues Telecom, Yves Dallery, Rabie Nait-Abdallah and
Fabrice Chauvet. The company managers were interested in investigating the benefits of mi-
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grating from a call center where all agents are pooled and customers are treated indifferently by
any agent, towards a call center where customers are grouped into clusters with dedicated teams
of agents. Each cluster is referred to as a portfolio. Customers of the same portfolio are always
served by an agent of the corresponding team. The reason for moving to this organization is
that dealing with teams of limited size allows a much better workforce management compared
to the situation usually encountered in large call centers. Our purpose is then to examine how
the benefits of moving to this new organization can outweigh its drawback (less pooling effect).
The benefit comes from the better human resource management that results in a higher effi-
ciency of the agents, both in terms of speed and in terms of the quality of the answer they
provide to customers. Our analysis is supported by the use of some simple queueing models and
provides some interesting insights. In particular, it appears that for some reasonable ranges of
parameters, the new organization is attractive in the sense that it can outperform the original
organization. The details of the results are given in Section 2.

The application of customer portfolio management had very significant effects in the Bouygues
Telecom call center. The quality of answers has been improved reducing call backs by 25%. The
proportion of disconnected calls (because of a full queue) was divided by 2. And no supple-
mentary agents were hired in spite of the increase of the total number of customers by 15%.
This provides an experimental confirmation of the results and insights presented in this work.
Note also that we published an international patent related to our proposed new call center
organization (Jouini et al., 2006).

I focus in the second part of my work on the design of call centers with multiple customer
types and multiple agent skills. This is the subject of Section 3 of this chapter. In the design
of SBR call centers, one of the key questions for an operations manager is to determine the
appropriate type and level of flexibility. More specifically, the flexibility design problem inves-
tigates skill set design for flexible call center employees, as well as the right mix of flexible and
specialized agents. This was exactly the concern of Bluelink, the call center of the airline com-
pany Air France KLM, but under the specific context of highly asymmetric parameters. With
Florian Grumiller and Bané Jankovic from Bluelink, Yves Dallery and the PhD student Ben-
jamin Legros, our purpose was to develop a novel architecture with limited flexibility for SBR
call centers with asymmetric parameters: unbalanced workload, different service requirements,
a predominant customer type, unbalanced abandonments and high costs of cross-training. The
most well-known architectures with limited flexibility such as chaining fail against such asymme-
try. We proposed a new architecture referred to as single pooling with only two skills per agent
and we demonstrated its efficiency by conducting a comprehensive comparison between this ar-
chitecture and chaining. As a function of the various system parameters, we delimit the regions
where either chaining or single pooling is the best. Single pooling leads to a better performance
than chaining while being less costly under various situations of asymmetry: asymmetry in the
number of arrivals, in the service durations, in the variability of service times, or in the service
level requirements. We also show that these observations are more apparent for situations with
larger number of skills, or for those with larger call center size.
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2 Team-Based Organization

2.1 Context and Motivation

The purpose of my work here is to provide some insights into the impact of internal organization
of call centers on their performance. As mentioned above, it is the result of a collaboration with
Bouygues Telecom. The Bouygues Telecom call center handles an average of 100,000 phone calls
daily. Some of the calls are treated by an automated operator. Agents deal with about 60%
of these contacts. There are also about one million contacts per year handled by mail, e-mail
and fax. We want to investigate the adequacy of migrating from a call center where all agents
are pooled and customers are treated indifferently, towards a call center where customers are
grouped into portfolios. Managers of Bouygues Telecom believe that the challenge is not only to
answer quickly but also to answer customers correctly. In the mobile telephony sector, it is not
rare to see customers switching from one company to another as a consequence of low quality
responses provided by agents. Agents are the interface between the company and the customers;
hence, customer satisfaction is closely linked to agents performance. Managers need to motivate
their employees so that the assistance they provide to customers is efficient, both in terms of
speed and quality of answers. On the other hand, employees need to feel strongly supported by
the company so that the turnover is as low as possible. In fact, turnover means training new
employees, and it implies more costs.

The aim of Bouygues Telecom through migrating into customer portfolio management is
to make agents more responsible towards their own customers. Moreover, partitioning agents
into groups creates competition, which increases agents motivation. These factors result in
overall agents efficiency improvement, both quantitatively and qualitatively. We argue that
these advantages may outweigh the variability that results from the loss in economy of scale
originally associated with the pooled system. Such a managerial approach has been widely
and successfully used in industry and is also likely to be of interest in service. It is one of
the key success factors of the so-called World Class Manufacturing. For example, Schonberger
(1986) refers to it as cellular manufacturing and describes its benefits as follows: "Cells create
responsibility centers where non existed before. The cell leader and the work group may be
charged with making improvements in quality, cost, delays, etc."

2.2 Positioning of My Contributions

Our work is related to two streams of literature, one dealing with pooling and the other with
human factors in queueing systems. While it is easy to see that pooled systems are more effective
than independent ones, this intuition was for a long time based on experience and numerical data
rather than rigorous mathematical proof. Smith and Whitt (1981) are the first to formally prove
this result, when combining systems with identical service time distributions. Benjaafar (1995)
extends theses results by providing performance bounds on the effectiveness of several pooling
scenarios. When we allow service rates in separate systems to become different, combining
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queues can be counterproductive (Whitt, 1999b; Tekin et al., 2009).
The above results do not account for the human element. This takes us to the second area

of literature close to our work. Human element is the main characteristic of call centers and
contact centers. Both customers and agents are people. Even though it is natural to focus on
understanding human behavior, few papers integrate this aspect to analyze call centers and, in
general, queueing systems. One of the first papers is Rothkopf and Rech (1987), which deals
with the question of combining queues. The authors discuss the tradeoff between pooled and
separated systems by including customer reaction and jockeying (a customer can move from one
queue to another). Moreover, they show how separate systems may lead to servers that are more
responsible towards their own customers. It may also allow for a faster service due to the degree
of specialization gained through experience. To our knowledge, they were the first to emphasize
this issue.

Fischer et al. (1999) conclude that call center management requires a mix of disciplines that
are not typically found in organizations. The review of Boudreau et al. (2003) follows through
this new area. They propose a framework which is a fertile source of research opportunities.
They justify by real examples that operations management itself, without human resource man-
agement, can not well analyze systems such as those we are dealing with, and vice versa. In
others words, there is a mutual impact between the two fields, and taking into account this
fact yields to more realistic and precise insights. In particular, Boudreau et al. (2003) consider
that more realistic operations management models need to integrate human factors, such as;
turnover, motivation and team structure. In fact, a team setting allows for better communi-
cation, and may allow for more responsible and motivated agents. Boudreau (2004) underlines
once again the significant opportunities for fruitful research at the boundaries between the tra-
ditional topics of operations management and human resource management. We address this
issue in a call center context. We explore how managing agents by creating separate pools might
lead the agents performing more efficiently.

2.3 Problem Setting

In this section we present the general problem. Consider a company operating a fairly large call
center. The call center provides assistance to the customers of the company. Customers call the
company whenever they need assistance and their request is addressed by a set of agents. We
assume that the call center is operated in such a way that all agents have the same skill.

2.3.1 Current Organization Mode

The call center is operated in such a way that at any time, any call can be addressed by any
agent. So, whenever a call arrives, it is addressed by one of the available agents, if any. If not,
the call is placed into a queue and will be addressed as soon as possible. There is a single queue
and waiting calls are answered on a first come, first served (FCFS) basis. For simplicity, we
assume that the queue has no capacity constraint and that customers do not abandon while
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waiting. Under this organization, the agents have a given efficiency. The quantitative efficiency
is measured by the distribution of the processing times, which represents the time it takes for
an agent to answer a call. Note that the randomness of the processing times comes in particular
from the variety of questions asked by the customers. The qualitative efficiency is measured by
the probability of successfully answering the question of the customer. We assume that if the
call has not been addressed in an adequate manner, the customer will call back to get assistance
from another agent. This concept of call resolution probability was argued by de Véricourt and
Zhou (2005) in a call routing problem. As for the global efficiency of the call center under the
current organization, its positive side comes from the pooling effect. Its negative side is in terms
of human resource (HR) management, given that, it is usually very difficult to have an efficient
management of a large set of agents in a large call center.

2.3.2 New Organization Mode

Let us describe the following new organization mode. The set of agents is split into a set of
independent teams. The teams are homogeneous in the sense that they have the same number
of agents and that all agents have the same skills. In other words, there is no specialization. Let
n be the number of independent teams.

In the new organization, in addition to the partitioning of the total number of agents in a
set of autonomous teams of agents, there is also a partitioning of the customers into a set of
n customer portfolios. Again, this partitioning is done in such a way that the portfolios are
homogeneous. In other words, the overall request coming from the different customer portfolios
are statistically identical. So, whenever a call arrives from a customer of a given portfolio, it is
routed to the corresponding team. The behavior at the team level is then exactly identical to
that described above for the original large call center. This new organization is equivalent to
operating independently n smaller call centers with each call center having its own customers
portfolio.

In the research study we performed with Bouygues Telecom, the size of the original call
centers (total number of agents) was in the order of 2000, and they were considering team sizes
ranging from 40 to 100 agents. Because all agents are not always present, this would mean
that the number of agents simultaneously present in the call center would be in the order of
1000 and the corresponding number of agents present in each team would be ranging from 20
to 50. The reason advocated for moving to this new organization was along the line of the
World Class Manufacturing literature. Namely, that the human resource management could be
performed in a much better way at a small team level rather than at the global call center level.
Agent motivation and responsibility would increase. Performance measures, both quantitative
(processing times) and qualitative (rate of calls successfully addressed), could be examined more
appropriately and could be used for internal team management. Due to the team/portfolio one-
to-one link, a customer not satisfied with the answer he got from the agent would call back
and the additional burden would fall on the same team. Also, the fact that all teams are
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homogeneous would allow for performance comparisons between the different teams resulting in
a "global competition". Incentives could be given to agents based on the global performance of
the team.

2.3.3 Research Objectives

Our purpose is to study the tradeoff between the pros and cons of moving from the original
organization to the team-based organization, also referred to as the portfolio organization. To
do that, we consider a simple stochastic model of the original pooled organization (Figure II.2.1).
This model captures the original behavior of the call center when all agents are pooled. Under
this situation, the call center has a nominal behavior in terms of efficiency (quantitative and
qualitative efficiencies). It achieves a given quality of service (QoS). We actually consider two
different QoS measures: the average waiting time and the 80/20 rule, which is an industry
standard for telephone service (Gans et al., 2003). Under the 80/20 rule, at least 80% of
customers must wait no longer than 20 sec.

 

Arrival processof new calls Departure process of calls successfullyansweredWaiting lineArrival processof calls notsuccessfullyanswered
Team of agents

Delay before calling back
Departure process of calls not successfullyanswered

Arrival processof new calls Departure process of calls successfullyansweredWaiting lineArrival processof calls notsuccessfullyanswered
Team of agents

Delay before calling back
Departure process of calls not successfullyanswered

Figure II.2.1: The generic model

2.4 Analysis of the Efficiency of the Team-Based Organization

We use simple queueing systems and determine the performance measures of interest. The
original call center model is referred to as the Pooled System. The team-based organization is
referred to as the Dedicated System. They are shown in Figures II.2.2 and II.2.3, respectively.
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Figure II.2.2: Pooled System
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Figure II.2.3: Dedicated System
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We start from a Pooled System with a given QoS in terms of the percentage of waiting
less than a given threshold W (t), or the expected waiting time W . The purpose is to evaluate
the required service rate in a Dedicated System with n pools in order to ensure the same QoS
(Wn(t) = W (t) or Wn = W ). The total staffing level, the total arrival rate of first-attempt calls,
and the call back proportion are all held constant. Numerical experiments are shown in Figure
II.2.4(b). We do the same for the required decrease of the call back proportion. The results
are shown in Figure II.2.4. The results show that it is possible to even up the performances of
a Pooled System by slightly increasing the service rate, or by slightly decreasing the call back
proportion.

Percentages of Service Rate Increase
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0 5 10 15 20 25 30 35 40 45 50 n
Wn=0.18 min
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(a) Service rate

Percentages of Calls Back Proportion Decrease
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(b) call back proportion

Figure II.2.4: Experiments

We have performed a more systematic analysis to confirm the robustness of our conclusions.
The results show that migrating towards separated call centers may not be as bad an idea as it
seems. In addition, it would be realistic to assume that the better team management enabled
by the new organization implies an improvement of both parameters. The results show that
by having an improvement on both efficiencies, the required performance improvement on each
one is not as high as when focusing on them separately. For instance, when we migrate to a
Dedicated System with n = 10, we need to increase µn by 3% and decrease αn by about 37%.
In such a case, it should come as no surprise that we improve the performance in the dedicated
systems rather than deteriorate them. Team management effects may change both parameters
and may go beyond the simple fact of outweighing the increase of variability.

Another advantage of the team-based organization is its robustness with respect to errors
in the estimation of the arrival rate of primary calls. We observe that the QoS of the Pooled
System is much more affected than the one of the Dedicated System by an underestimation of
the first-attempt calls arrival rate. Let us give an explanation. Under the original expected first-
attempt arrival rate, the server utilization in the Pooled System is closer to 1 than that in the
Dedicated System. If the first-attempt calls arrival rate is underestimated, the deterioration of
the quality of service is increasing faster when the server utilization is closer to 1, since the queue
becomes less and less stable. This is an attractive feature that gives another strong argument
in favor of the team-based organization.
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3 Flexible Architecture

3.1 Background and Research Objectives

The concept of flexibility is related to the ability of a company to efficiently match its capacity
to an uncertain demand with multiple types. Resource flexibility in call centers reduces to
cross-training agents, which allows to improve both the utilization and the performance. Since
cross-training agents is achieved with higher operating costs, resource flexibility could result in
a tradeoff between performance and cost.

We consider flexibility questions in the context of queueing models for call centers. A wide
literature has focused on contrasting two extreme situations. The full flexible architecture (FF)
versus the the full dedicated (FD) one. On the one hand, FF would require less agents than any
other architecture, in order to reach a given predefined service level. On the other hand, the
agents in FF are too costly and even sometimes impossible to find. As commented by Marengo
(2004), the multilingual Compaq call center certainly could not find or train agents to speak
eleven languages! Full flexibility and full dedication, however, are only two extreme situations.
A well-known intermediate configuration is chaining, first pointed out by Jordan and Graves
(1995). Under chaining, each call type can be assigned to one of two adjacent agent teams, and
each agent can handle calls from two adjacent types. Sheikhzadeh et al. (1998), Gurumurthi
and Benjaafar (2004), and Jordan et al. (2004) prove that chaining, with an appropriate linkage
between demand and resource types, behaves just as well as full flexibility. Wallace and Whitt
(2005) consider the problem of routing and staffing in multi-skill call centers. They again confirm
the principal that a little flexibility (two skills per agent such as in chaining) has the potential
to achieve the performance of total flexibility.

Developing intelligent configurations such as chaining is very interesting for practitioners.
They allow to capture the benefits of pooling by only having a limited flexibility. However,
the robustness of chaining fails in the case of asymmetric demand (Sheikhzadeh et al. (1998)).
By asymmetric demand, we mean different workload intensities and service time requirements,
and also different variabilities in inter-arrival and service times. For such cases in practice,
it is important to develop new architectures that allows from on one hand to account for de-
mand asymmetry, and on the other hand to capture the benefits of pooling with only a limited
flexibility. This is our purpose in this work.

We consider skill-based routing (SBR) call centers with two particular features: demand
asymmetry and costly/difficult agent training. The typical example is that of an European
multilingual call center where customers call from several countries. It is difficult for managers
to find agents speaking more than two languages. For instance, in the call center of Bluelink,
each agent speaks two languages: her own native language and English. Note that this call
center is more interested in agents speaking two languages rather than those speaking three or
more languages. The reason is that the latter often feel themselves over-qualified. They are
therefore likely to leave the company faster than the others, which increases the turnover. The



40 Chapter II.2. Design of Call Centers

workload is also unbalanced ranging from only some few calls from a given country to several
thousand of calls from another country. Another example is post-sales service call centers of
major retailers that are, at the same time, distributors of white goods, telecommunications
products, information technology, but also internet services, photo services or travel services.
We also give the example of retail banking call centers where questions are with regard to savings
or stock exchange for examples. The main characteristics in the previous examples are (i) the
demand is unbalanced, (ii) the required agent skills can be very different which make difficult or
too costly the agent training, and (iii) one may find a predominant and "easy" type of questions
that could be handled by most of the agents without any particular training, for example the
English task in a multilingual call center, account information and simple bank tasks in banking,
order tracking and payment for retailers, etc.

3.2 My Main Findings

Motivated by the prevalence of the flexibility concept in practice, we propose a new organiza-
tional model, referred to as single pooling (SP), where we dedicate a team of agents to each
difficult type of calls, and the easy type of calls have access to all agents from all teams. Balanc-
ing the workload among the agents in this way captures the benefits of pooling without requiring
every agent to process every call type. We do not claim that our model is better than chaining
in all cases, but only in the particular situations of the call center examples above. The value of
our architecture is that it has a low degree of flexibility (each agent handles one difficult type
and the easy task) while behaving in terms of performance as a fully flexible call center. This
is important in practice since additional flexibility often comes at the cost of high operating
overhead.

Using simulation, we conduct a comprehensive comparison between single pooling and chain-
ing. As a function of the various system parameters, we delimit the regions where either chaining
or single pooling is the best. Few of our key findings are highlighted next. Single pooling leads to
better performance while being less costly than chaining under various situations of asymmetry
between the customer types: asymmetry in the number of arrivals, in the service and abandon-
ment times, in the variability of service times, or in the service level requirements. Moreover, we
conclude that these observations are more apparent for situations with a large number of skills,
or for those with a large call center size.

3.3 Modeling

We consider call center models with n + 1 call types (types 0, 1, ..., n). Customer types 1, 2, ...,
n, referred to as also regular types are those requiring specific agent skills 1, 2, ..., n, respectively,
while customers 0 can be handled by any agent without a particular "sophisticated" training as
required for the regular types. In other words, skill 0 is an easy skill. The mean arrival, service
and abandonment rates of customers type i are λi, µi and γi, respectively (i = 0, 1, ..., n). The
agents are organized in homogeneous teams, i.e., all agents from a given team have the same
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set of skills. We only consider agent teams with at most two skills per agent. We define an
economic framework as follows. We assume that skill 0 costs 1, and that skill i costs 1+ti (for
i = 1, · · · , n). For two skills i and j, the cost is 1+ti,j (for i, j ∈ {0, · · · , n}). Since skill 0 is
the easy skill, we assume that ti,0 ≤ ti,j (for i, j ∈ {0, · · · , n}). We focus on the performance in
terms of the steady-state expected waiting time in the queue of each customer type i taken in
service, denoted by Wi, for i = 0, 1, ..., n. We denote the objective service level for a type i by
W ∗

i , for i = 0, 1, ..., n. The two models that we compare in this work are chaining and single
pooling. They are shown in Figures II.2.5(a) and II.2.5(b), respectively.

 

1λ  

2λ  

3λ  

nλ  

1s  

2s  

3s  

ns  

0λ  
0s  

(a) Chaining

 

1λ  

2λ  

3λ  

nλ  

1s  

2s  

3s  

ns  

0λ  
0s  

(b) Single pooling

Figure II.2.5: Call center configurations

3.4 Approximate Numerical Comparison

We numerically compute approximate expected waiting times for single pooling and chaining.
For tractability, we consider Markovian assumptions for inter-arrival and services times, and
customer abandonment is ignored. The objective of this analysis is to obtain some sense on the
effect of the parameters asymmetry on the comparison between the two architectures. A more
comprehensive analysis is thereafter conducted using simulation. We employ a Markov chain
method for the performance analysis of each design.

For single pooling, we first compute the steady-state system probabilities, from which we
deduce the expected waiting time for each customer type. We use a truncation point in the
Markov chain for the numerical computation. Because of the routing mechanism in chaining,
a standard Markov chain modeling is not appropriate. Once an agent completes a service, she
chooses next to service the oldest customer among those in the head of two queues, if any.
A standard modeling only based on the number of customers in the queues can not take this
decision into account. We thus propose to discretize the waiting time of the first in line in each
queue instead of using the number of agents in each queue. The modeling of the first in line
as a tool for analyzing a queueing system was proposed by Koole et al. (2012). We again use a
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truncation point for the computation.

A Real-Life Numerical Illustration: The real example consists of an airline company call
center, located in Australia and handling 4 types of customers: Japanese (type 1), Korean (type
2), Bahasa (type 3) and English (type 0) speaking customers. Customer types are identical
in their requests (flight booking and modification, claims, etc.). The expected service time is
the same for all types, 1

µi
=6.8 minutes for i = 0, ..., 3. An example of the daily arrival rates is

given in Figure II.2.6. For the numerical illustration, we consider a given time interval with the
parameters λ0 = 4.6, λ1 = 7.7, λ2 = 10.1 and λ3 = 1.5. Note that we ignore here several features
such as abandonment, retrial, rejection, agent reservation routing rules, back-office tasks, etc.

Figure II.2.6: Customer arrival rates

This call center uses the SP architecture, where an agent from a given team has skill 0 and
skill i, for i = 0, 1, 2, 3. Let us compare the costs of using SP and chaining. We know from
this call center that the salary per hour of an agent with the easy skill (English) and 1 regular
skill (one of the other languages), is 20% higher than that of an agent with only the easy skill.
Also, the salary of an agent with the easy skill and 2 regular skills, is 16% higher than that of
an agent with the easy skill and 1 regular skill. We then consider that the salary of an agent in
SP is 1.2 and that in chaining is either 1.2 or 1.4 according to her set of skills. Under a service
level constraint (W ∗

i = 0.2 for i = 0, ..., 3), the total staffing costs are 230.2 and 210 for chaining
and SP, respectively. SP behaves better in this example because of the asymmetry in the arrival
rates and also the agents salary structure.

3.5 Synthesis on the Effect of Parameter Asymmetry

In order to obtain a comprehensive understanding of the comparison, we resort to simulation.
As we are interested in the effect of asymmetry of the parameters on performance, we propose
various forms of asymmetry. For customers 0, we measure the relative importance in arrivals and
service durations. We measure the asymmetry between the arrival rates of regular customers,
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and that between service durations. We also consider for customers 0 the asymmetry in the
variability of service times, measured by the coefficient of variation of its distribution. We
define, in addition, other forms of asymmetry in terms of the required service level and also the
time to abandon for customers 0 relatively to those for the regular customers. These effects are
studied in the settings of small and large call centers, and also in the settings of small and large
number of skills. Although the considered forms of asymmetries do not cover all possibilities,
they allow to obtain the main useful conclusions.

The approach to conduct the simulation experiments is as follows. Due to the high number
of parameters, we first run experiments by separately treating one parameter at a time. In a
systematic way, we vary one parameter while holding all the others constant. Second, to assess
the possible interaction effects, we simultaneously vary the values of more than one of them at
a time. For the values of the parameters, we choose wide ranges that allow to cover most of
call center situations in practice. Finally note that in order to have a coherent comparison, we
optimize for each model the total staffing cost under the constraints Wi ≤ W ∗

i , for i = 0, 1, ..., n.
We use greedy heuristics for the simulation based optimization step.

The numerical analysis shows that single pooling performs better than chaining for various
cases of asymmetry. In the case of a predominance of customers 0 and/or an important asym-
metry in the arrival rates of the regular types (captured by V ), SP is more robust than chaining
even for small differences between the costs of a regular skill and that of skill 0. Because of the
blocking effect, the performance of both chaining and SP deteriorates in the asymmetry defined
by the service time duration of customers 0 relatively to that of regular customers. This is more
apparent in single pooling because customers 0 have access to all teams, while in chaining they
do only have access to two teams. We have also observed that SP is more robust than chaining
against an increasing asymmetry between the service times of regular types. Since the teams
under SP are less inter-dependent than under chaining, SP is again preferred in the case of an
asymmetry between the objective service levels. We therefore avoid over-staffing situations that
may happen in chaining.

One may summarize the recommendations and guidelines to call center managers as follows.
The manager choice of a flexible call center design should be single pooling under situations of
asymmetry in arrival and service rates. This holds even for small differences between the skill
costs. This choice more apparently prevails for large call centers and/or in the case of a high
number of skills. However, the choice of the design is highly impacted in the context of call
centers with customer abandonment. Abandonments may affect the system by either increasing
or decreasing the asymmetry of the parameters. In the first case, the preference remains for
single pooling, while it is for chaining in the second case.

4 Concluding Remarks and Future Research

We focused on fundamental problems in the design and management of call centers. In a first
part, we argued how team management benefits, that come from the portfolio/team one-to-one
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link, may outweigh the economy of scale associated with the pooled organization. We studied
partitioning of a large call center into identical and separated call centers, where agents of a
same team are dedicated to one portfolio of customers. We showed that the costs of migrating
towards separated systems are not as important as it may appear. In practice, combining the
benefits of the team-based organization in terms of both improved service rate efficiency and
reduced call back proportion can easily outweigh the loss of the economy of scale. In a future
study, we will extend our models by considering abandonments and limited waiting lines. We
will also try to improve the approximation models discussed here to get more accurate analyzes.

In a second part, we considered the context of SBR call centers with unbalanced workload,
different service requirements, a predominant customer type and high costs of cross-training.
With these asymmetry in the parameters, the well-known existing architectures such as chain-
ing lose their robustness. We proposed the new call center architecture single pooling and
demonstrated its efficiency. SP allows to balance the workload among the agents in a way that
captures the benefits of pooling, without requiring every agent to process every type of call. In a
future research, it would be useful to extend the numerical approximations, of the performance
of SP and chaining, in the case of customer abandonment or non-Markovian assumptions. An-
other interesting work is to generalize the functioning of single pooling in order to avoid the
blocking effect in the case of long service times for the easy skill.



Chapter II.3

Personnel Planning in Call Centers

1 Context and Contributions

This chapter describes my contributions to the literature on call center planning. These have
been done within the PhD thesis of Shuangqing Liao, and under the collaboration with my
colleagues Ger Koole and Christian van Delft. We focus on a call center staffing problem of a
given working day where we take into account the feature of uncertainty in the arrival parameters.

The staffing cost is a major component in the operating costs of call centers. Unfortunately,
uncertainty plaguing the arrival process and the corresponding workloads usually leads to a
complex staffing problem. Traditionally, most call center models in the literature assume known
and constant mean arrival rates, mainly for tractability issues. However, in addition to the usual
uncertainty captured by a stochastic process modeling, real data show another uncertainty in
the process parameters themselves. In this work, we consider the staffing problem of a single
shift call center, in which we allow the mean arrival rate of calls to be uncertain. We model
the arrival process of calls by a doubly non-stationary stochastic process, with random mean
arrival rates. As in the traditional way, a service level constraint limits the waiting time for
inbound calls. In addition to the job of calls, our call center has to process back-office jobs,
such as answering emails. These additional jobs are assumed to be given at the beginning of the
day and have to be processed within the same day, if necessary in overtime. We also allow the
workload of back-office jobs to be random. The possibility of delaying back-office jobs introduces
some flexibility to the daily workforce management. A typical example of our call center is that
of a hospital, or of a government or of a public agency, where inbound calls and back-office
operations are handled by agents in a single shift (during administrative hours). The agents can
be, in real-time, affected to one job type or another depending on the actual workload and the
operating costs.

We model the staffing problem as a cost optimization-based newsboy-type model. The cost
criterion function includes the regular and overtime salary cost and a penalty cost for excessive
waiting times for inbound calls. Our objective is to find the optimal staffing level which minimizes
the total call center operating cost. We consider a multi-period single-shift call center staffing
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problem, with the constant staffing level as the single decision variable. We propose two solution
methodologies. First, we formulate the problem as a stochastic program, by a discretization of
the underlying probability distributions. The second approach relies on the robust optimization
theory. We prove a convexity result of the problem, which allows us to find the optimal solution
via a relaxed real-valued optimization model. We then conduct a numerical study in order to
illustrate the main characteristics of the two approaches and the associated optimal solutions.
In the numerical illustration, we use real data gathered from a call center of a Dutch hospital
that handles inbound calls and emails.

1.1 Positioning of My Contributions

It has become apparent that general queueing systems performance indicators are very sensitive
to the fluctuations of the parameters characterizing the arrival process over time (Ingolfsson
et al., 2007). As a consequence, a stream of research has begun to address the problem of how
call centers can better manage the capacity-demand mismatch that results from arrival rate
uncertainty.

First, the pure statistical forecasting issue has been considered in several papers analyzing
the probability distribution of arrival rates (Avramidis et al., 2004; Brown et al., 2002, 2005;
Weinberg et al., 2007; Shen and Huang, 2008; Aldor-Noiman et al., 2009). Various call center
particularities have been pointed out in these studies. As a second step, the analysis of per-
formance measures of queueing systems with fluctuating arrival rates has appeared. The first
setting concerns deterministic non-stationarity, i.e., some parameters evolve along time accord-
ing to a known dynamics. A direct method of accommodating such time-varying parameters
consists of numerically solving the complex queueing models associated to the transient system
behavior (Ingolfsson et al., 2007; Yoo, 1996). Another intuitive means of accommodating changes
in the arrival rate is to consider piecewise stationary measures over successive intervals, while
reducing the time length of the intervals over which such stationary measures could be applied.
This is the essence of the point-wise stationary approximation (PSA) used in Green et al. (2007).
In a different setting, a few papers have considered the issue of random non-stationarity in the
arrival process parameters. In Jongbloed and Koole (2001), the authors include arrival param-
eter uncertainty via a Poisson mixture model for the arrival process, which allows to model the
overdispersion associated with random arrival rates. Most of existing methods assume indepen-
dent intervals, which would lead to inaccurate results particularly in case of systems that are
overloaded during a certain number of periods.

The last issue concerns the call center staffing optimization problem under non-stationary
parameters. Some models rely on a fixed staffing level methodology: there is no possible flexi-
bility during a daily period and the staffing cannot be updated throughout the day. In Harrison
and Zeevi (2005); Whitt (2006), this problem is solved via a static stochastic program using
a stochastic fluid model approximation. In Jongbloed and Koole (2001), the standard Erlang
formula-type for a fixed staffing approach is generalized through a new Poisson mixture model
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for the arrival process. Robbins and Harrison (2010) introduce uncertainty for parameters via a
discretization of the underlying parameters probability distribution. The approach has also been
applied in the case of a call center with multiple call types in order to investigate the flexibil-
ity introduced by adding a proportion of cross trained workforce (Robbins et al., 2007; Robbins
et al.). The optimal staffing problems in Gurvich et al. (2010) are solved by a chance-constrained
programming approach.

1.2 Problem Formulation

We consider a multi-period single-shift call center staffing problem. The call center handles
various types of jobs: inbound calls as well as some alternative back-office jobs. The mean
arrival rate of inbound calls is allowed to be uncertain. The workload of the back-office jobs is
also uncertain. The inbound calls have to be handled as soon as possible, while the back-office
jobs, such as emails, can be delayed to some extent within the same day. In this section, we
describe the corresponding stochastic minimal cost staffing problem.

Inbound Calls: We model the inbound call arrival process by a doubly stochastic Poisson
process as follows. We assume that a given working day is divided into n distinct, equal periods
of length T , so that the overall horizon is of length nT . The period length in practice is often 15
or 30 minutes. The mean arrival rate of calls during period i is denoted by Λi and is random.
Using the same modeling as in Avramidis et al. (2004) and in Whitt (1999a), we assume that the
arrival rate Λi is of the form Λi = Θfi, for i = 1, ..., n, where Θ is a positive real-valued random
variable. The random variable Θ can be interpreted as the unpredictable "busyness" of a day.
A large (small) outcome of Θ corresponds to a busy (not busy) day. The constants fi model
the shape of the variation of the arrival rate intensity across the periods of the day. Formally,
if a sample value in a given day of the random variable Θ is denoted by θ, the corresponding
outcome of the arrival rate over period i for that day is defined by λi = θfi. The random variable
Θ is assumed to follow a discrete probability distribution, defined by the sequence of outcomes
θl and the associated sequence of probabilities pθl

, with l = 1, ..., L. Finally, we assume that
service times for inbound calls are independent and exponentially distributed with rate µ. The
calls arrive to a single infinite queue working under FCFS.

For period i, let the random variable WTi denote the waiting time of an arbitrary call.
The probability distribution of the waiting time of calls, Pr{WTi ≤ AWT | θ}(v) = Fθ i(v), is
computed using the classical Erlang C results.

Back-Office: We assume that the random back-office workload arrives at the beginning of
the day. As an example, one can think of a call center that stores all the emails of a given
day and handles them the next day. We denote by W the number of agents required to handle
this back-office workload during a single period. The random variable W is characterized by
a discrete probability distribution, defined by the sequence of outcomes wk and the associated
sequence of probabilities pwk

, with k = 1, ..., K.
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1.2.1 Cost Criterion

We consider a single-shift call center. Let us denote by y the number of agents staffed for the
day. All the y agents will be therefore present all day long. We also assume that all agents are
able to handle both types of jobs, calls and back-office jobs. We give priority to inbound calls as
follows. For each period i, if the actual number of agents y is larger than vi(θfi) (the required
number of agents to handle the calls), we assign vi(θfi) agents to calls and y − vi(θfi) agents to
back-office jobs. If y < vi(θfi), all the y agents are assigned to calls. If back-office jobs are not
yet finished at the end of the regular working periods in that day, they are done in overtime.

We define a risk level α is expressed via an associated under-staffing penalty cost denoted
as uα. More concretely for each period i, a proportional under-staffing penalty uα is paid when
the actual capacity y is lower than a sample value of the required agents number vi(θfi). We
assume that each agent gets a salary c per period, the overtime salary is r per agent per period.
As usual, the cost parameters satisfy the ordering c < r < uα for all possible values of α.
The inequality r < uα ensures that inbound calls have the priority over back-office jobs. The
inequality c < r is straightforward.

Since the time-horizon of the considered problematic is significant, the cost criterion of the
formulation is the expected daily total cost associated with the staffing level y, which is expressed
as

C(y) = E

[
C(y, θ, w)

]
=

L∑
l=1

K∑
k=1

pθl
pwk

C(y, θl, wk), (II.3.1)

with

C(y, θ, w) = n c y + uα

n∑
i=1

(y − vi(θfi))− + r

[
w −

n∑
i=1

(y − vi(θfi))+
]+

, (II.3.2)

where x+ = max(0, x) and x− = max(0, −x) for x ∈ R. In Equation (II.3.2), the first term
is the salary of the agents working during regular time. The second term is the under-staffing
penalty cost. The third is the overtime salary.

Under this economic framework, our objective consists of deciding on the optimal value of
y which minimizes the expected daily total cost given by Equation (II.3.1). We prove that the
expected daily total cost function C(y) is convex in y. We then deduce an important property
of the problem: the integer optimal solution is indeed in the neighborhood of the real-valued
relaxed optimal solution.

1.3 Solution Methodologies

We develop two different approaches to solve the staffing problem, according to the availability
of the probability distributions of the random variables. First, under the assumption that
the probability distributions associated with the random variables are known exactly, a direct
stochastic programming approach is applied to Equation (II.3.1), built on the discrete probability
distributions characterizing Θ and W . The second approach referred to as robust programming
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consists of optimizing the staffing level with respect to (w.r.t) the worst case scenarios in a given
uncertainty set.

1.3.1 Stochastic Programming Approach

Assuming that we know the exact probability distributions associated with the random variables
Θ and W , a common approach consists of expressing Equation (II.3.1) as a linear program via
the discrete probability distributions associated with these random variables. For each sample θl

of Θ, we use the associated sample arrival rate in each period i, λi,l = θl fi. The required number
of agents is vi(λi,l). The optimization problem from Equation (II.3.1) can be then formulated
by the following linear program:

Min nc y + uα

L∑
l=1

n∑
i=1

pθl
M−

i,l + r
K∑

k=1

L∑
l=1

pθl
pwk

Nk,l (II.3.3)

s.t. Mi,l = y − vi(θl fi), with i = 1, ..., n, l = 1, ..., L, (II.3.4)

Mi,l = M+
i,l − M−

i,l, with i = 1, ..., n, l = 1, ..., L, (II.3.5)

Nk,l ≥ wk −
n∑

i=1
M+

i,l, with l = 1, ..., L, k = 1, ..., K, (II.3.6)

y, M+
i,l, M−

i,l, Nk,l ≥ 0, with i = 1, ..., n, l = 1, ..., L, k = 1, ..., K. (II.3.7)

In this problem Mi,l represents the difference between the staffing level and the required
agent number in period i for scenario l. The positive and negative part of Mi,l are denoted by
M+

i,l and M−
i,l, respectively. M−

i,l is associated to under-staffing cost in the objective function.
Nk,l is the over-time workload required in order to finish back-office jobs in scenario (k, l). This
overtime induces overtime cost in the objective function. The unique decision variable in our
staffing problem is the staffing level y.

1.3.2 Robust Programming Approach

Robust programming based formulations are often computationally tractable even for large-scale
problems and do not require a probabilistic description of the uncertain parameters.

A main issue of the robust programming implementation is the design of an efficient uncer-
tainty set which fixes the tradeoff between robustness (i.e., protection against the worst case)
and average performance. We consider a robust approach associated with uncertainty sets for
Θ and W . In order to analyze the above robust formulation, we first study the properties of the
optimal value, denoted as C∗(θ, w), of the purely deterministic optimization problem for given
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outcomes θ and w,

Min nc y + uα

n∑
i=1

M−
i + r N (II.3.8)

s.t. Mi = y − vi(θ fi), with i = 1, ..., n, (II.3.9)

Mi = M+
i − M−

i , with i = 1, ..., n, (II.3.10)

N ≥ w −
n∑

i=1
M+

i , (II.3.11)

y, M+
i , M−

i , N ≥ 0, with i = 1, ..., n. (II.3.12)

In this formulation, Mi represents the difference between the staffing level and the required
agent number in period i. The positive and negative part of Mi are denoted by M+

i and M−
i ,

respectively. M−
i is associated to under-staffing cost in the objective function. N is the over-time

workload required in order to finish back-office jobs.

1.4 Insights

In what follows, we comment on the numerical results and summarize the main insights. Some
tradeoff exists between the average cost and the associated standard deviation: Above the
threshold which is the optimal staffing level of SP, the average total cost increases while the
associated standard deviation decreases in y. It is also obvious to see that the under-staffing
probability decreases in the under-staffing penalty uα. For large values of uα, this probability
becomes negligible. Concerning the average cost, SP is as expected the most efficient. This
stems from the fact that for a call center with given distributions of the "busyness factor" Θ and
the back-office workload W , we associate an under-staffing penalty cost uα. The gap between the
optimal staffing levels of the deterministic and stochastic approaches is significant, particularly
when the back-office workload is small. The deterministic approach neither captures the negative
impact of the randomness in arrival rates on service quality, nor on the under-staffing cost.

An obvious benefit from adding back-office jobs comes from the fluctuating shape exhibited
by the call arrival rate as a function of the periods of the days. Since we are considering a single
shift call center, the strongest quality-of-service constraints (corresponding to the period with
the highest arrival rates), tend to force to have a typically high staffing level for the whole day.
Such a level is in fact required for only some periods. Clearly, this situation leads to over-staffing
during the other periods, which can be used without any additional cost in order to handle some
back-office jobs. Also, the variability of the call arrival process can be smoothed by increasing
back-office workload.

2 Concluding Remarks and Future Research

We have developed a single shift call center model with two types of jobs: inbound calls and
back-office jobs. We focused on optimizing the staffing level with respect to the total operating



51

cost of the call center. We modeled this problem as a cost optimization-based newsboy-type
model. We then proposed various approaches to numerically solve it. We underline the necessity
of taking into account the uncertainty in the call demand parameters, which is not often the
case in the majority of existing studies. We also highlighted the pros and cons of the various
solutions approaches. Finally, we showed to what extent the flexibility associated with storable
back-office jobs helps in absorbing uncertainty in the call process.

In a future research, we intend to extend the analysis of this work to a multi-shift setting,
with the possibility of removing or adding agents within the same day. Another interesting
extension would be to consider a global service level constraint for the whole day, instead of
having a period by period constraints.



Chapter II.4

Operational Issues: Call Centers
with Delay Information

1 Introduction

This chapter synthesizes my contributions to the analysis of call centers with delay information.
The interest in prediction and announcement of delays in service systems has intensified as
the call center industry has grown and become technologically sophisticated. Managers have
several objectives in providing such information; modulating demand by signaling times of high
congestion, enhancing satisfaction with inevitable waiting, or both.

Information about anticipated delays is especially important for call centers, because the
queues are invisible (Zohar et al., 2002; Bitran et al., 2008). In such systems, the uncertainty
involved in waiting is high. Upon arrival and during their wait, customers have no means to
estimate queue lengths or progress rate. "Uncertain waits are perceived to be longer than known,
finite waits" (Maister (1985) p. 118) and have been related with lower satisfaction (Taylor, 1994).
Providing delay information is shown to improve satisfaction (Taylor, 1994; Katz et al., 1991;
Hui and Zhou, 1996).

These practical objectives bring with them several challenges, which have motivated my
research on the subject. The challenges can be summarized as (i) estimating real-time delays for
each customer in a stochastic environment; (ii) deciding on what to announce given customer
preferences regarding waiting times and announcements made; and (iii) exploring customer
reactions to announcements. In the first part of my work, I have addressed these three issues for
a single class setting. In the second part, I have addressed only the first two issues, but under
the more general multi-class setting.

The first part of my work is described in Section 2. This work was done with my colleagues
Yves Dallery and Zeynep Aksin from Koç University, and has been supported by the Scientific &
Technological Research Council of Turkey. We analyze a call center with impatient customers.
We study how informing customers about their anticipated delays affects performance. Cus-
tomers react by balking (immediately leave the system upon arrival) upon hearing the delay
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announcement, and may subsequently abandon (leave the system while waiting in the queue),
particularly if the realized waiting time exceeds the delay that has originally been announced to
them. The balking and abandonment in such a system are functions of the delay announcement.
Modeling the call center as an M/M/s+M queue with endogenized customer reactions to an-
nouncements, we analytically characterize the performance measures. The analysis allows us to
explore the role announcing different percentiles of the waiting time distribution, i.e., announce-
ment coverage, plays on subsequent performance in terms of balking and abandonment. We
show how managers of a call center with delay announcements can control the tradeoff between
balking and abandonment, through their choice of announcements to be made.

The second part of my work deals with a more general setting. It is described in Section 3.
The motivation comes from Bouygues Telecom. For their multi-site system, the managers want
to develop real-time delay estimation to use them in routing calls to the various sites. This is a
joint work with Yves Dallery; Rabie Nait-Abdallah and Fabrice Chauvet (Bouygues Telecom);
Mohamed Salah Aguir (ESTI, Tunisia); and Zeynep Aksin and Fikri Karaesmen (Koç Univer-
sity). We consider the problem of estimating delays experienced by customers with different
priorities, and the determination of the appropriate delay announcement to these customers, in
a multi-class call center with time varying parameters, abandonments and retrials. The system
is approximately modeled as an M(t)/M/s(t) queue with priorities, thus ignoring some of the
real features like abandonments and retrials. Delay estimators are proposed and tested in a
series of simulation experiments. Making use of actual state dependent waiting time data from
Bouygues Telecom, the delay announcements from the estimated delay distributions that mini-
mize a newsvendor-like cost function are considered. The performance of these announcements
are also compared to announcing the mean delay. We find that an Erlang distribution based esti-
mator performs well for a range of different under-announcement penalty to over-announcement
penalty ratios.

2 Single Class Setting: Endogenized Customer Reaction

2.1 Context and Motivation

In call center settings, satisfaction with waiting experiences affects customers’ reactions in terms
of balking and abandonment behavior. Delay announcements, through their effects on customers,
may further modulate these customer reactions (Katz et al., 1991; Hui and Tse, 1996; Taylor,
1994; Hui and Zhou, 1996; Munichor and Rafaeli, 2007). When we inform a customer about her
anticipated delay, she will decide right away, either to hang up immediately because she estimates
that her delay is too long, or to start waiting in the queue. For customers who enter the queue,
delay announcements, by reducing the uncertainty, may further have the effect of increasing
patience. However, since perfect announcements are not possible in reality, some customers may
experience longer delays than what has been announced to them. Customers may abandon even
if they had chosen to start waiting. It is natural to expect that such customers would abandon
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in a different way than in a setting without announcements (Feigin, 2005).

It is possible to provide different types of information regarding delays. A common one is to
announce the number of customers ahead. This is not very meaningful in a setting where the
number of servers are unknown to customers, service times are random and where customers
ahead may abandon the queue. A further possibility is to announce some real-time delay estima-
tors based on recent delay experience by customers, as in Armony et al. (2009) or Ibrahim and
Whitt (2009). For settings where the state-dependent waiting time of each new arrival can be
derived, it is possible to give the whole distribution of the anticipated waiting time to each new
customer or to communicate the expected value of the delay distribution, as in Whitt (1999c).
In the type of announcement considered in this work, the call center manager specifies a unique
tail probability for everybody, say 1 − β. The parameter β is a coverage probability based on
which we determine a time x from the waiting time distribution of a newly arriving customer.
The actual waiting time of this customer will be less than that x with probability β. Typically,
the announcement will contain information on x as in“You will wait x minutes".

This type of delay announcement allows the service provider to control the desired reliability
of the announcement by choosing β. In making that choice, the manager considers the following
tradeoff. Informing the customer of short waiting times, which is likely to underestimate the
actual waiting, might lead to less balking but excessive abandonment and reduce the reliability
of the service provider in the eyes of the customers. On the other hand, informing the customer
of large waiting times increases the number of balking customers, but as a result leading to a
system that might allow to serve customers within shorter and reasonable delays. Through a
numerical analysis, we investigate how the ideal percentile should be chosen.

2.2 Positioning of My Contributions

Although the modeling approaches differ from one work to another, the findings usually confirm
the benefits of communicating delays to customers. Guo and Zipkin (2007) is one exception,
where conditions are identified under which more information may hurt the customer or the
service provider. Allon et al. (2011) show the possibility of a strategic self-interested firm that
might choose to provide intentionally vague information to strategic customers to induce de-
sired behavior from them. Our modeling approach, allowing us to capture the link between
the announced value and resulting system performance explicitly, enables us to illustrate that
the service provider could choose delay announcements to induce particular balking and aban-
donment reactions by customers. The idea of controlling the tradeoff between balking and
abandonment through appropriate manipulation of customer reactions, resembles the idea of
selecting the size of a finite waiting space in a queueing system to control this tradeoff (Kolesar,
1984; Gans et al., 2003).

The literature on customers influenced by delay begins with Naor (1969). Focusing on
customer psychology in waiting situations Maister (1985) proposes a set of hypotheses some of
which are tested in the subsequent literature. We rely on the recent review by Bitran et al. (2008)
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and references therein to highlight results from the literature on which we draw in formulating
our model. It is apparent from this review that modeling waiting experiences and generalizing
customer reactions are difficult to do due to the presence of many moderating effects including
personal differences and service context. Call center specific evidence is very limited.

One of the first models is by Osuna (1985) constructing a direct relationship between waiting
time and dissatisfaction or stress experienced by customers during the wait. Elsewhere it is
argued that it is not time but the perception thereof that drives customer satisfaction (Hornik,
1984; Zakay, 1989). It is shown that in settings where customers lack information on the
duration of the wait, people tend to overestimate waiting durations (Taylor, 1994). This implies
higher dissatisfaction with the wait. Information on delays on the other hand shorten perceived
waiting time by customers (Katz et al., 1991; Hui and Tse, 1996). Many have attributed this to
the sense of control that the customer feels about the wait once uncertainty about it has been
removed through an announcement (Taylor, 1994; Katz et al., 1991; Hui and Tse, 1996). Lab
experiments simulating a tele-queue in Munichor and Rafaeli (2007) show that customers prefer
queue position announcements over music or apologies, and react by being more persistent in
holding the line, providing evidence to the idea that progress matters to customers. While a
delay announcement can act like a time guarantee thereby increasing satisfaction as the wait
proceeds to the announced time, exceeding this time will have a negative effect on customers,
reducing their satisfaction (Katz et al., 1991; Kumar et al., 1997).

2.3 Modeling

2.3.1 Model 1: No Delay Announcement

Among the customers who find all agents busy, a proportion α0 immediately balks. For the
remaining customers, there is a proportion α1 who choose to immediately balk too. We attribute
this proportion to uncertainty or ambiguity averse customers. Indirect evidence for this type of
balking can be found in Pazgal and Radas (2008), where it is observed that customer balking
increases in settings with no information on waiting, due to the higher variability in waiting
times estimated by experiment participants in such settings. In Model 1, shown in Figure II.4.1,
there is no time difference between the two balking decisions. A customer who finds all servers
busy will balk with probability α0 + (1 − α0)α1. If she joins, she is willing to wait in queue only
a certain amount of time. If service has not begun by this time she will abandon and be lost.
We assume that her patience threshold is a realization derived from an exponentially distributed
random variable with rate γ′′. Model 1 can be viewed as an M/M/s+M queueing system with
balking. abandonment makes the system unconditionally ergodic for any γ′′ > 0.

We derive the performance measures related to Model 1, by first computing the steady-state
probabilities of the number of customers present in the system, denoted by p(i), for i ≥ 0.
Making use of the PASTA property (Poisson Arrivals See Time Averages), we then compute
the probability of immediate service for a newly arriving customer, defined as P I ; the expected
number of customers waiting in queue, denoted by Lq; the probability of a new arrival to balk,
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Figure II.4.1: Model without delay announcement, Model 1

denoted by P B; to abandon, denoted by P R; and to enter service, denoted by P S . Using
techniques applied in the computation of first passage times in birth-death processes, we also
compute the conditional waiting times, given abandonment and given service.

2.3.2 Model 2: With Delay Announcement

Upon arrival, if less than s customers are in the system, the new customer gets service immedi-
ately. If all agents are busy, we assume that each new arrival has a probability α0 to immediately
balk, before even hearing his anticipated delay. The proportion α0 is identical to that in Model
1 since these customers do not experience any difference between these systems.

Contrary to Model 1, we believe that balking stemming from waiting uncertainty (no infor-
mation) has no reason to be present here, i.e., there is no α1 parameter. Consider a customer,
who finds all servers busy and n (n ≥ 0) waiting customers ahead of her in queue. With proba-
bility 1−α0, she will accept to hear the information provided to her about her anticipated delay.
If she does so, we derive the distribution of her virtual delay which we denote by Dn. It is the
conditional waiting time of a customer that will wait until service begins, given the queue state
n. Then, we communicate to her the delay which corresponds to a given coverage probability β.
Define T as the random variable measuring the initial random patience threshold of customers,
(with probability 1 − α0: an exponential distribution with rate γ). Let dn be the delay we com-
municate to our customer. It means that the queueing delay of the new customer does not exceed
dn with a chance β. The customer balks if her random patience threshold, T , does not exceed
her anticipated delay dn. Let pB(n) denote the probability of this event. Assuming that balking
decisions of successive customers are independent leads to pB(n) = P (T < dn) = 1 − e−γdn ,
for n ≥ 0. So, given that a customer does not balk with probability α0, she may balk with
probability pB(n) in response to the delay announcement.

The resulting model referred to as Model 2 is shown in Figure II.4.2. We use a fixed point
method to get the new parameter of abandonment γ′. It is computed by relating each customer’s
patience to her original one and to the announced delay.

 0(1 )(1 ( ))Bp nλ α− −  
s 

λ  0(1 )λ α−  0λα  0(1 ) ( )Bp nλ α−  'γ  
Figure II.4.2: The new model incorporating delay announcement, Model 2
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2.4 Experiments

We conduct a comprehensive numerical study, in which we analyze the sensitivity of the opti-
mal announcement coverage to various system parameters and compare the performance of the
models with and without delay information. We explore the effect of customer behavior (as
modeled by θ, and the possibility of misperception), the effect of system size, and the effect of
the system load on the announcement coverage in Model 2. We also compare Model 2 when we
announce a delay with coverage β, with Model 2 when we announce the mean delay, as well as
Model 1 where we have no delay announcement.

To analyze and compare Models 1 and 2, it is necessary to establish a framework for compar-
ison. We propose a service level framework, similar to those used for waiting times, to account
for the tradeoffs between balking and abandonment. The decision variable is β. We want to
determine the best β, say β∗, ensuring that no more than δ (in %) of the customers that enter
the queue should abandon. Stated this way, one may choose β∗ = 100% because this would
lead to no abandonment. However, when this is the case, only customers who find at least one
idle server will enter service, thus resulting in very high balking. This is not desirable from a
customer service standpoint. We thus formulate the objective under the service level framework
as follows: min P B

subject to P R ≤ δ.
(II.4.1)

The numerical analysis shows that delay announcement, and in particular announcements
with higher reliability are more important when customer reaction is high (low θ or misper-
ception), when systems are small, when the avoidance of customer abandonments is deemed
essential (strict service level constraint), and when system congestion is high (overloaded sys-
tems under efficiency driven regime). For large systems operating in a quality efficiency driven
regime, abandonment decreases, diminishing the importance of announcing delays, or controlling
the reliability of the announcements being made.

3 Multi-Class Setting: A Newsvendor-Like Approach

3.1 Introduction and Related Literature

This work presents an analysis for the estimation of real-time delays in a multi-class real-life
setting, and then the decision on what to announce given customer preferences regarding waiting
times and announcements made. The setting is that of the large multi-site call center of Bouygues
Telecom handling more than 60,000 calls daily. Calls are handled at several sites, differentiated
by their size but of identical capability in terms of the types of calls that can be handled. This
multi-site system is not equipped with networked routing capabilities implying that each site has
its own queue. An important objective of the real-time delay estimation is to use these estimates
in routing calls to the various sites. The delay estimators we propose below and subsequently
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analyze for the purpose of delay announcement, have indeed been implemented for real-time
routing decisions of calls at the Bouygues Telecom call center. The use for routing purposes is
not explored any further in this work. At the time of study, the call center was highly congested
as manifested by periods with high call retrial. Abandonment probabilities of around 5% were
experienced.

Two different types of analysis have been pursued in papers that deal with prediction and
announcement in queueing systems: the first predicts and announces delays based on tran-
sient queueing analysis (Whitt, 1999c,d; Jouini et al., 2009, 2011) whereas the second considers
announcing real-time delay estimators under a fluid model applicable in large and overloaded
systems (Armony et al., 2009; Ibrahim and Whitt, 2009). The approach herein is closer to the
first. Like in the second approach, it employs a real-time estimation idea, however not directly
for the delays but rather for the underlying model parameters. Since model parameters are
unknown, an approximation that makes use of real-time estimators for the number of servers is
employed. We take the approach of providing simple approximations that are easy to implement
in practice. Real state dependent waiting time data is subsequently used to test the quality of
the developed delay estimators.

Various announcement forms are considered in the literature: delay announcements of the
type "you will wait x minutes", derived from distributions (Whitt, 1999d; Jouini et al., 2009)
delays based on real-time estimators (Armony et al., 2009; Ibrahim and Whitt, 2009) state
occupancy or length of queue information as indirect waiting time announcements (Guo and
Zipkin, 2007; Xu et al., 2007; Aksin et al., 2013), or more general, possibly vague and non-
quantitative announcements (Allon et al., 2011). In this work, we focus on delay announcements
derived from state-dependent waiting time distributions. More importantly, we propose a new
framework making use of a newsvendor-like performance criterion to pick the value to announce
from the estimated delay distribution. This framework enables incorporating asymmetric under
and over-announcement penalties that, compared to symmetric ones, are more consistent with
behavioral evidence. Within this framework, we further propose and test a robust estimator
obtained from a robust optimization formulation of the newsvendor problem.

The current work is among the first to study delay announcements in a service setting
combining modeling analysis with empirical validation. Most empirical work to date comes from
experiments in psychology and marketing that analyze people’s reactions to waiting situations,
with and without information, in call centers and elsewhere (Munichor and Rafaeli, 2007; Pazgal
and Radas, 2008). The papers by Brown et al. (2005) and Feigin (2005) analyze call center data
where delay announcements are present, however pursue a more descriptive analysis than the
one in this work. The recent paper Aksin et al. (2013) is an exception that combines modeling
and empirical analysis in an analysis of delay announcements in a call center.
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3.2 Choosing What to Announce

In choosing a value to announce from the delay distribution, there seem to be a number of simple
options. Labeling the announced delay as da (single value), the realized delay as Dr (random
variable), one may wish to choose da to minimize E[(Dr −da)2]. This would result in d∗

a = E[Dr]
and estimators for the mean delay can be readily used. Another alternative is to choose da to
minimize E[|Dr −da|]. The optimal announcement corresponds then to the median of Dr. If the
delay distribution is approximated by a symmetrical distribution such as a normal distribution,
d∗

a would then be selected as the estimator of mean delay. For non-symmetrical distributions
however, the median must be obtained.

The above approaches penalize under announcements and over announcements similarly and
ignore the fact that under announcements and over announcements are perceived differently.
Our proposed announcement scheme lets the manager choose asymmetric penalties for under
announcing (α per unit time), and over announcing (β per unit time). In this case, the manager’s
decision of what to announce to an A-type customer can be formulated as

Min αE[(Dr − da)+] + βE[(da − Dr)+]. (II.4.2)

Letting γ = α/(α + β), this leads to the following well-known newsvendor problem’s critical
fractile solution (Zipkin, 2000) for the optimal announcement, d∗

a = F −1
Dr

(γ), where FDr (.) is the
cumulative distribution function (cdf) of the random variable Dr.

3.3 Predicting Delays

3.3.1 Predicting Delays for Type A

Consider an M/M/s queue where s denotes the number of servers. Under the assumption that
the service times are exponential and there are s servers, the delay distribution of a customer
who arrives with n waiting customers in front corresponds to the sum of n + 1 independent
exponential random variables with rate sµ. This is an Erlang distribution with n + 1 stages and
rate per stage sµ. Thus, for such an M/M/s system where the number of servers are known,
the delay of the high priority customers will have an Erlang distribution.

In our context, the number of active servers is not known. To approximate the delay dis-
tribution, we propose to approximate the aggregate service rate sµ by the total arrival rate of
all customers λ(t). In relevant applications however, both the arrival rate λ(t) and the number
of servers s(t) may be time varying. In order to obtain a simple point estimate for the arrival
rate at time t, we focus on R(t − τ), the total number of arrivals to service (from all types) in a
time window of (t − τ, t] and propose λ̂(t) = R(t−τ)

τ . The resulting approximation for the delay
distribution is then an Erlang distribution with n + 1 stages and a rate per stage of λ̂(t). We
denote by D̂erl the resulting random variable. We also use a normal distribution with the same
mean and standard deviation in order to obtain a simple formula. The resulting random variable
D̂norm has a normal distribution with mean (n + 1)/λ̂(t) and standard deviation

√
n + 1/λ̂(t).
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3.3.2 Predicting Delays for Types B and C

The delay prediction for type B and C customers is more challenging since those customers
not only wait for customers ahead of them at their time of arrival but also have to wait for
higher class customers who arrive during their wait. The waiting time of a type B customer is
equivalent to the busy period duration in an M/M/1 queue with arrival rate λA and service rate
sµ. As in the previous section since the number of servers and the arrival rates are unknown,
we approximate sµ by λ̂(t) and similarly λA by λ̂A(t) = RA(t−τ)

τ , where RA(t − τ) represents
the arrivals to the system for type A calls in the time interval (t − τ). Note that the call center
technology allows to compute the number of arrivals from any type to the system or to service.
We then adapt the definition of R(.) such that it leads to the best results. We use the number of
arrivals that enter service in order to estimate the system capacity sµ, while we use the number
to the system in order to estimate the arrival rate λA. We therefore obtain the expectation and
the variance of the conditional waiting time denoted by DB of a new customer B, given n1 and
n2 (note that her wait is not affected by the n3). The results for type C customers are similar.

Beyond the moments, the waiting time distribution is difficult to approximate in a simple
way. We propose two approximations. One is a normal approximation with the estimated means
and standard deviations. The other is for the B-type calls and is an Erlang approximation. In
choosing the Erlang distribution we are approximating each busy period by an exponential
random variable with rate (sµ − λA).

3.4 Announcing a Delay from the Estimated Delay Distribution

Recall that the manager’s decision of what to announce to an A-type customer is formulated as

Min αE[(Dr − da)+] + βE[(da − Dr)+], (II.4.3)

leading to the solution for the optimal announcement as d∗
a = F −1

Dr
(γ), where γ = α/(α + β)

and FDr (.) is the cdf of the random variable Dr. Of course, FDr in the above expression is
unknown, and will be replaced by the approximations for A-type customers in Section 3.3.1 to
obtain approximately optimal values for da. In particular, the Erlang approximation then leads
to d∗

a,erl = F −1
D̂erl

(γ), and the normal approximation results in d∗
a,norm = n+1

λ̂(t)
+ z∗

√
n+1

λ̂(t)
, where

z∗ = Φ−1(γ) and Φ−1(.) denotes the inverse cdf of a standard normal random variable.
As another benchmark, we propose a robust estimator that finds the optimal announce-

ment for the worst-case probability distribution with mean (n + 1)/λ̂(t) and standard deviation
√

n + 1/λ̂(t). The Erlang and normal delay approximations make distributional assumptions as
well as assumptions about the distribution parameters. The distribution free robust estimator
which we propose provides a benchmark where the worst case distributional form is found for
the given mean and standard deviation.

We first consider the penalty maximizing (worst-case) delay distribution for a given da subject
to constraints on the expectation and variance values. This is a maximization problem. We then
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consider the worst case delay random variable for a given da. This is a minimization problem.
The above robust optimization formulation is known as a min-max distribution-free procedure in
the context of the newsvendor problem and leads to a surprisingly simple solution (Scarf, 1958;
Gallego and Moon, 1993) for the optimal da. It is given by d∗

a,rob = n+1
λ̂(t)

+
√

n+1
2λ̂(t)

(√
α
β −

√
β
α

)
.

We follow the same approach for the B-type calls.

3.5 Data-Based Validation of Delay Announcements

We explore the performance of delay announcements under the two approximations (Erlang
and normal) for different values of γ = α/(α + β), by comparing them to the corresponding
announcements for the data on state dependent waiting times. This data based validation
allows us to assess the value of the approximations in making delay announcements in a real
call center setting. Thus we show that under all complexities of a real operation, the earlier
tested simple approximations perform well also when used in making delay announcements. We
measure the performance of each estimator with respect to the realized waiting time distribution.

For the A-type calls, we observe from the numerical study that while announcing the mean
delay does quite well for a γ value that is close to 0.5, its performance deteriorates dramatically
as the customers attach a higher penalty to under-announcements. The Erlang approximation
performs well across all γ values. Comparing the normal approximation based announcements
to the robust delay announcement, we observe that once the mean and standard deviation have
been estimated, it is better to use the robust delay announcement, which performs particularly
well for γ values 0.7 and 0.8. For the B-type calls, the relative errors are higher compared to
the A-type ones. This is not surprising due to the increasing level of approximations being
performed both in the data and models. However, the Erlang-based announcement is still quite
good for all γ values, particularly as these are getting higher. Announcing the mean appears to
be the best option for γ values 0.6 and 0.7, but it deteriorates for higher γ values. Thus, without
a good understanding of these penalties, announcing the mean seems risky. We also observe that
the robust delay announcement ensures an average relative error of around 10%. The robust
estimator mostly outperforms the mean and the normal approximation based announcements.

4 Concluding Remarks and Future Research

My contributions here are related to the formulation and analysis of call center models where
anticipated delays are announced to customers upon arrival. In the first part of this work, we
considered a single class call center where informed customers may react to delay information
through balking or abandonment. Our analysis illustrated the tradeoffs between abandonment
and balking that have to be made in choosing the announcement percentile, and demonstrates
the role customer and system parameters play on this choice. In future work, it would be
interesting to empirically describe customers’ reactions in response to delay announcements.
Lab experiments that control for everything else and allow a direct comparison between the
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models with imperfect, and no delay information would be valuable in supporting assumptions
pertaining to balking and abandonment made in the analysis herein.

In the second part of this chapter, I presented my work on estimating delays experienced by
customers with different priorities, and the determination of the appropriate delay announcement
to these customers, in a multi-class real-life call center. The robust delay announcement that
makes use of the moment estimators provides an alternative that protects against the worst case
when such queueing analysis is not available. The idea of a robust delay announcement is new,
and should be explored further in future practice as well as research, particularly in settings
with high complexity and uncertainty like the one we considered.



Chapter II.5

Operational Issues: Optimal Routing
in Call Centers

1 Introduction

This chapter synthesizes my contributions to the literature on the optimal routing of jobs in call
centers. A routing policy, or a scheduling policy, or a discipline of service, determines the rule
of assigning jobs to the agents, upon arrivals or at service completion times. New technology-
driven innovations in call centers are multiplying the opportunities to make more efficient use of
an agent as she can handle different types of workflow, including inbound calls, outbound calls,
emails and chat. However, several issues on the management of call center operations emerged
also as a result of advanced technology. In this context, an interesting question for managers is
how the real-time match of demand (various job types) and agents should be prescribed?

My research results on the scheduling have been motivated by my collaborations with the
mobile phone company Bouygues Telecom and the call center consulting company Interact-
iv.com. My overall objective is to answer the question: how to efficiently share the agent
time between the available job types in order to improve the call center performance? I have
investigated this question for various problem formulations and under various settings of single
and multi-channel call centers. A major part of my contributions on call centers are related
to routing issues. This may explain why this chapter is longer than the previous ones. My
contributions can divided into three parts as described below.

The first part of my contributions is related to the online scheduling for a single channel
multi-class call center of Bouygues Telecom, and is described in Section 2. This has been done
with my colleagues Auke Pot (PhD student) and Ger Koole from VU University Amsterdam,
and Yves Dallery. Modeling our call center as a GI/GI/s+M queue with two classes of impatient
customers (premium and regular), we focus on developing scheduling policies that satisfy a target
ratio constraint on the abandonment probabilities of premium customers to regular ones. In the
Bouygues Telecom call center, managers want to reach some predefined preference between
customer classes for any workload condition. The motivation for this constraint comes from the
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difficulty of predicting in a quite satisfying way the workload. In such a case, the traditional
routing problem formulation with differentiated service levels for different customer classes would
be useless. For this new problem formulation, we propose a family of online queue joining policies.
The principle of our policies is that we adjust their routing rules by dynamically changing their
parameters.

The second and third parts of my contributions deal with the optimal control for multi-
channel call centers. I have collaborated in this work with Benjamin Legros (PhD student)
and Ger Koole. The issues we addressed are originally initiated by the clients (call centers) of
the company Interact-iv.com. In The second part of my work, as described in Section 3, we
consider a multi-channel call center with inbound calls and emails. We focus on the analysis
of a threshold policy on the reservation of agents for the inbound calls. We study a general
non-stationary model where calls arrive according to a non-homogeneous Poisson process. The
optimization problem consists of maximizing the throughput of emails under a constraint on the
waiting times of inbound calls. We propose an efficient adaptive threshold policy that is easy
to implement in the Automatic Call Distributors (ACD). This scheduling policy is evaluated
through a comparison with the optimal performance measures found in the case of a constant
arrival rate.

In the last part, we consider a blended call center with calls arriving over time and an
infinitely backlogged amount of outbound jobs. Inbound calls have a non-preemptive priority
over outbound jobs. The inbound call service is characterized by three successive stages where
the second one is a break, i.e., there is no required interaction between the customer and the agent
for a non-negligible duration. This leads to a new opportunity, not explored yet, to efficiently
split the agent time between inbound calls and outbound jobs. We focus on the optimization of
the outbound job routing to agents. Our objective is to maximize the expected throughput of
outbound jobs subject to a constraint on the waiting times of inbound calls. We develop a general
framework with two parameters for the outbounds. One parameter controls the routing between
calls, and the other does the control inside a call. We then derive various structural results with
regard to the optimization problem and numerically illustrate them. Various guidelines to call
center managers are provided. In particular, we prove for the optimal routing that all the time
at least one of the two control parameters has an extreme value.

2 Online Policies for Impatient Customers

2.1 Context and Motivation

Inspired by a real-life problem, we consider a single channel multi-class call center. There are
two types of impatient customers: premium and regular ones. Given a staffing level, our purpose
is to develop control schemes for arrival calls and idle agents, subject to satisfying a constraint
related to the probabilities of being lost, i.e., the probabilities to abandon. The reason behind
this objective is to translate a desired fairness between customer classes. In Bouygues Telecom,
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the abandonment of any class of customers is equivalent to a loss of goodwill. Both classes are
indeed valuable for the company with a particular preference to the premium class. Having
nearly no abandonments of the premium class and a lot of abandonments of the regular one is
not desirable. The call center would instead prefer to have more abandonments of premium calls
and fewer abandonments of regular ones. This is captured through a ratio of the abandonment
probabilities. The ratio would be typically between 0 and 1. A low value of this ratio would
translate to a strict preference of the company to premium calls. A ratio close to 1 would
however translate an equal preference between the two classes. An intermediate value would
translate an in-between preference.

In practice, managers traditionally handle this problem by separately setting for each cus-
tomer class a constraint on the probability to abandon. The performance of such a formulation
highly depends on the quality of the workload prediction. Several studies (Jongbloed and Koole,
2001; Avramidis et al., 2004) have shown however that the arrival process and the workload are
hard to predict in call centers. Once the actual workload deviates from the predicted one, we
are no longer able to meet the predefined performance constraints. Existing solutions often
rely on static strict priority rules, such as a static strict non-preemptive priority for one class
over the other. If the workload is underestimated, most of the capacity of the system will be
dedicated to premium calls. We may then satisfy the performance constraint of premium calls,
while having a heavily penalized one for regular calls. However, if the workload is overestimated,
the performance of premium calls will be very high and that of regular ones will not profit that
much from the overcapacity.

A new formulation of the routing problem using a target ratio constraint between the service
levels of the two classes would, as a consequence, be a better alternative. It allows to better
control the different situations which may occur (under- or overestimation of the workload).
Satisfying the constraint ratio enables to share as desired the capacity of the system between
the two classes. In addition, this new formulation generalizes the traditional one where we have
a target abandonment probability for each class.

2.2 Related Literature

The most related literature to this work is that on the control of queueing systems. Scheduling
policies have been studied in great depth within the context of queueing systems. A scheduling
policy, or a discipline of service, prescribes the order in which customers are served. Randolph
(1991) classifies scheduling policies into those using online schedule rules and those using static
schedule rules. Each of the above classes of policies can be further classified into two major
classes: agent scheduling and customer routing. We refer the reader to Garnett and Mandelbaum
(2001) for a background.

In what follows, we briefly review existing results about scheduling policies for V-models, as
we consider in this work. Pekoz (2002) addresses the analysis of a multi-server non-preemptive
priority queue with exponentially distributed inter-arrival and service times. She finds and
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evaluates the performance of an asymptotically optimal policy that minimizes the expected
queueing delay for high priority customers. Guérin (1998) presents a model without waiting
queues. The model contains a multi-server station, which receives low and high priority arrivals.
He develops an admission policy for the low priority customers such that the fraction of blocked
high priority customers is bounded and he analyzes the system under that policy. In the context
of call centers, Gurvich et al. (2008) consider a large-scale system under the V-design and
characterize asymptotically optimal scheduling and staffing schemes (as system load grows to
infinity). The optimal scheduling and staffing schemes minimize the staffing costs subject to
satisfying quality of service constraints for the different customer classes. Maglaras and Zeevi
(2005) consider profit maximization for a loss system two-class V-model with pricing, sizing,
and admission control. Milner and Olsen (2008) explore the role that service level constraints
in outsourcing contracts play in settings where the contractor firm has both contractual and
non-contractual customers. Another paper with a similar idea of contract and non-contract
customers is Bhulai and Koole (2003). For a detailed survey of relevant papers considering the
optimal control of the V-model, we refer the reader to Gurvich (2004).

2.3 Framework

2.3.1 Model Description

We model our call center as a queueing system with two customer classes: a premium customer
class A, and a regular one B. The model consists of two infinite queues, say queues 1 and 2, and
a set of s parallel, identical servers representing the set of agents. All agents are able to answer
all customer classes. The call center is operated in such a way that at any time, any customer
can be addressed by any agent. Upon arrival, a customer is addressed by one of the available
agents, if any. If not, the call joins one of the queues.

We consider the family of queue joining. A policy determines the rule of assigning customers
upon arrival to one of the queues. Upon arrival, a customer of any class can be sent to any
queue. That is, each time an arrival A or B enters the system, an individual decision is made
as a function of the system state: assign this new arrival to queue 1 or 2. In other words, we
want to specify that there is no an a priori fixed rule of assigning for example all customers
A to queue 1 and all customers B to queue 2. So queue 1 or 2 may contain a mix of the two
customer types. Finally note that customers waiting in queue 1 have a non-preemptive strict
priority over those in queue 2. Customers waiting in a given queue, are served in the order of
their arrivals, i.e., under FCFS. Also, the priority rule between the queues is non-preemptive
because it is not common in call centers to interrupt the service of a customer and serve another
one with a higher priority.

Inter-arrival times and service times are assumed to be i.i.d. and follow a general distribution.
In certain cases, we shall consider the exponential distribution for successive service times. The
mean service time rates of classes A and B are µA and µB, respectively. In addition, we let the
customers be impatient. After entering the queue, a customer waits a random length of time
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for service to begin. If service has not begun by this time she will abandon (leaves the queue).
Patience times of classes A and B are assumed to be i.i.d. and exponentially distributed with
rates γA and γB, respectively. Following similar arguments, the behavior of this call center can
be viewed as a GI/GI/s+M queueing system.

We denote by m the class of a customer, for m ∈ {A, B}, and by π a scheduling policy. In
the long run, the fraction of abandonments (probability to abandon) of class m is denoted by
Pm

π , and that of all classes by Pπ. We now define our main performance measure, denoted by

cπ. It is the ratio of the probability to abandon of class A over that of class B, i.e., cπ = PA
π

PB
π

.

2.3.2 Problem Formulation

Due to the highly uncertain environment of call centers, it is usually hard to estimate the work-
load within a relative accuracy. We often end up in practice with either an underestimated, or an
overestimated workload. Next, the common practice in call centers is to develop routing policies
that aim to satisfy differentiated service level constraints. In case of a fixed number of agents,
the abandonment probability of each class will be affected by the forecasting error and will
thereafter deviate from the predefined one. Furthermore, the actual service level deviations can
be very different between the customer classes (for example when using strict priority scheduling
policies). This behavior is undesirable for managers because one would lose some given fairness
between customer classes. For any work condition, a manager would like to reach a desired
fairness between customer classes, through an appropriate share of the available capacity.

Based on this motivation, we formulate the following problem. We assume that staffing
has already taken place, such that the number of available agents is known. We aim to develop
scheduling policies that satisfy a target ratio constraint, say c∗, of the abandonment probabilities
between of the two customer classes. In mathematical terms, we look, if at all possible, for π ∈ Π
subject to cπ = c∗, where Π denotes the class of workconserving non-preemptive scheduling
policies.

The target ratio c∗ translates a desired preference between the two customer classes that
we want to reach for any actual workload. The c∗ target formulation generalizes the traditional
formulation where we have a service level constraint for each class. If the workload is quite
correctly estimated, having a target ratio of abandonment probabilities is equivalent to having
a target abandonment probability for each class. In addition if the workload is incorrectly
estimated (under- or overestimated), the capacity of the system is shared over customer classes
in a way that allows to preserve (if possible) the predefined preference between customer classes.

2.4 Online Scheduling Policies

We propose three queue joining scheduling policies, denoted by π1, π2 and π3. Customers in
queue 1 have a non-preemptive priority over customers in queue 2. Customers of a class can
be sent to any queue. Our policies do not anticipate on future events. They just react to the
realization of the ratio that is determined by the history of the process.
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Scheduling Policy π1: The scheduling policy π1 starts identically as a strict priority policy
that gives the higher priority to class A. After the epoch at which the first customer B finishes
her service, we apply the following assignment rule for any new arrival (denoted by the kth

arrival). Let dk be the epoch of that arrival. Let PA
k (PB

k ) be the achieved service level until
dk for class A (B). Let ck be the achieved ratio starting until dk, ck = PA

k /PB
k . If ck < c∗,

then we give high priority to class B, i.e., if the new arrival is class A, it is routed to queue 2,
otherwise, it is routed to queue 1. However if ck ≥ c∗, we give high priority to class A, i.e., if
the new arrival is class A, it is routed to queue 1, and if it is class B, it is routed to queue 2.
An illustration of π1 is shown on Figure II.5.1(a).

Scheduling Policy π2: The scheduling policy π2 starts identically as π1 until the epoch at
which the first customer B finishes service. Let a new arrival enter the system. Under π2, a
customer A is always routed to queue 1. However, the assignment rule of class B customers is
as follows. If ck < c∗, a new class B arrival is routed to queue 1, otherwise if ck ≥ c∗, it is
routed to queue 2. An illustration of π2 is shown on Figure II.5.1(b).

Scheduling Policy π3: The scheduling policy π3 starts identically as policies π1 and π2 until
the first customer B finishes service. Let a new arrival enter the system. Under π3, a customer
B is always routed to queue 2. However, the assignment rule of customers of class A is as follows.
If ck ≥ c∗, then a new class A arrival is routed to queue 1, otherwise if ck < c∗, it is routed to
queue 2. An illustration of π3 is shown on Figure II.5.1(c).
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Figure II.5.1: Queue joining policies

Policy π1 can be immediately obtained intuitively. It allows the achieved ratio to be updated
upon each arrival such that it converges in the long run to the objective. The idea behind π2 is
that we keep always customers of class A in the high priority queue, however when it is necessary,
we assign customers of class B to this queue to improve their service level (which deteriorates
the service level of customers of class A). This allows to increase the transient ratio and keep it
close to the objective. As a consequence, the ratio converges in the long run to the desired value.
Policy π3 can be viewed as another variant. It sometimes allows to penalize class A customers
by assigning them to the low priority queue, which again allows to increase the transient ratio.

One may construct several auxiliary policies similar to the ones above. For example, instead
of changing the priority rule at each new arrival epoch, we only change it at the arrival epoch
of the customer who finds all servers busy and both queues empty. Then, we continue that rule
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until the end of the current busy period. With regard to reaching the target ratio, the latter
class of policies has the same properties as those of π1, π2 and π3. One drawback could be that
they are less reactive to correct the transient ratio.

2.5 Experiments and Synthesis

We consider various numerical examples to cover a wide range of real-life settings. For each
setting we determine [cπA , cπB ] and check that c∗ belongs to this interval. The experiments
show that the target ratio is always met by policies π1, π2 and π3. For each system, the
value of the ratio under policy πA represents a lower bound for the achievable ratio under any
workconserving non-preemptive scheduling policy. We can not do better when considering that
class of policies.

Experiments for class A show that the expected waiting times in the queue are ordered
according to policies πA, π1, π3 and π2. The order π1 then π3 then π2 is expected because of the
general property that FCFS maximizes the expected waiting time of served customers. Policy πA

is the best for the expected waiting time of served customers. An explanation would be related
to the small values of waiting times achieved under that policy. From the experiments, we see for
class B that the expected waiting times in the queue of served customers are ordered according
to policies π1, π2, π3 and πA. One may explain these results through the same arguments used
above.

3 Threshold Policies for Calls and Emails

3.1 Introduction and Related Literature

The objective of this work is the analysis of threshold policies in the context of multi-channel call
centers with inbound calls and emails (back-office jobs). It is undertaken under our collaboration
with call center consulting company Interactiv.com. To limit the necessity to have extremely
accurate forecasts, inbound calls are sometimes mixed with other types of customer contacts
which have a less strict delay requirements, such as emails or outbound calls. This is called
(call) blending. The amount of capacity assigned to the other channels is supposed to adapt to
the number of inbound calls, giving at the same time a good service level for the inbound calls
and a good occupancy of the call center agents.

In Gans and Zhou (2003), it is shown that an efficient assignment policy is of the following
form: outbound jobs should only be scheduled when there are no waiting inbound calls and when
the number of idle agents exceeds a certain threshold that depends on the system parameters.
But the parameters, especially the arrival rate, are often hard to determine. In this work,
adaptive policies are studied, both for systems with a constant (but unknown) arrival rate and
for the more realistic situation of a fluctuating arrival rate. The parameter that is used to update
the threshold is the service level up to that moment, a number which is always available in call
centers. The overall objective is to reach a certain call service level by the end of the day, while
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maximizing the number of emails that are done.

Only few papers focus on blending. Deslauriers et al. (2007) extend the earlier mentioned
papers by having different types of agents. Outbound jobs are served only by multi-channel
(blended) agents, whereas inbound calls can be served by either inbound-only or blended agents.
They evaluate several performance measures of interest, including the rate of outbound jobs and
the proportion of inbound calls waiting more than some fixed number of seconds. Armony and
Ward (2010) present an optimization problem; the objective is to minimize steady-state expected
customer waiting time subject to a fairness constraint on the workload division. They show that
in such a problem, which is close to ours, a threshold policy outperforms a common routing
policy used in call centers (that routes to the agent that has been idle the longest).

Milner and Olsen (2008) consider a call center with contract and non-contract customers.
They explore the common use to give priority to contract customers only in off peaks. They
show that this choice is a good one under classical assumptions (such as stationarity). They
also present examples when it is not. This result is important since we found an insight arguing
that the service level for inbound calls has to be very strictly respected during off peaks.

3.2 Problem Formulation

We consider a call center modeled as a multi-server queueing system with two types of jobs,
foreground jobs (inbound calls) and background jobs (emails). The arrival process of calls is
assumed to be a non-homogeneous Poisson process with rate λ(t), for t ≥ 0. Calls arrive at a
dedicated FCFS queue with infinite capacity. There is an infinite supply of background jobs,
waiting for treatment in a dedicated FCFS queue. There are s agents. Each agent can handle
both types of jobs. We assume that the service times of foreground and background jobs are
exponentially distributed with rates µ and µ0, respectively. The objective of the call center
manager over a working day is to maximize the email throughput while satisfying a constraint
on the call waiting time in the queue.

We then aim to find the best routing rules in terms of efficiency for the considered problem
and easiness of implementation in call center software. We assume that preemption of jobs in
service is not allowed and we restrict ourselves to the case of threshold policies. More concretely,
the functioning of the call center under a threshold policy is as follows. Let us denote the
threshold by u, 0 ≤ u ≤ s. Upon arrival, a call is immediately handled by an available agent,
if any. If not, the call waits in the queue. When an agent becomes idle, she handles the call at
the head of the queue with calls, if any. If not, the agent may either handle an email, or she
remains idle. If the number of idle agents (excluding her) is at least s − u, then the agent in
question handles an email. Otherwise, she remains idle. In other words, there are s − u agents
that are reserved for calls, so, there are at least u agents working at any time.

We propose an adaptive threshold policy which adjusts the threshold as a function of the
process of the call service level. We divide the working day into N identical intervals, each with
length θ. The total working duration in a day is D, D = Nθ. At the beginning of each interval
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i (i = 1, ..., N), we define the threshold ui, 0 ≤ ui ≤ s, under which the job routing policy
works during interval i. Let T denote the expected throughput of emails over the whole day,
i.e., the ratio between the number of treated emails and D. Let also SL be the proportion, for
the whole day, of calls that have waited less than τ . In summary, our optimization problem can
be formulated as  Maximize T

subject to SL ≥ α,
(II.5.1)

where the decision variables are ui with 0 ≤ ui ≤ s, for i = 1, ..., N . It is clear that the best case
for calls is such that ui = 0 for all i, which means that no email is treated and SL is maximized
(case of an M(t)/M/s with only calls). We therefore assume from now on that the parameters
λ(t) for t ≥ 0, µ and s are such that SL ≥ α for ui = 0 (i = 1, ..., N).

3.3 Constant Arrival Rate

We consider a basic case with a constant arrival rate, λ(t) = λ for t ≥ 0 and a constant
threshold, ui = u for i = 1, ..., N and 0 ≤ u ≤ s. The purpose of the analysis in this section is
to understand the behavior of the performance measures as a function of the threshold in order
to build an efficient method for the threshold adaptation rule (ui for i = 1, ..., N) in the case
of a non-constant arrival rate. Since we consider a stationary model we can define a unique
random variable for the waiting time of an arbitrary customer W , and denote by P (W < τ) the
probability that an arbitrary customer waits less than τ (τ > 0).

Equal Service Rates: We consider the case µ = µ0. Let us define the stochastic process
{x(t), t ≥ 0}, where x(t) ∈ {u, u + 1, u + 2, · · · } is the number of jobs in service plus the number
of jobs in the queue of calls. Since µ = µ0, we need not distinguish between the two job types
in service. The process {x(t), t ≥ 0} is a birth-death process. It is similar to that of an M/M/s
queue without the states {0, 1, · · · , u − 1}. The transition rate from state x to state x − 1 is
min{x, s}µ, for x > u, and that from state x to state x + 1 is λ, for x ≥ u. We denote by a the
ratio λ

µ . Also, under the stability condition λ
sµ < 1, we denote by px the steady-state probability

to be in state x ∈ N. We are then able to compute explicitly the email throughput, T (s, u, a),
and the probability that the call waiting time is less than τ , SL = P (W < τ). In Proposition
II.5.1, we prove monotonicity results of the system performance measures as a function of the
threshold.

Proposition II.5.1 For a > 0, the following holds:

1. The email throughput T is strictly increasing and neither convex nor concave in u, for
0 ≤ u ≤ s. The end of the email throughput, for 0 ≤ s − 2 ≤ u ≤ s, is concave in u.

2. The call service level P (W < τ) is strictly decreasing and concave in u, for 0 ≤ u ≤ s.
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Unequal Service Rates: In contrast to the case of equal service rates, the performance
expressions are here too cumbersome to allow the development of useful structural results. The
results are however still useful for the numerical experiments. Our approach consists in using
a Markov chain analysis to derive the steady-state probabilities of the system, from which the
performance measures are characterized thereafter. We only focus on the particular case u = s,
where the most of the job is the manipulation of Erlang and hypoexponential distributions. The
analysis for the case u = 0 is obvious, and that of the remaining cases, 0 < u < s, is done
similarly to the case u = s. It simply adds a finite number of additional equations but does not
impact the general form of the steady-state probabilities.

Numerical Observations: We use the performance evaluation results to find an insight on
how we should adapt the threshold as a function of the intensity of the call arrivals. The objective
is to maximize the throughput of emails while reaching the constraint on the call waiting times
for the whole day. We find that during the periods with low demand, the need of having a good
service level is more important than during the periods with high demand. On the basis of this
observation, we build a method for adapting the threshold. We then evaluate this method by
comparing it with the optimal threshold policy.

3.4 Our Adaptive Threshold Policy (ATP)

We propose for Problem (II.5.1) an adaptive threshold policy which adjusts the threshold as a
function of the call workload. This policy is based on the the first and second order monotonicity
properties of the performance measures as a function of the threshold u, and on the numerical
observation. The threshold is reevaluated at the beginning of each interval i (i = 1, ..., N). The
threshold associated to interval i is denoted by ui. The global service level for the whole day
(all N intervals) is denoted by SL, and the global one from interval 1 to interval i is denoted by
SLi, for i = 1, ..., N .

If SLi is higher (lower) than α at the beginning of an interval i (i = 2, ..., N) then the policy
increases (decreases) the threshold. To update the threshold, we use a real parameter denoted
by ci (i = 1, ..., N). The threshold ui is defined as the closest integer to ci, for i = 1, ..., N . Note
that the parameter ci is chosen to be real in order to smooth the change in the threshold ui.
We start with u1 = c1 = s. For i ≥ 2, if we need to increase the threshold (in case if SLi > α),
then we consider ci = ci−1 + 1 − ci−1/s. If we need to decrease the threshold (in case SLi < α),
then ci = ci−1 − ci−1/s. In the remaining case (SLi = α), we consider ci = ci−1. This policy is
refereed to as ATP.

In what follows, we discuss the efficiency of how ATP updates the threshold. The main two
characteristics of ATP are:

• An Increasing (decreasing) of the threshold in case the measured call service level is better
(worse) than the target service level,
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• A decreasing speed in the increasing (decreasing) of the threshold when this threshold
increases (decreases).

From Proposition II.5.1, we know that the throughput increases and the call service level de-
creases in u. Thus, the threshold should be increased when the measured service level is better
than the target service level, and vice versa. This justifies the first characteristic of ATP.

The second characteristic of ATP is justified by the convexity of the performance measures
and the correlation between them.

Evaluation of the Adaptive Threshold Policy: We evaluate the quality of the ATP policy
by comparing it with the optimal one. First we provide the optimal threshold policy. Because
of the discrete nature of the threshold, one may see that the threshold should vary between two
or more values. The reason is that we need to exactly satisfy the constraint on calls in Problem
(II.5.1) in order to maximize the email throughput. From Bhulai and Koole (2003), we know
that to exactly satisfy the constraint on calls, randomization is optimal for threshold policies.
A randomized threshold policy, between two thresholds u1 and u2 and with a randomization
parameter p ∈ [0, 1], works as follows. At each event (an inbound call arrival or a service
completion), the value of the threshold value changes from u1 to u2 with probability p, stays
in u1 with probability 1 − p, changes from u2 to u1 with probability 1 − p, stays in u2 with
probability p.

The randomization between two thresholds allows for the constraint on calls to be met
exactly. For our system with constant parameters, the randomization is between two successive
thresholds. Since the throughput is neither convex nor concave it is difficult to rigorously prove
this result. For all the considered numerical situations, the optimal policy is a randomization
between two adjacent values when 0 ≤ u∗ < s. When u∗ = s, the optimal policy is to keep
the threshold constant and equal to s. We run experiments with constant arrival rates and
compare the optimal throughput with the one found under ATP. Although ATP is not optimal,
the difference with the optimum is quite small. This shows the advantage of ATP in the case of
constant arrival rates.

3.5 Non-Constant Arrival Rates

We compare ATP with methods that use constant step sizes. We consider cases where the length
of the working day equals eight hours (D = 8h) and a frequent possibility of reevaluating the
real threshold c, at the beginning of each time interval. We consider various interval lengths.
We use simulation to obtain the performance measures.

We propose different scenarios to compare ATP with constant step size methods. We denote
by h the step size (0 < h ≤ 1). When we need to increase (respectively decrease) the real
threshold ci after i intervals (1 ≤ i < N) under the case SLi > α (respectively SLi < α) we add
h to ci (respectively we add −h to ci). In each scenario we use an aversion of risk equal to 100
and initialize the system with c0 = u0 = s. From the numerical experiments, we observe that
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ATP performs better or at least similarly to the constant step methods with an aversion of risk
equal to 100.

����
����
����
��

� � �� �� �� �� ��
�	
��
����������� �

(a) Threshold

����������������������������������

� � �� �� 	� 	� 
�
������������	��� �

��

(b) Service level

���������������������������������

� 	 �� �	 �� �	 ��


����������������
�

�

(c) Email throughput

Figure II.5.2: Evolution of the threshold, the service level and the throughput (Scenario 2)

Figures II.5.2(a), II.5.2(b) and II.5.2(c) give the evolution of the threshold, the proportion
of customers that wait less than 30 seconds and the email throughput as a function of time, in
one simulation of a given scenario. This is an illustration that could help to understand why
ATP is efficient. With a small value of h (h = 0.2), the initialization has an important impact
on the evolution of the threshold. At the beginning with u0 = c0 = s = 28, there is a need to
decrease the threshold. A small value of h does not allow to do this decreasing quickly enough.
Then there is a need to keep on decreasing the threshold in order to have a chance to reach the
service level on calls over the whole day. On the other hand a high value of h (h = 1) goes with
a fluctuation of the threshold, with sometimes bad call service levels and other times bad email
throughput. Note that the higher is h, the faster the service level converges its target.

In summary, the analysis of the performance of ATP under the cases of constant and non-
constant arrival rates shows its efficiency. The main advantage of ATP is its ability to quickly
react when an important change in the arrival process happens and also its ability to avoid
inefficient states when the arrival rate remains constant.
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4 Job Routing with Idling Times during the Call Service

4.1 Introduction

As in the previous section, the work presented here deals with the analysis of multi-channel call
centers. It is also motivated by our collaboration with Interact-iv.com. We consider a blended
call center setting where inbound calls and outbound jobs are combined. As in the previous
section, we want to address the routing problem of outbound jobs to agents (Bernett et al.,
2002; Bhulai and Koole, 2003; Legros et al., 2014a), i.e., as a function of the systems parameters
and the service level constraints, when should we ask the agent to treat outbound jobs between
the call conversations?

The routing question is further important in the context we consider here. We encountered
examples where a call conversation between an agent and a customer contains a natural break. We
mean by this a time interval with no interaction between the agent and the customer. During the
conversation, the agent asks the customer to do some necessary operations in her own (without
the need of the agent availability). After finishing those operations, the conversation between
the two parties can start again. Inside an underway conversation, the agent is then free to do
another job if needed.

For an efficient use of the agent time, one would think about the routing of the less urgent
jobs not only when the system is empty of calls, but also during call conversations. In practice,
such a situation often occurs. For example, an agent in an internet hotline call center asks the
customer to reboot her modem or her computer which may take some time where no interactions
can take place. It is also often the case that a call center agent of an electricity supplier company
asks the customer for the serial number of her electricity meter box. This box is usually located
outside of the house and is locked, so, the customer needs some non-negligible time to get
the required information. Another example is that of commercial call centers with a financial
transaction during the call conversation. After some time from the start of the call conversation,
the customer is asked to do an online payment on a website before coming back to the same
agent in order to finish the conversation. The online payment needs that the customer looks for
her credit card, then she enters the credit card numbers, then she goes through the automated
safety check with her bank (using SMS for example), which may take some minutes. For such
situations, it is natural that the system manager thinks about using the opportunity to route
outbound jobs to an agent during the break of an undergoing call conversation, and not only
when no calls are waiting in the queue. The advantage is an efficient use of the agent time
and therefore a better call center performance. Also, agents become less bored because of the
diversity of activities, and therefore, they are kept from falling into a rut.

In this work, we consider a call center with an infinite amount of outbound jobs. Inbound
calls arrive over time, and in the middle of an inbound call conversation, a break is required.
Given this type of call centers, we are interested in optimizing its functioning by controlling
how the resource should be shared between the two types of jobs. Calls are more important
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than outbound jobs in the sense that calls request a quasi-instantaneous answer (waiting time
in the order of some minutes), however outbound jobs are more flexible and could be delayed
for several hours. An appropriate functioning is therefore that the agent works on inbound calls
as long as there is work to do for inbound calls. The agent can then work on outbound jobs
when she becomes free from calls, i.e., after a service completion when no calls are waiting in
the queue, or during the call conversation break.

4.2 My Contributions

Despite its prevalence, there are no papers in the call center literature addressing such a question.
Most of the related papers only focus on the outbound job routing between call conversations
but not inside a call conversation.

To answer this question, we develop a general framework with two parameters for the out-
bound job routing to agents. One parameter controls the routing between calls, and the other
does the control inside a call conversation. Although this modeling is not optimal, its perfor-
mance measures as shown later are closed to the optimal ones and its routing policy is easier to
implement than the complex optimal routing. For the tractability of the analysis, we first focus
on the single server case. We then discuss the extension of the results to the multi-server case.

For the single server modeling, we first evaluate the performance measures using a Markov
chain analysis. Second, we propose an optimization method of the routing parameters for the
problem of maximizing the outbound job expected throughput under a constraint on the service
level of the call waiting time. As a function of the system parameters (the server utilization,
the outbound job service time, the severity of the call service level constraint, etc.), we derive
various guidelines to managers. In particular, we prove for the optimal routing that all the time
at least one of the two outbound job routing parameters has an extreme value. An extreme
value means that the agent should do all the time outbound jobs inside a call (or between calls)
or not at all. In other cases, the parameters lead to randomized policies. We also solve our
optimization problem by proposing 4 particular cases corresponding to the extreme values of
the probabilistic parameters. We analytically derive the conditions under which one particular
case would be preferred to another one. The interest from these particular cases is that they
are easy to understand for agents and managers. Several numerical experiments are used to
illustrate the analysis.

We then focus on the routing optimization problem for the multi-server case, using simulation
and approximations developed under the light and heavy traffic regimes. We found that most
of the observations of the single server case are still valid, in particular the result stating that
at least one control parameter has an extreme value.

4.3 Positioning of My Contributions

There are three related streams of literature to this work. The first one deals with blended call
centers. The second one is the Markov chain analysis for queueing systems with phase type
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service time distributions. The third one is related to the cognitive analysis, or in other words
the ability for an agent to treat and switch between different job types.

The literature on blended call centers is already given in Section 3.1. We next review some
of the literature on the analysis of queueing systems with phase type service time distributions.
This mainly involves the steady-state analysis of Markov chains and is usually addressed using
numerical methods (Bolotin, 1994; Brown et al., 2005; Guo and Zipkin, 2008). Our approach to
derive the performance measures is based on first deriving the stationary system state probabil-
ities for two-dimension and semi-infinite continuous time Markov chains. One may find in the
literature three methods for solving such models. The first one is to truncate the state space
(Seelen, 1986; Keilson et al., 1987). The second method is called spectral expansion (Daigle and
Lucantoni, 1991; Mitrani and Chakka, 1995; Choudhury et al., 1995). It is based on expressing
the invariant vector of the process in terms of the eigenvalues and the eigenvectors of a matrix
polynomial. The third one is the well known matrix-geometric method (Neuts, 1995). In our
analysis, we reduce the problem to solving cubic and quartic equations, for which we use the
method of Cardan and Ferrari (Gourdon, 1994).

Finally, we briefly mention some studies on human multi-tasking, as it is the case for the
agents in our setting. Gladstones et al. (1989) show that a simultaneous treatment of jobs is
not efficient even with two easy jobs because of the possible interferences. In our models, we are
not considering simultaneous tasks in the sense that an agent can not talk to a customer and
at the same time treats an outbound job. Charron and Koechlin (2010) studied the capacity of
the frontal lobe to deal with different tasks by alternation (as here for calls and outbound jobs).
They develop the notion of branching: capacity of the brain to remember information while
doing something else. They show that the number of jobs done alternatively has to be limited
to two to avoid loss of information. Dux et al. (2009) showed that training and experience can
improve multi-tasking performance. The risk from alternating between two tasks is the loss of
efficiency because of switching times. An important aspect to avoid inefficiency as pointed out
by Dux et al. (2009) and Charron and Koechlin (2010) is that the alternation should be at most
between two tasks quite different in nature (like inbound and outbound jobs).

4.4 Problem Description and Modeling

We consider a call center modeling with s identical agents and two types of jobs: inbound calls
and outbound jobs. The arrival process of inbound calls is assumed to be Poisson with mean
arrival rate λ. We assume to have an infinite amount of outbound jobs that are waiting to be
treated in a dedicated first come, first served (FCFS) queue with an infinite capacity.

We model the service time of a call by 3 successive stages. The first stage is a conversation
between the two parties. The second stage is the break, i.e., no interactions between the two
parties. The third and final step is again a conversation between the two parties. The service
completion occurs as soon as the third stage finishes. We model each stage duration as an
exponentially distributed random variable. We assume that the durations of the three stages
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are jointly independent. The service rates of the first, second and third stages are denoted by
µ1, µ2 and µ3, respectively. An agent handles an outbound job within one single step without
interruption. The time duration of an outbound job treatment is random and assumed to
be exponentially distributed with rate µ0. Upon arrival, a call is immediately handled by an
available agent, if any. If not, the call waits for service in an infinite FCFS dedicated queue.
Inbound calls have a non-preemptive priority over outbound jobs. We are interested in an
efficient use of the agent time between inbound calls and outbound jobs. More concretely, we
want to answer the question when should we treat outbound jobs for the following optimization
problem Maximize the expected throughput of outbound jobs

subject to a service level constraint on the call waiting time in the queue.
(II.5.2)

We propose a simpler model for the routing of outbound jobs to agents. It is referred to as
probabilistic model or Model PM and is described below. Although this model is not optimal,
we numerically show its efficiency through a comparison with the optimal policy (Legros et al.,
2014b). It is moreover easy to implement and to understand by a system manager.

Probabilistic Model (Model PM): We distinguish the two situations when an agent is
available to handle outbound jobs between two call conversations, or inside a call conversation.
Between two calls: just after a call service completion (as soon as the third stage finishes) and
no waiting calls are in the queue, the agent treats one or more outbound jobs with probability
p (independently of any other event), or does not work on outbound jobs at all with probability
1 − p. In the latter case, the agent simply remains idle and waits for a new call arrival to handle
it. In the former case (with probability p), she selects a first outbound job to work on. After
finishing the treatment of this outbound job, there are two cases: either a new call has already
arrived and it is now waiting in the queue, or the queue of calls is still empty. If a call has
arrived, the agent handles that call. If not, she selects another outbound job, and so on. At
some point in time, a new call would arrive while the agent is working on an outbound job. The
agent will then handle the call as soon as she finishes the outbound job treatment.
Inside a call: Just after the end of the first stage of an underway call service (regardless whether
there are other waiting calls in the queue or not), the agent treats one or more outbound jobs
with probability q (independently of any other event), or does not work on outbound jobs at all
with probability 1−q. In the latter case, the agent simply remain idle and waits for the currently
served customer to finish her operations on her own (corresponding to the second call service
stage, i.e., the agent break). As soon as the customer finishes by herself her second service stage,
the agent starts the third and last service stage. In the former case (with probability q), she
selects a first outbound job to work on. After finishing the treatment of this outbound job,
there are two cases: either the currently served customer has already finished her second service
stage, or not yet. If she does, the agent starts the third stage of the customer call service. If
not, she selects another outbound job, and so on. At some point in time, the currently served
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Table II.5.1: Particular cases of Model PM
Model Description

Model 1 p = q = 0, no treatment of outbound jobs

Model 2 p = 1 and q = 0, systematic treatment of outbound jobs only between two calls

Model 3 p = 0 and q = 1, systematic treatment of outbound jobs only during the break

Model 4 p = q = 1, systematic treatment of outbound jobs between two calls and during the break

call would finish her second service while the agent is working on an outbound job. The agent
will then handle the call as soon as she finishes the the outbound job treatment.

We further consider next 4 particular cases of Model PM as shown in Table II.5.1. Although
these models might appear to be too restrictive to solve Problem (II.5.2), we show later their
merit when we focus on the optimization of p and q in Model PM. Moreover, they have the
advantage of being easy to implement in practice, easy to understand by managers, and easy to
follows by agents. Note that in Model 1, the expected throughput of outbound jobs is zero. The
interest from Model 1 is in the extreme case of a very high workload of calls or a very restrictive
constraint on the call waiting time.

4.5 Single Server Analysis

We provide an exact method to characterize the call waiting time in the queue and the outbound
job expected throughput for Model PM and its extreme cases for a single-server model. We also
develop various structural results for the optimization problem, which allows to enhance our
understanding of the system behavior. This would not be possible to do directly for the multi-
server case since an exact analysis is very complex. We extend the analysis to multi-server case
using approximate asymptotic regimes.

4.5.1 Performance Evaluation

Our approach consists of using a Markov chain model to describe the system states and com-
pute their steady-state probabilities. The computation of some of the steady-state probabilities
involves the resolution of cubic (third degree) or quartic (fourth degree) equations for which we
use the Cardan-Ferrari method.

We use the random process {(x(t), y(t)), t ≥ 0} where x(t) and y(t) denote the state of the
agent and the number of waiting calls in the queue at a given time t ≥ 0, respectively. Using the
underlying Markov chain, we explicitly compute the probability of delay of a call (probability
of waiting) denoted by PD, and the expected throughput of outbound jobs denoted by T . Note
that the stability condition of Model PM is λ <

(
q

µ0
+ 1

µ1
+ 1

µ2
+ 1

µ3

)−1
. Let us now define

W , a random variable, as the steady-state call waiting time in the queue, and P(W < t) as its
cumulative distribution function (cdf) for t ≥ 0. Conditioning on a state seen by a new call
arrival and averaging over all possibilities and using PASTA, we numerically obtain P(W < t).
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We then may compute the expected call waiting time in Model PM, denoted by E(W ).
Consider first a model similar to Model PM except that outbound jobs can only be treated
inside a call conversation. We denote this model by Model PM’, and its call expected waiting
time by E(W ′). We prove that he expected waiting time in PM is delayed by p

µ0
compared to

that in PM’, for p ∈ [0, 1]. We then compute E(W ′) using the Pollaczeck-Kinchin result for
an M/G/1 queue, from which we finally derive E(W ). For the 4 extreme cases of Model PM
(Models 1,...,4), one may simply apply the previous analysis with the corresponding extreme
values of p and q.

4.5.2 Comparison Analysis and Insights

We start by a comparison analysis between the extreme cases Models 1,...,4. The comparison is
based on the optimization problem (II.5.2). We derive various structural results and properties
for this comparison. In particular, we investigate the impact of the mean arrival rate intensity
of calls on the comparison between Models 1,...,4. One could think of a call center manager
that adjusts the job routing schema as a function of the call arriving workload over the day. We
then focus on the general case Model PM. We prove that the optimization of the parameters
of Model PM lead to extreme situations in the sense of a systematic outbound job treatment
of outbound jobs either between calls or inside a call conversation, which gives an interest in
practice for Models 1,...,4.

Comparison between the Extreme Cases: We first compare between Models 1,...,4 based
on their performance in terms of the outbound job expected throughput, denoted by T1,..., T4,
respectively. It is obvious that Model 4 is the best and Model 1 is the worst (no outbound jobs
at all). Let us now compare between Models 2 and 3. We have T2 = µ0(1 − ρ1 − ρ2 − ρ3) and
T3 = µ0(ρ0 + ρ2). Thus T3 > T2 is equivalent to λ > 1

1
µ

+ 1
µ2

, where 1
µ = 1

µ0
+ 1

µ1
+ 1

µ2
+ 1

µ3
. Since

the stability condition for Model 3 is λ < µ, Model 3 is better than Model 2 if 1
1
µ

+ 1
µ2

< λ < µ.

The condition under which T3 > T2 is then R = 1
1

µ0
+ 1

µ1
+ 1

µ3
+ 2

µ2
< λ < µ.

Treating outbound jobs only inside a call conversation (Model 3) becomes better that treating
them only between calls (Model 2) is likely the case for high arrival workloads. In such a case,
idle period durations are reduced. We also see that ∂R

∂µ2
> 0 for µ2 > 0, ∂R

∂µ0
> 0 for µ0 > 0,

∂R
∂µ1

> 0 for µ1 > 0, and ∂R
∂µ3

> 0 for µ3 > 0. This means that decreasing the expected duration
of the call service second stage (1/µ2) relative to the expected durations of the other call service
stages or the outbound job service duration (1/µ1, 1/µ3 and 1/µ0) increases the range of arrival
workloads where it is preferred to use Model 2 instead of Model 3. In other words, there is no
sufficient time to treat outbound jobs inside the call conversation.

As a function of the mean call arrival rate, we want now to answer the question when should
we treat outbound jobs (which model among Models 1 to 4 should a manger choose?) for the
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following problem  Maximize T

subject to E(W ) ≤ w∗,
(II.5.3)

where w∗ is the service level for the expected waiting time, w∗ > 0. Let Wi, a random variable,
denote the expected call waiting time in Model i, i = 1, ..., 4. It is clear that for some periods
of a working day with a very high call arrival rate λ, the manager is likely to choose Model
1 (no outbound jobs), and for other periods with a very low λ, she is likely to choose Model
4 (outbound jobs between calls and inside a call). However for intermediate values of λ, the
optimal choice is not clear. This is what we next investigate.

Under the condition of stability of Model i, E(Wi) is continuous and strictly increasing in
λ, for i = 1, ..., 4. The constraint E(Wi) ≤ w∗ is then equivalent to λ ≤ λi, for i = 1, ..., 4,
where the λi can be easily computed. For a given λ and under the condition of stability of
Model i (i = 1, ..., 4), the choice of Model i happens if λ ≤ λi and Ti = maxj∈{1,...,4}, λ≤λj

(Tj).
When λ ≤ λ4, the choice is obviously for Model 4. When λ ≤ λ1 and λ > λi for i = 2, 3, 4 the
only possibility is Model 1. We have explicitly identified the conditions under which an optimal
choice of Model 2 or Model 3 may happen.

We numerically illustrate the analysis above. For various system parameters, Figure II.5.3
gives the optimal model choice as a function of the mean arrival rate of calls, λ. An intuitive
reasoning of a manager would choose the ordering Model 4 (outbound jobs between calls and
inside a call), then 2 (outbound jobs only between calls), then 3 (outbound jobs only inside a
call), then 1 (no outbound jobs) as λ increases.

The ordering Model 2 then Model 3 is not always appropriate, and some situations may
require to consider some counterintuitive ordering. For instance, Model 3 is better than Model
2 for small values of λ if R ≤ λ4 and λ3 < λ2, see Figure II.5.3(c). In other words, this happens
when the constraint on E(W ) is not too restrictive and when the expected second stage service
duration is long. Another more surprising ordering, as λ increases, is Model 2, then Model
3, then again Model 2 (see Figure II.5.3(d)) which happens for system parameters such that
λ4 < R < λ3 < λ2.

Optimization of Model PM: We are interested in the optimization of the parameters p and
q in Model PM for Problem (II.5.2). Concretely, we want to find the optimal routing parameters
of Model PM that allows the manager to maximize the outbound job expected throughput while
respecting a call service level constraint.

From the expression of the outbound job expected throughput T for Model PM, it is straight-
forward to prove that for p, q ∈ [0, 1] the maximum of T (best situation) is reached for p = q = 1.
The proof is then omitted. Also, the expected call waiting time of Model PM is maximized
(worst) for p = q = 1. Therefore in order to solve Problem (II.5.2), one would be interested
analyzing the sensitivity of T with respect to p and q. We have proved that ∂T

∂p > ∂T
∂q if and only
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(d) µ0 = 0.8, µ1 = µ3 = 10, µ2 = 0.5, w∗ = 5

Figure II.5.3: Comparison between Models 1 to 4 with a constraint on E(W )

if 0 < ρ0 < ρ0, where ρ0 can be explicitly expressed. In what follows we prove that the optimal
policy is such that p ∈ {0, 1} or q ∈ {0, 1}.

Theorem II.5.1 For p, q ∈ [0, 1], the optimal values of p and q of the optimization problem Maximize T

subject to E(W ) ≤ w∗,
(II.5.4)

are always extreme values (0 or 1) for at least p or q.

Figure II.5.4 provides a numerical illustration of Theorem II.5.1. We observe as a function of
the system parameters that at least one of the routing parameters is either 0 or 1. This gives
the merit to the study of the extreme cases Models 1,...,4. Moreover they are easy to implement
and easy to understand for both managers and agents.

4.6 Multi-Server Case

An exact analysis as that done for the single server case is too complex. We use simulation to
optimize the (p, q) couple. The results provide a numerical evidence that Theorem II.5.1 still
holds for s > 1. We observe as a function of the system parameters that at least one of the
routing parameters is either 0 or 1. This gives the merit to the study of the extreme cases
Models 1, ..., 4. While increasing the workload, we again observe that the choice is first for
p = q = 1; then p = 1 and 0 < q < 1; then 0 < p < 1 and q = 0. Thus the two questions
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(b) µi = 2 for i = 0, ..., 3

Figure II.5.4: Optimal p and q with w∗ = 1

of routing outbound jobs (between calls or during the break) are not considered together at
the same time. Simulation results also reveal that the interval of workload values for which
the solution p = q = 1 answers Problem (II.5.2) enlarges in the system size. The explanation
is related to the pooling effect. The larger is the system, the better are the performance for
inbound calls. We then may profit from the two opportunities for the routing of outbound jobs
(inside and between calls).

One can make use of the light traffic approximation to address the routing optimization
problem. Under the light traffic regime, the presence of calls in the system can be neglected.
The parameter q does not thus impact the results. The only parameter to focus on for Problem
(II.5.2) is p. For a choice limited to the extreme cases, we should choose Model 4 if 1

sµ0
≤ w∗

(or 1 − e−µ0sAW T ≥ SL). Otherwise Model 3 is the best. The optimal value of p with the
constraint P (W < AWT ) ≥ SL is p = SLesµ0AW T . The optimal expected throughput is then
(s−1)µ0+µ0SLesµ0AW T . The optimal value of p with a the constraint E(W ) ≤ w∗ is p = sµ0w∗.
The optimal expected throughput is then (s − 1)µ0 + sµ2

0w∗.
We also use Heavy Traffic approximations. The numerical experiments show that simulation

results converge to the approximate ones as the workload increases (q increases). The only
parameter to consider here is q. A simple analytical analysis, as that under a light traffic
regime, is not possible. One can only then numerically optimize the parameter q. For a choice
limited to the extreme cases as the workload increases, we should first choose Model 4 then
Model 2.

5 Concluding Remarks and Future research

I described in this chapter my contributions to the literature on job routing in single and multi-
channel call centers. We first considered a two-class call center and developed online scheduling
policies subject to satisfying a target ratio constraint of the abandonment probabilities of the
two customer classes. This new formulation of the control problem is robust with respect to the
system workload. The analysis focused on a given period of the day. In a future research, we
would like to focus on many intervals of a day. Then it would be interesting to find a method
that translates the whole day objective into a set of objectives per period of the day. It would
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be also interesting to extend the analysis to more than two customer classes and agents with
different skill sets.

We then considered call centers with inbound calls and an infinite supply of emails. We
proposed a scheduling policy, refereed to as ATP, where the objective is to do as much emails as
possible while satisfying a service level constraint on the call waiting time. The main advantage
of ATP is its ability to quickly react when an important change in the arrival process happens
and also its ability to avoid inefficient states when the arrival rate remains constant. Future
research on this subject may follow two directions. First, an analytical analysis for the adaptive
blending might be useful to better understand ATP. Second, it would be interesting to account
for different types of inbound calls but this would considerably complicate the analysis.

Finally, we focused on the analysis of a blended call center with calls and outbound jobs.
The call conversation is characterized by a natural break. We focused on the optimization of the
outbound job routing given that calls have a non-preemptive priority over outbound jobs. Our
objective was to maximize the expected throughput of outbound jobs subject to a constraint
on the call waiting time. There are several avenues for future research. It would be interesting
to extend the structural results to the multi-server case. It would also be useful to extend the
analysis to cases with an additional channel, such as chat. Using the chat channel, an agent
may handle many customers at the same time, which represent an additional opportunity to
efficiently use the agent time.



Part III

Analysis of Stochastic Processes
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This part of the dissertation focuses on my theoretical contributions to the analysis of stochas-
tic processes. The story about my interest for such results is as follows. Let me first recall that
my major research interests are in operations management issues for service systems in general,
and call centers and healthcare in particular. My approach relies on first developing stochastic
models and then analyzing them using stochastic methods. While working on these issues, I was
with my colleagues regularly brought to the literature on stochastic processes in order to apply
or adapt some existing results. For some situations, we have noticed that the specific result we
need does not exist. For other situations, we do find the result we need, but, we also get ideas
about extending it to more general settings. Both situation types motivated us to investigate
new results for the analysis of stochastic processes that could be applied for a wide range of
situations, and not necessarily only related to our specific OM issue.

My research results are mainly related to the analysis of queueing systems and Markov chains.
My contributions on the analysis of these two stochastic models can be divided into three parts.
The first part, described in Chapter III.1, deals with the computation of first passage times
in birth-death processes. A birth-death process is a special case of a Markov chain where the
state transitions are of only two types: either a birth which increases the state by one, or
a death which decreases the state by one. The second part of my contributions, described
in Chapter III.2, focuses on queueing systems with impatient customers. We investigate the
computation of various performance measures related to queueing delays. We also investigate
their monotonicity properties as a function of the system parameters. Finally, Chapter III.3
describes my contributions related to the dynamic control of queueing systems using Markov
decision processes. A summary of my contributions is depicted in Figure 5. 

Dynamic control of queues (Chapter 3) Queues with impatience (Chapter 2) Performance Evaluation Optimization 
Analysis of Markov Chains Analysis of Queueing Systems First passage times (Chapter 1) 

Figure 5: My contributions to the literature on stochastic processes



Chapter III.1

Analysis of Markov Chains

1 Introduction

This chapter summarizes my contributions to the literature on the computation of passage
times in Markov chains. Markov chains, are broadly used in the field of queueing theory. They
are a rich and important class in modeling numerous phenomena. My contributions deal with
the transient analysis of birth-death processes. They can be divided into two parts. A first
part focuses on the characterization of ordinary and conditional first passage times in general
birth-death processes. A second part focuses on the computation of the cumulative distribution
function of the sum of Erlang random variables with arbitrary parameters. This summation can
be modeled as a first passage time in a pure death process.

The first part is the subject of Section 2. Under existence conditions, we derive closed-form
expressions for any moment of ordinary and conditional first passage times. We also give an
explicit condition for a birth-death process to be ergodic degree 3. These results are useful for
the computation of the moments of busy and idle periods for non-standard Markovian queues.
They are also helpful for the computation of state-dependent queueing delays.

The second part of the results, described in Section 3, were developed during the postdoc
of Benjamin Legros. We propose a matrix analysis approach for the characterization of the
summation of the Erlang random variables. This reduces to the computation of the exponential
of the involved generator matrix. We propose a particular basis of vectors in which we write
the generator matrix. We find, in the new basis, a Jordan-Chevalley decomposition allowing to
simplify the computation of the exponential of the generator matrix. This is a simpler alternative
approach to the existing ones in the literature, where the complex computation of high order
derivatives or integrals may arise. The results are of value for the analysis of service systems
where the involved processes can be modeled as a succession of stages in series, for the analysis
of the reliability of systems with exponentially distributed components lifetimes, just to name a
few.

87
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2 Computation of First Passage Times

2.1 Positioning and Contributions

We consider in this work the transient behavior of general birth-death processes, and its appli-
cation to time-dependent solutions for queueing systems. We mean by "general" that transition
rates are arbitrary and need not to satisfy some special structure.

The literature related to birth-death processes is extensive and growing. References include
Karlin and McGregor (1957a); Keilson (1979, 1981); Sumita (1984); Mao (2004); Guillemin
(2005); Coolen-Schrijner and van Doorn (2002). We also refer the reader to Keilson (1964a),
Keilson (1964b), and Kijima (1997) for an overview on the subject. Guillemin and Pinchon
(1999) revisit the solving of the forward Chapman-Kolmogorov equations associated with a
birth-death process through the spectral theory. Their work is based on the connection between
probability theory and continued fractions addressed first by Karlin and McGregor (1957a).
They investigated, specifically, how Laplace Transforms of different transient characteristics
related to excursions in a general birth-death process can be expressed by means of the basic
orthogonal polynomials system and the spectral measure. Flajolet and Guillemin (2000) develop
a formal calculus of basic events described by lattice paths associated with birth-death processes.
They express several basic events in terms of continued fractions and their associated orthogonal
polynomials. An extension is developed by Ball and Stefanov (2001), where the authors use an
approach based on viewing birth-death processes as exponential families.

Using Chapman-Kolmogorov equations and via Laplace transforms, we derive closed-form
expressions for the moments of ordinary and conditional downcrossing and upcrossing times
between pairs of states. Some of our results about the ordinary downcrossing and upcrossing
times are already derived in the literature using a different approach. The existing results lead to
a representation of Laplace transforms of transient characteristics in terms of continued fractions
and orthogonal polynomials. Although continued fractions are known to be useful especially for
numerical issues, few of their closed-form expressions are available. The known expressions deal
with simple models such as the M/M/1 and M/M/∞ queues. The analysis in this work allows us
however to address several further applications. We show the equivalence between the analysis
of various characteristics in some examples of queueing systems and that of hitting and return
times. Also, we recover in a simple way some classical results such as the busy period and busy
cycle durations in some standard Markovian systems.

2.2 Model Description and Notations

We consider a continuous-time birth-death process {E(t), t ≥ 0} with discrete state space taking
non-negative integer values {0, 1, 2, 3, ...} defined on a probability space. The transition rates of
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the process {E(t), t ≥ 0} are denoted by

qm,m+1 = λm > 0, qm,m−1 = µm, qm,m = −(λm + µm) for m ≥ 0, and qm,n = 0 otherwise.
(III.1.1)

The rate µ0 is equal to 0, and µm > 0 for m > 0. For m ≥ 0, we define the quantities πm by

π0 = 1, and πm = λ0...λm−1
µ1...µm

for m ≥ 1. (III.1.2)

The quantities πm are called the potential coefficients of the birth-death process {E(t), t ≥ 0}.
Starting from a given initial state, let the transient probabilities be {pm(t), t ≥ 0}, m ≥ 0. The
quantity pm(t) is the probability that at an arbitrary time t, the system is in state m, m ≥ 0.
Under the condition of existence, the stationary distribution of the process {E(t), t ≥ 0} defined
for m ≥ 0 by pm = limt→∞ pm(t) can be easily solved through recursion. They are given by

pm = πm∑∞
i=0 πi

> 0, for m ≥ 0. (III.1.3)

2.2.1 First Passage Times

We define the random variables associated with first passage times in birth-death processes.
Let us consider the random variable θm measuring the duration of an excursion by the process
{E(t), t ≥ 0} above the level m − 1, m ≥ 1. In other words, θm is the first passage time from
state m to state m − 1. We define θm by

θm = Inf{t > 0 : E(t) = m − 1 | E(0) = m}. (III.1.4)

Also, let τm be the first passage time from state m − 1 to state m, defined by

τm = Inf{t > 0 : E(t) = m | E(0) = m − 1}. (III.1.5)

Let us discuss their conditions of existence. For the upcrossing time, τm, it is clear that no
specific conditions are required. However, this is not necessarily the case for the downcrossing
time, θm. The following set of conditions are required.

Condition Ck (k ≥ 1): the birth-death process {E(t), t ≥ 0} has ergodic degree k.
Roughly speaking, the ergodic degree gives the number of finite moments possessed by the

time of the first passage at a given state i starting from any state j ̸= i. We refer the reader to
Mao (2004) for more details. In particular, Condition C1 simply reflects the classical ergodicity
assumption: the condition under which the process settles into equilibrium (the birth rates are
not too large relative to the death rates). This is equivalent to say that Condition C1 is the
necessary and sufficient condition for the expectation of the first passage time from any state i

to any state j ̸= i to be finite. Conditions C1 and C2 are given by Karlin and McGregor (1957b)
and Coolen-Schrijner and van Doorn (2002), respectively. However, no explicit expressions for,
k ≥ 3, exist in the literature. We provide Condition C3 in an explicit form.
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The analysis done for first passage times is as follows. We first compute the kth order moment
expression of the random variable θm. Thereafter, we deduce the expectation and the variance
of θm. A similar analysis is done for the random variable τm. We Notice that the expressions of
E(θk

m), for k ≥ 3, and E(τk
m), for k ≥ 2, are new.

2.2.2 Conditional First Passage Times

In what follows, we define some random variables associated to conditional first passage times.
Let rθm be the first passage time of the process {E(t), t ≥ 0} from state m to state m − 1, given
that the process does not visit state r in between, 1 ≤ m < r, defined by

rθm = Inf{t > 0 : E(t) = m − 1 | E(0) = m and no visit to r}. (III.1.6)

Similarly, let rτm be the first passage time from state m − 1 to state m given no visit to r,
0 ≤ r < m − 1, defined by

rτm = Inf{t > 0 : E(t) = m | E(0) = m − 1 and no visit to r}. (III.1.7)

One may also define the conditional downcrossing and upcrossing times between two different
states, given no visit to a third state. Our results allow to cover such analysis.

To the contrary to ordinary first passage times, the conditional ones are not very known.
However, one may find several situations where these conditional random variables are useful.
One interesting application would be for a make-to-stock system. Consider an inventory system
with finite capacity (K1 items at most) in which demands are backlogged if no items are available
for them upon arrival. There is a single machine with a finite queue size. A maximum of K2

customers can be accepted in queue. A customer who finds a full waiting line is lost. In case of
Markovian inter-arrival demand and production processing times, this system can be modeled as
a birth-death process. In practice, it is useful to determine the time from an idle system (with
no items in stock and no waiting customers) until a full inventory (with K1 items in stock)
given no backlogged demands in between. This is equivalent to compute the conditional first
passage time of a particle (in the associated birth-death process) from the "idle" state up to the
"full" inventory state, given that it does not visit the state with one backlogged customer. The
latter state is the one just before the "idle" state. Another interesting performance measure is to
compute the time from a full waiting line (K2 waiting customers) until all customers are served
given no lost customers. This is again equivalent to compute a conditional first passage time in
the associated birth death process. We notice in addition that evaluating these performances
would allow to optimize the system parameters such as the inventory capacity, K1, and the
waiting line size, K2.

We compute the kth order moment, k ≥ 1, of the conditional first passage times. The results
are new except for a special case for rτm. Note that no existence conditions are required for the
computation of their moments. We need to introduce some notations. These preliminaries are
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specifically related to the notion of ruin probabilities. Consider again the birth-death process
defined in Section 2.2. Let rηm be the ruin probability that the particle, starting at m, reaches
m − 1 first before r, 1 ≤ m < r. It is clear that the ruin probability rηr−1 to reach r − 2 starting
at r − 1, without visiting r, is given by µr−1

λr−1+µr−1
. We also have the following recursive relation

rηm = µm

µm+λm(1− rηm+1) , for 1 ≤ m < r − 1, starting with rηr−1 = µr−1
λr−1+µr−1

. The above ruin
probabilities are useful for the computation of the moments of rθm.

For rτm, as above, we first introduce some notations. Let rνm be the ruin probability that the
process, starting at m−1, reaches m first before r, m ≥ r +2. It is clear that rνr+2 = λr+1

λr+1+µr+1
.

With a similar explanation as for the ruin probability rηm, we give the following recursive
relation, for m > r + 2, rνm = λm−1

λm−1+µm−1(1− rνm−1) . Again the results for rτm are given as a
function of the ruin probabilities.

2.3 Applications

The results obtained above have various applications for the analysis of queueing systems. One
application is the computation of busy periods, idle periods and busy cycles for single and multi-
server queueing systems. Another application is the computation of state-dependent queueing
delays for non-standard queueing systems, such as multi-class priority systems, systems with
impatient customers (linear growth death rates), or state-dependent arrival rates, or in general,
systems with state-dependent transition rates.

The analysis leads to computing the moments of the random variables. These moments
are in turn helpful for the characterization of the probability distributions. Having only the
first and second moments is important but often not sufficiently accurate to approximate an
exact distribution. For instance, the third moment of a random variable allows to compute its
skewness, and the fourth moment allows to compute its kurtosis. The skewness is a measure of
the "asymmetry" of a probability distribution, and the kurtosis is a measure of its "peakedness".
For further details about these notions, we refer the reader to Joanes and Gill (1998). In general,
such an analysis is related to the well known Moment Problem. The Moment Problem is the
problem of finding a distribution whose moments have specified values, or of determining whether
such a distribution exists. This area was first started by the works of Chebyshev through the
well known Chebyshev inequalities. A literature and historical perspective is given in Bertsimas
and Popescu (2005).

3 Sums of Erlang Random Variables

3.1 Introduction

Many situations in service and manufacturing service systems involves the computation of the
sum of independent exponential random variables. Examples include healthcare or production
systems with different stages in series, system reliability with exponentially distributed compo-
nents lifetimes, and wireless mobile systems with cooperative diversity schemes. This summation
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arises also in the transient analysis of Markovian queueing systems, and in general, semi-Markov
processes.

We consider the general case of a hypoexponential distribution defined as the sum of n inde-
pendent Erlang distributions, for n ∈ N. An Erlang distribution is defined by two parameters,
a number of i.i.d. exponential stages and a rate per stage. Thus, the general hypoexponential
distribution is completely defined by the couples of parameters (λi, ki) for i = 1, ..., n. Each
couple (λi, ki) defines an Erlang distribution (λi ∈ R, ki ∈ N), and the rates λi for i = 1, ..., n

are all distinct. We denote by Ki = k1 + k2 + ... + ki for i = 1, ..., n and use the convention
K0 = k0 = 0. The cumulative distribution function (cdf) of the hypoexponential distribution is
then given by

F (x) = 1 − αexM 1, (III.1.8)

for x ≥ 0, where 1 is a column vector of size Kn with ones everywhere, α is a line vector of size
Kn and is given by α = (1, 0, . . . , 0), and e(.) denotes the exponential operator. The generator
square matrix M of size Kn ×Kn is defined by the coefficients mi,j for i, j ∈ {1, ..., Kn}. We have
mj,j = −λi and mj,j+1 = λi, for Ki−1 + 1 ≤ j ≤ Ki and i = 1, ..., n. All remaining coefficients
of M are zero.

Scheuer (1988) provides a formula for F (.) that involves high order derivatives of prod-
ucts of multiple functions. The formula is however hard to compute numerically. Amari and
Misra (1997) proposes a simplification of Scheuer (1988)’s formula using Laplace transforms and
multi-function generalization of the Lebnitz rule for higher order derivatives of products of two
functions. For a particular case with constraints on the values of the λis, van Khuong and Kong
(2006) provide the probability distribution function by inverting its Fourier transform. Using
the Wilk’s integral representation of the distribution of the product of independent beta random
variables, Favaro and Walker (2010) provides an alternative formula for F (.). We also refer the
reader for more details to the review by Nadarajah (2008).

We propose an alternative simple approach to compute the cdf of F (.). The approach is
based on a linear algebraic matrix analysis, which avoids the numerical complexities that may
arise in the computation of high order derivatives or integrals. The structure of the approach
is as follows. We first obtain some particular eigenvectors of the generator matrix M . These
are next used to construct a new basis of vectors. The new basis allows to find the Jordan-
Chevalley decomposition of M into a sum of two commutative linear operators, a diagonal one
and a nilpotent one. The exponential of the matrix M then simply follows by inverting the new
basis matrix using the Cayley-Hamilton theorem, which leads to the cdf of F (.).

3.2 Computation

Lemma III.1.1 provides the eigenvalues of the matrix M , and one eigenvector associated to each
eigenvalue.
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Lemma III.1.1 The eigenvalues of M are −λi for i = 1, ..., n. An eigenvector of size Kn

associated to −λi is the column vector ui, where the coefficients of ui, denoted by ui,l for 1 ≤
l ≤ Kn, are given by



ui,l = 1 , l = Ki−1 + 1,

ui,l = 0 , l > Ki−1 + 1,

ui,l =
(

λi−1
λi−1−λi

)Ki−1−l+1
, Ki−2 + 1 ≤ l ≤ Ki−1,

ui,l =
i−(m+1)∏

j=1

(
λi−j

λi−j−λi

)ki−j
(

λm
λm−λi

)Km−l+1
, Km−1 + 1 ≤ l ≤ Km and 0 ≤ m < i − 1.

Let us denote by B the standard basis composed by the family of column vectors el, for
1 ≤ l ≤ Kn. The coefficients of el (1 ≤ l ≤ Kn) are all zero except the coefficient in line l

which is equal to one. Consider now a new family of vectors denoted by B′ and composed by
the vectors e′

l for 1 ≤ l ≤ Kn, where e′
Ki−1+1 = ui, and e′

l = el for l ≠ Ki−1 + 1 and i = 1, ...n.
In Theorem III.1.1, we prove that B′ is a basis.

Theorem III.1.1 The family of vectors B′ is a basis.

Let us now proceed to a change of basis from B to B′. We want to write M in the new basis
B′, which leads to a matrix denoted by M ′. We denote by P the new basis matrix allowing
to move from B to basis B′. This means that P is given by the vectors of the old basis B but
written in the new basis B′. We have M = PM ′P −1. The matrix P −1 is computed using the
Cayley-Hamilton theorem. We then prove that M ′ = D + N , where N is nilpotent matrix
and D is a diagonal matrix. Since D commutes with any other matrix, in particular N , the
decomposition of M ′ into M ′ = N + D is the unique Jordan-Chevalley decomposition of M ′

into a summation of two commutative matrices, a nilpotent one and a diagonalisable one. Using
the new basis matrix P , we have M = PM ′P −1 = P (N + D)P −1, so, exM = Pex(N+D)P −1

(Gourdon, 1994), for x ≥ 0. Since N and D commute, we deduce that ex(N+D) = exD × exN .
The computation of exD is simple. Also, the computation of exN has no difficulty. It is done
within a finite number of summations, because N is nilpotent. The cdf of the hypoexponential
distribution follows then from the coefficients of the first line of the matrix exM , for x ≥ 0.

4 Concluding Remarks and Future Research

We focused on the transient behavior analysis of a general birth-death process. We gave closed-
form expressions for the moments of important state-dependent characteristics. The charac-
teristics deal with the random variables of ordinary and conditional first passage times. We
derived several new expressions of the moments of the defined hitting and return times. We
also discussed the condition under which a birth-death process is said to be ergodic degree k.
In particular, we gave a new explicit expression for the condition of ergodicity degree 3.

Several further applications could be also possible. For instance, deriving the stationary
waiting time moments for some Markovian model where the arrival rate depend on the system
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state. Concretely, for example in a system where a new customer has a state-dependent proba-
bility to join the queue. To do so, we may compute the state-dependent waiting times as shown
in this work. Thereafter, we derive the desired stationary kth order moment of queueing delays,
by averaging on all states seen by arrivals. It would be also interesting in practice to investigate
approximations or numerical methods to further simplify the computation effort.



Chapter III.2

Analysis of Queueing Systems with
Impatience

1 Context and Contributions

This chapter synthesizes my contributions to the literature on the analysis of queueing systems.
The literature dealing with the study of queueing systems is huge. The analytical studies were
intended to obtain useful information for the decision making process, basically related to the
design, the control, and the measurement of effectiveness of the systems.

My contributions concern in particular the performance analysis of queueing system with
impatient customers. Impatience (abandonment) is an important feature for a wide variety of
situations that may be encountered in practice. Examples include telecommunication systems,
manufacturing systems with perishable items, and service systems such as call centers and health
care systems. Theoretical models incorporating abandonment are therefore necessary to obtain
more accurate analysis.

My contributions here can be divided into three parts as follows. In the first part, which is
a joint work with the postdoc Benjamin Legros, we consider the single type queue M/M/s+GI,
with generally distributed abandonment times. We extend the existing results by proposing a
controlled approximation of the performance measures that could be as accurate as preferred.
Our approach is based on Riemann integration. It consists of approximating the hazard rate
function of the patience distribution by a step function, i.e., a finite linear combination of
indicator functions. The step function can be chosen as close as preferred to the real hazard
rate function.

The results of the second part are obtained under a collaboration with the PhD student Alex
Roubos. We consider Markovian multi-server queues with two types of impatient customers:
high- and low-priority ones. The first type of customers has a non-preemptive priority over the
other type. We consider two cases where the discipline of service within each customer type
is FCFS or LCFS. For each type of customers, we characterize various performance measures
related to queueing delays: unconditional waiting times, and conditional waiting times given
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service and given abandonment.

In the third part, we consider a queueing system with limited buffer size and impatient
customers. We investigate monotonicity properties of first and second order of the probability
of service with respect to the buffer size. Under the stationary regime, we prove that our
service level is strictly increasing and concave in the buffer size, whereas we prove under the
transient regime that it is only increasing. Such results are helpful, in general, for the system
understanding, and in particular, they are useful for the system design, i.e., the optimal choice
of the system parameters.

2 Related Literature

The literature on queueing models with abandonments focuses especially on performance evalua-
tion. A number of approximations for the probability to abandon are developed by Boxma et al.
(1994). The authors have considered a multi-server queue with generally distributed service
times and patience times. The impact of the patience distribution on performance is studied by
Mandelbaum and Zeltyn (2004). They observe an approximate linearity between the abandon-
ment probability and the average waiting time. To analyze multi-server queues with generally
distributed service times and patience times, Whitt (2005a) develops an algorithm to compute
approximations for standard steady-state performance measures. One of his conclusions is that
the behavior of the patience distribution near the origin primarily affects the performance. Ira-
vani and Balcıog̃lu (2008) propose two approximations that are based on scaling the single-server
queue to obtain estimates for the waiting-time distributions. Other papers have treated the im-
patience phenomenon under various assumptions. Related studies include those by Baccelli and
Hebuterne (1981), Altman and Borovkov (1997), Ward and Glynn (2003), Jouini (2012).

Although the two features of abandonment and priority have each received attention sepa-
rately, there is limited literature that deals with both of them. We refer the reader to Choi et al.
(2001), where the authors derive several performance measures for an M/M/1 queue with two
types of impatient customers in which type 1 customers have impatience of constant duration,
and type 2 customers have no impatience and low priority level. An extension of the latter
model is addressed by Brandt and Brandt (2005) for general distributed patience times. Wang
(2004) considers a single-server non-preemptive priority queue with two classes of impatient cus-
tomers. He proposes an approximation for the probability to have an idle server, which allows to
compute the expected values of the queue lengths and the unconditional waiting times. Rozen-
shmidt (2007) considers a similar model to ours (under FCFS) and derives expressions for the
unconditional expected waiting times of all types. Here we extend that analysis by considering
additional performance measures, by considering also LCFS, and by computing all moments of
the random variables.
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3 General Abandonments

3.1 Introduction

We focus on the performance analysis of the M/M/s+GI queue where "+GI" indicates generally
and identically distributed customer abandonment times. We consider an exponential distribu-
tion for service times. Although it has been shown in the literature that service times are in
general not exponentially distributed (Mandelbaum and Schwartz, 2002; Brown et al., 2005), this
Markovian assumption leads to appropriate approximate performance measures for the multi-
server setting. Whitt (1993) shows that the dependence of the performance on the service time
distribution reduces with the number of servers. For large systems, the limited impact of the
service time distribution on performance in an M/G/s queue is also shown through simulation
by Mandelbaum and Schwartz (2002). In the call center context, Whitt (2005b) demonstrates
the efficiency of this approximation for an M/GI/s+GI. For more details, we refer the reader to
Section 5 in Whitt (2005b).

In this work, we extend the existing results by proposing a controlled approximation to eval-
uate the performance measures of the M/M/s+GI queue. We propose closed-form expressions
that are functions of the well known and tabulated gamma function. We mean by "controlled"
an approximation that can be designed to reach the exact results as accurate as preferred. The
method consists of approximating the hazard rate function of the patience distribution by a step
function, i.e., a finite linear combination of indicator functions. The considered step function
can be chosen as close as preferred to the real hazard rate function. This result is based on
Riemann integration (Rudin, 1987). It is proven in this theory that any non-negative Riemann
integrable function is the point-wise limit of a monotonic increasing sequence of non-negative
step functions. Using this approach, we derive closed-form expressions for the building blocks in
terms of integrals given in Baccelli and Hebuterne (1981). These building blocks then directly
lead to the performance measures as shown in Baccelli and Hebuterne (1981) and summarized
by Zeltyn and Mandelbaum (2005).

3.2 The Result

We consider an M/M/s+GI queue with a single type of customers. The arrival process is
Poisson with rate λ. Service times are i.i.d. and exponentially distributed with rate µ. There
are s parallel, identical servers. Customers are served in the order of their arrivals. We assume
that the hazard rate function of the patience is known, denoted by the positive function h(t),
for t ≥ 0.

From Rudin (1987), the function h can be approximated as close as preferred by a step
function. We consider the step function hn, defined by hn =

n∑
k=1

αkI[tk−1,tk), with the parameters

0 = t0 < t1 < · · · < tn, α1, α2, · · · , αn ∈ R+; n a strictly positive integer; and IA an indicator
function of a given set A. Note that we can choose tn as high as preferred such that the number
of customers who experience a waiting time higher that tn is negligible, or even tn = ∞ if the
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patience behavior is exponential beyond a given threshold (tn−1).

From now we assume that the hazard rate function of the patience is hn. The value of
having a step function hazard rate is that the patience distribution is exponential with a time-
dependent parameter. This time-dependent parameter is constant and equals to αk on each
interval [tk−1, tk), for k = 1, 2, · · · , n. For t ≥ tn, since the hazard rate function is zero, the
patience is infinite. We denote by X the random variable measuring the customer patience
times. Consider the cumulative distribution function, G(t) = P (X < t) (1 − G(t) is the survival
function). For t ∈ [tk−1, tk) and 1 ≤ k ≤ n, we have

G(t) = 1 − e
−αk(t−tk−1)−

k−1∑
i=1

αi(ti−ti−1)
. (III.2.1)

For t ≥ tn, similarly we may write G(t) = 1 − e
−

n∑
i=1

αi(ti−ti−1)
. Recall from Baccelli and

Hebuterne (1981) that the performance measures of the M/M/s+GI queue are functions of
the building blocks defined by H(x) =

∫ x

0
(1 − G(t)) dt; J(t) =

∫ ∞

t
exp(λH(x) − sµx) dx;

J1(t) =
∫ ∞

t
x.exp(λH(x) − sµx) dx; and JH(t) =

∫ ∞

t
H(x).exp(λH(x) − sµx) dx.

The computation of H(x) is easy. Our contribution is the computation of the expressions
of the building blocks J(t), J1(t) and JH(t), as a function of the incomplete gamma function
defined by γ(x, y) =

∫ y

0
tx−1e−t dt, and its derivative γ′(x, y) = ∂γ(x,y)

∂x =
∫ y

0
ln(t)tx−1e−t dt. The

approach is as follows. First, we divide the integration interval [t, ∞) into the intervals [t, tk),
[tk, tk+1), · · · , [tn, ∞) (for 1 ≤ k ≤ n and tk−1 ≤ t < tk). Next, we compute the integrals on
each interval using variable substitution. A special attention is given to the last interval [tn, ∞),
since the expression of H(t) is a constant on this interval. Also, there is one more step for J1(t).
It consists of computing the integral

∫ ∞

tn

x.exp(λH(x) − sµx) dx using integration by parts.

When the hazard rate function h is known but can not be easily identified as a step function
as for the exponential or deterministic cases, a useful method (Rudin, 1987) to choose a step
function sufficiently close to the hazard rate function is as follows. If we define the intervals

An,k =
[

k−1
2n , k

2n

)
for n ≥ 0 and k = 1, 2, · · · , 22n, and hn =

22n∑
k=1

h
(

k−1
2n

)
IAn,k

, then as n goes to

infinity hn converges point-wise to h.

As previously mentioned in Chapter II.1, the knowledge of the patience is often only given
through observed data. From observed customers we know the minimum between the customer
patience time and the customer virtual waiting time, and we also know which one we observe.
This is called right-censored data. Techniques exist to deal with censored data, one of which is
the Kaplan-Meier estimator (Kaplan and Meier, 1958). With this technique we can estimate the
hazard rate function empirically. Thus, we can numerically build an appropriate step function
to approach the estimated hazard rate function.
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4 Multiple Priority

4.1 Context and Contributions

We analyze queueing systems with multiple types of impatient customers. As already explained
in previous chapters, customer abandonment is an important feature in a wide variety of situa-
tions. Another important feature in practice is the differentiation in the service given to different
customer types. A priority mechanism is a useful scheduling method that allows different cus-
tomer types to receive differentiated performance levels. Priority queueing comes up in many
applications such as communication networks with differentiated services, call centers with VIP
and less important customers, and more. Priority schemes are additionally known for their ease
of implementation, explaining their prevalence in practice.

We consider a Markovian multi-server queueing system with two types of impatient cus-
tomers: high- and low-priority ones. The high-priority type has non-preemptive priority over
the other type. We assume common exponential distributions for service times as well as pa-
tience times for both customer types. We analyze two different systems by considering different
disciplines of service within each queue. The most common discipline that can be observed in
everyday life is FCFS. Some other in common usage are random order of service (ROS) and
last-come first-served (LCFS), which is applicable to many inventory systems when it is easier
to reach the nearest stored items which are the last in. In this work, we consider FCFS and
LCFS policies and derive various performance measures related to queueing delays. Our ap-
proach is based on the use of Laplace-Stieltjes transforms and on the characterization of the
virtual waiting time of a "virtual" infinitely patient customer.

Our main contributions can be summarized as follows.

• We compute the Laplace-Stieltjes transforms of various random variables related to queue-
ing delays: unconditional waiting times, and conditional waiting times given service and
given abandonment. We do so for both high- and low-priority customers. Our approach is
based on the computation of virtual waiting times. One can then easily numerically invert
the Laplace-Stieltjes transforms in order to obtain the cumulative distribution functions
of these random variables at any point of time (Abate and Whitt, 2006).

• The analysis is given for two different non-preemptive priority models. One where the
discipline of service within each class is FCFS, and another one working under LCFS.
Moreover, the analysis we develop holds for a priority queue with mixed policies, i.e.,
FCFS for the first type and LCFS for the second one, and vice versa.

4.2 Modeling

Consider a queueing model with two types of customers: important customers denoted by type
1, and less important ones denoted by type 2. The model consists of two infinite-buffer queues
for types 1 and 2, and a set of s parallel, identical servers. All servers are able to handle all types
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of customers. The system is work conserving. Upon arrival, a customer is addressed by one of
the available servers, if any. If not, the customer must join one of the queues. Newly arriving
customers of types 1 and 2 are assigned to queues 1 and 2, respectively. Customers of type 1
(waiting in queue 1) have a non-preemptive priority over customers of type 2 (waiting in queue
2). Within each queue, we consider two cases for the discipline of service: FCFS and LCFS.
Arrival processes of types 1 and 2 follow a Poisson process with rates λ1 and λ2, respectively.
Successive service times are assumed to be independent and identically distributed (i.i.d.), and
follow a common exponential distribution with rate µ for both customer types.

In addition, we let customers be impatient. Times before abandonment, for both customer
types, are assumed to be i.i.d. and exponentially distributed with a common rate denoted by
γ. We describe patience times by the random variable T . Finally, retrials are ignored, and
abandonment is not allowed once a customer starts service. Following similar arguments, the
behavior of the system can be viewed as a two-class M/M/s+M queueing system. The resulting
model where the policy for each queue is FCFS (LCFS) is referred to as ModelFCFS (ModelLCFS).
Note that owing to abandonments, ModelFCFS and ModelLCFS are unconditionally ergodic.

4.3 Results

We denote by m the type of a customer, m ∈ {1, 2}. During the stationary regime, we define
the following performance measures for ModelFCFS and ModelLCFS.

• W is the unconditional queueing delay of an arbitrary customer (regardless of her type).

• Wm is the unconditional queueing delay of a type m customer.

• Wm,s is the conditional queueing delay of a type m customer, given that she will enter
service.

• Pm,s is the probability that a type m customer enters service.

• Wm,r is the conditional queueing delay of a type m customer, given that she will abandon.

• Pm,r is the probability that a type m customer abandons.

• Wm,d is the conditional queueing delay of a type m customer, given that she has to wait.

• Pd is the probability of delay, i.e., the probability that a new arrival has to wait. Since
ModelFCFS and ModelLCFS are work conserving, Pd is independent of the customer type.

• Wm,d,s is the conditional queueing delay of a type m customer, given that she was queued
and that she will enter service. (We do not define a similar quantity for abandoned
customers, since an abandoned customer is necessarily a delayed customer.)

• Pm,d,s is the probability that a type m customer waiting in the queue will enter service.



101

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� oo

Wm,r //

�
�
�
�
�
�
�
�
�

oo
Wm,d,s //

�
�
�
�
�
�
�
�
�

�
�
� oo

Wm,d //

�
�
�

•
Abandonment Pm,r

??
??

?

Type m arrival

Pd

����������

Queueing

Pm,d,s @@
@@

@@
@@

@@

1−Pd ??
??

??
??

??

No queueing

}}}}}}}}}}

Service Pm,s

�����• •

oo Wm,s //

�
�
�
�
�
�

oo Wm //

�
�
�
�
�
�
�
�
�
�
�

Figure III.2.1: Performance measures for a type m customer.

To clarify the numerous definitions, we depicted in Figure III.2.1 a schema of the performance
measures of interest.

The approach to compute the various performance measures is as follows. We start by
computing the stationary probability distributions of the system states for ModelFCFS and
ModelLCFS. At a given instant t, we denote by n1(t), n2(t), and n(t) = n1(t) + n2(t) the
number of type 1 customers in queue 1, that of type 2 in queue 2, and the total in both
queues, respectively. Computing the stationary distribution of the process {n2(t), t ≥ 0} or
{(n1(t), n2(t)), t ≥ 0} is a complicated task. We only consider the processes {n1(t), t ≥ 0} and
{n(t), t ≥ 0} which are sufficient for the derivation of the performance measures. Patience times
are memoryless. Thus, as long as the scheduling policy within each queue is work conserving,
the number of type 1 customers and type 2 customers in the system remain unchanged. More-
over, since patience as well as service times are identically distributed for both customer types,
a work-conserving policy (priority between the queues or not) does not affect the total number
of customers in the system.

From the stationary probabilities of the system states, we deduce Pd, Pm,r, Pm,s and Pm,d,s.
For the remaining delay performance measures, the method to derive their Laplace-Stieltjes
transforms rely on the two following components:

• The computation of an n-busy period duration, for n ≥ 0. For n ≥ 1, an n-busy period
is defined as the elapsed time from the arrival of a customer to a busy M/M/s+M system
with n − 1 waiting customers in the queue (n customers in the queue including the new
arrival) until the epoch at which one server becomes idle. The 0-busy period reduces to
the classical busy-period definition defined to begin with the arrival of a customer to a
system with s − 1 busy servers and to end when again one server becomes idle.
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• The computation of the virtual waiting time, i.e., the waiting time of an infinitely patient
customer.

Our approach easily extends to that of a mixed model in which we allow the discipline of
service in one queue to be different from the one in the other queue. All the expressions for the
stationary probabilities hold again for the mixed system. For a given type that is served under
FCFS (LCLS), it suffices to apply the same analysis as in the non-mixed system ModelFCFS

(ModelLCFS).

5 Monotonicity Properties

5.1 Introduction

Monotonicity properties of performance measures are useful for understanding and solving op-
timization problems of queueing systems. Optimization models are being used increasingly in
the design of a variety of systems where queueing phenomena arise. Examples include flexible
manufacturing systems, as well as service systems and telecommunications networks. For such
problems, it is important to know the convexity properties of the performance measures with
respect to the design variables. These properties may enable us to reduce the performance opti-
mization problem to a convex programming problem which is easier to solve. Using a convexity
result, Yao and Shanthikumar (1987) accelerate their computation procedure to design a loss
queueing system subject to constraints on the loss probability. Koole and Pot (2011) consider an
optimization problem for an M/M/s/K+M queue. The objective function is a profit function of
the number of servers and the buffer size. They derive some monotonicity properties about the
defined performance measure. Based on these properties, they develop a fast algorithm which
avoids the research of all possible solutions to get the global optimum.

Several convexity properties about various performance measures have been investigated in
the queueing literature. The major performance measures for delay systems are the average
waiting time, the average queue length and the probability of delay. Those for pure loss systems
include basically the probability for a new arrival to be lost. In general, the loss probability
is related to systems involving finite buffers or systems with abandonment. In this work, we
consider a queueing system with impatient customers and finite waiting line. The performance
measure of interest is the probability for a new arrival customer to enter service, or equivalently,
the probability to not be lost. We investigate first and second order monotonicity properties
of our performance measure as a function of the queue size, which is useful for the design of a
limited buffer size.

5.2 Model Formulation

Consider a multi-server queueing system with a single class of customers. The model consists
of a set of s parallel, identical servers and a finite queue (waiting line). There is a maximum
number of customers that may be simultaneously present, we assume that the system can hold
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at most a total of K customers including those in service. Clearly K ≥ s, and we denote
the queue capacity by k = K − s, k ≥ 0. Upon arrival, a customer is addressed by one of the
available servers, if any. If not, the customer joins the queue if less than K customers are present
in system. If not, the customer is refused entry and departs immediately without service. He
is blocked and considered lost. In addition, we assume that customers are impatient. After
entering the queue, a customer will wait a random length of time for service to begin. If service
has not begun by this time, he will abadon, and again considered to be lost. Finally, retrials are
ignored, and abandonment is not allowed once a customer starts his service.

The arrival of customers is assumed to follow a Poisson process. Inter-arrival times are
i.i.d. and exponentially distributed with rate λ. Successive service times are assumed to be
i.i.d., independent from the arrival process, and follow an exponential distribution with rate µ.
Times before abandonment are assumed to be i.i.d., and exponentially distributed with rate
γ. Following similar arguments, the system can be modeled as an M/M/s/K+M queue. The
system is unconditionally ergodic because of abandonment and also its limited capacity. Finally,
we need not to specify a scheduling policy for our results, except that it is workconserving.

We focus on characterizing the performance measure of interest. It is defined in terms of
the stationary fraction of customers who get service, i.e., the fraction of customers who are not
blocked and who do not abandon. We denote this performance as Q, and we explicitly compute
it using the system state stationary probability and the PASTA property. We also define the
probability of being served under the transient regime, Q(t).

5.3 Monotonicity Results

One may intuitively state that the performance measures Q(t) and Q increase with respect
to the queue capacity k, keeping the parameters λ, µ, γ and s constant. The idea is that,
although adding more places in the waiting line may increase abandonments, it is clear that
it could not deteriorate the performances we consider here. On the contrary, it allows for
more customers to enter service. If not, it will at worst achieve an equal fraction of successful
departures comparing to a system with less queue capacity. We rigorously prove this result
using two different approaches. The first approach is coupling arguments. We prove that the
transient and stationary probabilities of service increase in the buffer size k. We do so for a
more general setting, namely, the GI/M/s/K+M queue. The approach is analytical. For our
original Markovian system, we prove that the stationary probability of service increases in k.

The main results for the first approach are given next.

Lemma III.2.1 Consider a GI/GI/s/K +M queue. Times before abandonment are assumed
to be i.i.d. and exponentially distributed. Then, the probability of being served Q is constant for
any workconserving non-preemptive scheduling policy.

Although the probability of being served is independent of the scheduling policy, the mean
waiting time in queue for the served customers does depend on the scheduling policy. Jouini
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et al. (2010) have proved the latter result when considering the particular case of a GI/GI/s +
M queue. They have also characterized the policies under which upper and lower bounds of the
mean waiting time are achieved.

We should note however that the result in Lemma (III.2.1) does not hold if times before
abandonment are not i.i.d. and exponentially distributed, or if service times at any point during
an arbitrary busy period are order of service dependent, we need to assume that no service needs
are created or destroyed within the system: no abandonment in the midst of service, no forced
idleness of servers, and so on.

In Lemma (III.2.2), we show that Q is still unchanged for any workconserving scheduling pol-
icy (with preemption or not) if we further assume that service times are i.i.d. and exponentially
distributed.

Lemma III.2.2 Consider a GI/M/s/K +M queue. Times before abandonment are assumed to
be i.i.d. and exponentially distributed. Then, the probability of being served Q is constant for
any workconserving scheduling policy.

Using the above results, we state the following theorem:

Theorem III.2.1 Consider a GI/M/s/K +M queue. Times before abandonment are assumed
to be i.i.d. and exponentially distributed. Then, probability of being served Q is strictly increasing
in the buffer size k.

Similarly to the proof of Theorem (III.2.1), we also state that Q(t) is an increasing function
of k. Note that it is not necessarily strictly increasing in k as it is the case for Q.

We now investigate the second order property of monotonicity, of the probability of being
served, in the queue capacity. It is easy to prove by coupling arguments that Q(t) is not concave
in k. As for the stationary probability of service, we state the following result.

Theorem III.2.2 Consider an M/M/s/K +M queue. Times before abandonment are assumed
to be i.i.d. and exponentially distributed. Then, Q is a strictly concave function in the buffer
size k.

6 Concluding Remarks and Future Research

We considered the analysis of various queueing systems with customer abandonment. We first
extended existing results for the M/M/s+GI queue. We proposed a controlled approximation
of the performance measures that could be as accurate as preferred. The approach consists of
approximating the hazard rate function of the patience distribution by a step function.

We then considered multi-server non-preemptive priority queueing systems, working under
FCFS and LCFS. For each customer type, we explicitly derived the Laplace-Stieltjes trans-
forms of the unconditional waiting times, the conditional waiting times given service, and the
conditional waiting times given abandonment. A challenging and interesting step is to extend
our approach to the case of many customer types with different mean service and patience
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times. Another useful extension would be to consider protocols with mixed priorities, i.e., both
preemptive and non-preemptive priorities.

Finally, we considered a queueing system with abandonment and finite buffer size. We
investigated monotonicity results of the probability of being served with respect to the buffer size.
These results are helpful when addressing optimizations issues. We considered both transient
and stationary quantities of the performance of interest. As a topic for future research, it would
be interesting to investigate the convexity properties of the performance measure as a function
of other parameters such as the arrival rate, service rate, and in particular the number of servers.



Chapter III.3

Dynamic Control of Queueing
Systems

1 Context and Contributions

This chapter summarizes my contributions on the dynamic control of queueing systems. My
contributions mainly deal with Markov decision processes (MDPs). An MDP is defined as a
discrete time stochastic control process. It is an extension of Markov chains; the difference is
the addition of actions and rewards. MDPs provide a mathematical framework for modeling
decision making in situations where outcomes are partly random and partly under the control of
a decision maker. They are useful for studying a wide range of queueing optimization problems.

My contributions can be divided into two parts. They are undertaken in collaboration with
Ger Koole and the postdoc Benjamin Legros. In a first part, we focus on the two-server slow-
server problem with service failure. We consider manufacturing and service systems that are
concerned about two conflicting goals: minimizing waiting time and maximizing the number of
satisfied customers. For a Markovian two-server queueing model, we formulate this problem as
a dynamic control problem with the objective of minimizing a weighted sum of the expected
waiting time and the rate of unsatisfied customers. Using an MDP approach, we prove under
finite and infinite horizons that the optimal routing is of threshold type. The result is proven for
a large class of performance indicators. Under infinite horizon, there is one preferred server that
should be always used, and the other one should be only used when the former is busy and the
number of customers waiting in the queue exceeds a certain threshold. Using a Markov chain
approach, we also provide closed-form expressions for the stationary performance measures in
terms of the expected waiting time, and the production rate for each server. Finally, we use the
performance results to identify the threshold of the optimal policy, as well as the server that
should be prioritized.

The second part of my contributions deal the uniformization for jump Markov processes. This
is useful for the analysis of unbounded Markov processes, for which major numerical difficulties
are identified, and the existing literature have failed to provide appropriate solutions. We
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consider multi-server queueing systems with generally distributed abandonment times. Using a
non-standard Markov chain modeling, we obtain a natural bounded jump Markov process. The
idea consists of explicitly modeling the waiting time of the first customer in line. This avoids to
obtain unbounded abandonment rates, as it is the case with the traditional modeling using the
number of customers waiting in the queue. In addition to having a uniformizable system, the
new approach allows for the policies that are based on the actual waiting time, and not simply
its expected value. Our approach can be applied to a wide range of open queueing optimization
problems. This allows us to believe that we have provided cutting edge results.

2 Optimal Routing for the Slow-Server Queue

2.1 Introduction and Positioning of the Contributions

The operation speed usually interacts with the quality of the provided good or service. In some
cases, a high speed means a hurry and no enough attention, which leads to a poor quality. In
other cases, high speed may be related to a well trained and experienced human capacity, which
implies high quality. Managers are then worried about the customer waiting time and, at the
same time, about the quality of the provided service. An important question is how to match
between customers and servers so as to optimize the system performance?

This work is most closely related to the slow-server problem literature. In the two-server
slow-server problem, there is a single Poisson arrival process, and two exponential servers with
different service rates (speeds). The objective is to find a non-preemptive scheduling rule that
minimizes the customer expected waiting time in the queue. There is a rich literature dealing
with two-server slow-server problem. The major drawback in this literature is that it ignores
the heterogeneity in the quality of the provided service. Using different approaches, Larsen and
Agrawala (1983), Lin and Kumar (1984), Walrand (1984), and Koole (1995) prove that the fast
server should be always used, and the slow server should be only used when the fast server is
busy and the number of customers waiting in the queue exceeds a given threshold. The exact
analysis for the general setting with more than two servers is however still open (Weber, 1993;
Rykov, 2001; Cabral, 2005; de Véricourt and Zhou, 2006).

Unfortunately, the literature has rarely addressed the slow-server routing problem by in-
cluding service quality related factors. Two exceptions, belonging to the call center operations
management literature, are de Véricourt and Zhou (2005), and Zhan and Ward (2014). Using
an MDP formulation, de Véricourt and Zhou (2005) address a dynamic control problem under
the objective of minimizing the expected total time of call resolution. For the two-server case,
they prove that the optimal policy is of a threshold type. A call should be routed to the server
with the highest resolution rate (resolution probability times service rate) whenever possible.
The resolution rate policy is however shown to perform poorly under an objective that involves
the call back probability (Mehrotra et al., 2012). Under the asymptotic many server quality and
efficiency driven regime, Zhan and Ward (2014) extend the analysis of de Véricourt and Zhou
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(2005), by considering similar modeling and assumptions, but a more general objective measured
as a weighted sum of the expected waiting time and the call back rate. They approximate this
asymptotic problem by a diffusion control problem.

In this work, we consider a Markovian two-server queueing model with one stream of arrivals.
Each server has its own service rate and resolution probability. Using an exact MDP approach,
we address the optimal routing decision problem under the objective of a weighted sum of the
expected waiting time and the unsatisfied customer rate.

This is an important result as pointed out by de Véricourt and Zhou (2005). We prove under
finite and infinite horizon that the optimal routing is of threshold type. We prove this result for
a large class of performance measures including the expected waiting time (time in the system,
other moments of the waiting time, etc.). Under infinite horizon, there is one preferred server
that should be always used, and the other one should be only used when the former is busy and
the number of customers waiting in the queue exceeds a certain threshold. Using a Markov chain
approach, we provide closed-form expressions for the system stationary performance measures in
terms of the expected waiting time, and the production rate for each server. Finally, we use the
performance measures to identify the threshold, and also the server that should be prioritized
under the optimal policy.

2.2 Problem Formulation

Consider a queueing system with a single customer type and two parallel servers, servers 1 and
2. Customers arrive, at a dedicated first come first served (FCFS) infinite queue, according
to a Poisson process with rate λ. Service times are independent and exponentially distributed
with rate µi for server i, i ∈ {1, 2}. Once server i completes a service, the customer is either
satisfied with probability 1 − αi, or unsatisfied with probability αi, i ∈ {1, 2}. An unsatisfied
customer defects, and this is considered as a loss of goodwill. To ensure stability, we assume
that λ < µ1 + µ2. The stationary performance measures of interest are the customer expected
waiting time, denoted by E(W ), and production rate (throughput) of server i, denoted by Ti,
i ∈ {1, 2}.

Consider now the set of all non-preemptive non-anticipating FCFS routing policies. At any
point of time, we want to decide for the first customer in the queue (if any) whether to keep her
in the queue, or to serve her by an available server (if any). If we choose to serve her, we want to
decide also to which server she should be routed. We combine two objectives to have a tradeoff
between minimizing waiting times and maximizing customer satisfaction about the provided
service. Concretely, the goal is find the optimal routing to minimize the following weighted sum

α1T1 + α2T2 + αW E(W ), (III.3.1)

where the coefficient αW (αW ≥ 0) translates the relative importance given, by the system
manager, to the expected waiting time compared to the throughput of unsatisfied customers.
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2.3 Optimal Routing

We formulate the routing problem as an MDP, and apply discrete-time dynamic programming
to characterize the optimal routing policy. Let us denote by x the number of customers in the
queue, x ≥ 0. The state of the servers is described through the symbols 0, A1, A2 and A1 + A2.
State 0 is a situation where the two servers are idle. State Ai is a situation where only server i

is working, i ∈ {1, 2}. State A1 + A2 is a situation where the two servers are working.
The possible actions for an idle server, just after a service completion or an arrival, is either

to remain idle, or to serve a waiting customer, if any. Let us denote by Vn(., .) the value function
over n steps depending on the state of the system (the first variable is the state of the servers,
and the second variable is the number of customers in the queue), for n ≥ 0. We also consider
the cost function c(., .) that also depends on the state of the system. This is a more general
framework for the last term in the objective function in (III.3.1), and for which we derive the
optimal policy. The cost has however to belong to a specific class of functions. In the case of
only considering the expected waiting time, this cost function is defined as proportional to the
number of customers in the queue. If we are interested in the expected number of customers
in the system, we define c(., .) by c(0, x) = x, c(Ai, x) = x + 1 and c(A1 + A2, x) = x + 2, for
x ≥ 0 and i ∈ {1, 2}. For the expected number of customers in the queue, we define c(., .) by
c(0, x) = c(Ai, x) = c(A1 + A2, x) = x, for x ≥ 0 and i ∈ {1, 2}. For higher moments of the
number of customers in the queue, we define c(., .) by c(0, x) = c(Ai, x) = c(A1 + A2, x) = xk,
for x ≥ 0, i ∈ {1, 2} and k ≥ 0. This is also true for higher moments of the number of customers
in the system.

In Theorem III.3.1, we prove by induction on the value functions that the optimal policy is
of threshold type. More concretely, under finite or infinite horizon, there exists two thresholds
on the queue length, a first one strictly under which both servers should be idle, and a second
one above or equal to which both servers should work. In the remaining cases (above or equal
to the first threshold, or strictly under the second one) only one of the two servers should work
and the other one should remain idle.

Theorem III.3.1 The optimal policy is of threshold type.

The main difference in the proof of Theorem III.3.1 compared to the proofs on the optimality
of a threshold policy from Lin and Kumar (1984) and Koole (1995) is that we do not take into
account that a server can be better than the other one and thus should be prioritized. Our
proof does not provide even conditions to known which server should be preferred. This will be
done in the next section thanks to the performance measure results. The difficulty in the choice
for server 1 or server 2 comes from the service quality feature in our formulation, which is not
captured by the previous works in the literature.

Note also that, under the finite horizon, forcing the two servers to be idle could be optimal
under some situations. Yet, under an infinite horizon having the two servers idling at the same
time can not be optimal, as long as a waiting customer represents a strictly positive cost for the
system. Consider the first customer in the queue. If the two servers are idle, the decision not
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to serve this customer simply delays the decision to the next event. The probability not to be
successful in the customer treatment remains identical at the next event, however the waiting
cost has increased. Thus, idling the two servers at the same time can not be optimal in the long
run. The first threshold, under the infinite horizon, is simply 0.

2.4 Performance Measures

Consider the two-server queueing model working under the infinite horizon optimal policy. Using
a Markov chain approach, we derive the stationary performance measures, in terms of the
expected waiting times, E(W ) and the server throughputs T1 and T2. We assume without loss
of generality that server 1 is always used and server 2 is only used when the number in the queue
exceeds a certain threshold u. These results allow also to identify the threshold on the queue
length, as well as the preferred server.

Optimal Threshold: It is clear that the expected waiting time E(W ) is strictly increasing
in u. It is also easy to see that the throughput from server 2 decreases in u. The overall
bad throughput from the two servers is α1T1 + α2T2 = α1(λ − T2) + α2T2. We have α1(λ −
T2(u + 1)) + α2T2(u + 1) − α1(λ − T2(u)) − α2T2(u) = (α2 − α1)(T2(u + 1) − T2(u)). Since
T2 is decreasing in u, T2(u + 1) − T2(u) < 0. Therefore the bad throughput strictly increases
in u if α2 < α1, and it strictly decreases in u if α2 > α1. A consequence is that if α1 ≥ α2

and the priority is given to server 1, then the optimal value of the threshold is u = 0, because
α1T1 +α2T2 +αW E(W ) is strictly increasing in u. In the case α2 ≥ α1, α1T1 +α2T2 +αW E(W )
is positive, therefore, there exists a value of the threshold u∗ which minimizes this expression,
u∗ = arg min

u≥0
(α1T1 + α2T2 + αW E(W )). Note that we can have the case u∗ = +∞, for which

server 2 is never used. This corresponds to a case with an extreme small value for αW .

Prioritized Server: The coefficient αW defines the relative importance given to the expected
waiting time. For extreme values of αW which corresponds to situations where the manager only
cares about the rate of satisfied customers or the expected waiting time exclusively, the priority
should be given to the more efficient or to the fastest server, respectively. If server 1 is at the same
time faster (µ1 > µ2) and more efficient (α1 ≤ α2) than server 2, thus the priority for server 1 is
clear and we choose the optimal threshold u∗ such that u∗ = arg min

u≥0
(α1T1 + α2T2 + αW E(W )).

Consider the case when server 1 is faster (µ1 > µ2) but less efficient (α1 > α2). Therefore, it
is no longer obvious that we should always prioritize server 1. Since α1T1 + α2T2 + αW E(W )
strictly increases in u if α1 > α2, the choice of the preferred server is as follows. We compare
between the values of α1T1 + α2T2 + αW E(W ) in two cases: the first case is when server 1 is
prioritized and u = 0, and the second case is when server 2 is prioritized with the corresponding
optimal threshold. The case with the best objective function leads then to the choice of the
preferred server. Assume now that α1 > α2 and u∗ = arg min

u≥0
(α1T1 + α2T2 + αW E(W )) when

server 2 is prioritized over server 1. Based on the above explanations, we identify a sufficient
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and necessary condition for server 1 to be prioritized.

3 Uniformization for Queues with Abandonment

3.1 Introduction

Existing applications of Markov decision processes often fail in addressing the dynamic control
questions for queueing models with abandonments. Such questions are important and arise in
numerous applications. Examples include the optimal scheduling of jobs in call centers, patients
in healthcare systems, perishable products in manufacturing systems, just to name a few. The
reason is that the available approaches require uniformization (Down et al., 2011), while in the
considered queueing models, the jump rates are generally unbounded functions of actions and
states.

To overcome the limitations of the standard techniques, Bhulai et al. (2013) propose for
a single server model a method that modifies the system rates by linearly smoothing them.
However, this method only works under some conditions that guaranty an appropriate approxi-
mation of the original Markov decision process by the smoothed one (Blok and Spieksma, 2013).
In this work, we propose a non-standard definition for the system states that allows to obtain
a natural uniformized system with no rate modification, or state truncation. The idea is to
explicitly model the customer waiting in the system state, instead of the traditional modeling
using the number of customers. This idea has been first proposed by Koole et al. (2012) in
order to analyze the performance measures of queueing systems with no abandonments. The
approach consists of discretizing the customer waiting time using successive exponential phases,
and report the waiting phase in the Markov process. We only need this information for the first
customer in line. The difficulty of applying this method in the case of abandonment comes from
the fact that the next customer first in line, if any, is no longer necessarily the customer arrived
after the customer who just left the queue. The former might actually have abandoned.

In this work, we consider queueing systems with generally distributed abandonment times.
Using an explicit modeling of the waiting time of the first customer in line, we obtain a bounded
jump Markov process and illustrate its usefulness to solve dynamic control problems. This
method is expected to be applicable to a wide range of performance analysis and optimization
problems.

An additional advantage of the first in line modeling is that it allows for the use of policies
that are based on the actual waiting time and not simply on its expected value (based on the
number of customers in the queue as it is usually done in previous work). This is especially
important for wide range of objective functions for systems with customer abandonment. It is
for instance clear that scheduling policies according to the actual waiting time are efficient to
deal with increasing or decreasing failure rate abandonment times.
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3.2 Erlang Approximation with Abandonment

Consider a queueing system with one infinite FCFS queue. Customers arrive according to a
Poisson process with parameter λ. We let customers be impatient while waiting in the queue.
Times before abandonment are i.i.d. and follow a general distribution. There are no specific
assumptions on the service process.

We use a non-traditional approach for the modeling of the queue, as proposed in Koole et al.
(2012). The idea is to use a continuous time Markov chain approach in which we discretize the
waiting time of the first customer in line (FIL) by an Erlang random variable with rate γ per
stage. The higher is γ, the better is the approximation. The system states are defined by the
waiting time stage denoted by i (i > 0) of the customer FIL, if any. State 0 represents an empty
queue. The transition rate from the waiting stage i to i + 1 is γ, for i > 0. The transition rate
from state 0 to state 1 is λ.

Once the current FIL leaves the queue from state i (i > 0) to start service or because she
does abandon, the next state is i − h, i > 0 and 0 ≤ h ≤ i. The main difficulty is to find the
transition probabilities from state i to i − h, i > 0 and 0 ≤ h ≤ i, after an abandonment or
a start of a service. The next first in line, if any, is no longer necessarily the customer arrived
after the FIL who just left. The former might actually have abandoned.

We approximate times before abandonment by a Coxian random variable. The value of
the Coxian modeling, with identical or different phase rates, comes from its universality. It is
dense in the field of all positive-valued distributions (Schassberger, 1973). We consider a Coxian
distribution with the following parameters: we denote by b the probability for an arbitrary
customer to accept waiting. All phases durations are exponentially distributed with the same
rate γ. The conditional probability for a given customer to move from phase i to i + 1 is γ

γ + βi
,

with βi ∈ R+ (Figure III.3.1).� ������� ������� ������� ������������� ���� � �� ���� � �� ���� � �� ���� � ��
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Figure III.3.1: Coxian distribution for abandonment times

We denote by pi,i−hthe transition probability to move from stage i to stage i − h in the
Markov chain, for i > 0 and 0 ≤ h ≤ i. Our main result is that these probabilities are given

by pi,i−h =
i∏

k=1
qk, for i = h and i > 0; and pi,i−h = (1 − qi−h)

i∏
k=i−h+1

qk, for 0 ≤ h < i; where

qk = (1 + bλ
γ

k∏
j=1

γ
βj+γ )−1, for k > 0.

The value of the FIL modeling is that it allows to obtain a natural uniformizable system,
which is new in the literature. This avoids the major existing numerical issues for the dynamic
control of queueing systems with abandonments. Moreover, the FIL approach allow for the use



113

of policies that are based on the actual waiting time and not simply on its expected value (based
on the number of customers in the queue as it is usually done).

4 Concluding Remarks and Future Research

We considered dynamic control problems for queueing systems. We first focused on a two-server
queueing problem with service failure. We formulated and solved a dynamic control problem
with the dual performance objectives of minimizing the expected waiting time and maximizing
the number of satisfied customers. An interesting future research is to extend the results to the
multi-server case. It would be also interesting to consider the control problem in a more general
context with multiple customer types and heterogeneous servers.

We then considered queueing systems with general abandonments. We proposed a Markov
process that explicitly model the waiting time of the first customer in line. This has led to
a bounded jump Markov process that allows for policies based on the actual waiting time. A
direction for future research is to extend the analysis to the case with more than one type of
impatient customers.
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The service sector is the largest sector of the economy in most industrialized nations, and
is fast becoming the largest sector in developing nations as well. Driven by today’s new busi-
ness environment including advanced telecommunications, accelerated business globalization,
increased automation, and highly on-demand and competitive innovations, the complexity of
the operations management of service systems is continuously increasing. Managers of service
systems are wrestling to deliver both traditional conflicting objectives of low operating costs and
high service quality.

I want to contribute to the service operations literature while accounting as much as possible
for the key features of advanced technology and human factors. This is what I have done in my
previous work, through quantitative approaches that are mainly based on stochastic processes.
This is also exactly what I want to do during the coming years. What feeds my motivation is
the need in practice for relevant research results accounting for the complex real-life features, in
order to derive useful recommendations and insights to practitioners.

My objective is then to continue my work on call center operations, intensify my ongoing
work on emergency departments, and continue my work on stochastic methods with applications
to services. For the last objective, the considered models are rather theoretical and deal with
fairly general settings. On the one hand, this allows us to obtain results that are helpful for a
wide range of applications. On the other hand, we are also aware that this genericity may ignore
some specific and important features when applied to some specific contexts.

Finally, I would like to point out that I will accentuate the use of real data in my models.
Fortunately, the recent information system advances have allowed to obtain large data sets. This
is a significant opportunity that will, with no doubt, enrich the existing models and lead to more
accurate and high impact studies.

The details on my ongoing and future research projects are described in the sections below.

1 Call Center Operations

1.1 Shift-Scheduling with Uncertain Arrival Rates

In Chapter II.3, I summarized my contributions to call center planning with uncertain arrival
rates and a single shift setting. Within the PhD thesis of Mathilde Excoffier, supervised also
by Abdel Lisser and Céline Gicquel, we would like to consider a setting of workforce scheduling
with multiple shifts.

We will focus on computing the required number of agents to be assigned to a set of predefined
shifts. Our approach relies on developing stochastic programming approaches under demand
forecasts uncertainty. The main scientific challenge ahead is to devise an approach where the
optimization problem is modeled with a sufficient degree of accuracy to ensure the practical
relevancy of the obtained schedule, while keeping the mathematical formulation computationally
tractable.

We first aim at proposing a chance-constraint programming approach, where the manager
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estimates an acceptable risk level for the potential shortfall in the quality of service. Moreover,
we plan to explicitly use a continuous probability distribution of the forecast errors to represent
the uncertainty on call arrival rates as this should lead to schedules which provide an actual risk
level closer to the expected one. Solving the resulting optimization problem will be a challenging
task. For that reason, we will in a first step focus on a simplified version of the problem. We
will consider for instance a single-class single-skill call center and a period-by-period measure of
the quality of service. This should allow us to gain a better understanding of the fundamental
tradeoff encountered by call center managers, namely minimizing staffing costs while ensuring
with an acceptable risk level that the target quality of service will be provided to customers.
We will then try to gradually add some complicating but realistic features such as more flexible
shift patterns, a multi-period measure of the quality of service or a multi-class multi-skill layout
of the call center.

Our second objective will be to develop a multi-stage stochastic programming approach
for the problem. We will thus consider a multi-day scheduling horizon with the managerial
possibility to resort to some recourse actions to adjust the agent schedules once part of the
actual demand is realized and the call arrival forecasts have been adjusted accordingly. The
cost criterion functions for this problem include the regular salary costs, adjustment costs and
penalty costs for under-staffing. Our objective is to find the optimal initial shift scheduling and
update policy which minimizes the total call center operating cost. To deal with the resulting
difficult optimization problem, we plan to use an approximate representation of the uncertainty
by discretizing the probability distribution and constructing event-trees with scenarios.

We would like also to study the general impact of the original feature considered in our
models, i.e., the randomness in call arrival rates, on the call center shift scheduling problem.
From a managerial point of view, does it really matter to explicitly take into account the
uncertainty on arrival parameters while building the agent schedules? What are the practical
consequences of not considering it? What is the additional staffing cost needed to hedge against
this uncertainty? We will also try to evaluate to which extent it might be profitable to have the
flexibility to update the staffing decisions one or several times during the scheduling horizon.
It is of course expected that more flexibility in staffing should lead to lower costs and better
quality of service. But it would be interesting for a call center manager to be able to estimate
the extent of this improvement as well as to obtain some insights about the number and timing
of the adjustments to be carried out.

1.2 Advertisement While Waiting

This work will be undertaken under our collaboration with Interact-iv.com. With Zeynep Aksin,
Ger Koole and the postdoc Benjamin Legros, our objective is to understand and study queueing
systems with advertisement. This is expected to be the basis of the new economic model for
some types of financial call centers.

Consider, for instance, the case of a call center offering the service of directory sellers. It
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consists of helping callers to get contact information on a variety of service providers (a plumber,
an electrician, a restaurant, etc.). The current economic model, in France, of such a call center
is mainly based on an overtaxed waiting time. In the near future, it is likely expected that a
new law will force direct sellers to substitute their overtaxed numbers by cheap or free numbers.
The new economic model that has been started to be adopted by direct sellers is to broadcast
advertisements for other parties. The idea is that advertisement revenues would compensate the
loss from removing overtaxed numbers.

We recently obtained data on directory sellers under both situations: the current and the
new economic models. We want to analyze the data in order to study the customer waiting
experience. First results and discussions with the company indicate that the abandonment
customer behavior has changed with the new economic model, i.e., with advertisement. We
then aim at characterizing the new abandonment behavior. We want also to optimize the
advertisement parameters: number, length, time during the wait, etc. Another interesting issue
is the study of the impact of advertisements on the customer loyalty and retention. Actually,
this is a new and interesting framework for which most issues are not solved. Our goal in short
and mid terms is to address various related performance evaluation and optimization issues,
that would help managers to better understand their systems and to make them more efficient.

1.3 Multi-Channel Issues

New advances in telecommunication technology are revolutionizing the way call centers interact
with customers. Customers preferences are also evolving rapidly toward the use of new technol-
ogy. As a result, call centers are currently increasing the use of new channels, which has in turn
pointed out a large number of new challenging issues.

For this reason, multi-channel call centers have recently emerged as a fertile ground for
academic research. With Ger Koole and Benjmain Legros (postdoc), we have initiated a collab-
oration with Rob van der Mei and Sihan Ding (PhD student) to work on multi-channel issues.
Our objective is to contribute significantly to this new stream of literature, given its impact
on the real-life call center practice and at the same time the involved challenging theoretical
studies.

There are many interesting OM issues that are, roughly speaking, related to the study of the
impact of new technologies on the call center performance. I in particular mention two issues,
one on chat (instant messaging) and the other on call backs.

Chat systems: Chat systems allow customers to access an instant messaging system built into
the call center website to interact with agents online. From an operational point of view, the
main difference between call and chat channel is that while an agent can only serve a single call
at once, she can serve multiple customers simultaneously using chat (Tezcan and Zhang, 2014).
Other advantages of chat systems are the features such as screen sharing and the ability to
share files and data, which are particularly useful to computer companies, software companies,



118 Ongoing Work and Research Perspectives

and e-retailers (Cui and Tezcan, 2014). There are however drawback from using chat systems,
including a longer service time due to extra typing and reading time and frustration caused by
technological barriers (Shae et al., 2007).

From an OM perspective, we want to address the following questions. What are the ap-
propriate metrics for a chat system? What should be the maximum number of opened chat
sessions? What should be the optimal routing decisions? How to optimize the staffing level
under a given objective service level? Due to the specificity of the service process, new queueing
methods should be used to address these questions. Some first ideas suggest to consider the
analogy with processor sharing queues.

Call Back Option: In the context of highly congested call centers, the use of alternative service
channels can be proposed to customers so as to better match demand and capacity. Alternative
channels could be email, chat, blog, postponed call back service, etc. We focus on this last
alternative. The idea is that customers, who are expected to experience long waiting times,
receive the option to be called back later. This leads to a contact center with two channels, one
for inbound calls, and another for outbound calls.

The flexibility of the call back option comes from the willingness of some customers to accept
future processing. The call center can then make use of this opportunity to better manage arrival
uncertainty, which in turn would improve the system performance. One important question
for managers in this setting is how should be the routing rule of jobs that would ensure non-
excessive waiting times for both job types, i.e., upon service completion, should the agent handle
an inbound or an outbound call?

We want to address this question under a queueing modeling framework in which we capture
the customer reaction to the call back option. The key distinction of call center problems with
blending comes from the fact that outbound calls have less urgency relative to inbound calls.
The existing blending models in the literature mainly consider outbound calls as back-office jobs
that are already stored and are infinite. In a call center with a call back option, the number of
customers waiting to be called back is finite in order to avoid excessive waiting. The routing
policy would then depend on the length of the call back queue. Another difference, compared to
cases with classical outbound tasks, is that inbound and outbound calls are negatively correlated.
This implies a different analysis, and also leads to different managerial recommendations.

Our goal is to study the impact of using the call back option on the system performance. We
also want to derive the optimal scheduling policy of jobs that minimizes an objective function
involving queueing delays for inbounds and outbounds. Another interesting study is to optimize
the threshold at which the system transforms an inbound call to an outbound one.

2 Emergency Department Operations

One year ago, I have started with Zied Jemai, Ger Koole and Karim Ghanes (PhD student)
to work on the optimization of emergency departments. This is done under a project funded
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by Agence Régionale Santé Ile-de-France. We are closely collaborating with the urban French
hospital Saint-Camille.

An emergency departments (ED) is a service system. It is the main entrance to a hospital for
emergency incidents, offering non-stop services for any kind of patients. The continuous increase
in demand combined with austerity measurements have led to extensive congestion (Hoot and
Aronsky, 2008). Under a difficult economic context, ED managers are trying to improve per-
formance by minimizing the mismatch between patient demand and supply. However, an ED is
a complex environment with various types of heterogeneous patients and resources where most
of the parameters are uncertain. Healthcare practitioners have therefore resorted to researchers
in operations management and operations research in order to develop scientific approaches for
the performance optimization of EDs.

For the coming years, I am planning to extensively work on various operations management
issues of EDs. My motivations comes from the important societal impact of EDs where costs
and profits are not the sole elements. The employee well being and the quality of service offered
to the patient are in the heart of the manager concerns. As for call centers, the human element
is a central features that makes the study of EDs interesting, but at the same time challenging
due to the human complex factors. In what follows, I give a description of my ongoing and
future research works on this subject.

2.1 Performance indicators

Here, I describe an ongoing work on the analysis of key performance indicators for an ED.
The performance of emergency departments is facing a recurrent worldwide problem nowadays,
namely overcrowding. Overcrowding or congestion in EDs occurs when the available caring ca-
pacity cannot meet the demand represented by patient flow, and it can manifest itself through
different ways. For instance, an excessive number of patients present in the ED, long patient
stays and waiting times, and treatment in hallways, are all overcrowding signs. Congestion
in emergency departments leads to negative effects such as decreased physician productivity,
miscommunication between working staff, diversion of ambulances (Paul et al., 2010), and dis-
satisfaction of patients who may sometimes leave without treatment (Saghafian et al., 2012).
Moreover, it leads to high levels of stress, violence, decreased morals among ED staff, increased
medical errors, higher mortality rates, high staff turnovers and unnecessarily high costs (Trzeciak
and Rivers, 2003; Kuo et al., 2012; Spirivulis et al., 2006).

ED managers often evaluate their system through the use of Key Performance Indicators
(KPIs) that are related to overcrowding, such as the total length of stay, the time to first
treatment or the rate of patients that leave without being seen by a physician. In this work,
we want to produce a survey on the existing KPIs from an Operations Research/management
perspective.

The motivation of our work is as follows. The selection of KPIs for EDs has always been a
controversial subject, and the whys and wherefores of this choice remain unclear. ED is a large
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and complex system and each of these metrics measures something different (Hwang et al., 2011).
Neither the scientific community nor practitioners are able to decide on the most appropriate
KPI, as each indicator presents at the same time benefits and drawbacks. We want to highlight
and discuss these issues for all existing KPIs. For instance, ambulance diversion and the rate of
patients left without being seen cannot be used as a reference to compare different EDs since
they depend of the ED environment. Time to first treatment is a crucial KPI for critical cases
but it does not give any information about the ED state in other important stages of the process,
and the length of stay (LOS) gives an overview of the entire system performance but does not
allow to figure out local strengths and weaknesses. We want also to underline eventually some
relevant combinations of KPIs.

2.2 Human Resource Related Issues

We have recently initiated a work on human resource issues, i.e., the effect of staffing levels and
allocations on ED performance. As a first step, we proposed a simulation model based on a
comprehensive understanding of the real-world functioning of emergency departments. A field
study was conducted for this purpose through a close collaboration with the ED of Saint Camille
hospital. Real data and expert judgments are both used for the construction of the model. For
the validation, the model outputs were compared to historical data and judged by experts.
In order to alleviate congestion, ED managers and the general management of Saint Camille
hospital intend to invest in human staffing. Their objective is to improve the ED performance
by investing in human resources. The question we are facing here is: By how much should
the current staffing budget be increased and how should this additional budget be used in the
allocation of human resources?

Two performance metrics are involved in this study: the expected length of stay (LOS, sum
of sojourn times in all ED subsections), and the expected time to first treatment (TTFT, time
between the patient’s arrival and the first handling by a physician). LOS allows to approach
the ED in a holistic way, however, focusing only on LOS could have important drawbacks. The
impact could be in the non-urgent cases, or worst, the non-urgent cases could be benefited on
behalf of prolonging the waiting time of the urgent ones. We then consider TTFT, because it
allows to measure the most crucial element for severe incidents, as this waiting time affects the
mortality rate of very ill patients (Spirivulis et al., 2006).

We will adopt a simulation-based approach for the optimization of staffing levels of the
various human resource types involved in the ED (senior physicians, junior physicians, nurses,
etc.). We will study the effect of the staffing budget on LOS. We want also to understand the
effect of including the TTFT constraint, and investigate how this additional constraint may
affect the optimal planning solution. Because of the correlation between the two metrics, there
is an important tradeoff that one should understand and be aware of. We expect that the
takeaways and key conclusions of this study will be useful for our partner but also for most
other ED frameworks.
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2.3 Process Related Issues

In the near future, we will focus on process-related ED issues, namely, we will assess the impact of
modifying the process or changing some protocols and organizational rules on ED performance.
As underlined by our partners, ED problems can stem from the process itself, not the staffing
levels. There is a growing literature dealing with such issues. For instance, using MDP, Saghafian
et al. (2012) assess the effect of using a complexity-augmented triage on the performance of the
ED, while EDs typically use triage systems that classify and prioritize patients almost exclusively
in terms of urgency. Huang et al. (2012) address the problem of patient flow control in EDs.
They investigate the optimal decision for the physician at some point in the process: either to
handle a new patient coming from triage or an "in-process" patient. Other related literature
include Pallin and Kittell (1992) and García et al. (1995).

We plan to investigate the benefits of changing various process related procedures. For
instance, we want to assess the effect of some "anticipation methods" like allowing the triage
nurse to order tests and treatments (currently, the triage nurse only categorize the severity
index). This would reduce queueing delays for the first consultation, however it would also
imply an error because nurses are less experts than physicians. Such error may further create
congestion, since the exam equipments are a significant bottleneck in EDs. Another example
of process related issues is the controversial same patient same physician (SPSP) rule. From
the one hand, applying SPSP would deteriorate performance (less pooling effect). From the
other hand, ignoring SPSP would create a non-negligible duration for a physician to understand
the health situation of patient that has been first seen by another physician. Also, there is a
human link between the patient and the physician that is lost. Our objective is to quantify the
comparison between applying or not the SPSP rule. Another interesting question to address is
related to diagnostic tests (blood, urine, imaging, etc.) that are performed by a common service
to all hospital departments (the ED is one of them). Often, ED practitioners complain about
too long diagnostic delays. Point-of-care testing (POCT) may be a solution to this problem.
It consists of performing biological tests and simple imaging inside the ED with the use of ED
devices. We want to investigate whether the performance improvement may outperform the
investment in diagnostic equipments or not. Many other ideas could be proposed, and assessing
their benefits is worthwhile.

3 Stochastic Models and Their Applications to Services

In addition to call centers and emergency departments, I would like to contribute to the literature
of other service systems. My goal is to develop quantitative stochastic methods that would be
useful for a wide range of service applications. This is already the case as shown in my theoretical
contributions to the analysis of stochastic processes (Part III), for which the applications goes
beyond call centers and emergency departments. In addition to the future research directions
mentioned in the conclusions of the chapters of Part III, I want to work in the near future on two
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particular subjects. One deals with the study of queueing systems with finite and appointment-
driven arrivals, and the other deals with collaboration strategies between service systems that
are modeled as queueing systems. They are described below.

3.1 Appointment-Driven Arrivals

Under a collaboration with Saif Benjaafar and the PhD student Rowan Wang, we have worked on
the analysis of the effect of heterogeneity in inter-arrival and service times on the performance of
queueing systems with finite number of arrivals (Wang et al., 2014). We have examined various
settings of patterns where inter-arrival and service times increase, decrease, increase and then
decrease, or decrease and then increase. Applications include systems where arrivals are trigged
by the start of an event or a service. An example is the arrival of passengers to check-in for or
to board a flight. Passengers may belong to different classes (e.g., early, on-time, and late) or
are assigned to different groups (e.g., priority boarding zones), so that arrivals occur in waves
with each wave drawing from the population of the corresponding class or group.

With same team, we are planning in the near future to extend this work for queueing systems
where the arrival of customers is driven by appointments, with a scheduled appointment time
associated with each customer. However, customers are not necessarily punctual and may arrive
either earlier or later than their scheduled appointment times. Customers may also not show
up altogether. The arrival times of customers (relative to their scheduled appointments) and
their service times are both stochastic. We will consider case where customers are not homo-
geneous in their punctuality, show-up probabilities, and time between previous and subsequent
appointments, which may vary from customer to customer.

There are numerous service systems where the arrivals of customers are driven by scheduled
appointments (Mondschein and Weintraub, 2003; Cayirli and Veral, 2003; Gupta and Denton,
2008). Examples include arrivals to healthcare facilities, government agencies (e.g., immigra-
tion, social services, and internal revenue), the offices of tax and financial service providers,
academic advising offices at universities, restaurants and spa treatment facilities, just to name
a few. Despite this prevalence, analytical tools for the performance evaluation of these sys-
tems are relatively limited. Existing approaches from queueing theory cannot be readily applied
because of several important differences between standard queueing systems and systems with
appointment-driven arrivals (ADA). Systems with ADA are characterized by (1) a finite number
of customers (e.g., the set of patients that have been scheduled at a clinic in a given day), so
that steady state analysis cannot be applied, (2) arrivals that are in part determined by known
scheduled appointment times, (3) appointment times that may not be equally spaced, and (4)
the possibility of customer non-punctuality and no-shows. The difficulty of the analysis can
be further compounded in settings in which customers are heterogeneous in their service time
requirements, punctuality, and no-show probabilities. To our knowledge there are no existing re-
sults that consider simultaneously appointment driven arrivals, non-punctuality, and no-shows,
and do so for a setting as general as we want to investigate.
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Our objective in as first step is to develop an approach to obtain various performance mea-
sures related to the customer waiting time. We want then to examine the impact of not account-
ing for non-punctuality and no-shows and see whether doing so may or not lead to significant
errors. We also aim at developing an optimization method that can be used to support indi-
vidualized appointment scheduling (scheduling that takes into account the punctuality, no-show
behavior, service time distribution, and service level requirement of each customer).

3.2 Collaboration in Service Systems

Within the PhD thesis of Lisa Peng, co-supervised by Zied Jemai, we want to work on collabora-
tion strategies between queueing service systems. Up to now, all my work only focus on a single
actor. In practice, one may have several actors that collaborate under various architectures,
which may affect considerably the system performance of each actor. There are vertical collab-
orations (between a supplier and a company), and horizontal ones (between companies with the
same type of products). In particular, our goal is to work on queueing pooling strategies.

Resource pooling is an efficient strategy for dealing with uncertainty. It refers to an arrange-
ment in which a group of common resources or servers is held for multiple customer streams
rather than dedicated, separate resources for each individual customer stream. The main benefit
of resource pooling is reduced congestion, as measured by the time spent by customers waiting
to be served.

The efficiency benefits of resource pooling are commonly exploited in case multiple customer
streams are served by one common service provider (Tekin et al., 2009). But these benefits
can also be obtained if the customer streams belong to several independent service providers
(Guo et al., 2013). There are numerous real-life examples in various sectors of independent
service providers who may collaborate by pooling their resources into a joint service system.
For instance, several manufacturers of advanced technical equipment may employ a number of
non-branded repairmen to maintain and repair machines at their customers sites. Similarly,
business units of a large insurance firm may operate a common call center with cross-trained
telephone agents. One can also think of airline companies pooling check-in counters. Further,
a hospital is often comprised of clinical departments that share operating rooms, hospital beds,
and medical staff.

In general, collaboration among service providers enables more efficient use of their resources,
offers the opportunity to benefit from large economies of scale, and enhances their negotiation
power (Anily and Haviv, 2010). But how should be a good collaboration arrangement? How
should the independent entities allocate the total costs/profits of the pooled strategy among
them? A fair cost division is an essential prerequisite for a successful cooperation, but the
construction of such an allocation tends to be challenging.

We will use the concept of the cooperative game theory, which offers a natural paradigm to
tackle the above questions. We will consider short-term as well as long-term collaborations. In
the former case, each entity (queueing system) has a fixed known number of servers, which she
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brings to any coalition. In the latter case, which is much more challenging, each coalition picks
a cost-minimizing number of servers.

This finishes the description of the projects I am planning to work on, and finishes also my
HDR dissertation. At the end of this dissertation, I would like to again thank all my colleagues
to which I owe all my results as well as my passionate interest in research.
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