
HAL Id: tel-01364813
https://hal.science/tel-01364813v1

Submitted on 12 Sep 2016 (v1), last revised 6 Dec 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selective disclosure and inference leakage problem in the
Linked Data

Tarek Sayah

To cite this version:
Tarek Sayah. Selective disclosure and inference leakage problem in the Linked Data. Databases
[cs.DB]. Universite Claude Bernard Lyon 1, 2016. English. �NNT : 2016LYSE1156�. �tel-01364813v1�

https://hal.science/tel-01364813v1
https://hal.archives-ouvertes.fr

No d'ordre NNT : 2016LYSE1156

THÈSE DE DOCTORAT DE L'UNIVERSITÉ DE LYON
opérée au sein de

l'Université Claude Bernard Lyon 1

École Doctorale ED512
Informatique et Mathématiques

Spécialité de doctorat : Informatique

Soutenue publiquement le 08/09/2016, par :

Tarek Sayah

Selective disclosure and inference

leakage problem in the Linked Data

Devant le jury composé de :

Mé Ludovic, Professeur, Supélec - Cesson Sévigné Président

Goasdoué François, Professeur des Universités, Université Rennes 1 Rapporteur

Nguyen Benjamin, Professeur des Universités, INSA Centre Val de Loire Rapporteur

Roca Vincent, Chargé de recherche - HDR, Inria - Grenoble Examinateur

Simon Eric, Architecte, SAP Business Objects - Levalois-Perret Examinateur

Hacid Mohand-Saïd, Professeur des Universités, Université Lyon 1 Directeur de thèse

Coquery Emmanuel, Maître de conférences - HDR, Université Lyon 1 Co-directeur de thèse

Thion Romuald, Maître de conférences, Université Lyon 1 Co-directeur de thèse

UNIVERSITE CLAUDE BERNARD - LYON 1

Président de l’Université

Vice-président du Conseil d’Administration

Vice-président du Conseil des Etudes et de la Vie Universitaire

Vice-président du Conseil Scientifique

Directeur Général des Services

M. François-Noël GILLY

M. le Professeur Hamda BEN HADID

M. le Professeur Philippe LALLE

M. le Professeur Germain GILLET

M. Alain HELLEU

COMPOSANTES SANTE

Faculté de Médecine Lyon Est – Claude Bernard

Faculté de Médecine et de Maïeutique Lyon Sud – Charles
Mérieux

Faculté d’Odontologie

Institut des Sciences Pharmaceutiques et Biologiques

Institut des Sciences et Techniques de la Réadaptation

Département de formation et Centre de Recherche en Biologie
Humaine

Directeur : M. le Professeur J. ETIENNE

Directeur : Mme la Professeure C. BURILLON

Directeur : M. le Professeur D. BOURGEOIS

Directeur : Mme la Professeure C. VINCIGUERRA

Directeur : M. le Professeur Y. MATILLON

Directeur : Mme. la Professeure A-M. SCHOTT

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

Faculté des Sciences et Technologies
Département Biologie
Département Chimie Biochimie
Département GEP
Département Informatique
Département Mathématiques
Département Mécanique
Département Physique

UFR Sciences et Techniques des Activités Physiques et Sportives

Observatoire des Sciences de l’Univers de Lyon

Polytech Lyon

Ecole Supérieure de Chimie Physique Electronique

Institut Universitaire de Technologie de Lyon 1

Ecole Supérieure du Professorat et de l’Education

Institut de Science Financière et d'Assurances

Directeur : M. F. DE MARCHI
Directeur : M. le Professeur F. FLEURY
Directeur : Mme Caroline FELIX
Directeur : M. Hassan HAMMOURI
Directeur : M. le Professeur S. AKKOUCHE
Directeur : M. le Professeur Georges TOMANOV
Directeur : M. le Professeur H. BEN HADID
Directeur : M. Jean-Claude PLENET

Directeur : M. Y.VANPOULLE

Directeur : M. B. GUIDERDONI

Directeur : M. P. FOURNIER

Directeur : M. G. PIGNAULT

Directeur : M. le Professeur C. VITON

Directeur : M. le Professeur A. MOUGNIOTTE

Directeur : M. N. LEBOISNE

A mes chers parents

A ma chère épouse et mes adorables filles

A mes frères et sœurs

A la mémoire de ma grand-mère paternelle

A mes amis et à la mémoire de mon ami Fares Khentout

Remerciements

La réalisation de ce mémoire a été possible grâce au concours de plusieurs personnes à qui je voudrais

témoigner toute ma reconnaissance.

Avant tout, j’adresse mes sincères remerciements à mon directeur de thèse Mohand-Saïd Hacid et à mes

co-encadrants Romuald Thion et Emmanuel Coquery, pour leur soutien tout au long de ces trois années

de thèse et pour leurs nombreux conseils qui m’ont été très précieux.

Je remercie vivement François Goasdoué et Benjamin Nguyen d’avoir rapporté mes travaux de thèse.

Je tiens à remercier également Ludovic Mé, Vincent Roca et Eric Simon d’avoir participé à mon jury et

d’avoir accepté d’examiner mes travaux de thèse.

Je remercie également Mohamed Frendi, qui m’a encouragé à faire ce doctorat.

Je voudrais aussi exprimer ma reconnaissance envers les amis et collègues qui m’ont apporté leur

support moral et intellectuel tout au long de ma démarche, en particulier Amine, Samir, Mehdi, Brahim

et Fairouz.

Merci à mon frère Samir pour son aide et ses encouragements.

Un grand merci à mes amis : Kamel, Ahmed, Nadhir, Sayd, Lazhar, Ali et Fares.

Merci à mon voisin et ami Fouad.

Je tiens à remercier également les membres du LIRIS pour leur accueil ainsi que pour leur ambiance

chaleureuse tout au long de ma thèse en particulier Brigitte et Isabelle.

List of publications

[Sayah 2015] Tarek Sayah, Emmanuel Coquery, Romuald Thion and Mohand-
Säıd Hacid. Inference Leakage Detection for Authorization Policies over RDF
Data. In DBSec, USA 2015 (CORE Ranking : A).

[Sayah 2016] Tarek Sayah, Emmanuel Coquery, Romuald Thion and
Mohand-Säıd Hacid. Access Control Enforcement for Selective Disclosure of
Linked Data. In STM, Greece 2016 (Acceptance rate : 35%).

Résumé étendu en français

1 Contexte

Le Web est devenu l’outil principal de diffusion de l’information pour
les organismes privés et publics, à travers lequel d’énormes quantités d’in-
formations sont échangées chaque jour. Le web traditionnel est utilisé pour
transmettre, recevoir et afficher des contenus encapsulés sous forme de do-
cuments. Ces documents étaient destinés à la consommation humaine et
ne pouvait pas être compris par des machines. Le Web sémantique égale-
ment appelé Web de données peut être conceptualisé comme une extension
du Web actuel afin de permettre la création, le partage et la réutilisation
intelligente des contenus web pour qu’ils soient lisibles par la machine.

Le Linked Data concerne tout simplement l’utilisation du Web pour créer
des liens typés entre les données provenant de sources différentes. Technique-
ment, Linked Data réfère à un ensemble de bonnes pratiques pour l’édition
et la connexion des données structurées sur le Web de sorte que ces don-
nées soient lisibles par la machine, leur sens est explicitement definie, elles
sont liées à d’autres données externes, et être reliées à partir de données
externes. Berners-Lee discute les quatre principes de base pour le Linked
Data comme [BL06]:

1. Utiliser les URIs pour nommer les choses

2. Utiliser les URIs HTTP de telle sorte que les gens puissent chercher
ces noms

3. Quand quelqu’un regarde une URI, fournir des informations utiles,
en utilisant les normes (RDF, SPARQL)

4. Inclure des liens vers d’autres URIs, afin qu’ils puissent découvrir
plus de choses

Un mouvement général “d’ouverture des données” (Linked Open Data) 1

est suivi par les institutions (ex., Enseignement Supérieur et Recherche en
France 2), les collectivités locales (ex., Villes de Lyon et de Grenoble 3), les
bases de données thématiques (ex., Dbtune, MusicBrainz 4), les organiza-
tions (BBC dans ses systèmes internes de production de contenus [KSR+09]),
géographiques et bien sûr généralistes (ex., GeoNames, Wikipedia 5)).

Lier des données distribuées à travers le Web nécessite un mécanisme
standard pour spécifier l’existence et la signification des liens entre les élé-
ments décrits dans ces données. Ce mécanisme est fourni par le format Re-
source Description Framework (RDF). La Figure 1 montre des ensembles de

1. http://www.mckinsey.com/business-functions/business-technology/
our-insights/open-data-unlocking-innovation-and-performance-with-

liquid-information
2. http://data.enseignementsup-recherche.gouv.fr
3. http://data.grandlyon.com et http://data.beta.metropolegrenoble.fr
4. http://dbtune.org and http://linkedbrainz.org
5. http://www.geonames.org/ontology and http://wiki.dbpedia.org

4

données qui ont été publiés dans le format Linked Data 6. La figure montre
des datastores qui appartiennent à différents domaines de thématiques (gou-
vernement, publications, sciences de la vie, etc.). La taille du Web de données
est estimé à plus de 3400 sources ouvertes pour un volume total de plus de
85 milliards de triplets(statements) 7, et plus de 8500 sources sur le portail
de données ouvertes de l’Union Européenne 8.

RDF a gagné beaucoup d’attention ces dernières années, et par consé-
quent un nombre croissant d’ensembles de données sont maintenant repré-
sentés avec ce langage. Cette popularité a évidemment motivé certains tra-
vaux de recherche sur la conception de systèmes de bases de données adaptés
et efficaces pour stocker efficacement, interroger et raisonner sur de grandes
quantités de données RDF. Ces systèmes sont souvent appelés Entrepôts
RDF (RDF store) ou triplestore. Plusieurs entrepôts RDF ont été dévelop-
pés pour traiter les données RDF, dont certains sont natifs alors que d’autres
utilisent des backend SGBDR. Les entrepôt RDF natifs sont ceux qui sont
mis en oeuvre à partir de zéro et qui exploitent le modèle RDF pour stocker
efficacement et accéder aux données RDF, tels que 4Store 9, Allegro-
Graph 10, Stardog 11, Jena TDB 12 et Sesame 13. Les entrepôts qui ne
sont pas natif RDF tels que Virtuoso 14 et Jena SDB 15, utilisent une base
de données relationnelle pour stocker les triplets. L’un des concepts clés de
l’architecture du Web sémantique sont les graphes nommés (named graphs)
qui est une simple extension du modèle de données RDF qui transforme les
triplets RDF en quads. Les graphes nommés sont des ensembles de triplets
identifiés par IRIs, permettant des descriptions sur ces ensembles comme des
informations sur la provenance, le contexte et d’autres métadonnées.

Comme la demande pour les données et la gestion de l’information aug-
mentent, il y a aussi un besoin crucial pour le maintien de la sécurité des
sources de données, les applications, et systèmes d’information. Différents
domaines d’études ont été introduits pour concevoir des approches appro-
priées capable de fournir des garanties de sécurité. Ces domaines d’études
concernent l’authentification [Lam81], le contrôle d’accès [GW76], la cryp-
tographie [DH76, RSA78] et l’audit [ABF+04]. Suite à l’évolution de ces
domaines, les systèmes de bases de données offrent de nouveaux paradigmes
de sécurité pour faire face aux vulnérabilités induites par de nouvelles fonc-

6. http://lod-cloud.net/
7. https://www.w3.org/wiki/TaskForces/CommunityProjects/

LinkingOpenData/DataSets/LinkStatistics
8. https://open-data.europa.eu/fr/data
9. www.4store.com

10. http://franz.com/agraph/allegrograph/
11. url http: //www.stardog. com /
12. https://jena.apache.org/documentation/tdb/index.html
13. http://www.rdf4j.org/
14. http://virtuoso.openlinksw.com/
15. https://jena.apache.org/documentation/sdb/

5

Li
n
ke
d
D
a
ta
se
ts

a
s
o
f
'
u
g
u
st

.
V
K
Q

U
n
ip
ro
t

'
le
x
a
n
d
ri
a

D
ig
it
a
l
Li
b
ra
ry

G
a
ze
tt
e
e
r

lo
b
id

O
rg
a
n
iz
a
ti
o
n
s

ch
e
m
.

b
io
.
rd
f

M
u
lt
im

e
d
ia

La
b
U
n
iv
e
rs
it
y

G
h
e
n
t

O
p
e
n
D
a
ta

E
cu
a
d
o
r

G
e
o

E
cu
a
d
o
r

S
e
re
n
d
ip
it
y

U
T
P
L

LO
D

G
o
v
'
g
ri
9
u
s

D
e
n
m
a
rk

D
9
p
e
d
ia

liv
e

U
R
I

9
u
rn
e
r

Li
n
g
u
is
ti
cs

S
o
ci
a
l
N
e
tw

o
rk
in
g

Li
fe

S
ci
e
n
ce
s

C
ro
ss
-D
o
m
a
in

G
o
v
e
rn
m
e
n
t

U
se
r-
G
e
n
e
ra
te
d
C
o
n
te
n
t

P
u
b
lic
a
ti
o
n
s

G
e
o
g
ra
p
h
ic

M
e
d
ia

Id
e
n
ti
fi
e
rs

E
io
n
e
t

R
D
F

lo
b
id

R
e
so
u
rc
e
s

W
ik
ti
o
n
a
ry

D
9
p
e
d
ia

V
ia
f

U
m
th
e
s

R
K
9

E
x
p
lo
re
r

C
o
u
rs
e
w
a
re

O
p
e
n
cy
c

O
lia

G
e
m
F

T
h
e
sa
u
ru
s

'
u
d
io
v
is
u
e
le

'
rc
h
ie
v
e
n

D
is
e
a
so
m
e

FU
-9
e
rl
in

E
u
ro
v
o
c

in
S
K
O
S

D
N
9

G
N
D

C
o
rn
e
tt
o

9
io
.
R
D
F

P
u
b
m
e
d

9
io
.
R
D
F

N
D
C

9
io
.
R
D
F

M
e
sh

ID
S

O
n
to
s

N
e
w
s

Po
rt
a
l

'
E
M
E
T

in
e
v
e
ry
cr
e
a

Li
n
ke
d

U
se
r

Fe
e
d
b
a
ck

M
u
se
o
s

E
sp
a
n
ia

G
N
O
S
S

E
u
ro
p
e
a
n
a

N
o
m
e
n
cl
a
to
r

'
st
u
ri
a
s

R
e
d
U
n
o

In
te
rn
a
ci
o
n
a
l

G
N
O
S
S

G
e
o

W
o
rd
n
e
t

9
io
.
R
D
F

H
G
N
C

C
ti
c

P
u
b
lic

D
a
ta
se
t

9
io
.
R
D
F

H
o
m
o
lo
g
e
n
e

9
io
.
R
D
F

'
ff
y
m
e
tr
ix

M
u
n
in
n

W
o
rl
d
W
a
r
I

C
K
'
N

G
o
v
e
rn
m
e
n
t

W
e
b
In
te
g
ra
ti
o
n

fo
r

Li
n
ke
d

D
a
ta

U
n
iv
e
rs
id
a
d

d
e
C
u
e
n
ca

Li
n
ke
d
d
a
ta

Fr
e
e
b
a
se

Li
n
kl
io
n

'
ri
a
d
n
e

O
rg
a
n
ic

E
d
u
n
e
t

G
e
n
e

E
x
p
re
ss
io
n

'
tl
a
s
R
D
F

C
h
e
m
b
l

R
D
F

9
io
sa
m
p
le
s

R
D
F

Id
e
n
ti
fi
e
rs

O
rg

9
io
m
o
d
e
ls

R
D
F

R
e
a
ct
o
m
e

R
D
F

D
is
g
e
n
e
t

S
e
m
a
n
ti
c

Q
u
ra
n

I'
T
I
a
s

Li
n
ke
d
D
a
ta

D
u
tc
h

S
h
ip
s
a
n
d

S
a
ilo
rs

V
e
rr
ijk
tk
o
n
in
kr
ijk

IS
e
rv
e

'
ra
g
o
-

d
b
p
e
d
ia

Li
n
ke
d

TC
G
'

'
9
S

.
J
V
a
Fi
n
fo

R
D
F

Li
ce
n
se

E
n
v
ir
o
n
m
e
n
ta
l

'
p
p
lic
a
ti
o
n
s

R
e
fe
re
n
ce

T
h
e
sa
u
ru
s

T
h
is
t

Ju
d
a
ic
a
Li
n
k

9
P
R

O
C
D

S
h
o
a
h

V
ic
ti
m
s

N
a
m
e
s

R
e
lo
a
d

D
a
ta

fo
r

To
u
ri
st
s
in

C
a
st
ill
a
y
Le
o
n

.
V
V
K

S
p
a
n
is
h

C
e
n
su
s

to
R
D
F

R
K
9

E
x
p
lo
re
r

W
e
b
sc
ie
n
ce

R
K
9

E
x
p
lo
re
r

E
p
ri
n
ts

H
a
rv
e
st

N
V
S

E
U
'
g
e
n
ci
e
s

9
o
d
ie
s

E
P
O

Li
n
ke
d

N
U
T
S

R
K
9

E
x
p
lo
re
r

E
p
sr
c

O
p
e
n

M
o
b
ile

N
e
tw

o
rk

R
K
9

E
x
p
lo
re
r

Li
sb
o
n

R
K
9

E
x
p
lo
re
r

It
a
ly

C
E
Q
R

E
n
v
ir
o
n
m
e
n
t

'
g
e
n
cy

9
a
th
in
g
W
a
te
r

Q
u
a
lit
y

R
K
9

E
x
p
lo
re
r

K
a
u
n
a
s

O
p
e
n

D
a
ta

T
h
e
sa
u
ru
s

R
K
9

E
x
p
lo
re
r

W
o
rd
n
e
t

R
K
9

E
x
p
lo
re
r

E
C
S

'
u
st
ri
a
n

S
ki

R
a
ce
rs

S
o
ci
a
l-

se
m
w
e
b

T
h
e
sa
u
ru
s

D
a
ta

O
p
e
n

'
c
U
k

R
K
9

E
x
p
lo
re
r

IE
E
E

R
K
9

E
x
p
lo
re
r

L'
'
S

R
K
9

E
x
p
lo
re
r

W
ik
i

R
K
9

E
x
p
lo
re
r

JI
S
C

R
K
9

E
x
p
lo
re
r

E
p
ri
n
ts

R
K
9

E
x
p
lo
re
r

P
is
a

R
K
9

E
x
p
lo
re
r

D
a
rm

st
a
d
t

R
K
9

E
x
p
lo
re
r

u
n
lo
co
d
e

R
K
9

E
x
p
lo
re
r

N
e
w
ca
st
le

R
K
9

E
x
p
lo
re
r

O
S

R
K
9

E
x
p
lo
re
r

C
u
rr
ic
u
lu
m

R
K
9

E
x
p
lo
re
r

R
e
se
x

R
K
9

E
x
p
lo
re
r

R
o
m
a

R
K
9

E
x
p
lo
re
r

E
u
re
co
m

R
K
9

E
x
p
lo
re
r

I9
M

R
K
9

E
x
p
lo
re
r

N
S
F

R
K
9

E
x
p
lo
re
r

ki
st
i

R
K
9

E
x
p
lo
re
r

D
9
LP

R
K
9

E
x
p
lo
re
r

'
C
M

R
K
9

E
x
p
lo
re
r

C
it
e
se
e
r

R
K
9

E
x
p
lo
re
r

S
o
u
th
a
m
p
to
n

R
K
9

E
x
p
lo
re
r

D
e
e
p
b
lu
e

R
K
9

E
x
p
lo
re
r

D
e
p
lo
y

R
K
9

E
x
p
lo
re
r

R
is
ks

R
K
9

E
x
p
lo
re
r

E
R
'

R
K
9

E
x
p
lo
re
r

O
'
I

R
K
9

E
x
p
lo
re
r

FT

R
K
9

E
x
p
lo
re
r

U
lm

R
K
9

E
x
p
lo
re
r

Ir
it

R
K
9

E
x
p
lo
re
r

R
'
E
.
V
V
K

R
K
9

E
x
p
lo
re
r

D
o
ta
c

R
K
9

E
x
p
lo
re
r

9
u
d
a
p
e
st

S
w
e
d
is
h

O
p
e
n
C
u
lt
u
ra
l

H
e
ri
ta
g
e

R
a
d
a
ta
n
a

C
o
u
rt
s

T
h
e
sa
u
ru
s

G
e
rm

a
n

La
b
o
r
La
w

T
h
e
sa
u
ru
s

G
o
v
U
K

Tr
a
n
sp
o
rt

D
a
ta G
o
v
U
K

E
d
u
ca
ti
o
n

D
a
ta

E
n
a
k
ti
n
g

M
o
rt
a
lit
y

E
n
a
k
ti
n
g

E
n
e
rg
y

E
n
a
k
ti
n
g

C
ri
m
e

E
n
a
k
ti
n
g

Po
p
u
la
ti
o
n

E
n
a
k
ti
n
g

C
O
.
E
m
is
si
o
n

E
n
a
k
ti
n
g

N
H
S

R
K
9

E
x
p
lo
re
r

C
ri
m
e

R
K
9

E
x
p
lo
re
r

co
rd
is

G
o
v
tr
a
ck

G
e
o
lo
g
ic
a
l

S
u
rv
e
y
o
f

'
u
st
ri
a

T
h
e
sa
u
ru
s

G
e
o

Li
n
ke
d

D
a
ta

G
e
si
s

T
h
e
so
z

9
io
.
R
D
F

P
h
a
rm

g
kb

9
io
.
R
D
F

S
a
b
io
rk

9
io
.
R
D
F

N
cb
ig
e
n
e

9
io
.
R
D
F

Ir
e
fi
n
d
e
x

9
io
.
R
D
F

Ip
ro
cl
a
ss

9
io
.
R
D
F

G
O
'

9
io
.
R
D
F

D
ru
g
b
a
n
k

9
io
.
R
D
F

C
T
D

9
io
.
R
D
F

9
io
m
o
d
e
ls

9
io
.
R
D
F

D
9
S
N
P

9
io
.
R
D
F

C
lin
ic
a
lt
ri
a
ls

9
io
.
R
D
F

LS
R

9
io
.
R
D
F

O
rp
h
a
n
e
t

9
io
.
R
D
F

W
o
rm

b
a
se

9
IS

.
J
V
a
Fi
n
fo

D
M
.
E

D
9
p
e
d
ia

P
T

D
9
p
e
d
ia

E
S

D
9
p
e
d
ia

C
S

D
9
n
a
ry

'
lp
in
o

R
D
F

Y'
G
O

P
d
e
v

Le
m
o
n

Le
m
o
n
u
b
yIs
o
ca
t

Ie
tfl
a
n
g

C
o
re

K
U
P
K
9

G
e
tt
y

'
'
T

S
e
m
a
n
ti
c

W
e
b

Jo
u
rn
a
l

O
p
e
n
lin
kS

W
D
a
ta
sp
a
ce
s

M
y
O
p
e
n
lin
k

D
a
ta
sp
a
ce
s

Ju
g
e
m

Ty
p
e
p
a
d

'
sp
ir
e

H
a
rp
e
r

'
d
a
m
s

N
9
N

R
e
so
lv
in
g

W
o
rl
d
ca
t

9
io
.
R
D
F

9
io
.
R
D
F

E
C
O

Ta
xo
n
-

co
n
ce
p
t

'
ss
e
ts

In
d
y
m
e
d
ia

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
im

d
E
m
p
lo
y
m
e
n
t

R
a
n
k
La

.
V
K
V

G
N
U

Li
ce
n
se
s

G
re
e
k

W
o
rd
n
e
t

D
9
p
e
d
ia

C
IP
F'

Y
so
Ffi

'
lla
rs

G
lo
tt
o
lo
g

S
ta
tu
sN

e
t

9
o
n
if
a
z

S
ta
tu
sN

e
t

sh
n
o
u
lle

R
e
v
y
u

S
ta
tu
sN

e
t

K
a
th
ry
l

C
h
a
rg
in
g

S
ta
ti
o
n
s

'
sp
ir
e

U
C
L

Te
ko
rd

D
id
a
ct
a
lia

'
rt
e
n
u
e

V
o
sm

e
d
io
s

G
N
O
S
S

Li
n
ke
d

C
ru
n
ch
b
a
se

E
S
D

S
ta
n
d
a
rd
s

V
IV
O

U
n
iv
e
rs
it
y

o
f
Fl
o
ri
d
a

9
io
.
R
D
F

S
G
D

R
e
so
u
rc
e
s

P
ro
d
u
ct

O
n
to
lo
g
y

D
a
to
s

9
n
e
Fe
s

S
ta
tu
sN

e
t

M
rb
lo
g

9
io
.
R
D
F

D
a
ta
se
t

E
U
N
IS

G
o
v
U
K

H
o
u
si
n
g

M
a
rk
e
t

LC
S
H

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

in
d
F

H
o
u
se
h
o
ld
s

In
te
m
p
F

'
cc
o
m
F

U
n
ip
ro
t

K
9

S
ta
tu
sN

e
t

Ti
m
tt
m
y

S
e
m
a
n
ti
c

W
e
b

G
ru
n
d
la
g
e
n

G
o
v
U
K

In
p
u
t
in
d
F

Lo
ca
l
'
u
th
o
ri
ty

Fu
n
d
in
g
Fr
o
m

G
o
v
e
rn
m
e
n
t

G
ra
n
t

S
ta
tu
sN

e
t

Fc
e
st
ra
d
a

JI
T'

S
ta
tu
sN

e
t

S
o
m
sa
n
ts

S
ta
tu
sN

e
t

Ili
ke
fr
e
e
d
o
m

D
ru
g
b
a
n
k

FU
-9
e
rl
in

S
e
m
a
n
lin
k

S
ta
tu
sN

e
t

D
td
n
s

S
ta
tu
sN

e
t

S
ta
tu
sF
n
e
t

D
C
S

S
h
e
ffi
e
ld

'
th
e
lia

R
FI
D

S
ta
tu
sN

e
t

Te
kk

Li
st
a

E
n
ca
b
e
za

M
ie
n
to
s

M
a
te
ri
a

S
ta
tu
sN

e
t

Fr
a
g
d
e
v

M
o
re
la
b

D
9
Tu
n
e

Jo
h
n
Pe
e
l

S
e
ss
io
n
s

R
D
Fi
ze

la
st
Ff
m

O
p
e
n

D
a
ta

E
u
sk
a
d
i

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

In
p
u
t
in
d
F

Lo
ca
l
a
u
th
F

Fu
n
d
in
g
fF

G
v
m
n
tF
G
ra
n
t

M
S
C

Le
x
in
fo

S
ta
tu
sN

e
t

E
q
u
e
st
ri
a
rp

'
sn
Fu
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
e
a
lt
h
R
a
n
k
la

.
V
K
V

S
ta
tu
sN

e
t

M
a
cn
o

O
ce
a
n
d
ri
lli
n
g

9
o
re
h
o
le

'
sp
ir
e

Q
m
u
l

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

P
la
n
n
in
g

'
p
p
lic
a
ti
o
n
s

G
ra
n
te
d

Lo
iu
s

D
a
ta
h
u
b
Fi
o

S
ta
tu
sN

e
t

M
a
y
m
a
y

P
ro
sp
e
ct
s

a
n
d

Tr
e
n
d
s

G
N
O
S
S

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

E
n
e
rg
y
E
ffi
ci
e
n
cy

n
e
w
9
u
ild
s

D
9
p
e
d
ia

E
U

9
io
.
R
D
F

Ta
xo
n

S
ta
tu
sN

e
t

Ts
ch
lo
tf
e
ld
t

Ja
m
e
n
d
o

D
9
Tu
n
e

'
sp
ir
e

N
T
U

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
e
a
lt
h
S
co
re

.
V
K
V

Lo
ti
co

G
N
O
S
S

U
n
ip
ro
t

M
e
ta
d
a
ta

Li
n
ke
d

E
u
ro
st
a
t

'
sp
ir
e

S
u
ss
e
x

Le
x
v
o

Li
n
ke
d

G
e
o

D
a
ta

S
ta
tu
sN

e
t

S
p
ip

S
O
R
S

G
o
v
U
K

H
o
m
e
le
ss
-

n
e
ss

'
cc
e
p
tF
p
e
r

K
V
V
V

T
W
C

IE
E
E
v
is

'
sp
ir
e

9
ru
n
e
l

P
la
n
e
tD
a
ta

P
ro
je
ct

W
ik
i

S
ta
tu
sN

e
t

Fr
e
e
lis
h

S
ta
ti
st
ic
s

d
a
ta
Fg
o
vF
u
k

S
ta
tu
sN

e
t

M
u
le
st
a
b
le

E
n
ip
e
d
ia

U
K

Le
g
is
la
ti
o
n

'
P
I

Li
n
ke
d

M
D
9

S
ta
tu
sN

e
t

Q
th

S
id
e
r

FU
-9
e
rl
in

D
9
p
e
d
ia

D
E

G
o
v
U
K

H
o
u
se
h
o
ld
s

S
o
ci
a
l
le
tt
in
g
s

G
e
n
e
ra
l
N
e
e
d
s

Le
tt
in
g
s
P
rp

N
u
m
b
e
r

9
e
d
ro
o
m
s

'
g
ro
v
o
c

S
ko
s

M
y

E
x
p
e
ri
m
e
n
t

P
ro
y
e
ct
o

'
p
a
d
ri
n
a

G
o
v
U
K

Im
d
C
ri
m
e

R
a
n
k
.
V
K
V

S
IS
V
U

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
o
u
si
n
g
R
a
n
k
la

.
V
K
V

S
ta
tu
sN

e
t

U
n
i

S
ie
g
e
n

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
E
d
u
ca
ti
o
n

R
a
n
k

S
ta
tu
sN

e
t

K
a
im

i

G
o
v
U
K

H
o
u
se
h
o
ld
s

'
cc
o
m
m
o
d
a
te
d

p
e
r
K
V
V
V

S
ta
tu
sN

e
t

P
la
n
e
tl
ib
re

D
9
p
e
d
ia

E
L

S
zt
a
ki

LO
D

D
9
p
e
d
ia

Li
te

D
ru
g

In
te
ra
ct
io
n

K
n
o
w
le
d
g
e

9
a
se

S
ta
tu
sN

e
t

Q
d
n
x

'
m
st
e
rd
a
m

M
u
se
u
m

'
S
E
D
N
LO

D

R
D
F

O
h
lo
h

D
9
Tu
n
e

a
rt
is
ts

la
st
Ff
m

'
sp
ir
e

U
cl
a
n

H
e
lle
n
ic

Fi
re

9
ri
g
a
d
e

9
ib
so
n
o
m
y

N
o
tt
in
g
h
a
m

Tr
e
n
t

R
e
so
u
rc
e

Li
st
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
In
co
m
e
R
a
n
k

R
a
n
d
o
m
n
e
ss

G
u
id
e

Lo
n
d
o
n

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
H
e
a
lt
h

R
a
n
k

S
o
u
th
a
m
p
to
n

E
C
S
E
p
ri
n
ts

FR
9

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

S
e
b
se
b
V
K

S
ta
tu
sN

e
t

9
ka

E
S
D

To
o
lk
it

H
e
lle
n
ic

Po
lic
e

S
ta
tu
sN

e
t

C
e
d
K
K
J

O
p
e
n

E
n
e
rg
y

In
fo

W
ik
i

S
ta
tu
sN

e
t

Ly
d
ia
st
e
n
ch

O
p
e
n

D
a
ta

R
IS
P

Ta
xo
n
-

co
n
ce
p
t

O
cc
u
re
n
ce
s

9
io
.
R
D
F

S
G
D

U
IS

.
J
V
a
Fi
n
fo

N
Y
Ti
m
e
s

Li
n
ke
d
O
p
e
n

D
a
ta

'
sp
ir
e

K
e
e
le

G
o
v
U
K

H
o
u
se
h
o
ld
s

P
ro
je
ct
io
n
s

Po
p
u
la
ti
o
n

W
H
C

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
H
o
u
si
n
g

R
a
n
k

Z
D
9

S
ta
tu
sN

e
t

K
w
7

S
ta
tu
sN

e
t

'
le
x
a
n
d
re

Fr
a
n
ke

D
e
w
e
y

D
e
ci
m
a
l

C
la
ss
ifi
ca
ti
o
n

S
ta
tu
sN

e
t

S
ta
tu
s

S
ta
tu
sN

e
t

d
o
o
m
ic
ile

C
u
rr
e
n
cy

D
e
si
g
n
a
to
rs

S
ta
tu
sN

e
t

H
iic
o

Li
n
ke
d

E
d
g
a
r

G
o
v
U
K

H
o
u
se
h
o
ld
s

.
V
V
Y

D
O
I

S
ta
tu
sN

e
t

Pa
n
d
a
id

9
ra
zi
lia
n

Po
lit
ic
ia
n
s

N
H
S

Ja
rg
o
n

T
h
e
se
sF
fr

Li
n
ke
d

Li
fe

D
a
ta

S
e
m
a
n
ti
c
W
e
b

D
o
g
Fo
o
d

U
M
9
E
L

O
p
e
n
ly

Lo
ca
l

S
ta
tu
sN

e
t

S
sw

e
e
n
y

Li
n
ke
d

Fo
o
d

In
te
ra
ct
iv
e

M
a
p
s

G
N
O
S
S

O
E
C
D

.
J
V
a
Fi
n
fo

S
u
d
o
cF
fr

G
re
e
n

C
o
m
p
e
ti
ti
v
e
-

n
e
ss

G
N
O
S
S

S
ta
tu
sN

e
t

In
te
g
ra
lb
lu
e

W
O
LD

Li
n
ke
d

S
to
ck

In
d
e
x

'
p
a
ch
e

K
D
'
T'

Li
n
ke
d

O
p
e
n

P
ir
a
cy

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
rv
F
Im

d
E
m
p
lF
R
a
n
k

La
.
V
K
V

9
9
C

M
u
si
c

S
ta
tu
sN

e
t

Q
u
it
te
r

S
ta
tu
sN

e
t

S
co
ff
o
n
i

O
p
e
n

E
le
ct
io
n

D
a
ta

P
ro
je
ct

R
e
fe
re
n
ce

d
a
ta
Fg
o
vF
u
k

S
ta
tu
sN

e
t

Jo
n
km

a
n

P
ro
je
ct

G
u
te
n
b
e
rg

FU
-9
e
rl
in

D
9
Tr
o
p
e
s

S
ta
tu
sN

e
t

S
p
ra
ci

Li
b
ri
s

E
C
9

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

T
h
e
lo
v
e
b
u
g

Ic
a
n
e

G
re
e
k

'
d
m
in
is
tr
a
ti
v
e

G
e
o
g
ra
p
h
y

9
io
.
R
D
F

O
M
IM

S
ta
tu
sN

e
t

O
ra
n
g
e
se
e
d
s

N
a
ti
o
n
a
l

D
ie
t
Li
b
ra
ry

W
E
9
N
D
L

'
u
th
o
ri
ti
e
s

U
n
ip
ro
t

Ta
xo
n
o
m
y

D
9
p
e
d
ia

N
L

LH
S

D
9
LP

F'
O

G
e
o
p
o
lit
ic
a
l

O
n
to
lo
g
y

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

H
o
u
si
n
g
S
ta
rt
s

D
e
u
ts
ch
e

9
io
g
ra
p
h
ie

S
ta
tu
sN

e
t

ld
n
fa
i

S
ta
tu
sN

e
t

K
e
u
se
r

S
ta
tu
sN

e
t

R
u
ss
w
u
rm

G
o
v
U
K
S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
C
ri
m
e
R
a
n
k
.
V
K
V

G
o
v
U
K

Im
d
In
co
m
e

R
a
n
k
La

.
V
K
V

S
ta
tu
sN

e
t

D
a
te
n
fa
h
rt

S
ta
tu
sN

e
t

Im
ir
h
il

S
o
u
th
a
m
p
to
n

a
cF
u
k

LO
D
.

P
ro
je
ct

W
ik
i

D
9
p
e
d
ia

K
O

D
a
ily
m
e
d

FU
-9
e
rl
in

W
'
LS

D
9
p
e
d
ia

IT

S
ta
tu
sN

e
t

R
e
ci
t

Li
v
e
jo
u
rn
a
l

S
ta
tu
sN

e
t

E
x
d
c

E
lv
ia
je
ro

'
v
e
sH
D

O
p
e
n

C
a
la
is

Z
a
ra
g
o
za

Tu
rr
u
ta

'
sp
ir
e

M
a
n
ch
e
st
e
r

W
o
rd
n
e
t

RV
U
I

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

N
e
ig
h
b
o
u
rh
o
o
d

P
la
n
s

S
ta
tu
sN

e
t

D
a
v
id

H
a
b
e
rt
h
u
e
r

9
H
K
a
t

P
u
b

9
ie
le
fe
ld

P
re
fi
x
Fc
c

N
'
LT

V
u
ln
e
ra
-

p
e
d
ia

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

'
ff
o
rd
a
b
le

H
o
u
si
n
g
S
ta
rt
s

G
o
v
U
K

W
e
llb
e
in
g
ls
o
a

H
a
p
p
y

Ye
st
e
rd
a
y

M
e
a
n

Fl
ic
kr

W
ra
p
p
r

Y
so
Ffi

Y
S
'

O
p
e
n

Li
b
ra
ry

'
sp
ir
e

P
ly
m
o
u
th

S
ta
tu
sN

e
t

Jo
h
n
d
ri
n
k

W
a
te
r

S
ta
tu
sN

e
t

G
o
m
e
rt
ro
n
ic

Ta
g
s.
co
n

D
e
lic
io
u
s

S
ta
tu
sN

e
t

tl
K
n

S
ta
tu
sN

e
t

P
ro
g
v
a
l

Te
st
e
e

W
o
rl
d

Fa
ct
b
o
o
k

FU
-9
e
rl
in

D
9
p
e
d
ia

J'

S
ta
tu
sN

e
t

C
o
o
le
y
se
ku
la

P
ro
d
u
ct

D
9

IM
F

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

Po
st
b
lu
e

S
ta
tu
sN

e
t

S
ki
lle
d
te
st
s

N
e
x
tw

e
b

G
N
O
S
S

E
u
ro
st
a
t

FU
-9
e
rl
in

G
o
v
U
K

H
o
u
se
h
o
ld
s

S
o
ci
a
l
Le
tt
in
g
s

G
e
n
e
ra
l
N
e
e
d
s

Le
tt
in
g
s
P
rp

H
o
u
se
h
o
ld

C
o
m
p
o
si
ti
o
n

S
ta
tu
sN

e
t

Fc
a
c

D
W
S

G
ro
u
p

O
p
e
n
d
a
ta

S
co
tl
a
n
d

G
ra
p
h

S
im

d
R
a
n
k

D
N
9

C
le
a
n

E
n
e
rg
y

D
a
ta

R
e
e
g
le

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
E
m
p
lo
y
m
e
n
t

R
a
n
k

C
h
ro
n
ic
lin
g

'
m
e
ri
ca

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n

Im
d
R
a
n
k
.
V
K
V

S
ta
tu
sN

e
t

9
e
lf
a
la
s

'
sp
ir
e

M
M
U

S
ta
tu
sN

e
t

Le
g
a
d
o
lib
re

9
lu
k

9
N
9

S
ta
tu
sN

e
t

Le
b
sa
n
ft

G
'
D
M

G
e
o
v
o
ca
b

G
o
v
U
K

Im
d
S
co
re

.
V
K
V

S
e
m
a
n
ti
c

X
9
R
L

U
K

Po
st
co
d
e
s

G
e
o

N
a
m
e
s

E
E
'
R
o
d

'
sp
ir
e

R
o
e
h
a
m
p
to
n

9
FS

.
J
V
a
Fi
n
fo

C
a
m
e
ra

D
e
p
u
ta
ti

Li
n
ke
d

D
a
ta

9
io
.
R
D
F

G
e
n
e
ID

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

P
la
n
n
in
g

'
p
p
lic
a
ti
o
n
s

G
ra
n
te
d

S
ta
tu
sN

e
t

S
w
e
e
ti
e

9
e
lle

O
BR
e
ill
y

G
N
I

C
it
y

Li
ch
fi
e
ld

G
o
v
U
K

Im
d

R
a
n
k
.
V
K
V

9
ib
le

O
n
to
lo
g
y

Id
re
fF
fr

S
ta
tu
sN

e
t

'
ta
ri

Fr
o
sc
h

D
e
v
Y
d

N
o
b
e
l

P
ri
ze
s

S
ta
tu
sN

e
t

S
o
u
cy

'
rc
h
iv
e
sh
u
b

Li
n
ke
d

D
a
ta

Li
n
ke
d

R
a
ilw

a
y

D
a
ta

P
ro
je
ct

F'
O

.
J
V
a
Fi
n
fo

G
o
v
U
K

W
e
llb
e
in
g

W
o
rt
h
w
h
ile

M
e
a
n

9
ib
b
a
se

S
e
m
a
n
ti
c-

w
e
b
Fo
rg

9
ri
ti
sh

M
u
se
u
m

C
o
lle
ct
io
n

G
o
v
U
K

D
e
v
Lo
ca
l

'
u
th
o
ri
ty

S
e
rv
ic
e
s

C
o
d
e

H
a
u
s

Li
n
g
v
o
j

O
rd
n
a
n
ce

S
u
rv
e
y

Li
n
ke
d

D
a
ta

W
o
rd
p
re
ss

E
u
ro
st
a
t

R
D
F

S
ta
tu
sN

e
t

K
e
n
zo
id

G
E
M
E
T

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
rv
F
im

d
S
co
re

BK
V

M
is

M
u
se
o
s

G
N
O
S
S

G
o
v
U
K

H
o
u
se
h
o
ld
s

P
ro
je
ct
io
n
s

to
ta
l

H
o
u
se
o
ld
s

S
ta
tu
sN

e
t

.
V
K
V
V

E
E
'

C
ia
rd

R
in
g

O
p
e
n
d
a
ta

S
co
tl
a
n
d
G
ra
p
h

E
d
u
ca
ti
o
n

P
u
p
ils

b
y

S
ch
o
o
l
a
n
d

D
a
ta
zo
n
e

V
IV
O

In
d
ia
n
a

U
n
iv
e
rs
it
y

Po
ke
p
e
d
ia

Tr
a
n
sp
a
re
n
cy

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

G
lo
u

G
o
v
U
K

H
o
m
e
le
ss
n
e
ss

H
o
u
se
h
o
ld
s

'
cc
o
m
m
o
d
a
te
d

Te
m
p
o
ra
ry

H
o
u
si
n
g
Ty
p
e
s

S
T
W

T
h
e
sa
u
ru
s

fo
r

E
co
n
o
m
ic
s

D
e
b
ia
n

Pa
ck
a
g
e

Tr
a
ck
in
g

S
y
st
e
m

D
9
Tu
n
e

M
a
g
n
a
tu
n
e

N
U
T
S

G
e
o
-

v
o
ca
b

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
In
co
m
e
R
a
n
k
La

.
V
K
V

9
9
C

W
ild
lif
e

Fi
n
d
e
r

S
ta
tu
sN

e
t

M
y
st
a
tu
s

M
ig
u
ia
d

E
v
ia
je
s

G
N
O
S
S

'
co
rn

S
a
t

D
a
ta

9
n
fF
fr

G
o
v
U
K

im
d
e
n
vF

ra
n
k
.
V
K
V

S
ta
tu
sN

e
t

O
p
e
n
si
m
ch
a
t

O
p
e
n

Fo
o
d

Fa
ct
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
E
d
u
ca
ti
o
n
R
a
n
k
La

.
V
K
V

LO
D

'
C
9
D
LS

FO
'
F-

P
ro
fi
le
s

S
ta
tu
sN

e
t

S
a
m
n
o
b
le

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

'
ff
o
rd
a
b
le

H
o
u
si
n
g
S
ta
rt
s

S
ta
tu
sN

e
t

C
o
re
y
a
v
is

E
n
e
l

S
h
o
p
s

D
9
p
e
d
ia

FR

S
ta
tu
sN

e
t

R
a
in
b
o
w
d
a
sh

S
ta
tu
sN

e
t

M
a
m
a
lib
re

P
ri
n
ce
to
n

Li
b
ra
ry

Fi
n
d
in
g
a
id
s

W
W
W

Fo
u
n
d
a
ti
o
n

9
io
.
R
D
F

O
M
IM

R
e
so
u
rc
e
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
G
e
o
g
ra
p
h
ic

'
cc
e
ss

R
a
n
k

G
u
te
n
b
e
rg

S
ta
tu
sN

e
t

O
tb
m

O
D
C
L

S
O
'

S
ta
tu
sN

e
t

O
u
rc
o
ff
s

C
o
lin
d
a

W
e
b

N
m
a
su
n
o

Tr
a
v
e
le
r

S
ta
tu
sN

e
t

H
a
ck
e
rp
o
ss
e

LO
V

G
a
rn
ic
a

P
ly
w
o
o
d

G
o
v
U
K

w
e
llb
F
h
a
p
p
y

y
e
st
e
rd
a
y

st
d
F
d
e
vF

S
ta
tu
sN

e
t

Lu
d
o
st

9
9
C

P
ro
g
ra
m
-

m
e
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
E
n
v
ir
o
n
m
e
n
t

R
a
n
k
.
V
K
V

9
io
.
R
D
F

Ta
xo
n
o
m
y

W
o
rl
d
b
a
n
k

.
J
V
a
Fi
n
fo

O
S
M

D
9
Tu
n
e

M
u
si
c-

b
ra
in
z

Li
n
ke
d

M
a
rk

M
a
il

S
ta
tu
sN

e
t

D
e
u
x
p
i

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

H
o
u
si
n
g
S
ta
rt
s

9
iz
ka
i

S
e
n
se

G
o
v
U
K

im
p
a
ct

in
d
ic
a
to
rs

e
n
e
rg
y

e
ffi
ci
e
n
cy

n
e
w

b
u
ild
s

S
ta
tu
sN

e
t

M
o
rp
h
to
w
n

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

In
p
u
t
in
d
ic
a
to
rs

Lo
ca
l
a
u
th
o
ri
ti
e
s

W
o
rk
in
g
w
F
tr
F

Fa
m
ili
e
s

IS
O
7
H
q

O
a
si
s

'
sp
ir
e

Po
rt
sm

o
u
th

Z
a
ra
g
o
za

D
a
to
s

'
b
ie
rt
o
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
C
ri
m
e
R
a
n
k

9
e
rl
io
s

S
ta
tu
sN

e
t

p
ia
n
a

G
o
v
U
K

N
e
t
'
d
d
F

D
w
e
lli
n
g
s

9
o
o
ts
n
a
ll

S
ta
tu
sN

e
t

ch
ro
m
ic

G
e
o
sp
e
ci
e
s

lin
ke
d
ct

W
o
rd
n
e
t

RW
H
C
I

S
ta
tu
sN

e
t

th
o
rn
to
n
.

S
ta
tu
sN

e
t

m
ku
tt
n
e
r

S
ta
tu
sN

e
t

lin
u
x
w
ra
n
g
lin
g

E
u
ro
st
a
t

Li
n
ke
d

D
a
ta

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
rv
F
im

d
ra
n
k
BV
J

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
rv
F
im

d
ra
n
k
la

BK
V

Li
n
ke
d

O
p
e
n
D
a
ta

o
f

E
co
lo
g
y

S
ta
tu
sN

e
t

ch
ic
ke
n
ki
lle
r

S
ta
tu
sN

e
t

g
e
g
e
w
e
b

D
e
u
st
o

Te
ch

S
ta
tu
sN

e
t

sc
h
ie
ss
le

G
o
v
U
K

tr
a
n
sp
a
re
n
cy

im
p
a
ct

in
d
ic
a
to
rs

tr
F
fa
m
ili
e
s

Ta
xo
n

co
n
ce
p
t

G
o
v
U
K

se
rv
ic
e

e
x
p
e
n
d
it
u
re

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
ri
v
a
ti
o
n
im

d
e
m
p
lo
y
m
e
n
t

sc
o
re

.
V
K
V

Figure 1 – Diagramme du Linked Data (30/08/2014)

6

tionnalités (par exemple, la distribution, l’hétérogénéité, l’autonomie et le
raisonnement).

La protection des ressources contre les accès non autorisés est l’une des
principales caractéristiques des systèmes d’aujourd’hui. L’un des principaux
services de sécurité nécessaires pour assurer la protection des données est
le contrôle d’accès. Ce dernier garantit qu’un utilisateur ne peut accéder
qu’aux ressources auxquelles elle/il est autorisé.

Dans cette thèse, nous nous sommes concentré sur les problèmes de sé-
curité qui se posent principalement dans le contexte du Linked Data, en
particulier l’exposition sélective des données RDF.

Notre objectif principal est d’encourager les entreprises et les organisa-
tions à publier leurs données RDF dans l’espace global de données liées.
En effet, les données publiées peuvent être sensibles, et par conséquent, les
fournisseurs de données peuvent être réticent à publier leurs informations,
à moins qu’ils ne soient certains que les droits d’accès souhaités des diffé-
rentes entités sont appliquées correctement à leurs données, et qu’aucune
donnée sensible n’est révélée (par erreur). Donc la question de la sécurisa-
tion du contenu RDF et la garantie de l’exposition sélective de l’information
à différentes catégories d’utilisateurs devient d’autant plus importante.

Paul Terry a écrit dans CTO Vision 16: To realize value from your data,
you need to be able to share it among many stakeholders-internal lines of
business, partners, researchers, and many others. But you also have a moral,
ethical, and often legal, obligation to make sure that data is used responsibly.
That means protecting individuals? privacy and assuring that their data is
used only for legitimate purposes. As you gather more data from more parts
of your organization, that gets very tricky very fast. [...] It quickly becomes
clear that this is about more than simply checking a box for whether data is
“secure”. It?s incredibly valuable to have all that data in one place where it
can be analyzed, but you need to assure that different types of stakeholders
can see only the information they legitimately need, and no more.

2 Énoncé du problème

Dans cette thèse, nous nous sommes intéressés à l’exposition sélective
des données RDF et du problème de fuite d’inférence. Au cours des der-
nières années, le problème de contrôler l’accès aux données RDF a attiré
une attention considérable à la fois la communauté de la sécurité et celle
de base de données. Notre objectif était de définir une politique d’autori-
sations qui sera intégrée à l’entrepôt RDF pour contrôler l’exposition des
données RDF. De plus, nous devons nous assurer que les données divulguées

16. https://ctovision.com/2015/12/big-data-unlocks-valuable-
information-across-organizations-but-only-if-you-can-protect-it/

7

ne peuvent pas être utilisées pour déduire des informations confidentielles.
Dans ce contexte, nous étions intéressés par les problèmes suivants:

2.1 Exposition sélective des données RDF

Compte tenu de la nature sensible de l’information, les différentes parties
de données RDF peuvent nécessiter des droits d’accès selon les privilèges du
requérant. Dans cette thèse, nous nous sommes intéressés à l’exposition sé-
lective des informations en fonction du contenu RDF, de qui le demande et
sous quel contexte. La plupart des entrepôts RDF de nos jours offrent une
protection au niveau graphe nommé. Par exemple, une telle fonctionnalité
a été introduite dans 4store version 1.1.5 17. La sécurité au niveau graphe
est disponible dans Virtuoso 18 ou aussi sur Stardog version 3.1 19. Le
problème avec ces modèles est que les politiques de contrôle d’accès sont
définies sur des graphes nommés qui doivent être créés par rapport aux poli-
tiques. Par exemple, si une politique stipule qu’une infirmière possède l’accès
aux dossiers des patients, alors tous les triplets liés aux dossiers du patient
doivent être réunis dans un seul graphe nommé sur lequel la politique est
définie. En outre, les politiques complexes peuvent conduire à la création de
plusieurs graphes nommés. Avoir un grand nombre de politiques complexes
peut conduire l’administrateur à créer plusieurs graphes nommés qui pour-
raient être difficiles à gérer. De plus, un problème de redondance est soulevé
puisque un triplet peut appartenir à plusieurs graphes nommés. Certains
entrepôts RDF sont plus expressifs comme AllegroGraph 20 sur lequel
l’accès est basé sur des motifs relatifs à un unique triplet 21. Ceci permet la
définition des autorisations simples telles que interdire ou autoriser l’accès
aux triplets représentant les dossiers des patients. Cependant, des politiques
plus expressives ne peuvent pas être spécifiés. Par exemple, une autorisation,
telle que Refuser l’accès aux dossiers des patients s’ils ont le cancer ne peut
pas être spécifiée.

Étant donné la nature ouverte du web dans lequel les données RDF sont
publiées, le sujet pourrait ne pas être connu par le système avant l’envoi
d’une requête. Par conséquent, l’exposition sélective ne peut pas compter
que sur des politiques de contrôle d’accès traditionnelles basées sur l’identité
ou le rôle. Le controle d’accès basé sur les attributs (Attribute Based Access
Control (ABAC)) est un modèle qui permet plus de flexibilité en définissant
des autorisations sur la base des attributs des sujets et objets. ABAC permet
d’éviter la nécessité d’attribuer directement les autorisations à des sujets

17. http://4store.org/trac/wiki/GraphAccessControl
18. http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
19. http://docs.stardog.com/#_security
20. http://franz.com/agraph/allegrograph
21. http://franz.com/agraph/support/documentation/v4/

security.html#filters

8

individuels avant leur demande d’effectuer une opération sur l’objet.

2.2 Problème de fuite d’inférence

Le deuxième enjeu est de veiller à ce que des informations sensibles ne
puissent pas être déduites, en utilisant les règles d’inférence, une fois que
les données ont été communiquées à l’utilisateur. Ce problème est connu
dans la littérature de contrôle d’accès comme problème d’inférence [FJ02]
appelé dans le manuscrit problème de fuite d’inférence. Selon le World Wide
Web Consortium (W3C), l’inférence sur le Web sémantique en utilisant le
Resource Description Framework (RDF) permet “d’améliorer la qualité de
l’intégration des données sur le Web en découvrant de nouvelles relations, et
d’analyser automatiquement le contenu des données”. Les règles d’inférence
sont utilisées pour obtenir de nouveaux triplets à partir de ceux qui sont ex-
plicitement affirmés dans un entrepôt RDF. En particulier, un ensemble de
règles d’inférence connu par RDF Schema (RDFS) a été normalisé [HPS14].
Des modèles d’autorisation ont été proposés pour le contrôle des accès aux
données RDF, à la fois en présence de règles d’inférence [RFJ05, LKZ+12,
PMF+12, JF06] ou non [ADCH+07, FFMA10, RKKT14]. Cependant, le
problème est que cette capacité d’inférence peut être utilisée par un utili-
sateur (malveillant) pour déduire des données sensibles à partir de données
publiques.

Pour illustrer le problème de fuite d’inférence, supposons que les triplets
RDF indiquant que quelqu’un a un cancer sont étiquetés comme confidentiels
(ex.triplets similaires à (?p ; rdf :type ; :Cancerous) avec ?p désignant une
personne), tandis que ceux indiquant qu’une personne a une tumeur sont
publics au sein d’un hôpital (ex. triplets de la forme (?p; :hasTumor; ?t)). S’il
existe un triplet public indiquant que le domaine du prédicat :hasTumor est
:Cancerous (ex. (:hasTumor; rdfs :domain; :Cancerous)), alors, en utilisant
la règle RDFS qui fait correspondre le domaine d’un prédicat au type de ses
sujets, des informations sensibles peuvent être déduites des triplets publics.
La situation est encore pire lorsque le système de déduction est enrichi avec
des règles définies par l’utilisateur.

2.3 Application et performance

Des enjeux particuliers découlent de l’application du contrôle d’accès. Le
premier enjeu est l’impact de l’application du modèle de contrôle d’accès
sur la performance du système: nous devons nous assurer que l’application
du contrôle d’accès occasionne un faible surcoût sur la performance des en-
trepôts RDF. Le deuxième enjeu sont les mécanismes nécessaires pour ap-
pliquer le contrôle d’accès. Le mécanisme d’application doit être déployable
dans l’entrepôt RDF avec des mécanismes supplémentaires minimes et, idéa-
lement, sans altération de ses composants internes.

9

Policy

Query

RDF
store

R
ea
so
n
er

R
ea
so
n
er

Policy enforcement

Access control model

formal semantics
Inference leakage problem

and solution
Policy

administration

Figure 2 – Contributions principales

3 Étude des travaux connexes

Une première étude de l’état de l’art a conduit à la définition des cri-
tères d’évaluation des travaux connexes dans le contrôle d’accès aux données
RDF, y compris l’expressivité de spécification des politiques, la résolution
des conflits générés par des décisions contradictoires et la vérification des
inférences non autorisées. Nous nous sommes appuyés sur ces critères pour
analyser les travaux réalisés dans le domaine du contrôle d’accès aux don-
nées RDF. L’étude a permis de déterminer des critères bien traités tels que
les actions supportées, l’expressivité des objets et la protection des triplets
explicites et implicites. D’autres critères ont été peu considérés, y compris
la résolution des conflits, l’expressivité des sujets et le problème de fuite
inférence. Nous nous sommes intéressés sur ces derniers critères pour les
contributions de cette thèse.

4 Contributions

Suite à une analyse détaillée des modèles existants de contrôle d’accès
aux données RDF, nos contributions ont concerné quatre aspects, illustrés
par la Figure 2.

4.1 Conception d’un nouveau modèle de contrôle d’accès

Nous avons conçu un nouveau modèle de contrôle d’accès pour les don-
nées RDF appelé AC4RDF pour Access Control For the Resource Description
Framework. Nous avons défini la sémantique formelle d’un langage déclara-
tif basé sur les motifs de graphe élémentaires du langage SPARQL, afin de
faciliter l’intégration du modèle dans les systèmes concrets. La sémantique
du modèle est définie par le sous-graphe positif (autorisé) à partir du graphe

10

de base. La requête de l’utilisateur est évaluée sur son sous-graphe positif
ne contenant que les triplets accessibles. Notre modèle est ainsi complète-
ment indépendant du langage de requêtes utilisé. Notre langage permet de
définir des autorisations positives et négatives afin de traiter les exceptions
des droits d’accès qui pourraient se produire dans la vie réelle. L’utilisation
des autorisations négatives donne lieu au traitement des conflits qui se pro-
duisent lorsque le même objet est autorisé par une autorisation et refusé
par une autre. Des stratégies de résolution des conflits sont utilisées pour ré-
soudre de tels conflits en sélectionnant les autorisations préférées à appliquer
par rapport à certaines propriétés des autorisations. Alors que la plupart des
travaux codent en dur leurs stratégies, d’autres les définissent comme des
paramètres qui sont fixés par l’administrateur lors de la conception de la
politique. Nous proposons une approche plus libérale en définissant notre
politique en utilisant une fonction abstraite de résolution de conflits qui est
fournie par l’administrateur. Nous montrons comment coder les stratégies
classiques telles que la First Applicable, Denials Take Precedence et la Per-
missions Take Precedence en plus de stratégies plus élaborées telle que la
Most Specific Takes Precedence.

4.2 Problème de fuite d’inférence et solutions

Les modèles de contrôle d’accès classiques offrent une protection contre
les accès directs à des informations sensibles. Cependant, les accès indirects
à des informations sensibles peuvent encore être possible via des règles in-
férences. Dans le contexte du Linked Data, le problème se produit lorsque
les triplets implicites sensibles peuvent être déduite à partir de triplets non
sensibles à l’aide de règles d’inférence connues. Notre deuxième contribution
a consisté à définir formellement la propriété de cohérence qui capture le
problème des fuites d’inférence qui se pose lorsque des triplets confidentiels
sont déduits à partir de triplets autorisés. Cette propriété garantit que les
informations confidentielles ne peuvent pas être déduites à partir d’infor-
mations non confidentielles par rapport à un ensemble de règles d’inférence.
Pour résoudre ce problème, nous proposons un algorithme de vérification
statique, prouvé correct et complet, qui permet de détecter si une politique
est cohérente quel que soit le graphe RDF utilisé. En cas d’incohérence de
la politique, l’algorithme génère un ensemble de motifs de graphes contre-
exemples qui représentent des modèles sur lesquels la politique présente un
problème de fuite d’inférence. Ces graphes contre-exemples peuvent être
utilisés par l’administrateur pour corriger la politique. Nous proposons une
méthode itérative qui permet à l’administrateur de corriger la politique en
utilisant l’algorithme. Nous montrons une autre alternative d’utilisation des
graphes contre-exemples qui consiste à les utiliser comme contraintes d’in-
tégrité lors des mises à jour du graphe de base.

11

4.3 Administration des politiques

Les politiques du modèle AC4RDF sont définies sans spécifier le sujet pour
lequel les autorisations sont assignés. Ce qui permet d’utiliser n’importe quel
modèle de contrôle d’accès en amont pour mapper les utilisateurs à leurs
autorisations assignées. Nous proposons un langage de contrôle d’accès de
haut niveau qui permet la définition de politiques globales qui sont ensuite
compilées en politiques concrètes du modèle AC4RDF. Nous avons choisi de
définir nos politiques sur la base des attributs d’utilisateur suivant l’approche
Attribute Based Access Control (ABAC), où l’accès aux ressources protégées
est basé sur un utilisateur ayant des attributs spécifiques (par exemple le
nom, le rôle, la date de naissance, adresse, numéro de téléphone, etc). Nous
avons défini la syntaxe et la sémantique d’un langage inspiré par XACML en
définissant les principaux composants de la solution proposée et en montrant
comment la politique de l’utilisateur est générée et appliquée. Intuitivement,
une politique globale peut être représentée dans une structure d’arbre où les
noeuds intermédiaires représentent les politiques, les feuilles représentent
les autorisations et les arêtes sont étiquetées avec des cibles représentant
des conditions à base d’attributs. Les conditions sont évaluées en utilisant
des paires clé/valeur représentant les attributs fournis par les sujets. Celui-
ci fournit ses attributs dans une demande qui est évaluée sur l’arbre de la
politique globale pour déterminer les autorisations qui lui sont attribuées.
Sur la base de ces autorisations, le sous-graphe positif du sujet est calculé,
et la requête est évaluée sur ce sous-graphe ne retournant que ses triples
accessibles.

4.4 Application du modèle de contrôle d’accès et expérimen-
tations

Cette contribution consiste en la proposition d’un cadre d’application
basé sur les annotations pour le modèle AC4RDF. L’idée est de matérialiser
les autorisations applicables à chaque triplet dans un bitset qui est utilisé
pour annoter ce triplet. De même, des bitsets sont aussi attribués aux sujets
représentant le sous-ensemble des autorisations qui leur est assigné. Pour
calculer le sous-graphe positif du sujet, la fonction de résolution de conflits
est appliquée sur l’intersection entre l’ensemble des autorisations applicables
au triplet et celles assignées au sujet. Ce qui revient à faire un et logique
entre les bitsets du triplet et du sujet. Le système évalue ensuite la requête
du sujet sur son sous-graphe positif. Pour stocker les bitsets, nous utilisons la
position du nom de graphe. Faisant ainsi, nous n’avons pas besoin de méca-
nismes supplémentaires pour appliquer notre modèle vu que la majorité des
entrepôts RDF actuels supportent les graphes nommés. Nous avons implé-
menté notre solution sur Jena TDB 22 et effectué des expérimentations pour

22. https://jena:apache:org/documentation/tdb

12

calculer les surcoûts de l’intégration du modèle sur la performance du sys-
tème. Nos expérimentations ont montré que notre implémentation entrâıne
un surcoût raisonnable durant l’exécution (environ + 50%) par rapport à la
solution optimale qui consiste à matérialiser le sous-graphe positif. Il faut
noter que cette dernière solution n?assure pas le passage à l?échelle puisqu?il
faut matérialiser le sous-graphe positif de chaque utilisateur.

5 Organisation du manuscrit

Ce manuscrit comporte 3 chapitres précédés d’une introduction et suivi
d’une conclusion. Il comporte également une annexe qui contient des dé-
finitions et lemmes techniques additionnels ainsi que la liste des requêtes
utilisées dans les expérimentations.

Chapitre 1 : Introduction

L’introduction décrit le contexte et les différents défis auxquels nous nous
sommes intéressés dans cette thése et les solutions qu’on a proposées. Dans
la section 1.1, nous commençons par donner des définitions générales du
Linked Data ainsi que quelques statistiques concernant les données publiées.
Ensuite, nous discutons dans la section 1.2 les défis scientifiques en s’ap-
puyant sur l’état de l’art. Enfin, nous présentons dans la section 1.4 nos
contributions permettant d’atteindre les différents objectifs de cette thèse.

Chapitre 2 : Technical background and related work

Ce chapitre est consacré à positionner les contributions proposées dans
cette thèse par rapport à l’état de l’art. Nous commençons par une intro-
duction du Web sémantique en section 2.1 avec un rappel de la syntaxe
et la sémantique du modèle de données RDF. Nous donnons un aperçu du
langage de requête SPARQL 1.1 RDF, et comment il peut être utilisé pour
traiter les données RDF. Nous définissons l’inférence, notamment les infé-
rences RDFS, qui permet la déduction des nouvelles données à partir de
celles qui sont explicitement définies. Dans la section 2.2, nous donnons un
aperçu des modèles de contrôle d’accès les plus connus dans la littérature,
suivi par les stratégies de résolution des conflits utilisées pour résoudre les
conflits qui découlent de l’utilisation des autorisations négatives. Ensuite,
dans la section 2.3, nous présentons les travaux qui ont été proposés pour
contrôler l’accès aux données RDF, et les critères utilisés pour les comparer,
suivis par la synthèse de l’étude de ces travaux en section 2.4. En se basant
sur les critères qui ne sont pas bien considérés, nous présentons enfin dans
la section 2.5 les solutions que nous avons proposées.

13

Chapitre 3 : A fine-grained access control model for RDF
stores

Ce chapitre présente notre première contribution, à savoir un modèle de
contrôle d’accès a grains fins pour les données RDF. La sémantique de notre
modèle est présentée dans la section 3.1, dans laquelle nous commençons par
donner la sémantique des autorisations qui est basée sur des motifs SPARQL,
suivie par la définition des politiques de contrôle d’accès. Nous donnons
des conditions qui doivent être respectées pour que la politique soit bien
formée. Pour résoudre les conflits éventuels, nous donnons les caractéristique
de la fonction abstraite de résolution de conflits, et nous définissons des
propriétés qui permettent de prouver si une fonction applique une stratégie
de résolution de conflits donnée. Enfin nous montrons dans la section 3.2
comment construire les stratégies de résolution de conflits connues dans la
litérature de contrrôle d’accès.

Chapitre 4 : Inference leakage problem and solution

Dans ce chapitre, nous présentons le problème de fuite d’inférence et la
solution proposée pour y faire face. La section 4.1 est dédiée à l’introduction
du problème d’inférence dans les autres modèles de données. Par la suite,
nous donnons, dans la section 4.2, nous donnons un exemple qui illustre
le problème de fuite d’inférence suivi par la définition formelle de la pro-
priété de cohérence. Nous proposons ensuite une solution à ce problème en
section 4.3 dans laquelle nous proposons un algorithme de vérification sta-
tique qui permet de vérifier si une politique est cohérente Nous donnons les
preuves de la correction et la complétude de notre algorithme. Enfin nous
montrons par des exemples comment utiliser les contre-exemples générés par
l’algorithme pour corriger la politique. Enfin nous montrons la deuxième al-
ternative pour utiliser les graphes contre-exemples, qui consiste à utiliser les
graphes contre-exemples comme contraintes d’intégrité.

Chapitre 5 : Policy administration

Dans ce chapitre nous présentons un langage de haut niveau basé sur
les attributs, qui permet la définition de politiques multi-utilisateurs. Nous
commençons par un exemple qui illustre l’idée de la représentation de la po-
litique sous la forme d’un arbre. Ensuite, dans la section 5.1, nous donnons
l’architecture globale de la solution proposée. Pour définir formellement la
sémantique de notre langage, nous fournissons une syntaxe de notre for-
malisme par une grammaire BNF étendue (EBNF) en section 5.2. Nous
présentons ensuite la sémantique de chaque composant du langage. Dans
la section 5.3, nous montrons par des exemples, la façon avec laquelle, une
demande d’un sujet est évaluée sur une politique globale pour générer une

14

politique utilisateur. Enfin, nous donnons un exemple complet de l’évalua-
tion d’une requête d’un utilisateur ayant un certain nombre d’attributs.

Chapitre 6 : Policy enforcement and experiments

Dans ce chapitre nous montrons comment appliquer des politiques multi-
utilisateurs en utilisant une approche d’annotation de données. Nous com-
mençons par présenter notre méthode d’encodage dans la section 6.1. Nous
prouvons que notre encodage est correct et montrons comment une requête
utilisateur est évaluée sur une graphe annoté. Nous donnons ensuite dans la
section 6.2, des détails de l’implémentation de notre solution sur un entrepôt
RDF concret, à savoir Jena TDB. A la fin, nous présentons les résultats
de nos expérimentations qui sont séparés en deux parties : statique et dy-
namique. La partie statique présente les temps d’annotation du graphe de
base en variant la taille du graphe de base et le nombre d’autorisations. La
partie dynamique présente les temps d’évaluation des requêtes en variant la
taille du graphe de base,le nombre d’autorisations de la politique et enfin les
requêtes et les autorisations assignées à l’utilisateur.

Chapitre 7 : Conclusion

Ce chapitre rappelle les contributions et présente des extensions et des
travaux futurs. Ces derniers sont subdivisés par rapport aux exigences sur
lesquelles nos propositions ont été conduites, à savoir : l’expressivité, la vé-
rifiabilité et la performance.

Références

[ABF+04] Rakesh Agrawal, Roberto Bayardo, Christos Faloutsos, Jerry
Kiernan, Ralf Rantzau, and Ramakrishnan Srikant. Auditing
compliance with a hippocratic database. In Proceedings of the
Thirtieth international conference on Very large data bases-
Volume 30, pages 516–527. VLDB Endowment, 2004.

[ADCH+07] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koes-
ling, Daniel Krause, and Daniel Olmedilla. Enabling advanced
and context-dependent access control in RDF stores. In The
Semantic Web, pages 1–14. Springer, 2007.

[BL06] Tim Berners-Lee. Linked data-design issues. 2006. https:

//www.w3.org/DesignIssues/LinkedData.html.

[DH76] Whitfield Diffie and Martin E Hellman. New directions in
cryptography. Information Theory, IEEE Transactions on,
22(6):644–654, 1976.

15

[FFMA10] Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris
Antoniou. Controlling access to rdf graphs. In Future Internet-
FIS 2010, pages 107–117. Springer, 2010.

[FJ02] Csilla Farkas and Sushil Jajodia. The inference problem: A
survey. SIGKDD Explorations, 4(2):6–11, 2002.

[GW76] Patricia P. Griffiths and Bradford W. Wade. An authoriza-
tion mechanism for a relational database system. ACM Trans.
Database Syst., 1(3):242–255, 1976.

[HPS14] Patrick J Hayes and Peter F Patel-Schneider. Rdf 1.1 seman-
tics. W3C Recommendation, 2014. http://www.w3.org/TR/
rdf11-mt/.

[JF06] Amit Jain and Csilla Farkas. Secure resource description fra-
mework: an access control model. In SACMAT, pages 121–129.
ACM, 2006.

[KSR+09] Georgi Kobilarov, Tom Scott, Yves Raimond, Silver Oliver,
Chris Sizemore, Michael Smethurst, Christian Bizer, and Ro-
bert Lee. Media meets semantic web - how the BBC uses db-
pedia and linked data to make connections. In The Semantic
Web: Research and Applications, 6th European Semantic Web
Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-
June 4, 2009, Proceedings, pages 723–737, 2009.

[Lam81] Leslie Lamport. Password authentication with insecure com-
munication. Communications of the ACM, 24(11):770–772,
1981.

[LKZ+12] Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Pol-
leres, and Alessandra Mileo. A logic programming approach for
access control over RDF. In ICLP 2012, Hungary, pages 381–
392, 2012.

[PMF+12] Vassilis Papakonstantinou, Maria Michou, Irini Fundulaki,
Giorgos Flouris, and Grigoris Antoniou. Access control for
RDF graphs using abstract models. In SACMAT, pages 103–
112, 2012.

[RFJ05] Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy-based
access control for an RDF store. In WWW, pages 78–81, 2005.

[RKKT14] Jyothsna Rachapalli, Vaibhav Khadilkar, Murat Kantarcioglu,
and Bhavani Thuraisingham. Towards fine grained RDF access
control. In SACMAT, pages 165–176. ACM, 2014.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

16

Le manuscrit en anglais

Abstract

The emergence of the Semantic Web has led to a rapid adoption of the RDF
(Resource Description Framework) to describe the data and the links between
them. The RDF graph model is tailored for the representation of semantic re-
lations between Web objects that are identified by IRIs (Internationalized Re-
source Identifier). The applications that publish and exchange potentially sen-
sitive RDF data are increasing in many areas: bioinformatics, e-government,
open data movement. The problem of controlling access to RDF content and
selective exposure to information based on privileges of the requester becomes
increasingly important. Our main objective is to encourage businesses and or-
ganizations worldwide to publish their RDF data into the linked data global
space. Indeed, the published data may be sensitive, and consequently, data
providers may avoid to release their information, unless they are certain that
the desired access rights of different accessing entities are enforced properly,
to their data. Hence the issue of securing RDF content and ensuring the selec-
tive disclosure of information to different classes of users is becoming all the
more important. In this thsesis, we focused on the design of a relevant access
control for RDF data. The problem of providing access controls to RDF data
has attracted considerable attention of both the security and the database
community in recent years. New issues are raised by the introduction of the
deduction mechanisms for RDF data (e.g., RDF/S, OWL), including the in-
ference leakage problem. Indeed, when an owner wishes to prohibit access to
information, she/he must also ensure that the information supposed secret,
can not be inferred through inference mechanisms on RDF data.

In this PhD thesis we propose a fine-grained access control model for RDF
data. We illustrate the expressiveness of the access control model with sev-
eral conflict resolution strategies including most specific takes precedence. To
tackle the inference leakage problem, we propose a static verification algorithm
and show that it is possible to check in advance whether such a problem will
arise. Moreover, we show how to use the answer of the algorithm for diagnosis
purposes. To handle the subjects’ privileges, we define the syntax and seman-
tics of a XACML inspired language based on the subjects’ attributes to allow
much finer access control policies. Finally, we propose a data-annotation ap-
proach to enforce our access control model, and show that our solution incurs
reasonable overhead with respect to the optimal solution which consists in
materializing the user’s accessible subgraph.

Keywords: RDF, Authorization, Semantic Reasoning, Inference Leak-
age, Enforcement, Linked Data

Résumé

L’émergence du Web sémantique a mené à une adoption rapide du format RDF
(Resource Description Framework) pour décrire les données et les liens entre
elles. Ce modèle de graphe est adapté à la représentation des liens sémantiques
entre les objets du Web qui sont identifiés par des IRI. Les applications qui
publient et échangent des données RDF potentiellement sensibles augmentent
dans de nombreux domaines : bio-informatique, e-gouvernement, mouvements
open-data. La problématique du contrôle des accès aux contenus RDF et de
l’exposition sélective de l’information en fonction des privilèges des requérants
devient de plus en plus importante. Notre principal objectif est d’encourager
les entreprises et les organisations à publier leurs données RDF dans l’espace
global des données liées. En effet, les données publiées peuvent être sensibles,
et par conséquent, les fournisseurs de données peuvent être réticents à publier
leurs informations, à moins qu’ils ne soient certains que les droits d’accès à
leurs données par les différents requérants sont appliqués correctement. D’où
l’importance de la sécurisation des contenus RDF est de l’exposition selective
de l’information pour différentes classes d’utilisateurs. Dans cette thèse, nous
nous sommes intéressés à la conception d’un contrôle d’accès pertinents pour
les données RDF. De nouvelles problématiques sont posées par l’introduction
des mécanismes de déduction pour les données RDF (e.g., RDF/S, OWL),
notamment le problème de fuite d’inférence. En effet, quand un propriétaire
souhaite interdire l’accès à une information, il faut également qu’il soit sûr que
les données diffusées ne pourront pas permettre de déduire des informations
secrètes par l’intermédiaire des mécanismes d’inférence sur des données RDF.

Dans cette thèse, nous proposons un modèle de contrôle d’accès à grains
fins pour les données RDF. Nous illustrons l’expressivité du modèle de contrôle
d’accès avec plusieurs stratégies de résolution de conflits, y compris la Most
Specific Takes Precedence. Nous proposons un algorithme de vérification sta-
tique et nous montrons qu’il est possible de vérifier à l’avance si une politique
présente un problème de fuite d’inférence. De plus, nous montrons comment
utiliser la réponse de l’algorithme à des fins de diagnostics. Pour traiter les
privilèges des sujets, nous définissons la syntaxe et la sémantique d’un lan-
gage inspiré de XACML, basé sur les attributs des sujets pour permettre la
définition de politiques de contrôle d’accès beaucoup plus fines. Enfin, nous
proposons une approche d’annotation de données pour appliquer notre modèle
de contrôle d’accès, et nous montrons que notre implémentation entrâıne un
surcoût raisonnable durant l’exécution.

Mots-clés : RDF, Autorisation, Raisonnement sémantique, Fuite
d’inférence, Application, Linked Data

Contents

Abstract i

Résumé iii

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 5

1.2.1 Selective RDF data disclosure 5

1.2.2 Inference leakage . 6

1.2.3 Enforcement and performance 7

1.3 Related work study . 7

1.4 Contributions . 8

1.4.1 Access control model for RDF 8

1.4.2 Inference leakage problem and solution 9

1.4.3 Policy administration 10

1.4.4 Policy enforcement . 10

2 Technical background and related work 13

2.1 Semantic Web . 14

2.1.1 Graph Data Model . 14

2.2 Access control . 25

2.2.1 Access control models 25

2.2.2 Conflict resolution . 32

2.3 Access control for RDF data 33

2.3.1 Comparison of related works 35

vi Contents

2.4 Study summary . 40

2.5 Filling the gaps . 42

3 A fine-grained access control model for RDF stores 45

3.1 Authorization policy . 46

3.1.1 Authorization semantics 46

3.1.2 Policy and conflict resolution function 49

3.1.3 Conflict resolution strategies semantics 52

3.2 Building Policies . 53

3.2.1 Default Strategy . 53

3.2.2 First Applicable strategy 55

3.2.3 Precedence Strategies 57

3.2.4 Most Specific Takes Precedence (MSTP) 59

3.3 Conclusion . 64

4 Inference leakage problem and solution 65

4.1 The inference problem . 66

4.2 Consistency property . 67

4.3 Static verification . 68

4.3.1 Proof of completeness 70

4.3.2 Understanding the Counterexamples 73

4.4 Conclusion . 77

5 Policy administration 79

5.1 System architecture . 82

5.2 Language syntax and semantics 82

5.2.1 Abstracting Policy Components 83

5.2.2 Targets evaluation over user requests 86

Contents vii

5.3 User policy generation . 88

5.3.1 User SubPolicy . 88

5.3.2 User authorizations selection 89

5.4 Conclusion . 92

6 Policy enforcement and Experiments 93

6.1 Policy enforcement . 94

6.1.1 Graph annotation . 95

6.1.2 User’s query evaluation 97

6.2 Implementation . 98

6.2.1 Experiments . 100

6.3 Conclusion . 105

7 Conclusion 107

7.1 Summary . 108

7.2 Discussion and future work . 109

7.2.1 Expressiveness . 109

7.2.2 Verifiability . 111

7.2.3 Performance . 111

Bibliography 113

A Appendix 121

A.1 Results from Section 2.1.1.3 121

A.2 Results from Section 4.3 . 122

A.2.1 Additional Definitions 122

A.3 LUBM Queries . 123

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Problem statement . 5

1.2.1 Selective RDF data disclosure 5

1.2.2 Inference leakage . 6

1.2.3 Enforcement and performance 7

1.3 Related work study . 7

1.4 Contributions . 8

1.4.1 Access control model for RDF 8

1.4.2 Inference leakage problem and solution 9

1.4.3 Policy administration 10

1.4.4 Policy enforcement . 10

The Web is becoming the main information dissemination for private and
public organizations. A huge amount of information is exchanged every day.
The traditional web is used to transmit, receive, and display content encapsu-
lated as documents. These documents were intended for human consumption
and could not be understood by machines. The Semantic Web also referred
to as web of data can be conceptualized as an extension of the current Web so
as to enable the creation, sharing and intelligent re-use of machine-readable
content on the Web.

1.1 Context

Linked Data [Bizer 2009] is simply about using the Web to create typed links
between data from different sources. Technically, Linked Data refers to a set
of best practices for publishing and connecting structured data on the Web in

2 Chapter 1. Introduction

such a way that they are machine-readable, their meaning is explicitly defined,
they are linked to other external data sets, and can in turn be linked to from
external data sets [Berners-Lee 2006]. Berners-Lee discusses the four basic
principles for linked data as:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

The Linked (Open) Data trend 1 is followed by institutions (eg., Higher Ed-
ucation and Research in France 2), local authorities (eg., Cities of Lyon and
Grenoble 3), Thematic databases (eg., Dbtune, MusicBrainz 4), Organizations
(BBC in its internal content production systems [Kobilarov 2009]), geograph-
ical and of course general data (eg., GeoNames, Wikipedia 5)).

Linking data distributed across the Web requires a standard mechanism
for specifying the existence and meaning of connections between items de-
scribed in this data. This mechanism is provided by the Resource Description
Framework (RDF), which is examined in detail in Chapter 2. Figure 1.1 shows
datasets that have been published in Linked Data format 6. The figure shows
datastores that belong to different thematic domains (government, publica-
tions, life sciences, etc). The size of the Web of Data is estimated to over 3400
open sources for a total volume of over 85 billion triples (statements) 7, and
more than 8500 sources on the open data portal of the European Union 8

RDF has gained a lot of attention, and as a result an increasing number of
data sets are now being represented with this language. From this popularity
stemmed the need to efficiently store, query and reason over large amounts of

1http://www.mckinsey.com/business-functions/business-technology/
our-insights/open-data-unlocking-innovation-and-performance-with-

liquid-information
2http://data.enseignementsup-recherche.gouv.fr
3http://data.grandlyon.com and http://data.beta.metropolegrenoble.fr
4http://dbtune.org and http://linkedbrainz.org
5http://www.geonames.org/ontology and wiki.dbpedia.org
6http://lod-cloud.net/
7https://www.w3.org/wiki/TaskForces/CommunityProjects/

LinkingOpenData/DataSets/LinkStatistics
8https://open-data.europa.eu/fr/data

http://www.mckinsey.com/business-functions/business-technology/our-insights/open-data-unlocking-innovation-and-performance-with-liquid-information
http://www.mckinsey.com/business-functions/business-technology/our-insights/open-data-unlocking-innovation-and-performance-with-liquid-information
http://www.mckinsey.com/business-functions/business-technology/our-insights/open-data-unlocking-innovation-and-performance-with-liquid-information
http://data.enseignementsup-recherche.gouv.fr
http://data.grandlyon.com
 http://data.beta.metropolegrenoble.fr
http://dbtune.org
http://linkedbrainz.org
http://www.geonames.org/ontology
wiki.dbpedia.org
http://lod-cloud.net/
https://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/LinkStatistics
https://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/LinkStatistics
https://open-data.europa.eu/fr/data

1.1. Context 3

Li
n
ke
d
D
a
ta
se
ts

a
s
o
f
'
u
g
u
st

.
V
K
Q

U
n
ip
ro
t

'
le
x
a
n
d
ri
a

D
ig
it
a
l
Li
b
ra
ry

G
a
ze
tt
e
e
r

lo
b
id

O
rg
a
n
iz
a
ti
o
n
s

ch
e
m
.

b
io
.
rd
f

M
u
lt
im

e
d
ia

La
b
U
n
iv
e
rs
it
y

G
h
e
n
t

O
p
e
n
D
a
ta

E
cu
a
d
o
r

G
e
o

E
cu
a
d
o
r

S
e
re
n
d
ip
it
y

U
T
P
L

LO
D

G
o
v
'
g
ri
9
u
s

D
e
n
m
a
rk

D
9
p
e
d
ia

liv
e

U
R
I

9
u
rn
e
r

Li
n
g
u
is
ti
cs

S
o
ci
a
l
N
e
tw

o
rk
in
g

Li
fe

S
ci
e
n
ce
s

C
ro
ss
-D
o
m
a
in

G
o
v
e
rn
m
e
n
t

U
se
r-
G
e
n
e
ra
te
d
C
o
n
te
n
t

P
u
b
lic
a
ti
o
n
s

G
e
o
g
ra
p
h
ic

M
e
d
ia

Id
e
n
ti
fi
e
rs

E
io
n
e
t

R
D
F

lo
b
id

R
e
so
u
rc
e
s

W
ik
ti
o
n
a
ry

D
9
p
e
d
ia

V
ia
f

U
m
th
e
s

R
K
9

E
x
p
lo
re
r

C
o
u
rs
e
w
a
re

O
p
e
n
cy
c

O
lia

G
e
m
F

T
h
e
sa
u
ru
s

'
u
d
io
v
is
u
e
le

'
rc
h
ie
v
e
n

D
is
e
a
so
m
e

FU
-9
e
rl
in

E
u
ro
v
o
c

in
S
K
O
S

D
N
9

G
N
D

C
o
rn
e
tt
o

9
io
.
R
D
F

P
u
b
m
e
d

9
io
.
R
D
F

N
D
C

9
io
.
R
D
F

M
e
sh

ID
S

O
n
to
s

N
e
w
s

Po
rt
a
l

'
E
M
E
T

in
e
v
e
ry
cr
e
a

Li
n
ke
d

U
se
r

Fe
e
d
b
a
ck

M
u
se
o
s

E
sp
a
n
ia

G
N
O
S
S

E
u
ro
p
e
a
n
a

N
o
m
e
n
cl
a
to
r

'
st
u
ri
a
s

R
e
d
U
n
o

In
te
rn
a
ci
o
n
a
l

G
N
O
S
S

G
e
o

W
o
rd
n
e
t

9
io
.
R
D
F

H
G
N
C

C
ti
c

P
u
b
lic

D
a
ta
se
t

9
io
.
R
D
F

H
o
m
o
lo
g
e
n
e

9
io
.
R
D
F

'
ff
y
m
e
tr
ix

M
u
n
in
n

W
o
rl
d
W
a
r
I

C
K
'
N

G
o
v
e
rn
m
e
n
t

W
e
b
In
te
g
ra
ti
o
n

fo
r

Li
n
ke
d

D
a
ta

U
n
iv
e
rs
id
a
d

d
e
C
u
e
n
ca

Li
n
ke
d
d
a
ta

Fr
e
e
b
a
se

Li
n
kl
io
n

'
ri
a
d
n
e

O
rg
a
n
ic

E
d
u
n
e
t

G
e
n
e

E
x
p
re
ss
io
n

'
tl
a
s
R
D
F

C
h
e
m
b
l

R
D
F

9
io
sa
m
p
le
s

R
D
F

Id
e
n
ti
fi
e
rs

O
rg

9
io
m
o
d
e
ls

R
D
F

R
e
a
ct
o
m
e

R
D
F

D
is
g
e
n
e
t

S
e
m
a
n
ti
c

Q
u
ra
n

I'
T
I
a
s

Li
n
ke
d
D
a
ta

D
u
tc
h

S
h
ip
s
a
n
d

S
a
ilo
rs

V
e
rr
ijk
tk
o
n
in
kr
ijk

IS
e
rv
e

'
ra
g
o
-

d
b
p
e
d
ia

Li
n
ke
d

TC
G
'

'
9
S

.
J
V
a
Fi
n
fo

R
D
F

Li
ce
n
se

E
n
v
ir
o
n
m
e
n
ta
l

'
p
p
lic
a
ti
o
n
s

R
e
fe
re
n
ce

T
h
e
sa
u
ru
s

T
h
is
t

Ju
d
a
ic
a
Li
n
k

9
P
R

O
C
D

S
h
o
a
h

V
ic
ti
m
s

N
a
m
e
s

R
e
lo
a
d

D
a
ta

fo
r

To
u
ri
st
s
in

C
a
st
ill
a
y
Le
o
n

.
V
V
K

S
p
a
n
is
h

C
e
n
su
s

to
R
D
F

R
K
9

E
x
p
lo
re
r

W
e
b
sc
ie
n
ce

R
K
9

E
x
p
lo
re
r

E
p
ri
n
ts

H
a
rv
e
st

N
V
S

E
U
'
g
e
n
ci
e
s

9
o
d
ie
s

E
P
O

Li
n
ke
d

N
U
T
S

R
K
9

E
x
p
lo
re
r

E
p
sr
c

O
p
e
n

M
o
b
ile

N
e
tw

o
rk

R
K
9

E
x
p
lo
re
r

Li
sb
o
n

R
K
9

E
x
p
lo
re
r

It
a
ly

C
E
Q
R

E
n
v
ir
o
n
m
e
n
t

'
g
e
n
cy

9
a
th
in
g
W
a
te
r

Q
u
a
lit
y

R
K
9

E
x
p
lo
re
r

K
a
u
n
a
s

O
p
e
n

D
a
ta

T
h
e
sa
u
ru
s

R
K
9

E
x
p
lo
re
r

W
o
rd
n
e
t

R
K
9

E
x
p
lo
re
r

E
C
S

'
u
st
ri
a
n

S
ki

R
a
ce
rs

S
o
ci
a
l-

se
m
w
e
b

T
h
e
sa
u
ru
s

D
a
ta

O
p
e
n

'
c
U
k

R
K
9

E
x
p
lo
re
r

IE
E
E

R
K
9

E
x
p
lo
re
r

L'
'
S

R
K
9

E
x
p
lo
re
r

W
ik
i

R
K
9

E
x
p
lo
re
r

JI
S
C

R
K
9

E
x
p
lo
re
r

E
p
ri
n
ts

R
K
9

E
x
p
lo
re
r

P
is
a

R
K
9

E
x
p
lo
re
r

D
a
rm

st
a
d
t

R
K
9

E
x
p
lo
re
r

u
n
lo
co
d
e

R
K
9

E
x
p
lo
re
r

N
e
w
ca
st
le

R
K
9

E
x
p
lo
re
r

O
S

R
K
9

E
x
p
lo
re
r

C
u
rr
ic
u
lu
m

R
K
9

E
x
p
lo
re
r

R
e
se
x

R
K
9

E
x
p
lo
re
r

R
o
m
a

R
K
9

E
x
p
lo
re
r

E
u
re
co
m

R
K
9

E
x
p
lo
re
r

I9
M

R
K
9

E
x
p
lo
re
r

N
S
F

R
K
9

E
x
p
lo
re
r

ki
st
i

R
K
9

E
x
p
lo
re
r

D
9
LP

R
K
9

E
x
p
lo
re
r

'
C
M

R
K
9

E
x
p
lo
re
r

C
it
e
se
e
r

R
K
9

E
x
p
lo
re
r

S
o
u
th
a
m
p
to
n

R
K
9

E
x
p
lo
re
r

D
e
e
p
b
lu
e

R
K
9

E
x
p
lo
re
r

D
e
p
lo
y

R
K
9

E
x
p
lo
re
r

R
is
ks

R
K
9

E
x
p
lo
re
r

E
R
'

R
K
9

E
x
p
lo
re
r

O
'
I

R
K
9

E
x
p
lo
re
r

FT

R
K
9

E
x
p
lo
re
r

U
lm

R
K
9

E
x
p
lo
re
r

Ir
it

R
K
9

E
x
p
lo
re
r

R
'
E
.
V
V
K

R
K
9

E
x
p
lo
re
r

D
o
ta
c

R
K
9

E
x
p
lo
re
r

9
u
d
a
p
e
st

S
w
e
d
is
h

O
p
e
n
C
u
lt
u
ra
l

H
e
ri
ta
g
e

R
a
d
a
ta
n
a

C
o
u
rt
s

T
h
e
sa
u
ru
s

G
e
rm

a
n

La
b
o
r
La
w

T
h
e
sa
u
ru
s

G
o
v
U
K

Tr
a
n
sp
o
rt

D
a
ta G
o
v
U
K

E
d
u
ca
ti
o
n

D
a
ta

E
n
a
k
ti
n
g

M
o
rt
a
lit
y

E
n
a
k
ti
n
g

E
n
e
rg
y

E
n
a
k
ti
n
g

C
ri
m
e

E
n
a
k
ti
n
g

Po
p
u
la
ti
o
n

E
n
a
k
ti
n
g

C
O
.
E
m
is
si
o
n

E
n
a
k
ti
n
g

N
H
S

R
K
9

E
x
p
lo
re
r

C
ri
m
e

R
K
9

E
x
p
lo
re
r

co
rd
is

G
o
v
tr
a
ck

G
e
o
lo
g
ic
a
l

S
u
rv
e
y
o
f

'
u
st
ri
a

T
h
e
sa
u
ru
s

G
e
o

Li
n
ke
d

D
a
ta

G
e
si
s

T
h
e
so
z

9
io
.
R
D
F

P
h
a
rm

g
kb

9
io
.
R
D
F

S
a
b
io
rk

9
io
.
R
D
F

N
cb
ig
e
n
e

9
io
.
R
D
F

Ir
e
fi
n
d
e
x

9
io
.
R
D
F

Ip
ro
cl
a
ss

9
io
.
R
D
F

G
O
'

9
io
.
R
D
F

D
ru
g
b
a
n
k

9
io
.
R
D
F

C
T
D

9
io
.
R
D
F

9
io
m
o
d
e
ls

9
io
.
R
D
F

D
9
S
N
P

9
io
.
R
D
F

C
lin
ic
a
lt
ri
a
ls

9
io
.
R
D
F

LS
R

9
io
.
R
D
F

O
rp
h
a
n
e
t

9
io
.
R
D
F

W
o
rm

b
a
se

9
IS

.
J
V
a
Fi
n
fo

D
M
.
E

D
9
p
e
d
ia

P
T

D
9
p
e
d
ia

E
S

D
9
p
e
d
ia

C
S

D
9
n
a
ry

'
lp
in
o

R
D
F

Y'
G
O

P
d
e
v

Le
m
o
n

Le
m
o
n
u
b
yIs
o
ca
t

Ie
tfl
a
n
g

C
o
re

K
U
P
K
9

G
e
tt
y

'
'
T

S
e
m
a
n
ti
c

W
e
b

Jo
u
rn
a
l

O
p
e
n
lin
kS

W
D
a
ta
sp
a
ce
s

M
y
O
p
e
n
lin
k

D
a
ta
sp
a
ce
s

Ju
g
e
m

Ty
p
e
p
a
d

'
sp
ir
e

H
a
rp
e
r

'
d
a
m
s

N
9
N

R
e
so
lv
in
g

W
o
rl
d
ca
t

9
io
.
R
D
F

9
io
.
R
D
F

E
C
O

Ta
xo
n
-

co
n
ce
p
t

'
ss
e
ts

In
d
y
m
e
d
ia

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
im

d
E
m
p
lo
y
m
e
n
t

R
a
n
k
La

.
V
K
V

G
N
U

Li
ce
n
se
s

G
re
e
k

W
o
rd
n
e
t

D
9
p
e
d
ia

C
IP
F'

Y
so
Ffi

'
lla
rs

G
lo
tt
o
lo
g

S
ta
tu
sN

e
t

9
o
n
if
a
z

S
ta
tu
sN

e
t

sh
n
o
u
lle

R
e
v
y
u

S
ta
tu
sN

e
t

K
a
th
ry
l

C
h
a
rg
in
g

S
ta
ti
o
n
s

'
sp
ir
e

U
C
L

Te
ko
rd

D
id
a
ct
a
lia

'
rt
e
n
u
e

V
o
sm

e
d
io
s

G
N
O
S
S

Li
n
ke
d

C
ru
n
ch
b
a
se

E
S
D

S
ta
n
d
a
rd
s

V
IV
O

U
n
iv
e
rs
it
y

o
f
Fl
o
ri
d
a

9
io
.
R
D
F

S
G
D

R
e
so
u
rc
e
s

P
ro
d
u
ct

O
n
to
lo
g
y

D
a
to
s

9
n
e
Fe
s

S
ta
tu
sN

e
t

M
rb
lo
g

9
io
.
R
D
F

D
a
ta
se
t

E
U
N
IS

G
o
v
U
K

H
o
u
si
n
g

M
a
rk
e
t

LC
S
H

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

in
d
F

H
o
u
se
h
o
ld
s

In
te
m
p
F

'
cc
o
m
F

U
n
ip
ro
t

K
9

S
ta
tu
sN

e
t

Ti
m
tt
m
y

S
e
m
a
n
ti
c

W
e
b

G
ru
n
d
la
g
e
n

G
o
v
U
K

In
p
u
t
in
d
F

Lo
ca
l
'
u
th
o
ri
ty

Fu
n
d
in
g
Fr
o
m

G
o
v
e
rn
m
e
n
t

G
ra
n
t

S
ta
tu
sN

e
t

Fc
e
st
ra
d
a

JI
T'

S
ta
tu
sN

e
t

S
o
m
sa
n
ts

S
ta
tu
sN

e
t

Ili
ke
fr
e
e
d
o
m

D
ru
g
b
a
n
k

FU
-9
e
rl
in

S
e
m
a
n
lin
k

S
ta
tu
sN

e
t

D
td
n
s

S
ta
tu
sN

e
t

S
ta
tu
sF
n
e
t

D
C
S

S
h
e
ffi
e
ld

'
th
e
lia

R
FI
D

S
ta
tu
sN

e
t

Te
kk

Li
st
a

E
n
ca
b
e
za

M
ie
n
to
s

M
a
te
ri
a

S
ta
tu
sN

e
t

Fr
a
g
d
e
v

M
o
re
la
b

D
9
Tu
n
e

Jo
h
n
Pe
e
l

S
e
ss
io
n
s

R
D
Fi
ze

la
st
Ff
m

O
p
e
n

D
a
ta

E
u
sk
a
d
i

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

In
p
u
t
in
d
F

Lo
ca
l
a
u
th
F

Fu
n
d
in
g
fF

G
v
m
n
tF
G
ra
n
t

M
S
C

Le
x
in
fo

S
ta
tu
sN

e
t

E
q
u
e
st
ri
a
rp

'
sn
Fu
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
e
a
lt
h
R
a
n
k
la

.
V
K
V

S
ta
tu
sN

e
t

M
a
cn
o

O
ce
a
n
d
ri
lli
n
g

9
o
re
h
o
le

'
sp
ir
e

Q
m
u
l

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

P
la
n
n
in
g

'
p
p
lic
a
ti
o
n
s

G
ra
n
te
d

Lo
iu
s

D
a
ta
h
u
b
Fi
o

S
ta
tu
sN

e
t

M
a
y
m
a
y

P
ro
sp
e
ct
s

a
n
d

Tr
e
n
d
s

G
N
O
S
S

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

E
n
e
rg
y
E
ffi
ci
e
n
cy

n
e
w
9
u
ild
s

D
9
p
e
d
ia

E
U

9
io
.
R
D
F

Ta
xo
n

S
ta
tu
sN

e
t

Ts
ch
lo
tf
e
ld
t

Ja
m
e
n
d
o

D
9
Tu
n
e

'
sp
ir
e

N
T
U

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
e
a
lt
h
S
co
re

.
V
K
V

Lo
ti
co

G
N
O
S
S

U
n
ip
ro
t

M
e
ta
d
a
ta

Li
n
ke
d

E
u
ro
st
a
t

'
sp
ir
e

S
u
ss
e
x

Le
x
v
o

Li
n
ke
d

G
e
o

D
a
ta

S
ta
tu
sN

e
t

S
p
ip

S
O
R
S

G
o
v
U
K

H
o
m
e
le
ss
-

n
e
ss

'
cc
e
p
tF
p
e
r

K
V
V
V

T
W
C

IE
E
E
v
is

'
sp
ir
e

9
ru
n
e
l

P
la
n
e
tD
a
ta

P
ro
je
ct

W
ik
i

S
ta
tu
sN

e
t

Fr
e
e
lis
h

S
ta
ti
st
ic
s

d
a
ta
Fg
o
vF
u
k

S
ta
tu
sN

e
t

M
u
le
st
a
b
le

E
n
ip
e
d
ia

U
K

Le
g
is
la
ti
o
n

'
P
I

Li
n
ke
d

M
D
9

S
ta
tu
sN

e
t

Q
th

S
id
e
r

FU
-9
e
rl
in

D
9
p
e
d
ia

D
E

G
o
v
U
K

H
o
u
se
h
o
ld
s

S
o
ci
a
l
le
tt
in
g
s

G
e
n
e
ra
l
N
e
e
d
s

Le
tt
in
g
s
P
rp

N
u
m
b
e
r

9
e
d
ro
o
m
s

'
g
ro
v
o
c

S
ko
s

M
y

E
x
p
e
ri
m
e
n
t

P
ro
y
e
ct
o

'
p
a
d
ri
n
a

G
o
v
U
K

Im
d
C
ri
m
e

R
a
n
k
.
V
K
V

S
IS
V
U

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
H
o
u
si
n
g
R
a
n
k
la

.
V
K
V

S
ta
tu
sN

e
t

U
n
i

S
ie
g
e
n

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
E
d
u
ca
ti
o
n

R
a
n
k

S
ta
tu
sN

e
t

K
a
im

i

G
o
v
U
K

H
o
u
se
h
o
ld
s

'
cc
o
m
m
o
d
a
te
d

p
e
r
K
V
V
V

S
ta
tu
sN

e
t

P
la
n
e
tl
ib
re

D
9
p
e
d
ia

E
L

S
zt
a
ki

LO
D

D
9
p
e
d
ia

Li
te

D
ru
g

In
te
ra
ct
io
n

K
n
o
w
le
d
g
e

9
a
se

S
ta
tu
sN

e
t

Q
d
n
x

'
m
st
e
rd
a
m

M
u
se
u
m

'
S
E
D
N
LO

D

R
D
F

O
h
lo
h

D
9
Tu
n
e

a
rt
is
ts

la
st
Ff
m

'
sp
ir
e

U
cl
a
n

H
e
lle
n
ic

Fi
re

9
ri
g
a
d
e

9
ib
so
n
o
m
y

N
o
tt
in
g
h
a
m

Tr
e
n
t

R
e
so
u
rc
e

Li
st
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
In
co
m
e
R
a
n
k

R
a
n
d
o
m
n
e
ss

G
u
id
e

Lo
n
d
o
n

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
H
e
a
lt
h

R
a
n
k

S
o
u
th
a
m
p
to
n

E
C
S
E
p
ri
n
ts

FR
9

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

S
e
b
se
b
V
K

S
ta
tu
sN

e
t

9
ka

E
S
D

To
o
lk
it

H
e
lle
n
ic

Po
lic
e

S
ta
tu
sN

e
t

C
e
d
K
K
J

O
p
e
n

E
n
e
rg
y

In
fo

W
ik
i

S
ta
tu
sN

e
t

Ly
d
ia
st
e
n
ch

O
p
e
n

D
a
ta

R
IS
P

Ta
xo
n
-

co
n
ce
p
t

O
cc
u
re
n
ce
s

9
io
.
R
D
F

S
G
D

U
IS

.
J
V
a
Fi
n
fo

N
Y
Ti
m
e
s

Li
n
ke
d
O
p
e
n

D
a
ta

'
sp
ir
e

K
e
e
le

G
o
v
U
K

H
o
u
se
h
o
ld
s

P
ro
je
ct
io
n
s

Po
p
u
la
ti
o
n

W
H
C

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
H
o
u
si
n
g

R
a
n
k

Z
D
9

S
ta
tu
sN

e
t

K
w
7

S
ta
tu
sN

e
t

'
le
x
a
n
d
re

Fr
a
n
ke

D
e
w
e
y

D
e
ci
m
a
l

C
la
ss
ifi
ca
ti
o
n

S
ta
tu
sN

e
t

S
ta
tu
s

S
ta
tu
sN

e
t

d
o
o
m
ic
ile

C
u
rr
e
n
cy

D
e
si
g
n
a
to
rs

S
ta
tu
sN

e
t

H
iic
o

Li
n
ke
d

E
d
g
a
r

G
o
v
U
K

H
o
u
se
h
o
ld
s

.
V
V
Y

D
O
I

S
ta
tu
sN

e
t

Pa
n
d
a
id

9
ra
zi
lia
n

Po
lit
ic
ia
n
s

N
H
S

Ja
rg
o
n

T
h
e
se
sF
fr

Li
n
ke
d

Li
fe

D
a
ta

S
e
m
a
n
ti
c
W
e
b

D
o
g
Fo
o
d

U
M
9
E
L

O
p
e
n
ly

Lo
ca
l

S
ta
tu
sN

e
t

S
sw

e
e
n
y

Li
n
ke
d

Fo
o
d

In
te
ra
ct
iv
e

M
a
p
s

G
N
O
S
S

O
E
C
D

.
J
V
a
Fi
n
fo

S
u
d
o
cF
fr

G
re
e
n

C
o
m
p
e
ti
ti
v
e
-

n
e
ss

G
N
O
S
S

S
ta
tu
sN

e
t

In
te
g
ra
lb
lu
e

W
O
LD

Li
n
ke
d

S
to
ck

In
d
e
x

'
p
a
ch
e

K
D
'
T'

Li
n
ke
d

O
p
e
n

P
ir
a
cy

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
rv
F
Im

d
E
m
p
lF
R
a
n
k

La
.
V
K
V

9
9
C

M
u
si
c

S
ta
tu
sN

e
t

Q
u
it
te
r

S
ta
tu
sN

e
t

S
co
ff
o
n
i

O
p
e
n

E
le
ct
io
n

D
a
ta

P
ro
je
ct

R
e
fe
re
n
ce

d
a
ta
Fg
o
vF
u
k

S
ta
tu
sN

e
t

Jo
n
km

a
n

P
ro
je
ct

G
u
te
n
b
e
rg

FU
-9
e
rl
in

D
9
Tr
o
p
e
s

S
ta
tu
sN

e
t

S
p
ra
ci

Li
b
ri
s

E
C
9

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

T
h
e
lo
v
e
b
u
g

Ic
a
n
e

G
re
e
k

'
d
m
in
is
tr
a
ti
v
e

G
e
o
g
ra
p
h
y

9
io
.
R
D
F

O
M
IM

S
ta
tu
sN

e
t

O
ra
n
g
e
se
e
d
s

N
a
ti
o
n
a
l

D
ie
t
Li
b
ra
ry

W
E
9
N
D
L

'
u
th
o
ri
ti
e
s

U
n
ip
ro
t

Ta
xo
n
o
m
y

D
9
p
e
d
ia

N
L

LH
S

D
9
LP

F'
O

G
e
o
p
o
lit
ic
a
l

O
n
to
lo
g
y

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

H
o
u
si
n
g
S
ta
rt
s

D
e
u
ts
ch
e

9
io
g
ra
p
h
ie

S
ta
tu
sN

e
t

ld
n
fa
i

S
ta
tu
sN

e
t

K
e
u
se
r

S
ta
tu
sN

e
t

R
u
ss
w
u
rm

G
o
v
U
K
S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
C
ri
m
e
R
a
n
k
.
V
K
V

G
o
v
U
K

Im
d
In
co
m
e

R
a
n
k
La

.
V
K
V

S
ta
tu
sN

e
t

D
a
te
n
fa
h
rt

S
ta
tu
sN

e
t

Im
ir
h
il

S
o
u
th
a
m
p
to
n

a
cF
u
k

LO
D
.

P
ro
je
ct

W
ik
i

D
9
p
e
d
ia

K
O

D
a
ily
m
e
d

FU
-9
e
rl
in

W
'
LS

D
9
p
e
d
ia

IT

S
ta
tu
sN

e
t

R
e
ci
t

Li
v
e
jo
u
rn
a
l

S
ta
tu
sN

e
t

E
x
d
c

E
lv
ia
je
ro

'
v
e
sH
D

O
p
e
n

C
a
la
is

Z
a
ra
g
o
za

Tu
rr
u
ta

'
sp
ir
e

M
a
n
ch
e
st
e
r

W
o
rd
n
e
t

RV
U
I

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

N
e
ig
h
b
o
u
rh
o
o
d

P
la
n
s

S
ta
tu
sN

e
t

D
a
v
id

H
a
b
e
rt
h
u
e
r

9
H
K
a
t

P
u
b

9
ie
le
fe
ld

P
re
fi
x
Fc
c

N
'
LT

V
u
ln
e
ra
-

p
e
d
ia

G
o
v
U
K

Im
p
a
ct

In
d
ic
a
to
rs

'
ff
o
rd
a
b
le

H
o
u
si
n
g
S
ta
rt
s

G
o
v
U
K

W
e
llb
e
in
g
ls
o
a

H
a
p
p
y

Ye
st
e
rd
a
y

M
e
a
n

Fl
ic
kr

W
ra
p
p
r

Y
so
Ffi

Y
S
'

O
p
e
n

Li
b
ra
ry

'
sp
ir
e

P
ly
m
o
u
th

S
ta
tu
sN

e
t

Jo
h
n
d
ri
n
k

W
a
te
r

S
ta
tu
sN

e
t

G
o
m
e
rt
ro
n
ic

Ta
g
s.
co
n

D
e
lic
io
u
s

S
ta
tu
sN

e
t

tl
K
n

S
ta
tu
sN

e
t

P
ro
g
v
a
l

Te
st
e
e

W
o
rl
d

Fa
ct
b
o
o
k

FU
-9
e
rl
in

D
9
p
e
d
ia

J'

S
ta
tu
sN

e
t

C
o
o
le
y
se
ku
la

P
ro
d
u
ct

D
9

IM
F

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

Po
st
b
lu
e

S
ta
tu
sN

e
t

S
ki
lle
d
te
st
s

N
e
x
tw

e
b

G
N
O
S
S

E
u
ro
st
a
t

FU
-9
e
rl
in

G
o
v
U
K

H
o
u
se
h
o
ld
s

S
o
ci
a
l
Le
tt
in
g
s

G
e
n
e
ra
l
N
e
e
d
s

Le
tt
in
g
s
P
rp

H
o
u
se
h
o
ld

C
o
m
p
o
si
ti
o
n

S
ta
tu
sN

e
t

Fc
a
c

D
W
S

G
ro
u
p

O
p
e
n
d
a
ta

S
co
tl
a
n
d

G
ra
p
h

S
im

d
R
a
n
k

D
N
9

C
le
a
n

E
n
e
rg
y

D
a
ta

R
e
e
g
le

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
E
m
p
lo
y
m
e
n
t

R
a
n
k

C
h
ro
n
ic
lin
g

'
m
e
ri
ca

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n

Im
d
R
a
n
k
.
V
K
V

S
ta
tu
sN

e
t

9
e
lf
a
la
s

'
sp
ir
e

M
M
U

S
ta
tu
sN

e
t

Le
g
a
d
o
lib
re

9
lu
k

9
N
9

S
ta
tu
sN

e
t

Le
b
sa
n
ft

G
'
D
M

G
e
o
v
o
ca
b

G
o
v
U
K

Im
d
S
co
re

.
V
K
V

S
e
m
a
n
ti
c

X
9
R
L

U
K

Po
st
co
d
e
s

G
e
o

N
a
m
e
s

E
E
'
R
o
d

'
sp
ir
e

R
o
e
h
a
m
p
to
n

9
FS

.
J
V
a
Fi
n
fo

C
a
m
e
ra

D
e
p
u
ta
ti

Li
n
ke
d

D
a
ta

9
io
.
R
D
F

G
e
n
e
ID

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

P
la
n
n
in
g

'
p
p
lic
a
ti
o
n
s

G
ra
n
te
d

S
ta
tu
sN

e
t

S
w
e
e
ti
e

9
e
lle

O
BR
e
ill
y

G
N
I

C
it
y

Li
ch
fi
e
ld

G
o
v
U
K

Im
d

R
a
n
k
.
V
K
V

9
ib
le

O
n
to
lo
g
y

Id
re
fF
fr

S
ta
tu
sN

e
t

'
ta
ri

Fr
o
sc
h

D
e
v
Y
d

N
o
b
e
l

P
ri
ze
s

S
ta
tu
sN

e
t

S
o
u
cy

'
rc
h
iv
e
sh
u
b

Li
n
ke
d

D
a
ta

Li
n
ke
d

R
a
ilw

a
y

D
a
ta

P
ro
je
ct

F'
O

.
J
V
a
Fi
n
fo

G
o
v
U
K

W
e
llb
e
in
g

W
o
rt
h
w
h
ile

M
e
a
n

9
ib
b
a
se

S
e
m
a
n
ti
c-

w
e
b
Fo
rg

9
ri
ti
sh

M
u
se
u
m

C
o
lle
ct
io
n

G
o
v
U
K

D
e
v
Lo
ca
l

'
u
th
o
ri
ty

S
e
rv
ic
e
s

C
o
d
e

H
a
u
s

Li
n
g
v
o
j

O
rd
n
a
n
ce

S
u
rv
e
y

Li
n
ke
d

D
a
ta

W
o
rd
p
re
ss

E
u
ro
st
a
t

R
D
F

S
ta
tu
sN

e
t

K
e
n
zo
id

G
E
M
E
T

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
rv
F
im

d
S
co
re

BK
V

M
is

M
u
se
o
s

G
N
O
S
S

G
o
v
U
K

H
o
u
se
h
o
ld
s

P
ro
je
ct
io
n
s

to
ta
l

H
o
u
se
o
ld
s

S
ta
tu
sN

e
t

.
V
K
V
V

E
E
'

C
ia
rd

R
in
g

O
p
e
n
d
a
ta

S
co
tl
a
n
d
G
ra
p
h

E
d
u
ca
ti
o
n

P
u
p
ils

b
y

S
ch
o
o
l
a
n
d

D
a
ta
zo
n
e

V
IV
O

In
d
ia
n
a

U
n
iv
e
rs
it
y

Po
ke
p
e
d
ia

Tr
a
n
sp
a
re
n
cy

.
J
V
a
Fi
n
fo

S
ta
tu
sN

e
t

G
lo
u

G
o
v
U
K

H
o
m
e
le
ss
n
e
ss

H
o
u
se
h
o
ld
s

'
cc
o
m
m
o
d
a
te
d

Te
m
p
o
ra
ry

H
o
u
si
n
g
Ty
p
e
s

S
T
W

T
h
e
sa
u
ru
s

fo
r

E
co
n
o
m
ic
s

D
e
b
ia
n

Pa
ck
a
g
e

Tr
a
ck
in
g

S
y
st
e
m

D
9
Tu
n
e

M
a
g
n
a
tu
n
e

N
U
T
S

G
e
o
-

v
o
ca
b

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
In
co
m
e
R
a
n
k
La

.
V
K
V

9
9
C

W
ild
lif
e

Fi
n
d
e
r

S
ta
tu
sN

e
t

M
y
st
a
tu
s

M
ig
u
ia
d

E
v
ia
je
s

G
N
O
S
S

'
co
rn

S
a
t

D
a
ta

9
n
fF
fr

G
o
v
U
K

im
d
e
n
vF

ra
n
k
.
V
K
V

S
ta
tu
sN

e
t

O
p
e
n
si
m
ch
a
t

O
p
e
n

Fo
o
d

Fa
ct
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
E
d
u
ca
ti
o
n
R
a
n
k
La

.
V
K
V

LO
D

'
C
9
D
LS

FO
'
F-

P
ro
fi
le
s

S
ta
tu
sN

e
t

S
a
m
n
o
b
le

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

'
ff
o
rd
a
b
le

H
o
u
si
n
g
S
ta
rt
s

S
ta
tu
sN

e
t

C
o
re
y
a
v
is

E
n
e
l

S
h
o
p
s

D
9
p
e
d
ia

FR

S
ta
tu
sN

e
t

R
a
in
b
o
w
d
a
sh

S
ta
tu
sN

e
t

M
a
m
a
lib
re

P
ri
n
ce
to
n

Li
b
ra
ry

Fi
n
d
in
g
a
id
s

W
W
W

Fo
u
n
d
a
ti
o
n

9
io
.
R
D
F

O
M
IM

R
e
so
u
rc
e
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d
S
im

d
G
e
o
g
ra
p
h
ic

'
cc
e
ss

R
a
n
k

G
u
te
n
b
e
rg

S
ta
tu
sN

e
t

O
tb
m

O
D
C
L

S
O
'

S
ta
tu
sN

e
t

O
u
rc
o
ff
s

C
o
lin
d
a

W
e
b

N
m
a
su
n
o

Tr
a
v
e
le
r

S
ta
tu
sN

e
t

H
a
ck
e
rp
o
ss
e

LO
V

G
a
rn
ic
a

P
ly
w
o
o
d

G
o
v
U
K

w
e
llb
F
h
a
p
p
y

y
e
st
e
rd
a
y

st
d
F
d
e
vF

S
ta
tu
sN

e
t

Lu
d
o
st

9
9
C

P
ro
g
ra
m
-

m
e
s

G
o
v
U
K

S
o
ci
e
ta
l

W
e
llb
e
in
g

D
e
p
ri
v
a
ti
o
n
Im

d
E
n
v
ir
o
n
m
e
n
t

R
a
n
k
.
V
K
V

9
io
.
R
D
F

Ta
xo
n
o
m
y

W
o
rl
d
b
a
n
k

.
J
V
a
Fi
n
fo

O
S
M

D
9
Tu
n
e

M
u
si
c-

b
ra
in
z

Li
n
ke
d

M
a
rk

M
a
il

S
ta
tu
sN

e
t

D
e
u
x
p
i

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

Im
p
a
ct

In
d
ic
a
to
rs

H
o
u
si
n
g
S
ta
rt
s

9
iz
ka
i

S
e
n
se

G
o
v
U
K

im
p
a
ct

in
d
ic
a
to
rs

e
n
e
rg
y

e
ffi
ci
e
n
cy

n
e
w

b
u
ild
s

S
ta
tu
sN

e
t

M
o
rp
h
to
w
n

G
o
v
U
K

Tr
a
n
sp
a
re
n
cy

In
p
u
t
in
d
ic
a
to
rs

Lo
ca
l
a
u
th
o
ri
ti
e
s

W
o
rk
in
g
w
F
tr
F

Fa
m
ili
e
s

IS
O
7
H
q

O
a
si
s

'
sp
ir
e

Po
rt
sm

o
u
th

Z
a
ra
g
o
za

D
a
to
s

'
b
ie
rt
o
s

O
p
e
n
d
a
ta

S
co
tl
a
n
d

S
im

d
C
ri
m
e
R
a
n
k

9
e
rl
io
s

S
ta
tu
sN

e
t

p
ia
n
a

G
o
v
U
K

N
e
t
'
d
d
F

D
w
e
lli
n
g
s

9
o
o
ts
n
a
ll

S
ta
tu
sN

e
t

ch
ro
m
ic

G
e
o
sp
e
ci
e
s

lin
ke
d
ct

W
o
rd
n
e
t

RW
H
C
I

S
ta
tu
sN

e
t

th
o
rn
to
n
.

S
ta
tu
sN

e
t

m
ku
tt
n
e
r

S
ta
tu
sN

e
t

lin
u
x
w
ra
n
g
lin
g

E
u
ro
st
a
t

Li
n
ke
d

D
a
ta

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
rv
F
im

d
ra
n
k
BV
J

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
rv
F
im

d
ra
n
k
la

BK
V

Li
n
ke
d

O
p
e
n
D
a
ta

o
f

E
co
lo
g
y

S
ta
tu
sN

e
t

ch
ic
ke
n
ki
lle
r

S
ta
tu
sN

e
t

g
e
g
e
w
e
b

D
e
u
st
o

Te
ch

S
ta
tu
sN

e
t

sc
h
ie
ss
le

G
o
v
U
K

tr
a
n
sp
a
re
n
cy

im
p
a
ct

in
d
ic
a
to
rs

tr
F
fa
m
ili
e
s

Ta
xo
n

co
n
ce
p
t

G
o
v
U
K

se
rv
ic
e

e
x
p
e
n
d
it
u
re

G
o
v
U
K

so
ci
e
ta
l

w
e
llb
e
in
g

d
e
p
ri
v
a
ti
o
n
im

d
e
m
p
lo
y
m
e
n
t

sc
o
re

.
V
K
V

Figure 1.1: Linked Data Diagram (30/08/2014)

4 Chapter 1. Introduction

RDF data which has obviously motivated some research work on the design of
adapted and efficient database systems. These systems are frequently referred
to as RDF stores or triplestores. Several RDF stores have been developed to
handle RDF data, among which some are native whereas others use RDBMS
backend. Native RDF stores are those that are implemented from scratch and
exploit the RDF data model to efficiently store and access the RDF data, such
as 4Store 9, AllegroGraph 10, StarDog 11, Jena TDB 12 and Sesame
Native Store 13. RDMS-backed RDF stores such as Virtuoso 14 and Jena
SDB 15, use a relational database to store triples. One of the key concepts of
the Semantic Web architecture are Named Graphs which is a simple extension
of the RDF data model that transforms RDF triples to quads. Named graphs
are sets of triples identified by IRIs, allowing descriptions to be made of that
set such as provenance information, context and other metadata.

As the demand for data and information management increases, there is
also a critical need for maintaining the security of the data sources, appli-
cations, and information systems. Different fields of study have been in-
troduced to design appropriate approaches able to provide security guar-
antees. These security fields involve authentication [Lamport 1981], access
control [Griffiths 1976], cryptography [Diffie 1976, Rivest 1978] and audit-
ing [Agrawal 2004]. Following the evolution of these fields, database systems
offer new security paradigms to cope with vulnerabilities induced by new fea-
tures (e.g., distribution, heterogeneity, autonomy, reasoning).

The protection of resources against unauthorized accesses, is one of the
main features of todays systems. One of the main security services needed
to achieve data protection is access control. Access control ensures that a
user can access only resources she/he is allowed to see. Historically, the first
access control model was defined by [Griffiths 1976] in the framework of the
System R DBMS. In this model, the protected objects are tables and views,
and the possible access modes that subjects can exercise on tables correspond
to SQL operations that can be executed on tables. Later, other access control
models have been proposed for different data models such as object-oriented
DBMS [Rabitti 1991] and XML [Damiani 2002].

In this thesis, we focus on the security challenges that mainly arise in
Linked Data context, particularly the selective disclosure of RDF data.

9www.4store.com
10http://franz.com/agraph/allegrograph/
11http://www.stardog.com/
12https://jena.apache.org/documentation/tdb/index.html
13http://www.rdf4j.org/
14http://virtuoso.openlinksw.com/
15https://jena.apache.org/documentation/sdb/

www.4store.com
http://franz.com/agraph/allegrograph/
http://www.stardog.com/
https://jena.apache.org/documentation/tdb/index.html
http://www.rdf4j.org/
http://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/sdb/

1.2. Problem statement 5

Our main objective is to encourage businesses and organizations worldwide
to publish their RDF data into the linked data global space. Indeed, the
published data may be sensitive, and consequently, data providers may avoid
to release their information, unless they are certain that the desired access
rights of different accessing entities are enforced properly, to their data, and
that no sensitive data are revealed (by mistake). Hence the issue of securing
RDF content and ensuring the selective disclosure of information to different
classes of users is becoming all the more important.

An inspiring quote from Paul Terry who wrote in CTO Vision 16 : To
realize value from your data, you need to be able to share it among many
stakeholders-internal lines of business, partners, researchers, and many oth-
ers. But you also have a moral, ethical, and often legal, obligation to make
sure that data is used responsibly. That means protecting individuals’ pri-
vacy and assuring that their data is used only for legitimate purposes. As you
gather more data from more parts of your organization, that gets very tricky
very fast. [...] It quickly becomes clear that this is about more than simply
checking a box for whether data is “secure”. It’s incredibly valuable to have
all that data in one place where it can be analyzed, but you need to assure that
different types of stakeholders can see only the information they legitimately
need, and no more.

1.2 Problem statement

In this thesis, we are interested in RDF data disclosure and inference leakage
problem. The problem of providing access controls to RDF data has attracted
considerable attention of both the security and the database community in
recent years. Our goal is to define an authorization policy to be integrated to
RDF stores in order to control RDF data disclosure. Moreover, we must ensure
that the disclosed data can not be used to infer confidential information. In
this context, we are interested in the following issues :

1.2.1 Selective RDF data disclosure

Given the sensitive nature of information, different portions of RDF data may
require different access rights with respect to the privileges of the requester. In
this thesis, we are interested in selectively disclosing information based on the

16https://ctovision.com/2015/12/big-data-unlocks-valuable-
information-across-organizations-but-only-if-you-can-protect-it/

https://ctovision.com/2015/12/big-data-unlocks-valuable-information-across-organizations-but-only-if-you-can-protect-it/
https://ctovision.com/2015/12/big-data-unlocks-valuable-information-across-organizations-but-only-if-you-can-protect-it/

6 Chapter 1. Introduction

RDF content, who requests it and under what context. Most of nowadays RDF
Stores offer protection at named graph level. For instance, such a feature has
been introduced in 4store version 1.1.517. Graph-based security is available
in Virtuoso18 or in Stardog version 3.119 as well. The issue with these
models is that the access control policies are defined over named graphs which
must be created with respect to policies. For instance if a policy states that the
nurses have access to patient’s records, then all triples related to the patient’s
records must be gathered into one named graph over which the policy is
defined. Moreover, complex policies may lead to the creation of several named
graphs. Having a large number of complex policies may lead the administrator
to create several named graphs that may be difficult to manage. In addition,
a redundancy problem arises because a triple may belong to several named
graphs. Some RDF stores such as AllegroGraph20 support triple pattern
based access control21 which allows the definition of simple authorizations such
as deny or allow access to triples representing patients’ records. However, more
expressive policies can not be specified. For instance an authorization such as
Deny access to patients’ records if they have cancer cannot be specified.

Given the open nature of the web where the RDF data are published,
the subject may not be known by the system prior to the submission of a
query. Hence, the selective disclosure can not only rely on traditional identity
based and role based access control policies. Attribute Based Access Control
(ABAC) model gives more flexibility by defining authorizations on the basis
of subject’s and object’s attributes. ABAC avoids the need for explicit au-
thorizations to be directly assigned to individual subjects prior to a request
to perform an operation on the object.

1.2.2 Inference leakage

The second issue is to ensure that sensitive information can not be in-
ferred once the data have been disclosed to the user. This problem is
known in the access control literature as the Inference problem [Farkas 2002]
called in this manuscript the Inference leakage problem. According to the
World Wide Web Consortium (W3C), inference on the Semantic Web us-
ing the Resource Description Framework (RDF) “improve the quality of
data integration on the Web, by discovering new relationships, automati-

17http://4store.org/trac/wiki/GraphAccessControl
18http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
19http://docs.stardog.com/# security
20http://franz.com/agraph/allegrograph
21http://franz.com/agraph/support/documentation/v4/

security.html#filters

http://4store.org/trac/wiki/GraphAccessControl
http://docs.openlinksw.com/virtuoso/rdfgraphsecurity.html
http://docs.stardog.com/#_security
http://franz.com/agraph/allegrograph
http://franz.com/agraph/support/documentation/v4/security.html#filters
http://franz.com/agraph/support/documentation/v4/security.html#filters

1.3. Related work study 7

cally analyzing the content of the data”. Inference rules are used to de-
rive new triples from those explicitly asserted in an RDF store. In par-
ticular, a set of inference rules known as RDF Schema (RDFS) is stan-
dardized [Hayes 2014]. Authorization models for RDF data have been pro-
posed to control accesses to RDF data, both in the presence of infer-
ence rules [Reddivari 2005, Lopes 2012, Papakonstantinou 2012, Jain 2006]
or not [Abel 2007, Flouris 2010, Rachapalli 2014]. However, the issue is that
inference capabilities can be used by a malicious user to infer sensitive infor-
mation from authorized ones.

To illustrate the inference leakage problem, suppose that RDF triples
stating that someone has a cancer are labeled as confidential (e.g. triples
similar to (?p ; rdf :type ; :Cancerous) with ?p denoting a person), while
the ones stating that a person has a tumor are public (e.g., triples
of the form (?p ; :hasTumor ; ?t)). If there exists a public triple stat-
ing that the domain of the :hasTumor predicate is :Cancerous (e.g.
(:hasTumor ; rdfs :domain ; :Cancerous)) then, using the RDFS rule that re-
lates the domain of a predicate to the type of its subjects, sensitive information
can be inferred from the authorized triples. The situation is even worse when
the deduction system is enriched with user-defined rules.

1.2.3 Enforcement and performance

Specific issues arise from the enforcement of the access control. The first issue
is the impact of access control enforcement on the system’s performance : we
must ensure that the enforcement of the access control incurs a low overhead
in the RDF store performance. The second issue regards the mechanisms
needed to enforce the access control. The enforcement mechanism must be
deployable in the RDF store with minimal additional mechanisms and ideally,
with no alteration of its internal components

1.3 Related work study

A first study of the state of the art has led to the definition of the evaluation
criteria in order to compare the related works in access control to RDF data,
including the expressiveness of policy specification languages, conflict reso-
lution generated by conflicting decisions and the verification of unauthorized
inferences. The study has resulted in the determination of well treated criteria
such as the supported actions, the expressiveness of objects and the protection
of explicit and implicit triples. Other criteria have not been deeply considered,

8 Chapter 1. Introduction

Policy

Query

RDF
store

R
ea
so
n
er

R
ea
so
n
er

Policy enforcement

Access control model

formal semantics
Inference leakage problem

and solution
Policy

administration

Figure 1.2: Main contributions

including conflict resolution, the expressiveness of the subjects and the infer-
ence leakage. In Chapter 2 we introduce the Semantic Web and a recalling of
the syntax and semantics of the RDF Data Model. We give an overview about
SPARQL 1.1 RDF query language, and how it can be used to process RDF
data. We define inference, in particular RDFS inferencing, which allows the
deduction of new data from those explicitly defined. We give an overview of
the most known access control models found in the literature, followed by the
conflict resolution strategies used to resolve conflicts that stem from the use
of negative authorizations. Next, we present the works that were proposed
to control access to RDF data, and the criteria used to compare them. We
finally present the criteria that have not been well considered, which are the
basis of our proposals.

1.4 Contributions

We present in the following, the main contributions of this thesis depicted by
Figure 1.2.

1.4.1 Access control model for RDF

We define in Chapter 3 the formal semantics of a triple-level access control
model for RDF. The semantics are defined by means of positive (authorized)
subgraph from the base graph, over which the user’s query is evaluated. This
makes the model independent from the query language. Our model supports
negative authorizations to handle real-life exceptions. This leads to possible

1.4. Contributions 9

conflicts that may occur between authorizations. Conflict resolution strategies
are used to resolve such conflicts by selecting the preferred authorizations to
apply, with respect to some properties of the authorizations. Whereas most
of the works hard-code their strategies, others define them as parameters
that are fixed by the administrator during policy design. We propose a more
liberal approach by defining our policy using an abstract conflict resolution
function which is defined by the administrator. We illustrate the applicability
of the authorization model by showing that usual conflict resolution strategies
can be expressed in our framework. We show how to build classic conflict
resolution strategies namely : Denials Take Precedence, Permissions Take
Precedence. Moreover, we show how to build more elaborate strategies such
as Most Specific Takes Precedence to handle exceptions.

1.4.2 Inference leakage problem and solution

To deal with the inference leakage problem, we propose in Chapter 4 an
approach based on a static analysis. The idea is to detect, at the time
of specifying the confidentiality policy, whether authorizations and infer-
ence rules interact in such a way they can lead to sensitive information
disclosure. Several authorization models for RDF which consider inference
use annotations to determine whether the inferred triples are accessible or
not [Reddivari 2005, Lopes 2012, Papakonstantinou 2012]. The problem is
that these approaches do not guarantee that forbidden information cannot be
inferred again, once the data have been disclosed. The inference leakage prob-
lem in the case of RDFS has been investigated by Jain and Farkas [Jain 2006],
but the base RDF graph kept in the RDF store is needed and conflict resolu-
tion strategies are hard-coded in their algorithm. We identify and formalize a
consistency property that captures the inference leakage arising when inference
rules and authorizations interact, as exemplified informally in this introduc-
tion. Intuitively, a policy is consistent w.r.t. a set of inference rules R if
the authorized subgraph G+ of a closed graph G is itself closed, that is, no
new facts can be produced using R another time. This property ensures that
confidential information can not be inferred from authorized information with
respect to a set of inference rules. To solve the issue, we propose an algorithm
that, given a policy P and a set of inference rules R, but without any prior
knowledge of G, checks if the consistency property holds. The algorithm is
proved correct and it is constructive: whenever the answer is positive, a set of
counterexample graphs is computed. This answer can be used by the adminis-
trator to analyze and then solve the issue. We show how the counterexamples
could be used by the administrator to fix the policy, or how to use them as
integrity constraints that do not allow updates which could lead to inference

10 Chapter 1. Introduction

leakage

1.4.3 Policy administration

The policies of the model proposed in Chapter 3 are defined without speci-
fying the subject for which permissions are assigned. This allows to use any
upstream access control model to map the users to their assigned permis-
sions. We propose in Chapter 5 a high level access control language which
permits the definition of global policies which are then compiled into subject
specific policies enforced by our access control model. We have chosen to
define our policies on the basis of the user attributes following the Attribute
Based Access Control Approach (ABAC), where access to protected resources
is based on users having specific attributes (eg. name, role, date of birth,
address, phone number, etc.). This approach allows a much finer approach
of access control combining not only user attributes, but other environmental
information, such as location and time. Rather than just using the role of a
user to decide whether or not to grant access to protected resource, ABAC
combines multiple attributes to make a context-aware decision regarding in-
dividual requests for access. ABAC is implemented through XACML which
is a declarative language to define policies which are structured as a tree of
sub-policies. We define the syntax and semantics of a language inspired by
XACML by defining the main components of the proposed solution and show-
ing how the user’s policy is created and enforced. Intuitively, a global policy
can be represented in a Tree structure where the intermediate nodes represent
policies, the leaves are authorizations and nodes edges are labeled with targets
representing attribute based conditions. The latter are evaluated using key/-
value pairs representing attributes provided by subjects. The subject provides
her/his attributes in a request which is evaluated over the global policy tree
to determine her/his assigned authorizations. Based on these authorizations,
the subject’s query is evaluated over her/his positive subgraph returning the
her/his accessible triples.

1.4.4 Policy enforcement

In Chapter 6, we propose an enforcement framework based on data-
annotations for our access control model. We propose an approach where
we annotate every triple of the base graph with a bitset representing its ap-
plicable authorizations. Similarly, users are assigned bitsets representing the
authorizations applicable to them. We show the annotation process of the
base graph, and how the user query is evaluated over the annotated graph,

1.4. Contributions 11

and we prove that our encoding is correct. We use the graph name position to
store the bitset of applicable authorization of the triple. As todays RDF stores
support named graphs [Haslhofer 2011], no additional mechanisms are needed
to enforce our model, in contrast to approaches that use specific extensions of
RDF data model to store annotations. The annotation process is performed by
transforming the authorizations into (CONSTRUCT) queries that are evaluated
using the RDF store query engine. Once the base graph annotated, it is made
available to the requesters. When a query is sent from a requester, her/his
positive subgraph is computed by making logical and between the requester’s
bitset, and the triple’s bitset. The result is used to determine the triple’s that
take part of the positive subgraph. The requester’s query is then evaluated
over her/his positive subgraph and the result is returned to the user. Finally
we show the results of experiments of our solution implemented on a concrete
RDF store. We show that our implementation incurs reasonable overhead at
runtime (about +50%) with respect to the optimal solution which consists in
materializing the user’s accessible subgraph.

Chapter 2

Technical background and
related work

Contents
2.1 Semantic Web . 14

2.1.1 Graph Data Model . 14

2.2 Access control . 25

2.2.1 Access control models 25

2.2.2 Conflict resolution . 32

2.3 Access control for RDF data 33

2.3.1 Comparison of related works 35

2.4 Study summary . 40

2.5 Filling the gaps . 42

B In this chapter, we start by introducing the Semantic Web (aka Web of
Data) and recalling the syntax and semantics of the RDF Data Model. We
present an overview of the RDF query language SPARQL, and how it can be
used to process RDF data. We present inference, in particular RDFS infer-
encing, a key feature of the Semantic Web, which allows the deduction of new
data from those explicitly defined. We give an overview of the most known ac-
cess control models found in the literature, followed by the conflict resolution
strategies used to resolve conflicts that stem from the use of negative autho-
rizations. We present the works that have been proposed to control access to
RDF data, and the criteria used to compare them. We finally give the sum-
mary of our study by showing the criteria that have not been well considered,
which are the basis of our proposals. C

14 Chapter 2. Technical background and related work

2.1 Semantic Web

Most of today’s Web content is suitable for human consumption. Even Web
contents that are generated automatically from databases are usually pre-
sented without the original structural information found in databases. The
Semantic Web initiative consists in representing Web contents in a form that
is more easily machine-processable. World Wide Web Consortium (W3C) is
promoting the mobilization of semantic web technology. In their vision, se-
mantic web is achieved with a layered stack solution (Figure 2.1). RDF(S)
and OWL specifications have been suggested as mature recommendations.

Figure 2.1: Semantic Web Layers

2.1.1 Graph Data Model

Graph database models can be defined as those in which data structures for
the schema and instances are modeled as graphs or generalizations of them,
and data manipulation is expressed by graph-oriented operations and type con-
structors [Angles 2008]. The graph data model used in the semantic web is
RDF (Resource Description Framework) [Hayes 2014].

2.1. Semantic Web 15

2.1.1.1 Resource Description Framework

RDF has been developed under the auspices of the W3C and has become the
de facto standard for representing semantic relations between web resources
which are uniquely identified by Universal Resource Identifiers (URIs) or In-
ternationalized Resource Identifiers (IRIs) [Cyganiak 2014]. URIs represent
common global identifiers for resources across the Web. An IRI is an extension
of a URI which allows the use of Unicode characters. The syntax and format
of IRIs is very similar to the well-known uniform resource locators (URLs);
e.g., http://example.com/hospital#alice. In fact, URLs are just special
cases of IRIs. Another form of IRIs is a Uniform Resource Name (URN),
which identifies something that is not associated to a Web resource but on
which people on the Web want to write about such as books. To represent
value data types such as numbers, booleans and strings, RDF uses Literals.
In RDF, a resource which do not have an IRI can be identified using Blank
nodes. Blank nodes are used to represent these unknown resources, and also
used when the relationship between a subject node and an object node is n-ary
(as is the case with collections). The purpose of RDF is to promote encoding,
exchanging and reusage of structured metadata. RDF allows to decompose
knowledge into small portions called triples or statements. Triples have the
form “(subject ; predicate ; object)” built from pairwise disjoint countably
infinite sets I, B, and L for IRIs, blank nodes, and literals respectively. The
subject represents the resource for which information is stored and is identi-
fied by an IRI. The predicate is a property or a characteristic of the subject
and is identified by an IRI. The object is the value of the property and is
represented by an IRI of another resource or a literal.

For ease of notation, in RDF, one may define a prefix to represent a
namespace, such as rdf : type where rdf represents the namespace http:

//www.w3.org/1999/02/22-rdf-syntax-ns

Note 2.1.1 In this manuscript, we explicitly write rdf and rdfs when the
term is from the RDF or the RDFS standard vocabulary. However, we do not
prefix the other terms for the sake of simplicity.

For instance the triple (:alice ; :hasTumor ; :breastTumor) states that alice
has a breast tumor. A collection of RDF triples is called an RDF Graph
and can be intuitively understood as a directed labeled graph where resources
represent the nodes and the predicates the arcs as shown in Figure 2.2.

Definition 2.1.2 (RDF graph) An RDF graph (or simply “graph”, where
unambiguous) is a finite set of RDF triples.

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns

16 Chapter 2. Technical background and related work

Subject Predicate Object

et1 :hasTumor rdfs :domain :Cancerous
et2 :Cancerous rdfs :subClassOf :Patient
et3 :onc rdf :type :Oncology
et4 :alice :hasTumor :breastTumor
et5 :bob :service :onc
et6 :bob :treats :alice

Figure 2.2: An example of an RDF graph G0

Example 2.1.3 Figure 2.2 depicts a graph G0 constituted by triples et1 to
et6, both pictorially and textually.

In this manuscript, we reuse the formal definitions and notation used by Pérez
and Gutierrez [Pérez 2009]. Throughout the manuscript, P(E) denotes the
finite powerset of a set E and F ⊆ E denotes a finite subset F.

RDF Semantics The W3C document [Hayes 2014] defines a model-
theoretic semantics for RDF 1.1. Model-theoretic semantics for a language
assumes that the language refers to a world, and describes the minimal con-
ditions that a world must satisfy in order to assign an appropriate meaning
for every expression in the language. A particular world is called an interpre-
tation. An RDF interpretation is a mapping from IRIs and literals into a set,
together with some constraints upon the set and the mapping.

2.1. Semantic Web 17

Definition 2.1.4 (Simple interpretation) A simple interpretation I of a
given vocabulary V consists of:

1. A non-empty set IR of resources, called the domain or universe of I.

2. A set IP, called the set of properties of I.

3. IEXT : IP → P(IR × IR) a mapping from properties into set of pairs in
IR.

4. IS : V → (IR ∪ IP) a mapping from IRIs in V into the union of sets IR
and IP.

5. A partial mapping IL from literals into IR

Given a triple (s, p, o), I((s, p, o)) = true if s, p, o ∈ V , IS(p) ∈ IP and
(IS(s), IS(o)) ∈ IEXT; otherwise, I((s, p, o)) = false. Given a set of triples S,
I(S) = false if I((s, p, o)) = false for some triple (s, p, o) in S, otherwise
I(S) = true. I satisfies S, written as I � S if I(S) = true; in this case,
we say I is a simple interpretation of S.

Example 2.1.5 Consider the vocabulary V = {:bob, :service, :onc,
:Oncology, rdf :type}. The following is a simple interpretation I of V .

IR = {a, b, c}
IP = {e, f}
IEXT = {e 7→ {〈a, b〉}, f 7→ {〈b, c〉}}
IS = {:bob 7→ a, :service 7→ e, :onc 7→ b, :Oncology 7→ c, rdf :type 7→ f}

The verification of triples using I is done as follows:

(IS(:bob), IS(:onc)) = (a, b) ∈ IEXT(e) = IS(:service).
Hence I(:bob ; :service ; :onc) = true
(IS(:onc), IS(:Oncology)) = (b, c) ∈ IEXT(f) = IS(rdf :type).
Hence I(:onc ; rdf :type ; :Oncology) = true.
Thus I is a simple interpretation of S
Where S = {(:bob ; :service ; :onc), (:onc ; rdf :type ; :Oncology)}

Simple interpretation has no particular extra conditions on the vocabu-
lary. Additional extensions of simple interpretation have been introduced,
such as RDF(S)-Interpretation which assign special meanings to the symbols
in particular vocabularies (RDF(S)). For more details, we refer the reader
to [Hayes 2014].

18 Chapter 2. Technical background and related work

2.1.1.2 SPARQL

We just presented RDF as the data model of the Semantic Web. In gen-
eral, a data model comes equipped with a language to support queries over
some data set. The emergence of RDF recommendation has spun up several
RDF query languages, such as SPARQL [Harris 2013], RQL [Lassner 2002],
SeRQL [Broekstra 2003], TRIPLE [Sintek 2002], RDQL [Seaborne 2004] and
N3 [Berners-Lee 2011]. An RDF Query Language is a formal language used
for querying RDF Triples from an RDF Store also called Triple Store. An
RDF store is a database specially designed for storing an retrieving RDF
triples. SPARQL (SPARQL Protocol and RDF Query Language) is a W3C
recommendation and has established itself as the de facto language for query-
ing RDF data. SPARQL borrowed part of its syntax from the popular and
widely adopted Structured Query Language (SQL). The main mechanism for
computing query results in SPARQL is subgraph matching: RDF triples in
both the queried RDF data and the query patterns are interpreted as nodes
and edges of directed graphs, and the resulting query graph is matched to the
data graph using variables. The SPARQL building blocks are graph patterns
which are built from pairwise disjoint countably infinite sets I, V and L for
IRIs, variables, and literals respectively.

Definition 2.1.6 (Triple Pattern, Graph Pattern) A term t is either
an IRI, a variable or a literal. Formally t ∈ T = I ∪ V ∪ L. A tuple
t ∈ TP = T× T× T is called a Triple Pattern (TP). A Basic Graph Pattern
(BGP), or simply a graph, is a finite set of triple patterns. Formally, the set
of all BGPs is BGP = P(TP).

Given a triple pattern tp ∈ TP, var(tp) is the set of variables occurring
in tp. Similarly, given a basic graph pattern B ∈ BGP, var(B) is the set
of variables occurring in the BGP defined by var(B) = {v | ∃tp ∈ B ∧ v ∈
var(tp)}.

In this manuscript, we do not explicitly use blank nodes which are replaced
by variables. Blank nodes of RDF are semantically equivalent to existentially
quantified variables [Polleres 2007]. Not to distinguish between blank nodes
and variables significantly reduces the overhead of formal definitions but it
does not change the expressiveness of the framework. Moreover, we use an
extended version of RDF [ter Horst 2005] which allows variables in property
position. When graph patterns are considered as instances stored in an RDF
store, we simply call them graphs.

The evaluation of a graph pattern B on another graph pattern G is given
by mapping the variables of B to the terms of G such that the structure of B

2.1. Semantic Web 19

is preserved. First, we define the substitution mappings as usual. Then, we
define the evaluation of B on G as the set of substitutions that embed B into
G.

Definition 2.1.7 (Substitution Mappings) A substitution (mapping) η
is a partial function η : V → T. The domain of η, dom(η), is the subset
of V where η is defined. We overload notation and also write η for the partial
function η? : T→ T that extends η with the identity on terms. Given two sub-
stitutions η1 and η2, we write η = η1η2 for the substitution η : ?v 7→ η2(η1(?v))
when defined.

Given a triple pattern tp = (s ; p ; o) ∈ TP and a substitution η such that
var(tp) ⊆ dom(η), (tp)η is defined as (η(s) ; η(p) ; η(o)). Similarly, given a
graph pattern B ∈ BGP and a substitution η such that var(B) ⊆ dom(η), we
extend η to graph pattern by defining (B)η = {(tp)η | tp ∈ B}.

Definition 2.1.8 (BGP Evaluation) Let G ∈ BGP be a graph, and B ∈
BGP a graph pattern. The evaluation of B over G denoted by JBKG is defined
as the following set of substitution mappings:

JBKG = {η : V → T | dom(η) = var(B) ∧ (B)η ⊆ G}

Example 2.1.9 shows the evaluation of a triple pattern.

Example 2.1.9 Let B be defined as B = {(?p ; rdf :type ; :Patient)}. B is
a triple pattern with a variable in the subject position which will be used to
match all triples of type Patient. The evaluation of B on the example graph
G0 of Figure 2.2 is JBKG0 = {η}, where η is defined as η : ?p 7→ :alice.

Example 2.1.10 shows the evaluation of a basic graph pattern.

Example 2.1.10 Let B be defined as B = {(?d ; :service ; ?s),
(?d ; :treats ; ?p)}. B returns the doctors, their services and the patients
they treat. The evaluation of B on the example graph G0 of Figure 2.2
is JBKG0 = {η}, where η is defined as η : ?d 7→ :bob, ?s 7→ :onc and
?p 7→ :alice.

Formally, the definition of BGP evaluation captures the semantics of SPARQL
restricted to the conjunctive fragment of SELECT queries that do not use
FILTER, OPT and UNION operators (see [Pérez 2009] for further details).

20 Chapter 2. Technical background and related work

Figure 2.3: Graph Pattern evaluation

Another key concept of the Semantic Web is named graphs in which a
set of RDF triples is identified using an IRI. This allows to represent meta-
information about RDF data such as provenance information and context. In
order to handle named graphs, SPARQL defines the concept of dataset. A
dataset is a set composed of a distinguished graph called the default graph
and pairs comprising an IRI and an RDF graph constituting named graphs.

Definition 2.1.11 (RDF dataset) An RDF dataset is a set :

D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}

where Gi ∈ BGP, ui ∈ I, and n ≥ 0. In the dataset, G0 is the default graph,
and the pairs 〈ui, Gi〉 are named graphs, with ui the name of Gi.

SPARQL Query result forms SPARQL has four query result forms :

• SELECT returns all, or a subset of, the variables bound in a query pattern
match

• CONSTRUCT returns an RDF graph constructed by substituting variables
in a set of the BGP defined as template.

• DESCRIBE returns an RDF graph that describes the resources

• ASK returns a boolean indicating whether a query pattern matches or
not an instance in the queried RDF graph.

2.1. Semantic Web 21

2.1.1.3 Inference

One of the main features of the Semantic Web is the ability to do inferencing.
Inference is the act of deriving new facts from known premises. A graph
may contain implicit triples even though they are not explicitly present in
it. Inference rules are used to add triples to a graph when it contains triples
conforming to a graph pattern. Thus, inference rules turn an RDF store
into a deductive database similar to positive Datalog that extends traditional
(non-deductive) relational databases.

An inference rule consists of a head and a body. The head is a triple pattern
which represents the rule conclusion. The body is a BGP which represents
the rule premises.

Definition 2.1.12 (Inference Rule) An inference rule r is a formal ex-
pression of the form (tp ← tp1, . . . , tpk) where tp, tp0, . . . , tpk ∈ TP that is
subjected to the condition var(tp) ⊆ var({tp0, . . . , tpk}). The sets of infer-
ence rules are denoted by R. The following notation is also used to represent
inference rules:

tp1, . . . , tpk
tp

For a rule (tp ← tp1, . . . , tpk), the condition var(tp) ⊆ var({tp0, . . . , tpk})
ensures that it does not introduce fresh uninstantiated variables when ap-
plied to a graph. We define an operational semantics for the rules, inspired
by the fixpoint semantics of Datalog. It is known that the closure of a fi-
nite graph is finite and the operator is increasing, monotonic and idempo-
tent [Abiteboul 1995, Chap. 12].

Definition 2.1.13 (Rule Semantics, Closure) Given a graph pattern G ∈
BGP and an inference rule r = (tp ← tp1, . . . , tpk), the set of triples (imme-
diately) deduced from G by r is φr(G) = {(tp)σ | σ ∈ J{tp1, . . . , tpk}KG}. We
extend the operator φ(G) to sets of inference rules R, φR(G) =

⋃
r∈R φr(G).

Given a set of inference rules R, let (Gi)i∈N be the infinite sequence of basic
graph patterns defined by G0 = G and for any i ∈ N, Gi+1 = Gi ∪ φR(Gi).
The closure of G w.r.t. R is ClR(G) =

⋃
i∈NGi. We write Cl(G) when R is

clear from the context. We say that a graph is closed when ClR(G) = G

The above closure takes a graph and a set of inference rules and iteratively
applies the rules over the union of the original graph and the inferences until
a fixpoint. The following lemma shows that the closure is finite.

22 Chapter 2. Technical background and related work

Lemma 2.1.14 (Finite Closure) Let ClR(G) =
⋃

i∈NGi the closure of a
graph G according to a set of rules R, there exists some k ∈ N such that for
all l ∈ N .l ≥ k ⇒ Gl = Gk.

Proof For the sake of the contradiction, assume that for all i ∈ N, Gi (
Gi+1 = Gi ∪ φR(Gi). It follows that there exists some xi ∈ φR(Gi) not in Gi

obtained from some ri ∈ R and some σi ∈ J{tpi1, . . . , tpik}KG with {tpi1, . . . , tpik}
the body of ri. Repeating this construction for each i, we obtain a finite
sequence of triples xi with associated mapping σi. However, the condition
dom(η) = var(B) ∧ η(B) ⊆ G in Definition 2.1.8 ensures that only a finite
number of mappings σi can be obtained: it is bounded by T V where V is the
total number of variables that appears in the heads of the rules from R and
T is number of terms of G. This contradicts the hypothesis.

The following is an example of the application of an inference rule on a
given graph.

Example 2.1.15 Consider the following inference rule which states that if a
doctor is assigned to a service and treats a patient, then this patient is admitted
to the doctor’s service.

(?d ; : service ; ?s)(?d ; : treats ; ?p)

(?p ; : admitted ; ?s)
= RAdm

The rule is applied on G0 of Figure 2.2 by replacing the variables with the
terms of the graph.

(: bob ; : service ; : onc)(bob ; : treats ; alice)

(alice ; : admitted ; onc)

Example 2.1.16 shows the closure computation of a graph using inference
rules.

Example 2.1.16 Consider the graph G0 of Figure 2.2, and inference rules
RDom and RSc2 in Table 2.1 (more details about these rules can be found
in the next section). If we apply the inference rule RDom using triples et1
and et4 then we infer it1. Afterwards, RSc2 is applied to et2 and it1 to infer
it3. Thus, Cl{RDom,RSc2}(G0) = G0 ∪ {it1, it3}. Assume that we add rule
RAdm. Referring to the graph G0 of Figure 2.2, its closure now contains
a new inferred triple Cl{RDom,RSc2,RAdm}(G0) = G0 ∪ {it1, it3, it2}. The new
inferred triples are depicted by dashed arrows in Figure 2.4.

2.1. Semantic Web 23

Subject Predicate Object

et1 :hasTumor rdfs :domain :Cancerous
et2 :Cancerous rdfs :subClassOf :Patient
et3 :onc rdf :type :Oncology
et4 :alice :hasTumor :breastTumor
et5 :bob :service :onc
et6 :bob :treats :alice

it1 :alice rdf :type :Cancerous
it2 :alice :admitted :onc
it3 :alice rdf :type :Patient

Figure 2.4: An example of G0 closure (Cl(G0))

2.1.1.4 RDF Schema (RDFS)

RDF provides a way to express simple statements about resources, using
named properties and values. However, RDF user communities also need a
way to define the vocabularies (terms) they intend to use in those statements,
specifically to indicate that they are describing specific kinds or classes of re-
sources, and will use specific properties in describing those resources. RDFS
is the schema language for RDF, and provides a way to specify the vocabulary
(also known as ontology) that will be used in an RDF graph. It allows to
define how individuals are related to one another, the properties we use to
define our individuals and how they are related to other sets of individuals
and to one another. In RDFS, a class corresponds to a group of resources

24 Chapter 2. Technical background and related work

Table 2.1: Example of RDFS inference rules

(?p ; rdfs :domain ; ?d) (?x ; ?p ; ?y)

(?x ; rdf :type ; ?d)
= RDom

(?p ; rdfs :range ; ?r) (?x ; ?p ; ?y)

(?y ; rdf :type ; ?r)
= RRan

(?c1 ; rdfs :subClassOf ; ?c2) (?c2 ; rdfs :subClassOf ; ?c3)

(?c1 ; rdfs :subClassOf ; ?c3)
= RSc1

(?a ; rdf :subClassOf ; ?b) (?x ; rdf :type ; ?a)

(?x ; rdf :type ; ?b)
= RSc2

(?p1 ; rdfs :subPropertyOf ; ?p2) (?p2 ; rdfs :subPropertyOf ; ?p3)

(?p1 ; rdfs :subPropertyOf ; ?p3)
= RSp1

(?p ; rdfs :subPropertyOf ; ?q) (?x ; ?p ; ?y)

(?x ; ?q ; ?y)
= RSp2

and is itself a resource (therefore identified by an IRI) belonging to the class
rdfs :Class. An instance of a class is a resource belonging to that class.
The rdf :type property states the relationship between instances and classes.
Literals are defined by rdfs :Literal. For any given RDF triple, its subject
and object are instances of rdfs :Resource, while its predicate is an instance
of rdf :Property. The RDFS properties rdfs :range and rdfs :domain al-
low us to state the subject and the object class of a given rdf :Property
respectively.

Example 2.1.17 For instance (:hasTumor ; rdfs :domain ; :Patient) states
that the domain of the property :hasTumor is the class :Patient, in other
words the subject of any triple with predicate :hasTumor is an instance of
:Patient.

RDFS allows us to define classes and properties hierarchies by
the properties rdfs :subClassOf and rdfs :subPropertyOf respectively.
rdfs :subClassOf allows to say that the class extension of a class description
is a subset of the class extension of another class description. For instance
(:Patient ; rdfs :subClassOf ; :Person) means that any instance of :Patient
is an instance of :Person. Similarly, rdfs :subPropertyOf states that the
property extension of a given property is a subset of another property exten-
sion. For instance (:hasTumor ; rdfs :subPropertyOf ; :hasDisease) means
that any two resources related with :hasTumor are related with :hasDisease.
RDFS allows reasoning over RDF triples using a set of defined inference rules

2.2. Access control 25

(aka entailment rules). Table 2.1 shows a subset of RDFS inference rules used
in our examples. We refer the reader to [Hayes 2014] for the rest of the rules.

RDom states that if there exists a triple with a given property, then its
subject is an instance of this property domain. RRan is similar to RDom and
generates the fact that the triple object is an instance of the property range.
RSc1 and RSp1 define the subclass and subproperty transitivity respectively.
RSc2 defines the type propagation, in other words if a resource is an instance
of a given class, then it is also an instance of the parents of this class. RSp2

defines the property propagation, which mean that if two resources are related
with a property then they are related with the parents of this property.

2.2 Access control

Access control refers to the process of regulating access to protected data based
on pre-defined security policies. The advantage of using policies is that the
system behavior can be managed without the need of reimplementation. The
development of an access control system requires the definition of the regula-
tions according to which access is to be controlled and their implementation as
functions executable by a computer system. The development process is usu-
ally carried out with a multi-phase approach based on the following concepts
[Samarati 2001]:

• Security policy: it describes the most abstract view of the system. At
this level access control rules are defined. The requirements of the sys-
tem are described in order to comply with some specification (e.g., laws,
regulations). This description does not provide any method on how it
should be enforced.

• Security model: it formalizes the rules defined in the security policy
and describes the way they should work. This level aims at providing a
framework where proof of properties could be accomplished.

• Security mechanism: it describes the low level methods that are used to
enforce the rules formalized at the security model level.

2.2.1 Access control models

The most well-known access control models in the literature are : Identity
Based Access Control (IBAC) where the access to objects is based on the

26 Chapter 2. Technical background and related work

identity of the user, Mandatory Access Control (MAC) where access is based
on security levels assigned to both users and resources and Role Based Access
Control (RBAC) where authorizations are granted to roles instead of users.
Other more flexible models have been introduced such as Attribute Based
Access Control [Wang 2004] and Organization Based Access Control (Or-
BAC) [Cuppens 2003].

In the following we give more details on IBAC, MAC, RBAC and ABAC
models.

2.2.1.1 Identity-Based Access Control (IBAC)

In the IBAC model, the access to objects is based solely on the identity of the
subject and the rights specified for that identity on each object. In this model,
privileges can be passed from a subject to another, where an administrative
policy regulates grants and revocations of the privileges. The access control
matrix provides a basic framework for describing IBAC. It was first proposed
by Lampson [Lampson 1974] for resource protection within operation sys-
tems. In this model, authorizations are represented as a matrix |S| × |O|
where |S| is the set of subjects and |O| the set of objects. The matrix is
arranged as a two-dimensional array where each row is labeled by a subject
and each column labeled by an object. Each entry of the matrix specifies the
actions of the subject on the object. For instance, a matrix entry for s and
o which contains read, grants to s the right to read o. The drawback of the
access control matrix is that it will be enormous in size if used in large systems
and most of its cells are likely to be empty. In practical systems, there exists
multiple ways to implement the access control matrix. A popular approach is
using ACLs (Access Control List). An ACL is associated with an object and
consists of a number of entries defining the rights assigned to each subject
on that object. Another way to implement the access control matrix is the
C-List (Capability list) where each subject is associated with a list of objects
and the rights that the subject has on them.

2.2.1.2 Mandatory Access Control (MAC)

A different approach of controlling access to resources is the MAC model in
which access to resources is controlled based on the perspective attributes
of the subject and object. Such approach was motivated by the problem
of Trojan Horses which the DAC model suffers of. Unlike DAC where the
owner defines the access rights, in MAC accesses are centrally controlled. In
this model, mandatory policies govern access on the basis of subjects and

2.2. Access control 27

objects classifications. Each user and each object is assigned a security level.
The security level associated with the object reflects the sensitivity of the
information it contains. The security level associated with a user reflects the
user’s clearance. The MAC model is usually associated with the Bell-LaPadula
Model (BLP) [Bell 1973]. In the BLP model clearance and sensitivity levels
take values from the set of access classes.

Definition 2.2.1 (Access class) An access class consists of two compo-
nents : a security level and a category set. The security level is an element of
a totally ordered set of levels. The category set is a subset of an unordered set
specific to the application area.

The set of the access classes is partially ordered according to relation called
dominance relation.

Definition 2.2.2 (Dominance relation) Let L and C be the set of security
levels and categories respectively. Let ci = (Li, SCi) and ck = (Lk, SCk), with
Li, Lk ∈ L and SCi, SCk ⊆ C, be two access classes. We say that ci dominates
ck denoted by ci ≥ ck if the following holds :

• Li ≥ Lk the security level of ci is greater than or equal to the security
level of ck;

• SCi ⊇ SCk the category set of ci includes the category set of ck.

Access classes with the dominance relationship between them therefore form
a lattice [Denning 1976].

Figure 2.5: Security lattice example

28 Chapter 2. Technical background and related work

Example 2.2.3 Figure 2.5 shows an example of a security lattice. The
seurity levels are defined as follows {Top Secret (TS), Secret (S),
Confidential (C), Unclassified (U)} where TS > S > C > U. The cate-
gory set refers to the military application domain : {Army, Nuclear}.

In the context of flow control, the BLP model follows two principles that
are required to hold.

• no read-up : The subject clearance must dominate the object sensitivity
level, in other words a subject s with an access class cs can read an object
with an access class co if cs ≥ co.

• no write-down : The subject clearance must be dominated by the object
sensitivity level, i.e. a subject s with an access class cs can write an
object with an access class co if co ≥ cs.

Satisfaction of these principles prevents information flows from high levels to
low levels.

2.2.1.3 Role-Based Access Control (RBAC)

The principle purpose of RBAC is to specify and enforce enterprise-specific
security policies in a way that maps naturally to an organization’s structure.
Moreover, RBAC facilitates security administration by granting authoriza-
tions to roles instead of individual users. Role based policies regulate users’
access to the information on the basis of the activities the users execute in
the system. A role can be defined as a set of actions and responsibilities as-
sociated with a particular work activity. Access authorizations on objects are
specified for roles and a user playing a role is allowed to execute all accesses
assigned to this role. A user can have multiple roles and similarly a role can
be granted to different users. Some RBAC approaches allow users to exercise

Figure 2.6: RBAC architecture

2.2. Access control 29

multiple roles at the same time, in addition other approaches limit the user to
use one role only at a time. The concept of grouping privileges was initially
proposed by [Baldwin 1990], and different types of RBAC models have been
proposed in the literature [Ferraiolo 2001], [Sandhu 1996].

Figure 2.6 illustrates the basic concepts of standard RBAC which is defined
by a set of users U , a set of roles R and a set of permissions P . A permission is
an approval of a particular mode of access to one or more objects in the system.
Users are associated with roles using relation UA. Similarly, permissions are
associated with roles by relation PA. Users activate sessions to interact with
RBAC system. A session is a mapping of one user to possibly many activated
roles. The activated roles determine which permissions are available to the
user at a given time during the session. Administration has been further
reduced by the use of roles hierarchy to allow the propagation of access control
privileges. Role hierarchies are a natural means for structuring roles to reflect
an organization’s lines of authority and responsibility [Sandhu 2000]. The
hierarchy is defined as a partial order relation wRH on R. A role inherits
all permissions of less-powerful (junior) roles which avoids the need to assign
these permissions explicitly. This reduces the administration overhead, but on
the other hand increases the enforcement overhead because the permissions
of the junior roles need to be considered in the decision computation. In this
case a user is authorized for permission p if there exist roles r and r′ such that
(u, r) ∈ UA, r wRH r′ and (p, r′) ∈ PA.

2.2.1.4 Attribute Based Access Control (ABAC)

Whereas traditional access control systems were based on the identity of the
requester or through predefined attribute types such as roles or groups as-
signed to that requester, in open environments such as the Internet, this ap-
proach is not effective because often the requester and the resource belong to

Figure 2.7: XACML Architecture

30 Chapter 2. Technical background and related work

different domains.

It has also been noted that the requester qualifiers of identity, groups,
and roles are often insufficient in the expression of real-world access control
policies. An alternative is to grant or deny user requests based on arbitrary
attributes of the user and arbitrary attributes of the object, and environment
conditions that may be globally recognized and more relanevant to the policies
at hand. This approach is often referred to as ABAC. The main advantage
of ABAC is enabling object owners or administrators to apply access control
policy without prior knowledge of the specific subject and for an unlimited
number of subjects that might require access. One example of an access
control framework that is consistent with ABAC is the Extensible Access
Control Markup Language (XACML) [Ramli 2011]. XACML architecture
consists of several logical components (see Figure 2.7).

First of all, a reference monitor concept is used to intercept access requests.
This component is called a Policy Enforcement Point (PEP). Access requests
are transmitted from the PEP to a Policy Decision Point (PDP) for retrieval
and evaluation of applicable policies. Policies are specified and stored in Policy
Administration Point (PAP). The PDP gets the attributes of subjects, objects,
and the environment from the Policy Information Points (PIP). The XACML
policy language is based on three main elements: PolicySet, Policy, and Rule.
A PolicySet is a set of single policies or another PolicySet. Policies are sets

<Request >

<Subject >

<Attribute AttributeId=":1.0 :subject:subject -id">

alice

</Attribute >

<Attribute AttributeId=":subject:role" DataType="http://www.w3.org /2001/

XMLSchema#string">

<AttributeValue >

nurse

</AttributeValue >

</Attribute >

</Subject >

<Resource >

<Attribute AttributeId=":resource:resource -id"

DataType="http: //www.w3.org /2001/ XMLSchema#string">

<AttributeValue >

record1

</AttributeValue >

</Attribute >

</Resource >

<Action >

<AnyAction />

</Action >

</Request >

Figure 2.8: XACML Request example

2.2. Access control 31

<Policy PolicyId="policy_patients" RuleCombiningAlgId=":rule -combining -

algorithm:deny -overrides">

<Description >Policy for the cancerous patients </Description >

<Target >

<Resources >

<Resource >

<ResourceMatch MatchId=":function:string -equal">

<AttributeValue DataType="http://www.w3.org /2001/ XMLSchema#string">

record1

</AttributeValue >

<ResourceAttributeDesignator >

:resource:resource -id

</ResourceAttributeDesignator >

</ResourceMatch >

</Resource >

</Resources >

</Target >

<Rule RuleId="permit_to_nurses" Effect="Permit">

<Description >Permit access from nurses </Description >

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId=":function:string -equal">

<AttributeValue DataType="http://www.w3.org /2001/ XMLSchema#string

">

nurse

</AttributeValue >

<SubjectAttributeDesignator

DataType="http: //www.w3.org /2001/ XMLSchema#string">

:subject:role

</SubjectAttributeDesignator >

</SubjectMatch >

</Subject >

</Subjects >

</Target >

</Rule>

</Policy >

Figure 2.9: XACML policy example

of single Rules which have a Condition, an Effect, and a Target. To find the
relevant policy for an access control request, every PolicySet, Policy, and rule
has a Target, which is evaluated at the access request time. A Target consists
in a specification of sets of subjects, objects, operations, and environment
using their respective attributes which can be evaluated with match functions.
Conditions can be used beyond the Target to further specify the applicability
of a Rule using predicates, while Effects denote the result of a Rule, e.g.
permit or deny.

Example 2.2.4 Figure 2.8 shows an example of a XACML request, from the
subject alice who is a nurse, requesting access to record1. Figure 2.9 is an
example of a policy targeting record1. The policy contains one rule which
permits access to nurses. Hence alice request will return permit.

32 Chapter 2. Technical background and related work

When the relevant Policies and Rules are found, they are evaluated indepen-
dently of each other; contradicting evaluation results can be resolved using
policy combining algorithms which apply conflict resolution strategies. For
instance, the policy of Figure 2.9 resolves conflicts with deny-overrides algo-
rithm. In the next section we describe the conflict resolution and we give
details about the strategies known in the literature.

2.2.2 Conflict resolution

Negative authorizations have been introduced by [Bertino 1997] to extend
the System R access control model by the possibility of specifying explicit
denials. This feature enables adding of exceptions in existing permissions. An
access control model that supports positive and negative authorizations has a
sign (effect) field in permission tuple.

Definition 2.2.5 (Authorization tuple) From a conceptual point of view,
an authorization is defined by the tuple 〈subject; sign; access right; object〉.
The sign is either positive or negative, and determines whether the subject
can perform the access right on the object.

Traditionally, positive and negative authorizations have been used in mutual
exclusion using a default policy that determines the sign of a permission cor-
responding to two classical approaches namely: [Samarati 2001]:

• Closed Policy : denies all accesses, unless a corresponding positive au-
thorization permits it.

• Open Policy : a policy where accesses are by default allowed, and denied
if there exists an explicit negative authorization.

The open policy has usually found application in those scenarios where the
need for protection is not strong and by default access is to be granted. The
closed policy is the mostly adopted where denying access by default ensures
better protection. In the recent access control models, negative and positive
authorizations are combined to handle exceptions, giving rise to other issues,
namely:

• Completeness : how to treat objects which have no defined authoriza-
tion?

2.3. Access control for RDF data 33

• Consistency : how to treat objects which are both allowed and denied
at the same time?

In order to achieve completeness, one has only to define the above-cited
default policy. Consistency is more complex and it is achieved by defining a
Conflict Resolution Strategy. Conflict resolution consists in choosing one of the
conflicting authorizations to make a final access decision. Below are examples
of known conflict resolution strategies in the access control literature.

• Denials Take Precedence (DTP): in this case, negative authorizations are
always adopted when a conflict occurs. In other words the principle says
that if we have one reason to authorize an access and another to deny
it then we deny it.

• Permissions Take Precedence (PTP): in this case, positive authorizations
are always adopted when a conflict occurs. In other words the principle
says that if we have one reason to authorize an access and another to
deny it then we authorize it.

• First Applicable (FA):in this case, the first applicable authorization in
order of presentation is picked.

• Most Specific Takes Precedence (MSTP): in this case it is supposed that
subjects or objects are hierarchically related. The most specific autho-
rization w.r.t. the hierarchical relation should be the one that prevails.

A strategy may not achieve consistency such as with MSTP where a par-
tial order is supposed to exist between authorizations. The conflict may still
remain if the conflicting authorizations are incomparable. Since conflict reso-
lution strategies are not mutually exclusive, one can decide to combine strate-
gies together to achieve a more effective conflict resolution. Thus a strategy
chain can be constructed to solve the issue. For instance, one can decide to
try solving conflicts with the MSTP first, and apply the DTP principle on the
remaining conflicts (i.e. conflicting authorizations that are not hierarchically
related).

2.3 Access control for RDF data

The importance of confidentiality problems have been recognized for long. As
such, access control models for different data models data have been proposed.
RDF graphs can be written in a standard XML format, but there can be

34 Chapter 2. Technical background and related work

many different syntactical expressions that denote the same graph. Thus
access control models for XML are quite difficult to transpose, if feasible,
when applied to RDF graphs [Jain 2006]. The Datalog model extends the
relational one with deductive rules, thus one may devise a transformation
that encodes graphs and rules into a Datalog program that uses a unique 3-
ary relation symbol for triples [Polleres 2007], and then rely on access control
mechanisms for deductive databases, such as the one by Barker [Barker 2002].
Unfortunately, it seems that problems that arise when dealing with RDF data
have not received much attention from the database community. We argue
this because RDF is thought to be openly used between independent web
sources, with shared or even standardized inference rules. In contrast, the
Datalog model is more centralized, with rules and data under the control of
a single authority. Several access control models related to RDF data have
been proposed:

• Abel et al. [Abel 2007] propose a query rewriting mechanism to enforce
authorizations. Their framework evaluates the applicable policies and
expands the query depending on the result of the evaluation. The mod-
ified query is then sent to the RDF store which executes it like a usual
RDF query. The authors used a specific language to define their policies.

• Flouris et al. [Flouris 2010] propose an annotation based access control
language with its formal semantics for fine-grained authorizations on
RDF data. In their proposal, authors propose to enforce their policy.
The triples are specifically annotated as accessible or not accessible using
access control permissions.

• Costabello et al. [Costabello 2012] propose a context-aware access con-
trol model. The authors present an ontology based on existing vocab-
ularies and relies on SPARQL ASK queries to determine whether the
requester has the necessary attributes to access the resource. They use
context information to rewrite the user SPARQL query which is exe-
cuted over the accessible named graphs only.

• Reddivari et al. [Reddivari 2005] propose an access control language for
RDF stores that considers update operations. They use meta-rules to
define conflict resolution strategies and default policies. They propose
a query-time approach, where each triple in the user query result is
checked whether it is accessible or not.

• Lopes et al. [Lopes 2012] propose an annotation approach using an ex-
tended version of RDF called Annotated RDF [Udrea 2010]. They pro-
pose an access control annotation domain where each triple is anno-
tated with a label and labels are propagated through inference rules.

2.3. Access control for RDF data 35

The annotated triples are queried using an extended SPARQL language
AnQL [Lopes 2010].

• Papakonstantinou et al. [Papakonstantinou 2012] propose a flexible
model that defines the access label of a triple as an algebraic expres-
sion. Their model assigns abstract labels to RDF triples and computes
the access decision using abstract operators that encode inference and
propagation. Their main contribution is the efficient handling of updates
by easy determination of the labels that are affected by these updates.
When a triple is assigned different tokens, they use a conflict resolu-
tion operator which returns one concrete token that represents the final
decision.

• Jain et al. [Jain 2006] propose a label-based model to control access to
RDF data. Security labels are assigned to graph patterns. The patterns
are mapped to the triples to determine their security classifications.
They propose an algorithm that detects unauthorized inferences where
higher security triples may be inferred from lower security triples.

2.3.1 Comparison of related works

In order to study the works related to the domain of controlling access to RDF
data, we defined a set of comparison criteria. The study summary is shown
in Table 2.2. In the following, we give the details about the criteria and the
results of the study.

Authorization object An important aspect of access control models is
their granularity with respect to the protected objects. Most of the works de-
fine authorizations over graph patterns to ease administration. [Jain 2006] and
[Reddivari 2005] define their authorizations over simple Triple Patterns which
does not allow the specification of expressive policies. For instance an autho-
rization such as Deny access to patients records if they have cancer cannot
be specified. [Flouris 2010], [Abel 2007] and [Papakonstantinou 2012] models
are more expressive by using BGPs in their authorizations. [Costabello 2012]
authorizations are coarse-grained as they are defined over Named Graphs.

Triples protection The purpose of this part of study is to check whether
the proposed models consider the implicit triples or only explicit ones. As
the semantics of an RDF graph are given by its closure, it is important for
an access control model to take into account the implicit knowledge held by

3
6

C
h
a
p
te

r
2
.

T
e
ch

n
ica

l
b
a
ck

g
ro

u
n
d

a
n

d
re

la
te

d
w

o
rk

Table 2.2: Comparison of the approaches

Approaches
Criteria Farkas Reddivari Flouris Abel Costabello Lopes Papakonstantinou

Authorization
object

Triple Pattern · · · · - ·
BGP · · - ·

Named Graph · -

Triples
protection

Explicit · · · · · · ·
Implicit · · · ·

Considered
rules

RDFS · · · ·
User defined ·

Inference leakage detection ·
Default
policy

Open · · - - ·
Closed · · · · - - ·

Conflict
resolution

PTP · · · ·
DTP · · · · · ·

Language
semantics

Syntax · · · · · ·
Semantics · · · · ·

Subject
specification

Not specified · · ·
Attributes · · · ·

Actions
Read · · · · ·

CRUD · ·
Query

language

SPARQL · · · · · ·
SeRQL · · ·
RDQL · ·

Enforcement
approach

pre-processing · ·
post-processing ·

annotation-based · · · ·

2.3. Access control for RDF data 37

this graph. In the Semantic Web context, the policy authorizations deny or
allow access to triples whether they are implicit or not. In [Reddivari 2005]
model, the implicit triples are checked at query time. Inference is computed
during every query evaluation, and if one of the triples in the query result
could be inferred from a denied triple, then it is not added to the result.
In the [Jain 2006] label-based model the implicit triples are automatically
labeled on the basis of the labels assigned to the triples used for inference.
[Lopes 2012] propose an approach inspired from provenance where each triple
is annotated with a label and labels are propagated through inference rules
to the implicit triples. [Papakonstantinou 2012] propose a flexible model that
defines the access label of a triple as an algebraic expression (abstract tokens).
The labels are propagated to the implicit triples through the inference rules.
[Flouris 2010], [Abel 2007] and [Costabello 2012] consider explicit triples only.

Considered inference rules In this part of study, we examined the pro-
posed models with respect to the supported inference rules. All the ana-
lyzed works that consider inference, support the RDFS rules only except
[Lopes 2012], who extend inference rules with labels in order to propagate
them to implicit triples. Their model allows to specify a custom rules in order
to provide application specific inferencing.

Inference leakage detection As specified earlier, the inference leakage
problem arises when denied triples are inferred from the accessible ones.
[Jain 2006] was the only work that considered the inference leakage problem.
They proposed an algorithm that detects unauthorized inferences by checking
if triples with high security label, may be inferred from lower security triples.

Default policy As described in Section 2.2.2, a Default Policy is used to
achieve completeness of the access control model. The Default Policy in the
models proposed by [Jain 2006] and [Abel 2007] is hard-coded, whereas in
the [Reddivari 2005], [Flouris 2010] and [Papakonstantinou 2012] models, it
can be specified by administrators. [Costabello 2012] and [Lopes 2012] do not
mention how they treat the triples without defined authorizations.

Conflict resolution Conflict resolution strategies allow us to remove in-
consistencies that may occur when multiple authorizations with different
effects are applicable to the same triples. In the model of [Jain 2006] a
partial order is defined between security labels, and when more than one
pattern maps to the same triple, the most restrictive or the lowest upper

38 Chapter 2. Technical background and related work

bound takes precedence. Unfortunately, their conflict resolution is hard-coded.
[Costabello 2012] and [Lopes 2012] resolve conflicts by hard-coding the DTP

strategy, whereas [Reddivari 2005] and [Flouris 2010] models allow the spec-
ification of PTP or DTP strategies only. [Papakonstantinou 2012] define the
strategies at an abstract level which is mapped to concrete strategies such as
DTP or PTP.

Language semantics Access control models use policy languages to de-
fine which objects are accessible and which are not. Only [Jain 2006],
[Costabello 2012] and [Flouris 2010] gave the formal semantics of their lan-
guage.

Subject specification Information about the subject is used by the access
control system to determine its accessible objects. It can be based on simple
credentials such as user name and password, or on context information and
attributes. [Costabello 2012], [Abel 2007], [Reddivari 2005] and [Lopes 2012]
use attribute-based approach to determine the accessible triples of the re-
quester, whereas [Papakonstantinou 2012] and [Jain 2006], [Flouris 2010] did
not consider subject specification.

Actions The purpose of access control mechanisms is to check whether or
not the subject has the authorization to perform the action on the data. The
actions that can be performed on RDF data are Create, Read, Update and
Delete (CRUD). Since version 1.1, updates are supported in SPARQL by
the use of keywords : insert, modify and delete. The model proposed by
[Reddivari 2005] supports RDF updates. They consider insertion by defining
the three actions, namely, insert for adding a triple, insertModel for adding
an implicit triple and insertSet for adding a set of triples. Regarding triples
deletion, they defined three actions, namely remove for removing a triple,
removeModel for removing an implicit triple and removeSet for removing a set
of triples. [Costabello 2012] also consider RDF updates using SPARQL 1.1
update language.

Query language In this part of study we examined the different works
with respect to the supported query languages. [Lopes 2012] demonstrate
how AnQL [Lopes 2010] an extension of the SPARQL query language can
be used to enforce access control, by rewriting using the requesters creden-
tials to rewrite a SPARQL query to an AnQL query. [Costabello 2012] ex-
press access conditions as SPARQL ASK queries in order to determine the

2.3. Access control for RDF data 39

authorized named graphs of the user querying the SPARQL endpoint. Be-
sides SPARQL, [Flouris 2010] and [Abel 2007] support SeRQL query language
whereas [Reddivari 2005] supports RDQL only.

Enforcement approach In this part of study, we examined the different
works with respect to the used enforcement approach. The latter can be
pre-processing, post-processing, or annotation based.

• The pre-processing approaches enforce the policy before evaluating the
query. For instance, the query rewriting technique consists in reformu-
lating the user query using the access control policy. The new reformu-
lated query is then evaluated over the original data source returning the
accessible data only. This technique was used by [Costabello 2012] and
[Abel 2007] where the user query is rewritten with respect to the policy,
and then evaluating the expanded query on the original dataset.

• In the post-processing approaches, the query is evaluated over the orig-
inal data source. The result of the query is then filtered using the
access control policy to return the accessible data. [Reddivari 2005] use
a post-processing approach by evaluating the query over the original
graph, filtering the triples in the query result and then returning the
authorized triples to the requester.

• The rest of the works use annotation approach to enforce their mod-
els. In this case, every triple is annotated with access control infor-
mation. During query evaluation, only the triples annotated with a
permit access are returned to the user. In the label-based model pro-
posed by [Jain 2006], each triple is annotated with a label that rep-
resents its security classification. [Flouris 2010] annotate each triple
with a boolean stating whether it is accessible or not. [Lopes 2012] an-
notate the triples with non-recursive Datalog with negation programs
which evaluation decision defines whether the triple is accessible or not.
[Papakonstantinou 2012] annotate the triples with abstract labels that
encode inference and propagation of labels along the RDFS inference
rules. To evaluate the label, each application provides its own concrete
policy and semantics which allows the application to decide whether a
triple is accessible or not.

40 Chapter 2. Technical background and related work

2.4 Study summary

Regarding the protection of implicit triples, we mentioned that the prop-
agation techniques assign automatically an accessibility label to the implicit
triples on the basis of the triples used to infer them. Hence if one of the triples
used for inference is denied, then the inferred triple is also denied even if it is
explicitly authorized. This goes against the intuition that implicit triples are
part of the knowledge held by the graph, hence they must be regarded as the
explicit triples and not depend on the triples used to infer them. We illustrate
with the following example.

Example 2.4.1 Let us consider the graph G0 of Figure 2.2. Suppose we
want to protect G0 by applying the policy P ={deny access to triples hav-
ing :breastTumor property, allow access to all resources which are in-
stance of :Patient}. If we apply the inference rules RDom and RSc2 we
get Cl{RDom,RSc2}(G0) = G0 ∪ {it1, it3}. With the propagation approaches
which consider inference [Lopes 2012, Papakonstantinou 2012], the triple it3
=(:alice ; rdf :type ; :Patient)} will be denied since it is inferred from de-
nied triples (et4). Hence the fact that alice is a patient will not be returned in
the result even though the policy clearly allows access to it.

Another problem which the propagation techniques suffer from, is the infer-
ence leakage. In fact, even some implicit triples are labeled as denied by the
policy, they could be inferred from triples labeled as accessible. To illustrate,
consider the following example.

Example 2.4.2 We want to protect the graph G0 of Figure 2.2 in presence
of RDom inference rule, using the policy P ={allow access to triples having
:breastTumor property, deny access to all resources which are instance of
:Cancerous}. As the closure of the graph Cl{RDom}(G0) = G0 ∪ {it1}, there
is one implicit triple i.e. it1. With the propagation techniques which consider
inference [Lopes 2012, Papakonstantinou 2012, Jain 2006], it1 will be assigned
two labels, a deny label from the policy and a permit label inherited from the
premises et1 and et4. After resolving conflicts, it1 will be denied and will
not be returned to the requester, whereas et1 and et4 will be. Using a local
reasoner, the requester could apply RDom on et1 and et4 to infer it1, hence
an information leakage through inference. Note that even [Reddivari 2005]
query-time approach suffer from the inference leakage problem.

The propagation approaches that consider the inference leakage problem such
as [Jain 2006], propose solutions after the labeling operation. In fact, they
check the labeled graph to detect information leakage.

2.4. Study summary 41

Regarding the conflict resolution, it is clear that different approaches can
be taken to deal with positive and negative authorizations. Hard-coding the
conflict resolution strategy makes the access control model less expressive.
Moreover, even giving the choice to the administrator over pre-defined strate-
gies would not make the model more expressive. Indeed, there are always
situations where the pre-defined strategies do not fit.

As regards the supported query languages, the approaches that are based
on query rewriting techniques support one or a limited number of languages.

Concerning policy enforcement, the pre-processing approaches such as
query rewriting, are tied to the used query language. Changing the query
language would lead to an update of the policy enforcer. Furthermore, the
execution of a the reformulated query can be computationally expensive de-
pending on the number of triple patterns in the query and size of the triple
store. For instance, [Abel 2007], rewrite SeRQL queries using path expres-
sions found in the body of the user’s applicable policies, combined with ”OR”
keyword. A query with a triple pattern ?s ?p ?o will be reformulated to a
query that may be computationally expensive since it combines all the possi-
ble policies which leads to a long path expression. Moreover, not all the user
queries can be handled. More complex queries such as path queries are not
supported.
In the post-processing approaches, policies conditions are usually not based
on the data content but on the subject attributes [Reddivari 2005]. The query
is evaluated on the RDF store, and the policies are checked afterward on the
result triples. The query answer time may be considerably too large. As an
example, suppose an unauthorized user submits a query asking for all avail-
able triples in the store. A post-processing approach would retrieve all the
triples first and then filter them all out.

The data annotation approaches that use custom language such
as [Lopes 2012], rewrite the user query to include annotations based on the
access control policy. The query that contains annotations is then evaluated
over an extension of RDF that supports annotations. Similarly to the rewrit-
ing technique, these approaches are tied to the query language. Moreover,
additional mechanisms are needed in the RDF store to support custom lan-
guages and extended RDF models. Other approaches use the graph name
position to store a boolean representing the access decision [Flouris 2010].
Which means that for each triple, all the user profiles decisions must be com-
puted and stored at the design time. Moreover, this kind of approaches does
not support incremental re-computation of annotations, as the latter do not
store any information about the policy.

42 Chapter 2. Technical background and related work

2.5 Filling the gaps

Our formal approach and its concrete enforcement are driven by the following
key requirements: expressiveness, modularity, applicability, verifiability, and
performance.

• Expressiveness : We propose in Chapter 3 the syntax and semantics of
an expressive fine-grained access control model for RDF. In our model,
authorizations are defined using SPARQL BGPs, which allows the def-
inition of fine-grained policies. Moreover, instead of hardcoding the
conflict resolution strategy or selecting one from predefined strategies,
we proposed a more liberal approach. Indeed, abstracting the conflict
resolution function allows the administrator to define not only the classi-
cal conflict resolution strategies but also custom strategies, which makes
our model more expressive.

• Modularity : Our model semantics are defined by means of positive sub-
graph which relies on the access control policy and the base graph, with-
out reference to a concrete query language such as SPARQL, in contrast
to models driven by query rewriting. In our model, the supported set of
inference rules is not be limited to RDFS rules. User defined rules can
be used as well. Indeed, to cope with inference, it suffices to replace the
base graph G by its closure Cl(G) according to a set of inference rules.
This makes our model independent from the entailment engine as well.
Moreover the implicit triples are considered as the explicit ones and do
not depend on the triples used to infer them. In our model, the entity
to which the authorizations are granted or denied is left implicit. The
upstream mapping from requesters to authorizations may use any model
from the literature. In Chapter 5 we propose a XACML-inspired policy
language that allows the definition of subject attribute-based policies.

• Verifiability : In Chapter 4, we formally characterize the issue that arises
when inference rules produce facts which would have been forbidden
otherwise. This issue occurs when the positive subset of a closed graph
is not, itself, closed. We show that it can be statically checked, without
knowledge of the base graph G, whether a policy is consistent w.r.t. a
set of inference rules.

• Applicability : Our model is defined with triple-based authorizations
which are both natural for SPARQL knowledgeable administrators and
are naturally converted to efficient SPARQL CONSTRUCT queries to be
run on the store. In Chapter 3, we show that our policies can capture
quite complex access control requirements with exceptions that occur

2.5. Filling the gaps 43

in real-life scenarios. We propose in Chapter 6 a data-annotation-based
enforcement approach to our model and we show that no additional
mechanisms are needed to apply our enforcement.

• Performance: We focus our attention on search queries on graphs. We
show in Chapter 6 that our implementation incurs reasonable overhead
at runtime (about +50%) with respect to the optimal solution which
consists in materializing the user’s accessible subgraph. We show that
the query evaluation overhead is independent from the size of the base
graph and the number of policy authorizations.

Chapter 3

A fine-grained access control
model for RDF stores

Contents
3.1 Authorization policy 46

3.1.1 Authorization semantics 46

3.1.2 Policy and conflict resolution function 49

3.1.3 Conflict resolution strategies semantics 52

3.2 Building Policies . 53

3.2.1 Default Strategy . 53

3.2.2 First Applicable strategy 55

3.2.3 Precedence Strategies 57

3.2.4 Most Specific Takes Precedence (MSTP) 59

3.3 Conclusion . 64

B In this chapter, we define an access control model for RDF called AC4RDF

(Access Control For the Resource Description Framework), that uses the in-
gredients from Section 2.1 (P. 14). First, we define atomic authorizations
and policies, then we give their formal semantics. Conflict resolution strate-
gies are used to resolve such conflicts by selecting the preferred authorizations
to apply, with respect to some properties of the authorizations. Whereas most
of the works hard-code their strategies, others define them as parameters that
are fixed by the administrator during policy design. We propose a more liberal
approach by defining our policy using an abstract conflict resolution function
ch which is defined by the administrator. We present three conditions that
must be respected by the authorization policy to be well-formed. In Section 3.2
we give examples of how to build ch to apply simple strategies such as DTP.
Moreover, we show how to build more elaborate strategies such as MSTP to
handle exceptions. C

46 Chapter 3. A fine-grained access control model for RDF stores

3.1 Authorization policy

An authorization policy is an encoding of the control requirements of a ap-
plication using the authorization language that is understood by the PDP.
An authorization is defined as a tuple made of an effect, some resource def-
inition and a condition. The resources under consideration are triples from
the RDF graph being accessed by the requester. These triples are selected by
means of triple patterns. The conditions are graph patterns that tell when
the authorization is applicable. The effect is a boolean value denoting giving
or forbidding action to the selected resources.

In this chapter, we assume that the PDP knows what are the authoriza-
tions applicable to a given authenticated requester. The entity to which au-
thorizations are granted or denied is left implicit. The upstream mapping
from requesters to authorizations may use any model from the literature, for
instance using users’ identifiers, groups, roles or set of attributes. In other
words, we assume that the PDP is able to produce a set of authorizations in
our formalism for each requester. Moreover, we restrict ourselves to the read
action on RDF graphs. Regarding upstream policy definitions, we propose in
Chapter 5 an attribute based high level language that allows to define global
policies. When a user requests access, her/his policy is enforced by AC4RDF.

3.1.1 Authorization semantics

We define authorizations using basic SPARQL constructions, namely basic
graph patterns, in order to facilitate the administration of access control and
to include homogeneously authorizations into concrete RDF stores without
additional query mechanisms.

Definition 3.1.1 (Authorization) Let Eff = {+, –} be the set of applicable
effects. Formally, an authorization a = (e, h, b) is a element of Auth =
Eff × TP × BGP. The component e is called the effect of the authorization
a, h and b are called its head and body respectively. We use the function
effect : Auth→Eff (resp., head : Auth→TP, body : Auth→BGP) to denote the
first (resp., second, third) projection function. We call hb(a) = {head(a)} ∪
body(a) the underlying graph pattern of the authorization a.

We use the concrete syntax “GRANT/DENY h WHERE b” to represent an
authorization a = (e, h, b). We use the GRANT keyword when e = + and the
DENY keyword when e = –. Condition WHERE ∅ is elided when b is empty.

3.1. Authorization policy 47

Example 3.1.2 Consider the set of authorizations shown in Table. 3.1. Au-
thorization a1 grants access to triples with predicate :hasTumor. Authoriza-
tion a2 states that all triples of type :Cancerous are denied. Authorizations
a3 and a4 state that triples with predicate :service and :treats respectively
are permitted. Authorization a5 states that triples about admission to the on-
cology service are specifically denied, whereas the authorization a6 states that
such information are allowed in the general case. a7 grants access to prop-
erties domain and a8 denies access to any triple which object is :Cancerous.
Finally, authorization a9 denies access to any triple, it is meant to be a default
authorization.

Given an authorization a ∈ Auth and a graph G, we say that a is applicable to
a triple t ∈ G if there exists a substitution θ such that the head of a is mapped
to t and all the conditions expressed in the body of a are satisfied as well. In
other words, we evaluate the underlying graph pattern hb(a) = {head(a)} ∪
body(a) against G and we apply all the answers of Jhb(a)KG to head(a) in
order to know which t ∈ G the authorization a applies to. In a concrete
system, this evaluation step would be computed using the mechanisms used
to evaluate SPARQL queries. In fact, given an authorization a, the latter
is translated to a SPARQL query which is evaluated over G. The result
represents the triples over which a is applicable.

Definition 3.1.3 (Applicable Authorizations) Given a finite set of au-
thorizations A ∈ P(Auth) and a graph G ∈ BGP, the function ar assigns to
each triple t ∈ G, the subset of applicable authorizations from A :

ar(G,A)(t) = {a ∈ A | ∃θ ∈ Jhb(a)KG.t = (head(a))θ}

Table 3.1: Example of authorizations

a1 = GRANT(?p ; :hasTumor ; ?t)
a2 = DENY (?p ; rdf :type ; :Cancerous)
a3 = GRANT(?d ; :service ; ?s)
a4 = GRANT(?d ; :treats ; ?p)
a5 = DENY (?p ; :admitted ; ?s)

WHERE {(?s ; rdf :type ; :Oncology)}
a6 = GRANT(?p ; :admitted ; ?s)
a7 = GRANT(?p ; rdfs :domain ; ?s)
a8 = DENY (?s ; ?p ; :Cancerous)
a9 = DENY (?s ; ?p ; ?o)

48 Chapter 3. A fine-grained access control model for RDF stores

Figure 3.1: Authorizations applicable to it2

Example 3.1.4 Consider the graph Cl(G0) shown in Figure 2.4 (P. 23) and
the set of authorizations A shown in Table 3.1. The applicable authorizations
on triple it2 are computed as follows : ar(Cl(G0),A)(it2) = {a5,a6,a9}.
The mappings from hb(a5), hb(a6) and hb(a9) to Cl(G0) are illustrated by
Figure 3.1.

The scope of an authorization over a given graph G is the set of triples
in G to which the authorization is applicable. The scope is computed by the
evaluation of the BGPs forming the authorization (see Definition 2.1.8 (P. 19)).
Please note that the fragment defined in Definition 3.1.1 is basically used to
define our access control model, and it is not meant to replace the generic
SPARQL query language on RDF stores, as our approach is independent from
the query language.

Definition 3.1.5 (Authorization scope) Given a graph G ∈ BGP and an
authorization a ∈ Auth, the scope of a on G is defined by the following
function scope ∈ BGP× Auth→BGP:

scope(G)(a) = {t ∈ G | ∃θ ∈ Jhb(a)KG.t = (head(a))θ}

Example 3.1.6 Consider authorization a8 in Table 3.1, and the graph
Cl(G0) in Figure 2.4 (P. 23). The scope of a8 is computed as follows :
scope(a8) = {et1, it1}.

3.1. Authorization policy 49

3.1.2 Policy and conflict resolution function

As exemplified above, there may exist some t such that the set ar(G,A)(t) is
not a singleton authorization, which can lead to policy inconsistency. When
several authorizations with different effects are applicable, one has to specify
a conflict resolution strategy that defines which of the effects has to be se-
lected. Also note that there may exist a triple for which the set of applicable
authorizations is empty which leads to policy incompleteness. The solution
to ensure that the decision function is total, is to specify a default decision.

To prevent us from defining many extra parameters, arbitrarily fixing some
conflict resolution strategies or running into considerations on conflict reso-
lutions, we abstract from the details of the concrete resolution strategies by
assuming that there exists a choice function that, given a finite set of possibly
conflicting authorizations, picks a unique one out. This design choice as well
as the issues related to the modeling of classical conflict resolution strategies
are discussed in Section 3.2.

Definition 3.1.7 (Policy, Conflict Resolution Function) An (au-
thorization) policy P is a pair P = (A, ch), satisfying the following
well-formedness conditions, where A is a finite set of authorizations and
ch ∈ P(A) \ {∅}→A is a conflict resolution function:

• Totality: ∀G ∈ BGP.∀t ∈ G. ar(G,A)(t) 6= ∅

• Closedness: ∀A′ ⊆ A.A′ 6= ∅ ⇒ ch(A′) ∈ A′

• Monotony: ∀B ⊆ A,B 6= ∅. ch(B) = a ⇒ (∀B′ ⊆ B. a ∈ B′ ⇒
ch(B′) = a)

The subset of P(Auth) × (P(Auth)→Auth) that satisfies the above well-
formedness conditions is denoted by Pol.

The well-formedness conditions are properties which ensure that the con-
flict resolution functions behave well when applied to set of authorizations.
The Totality property avoids a corner case. We explain in Section 3.2 how
to enforce default decisions that ensure this property. The Closedness prop-
erty guarantees that the selected authorization is taken from the input. The
Monotony property is more technical but it captures an intuitive requirement
that is: the conflict resolution function makes consistent choices, which means
its answer is kept the same when lesser choices are available.

50 Chapter 3. A fine-grained access control model for RDF stores

Figure 3.2: Evaluation strategy for policies

Example 3.1.8 An example policy is P = (A, ch) where A is the set of
authorizations in Table 3.1 and ch is defined as follows. For all non-empty
subset B of A, ch(B) is the first authorization (using syntactical order of
Table 3.1) of A that appears in B. Totality stems from a9, as it is applicable
to any triple. Closedness and Monotony directly stem from the definition of
ch.

We are ready to give semantics of policies by composing the functions ar,
ch and then effect in order to compute the authorized subgraph of a given
graph.

Definition 3.1.9 (Policy Evaluation, Positive Subgraph) Given a pol-
icy P = (A, ch) ∈ Pol and a graph G ∈ BGP, the set of authorized triples that
constitutes the positive subgraph of G according to P is defined as follows,
writing G+ when P is clear from the context:

G+
P = {t ∈ G | (effect ◦ ch ◦ ar(G,A))(t) = +}

As illustrated by Figure 3.2, to construct the positive subgraph, the first
step consists in computing the closure of the base graph, then assigning each
triple of the result with its applicable authorizations. The next step consists
in applying ch on the applicable authorizations and assigning every triple with
the decision of the chosen authorization. The last step consists in generating
the positive subgraph which contains the triples assigned with positive effect.
Algorithm 1 allows the computation of the positive subgraph, given a policy,
a set of inference rules and a base graph.

Example 3.1.10 Let us consider the policy P = (A, ch) defined in Exam-
ple 3.1.8 and the graph G0 of Figure 2.2 (P. 16). The first step consists in com-
puting the closure of the base graph, in this case, Cl(G0) shown in Figure 2.4
(P. 23). The next steps of computing every triple decision are illustrated by
columns of Table 3.2. Regarding the triple it2 = (:alice ; :admitted ; :onc),
ar(Cl(G0),A)(it2) = {a5,a6,a9}. Since a5 is the first among authoriza-
tion in Table 3.1 and its effect is –, we deduce that it2 6∈ Cl(G0)

+
P . By

3.1. Authorization policy 51

Algorithm 1 Algorithm for constructing positive sugbraph

Input: a base graph G ∈ BGP , an authorization policy P = (A, ch), a set
of inference rules R.

Output: a positive subgraph G+
P .

1: function getGpos(G, P , R)
2: Let G+

P ← ∅
3: for all t ∈ ClR(G) do
4: Let ar← ∅
5: for all a ∈ A do
6: if ∃θ s.t. t = head(a) then
7: let B = head(a)θ ∪ hb(a)θ
8: if JBKClR(G) 6= ∅ then
9: ar ← ar ∪ {a}

10: end if
11: end if
12: end for
13: if (effect ◦ ch)(ar) = + then
14: G+

P ← G+
P ∪ {t}

15: end if
16: end for
17: return G+

P

18: end function

applying a similar reasoning on all triples in Cl(G0), we obtain Cl(G0)
+
P =

{et1, et4, et5, et6}.

Table 3.2: Example of positive subgraph constitution

t ar(Cl(G0),A)(t) ch(ar(Cl(G0),A)(t)) effect(ch(ar(Cl(G0),A)(t)))

et1 {a7,a8,a9} a7 +
et2 {a9} a9 –
et3 {a9} a9 –
et4 {a1,a9} a1 +
et5 {a3,a9} a3 +
et6 {a4,a9} a4 +
it1 {a2,a8,a9} a2 –
it2 {a5,a6,a9} a5 –
it3 {a9} a9 –

52 Chapter 3. A fine-grained access control model for RDF stores

3.1.3 Conflict resolution strategies semantics

In this section, we define properties of the ch function, related to the conflict
resolution strategies. In other words, ch applies a given strategy if it satisfies
the property of this strategy.

To define the DTP(PTP) properties, we need to define a partition of the set
of authorizations into two sets containing the positive and negative authoriza-
tions respectively.

Definition 3.1.11 Given a set of authorizations A. ∀B ⊆ A. B can be
partitioned into two sets B– and B+ such that:

B– = {a ∈B | effect(a) = –}
B+ = {a ∈B | effect(a) = +}

Example 3.1.12 Consider the set of authorizations A shown in Table 3.1.
Let us consider the subset of authorizations B = {a7,a8,a9}. The subset of
negative and positive authorizations in B are defined as follows: B– = {a7},
B+ = {a8,a9}

A function ch applies the DTP(PTP) strategy if it returns a negative (positive)
authorization from the input set, when the latter contains at least one negative
(positive) authorization.

Definition 3.1.13 (DTP(PTP) property) A function ch applies the
DTP(PTP) strategy if it satisfies the DTP(PTP) property. The DTP and PTP

properties are defined as follows:

DTP property: ∀B ⊆ A. ∃a ∈B– ⇒ ch(B) ∈B–

PTP property: ∀B ⊆ A. ∃a ∈B+ ⇒ ch(B) ∈B+

Regarding the MSTP strategy, it is particularly adequate to capture ex-
ceptions in policies in a natural way. For instance, in Table 3.1, the autho-
rization a5 that denies admissions to oncology service is an exception of the
authorization a6 which allows admissions in general. According to the MSTP

strategy, a5 should prevail over a6. A function ch applies the MSTP strategy
if it returns an authorization that have no other more specific authorization.
Semantically, an authorization a1 is more specific than a2 if for any given
graph G, the scope of a1 in G is a subset of the scope of a2 in G, formally,

3.2. Building Policies 53

scope(G)(a1) ⊆ scope(G)(a2). Syntactically, an authorization a1 is more
specific than authorization a2 when the underlying graph pattern of a2 can
be matched to the one of a1 with the restriction that the head of a2 is mapped
to the head of a1.

Definition 3.1.14 We say that an authorization a1 is more specific than
authorization a2 denoted by a1vMSa2 if ∃θ. hb(a2)θ ⊆ hb(a1)∧head(a2)θ =
head(a1).

Example 3.1.15 Consider authorizations a5 and a6 shown in Table 3.1.
There exists a substitution mapping θ between a5 and a6 s.t. θ = {?p 7→
?p, ?s 7→ ?s} and hb(a6)θ ⊆ hb(a5) ∧ head(a6)θ = head(a5), hence
a6vMSa5;

After defining the specificity relation, we can now check if a function ch satis-
fies the MSTP property, i.e. when it returns one of the smallest authorizations
with respect to vMS.

Definition 3.1.16 (MSTP) property) A function ch applies the MSTP strat-
egy if it satisfies the following property:

Let vMS be the specificity relation between authorizations
MSTP property: ∀B ⊆ A. ch(B) = a⇒ (∀a′ ∈B.a′vMSa⇒ a′ wMS a)

3.2 Building Policies

In this section, we illustrate the applicability of policies as defined in Defi-
nition 3.1.7 by showing how to construct ch functions for applying conflict
resolution strategies known in the literature. Note that our ch function is
responsible for resolving conflicts between authorizations, as well as applying
the default strategy.

3.2.1 Default Strategy

A default strategy is a decision that is selected when no other authorization
is applicable, that is when ar(G,A)(t) = ∅. Such a default strategy can
either be deny by default or permit by default. In order to respect the Totality

54 Chapter 3. A fine-grained access control model for RDF stores

well-formedness condition of Definition 3.1.7, we cannot simply apply a default
decision. However, we have to identify a default authorization called universal
authorization denoted by au, that is applicable to any triple. au is added to
the set of authorizations in order to achieve Totality . In fact, the triples that
have no applicable authorizations but au, will have a decision that is equal to
the effect of au. Hence the effect of au plays the role of the default decision
of classical approaches. An authorization is applicable to any triple if it has
three different variables in the head, and an empty body.

Definition 3.2.1 An authorization au ∈ Auth is called universal if au =
GRANT/DENY (s ; p ; o) such that s, p, o ∈ V and s 6= p, p 6= o, s 6= o.

The following lemma shows that the Totality condition can be ensured by
adding a universal authorization.

Lemma 3.2.2 Let A be a finite subset of Auth. The following statements are
equivalent:

∀G.∀t ∈ G. ar(G,A)(t) 6= ∅
∃au ∈ A.∀G.∀t ∈ G.au ∈ ar(G,A)(t)

Proof One direction is straightforward, if au ∈ A is such that au ∈
ar(G,A)(t), then ar(G,A)(t) 6= ∅.

For the opposite direction, consider a triple te = (?se ; ?pe ; ?oe) with fresh
variables not already used in A, that is, te is such that for all authorizations
a ∈ A, it is the case that ∀(?s; ?p; ?o) ∈ hb(a).?s 6= ?se∧?p 6= ?pe∧?p 6= ?pe.
Such a triple te always exists because there is an infinite set V of variables but
only finitely many appear in A. Consider the graph Ge = {te}, by hypothesis
ar(Ge,A)(te) is not empty, so consider an authorization au in this set.

We show that this authorization is universal. By Definition 3.1.3, we
know that there exists some η ∈ Jhb(au)KG with te = (head(au))η. Thus,
by Definition 2.1.8 (P. 19), we have that (hb(au))η = {te} because hb(au)
cannot be empty. Let Ga an arbitrary graph and ta = (?sa ; ?pa ; ?oa) ∈ Ga.
Consider the substitution η′ that maps te to ta defined by (?se)η′ = ?sa,
(?pe)η′ = ?pa. By construction, (hb(au))ηη′ = {ta} and te = (head(au))ηη′,
thus au ∈ ar(Ga,A)(ta).

For instance, the default strategy in Table 3.1 is given by authorization a9

which effect is DENY. Hence a closed policy. Note that there may be several

3.2. Building Policies 55

different universal authorizations in the set A. Therefore, conflicts will be
systematically triggered. Even though it is formally possible to have several
universal authorizations, we can assume that such authorization is unique.

Assumption 3.2.3 Given a policy P = (A, ch).The set of authorizations A

contains a unique universal authorization.

Note that the addition of a default rule at the end of a rule set is standard
practice in firewall policies. Moreover, following previous discussion on the
total syntactical order, this authorization should be naturally appended to
the end of the set of authorizations. More generally, given a total order 4
on A, the universal authorization should be the maximum element of A with
respect to 4. Doing so, it wont be selected unless it is the only choice. This
reflects the semantics of the default strategy which only applies when there is
no other applicable authorization.

3.2.2 First Applicable strategy

First of all, we notice that if there exists a total order denoted by 4 over
a set of authorizations A, we can apply the FA satrategy by constructing a
conflict resolution function ch that selects the minimum element from a subset
B ⊆ A ordered by 4.

Definition 3.2.4 Given a set of authorizations A and a total order 4 on A.
For any B ⊆ A, the minimum authorization of B with respect to 4 is defined
as follows:

min4(B) = a ∈B | ∀a′ ∈ A.a4a′

Lemma 3.2.5 Given a set of authorizations A and a total order 4 on A,
P = (A,min4) is a well-formed policy.

Proof We prove that P = (A,min4) satisfies the well-formedness conditions.

For Totality , by assumption 3.2.3, there exists a universal rule au ∈ A.
Closedness and the Monotony are satisfied by construction of min4.

There are several ways to equip A with a total order. For instance, the admin-
istrator can explicitly assign a unique prevalence level to each authorization
or she/he can rely on the syntactical order. When one writes a set of autho-
rizations such as the one shown in Table. 3.1, there is a total order given by
the order of the statements. The syntactical order is always available and it
is used, for example, in firewalls, so that no ambiguity arises.

56 Chapter 3. A fine-grained access control model for RDF stores

Example 3.2.6 min4 represents the ch function defined in Example 3.1.8,
where the authorizations are ordered syntactically.

Note that given a policy P = (A, ch), we can construct a total order 4ch on
A with ch. From an implementation point of view, constructing a total order
from ch could improve performance of the access control enforcement. The
idea is to compute the total order 4ch during policy design time, and replace
the original ch by min4

ch
.

Lemma 3.2.7 Given a policy P = (A, ch), then we can construct a to-
tal order 4ch on A with ch function s.t. ∀a1,a2 ∈ A.a14ch a2 ⇐⇒
ch({a1,a2}) = a1.

Proof We prove that 4ch is reflexive, antisymmetric, transitive and total.

• Reflexivity: Since ch({a,a}) = a then a4ch a. Thus 4ch is reflexive.

• Antisymmetry: If a14ch a2 then ch({a1,a2}) = a1, hence if a1 6= a2

then ch({a2,a1}) 6= a2, which means that a2 64ch a1. Thus 4ch is
antisymmetric.

• Transitivity: We prove that if a14ch a2 and a24ch a3 then a14ch a3.
If ch({a1,a2,a3}) = a3 then ch({a2,a3}) = a3 from Monotony con-
dition. Contradiction with a24ch a3.
If ch({a1,a2,a3}) = a2 then ch({a1,a2}) = a2 from Monotony con-
dition. Contradiction with a14ch a2.
Since ch({a1,a2,a3}) 6= a3 and ch({a1,a2,a3}) 6= a2 then
ch({a1,a2,a3}) = a1 from ch Closedness . Hence ch({a1,a3}) = a1

from ch Monotony . Which means that a14ch a3. Thus 4ch is transi-
tive.

• Totality: By ch Closedness , ∀a1,a2 ∈ A. ch({a1,a2}) = a1 or
ch({a1,a2}) = a2. Hence, a14ch a2 or a24ch a1. Thus 4ch is to-
tal.

The following proposition shows that there exists a bijection between total
orders and choice functions.

Proposition 3.2.8 Given a policy P = (A, ch), there exists a bijection be-
tween 4ch and ch

3.2. Building Policies 57

Proof Let P = (A, ch) be a policy.

Let 4ch be a binary relation s.t ∀a1,a2 ∈ A.a14ch a2 ⇐⇒
ch(a1,a2) = a1.

First we prove that min4
ch

(A) = ch(A).

If min4
ch

(A) = a ∈ A then ∀a′ ∈ A.a4ch a
′ (by 4ch definition).

Let b = ch(A). We have b ∈ A, hence a4ch b, which means that
ch(a,b) = a. Since {a,b} ⊆ A, then, by ch Monotony , ch(a,b) = b =
ch(A), hence a = b.

Let 4 be a total order. Let min4 the choice function associated to 4. Let
4min4

a total order constructed from min4 s.t ∀a1,a2 ∈ A.a14min4
a2 ⇐⇒

a1 = min4({a1,a2}).

We prove that 4min4
⇐⇒ 4

a14min4
a2 ⇐⇒ min4({a1,a2}) = a1 ⇐⇒ a14a2

3.2.3 Precedence Strategies

As we mentioned in Chapter 2 (P. 13), the DTP strategy resolves conflicts by
stating that the negative authorizations prevail over the positive ones; the
PTP strategy being its dual. The idea to capture the DTP (resp. PTP) strategy
is to transform a policy P = (A, ch) into a policy P – = (A, ch–) where ch–

privileges negative (resp. positive) effects. Considering the previous discussion
on default policies, we assume that there is a unique universal authorization
au ∈ A. As au is assumed to be a default authorization, we require that
B \ {au} = ∅ if and only if ch(B) = au. Remind that B– (resp. B+) is
the subset of B with a negative (resp. positive) effect. With B ⊆ A, the ch–

function is formally defined as follows:

ch–(B) =

ch(B– \ {au}) if B– \ {au} 6= ∅ (1)
ch(B+ \ {au}) if B– \ {au} = ∅ ∧B+ \ {au} 6= ∅ (2)
au if B \ {au} = ∅ (3)

Similarly, the dual function ch+ is defined by flipping + and – in the
definition of P –. The next lemma ensures that the construction is correct.

Lemma 3.2.9 (Correctness of P –) Given P = (A, ch) a policy according
to Definition 3.1.7 with a unique universal authorization au ∈ A such that

58 Chapter 3. A fine-grained access control model for RDF stores

∀B ⊆ A.ch(B) = au ⇒ B \ {au} = ∅, the structure P – = (A, ch–) is a
well-formed policy.

Proof Firstly, we remark that B–\{au} = (B \ {au})– and that B–∪B+ =
B. Secondly, we note that function ch– is properly defined because pairwise
conjunctions of conditions (1), (2) and (3) are unsatisfiable and the disjunction
of these formulas is a tautology. We show that P = (A, ch–) satisfies the well-
formedness conditions.

Totality By assumption 3.2.3, there exists a universal rule au ∈ A.

Closedness This property is guaranteed because the original ch function is
assumed to satisfy the Closedness property.

Monotony Let ch–(B) = a for some B ⊆ A and let B′ ⊆B with a ∈B′.
We have to show that ch–(B′) = a. If a = au, then B \ {au} = ∅ by
hypothesis so B′ \ {au} = ∅ as well, thus ch–(B′) = ch–(B) = au. So
we assume now that a 6= au, this implies that a ∈ B \ {au} by the
Closedness property of the ch function, thus B \ {au} 6= ∅. Moreover,
ch(B \ {au}) = ch(B) by the Monotony condition. We analyse how a

was obtained in the first place.

case B– \ {au} 6= ∅. If B′– \ {au} 6= ∅ holds, we have that ch–(B′) =
ch(B′– \ {au}) by the definition of ch–. Then ch(B′– \ {au}) =
ch(B–\{au}) by the Monotony of the ch function. Finally, ch(B–\
{au}) = ch((B \ {au})–) = ch(B \ {au}) by Monotony again, so
ch(B \ {au}) = ch(B) = a = ch–(B′).

Otherwise, we have B′
– \ {au} = ∅. Assumption a 6= au implies

that case (3) is ruled out, so a has to be positive by case (2). By
the Closedness property of ch, a ∈B– \ {au} so a is negative, a
contradiction.

case B– \ {au} = ∅ ∧B+ \ {au} 6= ∅. Note that B′
– \ {au} = ∅ as

well because B′ ⊆B. If B′+ \{au} 6= ∅ holds, then we obtain the
equalities ch–(B′) = ch(B′+ \ {au}) = ch(B+ \ {au}) = ch–(B \
{au}), similarly to the previous case. Otherwise, (B′ \ {au})+ =
∅, a contradiction with a ∈B′.

case B \ {au} = ∅ It is immediate because ch–(B′) = au = ch–(B).

The following lemma ensures that ch– applies the DTP strategy.

3.2. Building Policies 59

Lemma 3.2.10 (DTP strategy application) Given a policy P – = (A, ch–),
ch– applies the DTP strategy.

Proof We prove that ch– satisfies the DTP property (see Definition 3.1.13).

∀B ⊆ A. if ∃a ∈ B– s.t. a 6= au then B– \ {au} 6= ∅, hence, by ch–

definition, ch–(B) = ch(B– \ {au}). Which means that ch–(B) ∈ B–. Thus
ch– satisfies the DTP property.

Similarly, Lemmas 3.2.9 and 3.2.10 apply to P+ and ch+ respectively.

Example 3.2.11 Consider the graph Cl(G0) shown in Figure 2.4 (P. 23) and
the set of authorizations A shown in Table 3.1. Let us consider the authoriza-
tions applicable to triple et1, that is ar(Cl(G0),A)(et1) = {a7,a8,a9}. If we
consider the ch given in Example 3.1.8, that is, the syntactical order, autho-
rization a7, a positive one, is selected. However, with the DTP construction,
we have that ch–({a7,a8,a9}) = ch({a8}) = a8.

3.2.4 Most Specific Takes Precedence (MSTP)

We showed in Section 3.1.3 that the MSTP property is captured by a binary rela-
tion vMS defined by substitutions. Clearly, the identity substitution makes vMS

relation reflexive and composition of substitution makes it transitive. There-
fore, it is a preorder (quasiorder). Note that vMS being a preorder, it is not
anti-symmetric. Indeed, we may have two different authorizations with dif-
ferent effects a1 and a2 where a1vMSa2 and a2vMSa1. Chosing the most
specific authorization amounts to select the smallest authorization w.r.t vMS.
Since vMS is a preorder, then the smallest authorizations may be more than
one. As shown by Lemma 3.2.5, given a total min4 order, we can construct a
policy P = (A,min4). The idea is to construct a total order from the preorder
vMS to make a ch function that applies MSTP. First, we consider two equivalent
authorizations as incomparable in order to make a partial order vMSTP from
the preorder vMS.

Definition 3.2.12 Given a set of authorizations A. vMSTP is a binary relation
over A defined as follows:

• ∀a1 ∈ A,∀a2 ∈ A. a1 6= a2. a1vMSTPa2 if a1vMSa2 and a2 6vMS a1

• ∀a ∈ A.avMSTPa

60 Chapter 3. A fine-grained access control model for RDF stores

Lemma 3.2.13 vMSTP is a partial order.

Proof We prove that vMSTP is reflexive, anti-symmetric and transitive.

• Reflexivity : By Definition 3.2.12, vMSTP is reflexive.

• Transitivity : We prove that if a1vMSTPa2 and a2vMSTPa3 then
a1vMSTPa3.
If a1 = a2 or a2 = a3, then transitivity is trivial.
By Definition 3.2.12
a1vMSTPa2 ⇒ a1vMSa2 and a2 6vMS a1

a2vMSTPa3 ⇒ a2vMSa3 and a3 6vMS a2

We want to prove that a1vMSTPa3 i.e. a1vMSa3 and a3 6vMS a1

Since a1vMSa2 and a2vMSa3 then a1vMSa3 by vMS transitivity.
Now we prove that a3 6vMS a1. For the sake of the contradiction, sup-
pose that a3vMSa1. Since a1vMSa2 then a3vMSa2 by vMS transitiv-
ity. Which is a contradiction with a3 6vMS a2, hence a3 6vMS a1. Since
a1vMSa3 and a3 6vMS a1 then a1vMSTPa3 by Definition 3.2.12.

• Anti-symmetry : We prove that if a1 6= a2 and a1vMSTPa2 then
a2 6vMSTP a1

By Definition 3.2.12
a1vMSTPa2 ⇒ a1vMSa2 and a2 6vMS a1

For the sake of the contradiction, suppose that a2vMSTPa1 i.e.
a2vMSa1 and a1 6vMS a2, contradiction. Hence a2 6vMSTP a1.

Hence vMSTP is partial order

After making a partial order vMSTP from the preorder vMS, we can now con-
struct a total order 4MSTP using the partial order vMSTP and the total lexical
order 4LEX already defined by the administrator. 4MSTP represents a topo-
logical sort (i.e. linear extension) of the partially ordered authorizations.
Many algorithms could be used for the topological sort, such as Kahn’s Algo-
rithm [Kahn 1962]. We adapted Kahn’s Algorithm to make it deterministic,
where instead of selecting a random authorization, we select the smallest one
with respect to 4LEX. Algorithm 2 takes as parameters, the total order 4LEX

and HA
v a Directed Acyclic Graph (DAG) where the nodes represent autho-

rizations in A, and edges represent the irreflexive related authorizations with
v, i.e. (avb and a 6= b)⇒ a→ b.

Algorithm 2 starts by inserting all authorizations without incoming edges
into a set S. Then it starts a loop where the smallest authorization a in S

3.2. Building Policies 61

w.r.t 4LEX is inserted into L at an indice equal to the current iteration. a

is then removed from S and all edges outgoing from it are removed as well.
Next, the new authorizations with no incoming edges are inserted to S. The
loop stops when S becomes empty. Finally if there are remaining edges in
the graph, then it contains cycles, otherwise the Algorithm returns the total
order 4A

v representing a linear extension of v.

Algorithm 2 Algorithm for constructing a total order from partially ordered
authorizations

Input: a graph HA
v of authorizations ordered by v, and the total syntactical

order 4LEX.
Output: a total order relation 4A

v .
1: Let L← an Array that will contain the sorted authorizations, with indices

from 1..|A|
2: Let S ← the set of all authorizations with no incoming edges
3: Let iteration← 0
4: while S is not empty do
5: iteration← iteration+ 1
6: Let a = min4

LEX
(S)

7: L[iteration]← a

8: Remove a from S
9: for all a′ with an edge e from a to a′ do

10: remove e from HA
v

11: if a′ has no other incoming edges then
12: insert a′ into S
13: end if
14: end for
15: end while
16: if HA

v has edges then
17: Error, the graph contains a cycle, and the topological sort is not pos-

sible
18: else
19: Let 4A

v be the following binary relation: L[i]4A
v L[j] ⇐⇒ i ≤ j

20: Return 4A
v

21: end if

The following lemma shows that at each iteration of the loop between
lines 4 and 15, the next selected authorization is the smallest one w.r.t 4LEX

from the rest of the not processed authorizations.

Lemma 3.2.14 Let ns be the set of the not sorted authorizations defined as
ns = {a | a ∈ A ∧a 6∈ L}

62 Chapter 3. A fine-grained access control model for RDF stores

Let nsi and Si be the values of ns and S respectively at the beginning of
the ith iteration of the loop between lines 4 and 15.

The following holds:
For each iteration i, authorization a′′ = min4

LEX
(nsi) has no incoming edges,

and it is the next authorization that will be inserted into L, i.e. L[i] =
min4

LEX
(nsi).

Proof First we prove that a′′ = min4
LEX

(nsi) has no incoming edges. Suppose
that a′′ has an incoming edge from b. b is not in L, otherwise the edge
b → a′′ would have been removed by Line 10 during some previous iteration.
Hence b ∈ nsi. Since there is an edge b → a then bva′′, thus b4LEXa

′′

since 4LEX is a linear extension of v. Since we do not consider atomic loops,
then a′′ 6= b. Since b4LEXa

′′ then a′′ 6= min4
LEX

(nsi) which contradicts the
hypothesis.

We prove that the next authorization that will be inserted into L is a′′ =
min4

LEX
(nsi). Suppose that a′′ is not the next authorization to be inserted

to L, hence ∃b ∈ Si ⊆ nsi s.t. b = min4
LEX

(Si). Since b ∈ nsi and a′′ =
min4

LEX
(nsi) then a′′4LEX b.

a′′ = min4
LEX

(nsi) means that a′′ has no incoming edges, hence a′′ ∈ Si

(Lines 11 and 12). Since b = min4
LEX

(Si) and a′′ ∈ Si then b4LEXa
′′.

Since a′′4LEX b and b4LEXa
′′ then a′′ = b.

Note that if the total order 4LEX is already a linear extension of the partial
order v, then Algortithm 2 will generate a total order that is equal to 4LEX,
which is showed by the following lemma.

Lemma 3.2.15 If 4LEX is a linear extension of vMSTP then 4LEX = 4A
v

Proof We show that at the end of Algorithm 2 :
If i ≤ j then L[i]4LEX L[j], and if L[i]4LEX L[j] then i ≤ j.

We prove that if i ≤ j then L[i]4LEX L[j]. Let b = L[i] and c = L[j]. Since
i ≤ j then at the beginning of iteration i both b and c were in ns. Hence
at iteration i, and by Lemma 3.2.14, b = min4

LEX
(nsi) and since c ∈ nsi then

b4LEX c, thus L[i]4LEX L[j].

We prove that if L[i]4LEX L[j] then i ≤ j. Let b = L[i] and c = L[j].
Suppose b4LEX c and i>j. Then c was inserted into L before b. At iteration
j, and by Lemma 3.2.14, c = min4

LEX
(nsj), and since b ∈ nsj then c4LEX b.

3.2. Building Policies 63

Since b4LEX c and c4LEX b then b = c. Since an element cannot be inserted
twice, i = j which contradicts i>j.

Using Algorithm 2, we generate a total order denoted by 4MSTP, from vMSTP

and 4LEX. After generating the total order over authorizations, we can now
define the ch that applies the MSTP by choosing the smallest authorization
w.r.t 4MSTP, formally, ch = min4

MSTP
.

Lemma 3.2.16 (MSTP strategy application) Given a policy P =
(A,min4

MSTP
), the function min4

MSTP
applies the MSTP strategy.

Proof We prove that min4
MSTP

satisfies the MSTP property (see Defini-
tion 3.1.16). ∀B ⊆ A. By definition min4

MSTP
returns the smallest autho-

rization with respect to min4
MSTP

. Since min4
MSTP

is a linear extension of vMSTP

then ∀a′ ∈ B.a′vMSTP min4
MSTP
⇒ a′ wMSTP min4

MSTP
hence the satisfaction of

the MSTP property.

Finally, the obtained structure P = (A,min4MSTP
) is a fully-fledged policy.

Figure 3.3: vMSTP DAG

Example 3.2.17 Consider the policy P = (A,min4MSTP
) where A is the set

of authorizations A shown in Table 3.1. Algorithm 2 takes as parameters
the total syntactical order of the Table 3.1, and the DAG HA

vMSTP
depicted by

Figure 3.3. Table 3.3 shows the values of S and L at the end of each iteration
of the loop between lines 4 and 15. The result of the Algorithm is a total
order equal to 4LEX since the latter is a linear extension of vMSTP as shown by
Lemma 3.2.15.

64 Chapter 3. A fine-grained access control model for RDF stores

Table 3.3: S and L values at the end of each iteration

Iteration S L

1 {a3,a4,a2,a5,a7} a1

2 {a3,a4,a5,a7,a8} a1 a2

3 {a4,a5,a7,a8} a1 a2 a3

4 {a5,a7,a8} a1 a2 a3 a4

5 {a7,a8,a6} a1 a2 a3 a4 a5

6 {a7,a8} a1 a2 a3 a4 a5 a6

7 {a8} a1 a2 a3 a4 a5 a6 a7

8 {a9} a1 a2 a3 a4 a5 a6 a7 a8

9 {} a1 a2 a3 a4 a5 a6 a7 a8 a9

3.3 Conclusion

In this chapter, we introduced a fine-grained access control model for RDF
stores with inference capabilities. Whereas some models allow or deny queries,
we gave semantics to authorizations by means of the authorized subgraph of a
base graph, doing so we are independent of a given query language. Instead
of hard-coding the conflict resolution strategy, we proposed a more liberal
approach, by defining an abstract conflict resolution function ch. The latter
can be coded by the administrator during policy design time. We showed how
concrete resolution strategies can be instances of our abstract framework.
Moreover, we showed how more elaborate strategies, notably most specific
takes precedence, can be built in our framework. To prevent a malicious user
who knows the inference rules, from accessing confidential triples by applying
these rules on his accessible triples, we propose in the next chapter a static
verification approach to detect and fix the inference leakage problem.

Chapter 4

Inference leakage problem and
solution

Contents
4.1 The inference problem 66

4.2 Consistency property 67

4.3 Static verification . 68

4.3.1 Proof of completeness 70

4.3.2 Understanding the Counterexamples 73

4.4 Conclusion . 77

B Access control models offer protection against direct accesses to sensitive
information; however, indirect accesses to sensitive information may still be
possible via inferences. Indeed, security violations via inferences called infer-
ence problem (inference leakage problem) occurs when sensitive information
can be inferred from authorized data. In this chapter we show how static
verification could be used to detect policy inconsistencies with respect to in-
ference. In Section 4.1 we give an overview about the inference problem in
different data models, and we show the different techniques to deal with it.
In Section 4.2, we formally define the inference leakage problem which arises
when confidential triples are inferred from authorized triples. We formalize
the consistency property that captures the inference leakage problem. This
property ensures that confidential information can not be inferred from autho-
rized information with respect to a set of inference rules. To solve the issue,
we propose in Section 4.3 a static verification algorithm which is run at policy
design time. The algorithm checks if the interaction between policy authoriza-
tions and inference rules may lead to inference leakage. It generates a set of
counterexample BGPs which represent graphs over which the policy presents
an inference leakage problem. In Section 4.3.2 we show how to use the answer
of the algorithm to fix the policy, or how to use them as integrity constraints
that do not allow updates which could lead to inference leakage. C

66 Chapter 4. Inference leakage problem and solution

4.1 The inference problem

The inference problem (see [Farkas 2002] for a survey) exists in all types of
database systems and has been studied extensively within the context of mul-
tilevel databases. Early works on the inference problem focused on statistical
database security [Adam 1989]. The main requirement for securing statical
databases is to allow users to make statistics by giving access to groups of en-
tities while protecting the confidentiality of the individual entities. The prob-
lem is that a user might obtain confidential information about an individual
entity by correlating different statistics. Another kind of inference problem
appeared on data models which use semantic constraints such as functional
dependencies [Su 1987]. Here, sensitive information can be disclosed from
non-sensitive data and meta-data. We illustrate with the example used by
[Su 1987]. Assume that a company database consists of the relation scheme
EMP-SAL, which has three attributes: Name, Rank, and Salary. The re-
lation < Name, Salary > is a secret, but user u requests the following two
queries: List Rank and Salary of all employees and List the Name and Rank
of all employees. None of the queries violates the security requirement because
they do not contain the secured < Name, Salary > pair; however, suppose u
is aware of the constraint that all employees having identical ranks have the
same salaries, then she/he can infer the salary of employees.

Several works have been devoted to detect and deal with inference leak-
ages. Inference control techniques can be divided according to the time of the
inference detection control, i.e. static and dynamic approaches:

• Static approaches In the static approaches [Su 1987], all processing is
done offline during design time. Once a security violation via inferences
is detected, the system is modified to repair such violations. Modifica-
tions are done on the database schema or on the access control policy.
The main advantage of this approach is that it is computationally less
expensive than the dynamic approach. However, this approach may re-
sult in reduced availability of data because the inference problem may
not materialize in a particular database instance.

• Dynamic approaches In the dynamic approaches
([Thuraisingham 1987]), the processing is done during runtime.
Every issued query is checked whether or not it could lead to confi-
dential data disclosure. If an inference violation is detected, the query
is either refused or modified to avoid such violations. Most of these
approaches keep a log of all queries issued by the user so they can
be combined with the current one to check if the query is allowed or
not. Whereas this kind of approaches increase availability, they are

4.2. Consistency property 67

computationally expensive, since the violation check is done for every
query.

In the context of RDF, [Jain 2006] used a static approach by defining an
algorithm that detects inference violations using the policy and the base graph
(see Section 2.3). Since we focus on the publication of RDF triples in the
context of linked data, we concentrate on fast query answering, hence we
favor the static approach. Before we show how to detect whether a policy
presents a problem of inference leakage, we define the consistency property.

4.2 Consistency property

The inference rules which are applied to a graph reflect the particular knowl-
edge conveyed by the graph. Hence, the real semantics of a graph are rep-
resented by its closure, regardless it is materialized or not. Thus, inference
leakage has to be considered in the closure of a graph, rather than considering
only the base graph which is under control of a trusted RDF store. The in-
teraction between authorizations and inference rules raises the issue of policy
violation because it could lead to confidential data leakage. A malicious user
who knows the inference rules could use a local reasoner and apply the infer-
ence rules over her/his accessible triples to infer triples she/he is not supposed
to access. To illustrate this issue, consider the following example.

Example 4.2.1 Assume a set of inference rules R = {RDom,RAdm}, as
shown in Example 2.1.16 (P. 22). We want to apply the policy defined in
Example 3.1.10 (P. 50) on the graph ClR(G0) of Figure 2.2 (P. 16). Ac-
cording to Example 3.1.10 (P. 50), the authorized subgraph is (ClR(G0))

+
P =

{et1, et4, et5, et6}. If one computes the closure of (ClR(G0))
+
P , she/he obtains

(ClR(G0))
+
P ∪ {it1, it2}. Whereas the policy states that triples it1 and it2 must

be denied, they are deduced from the authorized subgraph, hence the inference
leakage. Figure 4.1 illustrates the inference leakage using RDom.

We formally characterize the issue that arises when inference rules produce
facts that would have been forbidden otherwise. This issue occurs when the
positive subset of a closed graph is not, itself, closed.

Definition 4.2.2 (Consistency between Rules and Policies) An au-
thorization policy P = (A, ch) is consistent w.r.t. a set of inference rules R
if, for any graph G ∈ BGP, the following holds:

ClR((ClR(G))+P) = (ClR(G))+P

68 Chapter 4. Inference leakage problem and solution

Reasoner

Figure 4.1: Inference leakage example

The consistency property has to hold for all graphs. It does not have to be
checked when stored graphs are updated, but solely at the policy design-time
or when the inference rules or the authorizations change.

4.3 Static verification

In computer programming, static code analysis provides a way to analyze the
code in order to detect possible errors and security weaknesses [Livshits 2005].
In the context of access control, the static analysis could be used to check
whether given properties are satisfied by the policies. In this section, we show
a key property of the framework introduced so far: it is possible to check,
without any knowledge of a base graph, if a policy is consistent w.r.t. a set
of inference rules. We define Algorithm 3 that, given an authorization policy
P = (A, ch) and a set of inference rules R, checks whether the consistency
property (Definition 4.2.2) holds. Algorithm 3 is an enumeration algorithm

4.3. Static verification 69

and not a mere decision algorithm: it is constructive and finds all possible
counterexamples to the consistency property.

Algorithm 3 Algorithm for enumerating inconsistency patterns

Input: a set of inference rules R, an authorization policy P = (A, ch)
Output: a collection BGPs of counterexample basic graph patterns

1: function RdfLeaks(R, P)
2: BGPs← ∅
3: for all r = (tp← tp1, . . . , tpk) ∈ R do
4: for all (a1, . . . ,ak,a) ∈ A+k ×A– do
5: let ρ1, . . . , ρk, ρ be renaming substitutions for a1, . . . ,ak,a
6: let (ha1, . . . , hak, ha) = (head(a1)ρ1, . . . , head(ak)ρk, head(a)ρ)
7: if ∃µ = mgu((ha1, . . . , hak, ha), (tp1, . . . , tpk, tp)) then
8: let B =

⋃k
i=1 hb(ai)ρiµ ∪ hb(a)ρµ

9: if {(tp1)µ, . . . , (tpk)µ} ⊆ (ClR(B))+P
and (tp)µ 6∈ (ClR(B))+P then

10: BGPs← BGPs ∪ {B}
11: end if
12: end if
13: end for
14: end for
15: return BGPs
16: end function

The principle of Algorithm 3 is to find an inference rule (tp ←
tp1, . . . , tpk) ∈ R and related sets of authorizations (a1, . . . ,ak,a) such that
a is negative and its head is unifiable with tp and all authorizations ai for
i ∈ {1, . . . , k} are positive and their heads are unifiable with {tp1, . . . , tpk}.
Pictorially:

r =

hb(a1)︸ ︷︷ ︸
tp1

. . . hb(ak)︸ ︷︷ ︸
tpk

tp︷ ︸︸ ︷
hb(a)

with effect(ai) = + and effect(a) = –

Intuitively, let us consider the graph B built by considering the union of
the underlying graphs hb(a1) . . . hb(ak) and hb(a), properly renamed and
unified. By construction, the inference rule r is applicable. Moreover, all
authorizations are applicable as well. On the one hand, triples tp1 to tpk are
authorized by some positive authorizations. On the other hand, tp is inferred
using rule r but is forbidden by authorization a: an inconsistency.

The key idea that ensures the completeness of Algorithm 3 is that all

70 Chapter 4. Inference leakage problem and solution

counterexamples of the consistency property have to arise this way. Theo-
rems 4.3.1 and 4.3.2 formally state the correctness of the algorithm: P is not
consistent w.r.t. R if and only if Algorithm 3 returns a non empty collec-
tion. We rely on the usual definitions of unifiers and most general unifiers
(mgu) as stated by Martelli and Montanari for instance, [Martelli 1982]. (See
Appendix A, Section A.2).

Theorem 4.3.1 (Soundness of Algorithm 3) If Algorithm 3 returns a
non empty collection then P is not consistent w.r.t. R.

Proof Let B ∈ RdfLeaks(R, P). Since {(tp1)µ, . . . , (tpk)µ} ⊆ (ClR(B))+P ,
we have µ ∈ J{tp1, . . . , tpk}K(ClR(B))+P

. Thus (tp)µ ∈ φr((ClR(B))+P) ⊆
ClR((ClR(B))+P). However (tp)µ 6∈ (ClR(B))+P . Therefore ClR((ClR(B))+P) 6=
(ClR(B))+P , thus P is not consistent w.r.t. R.

Theorem 4.3.2 (Completeness of Algorithm 3) Given a basic graph
pattern G, if ClR((ClR(G))+P) 6= (ClR(G))+P , then there exists a basic graph
pattern B ∈ RdfLeaks(R, P) such that JBKClR(G) 6= ∅.

Theorem 4.3.1 holds by construction: Line 9 of Algorithm 3 ensures that
B is a counterexample. Next, we prove Theorem 4.3.2 and discuss counterex-
ample usage.

4.3.1 Proof of completeness

To show that Theorem 4.3.2 holds, we first introduce two lemmas. Intu-
itively, Lemma 4.3.3 ensures that the Definition 3.1.3 (P. 47) of applicable
authorizations behaves well according to graphs inclusion. Lemma 4.3.4 is its
counterpart for the closure of a graph according to a set of inference rules.

Lemma 4.3.3 Let P = (A, ch) be an authorization policy, B,G ∈ BGP are
basic graph patterns, and η is a substitution such that Bη ⊆ G. For any t ∈ B,
ar(B,A)(t) ⊆ ar(G,A)((t)η).

Proof Let a be any authorization in ar(B,A)(t). By definition 3.1.3 (P. 47),
there exists θ such that t = head(a)θ and hb(a)θ ⊆ B. Thus tη = head(a)θη
and hb(a)θη ⊆ Bη ⊆ G. Thus, by definition 3.1.3 (P. 47), a ∈ ar(G,A)((t)η).

4.3. Static verification 71

Lemma 4.3.4 Let P = (A, ch) be an authorization policy, R is a set of
inference rules, B,G ∈ BGP are basic graph patterns, and η is a substitution
such that Bη ⊆ G. For any t ∈ ClR(B), (t)η ∈ ClR(G).

Proof First, we prove that for any B′, G′ ∈ BGP, if B′η ⊆ G′ and if t ∈
φR(B′), then (t)η ∈ φR(G′). By definition 2.1.13 (P. 21) there exists a rule r =
(tp← tp1, . . . , tpk) ∈ R and a substitution σ such that {(tp1)σ, . . . , (tpk)σ} ⊆
B′ and t = (tp)σ. Thus {(tp1)ση, . . . , (tpk)ση} ⊆ (B′)η ⊆ G′ and t = (tp)ση.
Thus, by definition 2.1.13 (P. 21), (t)η = (tp)ση ∈ φR(G′).

Let (Bi)i∈N (resp. (Gi)i∈N) be the sequence defining ClR(B) (resp. ClR(G))
as in definition 2.1.13 (P. 21). We prove, by induction on i, that for all
i ∈ N if t ∈ Bi+1, then (t)η ∈ Gi+1 (i.e. (Bi+1)η ⊆ Gi+1). If t ∈ B,
then (t)η ∈ (B)η ⊆ G ⊆ Gi+1. If t ∈ Bi, then, by induction hypothesis,
(t)η ∈ Gi ⊆ Gi+1. Otherwise t ∈ φR(Bi). As previously proved and since, by
induction hypothesis, (Bi)η ⊆ Gi, this means that (t)η ∈ φR(Gi) ⊆ Gi+1.

Since for any i ∈ N, (Bi)η ⊆ Gi, we conclude that (ClR(B))η =⋃
i∈N(Bi)η ⊆

⋃
i∈NGi = ClR(G).

Lemma 4.3.5 Let P = (A, ch) be a policy, a ∈ A be an authorization, G
a basic graph pattern and t ∈ G. If a ∈ ar(G,A)(t), then for any renaming
substitution ρ of a, there exists a substitution θ such that (head(a)ρ)θ = t
and θ ∈ Jhb(a)ρKG.

Proof By definition 3.1.3 (P. 47), there exists a substitution θ′ such that
t = (head(a))θ′ and θ′ ∈ Jhb(a)KG, i.e. hb(a)θ′ ∈ G. Since ρ is a renaming
substitution, it is bijective and (hb(a)ρ)ρ−1 = hb(a) and (head(a)ρ)ρ−1 =
head(a).

Thus ((hb(a)ρ)ρ−1)θ′ ∈ G and t = ((head(a)ρ)ρ−1)θ′. It is sufficient to
take θ = ρ−1θ′.

Lemma 4.3.6 Let P = (A, ch) be an authorization policy, R a set of infer-
ences rules, B,G ∈ BGP basic graph patterns, and η a substitution such that
Bη ⊆ G. For any t ∈ B, ar(ClR(B),A)(t) ⊆ ar(ClR(G),A)((t)η).

Proof By Lemma 4.3.4, (ClR(B))η ⊆ ClR(G). By applying Lemma 4.3.3
on ClR(B) and ClR(G), we conclude that for any t ∈ B ⊆ ClR(B),
ar(ClR(B),A)(t) ⊆ ar(ClR(G),A)((t)η).

72 Chapter 4. Inference leakage problem and solution

Lemma 4.3.7 If ClR(G) 6= G, then there exists t ∈ φR(G) ⊆ ClR(G) such
that t 6∈ G.

Proof By definition 2.1.13, ClR(G) =
⋃

i∈NGi, where G0 = G and Gi+1 =
φR(G). By induction on i, we prove that if G 6= Gi+1 then there exists
t ∈ φR(G) such that t 6∈ G. If G 6= Gi+1, and since G ⊆ Gi+1, there exists
t′ ∈ Gi+1 such that t′ 6∈ G. If t′ ∈ Gi, then Gi 6= G and we get the result by
induction hypothesis on Gi. If t′ 6∈ Gi, then t′ ∈ φR(Gi). If Gi = G, then it is
sufficient to take t = t′. Otherwise Gi 6= G and we get the result by induction
hypothesis on Gi.

Proof of Theorem 4.3.2 Let Gex be such that ClR((ClR(Gex))+P) 6=
(ClR(Gex))+P . By Lemma 4.3.7, there exists tex ∈ φR((ClR(Gex))+P) such that
tex 6∈ (ClR(Gex))+P .

By Definition 2.1.13 (P. 21), there is a rule r = (tp ← tp1, . . . , tpk) ∈ R
and a substitution σ such that tex = (tp)σ and σ ∈ J{tp1, . . . , tpk}K(ClR(Gex))+P

.

Let us consider i ∈ {1, . . . , k}. Since σ ∈ J{tp1, . . . , tpk}K(ClR(Gex))+P
, it is

the case that (tpi)σ ∈ (ClR(Gex))+P . Let ai = ch(ar(ClR(Gex),A)((tpi)σ)) be
the authorization selected for (tpi)σ in ClR(Gex). Since (tpi)σ ∈ (ClR(Gex))+P ,
ai ∈ A+. Similarly and since (tp)σ = tex 6∈ (ClR(Gex))+P , if we pose a =

ch(ar(ClR(Gex),A)((tp)σ)) then a ∈ A–. Thus (a1, . . . ,ak,a) ∈ A+k ×A–,
and Algorithm 3 evaluates this combination of rule and authorizations at
Line 4.

Let us assume ρ (resp. for any i ∈ {1, . . . , k}, ρi), ha (resp. hai) as they are
defined by Algorithm 3 at Lines 5 and 6. Since P respects the Closedness and
the Totality conditions of Definition 3.1.7 (P. 49), a ∈ ar(ClR(Gex),A)((tp)σ)
(resp. for any i ∈ {1, . . . , k}, ai ∈ ar(ClR(Gex),A)((tpi)σ)). That is, by
Lemma 4.3.5, there exists a substitution θ (resp. θi) such that:

(tp)σ = (ha)θ (1)

(tpi)σ = (hai)θi (2)

θ ∈ Jhb(a)ρKClR(Gex) (3)

θi ∈ Jhb(ai)ρiKClR(Gex) (4)

Because ρ, ρ1, . . . , ρk are renaming substitutions, var(ha), var(ha1), . . . ,
var(hak) and var({tp, tp1, . . . , tpk}) are pairwise disjoint. Thus we can in-

4.3. Static verification 73

troduce the following substitution µ′:

µ′(x) =

θ(x) if x ∈ var(ha)

θi(x) if x ∈ var(hai)

σ(x) if x ∈ var({tp, tp1, . . . , tpk})

One can remark that (ha)µ′ = (tp)µ′ (resp. for any i ∈
{1, . . . , k}, (hai)µ

′ = (tpi)µ
′). Therefore, there exists µ =

mgu((ha1, . . . , hak, ha), (tp1, . . . , tpk, tp)), and there exists a substitution η
such that µ′ = µη so condition at Line 7 is satisfied.

Let us consider B =
⋃k

i=1 hb(ai)ρiµ ∪ hb(a)ρµ as in Algorithm 3 at

Line 8. By definition of µ′ and because of (1)-(4), Bη = (
⋃k

i=1 hb(ai)ρiµ
′ ∪

hb(a)ρµ′) ⊆ ClR(Gex).

Since hb(a)ρµ ⊆ B and head(a)ρµ = (ha)µ, we have a ∈
ar(B,A)((ha)µ). One can remark that (tp)σ = (tp)µ′ = (ha)µ′ =
((ha)µ)η, (tp)σ ∈ ClR(Gex) and Bη ⊆ ClR(Gex). Thus by
Lemma 4.3.6, ar(ClR(B),A)((ha)µ) ⊆ ar(ClR(ClR(Gex)),A)((tp)σ) =
ar(ClR(Gex),A)((tp)σ), as ClR(ClR(Gex)) = ClR(Gex). Moreover, since
a ∈ ar(ClR(B),A)((ha)µ) and a = ch(ar(ClR(Gex),A)((tp)σ)), we deduce
by the Monotony condition of Definition 3.1.7 (P. 49) applied on P that
a = ch(ar(ClR(B),A)((ha)µ)). Since effect(a) = –, we conclude that
(tp)µ = (ha)µ 6∈ (ClR(B))+P .

Similarly, for any i ∈ {1, . . . , k}, we deduce that (tpi)µ ∈ (ClR(B))+P .
Therefore B is added in BGPs by Algorithm 3 at Line 10. Thus there is
B ∈ RdfLeaks(R, P) and η such that η ∈ JBKClR(Gex).

4.3.2 Understanding the Counterexamples

As Algorithm 3 enumerates inconsistency patterns, its output can be used
to correct the access control policy. A proof of concept of the algorithm has
been implemented in Prolog1. The methodology to correct an inconsistent
policy, as shown in Figure 4.2, is to iteratively apply the following two steps:
(1) use Algorithm 3 to obtain counterexample graph patterns; (2) change
the authorization policy to correct inconsistencies illustrated by these graph
patterns. The iteration stops when the authorization policy is consistent w.r.t.
the set of inference rules, in other words when Algorithm 3 returns an empty
set.

1http://liris.cnrs.fr/~tsayah/AC4RDF/

http://liris.cnrs.fr/~tsayah/AC4RDF/

74 Chapter 4. Inference leakage problem and solution

Run Algorithm 3

Inference rules

Yes No

Fix Policy

Policy

Policy

Figure 4.2: Iterative Policy fix

We illustrate this methodology on the inference rules of Example 2.1.16
(P. 22) and the policy defined in Table 3.1 (P. 47) with syntactical order. After
three iterations, no inconsistency subsists anymore. The complete policy once
corrected is given in Table 4.1.

The first run points out the fact that triples with predicate rdf :type are
forbidden by the default authorization a9, but they can be deduced by rule
RDom. Figure 4.3a depicts a counterexample generated from RDom, posi-
tive authorizations a7,a1 and the negative universal authorization a9. Since
most of rdf :type predicates information should be public for integration
purposes, we add a new authorization a′8 that grants access to triples with
predicate rdf :type. a′8 is added after a8 so that the triples with predicate
rdf :type will be granted except those which object is :Cancerous.

A second run points out that triples of the form (X; rdf :type; :Cancerous)
can be deduced by rule RDom since triples (Y ; rdfs :domain ; :Cancerous)
are accessible. Figure 4.3b depicts a counterexample gen-
erated from RDom, positive authorizations a7,a1 and neg-
ative authorization a2, i.e. B = {(?x ; :hasTumor ; ?y),
(:hasTumor ; rdfs :domain ; :Cancerous), (?x ; rdf :type ; :Cancerous)}.
Note that the triple (:hasTumor ; rdfs :domain ; :Cancerous) has been
granted because its applicable authorizations are a7 and a8, and ch chose
the first applicable one which is the positive authorization a7. To remove

4.3. Static verification 75

(a) Counterexample constructed from RDom and {a7,a3,a9}

(b) Counterexample constructed
from RDom and {a7,a1,a2}

(c) Counterexample constructed
from RDom and {a7,a4,a2}

Figure 4.3: Counterexamples constructed from RDom

such source of inconsistencies, one can switch the order of a7 and a8,
denying access to (Y ; rdfs :domain ; :Cancerous). After switching the two
authorizations, at the next run, the Algorithm constructs the same BGPs
but it does not insert them into the set of counterexamples. For instance, the
BGP B of Figure 4.3b will be constructed at line 8 but the test at line 9 will
not succeed since (:hasTumor ; rdfs :domain ; :Cancerous) is denied by a8,
thus it does not belong to (ClR(B))+P .

Note that even the counterexamples generated by the Algorithm 3 are valid
RDF graphs, they may be inconsistent w.r.t a given vocabulary. For instance,
the counterexample depicted by Figure 4.3c, states that :treats domain is
:Cancerous, whereas in our RDFS vocabulary the triple et1 in Figure 2.4
states that it is the domain of :hasTumor. As handling vocabularies is out
of the scope of this thesis, we will discuss this issue and possible solutions in
Chapter 7.

We give more details about the third run that produces a single coun-
terexample graph depicted by Figure 4.4, i.e. B = {(?d ; :service ; ?s),

76 Chapter 4. Inference leakage problem and solution

Table 4.1: Corrected authorization policy

a1 = GRANT(?p ; :hasTumor ; ?t)
a2 = DENY (?p ; rdf :type ; :Cancerous)
a3 = GRANT(?d ; :service ; ?s)
a′3 = DENY (?d ; :treats ; ?p)

WHERE {(?d ; :service ; ?s), (?s ; rdf :type ; :Oncology)}
a4 = GRANT(?d ; :treats ; ?p)
a5 = DENY (?p ; :admitted ; ?s)

WHERE {(?s ; rdf :type ; :Oncology)}
a6 = GRANT(?p ; :admitted ; ?s)
a8 = DENY (?s ; ?p ; :Cancerous)
a7 = GRANT(?p ; rdfs :domain ; ?s)
a′8 = GRANT (?x0 ; rdf :type ; ?x1)
a9 = DENY (?s ; ?p ; ?o)

Figure 4.4: Counterexample constructed from RAdm and {a3,a4,a5}

(?d ; :treats ; ?p), (?p ; :admitted ; ?s), (?s ; rdf :type ; :oncology)} which
involves the rule RAdm together with authorizations a3, a4 and a5. A first
and simple solution would be to change the effect of authorization a4 to deny
access to triples matching (?d ; :treats ; ?p). However, such an authorization
would be extreme while the counterexample suggests to add a finer authoriza-
tion a′3 just before a4. a

′
3 denies access to triples of doctors treating patients

only if they work in an oncology service. Note that we can alternatively switch
(?d ; :treats ; ?p) and (?d ; :service ; ?s) in a′3, but such a choice should be
discussed with domain experts first. After adding a′3, a final execution of the
algorithm confirms that the new policy is consistent w.r.t {RDom,RAdm}
as it returns no counterexample.

Another way of using the counterexamples is to keep the policy unchanged,
but to check if they occur in the actual closed graph managed by the RDF

4.4. Conclusion 77

store. By Theorem 4.3.2, if there is no such instance, no inference leakage will
occur. Thus, one could use each B produced by Algorithm 3 as an integrity
constraint in the RDF store, thereby reject updates that may lead to inference
leakage.

In order to guarantee the absence of inference leakage, one has to add such
an integrity constraint for every graph pattern in the output of Algorithm 3.

Consider the aforementioned counterexample of Figure 4.4, this means that
no leakage corresponding to a5 and resulting from a3,a4 and RDom will
occur. However, in case of a high number of counterexamples, this approach
may burden the query evaluation.

4.4 Conclusion

In this chapter we formalized an inference leakage problem that arises when
inferred triples are computed out of the RDF store by a (potentially) malicious
user. We showed that, whenever the inference system can be expressed in a
set of Datalog-like rules without negation, this property can be statically veri-
fied at the time of writing the authorization policy without the need of a base
graph. Note that OWL2RL, an OWL profile, can also be statically verified
since it is described as a collection of positive Datalog rules [Kolovski 2010].
We proposed a correct and complete algorithm which generates a set of coun-
terexample patterns in case the policy presents an inference leakage problem.
We showed how these counterexamples could be used by the administrator
to fix the policy or as integrity constraints of the base graph. We did some
experiments with the implemented Prolog program, using RDFS rules and
a set of authorizations. The experiments showed that some RDFS inference
rules which have only variables in the premises, cause the generation of sev-
eral counterexamples, since the premises are unifiable with any authorization’s
head. One of these rules is : (?x ;?y ;?z)

(?x ;rdf:type ;rdfs:Resource)
. It caused the generation

of many counterexamples since in the set of our authorizations, we did not
grant access to triples which object is rdfs :Resource, and they were denied
by default by the universal authorization. Since this kind of triples does not
need to be private, adding a grant authorization that gives access to them,
reduced considerably the number of counterexamples.

Chapter 5

Policy administration

Contents
5.1 System architecture . 82

5.2 Language syntax and semantics 82

5.2.1 Abstracting Policy Components 83

5.2.2 Targets evaluation over user requests 86

5.3 User policy generation 88

5.3.1 User SubPolicy . 88

5.3.2 User authorizations selection 89

5.4 Conclusion . 92

B In Chapter 3 we defined AC4RDF, a fine grained access control model for
RDF which semantics are defined by means of positive subgraph from the base
graph. The AC4RDF policies are defined for a given requester and we men-
tioned that the upstream mapping from requesters to authorizations may use
any model from the literature. In this chapter we propose a high level access
control language which allows the definition of high level global policies which
are then compiled to AC4RDF policies to be enforced. We choose to define our
policies on the basis of the user’s attributes following the Attribute Based Ac-
cess Control (ABAC) which allows a much more fine-grained access control
approach combining not only user attributes but other environment informa-
tion, such as location and time. First we define the main components of the
proposed solution then we give the syntax and semantics of a XACML-like pol-
icy language. Policies are defined by trees where nodes represent policies, the
leaves represent authorizations and edges represent targets. A target defines
certain conditions to determine whether this policy is applicable to a user’s
request. Finally, we show how the user’s policy is generated and enforced. C

80 Chapter 5. Policy administration

[Costabello 2012] proposed an attribute based access control at named
graph level. The intercepted user query is rewritten with respect to the user’s
attributes by adding the accessible named graphs to the query which is then
evaluated on the dataset. Similarly, [Abel 2007] proposed a query rewriting
technique. The user attributes are first bound boolean expressions. If it is
evaluated to true, then the query is expanded using policies and evaluated over
the dataset. The drawback of this kind of approaches is that they depend on
the query language. [Reddivari 2005] proposed a language in which policies
are based on user’s attributes that are modeled as RDF triples and stored in
the RDF store. They gave examples on static attributes such as allow A to
see the salary of B if A is the supervisor of B. They did not mention how to
treat dynamic attributes such as time and position. [Lopes 2012] proposed a
model where triples are annotated with non-recursive Datalog with negation
programs which evaluation determines the access permission to the triple given
a specific set of attributes.

In this chapter we give the syntax and the semantics of the language that
allows the definition of global policies. We define a XACML-like language
which allows to describe global policies. Our intuition is to represent the
policy in Tree structure where the intermediate nodes represent policies, the
leaves are authorizations and nodes edges are labeled with targets representing
attribute based conditions. To illustrate, consider the following example.

Example 5.0.1 Suppose we want to protect RDF data about patients and
their medical records. The hospital policy rules state that:

• R1 : The administration staff can access all information about patients
during working time only.

• R2 : The administration staff can access all information in the medical
records during working time, except the patient’s disease.

• R3 : Doctors and nurses can access medical records except those belonging
to patients admitted to oncology.

• R4 : Doctors working in oncology service can access medical records of
patients admitted to oncology service.

• R5 : Doctors and nurses can access medical records belonging to patients
admitted to oncology only if the patient is in critical condition.

First we translate the objects and conditions of the above rules by means of
authorizations and targets. R1 is translated by one authorization a4 which

81

P
•

P0

•

P1

•

a4 a3 a1

P2

•

a2 P3

•

a1 a6 a5

au

Tadmin staff

Twork time Twork time

Tdoc∨nurse

Tdoc∧onc

Figure 5.1: Policy Tree

grants access to all the patient’s information. R1 has two conditions, the user
must belong to the administration staff which is translated by target Tadmin staff

and the access must be at working time, translated by target Twork time. R2 is
translated by two authorizations a1 and a3. a1 grants access to all infor-
mation in medical records. a3 is an exception of a1 since it denies access to
disease name in the medical record. R2 has the same conditions as R1. R3

is translated by authorizations a1 and a5. a5 is an exception of a1 that de-
nies access to medical records of patients admitted to oncology. R3 condition
is that the user must be a doctor or a nurse, translated by target Tdoc∨nurse.
R4 is translated by authorization a2 which grants access to medical records
of patients admitted to oncology. R4 condition is that the user is a doctor
working in oncology, translated by target Tdoc∧onc. R5 is translated by autho-
rization a6 which is an exception a5 that grants access to medical records
of patients admitted to oncology and who are in critical condition. R5 has
the same conditions as R3. Figure 5.1 depicts the above policy in a tree data
structure.

82 Chapter 5. Policy administration

Figure 5.2: System architecture

5.1 System architecture

As shown in Figure 5.2, our solution has three main components:

• Policy Enforcer intercepts the user query Q and attributes rq and
returns the result JQKG+ to the user.

• User Policy Generator is responsible for the constitution of the
user policy (As, ch) using the user’s attributes sent from the Policy

Enforcer.

• AC4RDF receives the user’s policy and her/his query from the Policy

Enforcer and answers with the result of the query over the user’s posi-
tive subgraph.

The Policy Enforcer is a simple component which plays the role of intercon-
nection between the user, the User Policy Generator and AC4RDF. AC4RDF
was defined in Chapter 3 where we showed how the user positive subgraph
is computed from the base graph using a user policy. The User Policy

Generator allows to construct a user policy using her/his attributes and a
Global Policy.

5.2 Language syntax and semantics

To formally define the semantics of our language and reasoning on it, we pro-
vide a syntax of our formalism through the Extended BNF (EBNF) grammar
in Table 5.1. “*” (The Kleene Star) means 0 or more occurrences, whereas
“+” (The Kleene Cross) means 1 or more occurrences. Note that Auth, OP,
Key and Value are pairwise disjoint.

5.2. Language syntax and semantics 83

Table 5.1: Syntax of the policy language

GPolicy := (Target; GPolicy)+

| Auth
Target := (Target ∧ Target)
| (Target ∨ Target)
| (¬Target)
| Atom
| >
Atom := Key OP Value
| Key OP Key
OP := <. | >. | ≤. | ≥. | =. | . . .
Key := k0 | . . . | kn
Value := v0 | . . . | vm
Auth := a0 | . . . | aq | au

Request := (Key; Value)∗

5.2.1 Abstracting Policy Components

The global policy is made of multiple components which are defined as follows:

Request is the component used to query the GPolicy to get the necessary in-
formation about policies that are applicable to the user. The latter represents
the entity requesting to perform an operation upon the policy objects, and
is characterized by attributes. In our language we define attributes as a pair
(Key, Value) where Key specifies the attribute’s name such as user-id, date of
birth, home address, job function . . . , and Value specifies the value. A user re-
quest is defined by a list of pairs (Key, Value). The evaluation of a request over
a GPolicy amounts to compare the Key and the Value according to the criteria
defined in GPolicy, more precisely in the Target. In other words the Request
component represents meta-data of the user, and not the action she/he wants
to execute. Note that the attributes authenticity is out of the scope of this
thesis. Several mechanisms exist to handle attributes authenticity such as
attribute certificate [Farrell 2002].

Example 5.2.1 The following illustrates examples of requests:

rq0 = [(role, doctor), (role, admin staff), (service, onc)]
rq1 = [(role, admin stuff), (time, ”09 : 00”)]
rq2 = [(role, nurse)]

84 Chapter 5. Policy administration

GPolicy is the main component of our formalism and it is the root of all
policy components. A GPolicy can be an atomic authorization or a list of
pairs of targets and child policies which themselves belong to GPolicy.

Auth is the atomic component which represents the policy authorizations, on
which we do not need to have details. In this chapter, we use authorizations of
the AC4RDF model defined in Section 3.1.1 (P. 46). On the other hand, other
kind of authorizations may be used instead of Auth. Indeed, our model can be
used to define upstream policies in order to generate authorizations that are
processable by other models such as [Flouris 2010], which makes the solution
modular.

Target is the component which reflects the needed conditions under which
a GPolicy is applicable. It is defined as a propositional logic formula which
is evaluated using the user attributes to check whether the targeted policy
is applied or not to the user. The formula uses logical connectors (∨,∧,¬)
between atoms (Atom).

OP is a binary operator used in the Atom definition to compare keys
and values. Operators may be mapped to arithmetic operators such as
=. , ≤. , <. , >. and , ≥. . Note that one can define other operations such as
“SubStringOf, IsPrefix,w. RH

, . . . ”.

Atom is the building block of targets. It allows to make operations over keys
and values using operators. Let k, k1, k2 ∈ Key, v ∈ Value, and op a binary
predicate in OP. The Atom component is defined as either : (i) k op v which
compares a Key with a Value, or (ii) k1 op k2 which compares a Key with a
Key.

Example 5.2.2 The following are examples of atoms:
age≥. 18: applies to users whose age is greater than or equal to 18.
role=. nurse: applies to users in role nurse.
role w. RH

doctor: applies to role doctor and all its senior roles, in case of role
hierarchy (2.2.1.3 (P. 28)). Here w. RH

is interpreted by wRH , the hierarchical
relation between roles.

Example 5.2.3 The policy of Example 5.0.1 is interpreted in Table 5.2, built
using the formal language shown in Table 5.1. The global policy P has two
childs : a universal authorization authorization au and another policy P0. P0,

5.2. Language syntax and semantics 85

Table 5.2: Example of a global policy P

Policies
P = [(>,P0), (>,au)]
P0 = [(Tadmin staff ,P1), (Tdoctor∨nurse,P2)]
P1 = [(>,a4), (Twork time,a3), (Twork time,a1)]
P2 = [(Tdoctor∧onc,a2), (>,P3)]
P3 = [(>,a1), (>,a6), (>,a5)]

Targets
Tadmin staff = (role=. admin staff)
Tdoctor∨nurse = ((role=. doctor) ∨ (role=. nurse))
Twork time = ((time≤. ”17 : 00”) ∧ (time≥. ”08 : 00”))
Tdoctor∧onc = ((role=. doctor) ∧ (service=. onc))

Authorizations
a1 = GRANT (?r ; ?x ; ?y)

WHERE {(?p ; :hasRec ; ?r)}
a2 = GRANT (?r ; ?x ; ?y)

WHERE {(?p ; :hasRec ; ?r), (?p ; :admitted ; :onc)}
a3 = DENY (?r ; :disease ; ?d)

WHERE {(?p ; :hasRec ; ?r)}
a4 = GRANT (?p ; ?x ; ?y)

WHERE {(?p ; rdf :type ; :Patient)}
a5 = DENY (?r ; ?x ; ?y)

WHERE {(?p ; :hasRec ; ?r), (?p ; :admitted ; :onc)}
a6 = GRANT (?r ; ?x ; ?y)

WHERE {(?p ; :hasRec ; ?r), (?p ; :admitted ; :onc),
(?p ; :condition ; ”CRITICAL”)}

au = DENY (?x ; ?y ; ?z)

as well as au, are targeted to any user. P0 has two child policies namely:
P1 and P2. P1 is targeted if the user belongs to the administration staff
(Tadmin staff) and P2 if the user is a doctor or a nurse (Tdoc∨nurse). P1 is defined
by three authorizations a1, a3 and a4. a1 and a4 are applied at working
time only (Twork time), whereas a3 is always applied.

P2 is targeted if the user is a doctor or a nurse (Tdoctor∧onc). P2 has two
child policies namely the authorization a2 and the policy P3. a2 is applied if
the user is a doctor whose service is onc (Tdoctor∧onc), whereas P3 is applied
for everyone, i.e. doctors and nurses. P3 targets three authorizations a1, a6

and a5 for any user.

After defining the syntax of our high-level language for an attribute based
access control, we show, in the next section, how are the user requests evalu-

86 Chapter 5. Policy administration

ated over policies. To define the evaluation we use the notation JKx, where x
represents the name of the evaluation function.

5.2.2 Targets evaluation over user requests

As mentioned above, the user request represents a set of key/value pairs that
are used to determine her/his applicable policies. This is done by the evalua-
tion of targets on the request. As a target is made of atoms, and the latter are
made of keys and values, we start by showing the evaluation of keys/values
on a user request, followed by the evaluation of atoms, and finally we show
how targets are evaluated.

Key, Value Evaluation :
We first define an evaluation tool function JKKV : (Key ∪+ Value) ×
Request→P(Value). The function takes an element from the disjoint union
of Key and Value as parameter, and evaluates it over the user request. If the
input parameter is a Key, then JKKV returns the set of values corresponding to
the key found in the request. If the input parameter is a value, then it returns
a singleton containing this value. Formally:

JkKKV(rq) = {v | (k, v) ∈ rq}
JvKKV(rq) = {v}

Example 5.2.4 Consider the user requests rq0, rq1, rq2 defined in Exam-
ple 5.2.1. We obtain the values of keys as follows :

JroleKKV(rq0)= {doctor, admin staff}
JserviceKKV(rq0)= {onc}

JtimeKKV(rq1)= {”09 : 00”}
JroleKKV(rq2)= {nurse}

OP Evaluation :
The function JKOP : OP→(Value×Value→Boolean) is an interpretation func-
tion that maps an operator in OP to a comparison function used to evaluate
the atom. For instance J≥. KOP is interpreted as a function that compares two
values with the arithmetic operator ≥.

5.2. Language syntax and semantics 87

Atom Evaluation :
An atom is made of a binary operator op and a couple of keys or a key and
a value. We define a function JKAtom that checks whether an atom matches a
request. To evaluate an atom, any key and value in the atom is transformed
to two sets of values using JKKV and the user request. The result sets are
then compared by checking whether there exists a couple of values, in their
Cartesian Product, that are evaluated to true using the atom operator. Let
k, k1, k2 ∈ Key, v ∈ Value, rq ∈ Request and op be a predicate in OP.
JKAtom : Atom× Request→Boolean is defined as follows:

Jk op vKAtom(rq)= ∃v1 ∈ JkKKV(rq), ∃v2 ∈ JvKKV(rq); v1 JopKOP v2
Jk1 op k2KAtom(rq)= ∃v1 ∈ Jk1KKV(rq),∃v2 ∈ Jk2KKV(rq); v1 JopKOP v2

Example 5.2.5 Consider the requests rq0 and rq2 defined in Example 5.2.1.

The atom (role=. doctor) is evaluated on rq0 as follows :
J(role=. doctor)KAtom(rq0) =

(
∃v1 ∈ {doctor, admin staff},∃v2 ∈ {doctor};

v1 = v2
)

= true

The atom (role=. nurse) is evaluated on rq2 as follows :
J(role=. nurse)KAtom(rq2) =

(
∃v1 ∈ {nurse},∃v2 ∈ {nurse}; v1 = v2

)
= true

In this case, the interpretation of =. is string equality. The results of
JroleKKV(rq2) and JnurseKKV(rq2) are obtained by applying (Key, Value) evalu-
ation which returns nurse for both key and value. Hence the atom is evaluated
to true.

Target Evaluation :
The global policy targets are evaluated over user requests to check whether or
not the targeted policy is applicable to the user. To evaluate Target, we use
the propositional logic based on (Key,Value) structure. We define the function
JKTR : Target × Request→Boolean which checks whether a target matches a
given request.
Let t, t1, t2 be a Target elements, rq be a Request and at be an Atom. Then,
the evaluation of Target is as follows :

Jt1 ∧ t2KTR(rq)= Jt1KTR(rq) ∧ Jt2KTR(rq)
Jt1 ∨ t2KTR(rq)= Jt1KTR(rq) ∨ Jt2KTR(rq)

J¬tKTR(rq)= ¬JtKTR(rq)
JatKTR(rq)= JatKAtom(rq)
J>KTR(rq)= true

88 Chapter 5. Policy administration

Target component can be expressed in several forms of propositional logic
using logical connector ∨, ∧, ¬ with usual semantics. We evaluate each Atom
which is the smallest component of Target component, using JKAtom defined
in 5.2.2, then, we combine its results using the classical propositional logic
evaluation. > is always evaluated to true.

Example 5.2.6 Consider the target Tdoctor∧onc in Table 5.2, and the request
rq0 in Example 5.2.1. The evaluation of rq0 over Tdoctor∧onc is performed as
follows:

J((role=. doctor) ∧ (service=. onc))KTR(rq0) =
J(role=. doctor)KAtom(rq0) ∧ J(service=. onc)KAtom(rq0) = true ∧ true = true.

Using the Atom evaluation defined in Section 5.2.2, and the truth table of
logical connector ∧, the function will return true. In other words Tdoctor∧onc

matches rq0.

5.3 User policy generation

In this section, we show how does the User Policy Generator proceed to
construct a user policy. Our purpose is to define a global policy which is
queried by user requests to finally generate the pair (As, ch) that will be
processed by AC4RDF. In our illustrative examples, we will suppose that a
nurse is requesting access to the triplestore. We will use the request rq2 =
{(role, nurse)} of Example 5.2.1.

The first step of policy evaluation consists in computing the user’s applica-
ble authorizations. This is done by computing the user’s subpolicy according
to her/his attributes. The authorizations are computed with respect to the
user subpolicy tree by performing a depth traversal of the tree and selecting
the leaves i.e. authorizations. The next step consists in selecting a ch func-
tion that will be used to resolve conflicts. Figure 5.3 illustrates the user policy
generation steps.

5.3.1 User SubPolicy

The first step involves the generation of the user subpolicy represented by a
subtree of the global policy tree according to the user attributes given in a
request. The subtree is generated by traversing the global policy tree in depth,

5.3. User policy generation 89

Figure 5.3: User policy generation

and keeping the nodes connected by edges tagged with targets which match
the user attributes found in the request. The user policy evaluation is given
by the function uPol : Request × GPolicy→GPolicy which maps a recursive
policy to a recursive policy according to a given Request rq. uPol is defined
as follows:

uPol(rq)(a) = a

uPol
(
rq
)(

[(t0, p0), . . . , (tn, pn)]
)

=
[(
ti, uPol(rq)(pi)

)
| JtiKTR(rq)

]
uPol starts from the root policy and performs a recursive traversing of the

global policy tree returning a subpolicy tree in which edges are labeled with
targets evaluated to true using the user request.

Example 5.3.1 Suppose a nurse is requesting access over the policy P defined
in Table 5.2. Her request is translated by rq2 of the Example 5.2.1. uPol will
give the following subpolicy tree illustrated by Figure 5.4:
P = [(>,P0), (>,au)]
P0 = [(Tdoctor∨nurse,P2)]
P2 = [(>,P3)]
P3 = [(>,a1), (>,a6), (>,a5)]

5.3.2 User authorizations selection

Before showing how to select the user subset of authorizations As of the pair
(As, ch), we need to define a function that returns the authorizations of a
given policy, in other words it returns all the leaves of the policy tree.

leaves : GPolicy→P(Auth) is the function which maps a recursive policy
to a set of authorizations. The function performs a depth first traversing of
the tree and returns the leaves (authorizations). leaves is defined as follows :

90 Chapter 5. Policy administration

P
•

P0

•

P2

•

P3

•

a1 a6 a5

au

Tdoc∨nurse

Figure 5.4: Nurse subpolicy tree

leaves(a) = {a}
leaves

(
(, [(, p0), . . . , (, pn)])

)
=
⋃

i∈0..n(leaves(pi))

leaves starts from the root policy and makes a recursive call for all child
policies. If the policy passed as parameter is not an authorization, then all its
child policies are aggregated, whereas if it is an authorization, then it will be
returned.

Now we have all the ingredients to define the function JKuAuth which returns
the authorizations for a given user request. The function is constructed by
the composition of the two functions uPol and leaves. In other words uPol is
applied first to get the user policy, then leaves is applied on the resulted policy
to get the user authorizations. Formally JKuAuth : Request×GPolicy→P(Auth)
is defined as follows:

JrqKuAuth(p) =
(
leaves ◦ uPol

)
(rq, p)

JKuAuth generates the set of user authorizations As of the pair (As, ch) which
will be sent to AC4RDF to be enforced. Remind that the user’s policy (As, ch)
must respect the Totality well-formedness condition by the requirement that
As must contain a universal authorization au (Lemma 3.2.2 (P. 54)). For

5.3. User policy generation 91

simplicity, au is assumed to be unique (Assumption 3.2.3 (P. 55)). Hence
JKuAuth result must contain au for any user’s request. To achieve this condition,
the root of the global policy should have a child policy au with a target >
which is always evaluated to true. That way, au will take part of the result of
any user’s request.

Example 5.3.2 Consider the last example 5.3.1 where we applied uPol to get
the user policy. To select the user’s authorizations, the function JKuAuth applies
leaves on the result of uPol shown in Figure 5.4 as follows:

leaves(P)= leaves(P0) ∪ leaves(au)
= leaves(P2) ∪ {au}
= leaves(P3) ∪ {au}
= {a1,a6,a5,au}

After receiving a user’s request rq over the global policy P from the
Policy Enforcer, the User Policy Generator answers with the user’s pol-
icy (JrqKuAuth(P), ch). ch is parameter that represents the conflict resolution
function presented in Section 3.2 (P. 53). In practice, ch parameter can be the
name of the Java class that implements the function. The Policy Enforcer

sends the received couple (JrqKuAuth(P), ch) as well as the user query Q to
AC4RDF to be enforced. Finally, AC4RDF evaluates the query over the positive
subgraph, and the result is sent back to the user. The following is an example
of how AC4RDF generates the nurse positive subgraph.

Example 5.3.3 Following our examples where a nurse is requesting access,
the User Policy Generator answers to the Policy Enforcer with the user
policy

(
{a1,a6,a5,au}, ch

)
where ch applies the MSTP strategy. Consider

the following closed graph G where every triple is assigned the set applicable
authorizations belonging to the user nurse:

Subject Predicate Object ar(Cl(G),As)(eti) ch

et1 :alice :hasRecord :r1 {au} au

et2 :chuck :hasRecord :r2 {au} au

et3 :r1 :disease :d1 {a1,a5,au} a5

et4 :r2 :disease :d2 {a1,au} a1

et5 :alice :admitted :onc {au} au

Since we want to apply MSTP strategy, a total order will be computed using
Algorithm 2 which will give the following result : [a3,a4,a6,a2,a5,a1,au].

92 Chapter 5. Policy administration

The triple et3 is about record :r1 which belongs to the patient alice who is
admitted to oncology, hence it should not be granted to nurses. For the
user nurse, the set applicable authorizations to et3 is : ar(G,As)(et3) =
{a1,a5,au}. ch function will select the smallest authorization a5. Thus
et3 will be denied as stated by the policy. By applying a similar processing
on all triples in G, we obtain G+ = {et4}. The policy states that doctors
working in oncology service should be granted access to triple et3. In case
a doctor working in oncology requests access to G, the generated user policy
is
(
{a1,a2,a6,a5,au}, ch

)
. The set of applicable authorizations to et3 is

ar(G,A)(et3) = {a1,a2,a5,au}. ch function will select the smallest autho-
rization a2 and et3 will be granted.

5.4 Conclusion

In this chapter we gave the syntax and semantics of an expressive high level
language which allows the definition of global policies for multiple users. The
global policies are defined by means of trees which intermediate nodes rep-
resent other subpolicies and leaves represent authorizations. Subpolicies are
accessible through targets which represent conditions over the user’s attributes
that allow to check whether or not a policy is applicable to the user. The users’
requests are evaluated over global policies by the User Policy Generator

which constructs the user policy. The latter is then enforced by AC4RDF which
generates a positive subgraph, over which the user’s query is evaluated.

Note that we have a global policy from which we computed a part that
depends on the user’s request (As), and a second part that does not depend on
the user’s request (ch). Hence it is fixed and could be coded in the RDF store
once and for all for performance reasons. Then, to link the two parts, it suffices
to make an and between the user’s authorizations and those applicable to the
triple. In the next chapter, we propose an enforcement approach for AC4RDF

model where every triple t in the base graph is annotated with a subset of
the global policy authorization set, representing the applicable authorizations
ar(Cl(G),A)(t). Since the triples are already annotated with their applicable
authorizations of the global policy, an upstream operation is needed before
applying ch. In fact, given a triple t, ch must be applied on the authorizations
applicable to the triple which are also assigned to the user, formally As ∩
ar(Cl(G),A)(t).

Chapter 6

Policy enforcement and
Experiments

Contents
6.1 Policy enforcement . 94

6.1.1 Graph annotation . 95

6.1.2 User’s query evaluation 97

6.2 Implementation . 98

6.2.1 Experiments . 100

6.3 Conclusion . 105

B As mentioned in Chapter 3, AC4RDF model semantics are defined with
the set of authorizations that belongs to the current subject. In a multi-subject
policy context with a set of authorizations A, a subset As ⊆ A of authoriza-
tions is associated to each subject s who executes a (SPARQL) query. In the
previous chapter, we showed how this association could be performed using an
attribute based approach to generate the subject’s policy (As, ch). The latter is
then enforced by AC4RDF which computes the positive subgraph of the authen-
ticated subject. In this chapter, we show how to enforce multi-subject policies
using a data-annotation approach. The idea is to materialize every triple’s
applicable authorizations of the global policy, into a bitset which is used to
annotate the triple. The base graph G is materialized into a graph GA by
annotating every triple t ∈ G with a bitset representing ar(G,A)(t) ⊆ A. The
subjects are similarly assigned a bitset which represents the set of authoriza-
tions assigned to them. When a subject sends a query, the system evaluates
it over the her/his positive subgraph computed by AC4RDF. We start by giving
the semantics of the enforcement approach, then we give the implementation
details with experiments. C

94 Chapter 6. Policy enforcement and Experiments

0 1 1 0 1 0 0 1 &

1 0 0 1 1 0 0 1

0 1 0 0 1 0 1 1

0 1 0 1 1 0 0 1

0 0 0 1 1 0 0 1

1 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1
= +

-

Figure 6.1: Policy Enforcement

6.1 Policy enforcement

As we mentioned in Section 2.3.1 (P. 35), the policy enforcement may be
classified into pre-processing, post-processing or annotation-based. The ad-
vantage of the pre-processing approaches such as query rewriting techniques,
is that the policy enforcer is independent from RDF data. In other words, any
updates on data would not affect the policy enforcement. On the other hand,
this technique fully depends on the query language. In the post-processing
approaches, the query response time may be considerably longer since policies
are enforced after all data (allowed and not allowed) have been processed.
In the annotation approach, since the triples are already annotated with the
access information, only the triples with a grant access can be used to answer
the query. On the other hand, any updates in the data would require the
re-computation of annotations. Some works [Papakonstantinou 2012] support
incremental re-computation of the annotated triples after updates.

To enforce AC4RDF model, we use a data-annotation approach which mate-
rializes the applicable authorizations in an annotated graph denoted by GA.
The latter is computed once and for all subjects at design time. The subjects
queries are evaluated over the annotated graph with respect to their assigned
authorizations. As illustrated by Figure 6.1, the triple’s applicable authoriza-
tions as well as the subject’s assigned ones are encoded into bitsets over which
a logical and is performed to check whether the triple is authorized or not.
In the following, we show how the base graph triples are annotated then we
show how the subjects queries are evaluated.

6.1. Policy enforcement 95

6.1.1 Graph annotation

From a conceptual point of view, an annotated triple can be represented by
adding a fourth component hence obtaining a quad. From a physical point of
view, the annotation can be stored in the graph name of the SPARQL dataset
(Definition 2.1.11 (P. 20)). To annotate the base graph, we use the graph name
IRI of the dataset to store bitsets representing the applicable authorizations of
each triple. Doing so, we do not need extra mechanisms to enforce our model,
in contrast to other approaches which use specific language to interrogate the
annotated triples [Lopes 2010]. Given a set of authorizations A, each triple
in the base graph is annotated with a bitset of size |A| in which the bits set
to one are those in the position of the syntactical order of the authorizations
applicable to the triple. In other words, given an authorization ai in the input
set, the i-th bit is set to 1 in the generated bitset. First we need a bijective
function authToBs which maps a set of authorizations to an IRI representing
the bitset. authToBs-1 is the inverse function of authToBs.

Next we define a function arsg which takes a set of authorizations A′

and a graph G, and returns the subgraph containing triples which the set
of applicable authorizations is A′. The function arsg is formally defined as
follows:

arsg(A′, G) = {t ∈ G | ar(G,A)(t) = A′}

Example 6.1.1 Consider the Table 3.2 (P. 51) containing the applicable au-
thorizations w.r.t policy P = (A, ch) defined in Example 3.1.8 (P. 50).

authToBs({a1,a9}) = 100000001
arsg({a9},Cl(G0)) = {et2, et3, it3}

Now we are ready to define the annotated graph represented by a dataset
(Definition 2.1.11): a set of named graphs in which the name is the binary
encoding of A′ and the graph is the nonempty set of triples arsg(A′, G).

Definition 6.1.2 (Annotated graph) Given a set of authorizations A and
a graph G ∈ BGP, the dataset that represents the annotated graph denoted by
GA, is defined as the following:

GA =
{
〈u, arsg(A′, G)〉 | A′ ∈ P(A)

and arsg(A′, G) 6= ∅ and u = authToBs(A′)
}

Note that having A′ ∈ P(A) raises the problem of combinatorial explosion.
This issue is discussed in Section 6.3

96 Chapter 6. Policy enforcement and Experiments

Example 6.1.3 Consider the Table 3.2 (P. 51) containing the applicable au-
thorizations w.r.t policy P = (A, ch) defined in Example 3.1.8 (P. 50). The
dataset representing the annotated graph is illustrated by Table 6.1.

Table 6.1: Example of a dataset representing an annotated graph

u G
000000111 {et1}
000000001 {et2, et3, it3}
100000001 {et4}
001000001 {et5}
000100001 {et6}
010000011 {it1}
000011001 {it2}

Definition 6.1.2 defines how to annotate the base graph G given the policy
authorizations set. The following lemma ensures that GA forms a partition of
the base graph G.

Lemma 6.1.4 Given an annotated graph GA = {〈u1, G1〉, . . . , 〈un, Gn〉}, the
following properties hold:

• ∀i, j ∈ 1..n : i 6= j =⇒ Gi ∩Gj = ∅

•
⋃

i∈1..nGi = G

Proof In the following, we prove that ∀i, j ∈ 1..n : i 6= j =⇒ Gi ∩Gj = ∅.

We prove that ∀i, j ∈ 1..n : Gi ∩ Gj 6= ∅ =⇒ i = j. Gi ∩ Gj 6= ∅
means that there exists t such that t ∈ Gi and t ∈ Gj. Since
t ∈ Gi then ui = authToBs(ar(G,A)(t)). Similarly, since t ∈ Gj then
uj = authToBs(ar(G,A)(t)). Which means that ui = uj, hence i = j.

In the following we prove that
⋃

i∈1..nGi = G

First we prove that ∀t ∈
⋃

i∈1..nGi =⇒ t ∈ G.

∀t ∈
⋃

i∈1..nGi means that ∃〈u,G′〉 ∈ GA | t ∈ G′. Since by definition,
G′ ⊆ G then t ∈ G.

We prove that ∀t ∈ G =⇒ t ∈
⋃

i∈1..nGi.

Since au ∈ A then ∀t ∈ G, ar(G,A)(t) 6= ∅, hence ∃〈u′, G′〉 ∈ GA s.t.
t ∈ G′. Which means that t ∈

⋃
i∈1..nGi.

6.1. Policy enforcement 97

6.1.2 User’s query evaluation

Following Definition 3.1.9, given a global policy authorization set A, the pos-
itive subgraph of a subject having As ⊆ A as applicable authorizations, is
given by the following : G+

s = {t ∈ G | (effect ◦ ch ◦ ar(G,As)(t) = +}. Since
we materialized the set of applicable authorizations in GA, we need to define
the subject’s positive subgraph from the graph annotation, more precisely
from ar(G,A). The following lemma shows that ar(G,As) can be computed
from As and ar(G,A).

Lemma 6.1.5 Given a graph G, a set of policy authorizations A and a subset
of subject authorizations As, the following holds for any t ∈ G:

As ∩ ar(G,A)(t) = ar(G,As)(t)

Proof By Definition 3.1.3 (P. 47), ar(G,A)(t) = {a ∈ A | ∃θ ∈ Jhb(a)KG.t =
(head(a))θ}, hence As ∩ ar(G,A)(t) = {a ∈ As ∩ A | ∃θ ∈ Jhb(a)KG.t =
(head(a))θ}. Since As ⊆ A then As ∩ A = As. Which means that As ∩
ar(G,A)(t) = {a ∈ As | ∃θ ∈ Jhb(a)KG.t = (head(a))θ} = ar(G,As)(t).

Similarly to the triples, subjects are assigned bitsets representing authoriza-
tions applicable to them. If a subject authorization set is As, then he is
assigned the bitset ubs where the i-th bit is set to one if ai ∈ As.

Example 6.1.6 Given the set of authorizations A in Table 3.1 (P. 47) Eve
is a nurse who can see the patients having tumors (a1) and which service the
patients are admitted to (a6). She is denied anything else (a9). Her assigned
bitset is the following: 100001001. Dave belongs to the administrative staff,
he can access doctors services assignment (a3) and the patients they treat
(a4). He is denied anything else (a9). His assigned bitset is the following:
001100001.

Once the graph is annotated, it is made available to the subjects with a
filter function which prunes out the inaccessible triples given the subject’s
authorization set. In other words, the filter function returns the subjects’s
positive subgraph by applying the ch function on the subject’s assigned au-
thorizations ar(G,As)(t). We showed in Lemma 6.1.5 that this subset can be
obtained from the applicable authorizations in GA by computing a bitwise
logical and (denoted by &) between the subjects’ bitsets and triples’ bitsets,
as illustrated in Figure 6.1.

98 Chapter 6. Policy enforcement and Experiments

Table 6.2: Example of annotated graph and users bitsets

user ubs
Eve 100001001

Dave 001100001

Cl(G0)
A ubs & u

u G Eve Dave
000000111 {et1} 000000001 000000001
000000001 {et2, et3, it3} 000000001 000000001
100000001 {et4} 100000001 000000001
001000001 {et5} 000000001 001000001
000100001 {et6} 000000001 000100001
010000011 {it1} 000000001 000000001
000011001 {it2} 000001001 000000001

Definition 6.1.7 Given a subject’s bitset ubs and an annotated graph GA,
filter is defined as follows:

filter(GA)(ubs) =
⋃
{Gi |〈ui, Gi〉 ∈ GA∧

(effect ◦ ch ◦ authToBs-1(ui & ubs) = +}

Once the subject’s positive subgraph is computed with filter function, the
subject’s query Q is then evaluated over it returning JQKfilter(GA)(ubs) to the
subject.

Example 6.1.8 Let us consider the policy P = (A, ch) of Example 3.1.8
(P. 50). Table 6.2 illustrates the annotated graph obtained from Cl(G0) shown
in Figure 2.2 (P. 16), as well as the two users of Example 6.1.6 with their
assigned authorizations. The filter function computes the positive subgraph of
Eve as follows: filter(GA

0)(100001001) = {et4, et8}. Similarly, Dave’s positive
subgraph equals {et5, et6}.

6.2 Implementation

Our system is implemented using the Jena Java API on top of the Jena
TDB1 (quad) store. Apache Jena is an open source Java framework which
provides an API to manage RDF data. ARQ2 is a SPARQL query engine for
Jena which allows querying and updating RDF models through the SPARQL
standards. ARQ supports custom aggregation and GROUP BY, FILTER func-
tions and path queries.

1https://jena.apache.org/documentation/tdb/
2https://jena.apache.org/documentation/query/

https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/query/

6.2. Implementation 99

Algorithm 4 Quad filter

Input: processed quad (s, p, o, u) and subject’s bitset ubs
Output: Boolean

function QuadFilter((s, p, o, u), ubs)
Let bs← u & ubs
Let decision← bsDecisionCache.get(bs)
if decision = null then

decision← (effect ◦ ch ◦ authToBs-1(bs) = +)
bsDecisionCache.set(bs, decision)

end if
return decision

end function

Jena TDB is a native RDF store which allows to store and query RDF
triples. Jena TDB follows the SPARQL standard by supporting quads that
are stored in datasets. Jena provides rules engines to derive additional RDF
triples from those that are explicitly defined. To be able to support inference,
our access control model needs a forward chaining reasoner. In the presence of
inference, both explicit and implicit triples will be annotated which means that
the closure of the base graph is computed before the annotation operation.
To generate GA, the dataset of annotated triples, we use SPARQL CONSTRUCT

queries to obtain authorizations scopes (see Definition 3.1.5 (P. 48)). An au-
thorization a is transformed into Qa = CONSTRUCT head(a) WHERE hb(a).
We use an in-memory hash map in which we store the ids of the triples and
the correspondent bitset. For every authorization ai, a CONSTRUCT query Qai

is run over the raw dataset, and the result triples are added/updated to the
hash map with the bit i set to 1. Once the hash map computed, it is written
into a dataset which represents GA. Note that we could have used the dataset
directly instead of a hash map, but this would be time consuming due to the
high number of disk accesses. During query evaluation, on the fly filtering
is applied to the accessed triples. Jena TDB provides a low level quad fil-
ter hook3 that we use for implementation. For each accessed quad, let u be
the quad’s graph IRI, t its triple and ubs be the subject’s bitset. A bitwise
logical and is performed between (the bitset represented by) u and ubs. The
ch function on the authorizations obtained by authToBs-1 is then applied in
order to allow or deny access to t. If t is allowed, then it is transmitted to the
ARQ engine to be used by query Q. Otherwise, it will be hidden to the ARQ
engine. An in-memory cache is used to map quad graph IRIs to grant/deny
decisions in order to speedup the filtering process. Algorithm 4 illustrates the
quad filter function integrated to Jena TDB to filter the triples.

3http://jena.apache.org/documentation/tdb/quadfilter.html

http://jena.apache.org/documentation/tdb/quadfilter.html

100 Chapter 6. Policy enforcement and Experiments

Table 6.3: Summary of notations

in |G| Size of the LUBM dataset
in |A| Number of authorizations
in |G+||G| Positive subgraph size w.r.t raw dataset size
in |As| Number of authorizations assigned to the user
in Qs LUBM test Query

out tA Time to build GA in memory
out tW Time to write GA to disk

out tG+ Time to evaluate Q on materialized G+

out tGA Time to evaluate Q on GA

out tG Time to evaluate Q on (raw) G

6.2.1 Experiments

The key input factors for the benchmarking of our solution are the sizes of
the base graphs, the sizes of the access control policies, the sizes of positive
subgraphs, the sizes of users policies and the user queries. The factors are
reported in Table 6.3. The base graphs are synthetic graphs generated by the
Lehigh University Benchmark (LUBM)4. Their sizes (|G|) vary from 126k to
1,591k triples. The access control policies are randomly generated using the
LUBM vocabulary (about universities and people therein), with three control
parameters. The first control parameter is the number of authorizations (|A|)
and varies from 50 to 200 authorizations. The second control parameter is
the scope average of the policy with respect to the G. In other words, the
percentage of triples in G which are under the influence of the policy autho-
rizations. The last control parameter is the size of the body of each (atomic)
authorization a ∈ A. The results we report here are for fixed scope (about
4% by authorization) and fixed sizes of bodies (set to 2 for each authoriza-
tion). The size of positive subgraph parameter |G+||G| varies from 10 to 100%
of |G| and the number of user authorizations |As| from 50 to 200. Regarding
the user’s query parameter Qs, we used a subset of LUBM test queries. We
analyze both the static (creation time) and the dynamic (evaluation time)
performance of our solution. Each experiment is run 6 times on 2 cores and
4 GB virtual machines running on OpenStack.

6.2. Implementation 101

0

50

100

150

200

250

300

350

0 500 1000 1500

ti
m
e
(s
)

t_w

t_A

Figure 6.2: Annotation (tA) and writing (tW) times

6.2.1.1 Static performance

We distinguish the time needed to compute GA between the time required
for its building and the time required for its writing. The time to build the
authorization bitset ar(G, t) associated with each triple t ∈ G in memory is
referred to as tA in Table 6.3. The time to write the annotated graph GA from
the memory to the quad store is referred to as tW in Table 6.3. Figure 6.2
shows tA and tW with |A| being set to 100 authorizations. Figure 6.3 shows
tA and tW with |G| being set to 1,591k triples. As each a ∈ A is mapped
to a SPARQL CONSTRUCT query, the results show that tA grows linearly when
|G| or |A| gets bigger. The annotation time is not negligible but we argue
that it is not an issue: GA is computed once, as long as A is not modified.
Figure 6.3 shows that tA grows linearly when |A| grows. However, as expected,
the results show that tW is independent of |A| : the overhead incurred by the

4http://swat.cse.lehigh.edu/projects/lubm/

0

100

200

300

400

500

0 50 100 150 200

ti
m
e
(s
) t_w

t_A

Figure 6.3: Annotation (tA) and writing (tW) times

http://swat.cse.lehigh.edu/projects/lubm/

102 Chapter 6. Policy enforcement and Experiments

0

2

4

6

8

10

0 500 1000 1500

ti
m
e
(s
)

t_G

t_f

t_gp

Figure 6.4: Query evaluation time (tG, tGA and tG+)

growing size of the bitsets is negligible for |A| ∈ {50, 100, 150, 200}. On
average, the annotated graph GA requires 50% more space than G.

6.2.1.2 Dynamic performance

To evaluate the performance of our solution at runtime, we compare our ap-
proach to two extreme methods. Each method computes the positive subgraph
G+ obtained from the base graph G according to a set A of authorizations.

The first extreme (naive) method gives an upper bound on the overhead
incurred by the filtering process. Indeed, in the post-processing approaches,
the access control consists in two steps : (1) compute the full answer Q(G)
and (2) filter out denied triples from Q(G) as a post-processing step. This
method avoids duplication of the base graph G at the price of high overhead
at runtime. In our experiments, we considered the step (1) only, by computing

0

2

4

6

8

10

0 50 100 150 200

ti
m
e
(s
)

t_G

t_f

t_gp

Figure 6.5: Query evaluation time (tG, tGA and tG+)

6.2. Implementation 103

the full answer Q(G). We refer to this method as tG in Table 6.3.

The second extreme method gives a lower bound on the overhead incurred
by the filtering process. The idea is to materialize G+ for each user profile
and then compute Q(G+). We refer to this method as tG+ in Table 6.3. This
method avoids the filtering post-process at the price of massive duplication
and storage overhead, as a graph is materialized for each user profile. In
contrast, our approach, namely tGA in Table 6.3, is a trade-off between the
extreme ones: it needs some static computation while offering competitive
runtime performance. Our results are shown in Figure 6.4 for varying sizes of
|G| with |A| and |As| set to 100, and |G+||G| set to 40%. The user’s query Qs

is set to the worst case which is the select all query.

The key insight from these experiments is that the overhead is independent
from |G| and is about 50%.

Another advantage of our approach is its independence from the number
of authorizations of both the policy and those assigned to the user. In Fig-
ures 6.5 and 6.6 we vary the number of policy authorizations (|A|) and user
authorizations |As| respectively, with |G| set to 1,591k triples and Qs to the
select all query. The experiments show a constant overhead while changing
|A| or |As|.

Regarding |G+||G|, the size of the positive subgraph with respect to the
size of the annotated graph, the experiments in Figure 6.7 show that the
query answer time tGA grows linearly when |G+||G| grows, with |G| fixed to
1,591k and |A| and |As| fixed to 100. Qs being the select all query. This
shows that the overhead w.r.t. Q(G+) does not depend on the size of the
positive subgraph. Note that tG does not vary since we did not consider the
filtering step of post-processing approaches, otherwise it would grow when
|G+||G| grows.

0

2

4

6

8

10

12

14

0 50 100 150 200

ti
m
e
(s
)

t_G

t_f

t_gp

Figure 6.6: Query evaluation time (tG, tGA and tG+)

104 Chapter 6. Policy enforcement and Experiments

0

2

4

6

8

10

12

0 20 40 60 80 100

ti
m
e
(s
)

t_G

t_f

t_gp

Figure 6.7: Query evaluation time (tG, tGA and tG+)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

ti
m
e
(m

s)

t_gp

t_f

Figure 6.8: Query evaluation time (tG, tGA and tG+)

In Figure 6.8 we run experiments on our system with a subset of LUBM
test queries used by [Atre 2010], with |A| and |As| set to 100, and |G+||G|
set to 40%. We computed the LUBM queries evaluation times and repeated
the experiments 100 times. Q1 and Q3 are more complex queries having a
high number of initial triples associated with the triple patterns, but the final
number of results is quite small (28 and 0 respectively). For these queries, the
initial selectivity of the triple patterns and selectivity of the intermediate join
results were quite low, but together they gave highly selective results (these
queries have cyclic dependency among join variables). Figure 6.8 shows that
the time to evaluate query Q3 in presence of the filter tGA is smaller than the
evaluation time over materialized positive subgraph tG+ . The reasons could
be the empty result of Q3 or different execution plans.

6.3. Conclusion 105

6.3 Conclusion

In this chapter, we proposed an enforcement framework to the AC4RDF access
control model. We used a data annotation approach where the base graph is
annotated at the policy design time. Each triple is annotated with a bitset
representing its applicable authorizations. The subjects’ queries are evaluated
over their positive subgraph constructed using her/his bitset and the triples’
bitset. The experiments showed that the annotation time is not negligible,
but we argue that it is not an issue since this operation is done once and for
all during policy design time. Moreover, in Figure 6.2 the ratio tA/tW is about
3.4 on average for fixed value of G. Which means that we need 3.4 times of
the time to write the base graph to compute in-memory annotation plus the
time to write the result to the disk, i.e. a total time of 4.4 times of the time
to write the base graph. The materialization approach gives fast query an-
swering, however it could lead to a massive duplication and storage overhead,
as a graph is materialized for each user profile. Our method is amortized
if the sum of triples in the materialized named graphs is approximatively 5
times greater then the number of triples in the base graph. We showed that
the overhead of the subject query evaluation is independent from the size of
the base graph, and it is about 50%. Moreover, we showed that the query
evaluation is independent from the number of policy authorizations as well
as the used query language since the way we implemented our access control
is independent from the query language as we did not change anything on
the ARQ query engine. The annotation bitset represents a combination of
authorizations (Definition 6.1.2), may lead to the problem of combinatorial
explosion. Theoretically, there is at most 2|A|−1 bitsets, since the universal
authorization is always applicable. However, some combinations may never
happen. For instance, if a is more specific then b, then for any triple t, if
b is not applicable to t then a is not applicable to t ∈ G. Hence we will
never have a bitset where the position of b is set to 0 and that of a set
to 1. Furthermore, some authorizations applicability may never apply at the
same time. For instance, given two authorizations a and b with non-unifiable
heads, then they will never apply to the same triple. Hence we will never have
a bitset where the positions of a and b are set to 1. In addition, in real-life
scenarios, the user is assigned a subset of authorizations, which reduces the
number of combinations.

Chapter 7

Conclusion

Contents
7.1 Summary . 108

7.2 Discussion and future work 109

7.2.1 Expressiveness . 109

7.2.2 Verifiability . 111

7.2.3 Performance . 111

B In this chapter, we start by giving a summary of the contributions proposed
in this thesis, namely : AC4RDF a fine-grained access control model for RDF,
the static verification algorithm, the high-level attribute based language and
the enforcement framework. In the next section, we discuss some limitations
of the proposed solutions and we give directions for future improvements and
future work. C

108 Chapter 7. Conclusion

7.1 Summary

In this thesis, we considered the problem of controlling the access to RDF data
in the context of Linked Data. We started by considering the works that have
been done in this research field, by defining the comparison criteria, including
the expressiveness of policy specification languages, conflict resolution gener-
ated by conflicting decisions and the verification of unauthorized inferences.
We found out that several criteria have not been well considered. Starting
from this fact, we defined the syntax and the semantics of an access control
model named AC4RDF allowing a fine grained selective disclosure of RDF data.
The semantics of our model are defined by means of the positive subgraph
from the base graph, on which the user query is evaluated. This makes our
model independent from the query language in contrast to query rewriting
techniques. As the real semantics of a graph are represented by its closure, we
consider the inferred triples like the explicit ones with respect to authorization
policy. In fact, our model grants/denies access to implicit triples if the policy
states that it must be granted/denied to the user, in contrast to propagation
approaches where some implicit triples could not be returned to the user even
though the policy states that she/he is granted access to them.

We showed that inference could be used by a potentially malicious user
to access forbidden information, this problem is named the inference leakage
problem. A user who knows the inference rules, could use a local reasoner over
her/his accessible triples, to infer triples she/he is not supposed to access. We
formalized this problem into the consistency property which, if respected by
the policy, ensures that denied triples can not be inferred once the data have
been disclosed to the user. We showed that whenever the inference system
can be expressed in a set of Datalog-like rules without negation, this property
can be statically verified at the time of writing the authorization policy. We
proposed a correct an complete algorithm, which, without any knowledge of
the base graph, checks if a policy presents an inference leakage problem, in
contrast to the works that considered such problem, on the base graph. In
case of a policy inconsistency, the algorithm generates counterexample graph
patterns that can be used by the administrator to fix the policy or as integrity
constraints that do not allow updates leading to inference leakage.

The Attribute Based Access Control Model has shown its flexibility by
allowing expressive policies based on the subject’s attributes. Given the open
nature of the web, we proposed the syntax and semantics of an expressive high
level language which allows the definition of global policies for multiple users.
The global policies are defined by means of trees which intermediate nodes rep-
resent other subpolicies and leaves represent authorizations. Subpolicies are
accessible through targets which represent conditions over subject’s attributes

7.2. Discussion and future work 109

that define whether or not a policy is applicable to the subject. Subject’s re-
quests are evaluated over global policies to construct a subject’s policy which
is then enforced by AC4RDF to generate a positive subgraph, over which the
user’s query is evaluated.

To enforce our model, we proposed a data-annotation approach where we
annotate every triple of the base graph with a bitset representing its appli-
cable authorizations. Similarly, users are assigned bitsets representing the
authorizations applicable to them. We proved that our encoding is correct
and we gave details about the annotation process as well as the evaluation
of the subject’s queries. We used the graph name position to store the bit-
set of applicable authorization of the triple which means that no additional
mechanisms are needed to enforce our model, in contrast to approaches that
use specific extensions of RDF data model to store annotations. We run ex-
periments of our solution implemented on a concrete RDF store and showed
that our implementation incurs reasonable overhead at runtime (about +50%)
with respect to the optimal solution which consists in materializing the user’s
accessible subgraph.

7.2 Discussion and future work

The solutions proposed in this thesis allow a fine-grained selective disclosure
of RDF data in the context of Liked Data. Following our requirements on
which our proposals were driven (Section 6.2), our future work regards the
following directions :

7.2.1 Expressiveness

One limitation of our approach is that some real-life policies that depend
on the user’s profile may require the creation of several authorizations. For
instance a policy may state that a doctor can access only the disease of
the patients he treats. To apply this policy in the present framework, we
should create an authorization for each user’s profile and assign it to the
user in question. We would like to extend our model with parameterized au-
thorizations where the patterns may contain parameters in the subject or
object position. To enforce the policies, the parameters are instantiated
with terms which represent values of the user’s attributes. For instance,
the previous policy example would be translated into the authorization :
aid = GRANT(?p ; :disease ; ?ds) WHERE {($id ; :treats ; ?p)}. This authoriza-
tion is instantiated by replacing $id with the IRI representing the doctor’s

110 Chapter 7. Conclusion

identifier. Hence, adding parameters, leads to changing the semantics of au-
thorizations by introducing a new substitution which replaces parameters with
user’s attributes. This extension raises new issues related to our enforcement
approach. Indeed, our enforcement solution is static, and the problem is that
these parametrized authorizations are hard to deal with statically. One solu-
tion could be to consider parameters as variables in the annotation operation.
However, the user query evaluation process must be extended. Indeed, the ch
function may chose a parametrized authorization which once instantiated, may
not be applicable to the triple. Hence all the parameterized authorizations
in the subset of the triple’s applicable authorizations must be dynamically
instantiated with the user’s attributes to check whether they are applicable
or not.

We showed in Chapter 3 how to apply the Most Specific Takes Precedence
(MSTP) strategy by defining the specificity relation between authorizations. We
showed that this strategy has a semantic and syntactic definition. The issue is
that they may no longer match when considering the inference rules. Hence,
the MSTP strategy would not be fully applied, which decreases the effectiveness
of the policy application. To illustrate this, consider the following two autho-
rizations: a = GRANT (?d; :treats; ?p) WHERE {(?d; rdf :type; :Doctor)}, and
b = GRANT (?d; :treats; ?p) WHERE {(?p; :condition; CRITICAL)}. By the def-
inition of the partial order between authorizations (Definition 3.1.14), a and
b are not comparable. However, if we have a vocabulary which states that
:treats domain is :Doctor and its range is :Patient, then the two authoriza-
tions become semantically comparable on the closure of any graphG computed
using RDFS rules (in particular rules RDom and RRan), i.e. b is more spe-
cific then a. One idea could be to translate schema triples into axiomatic
inference rules R′ and to add them to set of inference rules R, i.e. R′′ = R∪R′.
Definition 3.1.14 could be extended with R′′ where an authorization a1 is more
specific than a2 if ∃θ.ClR′′(hb(a2))θ ⊆ ClR′′(hb(a1))∧head(a2)θ = head(a1).
By this new definition, a and b of the above example are comparable, i.e. b

is more specific then a.

We plan to extend AC4RDF with update operations. Syntactically, extend-
ing our model with updates amounts to add the operation name to the au-
thorizations. For instance, to allow a user to insert patients’ admissions, the
authorization is as follows : GRANT INSERT (?p ; :admitted ; ?s). Semanti-
cally, new issues raise from updates, such as policy inconsistencies that stem
from implicit insertion/deletion. Indeed, inserting/deleting a triple may lead
to the insertion/deletion of other triples. Hence, an inconsistent policy may
state that a user is allowed to insert a triple, but she/he she is not allowed to

7.2. Discussion and future work 111

insert some of its consequences that can be inferred. Our static verification
algorithm could be adapted to detect such policy inconsistencies by checking
if the premises of an inference rule match GRANT INSERT authorizations and if
its conclusion matches a DENY INSERT authorization. Triples’ deletion could
be treated similarly. Updates also raise a new kind of inference leakage prob-
lem linked to the so-called interference property [McLean 1990]. A user could
send a write query to the system, and if the answer is negative then she/he
can infer the existence of triples she/he is not supposed to read.

7.2.2 Verifiability

In Chapter 4 (Inference leakage problem and solution), the counterexam-
ples are used to fix the policy manually by the administrator. Updating the
policy may lead to the elimination of some counterexamples as well as the
generation of new ones. The problem is that when the administrator updates
the policy, she/he does not know what are the counterexamples eliminated/-
generated. The latter could help the administrator understand the inference
leakage problem in her/his policy. We would like to improve the user inter-
action of the algorithm. When the administrator adds a new authorization,
the next run of the algorithm finds the counterexamples affected by this new
authorization. If the new added authorization effect is deny, the algorithm
checks the inference rules which conclusion unifies with the head of the new
authorization. The generated counterexamples from these rules are then dis-
played to the administrator as the impact of her/his policy modification.

7.2.3 Performance

Regarding the static verification Algorithm, we mentioned that the coun-
terexamples can be used as integrity constraints. A high number of counterex-
amples may burden the query evaluation. Some of the counterexamples may
have no sense w.r.t the application domain or w.r.t a given vocabulary. Lan-
guages such as ShEx [Prud’hommeaux 2014] enable RDF validation through
the declaration of constraints on the RDF model, based on regular expressions.
We plan to extend the algorithm to filter out the inconsistent graphs that do
not satisfy such constraints. This would reduce considerably, the number of
the generated counterexamples.

One future work direction is to optimize the annotation process using the
specificity relation between authorizations. If an authorization a1 is more

112 Chapter 7. Conclusion

specific than a2, then for all t in the base graph, if a1 is applicable to t
then a2 is applicable as well. We could use this property to optimize the
annotation operation since all the triples in the scope of a1 do not need to be
checked for a2. The annotation algorithm would be as follows : (1) compute
the set minsvMSTP

(A) containing the most specific authorizations in A (2) for
each bitset of the triples in the scope of a ∈ minsvMSTP

(A), set the bit of all
authorizations {b | bvMSTPa} to 1 (3) remove the subset minsvMSTP

(A) from
A (4) repeat (1) to (3) until A is empty.

The issue of annotations re-computation arises when the annotated graph
is updated. Instead of recomputing all the annotations after updates, we
could use an incremental annotation, such that, if a triple is inserted/updat-
ed/deleted in the annotated graph, only the triples’ bitsets affected by this
update will be recomputed. Once a triple is inserted/updated/deleted in the
annotated graph, the triples’ bitsets that might be affected are those which
match a pattern in the body of some authorizations. Hence, only some bits
should be updated. Such an optimization would reduce the number of updates
on the annotated graph.

Another issue concerns the implementation of the annotation algorithm.
We used an in-memory cache to store the triples Ids and bitsets temporarily
before being stored in the dataset representing the annotated graph. In case
of a high number of triples that can’t hold in memory, we could use a hybrid
approach by loading the triples partially to reduce the disk I/O. One solution
could be to select subsets from the set of authorizations A, and computing
an in-memory hashmap containing annotated triples with respect to these
subsets (see section 6.2 (P. 98)). Once the hashmap is computed, it is written
to the disk, and another subset is selected. During the writing operation, if a
triple has been already added in a previous iteration, then its bitset is updated
with the result of the logical or between the old bitset and the new bitset.

Bibliography

[Abel 2007] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koes-

ling, Daniel Krause and Daniel Olmedilla. Enabling advanced and

context-dependent access control in RDF stores. In The Semantic Web,

pages 1–14. Springer, 2007. (Cited on pages 7, 34, 35, 37, 38, 39, 41

and 80.)

[Abiteboul 1995] Serge Abiteboul, Richard Hull and Victor Vianu. Founda-

tions of databases. Addison-Wesley, Boston, 1995. (Cited on page 21.)

[Adam 1989] Nabil R. Adam and John C. Wortmann. Security-Control Meth-

ods for Statistical Databases: A Comparative Study. ACM Comput.

Surv., vol. 21, no. 4, pages 515–556, 1989. (Cited on page 66.)

[Agrawal 2004] Rakesh Agrawal, Roberto Bayardo, Christos Faloutsos, Jerry

Kiernan, Ralf Rantzau and Ramakrishnan Srikant. Auditing com-

pliance with a hippocratic database. In Proceedings of the Thirtieth

international conference on Very large data bases-Volume 30, pages

516–527. VLDB Endowment, 2004. (Cited on page 4.)

[Angles 2008] Renzo Angles and Claudio Gutiérrez. Survey of graph database

models. ACM Comput. Surv., vol. 40, no. 1, 2008. (Cited on page 14.)

[Atre 2010] Medha Atre, Vineet Chaoji, Mohammed J. Zaki and James A.

Hendler. Matrix ”Bit” loaded: a scalable lightweight join query pro-

cessor for RDF data. In Proceedings of the 19th International Con-

ference on World Wide Web, WWW 2010, Raleigh, North Carolina,

USA, April 26-30, 2010, pages 41–50, 2010. (Cited on page 104.)

[Baldwin 1990] R. W. Baldwin. Naming and Grouping Privileges to Simplify

Security Management in Large Databases. In Proceedings of the 1990

IEEE Symposium on Security and Privacy, Oakland, California, USA,

May 7-9, 1990, pages 116–132, 1990. (Cited on page 29.)

[Barker 2002] Steve Barker. Protecting deductive databases from unauthorized

retrieval and update requests. Data & Knowledge Engineering, vol. 43,

no. 3, pages 293–315, 2002. (Cited on page 34.)

114 Bibliography

[Bell 1973] D Elliott Bell and Leonard J LaPadula. Secure computer systems:

Mathematical foundations. Rapport technique, DTIC Document, 1973.

(Cited on page 27.)

[Berners-Lee 2006] Tim Berners-Lee. Linked data-design issues. 2006. (Cited

on page 2.)

[Berners-Lee 2011] Tim Berners-Lee and Dan Connolly. Notation3 (N3):

A readable RDF syntax. W3C Team Submission, 2011. (Cited on

page 18.)

[Bertino 1997] Elisa Bertino, Pierangela Samarati and Sushil Jajodia. An

Extended Authorization Model for Relational Databases. IEEE Trans.

Knowl. Data Eng., vol. 9, no. 1, pages 85–101, 1997. (Cited on page 32.)

[Bizer 2009] Christian Bizer, Tom Heath and Tim Berners-Lee. Linked Data

- The Story So Far. Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pages

1–22, 2009. (Cited on page 1.)

[Broekstra 2003] Jeen Broekstra and Arjohn Kampman. SeRQL: a second

generation RDF query language. In SWAD-Europe Workshop on Se-

mantic Web Storage and Retrieval, pages 13–14, 2003. (Cited on

page 18.)

[Costabello 2012] Luca Costabello, Serena Villata, Nicolas Delaforge, Fabien

Gandonet al. Linked data access goes mobile: Context-aware autho-

rization for graph stores. In LDOW-5th WWW Workshop on Linked

Data on the Web-2012, 2012. (Cited on pages 34, 35, 37, 38, 39 and 80.)

[Cuppens 2003] Frédéric Cuppens and Alexandre Miège. Modelling Contexts

in the Or-BAC Model. In 19th Annual Computer Security Applications

Conference (ACSAC 2003), 8-12 December 2003, Las Vegas, NV, USA,

pages 416–425, 2003. (Cited on page 26.)

[Cyganiak 2014] Richard Cyganiak, David Wood and Markus Lanthaler. RDF

1.1 concepts and abstract syntax. W3C Recommendation. Feb, 2014.

(Cited on page 15.)

[Damiani 2002] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano

Paraboschi and Pierangela Samarati. A fine-grained access control

system for XML documents. ACM Transactions on Information and

Bibliography 115

System Security (TISSEC), vol. 5, no. 2, pages 169–202, 2002. (Cited

on page 4.)

[Denning 1976] Dorothy E. Denning. A Lattice Model of Secure Information

Flow. Commun. ACM, vol. 19, no. 5, pages 236–243, 1976. (Cited on

page 27.)

[Diffie 1976] Whitfield Diffie and Martin E Hellman. New directions in cryp-

tography. Information Theory, IEEE Transactions on, vol. 22, no. 6,

pages 644–654, 1976. (Cited on page 4.)

[Farkas 2002] Csilla Farkas and Sushil Jajodia. The Inference Problem: A

Survey. SIGKDD Explorations, vol. 4, no. 2, pages 6–11, 2002. (Cited

on pages 6 and 66.)

[Farrell 2002] Stephen Farrell and Russell Housley. An internet attribute cer-

tificate profile for authorization. RFC3281, 2002. (Cited on page 83.)

[Ferraiolo 2001] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila,

D. Richard Kuhn and Ramaswamy Chandramouli. Proposed NIST

standard for role-based access control. ACM Trans. Inf. Syst. Secur.,

vol. 4, no. 3, pages 224–274, 2001. (Cited on page 29.)

[Flouris 2010] Giorgos Flouris, Irini Fundulaki, Maria Michou and Grigoris

Antoniou. Controlling access to RDF graphs. In Future Internet-FIS

2010, pages 107–117. Springer, 2010. (Cited on pages 7, 34, 35, 37, 38,

39, 41 and 84.)

[Griffiths 1976] Patricia P. Griffiths and Bradford W. Wade. An Authorization

Mechanism for a Relational Database System. ACM Trans. Database

Syst., vol. 1, no. 3, pages 242–255, 1976. (Cited on page 4.)

[Harris 2013] Steve Harris and Andy Seaborne. SPARQL 1.1

query language. W3C Recommendation, vol. 21, 2013.

http://www.w3.org/TR/sparql11-query/. (Cited on page 18.)

[Haslhofer 2011] Bernhard Haslhofer, Elaheh Momeni Roochi, Bernhard

Schandl and Stefan Zander. Europeana RDF store report. 2011. (Cited

on page 11.)

116 Bibliography

[Hayes 2014] Patrick J Hayes and Peter F Patel-Schneider. RDF 1.1 Seman-

tics. W3C Recommendation, 2014. http://www.w3.org/TR/rdf11-

mt/. (Cited on pages 7, 14, 16, 17 and 25.)

[Jain 2006] Amit Jain and Csilla Farkas. Secure resource description frame-

work: an access control model. In SACMAT, pages 121–129. ACM,

2006. (Cited on pages 7, 9, 34, 35, 37, 38, 39, 40 and 67.)

[Kahn 1962] A. B. Kahn. Topological sorting of large networks. Commun.

ACM, vol. 5, no. 11, pages 558–562, 1962. (Cited on page 60.)

[Kobilarov 2009] Georgi Kobilarov, Tom Scott, Yves Raimond, Silver Oliver,

Chris Sizemore, Michael Smethurst, Christian Bizer and Robert Lee.

Media Meets Semantic Web - How the BBC Uses DBpedia and Linked

Data to Make Connections. In The Semantic Web: Research and

Applications, 6th European Semantic Web Conference, ESWC 2009,

Heraklion, Crete, Greece, May 31-June 4, 2009, Proceedings, pages

723–737, 2009. (Cited on page 2.)

[Kolovski 2010] Vladimir Kolovski, Zhe Wu and George Eadon. Optimizing

Enterprise-Scale OWL 2 RL Reasoning in a Relational Database Sys-

tem. In The Semantic Web - ISWC 2010 - 9th International Seman-

tic Web Conference, ISWC 2010, Shanghai, China, November 7-11,

2010, Revised Selected Papers, Part I, pages 436–452, 2010. (Cited on

page 77.)

[Lamport 1981] Leslie Lamport. Password authentication with insecure com-

munication. Communications of the ACM, vol. 24, no. 11, pages 770–

772, 1981. (Cited on page 4.)

[Lampson 1974] Butler W. Lampson. Protection. Operating Systems Review,

vol. 8, no. 1, pages 18–24, 1974. (Cited on page 26.)

[Lassner 2002] David Lassner, Dave De Roure and Arun Iyengar, editeurs.

Proceedings of the eleventh international world wide web conference,

WWW 2002, may 7-11, 2002, honolulu, hawaii. ACM, 2002. (Cited on

page 18.)

[Livshits 2005] V. Benjamin Livshits and Monica S. Lam. Finding Security

Vulnerabilities in Java Applications with Static Analysis. In Proceed-

Bibliography 117

ings of the 14th USENIX Security Symposium, Baltimore, MD, USA,

July 31 - August 5, 2005, 2005. (Cited on page 68.)

[Lopes 2010] Nuno Lopes, Axel Polleres, Umberto Straccia and Antoine Zim-

mermann. AnQL: SPARQLing up annotated RDFS. In The Semantic

Web–ISWC 2010, pages 518–533. Springer, 2010. (Cited on pages 35,

38 and 95.)

[Lopes 2012] Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel

Polleres and Alessandra Mileo. A Logic Programming approach for

Access Control over RDF. In ICLP 2012, Hungary, pages 381–392,

2012. (Cited on pages 7, 9, 34, 37, 38, 39, 40, 41 and 80.)

[Martelli 1982] Alberto Martelli and Ugo Montanari. An Efficient Unification

Algorithm. ACM Trans. Program. Lang. Syst., vol. 4, pages 258–282,

April 1982. (Cited on pages 70, 122 and 123.)

[McLean 1990] John McLean. Security Models and Information Flow. In

Proceedings of the 1990 IEEE Symposium on Security and Privacy,

Oakland, California, USA, May 7-9, 1990, pages 180–189, 1990. (Cited

on page 111.)

[Papakonstantinou 2012] Vassilis Papakonstantinou, Maria Michou, Irini

Fundulaki, Giorgos Flouris and Grigoris Antoniou. Access control for

RDF graphs using abstract models. In SACMAT, pages 103–112, 2012.

(Cited on pages 7, 9, 35, 37, 38, 39, 40 and 94.)

[Pérez 2009] Jorge Pérez, Marcelo Arenas and Claudio Gutierrez. Semantics

and complexity of SPARQL. ACM Trans. Database Syst., vol. 34,

no. 3, pages 16:1–16:45, September 2009. (Cited on pages 16 and 19.)

[Polleres 2007] Axel Polleres. From SPARQL to Rules (and Back). In WWW,

pages 787–796, 2007. (Cited on pages 18 and 34.)

[Prud’hommeaux 2014] Eric Prud’hommeaux, José Emilio Labra Gayo and

Harold R. Solbrig. Shape expressions: an RDF validation and trans-

formation language. In Proceedings of the 10th International Con-

ference on Semantic Systems, SEMANTICS 2014, Leipzig, Germany,

September 4-5, 2014, pages 32–40, 2014. (Cited on page 111.)

118 Bibliography

[Rabitti 1991] Fausto Rabitti, Elisa Bertino, Won Kim and Darrell Woelk. A

Model of Authorization for Next-Generation Database Systems. ACM

Trans. Database Syst., vol. 16, no. 1, pages 88–131, 1991. (Cited on

page 4.)

[Rachapalli 2014] Jyothsna Rachapalli, Vaibhav Khadilkar, Murat Kantar-

cioglu and Bhavani Thuraisingham. Towards Fine Grained RDF Ac-

cess Control. In SACMAT, pages 165–176. ACM, 2014. (Cited on

page 7.)

[Ramli 2011] Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson and

Flemming Nielson. The Logic of XACML. In FACS, 2011, Norway,

pages 205–222, 2011. (Cited on page 30.)

[Reddivari 2005] Pavan Reddivari, Tim Finin and Anupam Joshi. Policy-

based access control for an RDF store. In WWW, pages 78–81, 2005.

(Cited on pages 7, 9, 34, 35, 37, 38, 39, 40, 41 and 80.)

[Rivest 1978] Ronald L Rivest, Adi Shamir and Len Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Communi-

cations of the ACM, vol. 21, no. 2, pages 120–126, 1978. (Cited on

page 4.)

[Samarati 2001] Pierangela Samarati and Sabrina Capitani de Vimercati. Ac-

cess control: Policies, models, and mechanisms. In Foundations of Se-

curity Analysis and Design, pages 137–196. Springer, 2001. (Cited on

pages 25 and 32.)

[Sandhu 1996] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and

Charles E. Youman. Role-Based Access Control Models. IEEE Com-

puter, vol. 29, no. 2, pages 38–47, 1996. (Cited on page 29.)

[Sandhu 2000] Ravi S. Sandhu, David F. Ferraiolo and D. Richard Kuhn. The

NIST model for role-based access control: towards a unified standard.

In ACM Workshop on Role-Based Access Control, pages 47–63, 2000.

(Cited on page 29.)

[Seaborne 2004] Andy Seaborne. RDQL-a query language for RDF. W3C

Member submission, vol. 9, no. 29-21, page 33, 2004. (Cited on

page 18.)

Bibliography 119

[Sintek 2002] Michael Sintek and Stefan Decker. TRIPLE—A query, infer-

ence, and transformation language for the semantic web. In The Se-

mantic Web—ISWC 2002, pages 364–378. Springer, 2002. (Cited on

page 18.)

[Su 1987] Tzong-An Su and Gultekin Özsoyoglu. Data Dependencies and In-

ference Control in Multilevel Relational Database Systems. In Proceed-

ings of the 1987 IEEE Symposium on Security and Privacy, Oakland,

California, USA, April 27-29, 1987, pages 202–211, 1987. (Cited on

page 66.)

[ter Horst 2005] Herman J. ter Horst. Completeness, decidability and com-

plexity of entailment for RDF Schema and a semantic extension in-

volving the OWL vocabulary. J. Web Sem., vol. 3, no. 2-3, pages 79–115,

2005. (Cited on page 18.)

[Thuraisingham 1987] Bhavani M. Thuraisingham. Security checking in re-

lational database management systems augmented with inference en-

gines. Computers & Security, vol. 6, no. 6, pages 479–492, 1987. (Cited

on page 66.)

[Udrea 2010] Octavian Udrea, Diego Reforgiato Recupero and V. S. Subrah-

manian. Annotated RDF. ACM Trans. Comput. Log., vol. 11, no. 2,

2010. (Cited on page 34.)

[Wang 2004] Lingyu Wang, Duminda Wijesekera and Sushil Jajodia. A logic-

based framework for attribute based access control. In ACM Workshop,

pages 45–55, 2004. (Cited on page 26.)

Appendix A

Appendix

In this appendix, we provide additional technical definitions and lemmas and

the LUBM Queries used for experiments.

A.1 Results from Section 2.1.1.3

Lemma A.1.1 (Closure property) Cl is a closure operator that satisfies

the following properties for all G ∈ BGP :

Extensive G ⊆ Cl(G)

Increasing G ⊆ H ⇒ Cl(G) ⊆ Cl(H)

Idempotent Cl(G) = Cl(Cl(G))

Proof of Lemma A.1.1 First, let k the smallest natural number that exists

according to Lemma 2.1.14, so we can express Cl(G) as a finite union of graphs

Cl(G) = G0 ∪G1 ∪ . . . ∪Gk.

Extensive By definition G = G0.

Increasing By induction, we show first that Gi ⊆ Hi. For i = 0, the result

holds by hypothesis G0 = G ⊆ H = H0. Assume that Gi ⊆ Hi holds, we

have Gi+1 = Gi ∪ φ(Gi). Consider x ∈ Gi+1, if x ∈ Gi then x ∈ Hi and

we’re done by the induction hypothesis. Otherwise, it is the case that

x ∈ φ(Gi) and there exists a rule r such that x ∈ φr(Gi), but r can be

applied on Hi as well because Gi ⊆ Hi, so x ∈ φr(Hi) ⊆ Hi+1 and we’re

done again. There exists some l ∈ N such that Cl(H) = H0∪H1∪. . .∪Hl

with k ≤ l, by the previous result Gi ⊆ Hi hold for all i ∈ 0 . . . k thus

Cl(G) ⊆ Cl(H) by piecewise union.

122 Appendix A. Appendix

Idempotent By Lemma 2.1.14 we can write Cl(Cl(G)) = Cl(G)0 ∪ Cl(G)1 ∪
. . . ∪ Cl(G)k′ for some k′, we have to show that Cl(G)i = Cl(G)0
so the union collapses at Cl(G)0 = Cl(G). The proof amounts to

show that Cl(G) = Cl(G) ∪ φ(Cl(G)), or equivalently that φ(Cl(G)) ⊆
Cl(G). For the sake of the contradiction, assume that there is some

x ∈ φ(Cl(G)) with x /∈ Cl(G), by Definition 2.1.13, there is a rule

r = (tp ← tp1, . . . , tpn) and a mapping σ ∈ J{tp1, . . . , tpn}KCl(G) such

that x = (tp)σ. Because ({tp1, . . . , tpn})σ ⊆ Cl(G) from Definition 2.1.8,

we can can build a function ι : {1 . . . n}→{1 . . . k} that maps the index

i of each tpi to the index j of some subgraph Gj of Cl(G). Let m be

the largest natural number in the set {ι(1) . . . ι(n)}. If m 6= k, then

x ∈ φ(Gm) ⊆ Cl(G), contradicting x /∈ Cl(G). Otherwise, m = k so

Gk+1 6= Gk, and k is not the smallest natural number that stabilizes

Cl(G) according to Lemma 2.1.14, a contradiction again.

A.2 Results from Section 4.3

A.2.1 Additional Definitions

Definition A.2.1 (Renaming Substitution) A renaming substitution for

a basic graph pattern B is a substitution ρ : var(B) → V associating each

variable of B to a fresh variable. A renaming substitution for an authorization

a is a renaming substitution for hb(a).

Definition A.2.2 (Unifier, Most General Unifier [Martelli 1982]) A

substitution µ is a unifier for two triple patterns tp1 and tp2 if tp1µ = tp2µ. A

substitution µ is a unifier for two tuples of triple patterns TP = (tp1, . . . , tpk)

and TP ′ = (tp′1, . . . , tp
′
k) of the same size k, if for all i ∈ {1, . . . , k}, µ is a

unifier for tpi and tp′i.

Two triples patterns tp1 and tp2 (resp. two tuples of triple patterns TP

and TP ′) are unifiable if there exists a unifier µ for tp1 and tp2 (resp. TP

and TP ′).

A substitution µ is a most general unifier for two triple patterns tp1 and

tp2 (resp. two tuples of triple patterns TP and TP ′) if for any unifier µ′ of tp1

A.3. LUBM Queries 123

and tp2 (resp. TP and TP ′), there exists a substitution η such that µ′ = µη.

Lemma A.2.3 (Computable Most General Unifier [Martelli 1982])

If TP and TP ′ are unifiable, then there exists a most general unifier µ for

TP and TP ′. Given two unifiable tuples of triple patterns TP and TP ′,

the function mgu(TP, TP ′) returns one of the most general unifiers of TP

and TP ′. Moreover, this most general unifier is unique up to a renaming of

variables.

A.3 LUBM Queries

• Q1: SELECT ?x ?y ?z WHERE { ?z ub :subOrganizationOf ?y.

?y rdf :type ub :University. ?z rdf :type ub :Department.

?x ub :memberOf ?z. ?x rdf :type ub :GraduateStudent. ?x

ub :undergraduateDegreeFrom ?y. }

• Q2: SELECT ?x WHERE { ?x rdf :type ub :Course. ?x ub :name ?y. }

• Q3: SELECT ?x ?y ?z WHERE { ?x rdf :type ub :UndergraduateStudent.

?y rdf :type ub :University. ?z rdf :type ub :Department.

?x ub :memberOf ?z. ?z ub :subOrganizationOf ?y. ?x

ub :undergraduateDegreeFrom ?y. }

• Q4: SELECT ?x WHERE { ?x ub :worksFor <http://www.-

Department0.University0.edu>. ?x rdf :type ub :FullProfessor.

?x ub :name ?y1. ?x ub :emailAddress ?y2. ?x ub :telephone ?y3. }

• Q5: SELECT ?x WHERE { ?x ub :subOrganizationOf <http-

://www.Department0.University0.edu>. ?x rdf :type

ub:ResearchGroup }

• Q6: SELECT ?x ?y WHERE { ?y ub :subOrganizationOf <http-

://www.University0.edu>. ?y rdf :type ub :Department. ?x

ub:worksFor ?y. ?x rdf :type ub :FullProfessor. }

• Q7: SELECT ?x ?y ?z WHERE { ?y ub :teacherOf ?z. ?y rdf :type

ub :FullProfessor. ?z rdf :type ub :Course. ?x ub :advisor ?y. ?x

rdf :type ub :UndergraduateStudent. ?x ub :takesCourse ?z }

	Thesis.pdf
	Abstract
	Résumé
	Introduction
	Context
	Problem statement
	Selective RDF data disclosure
	Inference leakage
	Enforcement and performance

	Related work study
	Contributions
	Access control model for RDF
	Inference leakage problem and solution
	Policy administration
	Policy enforcement

	Technical background and related work
	Semantic Web
	Graph Data Model

	Access control
	Access control models
	Conflict resolution

	Access control for RDF data
	Comparison of related works

	Study summary
	Filling the gaps

	A fine-grained access control model for RDF stores
	Authorization policy
	Authorization semantics
	Policy and conflict resolution function
	Conflict resolution strategies semantics

	Building Policies
	Default Strategy
	First Applicable strategy
	Precedence Strategies
	Most Specific Takes Precedence (MSTP)

	Conclusion

	Inference leakage problem and solution
	The inference problem
	Consistency property
	Static verification
	Proof of completeness
	Understanding the Counterexamples

	Conclusion

	Policy administration
	System architecture
	Language syntax and semantics
	Abstracting Policy Components
	Targets evaluation over user requests

	User policy generation
	User SubPolicy
	User authorizations selection

	Conclusion

	Policy enforcement and Experiments
	Policy enforcement
	Graph annotation
	User's query evaluation

	Implementation
	Experiments

	Conclusion

	Conclusion
	Summary
	Discussion and future work
	Expressiveness
	Verifiability
	Performance

	Bibliography
	Appendix
	Results from Section 2.1.1.3
	Results from Section 4.3
	Additional Definitions

	LUBM Queries

