
HAL Id: tel-01363179
https://hal.science/tel-01363179v1

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Génie logiciel formel : théorie, pratique et pédagogie
(apprentissage a partir de l’expérience du vote

électronique)
John Paul Gibson

To cite this version:
John Paul Gibson. Génie logiciel formel : théorie, pratique et pédagogie (apprentissage a partir de
l’expérience du vote électronique). Software Engineering [cs.SE]. Télécom Sud Paris, 2011. �tel-
01363179�

https://hal.science/tel-01363179v1
https://hal.archives-ouvertes.fr

GENIE LOGICIEL FORMEL:

THEORIE, PRATIQUE ET PÉDAGOGIE

(APPRENTISAGE A PARTIR DE L’EXPERIENCE DU VOTE

ELECTRONIQUE)

Mémoire présenté en vue de l’obtention de

L’Habilitation à Diriger des Recherches
Université Henri Poincaré, Nancy I, France

Présentée par

J. Paul Gibson (BSc, PhD, Maître de Conférences)

Le département Logiciels-Réseaux (LOR),
Telecom & Management SudParis,

9 rue Charles Fourier, 91011 Évry cedex.

COMITÉ

Rapporteurs :

1. Prof. Yamine Ait-Ameur, LISI / ENSMA.

2. Prof. Pascale Le Gall, Université d’Evry-Val d’Essonne.

3. Prof. Tiziana Margaria, Universität Potsdam.

Examinateurs :

1. Prof. Ana Cavalli, TSP Evry.

2. Prof. Michael Butler, University of Southampton.

3. Prof. Dominique Méry, UHP Nancy.

Le 28 octobre 2011

No part of a book is so intimate as the Preface. Here, . . . , the author descends from his platform, and speaks
with his reader as man to man, disclosing his hopes and fears, seeking sympathy for his difficulties, offering

defence or defiance, according to his temper, against the criticisms which he anticipates. It thus happens that a
personality which has been veiled by a formal method throughout many chapters, is suddenly seen face to face in

the Preface;

Charles W. Eliot, [Prefaces and Prologues to Famous Books with Introductions, Notes and Illustrations]

PREFACE

I have recently been involved in the domain of electronic voting (e-voting). I had the pleasure, and responsi-
bility, of being an expert advisor to the Commission for Electronic Voting in Ireland1 Through my work on this
commission, and subsequent research into the e-voting problem, I realised that software in these systems (and in
many other similar systems) was very poorly engineered. Further, errors were made in the development of these
systems that could have been avoided if an experienced, professional, well-educated software engineer had been
involved. Finally, I saw that e-voting systems provided a complex challenge to the formal methods community:
could we demonstrate where and how the application of formal techniques would have made a difference?

My personal approach to research is founded on the belief that theoretical and applied research are symbiotic;
and that researchers, where possible, should avoid separating the two. Further, I firmly believe that research and
teaching are also symbiotic — research should inform and be informed by the teaching process.

E-voting provides an excellent example of this symbiotic triangle: understanding the problem requires un-
derstanding fundamental boundaries and challenges for software engineers which can only be addressed through
advances in software engineering theory; the practical implementation of e-voting machines has failed because ex-
isting, well-established, software engineering methods have not been applied; and e-voting provides an excellent
case study for educating the next generation of software engineers.

In this HDR my objective is to demonstrate my different contributions as a researcher in the domain of formal
software engineering: in fundamental theory, applied research and in education. It is 20 years since my research
career started (as a PhD student) and this HDR provides an excellent opportunity for me to look back in order to
look forward.

JPaulGibson

A note on language: this HDR was originally written in English. Rather than completely translating the text into a second version in French,
key sections — the ABSTRACT, INTRODUCTION and CONCLUSIONS — have been completely translated into French and incorporated directly
(in parallel with the English source text) into the HDR. Translated summaries of key subsections in sections 3 and 4 — the RESEARCH

CONTRIBUTION and RESEARCH PROPOSAL — have also been included.

1The Independent Commission on Electronic Voting and Counting at Elections was established by the Government of Ireland, March, 2004
and dissolved in September, 2006 (see www.cev.ie).

There is no abstract art. You must always start with Computer Science is a science of abstraction — creating the
something. Afterward you can remove all traces of reality. right model for a problem and devising the appropriate

Pablo Picasso mechanizable techniques to solve it.
A. Aho and J. Ullman

ABSTRACT RÉSUMÉ

This HDR is a summary of the last 20 years of L’HDR est un condensé de nos 20 dernières an-
my research career (since I started my PhD). It pro- nées de carrière dans la recherche (depuis que nous
vides an overview of all my research activities. It avons commencé notre PhD). Elle fournit une vue
focuses on my contributions to the domain of for- d’ensemble de toutes nos activités de recherche. Elle
mal software engineering. With respect to funda- se focalise sur nos contributions dans le domaine du
mental theory, it reports on my work in the area génie logiciel formel. Au niveau de la théorie fon-
of feature interactions and feature composition. To damentale, elle rend compte de notre travail dans le
demonstrate my ability to apply research to real- domaine des interactions de service et de leur com-
world problems, it reports on my research on elec- position. Afin de démontrer notre capacité à ap-
tronic voting. It then reports on my research into pliquer la recherche aux problèmes du monde réel,
the symbiotic nature of research and teaching, with elle expose notre recherche sur le vote électron-
emphasis on formal methods and problem based ique. Elle fait également un compte rendu de notre
learning. Finally, it puts forward a proposal for recherche sur la nature symbiotique de la recherche et
research into a software product line for e-voting de l’enseignement, avec une accentuation sur les méth-
systems, that combines theory, practice and educa- odes formelles et l’apprentissage par problèmes. Pour
tion in a complementary manner. finir, elle met en avant une proposition de recherche

sur une ligne de produit logiciel pour les systèmes de
vote électronique qui combinent de façon complémen-
taire théorie, pratique et pedagogie.

I can no other answer make but thanks, Celui qui dans la vie est parti de zéro pour n’arriver à rien

And thanks, and ever thanks, dans l’existence n’a de merci à dire à personne.

William Shakespeare, [Twelfth Night, Act 3] Pierre Dac , [Les Pensées]

THANKS

Sincere thanks to my wife, Patricia; and my two girls, Charlotte and Juliette.
Without you I would never have started (nor finished) this HDR!

ii

Contents
1 INTRODUCTION:

— THEMATIQUE DE RECHERCHE 1
1.1 Preliminary Questions

— Questions préliminaires . 1
1.1.1 What Is Software Engineering?

— Qu’est-ce que le génie logiciel ? . 1
1.1.2 Does Software Engineering Lack Discipline?

— Le génie logiciel manque-t-il de discipline ? . 1
1.1.3 What Is Electronic Voting?

— Qu’est-ce que le vote électronique ? . 2
1.1.4 What Can We Learn From E-voting?

— Que pouvons-nous apprendre du vote électronique ? . 3
1.1.5 What Can We Learn (About Teaching Software Engineering) From E-voting?

— Que pouvons-nous apprendre (sur l’enseignement du génie logiciel) du vote électronique ? 3
1.1.6 Why A Software Product Line?

— Pourquoi une ligne de produit de logiciels? . 4
1.2 Structure of HDR

— Structure de l’HDR . 5

2 RESEARCH ACTIVITIES 8
2.1 Director TASS Research Group . 8

2.1.1 Why Do We Need Groups such as TASS? . 8
2.1.2 Research SubGroups: POP and ABC . 8

2.2 Research Supervision/Direction . 9
2.2.1 PhD Students: Completed . 9
2.2.2 PhD Students: In Progress . 13
2.2.3 MSc Students: Completed . 13

2.3 Theses Examination . 14
2.3.1 PhD . 14
2.3.2 MPhil . 14
2.3.3 MSc . 14

2.4 Journals: Reviewing and Editorial Committees . 14
2.5 Conferences and Workshops: Committees and Reviewing . 15
2.6 (Inter)national Research Projects: Evaluation and Reviewing . 16

2.6.1 Ireland . 16
2.6.2 European Union . 17

2.7 Grants Received . 18
2.8 Invited Talks . 19
2.9 Research Group Membership . 20
2.10 Publications . 20

iii

3 RESEARCH CONTRIBUTIONS: THEORETICAL, APPLIED AND EDUCATIONAL

— CONTRIBUTIONS DE RECHERCHE : THÉORIQUES, APPLIQUÉES ET PÉDAGOGIQUES 27
3.1 Software Engineering Fundamental Theory: Feature Composition

— Théorie fondamentale du génie logiciel : Composition des services . 27
3.1.1 Features and requirements engineering

— Services et ingénierie des besoins . 27
3.1.2 Multi-model approaches

— Des approches multi-modèles . 31
3.1.3 An algebraic approach: a first step towards a product line

— Une approche algébrique : une étape initiale vers la ligne de produit 34
3.1.4 Compositional Verification of Liveness Properties

— Vérification compositionnelle des propriétés de justice . 36
3.1.5 Important Technical Contribution: Fair Object Composition . 40

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique . 45
3.2.1 Electronic Voting is Safety Critical

— Le vote électronique doit être consideré comme une système critique 45
3.2.2 Formalising the e-voting count algorithms

— Formalisant les algorithmes de dépouillement du vote électronique 46
3.2.3 E-voting requirements engineering

— L’ingénierie des besoins du vote électronique . 47
3.2.4 E-voting and formal methods

Vote électronique et méthodes formelles . 49
3.2.5 Important Technical Contribution: Interfaces can be constructed correctly 56

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles . 62
3.3.1 Learning From The Student . 63
3.3.2 Formal Requirements Engineering

— Construire des besoins formels . 66
3.3.3 Correct Design

— La conception correcte . 68
3.3.4 Starting Young

Commencer jeune . 71
3.3.5 Weaving Formal Methods

— Tisser des méthodes formelles . 73
3.3.6 Important Technical Contribution: Formal Design Pattern . 75

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique . 80
3.4.1 Software engineering as a model of understanding

— Génie logiciel comme modèle de compréhension . 80
3.4.2 Re-Use and Plagiarism

— Réutilisation et plagiat . 81
3.4.3 Learning From Mistakes

— Apprendre de ses erreurs . 82
3.4.4 Important Technical Contribution: Refinement is fundamental in learning 83

iv

3.5 Problem Based Learning
— Apprentisage par problèmes . 87
3.5.1 Teaching Refinement

— Enseigner le raffinement . 87
3.5.2 A first programming problem

— Comment apprendre la programmation . 89
3.5.3 Does PBL work?

— Le APP fonctionne-t-il ? . 90
3.5.4 Good Problems Are Open Problems

— Les bons problèmes sont des problèmes ouverts . 91
3.5.5 Important Technical Contribution: PBL as a good approach to teaching refinement 93

3.6 Evaluation and Assessment
— Evaluation et contrôle . 96
3.6.1 Cognitive Models of Programing

— Modèles cognitifs de programmation . 96
3.6.2 Automated Assessment

— Contrôle automatisée . 98
3.6.3 Important Technical Contribution: Automated Test Generation . 99

4 A RESEARCH PROPOSAL: A SPL FOR E-VOTING

— UNE PROPOSITION DE RECHERCHE : UNE SPL POUR LE VOTE ÉLECTRONIQUE 104
4.1 Abstract

— Résumé . 104
4.2 Motivation . 105
4.3 Historical Context . 106

4.3.1 Secret Ballots . 106
4.3.2 Mechanical (Gear and Lever) Voting Machines . 107
4.3.3 Punch Card Voting Machines . 109
4.3.4 Marksense (Optical Scan) . 109
4.3.5 Direct-recording electronic (DRE) voting machines . 110
4.3.6 E-voting machines: paper trails . 110
4.3.7 Remote Electronic Voting — using a (public) network — a problematic future? 110
4.3.8 E-voting: success stories . 112

4.4 Related Work . 114
4.4.1 E-voting . 114
4.4.2 Software Product Lines . 138
4.4.3 Event-B: Mixed Models Research . 140
4.4.4 Education Research . 140

4.5 Research Method: concrete to abstract and back to concrete . 144
4.6 Fundamental Research: Feature Interactions in SPLs . 145
4.7 Applied Research: A SPL for E-voting . 146
4.8 Educational Research: Teaching Formal Software Engineering . 148
4.9 Summary of Research Proposed: The Potential Impact

— Résumé de la recherche proposée : l’impact potentiel . 149

v

5 CONCLUSIONS: WHAT HOLDS THE FUTURE?
CONCLUSION: QUE NOUS PRESAGE LE FUTUR ? 163
5.1 Software Engineering: things can only get better?

— Génie logiciel : les choses peuvent-elles aller mieux ? . 163
5.2 Future Research Plans

— Plans pour une recherche future . 164

vi

1. INTRODUCTION:
— THEMATIQUE DE RECHERCHE

1 INTRODUCTION:
— THEMATIQUE DE RECHERCHE

It should be noted that no ethically-trained software engineer would ever
consent to write a “DestroyBaghdad” procedure. Basic professional ethics Il avait acheté ma voix. J’ai trouvé ça si

would instead require him to write a “DestroyCity” procedure, to which malhonnête que j’ai voté pour l’autre.
“Baghdad” could be given as a parameter. Yvan Audouard

Nathaniel S. Borenstein

1.1 Preliminary Questions
— Questions préliminaires

1.1.1 What Is Software Engineering?
— Qu’est-ce que le génie logiciel ?

All engineering requires discipline in order to Toute ingénierie requiert de la discipline afin de
construct solutions to real-world problems; and construire des solutions aux problèmes du monde réel
the foundation of this discipline must be scien- ; et le fondement de cette discipline doit être la rigueur
tific rigour. Science is the synthesis and analysis scientifique. La science, c’est la synthèse et l’analyse de
of mathematical models, based on observation and modèles mathématiques basées sur l’observation et sur
experiment, used to capture properties, and define l’expérience et utilisées pour capturer les propriétés et
abstractions, of the observed world. Thus, mod- pour définir les abstractions du monde observé. Ainsi,
elling and abstraction are fundamental to engineer- la modélisation et l’abstraction sont fondamentales pour
ing. l’ingénierie.

Software engineering can be regarded as the Le génie logiciel peut être envisagé comme l’éta-
establishment and application of sound princi- blissement et l’application de principes solides et de
ples and methods in the development of soft- méthodes, dans le développement de logiciels pour
ware for execution on computers[PGL00]. Com- l’exécution sur ordinateurs [PGL00]. L’informatique,
puter Science is the study of the mechanical pro- c’est l’étude de procédés mécaniques qui permettent
cesses that permit the representation, process- la représentation, le traitement, le stockage et la com-
ing, storage and communication of information. munication de l’information. Ainsi, les ingénieurs de
Thus, software engineers must work with models logiciels doivent travailler avec modèles et abstractions
and abstractions of computers, computations and d’ordinateurs, calculs et information [Har92].
information[Har92].

1.1.2 Does Software Engineering Lack Discipline?
— Le génie logiciel manque-t-il de discipline ?

Software engineering lacks discipline [CGM+89] Le génie logiciel manque de discipline pour deux
for two complementary reasons. Firstly, there are raisons complémentaires [CGM+89]. Premièrement, il
only a few well-established principles that bridge n’y a que peu de principes bien établis faisant le lien
the gap between computer science and software entre informatique et génie logiciel. Deuxièmement, là
engineering. Secondly, where such principles ex- où de tels principes existent, les ingénieurs pratiquant

1

1.1 Preliminary Questions
— Questions préliminaires

ist practising engineers often fail to apply them. manquent souvent de les appliquer.
Formal methods incorporate the principles of Les méthodes formelles incorporent les principes du

moving from abstract models of problems to be passage de modèles abstraits de problèmes à résoudre (le
solved (the what) to concrete models of solutions quoi) vers des modèles concrets de solutions impliquant
involving computers (the how). They are founded des ordinateurs (le comment). Elles sont fondées sur
on mathematical models of computability, compu- des modèles mathématiques de computability, complex-
tational complexity, communication and correct- ité, de communication et de justesse. Cependant, peu
ness. Yet, few practising software engineers know d’ingénieurs en logiciels qui pratiquent savent quand
when or how to apply these methods. It is there- ou comment appliquer ces méthodes. Il n’est donc pas
fore not surprising that the quality of software sys- surprenant que la qualité des systèmes de logiciels soit
tems is compromised and that such systems often compromise et que de tels systèmes échouent souvent
fail to correctly solve the problem for which they à résoudre correctement le problème pour lequel ils ont
were developed. été développés.
1.1.3 What Is Electronic Voting?

— Qu’est-ce que le vote électronique ?

Electronic voting (e-voting), in general, refers Le vote électronique se réfère en général à tout
to any electronic means of casting a vote and/or moyen électronique de voter et/ou à tout moyen pour
electronic means of counting votes. It can also in- compter les votes. Cela peut également impliquer la
volve electronic transmission of information nec- transmission électronique des informations nécessaires
essary for the process of vote casting and/or count- au traitement du vote et/ou du dépouillement du scrutin
ing during an election. pendant une élection.

Applying state-of-the-art computer and infor- Utiliser un ordinateur de pointe avec la technologie
mation technology to “modernise” the voting pro- d’information pour “moderniser” le processus de vote
cess has the potential to make improvements over électronique a le potentiel d’apporter du progrès sur les
the existing paper (or mechanical) systems; but it systèmes existants avec papier (ou mécaniques) ; mais
also introduces new concerns with respect to se- ils génèrent aussi de nouvelles inquiétudes par rapport
crecy, accuracy and security [Gri03]. The debate au secret, à la précision et à la sécurité [Gri03]. Le débat
over the advantages and disadvantages of e-voting autour des avantages et des inconvénients du vote élec-
is not a new one; and recent use of such systems tronique n’est pas nouveau ; et l’utilisation de tels sys-
in actual elections has led to their analysis from a tèmes lors de réelles élections a conduit à leur analyse
number of viewpoints: usability [HBL+05], trust- selon divers points de vue : usability [HBL+05], fiabil-
worthiness and safety criticality [MG03], and risks ité et “safety criticality” [MG03], et risques et menaces
and threats [Neu90]. [Neu90].

The potential advantages are generally ac- Les avantages potentiels sont généralement accep-
cepted, for example: faster result tabulation, elim- tés, comme par exemple : tabulation plus rapide des ré-
ination of human error which occurs in manual sultats, élimination de l’erreur humaine se produisant
vote tabulation, assistance to voters with “spe- lors d’une tabulation par vote manuel, assistance aux
cial” needs, defence against fraudulent practices votants ayant un handicap, défense contre des pratiques
(e.g. with postal votes[Bro05]), and improving frauduleuses (comme par exemple pour le vote par cor-
the “fairness” of count systems that incorporate respondance [Bro05]), et amélioration de la “justesse”
“unfair” non-deterministic procedures[TR00]. des systèmes de comptage qui incorporent des procé-

2

1.1 Preliminary Questions
— Questions préliminaires

Despite ever-increasing uncertainty over the dures “injustes” non-déterministes [TR00].
trustworthiness of these systems — which is one En dépit d’une incertitude incessante sur la fiabilité
of the major disadvantages associated with them de ces systèmes — ceci étant leur inconvénient ma-
— many countries (particularly in Europe[SL03]) jeur — de nombreux pays ont choisi d’adopter le vote
have recently chosen to adopt e-voting. The main électronique [SL03]. Les principaux risques clairement
risks that have been clearly identified seem not to identifiés paraissent ne pas inquiéter ceux-là mêmes
concern those responsible for procuring the sys- responsables de procurer ces systèmes. En fait, le
tems. In fact, it appears that e-voting is just one, vote électronique semble simplement être un exemple
well-publicised, example of governments wishing très médiatisé du souhait de certains gouvernements à
to adopt new technologies[SE03] before the risks vouloir adopter de nouvelles technologies [SE03] sans
and benefits, as perceived by the public[HKG07], qu’au préalable les risques et les bénéfices (ainsi perçus
have been properly analysed and debated. par le public [HKG07]) n’aient été analysés et débattus.
1.1.4 What Can We Learn From E-voting?

— Que pouvons-nous apprendre du vote électronique ?

Electronic voting systems provide excellent Les systèmes de vote électronique fournissent d’ex-
examples of poorly engineered software. Anal- cellents exemples de logiciels pauvrement construits.
ysis of such systems can, and should, help us L’analyse de tels systèmes peut, et devrait, aider à
to identify where engineers failed to apply fun- identifier là où les ingénieurs ont échoué à appliquer
damental (software) engineering principles. In les principes fondamentaux du génie logiciel. Plus
particular, they provide an opportunity to illus- spécialement, ils fournissent une bonne illustration de
trate where the application of formal methods là où l’application des méthodes formelles aurait pu
could have helped the developers to have con- aider les développeurs à construire des solutions de
structed much better quality solutions to the e- bien meilleure qualité au problème du vote électronique
voting problem[CGM07a, CGM07b]. [CGM07a, CGM07b].

In this HDR we analyse e-voting and show that Dans cette HDR, nous analysons le vote électro-
many problems that arose could have been avoided nique et montrons que de nombreux problèmes rencon-
if rigorous software engineering practices, includ- trés auraient pu être évités si les pratiques rigoureuses
ing formal methods, had been applied. We argue du génie logiciel incluant les méthodes formelles avaient
that educators, and the education system, are as été appliquées. Nous argumentons que les enseignants,
responsible for poorly built software systems as ainsi que le système éducatif, sont tout autant respon-
the (so called) engineers who developed them. Fi- sables de la pauvre construction de systèmes logiciels
nally, we argue that the next generation of elec- que les (soi-disant) ingénieurs les ayant développés. Au
tronic voting systems need to be better engineered final, nous argumentons que la prochaine génération des
than the current generation; and we propose that systèmes de vote électronique nécessite une meilleure
the most promising approach to achieving this re- construction que la génération actuelle ; et nous sug-
quires the development of a formal software prod- gérons que l’approche la plus prometteuse pour attein-
uct line. dre cela requiert le développement d’une ligne de pro-

duit de logiciels formels.
1.1.5 What Can We Learn (About Teaching Software Engineering) From E-voting?

— Que pouvons-nous apprendre (sur l’enseignement du génie logiciel) du vote électronique ?

E-voting has a wide range of different types Le vote électronique possède un large éventail de

3

1.1 Preliminary Questions
— Questions préliminaires

of requirements [Gib00] that make it ideal for différents types d’exigences [Gib00] qui le rendent
teaching about complex software systems [AM05, idéal pour l’enseignement des systèmes complexes de
BF07]. E-voting provides an ideal opportunity to logiciels[AM05, BF07]. Le vote électronique offre
present ethical issues. All students are familiar une opportunité idéale d’aborder des questions d’ordre
with voting and problems with e-voting systems, éthique. Tous les étudiants connaissent bien le vote et
and the subject is one which both interests and les problèmes liés aux systèmes de vote électronique,
motivates them. It provides an excellent study for et c’est un sujet qui les intéresse et les motive à la fois.
problem based learning throughout a software en- Cela apporte une excellente étude pour l’apprentissage
gineering programme[Gib08b]. par problèmes à travers un programme de génie logiciel

[Gib08b].
1.1.6 Why A Software Product Line?

— Pourquoi une ligne de produit de logiciels?

The software in e-voting machines has not, La majorité du temps, le logiciel des machines de vote
in general, been well-engineered[GM08]. Many électronique n’a pas été correctement construit [GM08].
governments have chosen to adopt e-voting as a De nombreux gouvernements ont choisi d’adopter le vote
show-case for innovative technology[SL03]. It is électronique comme modèle d’innovation technologique
a poor reflection on the profession of software en- [SL03]. Le fait que le logiciel au sein de ces systèmes
gineering that the software in these systems is, soit la plupart du temps ni fiable, ni de confiance [RR06]
in general, neither trusted nor trustworthy[RR06]. reflète de façon négative sur la profession d’ingénieur en
We propose that the software engineering commu- génie logiciel.
nity should look upon this as an opportunity to Nous estimons que l’ensemble de la profession du
demonstrate just how much software engineering génie logiciel doit saisir cette opportunité pour démontrer
methods, techniques and tools have evolved since simplement comment les méthodes, techniques et outils
the turn of the century[PGL00]; and that the soft- fournis par le génie logiciel ont évolué depuis le début du
ware industry is now mature enough to develop e- siècle [PGL00], et que l’industrie du logiciel est doréna-
voting machines that are highly dependent on soft- vant assez avancée pour développer des machines de vote
ware and that are highly dependable. électronique qui soient à la fois hautement dépendantes

Software Product Lines (SPLs) [CN02] are at- des logiciels et hautement dignes de confiance.
tracting attention in the area of applied software Les Software Product Lines (SPLs) [CN02] attirent
engineering research. The challenge is to demon- actuellement l’attention dans le domaine de la recherche
strate how and why an e-voting SPL could be built. en génie logiciel appliqué. Le défi est de prouver com-
E-voting systems correspond in terms of size and ment et pourquoi une e-voting SPL pourrait être constru-
complexity to those reported in a number of SPL ite. Les systèmes de vote électronique correspondent en
case studies [Bos99b]. The number of variations termes de taille et de complexité à ceux rapportés dans un
across systems[SP06] is large enough to merit an certain nombre de cas d’études SPL [Bos99b]. Le nom-
SPL approach, but not so large as to be unmanage- bre de variations à travers les systèmes [SP06] est assez
able. Furthermore, these systems exhibit a large large pour mériter une approche SPL, mais pas trop large
amount of common functionality and so the poten- pour être ingérable. En outre, ces systèmes manifestent
tial for re-use is high. The aspect of e-voting that une large quantité de fonctionnalités communes, donnant
may be more challenging is that the software may ainsi un potentiel de réutilisation élevé. L’aspect du vote
be considered (safety or mission) critical [MG03]. électronique pouvant davantage représenter un challenge

4

1.2 Structure of HDR
— Structure de l’HDR

However, recent research suggests that SPLs can est le fait que le logiciel peut être considéré “criticial”
be used to develop safety critical systems [Liu07]. [MG03]. Cependant, de récentes recherches suggèrent

Many of the problems that have arisen in que les SPLs peuvent être utilisées pour développer des
the domain of e-voting have arisen because of systèmes critiques de sécurité [Liu07].
poorly specified requirements and standards doc- Nombre de problèmes survenus dans le domaine du
uments [MG06]. It has been proposed that a com- vote électronique l’ont été en raison de besoins mal spé-
prehensive domain analysis be carried out before cifiés [MG06]. On a proposé qu’une analyse complète
standards are re-engineered [GM08]. The result- et détaillée du domaine soit entreprise avant que les stan-
ing domain models should provide the founda- dards ne soient reconstruits [GM08]. Les modèles du do-
tions upon which standards could be built; and maine en résultant devraient fournir des fondations sur
they would also play a major role in the develop- lesquelles les standards pourraient être construits ; et ils
ment of an e-voting SPL. joueraient également un rôle majeur dans le développe-

The development of a formal SPL for evot- ment d’une SPL de vote électronique.
ing is a very challenging research area. In par- Le développement d’une SPL formelle pour vote
ticular, the feature interaction problem — par- électronique est un domaine de recherche comportant
ticularly during requirements modelling[Gib97] un grand challenge ; en particulier, le feature interac-
— will require the integration of different mod- tion problem — surtout pendant la modélisation des be-
elling languages in some sort of unified semantic soins [Gib97] — qui exigera l’intégration de différents
framework[GMM97]. langages de modélisation dans une sorte de cadre séman-

tique unifié [GMM97].

1.2 Structure of HDR
— Structure de l’HDR

In section 2, I provide an overview of all my Dans la section 2, nous fournissons une vue d’en-
research activities in the last 20 years (and not just semble de toutes nos activités de recherche depuis ces
those activities directly relevant to the main body 20 dernières années (et pas seulement les activités liées
of this work). This section should set the con- au sujet principal de ce travail). Cette section établit le
text for the specific research contributions that I contexte pour les contributions spécifiques de recherche
present in detail in section 3; and should demon- que nous présentons de façon détaillée en section 3 et
strate my competencies with respect to the re- montre nos compétences par rapport à la recherche pro-
search proposed in section 4 posée, en section 4.

In section 3, I review my research contribu- En section 3, nous passons en revue nos contribu-
tions in the three complementary areas: tions à la recherche dans trois domaines complémen-

1. Software Engineering Fundamental The- taires :
ory: Feature Composition 1. Théorie Fondamentale du Génie Logiciel :

2. Software Engineering Applied Theory: Composition de services
E-voting Systems 2. Théorie Appliquée du Génie Logiciel : Sys-

3. Software Engineering Education: Formal tèmes de Vote Electronique
Methods and Problem-Based Learning 3. Enseignement du Génie Logiciel : Méthodes

Section 4 proposes that the current best prac- Formelles et l’apprentissage par problèmes
tice (and state-of-the-art) in software engineering La section 4 avance qu’actuellement la meilleure
,appropriate to the e-voting problem, would be to pratique (de pointe) en génie logiciel, appropriée au

5

1.A-INTRODUCTION: BIBLIOGRAPHY

combine formal methods with software product problème du vote électronique, serait de combiner les
lines (SPLs) in order to be able to verify the cor- méthodes formelles avec les “software product lines”
rect behaviour of a family of voting systems with (SPLs), afin de pouvoir vérifier l’exactitude du com-
common sets of requirements but each having their portement d’une famille de systèmes de vote, avec des
own unique combination of features. ensembles communs de besoins — chacun ayant cepen-

In section 5 we conclude the thesis by making dant leur propre et unique combinaison de serives (“fea-
predictions about the future of software develop- tures”).
ment, in general, and possible future research of En section 5, nous concluons l’HDR en établissant
the author, in particular. des prédictions sur le futur du développement logiciel en

général, et sur les possibilités de recherche de l’auteur,
plus particulièrement.

1.A-Introduction: Bibliography
[AM05] Chris Armen and Ralph Morelli. Teaching about the risks of electronic voting technology. SIGCSE Bull.,

37(3):227–231, 2005.

[BF07] Matt Bishop and Deborah A. Frincke. Achieving learning objectives through e-voting case studies. IEEE Security
and Privacy, 5(1):53–56, 2007.

[Bos99] Jan Bosch. Product-line architectures in industry: a case study. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 544–554, Los Alamitos, CA, USA, 1999. IEEE Computer Society
Press.

[Bro05] Ian Brown. Who is enfranchised by remote voting? In COMPSAC ’05: Proceedings of the 29th Annual Inter-
national Computer Software and Applications Conference (COMPSAC’05) Volume 1, page 500, Washington, DC,
USA, 2005. IEEE Computer Society.

[CGM+89] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, and Paul R. Young. Computing as a
discipline. Commun. ACM, 32(1):9–23, 1989.

[CGM07a] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Formal verification of tamper-evident storage for
e-voting. In SEFM, pages 329–338. IEEE Computer Society, 2007.

[CGM07b] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to formal software
design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci., 183:39–55, 2007.

[CN02] P. Clements and L. Northrop. Software product lines. Addison-Wesley Boston, 2002.

[Gib97] J. Paul Gibson. Feature requirements models: Understanding interactions. In Petre Dini, Raouf Boutaba, and Luigi
Logrippo, editors, Feature Interactions in Telecommunications Networks IV, (FIW 1997), pages 46–60, Montréal,
Canada, 1997. IOS Press.

[Gib00] J. Paul Gibson. Formal requirements engineering: Learning from the students. In Doug Grant, editor, 12th
Australian Software Engineering Conference (ASWEC 2000), pages 171–180. IEEE Computer Society, 2000.

[Gib08] J. Paul Gibson. Weaving a formal methods education with problem-based learning. In T. Margaria and B. Steffen,
editors, 3rd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information Science (CCIS), pages 460–472, Porto Sani, Greece,
October 2008. Springer-Verlag, Berlin Heidelberg.

[GM08] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems and standards. In Dan
Remenyi, editor, 8th European Conference on e-Government, pages 283–289. Academic Publishing International,
July 2008. ISBN 978-1-906638-09-2.

6

1.A-INTRODUCTION: BIBLIOGRAPHY

[GMM97] J. Paul Gibson, Bruno Mermet, and Dominique Méry. Feature interactions: A mixed semantic model approach.
In Henry McGloughlin and Gerard O’Regan, editors, 1st Irish Workshop on Formal Methods (IWFM 1997), Elec-
tronic Workshops in Computing, Dublin, Ireland, July 1997. BCS.

[Gri03] Dimitris Gritzalis, editor. Secure Electronic Voting, volume 7 of Advances in Information Security. Kluwer
Academic, 2003.

[Har92] David Harel. Biting the silver bullet - toward a brighter future for system development. IEEE Computer, 25(1):8–
20, 1992.

[HBL+05] Paul S. Herrnson, Benjamin B. Bederson, Bongshin Lee, Peter L. Francia, Robert M. Sherman, Frederick G.
Conrad, Michael Traugott, and Richard G. Niemi. Early appraisals of electronic voting. Social Science Computer
Review, 23(3):274–292, 2005.

[HKG07] Mark Horst, Margôt Kuttschreuter, and Jan M. Gutteling. Perceived usefulness, personal experiences, risk per-
ception and trust as determinants of adoption of e-government services in The Netherlands. Computers in human
behavior, 23(4):1838–1852, 2007.

[Liu07] Jing Liu. Handling safety-related feature interaction in safety-critical product lines. In ICSE Companion, pages
85–86. IEEE Computer Society, 2007.

[MG03] Margaret McGaley and J. Paul Gibson. E-voting: a safety critical system. Report NUIM-CS-TR-2003-2, Depart-
ment of Computer Science, National University of Ireland, Maynooth, 2003.

[MG06] Margaret McGaley and J. Paul Gibson. A critical analysis of the council of europe recommendations on e-voting.
In EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic
Voting Technology Workshop, pages 9–22, Berkeley, CA, USA, 2006. USENIX Association.

[Neu90] Peter G. Neumann. Inside risks: risks in computerized elections. Commun. ACM, 33(11):170, 1990.

[PGL00] Gilda Pour, Martin L. Griss, and Michael J. Lutz. The push to make software engineering respectable. IEEE
Computer, 33(5):35–43, 2000.

[RR06] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. IEEE Security and Privacy, 4(5):50–56, 2006.

[SE03] William L. Scherlis and Jon Eisenberg. IT research, innovation, and e-government. Commun. ACM, 46(1):67–68,
2003.

[SL03] Jörgen Svensson and Ronald Leenes. E-voting in europe: Divergent democratic practice. Information Polity,
8(1):3–15, 2003.

[SP06] Krishna Sampigethaya and Radha Poovendran. A framework and taxonomy for comparison of electronic voting
schemes. Computers & Security, 25(2):137–153, 2006.

[TR00] Nicolaus Tideman and Daniel Richardson. Better voting methods through technology: The refinement-
manageability trade-off in the single transferable vote. Public Choice, 103(1):13–34, April 2000.

7

2. RESEARCH ACTIVITIES

2 RESEARCH ACTIVITIES

We can’t solve problems by using the same kind of
thinking we used when we created them. I hope that posterity will judge me kindly, not only as to the

Albert Einstein things which I have explained, but also to those which I have
intentionally omitted so as to leave to others the pleasure of

discovery.
René Descartes

2.1 Director TASS Research Group

From 2002-2005, I was director of the TASS (Theoretical Aspects of Software Systems) research group at NUI
Maynooth. In total, under my direction, TASS raised more than 600k euro in research funding, and supported more
than 10 postgraduate researchers. The main subgroups of TASS (see section 2.1.2) have grown and evolved since
I left the group to work in France 5 years ago.

2.1.1 Why Do We Need Groups such as TASS?

As computing systems have grown in complexity, theoretical computer scientists have built the foundations of the
discipline of computing by developing models of computation and methods of analysis applicable to the models.
Theoretical computer scientists have driven the development of the science of computing, and make up the majority
of the winners of the Turing Award (the “Nobel prize” in the field of computing). Without these scientists the world
of computing as we know it would not exist. Although theoretical computer science is mathematical and abstract
in spirit — this is the reason why we, as a group, refered to the underlying models as soft systems or software
systems rather than hard or concrete — TASS derived its motivation from practical and everyday computation.
Its aim was to understand the nature of computation and, as a consequence of this understanding, provide better
methods for developing computer systems. With the current focus on the practical relevance of scientific research,
it is important to recognize the contributions of theoretical computer science — both the old and the new — to the
practice and application of computing across the world.

2.1.2 Research SubGroups: POP and ABC

TASS was structured into two complementary subgroups:

Principles of Programming (POP), led by James Power.
“The Principles of Programming research group at NUI Maynooth specialises in the static and dynamic anal-
ysis of object-oriented programs and programming languages. They exploit a variety of techniques, such as
parsing, bytecode analysis, software metrics, meta-modelling and program verification to model software
systems in order to increase comprehensibility and reliability. Their work has applications in reverse engi-
neering, program verification and validated forward engineering from design to code. The group’s interests
extend from software engineering tools and techniques, right through programming language design, down
to the implementation of compilers and programming language processors. They have a strong interest in

8

2.2 Research Supervision/Direction

the formal underpinnings of software technology, and much of their work has links with formal methods in
program design and analysis.”2

Analysis of the Boundaries of Computation (ABC), led by Tom Naugton.
“The study of computer science gives one a firm grasp, through mathematics, of both the theoretical and
practical limits of computers, with applications ranging from the design of efficient algorithms, proving the
correctness of programs, computer engineering and the Internet, through to artificial intelligence and virtual
reality. The subject has an interesting history with pioneers such as Alan Turing (universal computation),
Kurt Gödel (limits of computation), John von Neumann (stored-program architecture), Claude Shannon
(information theory), and Stephen Cook (computational complexity); and more recently with Tom Head
and Len Adleman (DNA computing) and Peter Shor (quantum computing). The ABC group is concerned
with exploring the boundaries of computation. In particular, it is concerned with non-standard models of
computation, the (fractal) boundary between different levels of algorithmic complexity (with most interest in
the boundary between P and NP), analysis of the limits of evolutionary computation and genetic algorithms,
and the formulation of a more complete model of complexity (with respect to artificial intelligence and
learning).” 3

2.2 Research Supervision/Direction

2.2.1 PhD Students: Completed

2.2.1.1 McGaley, Margaret — E-voting: an immature technology in a critical context. (Submitted: October 2007,
accepted: September 2008. Examiners: Prof. Ann Macintosh and Dr. Tom Dowling.). Awarded by the National
University of Ireland, Maynooth.
Abstract

“E-voting has been introduced prematurely to national elections in many countries worldwide. There
are technical and organizational barriers which must be resolved before the use of e-voting can be
recommended in such a critical context. Two fundamental requirements for e-voting systems are in
conflict: ballot secrecy and accuracy. We describe the nature and implications of this conflict, and
examine the two main categories of proposed solutions: cryptographic voting schemes, and Voter
Verified Audit Trails (VVATs). The conflict may permanently rule out the use of remote e-voting
for critical elections, especially when one considers that there is no known way to reproduce the
enforced privacy of a voting booth outside the supervision of a polling station. We then examine
the difficulty faced by governments when they procure Information and Communication Technology
(ICT) systems in general, and some mitigation strategies. We go on to describe some legal implications
of the introduction of e-voting, which could have serious consequences if not adequately explored, and
discuss the evaluation and maintenance of systems. In the final chapters we explore two approaches
to the development of requirements for e-voting.”

2Paraphrased from http://www.cs.nuim.ie/research/pop/
3Paraphrased from http://www.cs.nuim.ie/ tnaughton/abc/

9

PUBLICATION FROM MARGARET MCGALEY’S PHD

Publication from Margaret McGaley’s PhD

[CEB+05] Deirdre Carew, Chris Exton, Jim Buckley, Margaret McGaley, and J.Paul Gibson. Preliminary study to empirically
investigate the comprehensibility of requirements specifications. In Psychology of Programming Interest Group
17th annual workshop (PPIG), pages 182–202, University of Sussex, Brighton, UK, 2005.

[GM08] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems and standards. In Dan
Remenyi, editor, 8th European Conference on e-Government, pages 283–289. Academic Publishing International,
July 2008. ISBN 978-1-906638-09-2.

[McG04] Margaret McGaley. Report on DIMACS Workshop on Electronic Voting — Theory and Practice. Technical report,
http://dimacs.rutgers.edu/, 2004.

[McG08] Margaret McGaley. E-voting: an Immature Technology in a Critical Context. PhD thesis, Dept. of Computer
Science, NUI Maynooth, 2008.

[MG03] Margaret McGaley and J. Paul Gibson. E-voting: a safety critical system. Report NUIM-CS-TR-2003-2, Depart-
ment of Computer Science, National University of Ireland, Maynooth, 2003.

[MG06] Margaret McGaley and J. Paul Gibson. A critical analysis of the council of europe recommendations on e-voting. In
EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting
Technology Workshop, pages 9–22, Berkeley, CA, USA, 2006. USENIX Association.

[MM04] Margaret McGaley and Joe McCarthy. Transparency and e-Voting: Democratic vs. Commercial Interests. In Elec-
tronic Voting in Europe - Technology, Law, Politics and Society, pages 153 – 163. European Science Foundation,
July 2004.

[VM07] Melanie Volkamer and Margaret McGaley. Requirements and evaluation procedures for evoting. In ARES ’07:
Proceedings of the The Second International Conference on Availability, Reliability and Security, pages 895–902,
Washington, DC, USA, 2007. IEEE Computer Society.

2.2.1.2 Turlough Neary — Small Universal Turing Machines. (Submitted September 2007, accepted November
2007. Examiners: Prof. Maurice Margenstern and Dr. James Power.) Awarded by the National University of
Ireland, Maynooth.

I co-supervised this student with Damien Woods, my first PhD student (see below). In Turlough’s final year
of research on his PhD, I was on sabbatical leave. Consequently, his PhD results are mostly co-authored with
Damien.
Abstract

“Numerous results for simple computationally universal systems are presented, with a particular focus
on small universal Turing machines. These results are towards finding the simplest universal systems.
We add a new aspect to this area by examining trade-offs between the simplicity of universal systems
and their time/space computational complexity.

Improving on the earliest results we give the smallest known universal Turing machines that simulate
Turing machines in O(t2) time. They are also the smallest known machines where direct simulation of
Turing machines is the technique used to establish their universality. This result gives a new algorithm
for small universal Turing machines.

We show that the problem of predicting t steps of the 1D cellular automaton Rule 110 is P-complete.
As a corollary we find that the small weakly universal Turing machines of Cook and others run in
polynomial time, an exponential improvement on their previously known simulation time overhead.

10

PUBLICATIONS FROM TURLOUGH NEARY’S PHD

These results are achieved by improving the cyclic tag system simulation time of Turing machines
from exponential to polynomial.

A new form of tag system which we call a bi-tag system is introduced. We prove that bi-tag systems
are universal by showing they efficiently simulate Turing machines. We also show that 2-tag systems
efficiently simulate Turing machines in polynomial time. As a corollary we find that the small univer-
sal Turing machines of Rogozhin, Minsky and others simulate Turing machines in polynomial time.
This is an exponential improvement on the previously known simulation time overhead and improves
on a forty-year old result.

We present new small polynomial time universal Turing machines with state-symbol pairs of (5, 5), (6,
4), (9, 3) and (15, 2). These machines simulate bi-tag systems and are the smallest known universal
Turing machines with 5, 4, 3 and 2-symbols, respectively. The 5-symbol machine uses the same
number of instructions (22) as the current smallest known universal Turing machine (Rogozhin’s 6-
symbol machine).

We give the smallest known weakly universal Turing machines. These machines have state-symbol
pairs of (6, 2), (3, 3) and (2, 4). The 3-state and 2-state machines are very close to the minimum
possible size for weakly universal machines with 3 and 2 states, respectively.”

Publications from Turlough Neary’s PhD

[DLM07] Jérôme Olivier Durand-Lose and Maurice Margenstern, editors. Machines, Computations, and Universality, 5th
International Conference, MCU 2007, Orléans, France, September 10-13, 2007, Proceedings, volume 4664 of
Lecture Notes in Computer Science. Springer, 2007.

[NW06a] Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP (1), volume 4051 of Lecture Notes in Computer
Science, pages 132–143. Springer, 2006.

[NW06b] Turlough Neary and Damien Woods. Small fast universal turing machines. Theor. Comput. Sci., 362(1-3):171–195,
2006.

[NW07a] Turlough Neary and Damien Woods. Four small universal turing machines. In Durand-Lose and Margenstern
[DLM07], pages 242–254.

[NW07b] Turlough Neary and Damien Woods. Small weakly universal turing machines. CoRR, abs/0707.4489, 2007.

[NW09] Turlough Neary and Damien Woods. Four small universal turing machines. Fundam. Inform., 91(1):123–144, 2009.

[WN06a] Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small universal turing machines.
CoRR, abs/cs/0612089, 2006.

[WN06b] Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small universal turing machines.
In FOCS, pages 439–448. IEEE Computer Society, 2006.

[WN07a] Damien Woods and Turlough Neary. The complexity of small universal turing machines. In S. Barry Cooper,
Benedikt Löwe, and Andrea Sorbi, editors, CiE, volume 4497 of Lecture Notes in Computer Science, pages 791–
799. Springer, 2007.

[WN07b] Damien Woods and Turlough Neary. Small semi-weakly universal turing machines. In Durand-Lose and Margen-
stern [DLM07], pages 303–315.

11

PUBLICATIONS FROM DAMIEN WOOD’S PHD

[WN09a] Damien Woods and Turlough Neary. The complexity of small universal turing machines: A survey. Theor. Comput.
Sci., 410(4-5):443–450, 2009.

[WN09b] Damien Woods and Turlough Neary. Small semi-weakly universal turing machines. Fundam. Inform., 91(1):179–
195, 2009.

2.2.1.3 Damien Woods — Computational Complexity of an optical model of computation. (Submitted November
2004, accepted August 2005. Examiners: Prof. Cris Moore and Prof. Barak Pearlmutter.) Awarded by the National
University of Ireland, Maynooth.
Abstract

“ We investigate the computational complexity of an optically inspired model of computation. The
model is called the continuous space machine and operates in discrete timesteps over a number of
two-dimensional complex-valued images of constant size and arbitrary spatial resolution.

We define a number of optically inspired complexity measures and data representations for the model.
We show the growth of each complexity measure under each of the model’s operations.

We characterise the power of an important discrete restriction of the model. Parallel time on this
variant of the model is shown to correspond, within a polynomial, to sequential space on Turing
machines, thus verifying the parallel computation thesis. We also give a characterisation of the class
NC. As a result the model has computational power equivalent to that of many well-known parallel
models. These characterisations give a method to translate parallel algorithms to optical algorithms
and facilitate the application of the complexity theory toolbox to optical computers.

Finally we show that another variation on the model is very powerful; illustrating the power of per-
mitting nonuniformity through arbitrary real inputs. ”

Publications from Damien Wood’s PhD

[WG05a] Damien Woods and J. Paul Gibson. Complexity of continuous space machine operations. In S. Barry Cooper,
Benedikt Löwe, and Leen Torenvliet, editors, CiE, volume 3526 of Lecture Notes in Computer Science, pages 540–
551. Springer, 2005.

[WG05b] Damien Woods and J. Paul Gibson. Lower bounds on the computational power of an optical model of computation.
In Cristian Calude, Michael J. Dinneen, Gheorghe Paun, Mario J. Pérez-Jiménez, and Grzegorz Rozenberg, editors,
UC, volume 3699 of Lecture Notes in Computer Science, pages 237–250. Springer, 2005.

[WN05] Damien Woods and Thomas J. Naughton. An optical model of computation. Theor. Comput. Sci., 334(1-3):227–258,
2005.

[Woo05] Damien Woods. Upper bounds on the computational power of an optical model of computation. In Xiaotie Deng
and Ding-Zhu Du, editors, ISAAC, volume 3827 of Lecture Notes in Computer Science, pages 777–788. Springer,
2005.

[Woo06] Damien Woods. Optical computing and computational complexity. In Cristian S. Calude, Michael J. Dinneen,
Gheorghe Paun, Grzegorz Rozenberg, and Susan Stepney, editors, UC, volume 4135 of Lecture Notes in Computer
Science, pages 27–40. Springer, 2006.

12

PUBLICATIONS FROM DAMIEN WOOD’S PHD

2.2.2 PhD Students: In Progress

Mac Namara, Damien — Limerick Institute of Technology, Ireland — Electronic Voting: Development of a Dual
Vote Architecture, started 2009, co-supervised with Ken Oakley.

2.2.3 MSc Students: Completed

Walsh, Eamonn, A secure electronic voting system for academic council elections, awarded October 2006,
Masters of Science in Computer Science, Institute of Technology, Sligo.

Kirk, Mark, A Client Simulator - And Benchmark Suite - To Test Performance of Multithreaded Architec-
tures in Web Services, awarded in 2004, Masters of Computer Science, the National University of Ireland,
Maynooth.

Phelan, Pat, Rapid prototyping an educational online game: experimenting with sorting, awarded in 2004,
Masters of Science in Software Engineering, the National University of Ireland, Maynooth.

Hallinan, Stephen, An Examination of the Use of UML in a Spiral Process with Evolving Requirements
and the Subsequent Evaluation of the Design Quality, awarded in 2004, Masters of Science in Software
Engineering, the National University of Ireland, Maynooth.

Laird, Gary, Globalisation, Localisation and Testing of Visual Studio.NET, awarded in 2004, Masters of
Science in Software Engineering, the National University of Ireland, Maynooth.

Galvin, Valerie, Evolutionary Prototyping and its application in real-world case study, awarded in 2004,
Masters of Science in Software Engineering, the National University of Ireland, Maynooth.

Shanley, Ray, Design By Contract In Java, awarded in 2003, Masters of Science in Software Engineering,
the National University of Ireland, Maynooth.

Weir, David, Simulation and Modelling of Traffic Control Flow, awarded in 2003, Masters of Computer
Science, the National University of Ireland, Maynooth.

Feraille, Matthieu, Software Engineering Practices At DATACEP (ALTRAN), awarded in 2002, Masters of
Science in Software Engineering, the National University of Ireland, Maynooth.

Honan, Dermot, Peer to Peer Computing: An evaluation of the benefits when applied to Content Distri-
bution, awarded in 2002, Masters of Science in Software Engineering, the National University of Ireland,
Maynooth.

Perez, Fran, The Sequence Pattern, awarded in 2002, Masters of Science in Software Engineering, the
National University of Ireland, Maynooth.

Touzery, Emmanuel, PCSOFT: managing success, awarded in 2002, Masters of Science in Software Engi-
neering, the National University of Ireland, Maynooth.

Zou, Jianming, Improving the Software Development Process at Ericsson, awarded in 2002, Masters of
Science in Software Engineering, the National University of Ireland, Maynooth.

Meagher, Anne, Automated Student Profiling: A Software Engineering Study of Automated Student Profiling
for Teaching Programming, awarded in 2001, Masters of Science in Software Engineering, the National
University of Ireland, Maynooth.

Leacy, Helen, Animating formal specifications: a JAVA GUI, awarded in 1999, Masters of Computer Sci-
ence, the National University of Ireland, Maynooth.

13

2.3 Theses Examination

2.3 Theses Examination

2.3.1 PhD

Dubravka Ilic: Formal reasoning about Dependability in Model-Driven Development, awarded by Turku
Center for Computer Science, 2007.

Mark Hennesy: A test-driven development strategy for the construction of grammar-based software, awarded
by NUI Maynooth, 2007.

2.3.2 MPhil

Paul Stacey Peer-to-peer Searching and Sharing of Electronic Documents, awarded by DIT, Ireland, 2005.

2.3.3 MSc

David Tunney: var-pi: A language based on the pi-calculus, awarded by DCU, Ireland, 2004.

Aidan Haran: Collaborative Computer Personalities in the Game of Chess, awarded DCU, Ireland, 2002.

2.4 Journals: Reviewing and Editorial Committees

Since 2008, Paul is on the editorial comittee (comité de rédaction) of the Annals of Telecommunications (ISSN:
0003-4347), published by Springer.
Paul has acted as reviewer for the following journals:

ACM Transactions on Computing Education ISSN: 1946-6226 .

Annals of Telecommunications ISSN: 0003-4347.

Automated Software Engineering ISSN: 0928-8910.

Computer Networks (and ISDN Systems) ISSN: 0169-7552.

Formal Aspects of Computing ISSN: 0934-5043.

International Journal of Foundations of Computer Science (IJFCS) ISSN: 0129-0541.

International Journal of Modelling and Simulation ISSN: 0228-6203.

Journal of Cultural Heritage, ISSN: 1296-2074.

Journal of Systems and Software, ISSN: 0164-1212.

Requirements Engineering Journal ISSN: 0947-3602.

Science of Computer Programming ISSN: 0167-6423.

Software:Practice and Experience, ISSN: 0038-0644.

14

2.5 Conferences and Workshops: Committees and Reviewing

2.5 Conferences and Workshops: Committees and Reviewing

C: (co)chair, SC: Session (co)chair, OC: organisation committee, PC: programme committee, R: reviewer —
2011:

Business Modelling and Software Design (BMSD 2011) (PC, R)
Conference on e-democracy, e-participation and e-voting (CeDEM 2011) (R)
International Conference on Software Engineering Advances (ICSEA11) (PC, R)
International Conference on Software and Data Technologies (ICSOFT11) (PC,R)
International Conference on Intensive Applications and Services (INTENSIVE 2011) (PC,R)
Requirements Engineering for E-voting Systems (RE-Vote11) (PC,R)
Special Interest Group in Computer Science Education (SIGCSE 2011) (R)
Telecommunications, Networks and Systems (TNS 2011) (PC,R)
UML and Formal Methods International workshop (UML&FM 2011) (PC,R)

2010:

International Conference on Software Engineering Advances (ICSEA10) (PC, R)
International Conference on Software and Data Technologies (ICSOFT10) (PC,R)
International Conference on Intensive Applications and Services (INTENSIVE 2010) (PC,R)
Special Interest Group in Computer Science Education (SIGCSE 2010) (R)
From Research to Teaching Formal Methods - The B Method (TFM-B 2010) (PC,R)
Telecommunications, Networks and Systems (TNS 2010) (PC,R)

2009:

International Conference on Software Engineering Advances (ICSEA09) (PC, R)
International Conference on Software and Data Technologies (ICSOFT09) (PC,R)
International Conference on Intensive Applications and Services (INTENSIVE 09) (PC,R)
Innovation and Technology in Computer Science Education (ITiCSE 2009) (R)
Requirements Engineering for E-voting Systems (RE-Vote09) (C,PC)
Special Interest Group in Computer Science Education (SIGCSE 09) (R)
Telecommunications, Networks and Systems (TNS 2009) (PC,R)

2008:

Innovation and Technology in Computer Science Education (ITiCSE 2008) (R)
Special Interest Group in Computer Science Education (SIGCSE 08) (R)
Int. Symposium on Leveraging Applications of Formal Methods, Verification & Validation (ISoLA2008)
(PC)
International Conference on Software Engineering Advances (ICSEA08) (PC, R)
Telecommunications, Networks and Systems (TNS 2008) (PC, R)
International Conference on Software and Data Technologies (ICSOFT08) (PC,R)
African Conference on Research in Computer Science & Applied Mathematics (CARI’08) (R)
Workshop on Formal Methods Education and Training (FMET 2008) (PC)

2007:

Special Interest Group in Computer Science Education (SIGCSE 07) (R)
Innovation and Technology in Computer Science Education (ITiCSE 2007) (R)
International Conference on Software Engineering Advances (ICSEA07) (PC, R)
International Conference on Software and Data Technologies (ICSOFT07) (PC,R)

15

2.6 (Inter)national Research Projects: Evaluation and Reviewing

2006:

Formal Methods Europe (FM(E)06) (R)
International Conference on Software Engineering Advances (ICSEA06) (PC, R)
International Conference on Software and Data Technologies (ICSOFT06) (PC,R)
Information Technology and Telecommunications Doctoral Symposium (IT&T 2006) (R)

2004:

Principles and Practice of Programming in Java (PPPJ04) (C)
Foundations : Validation & Verification Workshop (Found04(V&V)) (PC)

2003:

Feature Interaction Workshop (FIW03) (PC,R)
Principles and Practice of Programming in Java (PPPJ03) (OC,R)

2002:

Forum on Specification and Design Languages (FDL02: SFP track) (R)
Principles and Practice of Programming in Java (PPPJ02) (R)
Symposium on Applied Computing (SAC02 (Soft.Eng. Track)) (SC)
Artificial Intelligence and Cognitive Science (AICS02) (R)

2001:

Irish Workshops in Formal Methods (IWFM01) (PC,R)
Intermediate Representation Engineering for the Java Virtual Machine (IRE2001) (PC,R)
Formal Methods for Parallel Programming: Theory & Applications (FMPPTA01) (R)

2000:

Irish Workshops in Formal Methods (IWFM00) (C,OC,PC,R)
Formal Methods for Parallel Programming: Theory & Applications (FMPPTA00) (R)

1999:

Formal Methods Europe (FME 1999) (R)
Irish Workshops in Formal Methods (IWFM99) (PC,R)
Formal Methods for Parallel Programming: Theory & Applications (FMPPTA99) (R)

1998:

Formal Methods for Parallel Programming: Theory & Applications (FMPPTA98) (R)

2.6 (Inter)national Research Projects: Evaluation and Reviewing

2.6.1 Ireland

Computer science panellist for the Enterprise Ireland Basic Research Grant Programme (2003).

16

2.6 (Inter)national Research Projects: Evaluation and Reviewing

2.6.2 European Union

In the last 8 years I have regularly, on average once per year, participated in the EU research framework programme
as an evaluator, reviewer, rapporteur and analyst. This usually involves between 1 and 3 weeks of full-time work
per year.

The role of evaluator is to examine and evaluate research proposals. I have evaluated many different types
of proposal in domains usually related to software engineering (for example: services, open source development,
future technologies, grid and cloud computing, architectures, . . .). Each proposal requires 6-12 hours of time to
evaluate, and then 2-3 hours of meeting time for a consensus to be reached with other evaluators. The process
of evaluation helps me to keep up-to-date with much of the recent world-wide research in software engineering,
which has a postive effect on my own research and teaching.

The role of reviewer is to provide year-by-year feedback on a research project that has already received funding
(after a positive evaluation). This requires about 1 week of work per year — to examine all deliverables, meet with
the project members, EU administrators and the other evaluators, and to submit a report with a list of recommen-
dations. My reviewing of the RODIN project helped me achieve an in-depth knowledge of the Event-B language
and RODIN platform, and this has led to my use of them in my own research and teaching.

The role of rapporteur is to aid the reviewers to achieve consensus on a proposal, and to draft a consensus
report. This task requires the rapporteur to read each proposal and understand the key technical elements; but not
to influence the reviewers during the consensus meetings. In general, this task is a little more time consuming
than that of an evaluator as it involves additional administration duties. The rapporteur is also responsible for
maintaining a high quality in the standard of technical writing that is used in returning results to the team that
submitted the proposal.

The role of analyst is to aid the EU in analysing the evaluation process, summarising the results of the process,
and making recommendations for future calls.

The specific calls in which I have been involved are listed below:
Evaluator for European FP6, IST priority 2:

Call 2 — IST-2002-2.3.2.3 — Open development platforms for software and services

Call 5 — IST-2005-2.5.5 — Software and Services

Portfolio Analysis for European FP6, IST priority 2:

Call 5 — IST-2005-2.5.5 — Software and Services

Reviewer for RODIN project (European Union, FP6, IST priority 2).
Evaluator/Rapporteur European Union FP7:

ICT objective 1.2 — Service and Software Architectures, Infrastructures and Engineering

FET Proactive, FP7 Call 3 — ICT Forever Yours

FET Proactive, FP7 Call 4 — CO-PI: Co-ordinating Communities, Plans and Actions

FET Proactive, FP7 Call 4 — TERACOMP: Concurrent Tera-Device Computing

FP7 ICT Call 5, Objective 1.2 — Internet of Services, Software and Virtualisation

FP7 Marie Curie Action Calls — Mathematics and Engineering

17

2.7 Grants Received

2.7 Grants Received

CNRS Chercheur Associé 2005 — with Dominique Méry, MOSEL research group, INRIA/LORIA, VandIJuvre-
lès-Nancy, Les méthodes formelles et le problème du transfert de technologie : la nécessité dŠune recherche
fondamentale dans la pédagogie du génie logiciel (salary from 1st Sept 2005 to 31st August 2006)

Enterprise Ireland International Collaboration Research Grant (2005) EI/IC/2005/49 — with Rosemary
Monahan and Jackie O’Kelly — between Clemson University and NUIM. Problem-Based-Learning (PBL)
- from theory to practice (4500 euro)

IRCSET Embark Initiative (2004-2007) — Turlough Neary, J. Paul Gibson. The boundaries of complexity
hierarchies: maximising problem solving potential by using different models of computation (57,150 euro).

IRCSET Embark Initiative (2003-2006) — Margaret McGaley, J. Paul Gibson. Electronic voting: An anal-
ysis of the safety critical issues (57,150 euro).

IRCSET Embark Initiative (2003-2006) — Des Traynor, J. Paul Gibson. The synthesis and analysis of
student profile models in adaptive learning environments for teaching computer programming. (57,150
euro)

IRCSET Embark Initiative (2003-2006) — Ciaran O’Floinn, J. Paul Gibson. Formalisation of Cryptographic
Metrics and its application to emerging techniques. (57,150 euro)

IRCSET Embark Initiative (2002-2005) — Aidan Delaney, J. Paul Gibson, Thomas J. Naughton. Specifica-
tion of an abstract operating system running on a single stack push down automaton (57,150 euro)

IRCSET Embark Initiative (2002-2004) — Damien Woods, J. Paul Gibson. Computational Models and the
Turing Limit: An Investigation of the Boundary Between Discrete and Continuous Systems (38,100 euro)

NUI, Maynooth New Researcher Award (2001) — for supporting the costs incurred by my PhD students
when attending conferences and workshops, and visiting overseas research laboratories. (4,000 Irish pounds)

Enterprise Ireland International Collaboration Research Grant IC/2201/061 (2001) — with Rosemary Mon-
ahan and James Power — for the establishment of a formal methods alliance between Clemson University
and NUIM. (6,000 Irish pounds)

Universite de Metz, Visiting Fellowship (2000) - for collaboration with Dominique Cansell in the application
of theorem proving techniques in real world software engineering. (2,000 Irish pounds)

Enterprise Ireland Strategic Research Grant SRG/2000/94 (2000-2003) — NUIM-DCU formal methods
group collaboration on the IMPROVE (IMplementing PROtocol Verification for E-commerce) project —
concerned with security protocol specification and verification (working with Baltimore Technologies Ltd).
(70,500 Irish Pounds)

Enterprise Ireland French Collaboration Grant — with Geoff Hamilton (DCU) (1998 — 2000) — to investi-
gate the formal specification of telephone systems, in collaboration with the Model Group at Loria in Nancy,
France. (1,200 Irish pounds * 3)

18

2.8 Invited Talks

2.8 Invited Talks

Research In Context: A talk in images. Presented at: Postgraduate Research Symposium, Limerick Insitute
of Technology (April 2011).

A compositional approach to modelling and formal verification of e-voting systems. Presented at: Depart-
ment of Information Technology, Limerick Insitute of Technology (April 2010).

A compositional approach to modelling and formal verification of e-voting systems. Presented at: The
Computer science department, Namur, Belgium; to the Precise research group (February 2010).

Feature Interactions in a Software Product Line for E-voting. Presented at: The Computer science depart-
ment, Clemson Univ., SC, USA, to the RSRG research group (September 2009). Co-presenter: Jean-Luc
Raffy.

E-voting verfication problems across the world. Presented at: VETO08 (Workshop sur La sécurité Infor-
matique et le Vote ElecTrOnique), CIRM, Marseille Luminy, Université de la Méditerranée (March 2008).
Co-presenters: Jean-Luc Raffy and Eric Lallet.

Formal methods — never too young to start. Presented at: “To B or in any Event To B” Seminar/Workshop,
Nancy, France (December 2007).

E-voting and the need for rigorous software engineering — the past, present and future. Presented at: B2007,
Besancon, France (January 2007).

Trust and security in e-voting systems: the verification problem. Presented at: Workshop on Trustworthy
Software, Saarland University, Saarbrücken, Germany (May 2006).

Problem-based learning: the Pablo Picasso Approach. Presented for: The Office of Teaching Effectiveness
and Innovation, Clemson Univ., SC, USA (May 2006).

E-voting: software engineering and formal methods. Presented at: The Computer science department,
Clemson Univ., SC, USA, to the RSRG research group (May 2006).

Le vote électronique, les methodes formelles et les problèmes complexes dus à la sécurité. Presented to: The
MOSEL research group, Nancy, France. (March 2006).

PBL — A computer science viewpoint. Presented at: Project and Problem Based Learning in Higher Educa-
tion, Galway (June 2003). Co-presenters: Jackie O’Kelly and George Mitchell.

The Hunt For Software Engineers - i’ll provide the (silver) bullets if you provide the guns to fire them.
Presented at: NUI Maynooth CS Department, Seminar Series (October 2002).

The Complexity of Beauty or the Beauty of Complexity. Presented for: The NUIM Astro-2 (student society)
(April 2002).

Fair Objects: Infinity and Beyond. Presented at: Formal Methods Alliance (Clemson University) (January
2002).

19

2.9 Research Group Membership

An Introduction To Formal Methods. Presented at: Formal Methods Alliance (Clemson University) (January
2002).

Computability, complexity, correctness, and common-sense. Presented at: NUIM Mathematics Seminar
(February 2001).

The fractal-like nature of complexity boundaries. Presented at: NUIM-DCU Formal Methods and Security
Seminar Series (March 2001).

Software Engineering and Ethics: when code goes bad. Presented for: The NUIM Astro-2 (student society)
(March 2001).

The role of computer science in software engineering. Presented at: NUI Maynooth CS Department, Seminar
Series (8th May 2000).

Three interesting problems in computer science. Presented at: NUI Maynooth CS Department, Seminar
Series (20th November 2000).

Correctness Preserving Transformations for software maintenance (in C++). Presented at: NUI Maynooth
CS Department, Seminar Series (25th September 2000). Co-presenters: Prof. Brian Malloy and Dr T
Dowling.

Stability issues in formal OO requirements models. Presented at: NUI Maynooth CS Department, Seminar
Series (1st November 1999).

2.9 Research Group Membership

AVERSE (Administration, Validation et sEcurité des Réseaux et SErvices) as part of L’Unité Mixte
de Recherche SAMOVAR (Services répartis, Architectures, MOdélisation, Validation, Administration des
Réseaux) UMR 5157 INT CNRS Research Laboratory.
(see: http://samovar.it-sudparis.eu/equipes/eq_averse.php)
MOSEL, INRIA/LORIA, Nancy, France.
(see: http://www.loria.fr/equipes/model/)
FMA (Formal Methods Alliance), Clemson, USA.
(see: http://www.cs.clemson.edu/~steve/FMG/group.html)

2.10 Publications

(Co)-Editor Proceedings

[1] Isabelle Perseil and J. Paul Gibson, editors. Fourth IEEE International workshop UML and Formal Methods
(UML&FM2011), Limerick, Ireland, june 2011. IEEE.

[2] J. Paul Gibson and Doug Jones, editors. First International Workshop on Requirements Engineering for e-Voting Systems
(RE-VOTE09), Atlanta,GA,USA, August 2009. IEEE.

[3] J. Paul Gibson, James Power, and John Waldron, editors. PPPJ ’04: Proceedings of the 3rd international symposium on
Principles and practice of programming in Java, Las Vegas, Nevada, 2004. Trinity College Dublin. General Chair-John
Waldron.

20

INTERNATIONAL JOURNAL PUBLICATIONS

[4] David C. Rine, James F. Power, and J. Paul Gibson. ACM SAC2002 software engineering: theory and applications (SETA)
track description. In ACM Symposium on Applied Computing (SAC 2002), pages 969–970, Madrid, Spain, 2002. ACM.

[5] David Sinclair and J. Paul Gibson, editors. 4th Irish Workshop on Formal Methods (IWFM 2000), Electronic Workshops
in Computing, Maynooth, Ireland, July 2000. BCS.

International Journal Publications

[6] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Formal object oriented development of a voting system test oracle.
Innovations in Systems and Software Engineering (Special issue UML-FM11), 2011. To appear.

[7] Damien MacNamara, Ted Scully, Francis Carmody, Ken Oakley, Elizabeth Quane, and J. Paul Gibson. Dual vote: A
non-intrusive evoting interface. International Journal of Computer Information Systems and Industrial Management
Applications(IJCISIM), 2011. To appear.

[8] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. How do I know if my design is correct? Electronic Notes in Theoretical
Computer Science (ENTCS), 2011. To appear.

[9] J. Paul Gibson. Formal methods - never too young to start. Electronic Notes in Theoretical Computer Science (ENTCS),
2011. To appear.

[10] J. Paul Gibson. Software reuse and plagiarism: A code of practice. SIGCSE Bull., 41(3):55–59, 2009.

[11] Damien Woods and J. Paul Gibson. Lower bounds on the computational power of an optical model of computation.
Natural Computing, 7(1):95–108, 2008.

[12] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to formal software
design for a secure e-voting interface. Electronic Notes in Theoretical Computer Science, 183:39–55, 2007.

[13] Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: a non-prescriptive approach to teaching pro-
gramming. SIGCSE Bull., 38(3):217–221, 2006.

[14] Des Traynor and J. Paul Gibson. Synthesis and analysis of automatic assessment methods in CS1: generating intelligent
MCQs. SIGCSE Bull., 37(1):495–499, 2005.

[15] J. Paul Gibson and J.A. Lynch. Applying formal object oriented design principles to Smalltalk-80. British Telecom
Technology Journal, 3, July 1989.

Inter. Peer-Reviewed Conference Proceedings & Book Chapters

[16] J. Paul Gibson, Damien MacNamara, and Ken Oakley. Just like paper and the 3-colour protocol: a voting interface
requirements engineering case study. In Proceedings of RE-Vote 2011, Trento, Italy, august 2011. IEEE.

[17] Damien MacNamara, Ted Scully, J. Paul Gibson, Francis Carmody, Ken Oakley, and Elizabeth Quane. Dualvote: Ad-
dressing usability and verifiability issues in electronic voting systems. In 2011 Conference for E-Democracy and Open
Government (CeDEM11), Danube University, Krems, May 2011. Edition Danube University.

[18] Damien MacNamara, Francis Carmody, Ted Scully, Ken Oakley, Elizabeth Quane, and J. Paul Gibson. Dual vote: A novel
user interface for e-voting systems. In IADIS International Conference on Interfaces and Human Computer Interaction
2010, Freiburg, Germany, 28 - 30 July 2010, 2010. IADIS.

[19] Kevin Casey and J. Paul Gibson. (m)Oodles of Data Mining Moodle to understand Student Behaviour. In Fiona
O’Riordan, Fergus Toolan, Rosario Hernandez, Robbie Smyth, Brett Becker, Kevin Casey, David Lillis, Geraldine
McGing, Majella Mulhall, and Kay O’Sullivan, editors, ICEP 10 Conference Papers: Engaging Pedagogy, pages 61–
71, Maynooth, Ireland, December 2010. Griffith College Dublin.

21

INTER. PEER-REVIEWED CONFERENCE PROCEEDINGS & BOOK CHAPTERS

[20] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Engineering a distributed e-voting system architecture: Meeting critical
requirements. In Holger Giese, editor, Architecting Critical Systems, First International Symposium, ISARCS 2010,
Prague, Czech Republic, June 23-25, 2010, Proceedings, volume 6150 of Lecture Notes in Computer Science, pages
89–108. Springer, 2010.

[21] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Sculpturing Event-B models with Rodin: “holes and lumps” in teaching
refinement through problem-based learning. In From Research to Teaching Formal Methods - The B Method (TFM
B’2009), pages 7–21, Nantes, France, 2009. APCB.

[22] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Feature interactions in a software product line for e-voting. In Nakamura
and Reiff-Marganiec, editors, Feature Interactions in Software and Communication Systems X, pages 91–106, Lisbon,
Portugal, June 2009. IOS Press.

[23] J. Paul Gibson. Software reuse and plagiarism: A code of practice. In 14th ACM SIGCSE Annual Conference on
Innovation and Technology in Computer Science Education(ITiCSE 2009), pages 55–59, Paris, France, July 2009. ACM.

[24] J. Paul Gibson. Challenging the lecturer: Learning from the teacher’s mistakes. In Fiona O’Riordan, Fergus Toolan,
Rosario Hernandez, Robbie Smyth, Brett Becker, Kevin Casey, David Lillis, Geraldine McGing, Majella Mulhall, and
Kay O’Sullivan, editors, ICEP 09 Conference Papers: Engaging Pedagogy, pages 61–71, Dublin, Ireland, November
2009. Griffith College Dublin.

[25] J. Paul Gibson. Weaving a formal methods education with problem-based learning. In T. Margaria and B. Steffen, editors,
3rd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, volume 17
of Communications in Computer and Information Science (CCIS), pages 460–472, Porto Sani, Greece, October 2008.
Springer-Verlag, Berlin Heidelberg.

[26] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Analysis of a distributed e-voting system architecture against quality of
service requirements. In Herwig Mannaert, Tadashi Ohta, Cosmin Dini, and Robert Pellerin, editors, The Third Interna-
tional Conference on Software Engineering Advances (ICSEA 2008), pages 58–64, Sliema, Malta, October 2008. IEEE
Computer Society.

[27] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems and standards. In Dan Re-
menyi, editor, 8th European Conference on e-Government, pages 283–289, Lausanne, Switzerland, July 2008. Academic
Publishing International.

[28] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. How do I know if my design is correct? In Zoltan Istenes, editor, Formal
Methods in Computer Science Education (FORMED 2008), pages 61–70, Budapest, Hungary, March 2008. Accepted for
publication in ENTCS.

[29] J. Paul Gibson. Formal methods — never too young to start. In Zoltan Istenes, editor, Formal Methods in Computer
Science Education (FORMED 2008), pages 151–160, Budapest, Hungary, March 2008. Accepted for publication in
ENTCS.

[30] J. Paul Gibson. E-voting and the need for rigorous software engineering — the past, present and future. In Jacques Julliand
and Olga Kouchnarenko, editors, B 2007: Formal Specification and Development in B, 7th International Conference of B
Users, volume 4355 of Lecture Notes in Computer Science, page 1, Besançon, France, 2007. Springer.

[31] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Formal verification of tamper-evident storage for e-voting. In
Mike Hinchey and Tiziana Margaria, editors, Fifth IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2007), pages 329–338, London, England, UK, 2007. IEEE Computer Society.

[32] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to formal software design
for a secure e-voting interface. In A. Cerone and P. Curzon, editors, Formal Methods for Interactive Systems (FMIS 2006),
Macau SAR China, October 2006.

22

INTER. PEER-REVIEWED CONFERENCE PROCEEDINGS & BOOK CHAPTERS

[33] Margaret McGaley and J. Paul Gibson. A critical analysis of the council of europe recommendations on e-voting. In
EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting Tech-
nology Workshop, pages 9–22, Berkeley, CA, USA, 2006. USENIX Association.

[34] Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: a non-prescriptive approach to teaching pro-
gramming. In Renzo Davoli, Michael Goldweber, and Paola Salomoni, editors, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education, ITiCSE 2006, pages 217–221, Bologna, Italy,
2006. ACM. Also published in ACM SIGCSE Bulletin.

[35] Des Traynor, Susan Bergin, and J. Paul Gibson. Automated assessment in CS1. In ACE ’06: Proceedings of the 8th
Austalian conference on computing education, pages 223–228, Darlinghurst, Australia, 2006. Australian Computer Soci-
ety, Inc.

[36] Jackie O’Kelly and J. Paul Gibson. Software engineering as a model of understanding for learning and problem solving.
In ICER ’05: Proceedings of the 2005 international workshop on Computing education research, pages 87–97, New York,
NY, USA, 2005. ACM.

[37] Damien Woods and J. Paul Gibson. Lower bounds on the computational power of an optical model of computation.
In Cristian Calude, Michael J. Dinneen, Gheorghe Paun, Mario J. Pérez-Jiménez, and Grzegorz Rozenberg, editors,
4th International Conference on Unconventional Computation (UC2005), volume 3699 of Lecture Notes in Computer
Science, pages 237–250, Sevilla, Spain, 2005. Springer.

[38] Deirdre Carew, Chris Exton, Jim Buckley, Margaret McGaley, and J. Paul Gibson. Preliminary study to empirically in-
vestigate the comprehensibility of requirements specifications. In P. Romero, J. Good, E. Acosta Chaparro, and S. Bryant,
editors, Psychology of Programming Interest Group 17th annual workshop (PPIG 2005), pages 182–202, University of
Sussex, Brighton, UK, 2005.

[39] Damien Woods and J. Paul Gibson. Complexity of continuous space machine operations. In S. Barry Cooper, Benedikt
Löwe, and Leen Torenvliet, editors, New Computational Paradigms, First Conference on Computability in Europe
CiE2005, volume 3526 of Lecture Notes in Computer Science, pages 540–551, Amsterdam, The Netherlands, 2005.
Springer.

[40] Jackie O’Kelly and J. Paul Gibson. PBL: Year one analysis — interpretation and validation. In PBL In Context — Bridging
work and Education, Lahti, Finland, 2005.

[41] Stephen Hallinan and J. Paul Gibson. A graduate’s role in technology transfer: From requirements to design with UML.
In Peter Kokol, editor, IASTED International Conference on Software Engineering, part of the 23rd Multi-Conference on
Applied Informatics, pages 94–99, Innsbruck, Austria, 2005. IASTED/ACTA Press.

[42] Des Traynor and J. Paul Gibson. Synthesis and analysis of automatic assessment methods in CS1: generating intelligent
MCQs. In Wanda Dann, Thomas L. Naps, Paul T. Tymann, and Doug Baldwin, editors, Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE 2005), pages 495–499, St. Louis, Missouri, USA, 2005.
ACM. Also published in ACM SIGCSE Bulletin.

[43] Des Traynor and J. Paul Gibson. Implementing cognitive modelling in CS education: Aligning theory and practice
of learning to program. In Kinshuk, Demetrios G. Sampson, and Pedro T. Isaías, editors, Cognition and Exploratory
Learning in Digital Age CELDA 2004, pages 533–536, Lisbon, Portugal, 2004. IADIS.

[44] Des Traynor and J. Paul Gibson. Towards the development of a cognitive model of programming: a software engineering
proposal. In E. Dunican and T.R.G. Green, editors, Psychology of Programming Interest Group 16th annual workshop
(PPIG 2004), pages 79–85, 2004.

[45] J. Paul Gibson. A noughts and crosses Java applet to teach programming to primary school children. In James F. Power and
John Waldron, editors, Proceedings of the 2nd International Symposium on Principles and Practice of Programming in

23

INTER. PEER-REVIEWED CONFERENCE PROCEEDINGS & BOOK CHAPTERS

Java (PPPJ 2003), volume 42 of ACM International Conference Proceeding Series, pages 85–88, Kilkenny City, Ireland,
2003. ACM.

[46] Edward B. Duffy, Brian A. Malloy, and J. Paul Gibson. Applying the decorator pattern for profiling object-oriented
software. In 11th International Workshop on Program Comprehension (IWPC 2003), pages 84–93, Portland, Oregon,
USA, 2003. IEEE Computer Society.

[47] Peter J. Clarke, Brian A. Malloy, and J. Paul Gibson. Using a taxonomy tool to identify changes in OO software. In
Gerardo Canfora, Mark van den Brand, and Tibor Gyimothy, editors, 7th European Conference on Software Maintenance
and Reengineering CSMR 2003, pages 213–222, Benevento, Italy, 2003. IEEE Computer Society.

[48] J. Paul Gibson. Formal requirements engineering: Learning from the students. In Doug Grant, editor, 12th Australian
Software Engineering Conference (ASWEC 2000), pages 171–180, Canberra, Australia, 2000. IEEE Computer Society.

[49] David Sinclair, James F. Power, J. Paul Gibson, David Gray, and Geoff Hamilton. Specifying and verifying IP with linear
logic. In Ten-Hwang Lai, editor, ICDCS Workshop on Distributed System Validation and Verification, pages E104–E110,
Taiwan, ROC, 2000.

[50] J. Paul Gibson, Geoff Hamilton, and Dominique Méry. A taxonomy for triggered interactions using fair object semantics.
In Muffy Calder and Evan H. Magill, editors, Feature Interactions in Telecommunications and Software Systems VI (FIW
2000), pages 193–209, Glasgow, Scotland, UK, 2000. IOS Press.

[51] Geoff Hamilton, J. Paul Gibson, and Dominique Méry. Composing fair objects. In Fouchal and Lee, editors, International
Conference on Software Engineering Applied to Networking and Parallel/Distributed Computing (SNPD ’00), pages 225–
233, Reims, France, May 2000.

[52] J. Paul Gibson, Thomas F. Dowling, and Brian A. Malloy. The application of correctness preserving transformations to
software maintenance. In ICSM ’00: Proceedings of the International Conference on Software Maintenance (ICSM’00),
pages 108–119, Washington, DC, USA, 2000. IEEE Computer Society.

[53] J. Paul Gibson and Dominique Méry. Formal modelling of services for getting a better understanding of the feature
interaction problem. In Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors, PSI ’99: Proceedings of the
Third International Andrei Ershov Memorial Conference on Perspectives of System Informatics, volume 1755 of Lecture
Notes in Computer Science, pages 155–179, Akademgorodok, Novosibirsk, Russia, 1999. Springer.

[54] J. Paul Gibson. Formal object oriented requirements: simulation, validation and verification. In Helena Szczerbicka,
editor, Modelling and Simulation: A tool for the next millenium ESM99, volume II, pages 103–111, Warsaw, Poland, June
1999. Society for Computer Simulation International (SCS).

[55] J. Paul Gibson, Dominique Méry, and Yassine Mokhtari. Animating formal specifications - a telephone simulation case
study. In Helena Szczerbicka, editor, Modelling and Simulation: A tool for the next millenium ESM99, volume II, pages
139–146, Warsaw, Poland, June 1999. Society for Computer Simulation International (SCS).

[56] J. Paul Gibson, Geoff Hamilton, and Dominique Méry. Integration problems in telephone feature requirements. In Keijiro
Araki, Andy Galloway, and Kenji Taguchi, editors, Integrated Formal Methods, Proceedings of the 1st International
Conference on Integrated Formal Methods (IFM 99), pages 129–148, York, UK, June 1999. Springer.

[57] J. Paul Gibson and Dominique Méry. Fair objects. In H.S.M. Zedan and Antonio Cau, editors, Object-oriented technology
and computing systems re-engineering, pages 122–140, Chichester, USA, 1999. Horwood Publishing, Ltd.

[58] David Gray, Geoff Hamilton, David Sinclair, J. Paul Gibson, and James F. Power. Four logics and a protocol. In Andrew
Butterfield and Klemens Haegele, editors, 3rd Irish Workshop on Formal Methods (IWFM 1999), Electronic Workshops
in Computing, Galway, Ireland, 1999. BCS.

[59] J. Paul Gibson. Towards a feature interaction algebra. In Kristofer Kimbler and Wiet Bouma, editors, Feature Interactions
in Telecommunications and Software Systems V(FIW 1998), pages 217–231, Malmö, Sweden, 1998. IOS Press.

24

TECHNICAL REPORTS

[60] J. Paul Gibson and Dominique Méry. Teaching formal methods: Lessons to learn. In Sharon Flynn and Andrew Butter-
field, editors, 2nd Irish Workshop on Formal Methods (IWFM 1998), Electronic Workshops in Computing, Cork, Ireland,
July 1998. BCS.

[61] J. Paul Gibson and Dominique Méry. Always and eventually in object requirements. In A.S Evans, editor, Second
Workshop on Rigorous Object Oriented Methods (ROOM 2), Bradford, West Yorkshire, UK, May 1998.

[62] J. Paul Gibson and Dominique Méry. Telephone feature verification: Translating SDL to TLA+. In Ana R. Cavalli
and Amardeo Sarma, editors, SDL ’97 Time for Testing, SDL, MSC and Trends — 8th International SDL Forum, pages
103–118, Evry, France, September 1997. Elsevier.

[63] J. Paul Gibson. Feature requirements models: Understanding interactions. In Petre Dini, Raouf Boutaba, and Luigi
Logrippo, editors, Feature Interactions in Telecommunications Networks IV, (FIW 1997), pages 46–60, Montréal, Canada,
June 1997. IOS Press.

[64] J. Paul Gibson, Bruno Mermet, and Dominique Méry. Feature interactions: A mixed semantic model approach. In Henry
McGloughlin and Gerard O’Regan, editors, 1st Irish Workshop on Formal Methods (IWFM 1997), Electronic Workshops
in Computing, Dublin, Ireland, July 1997. BCS.

[65] J. Paul Gibson and Dominique Méry. A unifying model for specification and design. In Galmiche, Bashoun, Fiadero,
and Yonezawa, editors, Proceedings of the Workshop on Proof Theory of Concurrent Object Oriented Programming, Linz
(Austria), July 1996.

Technical Reports

[66] Jackie O’Kelly, Rosemary Monahan, J. Paul Gibson, and Stephen Brown. Enhancing skills transfer through problem-
based learning. Report NUIM-CS-TR-2005-13, Department of Computer Science, National University of Ireland,
Maynooth., 2005.

[67] J. Paul Gibson. E-voting requirements modelling: An algebraic specification approach (with cafeobj). Report NUIM-CS-
TR-2005-14, Department of Computer Science, National University of Ireland, Maynooth., 2005.

[68] J. Paul Gibson. Software reuse in final year projects: A code of practice. Report NUIM-CS-TR-2003-12, Department of
Computer Science, National University of Ireland, Maynooth., 2003.

[69] Margaret McGaley and J. Paul Gibson. E-voting: a safety critical system. Report NUIM-CS-TR-2003-2, Department of
Computer Science, National University of Ireland, Maynooth., 2003.

[70] J. Paul Gibson. Formal requirements models: simulation, validation and verification. Report NUIM-CS-TR-2001-2,
Department of Computer Science, National University of Ireland, Maynooth., 2001.

[71] J. Paul Gibson. On the relationship between computational models and scientific theories. Report NUIM-CS-TR-2001-5,
Department of Computer Science, National University of Ireland, Maynooth., 2001.

[72] Damien Woods, Thomas J. Naughton, and J. Paul Gibson. Analog recurrent neural network simulation, O(log n) unordered
search, and bitonic sort with an optically-inspired model of computation. Report NUIM-CS-TR-2001-6, Department of
Computer Science, National University of Ireland, Maynooth, 2001.

[73] J. Paul Gibson. An OO requirements capture and analysis environment. Technical Report CRIN-98-R-010, Centre de
Recherche en Informatique de Nancy (CRIN), January 1998.

[74] J. Paul Gibson and Yassine Mokhtari. POTS: An OO LOTOS specification. Technical Report CRIN-98-R-013, Centre de
Recherche en Informatique de Nancy (CRIN), January 1998.

[75] J. Paul Gibson, Dominique Cansell, Bruno Mermet, and Dominique Méry. Spécification de services dans une logique
temporelle compositionnelle: Rapport de fin du lot1 du marché. Technical Report no961B 1B CNET-CNRS-CRIN, Centre
de Recherche en Informatique de Nancy (CRIN), 1998.

25

TECHNICAL REPORTS

[76] J. Paul Gibson and Dominique Méry. Formal methods for concurrency parallelism and distribution. Rapport Interne
CRIN-96-R-378, Centre de Recherche en Informatique de Nancy (CRIN), 1995. Published in ERCIM News Software
Quality (23).

[77] J. Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS. Thesis CSM-114, Stirling
University, August 1993.

[78] J. Paul Gibson. Formal Object Based Design in LOTOS. Technical Report Computer Science: TR-113, University of
Stirling, 1993.

[79] J. Paul Gibson. A LOTOS-Based Approach to Neural Network Specification. Technical Report Computer Science:
TR-112, University of Stirling, 1993.

26

3. RESEARCH CONTRIBUTIONS: THEORETICAL, APPLIED AND EDUCATIONAL

— CONTRIBUTIONS DE RECHERCHE : THÉORIQUES, APPLIQUÉES ET PÉDAGOGIQUES

3 RESEARCH CONTRIBUTIONS: THEORETICAL, APPLIED AND EDUCATIONAL

— CONTRIBUTIONS DE RECHERCHE : THÉORIQUES, APPLIQUÉES ET

PÉDAGOGIQUES

If your contribution has been vital there will always be
somebody to pick up where you left off, and that will be Etre homme, c’est précisément être responsable. C’est

your claim to immortality. sentir, en posant sa pierre, que l’on contribue à bâtir le
Walter Gropius monde.

Antoine de Saint-Exupéry

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

The feature interaction problem is stated sim- Le problème de l’interaction des services (features) est
ply, and informally, as follows: A feature inter- établi simplement et informellement comme suit : une
action is a situation in which system behaviour interaction est une situation dans laquelle le system be-
(specified as some set of features) does not as a haviour (défini comme un ensemble de (features) ne satis-
whole satisfy each of its component features in- fait pas, en tant que “tout”, chacune de ses features qui le
dividually. composent individuellement.

Feature interaction is a difficult problem La feature interaction est un problème difficile rendu
made more difficult by the fact that feature com- encore plus difficile par le fait que les combinaisons ne
binations cannot be fully understood when indi- peuvent pas être entièrement comprises lorsque les fea-
vidual features are themselves not understood. tures elles-mêmes ne sont pas comprises. La modélisation
Formal requirements modeling is the triangular des besoins formels est le procédé triangulaire qui consiste
process of gaining understanding, recording un- à gagner la compréhension, enregistrer la compréhension
derstanding in a formal model, and validating the dans un modèle formel, et valider le modèle. En dévelop-
model. By formally developing feature require- pant de façon formelle les modèles d’exigences en feature,
ments models we can approach the problem of nous pouvons approcher le problème en combinant des
combining features with much more confidence. features avec beaucoup plus de confiance. Le problème
The problem is still as difficult, but at least it is reste tout autant difficile mais, au moins, il est maintenant
now well defined. We argue that improving un- bien défini. Nous affirmons qu’améliorer la compréhen-
derstanding — through foundational research — sion – par le biais d’une recherche de fondements — est la
is the key to interaction avoidance, detection and clé pour éviter l’interaction, pour détecter et pour résoudre.
resolution.
3.1.1 Features and requirements engineering

— Services et ingénierie des besoins

Many of the problems which arise when fea- Un grand nombre des problèmes qui surviennent
tures combine (i.e. feature interactions) are due to lorsque les features se combinent sont dus au mauvais
badly developed requirements models for individ- développement des modèles des besoins pour features
ual features. With sufficiently good requirements individuelles. Avec des modèles de besoins suffisam-

27

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

models, in which each feature is formally mod- ment bons, dans lequel chaque feature est formellement
elled and validated against customer understand- modélisée et validée face à la compréhension du client,
ing, the feature interaction problem is much more l’interaction est beaucoup plus soluble.
tractable. Dans [Gib97], nous analysons certaines des inte-

In [Gib97] we analyse some of the standard ractions standards au sein de systèmes de téléphone et
feature interactions within telephone systems and nous montrons que, dans la plupart des cas, la notion
show that, in most cases, the notion of interac- d’interaction est utilisée pour signifier que les exigences
tion is used to signify that the requirements are ne sont pas entièrement compriser, proprement enreg-
not fully understood, properly recorded or rigor- istrées ou rigoureusement validées. Par opposition, nous
ously validated. In contrast, we then show how montrons alors comment de bons modèles de besoins
good requirements models could resolve the prob- peuvent résoudre les problèmes qui surviennent quand
lems that arise when combining features. An inter- on combine les features. Une interaction est supposée
action is said to occur if and only if requirements apparaître si, et seulement si, les besoins sont contradic-
are contradictory. The problem which this paper toires. Le problème abordé par cet essai est de savoir
addresses is how to avoid, detect and resolve such comment éviter, détecter et résoudre de telles contradic-
contradictions during requirements development. tions pendant l’ingénierie des besoins.

Features are observable behaviour and are Features sont des comportements observable et, par
therefore a requirements specification problem conséquent, sont un “requirements specification prob-
[Zav93]. Most feature interaction problems can lem” [Zav93]. La plupart des problèmes d’interaction
be (and should be) resolved at the requirements peuvent être (et devraient être) résolus pendant l’ingénierie
capture stage of development. If there are no prob- des besoins. Si aucun problème n’apparaît au niveau de
lems in the requirements specification then prob- la spécification de besoins, alors les problèmes pendant
lems during the design and implementation will la conception et l’implémentation surviendront seule-
arise only through errors in the refinement process. ment au travers d’erreurs commises au cours du pro-
Certainly the feature interaction problem is more cessus de raffinement. Il est certain que ce problème
prone to the introduction of such errors because est plus enclin à l’introduction de telles erreurs en rai-
of the highly concurrent and distributed nature of son de la nature hautement concurrente et répartie de
the underlying implementation domain, but this l’architecture ; mais ceci est sous considération après
is for consideration after each individual feature’s que le comportement de chaque feature a été modélisé
requirements have been modelled and validated; et validé ; sinon il ne sera pas aisé d’identifier la source
otherwise it will not be easy to identify the source de l’interaction. Features sont des composants des be-
of the interaction. Features are requirements mod- soins et des unités d’incrémentation alors que les sys-
ules and the units of incrementation as systems tèmes évoluent. Un système de télécommunication est
evolve. A telecom system is a set of features. un ensemble de features.

A feature interaction occurs in a system whose Une interaction apparaît dans un système où le com-
complete behaviour does not satisfy the separate portement complet ne satisfait pas aux spécifications
specifications of all its features. Having features as séparées de toutes ses features. Posséder des features
the incremental units of development is the source comme unités incrémentielles de développement con-
of many of the problems: stitue la source de nos problèmes :

Complexity explosion — Potential feature interac- L’explosion combinatoire — les interactions potentielles

tions increase exponentially with the number of features augmentent de façon exponentielle avec le nombre de features

28

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

in the system. dans le système.

Chaotic Information Structure In Sequential De- L’ordre séquentiel arbitraire du développement est ce

velopment Strategies — The arbitrary sequential or- qui conduit la structure interne du système résultant. Comme

dering of feature development is what drives the internal chaque nouvelle feature est ajoutée, la feature doit inclure

structure of the resulting system. As each new feature is les détails de la manière dont elle est supposée interagir avec

added the feature must include details of how it is to les autres features déjà présentes dans le système. Par con-

interact with all the features already in the system. Con- séquent, pour comprendre le comportement d’une feature, il

sequently, to understand the behaviour of one feature, it est nécessaire d’examiner la spécification des toutes les fea-

is necessary to examine the specification of all the fea- tures au sein du système. Toute intégrité conceptuelle est per-

tures in the system. All conceptual integrity is lost since due car la distribution de connaissances est chaotique. L’ordre

the distribution of knowledge is chaotic. The arbitrary séquentiel arbitraire du développement possède un large effet

ordering of feature development has a large effect on the sur la structure du système interne.

internal system structure. Problème de supposition — des features déjà dévelop-

Assumption Problem — Already developed fea- pées dépendent souvent de suppositions qui ne sont plus vraies

tures often rely on assumptions which are no longer true lorsque des features ultérieures sont conçues. Par conséquent,

when later features are conceived. Consequently, fea- des features peuvent dépendre de suppositions contradictoires.

tures may rely on contradictory assumptions. Développement indépendant — les approches tradition-

Independent Development — Traditional ap- nelles exigent que le développeur d’une nouvelle feature con-

proaches require a new feature developer to consider sidère comment la feature opère avec toutes les autres déjà sur

how the feature operates with all others already on the le système. Par conséquent, comme la façon dont les nouvelles

system. Consequently, we cannot concurrently develop features travaillent ensemble ne sera considérée par aucun des

new features: since how the new features work together deux développeurs de feature indépendants, il nous est impos-

will not be considered by either of the two indepen- sible actuellement de développer de nouvelles features. Nous

dent feature developers. We want to have an incremen- voulons avoir une approche incrémentielle dans laquelle les

tal approach in which the developers do not need to développeurs n’ont pas besoin de tout savoir sur les autres fea-

know anything about the other features in the system. tures du système. Dans notre approche, ce sont les architectes

In our approach, it is the system designers who must du système qui doivent résoudre les problèmes d’intégration

resolve the integration problems: integration methods ; en effet, les méthodes d’intégration émanent d’une analyse

arise from an analysis of the features to be integrated. des features devant être intégrées. Les besoins formelles de

Formal requirements of individual features are required chaque feature sont requis pour que le processus d’intégration

for the integration process to be verified. soit vérifié.

Interface Problem — User controls on traditional Problème d’interface — les contrôles d’utilisateurs sur

phones are very limited and hence the input signals be- téléphones traditionnels sont très limités et ainsi les signaux

come polymorphic. This is a major problem in require- d’entrée deviennent polymorphiques. Ceci est un problème

ments specifications as it can lead to the introduction of majeur dans les spécifications de besoins car cela peut con-

ambiguities in systems of features. Formal requirements duire à l’introduction d’ambiguïtés dans les systèmes de fea-

models make explicit the mapping between abstract and tures. Les modèles de besoins formels rendent explicite la pro-

concrete actions and our systems can be automatically jection entre des actions abstraites et concrètes, et notre sys-

verified to ensure an absence of ambiguity that could tème peut être automatiquement vérifié pour assurer l’absence

lead to interactions. d’ambiguïté pouvant conduire à des interactions.

Invalid Plain Old Telephone Service (POTS) As- Suppositions invalides des Plain Old Telephone Service

29

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

sumptions — Phone systems have changed dramati- (POTS) — les systèmes de téléphone ont considérablement

cally over the past ten years. Many people (including changé au cours des dix dernières années. De nombreuses per-

feature developers) are not aware of the underlying com- sonnes (incluant les développeurs de features) ne sont pas con-

plexity in the concrete system and, as a way of sim- scients de la complexité sous-jacente dans le système concret

plifying the problem, often make incorrect assumptions et, afin de simplifier le problème, font souvent des suppositions

based on their knowledge of the plain old telephone ser- fondées sur leur connaissance du simple et vieux système de

vice. téléphonie.

The feature interaction problem is difficult: our research shows that having formal requirements models makes it
manageable[Gib97]. The main contribution of this paper was to identify a number of guiding principles:

Use Strong Typing — The advantages of typing in all forms of development are well known. Types are not needed in
correct systems but they do help to create correct systems. A simple telephone example is that of the concept of a telephone
number. Clearly, telephone numbers are polymorphic within a concrete subtyping hierarchy. Without types, it is difficult to
handle the different natures of telephone numbers at the requirements stage.

Use Types as Behaviours or Roles — Here we impose the object oriented principle of classification. The class is used as
the fundamental unit of behaviour (and as the means of typing these units). Thus, every feature is a class which plays a specific
role. The class hierarchy provides a behavioural benchmark for categorising features.

Use Invariants — Invariants are used to define relationships between components of a system that must be true during
the lifetime of the system. They are a well understood, formal means of specifying requirements in a compositional manner.
Every non-trivial component (of a (sub)system), i.e. one with its own components, has an associated invariant and there is
one invariant between all components (of a (sub)system). Invariants are the logical glue for putting together systems from
component parts.

Avoid ambiguity in naming of actions — The practice of polymorphic actions arises from the minimilist interface
provided by most telephones. For example, a flash hook action can signal different things to different features. If these features
are requested at the same time then the meaning of a flash hook may be ambiguous. Whenever possible try to maintain a clear
distinction between abstract actions/signals in the requirements model and concrete actions/signals in the implementation
model. Finding a correct mapping between abstract and concrete action names is a design problem and not inherently a feature
interaction problem; although, the limited domain of concrete actions may make this more difficult (or impossible) in the case
of feature development.

Features should be explicit not implicit — Typically, features appear in formal specifications only as implicit, derivable
properties of the total system. We can verify that a system complies to the requirments of a feature but there is no compositional
means of removing the feature and examining it as a single identity. Given a logical landscape as our semantic basis would
permit such a compostional view since the properties required of a feature are exactly its specification. However, in such a
logical approach, the actual development of features is much more complicated. We believe that we should have an explicit
compositional approach in the same spirit as the logical method, whilst avoiding the synthesis and analysis problems that arise
from features that are specified logically.

Arbitration is the key to interaction resolution — An interaction occurs only when feature requirements are contradic-
tory. Arbitration is the means of automatically weakening the requirements of some features to remove the contradiction.

Choosing Modelling Language — The advantage of a logical approach is self evident: the combination of features is
just logical conjunction and the absence of interaction is automatic provided the result is not false. The disadvantage of such
an approach is the difficulty in constructing new features and analysing their dynamic behaviour. The principal problem is that
of communicating with the clients in such a mathematical model. Contrastingly, more operational (state based) approaches are
more powerful with respect to synthesis and analysis. However, it is then much more difficult to say what it means for two
features to be contradictory (i.e. have requirements that cannot be met at the same time). The main source of feature interaction
problems seems to be exceptions. Using invariants helps to transfer the analysis of exceptions away from the dynamic and

30

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

towards a purely static approach. An object oriented approach gives us abstraction and generalisation within a compositional
user friendly framework. A combination of a number of semantic frameworks seems to be the only option for all our modelling
needs. The probelm of feature interaction is so general, with complex, diverse issues, that we cannot expect a single semantic
model approach to be satisfactory.

Operational Requirements are necessary — Concurrent (independent) development of features requires separation of
specification from implementation. However, for implementors (designers) to fully understand requirements we expect to be
able to animate our specifications. This is also a necessary part of validation. Thus we require operational semantics for our
feature specifications (as well as our more abstract logical requirements for testing compatibility).

The incremental development problem: minimise impact of change — In traditional problem domains (and using
state-of-the-art development methods) when new functionality is added to a system it is possible to do this by connecting it
to only a small subset of the system components. (We will not for now attempt to define the different types of connection.)
Additions that are localised (with fewer connections) are easier to make than those which are spread about the system. The
addition of a feature is inherently a non-local problem (in the current telephone architectures) because it necessitates connection
with most of the other components (the other features) in the system. Hence, each addition has global impact. We are searching
for an architecture which supports local incrementation techniques.

Restrictive Assumption Approach — Restrict the assumptions that a feature developer can make about the behaviour of
its environment (other features in the system included). Since new features will be added later we cannot place any assumptions
on them. However, in some cases assumptions must be made. These should be specified as invariant properties that are
amenable to static analysis. Our goal is to simplify this analysis by formalising a minimum assumption set that does not restrict
our functionality but does eliminate interactions.

3.1.2 Multi-model approaches
— Des approches multi-modèles

SDL[Tur93] is commonly used in the early
stages of software development. It provides mech-

SDL [Tur93] est communément utilisée dans les pre-
mières étapes du développement logiciel. Elle fournit

anisms for the specification of data structure, data des mécanismes pour la spécification de structures de
flow, control flow, encapsulation, information hid- données, flux de données, flux de contrôle, encapsula-
ing and abstract dependencies, through its support tion et abstraction, à travers son support pour les objets
for concurrent objects. courants.

In [GM97] we proposed a mechanism for trans-
lating SDL into a TLA+specification [Lam95],

Dans [GM97], nous proposions un mécanisme pour
traduire SDL vers une spécification TLA+[Lam95],

in order to provide a proof-theoretical framework. dans le but de fournir un encadrement théorique. La
The preservation of properties through the transla- conservation des propriétés à travers la traduction est
tion is examined within the framework of a simple examinée au sein de l’encadrement d’une simple sé-
state-sequence semantics. We identify the strengths mantique séquence d’états. Nous identifions les forces
and weaknesses of such an approach, and introduce et les faiblesses d’une telle approche, et introduisons
the translation which binds the two different se- la traduction qui relie les deux différentes sémantiques
mantics together. We then apply the translation in ensemble. Nous appliquons alors la traduction dans la
the verification of two telephone features, and their vérification des deux features téléphoniques, et leur in-
interaction. teraction.

This research arose in response to a need for
more formal means of verifying telecom feature

Cette recherche est la réponse à un besoin pour
davantage de moyens formels de vérification des sys-

systems. We believed that TLA+holds many at- tèmes de services téléphoniques. Nous croyons que

31

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

tractions for rigorous development and so aim to la TLA+possède de nombreuses attractions pour un
utilise it as our mathematical basis. We also believe développement rigoureux et vise ainsi à l’utiliser comme
that object oriented concepts offer real benefits at notre base mathématique. Nous croyons aussi que les
all stages of software development. Our strategy concepts orientés objet offrent de réels bénéfices à toutes
is based on combining object oriented and tempo- les étapes du développement logiciel. Notre stratégie
ral logic models in a coherent and complementary est fondée sur la combinaison de modèles orientés ob-
manner. This provides us with a compositional ap- jet et de logique temporelle d’une manière cohérente et
proach to verifying systems of interacting telephone complémentaire. Ceci nous fournit une approche com-
features. In [GM97] we examine the process of positionelle pour la vérification des systèmes composés.
generating the first formal design models through Dans [GM97], nous examinons le procédé pour générer
a translation from SDL to TLA+. les premiers modèles formels de design à travers une

traduction à partir de SDL vers la TLA+.
A number of further case studies, we rein-

forced our view that no single semantic framework
Dans un certain nombre d’études de cas appro-

fondies, nous renforçons notre position sur le fait
is suitable for the synthesis and analysis of for- qu’aucun encadrement sémantique simple ne convient
mal feature requirements models, and the choice à la synthèse et à l’analyse de modèles formels des fea-
of modelling language has certain knock-on ef- tures, et le choix de modéliser un langage comporte des
fects on the transformational design steps which implications certaines sur les étapes de la conception
lead to implementation. transformationelle qui conduisent à l’implémentation.

Formal languages have a large number of dif-
ferent roles to play. Consequently, choosing a re-

Les langages formels ont un grand nombre de rôles
différents à jouer. Par conséquent, choisir un langage

quirements modelling language involves a number pour la spécification de besoins implique un nombre de
of compromises: Should the language be best able compromis : le langage devrait-il au mieux être capa-
to model the abstract or the concrete? Should the ble de modéliser l’abstrait ou le concret ? Le langage
language be problem domain specific or problem devrait-il être spécialisé dans le domaine du problème
domain independent? Should the language be ori- ou indépendant du domaine? Le langage devrait-il être
ented towards the client or the engineers? Should orienté vers le client ou vers les ingénieurs ? Le lan-
the language be informal, rigorous or fully for- gage devrait-il être informel, rigoureux ou entièrement
mal? Should the language be state-of-the-art or formel ? Le langage devrait-il être à la pointe de la
well-established? technologie ou bien établi ?

We claim that a multi-language approach is the
best way of meeting the needs of both the clients

Nous affirmons qu’une approche multi-langage est
la meilleure façon de répondre à la fois aux besoins des

and the engineers. However, the advantages of a clients mais aussi des ingénieurs. Néanmoins, les avan-
single language approach should not be forgotten tages de l’approche avec simple language ne devraient
— conceptual consistency, potential for rigorous pas être oubliés : cohérence conceptuelle, potential
design techniques based on correctness preserv- pour techniques rigoureuses de la conception basées
ing transformations, and a common vocabulary be- sur les transformations préservent la sémantique, ainsi
tween all participants in the development process que le vocabulaire commun partagé entre tous les parti-
are all very important. By advocating a mixed cipants du processus de développement. Ils sont tous
model approach we risk losing some, if not all, of primordiaux. En recommandant une approche modèle
these advantages. mixte, nous risquons de perdre certains de ces avan-

tages, sinon tous.

32

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

In [GHM99] we continued to promote a mixed
semantic model approach whilst acknowledging

Dans [GHM99], nous continuons de promouvoir
une approche modèle mixte demantique (mixed seman-

that integration is a major concern. The paper in- tic model) tout en reconnaissant que l’intégration est
troduces a method that incorporates operational un souci majeur. L’essai introduit une méthode qui
state transition models, temporal logic formulae, incorpore “operational state transition models, tempo-
object oriented structuring mechanisms as well as ral logic formulae, object oriented structuring mecha-
algebraic formulation. Each of these approaches nisms” ainsi que “algebraic formulation”. Chacune de
gives rise to certain advantages and disadvantages, ces approches donne lieu à certains avantages et incon-
and we advocate a complementary integration vénients, et nous recommandons une intégration com-
which allows the client to express their require- plémentaire qui permet au client d’exprimer ses exi-
ments in the way in which they understand their gences d’une façon telle qu’ils comprennent leurs be-
needs, whilst building formal models for transfor- soins, tout en construisant des modèles formels pour
mation and verification during design. une transformation et une vérification pendant la con-

ception.
In our following research, we started our re-

search into compositional verification of safety and
Dans notre recherche suivante, nous avons débuté

celle-ci par la vérification compositionaelle de sécurité
liveness/fairness properties in systems of interact- et par les propriétés de justice dans des systèmes de fea-
ing features[GM99a] Without a temporal logic, tures [GM99a]. Sans une logique temporelle, le non-
nondeterminism in the features can be specified déterminisme dans les features peut être spécifié seule-
only at one level of abstraction: namely that of ment à un niveau d’abstraction : à savoir celui d’un
an internal choice of events. This can lead to choix interne d’événements. Ceci peut conduire à de
many problems in development. For example, con- nombreux problèmes dans le développement. Par exem-
sider the specification of a shared database. This ple, considérons la spécification d’une base de données
database must handle multiple, parallel requests partagée. Cette base de données doit traiter des requêtes
from clients. The order in which these requests multiples et parallèles de la part des clients. L’ordre
are processed is required to be nondeterministic. dans lequel ces requêtes sont traitées demande à être
This is easily specified in a classical object model. non-déterministe. Ceci est facilement spécifié dans un
However, the requirements are now refined to state modèle d’objet classique. Néanmoins, les besoins sont
that every request must be eventually served (this maintenant affinés pour établir que chaque requête doit
is a fairness requirement which we cannot directly être au final servie (ceci est une exigence de justice qui
express in our semantic framework). The only way ne peut pas directement s’exprimer dans notre cadre sé-
this can be done is to over-specify the requirement mantique). La seule manière dont ceci peut être fait est
by defining how this fairness is to be achieved (for de sur-spécifier le besoin en définissant comment cette
example, by explicitly queueing the requests). This justice doit être atteinte (par exemple, en mettant les re-
is bad because we are enforcing implementation de- quêtes dans une file d’attente). Ceci est mauvais parce
cisions at the requirements level. With TLA we can que nous imposons des décisions d’implémentation au
express fairness requirements without having to say niveau des exigences. Avec la TLA, nous pouvons ex-
how these requirements are to be met. primer des exigences de justice sans avoir à dire com-

ment ces besoins doivent être atteints.
The composition of fairness assumptions in

TLA is done at a high level of abstraction and is
La composition de suppositions de justice dans la

TLA est accomplie à un haut niveau d’abstraction et est
preserved through the composition process. Fair- préservée à travers le processus de composition. Les

33

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

ness constraints remove models or traces that do not contraintes de justice enlèvent les modèles ou traces
satisfy them. A service is characterized by a set of qui ne les satisfont pas. Un service est caractérisé par
flexible variables, initial conditions, a next relation un ensemble de variables flexibles, de conditions ini-
over variables and fairness contraints. When com- tiales, d’une relation suivante sur des variables et des
bining two services, we increase the restrictions contraintes de justice. Lorsque deux services sont com-
over traces but we extend the models by adding binés, nous augmentons les restrictions sur les traces
new variables. TLA provides an abstract way to mais nous élargissons les modèles en ajoutant de nou-
state fairness assumptions but in our approach this velles variables. La TLA fournit une façon abstraite
unfriendly syntax is hidden from the customer. We pour établir des suppositions de justice mais dans notre
encapsulate fairness within each object as a means approche, cette syntaxe inamicale est cachée du client.
of resolving nondeterminism due to internal state Nous cachons la justice au sein de chaque objet comme
transitions. This is a simple yet powerful way for moyen pour résoudre le non-déterminisme dû à des tran-
the fairness to be structured and re-used within our sitions internes. Ceci est une manière simple mais néan-
requirements models. moins puissante pour que la justice soit structurée et réu-

tilisée au sein de nos modèles de besoins.
This research concluded by stating that the

problem of telephone feature interaction is just a
Cette recherche se conclut en établissant que le pro-

blème de l’interaction des services téléphoniques est
particular instance of a general problem in soft- juste un simple cas particulier au sein d’un problème
ware engineering. The same problem occurs when général en génie logiciel. Le problème identique ap-
we consider inheritance in object oriented systems, paraît lorsque l’on considère l’héritage dans les sys-
sharing data in distributed systems, multi-way syn- tèmes orientés objet, partageant des données dans des
chronisation in systems of concurrent processes, systèmes de distribution, une synchronisation dans des
etc However, the problem is particularly diffi- systèmes de processus concurrents, etc. Cependant, le
cult in telephone systems because features are the problème est particulièrement difficile dans les systèmes
increments of development. de téléphone parce que les features sont les incréments

du développement.
3.1.3 An algebraic approach: a first step towards a product line

— Une approche algébrique : une étape initiale vers la ligne de produit
As we have already seen, the composition (and

configuration) of requirements is particularly im-
Comme nous l’avons déjà vu, la composition (et con-

figuration) des besoins est particulièrement importante
portant in feature specification because the units of dans la spécification de features parce que les unités
incrementation in system development are them- d’incrémentation dans le développement de système sont
selves features. Thus we have requirements mod- elles-mêmes des features. Ainsi, nous avons des modèles
els made up of a large number of components, de besoins constitués d’un grand nombre de composants,
each of which is easy to specify and validate in- chacun étant aisé à spécifier et à valider individuelle-
dividually, but whose complexity resides in the se- ment, mais dont la complexité réside dans la sémantique
mantics of composition, and configuration. de composition, et de configuration.

In our next research step, we approached the
definition of feature composition from the point

Dans notre prochaine étape de recherche, nous
faisons une approche de la définition de composition de

of view of the client[Gib98]. We identify differ- features du point de vue du client [Gib98]. Nous identi-
ent ways in which the client would wish to com- fions différentes façons dans lesquelles le client souhait-
pose their features with the plain old telephone ser- erait composer ses features avec POTS. A partir de là,

34

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

vice (POTS). From this we motivate the develop- nous motivons le développement d’un algèbre de com-
ment of a feature composition algebra, the foun- position de features. Assez simplement, nous espérons
dation of a feature interaction algebra. Quite sim- être capable de procéder à une méta-analyse du prob-
ply, we hope to be able to perform a meta-analysis lème d’interactions, en utilisant les classes de feature
of the feature interaction problem using the fea- plutôt que les features elles-mêmes. Dans cet essai, nous
ture classes rather than the features themselves. In montrons quel type de méta-analyse peut être conduite
this paper we showed the type of meta-analysis vers une formulation algébrique de feature composition.
that can lead to an algebraic formulation of feature
composition and configuration.

The most important part of our research was
the modelling of an ideal environment as a library

La partie la plus importante de notre recherche a été
la modélisation d’un environnement idéal comme une

of features which have already been formally spec- bibliothèque de features ayant déjà été formellement spé-
ified and validated. This library will be structured cifiées et validées. Cette bibliothèque sera structurée
in a class hierarchy where each feature will have dans une hiérarchie de classes dans laquelle chaque fea-
many abstract superclasses. The second most im- ture aura de nombreuses superclasses abstraites. La deu-
portant part of our environment is a library of (for- xième partie la plus importante de notre environnement
mally specified) feature composition mechanisms est une bibliothèque de mécanismes de composition de
which will operate on a subset of features (depend- features (formellement spécifiés), qui opèrera sur un
ing, of course, on their classification. A re-usable sous-ensemble de features (ceci dépendant, bien sûr, de
(meta-analysis) will have already identified which leur classification). Une méta-analyse réutilisable aura
classes of features interact and, where possible, déjà identifié quelles classes de features dialoguent et, là
will also provide re-usable resolution mechanisms. où c’est possible, aura également fourni des mécanismes

de résolution réutilisables.
Creating a new feature will usually require the

client combining already existing features in pre-
La création d’une nouvelle feature nécessite habituel-

lement que le client combine des features déjà existantes
defined ways, resulting in a new feature whose dans des manières pré-définies, ceci ayant pour résultat
classification is calculated automatically following une nouvelle feature dont la classification est calculée
our algebraic semantics. Some features will re- automatiquement suivant notre sémantique algébrique.
quire the specification of new concepts within the Certaines features nécessiteront la spécification de nou-
problem domain and, as such, cannot be developed veaux concepts au sein du domaine du problème et, en
using already existing features. These new fea- tant que telles, ne porront pas être développées en uti-
tures will often fit directly into our already existing lisant des features déjà existantes. Ces nouvelles features
class hierarchy. In such a case, the meta-analysis s’intègreront souvent directement dans notre hiérarchie
does not need to be further extended. In the worse de classes pré-existante. Dans un tel cas, la méta-analyse
case, new abstract classifications (and composition ne nécessite pas d’être davantage extrapolée. Dans le
mechanisms) will be needed and hence the anal- pire des cas, de nouvelles classifications abstraites seront
ysis will need to be done from scratch. Further- requises et alors l’analyse nécessitera d’être refaite à par-
more, the requirements modellers will be respon- tir de zéro. Par ailleurs, les modélisateurs de besoins
sible for placing this new case within the formal auront la responsabilité de placer ce nouveau cas au sein
algebra. de l’algèbre formel.

Different types of feature pairs

35

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

Our case study then examined compositions between pairs of features. We identified 5 different types of feature
pairs:

Independent — When the features are combined with POTS, there is no interaction between the features. There is no
sharing of actions or state and, thus, no communication between the two features. In other words, the individual behaviour of
each feature (with POTS) is exactly as before.

Perfect Friends — The two features do communicate (either through shared state or actions) but this communication in
no way alters the behaviour of either feature and so they do not interact in the sense used in this report.

Friends — These features do not interact provided some of the nondeterminism in either/both of the models is resolved in
some specific way. In some sense, they can be said to make implementation decisions which help their friend feature to work
correctly.

Politicians — There is an interaction where both features cannot work exactly as before. However, a resolution mechanism
exists whereby some sort of feature priority can be used to resolve the problem automatically. Such a resolution mechanism
permits a subset of one or both of the features to be maintained when the two features are combined.

Enemies — There is an interaction and no resolution technique exists other than to say that when one feature is operating

the other must be dormant. Two such features can exist in the same system but dynamically both features are never executing

at the same time.

The process of formalising such pair-wise analysis was the main goal of our next research.

3.1.4 Compositional Verification of Liveness Properties
— Vérification compositionnelle des propriétés de justice

The temporal logic of actions (TLA) provides La logique temporelle des actions (TLA) permet aux
operators to express liveness requirements in an opérateurs d’exprimer des exigences de justice dans un
abstract specification model. TLA does not, how- modèle abstrait de spécification. La TLA ne fournit pas,
ever, provide high level composition mechanisms en revanche, des mécanismes de composition de haut
which are essential for synthesising and analysing niveau, qui sont essentiels pour synthétiser et analyser
complex behaviour. Contrastingly, the object ori- le comportement complexe. A contrario, le paradigme
ented paradigm has proven itself in the develop- orienté objet (OO) a fait ses preuves dans le développe-
ment of structured specifications. However, most, ment de spécifications structurées. Néanmoins, la plus
if not all, of the object oriented formalisms are grande partie, sinon l’ensemble, des formalismes OO
based on the specification of safety properties and, sont basés sur la spécification des propriétés de sécu-
as such, they do not provide an adequate means of rité et, en tant que tels, ils ne fournissent pas de moyens
expressing liveness conditions. adéquats d’expression des conditions de justice.

We examined [GM99b] how we could com- Nous avons examiné [GM99b] comment nous pou-
bine temporal semantics and object oriented con- vions combiner sémantique temporelle et des concepts
cepts in a complementary fashion. High level OO d’une façon complémentaire. Des concepts réuti-
re-usable concepts were formalised as different lisables de haut niveau ont été formalisés comme dif-
kinds of fair objects. The object oriented seman- férentes sortes de “fair objects”. La sémantique OO
tics aid validation and customer communication, aide la validation et la communication avec le client,
whilst the TLA semantics provide a means of for- alors que la sémantique TLA apporte un moyen de véri-
mally verifying liveness requirements. The fair- fier formellement les exigences de justice. Les con-
ness concepts are founded on the notion of objects cepts de justice sont fondés sur la notion des objets
as servers which may have multiple (concurrent) comme serveurs qui peuvent avoir des clients multi-

36

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

clients. Some simple telephone feature specifica- ples. Quelques simples spécifications de services télé-
tions illustrated the practical application of our fair phoniques ont illustré l’application pratique de notre sé-
object semantics. mantique du “fair objects”.

The goal of this research was to identify high- Le but de cette recherche était d’identifier des con-
level fairness concepts within our object oriented cepts de justice de haut niveau au sein de notre cadre
framework. The specifications can then be ex- OO. Les spécifications peuvent alors être étendues
tended to include fairness requirements, which are pour inclure les exigences de justice, qui doivent être
to be reasoned about using TLA. Weakly fair ob- analysées en utilisant la TLA. Les “weakly fair objects”
jects and strongly fair objects provide us with two et les “strongly fair objects” nous apportent deux con-
such concepts. A major contribution was the for- cepts de la sorte. Une contribution majeure a été la
mal modelling of five additional high-level con- modélisation formelle de 5 concepts supplémentaires de
cepts, each of which has played an important role haut niveau.
in the development of telephone feature specifica-
tions.

Five additional high-level fairness concepts:
Progression — The notion of progression arises from the way in which concurrent processes are modelled through an

interleaving of events. We can “view” such interleaving as though there is a scheduler which randomly chooses which process
to be executed at any particular time. In such systems we wish to specify that each of the component processes is fairly
scheduled.

Possible Fairness — Nondeterminism often gives rise to systems in which it is always possible for an action to be enabled
(by following a certain sequence of interal actions) yet the action cannot be guaranteed to be executed through the use of strong
fairness or progression. In such cases, we require the notion of possible fairness.

Compositional Fairness — We identified many different ways in which we may wish to define new fair objects in terms
of already specified fair objects.

Politeness and Eventuality — We then examined the composition of fair objects in such a way that nondeterminism must
be resolved by co-operation.

Eventuality Protocols — Finally, we looked at different protocols for sharing responsibility between clients and servers in

order to meet such fairness requirements in systems of distributed services.

The next natural progression of this research La progression naturelle qui suit dans cette recherche
was to look at compositional verification of sys- était de regarder la vérification compositionelle des sys-
tems of fair objects[HGM00]. When following tèmes de “fair objects” [HGM00]. En suivant une ap-
an object-oriented approach to specifying the be- proche orientée objet pour spécifier le comportement de
haviour of concurrent systems, we would like to systèmes concurrents, nous souhaiterions avoir la pos-
be able to specify the liveness properties of each sibilité de spécifier les propriétés de justice de chaque
object. However, an object must be viewed as an objet. Cependant, un objet doit être vu comme un sys-
open system which relies on its environment to en- tème ouvert, qui dépend de son environnement pour
sure that its liveness properties are satisfied. When assurer que ses propriétés de justice soient satisfaites.
these objects are composed, the resulting compo- Lorsque ces objets sont composés, la composition résul-
sition must be checked to ensure that the liveness tante doit être vérifiée pour assurer que les propriétés de
properties specified for each object are preserved. justice spécifiées pour chaque objet soient préservées.
If this is the case, we say that these objects are po- Si c’est bien le cas, nous disons que ces objets sont polis

37

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

lite [BFM95, GM99b]. [BFM95, GM99b].
One solution to ensuring that the liveness prop- Une solution pour s’assurer que les exigences de

erties of objects are preserved under composition justice des objets soient préservées sous composition,
is to allow only a weak form of object composition c’est de permettre seulement la composition des objets
in which the liveness properties of the objects are dans laquelle la justice des objets est garantie d’être
guaranteed to be preserved. This is the approach préservée. Ceci est l’approche qui est prise en [AL95,
which is taken in [AL95, CvH99], where only par- CvH99], où seulement une composition parallèle des
allel composition of objects (with no communi- objets (avec aucune communication) est permise. Les
cation) is allowed. The liveness properties of the propriétés de justice de l’objet composé dans ce cas
composed object in this case are easy to represent sont faciles à représenter en TLA comme la conjonc-
in TLA as the logical conjunction of the liveness tion logique des propriétés justice de chaque objet (sous-
properties of each object. objet).

The approach which we take in this paper is L’approche que nous prenons dans cet essai est de
to define only local liveness requirements on each définir seulement les exigences locales de justice de
object. Each object can perform a number of chaque objet. Chaque objet peut accomplir un certain
actions, which may be either internal or exter- nombre d’actions, qui peuvent être ou internes ou ex-
nal. The local liveness requirements for the ob- ternes. Les besoins de jutsice locaux pour l’objet spé-
ject specify the liveness of the external actions of cifient la justice des actions externes de l’objet, sur
the object over all its possible action sequences in- toutes ses séquences d’action possibles, indépendantes
dependent of the environment. We then show how de l’environnement. Nous montrons alors comment
additional liveness constraints can be placed on the des contraintes supplémentaires de justice peuvent être
internal actions of an object to ensure that it meets placées sur des actions internes d’un objet pour s’assurer
its local liveness requirements. qu’il remplisse ses exigences de justice locales.

Different levels of politeness between two composed objects
Communication between composed objects is modelled by synchronisation of actions. The composed object

therefore has a set of actions consisting of the union of the actions within each individual object (except those
actions which are synchronised, which are replaced by a single joint action). Local liveness requirements must
also be specified on the external actions for this new composed object. Again, we show how additional liveness
constraints can be placed on the internal actions of the composed object to ensure that it meets its local liveness
requirements. In the case of synchronised actions, the liveness of the synchronised action is calculated from the
liveness of the actions participating in the synchronisation.

Using this method, we can define the following different levels of politeness between the two composed objects:
Independent — if they do not synchronise on any actions
Perfect friends — if they do synchronise on actions, but the internal liveness constraints do not need to be strengthened

to meet the local liveness requirements of the composed object
Friends — if they synchronise on actions, but the internal liveness constraints of actions in one or both objects need to be

changed to meet the local liveness requirements of the composed object
politicians - if the local liveness requirements of the composed object cannot be met by changing the internal liveness

constraints in either object unless some additional resolution mechanism is used
enemies - if the local liveness requirements of the composed object cannot be met by changing the internal liveness con-

straints in either object or by using any additional resolution mechanism

The main contributions of this paper were therefore to show how liveness requirements on the external actions

38

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

of an object can be met by placing liveness constraints on its internal actions, and to show how the liveness
requirements of objects composed using a general composition mechanism must be changed to meet the liveness
requirements of the composed object.

The final step in this research was to apply L’étape finale dans cette recherche était d’appliquer
our work on composing fair objects to a specific notre travail à la composition de “fair objects” pour
type of common feature interaction[GHM00]. In un type spécifique d’interaction de service commune
this work, we formalised the notion of triggered [GHM00]. Dans ce travail, nous formalisons la notion
features and showed how the resulting model can de “triggered features” et montrons comment le mo-
be used to classify a subset of common interac- dèle résultant peut être utilisé pour classifier un sous-
tions. Our underlying fair object formal frame- ensemble d’interactions communes. Notre cadre formel
work, based on the integration of object-state ma- de “fair object”, basé sur l’intégration de “object state
chines and temporal logic, can be exploited to machines” et de logique temporelle, peut être exploité
provide support for re-usable analysis. We tested pour apporter un support pour une analyse réutilisable.
our theoretical results in the construction of object Nous avons testé nos résultats théoriques dans la con-
oriented feature requirements models, where each struction de modèles OO de features, où chaque fea-
feature is triggered by the same dialIn event. ture est déclenchée par le même dialIn evenement.
Our results support the view that the development Nos résultats supportent l’avis que le développement
of a feature interaction algebra is not just a theoret- d’un “feature interaction algebra” n’est pas simplement
ical proposition but is also a practical engineering une proposition théorique mais aussi une possibilité
possibility. d’ingénierie pratique.

Many of the classic triggered interaction prob- Nombre des problèmes classiques de “ triggered
lems arise when two features are triggered by the interaction” surgissent lorsque deux features sont dé-
same action and the resulting introduction of non- clenchées par la même action ; et l’introduction résul-
determinism leads to inconsisent requirements. tante de non-déterminisme conduit à des exigences in-
The most common technique to resolve such inter- égales. La technique la plus commune pour résoudre
actions is to use a priority mechanism. We formu- de telles interactions est d’utiliser un mécanisme de pri-
lated a refinement of a system with two interacting orité. Nous avons formulé un raffinement d’un système
triggered features which resolves the interaction avec deux “interacting triggered features”, qui résout au-
automatically. The idea is that the first time the tomatiquement l’interaction. L’idée est que la première
non-determinism arises then the user is forced to fois que le non-déterminisme survient, alors l’utilisateur
make the choice. Consequently, any time after this est forcé de faire un choix. Par conséquent, à tout mo-
choice has been made, the nondeterminism will be ment après que ce choix est fait, le non-déterminisme
resolved in a manner consistent with the user’s ini- sera résolu d’une manière en cohérence avec le choix
tial choice. This type of refinement could be made initial de l’utilisateur. Ce type de raffinement pourrait
available as a correctness preserving transforma- être disponible en tant que correctness preserving trans-
tion for use during design: instead of the designer formation pour l’utiliser lors de la conception : au lieu
having to resolve the interaction statically, they que les developeurs ne doivent résoudre l’interaction de
can gurantee that the resolution will be carried façon statique, ils peuvent garantir que la résolution sera
out dynamically. In this case, the designer’s goal conduite de façon dynamique. Dans ce cas, le but des
of having consistent resolution would have auto- designers d’avoir une résolution cohérente aura un sup-
mated tool support. port outil automatisé.

39

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

The concept of stability may lead to an alter- Le concept de stabilité peut conduire à une solution
native solution where the invariants of each fea- alternative où les invariants de chaque feature sont af-
ture are weakened so that they have only to be true faiblis afin de devoir être vrais quand cette feature a, en
when that feature has actually been triggered — fait, été déclenchée — à condition qu’ils soient toujours
provided that they will always eventually be true vrais au final alors cela ne nous gène pas s’ils sont faux
then we do not mind if they are false while an- pendant qu’une autre feature exécute. Nous avons sug-
other feature is executing. We proposed the need géré que de nouveaux mécanismes de synchronisation
for new synchronisation mechanisms which incor- incorporent une stabilité dans leur sémantique soient
porate stability into their semantics in order to fa- necessaires ; ceci — dans le but de faciliter l’évacuation
cilitate the exiting of unstable states by prioritis- des états instables en donnant la priorité aux états qui
ing those states which are stable (when an internal sont stables (quand un choix interne d’actions est fourni
choice of actions is provided then a system which alors un système, construit à partir des opérateurs stables
is constructed from the stable synchronisation op- de synchronisation, choisira de se déplacer un état sta-
erators will choose to move towards a stable state.) ble). Ceci est un domaine de recherche comportant un
This remains a very challenging research area: the grand challenge : l’objectif du développeur de garder
designer’s goal of automatically keeping the sys- automatiquement le système aussi stable que possible
tem as stable as possible would require some sort exigerait une sorte de comportement d’autogestion.
of self managing behaviour.

3.1.5 Important Technical Contribution: Fair Object Composition

There is currently much research in model driven development, service oriented architectures and automated com-
position of services. A major outstanding issue is being able to compose in a safe manner: so that new compositions
do not inadvertently break (safety and liveness) requirements that were previously being met. The research on fair
object composition, that is reported earlier in this section, is an important technical contribution towards a possible
solution to the problem of scaleable verification techniques, in the development of interacting systems of services
that are required to be “fair”. In this subsection we provide some additional technical details (for the interested
reader). The original paper — Composing Fair Objects[GHM00] — provides a more complete report.

As an example of a fair object, consider a double-ended queue as shown in figure 1.

Figure 1: A double ended queue

The queue object provides operations to put or get elements to the front or back of the queue (these are all
external actions). This could be defined as follows in TLA:

40

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

Figure 2: A double ended queue in TLA

The state variable contents is a sequence which holds the elements of the queue (up to a maximum of 100
elements). We would like to guarantee that the actions Getfront and Getback will always eventually be enabled,
but this relies on at least one of the external actions Putfront and Putback always eventually taking place.
Similarly, we would like to guarantee that the actions Putfront and Putback will always eventually be enabled,
but this relies on at least one of the external actions Getfront and Getback always eventually taking place. These
liveness requirements can be defined in an assumption/guarantee style as follows:

Figure 3: Liveness Requirement in TLA

There are a number of different object composition mechanisms we could use. One such mechanism is purely
parallel composition, in which there is no communication between the composed objects. The liveness properties
of the composed object in this case are represented as the logical conjunction of the liveness properties of each
individual object. Fairly simple proof obligations must be discharged to show that the liveness assumptions of the
composed objects are preserved.

In general, however, we require stronger forms of object composition in which there is communication between
the composed objects, which means that the liveness properties of the objects may be affected. We specify object

41

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

composition by the synchronisation of actions as follows:

The external actions in the resulting composition are those external actions in the two objects which are not
involved in synchronisations; synchronised actions become internal. The initial state of the resulting composition
is the conjunction of the initial states of each object. Similarly, the fairness constraints on the resulting composition
is the conjunction of the fairness constraints on each object. The synchronised actions are also the conjunction of
the individual actions involved in the synchronisation. For example, consider the composition of two double-ended
queues to produce another double-ended queue as shown in figure 4.

Figure 4: Composed double-ended queues

42

3.1 Software Engineering Fundamental Theory: Feature Composition
— Théorie fondamentale du génie logiciel : Composition des services

This composition, and the TLA specification resulting from this specification are as follows:

This composed object will operate normally as a double-ended queue, provided that the environmental liveness
requirements for each of the composed objects are upheld. However, it is possible that the actions on which the
two objects synchronise will cause their environmental liveness requirements to be broken.

For example, consider the synchronisation between Q1.Getback and Q2.Putfront. If the environmental
liveness requirements for both these objects were satisfied, then both of these actions would be always eventually
enabled, but it is possible that they will never actually be enabled at the same time. The internal action Internal1

may therefore never actually be taken. Similarly, the internal action Internal2 may never be taken. The environ-
mental liveness requirements for each object have therefore been broken.

Liveness requirements which are broken due to synchronisation may be resolved by placing additional fair-
ness constraints on the synchronised actions. In order to determine the fairness constraint which must placed on
synchronised actions, we need to determine their level of liveness. A synchronised action is enabled only if the
individual actions involved in the synchronisation are enabled at the same time within each object. We can there-
fore determine the liveness of a synchronised action from the liveness of the individual actions involved in the
synchronisation. The four different types of liveness that we consider are:

• EA (Eventually always),

• AE(Always Eventually),

• APE (Always Possibly Eventually), and

• PAE (Possibly Always Eventually)

We might expect that the liveness of a synchronised action is given by some least upper bound of the liveness
of the individual actions involved in the synchronisation. However, the example of the double-ended queues shows
that this is not necessarily the case. Even if the actions involved in the synchronisation are always eventually

43

FEATURE COMPOSITION BIBLIOGRAPHY

enabled, they may never actually be enabled at the same time. The synchronised action in this case will only be
always possibly eventually enabled.

The liveness of a synchronised action can be determined from the liveness of the individual actions involved in
the synchronisation according to the following table:

Each of the entries in this table have been proved on an individual basis. (The details of these proofs are
not given here.) Now that the liveness of synchronised actions can be determined, the fairness constraints which
must be placed on them to satisfy liveness requirements can be determined. For example, in the case of the
composed double-ended queues we can determine that the synchronised actions Internal1 and Internal2 are
always possibly eventually enabled. Hyperfairness constraints must therefore be placed on these actions to ensure
that the liveness requirements of the composed objects are satisfied.

Thus, our verification of fairness in a system of interacting objects is compositional. Potential state explosion
problems are avoided, and correctness can be guaranteed through the application of predefined composition mech-
anisms. However, this approach is limited by restricting the types of composition that can be used in building the
system. This trade-off — between richness of composition and simplicity of verification — is fundamental to all
formal software engineering.

Feature Composition Bibliography

[AL95] M. Abadi and L. Lamport. Conjoining Specifications. ACM Transactions on Programming Languages
and Systems, 17(3):507–533, May 1995.

[BFM95] N. Barreiro, J.L. Fiadeiro, and T. Maibaum. Politeness in Object Societies. In R. Wieringa and R. Feen-
stra, editors, Information Systems: Correctness and Reusability, pages 119–134. World Scientific Pub-
lishing Company, 1995.

[CvH99] E. Canver and F.W. von Henke. Formal development of object-based systems in a temporal logic setting.
In Formal Methods for Open Object-Based Distributed Systems, pages 419–436. Kluwer Academic
Publishers, February 1999.

[GHM99] J. Paul Gibson, Geoff Hamilton, and Dominique Méry. Integration problems in telephone feature re-
quirements. In Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors, Integrated Formal Methods,
Proceedings of the 1st International Conference on Integrated Formal Methods (IFM 99), pages 129–
148, York, UK, June 1999. Springer.

[GHM00] J. Paul Gibson, Geoff Hamilton, and Dominique Méry. A taxonomy for triggered interactions using
fair object semantics. In Muffy Calder and Evan H. Magill, editors, Feature Interactions in Telecom-

44

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

munications and Software Systems VI (FIW 2000), pages 193–209, Glasgow, Scotland, UK, 2000. IOS
Press.

[Gib97] J. Paul Gibson. Feature requirements models: Understanding interactions. In Petre Dini, Raouf
Boutaba, and Luigi Logrippo, editors, Feature Interactions in Telecommunications Networks IV, (FIW
1997), pages 46–60, Montréal, Canada, 1997. IOS Press.

[Gib98] J. Paul Gibson. Towards a feature interaction algebra. In Kristofer Kimbler and Wiet Bouma, edi-
tors, Feature Interactions in Telecommunications and Software Systems V (FIW 1998), pages 217–231,
Malmö, Sweden, 1998. IOS Press.

[GLR11] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Formal object oriented development of a voting system
test oracle. Innovations in Systems and Software Engineering (Special issue UML-FM11), 2011. To
appear.

[GM97] J. Paul Gibson and Dominique Méry. Telephone feature verification: Translating SDL to TLA+. In
Ana R. Cavalli and Amardeo Sarma, editors, SDL ’97 Time for Testing, SDL, MSC and Trends — 8th
International SDL Forum, pages 103–118, Evry, France, September 1997. Elsevier.

[GM99a] J. Paul Gibson and Dominique Méry. Formal modelling of services for getting a better understand-
ing of the feature interaction problem. In Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin,
editors, PSI ’99: Proceedings of the Third International Andrei Ershov Memorial Conference on Per-
spectives of System Informatics, volume 1755 of Lecture Notes in Computer Science, pages 155–179,
Akademgorodok, Novosibirsk, Russia, 1999. Springer.

[GM99b] Paul Gibson and Dominique Méry. Fair objects. Object-oriented technology and computing systems
re-engineering, pages 122–140, 1999.

[HGM00] Geoff Hamilton, J. Paul Gibson, and Dominique Méry. Composing fair objects. In Fouchal and
Lee, editors, International Conference on Software Engineering Applied to Networking and Paral-
lel/Distributed Computing (SNPD ’00), pages 225–233, Reims, France, May 2000.

[Lam95] L. Lamport. TLA+. Technical report, December, 5th july 1995.

[Tur93] K.J.T. Turner. Using FDTS: An Introduction To ESTELLE, LOTOS and SDL. John Wiley and Sons,
1993.

[Zav93] Pamela Zave. Feature interactions and formal specifications in telecommunications. IEEE Computer,
26(8):20–30, 1993.

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

3.2.1 Electronic Voting is Safety Critical
— Le vote électronique doit être consideré comme une système critique

In 2003, we first began to consider e-voting En 2003, nous avons tout d’abord commencé à con-
as an example of a critical system that should be sidérer le vote électronique comme exemple de système

45

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

developed using formal methods[MG03]. At this critique qui devrait être développé en utilisant les méth-
time, the Irish government had already begun to odes formelles [MG03]. A ce moment-là, le gouverne-
introduce an electronic voting system, stating that ment irlandais avait déjà commencé à introduire un sys-
it would be easier to use, give more accurate re- tème de vote électronique, avançant que ce serait plus
sults, eliminate spoiled votes, speed up the count, facile à utiliser, que cela donnerait des résultats plus pré-
and modernise the electoral system. cis, que cela éliminerait les votes nuls, que cela rendrait

The wider computer science community had le dépouillement plus rapide, et que cela moderniserait le
not been consulted in the choice or development système électoral.
of this system, and it had become apparent that La communauté élargie des sciences informatiques
there were several reasons to be concerned about n’avait pas été consultée dans le choix ni dans le développe-
the system chosen. ment de ce système, et il est apparu évident qu’il existait

The aims of this report were to present a list plusieurs raisons de s’inquiéter concernant le système
of criteria that any electronic voting system must choisi.
meet in order to make it an acceptable replacement L’objectif de ce rapport était de présenter une liste de
for a paper system, and then to demonstrate that critères que tout système de vote électronique doit res-
the system currently being introduced by the Irish pecter afin de le rendre acceptable en tant que remplace-
government did not, in fact, meet those criteria. ment du système papier, et ainsi démontrer que le sys-

tème étant actuellement introduit par le gouvernement ir-
landais ne respectait pas, en fait, ces critères.

3.2.2 Formalising the e-voting count algorithms
— Formalisant les algorithmes de dépouillement du vote électronique

From a software engineering view point, it was D’un point de vue du génie logiciel, il était difficile
difficult to understand how errors could have been de comprendre comment les erreurs avaient pu être faites
made in implementing the count algorithms in ex- en codant les algorithmes de comptage dans les systèmes
isiting systems. In order to examine this problem, existants. Dans le but d’examiner ce problème, nous nous
we first asked whether formal specifications of sommes, en premier lieu, interrogés à savoir si les spécifi-
these algorithms would be easier to validate than cations formelles de ces algorithmes seraient plus faciles
informal descriptions[CEB+05]. This paper pre- à valider que des descriptions informelles [CEB+05]. Cet
sented a pilot study which compared the compre- essai présentait une étude pilote qui comparait la com-
hensibility of two specifications: a formal spec- préhensibilité des deux spécifications : une spécifica-
ification and an informal specification. The two tion formelle et une spécification informelle. Les deux
documents used in the pilot study implemented the documents utilisés dans l’étude pilote implémentaient la
same logic, namely a portion of the Irish Electoral même logique, à savoir une portion du système électoral
system. The “informal specification” was taken di- irlandais. La “spécification informelle” était tirée directe-
rectly from the legal definition of the count rules ment de la définition légale des règles électorales pour les
for Irish elections. élections irlandaises.

The results of this initial study were in- Les résultats de l’étude initiale étaient peu conclu-
conclusive; but did lead to the development of ants, mais ils ont tout de même conduit au développe-
the specification using an algebraic specification ment d’une spécification utilisant un langage algébrique
language[Gib05]. de spécification [Gib05].

46

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

3.2.3 E-voting requirements engineering
— L’ingénierie des besoins du vote électronique

From our analysis of the failure of e-voting A partir de notre analyse des échecs de systèmes élec-
systems around the world, it was clear that poorly troniques à travers le monde, il était clair que des exi-
specified requirements were a major problem. gences pauvrement spécifiées représentaient le problème
Subsequently, we examined the question of whether majeur. Par la suite, nous avons examiné la question
this was a result of manufacturers not meeting in- de savoir si c’était le résultat de fabricants ne répon-
etrnational standards, or whether the blame could dant pas aux standards internationaux, ou si les reproches
be applied to the poor quality of the standards pouvaient être appliquées à la pauvre qualité des seuls
themselves[MG06]. We focused on the Council of standards [MG06]. Nous nous sommes focalisés sur les
Europe (CoE) recommendations and instruments. recommandations et instruments relatifs au Conseil de

The list of 12 instruments analysed covered a l’Europe (CoE).
diverse range of documents, including the Univer- La liste des 12 instruments analysés couvrait un éven-
sal Declaration on Human Rights, the European tail divers de documents, incluant La Déclaration Uni-
Charter of Local Self-Government and the Con- verselle des Droits de l’Homme, La Charte Européenne
vention on Cybercrime. It also included the Code de l’Autonomie Locale et La Convention sur la Cyber-
of Good Practice in Electoral Matters, which was criminalité. Etait également inclus Le Code de Bonne
produced by the Venice Commission (VC). Conduite en Matière Electorale, qui a été produit par La

Commission de Venise (VC).
We demonstrated that this inter-related set of Nous avons démontré que cet ensemble interdépen-

complex documents is analagous to a software dant de documents complexes est analogue à un système
system which has evolved over time, in response de logiciel qui a évolué à travers le temps, en réponse
to ever changing sets of requirements. The sys- à des ensembles de besoin en constant changement. Le
tem depends on a large number of other sys- système dépend d’un grand nombre d’autres systèmes,
tems, and the environment of the system (the con- et l’environnement du système (le contexte dans lequel
text in which it is being used) is not clearly un- il a été utilisé) n’est pas clairement compris. Avec de
derstood. With such legacy systems, one often tels systèmes, on atteint souvent une étape où l’opération
reaches a stage where the system’s operation can du système ne peut être maintenue qu’à travers une re-
only be maintained through a re-structuring (re- structuration du système et de son architecture. De nom-
engineering) of the system and its architecture. breuses techniques existent pour cette tâche, l’une d’elles
Many techniques exist for this task, one of which est connue comme le “reverse engineering”. Nous avons
is known as reverse engineering. We proposed re- proposé un “reverse engineering” des standards du vote
verse engineering of the e-voting standards, with électronique, en accentuant sur le fait d’arriver à un en-
focus on arriving at a set of documents that can be semble de documents qui peuvent être appliqués de façon
usefully applied at the requirements capture stage utile à l’étape de l’ingénierie des besoins du développe-
of e-voting development. ment du vote électronique.

We demonstrated how the standards would Nous avons démontré comment les standards béné-
benefit from being re-engineered, and we anal- ficieraient d’une reconstruction, et nous avons analysé
ysed whether they — as they are stated — adhere — comme ils sont établis — s’ils adhèrent à la bonne
to good practice with respect to system analysis pratique en ce qui concerne l’analyse de système et
and requirements engineering. Our goal was not l’ingénierie des besoins. Notre objectif était de ne pas

47

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

to say whether we agree or disagree with the stan- dire si nous étions en accord ou en désaccord avec les
dards. Our aim was to show that the way in which standards. Notre but était de montrer que la manière
the standards are expressed is very poor, in the dont les standards sont exprimés est très pauvre, dans
sense that it makes it almost impossible for them le sens où cela devient pour eux pratiquement impossible
to achieve both: their objectives, as defined by the d’atteindre à la fois : les objectifs, ainsi définis par la VC,
VC; and fundamental software engineering quality et les critères de qualité fondamentaux en génie logiciel.
criteria.

Following on from this work, we examined the A la suite de ce travail, nous avons examiné le pro-
problem of maintaining e-voting standards[GM08]. blème du maintien des standards du vote électronique
It is clear that e-voting systems should be verified [GM08]. Il est clair que les systèmes de vote électro-
to be fit-for-purpose before being deployed, but nique devraient être vérifiés pour être “fit-for-purpose”
that there is a serious lack of provision for verifi- avant d’être déployés ; mais il est clair aussi qu’il y a
cation and maintenance in existing standards and un sérieux manque de dispositions pour la vérification
recommendations for e-voting. A change to re- et la maintenance des standards existants et des recom-
quirements, or to the system, usually results in the mandations pour le vote électronique. Un changement
previously established fitness-for-purpose being aux besoins, ou au système, résulte habituellement dans
compromised. Therefore change must be man- la compromission du fitness-for-purpose précédemment
aged, and standards documents must make pro- établi. Donc le changement doit être géré, et les docu-
vision for their own maintenance. Verification is ments de standards doivent faire un approvisionnement
a process of establishing a relationship between pour leur propre maintenance. La vérification est un pro-
what is required of the system and properties of cessus d’établissement d’une relation entre ce qui est re-
the actual system. It is good practice that an in- quis pour le système et les propriétés du système réel. Il
dependent authority be responsible for verification est de bonne pratique qu’une autorité indépendante soit
of systems against requirements. It must be pos- responsable pour la vérification des systèmes contre les
sible to determine whether a given authority can besoins. Il doit être possible de déterminer si on peut
be trusted to fulfil this task competently. Thus, faire confiance à une autorité donnée pour remplir cette
requirements documents must not only say what tâche de façon compétente. Ainsi, les documents de be-
standards are to be met, but must also state the soins ne doivent pas seulement stipuler que des standards
minimum capabilities expected of any testing au- doivent être respectés, mais doivent aussi établir les apti-
thority. tudes minimumes attendues de la part de n’importe quelle

The whole e-voting system development pro- autorité faisant le test.
cess is prone to human-error. This applies to the Tout le processus de développement du système de
requirements, standards and the systems they de- vote électronique est enclin aux erreurs humaines. Ceci
scribe. We must introduce suitable procedures for s’applique aux besoins, aux standards et aux systèmes
dealing with these errors, including the identifica- qu’ils décrivent. Nous devons introduire des procé-
tion of responsible parties. We must also ensure dures adéquates pour faire face à ces erreurs, en incluant
that there is adequate incentive for the correction l’identification des parties responsables. Nous devons
of errors. If maintenance of systems requires ex- également nous assurer qu’il existe une motivation pour
pensive recertification, there is a risk that vendors corriger ces erreurs. Si la maintenance des systèmes re-
will not make necessary changes to their systems quiert une re-certification onéreuse, il y a risque que les
(to avoid recertification) or will make changes vendeurs ne fassent pas les changements nécessaires à

48

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

without having the systems recertified. leurs systèmes (pour éviter la re-certification) ou fassent
Error discovery is not the only agent of change des changements sans avoir re-certifié les systèmes.

for requirements and systems. For example, the in- La découverte d’erreurs n’est pas le seul agent de
troduction of new legislation, new election types, change pour les besoins et les systèmes. Par exem-
or new technology will have direct consequences. ple, l’introduction d’une nouvelle législation, de nou-
This requires careful co-ordination between all veaux types d’élection, ou d’une nouvelle technologie
concerned parties. Whenever a system changes, aura des conséquences directes. Ceci exige une coordi-
whatever the surrounding circumstances, it must nation prudente entre les parties concernées. Lorsqu’un
be tested and re-certified. However, if the system système change — quelles qu’en soient les circonstances
under evaluation has been well-engineered, it may l’entourant — il doit être testé et re-certifié. Cepen-
not be necessary to begin again with every modi- dant, si le système sous évaluation a été bien construit,
fication. In this paper we examined what it means il ne sera peut-être pas nécessaire de recommencer avec
for a system to be well-engineered and proposed chaque modification. Dans cet essai, nous examinons ce
maintenance procedures specific to the problem of que cela signifie pour un système d’être bien construit et
e-voting. nous avons proposé des procédures spécifiques de main-

tenance au problème du vote électronique.
In 2009, there was a large community of re- En 2009, une grande communauté de chercheurs tra-

searchers working on e-voting requirements en- vaillait sur l’ingénierie de besoins du vote électronique.
gineering. Thus, it seemed natural to organise Aussi, il est apparu naturel d’organiser des ateliers sur
a research workshop on the topic[GJ09]. The le thème [GJ09]. L’atelier a examiné best-practice pour
workshop examined best-practice for the engi- l’ingénierie des besoins du système de vote électron-
neering of e-voting system requirements, and the ique et la spécification des standards de système de vote
specification of e-voting system standards and ac- électronique et les processus d’accréditation (certifica-
creditation (certification) processes. Papers com- tion). Des essais ont comparé et contrasté des procédés
pared and contrasted requirements engineering et documents qui sont antérieurs aux systèmes de vote
processes and documents which predate electronic électronique avec ceux qui motivent le développement
voting systems with those that motivate the de- de futurs systèmes de vote. L’atelier a mis en avant
velopment of future voting systems. The work- l’importance d’études de cas — avec des essais traitant
shop highlighted the importance of case studies de l’évaluation de systèmes commerciaux existants, et
— with some papers addressing evaluation of ex- d’autres analysant des prototypes qui se sont développés
isting commercial systems and others analysing à partir d’environnements de recherche.
prototypes that have developed out of research en-
vironments.
3.2.4 E-voting and formal methods

Vote électronique et méthodes formelles

3.2.4.1 Verifying the interface
— Vérification de l’interface

In [CGM07b] we demonstrate the use of the Dans [CGM07b], nous démontrons l’utilisation de
formal method B in guaranteeing simple safety la méthode formelle B en garantissant des propriétés
properties of a voting machine implementing a de sécurité simples pour une machine de vote implé-
common variation of the single transferable vote mentant une variation habituelle du “single transferable

49

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

(STV) election process. The properties we exam- vote”(STV1) election process. Les propriétés que nous
ined are concerned with the collection and storage avons examinées sont concernées par la collection et le
of only valid votes. We demonstrate that guaran- stockage seulement des votes valables. Nous démon-
teeing validity not only helps in the formal verifi- trons que garantir la validité aide non seulement dans la
cation of the counting process, but also has an im- vérification formelle du processus de comptage, mais a
portant role to play in making the machine more également un rôle important à jouer en rendant la ma-
secure. Using the B-method, we applied an in- chine plus sûre. En utilisant la méthode B, nous ap-
cremental refinement approach to verifying a se- pliquons une approche incrémentielle de raffinement à la
quence of designs for the collection and storage of vérification d’une séquence de conceptions pour la col-
votes, which we prove to be correct with respect to lection et le stockage des votes, ce que nous prouvons
the simple requirement. comme étant correct par rapport à la simple exigence.

1 Vote unique et transférable.

Clearly, if invalid votes manage to get passed to the tabulation process (to be counted) then there is a risk that
this could break the counting process. For example, it would not be unreasonable to suggest that some of the
tabulation methods make the assumption that the votes being counted are valid. However, without some degree of
formal verification it is also likely that an invalid vote could — by accident — be counted and that this could lead
to an incorrect result, a run-time error, or non-termination. Consequently, this weakness could also be exploited by
an attacker to deliberately manipulate the election process.

Such a potential attack is similar to those mentioned in [MKSW06] where the security of votes stored in
memory is addressed. In particular, the use of Trojan code to exploit vote data that has been tampered with is
shown to be a real threat that requires elaborate schemes for the secure storage of votes. In most e-voting systems,
there is a clear interface between the the storage of votes and the input of votes. We argue that the same degree of
care must be taken in designing the vote interface to ensure that Trojan code cannot be used to exploit the input of
invalid votes and their subsequent transfer to long term storage.

3.2.4.2 Verifying storage
— Vérification du stockage

In [CGM07a] we illustrate the utility of our Dans [CGM07a], nous illustrons l’utilité de notre
refinement-based approach by verifying — through approche basée sur la raffinement en vérifiant — à
the application of a reusable formal design pat- travers l’application d’un patron formel de conception
tern — a store design that uses a specific PROM réutilisable — une conception de stockage qui utilise
technology and applies a specific encoding mech- une technologie PROM spécifique et qui applique un
anism. The main property that we examined was mécanisme spécifique d’encodage. La propriété prin-
concerned with the need for tamper-evident stor- cipale que nous avons examinée était concernée par le
age, which addresses the risk of unauthorised tam- besoin d’un stockage “tamper-evident”, qui traite du
pering of vote data after it has been correctly reg- risque de falsification non autorisé des données élec-
istered and stored. torales, après avoir été correctement enregistrées et

stockées.

The storage of votes is a critical component of any voting system. In traditional systems there is a high level of
transparency in the mechanisms used to store votes, and thus a reasonable degree of trustworthiness in the security

50

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

of the votes in storage. This degree of transparency is much more difficult to attain in electronic voting systems,
and so the specific mechanisms put in place to ensure the security of stored votes require much stronger verification
in order for them to be trusted by the public. There are many desirable properties that one could reasonably expect
a vote store to exhibit. From the point of view of security, we argue that tamper-evident storage is one of the most
important requirements: the changing, or deletion of already validated and stored votes should be detectable; as
should the addition of unauthorised votes after the election is concluded. We propose the application of formal
methods (in this paper, event-B) for guaranteeing, through construction, the correctness of a vote store with respect
to the requirement for tamper-evident storage.

In Analysis of an electronic voting system[KSRW04], we see that such a security weakness already exists in
one of the most widely procured voting systems:

“. . . an adversary could alter election results by modifying ballot definition files, and . . . it leaves no
evidence that an attack was ever mounted”

Here, the “adversary” is most likely to be a single insider (election official) with access to the storage device.
We argue that it is the responsibility of the storage designers to guarantee the security of the votes stored without
having to make an assumption about the behaviour or intent of such officials.

In order to illustrate how a guarantee could be made, we used event-B and applied an incremental refinement
approach to verifying a sequence of designs for the storage of votes, which we proved to be correct-through-
construction with respect to the simple requirement that the vote storage is tamper-evident.

The main design that is modelled and verified in this paper is taken directly from the work by Molnar, Kohno,
Sastry and Wagner[MKSW06]. Their proposed solution to providing tamper-evident storage involves the applica-
tion of Manchester codes[Sta85] and a write-once data PROM store. The encoding simply represents a 0 as a 01

and a 1 as a 10. Thus, when validating votes stored as pairs of bits there are 2 additional pair cases to be considered,
where (because our memory allows only 1s to be overwritten as 0s): 11 corresponds to unwritten memory and 00

corresponds to an invalid memory that has been tampered with.
Before we formally specify and verify the proposed solution, we briefly note that there is a real pragmatic

need for tamper-evident rather than tamper-proof writeable storage. The tamper-proof requirement can be met
only by some security mechanism ensuring authorised-only update of the vote store. This security mechanism
would probably be implemented as some combination of physical constraints, together with hardware and software
checks. It would most likely involve some complex encryption technique and it is not clear whether one could, or
should, expect voters to trust such a complex system. Contrastingly, guaranteeing the tamper-evident requirement
is a much simpler problem that — if done well — could be both trustworthy and trusted.

Implementing storage using a write-once data store has many obvious advantages when we consider tampering:
obviously, any vote that has already been written cannot be overwritten? In fact, without a more formal model of
the store, this is not guaranteed to be true. For example, one form of write-once storage could allow the flipping of
an initial bit state to be done once and once only. This does not necessarily guarantee that a recorded vote cannot
be overwritten as individual bits of a vote will not have been flipped when a vote is recorded. In fact, as with
all storage mechanisms, the (encoding) protocol used for writing information to such a store will be the deciding
factor in whether the tampering requirements are met. Furthermore, there are many reasonable variations of the
tampering requirement. Without a precise statement, it is not clear whether we will be able to verify whether a
given system (the store properties, together with the encoding protocol) is correct.

51

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

The key property of the encoding that we shall model is that if any (sub)set of 1 bits in a stored codeword are
flipped to 0s then the result is no longer a valid code word. We then wish to establish that anyone with read access
to the voting store can detect an invalid memory state, where at least one codeword is invalid, and consequently
any tampering after4 the election has been completed. The verification of this safety property requires modelling
of the write-once behaviour in the chosen PROM implementation (checking that 1s can be re-written as 0s but that
0s cannot be changed) in conjunction with the encoding mechanism. It also requires the use of a special election
over bit (bit pair in PROM) to signify that the election is over, and which must be unset and untampered with for
new votes to be recorded (otherwise anyone with access to the voting machine could add unauthorised votes after
the election, an attack known as ballot stuffing). We chose not to include the election-over behaviour in the model
presented in this paper.

We note that this system is not tamper proof: attackers with write access to the vote store can still invalidate
the election by overwriting vote data. However, this attacks would be easily identified by procedures for validating
the storage state during and after the vote.

The main advantages of doing this design formally, in event-B, are development oriented:

• an abstract model can be easily validated as correctly expressing the requirement,
• the actual design model can be constructed incrementally through refinement of the abstraction,
• the refinement process can continue through to modelling at very fine grain levels of detail that correspond

to the chosen low-level implementation architecture,
• we can more easily reason about different variations and combinations of encodings and storage media, and
• we can analyse possible problems of integrating this requirement with other requirements of the e-voting

system, in general, and the vote storage, in particular.

Thus, we are more likely to develop a trustworthy storage.
A secondary benefit arises when we consider the issue of how to build public trust in our formally developed

trustworthy system. We argue that the correct-by-construction technique, embodied in a reusable design pattern,
will become more and more trusted as it is used to develop more and more systems that prove themselves to be
trustworthy. As a consequence, using such a standard technique (and associated tools) in constructing critical
systems will increase confidence in the systems’ correctness, from both the developers and the public users.

With tool support for automatically checking our verification proof we have another advantage: if our proof
tool is trustworthy then the design is sure to be correct provided the property that we have established, in the initial
abstract model, is an accurate statement of the high level requirement. To make this transparent to the users (voters)
it is essential that an initial abstract model is easy to understand and validate, and that they have good reason not
to mistrust our proof tool and techniques. Our design approach facilitates this type of openness and transparency.

3.2.4.3 Verifying quality of service
Vérification de la qualité de service

The next research carried out was part of an La recherche entreprise ensuite faisait partie d’un
applied research project — “Sécurité et Audit projet de recherche appliqué — “Sécurité et Audit du
du Vote Electronique” (SAVE) — funded by the Vote Electronique” (SAVE) — fondé par l’Agence Na-

4It is trivial to extend our model to dynamically detect tampering during an election but for simplicity and conciseness we do not present
details of this variation of tamper-evidence.

52

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

French Agence National de la Recherche (ANR), tionale de la Recherche (ANR), dans laquelle l’objectif
in which the objective was to develop a proto- était de développer un prototype pour un système in-
type for an innovative e-voting system for use in novant de vote électronique à utiliser en France. Dans
France. In our chosen system, we have two clear le système choisi (pour la France), nous avons deux in-
voting innovations (for France) that the system novations électorales que le système devra à supporter.
will be required to support. Firstly, we wish to al- Premièrement, nous souhaitons permettre aux votants
low voters to be able to go to any polling station in d’avoir la possibilité d’aller à n’importe quelle bureau
order to vote; currently they are required to go to de vote pour voter ; actuellement ils sont obligés d’aller
a particular station. We refer to this as a VoteAny- dans un bureau spécifique. Nous faisons référence à
where feature. Secondly, we wish to allow voters ceci comme un feature “VoteAnywhere”. Deuxième-
to be able to re-vote so that a previously recorded ment, nous souhaitons permettre aux votants de pou-
vote is overwritten by a new vote; currently voters voir revoter pour qu’un vote précédemment enregistré
have no way of changing their vote in such a way. soit remplacé par un nouveau vote ; actuellement les
We refer to this as a ReVote feature. votants n’ont aucun moyen de changer leur vote d’une

Our main research contribution — published telle manière. Nous faisons référence à ceci par le fea-
in [GLR08a] — was to demonstrate that it is ture de “ReVote”.
possible to formalise the functional requirements Notre principale contribution de recherche — pub-
(VoteAnywhere and ReVote) and to analyse, through liée dans [GLR08a] — était de démontrer qu’il était pos-
simulation of formal models, the quality of service sible de formaliser les besoins fonctionnels (VoteAny-
offered by different architectures for distributed e- where et ReVote) et d’analyser, à travers la simulation
voting systems (that meet these functional require- de modèles formels, la qualité de services offerts par
ments). différentes architectures pour les systèmes distribués de

vote électronique (qui remplissent ces besoins fonction-
nels).

For simulation and analysis of quality of service requirements we have chosen to use Estelle [DAC89], a Formal
Description Technique standardised by ISO [ISO97]. Although this technique is not as popular as other better
known formal methods, it is well suited to the analysis task outlined in our research. Its main application field is
the formal specification of distributed systems using communication protocols, and it permits a clear split between
the definition of the global architecture of the system and the internal behaviour of its components.

The most significant threat to being able to meet quality of service requirements is a complete denial of service,
where users of the system are unable to execute core functionality. In the case of e-voting machines, such a denial
of service would prohibit anyone from recording a vote. When an e-voting system relies on components that are
accessed across a network then a significant denial of service threat would arise if the network was not reliable (or
if it was not resistant to attacks). This is a well documented concern for remote voting, including internet voting.
However, it is also a concern in our chosen system where the network is a key component.

The main advantage of our approach — reported in this paper — is the ability to reason about e-voting quality
of service (including denial of service) early in the development process. Analysis of such issues should be done
as soon as possible — which means verifying that any proposed high-level design (architecture) is able to meet
the quality of service requirements. Making a choice between alternative architectures should not be done without
having first completed a verification of such requirements.

In order to reason about quality of service properties in Estelle we are obliged to simulate behaviour of our

53

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

proposed architectures in different environments. The standard approach is to identify key environmental parame-
ters and to analyse the system’s performance as these parameters change. In our case, we have two key dynamic
parameters: the distribution over time of voters attempting to vote and the distribution over time of network inop-
erability.

For voter distributions we had access to a large bank of data from which we were able to generate a typical
distribution curve . For network operation, we had no data from which we could generate typical distribution
curves of network downtime for voting systems. Consequently, we were obliged to use more generic information
from our network providers about the types of distribution curves that their networks would offer under normal
conditions (not associated with e-voting). Then, in order to stress test the system, we chose to align peak voting
times with the peak network downtimes.

The key role of the simulation is to show that certain architectures will not be able to meet the quality of service
requirements. The architectures that are verified to meet the requirements (through simulation) can progress for
further development, but need to be more thoroughly analysed during later development steps.

Through our simulations, we have helped guide design decisions made by the e-voting system developers.
By demonstrating, early in the design process, the inappropriatness of certain architectures (with respect to their
inability to meet quality of service requirements when the underlying network is not perfect) we have significantly
aided the design process. Furthermore, by providing formal models we are more confident that the final system
will meet the innovative functional requirements of VoteAnywhere and Revote.

3.2.4.4 Feature Interactions and an e-voting software product line
— Interactions de service et une ligne de produit logiciel

A significant number of failures in e-voting Un nombre significatif d’échecs dans les systèmes
systems have arisen because of poorly specified de vote électronique est survenu à cause de besoins pau-
requirements, combined with an ad-hoc approach vrement spécifiés, combinés avec une approche ad hoc
to engineering multiple variations of similar ma- vers la construction de multiples variations de machines
chines. similaires.

In [GLR09] we demonstrate that e-voting is Dans [GLR09], nous démontrons que le vote élec-
a suitable domain for leveraging state-of-the-art tronique est un domain exemplaire pour exercer une in-
in software product line (SPL) engineering tech- fluence sur des techniques de construction et des outils
niques and tools. We propose, based on examples ultramodernes dans les lignes de produits logiciel (soft-
of typical requirements, that a feature-oriented ap- ware product lines (SPLs)). Nous proposons, le tout
proach to e-voting domain analysis is a good foun- basé sur des exemples typiques de besoins, qu’une ap-
dation upon which to carry out commonality and proche orientée service pour l’analyse de domaine du
variablity analysis. Simple analysis of our core vote électronique est une bonne fondation sur laque-
and optional features (and their variants) leads us lle mettre en œuvre une analyse de commonalité et de
to believe that feature interactions are a major variabilité. Une simple analyse de notre noyau et des
problem in voting systems. We conclude that a features optionnelles (et leurs variantes) nous conduit à
formal software product line would help to man- croire que les interactions de services sont un problème
age the composition of features in such a way as to majeur dans les systèmes de vote électronique. Nous
eliminate interactions in the requirements models, concluons qu’une SPL formelle aiderait à gérer la com-
before particular e-voting systems are instantiated. position de features de telle manière à éliminer les in-

54

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

teractions dans les modèles de besoins, avant que des
systèmes de vote électronique particuliers soient créés.

Software Product Lines (SPLs) [CN02] are attracting attention in the area of applied software engineering re-
search. The challenge, which this article addresses, is to demonstrate how and why an e-voting SPL could be
built. E-voting systems correspond in terms of size and complexity to those reported in a number of SPL case
studies [Bos99b]. The number of variations across systems [SP06] is large enough to merit an SPL approach, but
not so large as to be unmanageable. Furthermore, these systems exhibit a large amount of common functionality
and so the potential for re-use is high. The aspect of e-voting that may be more challenging is that the software
may be considered (safety or mission) critical [MG03]. However, recent research suggests that SPLs can be used
to develop safety critical systems [Liu07].

The paper notes that analyses of existing systems — such as the state of Ohio’s EVEREST report[BEH+08]
— have identified verification issues directly related to foundational concepts in software product lines: “pa-
rameterized families of components” [McI68], a “family of related programs” [Dij72, Par76], and “structuring
commonality and variability according to features”[KCH+90].

An e-voting system has a myriad of layers of inter-related legal requirements to meet. Further, each voting
system has to meet specific needs which are not directly addressed by the laws and standards. The requirements of
the system must somehow integrate these specific needs with multiple layers of laws and standards. As changes are
made to requirements within different layers, in parallel, then who is responsible for ensuring that the requirements
can be re-integrated in a coherent manner?

In our research, we selected examples of interactions that illustrate the need for more formal modelling and
analysis. First we considered the most challenging requirements integration problem in e-voting: how to ensure
both anonymity and verifiability? Secondly, we analysed potential interactions between the two innovative features
of our chosen system: re-voting anywhere. Finally, we discussed the interactions that arise when the innovative
features of our chosen system have to integrate with an existing non-core feature common to French elections:
procuration.

In all instances we considered quality of service (QoS) to be a core requirement, so that the time required to
record an individual vote should never be “unreasonable”[GLR08a].

In conclusion, as we cannot guarantee the reliability of any non-local communication network, we currently
reject any voting process where an elector depends on a non-local communication in order to be able to register
their individual vote. This issue is critical in many of the feature interactions that we subsequently considered.

3.2.4.5 Formal modelling of e-voting system architectures
— Modélisation formelle d’architectures de système de vote électronique

It is clear that the formal verification of e- Il est clair que la vérification formelle des modèles
voting system models would help to address prob- de vote électronique aiderait à traiter des problèmes as-
lems associated with certification against stan- sociés à une certification contre standards et améliorerait
dards, and would improve the trustworthiness of la fiabilité des systèmes finaux. Cependant, il n’est pas
the final systems. However, it is not yet clear how encore évident de connaitre comment mettre en œuvre
best to carry out such formal modelling and ver- une modélisation formelle et une vérification de la sorte
ification in order to leverage the compositional de la meiilure facçon, ceci d’exploiter la nature qui com-
nature of the problem, and manage the complexity pose le problème, et de gérer la complexité de la tâche.

55

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

of the task. Le choix d’un langage de modélisation — pour ex-
The choice of modelling language — for ex- primer la conception haut niveau et l’architecture d’un

pressing the high level design and architecture of système de vote électronique — pose de nombreux
an e-voting system — poses many problems due problèmes qui sont dus au mélange complexe de besoins
to the complex mix of requirements that such a qu’un tel système doit remplir. Différents langages de
system is required to meet. Different modelling modélisation sont plus ou moins adaptés pour vérifier
languages are more-or-less suited to the verifica- les différentes exigences critiques. Ainsi, nous avons
tion of different critical requirements. Thus, we fait un compte rendu dans [GLR10] sur une approche de
reported in [GLR10] on a mixed model approach: modèles mélangés ; où nous traitons 3 différents types
where we address 3 different types of critical re- de besoins critiques utilisant 3 langages de modélisation
quirements using 3 different modelling languages différents et des stratégies de développement.
and development strategies.

Firstly, we reported on network quality-of-service issues that are analyzed through simulation models. Secondly,
we report on functional correctness of a counting process that can be validated through algebraic techniques.
Finally, we report on the use of formal refinement to reason about the correctness of design steps when adding
detail to an architecture model. To conclude, we acknowledged the main problem that arises from such a mixed-
model approach to architecture verification: how can we be sure that the different models are coherent when we
integrate them in a final implementation?

The final prototype system — with security mechanisms built on to our specified architecture — is in the pro-
cess of being tested (against functional requirements). Through these tests (which were independently developed
from the requirements models) we can verify that the count is correct, and that the three main features — VoteAny-
where, Revote and Procuration interact as required. We have no formal verification that the encryption algorithms
central to the security mechanisms are correctly implemented — but the developers are experienced in using these
same algorithms in a large number of security-critical systems.

It is clear from analysis of our development approach that the integration of our formal models is ad-hoc. We
believe that are advantages from using different formal models at different stages of the development. However,
establishing a re-usable method that coherently integrates such a mix of approaches is future research.

3.2.5 Important Technical Contribution: Interfaces can be constructed correctly

The use of formal methods in HCI development continues to be an important, ongoing area of research. Most
approaches are based upon an operational approach to specifying the interaction as a state machine (much like a
communication protocol). The key problem is in abstracting such operational models to an abstract set of functional
properties that the interface respects, and which correspond to user requirements. We advocate working in the
opposite direction — we start with a specification of the highest level abstraction and refine towards a correct
implementation. The utility of such an approach has always been questioned, but our formal development of an
e-voting system interface provides an excellent example of the general applicability of a correct-by-construction
approach to user interface development.

In this subsection we provide some additional technical details regarding this approach (for the interested
reader). The original paper — Refinement: a constructive approach to formal software design for a secure e-voting
interface[CGM07b] — is extended with more generic models whose refinement allows for correct instantiation of
different types of interface for different voting schemes.

56

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

Following the traditional refinement process using the B language, we propose in Figure 5 a high level model
(AllVotesAtOnce): it abstracts away from individual votes and button presses.

Figure 5: AllVotesAtOnce specified in B

There is only one event — Voting — which models the votes of all electors who came to vote in one shot.
A valid complete vote will be refined, in the next model, into the property that every individual vote is valid. For
readers unfamiliar with the B modelling language, we note that:

• ELECTOR is the set of all electors and CAND is the set of all candidates,

• vote is the variable which contains votes of all the electors,

• nbv is the cardinal of the domain of vote representing the total number of votes,

57

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

• x is the minimum number of candidate preferences that must be marked for the vote to be considered valid.
Thus, x acts as the parameter in our generic model to be instantiated in order to provide a concrete instance.
For example, if we instantiate x to be 1 then we have the original concrete model specified in [CGM06],
which corresponds to the requirement for a valid vote in Irish parliamentary elections. Alternatively, if we
instantiate the parameter x to take the value of the NumberofCandidates then we have an example of
full preferential voting as commonly used in Australian elections. Finally, if we instantiate x to a value
in between these two extremes then we have an example of partial preferential voting (common to council
elections) such as that used for the Tasmanian Legislative Council.

Instead of modelling all the votes in one shot as above, in our next step we choose to refine the abstract
specification so that each individual vote is modelled using the event One_Vote in the model EachVoteAtOnce
(see Figure 6). Without such a refinement a realisitic implementation cannot be constructed.

Figure 6: EachVoteAtOnce specified in B

In this more concrete EachVoteAtOnce model, STATE is an enumeration set which contains two values:
voting to represent a voting system that is open, and finish to represent a state when the voting is closed. The

58

3.2 Software Engineering Applied Theory: E-voting Systems
— Théorie appliquée du génie logiciel : les systèmes de vote électronique

variable st contains one of these values, elector is the subset of ELECTOR recording the electors who have
already voted, vt is the variable which contains these votes, and cvt is its cardinal. All votes in vt are valid. The
event One_Vote models the vote of a single elector in one shot (as a single event).

In the Vote model in Figure 7 an elector e (who has not already voted) votes for candidates by pressing on the
corresponding buttons.

Figure 7: Vote specified in B

One_voting is an enumeration set which contains three values: no_elec when no electors have voted, start
when the a new elector e starts to vote and valid when the elector e pushes the button to validate their vote. The
variable sto contains one of these values. Variable e contains the current elector, vt is their current vote which is
modified when a candidate button is pushed, and n is the preference value of the chosen candidate.

We remark that the guard of the event Button_valid requires that n ≥ x and so we are sure that when an
elector pushes this button then the partial vote v v has the required number of preferences and so v is a valid vote.

59

E-VOTING BIBLIOGRAPHY

Remark also that we have no condition on n in the guard of the event Button_cand. When a candidate is not in
the codomain of v we are sure5 that n < nbc.

The advantage of this approach is that each interface model refinement is relatively easy to verify using the in-
teractive theorem prover. The complexity of the development is evaluated through the number of proof obligations
generated for the validation of each model or refinement6. Among generated proof obligations, a large number of
them are automatically discharged by the prover. In our simple case study, 61 proof obligations are automatically
discharged, and 12 are interactively derived using the tool but with human help. A second aspect that should be
taken into account is the distribution of proof obligations through the global process.

The first model is easy to prove since it is very abstract. The refinement model EachV oteAtOnce requires
two interactive proofs which are quite simple, and only one difficult proof obligation stating the existence of some
n which is related to the validity of the vote. The last refinement model is much more complex and the longest
proof (requiring inductive reasoning) is 34 steps long. Table 1 illustrates how the complexity of the proof process
grows with each refinement of the model.

Model Total Number Interactive
proof obligations proofs

AllVotesAtOnce 3 0
EachVoteAtOnce 16 2

Vote(+ Cand_vote) 42 10
TOTAL 61 12

Table 1: Proof Obligations

E-voting Bibliography

[BEH+08] Kevin Butler, William Enck, Harri Hursti, Stephen McLaughlin, Patrick Traynor, and Patrick Mc-
Daniel. Systemic Issues in the Hart InterCivic and Premier Voting Systems: Reflections on Project
EVEREST. In EVT’08: Proceedings of the USENIX/Accurate Electronic Voting Technology Work-
shop 2008 on Electronic Voting Technology Workshop, Berkeley, CA, USA, July 2008. USENIX
Association.

[Bos99] Jan Bosch. Product-line architectures in industry: a case study. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 544–554, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[CEB+05] Deirdre Carew, Chris Exton, Jim Buckley, Margaret McGaley, and J.Paul Gibson. Preliminary study
to empirically investigate the comprehensibility of requirements specifications. In Psychology of
Programming Interest Group 17th annual workshop (PPIG), pages 182–202, University of Sussex,
Brighton, UK, 2005.

5We have proven it thanks to the invariant property and the refinement construct. This proof, as with all others referred to in the paper, is
available from the authors on request.

6The proof obligations for Button_cancel_last_cand and Button_cancel_cand are both included in these counts.

60

E-VOTING BIBLIOGRAPHY

[CGM06] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to
formal software design for a secure e-voting interface. In A. Cerone and P. Curzon, editors, Formal
Methods for Interactive Systems (FMIS 2006), Macau SAR China, October 2006.

[CGM07a] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Formal verification of tamper-evident
storage for e-voting. In SEFM, pages 329–338. IEEE Computer Society, 2007.

[CGM07b] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to
formal software design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci., 183:39–55,
2007.

[CN02] P. Clements and L. Northrop. Software product lines. Addison-Wesley Boston, 2002.

[DAC89] Michel Diaz, J. P. Ansart, and J. P. Couriat, editors. Formal Description Technique Estelle: Results
of the Esprit Sedos Project. Elsevier Science Inc., New York, NY, USA, 1989.

[Dij72] Edsger W. Dijkstra. Structured programming, chapter Notes on structured programming, pages 1–82.
Academic Press Ltd., London, UK, 1972.

[Gib05] J. Paul Gibson. E-voting requirements modelling: An algebraic specification approach (with cafeobj).
Report NUIM-CS-TR-2005-14, Department of Computer Science, National University of Ireland,
Maynooth., 2005.

[GJ09] J. Paul Gibson and Doug Jones, editors. First International Workshop on Requirements Engineering
for e-Voting Systems (RE-VOTE09), Atlanta, GA, USA, August 2009. IEEE.

[GLR08] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Analysis of a distributed e-voting system architecture
against quality of service requirements. In Herwig Mannaert, Tadashi Ohta, Cosmin Dini, and Robert
Pellerin, editors, The Third International Conference on Software Engineering Advances (ICSEA
2008), pages 58–64, Sliema, Malta, October 2008. IEEE Computer Society.

[GLR09] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Feature interactions in a software product line for
e-voting. In Nakamura and Reiff-Marganiec, editors, Feature Interactions in Software and Commu-
nication Systems X, pages 91–106, Lisbon, Portugal, June 2009. IOS Press.

[GLR10] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Engineering a distributed e-voting system archi-
tecture: Meeting critical requirements. In Holger Giese, editor, Architecting Critical Systems, First
International Symposium, ISARCS 2010, Prague, Czech Republic, June 23-25, 2010, Proceedings,
volume 6150 of Lecture Notes in Computer Science, pages 89–108. Springer, 2010.

[GM08] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems and stan-
dards. In Dan Remenyi, editor, 8th European Conference on e-Government, pages 283–289. Aca-
demic Publishing International, July 2008. ISBN 978-1-906638-09-2.

[ISO97] ISO/IEC. Estelle: A formal description technique based on an extended state transition model. Tech-
nical Report ISO 9074, Information technology - Open Systems Interconnection, 1997.

61

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

[KCH+90] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU-SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis of an electronic
voting system. In IEEE Symposium on Security and Privacy (S&P04), pages 27–40. IEEE, 2004.

[Liu07] Jing Liu. Handling safety-related feature interaction in safety-critical product lines. In ICSE Com-
panion, pages 85–86. IEEE Computer Society, 2007.

[McI68] D. McIlroy. Mass-produced software components. In Proceedings of the 1st International Conference
on Software Engineering, Garmisch Pattenkirchen, Germany, pages 88–98, 1968.

[MG03] Margaret McGaley and J. Paul Gibson. E-voting: a safety critical system. Report NUIM-CS-TR-
2003-2, Department of Computer Science, National University of Ireland, Maynooth, 2003.

[MG06] Margaret McGaley and J. Paul Gibson. A critical analysis of the council of europe recommenda-
tions on e-voting. In EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop 2006 on Electronic Voting Technology Workshop, pages 9–22, Berkeley, CA, USA, 2006.
USENIX Association.

[MKSW06] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-evident, history-independent, subliminal-
free data structures on prom storage — or — how to store ballots on a voting machine (extended
abstract). IEEE Symposium on Security and Privacy,, 2006.

[Par76] David Lorge Parnas. On the design and development of program families. IEEE Trans. Software
Eng., 2(1):1–9, 1976.

[SP06] Krishna Sampigethaya and Radha Poovendran. A framework and taxonomy for comparison of elec-
tronic voting schemes. Computers & Security, 25(2):137–153, 2006.

[Sta85] William Stallings. Data and computer communications. Macmillan Publishing Co., Inc., Indianapo-
lis, IN, USA, 1985.

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Education has a major role to play in software L’éducation a un rôle majeur à jouer dans le dévelop-
development becoming a real engineering disci- pement logiciel qui devient une véritable discipline
pline. Throughout my academic career, I empha- d’ingénierie. Tout au long de ma carrière universi-
sise the symbiosis between teaching and research. taire, j’ai mis l’accent sur la symbiose existant entre
There are two key aspects. Firstly, one must try l’enseignement et la recherche. Il y a deux aspects
to bring ones research experience into the class- clés. Premièrement, nous devons essayer d’apporter
room. Secondly, one must also be aware of (and notre expérience en matière de recherche au sein de
possibly carry out) research into innovative teach- la salle de classe. Deuxièmement, nous devons être
ing techniques and practices. How best to edu- également conscient (et peut-être mettre œuvre) de la

62

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

cate future engineers of software systems is a ma- recherche dans le domaine des pratiques et techniques
jor challenge. d’enseignement innovatrices. Savoir comment éduquer

de la meilleure façon possible des futurs ingénieurs en
systèmes logiciels est un challenge majeur.

3.3.1 Learning From The Student

In 1998, formal methods were not being taught En 1998, les méthodes formelles n’étaient pas en-
in all computer science/software engineering de- seignées dans tous les programmes universitaires de sci-
gree programmes. To address this problem we ences informatiques/génie logiciel. Pour traiter de ce
carried out research into a novel way of teaching problème, nous avons entrepris une recherche sur une
formal methods: rather than concentrating on one nouvelle manière d’enseigner les méthodes formelles :
particular method, we worked on a set of small plutôt que de se concentrer sur une méthode particulière,
case studies, using the mathematics in a flexible nous avons travaillé sur un ensemble de petites études de
and intuitive manner, where the students could ap- cas, en utilisant les mathématiques d’une manière fle-
preciate the need for formality[GM98]. Each case xible et intuitive, là où les étudiants pouvaient apprécier
study was intended to illustrate, in turn, the need le besoin de formalité [GM98]. Chaque étude de cas
for some fundamental formalism. An unexpected avait pour objectif d’illustrer, tour à tour, le besoin de
result was that we also identified weaknesses in quelque formalisme fondamental. Le résultat fut inat-
our understanding of formal methods: students’ tendu nous avons aussi identifié les faiblesses dans notre
naive questioning helped us to identify how the compréhension des méthodes formelles ; le question-
methods, and the teaching of these methods, could nement naïf des étudiants nous a aidé à identifier com-
be improved. In brief, it was not just the students ment les méthodes et l’enseignement de ces méthodes,
who were learning! pouvaient être améliorés. En bref, les étudiants n’étaient

Twelve years later, we continue to support the pas les seuls à apprendre !
view that discrete mathematics is the foundation Douze ans plus tard, nous continuons à supporter
upon which software development can be lifted l’avis que des mathématiques discrètes sont le fonde-
up to the heights of a true engineering discipline. ment sur lequel le développement logiciel peut être re-
The transfer of formal methods to industry can- haussé à la hauteur d’une véritable discipline d’ingénierie.
not be expected to occur without first transferring, On ne peut pas s’attendre à ce que le transfert des méth-
from academia to industry, graduates who are well odes formelles vers l’industrie apparaisse sans qu’il y
grounded in such mathematical techniques. These ait, au préalable, transfery du milieu universitaire à celui
graduates must bring a positive, yet realistic, view de l’industrie, des étudiants diplômés étant tout à fait à
on the application of formal methods. Our goal is l’aise avec de telles techniques mathématiques. Ceux-ci
to produce software engineers who will go out into doivent apporter une vue positive, mais néanmoins réal-
industry understanding the principles of specifica- iste, sur l’application des méthodes formelles. Notre but
tion, design and implementation. As these gradu- est de produire des ingénieurs en génie logiciel qui iront
ates develop their engineering skills, in an indus- dans l’industrie avec une compréhension des principes
trial setting, they should have the means, and the de spécification, de conception et d’implémentation.
motivation, to integrate formality and rigour into Comme ces diplômés développent leurs compétences
any environment in which they are found. In this en ingénierie dans un cadre industriel, ils devraient
way, the formal methods should start to sell them- avoir les moyens, et la motivation d’intégrer formal-
selves. ité et rigueur au sein de tout environnement dans lequel

63

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

ils sont trouvés. De cette façon, les méthodes formelles
devraient commencer à se vendre.

Figure 8: Software Engineering and Formality

Figure 8 illustrates the different steps in a traditional engineering process: analysis, requirements capture, de-
sign, implementation, and evolution. The formal methods are principally concerned with maintaining correctness,
the property that an abstract model fulfils a set of well defined requirements [Bab87, Bol88, DeN87, Cus89], be-
tween the initial customer oriented requirements model and the final implementation oriented design. The formal
boundaries break down at either end of the software development process because, in general, target implementa-
tion languages are not formally defined and customer understanding of their requirements is not complete.

Software development has reached the point where the complexity of the systems being modelled cannot be
handled without a thorough understanding of underlying fundamental principles. Such understanding forms the
basis of scientific theory as a rationale for software development techniques which are successful in practice. This
scientific theory, as expressed in rigorous mathematical formalisms, must be transferred to the software develop-
ment environment. Only then can the development of software systems be truly called software engineering: the
application of techniques, based on mathematical theory, towards the construction of abstract machines as a means
of solving well defined problems.

As a means of motivating the students, we mention a major study of the state-of-the-art in formal methods
[CGR93], carried out 5 years before, which concluded by stating:

“ . . . formal methods, while still immature in certain important respects, are beginning to be used
seriously and successfully by industry to design and develop computer systems . . . ”

As the course advanced we came to see the value of the case studies. When introducing new concepts, a small

64

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

case study (often toy problems) were used to illustrate why formalism was needed, what sort of formalism could
meet our needs and how to define and (re)use this formalism. This paper is 12 years old, but the simple problems
have been re-used in many other courses, and have grown into more complex problems used in Problem Based
Learning (PBL).

Perhaps the most important lesson that we, as lecturers, learned from the students was that abstraction was a
very difficult concept. We introduced a case study based on sets, that has been re-used in a large number of courses
and using a wide variety of formal languages. The original idea for this study came from a French text on graph
algorithms [L9́4], where the author explained how the way in which sets where defined has a great influence in how
they can be used for graph problems: where graphs are specified as sets of nodes and arcs. The goal of this case
study was for them to see a development hierarchy as a step-by-step (refinement) process towards implementation.

Figure 9 illustrates the hierarchy which we examined.

Figure 9: Designing a Set

This case study brought up some important fundamental issues (that we continued to see every time we taught
the problem):

• Different teams quite naturally produce fundamentally two different (yet equivalent) specifications: group
produce specifications in which adding an element first checked if the element was already in the set
and did not change the set if this was true. Other groups produce specifications in which the remove is
defined to remove multiple elements whilst the add allowed multiple entries. Other groups fall between
these stools and did not realise that there is a problem with multiple elements. The students often wish to
know which specification is best: here we have to explain the notion of equivalence, invariants and the need
for extensibilty. A more difficult question is how to specify the set more abstractly so that both of these

65

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

specifications were correct.

• In the diagram, we see five different implementation strategies. Each arrow represents a design step in which
the internal structure of the set is changed to improve performance. The question which I faced was:

Why do we say that one model is more concrete (or abstract) than another if they are equivalent.

Intuitively, there is something more concrete about a balanced binary tree than a linked list, but clearly from
a purely functional point of view they provide the same behaviour. How do we formalise this notion of
abstraction level?

• In the hierarchy diagram, there is a dotted link between the array implementation and the binary tree: it is
easy to implement a binary tree using an array whilst it is not so easy to do this implementation with a linked
list. The students wanted to know if this concept of easy to implement using something can be formalised.

After this case study we realised the need to look at the notion of equivalence in more detail, and the need to
re-examine the notion of abstraction level from the point of view of nondeterminism.

Not much has changed since then except that we have many more examples of these issues in industry and we
have much more better tools with which students can experiment with abstraction and nondeterminism.

3.3.2 Formal Requirements Engineering
— Construire des besoins formels

In 2000, requirements engineering was being En l’an 2000, l’ingénierie des besoins était en-
taught in most software engineering degree pro- seignée dans la plupart des programmes universitaires
grammes around the world. However, most of de génie logiciel à travers le monde. Cependant, la plu-
these courses failed to teach the students how to part de ces cours ont échoué à enseigner aux étudiants
formalise models and build abstractions. As a comment formaliser des modèles et construire des ab-
consequence, students were under the impression stractions. Comme conséquence, les étudiants avaient
that requirements specifications were necessarily a l’impression que les spécifications de besoins étaient
combination of natural language text and informal nécessairement une combinaison de texte de langage
diagrams. naturel et de diagrammes informels.

To address this problem, we investigated how Pour traiter de ce problème, nous avons enquêté
to integrate formal methods into a requirements sur comment intégrer des méthodes formelles dans un
engineering module[Gib00]. The paper reported “requirements engineering” module [Gib00]. L’essai a
on our experience in teaching requirements engi- fait le rapport sur notre expérience dans l’enseignement
neering using formal methods, where we advo- de l’ingénierie des besoins, en utilisant les méthodes
cated a multiple methods approach in which stu- formelles, où nous recommandons une approche de
dents get to evaluate a large range of specifica- méthodes multiples, dans laquelle des étudiants ont la
tion languages: students are more likely to learn possibilité d’évaluer un vaste éventail de langages de
the principles of good requirements engineering spécification. Les étudiants ont plus tendance à appren-
rather than become experts in one particular (for- dre les principes de bons l’ingénierie des besoins plutôt
mal) method. The need for formality was intro- que de devenir des experts dans une méthode (formelle)
duced step-by- step, where new concepts were particulière. Le besoin de formalité a été introduit étape
identified by the students through the use of case par étape, là où de nouveaux concepts ont été identifiés

66

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

studies. These concepts are then formalised in the par les étudiants à travers l’utilisation d’études de cas.
most appropriate language or notation. Students Ces concepts sont ensuite formalisés dans le langage ou
are encouraged to question the need for formal- la notation le/la plus approprié(e). Les étudiants sont en-
ity — each requirements engineering method is a couragés à questionner le besoin de formalité ; chaque
compromise and the use of formal models needs méthode de l’ingénierie des besoins est un compromis
to be placed within the context of the choices that et l’utilisation de méthodes formelles nécessite d’être
a requirements engineer has to make. placée au sein d’un contexte de choix que l’ingénieur de

besoins doit faire.

This paper examines the requirement engineering issues, which were the most difficult to explain to the students
for a variety of reasons:

• Moving from informal to formal — the requirements document is the first point of reference in the software
development process. The step of going from informal understanding of a problem to a (formal) recording
of this understanding is very difficult to learn (and to teach).

• Coping with changing needs — it is the nature of requirements to change. Thus, students must learn how
to develop techniques which are both flexible and incremental. This involves a deep understanding of the
compromises that exist within modelling.

• Working in different problem domains — to build good requirements models one must have a good under-
standing of the problem domain which is being modelled. When teaching a requirements engineering course
there is always a risk that one will end up teaching about problem domains rather than about requirements
modelling. However, students must also learn that requirements modelling and analysis go hand-in-hand: if
they work in well-understood domains then they will never learn the importance of the analysis.

• The need for customer orientation — one must not lose sight of the customer in the whole process.

The main result of our research was to identify the main learning objectives, as a set of questions that students
should be able toanswer?

• Why is requirements engineering important?
Analysis is the process of maximising problem domain understanding. Only through complete understand-
ing can an analyst comprehend the responsibilities of a system. The modelling of these responsiblities is a
natural way of expressing system requirements. The modelling process increases understanding. Once the
model is sufficiently rich to express all that is needed, then the analysis is complete and design can begin.

• Why is the customer important?
The simplest way for an analyst to increase understanding is through interaction with the customer. The
customer may be one person, in which case the Requirements Capture and Analysis (RCA) process is much
simplified; however, it is more likely that the customer is a group of clients, each with their own particular
needs. These clients may be people, machines, or both. One of the main problems in dealing with a set of
customers is that the inter-related set of requirements must be incorporated into one coherent framework.
Each client must be able to validate his (or her) own needs irrespective of the other clients (unless of course
these needs are contradictory).

• Why can the process never be perfect?
Interaction with the customer is an example of informal communication. It is an important part of analysis

67

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

and, although it cannot be formalised, it is possible to add rigour to the process. A well-defined analysis
method can help the communication process by reducing the amount of information an analyst needs to
assimilate. By stating the type of information that is useful, it is possible to structure the communication
process. Effective analysis is dependent on knowing the sort of information that is required, extracting it
from the customer, and recording it in some coherent fashion.

• Why is requirements engineering difficult?
The analysis model must be capable of fulfilling two very different needs. Firstly, it must be customer ori-
ented, i.e. there must be a direct correspondence between the model and how the customer views the prob-
lem. Secondly, the model must be useful to designers. The system requirements must be easily extracted,
and the structure of the problem domain must be visible for (potential) re-use in the solution domain. The
easiest way in which a model can play this dual role is if the same underlying notions and principles are
present in the problem and solution spaces.

• How can formality help?
Mathematical rigour is necessary for formal validation, testing and completeness and consistency checking.
The advantages of formal methods in the specification of requirements are well documented (see [BG81,
BJA82, Dil90], for example).

• How can formality hinder?
Formal methods do not come for free. They require much more rigorous development techniques which are
more time consuming and more difficult to master. Furthermore, formal methods risk being too difficult for
the client (or engineer) to understand. Extra work is required to make them presentable to anyone other than
the (mathematically oriented) requirements engineer.

• What is the difference between validation and verification?
It is important that the requirements engineer understands that validation is about checking that a formal
model correctly captures the client’s needs, and that verification is about checking that a formal model
meets the requirements of another formal model. We can verify the consistency of a requirements model by
showing that it’s operational requirements meet its logical requirements, but this is not validation.

We have reused this list of questions in every subsequent module that we have taught which includes require-
ments engineering as a topic.

3.3.3 Correct Design
— La conception correcte

Teaching software engineering students about
design is very challenging. In general, students

Enseigner la conception (“design”) à des étudi-
ants en génie logiciel comporte un grand challenge.

will learn about design through a module teaching En général, les étudiants apprenent sur la conception,
a graphical modelling language. Our experience par un modèle enseignant le langage de modélisation
shows that this can result in students learning how graphique. Notre expérience montre que ceci a comme
to represent and comprehend designs but having résultat le fait que les étudiants apprennent comment
very little understanding of design as a process. représenter et comprendre des designs tout en ayant
When reviewing design artefacts, students often peu de compréhension du design comme processus.
ask whether the designs are good. This leads to Lorsqu’on reconsidère des objets (artefacts) de design,
the realisation that there is lack of understanding souvent les étudiants se demandent si les designs sont

68

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

of the fundamental question of whether a design bons. Ceci conduit à la réalisation qu’il y a un manque
can be said to be correct. de compréhension de la question fondamentale à savoir

si un design peut être dit comme “correct”.
Of course, the notion of correctness will gen-

erally be covered by another module, typically
Bien sûr, la notion de correction se couvrira générale-

ment par un autre module, typiquement appelé “méthodes
called “formal methods”. Unfortunately, our ex- formelles”. Malheureusement, notre expérience mon-
perience also shows that formal methods courses tre aussi que les cours de méthodes formelles peuvent
can lead to students learning how to build formal conduire à l’apprentissage des étudiants sur la façon de
models — much like they would build programs construire des méthodes formelles — comme ils constru-
— without achieving a good understanding of non- iraient des programmes — sans acquérir une bonne com-
determinism and abstraction; and without seeing préhension du non-déterminisme et de l’abstraction ; et
how formal methods can help in the process of de- sans voir comment les méthodes formelles peuvent aider
sign. We argued, in [GLR08b] that the teaching of dans le processus de design. Nous avons démontré, dans
software design needs to be better integrated with [GLR08b], que l’enseignement de design de génie logi-
the teaching of formal methods. ciel a besoin d’être mieux intégré dans l’enseignement

des méthodes formelles.

One of the least well understood aspects of software development is the role of design in bridging the gap between
what (requirements) and how (implementation). Inexperienced software designers fail to treat design as a process,
and as a consequence become experts in representing the (static) artefacts using models/languages but fail to master
the evolution of design.

During the transition from procedural to object-oriented programming languages, there was a realisation that
the boundary between design and implementation was becoming even more blurred. In a controversial article in
the C++ Journal, Reeves[Ree92], stated: “. . . about ten years ago I came to the conclusion that, as an industry, we
do not understand what a software design really is. I am even more convinced of this today.” Reeves goes on to
argue that considering the source code as being the design overcomes one of the fundamental issues associated
with software design: how can we be sure that it will work correctly?

“. . . when real engineers get through with a design, no matter how complex, they are pretty sure it will
work. They are also pretty sure it can be built using accepted construction techniques. In order for
this to happen, hardware engineers spend a considerable amount of time validating and refining their
designs.”

These ideas have much more resonance when we consider recent growth in agile development[Mar02].
In fact, the notion that the design is not finished until it has been coded and tested is not, as it would seem at

first sight, at odds to a formal approach to software design. In a formal approach, designs are coded (using formal
specification languages) and they are tested and refined. Unfortunately, teaching formal methods to software
engineers is no guarantee that they will use them during design! Ken Robinson[Rob04] identifies a clear problem
with the teaching of formal methods: “It is frequently the case that the other courses make no reference to, or use
of, the formal techniques studied in the Formal Methods course.”

We argued that it is the responsibility of the teachers of formal methods to incorporate aspects of all other
software engineering courses in their teaching (not just design). However, the main contriution of our work was in
the integration of formal methods and design, with specific examples given using UML[Boo99].

69

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

The example problem that has had most impact on our teaching of design considered the implementation of a
queue (of FIFO behaviour) using stacks (of LIFO behaviour). We specify the requirements as a Queue of integers7

and state that the students must implement the FIFO behaviour using only two integer Stacks (LIFO behaviour) to
store the queue contents. As a design exercise, students typically adopt 1 of 2 options:

• Design1: The queue is specified as having two stack components — which we will name as a pushstack
and a popstack. When a push request is made of the queue then this element is pushed directly onto the
pushstack.When a pop request is made of the queue then move all elements from the pushstack on to
the popstack then pop off the last element of the popstack and then move all the elements back on to
the pushstack.

• Design2: The queue is has two stack components — which we will name as a mainstack and a tempstack
— and a boolean representing whether or not the mainstack is ready to push. (If it is not ready
to push then we say that it is ready to pop). When ready to push8: if a push request is made
of the queue then this element is pushed directly onto the mainstack, if a pop is requested then all the
elements are moved from the mainstack to the tempstack, the mainstack and tempstack are
swapped, the state is changed to ready to pop and the element popped off the mainstack.

At this stage we ask the students to evaluate the quality of their designs. Most students identify the follow-
ing inter-related design quality criteria: simplicity, understandability, implementability, extensibility, modularity,
maintainability, re-usability, efficiency (time and memory), robustness and reliability. In our experience students
will ask about the correctness of their design only if they have already studied formal methods. When asked if the
design will work, most students reply that they will test their implementation to make sure that it does.

Analysis of Design1 and Design2 usually leads to students identifying that Design1 is easier to understand
and implement, but that Design2 may be more efficient. Representing the two designs in UML often leads to
the students realising that the two designs appear to be structurally the same, but quite different in terms of their
dynamic behaviour. The class diagram, in figure 10, illustrates that using UML leads to further investigation of
design alternatives that are not so obvious from working only with a formal modelling language.

Figure 10: Aggregation or Composition?

7Note that this problem takes on a different nature if we allow the modelling of parametric classes of behaviour.
8The ready to pop case can be treated similarly.

70

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Most students choose to model the assocation between the Queue and its class components as composition.
The remaining students usually model this using aggregation. We ask the question as to why a hybrid model (using
both composition and aggregation) is, in general, never considered.

We then ask the students to argue (demonstrate) whether the designs are correct before they implement them.
Typically, they are not able to convince themselves that the designs are correct but they do identify unsafe states of
the designs that should not arise. We then show them how these can be modelled using invariants. For example,
in Design1 the Queue system is unsafe if the popstack is not empty when an element is pushed on to the
pushstack.

We have followed two different routes from this point. Firstly, students can implement their designs (typically
in Java). Secondly, students formalise their designs and attempt to prove that the designs are correct. In the first
instance, student implementations often do not meet the queue requirements (which can be found through testing):
students then need to discuss whether this signifies that their designs are incorrect. In the second instance, students
usually manage to model the abstract queue requirements, but fail to see how they can refine their queue into two
communicating stacks. The best students manage to model the designs formally but fail to prove the refinement
relation (and hence the correctness). However, when asked to implement their formal designs (again, in Java) they
usually do not make the same programming errors.

3.3.4 Starting Young
Commencer jeune

In many countries around the world, there is Dans de nombreux pays à travers le monde, il existe
a crisis in the teaching of mathematics and com- une crise dans l’enseignement des mathématiques et de
puter science. Governments have tried to address l’informatique. Les gouvernements ont tenté de traiter
the problem by investing in computers in schools; le problème en faisant l’investissement d’ordinateurs à
when they should have invested in teaching com- l’école, alors qu’ils auraient dû investir en enseignant
puter science in schools. Formal methods bridge les sciences informatiques à l’école. Les méthodes
the boundary between computing and mathemat- formelles réduisent l’écart entre l’informatique et les
ics in a natural way. Through our experience of mathématiques d’une façon naturelle. A travers notre
teaching algorithmic thinking in schools, young expérience de l’enseignement de la pensée algorith-
children have been observed using concepts such mique dans les écoles, nous avons observé la façon
as refinement, proof, abstraction, complexity, non- dont de jeunes enfants, utilisant des concepts tels
determinism, equivalence, etc. . . in their own rea- que raffinement, preuve, abstraction, complexité, non-
soning about problems. We argue that this ability déterminism, équivalence, etc., ont leur propre raison-
needs to be better leveraged in order to improve nement sur des problèmes. Nous avançons que cette ca-
both the teaching of mathematics but also to im- pacité nécessite d’être mieux exploité afin d’améliorer
prove childrens’ understanding of computer sci- à la fois l’enseignement des mathématiques mais aussi
ence as a discipline in its own right. améliorer la compréhension des enfants sur l’informatique

Whilst lecturing in Ireland and France, we comme discipline à part entière.
have tried to convince colleagues that formal Tout en enseignant en université en Irlande et en
methods should be taught in the first year of un- France, nous avons tenté de convaincre les collègues que
dergraduate degree programmes. In general, this les méthodes formelles devraient être enseignées dans
proposal is not taken seriously as they argue that les programmes universitaires de premier et de deux-

71

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

the students are not ready for the complicated ième cycles. En général, cette proposition n’est pas
mathematics. In order to address this problem, we prise sérieusement car ils avancent que les étudiants
carried out a number of experiments with school ne sont pas prêts pour des mathématiques compliquées.
children in order to establish that formal methods Afin de s’occuper de ce problème, nous avons mis en
could be taught before the students come to Uni- oeuvre un certain nombre d’expériences avec des écol-
versity. The results of these experiments were later iers pour établir que les méthodes formelles pourraient
published[Gib08a]. être enseignées avant que les étudiants ne parviennent

à l’université. Les résultats de ces expériences ont été
publiés ultérieurement [Gib08a].

This research paper reports on the teaching of formal methods to children as young as seven years old. It supports
the well-established view that there are advantages in teaching mathematics constructively. For example Clements
stated in 1990[CB82]: “Educational research offers compelling evidence that students learn mathematics well
only when they construct their own mathematical understanding.” The work reported is motivated by our own
experiences in teaching computer science to young children: Java programming[Gib03], the Computer Science
Unplugged Tutorials[Bel00], and problem based learning (PBL)[OG05a]. It builds on research that suggests that
formal software engineering concepts form the basis for how children learn to solve problems[Gib05].

In “How to Solve It: A New Aspect of Mathematical Method”, Polya[Pol71] states: “A good teacher should
understand and impress on his students the view that no problem whatever is completely exhausted.” Our approach
has been to take problems that one would normally see in university and to rework them for school children. The
children are then encouraged to take the problems in whatever direction they wish, and as far as they want. In this
way, young children quickly identify fundamental concepts in computer science.

This paper reports on some of the case studies with which we have had most success. We do not claim to have
carried out a verifiable educational experiment: we report on observations that have been made over a number of
years through interaction with hundreds of children (aged 7 to 18).

In each of the sessions that we run in the schools, we are mindful that our goal is that the children learn
fundamental concepts. Following the PBL philosophy, we do not explicitly teach the children about these concepts;
we help the children to discover them through interaction with a specific problem. Each problem has the goal of
the students discovering at least one of the following:

• Proof — the evidence or argument that compels one to accept an assertion as true.
• Theorem — a proposition that is true in all cases.
• Conjecture — an unproven proposition for which there is some sort of empirical evidence.
• Constructive proof — demonstrates the existence of a mathematical object with certain properties by giving

a method (algorithm) for creating such an object.
• Algorithm — any procedure involving a series of steps that is used to find the solution to a specific problem.
• A deterministic algorithm: behaves predictably. Given a particular input, it will always produce the same

output, and the underlying machine will always pass through the same sequence of states.
• Correctness — an algorithm can be proven to be correct with respect to a specification.
• Refinement — the verifiable transformation of an abstract (high-level) formal specification into a concrete

(low-level) executable program. It guarantees the correctness of the program by construction.
• Invariant — an expression whose value does not change during algorithm execution; which can implement

a required safety property in the specification

72

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

• Computational Complexity — the scaleability of algorithms with respect to the use of resources (typically
time and space).

It is beyond the scope of this work to analyse all of these learning objectives, and to demonstrate how our sessions
help children to reach them. Rather, we gave examples of sessions that we run with the youngest children (aged
seven to nine). These illustrate how the formal methods concepts arise quite naturally out of the games that we
play.

The main contribution of this work was to demonstrate that it is possible to teach young children formal
methods concepts through games and problem based learning. Children who are disinterested in mathematics
regain an interest when they see that mathematical modelling can help them reason about algorithms and games.
We do not make any claims about whether our sessions improve the childrens’ mathematical ability. However,
we do believe that this type of session is a good way of introducing computer science in schools. (We have also
demonstrated that this problem-based learning approach can be used to teach university students[OG05a] about
computer science.)

As formal methods are foundational to computer science, it should not be any surprise that the rigorous, math-
ematical, analysis of algorithms and computations should be a major part of teaching computer science to children.
This is not a new idea — it was discussed at the TFM workshop in Ghent in 2004[DB04], where daRosa presented
research into the teaching of recursive algorithms as part of a high school mathematics course[dR04]. We already
know that computer science education has need of mathematics; perhaps now the mathematics teachers can be
persuaded to consider computer science (formal methods) as a good way of teaching mathematics.

3.3.5 Weaving Formal Methods
— Tisser des méthodes formelles

The idea of weaving formal methods through L’idée de tisser des méthodes formelles au travers de
computing (or software engineering) degrees is diplômes en informatique (ou génie logiciel) n’est pas
not a new one. However, there has been little suc- nouvelle. Néanmoins, il y a eu peu de succès dans le
cess in developing and implementing such a cur- développement et l’implémentation d’un tel programme
riculum. Formal methods continue to be taught d’études universitaires. Les méthodes formelles conti-
as stand-alone modules and students, in general, nuent à être enseignées comme des modules autonomes
fail to see how fundamental these methods are to et les étudiants, en général, échouent à voir comment ces
the engineering of software. A major problem is méthodes sont fondamentales pour la construction d’un
one of motivation — how can the students be ex- logiciel. Un problème majeur est celui de la motivation
pected to enthusiastically embrace a challenging : comment peut-on attendre des étudiants qu’ils adoptent
subject when the learning benefits, beyond pass- avec enthousiasme un sujet difficile alors que les béné-
ing an exam and achieving curriculum credits, fices d’apprentissage (au-delà du fait de réussir à un exa-
are not clear? Problem-based learning has grad- men et d’acquérir des crédits du programme d’études uni-
ually moved from being an innovative pedagogic versitaires) ne sont pas clairs ? L’apprentissage par prob-
technique, commonly used to better-motivate stu- lèmes est graduellement passé comme étant une tech-
dents, to being widely adopted in the teaching nique pédagogique innovante — utilisée habituellement
of many different disciplines, including computer pour mieux motiver les étudiants — à une pédagogie
science and software engineering. Our experi- largement adoptée dans l’enseignement de nombreuses
ence shows that a good problem can be re-used disciplines différentes, incluant l’informatique et le génie

73

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

throughout a student’s academic life. logiciel. Notre expérience montre qu’un bon problème
In fact, the best computing problems can be peut être réutilisé à travers la vie universitaire d’un étudi-

used with children (young and old), undergradu- ant.
ates and postgraduates. In [Gib08b] we presented En fait, les meilleurs problèmes informatiques peu-
a process for weaving formal methods through a vent être utilisés avec les enfants (petits et grands), avec
University curriculum that is founded on the ap- les étudiants de premier et de deuxième cycle, et avec les
plication of problem-based learning and a library étudiants de troisième cycle. Dans [Gib08b], nous avons
of good software engineering problems, where présenté un processus pour tisser des méthodes formelles
students learn about formal methods without sit- à travers un programme d’études universitaires qui est
ting a traditional formal methods module. The fondé sur l’application d’un apprentissage par problèmes
process of constructing good problems and inte- et d’une bibliothèque composée de bons problèmes de
grating them into the curriculum is shown to be génie logiciel, où les étudiants apprennent sur les méth-
analagous to the process of engineering software. odes formelles sans se présenter à un module traditionnel
This approach is not intended to replace more de méthodes formelles. Le processus pour construire de
traditional formal methods modules: it will bet- bons problèmes et pour les intégrer dans un programme
ter prepare students for such specialised modules d’études est montré comme étant analogue au processus
and ensure that all students have an understand- du génie logiciel. Cette approche n’a pas pour intention
ing and appreciation for formal methods even if de remplacer des modules plus traditionnels de méthodes
they do not go on to specialise in them. formelles : elle préparera mieux les étudiants pour de

tels modules spécialisés et assurera que tous les étudiants
ont une compréhension et une appréciation des méthodes
formelles même s’ils ne se spécialisent pas dans ce do-
maine.

Parnas makes a strong case that “Software Engineering Programmes are not Computer Science Programmes”
[Par98]. He discusses the differences between traditional computer science programmes and most engineering
programmes and argues that we need software engineering programmes that follow the traditional engineering
approach to professional education. He summarises the issue as follows:

“Just as the scientific basis of electrical engineering is primarily physics, the scientific basis of software
engineering is primarily computer science. Attempts to distinguish two separate bodies of knowledge
will lead to confusion. . . . Recognising that the two programmes would share much of their core
material will help us to understand the real differences.”

Future scientists will add to our “knowledge base” while future engineers will design trustworthy products. His
position is that: “engineers learn science plus the methods needed to apply science”.

However, we must now ask where formal methods fit into this pedagogic structure and whether our approach
to teaching formal methods should change depending on our target audience: computer scientists or software
engineers. In our approach we see formal methods as the main bridge between computer science and software
engineering. Without formal methods software engineering is not a true engineering discipline; and without formal
methods computer science remains a mainly theoretical subject. Thus, teaching formal methods should not be seen
as a problem to be solved; but it should be viewed as the answer to the fundamental question of how we can better
educate computer scientists and software engineers.

74

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Our problem based learning approach helps us to better adapt our teaching to our target audience. Our experi-
ence suggests that good problems are not good for only one type of students (engineering or science, or even arts
and humanities). The best problems can be introduced to any of these students and through interacting with the
problem (and with the guidance of the lecturer) the problem will dynamically evolve in order for particular learn-
ing objectives to be met. In general, engineering students will learn by trying to build solutions to the problems
whilst science students will learn through trying to analyse them. Of course, the lecturer will be responsible for
making sure that the students learn that these are complementary approaches and for finding the right balance for
the particular type of student that is being taught.

We proposed that each problem should be set up to meet a specific curriculum objective. Each problem would
then have a life-cycle similar to that seen for software and services, with key stages being specification, design,
implementation, testing and maintenance. Once a problem is meeting a specific objective then it can be refined
to incorporate other objectives. These objectives may be the responsibility of a single lecturer as part of a single
module; but good problems will evolve to survive across different modules. In our experience this is most likely
to happen when a single lecturer is responsible for multiple modules (where problems can be shared). However, in
order to better weave our formal methods objectives through the curriculum we have to be able to also work with
colleagues who do not teach formal methods but do teach other CS&SE modules.

We then proposed four complementary approaches to this weaving process. Firstly, look at the problems that
are being used in other modules and incorporate them into a dedicated formal methods module. Secondly, offer
to extend such problems (to meet the formal methods objectives) as part of the original modules in which the
problems were taught. Thirdly, offer to extend your existing formal methods problems so that they incorporate
learning objectives of colleagues teaching other modules. Fourthly, invite colleagues to participate in the PBL
teaching in your own formal methods module(s).

We note that this integration should probably be done in an incremental fashion as we may end up replicating
the feature interaction problem[Gib97] at the level of the requirements (learning objectives). To extend our analogy
of a problem as being a service, with additional learning objectives as features, we can consider the curriculum
to be a system of collaborating services. As our curriculum evolves we maintain the system by updating our
problem set: adding new problems, removing unsuccessful problems and evolving successful problems. As with
large, complex, software systems the best way to manage this process is to have a clearly documented set of
requirements and procedures in place to map these requirements through to the final implemented system (via the
design).

We concluded that the underlying architecture of the curriculum should be service-oriented in the sense that
the main structure should support the evolution of the underlying objectives and the problems that are used to meet
these objectives.

3.3.6 Important Technical Contribution: Formal Design Pattern

There is currently much research in the area of formal design patterns. During our teaching of formal object
oriented development of software, we discovered a pattern that students had used across a number of different
problems and projects. The pattern helped them to link:

• Event-B specifications,
• UML designs,
• Java implementation code, and

75

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

• Unit tests

In this subsection we provide some additional technical details (for the interested reader). The pattern is further
described in the paper Formal Object Oriented Development of a Voting System Test Oracle[GLR11], where we
applied it in our own research. This pattern is an excellent example of the symbiotic nature of research and
teaching. In figure 11 we illustrate how the UML, Java and Event-B are loosely integrated in the design pattern.

Figure 11: The generic development design pattern for all classes in the UML high-level design

The natural language requirements are used to identify the classes, their responsibilities, and the relations
between them. These are then documented in a UML class diagram. Every class is then developed using the
generic development design pattern:

• Class responsibilites are specified using an interface specification, i.e a set of methods whose functional
requirements are formalised in an Event-B class model — a context written using an OO style.

• Every class must also specify an invariant method which states — in terms of the public responsibilities of
the class — when class instances are in a safe state.

• For classes with a subset of external responsibilities which can be implemented abstractly through use of
methods defined in the interface specification, these implementations (methods) are grouped together in a
single abstract class for re-use.

• Every class has a set of unit tests whose code is derived directly from the Event-B specification. These tests
are implemented abstractly (calling the abstract methods of the class abstraction) in an AbstractTests class.

• Any class that claims to correctly implement the abstraction must pass all the abstract unit tests.

76

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Event-B contexts can be used to model abstract data types in an algebraic style. Following the formal object
oriented approach to requirements modelling as advocated by Gibson[77], we address 3 key issues when modelling
a class of behaviour:

• A means of categorising entities into classes of behaviour: We use Event B contexts with sets representing
classes.

• A means of recording the external interface of a class so that all methods can be statically ‘type
checked’ for correctness: We define constant operation signatures in the Event-B.

• A means of defining the behaviour associated with each operation: We, quite naturally, use Event-B
axioms.

Three different types of methods/signatures — as proposed in [77] — are supported in our Event-B modelling
style when specifying the behaviour of a UML class:

• ACCESSORS: methods with return values but which do not change the state of the object being called have
signatures of the form:
method(p1, ... pn): result.
These are modeled in Event-B using an axiom of the form:
method ∈ class× p1× . . .× pn 7→ result

• TRANSFORMERS: methods with no return values but which do change the state of the object being called
have signatures of the form:
method(p1, ... pn).
These are modeled in Event-B using an axiom of the form:
method ∈ class× p1× . . .× pn 7→ class

• DUALS: methods with return values that also change the state of the object being called have signatures of
the form:
method(p1, ... pn): result.
These are modeled in Event-B using an axiom of the form:
method ∈ class× p1× . . .× pn 7→ class× result

When the behavioural requirements are specified only a subset of parameter values then the method relations are
specified using partial functions; otherwise the functions are complete. (In our Java implementation we chose to
implement such cases using exceptions.)

Our lightweight approach uses Event-B contexts to specify abstract class requirements, and facilitates mod-
elling more concrete design and implementation details using Event-B machines, and their refinements. The move
from requirements to design can be automated through the generation of an abstract Event-B machine corre-
sponding to a class as specified in a context. This is similar to the approach in [77], which incorporates an ADT
specification of a class of behaviour in a process algebra design through instantiation of generic parameters.

Once the Event-B specifications have been completed, we instantiate the abstract design pattern with the con-
crete classes in our initial design. In the following, we focus on the two classes which represent a Ballot at the
interface and in the memory module (see figure 12).

It should be noted that the BallotAbstraction specifies requirements in terms of the public methods that must
be implemented:

77

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Figure 12: Instantiation of generic development design pattern for Ballots

• getNumberOfCandidates,

• getNumberOfPreferences,

• getCandidateForPreference(int preference),

• getPreferenceForCandidate(int candidate), and

• invariant().

The Event-B axioms for the signature of the abstract ballot class are given in figure 13.

Figure 13: Abstract Ballot Signature Axioms

78

3.3 Teaching Formal Methods
— Enseigner les méthodes formelles

Note that within the domain of ballots, we must consider the count process in order to find a TRANSFORMER
method. The nextPreference() method transfers a ballot to another candidate during tabulation. The
proof that this method respects the abstract invariant is trivial (since the only state attribute that is changed is
currentPreference) and is discharged automatically by the RODIN tool when modelled using Event-B.

The next step is to define the invariant requirements using Event-B axioms. This is illustrate in figure 14, where
the invariant has been decomposed into the conjunction of seven requirements, of which we show four.

Figure 14: Abstract Ballot Invariant Axioms

The modelling and verification of this requirement is trivial in Event-B. Currently we model this requirement
as an invariant on the number of Ballots. The only state that changes during tabulation events is the candidate for
which a Ballot is currently assigned. Thus, the number of ballots is sure never to change, as we refine the tabulation
machine to provide further implementation details.

Our development approach relies heavily on the coherent integration of the Event-B and Java code: our code
is not generated from the specifications, rather the formal Event-B is used to document the code and to oblige the
programmers to develop test code for invariant properties and functional requirements.

In the cases where we have proven that our Event-B models are correct this should be documented in the code.
However, these proofs correspond only to the verification of design steps. They do not validate the natural language
requirements and they do not verify that the Java code is a correct implementation. It would be possible to animate
the Event-B models to aid validation, and it may be possible — in the future — to automatically generate Java code
corresponding to our OO Event-B; however we chose to complement our formal design process with rigorous unit
testing. This helps in both the validation of the natural language requirements and in the verification of the Java
implementation.

79

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

Whilst carrying out our research into teach-
ing formal methods, we noticed some more gen-

Pendant l’exécution de notre recherche dans l’ensei-
gnement des méthodes formelles, nous avons remarqué

eral results concerning the teaching of software des résultats plus généraux concernant l’enseignement
engineering. This resulted in publications that at- du génie logiciel. Ce qui a résulté dans des publications
tracted interest from researchers from outside the ayant l’intérêt des chercheurs hors des communautés de
computer science and software engineering com- l’informatique et du génie logiciel.
munities.
3.4.1 Software engineering as a model of understanding

— Génie logiciel comme modèle de compréhension
In 2005, we reported on the first steps to-

wards constructing a theory that: software engi-
En 2005, nous avons rendu compte sur les premières

étapes vers la construction d’une théorie : le génie logi-
neering provides a good framework for reason- ciel fournit un bon cadre de raisonnement sur la façon
ing about how children and adults learn to solve dont les enfants et les adultes apprennent à résoudre
problems.[OG05c]. This research arose, quite un- des problèmes [OG05c]. Cette recherche est apparue,
expectedly, out of our analysis of problems with de façon assez inattendue, à partir de notre analyse des
teaching first year programming. problèmes sur l’enseignement de la programmation en

première année.

It is well accepted within the computer science community that first year students find programming difficult. There
is an abundance of papers in the proceedings of SIGCSE9 and ITiCSE10 that confirm this. One of the major stum-
bling blocks for students is the abstraction of the problem to be solved from the exercise description[MAD+01]. In
order to try to overcome this difficulty, the we introduced a workshop into the first year programming module[OMG+04,
OBD+04]; this involved the students working in groups to solve problems. Each student in the class was assigned
to a formal group for an entire semester and each group was assigned a separate workspace.

It is our experience — and anecdotal evidence from lecturers in other universities concur with us — that once
a student sits in front of a computer, they feel compelled to be using the keyboard or the mouse, and that they
do not take the time to map out a solution to the given problem. Therefore, we deliberately prohibited the use
of computers during the workshop. We gave the groups a basic framework (which they could change), to tackle
the problem. This framework asked them to consider the problem as presented, clarify the kernel of the problem
and the product to be produced and restate the problem in their own words. In addition, they could generate
ideas/hypotheses through the use of brainstorming, identify the key issues and constraints, and develop a step-
by-step set of instructions to solve the problem. The overall objective with the use of these workshops and peer
learning groups was to:

• develop the student’s problem solving skills,

• develop the student’s critical thinking skills,

• encourage alternate approaches to problem solving through group work, and

• encourage deep learning approaches.

9ACM Special Interest Group on Computer Science Education — http://www.sigcse.org/
10Innovation and Technology in Computer Science Education — http://www.cs.utexas.edu/users/csed/iticse/

80

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

It was our belief that if we could improve the students’ abilities in these areas there would be a discernible positive
result.

During our research we observed that students were reasoning using advanced software engineering concepts:

• Refinement — of data and processes

• Subclassing — extension and specialisation

• Genericity — universal and constrained

• Re-use — composition and aggregation

• Formal reasoning — preconditions, postconditions and invariants

The main contribution of the paper was the insight that this type of reasoning was natural to all students (not
just the computer scientists and software engineers).

3.4.2 Re-Use and Plagiarism
— Réutilisation et plagiat

At all stages of education and learning, stu- A toutes les étapes de l’éducation et de l’apprentis-
dents’ reuse of other peoples’ work and ideas is sage, l’utilisation par les étudiants de travaux et d’idées
fundamental and it is to be encouraged. What is d’autres personnes est fondamentale et cette action doit
not encouraged is when the work of another person être encouragée. En revanche, ce qui n’est pas en-
is presented as a student’s own. This is plagiarism couragé c’est lorsque le travail d’une autre personne est
and must not be tolerated. présenté comme le propre de l’étudiant. Ceci constitue

It is each student’s responsibility to ensure that un plagiat est ne peut être toléré.
when they include (directly or indirectly) the work C’est la responsabilité de chaque étudiant de s’assurer
of others that this contribution is fully and prop- que lorsqu’ils incluent (directement ou non) le travail de
erly acknowledged. Guidelines on the acknowl- quelqu’un d’autre, il faut que cette contribution soit en-
edgment of the work of others can be found in a tièrement et correctement reconnue. On peut trouver
text by Gordon Harvey [Har98]. Professional bod- des indications sur la façon dont reconnaître le travail
ies (with publishing houses) also provide generic des autres dans un texte de Gordon Harvey [Har98]. Des
guidelines on plagiarism — the ACM student corps professionnels (avec des maisons d’éditions) four-
magazine Crossroads is a good example for stu- nissent aussi des directives génériques sur le plagiat —
dents [Jor06]. Universities generally have their en est un bon exemple [Jor06]. Les universités générale-
own policies (or guidelines) on plagiarism. Indi- ment ont leurs propres politiques (ou indications) sur le
vidual departments may also provide more spe- plagiat. Les départements individuels peuvent égale-
cific guidelines and one must be careful that these ment fournir des directives plus spécifiques et il faut t̂re
documents are consistent. attentifs à ce que ces documents soient cohérents.

In our experience, however welcome these Dans notre expérience, même si ces documents sont
documents are, they do not cover many of the les bienvenus, ils ne couvrent pas beaucoup les prob-
more difficult, technical issues which arise when lèmes techniques les plus difficiles, qui surviennent
the work that is being re-used is software. It is the quand le travail réutilisé est un logiciel. C’est le rôle
role of a code of practice to try and clarify what is d’un code de pratiques d’essayer et de clarifier ce que

81

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

meant by plagiarism in this context. In [Gib09b] signifie plagiat dans ce contexte. Dans [Gib09b], nous
we developed such a code of practice. avons développé un tel code de pratiques.

In software engineering, software is usually not built from scratch. Normally, already existing software artifacts
(from the set of documents and models that are built during the engineering of a software system - analysis,
requirements, validation, design, verification, implementation, tests, maintenance, versioning and tools) are re-
used, in a wide range of ways, in the construction of a “new” software system.

Software re-use is one of the least-well understood elements of the software engineering process. It is much
more challenging to re-use software artifacts in a controlled, systematic way – the quality of software is compro-
mised if a rigorous engineering approach to re-use is not followed. Clearly, any piece of assessed work incorporat-
ing the development of software (including final year projects) can be considered to be of “poor” quality if it has
relied upon non-rigorous, ad-hoc re-use of other peoples’ software.

We proposed that a code of practice for software re-use offers many advantages to students submitting work
for evaluation: makes explicit what constitutes plagiarism with respect to software; provides guidelines which, if
followed, should ensure that a student is not wrongly accused of plagiarism; defines structures to help examiners
to objectively check for plagiarism in a consistent and fair manner; and improves the quality of the software that
students produce.

We acknowledged that any code of practice will obviously restrict the way in which software can be developed.
Furthermore, such a code will almost certainly be too restrictive in the sense that there are sure to be specific
requirements for some system that would be impossible to meet in the time-frame of a project if the code of
practice is enforced, but otherwise could possibly be met. For this reason we proposed that exceptional cases be
dealt with by the lecturer or project supervisor. The fundamental requirements for the code of practice are that it
is: simple to understand, apply and enforce; consistent with wider plagairism policy; and as fair as possible to all
students.

In order to guide the formulation of the code of practice, the paper provides concrete examples of acceptable
and unacceptable forms of re-use be examined. These examples are not intended to be complete. The examples
were chosen because they represent the most common forms of re-use that we have witnessed in final year projects
(both acceptable and unacceptable).

3.4.3 Learning From Mistakes
— Apprendre de ses erreurs

Teaching science and engineering involves L’enseignement de la science et de l’ingénierie im-
students being asked to solve problems. The plique qu’on demande aux étudiants de résoudre des
two most common approaches are complemen- problèmes. Les deux approches les plus communes
tary. Firstly, traditional lecturing initially presents sont complémentaires. Premièrement, l’enseignement
the fundamental material that the students need traditionnel présente initialement le matériel fondamen-
to solve the chosen problem; then students learn tal dont les étudiants ont besoin pour résoudre le prob-
about applying this knowledge through problem lème choisi ; ensuite les étudiants apprennent comment
interaction. Secondly, problem-based learning appliquer cette connaissance au travers d’une interac-
(PBL) initially engages the students in solving tion avec le problème. Deuxièmement, “problem-based
the chosen problem; then the students — often learning” (PBL) engage initialement les étudiants à ré-
through the guidance of the lecturer — discover soudre le problème choisi ; alors les étudiants - sou-

82

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

the fundamental material “themselves”. In both vent au travers des conseils de l’enseignant - découvrent
approaches, lecturers must identify learning objec- le matériel fondamental “eux-mêmes”. Dans les deux
tives, and ensure that the problem both facilitates approches, les enseignants doivent identifier les objec-
students in meeting these objectives and helps to tifs d’apprentissage et s’assurer à la fois que le prob-
identify which objectives have not been met by lème facilite les étudiants à remplir ces objectifs et les
particular students. We report, in [Gib09a], on aide à identifier quels objectifs n’ont pas été remplis
a teaching method which addresses the issue of par certains. Nous faisons le rapport, dans [Gib09a],
learning from mistakes in the problem solving pro- sur la méthode d’enseignement qui traite du problème
cess. d’apprendre à partir des erreurs dans le processus de ré-

solution d’un problème.

We have observed that students also learn by watching others trying to solve problems. For example, with tradi-
tional lectures the lecturer often presents a solution to a classic problem in a manner that simulates, quite artificially,
the way in which the problem can be solved. The advantage of this is that the lecturer has complete control over
the material being presented. The disadvantage is that the students do not observe a real problem-solving process.
In contrast, students watching other students problem solving (during PBL) offers the advantage of them observing
a real problem-solving process. However, the lecturer has less control over them meeting their learning objectives.

Balancing the PBL approach with traditional lectures is very difficult. It is very difficult to teach all material
using only PBL. One reverts to traditional lecturing when a problem has not been successful in helping students to
meet specific learning objectives, or where you have yet to find a problem that has been able to do so. PBL quite
often leads, in my experience, to weaker team members being dominated by stronger team members, resulting in
the weaker students being less involved and losing motivation. Further, the freedom offered to students in PBL can
lead to a chaotic/unstructured learning environment with the lecturer being detached from the process.

In [Gib09a], we proposed a teaching method which addresses this issue: students formulate the problem to
be solved and then observe the lecturer trying to solve it. The lecturer guides the student in problem creation and
selection, and so ensures that the problem is suitable for meeting the learning objectives. Our experience shows
that students learn more from watching the lecturer struggling (and often failing) to solve the chosen problem than
from observing the lecturer presenting an obvious solution.

This approach is currently being adopted in other universities, and in disciplines other than computer science
and software engineering.

3.4.4 Important Technical Contribution: Refinement is fundamental in learning

The question of how we learn continues to be fundamental to teaching in all disciplines and in all age groups.
Further, learning models inspire (and are inspired by) understanding of how the brain functions and the concept
of intelligence. The notion that refinement is important, first raised by our research in 2005[GO05], has been
widely influential in the computer science education community, and beyond. In this subsection we provide some
additional technical details on this work (for the interested reader). The original paper — Software engineering as
a model of understanding for learning and problem solving[GO05] — provides a more complete report.

Searching is a classic problem in learning and in computer science. We report on a multiphase approach to
observing children learning about searching; and focus on the application of foundational software engineering
concepts (including refinement).

83

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

Phase 1: observing pre-requisite understanding

When searching for an object from a collection of objects, we require only that a child can tell when 2 objects are
the same. Through experience, we adopt a technique where “sameness” is based on some concrete property of the
objects in question (size, shape, colour, texture, etc. . .). In searching, we have had most success with lengths (the
property) of pieces of string (the objects).

First we generate a reasonable number (5 to 20, depending on the age of the children) of pairs of pieces of
string; where: the pairs are of equal length, and all pairs have different lengths. For example, a typical problem
will have the following pairs, in no particular order, where the numbers represent lengths:

{(4, 4); (2, 2); (5, 5); (10, 10); (16, 16)}.

Second, we separate the pairs into 2 collections:

{4, 2, 5, 10, 16}and{4, 2, 5, 10, 16}

Thirdly, we randomly mix each of them; giving, for example:

{10, 16, 5, 4, 2}and{4, 5, 2, 16, 10}

Finally, we ask the students to put them back into a collection of pairs. (This is similar to the problem of pairing
socks, which many of them will be familiar with.) In the process of pairing, we confirm that all the children are able
to compare the lengths of pieces of string and match those of equal length. The children do not need to actually
solve the pairing problem in order to progress. Now that we know that children know how to check if 2 pieces
of string have the same length, we can proceed to searching.In this case, we require only that a child can match
a single piece of string with another piece of string in a collection. How you present the collection, and how you
constrain their manipulation of the collection is key to observing the learning process.

We demonstrate that we can hide a piece of string in a box, and place a number of pieces of string in a number
of boxes (one per box). Finally, we hand them a piece of string and ask them to find the matching string in one of
the boxes. However, they are told that they can open only one box at a time; and that when a box is closed it must
contain the piece of string that was in it originally. (With younger children it often takes a few minutes for them to
understand the “rules of the game”.)

Through experience, children are much more enthusiastic and are more likely to actively participate in the
sessions when there is an element of competition. In this case, we play the children against each other, playing
alternate moves of the game. In this game, a move is looking in a box for the matching string. The first player to
match the string wins the game. (Note that this does not require the younger students to be able to count.) All other
children act as spectators of each game; and observing the spectators is as insightful as observing the players.

Phase 2: first observations (process refinement)

We first observe the children selecting boxes in a purely haphazard, random manner. Although this, to begin with,
is a game of chance, the children still seem to think that, for individual games, the winners are better players than
the losers. The first interesting observation is when children realise that they have a better chance of winning if
they never look in a box that they have already looked in. This observation usually arises from one (or more) of the
children spectators shouting out that a player has already looked in a particular box and that they should choose

84

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

another. In terms of software engineering, the children have quite naturally identified and communicated a process
refinement.

At this point, we ask children to play against each other using the new, improved approach. However, we
preclude the spectators from speaking during a game. Very quickly, it is observed that some of the children have
problems remembering in which boxes they have already looked (rather than having problems in following the
new better search algorithm). We confirm this by increasing the number of boxes (for younger children only 10, or
so, are required.)

Phase 3: second observations (data refinement)

In the searching example, we have observed 3 types of data refinement which they introduced as a specific way of
overcoming the problem of having to remember which boxes had already been examined:

• Children searched the boxes in an ordered fashion (left to right, e.g.). Through ordering the boxes in this
way, they had only to remember the last box searched in order to perfectly partition the collection of boxes
into those already searched and those not yet examined.

• Children marked the boxes already searched (using a pencil, e.g.). Now the partition was explicitly defined
by effectively each box having an associated boolean value (marked or not marked).

• Children moved the boxes from a “not yet examined pile” to an “already examined pile”.

Phase 4: ordering the data elements (constraining the problem in order to help find a better solution)

The next phase is to order the boxes based on the length of the strings within, before we ask the children to play
the game. Very quickly it is observed that not all the children realise that the strings in the boxes are ordered by
length. The children who realise the data are ordered are observed playing in a more structured manner. (Note that
the notion of ordering in this case introduces a new pre-requisite: it is no longer sufficient for children to be able
to check if two strings are of the same length, they now have to be able to tell the relative ordering of the strings.)

Over a period of time, we observe that the children effectively refine their solution11 to a binary search where
they do not always optimise the search by cutting the search space perfectly in two every time they make a guess.
They know they need to look to the left or right of the current string box, based on the relative sizes of the search
string and the string in the box.

We observe at least one of the children adopting a “nearly perfect” binary search. They are observed trying
to explain their algorithm to their colleagues. This form of refinement is fundamental to software engineering, is
difficult for university students to understand[GM98] and apply, yet is observed in school children when they learn
to play a game through competition.

The children are asked if it is possible to play better? Often they make quite solid arguments as to why their
solution is optimal. At this stage, we play against them and we always find the string that is being looked for in the
first guess. We are employing a perfect hashing function, based on knowledge of additional structure to the data
values, to map the string length directly to a particular box. They often accuse us of cheating; and only the more
advanced students realise the trick. (We do not explain it to them if they do not see it themselves; and often we are
contacted by teachers and parents asking for us to explain the trick!)

11We argue that this solution implies an implicit understanding of an algorithm.

85

3.4 Software Engineering and Educational Theory
— Génie logiciel et théorie pédagogique

Phase 5: generalising the problem

After the children have managed to refine an algorithm for searching for a string of a certain length, we replace the
strings by some other physical entities. In most instances, we use weights or balls (of different size). All children
manage to generalise their solution for strings to other physical entities which can be ordered in some intuitive
fashion. This is an example of constrained genericity.

Phase 6: working with abstractions

I tell them that I am thinking of a number between two integer values (usually 0 and 100). The game is that they
have to guess the number I am thinking of, by asking me questions to which I am allowed to answer only yes or no.
Quite quickly, we observe that some of the children employ the same algorithm for the “guess the number game”
as they do for the “find the string game”. We observe that others do not.

Phase 7: observing compositional re-use and subclassing (specialisation)

I tell the children that I am thinking of 2 numbers that add up to 10012. I ask them to find both, following the
same guessing framework as they have already seen with the strings and “guess the number” games. Before we
start to play some games, I ask them to tell me whether this game is more/less difficult than the first (in terms
of the number of moves that it will take to find the answer). Surprisingly, most kids say this 2-number game is
more difficult because you have 2 numbers to find. In a similar vein, I ask the children to find a number that I am
thinking of (between 0 and 100), but I also tell them that it is odd (or even). In this instance, they state that this
game is easier than the original (even though the size of the search space is the same.)

I ask the children who think the 2-number game is easier to explain their reasoning. Typically, they provide a
constructive specification of how to play the variation using the mechanism that they have refined for playing the
original game (the perfect binary search):

“use the previous search to find the smallest number (which must be in the range 0 - 50), and then
calculate the largest number as (100− smallest).”

Of course, this search will, on average, be 1 step quicker that the search for a single number in the range 1 -
100. Some of the children manage to explain this improvement. There are two components that are being re-used
here:

• the original binary search, and

• the calculation of the largest (missing number) as a simple subtraction.

A second observation that should be noted is that the children quickly identify a symmetry in the problem that
means that they can reformulate their approach in terms of finding the largest (not smallest) element first. This
symmetry can be viewed as a form of sub-classing where either approach is functionally correct; but where one
implementation may be more or less efficient than another under certain circumstances; in other words, they are
each specialisations.

12This phase requires us to work with older children who have the ability to count to 100, and perform simple addition and subtraction.

86

3.5 Problem Based Learning
— Apprentisage par problèmes

Final Phase: Communication Observation

The number of phases that we execute can vary between 5 and 15 (depending on the school and children). We
normally terminate the session with a final phase that helps us to make more meaningful observations with respect
to children having really achieved some sort of algorithmic understanding of the game they are playing. Where
possible, we mix the children from the session with children who have not participated. We routinely observe the
children who were involved in the session playing the games against their friends. Some of them keep the algo-
rithmic secrets to themselves in order to improve their chances of winning, others take more delight in explaining
the algorithms they have learned to their colleagues.

3.5 Problem Based Learning
— Apprentisage par problèmes

3.5.1 Teaching Refinement
— Enseigner le raffinement

The Event-B Rodin development environment
[ABHV08] is central to our teaching of formal

L’environnement de développement intégré Rodin
(Event-B) [ABHV08] est central pour notre enseigne-

methods. The openness of the platform, com- ment des méthodes formelles. L’ouverture de la plate-
bined with our research experience, motivated us forme, combinée avec notre expérience de recherche,
to adopt it as early as possible in our teaching. Be- nous a motivés à l’adopter aussi tôt que possible dans
fore Rodin, we had experience of teaching a vari- notre enseignement. Avant Rodin, nous avions l’expérience
ety of formal methods; with more recent teaching de l’enseignement d’une variété de méthodes formelles
using B[Abr96] and the Atelier-B tools. Another ; avec un enseignement plus récent utilisant B[[Abr96]
motivating factor is that our students are all famil- et les outils de l’Atelier-B. Un autre facteur de motiva-
iar with the Eclipse[dRW04] platform, on which tion est que nos étudiants connaissent tous la plateforme
Rodin is built, and this helps them overcome initial Eclipse [dRW04], sur laquelle Rodin est construit, et ceci
feelings of unfamiliarity which often arise from les aide à dépasser des sentiments initiaux de mauvaise
using formal methods tools for the first time. connaissance qui surviennent souvent lors de l’utilisation

In [GLR09] we present a Problem-Based
Learning (PBL) approach to teaching formal des outils de méthodes formelles pour la première fois.

methods, using Event-B and the Rodin develop-
Dans [GLR09], nous présentons une approche PBL

pour enseigner les méthodes formelles, en utilisant
ment environment. This approach has arisen out Event-B et Rodin. Cette approche est apparue de
of a gradual adoption, over a period of 3 years, of l’adoption graduelle de Rodin comme outil d’enseignement
Rodin as the main teaching tool. Just as the con- principal sur une période de 3 ans. Comme le con-
cept of refinement is fundamental to what we are cept de raffinement est juste essentiel à ce que nous
trying to teach, we demonstrate that it is also fun- essayons d’enseigner, nous démontrons qu’il est aussi
damental to the teaching process. Through anal- fondamental au processus d’enseignement. A travers
ysis of a small number of PBL case-studies we l’analyse d’un petit nombre d’études de cas PBL, nous
argue that the changes to our teaching, supported avançons que les changements pour notre enseignement,
by Rodin, have started to have a positive impact supportés par Rodin, ont commencé à avoir un impact
on our students meeting the specified learning ob- positif sur nos étudiants rencontrant les objectifs spéci-
jectives (course requirements). However, we also fiques d’apprentissage. Cependant, nous argumentons

87

3.5 Problem Based Learning
— Apprentisage par problèmes

argue that much more work needs to be done in également qu’il faut davantage de travail pour améliorer
order to improve our teaching of formal methods. notre enseignement des méthodes formelles.

Figure 15: Design as A Dynamic Process: The Learning Objectives

Figure 15 provides a graphical view of our main learning objectives when treating design as a process: (1)
to be able to build models at different levels of abstraction, (2) to be able to prove that models at all stages of
development are well defined, (3) to be able to validate that models capture precisely the needs of the client, (4)
to be able to verify that each design step (from abstract to concrete) is correct, and (5) to be able to manage the
process of rolling back a design decision.

We note that these objectives are generic in the sense that the modelling language and modelling tools are
unspecified. Our secondary learning objectives are that the students are able to meet the main objectives when
modelling with Event-B, and that they are able to use the Rodin tool for (automated) support.

Much like software engineers who refine their models for implementation, formal methods lecturers need to
refine their teaching models. When there is a mismatch between what is required and a proposed solution then there
are three possibilities: (1) the solution is correct with respect to the requirements specification yet the specification
misrepresents the requirements, or (2) the specification correctly represents the requirements but the solution is not
correct with respect to the specification, or (3) a combination of the two previous possibilities. In general, when
a solution is acceptable it is because the initial requirements were correctly specified and the implementation was
correct with respect to these requirements. (In theory, it may be possible that the solution meets the requirements
despite the fact that the specification is incorrect. However, this situation is not desirable even though the client
may be happy in the short term!)

There are several options when a problem is not meeting a specific learning objective: (1) Replace the problem

88

3.5 Problem Based Learning
— Apprentisage par problèmes

with something completely different. (2) Fix the problem by making minor changes. (3) Change the learning
objective.

This feedback into our teaching is critical in PBL but it is problematic because: (1) The frequency of change
is usually tied to the academic calendar. (2) The mapping relation between learning objectives and problems is not
(usually) a bijection, though it should be a total surjection. (3) Analysis of the effectiveness of problems should be
done using more than 1 class of students. (4) Developing new problems is time-consuming. The simplest way to
overcome these issues is to share and re-use problems between different lecturers and programmes.

Once a problem has been developed that is deemed to be effective, it is very important that one does not
break its effectiveness through making change. Lecturers would greatly appreciate a formal notion of refinement
with respect to their teaching material. Thus, they could make (verifiable) changes to existing problems knowing
that such changes do not compromise their effectiveness (at meeting the learning objectives). Of course, this is
currently beyond the state-of-the-art in educational research! However, as teachers we must aspire to achieving
such refinements of our problem designs: it will improve our teaching and reduce our workload.

3.5.2 A first programming problem
— Comment apprendre la programmation

Piaget’s theories [Pia89] continue to be central Les théories de Piaget [Pia89] restent centrales dans
to school education and it’s curriculum. His theory la pédagogie et les programmes scolaires. Sa théorie
identifies a final key period in a child’s life which identifie une période clé finale dans la vie de l’enfant,
concerns children older than 11. He argues that at pour des enfants de plus de 11 ans. Il avance qu’à ce
this stage, and not before, children become capa- stade, et pas avant, les enfants deviennent plus capables
ble of full logical and mathematical deduction. d’une entière déduction logique et mathématique.

Learning how to program is difficult. A ma- Apprendre à programmer est difficile. Une contri-
jor contribution to this difficulty is that program- bution majeure à cette difficulté est que la programma-
ming relies on an implicit understanding of the tion repose sur une compréhension implicite du con-
concept of an algorithm. It has been suggested cept d’algorithme. Des adeptes de Piaget ont suggéré
(by followers of Piaget — in the domain of child (dans le domaine de la psychologie de l’enfant et de
psychology and education) that children younger l’éducation) que les enfants plus jeunes que 11 ans sont
than eleven are unable to understand algorithms. incapables de comprendre les algorithmes. En 2003,
In 2003, we began to teach Java programming nous avons commencé à enseigner la programmation
in schools in order to investigate and challenge Java dans les écoles afin d’enquêter et de défier cette
this commonly held belief that young children croyance répandue que les jeunes enfants ne sont pas
are not capable of algorithmic reasoning[Gib03]. capables de raisonnement algorithmique [Gib03]. La
The researched showed that children as young as recherche a montré que des enfants aussi jeunes que 7
seven can demonstrate algorithmic understanding ans peuvent montrer une compréhension algorithmique
through writing programs. Key to the success of en écrivant des programmes. La clé du succès de cette
this research was the choice of the correct type of recherche a été dans le choix d’un type correct de prob-
problem. Nought and crosses was an ideal choice lème. Les nœuds et les croix étaient un choix idéal —
— neither too complex nor too simple, and it in- ni trop complexe, ni trop simple, et il incorporait tous
corporated all the necessary elements to demon- les éléments nécessaires pour démontrer des capacités

89

3.5 Problem Based Learning
— Apprentisage par problèmes

strate fundamental programming skills. de programmation fondamentales.

Figure 16: Noughts and Crosses Educational Applet

The teaching approach was to use an interactive Java applet which allowed very young students to construct
an intelligent noughts and crosses player through the use of rules. Then, when they had mastered the rule-based
approach to programming we showed how each rule could be implemented imperatively. Finally, we encouraged
the children to implement, in Java, their own players.

Figure 16 illustrates the Java application that was used to help them to learn to program. Although Java applets
had already been successfully deployed as teaching tools in all areas of children’s education — Kahn[Kah98]
comments on the use of this and other technology with particular emphasis on the interactivity, fun and graphics.
Our approach was novel in the way that the applet allows the children to incorporate their programs into the code;
and allows them to see how they go from their high-level design — based on sequences of declarative rules — to
Java code. One could claim that they were refining their models!

This noughts and crosses problem has been reused in many other computer science and software engineering
modules at University. It has been particularly successful in teaching algorithms and data structures and in making
students thinking about the importance of invariant properties.

3.5.3 Does PBL work?
— Le APP fonctionne-t-il ?

In 2005, as much of our department’s teaching En 2005, comme beaucoup de l’enseignement de
was starting to incorporate problem based learn- mon département commençait à intégrer “problem
ing, we wished to provide some empirical evi- based learning”, nous souhaitions fournir des preuves

90

3.5 Problem Based Learning
— Apprentisage par problèmes

dence of the impact that PBL was having on our empiriques sur l’impact que APP avait sur notre en-
teaching. Two different approaches to analysing seignement. Deux différentes approches pour analyser
the impact of PBL on our teaching were investi- l’impact de l’APP sur notre enseignement ont été exa-
gated: minées :
1. A structured approach where data collection and anal- 1. Une approche structurée où la collection et l’analyse de

ysis was well-informed by standard practice in PBL données étaient bien renseignées par des pratiques standards

2. An ad-hoc approach where analysis was primarily en APP.

subjective based on the experience of the lecturer 2. Une approche ad-hoc où l’analyse essentiellement subjec-

We published our research into these alterna- tive était basée sur l’expérience de l’enseignant.

tive approaches in [OG05b]. We concluded that Nous avons publié cette recherche avec les deux
both approaches require a complementary mix of approches dans [OG05b]. Nous avons conclu que les
objective and subjective analysis. There is little deux approches requièrent un mélange complémentaire
advantage to be gained, in the short term, from the d’analyse subjective et objective. Il y a peu d’avantage
more structured approach. However, an ad-hoc ap- à gagner, à court terme, de l’approche la plus struc-
proach will not scale to reasonable analysis over a turée. En revanche, une approche ad-hoc ne fonction-
number of years of PBL teaching. nera jamais pour une analyse à travers un certain nombre

d’années d’enseignement à l’APP.
3.5.4 Good Problems Are Open Problems

— Les bons problèmes sont des problèmes ouverts

The fundamental principle behind Problem- Le principe fondamental derrière l’APP, c’est que le
based Learning (PBL) is that the problem is the problème demeure le moteur qui amorce l’apprentissage.
driving force that initiates the learning. In order Afin de fonctionner efficacement dans un environ-
to function effectively in a PBL environment a nement APP, un bon ensemble de problèmes est req-
good set of problems is required. Solving prob- uis. Résoudre des problèmes est un élément vital en
lems is a vital element within Computer Science informatique et, pourtant, la discipline avait été lente,
and yet the discipline had been slow — in 2005 en 2005, pour adopter l’APP comme une approche à
— to embrace PBL as an approach to learning. l’apprentissage. Le résultat net signifie qu’il existe peu
The net result meant that there are few good PBL de bons problèmes disponibles pour assister de nou-
problems available to assist new practitioners with veaux praticiens dans l’implémentation. L’APP ac-
implementation. PBL emphasizes a real-world ap- centue une approche réaliste à l’apprentissage, et nous
proach to learning, and we presented a RoboCode présentons une “RoboCode Competition” comme bon
Competition as a candidate for a good, realis- problème réaliste au sein de la discipline informatique
tic PBL problem within the computer science [OG06]. Nous listons et identifions les critères qui caté-
discipline[OG06]. We list and identify the cri- gorisent un problème PBL comme bon et nous validons
teria that categorise a PBL problem as good and le domaine “RoboCode” contre ces critères. Nous ar-
validate the RoboCode domain against these cri- gumentons que le concept de liberté — dans différentes
teria. We argue that the concept of freedom — in formes — joue un rôle clé pour rendre PBL comme un
different guises — plays a key role in making PBL bon mécanisme d’enseignement de la programmation,
a good mechanism for teaching programming, and et pour rendre RoboCode comme un bon domaine pour

91

3.5 Problem Based Learning
— Apprentisage par problèmes

for making RoboCode a good domain for PBL. PBL.

It is our view that in tertiary education students are encouraged to think for themselves, express their views,
question, discuss and be free to disagree in their pursuit of knowledge. However, our methods of instruction span
a continuum from the prescriptive to the chaotic, with both extremes working against the student. When we are
prescriptive we leave no room for the student to seek knowledge, we see him as the empty vessel — or the blank
slate — and our job is to fill the vessel or to write on the slate. At the other extreme we provide little or no structure
to guide the student in developing their knowledge. A number of positions exist along this continuum where we
can provide scaffolding for the students and still allow them the freedom to seek knowledge. The old adage that one
learns from one’s mistakes allows for creativity, experimentation, and reinforces the belief that making a mistake
is not always wrong.

It is our experience that it is very difficult to find a problem that is just stable enough in the sense that — for a
wide range of students — the balance between being non-prescriptive and open, but not so open as to be chaotic,
is assured. We argue that the RoboCode problem fulfils this stability criteria.

Software engineering is not constrained by the physical laws and engineering principles that govern other
engineering disciples. Within this unconstrained environment, software engineers manage the complexity of choice
through consistent application of fundamental conceptual tools such as abstraction; this allows them to continually
improve the software engineering process — “re-writing the rules” for development, making the process as much
an art as a science. However, a price must be paid for this freedom, which is why design and quality management
are such important issues for software engineering. The true role of design is to create a workable solution to an
ill-defined problem, thus software design is a creative process that cannot be reduced to a routine procedure, it
involves discovery and invention, and it frequently requires intuitive leaps between abstraction levels[Hum05].

The majority of students entering CS1 (in Ireland) believe that because “learning by rote” was successful for
them in the past, it will continue to be successful. However, learning to program is not suited to rote learning:
it requires the student to understand the problem, develop a solution, implement this solution in a programming
language, compile the program, develop test data, test the program, and iterate the debug, compile, test cycle until
they have a working solution. Researchers have found that a student’s learning style can affect their performance
in introductory computer science courses[CS05]. In order to facilitate these diverse learning styles we need to
create an environment that allows students the freedom to divest themselves of the necessity they feel to rote
learn and to embrace the explorative, creative process of solving problems. They must learn that experimentation
is fundamental to all scientific disciplines, and they must become proficient in their use of a computer as their
laboratory for designing and implementing computer science experiments.

Competition is an everyday occurrence in the real world and effective problems in PBL emphasize this real
world aspect. The RoboCode problem, which we analysed, combines elements of fun, programming, games,
AI and competition. It encourages the fun element of creative ideas within the constraints of the RoboCode
environment with the challenges of refining these ideas into a workable solution. We would argue that this problem
transforms fragile knowledge into a concrete transferable skill that can be applied in new situations. Students
develop skills for each stage of the software development process: requirements analysis, design, implementation,
and testing; and they can think critically, reflect on their work, conduct tradeoffs and make informed decisions.
Our experience shows us that in order for students to gain the maximum benefit from this problem they should
have prior experience of working in a team environment. Within PBL the focus is shifted from teaching to learning
and this shift in conjunction with a good problem (RoboCode) provides each student with the freedom to think for

92

3.5 Problem Based Learning
— Apprentisage par problèmes

themselves, activate their prior knowledge and acquire new knowledge in an explorative and creative way.
Since this paper was published, the Robocode environment has been used in teaching all aspects of software

development — from requirements to design to implementation and testing.

3.5.5 Important Technical Contribution: PBL as a good approach to teaching refinement

A major challenge in applying PBL is in developing a set of problems that help students to meet their learning
objectives. In particular, a good problem should assist students in discovering and learning about fundamental
concepts, rather than a teacher having to explicitly introduce the concepts, as with a traditional lecture. For many
years we have not managed to find a good problem for teaching the concept of refinement. In all cases where we
used already existing textbook examples the students failed to discover refinement and a more traditional lecture
had to be given. However, the problem of a Purse of money finally proved successful — it facilitated the students
in discovering the refinement concept themselves.

In this subsection we provide some additional technical details concerning this example Purse problem (for the
interested reader). The original paper — Sculpturing Event-B Models with Rodin: Holes and Lumps in Teaching
Refinement through Problem-Based Learning[GLR09] — provides a more complete report.

The following requirements were presented to the students:

• A purse contains coins.

• Coins are positive integers, but not all integers have a corresponding coin.

• We wish to start with an empty purse, containing no coins.

• We allow 3 operations:

• initialise a purse to being empty (containing no coins),
• add a coin, and
• pay a certain (integer) sum by removing the correct number of coins from the purse, i.e by removing

coins whose total is equal to the sum requested.

Figure 17 shows a graphical representation of the problem that was presented to the students to complement the
textual requirements.

Figure 17: The Purse pay_sum Behaviour

93

3.5 Problem Based Learning
— Apprentisage par problèmes

It is interesting to note how the students tried to model the Purse using Event-B. Firstly, we witnessed the
problem of confusing sets with bags as discussed by Habrias[Hab08]. Once students realised that the problem
required more than a set of coins (represented as integers) most of them they quickly defined a Purse as being a
total function from coins to integers. (Some students also chose to specify Purse as a partial function from coins
to integers, arguing that if a coin was not in the domain then there were no coins of that value in the Purse.) The
students struggled to specify a generic Purse, parameterised by any set of coins. They knew that this type of
specification should be possible but had to be shown how to specify this using an abstract COIN set.

It was pleasing to see that many of the students then specified the notion of an empty purse in a similar, generic
fashion, as shown in figure 18.

Figure 18: A generic specification of an empty purse

Most students then thought about the operation for paying a certain sum and decided that it was too difficult to
specify directly. They were encouraged to think about it in an abstract, nondeterministic, fashion. However, most
of them thought that this meant decomposing the payment into component parts. One of the most common ways
of doing this was for students to specify the notions of “total” and “remove” (two key terms found in the textual
requirements). An example of how a student specified total is shown in figure 19.

Figure 19: The introduction of a function to calculate the total

At this stage, the lecturer pointed out that the Rodin tool was generating proof obligations with regard to the
well-definedness of their total specifications, as shown in figure 20.

Figure 20: The proof obligation generated for the specification of total

94

3.5 Problem Based Learning
— Apprentisage par problèmes

The students experimented with the Rodin tool in order to see which proofs were discharged automatically and
which required interaction. Although they did not know how the prover worked (and had received no lectures on
the subject) they were able to carry out some proofs simply by “randomly” clicking and instantiating.

By encouraging students to examine different specifications of total it often arises that students ask how they
can test that their specifications “really work”. In essence, they are asking how they can validate that the meaning
of total corresponds to the requirements. At this stage the lecturer suggests that they formulate simple use cases.
The students are able to express the fact that they want to test, for example:

• the total of any empty purse must be 0

• the total of a purse containing two 1c coins should be 2

It was surprising (to us) that, in general, students manage to express these as theorems only after receiving help
from the lecturer, as in figure 21.

Figure 21: Using theorems to validate understanding and specification

In the process of specifying the Purse behaviour we noted that the first design step — of pairing a machine
with a context — led to some interesting design decisions. For example, we saw two different specification styles
— see figure 22 — for events that update the state of the purse, by adding and removing coins.

Figure 22: Adding and Removing a coin from a Purse

We note that the add_coin event uses an add function that has been specified in the context Purse_ctx0
(see figure 23).

Without going into details, this approach requires additional work when proving the correctness of the context,
but leads to a simple proof that the invariant is respected by the add_coin event (in the machine). Contrastingly,

95

3.6 Evaluation and Assessment
— Evaluation et contrôle

Figure 23: The add function defined in the Purse context

the remove_coin event’s action is specified directly (without an additional “worker” function from the context).
This approach means that the proof that remove_coin respects the invariant cannot re-use any properties of
remove that could have been specified in the context.

It was at this stage that the best students normally “discover” refinement. They realize that the pay_sum
function is highly nondeterministic in the abstract Purse machine. Typically, they ask how they can possibly
implement this function. Rather than explicitly introducing refinement in Event-B, our next step is to ask the
students to implement this function in the programming language of their choice. With a large group of students
we expect to see a range of different solutions. The most “nondeterministic” approach is to randomly select subsets
of coins until one is found that meets the total requirement. The most “determinisitic” approaches explicitly encode
a search algorithm which is guaranteed to search the whole space of possible answers. Again, for a large number
of solutions, we can examine which implementations are more efficient than others.

Students are then asked to classify the solutions. Many organise them into a tree where the parent-child rela-
tionship is refinement-like. The next step is to return to the Event-B models. The teacher then shows them how the
relationship that they discovered themselves is actually a fundamental concept in the Event-B language.

This process has proven itself over a number of years with a number of different student groups. The key —
we believe — is for the students to discover refinement concept in the (programming) language of their choice;
and then to formalise the concept (using a formal language, like Event-B).

3.6 Evaluation and Assessment
— Evaluation et contrôle

3.6.1 Cognitive Models of Programing
— Modèles cognitifs de programmation

Programming assessment often confuses stu- Les évaluations de programmation troublent souvent les
dents. This enforces their belief that programming étudiants. Elles renforcent leur croyance que la programma-
is difficult, and worsens the problem that lecturers tion est une exercise difficile et cela fait empirer un problème
are unsure how best to present the material to aid — les enseignants ne sont pas sûrs de quelle est la meilleure
learning. There is a lack of a clear formal cog- façon de présenter le matériel pour aider à l’apprentissage. Il
nitive model of learning programming, and as a y a un manque de modèle formel cognitif clair pour appren-
result of this, it is difficult for lecturers to find a dre à programmer, et ce qui en résulte, c’est qu’il est difficile
panacea for teaching programming. There is no pour les enseignants de trouver une panacée pour enseigner
optimal path through learning a programming lan- la programmation. Il n’y a aucun chemin optimal à travers
guage that guarantees all subjects will be covered l’apprentissage qui garantie que tous les sujets seront cou-
in a meaningful manner. One of our goals is to verts d’une manière significative. Un de nos objectifs est
show that each student has their own “optimized” de montrer que chaque étudiant possède son propre chemin
path of learning, which requires a more flexible “optimisé” d’apprentissage, ce qui requiert qu’un environ-

96

3.6 Evaluation and Assessment
— Evaluation et contrôle

learning environment tailored, as best as possible, nement d’apprentissage plus flexible soit taillé, aussi bien
to each student’s needs. que possible, pour les besoins de chaque étudiant.

Our research paper[TG04b] outlines how the Notre papier de recherche [TG04b] donne un aperçu
development of a cognitive model will be at- de comment le développement d’un modèle cognitif est
tempted through the use of student profiling tech- tenté à travers l’utilisation de techniques de profilage de
niques combined with results obtained in an adap- l’étudiant combinée avec les résultats obtenus dans un en-
tive learning environment. It is believed that if vironnement d’apprentissage flexible. On croit que si les
the learning patterns of students can be observed modèles d’apprentissage des étudiants peuvent être observés
through such a method, useful conclusions about à travers une telle méthode, des conclusions utiles sur les
the learning patterns of students can be obtained; modèles d’apprentissage des étudiants peuvent être obtenus ;
e.g., what concepts should be taught together, comme par exemple, quels concepts devraient être enseignés
what are the pre-requisites before certain topics ensemble, quels sont les prérequis de valeur avant que cer-
can be covered sufficiently. The paper also dis- tains sujets puissent être suffisamment couverts. L’essai dis-
cusses what is required to attempt to develop and cute également de ce qui est requis pour tenter de développer
understand such a cognitive model, and the devel- et de comprendre un tel modèle cognitif, et la méthodologie
opment methodology that should be employed. de développement qui devrait être employée.

To develop a cognitive model of how students learn programming, we must examine the manner in which they
learn, which in itself requires understanding of problem solving and software engineering. This was achieved
through asking a sample of first year students to undertake several tutorial tests in an adaptive learning environment.
First year students were chosen as it is in the earliest stages of learning that students will exhibit the learning
patterns that hoped to study. Profiles were developed for each student representing their knowledge in particular
areas, as interpreted by the system. The student profiling in this system was performed by processing the students’
history of tutorials taken and performance in tests to estimate their ability at programming. This estimation was
given assigned a value, so that the students’ perceived ability could be monitored and their improvements noted.

The most abstract student profile consisted of a single binary value representing whether the student had suffi-
cient programming ability. A refinement/extension of this simple profile wase a set of boolean values corresponding
to whether the student had sufficient programming ability in various programming concepts. This simple profile
model however does not carry sufficient information regarding a students’ actual ability within the continuum of
learning (it is, of course, possible to map a continuum of integer values onto a set of binary values, but this would
be an impractical and naive approach to building such a profile model, where the model structure should give some
insight into the structure of the learning process itself). Similarly, if a profile was chosen to provide the maximum
information, it would carry the entire students’ record in an uncompressed form, which would be computationally
infeasible to use as a profiling mechanism. This trade-off between computational performance and semantic depth
is a major contribution of our research in this area.

The next step in this research was to validate the theory. In [TG04a] we asked whether such Adaptive Learning
Environments (ALEs) — based on profiling — could become one of the most useful teaching aids in programming
and software engineering courses. The paper concluded that the need for a formal justified cognitive model of
programming is clear and its benefits obvious. However, only when we fully understand the process of learning
to program, can we teach it properly. Only when we as educators can teach the subject properly, can we consider
employing Adaptive Learning Environments to do likewise.

97

3.6 Evaluation and Assessment
— Evaluation et contrôle

3.6.2 Automated Assessment
— Contrôle automatisée

In 2005, based on our previous work on cog- En 2005, basé sur le présent travail sur les mo-
nitive models, we believed that we could use our dèles cognitifs, nous avons cru que nous pourrions
more formal understanding of software engineer- utiliser notre compréhension plus formelle du génie
ing and problem solving to help in the assess- logiciel et de la résolution de problème pour aider dans
ment of students. The goal was to develop auto- l’évaluation des étudiants. Le but était de développer
mated assessment techniques which were as least des techniques d’évaluation automatisées qui étaient
as good as the lecturing staff. Such automated as- au moins aussi bonnes que l’équipe enseignante. Une
sessment could, and should, be applied in all ar- telle évaluation automatisée pourrait, et devrait, être ap-
eas of software engineering where formal models pliquée à tous les secteurs du génie logiciel là où les
(with well-defined syntax and semantics were de- méthodes formelles (avec une syntaxe bien définie et
fined). As a proof-of-concept, we carried out re- une sémantique) ont été définies. Comme “proof-of-
search into this problem with respect to learning concept”, nous avons entrepris une recherche sur ce
how to program[TG05]. problème en concernant l’apprentissage de comment

The second part of this research was to de- programmer [TG05].
velop an assessment system and to test its use with La seconde partie de cette recherche était de dévelop-
students in a real learning environment[TBG06]. per un système d’évaluation et de tester son utilisa-
The research showed that the automated assess- tion avec les étudiants dans un environnement réel
ment had a high correlation with the traditional d’apprentissage [TBG06]. La recherche a montré que
teacher-generated assessment for the top half of l’évaluation automatisée était en corrélation élevée avec
the class. For the weaker students, the correla- l’évaluation traditionnelle pour la moitié supérieure de
tion was weak. Analysis showed that this was due la classe. Pour les étudiants plus faibles, la corrélation
to the weaker students rote-learning, without any était faible. L’analyse a montré que ceci était dû au
clear understanding. This technique led to pass “rote-learning” des étudiants les plus faibles, sans au-
marks in traditional exams but led to failure in our cune compréhension claire. Cette technique a conduit à
automated assessment. la réussite aux examens traditionnels, mais a conduit à

l’échec dans notre évaluation automatisée.

This research described the use of random code generation and mutation as a method for synthesising multiple
choice questions which can be used in automated assessment. Whilst using multiple choice questions has proved
to be a feasible method of testing if students have suitable knowledge or comprehension of a programming concept,
creating suitable multiple choice questions that accurately test the students’ knowledge is time intensive. Our paper
proposed two methods of generating code which could then be used to closely examine the comprehension ability
of students. The first method took as input a suite of template programs, and performed slight mutations on
each program and asked students to comprehend the new program. The second method performed traversals on a
syntax tree of possible programs, yielding slightly erratic but compilable code, again with behaviour that students
can be questioned about. As well as generating code these methods also yield alternative distracting answers to
challenge the students. Finally, the paper concluded with a discussion regarding the gradual introduction of these
automatically generated questions as an assessment method and discusses the relative merits of each technique.

Since this work has been completed, we have started to use the same techniques for assessment of design (in
UML) and specification (in a range of formal models). The research has not progressed as well as for assessment

98

3.6 Evaluation and Assessment
— Evaluation et contrôle

of beginner programmers; we believe that this is because specification and design problems are much more rich
and require a much better formal model of software engineering than we currently have.

3.6.3 Important Technical Contribution: Automated Test Generation

In retrospect, it is surprising how our approach to automatically generating multiple choice questions (MCQs)
applied many reasonably advanced software engineering techniques:

• generic programming and mutations for automated test generation,

• ontologies for programming misconceptions, and

• metrics for quality code.

In this subsection we provide some additional technical details concerning this research. The original paper
— Synthesis and Analysis of Automatic Assessment Methods in CS1: Generating intelligent MCQs[TG05] —
provides a more complete report.

To ensure that the MCQs that will be generated by this system will be of a high quality, there are certain
requirements that each question must meet:

• Good quality code — Any code presented to the students must be of a high quality, and follow all proper
guidelines given to students. Obfuscated code and spurious examples within code should not be allowed.

• No Tricks — The question should focus on teaching the normal behaviour of programs, not the badly coded
exceptions. There should be no tricks in the majority of the questions. (For example in C++ the statement
if(i=size)will compile and always returns true, but is bad programming, similarly the expression x+=x++; is
valid code but not good practice).

• Quality Distractors — The alternative incorrect answers (distractors) must have a suitably high feasibility
so as to ensure students are challenged by each question.

These requirements are useful as they serve to both clearly define what can be generated, and also ensure the
quality of the output. The approaches to generating both code and questions were influenced by these requirements.

We studied and implemented a variety of different approaches for generating code and questions, ranging from
grammatical evolution to various different techniques extracted from genetic programming. Two approaches that
we deemed most successful were that of template based mutations, and random walks through a predefined syntax
tree. The final implementation — combining both approaches — incorporated sophisticated code quality metrics,
ontological models and code mutation.

Experimental analysis demonstrated the utility of the template based approach. Template based mutation uses
the mutation phase from genetic programming and applies it to a pre-approved population of problems. In practice
this means the lecturer will supply what they consider to be a suitable suite of problems, each one consisting of of
a piece of code, and a question regarding its behaviour.

The mutations of the code take the form of minor changes that guarantee different behaviour from the program.
The result of this is that one input template can result in a multitude of different questions generated. The mutations
are performed by randomly selecting a set of substitutions that should have an effect on the outcome of the code.
These substitutions are usually related to the topic under examination and the student misconceptions. For example
if a lecturer wished to examine students’ knowledge of boolean operators, the substitutions could replace < with
<=, = with != etc. . . . The new program is then compiled and the correct answer is then retrieved through execution.

99

TEACHING BIBLIOGRAPHY

Figure 24: A simple code mutation

Figure 24 gives a short example of how a piece of code can be automatically mutated to produce several different
pieces of code, each with alternative outputs. Possible solutions are filtered using code quality metrics.

This study demonstrates that innovative teaching and learning tools often require researchers to master ad-
vanced software engineering tools and techniques. In order to implement “intelligent” evaluation systems one
must first acquire an excellent understanding of the domain being examined, and build a formal domain model.

Teaching Bibliography

[ABHV08] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. A roadmap for the Rodin toolset. In
Abstract State Machines, B and Z, First International Conference ABZ 2008, volume LNCS 5238, pages 347–351,
September 2008.

[Abr96] Jean-Raymond Abrial. The B Book - Assigning Programs to Meanings. Cambridge Univ. Press, 1996.

[Bab87] R.L. Baber. The Spine of Software — Designing Provably Correct Software: Theory and Practice, or: A Mathe-
matical Introduction To The Semantics Of Computer Programs. John Wiley and Sons, 1987.

[Bel00] Tim Bell. A low-cost high-impact computer science show for family audiences. 23rd Australasian Computer
Science Conference, 00:10–16, 2000.

[BG81] Robert Balzer and Neil M. Goldman. Principles of good software specification and their implications for specifi-
cation languages. In AFIPS National Computer Conference, volume 50 of AFIPS Conference Proceedings, pages
393–400. AFIPS Press, 1981.

[BJA82] D Bjørner, CB Jones, and D Andrews. Formal specification and software development. Prentice Hall, 1982.

[Bol88] T. Bolognesi. Fundamental results in the verification of observational equivalence: a survey. In H. Rudin and West
C.H., editors, Protocol Specification, Testing and Verification VII. North-Holland, 1988.

[Boo99] Grady Booch. The UML User Guide. Addison Wesley, 1999. ISBN 0201571684.

[CB82] D. H. Clements and M. T. Battista. Constructivist learning and teaching. Arithmetic Teacher, 38(1):34–35, 1982.

[CGR93] Dan Craigen, Susan Gerhart, and Ted Ralston. An international survey of industrial applications of formal meth-
ods. Nistgcr 93/626, U.S. Department of Commerce, Technology Administration, National Institute of Standards
and Technology, Computer Systems Lab., Gaithersburg, MD 20899, 1993.

[CS05] A.T. Chamillard and Ricky E. Swardl. Learning styles across the curriculum. In ITiCSE 2005: Proceedings of
the 10th Annual SIGCSE Conference Innovation and Technology in Computer Science Education, pages 241–245,
New York, NY, USA, 2005. ACM Press.

[Cus89] E. Cusack. Refinement, conformance and inheritance. In Open University workshop on the theory and practice of
refinement, 1989.

100

TEACHING BIBLIOGRAPHY

[DB04] C. Neville Dean and Raymond T. Boute, editors. Teaching Formal Methods, CoLogNET/FME Symposium, TFM
2004, Ghent, Belgium, November 18-19, 2004, Proceedings, volume 3294 of Lecture Notes in Computer Science.
Springer, 2004.

[DeN87] R. DeNicola. Extensional equivalence for transition systems. Acta Informatica, 24:211–237, 1987.

[Dil90] A. Diller. An Introduction To Formal Methods. John Wiley and Sons, 1990.

[dR04] Sylvia da Rosa. Designing algorithms in high school mathematics. In C. Neville Dean and Raymond T. Boute,
editors, Teaching Formal Methods, CoLogNET/FME Symposium, TFM 2004, volume 3294 of Lecture Notes in
Computer Science, pages 17–31, Ghent, Belgium, 2004. Springer.

[dRW04] Jim des Rivières and John Wiegand. Eclipse: A platform for integrating development tools. IBM Systems Journal,
43(2):371–383, 2004.

[Gib97] J. Paul Gibson. Feature requirements models: Understanding interactions. In Petre Dini, Raouf Boutaba, and Luigi
Logrippo, editors, Feature Interactions in Telecommunications Networks IV, (FIW 1997), pages 46–60, Montréal,
Canada, 1997. IOS Press.

[Gib00] J. Paul Gibson. Formal requirements engineering: Learning from the students. In Doug Grant, editor, 12th
Australian Software Engineering Conference (ASWEC 2000), pages 171–180. IEEE Computer Society, 2000.

[Gib03] J. Paul Gibson. A noughts and crosses Java applet to teach programming to primary school children. In James F.
Power and John Waldron, editors, Proceedings of the 2nd International Symposium on Principles and Practice of
Programming in Java (PPPJ 2003), volume 42 of ACM International Conference Proceeding Series, pages 85–88,
Kilkenny City, Ireland, 2003. ACM.

[Gib05] J. Paul Gibson. E-voting requirements modelling: An algebraic specification approach (with cafeobj). Report
NUIM-CS-TR-2005-14, Department of Computer Science, National University of Ireland, Maynooth., 2005.

[Gib08a] J. Paul Gibson. Formal methods — never too young to start. In Zoltan Istenes, editor, Formal Methods in Computer
Science Education (FORMED 2008), pages 151–160, Budapest, Hungary, March 2008. Accepted for publication
in ENTCS.

[Gib08b] J. Paul Gibson. Weaving a formal methods education with problem-based learning. In T. Margaria and B. Steffen,
editors, 3rd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information Science (CCIS), pages 460–472, Porto Sani, Greece,
October 2008. Springer-Verlag, Berlin Heidelberg.

[Gib09a] J. Paul Gibson. Challenging the lecturer: Learning from the teacher’s mistakes. In Fiona O’Riordan, Fergus
Toolan, Rosario Hernandez, Robbie Smyth, Brett Becker, Kevin Casey, David Lillis, Geraldine McGing, Majella
Mulhall, and Kay O’Sullivan, editors, ICEP 09 Conference Papers: Engaging Pedagogy, pages 61–71, Dublin,
Ireland, November 2009. Griffith College Dublin.

[Gib09b] J. Paul Gibson. Software reuse and plagiarism: A code of practice. SIGCSE Bull., 41(3):55–59, 2009.

[GLR08] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. How do I know if my design is correct? In Zoltan Istenes, editor,
Formal Methods in Computer Science Education (FORMED 2008), pages 61–70, Budapest, Hungary, March
2008. Accepted for publication in ENTCS.

[GLR09] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Sculpturing Event-B models with Rodin: “holes and lumps”
in teaching refinement through problem-based learning. In From Research to Teaching Formal Methods - The B
Method (TFM B’2009), pages 7–21, Nantes, France, 2009. APCB.

[GM98] J. Paul Gibson and Dominique Mery. Teaching formal methods: Lessons to learn. In Sharon Flynn and Andrew
Butterfield, editors, 2nd Irish Workshop on Formal Methods (IWFM 1998), Electronic Workshops in Computing,
Cork, Ireland, July 1998. BCS.

101

TEACHING BIBLIOGRAPHY

[GO05] J. Paul Gibson and Jackie O’Kelly. Software engineering as a model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005 international workshop on Computing education research, pages
87–97, New York, NY, USA, 2005. ACM.

[Hab08] Henri Habrias. Teaching specifications, hands on. In Formal Methods in Computer Science Education (FORMED),
pages 5–15, March 2008.

[Har98] Gordon Harvey. Writing with sources: A guide for students. Hackett Publishing Company, 1998.

[Hum05] Watts S. Humphrey. PSP: A Self-Improvement Process for Software Engineers. Pearson Education, Inc., NJ, 2005.

[Jor06] Chris Jordan. At a crossroads: plagiarism. Crossroads, 13(1):2–2, 2006.

[Kah98] Ken Kahn. The Design of Children’s Technology, chapter Helping children to learn hard things: Computer pro-
gramming with familiar objects and actions. Morgan Kaufmann, 1998.

[L9́4] Gérard Lévy. Algorithmique Combinatoire: Méthodes Constructives. DUNOD, 1994.

[MAD+01] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant, Cary
Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. A multi-national, multi-institutional study of assessment
of programming skills of first-year CS students. In ITiCSE-WGR ’01: Working group reports from ITiCSE on
Innovation and technology in computer science education, pages 125–180, New York, NY, USA, 2001. ACM
Press.

[Mar02] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice Hall, 2002. ISBN
0135974445.

[OBD+04] J. O’Kelly, S. Bergin, S. Dunne, P. Gaughran, J. Ghent, and A. Mooney. Initial findings on the impact of an
alternative approach to problem based learning in computer science. In Problem-Based Learning International.
Conference 2004: Pleasure by Learning, July 2004.

[OG05a] J. O’Kelly and J. Paul Gibson. PBL: Year one analysis — interpretation and validation. In PBL In Context —
Bridging Work and Education, 2005.

[OG05b] Jackie O’Kelly and J. Paul Gibson. PBL: Year one analysis — interpretation and validation. In PBL In Context —
Bridging work and Education, Lahti, Finland, 2005.

[OG05c] Jackie O’Kelly and J. Paul Gibson. Software engineering as a model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005 international workshop on Computing education research, pages
87–97, New York, NY, USA, 2005. ACM.

[OG06] Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: a non-prescriptive approach to teaching
programming. SIGCSE Bull., 38(3):217–221, 2006.

[OMG+04] J. O’Kelly, A. Mooney, J. Ghent, P. Gaughran, S. Dunne, and S. Bergin. An overview of the integration of problem
based learning into an existing computer science programming module. In Problem-Based Learning International.
Conference 2004: Pleasure by Learning, July 2004.

[Par98] David Lorge Parnas. Software engineering programmes are not computer science programmes. Ann. Software
Eng., 6:19–37, 1998.

[Pia89] Jean Piaget. The Jean Piaget Bibliography. Jean Piaget Archives Foundation, 1989. ISBN:288288012X.

[Pol71] G. Polya. How to Solve It. Princeton University Press, November 1971.

[Ree92] Jack W. Reeves. What is software design. C++ Journal, 2(2), 1992.

[Rob04] Ken Robinson. Embedding formal development in software engineering. In C. Neville Dean and Raymond T.
Boute, editors, Teaching Formal Methods, CoLogNET/FME Symposium, volume 3294 of Lecture Notes in Com-
puter Science, pages 203–213, Ghent, Belgium, 2004. Springer.

102

TEACHING BIBLIOGRAPHY

[TBG06] Des Traynor, Susan Bergin, and J. Paul Gibson. Automated assessment in CS1. In ACE ’06: Proceedings of
the 8th Austalian conference on computing education, pages 223–228, Darlinghurst, Australia, 2006. Australian
Computer Society, Inc.

[TG04a] Des Traynor and J. Paul Gibson. Implementing cognitive modelling in CS education: Aligning theory and prac-
tice of learning to program. In Kinshuk, Demetrios G. Sampson, and Pedro T. Isaías, editors, Cognition and
Exploratory Learning in Digital Age CELDA 2004, pages 533–536, Lisbon, Portugal, 2004. IADIS.

[TG04b] Des Traynor and J. Paul Gibson. Towards the development of a cognitive model of programming: a software
engineering proposal. In E. Dunican and T.R.G. Green, editors, Psychology of Programming Interest Group 16th
annual workshop (PPIG 2004), pages 79–85, 2004.

[TG05] Des Traynor and J. Paul Gibson. Synthesis and analysis of automatic assessment methods in CS1: generating
intelligent MCQs. SIGCSE Bull., 37(1):495–499, 2005.

103

4. A RESEARCH PROPOSAL: A SPL FOR E-VOTING

— UNE PROPOSITION DE RECHERCHE : UNE SPL POUR LE VOTE ÉLECTRONIQUE

4 A RESEARCH PROPOSAL: A SPL FOR E-VOTING

— UNE PROPOSITION DE RECHERCHE : UNE SPL POUR LE VOTE ÉLEC-
TRONIQUE

In answer to the question of why it happened, I offer the modest proposal
that our Universe is simply one of those things which happen from time to

time. Knowledge is the only instrument of production
Edward P. Tryon that is not subject to diminishing returns.

John Maurice Clarke

4.1 Abstract
— Résumé

All engineering requires discipline in order to Toute ingénierie requiert de la discipline afin de
construct solutions to real-world problems; and construire des solutions aux problèmes du monde réel
the foundation of this discipline must be scien- ; et le fondement de cette discipline doit être la rigueur
tific rigour. Science is the synthesis and analysis scientifique. La science est la synthèse et l’analyse de
of mathematical models, based on observation and modèles mathématiques, basées sur l’observation et sur
experiment, used to capture properties, and define l’expérience, et utilisées pour capturer les propriétés et
abstractions, of the observed world. Thus, mod- pour définir les abstractions du monde observé. Ainsi,
elling and abstraction are fundamental to engineer- la modélisation et l’abstraction sont fondamentales pour
ing. l’ingénierie.

Software engineering can be regarded as the Le génie logiciel peut être envisagé comme l’éta-
establishment and application of sound principles blissement et l’application de principes solides et de
and methods in the development of software for méthodes, dans le développement de logiciels pour
execution on computers. Computer Science is the exécution sur ordinateurs. L’informatique est l’étude
study of the mechanical processes that permit the de procédés mécaniques qui permettent la représenta-
representation, processing, storage and communi- tion, le traitement, le stockage et la communication de
cation of information. Thus, software engineers l’information. Ainsi, les ingénieurs de logiciels doivent
must work with models and abstractions of com- travailler avec modèles et abstractions d’ordinateurs,
puters, computations and information. Software calculs et information. Le génie logiciel manque de di-
engineering lacks discipline for two complemen- scipline pour deux raisons complémentaires. Première-
tary reasons. Firstly, there are only a few well- ment, il n’y a que peu de principes bien établis faisant
established principles that bridge the gap between le lien entre informatique et génie logiciel. Deuxième-
computer science and software engineering. Sec- ment, là où de tels principes existent, les ingénieurs
ondly, where such principles exist practising engi- pratiquant manquent souvent de les appliquer.
neers often fail to apply them. Les méthodes formelles incorporent les principes du

Formal methods incorporate the principles of passage de modèles abstraits de problèmes à résoudre (le
moving from abstract models of problems to be quoi) vers des modèles concrets de solutions impliquant
solved (the what) to concrete models of solutions des ordinateurs (le comment). Elles sont fondées sur
involving computers (the how). They are founded des modèles mathématiques de computabilité, complex-

104

4.2 Motivation

on mathematical models of computability, compu- ité, de communication et de justesse. Cependant, peu
tational complexity, communication and correct- d’ingénieurs en logiciels qui pratiquent savent quand
ness. Yet, few practising software engineers know ou comment appliquer ces méthodes. Il n’est donc pas
when or how to apply these methods. It is there- surprenant que la qualité des systèmes de logiciels soit
fore not surprising that the quality of software sys- compromise et que de tels systèmes échouent souvent
tems is compromised and that such systems often à résoudre correctement le problème pour lequel ils ont
fail to correctly solve the problem for which they été développés.
were developed. Les systèmes de vote électronique fournissent d’ex-

Electronic voting systems provide excellent cellents exemples de logiciels pauvrement construits.
examples of poorly engineered software. Analysis L’analyse de tels systèmes peut, et devrait, aider à iden-
of such systems can, and should, help us to iden- tifier là où les ingénieurs ont échoué à appliquer les
tify where engineers failed to apply fundamental principes fondamentaux du génie logiciel. Plus spé-
(software) engineering principles. In particular, cialement, ils fournissent une bonne illustration de là
they provide an opportunity to illustrate where the où l’application des méthodes formelles aurait pu aider
application of formal methods could have helped les développeurs à construire des solutions de bien
the developers to have constructed much better meilleure qualité au problème du vote électronique
quality solutions to the e-voting problem. Dans ce projet de recherche, nous analysons le

In this proposal we analyse e-voting and show vote électronique et montrons que de nombreux pro-
that many problems that arose could have been blèmes rencontrés auraient pu être évités si les pra-
avoided if rigorous software engineering practices, tiques rigoureuses du génie logiciel incluant les méth-
including formal methods, had been applied. We odes formelles avaient été appliquées. Nous argumen-
argue that educators, and the education system, are tons que les enseignants, ainsi que le système éducatif,
as responsible for poorly built software systems as sont tout autant responsables de la pauvre construction
the (so called) engineers who developed them. Fi- de systèmes logiciels que les (soi-disant) ingénieurs qui
nally, we argue that the next generation of elec- les ont développés. Au final, nous argumentons que
tronic voting systems need to be better engineered la prochaine génération des systèmes de vote électron-
than the current generation; and we propose that ique nécessite une meilleure construction que la généra-
the most promising approach to achieving this re- tion actuelle ; et nous suggérons que l’approche la plus
quires the development of a formal software prod- prometteuse pour atteindre cela requiert le développe-
uct line. ment d’une ligne de produit de logiciels formels.

4.2 Motivation

The software in e-voting machines has not, in general, been well-engineered[GM08]. Many governments have
chosen to adopt e-voting as a show-case for innovative technology[SL03]. It is a poor reflection on the profession
of software engineering that the software in these systems is, in general, neither trusted nor trustworthy[RR06].
We propose that the software engineering community should look upon this as an opportunity to demonstrate just
how much software engineering methods, techniques and tools have evolved since the turn of the century[PGL00];
and that the software industry is now mature enough to develop e-voting machines that are highly dependent on
software and that are highly dependable.

Software Product Lines (SPLs) [CN02] are attracting attention in the area of applied software engineering
research. The challenge, which this article addresses, is to demonstrate how and why an e-voting SPL could be
built. E-voting systems correspond in terms of size and complexity to those reported in a number of SPL case

105

4.3 Historical Context

studies [Bos99b]. The number of variations across systems[SP06] is large enough to merit an SPL approach, but
not so large as to be unmanageable. Furthermore, these systems exhibit a large amount of common functionality
and so the potential for re-use is high. The aspect of e-voting that may be more challenging is that the software
may be considered (safety or mission) critical [MG03]. However, recent research suggests that SPLs can be used
to develop safety critical systems [Liu07].

Many of the problems that have arisen in the domain of e-voting have arisen because of poorly specified re-
quirements and standards documents [MG06]. It has been proposed that a comprehensive domain analysis be
carried out before standards are re-engineered [GM08]. The resulting domain models should provide the founda-
tions upon which standards could be built; and they would also play a major role in the development of an e-voting
SPL.

We note that analyses of existing systems — such as the state of Ohio’s EVEREST report[BEH+08] — have
identified verification issues directly related to foundational concepts in software product lines: “parameterized
families of components” [McI68], a “family of related programs” [Dij72, Par76], and “structuring commonality
and variability according to features”[KCH+90].

4.3 Historical Context

4.3.1 Secret Ballots

One can trace back the genesis of voting machines to the high level requirement that the voting process should
ensure, as much as possible, that a voter records a sincere choice through an expression of free will; and, as such,
we must strive for a voting process which guarantees that a voter cannot be coerced through intimidation or bribery.

This high level requirement is usually refined into one of secrecy (or anonymity). Informally, there should be
no link between votes (as recorded on ballots) and voters. Given a set of N votes then the probability that any
individual vote belongs to a specific voter is 1

N , and full disclosure of all voting information, including all votes
recorded on ballots, should not change this probability. In particular, there should be no way of deducing that a
voter did (probability 1) or did not (probability 0) vote for a particular candidate (or choice)13.We note that this
requirement is not the same as keeping secret whether or not a particular person has actually recorded a vote.

Evidence of secret voting goes as far back as ancient Greece. The right to secret ballots has long been a legal
requirement in many countries around the world. For example:

• In France, article 31 of the Constitution of 1795 states that all elections are to be held by secret ballot.

• In Australia, the colonies of Victoria and South Australia enacted legislation for secret ballots in 1856.

• In the UK, the Ballot Act of 1872 requires that British general elections to Parliament and local government
election use the secret ballot.

• In Canada, in 1873, the province of British Columbia enacted the countrie’s first secret ballot legislation.

• In the United States, most states required secret ballots (refered to as Australian ballots) soon after the
presidential election of 1884. However, it took a total of 7 years before all states had outlawed non-secret
voting.

• In Argentina, in 1912, the Law of Universal Ballot required secret (compulsory) votes.

13We note that such a deduction can be made if N = 1, which would happen if there was only a single voter for which we did not know how
they had voted.

106

4.3 Historical Context

• In Ireland, in 1937, the Consitution of Ireland14 makes reference to secret ballots in articles 12 and 16, and
secret postal ballots in article 18.

Secret voting is now seen as a property of a mature democratic process. However, as we see in more detail later
in this thesis, the notion of secrecy is not well-defined and open to interpretation. For example, in the UK it is
possible to link a “secret” ballot to the voter that cast it, through a particular numbering scheme for ballot papers
and electors15. Another recent example is in Zimbabwe where the “secrecy” of a ballot can be compromised by
the marking of votes by the election officials, where a presiding officer’s mark may be placed in a position where
concealment of the voter’s own mark may be compromised. If a voter perceives that the presiding officer could see
their vote then this may compromise their free expression.

The Australian ballot system, from 1856, provides a much copied, prescriptive mechanism for implementing
secrecy, and preventing anyone from linking a particular voter to a particular ballot. The four key properties are:

• an official ballot (being printed at public expense),

• the ballot contains only the names of the nominated candidates and/or parties and/or proposals,

• the ballots are distributed only at the polling station, and

• the ballots are marked in secret (in a polling booth) at the polling station.

The significance of the Australian Ballot in the history of voting should not be underestimated[Bre06]:

Voting by ballot, in “secret” . . . was in use in America and Europe well before being implemented in
Australia. This was the secret ballot many demanded for Australia, but they got something else: the
Australian ballot, wholly original, with identifying features — such as the government printed ballot
paper — previously unimagined. The Australian ballot was not the world’s first secret ballot; it was
much more important than that.

These secret ballots are specifically designed to prevent anyone from linking voter to ballot. Although not related
to the secrecy requirement, they have the additional advantage that they can also be designed in such a way as to
eliminate bias in the voting process. The question of bias also arises in electronic voting interface design[BLS+03].

4.3.2 Mechanical (Gear and Lever) Voting Machines

The inventor Thomas Edison took out a patent16 on a “electrographic vote recorder” in 1869, but his device was
never mass-produced for use in elections.

The earliest mass-produced voting machines appeared in the USA in the 1890s. At this time, there was a
widely held perception, in the USA, that the Australian ballot system had inherent weaknesses that needed to be
addressed. Firstly, there were claims that government-printed ballots were designed to keep illiterate voters away
from the polling booth. Secondly, State and local government officials called for investment in voting machines
because of the increasing length and complexity of ballots with multiple candidates and referenda, and the growing
size of the electorate (doubling, in one instance, with the enfranchisement of women).

14Bunreacht Na hÉireann
15It is a legal requirement that was introduced in 1983 as a security arrangement so that if there was an allegation of fraud, false ballot papers

could be identified. However, the process of matching ballot papers to voters is permissible (and possible) only if an Elections Court requires
it, and this procedure is extremely unlikely to be invoked.

16This was his first patent out of more than a thousand in all!

107

4.3 Historical Context

Thie first mechanical (gear and lever) voting machine was patented by Alfred J. Gillespie and manufactured
by the Standard Voting Machine Company. In order to meet the requirement for secrecy it incorporated a voter-
activated mechanism that drew a privacy curtain around the voter as well as unlocking the machine’s levers for
voting. Gillespie worked for a number of years with inventor Jacob Myers, refining their machine and making
public demonstrations (starting in 1892); and in 1898 they founded the Automatic Voting Machine Company. By
the 1920s, a significant market for these machines had developed across many of America’s most populated areas.

By 1960, machines based on Myers’ design recorded and counted the majority of the votes cast in the United
States. However, to manage the complexities of American elections, the machines incorporated dozens of intricate
interacting sub-systems and over 25,000 moving components. There are a number of lessons that we can take from
the engineering of these gear-and-lever machines:

• Simple, sound election procedures mitigate vulnerabilities — Lever machines are vulnerable to certain
kinds of fraud, but these vulnerabilities, and associated attacks, were well-understood and consequently were
easily prevented by sound election procedures.

• Keep the User Interface Consistent — From 1898 through the early 1960s, the gear-and-lever voting
machine was promoted as an ideal voting technology. Though its internal mechanism changed over the
years, the machine’s “three steps to vote” never changed:

• Pull the handle to close the curtains of the polling booth.
• Turn the voting levers over the names of your chosen candidates to expose the selctions.
• Pull the handle back to register your vote and to reopen the curtains.

• Trust and Transparency — American voters and election officials were quick to trust the gear-and-lever
voting machines: there was no need for (or demand for) an independent (paper) audit trail. Only a few
users expressed concerns and peer-pressure, arising from pride in the technology, overcame small pockets
of distrust. The key property to the accetpance of the technology was that it was transparent. For every
action of the voter (user) there was a clear reaction from the machine, as its internal state changed due to the
movement of its internal components.

• Rigorous Validation of Votes — One of the most innovative aspects of the gear-and-lever technology was
its validation of votes: from the earliest versions the machines were configured to prevent overvotes by
locking out other candidates when one candidate’s switch is flipped.

• Human Involvement and Common Sense — For each voter, when they validate their vote, a lever is
pulled which increments the appropriate counters. The final counts (for that particular machine) would then
be hand written by an election official at the conclusion of voting. The election offical is not expected to
recount the vote, but they would be expected to report on any counts that appeared unusual, such as no votes
being recorded for a popular candidate. The engineers of that era acknowledged that there was no way to
replicate this common sense functionality with their technology and so understood the importance of human
involvement.

• Familiarity — Instructional models were used to acquaint voters with the operational features of the actual
machine. Posters were used to familiarize voters with the gear-and-lever ballot formats.

Although these machines were a remarkable technological achievement they were expensive to make and
difficult to store and transport. Thus, there were economic pressures to adopt a more affordable technology, namely
punch cards.

108

4.3 Historical Context

4.3.3 Punch Card Voting Machines

In the USA, the first punch-card voting systems appeared in the 1960s. In contrast to gear-and-lever machines, they
had significantly reduced production costs and weighed only a few kilograms. As a result, gear-and-lever voting
machines became less popular and by the 1980s they were no longer mass produced17.

The first voting machine to turn a punch card into a ballot was developed by Martin Coyle, after whom it was
named, and was first used by voters in 1961. Punch card systems employ cards — where, as with the Australia
Ballot system, candidates and referendum issues are printed directly on the card — and voters use a small device
for punching holes as a means of recording a choice beside a candidate or issue. After voting, the voter may place
the ballot in a ballot box, or the ballot may be fed into a computer vote-tabulating device at the polling station.

There are a number of lessons to be learned from punch card machines:

• Inherit good requirements from previous systems — The gear-and-lever machines introduced a rigorous
process for validation of votes to ensure that undervoting could not occur on a submitted ballot. This was
not an original requirement of the system but it was clearly good engineering practice. The manufacturers
of punch card systems developed their machines in order to offer validation functionality: voters would roll
their ballot into a machine and a red light would signal an over- or under- vote; whilst green would signal a
valid ballot that could be recorded.

• A voter verifiable audit (“paper trail”) — Voters would remove their ballot from the machine (signalling
green) and a counter (of the total number of votes) would be incremented. The ballot would then be counted
by hand, or collected for centralised electronic processing. In the case of dispute, the paper ballots could be
recounted and the count process could be fully audited by the voters.

• Humans are not machines — Machines can consistently punch holes in cards cleanly, but humans cannot
and this results in ballots that are open to interpretation, due to hanging chads18, swinging chads, tri chads,
pregnant chads, dimpled chads, etc . . .

• Machines are not humans — When counting votes recorded on punched cards, a major problem arises
when the holes are not precisely aligned with the ballot. Humans have no problems in correctly interpreting
the vote when the alignment is reasonably consistent; however, such flexibility is often lacking in punch card
counting machines.

In the 2000 US Presidential elections problems (with non-standard chads) in Florida led to the reliability of
punch card ballots to be called into question[Cra01]. This resulted in the public questioning the trustworthiness of
all voting technologies, and a higher public awareness of problems with election procedures.

4.3.4 Marksense (Optical Scan)

An alternative to punching holes in cards is to require the voter to mark a ballot (paper) in a specific way19 so that
the process of correctly interpreting the voter’s choice is easily automated (and thus the counting of all votes can
also be done by machine). Such marksense systems have existed for decades. Within the domain of voting, the
technology is often referred to as optical-scan becuase the marks are scanned using optical reading techniques.

17The machines are no longer used today in the USA, except in a very small number of constituencies where voters and election officials
continue to trust their accuracy.

18A chad is the piece of paper that is left over after an attempt has been made to punch a hole in a ballot.
19The choice is often recorded by the voter filling in regular shapes, like rectangles, circles, or arrows.

109

4.3 Historical Context

As we have already noted for punch-card technology, humans are not machines and one should not rely on them
to mark their ballot in a way which can always be scanned and correctly interpreted by a machine. The obvious so-
lution to this problem is the one which has been adopted by many modern optical scan voting machines[KMR+07b]
— use a computer interface to permit the voter to make their choices and use a machine to print out their marked
ballot in a precise manner. However, this approach means that there are many more electronic components (hard-
ware and software) in the voting machines. The use of such e-voting machines has led to many more interesting
questions being asked about the trustworthiness of software and the quality of the software engineering processes
being used in their development.

4.3.5 Direct-recording electronic (DRE) voting machines

Once we have a machine that can directly mark ballots on behalf of voters then there is a natural progression to
removing the need to print the ballots — why not record the votes electronically and count these votes? It would
appear — at first — that printing out the votes and then scanning them in to be counted introduces a redundant
and unnecessary transformation of the vote data (from electronic screen, print to paper and scan back to electronic
store). By removing the print and scan steps we arrive at direct-recording electronic (DRE) voting machines, which
collect and tabulate votes in a single machine. Such machines are used by all voters in all elections in Brazil, and
also on a large scale in India, the Netherlands, Venezuela, and the United States.

4.3.6 E-voting machines: paper trails

The current controversy surrounding DRE voting machines is that they are neither trustworthy nor trusted. Given
a malfunctioning machine, can election officials fix the problem and correctly count the voters’ intentions? Are
the machines secure against attack — could the fairness of the election process be “compromised” in favour of a
specific candidate? Returning to the initial requirement for secret ballots, how can a voter be sure that the machine
does not provide any mechanism for a third party to find out how they have voted?

There has been a general call for the introduction of paper trails; but experts in the field of e-voting disagree on
their practical implementation, particularly on the process of recounting the votes[YB08]. One of the most popular
suggestions is to return to the optical-scan technology so that ballots can be counted by hand (if necessary). This
return to paper ballots may appear to be ironic since the original voting machines were introduced in order to
remove paper from the process. Another popular idea is to provide voters with receipts but this provides an added
complication of meeting the requirement for a secret ballot. Typically, solutions to these apparently conflicting
requirements involve complicated cryptographic protocols[Cha04].

We must ask why engineers, using mechanical technology over a century ago, were able to produce paper-less,
trustworthy and trusted voting machines; but modern professional engineers, using electronic and software tech-
nology, are having difficulties in doing so. This thesis partially answers this question by analysing the important
contribution of education in the engineering process.

4.3.7 Remote Electronic Voting — using a (public) network — a problematic future?

Remote electronic voting and postal voting share many properties in common, they both:

• enable voters to record their vote (remotely) without having to go to an official polling station,

110

4.3 Historical Context

• rely on a communication mechanism (which may be public) for transporting their remotely cast votes to a
central location for counting, and

• depend on the communication mechanism to be trustworthy in order for their votes to be kept secret and
unchanged.

There has been serious electoral fraud, throughout the world, due to postal voting. The variety of protocols that
have been imagined for having a secure transport of postal votes is matched by the number of ingenious ways in
which these protocols can be attacked. In truth, the postal voter is always required to exhibit some type of blind
faith in the security of the underlying transport mechanism and communication protocols.

In general, the risk fo fraud due to postal voting must be weighed against the main potential benefits:

• for voters who are unable (or have great difficulty) to get to a voting station — perhaps due to some physical
handicap — then offering a postal vote can be argued to give a fairer election process,

• the cost of requiring voters to attend a central polling station is considerable when compared with the cost
of transporting their votes,

• the ease of voting by post — in comparison with having to go to a polling station — is likely to improve
voter turnout,

• postal votes may help to prevent manipulation of elections through “get out the vote” attacks which involve
transporting specific subsets of voters in a community to vote at a particular polling station, but deliberately
not helping to transport other subsets.

Engineers of remote electronic voting systems have much to learn from analysis of postal voting.
Firstly, it is noteworthy that postal voting is not offered by all countries. In particular, when postal voting

is not available it is often replaced by a mechanism called proxy voting - whereby a voter unable (or unwilling)
to attend a polling station is able appoint someone as their proxy. This proxy is authorized by them to cast, or
secure, their vote on their behalf. There are many different mechanisms for proxy voting, many of them differing
on how they manage the case where a voter wishes to override their proxy. However, like remote voting, they
require a trustworthy communication mechanism (in this case the proxy) to guarantee secrecy and accuracy. In
some countries it is common for people to nominate an official of their chosen party as their proxy. In this way
they can better trust that their vote is accurately communicated and recorded by their proxy. However, through
such a choice there is a greater risk that they are unable to keep their vote secret. Consequently, such a mechanism
is open to abuse and increases the risk of voter coercion. In other countries there is a limit (usually 1 or 2) to the
number of proxy votes that can be authorized to an individual.

Secondly, a better understanding of remote voting requirements would be achieved by analysis of different
postal voting mechanisms: are they different because they are meeting different requirements, or because they are
implementing the same requirements in different ways? For example, in some states in America postal ballots
can be delivered directly to an election official (or drop box) instead of the remote voter having to use (trust) the
standard postal service. In some countries postal voting is on-demand (with no reason needed for authorising
a postal vote), in other countries it is authorised only in restricted circumstances; and in other countries it is
compulsory. Thus, very different approaches to postal voting have arisen even though in each instance there is
general agreement that the election process must be both secret and accurate.

Finally, through analysis of problems with postal voting engineers would get a better understanding of the risks
involved in remote electronic voting. In particular many problems occur in postal voting where the underlying

111

4.3 Historical Context

communication network is unreliable, for example: votes being lost in the public post. Perhaps this is an indi-
cator of the biggest threat to using the public internet for transmission of ballots and votes — denial of service
attacks[JRSW04a].

Despite major concerns with respect to security[Rub02], Internet voting systems have gained popularity around
the world[KTV07]. Internet voting can facilitate voting from any internet capable computer, or can use traditional
polling stations with voting booths consisting of internet connected computers. There are many disadvantages
associated with the former[JRSW04a] and many advantages associated with the latter[SW08].

4.3.8 E-voting: success stories

Before we begin a review of the published scientific analysis of e-voting systems, it should be noted that e-voting
has had public approval in a number of countries where there is a general perception of the successful adoption of
modern voting technology. The move to e-voting can, in general, be justified by the following motives:

• Reduced costs
• Better and fairer accessibility
• Problems with previous technologies: trust and reliability
• Increasing Turnout
• Speed of count

There are clear examples of countries where the e-voting technology can be judged to be a success simply because
of the specific underlying motives for it being adopted.
India
Indian E-voting machines were first manufactured in 1989-90 and were used on experimental basis in real elections
in 1998. They were adopted across the whole population (greater than 500 million voters) in 2004. The motivation
for adoption of e-voting technology in India were quite clear:

• Traditional voting was very expensive with respect to transport, storage, printing and operational costs. E-
voting machines, although requiring considerable initial investment, have significantly reduced costs.

• Traditional voting systems required 30-40 hours to return the count. The vote-counting with e-voting ma-
chines is significantly faster, requiring 2-3 hours on average.

• Illiteracy in India is a significant problem and the e-voting machine interface simplified the process of se-
lecting a candidate for illiterate voters.

• Vote stuffing was a problem with the traditional ballot boxes. The e-voting machines were programmed to
record only five votes in a minute, which frustrated the bogus voters. (Although, even with this additional
safety mechanism, there have been reports of electronic ballot box stuffing in India[Lau04].)

• When paper ballot systems were used in India, there were elections where the number of invalid votes was
more than the winning margin between the candidates. Invalid votes can be avoided by use of e-voting
machines.

Thus, e-voting machines in India can be judged a success based on the motivation for their adoption. There were
Indian academics who raised concern about the trutsworthiness of the machines and whether they increased the risk
of corrupt elections. However, there was a general public trust, and pride, in the systems and system developers.
The main lessons to be learned from the largest democracy in the world are to keep the machine as simple as

112

4.3 Historical Context

possible, to own the system that is developed (through state ownership of the companies that manufacture the
machines) and to take one’s time in adopting the technology so that it can be well-tested before being applied
across the whole country (involving half a million machines).
Estonia
The plan to introduce e-voting in Estonia was first announced by Parliament in 2001. Six years later, in 2007,
Estonia became the first country to use internet voting in parliamentary elections, where approximately 3% of
voters (30,000 in total) recorded their vote on-line. The system had already been tested nationwide in municipal
voting in 2005, when 10,000 people cast their votes remotely.

Internet voting is available during an early voting period of a number of days before the election. Voters
can change revote an unlimited number of times, with the final vote being counted. The internet vote is also
overwritten by recording a vote at a polling station. The ability to revote temporarily caused some legal dispute
over the principle of “one person, one vote” where problems arise if one inteprets the word vote to correspond to
the ballot being cast by a voter.

The Estonian people appear happy with the system which uses already existing chip-and-pin identity cards in
order for voters to be authorised to vote on-line.

The success of the Estonian experience is summarised in a report by Madise and Martins[MM06]:

“Estonian e-voting experience seems to prove that it is possible to solve the legal as well technological
obstacles. . . . The system of e-voting has worked perfectly, all procedures have been legitimate and
performed lawfully (respective confirmation of auditors is available).

The attitude to the e-voting of the Estonian public was and is positive. There were no court cases
and we do not have any information about purchase of e-votes (on the contrary to the votes on paper-
ballot). Here we should underline again, that voting in privacy in the remote unsupervised Internet
voting context is a right, not a duty.”

The main lessons to be learned from the perceived success of remote electronic voting, by the voters in Es-
tonia, is that familiarity with technology can increase trust. Estonia is acknowledged to be leading the way in
e-governance and e-democracy, with wide use of government e-services by nearly half of households at home and
and through public access. It is also the first (and currently, only) country in the world with compulsory pin-and
chip ID cards with binding digital signatures. Remote e-voting is therefore seen as just another e-government
service provided for the convenience of a mature “information society”.
Switzerland
In Switzerland, the legal basis for the use of remote e-voting was established in 2002. In 2004 and 2005, five
e-voting pilot trials were successfully executed. It should be noted that before these official trials, each of the
three different electronic voting systems under consideration was subjected to rigorous evaluation by independent
experts. Perhaps the most important lesson to learn is that the Swiss government had a very clear requirement that
the remote e-voting systems should be at least as secure as voting by post[BB06], even though it was being offered
as an alternative to postal voting rather than as a replacement. This baseline benchmark is much easier to pass than
one which would require a system as secure as that offered by traditional polling booths. Thus, it should not be a
surprise that the pilot trials led to the conclusion that remote e-voting was a success. Another aspect that should be
taken into consideration is the motive behind these trials: about 10% of Swiss nationals live outside Switzerland,
of which more than 120,000 have registered to vote. This means that remote voting can play an important role in
deciding the results of Swiss elections.

113

4.4 Related Work

4.4 Related Work

The related work which is most relevant to this project is presented in 4 sub-topics: E-voting, Software Prod-
uct Lines, Event-B and Educational Research. There is — as would be hoped from the proposal objectives —
interesting overlap between these topics.

4.4.1 E-voting

4.4.1.1 Analysis of systems: problems and risks
In 1990, in perhaps the first such article published in a mainstream computing journal, Peter Neumann analysed
the Risks in computerized elections[Neu90]. In this article he acknowledges the important contributions of Ronnie
Dugger20 and Roy Saltman21, who had already warned about risks in e-voting systems years before. Neumann’s
conclusions in 1990 are a good reflection of the current situation, almost 20 years later:

“Providing sufficient assurances for computerized election integrity is a very difficult problem. Se-
rious risks will always remain, and some elections will be compromised. . . . we must question more
forcefully whether computerized elections are really worth the risks, and if so, how to impose more
meaningful constraints.”

In 1992, Rebecca Mercuri, reviewed the risks involved in election systems and identified the need for rigorous
verification if such systems are to be trusted[Mer92]:

“It is incumbent on us to devise methodologies for designing verifiable systems that meet these strin-
gent criteria, and to demand that they be implemented where necessary. “Trust us” should not be the
bottom line for computer scientists.”

A year later, she identified possible instances of corrupt polling in elections held in 1992[Mer93], and noted that:

Technology alone does not eliminate the possibility of corruption and incompetence in elections; it
merely changes the platform on which they may occur”

In 1998, Susan King Roth — who had previously examined ballot design for mechanical voting machines —
warns about poorly designed e-voting systems[Rot98] which run the risk of disenfranchment:

“Regardless, results indicate that greater attention to the usability and accuracy of voting systems
during the development and evaluation stage would raise awareness and prevent “disenfranchisement
by design””.

This article is also one of the first to mention evaluation criteria for comparing electronic and traditional voting
systems.

In 1999 Larsen[Lar99] analysed two cases of electronic voting implementations which had major techical
problems due to software errors. This is one of the earliest published articles in which strong evidence of “simple
programming errors” in voting systems is reported.

20Dugger wrote a prescient article on the dangers of computerized vote-counting in The New Yorker of November 7, 1988.
21Whilst working for the National Institute of Standards and Technology in the USA, Saltman wrote two seminal reports on e-voting. The

first, entitled Effective Use of Computing Technology in Vote-Tallying, was published in 1975 as NBSIR 75-687 and re-published as NBS SP
500-30 in 1978. The second report, entitled Integrity, Accuracy and Security in Computerized Vote-Tallying, was published in 1988 as NBS SP
500-158.

114

4.4 Related Work

In 2001, Lorrie Faith Cranor wrote — in response to the problems in Florida during the 2000 Presidential
elections — about the risks that arise when adopting new technology to replace existing voting systems[Cra01].
She highlights the importance of requirements, but her call for caution was clearly not heeded:

“It is my hope that states will proceed cautiously in adopting new voting technologies, first establishing
detailed requirements and certification criteria, and rigorously evaluating each candidate technology
to see whether it meets the criteria. ”

A year later Gritzalis[Gri02] — in Principles and requirements for a secure e-voting system — identifies the
principle of coercion-free elections as being almost impossible to guarantee with internet voting:

“It appears that certain requirements posed by legislation (e.g. uncoercibility) are really difficult, if at
all possible, to be met with by the existing technology.”

He concludes by stating that e-voting should be considered as complementary to traditional voting and that it
should be introduced gradually.

Published at the same time, Security Considerations for Remote Electronic Voting over the Internet by Avi
Rubin identifies risk of remote voting via the internet:

“We conclude that at present, our infrastructure is inadequate for remote Internet voting.”

In the same year, Mercuri writes about fundamental problems in e-voting. In A Better Ballot Box? she identifies
the key issue of conflicting requirements between secrecy and auditability[Mer02b]:

“ As it turns out, many of the voting products currently for sale provide less accountability, poorer reli-
ability, and greater opportunity for widespread fraud than those already in use. These problems result
from an underlying fundamental conflict in the construction of electronic voting (e-voting) systems:
the simultaneous need for privacy and auditability.”

A month later, Mercuri reports that problems with the touchscreens of e-voting systems in Florida in September
should have been avoided because similar problems had already occured in March[Mer02a]. She notes that there
were many major issues with election systems development and testing procedures. In particular, she highlights
the legal complications that can arise when one cannot trust election systems:

“During court proceedings, it was revealed that Sequoia had sold the systems under trade-secret pro-
tection, making it a third-degree felony for Supervisor LePore if any details regarding the specification
or internal functioning of the devices were revealed. Circuit Court Judge John Wessel granted Dan-
ciu a walk inspection of the voting equipment, where it was discovered that the pre-election testing
circumvented the ballot face and the touchscreen was used only to cast one vote for each candidate
listed first in every race. Because Danciu appeared third in his race, there is no test data that can reveal
whether or not the machines would properly activate and record votes cast for him.”

In 2003, McGaley and Gibson[MG03] analyse the introduction of e-voting in Ireland and recommend that e-
voting should be considered as safety critical for the purposes of development, verification and maintenance. This
view is supported in Hack-a-Vote: Security Issues with Electronic Voting Systems, where there is a reference to
using formal methods techniques that are most commonly found in the development of critical systems[BPR+04]:

115

4.4 Related Work

“Auditing is not the only way to discover and patch security holes. Techniques such as proof-carrying
code and system-specific static analysis can uncover specific vulnerabilities. A rigorous software
engineering process also can help prevent the malicious introduction of security vulnerabilities.”

This paper is also interesting as they experiment with deliberately hiding bugs in voting system software which
prove very difficult to find using standard testing practices:

“. . . it’s easy to compromise a purely electronic voting system and difficult for auditors to identify and
correct hacks that might otherwise completely compromise election results ”

In 2004, McGaley and McCarthy identify a fundamental conflict between democratic and commercial interests
in the development and adoption of e-voting technology[MM04]. They argue that transparency is a key factor in
ensuring that commercial interests do not compromise the democratic process:

“Transparency is an integral part of the security of voting systems. It is vital that technology is not
allowed to erode that transparency. Not only must the technology itself implement measures to ensure
that it is trustworthy . . . but the system must be managed in a transparent, non-partisan way.”

In Code of Elections[MC04] another fundamental conflict is identified:

“The disparity between the code of election law and the code that comprises election equipment re-
flects inherent problems in the translation of social policies into computer procedures and overseeing
processes. ”

Whilst acknowledging that analysis of security from a technological viewpoint was critical, Xenakis and Mac-
intosh argued that procedural issues were equally important for trustworthy e-voting[XM04b, XM04a]:

“Our research has established the need for procedural security measures while at the same time demon-
strated that the existing procedural safeguards are insufficient. Procedural security is directly applica-
ble to procedures where the human factor is involved. However, since we are in a phase of re-defining
the electoral procedures, we must primarily re-define the procedural responsibilities of the agents
involved ”

Despite previous published warnings about internet voting, the American government had plans to trial such
a system — named SERVE (The Secure Electronic Registration and Voting Experiment) — for overseas military
voters in the national elections of 2004. Consequently, a group of academics submitted a comprehensive report
which led to the Pentagon cancelling the SERVE program. A summary of their report is published in [JRSW04b].
This report makes reference to previous results[KSRW04] where there is a comprehensive analysis of source code
found in an e-voting machine that had a significant share of the market at the time. The main problems identified
— “ including unauthorized privilege escalation, incorrect use of cryptography, vulnerabilities to network threats,
and poor software development processes ” — lead to the authors supporting the call for a “voter-verifiable audit
trail” in all e-voting systems.

In [KS04] Kocher and Schneier take an interesting view with respect to the cost and benefit analysis of com-
promising (“rigging”) an e-election. Through simple analysis of the election system in America, they conclude
that:

116

4.4 Related Work

“. . . voting systems must be designed to counter very well-funded and sophisticated opponents, includ-
ing those with massive financial resources and the ability to join design teams, infiltrate manufacturing
facilities, fabricate malicious integrated circuits, tamper with compilers, and mount a wide range of
other attacks.”

This conclusion is supported by Lauer[Lau04] where a generic threat model of e-voting procedures is proposed.
However, their analysis was not consistent with the report — by Williams and King[WK04] — on the use of e-
voting machines in Georgia (USA) in 2004. In this paper they conclude, controversially, that the introduction of
e-voting was successful because it reduced the rate of undervoting from 4% to 1%.

In 2004, the Estonian government was in the process of adopting remote e-voting (REV). In contrast to Amer-
ica, the outlook for remote voting in Estonia was positive[Maa04]. Steps towards remote e-voting were also being
taken in the United Kingdom. However, as reported by Storer and Duncan[SD04], there are limitations of crypto-
graphic REV schemes such as that was being proposed for use in th UK at that time.

By 2005, academics from different disciplines were combining their expertise in order to analyse different
aspects of specific voting machines. Initial reports focused on usability issues, mainly because such analysis was
the easiest to carry out as it required no access to internal components of the systems. For example, in Early
Appraisals of Electronic Voting[HBL+05], the Diebold AccuVote-TS system is reviewed with respect to usability,
and it is concluded that there are:

“. . . reasons for optimism and some cause for concern”.

The importance, and value, of such an article is not necessarily in the depth or rigour of their experimentation and
analysis; it is in the objective scientific approach that is taken to their work. Storer and Duncan continued their
work in analysing the problem of e-voting system adption in the United Kingdom[SD05], placing emphasis on
security requirements and the need to improve current voting systems (at polling stations) as a means of increasing
the public’s trust before introducing remote voting. We note also their call for the application of formal modelling
methods:

“Whilst a plethora of requirements documents continue to be produced for electronic voting technolo-
gies, a formal basis for their development would be more satisfactory. ”

Xenakis and Macintosh add to the analysis of e-voting in the UK by examining the additional problem of admin-
istrating elections using e-voting technology[XM05a]. They conclude, unsurprisingly, that:

“Systematic staff training in the administration of the new methods of voting is also required to support
the operation of the e-electoral process”

What is surprising is that in elections following their analysis there are many reports of problems occuring because
of poorly prepared election staff. In a complementary paper published in the same year, Xenakis and Macin-
tosh examine the need for social acceptance for the new e-electoral practices, and emphasise the role of security
procedures in achieving acceptance[XM05b]:

“A voter’s perception of security of the electoral process is equally important to the actual security
itself. Since procedural security is evident and understandable to voters, it has a comparative advantage
when it comes to developing and supporting the social acceptance for the new e-processes.”

117

4.4 Related Work

In 2005, the adoption of e-voting in Ireland was seen as a government failure. Questions arose as to whether
such failures were common to information systems; and, if so, could a reasonable explanation be found. Zelic and
Stahl examine the problem from the point of view of ontologies[ZS05]:

“. . . the ontological view of an information system is the root cause for many of the problems it en-
counters and that the Irish evoting experience is a good example of this.”

In the following year, Braun and Brandli report on the success of e-voting trials just finished in Switzerland[BB06],
whilst highlighting the need for future vigilance.

“ Secure e-voting is feasible: the pilot trials have demonstrated this. But ongoing security depends
on being able to maintain control of continually changing threats and risks. The necessary security
measures cannot be developed and put in place once and for all.”

They also identify the engineering compromises that must be taken with regard to degrees of security in e-voting:

“The challenge therefore lies in providing the greatest possible degree of security at an affordable
price. At the same time, user-friendliness must not be excessively restricted. ”

Also in 2006, a year after Estonia was the first country to implement internet voting in a national election,
there is general public support for the system[MM06]. However, we note that: “Approximately 2% of actual voters
made use of this possibility.”

By 2006, many different protocols and schemes for secure and verifiable e-voting had been proposed. In Klep-
tographic Attacks on E-Voting Schemes[GKK+06] it is argued that a wide-range of such schemes are amenable to
a specific sort of attack, which had been overlooked in the original designs. This paper is a good example of the
problems in adopting new technology to meet voting requirements: when can we be sure that we haven’t over-
looked some weakness that could appear after the machines have already been procured, developed or deployed?
Furthermore, such results — although valuable to researchers and developers in the domain of e-voting — will
inevitably undermine the public’s trust in the adoption of e-voting technology.

Another problem was becoming more evident in the media’s attention on e-voting: there was widespread
disbelief at the lack of professionalism in the engineering of the e-voting systems that had been analysed. Don
Gotterbarn summarises the problem in [Got06]:

“. . . the development of the systems by e-voting companies seems unguided by any application of IT
professionalism. The professional develops systems which take into account the interests of all of the
stakeholders, understand the social, political, and ethical issues. The absence of these considerations
leaves us with failed systems. This kind of failure not only harms the voting process but it harms the
practice of IT if we are not vocal about how these systems are professional failures. ”

In particular, this issue has arisen in all independent analyses of e-voting system software.
Researchers continued to analyse risks in e-voting technology and identified a major issue regarding the verifi-

cation and certification of e-voting systems that incorporate commercial-off-the-shelf (COTS) components[MLF06]:

“. . . all versions of the federal voting system guidelines exempt COTS hardware and software from
inspection . . . This loophole is anathema to security and integrity”

118

4.4 Related Work

In effect, the exception goes against good engineering practice and even though the academic community had tried
to close this loophole there has been no move towards a chnage in legislation. A second problem arises when
manufacturers try to exploit this loop hole:

“. . . Diebold Election Systems had erroneously reported to a testing authority (CIBER) that certain
Windows CE operating system files were commercial-off-the-shelf (COTS) but in fact also contained
customized code.”

In E-Voting in Brazil — The Risks to Democracy[RFAB06] we see evidence of mistrust in voting technologies
moving across national boundaries:

“. . . Literature has shown that countries with strong democratic traditions, such as the United States
and Canada, are not yet using electronic voting systems intensively, due to the concern for and empha-
sis on security . . . the introduction of e-voting in Brazil is highly risky to democracy due to the lack of
emphasis on security and the lack of a socially informed and socially driven approach to technological
innovation”

In 2007 there was a large growth in the number of academic (research) papers published concerned with
analysis of e-voting machine risks and comparisons with traditional voting systems. It became clear that in order
to better understand the issues surrounding e-voting it would be necessary to get a better understanding of voting
in general. In [BGE07] usability issues for e-voting are addressed by first comparing the usability of different
traditional voting systems. Thus type of analysis is fundamental in building a domain model and for informing
the specification of e-voting requirements. One insight from their research is that usability is not just an issue for
voters it is also important for the other users of the system, namely the election officials:

“. . . This raises the more general issue of usability of procedures and technologies not just for vot-
ers, but for poll workers and other election administrators as well. Poor usability may influence the
accuracy and security of post election activities such as tabulating and canvassing. This is a largely
unexplored problem.”

A thesis by Everett[Eve07] analyses The Usability of Electronic Voting Machines and How Votes Can Be
Changed Without Detection. This work concludes that “. . . there are not differences between DREs and older
methods in efficiency or effectiveness. However, in terms of user satisfaction, the DREs are significantly better
than the older methods”. However, the thesis demonstrates that “. . . over 60% of voters do not notice if their votes
as shown on the review screen are different than how they were selected” and thus “. . . malicious software installed
on a DRE could steal votes right in front of voters with a low probability of being detected”. Jefferson [Jef07]
argues — through analysis of undervoting in Florida 2006 — that poorly designed ballots (as represented at an
electronic interface) probably resulted in the wrong candidate from being elected. In this case there is no suggestion
that the poor interface resulted from malicious code or by malicious design; however it reinforces the ease with
which one could manipulate an election if one controlled the electronic interface (hardware and/or software).

One of the most influential papers on e-voting machines reports on vulnerabilities of the Diebold AccuVote-TS
Voting Machine which are in widespread use across America[FHF07]. They conclude, based on their analysis,
that:

“ DREs may resist small-scale fraud as well as, or better than, older voting technologies; but DREs
are much more vulnerable to large-scale fraud.”

119

4.4 Related Work

In another paper, further analysis of the Diebold Voting Machine examines whether it is possible to have a mecha-
nism by which a poll worker, on election day, could validate that the software in the voting machine is the software
that was produced by the vendor, without modification. They go on to:

“ . . . demonstrate that the current state of the art in software-based attestation is not sufficiently robust
to provide humanly verifiable voting machine integrity in practice.”

Given the difficulty in validating that software on voting machines, another approach is to ensure that the machines
are secure and that access control would mitigate an attack involving installation of new software. However, a
study by European researchers examined the Nedap/Groenendaal ES3B voting computer[GH07], and it shows that
the installation of new software in Nedap ES3B voting computers is straightforward:

“. . . anyone, when given brief access to the devices at any time before the election, can gain complete
and virtually undetectable control over the election results”.

A similar study showed major vulnerabilities in machines based on optical scan technology[KMR+07b] and out-
lined how the correct functioning of the AccuVote Optical Scan voting terminal (AV-OS) manufactured by Diebold
could be compromised[KMR+07a].

It was now becoming clear that all e-voting systems had vulnerabilities that made them open to attack. An
interesting question is how, after identifying potential attacks, one can introduce procedures for election officials
in order to block or mitigate them. Analysis of the Hart Intercivic DAU eSlate (an e-voting system enabled for
disabled users)[PRH+07] demonstrates that the human element is critical:

“. . . safety depends on informed procedures being devised and followed. People, even election
officials, make mistakes. People can be compromised, often unknowingly. Procedures — for elections
involving electronic voting systems, and not involving electronic voting systems — must take human
imperfections into account.”

By 2007, e-voting machines, in America, should have been accredited against legal standards. However, one
must question whether standardisation procedures are working. With this in mind, Ryan and Hoke analyse the
Diebold Election Systems, Inc. election management software (GEMS)[RH07] and they found that “the GEMS
architecture fails to conform to fundamental database design principles and software industry standards”. This not
only reflects badly on the manufacturers but also on the quality of the standards:

“Despite these technical and systemic deficiencies, GEMS received approval as complying with Fed-
eral Voting System 2002 standards. Questions then arise concerning the adequacy of the 2002 and
2005 regulatory standards . . . the standards structurally encourage and reward election system vendors
for using less exacting database design standards.”

Analysis of e-voting in Ireland — where the vote counting (tabulation) algorithm is very complex — identified
the potential for errors in the vote counting process. Kiniry proposes that the counting process be developed
formally and demonstrates the feasibility of such an approach[Kin07].

Voter verified audit trails — involving paper records — are, in 2008, one of the most popular solutions to the
problem of trusting an e-voting system to correctly count votes. However, as reported in Evaluating Electronic
Voting Systems Equipped with Voter-Verified Paper Records[ASH+08], it is important to “evaluate a printer’s
performance and its integration with the overall voting system”. The introduction of a print functionality is not

120

4.4 Related Work

straigtforward and involves additional risks that need to be managed. We note that this work arose out of an official
request by the Attorney General’s Office of New Jersey, who issued criteria for e-voting machines equipped with
printers and procured testing of various systems against these criteria.

The paper Security Evaluation of ES&S Voting Machines and Election Management System[ACC+08] sum-
marizes a security analysis of the DRE and optical scan voting systems manufactured by Election Systems and
Software (ES&S), as used in Ohio (and many other jurisdictions inside and outside the US). Their analysis identi-
fies:

“ . . . numerous exploitable vulnerabilities in nearly every component of the ES&S system. These
vulnerabilities enable attacks that could alter or forge precinct results, install corrupt firmware, and
erase audit records.”

We note that this work arose out of participation in official reviews of e-voting systems in Ohio22.
In Are Your Votes Really Counted? Testing the Security of Real-world Electronic Voting Systems[BBC+08] a

review of security testing for e-voting systems evaluates not only the machines but the way in which the machines
are tested:

“ Our experience suggests that there is a need for a drastic change in the way in which electronic
systems are designed, developed, and tested. Researchers, practitioners, and policy makers need to
define novel testing approaches that take into account the peculiar information flow of these systems,
as well as the combination of computer security mechanisms and physical procedures necessary to
provide a high level of assurance.”

We note that this work arose out of participation in official reviews of e-voting systems in California23 and in the
EVEREST project in Ohio.

A review of the EVEREST project is found in Systemic Issues in the Hart InterCivic and Premier Voting
Systems: Reflections on Project EVEREST[BEH+08]. This paper proposes that future analysis of e-voting sys-
tems should start with analysis of known vulnerabilities, as this will naturally lead to the discovery of previously
inknown weaknesses:

“ . . . by forcing ourselves to begin with the confirmation of known vulnerabilities, we were able to
quickly learn about the innerworkings of the Hart and Premier systems. This process not only added
value to the community by providing independent validation of previously known problems, but also
served to help us quickly identify new vulnerabilities in both previously evaluated and new compo-
nents of the system.”

In Pre-Election Testing and Post-Election Audit of Optical Scan Voting Terminal Memory Cards[DKK+08],
the issue of risks arising out of customizable components, in optical scan machines, is raised:

“Optical scan electronic voting machines employ software components that are customized for each
specific election. Such software components are critical from a security and integrity point of view,
as they define ballot layout and outcome reporting facilities. The possibility of these components to
be tampered with presents a major concern as incorrect election results may be produced due to either
malicious interference or accidental corruption.”

22Ohio’s Evaluation & Validation of Election-Related Equipment, Standards & Testing (EVEREST) in December 2007
23California’s Top-To-Bottom Review (TTBR) in July 2007

121

4.4 Related Work

We note that this work arose out of an official request from the Office of the Secretary of the State of Connecticut.
In 2008 there was continuing analysis of e-voting in a European context. For example, Modeling and Analysis

of Procedural Security in (e)Voting: the Trentino’s Approach and Experiences[WV08] reports on research carried
out as part of the ProVotE project24. An interesting aspect to their work is that the approach they take is “based
on providing formal specifications of the procedures and using model checkers to help us analyze the effects of
attacks”

At the same time as e-voting systems were being analysed, and weaknesses being identified, there were in-
creasing numbers of calls for paper trails and human auditing. It became clear — as reported in Improving the
Security, Transparency and Efficiency of California’s 1% Manual Tally Procedures[Hal08] — that analysis of
manual counting procedures would give rise to a better understanding of “how voting systems could better support
manual tally audits”. Thus, the problem of voting systems seems, in 2008, to have turned full circle. However,
closer inspection of research in specific subdomains of e-voting (as reviewed in following sections) shows that real
progress has been made.

4.4.1.2 Architecture: design and implementation
In 1998, Susan King Roth identified voter disenfranchisement as a main risk of poorly designed e-voting

systems[Rot98]. Although her analysis focussed on design issues related to man-machine intrefaces, her worked
raised three interesting questions with respect to poorly designed machines, in general:

“. . . if systems are found to cause an unacceptable error rate resulting in rejected ballots, as evidenced
by problems with punch cards in some districts in the U.S., does this imply that previous election
results can be challenged by losing parties? Should there be national supervision and certification of
voting systems rather than the local supervisory structures now in place, which means information
may not be shared across state lines? Can public confidence in the voting process be maintained if
problems with voting systems are published in the media?”

In 2002, Mercuri analysed the problem of designing a A better ballot box[Mer02b]:

“ Despite manufacturers’ statements to the contrary, it is beyond the scope of present computer science
and engineering principles to design a fully electronic, self-auditing voting system that sufficiently
guarantees that all ballots are recorded and tallied in accordance with the voters’ intentions. ”

In 2003 the design of an internet voting system is proposed in REVS Ű A Robust Electronic Voting System[JZF03].
They write that they have designed:

“a robust electronic voting system . . . that tolerates failures in communications and servers while main-
taining all desired properties of a voting system. Another important characteristic of REVS is the
ballot independency; which facilitates its use in any kind of elections or surveys. The implementation
of REVS was carefully designed for assuring scalability and availability in large-scale elections.”

Thus, it would seem that internet voting was not so problematic after all. However, the key issue of anonymity
is mentioned only briefly in the conclusions, where the authors state that “REVS can beneficiate from a more
sophisticated anonymity mechanism”.

Similarly, in 2004, Selker and Goler report on The SAVE system — secure architecture for voting electronically[SG04]:

24A four years project sponsored by the Autonomous Province of Trento that has the goal of switching to e-voting for local elections.

122

4.4 Related Work

“ This voting architecture provides a means to vote over open networks in a way that is reliable, secure,
and private. Due to its modularity and common specifications, it is easy to implement, improve and
it is inexpensive. The system uses COTS equipment for the all of the back-end systems, reducing the
likelihood of fraud with the system components as well as keeping the cost down.”

Their proposal is based on demonstrating that — through n-version redundancy techniques — there is no single
point of failure in their system. It is possible that such an approach will lead to a more trustworthy system but it is
not clear that the additional complexity will make it easier for voters (and other users) to trust. Their architecture
complicates the issue of voter verifiability; but they do state that they “are also examining ways of providing verifi-
able feedback to users, but in a way that does not compromise the confidentiality and receiptfreeness requirements
of voting”.

In 2004, further analysis of the REVS architecture identified weaknesses inherent in the design due to voter
information being centralised[SD04]. By distributing voter information across different election authority domains,
then no single authority (or person) can use the information it collects in order to violate key requirements such as
secrecy and accuracy.

The notion of “Design for dependability” reappears in an article by Bryans et al. in 2006[BLRS06], where they
consider the importance of robustness and fault-tolerance. They argue that a good design must ensure that:

“. . . accidental or malicious corruption of votes will be detected. But these error detection mechanisms
by themselves do not reduce the probability of failures. Detected errors must also be dealt with
properly; aborted elections are still failures. ”

In that spirit, the paper Tamper-Evident, History-Independent, Subliminal-Free Data Structures on PROM Storage
— or — How to Store Ballots on a Voting Machine[MKSW06] proposes a design for an e-voting system component
responsible for vote storage.

The notion of “Design for verification” reappears in an article by Sastry, Kohno and Wagner in 2006[SKW06].
Their approach uses hardware to isolate components in DRE machines, improving their security — specified as
key properties — “without modifying the existing voter experience or burdening the voter with additional checks
or procedures”. An approach to designing the voter interface of a DRE machine, where simplicity is proposed
as a means of assisting verification and testing, is outlined in Prerendered User Interfaces for Higher-Assurance
Electronic Voting[YWHB06]. The paper presents “a specific design for a touchscreen voting machine” and demon-
strates that “it can be implemented in a small fraction of the amount of code in current voting machines”. We note
more details of the research into Prerendered User Interfaces (PRUI) for e-voting is found in Yee’s thesis published
in 2007[Yee07a]; and that Yee extends this work to support other interface features such as accessibility[Yee07b].

The design of remote electonic voting machines — requiring a network for communication between machines
— is a much more complex problem than the design of standalone machines. In e-Voting Requirements and
Implementation[AFT07], they highlight “the complexity of the deployment of e-voting systems and the inherent
security issues that arise from the underlying distributed system”. They propose an architecture design that focusses
on “the security of the election servers and the channels between client machines and the servers”. Unfortunately,
they identify a major weakeness in their architecture (and with remote voting, in general) — they cannot guarantee
the security of the client machine from which a vote is cast. The design of a secure remote evoting system is
also proposed in Civitas: A Secure Remote Voting System[CCM07]. The authors acknowledge that the problem is
difficult:

123

4.4 Related Work

“ Yet as hard as secure supervised voting may be, secure remote voting is even harder.”

but go on to argue that “it is possible today to build a secure, practical, remote voting system”. The use of the
word “practical” is quite deliberate — the authors argue that prior work illustrates a conflict between security and
practicality, but that their prototype “resolves this conflict by demonstrating for the first time that strong security
properties can be offered by a practical remote voting system.” The paper addresses one of the major problems
with remote voting: how can one ensure that voters cannot be coerced when the voting location is unsupervised? In
particular they use the requirement that “voters cannot prove whether or how they voted, even if they can interact
with the adversary while voting.” Their design — based on the formal model first proposed in [JCJ05] assigns a
“private credential” to each voter in order for them to be able to vote. This permits each voter to produce a fake
private credential which, to an adversary, is indistinguishable from a valid credential Thus, under coercion from
an adversary, a voter can substitute a fake private credential for their real private credential. It should be noted that
the architecture may be susceptible to denial-of-service attacks:

“Civitas does not guarantee availability of either election authorities or the results of an election. How-
ever, the design of Civitas accommodates complementary techniques for achieving high availability.”

Furthermore, responsibility now falls on voters to use a trustworthy client machine when recording their vote. It
remains to be seen if such an approach is as practical as claimed: it certainly complicates the registration and
voting process, and it is not clear whether the system for allocating credentials (real or fake) would be trusted by
voters.

Qadah and Taha propose an alternative remote e-voting architecture and illustrate how mobile devices can be
used as voting client machines[QT07]. However, they do note that their implementation — using public wireless
networks — is not suitable for secure elections:

“. . . for highly secure elections, such as political ones, voters need to access the e-voting system
through secure channels including the use of secure client devices located at secure polling locations
and connected to the e-voting system through secure Intranets/private networks”

The problem of voting machine integrity could be addressed by explicitly designing the system to be self-
attesting. In On the Difficulty of Validating Voting Machine Software with Software[GGR07], the authors argue that
“the current state of the art in software-based attestation is not sufficiently robust to provide humanly verifiable
voting machine integrity in practice”. They go on to design a self-attesting vote system based on current technology
and best practice. Through analysis of risks and threats they then implement an attack on the system that indicates
that self-attesting evoting systems (based on their architectural approach) are “currently impractical for use and
. . . as technology advances, the attack will likely become more effective”.

Lundin contributes to the research on e-voting system architectures by proposing a component-based develop-
ment and analysis framework constructed on a layered architecture[Lun07]:

“. . . in order to build an e-voting system we simply add certain distinct pieces together - and in order
to improve on a particular system we swap one distinct piece for another that fits into the same slot”

Sandler and Wallach take an innovative approach to developing e-voting systems, where there is a require-
ment for auditing the procedures followed and events encountered during system execution: they first express a
generic set of auditing requirements and construct a generic infrastructure — called Auditorium — to meet these

124

4.4 Related Work

requirements[SW07]. They then demonstrate how the Auditorium can be instantiated in order to meet specific
e-voting auditing requirements. They acknowledge that their infrastructure does not — and was not designed to —
address key aspects of e-voting such as trustworthy software and voter verificability; but they conclude that their
“design can be added to electronic voting systems in use today, including those used in the election whose auditing
anomalies inspired our work.” This approach is complementary to component-based development and together
they provide strong motivation for research into e-voting software product lines.

The paper Security Evaluation of ES&S Voting Machines and Election Management System[ACC+08] carries
out a general analysis of security. An interesting aspect to their analysis was that by focusing on the architectural
issues they identified the problem of unwanted interactions between components:

“interactions between various software and hardware modules leads to systemic vulnerabilities that do
not appear to be easily countered with election procedures or software updates.”

This is noteworthy as interactions are a major problem in component-based software development and product line
approaches.

In Analysis of a distributed e-voting system architecture against quality of service requirements[GLR08a], the
issue of the quality of service provided by a distributed e-voting system is considered. The paper models different
communication architectures and — through simulation — demonstrates that certain architectures are unable to
provide acceptable quality of service (formulated as the time required to vote), given the requirement that voters are
permitted to vote from any authorised voting station. We note that such a requirement is promoted, independently,
by The case for networked remote voting precincts[SW08].

In Verifiable Anonymous Vote Submission[ZA08] adapt the REVS architecture[JZF03] to deal with anonymity
and verifiability. This work is based on two previous anonymization architectures — Mix Nets and Mix Rings —
which were not originally intended for e-voting systems but which now form the central design feature of many
proposals for remote electronic voting.

4.4.1.3 Counting and Tabulation
The first published work specifically on using a computer to count (tabulate) votes was the paper Algorithm 123
— Single Transferable Vote by Meek’s Method[HWW87]. The authors introduce a better algorithm for distributing
surplus votes that is easily executed on a computer but which would not be suitable for human tabulation. After
specifying the new algorithm — in natural language — they then go on to implement it in Pascal. Finally, they
demonstrate — through manual proof — that the equations that need to be solved at each stage of Meek’s method
have a unique solution.

Mukherjee and Wichmann follow up this work by formally specifying the algorithm in VDM[MW93, MW95].
Two years later, Poppleton — in The Single Transferable Voting System: Functional Decomposition in Formal
Specifications[Pop97] — uses the formal specification language Z to model the counting rules for a simplified
form of STV. The paper demonstrates the utility of a formal specification for validation.

In 2000, the paper Better voting methods through technology: The refinement-manageability trade-off in the
single transferable vote by Tideman and Richardson[TR00] argue that

“ . . . every refinement [to the STV algorithm] comes at a cost of increased difficulty of understanding
the vote-counting algorithm and increased cost of undertaking the count.”

They demonstrate that implementing different variations of count algorithms, in software, facilitates experimenta-
tion with refinements that would not be feasible with manual counting.

125

4.4 Related Work

In Preliminary Study to Empirically Investigate the Comprehensibility of Requirements Specifications, Carew
et al.[CEB+05] compare the validation of the legal definition of STV counting rules expressed in natural language
and expressed in a programming language. They stress the importance of structuring the code so its structure
matches the structure of the legal documents.

In 2007, the paper Verification-Centric Realization of Electronic Vote Counting[KCT07] reprots on the imple-
mentation of a vote count algorithm using the Java Modelling Language (JML) and demonstrates techniques for
verification of safety properties expressed as preconditions, postconditions and invariants.

4.4.1.4 Formal Methods
The first reported uses of formal methods in the domain of e-voting were concerned with specifying the counting
algorithms for alternative vote systems[HWW87, Pop97]. Both these early papers demonstrated the advantages of
using formal methods to analyse complex vote tabulation procedures.

In 2003, McGaley and Gibson — in E-Voting: A Safety Critical System — proposed the use of formal methods
for the synthesis and analysis of all critical components[MG03]. This work was in response to the Irish gov-
ernment’s to introduce an e-voting system which had not been built following best practices for critical system
development.

In 2005, Juels, Catalano and Jakobsson report on Coercion-resistant electronic elections[JCJ05]. They state
that their major contribution is to: “describe and characterize a new and strengthened adversary for coercion in
elections”, and claim that they “additionally present what we believe to be the first formal security definitions for
electronic elections of any type.” They formulate the related properties of correctness — as when a computation of
tally always yields a valid tabulation of ballots — and verifiability — as the ability for any player to check whether
the tally has been correctly computed.

In the same year, Kremer and Ryan report on an Analysis of an electronic voting protocol in the applied pi-
calculus[KR05]. The write “Recently highlighted inadequacies of implemented systems have demonstrated the
importance of formally verifying the underlying voting protocols.” They then demonstrate how the applied pi
calculus could model a known protocol for elections; and “formalise three of its expected properties, namely
fairness, eligibility, and privacy.” It should be noted that their verfication was not fully automated, and required
manual proof of some key properties. In a follow-on paper — Coercion-Resistance and Receipt-Freeness in Elec-
tronic Voting — a year later, Delaune, Kremer and Ryan studied two particular anonymity properties of election
protocols: receipt-freeness and coercion-resistance. They showed that receipt-freeness can be expressed using
observational equivalence from the applied pi calculus; but they needed to introduce a new relation to capture
coercion-resistance.

In 2006, in Formal techniques in a remote voting system[KMC+06, Kin07, KCT07], the authors describe the
formal techniques incorporated during the development of components of the Kiezen op Afstand1 (KOA) open
source e-voting system for remote elections. In particular, they report on the use of the JML and the ESC/Java2
tool for verification of the count implementation in Java.

A year later, in Evaluating Procedural Alternatives in an e-Voting Domain: Lessons Learned[BFMV07], we
see one of the first modelling approaches to mix formalisms in the specification of e-voting system behaviour. The
authors present a modelling approach based on the integration of UML and Tropos, exploiting complementary
features of the two modelling approaches and allows them to “maintain both an operational view of the voting
procedures and a visual approach to evaluate choices in designing the electronic processes”. The modelling is not
formal enough to facilitate automated verification, but their combination of formalisms is noteworthy.

126

4.4 Related Work

The same year, Cansell Gibson and Mery published complementary papers that illustrated how the B method
could be used to verify voting system properties. Firstly, they considered the Formal verification of tamper-
evident storage for e-voting[CGM07a]. Secondly, the reported on Refinement: A Constructive Approach to Formal
Software Design for a Secure e-voting Interface[CGM07b]. General interest in Verification and Validation Issues
in Electronic Voting[CC07] (and the need for rigour[Gib07] in order to achieve reliability[Yee07a]) was growing;
and many examples of systems being evaluated using formal methods were being published. A good example is
Simulation-based analysis of E2E voting systems[dMPQ07], where the authors use simulation to analyse properties
of security protocols in different systems. The main motivation given is that:

“ End-to-end auditable voting systems are expected to guar- antee very interesting, and often sophis-
ticated security properties, in- cluding correctness, privacy, fairness, receipt-freeness, . . . However,
for many well-known protocols, these properties have never been analyzed in a systematic way. In
this paper, we investigate the use of techniques from the simulation-based security tradition for the
analysis of these protocols.”

The general question of using formal methods in electronic governance (including e-voting) was raised in
Technological foundations of electronic governance[DJOS07], where the authors discuss the “relevance and op-
portunities for the application of mature Formal Techniques — techniques based on mathematical theories and
supported by industry-ready tools and methods — to build technical solutions for Electronic Governance”.

In An Information-Theoretic Model of Voting Systems[HV07], Hosp and Vora motivate an information-theoretic
approach to rating voting systems for integrity, privacy and verifiability. They develop a mathematical framework
and show that tradeoffs exist between integrity and privacy and between verifiability and privacy. This paper is
interesting because it shows how mathematical modelling can be used in formalising and making design decisions.

In 2008, the formal description technique Estelle is used in the Analysis of a distributed e-voting system
architecture against quality of service requirements[GLR08a]. At the same time, the property elicitation tool PRO-
PEL, toegther with the finite-state verifier FLAVERS, were used to formally verify that an election process model
adhered to key properties[SMCO08]. Focusing on procedural security — the paper Modeling and Analysis of Pro-
cedural Security in (e)Voting: The Trentino’s Approach and Experiences[WV08] — combined UML modelling
with reasoning in temporal logic in order to understand the effect and impact of faults on safety requirements.

In 2009, the First International Workshop on Requirements Engineering for e-Voting Systems[GJ09] included
a number of papers on the use of formal methods.

Recently, the paper Engineering a distributed e-voting system architecture: meeting critical requirements[GLR10]
illustrates the need for different modelling languages in the specification of e-voting architectural requirements:

“Given the different roles played by the requirements and design models, we believe that there is a
need for a number of different modelling languages when verifying designs against different types
of requirements. Of course, this poses the problem of how to ensure that the different models are
consistent and how to integrate them into a coherent whole”

In Formal Specification and Analysis of an E-voting System[WKV10] the authors “use the ASTRAL language
to specify the voting process of ES&S machines and the critical security requirements for the system. Proof
obligations that verify that the specified system meets the critical requirements were automatically generated by
the ASTRAL Software Development Environment (SDE). The PVS interactive theorem prover was then used to

127

4.4 Related Work

apply the appropriate proof strategies and discharge the proof obligations.”

4.4.1.5 Domain Modelling
By 2005, it had become clear that poorly engineered requirements was a major problem common to many e-voting
systems. The main cause of this problem was that e-voting was a poorly understood domain and would benefit
from a more rigorous modelling of the domain.

In Does Ontology Influence Technological Projects? The Case of Irish Electronic Voting[ZS05] Zelic and Stahl
examine different types of ontological reasoning within the context of the e-voting problems that were reported in
Ireland. As ontologies (and their modelling) are an important aspect of domain modelling, this paper — through
higlighting the fact that different ontological viewpoints can give rise to different conceptions of technoogy —
provides a warning that it is not sufficient to build an ontology in order to better understand the e-voting problem
domain, one must also chose the right sort of ontology.

Another approach to modelling a problem domain, such as (e-)voting, is to propose a framework upon which
any system that works in the domain can be evaluated. As such a framework evolves and is refined, it will implicitly
contain domain knowledge. Transforming such an evaluation framework (such as that proposed by Sampigethaya
and Poovendran[SP06]) is a good initial step in the construction of a domain model.

In Evaluating Procedural Alternatives in an e-Voting Domain: Lesson Learned[BFMV07], the authors propose
modelling the procedural aspects of (e-)voting using a combination of modelling languages. They note that the
domain is very complex and that future work is necessary in order to widen the domain (model) to incorporate
aspects such a security. Furthermore, they note that the expressiveness of their underlying modelling languages and
the limits of the tool support, for automated reasoning, significantly weaken their approach to domain modelling.

4.4.1.6 Engineering: general views on software quality
As early as 1990, Neumann commented on the risks of poorly engineered software in e-voting machines[Neu90]:

“Vendors can hide behind a mask of secrecy with regard to their proprietary programs and practice,
especially in the absence of controls. Poor software engineering is thus easy to hide. Local election
officials are typically not sufficiently computer- literate to fully understand the risks.”

Two years later, Mercuri comments on the fact that there may be a need for restrictions on the individuals who
can engineer the software in e-voting systems[Mer92]:

“. . . no laws . . . presently preclude convicted felons or foreign nationals from manufacturing, engi-
neering, programming or servicing voting machines. . . . “Trust us” should not be the bottom line for
computer scientists.

We should ask whether only professionaly qualified software engineers should be permitted to develop the software
in e-voting machines. However, this question raises even more issues as no appropriate qualification currently
exists.

A year later, Mercuri writes that software bugs had been reported for some (apparently) simple programming
tasks such as merging vote counts[Mer93]:

“Difficulties with the central software for merging the electronic and mechanical tallies created further
delays in reporting results.”

128

4.4 Related Work

This early warning, concerning the poor quality of code that cannot guarantee correct functionality for the simplest
of tasks, was largely ignored in later years.

In Principles and requirements for a secure e-voting system[Gri02], Gritzalis puts forward the proposal that
the quality of the software in an e-voting system can be guaranteed by the process used in its development. Thus,
a system that is developed using standard, well-accepted, engineering methods should be more turstworthy than
a system that is not. (One could argue that professional engineers are very likely to use such methods in the
development of e-voting systems, and thus we need only trust that the individual developers are properly qualified.)
This theme of trust and secure engineering is addressed by many of the articles in the book Secure Electronic
Voting(edited by Gritzalis) in 2003[Gri03].

McGaley and Gibson propose that formal methods may be the best approach to engineering the critical software
that counts the votes[MG03]:

“. . . it is perfectly realistic to assume that some mistakes may have been made in the development of
the count software, especially since the system was not developed formally.”

In Grove’s review of the ACM Statement on Voting Machines[Gro04b] the issue of poorly engineered software
is repeated several times, for example:

“ . . . many electronic voting systems have been evaluated by independent, generally recognized experts
and have been found to be poorly designed; developed using inferior software engineering processes;
designed without (or with very limited) external audit capabilities; intended for operation without
obvious protective measures; and deployed without rigorous, scientifically designed testing.

. . . such systems must embody careful engineering . . .

”

Ten years later, the ACM communications published a special issue — The problems and potentials of voting
systems — on e-voting[Neu04]. It is worthy of note that the need for properly engineered software was a recurring
theme in the majority of the articles contained within.

McGaley and McCarthy return to the issue of professional engineering of software in e-voting systems in
Transparency and e-Voting: Democratic vs. commercial interests[MM04]

“No bridge would be built in the developed world without the involvement of an engineer, and yet
computer systems are commonly installed by people with minimal knowledge and training.”

Despite poorly developed software being a major problem in e-voting systems, many of the proposed security
mechanisms depend on additional, complex, software functioning correctly. For example, this is a problem with
using digital signatures[KSW05]:

“. . . However, since voters cannot verify signatures on their own, this approach requires another set of
hardware devices and software that voters must trust.”

One must question whether an engineering approach that requires more software (as a critical system component) is
appropriate in the current context of the way in which software is constructed by e-voting machine manufacturers.

Neumann writes about the Responsibilities of Technologists[Neu05] and notes the need for professional experts
to be involved in the evaluation of e-voting systems. In particular, there is a pressing need for software expertise as
there are an increasing number of reports of trivial voting functionality being correctly implemented (in software):

129

4.4 Related Work

“Some machines lost votes because of programming problems, or recorded more votes than voters.”

4.4.1.7 Cryptography: Protocols and Schemes for Anonymity and Verifiability
In 1981, perhaps the earliest reference to the use of cryptographic protocols in electronic voting appears in Un-
traceable Electronic Mail, Return addresses, and Digital Pseudonyms[Cha81] by Chaum. The paper presents a
technique, based on mixing messages to ensure anonymous channels that separate votes from voters, that

“. . . allows an electronic mail system to hide who a participant communicates with as well as the
content of the communication — in spite of an unsecured underlying telecommunication system. The
technique does not require a universally trusted authority.”

The application of the technique to voter-verifiable elections is suggested:

“Elections in which any interested party can verify that the ballots have been properly counted are
possible if anonymously mailed ballots are signed with pseudonyms from a roster of registered voters.”

In 1982, DeMillo, Lynch and Merritt analyse the security of Cryptographic Protocols[DLM82]. They introduce
a general model which they specialise to different application areas, including “secret ballot elections”. In the same
year, Yao published Protocols for Secure Computations[Yao82] in which the use of one way functions is shown to
be appropriate for implementing secret voting systems.

In 1985, Cohn and Fischer published a paper — A Robust and Verifiable Cryptographically Secure Election
Scheme [CF85] where the notion of an e-voting system being robust against attacks is introduced:

“ . . . it is robust in the sense that no conspiracy of dishonest voters can prevent, with more than very
low probability, the successful completion of the election. . . . the government, even acting in collusion
with a conspiracy of dishonest voters, cannot release a false tally without being detected by every
honest voter, except with very low probability. ”

In 1986, the paper Distributing the Power of a Government to Enhance the Privacy of Voters[BY86] demon-
strates that it is possible to distribute the functionalities of government within an e-voting cryptographic voting
scheme, such as that proposed in [CF85], so that it is possible

“. . . to achieve privacy of individual votes in a much stronger sense without giving up any of the previ-
ously attained properties of robustness or veriability. This gives an electronic mechanism for holding
a large-scale election amongst untrusted parties which is far more useful in real-world applications
. . . ”

Work continued for a number of years on e-voting cryptography schemes. Many of the schemes went through
a number of refinements but most were based on a small set of similar approaches (for example, Iversen proposes
an election scheme based on e-payment protocols[Ive91]. A review of these is found in A Practical Secret Voting
Scheme for Large Scale Elections[FOO93] where the authors also propose a new scheme which introduces new
requirements concerned with maintaining privacy (if the administrators conspire with the vote counters) and en-
suring fairness (so that no one can know an intermediate result of the voting). Their paper also formulated seven
objectives of secure e-voting: completeness, soundness, privacy, unreusability, eligibility, fairness and verifiability.
Later work suggests that these objectives could be better formulated and that they are incomplete; however, the

130

4.4 Related Work

explicit statement of high-level objectives would become a standard component to later publications concerned
with e-voting protocols.

By 1994, a number of schemes existed for verifiable secret elections. However, a common weakness was that
they generated a receipt which could open up the possibility of a voter proving to others how they have voted.
This in turn would compromise the fundamental requirement for coercion-free elections. Benaloh and Tuinstra
address this issue in more detail in Receipt-free Secret-ballot Elections[BT94], where they demonstrate that it is
not necessary to provide a receipt — showing how a voter has voted — in order to provide voter verifiability. This
coercion-freeness is dependent on the physical assumption of private voting booths so that coercion is not possible
during the process of recording a vote. In Conducting secret ballot elections in computer networks: Problems and
solutions[NS94], Nurmi and Salomaa

“. . . discuss problems related to devising a secret balloting system with the following properties: (1)
all eligible voters and they only may vote, (2) all ballots are secret, i.e. do not reveal the identity of the
voter, (3) all voters may check whether their ballots have been correctly assigned, (4) the voters may
revise their ballots within a predetermined time, and (5) errors in ballot assignment can be corrected
within a predetermined time.”

A year later, Sako and Kilian published Receipt-free Mix-type Voting Scheme[SK95]. The interesting advance
from the previous work is that they weaken the precondition for a physically isolated voting booth so that their
scheme requires only a private channel for communicating messages between a central administration authority
and the voters.

In 1995, Niemi and Renval propose, in How to Prevent Buying of Votes in Computer Elections, a scheme25 for
allowing a voter to verify that their vote has been counted correctly without being able to sell their vote without
the coalition of all interested voting parties[NR95].

In 1996, Borrell and Rifa propose An implementable secure voting scheme[BR96] that:

“ . . . reduces the cryptographic and communication requirements in comparison with other schemes
which have been presented. No special comnunication channels are needed, and therefore it can be
easily implemented on any existing computer network.”

In their approach (using certification authorities to implement secret and authentic communications) they claim
to “adopt simplicity as a crucial design requirement”. However, as their high-level architecture involves nine
components with a total of eighteen communication channels, it is not clear whether their proposal is as simple as
they claim.

By 1996, there were many competing protocols for secure e-voting, yet it was not clear how these could be
compared. Cranor addresses this problem (albeit indirectly) through an analysis of cryptographic techniques that
could be used to ensure that e-voting systems exhibit fundamental characteristics: accuracy, democracy26, privacy,
verifiability, convenience, flexibility and mobility[Cra96]. This analysis demonstrates the importance of properly
understanding and formulating requirements in order to judge the quality of the proposed systems in meeting the
needs of different political systems in different democratic environments:

25This scheme reappears in 1999[NR99] where more technical details are provided and inefficiencies in the original protocol are removed.
26They rename the “democracy” characteristic as “invulnerability” in later work[CC97]

131

4.4 Related Work

“Although none of the voting protocols described here satisfy all of our desirable properties com-
pletely, some satisfy them well enough so as to be as good as or better than the traditional voting
systems they may replace.”

Hwang introduces a new requirement for “social acceptance” in A conventional approach to secret balloting in
computer networks[Hwa96]. The scheme that is proposed is argued to be socially acceptable because:

“ . . . it resembles the conventional, non-computer, paper-based voting in basic procedures and organi-
zational functioning.”

In A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting[Sch99], Schoen-
maker presents a a new type of universally verifiable election scheme based on Publicly Verifiable Secret Sharing
(PVSS). The scheme is more efficient than similar previous schemes[FOO93] and it focuses on the concept that
anyone can verify that votes were correctly recorded and counted (not just the voters).

Schoenmakers then published Compensating for a lack of transparency[Sch00] where he reviews an actual
system built on previous homomorphic encrypion schemes[CF85, BY86] and their implementation[CGS97].

In A Verifiable Secret Shuffle and its Application to EVoting[Nef01] provides a good overview of the problem
of mixing votes and verifying the validity of the mix (through an audit):

“. . . the problem of achieving the same kind of random, yet verifiable permutation of an input sequence
is surprisingly difficult. The problem is that the data itself is either always visible to the auditor,
or it isn’t. If it is, then the correspondence between input records and output records is trivial to
reconstruct by the auditor, or other observer. If it isn’t, then input and output records must be different
representations of the same underlying data. But if the output is different enough (that is, encrypted
well enough) that the auditor cannot reconstruct the correspondence, then how can the auditor be sure
that the shuffler did not change the underlying data in the process of shuffling? ”

The paper then proposes an efficient (linear) method for solving this problem.
By 2003, many different schemes and protocols had demonstrated the feasibility of remote electronic voting.

However, the reality was that any large-scale implementation of remote voting would most likely have to use the
internet as its underlying communication architecture. Thus, the problem of unreliable and faulty communica-
tions arises. In REVS — A Robust Electronic Voting System[JZF03], Joaquim et al. propose a system specifically
designed for distributed and faulty communication architectures (like the Internet). The key is that faulty, untrust-
worthy, communication should not compromise the protocols that are fundamental to the voting scheme. The paper
provides a useful categorisation of voting protocols into three classes:

• Blind signatures are simple, with low computational costs, and are ballot independent (for example, see:
[FOO93, CC97])

• Mix-nets require less voter’s interactions, but need complex proofs of correctness (for example, see: [Cha81,
SK95])

• Homomorphic encryption have complex mathematical structure and high computational costs. Further,
these protocols do not work with many common types of ballots and tabulating processes (for example, see:
[BY86, BT94, CGS97])

132

4.4 Related Work

In The design of a secure anonymous Internet voting system[CJC04], yet another protocol scheme is proposed.
An interesting aspect to this paper is that the authors attempt to carry out an objective evaluation of their proposed
system against alternative systems. They formalise this analysis around ten criteria that had motivated more-or-less
all previous published work on e-voting cryptography protocols:

• Fairness — No one can learn the voting outcome before the tally

• Eligibility — Only eligible voters are permitted to vote

• Uniqueness — No voter is able to vote more than once

• Uncoercibility — No voter can prove how he voted to others

• Anonymity — There is no way to derive a link between the voter’s identity and the marked ballot.

• Accuracy — All valid votes are counted correctly and no vote can be altered, duplicated, or removed

• Efficiency — The computations can be performed within a reasonable amount of time

• Robustness — A malicious voter cannot frustrate or disturb the election

• Mobility — There are no restrictions on the location where voters can cast their ballots

• Practicability — No extra skills are required to vote and no additional equipment is required

From their analysis, it is clear that the engineering of e-voting systems involves compromise between these criteria.
Their paper overlooks other criteria such as cost, quality of service (for example, how long it takes to vote),
maintainability, verifiability, etc They suggest their proposed system is “very suitable for implementation on
the Internet”, yet they do not address the issue of denial-of-service attacks and they have a very weak interpretation
of what it means for uncoercibility.

By 2004, the list of e-voting system security requirements, as reported in the literature, had been growing
rapdily. Groth identified, in Evaluating Security of Voting Schemes in the Universal Composability Framework[Gro04a],
that “designers of voting protocols face two problems: if they do not know the literature well they may miss a se-
curity requirement, and even if they do cover all known requirements this does not guarantee that new yet to be
discovered requirements are satisfied by their voting scheme.” To partially solve this problem, they suggest evalu-
ating voting schemes in the universal composability (UC) framework of Canetti. They argue that their approach

“ . . . has the advantage that it covers many security requirements in a single security model. This sim-
plifies security proofs since we only need to prove universal composability to prove all these specific
security requirements. Our approach is also pro-active in the sense that using a general security model
may mean that security requirements yet to be discovered are covered.”

This paper is important because it demonstrates the utility of a standard model for requirements and their formal
verification (albeit covering only a subset of the security criteria generally used for evaluating e-voting systems).
We note that this work motivated the work reported, three years later, in Simulation-based analysis of E2E voting
systems[dMPQ07], where the authors investigate the use of techniques from the simulation-based security tradition
(in the line of the UC framework) for the analysis of voting protocols.

In The Vector-Ballot E-Voting Approach[KY04] Kias and Yung argue that since each of the three basic types
of e-voting scheme (mix nets, homomorphic encryption and blind signatures) have their own strengths and weak-
nesses, a better approach would be to try and combine/compose these schemes. They argue that their proposed
combination of “mix networks and homomorphic encryption under a single user interface” results in a system
where the three basic properties of “(i) efficient tallying, (ii) uni- versal verifiability, and (iii) allowing write-in

133

4.4 Related Work

ballot capability (in addi- tion to predetermined candidates)” are better addressed than with any of the basic types
of scheme.

The critism that homomorphic encryption schemes are resource intensive (and inefficient) is addressed in Mul-
tiplicative Homomorphic E-Voting[PAB+04], where the authors demonstrate that a multiplicative scheme is more
efficient than the previously published additive homomorphic schemes. They also demonstrate that their scheme
is more efficient than mix net voting schemes when the number of candidates is small.

In Secret-Ballot Receipts: True Voter-Verifiable Elections[Cha04] Chaum proposes using receipts that are en-
coded visually with two layers so that the voter can, using one layer, verify that their vote is counted without being
able to demonstrate how they have voted; except to an entity who has a copy of the 2nd layer. This scheme requires
sophisticated printing processes and add complexity to the interaction between voters and the voting system. This
scheme is improved upon in A Practical, Voter-Verifiable Election Scheme[CRS05] where the Prêt à Voter scheme
replaces the visual with a more conventional representation of the vote: “ballot forms with the candidates or voting
options listed in one column, and the voter choices entered in an adjacent column.” The paper identifies that the
scheme requires further work and analysis of risks but it clearly offers many advantages over previous schemes.
We note that a similar layered approach is seen in the Scratch and Vote protocol[AR06] but it uses the more familiar
technology of scratch surfaces to simplify the vote and audit process.

In Analysis of an Electronic Voting Protocol in the Applied Pi Calculus[KR05] Kremer and Ryan demonstrate
that one can formally verify properties of cryptographic protocols in an automated fashion, using a protocol veri-
fication tool. They also show that the tool is unable to prove all properties automatically and that a manual proof
must be used and checked in such a case.

In Coercion-Resistant Electronic Elections[JCJ05] the problem of coercion resistance with remote voting is re-
addressed. The clear issue is that a coercer may be present when a voter records their vote and a scheme for e-voting
must provide a means for ensuring that in such a circumstance the coercer cannot be sure that the vote recorded
(under their supervision) is the one that will actually be counted. The first contribution of this paper is to describe
and characterize “a new and strengthened adversary for coercion who may demand of coerced voters that they
vote in a particular manner, abstain from voting, or even disclose their secret keys”. The second contribution is to
define a scheme that is “coercion-resistant as it is infeasible for the adversary to determine whether a coerced voter
complies with the demands”. This scheme is based on the use of voter credentials and an underlying architecture
for producing real (and false) credentials and for checking credentials in a way that is guaranteed to be hidden
from a potential coercer. The authors note that the scheme is not yet practical because of the overhead for tallying
authorities as the number of voters grows.

In Cryptographic Voting Protocols: A Systems Perspective[KSW05] the authors identify several potential
weaknesses in cryptographic voting protocols which became apparent only when attacks are considered in the
context of the entire voting system:

“These attacks could compromise election integrity, erode voter privacy, and enable vote coercion.
Whether our attacks succeed or not will depend on how these ambiguities are resolved in a full im-
plementation of a voting system, but we expect that a well designed implementation and deployment
may be able to mitigate or even eliminate the impact of these weaknesses. However, these protocols
must be analyzed in the context of a complete specification of the system and surrounding procedures
before they are deployed in any large-scale public election.”

The main contribution of this paper is to show the importance of modelling a voting system as a whole and that the

134

4.4 Related Work

security of a system cannot be guaranteed throw analysis of the underlying cryptographic voting scheme alone. We
note that this paper motivated Ryan and Peacock to revisit the Prêt à Voter scheme from a system perspective[RP05]
and they demonstrate that the scheme is “remarkably robust to most of the vulnerabilities” that can arise from a
system view.

In E-voting: Dependability Requirements and Design for Dependability[BLRS06] the authors illustrate the
fault-tolerant design implied by the Prêt à Voter scheme and discuss “the allocation of dependability requirements
to subsystems for defence against both accidental fault and malicious attacks”. A main contribution of the paper
is the discussion concerning the balance between design time and run time measures for achieving and assessing
the dependability of complex voting systems. They highlight the need for considering the whole socio-technical
system, and for integrating security and fault tolerance viewpoints:

“Our discussion has emphasised three aspects: requirement specification, with the need to translate
society’s informal requirements and to consider how threat profiles change compared to those affecting
non-electronic elections; design issues for the fault-tolerant system, including the need to complement
the basic cryptography-based ideas with explicit methods for assurance of the detection mechanisms
and explicit recovery mechanisms, subsystem-level dependability requirements and the concern for
denial-of-service attacks; and the need to integrate technical considerations with psychological and
social ones that determine the threat profile, the voters’ reactions and the effectiveness of the socio-
technical mechanisms for error detection and recovery.”

In Coercion-Resistance and Receipt-Freeness in Electronic Voting[DKR06], Delaune, Kremer and Ryan exam-
ine the relation between privacy, coercion-resistance and receipt-freeness as in much of the previously published
literature the terms are not used clearly. They formalise the following definitions in the applied pi calculus frame-
work:

• Receipt-freeness — a voter does not gain any information (a receipt) which can be used to prove to a coercer
that she voted in a certain way. This is quite naturally formalised as an observational equivalence.

• Coercion-resistance — a voter cannot cooperate with a coercer to prove to him that she voted in a certain
way. In this case, observational equivalence is not flexible enough, and they generalise it to a notion which
they call adaptive simulation.

• Privacy — the system cannot reveal how a particular voter voted (also formalised as an observational equiv-
alence).

They then go on to “prove that, in accordance with intuition, coercion-resistance implies receipt-freeness, which
in turn implies privacy”. They note that Jules, Catalano and Jakobsson also provide formal definitions of these
concepts[JCJ05] but that a comparison is difficult because of large differences between the underlying models.

In Kleptographic Attacks on E-Voting Schemes[GKK+06] the authors identify that evoting systems based on
particular cryptographic schemes may be vulnerable to attacks using kleptograhic techniques: “using randomness
in e-voting schemes yields a threat of constructing a subliminal channel by a malicious voting machine”. They
show how information leaked by specific types of kleptographic attack can be “retrieved only by a party possessing
a certain secret key and that such a malicious implementation neither changes the protocol executed nor can be
detected without reverse engineering of the software running on the device”. Thus, if one cannot trust the machine
manufacturers then there is a potential for them to include a kleptographic trapdoor in their products which can be
found only through analysis and verification of all system components.

135

4.4 Related Work

In A framework and taxonomy for comparison of electronic voting schemes[SP06] the authors propose three
different classes of requirements:

• General Security Requirements — Eligibility, Privacy, Verifiablity, Dispute-freeness, Accuracy, Long-
term Privacy and Fairness

• Adversary Counter-attack Requirements — Robustness, Receipt-freeness and Incoercibility
• System Implementation Requirements — Scaleability and Practicality

The main contribution of the paper is a detailed analysis of more than 20 schemes against these requirements. A
weakness is that they do not try to match their requirements against similar lists provided in previous publications(
for example, in [CJC04]).

In Ballot Casting Assurance via Voter-Initiated Poll Station Auditing[Ben07] Benaloh argues that “if done
properly, substantial integrity can be obtained by giving voters and observers the option to challenge ballot validity
without requiring all voters to do so.” Hence, the majority of voters do not need to follow an elaborate process of
vote verification but they can be reasonably sure that a high-quality audit is carried out provided a small minority
of voters do carry out some verification. The paper proposes a generic voting process that is suitable for any form
of direct ballot casting scheme (for example, Prêt à Voter[BLRS06] and ThreeBallot Voting[RS07]). They note
that direct ballot casting is simple but fragile and that the process must be carefully managed. It then describes
a detailed process that mitigates all known threats which provides a “blueprint for how verifiable, open-audit
elections can reasonably be conducted in practice”. The paper’s main weakness is that the threats and process are
not formally modelled, and consequently the reasoning, concerning properties of the process whilst under attack,
lack rigour.

The notion of bare-handed voting, where the voter requires no computational power, was first introduced by
Chaum[Cha04] but it has the disadvantage that the voter must reveal their vote to the voting booth (machine).
Thus, a voter has to trust that the software (algorithm) running on the machine is the correct one. In Practical high
certainty intent verification for encrypted votes[RTS07] this problem of trust is addressed by allowing the voter
the use of a computer device but only at a pre-processing stage — the voting itself is done bare-handedly. Thus,
the voter maintains his privacy with respect to the voting booth and withithout sacrificing secrecy to some other
party (like the ballot generators). This is done by involving the voter (with the aid of a computing device) in the
ballot generation process. The authors note that the protocol proposed is a variation on the Prêt à Voter[CRS05]
and Scratch and vote[AR06] schemes. One problem that exists with this protocol (and the schemes on which it is
based) is that it can not settle disputes when auditing finds inconsistency between voting data: the protocol supplies
no way of determining whether the voter is honest and the booth is dishonest or vice versa. However, the authors
suggest that this problem is easily solved in practice.

In Three Voting Protocols: ThreeBallot, VAV, and Twin[RS07], Rivest and Smith propose the goal of achieving
the same security properties as recently proposed cryptographic voting protocols using only paper ballots and no
cryptography. They then introduce three different protocols that go some way to meeting this goal:

• ThreeBallot —

. . . “each voter casts three paper ballots, with certain restrictions on how they may be filled out.

. . . A voter receives a copy of one of her ballots as her “receipt”, which she may take home. Only
the voter knows which ballot she copied for her receipt. The voter is unable to use her receipt to
prove how she voted or to sell her vote, as the receipt doesn’t reveal how she voted. A voter can

136

4.4 Related Work

check that the web site contains a ballot matching her receipt. Deletion or modification of ballots
is thus detectable; so the integrity of the election is verifiable.”

• VAV —

VAV is like ThreeBallot, except that the ballotmarking rules are different: one ballot may “cancel”
another (VAV = Vote/Anti-Vote/Vote).

• Twin —

“. . . is based almost entirely on Floating Receipts27 where each voter casts a single ballot and
takes home a single [floating] receipt.”

It remains to be seen whether these simple voting procedures will withstand more rigorous analysis by academics
and whether they can be adopted in practice. They provide clear mechanisms for detecting problems but this raises
issues of how to deal with such problems if/when they arise. We note that the authors do not file any patents on
these approaches; and they encourage others who work on extensions, improvements and variations to act similarly.

Auditing is a key requirement for all voting schemes. In Casting Votes in the Auditorium[SW07] Sandler and
Wallach propose a secure auditing infrastructure — the Auditorium — to provide a verifiable, global record of
critical election events; “where each event is irrevocably tied to the originating machine by a digital signature, and
to earlier events from other machines via hash chaining”.

In Mobile implementation and formal verification of an e-voting system[CFM+08] the authors propose a mobile
implementation (using Java MIDlets) of a variation of the Sensus e-voting protocol[CC97]. A major weakness of
this protocol is that it allows one of the entities involved in the election process to cast illegitimate votes for
registered voters who have abstained from voting. To address this problem they adapt the protocol and use a
CCS-like process algebra to model the system (including the new protocol) and a model checker to verify that this
weakness no longer exists. The approach in the paper is noteworthy: they use formal methods to demonstrate a
weakness in an existing protocol and to develop a variation of the protocol in which the weakness is shown to
be removed in a formal, automated, fashion using model checking tools. One issue that arises, but which is not
addressed in the paper, is whether previously verified (proven) properties of the original protocol are compromised
by the changes made in producing the new version.

In the 2008 presidential elections, the use of optical scanning equipment was widespread. The need for higher
levels of integrity in these systems is addressed in Scantegrity II: End-to-End Verifiability for Optical Scan Election
Systems[CEC+08], where the authors propose a novel use of confirmation codes printed on ballots in invisible
ink. The paper reports that the system “. . . has been implemented in open-source Java with off-the shelf printing
equipment and has been tested in a small election.” The use of invisible ink allows correctness of the receipt
to be verified by giving a voter a choice to audit it after it is created but before it is seen, “proving to the voter
that (with high probability) the receipt was generated correctly.” (This idea is also seen in the Scratch and Vote
protocol[AR06].) It remains to be seen whether the scheme fulfils its “promise of being the first end-to-end voting
system to come into use in public sector elections”.

The well-known problem of the “Italian attack” is addressed in Coercion-Resistant tallying for STV voting[TRN08].
This attack is unique to STV schemes where votes are tallied in public: they suffer from a coercion problem when
there are many candidates, because a coercer can demand a certain permutation from a voter and then check

27With floating receipts, voters may take home a copy of another (unknown) voter’s ballot.

137

4.4 Related Work

whether that permutation appears during tallying. The paper shows that this attack can be addressed through the
verifiable tallying of encrypted STV votes. However, they acknowledge that their proposal requires further analysis
and refinement.

The problem of anonymity in STV voting is also addressed in Analysis, Improvement and Simplification of
Prêt à Voter with Paillier Encryption[XSHT08] which more generally examines the problem of leakage of voter’s
choice information in different election types. (Details of the STV analysis is found in Implementing STV securely
in Prêt á Voter[Hea07].)

In Verifiable Anonymous Vote Submission[ZA08] adapt the REVS architecture[JZF03] to fulfil requirements of
anonymity and verifiability. One interesting aspect of the proposed scheme is that there is an additional requirement
that “it should be possible to submit the same vote several times and to detect and drop vote replicas at the tallying
phase”.

4.4.2 Software Product Lines

Although the origins of SPLs are decades old[McI68, Par76], most of the initial research was carried out in the late
1990’s[Wit96, AW97, BFK+99, Bos99b, Bos99a, DS99]

At the turn of the century, the field expanded. We focus on the three main sub-topics which are most directly
relevant to this proposal: features and interactions, the need for formality, and industrial case studies.

4.4.2.1 Features and Interactions
A breakthrough paper that linked features and variability was published in 2001 by van Gurp, Bosch and Svahnberg[vGBS01]:

“ This is an important characteristic of our approach as it is an important means for early identification
(i.e. before architecture design) of variability needs in the future system. ”

In 2002, we saw the emergence of a Feature-Oriented Domain Analysis (FODA) approach to SPLs[KLD02]:

“The Feature-Oriented Reuse Method concentrates on analyzing and modeling a product line’s com-
monalities and differences in terms of features and uses this analysis to develop architectures and
components. The FORM explores analysis and design issues from a marketing perspective.”

In 2003, Kuloor and Eberlein identified cross-cutting concerns which could be viewed as non-local features.
As a solution they proposed: Aspect-Oriented Requirements Engineering for Software Product Lines[KE03].

Many more advances were made in modelling SPL requirements using features, but it was clear that integration
(and interactions) were a major problem[Dhu06]. In particular, this paper highlights the common problem of
verification techniques, which were (and still are) an open fundamental research question:

“We’ve built some initial models of our industry partner’s product line to test the concepts developed
so far. Various other iterations will be necessary to cover all necessary aspects to model a real world
situation. We still haven’t devised any mechanisms to verify the consistence and completeness of the
model automatically. Completeness of the instantiated products also needs to be confirmed. By and
large, an integrated model consisting of features and architectural elements can to some extent support
and automate various activities of product line engineering.”

In 2007, Decker and Dager take a customer oriented view of SPLs[DD07] They state — in Software Product
Lines Beyond Software Development — the importance of customers understanding feature-oriented requirements:

138

4.4 Related Work

“This requires them to understand the various features and capabilities of the electronic system at least at a high
level.”

4.4.2.2 Formal Methods and Modelling Critical Functionality
In 2003, there was innovative research into using UML to add rigour to the modelling of SPLs[ZHJ03]. They

propose:

”a new approach for modeling product lines with UML integrating functional, static and dynamic
aspects. First, an extension to use cases, class diagrams and sequence diagrams is proposed. The
coherence between parts of the product line models is then ensured by OCL (Object Constraint Lan-
guage) constraints.”

In 2007, the paper by Liu [Liu07] specifically examines the use of SPLs in safety critical system development:

“Safety-related feature interactions are central to the development of safety-critical, software product
lines, with the challenge of balancing safety assurance and reuse management.”

A year later, in A Requirements-Based Taxonomy of Software Product Line Evolution[SE08] the authors iden-
tify the need for modelling SPLs so that they can be better evolved and maintained. They identify a major problem:

“So far most work on product line evolution has focused on specific approaches to supporting special
cases of the evolution problem.”

A more formal modelling of SPLs is the only way to address this issue.
In SAT-Based Analysis of Feature Models is Easy[MWC09] the authors observe that: “feature interacton anal-

yses essentially reduce to satisfiability problems; thus, it suffices to study this more abstract problem to obtain
conclusions about the analyses.” Based on experimentation, they claim that:

“Unlike with the general SAT instances, which fall into easy and hard classes, the instances induced by
feature modeling are easy throughout the spectrum of realistic models. In particular, the phenomenon
of phase transition is not observed for realistic feature models.”

It remains to be seen whether this result is generalisable and scaleable; but it does further motivate the use of
formal modelling techniques for the development of SPLs.

More recent work has highlighted the problem of reasoning about interactions and liveness properties[CHS+10].
Although this paper proposes model-checking techniques, it is clear how closely it complements previous work on
Composing Fair Objects[HGM00] from almost a decade past.

4.4.2.3 Industrial Case Studies
The first large-scale review of SPLs in industry was reported by Bosch in 1999[Bos99b]. Product-line architectures
in industry: a case study concludes that:

“Product-line architectures can and are successfully applied in small- and medium-sized enterprises.
These organizations are struggling with a number of difficult problems and challenging issues, but
the general consensus is that a product-line architecture approach is beneficial, if not crucial, for the
continued success of the interviewed organizations.

139

4.4 Related Work

”
There followed a number of reports of the successful development of SPLs in specific industries. A good

example is the Component-based product line development of Avionics Software[Sha00] where “validation of the
product line approach led to broader application of the technique.”

Further growth — over a number of years — of the uptake of SPLs in industry led to increased attention
in the general software engineering community[EBB06]. In this paper — Software product line modeling made
practical — the authors “describe an approach integrating use case modeling and feature modeling to support
the description and maintenance of a common and complete use case model for an entire family of systems.”
Their approach, referred to as PLUSS (Product Line Use case modeling for Systems and Software engineering), is
illustrated within the context of a number of large-scale industrial projects.

4.4.3 Event-B: Mixed Models Research

Our proposed research approach is to use the Event-B language and the RODIN tool[Abr07, ABHV06, AH07] for
specification and verification of our e-voting product line models. We have already stated the need for different
modelling languages; and fortunately there has been much recent work on extending/integrating Event-B with
other formalisms.

non-atomic operations and features for specifying implementation level details”.
The integration of UML and B has been reported in UML-B: A Plug-in for the Event-B Tool Set[SB08], where

they state:

“UML-B provides tool support, including drawing tools and a translator to generate Event-B models.
When a UML-B drawing is saved the translator automatically generates the corresponding Event-B
model. The Event-B verification tools (syntax checker and prover) then run automatically providing
an immediate display of problems which are indicated on the relevant UML-B diagram.”

This work was extended in [SBS09], where a useful case study demonstrates the method for integrating the different
models and views in a coherent fashion. Similar work was proposed in Using UML Activity Diagrams and Event-B
for Distributed and Parallel Applications[YA07].

In 2008, Edmunds and Butler report on Linking Event-B and Concurrent Object-Oriented Programs[EB08]
They “show how Event-B models can be linked to concurrent, object-oriented implementations using an interme-
diate, object-oriented style specification notation.” They also “automated the translation process with an Eclipse
plug-in which produces an Event-B model and Java code”. To conclude, they “build on techniques introduced in
UML-B to model object-oriented developments”. (This follows the previous work that was reported on integrating
CSP with B[BL05].)

We finish this review of related work (in Event-B) by noting that Poppleton has already published research
into modelling of features using Event-B[Pop07, PFF+08] and the problem of composition[Pop08]. This work
suggests that a mixed-model approach could be beneficial.

4.4.4 Education Research

4.4.3.1 Teaching Formal Methods
The need for students to be able to use general software development tools is widely accepted by industry; but
the importance of them being able to use formal methods tools is not. One used to be able to argue that formal

140

4.4 Related Work

methods were not used in industry because they were not mature enough — and therefore it would be difficult to
motivate students to learn how to use them[GM98] — but this is no longer the case.

In 2000, Jeanette Wing wrote about weaving formal methods[Win00]:

“Rather than treat formal methods solely as a separate subject to study, we should weave their use into
the existing infrastructure of an undergraduate computer science curriculum. In so doing, we would be
teaching formal methods alongside other mathematical, scientific, and engineering methods already
taught. Formal methods would simply be additional weapons in a computer scientist’s arsenal of ways
to think when attacking and solving problems.

My ideal is to get to the point where computer scientists use formal methods without even thinking
about it. Just as we use simple mathematics in our daily life, computer scientists would use formal
methods routinely.”

She then goes on to identify the common core elements that need to be taught: state machines, invariants, abstract
mappings, composition, specification, induction and verification. She states that tools are critical: model checkers,
specification checkers and theorem provers.

Students learn that nondeterminism is a very powerful mechanism. We first noticed this when we analysed
how best to teach formal specification as part of requirements engineering[Gib00].

Parnas and Soltys address the need for a “Basic Science for Software Developers”[PS06], stating:

“The fundamental properties of computers are very important because they affect what we can and
cannot do. Sometimes, an understanding of these properties is necessary to find the best solution to a
problem. In most cases, those who understand computing fundamentals can anticipate problems and
adjust their goals so that they can get the real job done. Those who do not understand these limitations,
may waste their time attempting something impossible or, even worse, produce a product with poorly
understood or not clearly stated capabilities. Further, those that understand the fundamental limitations
are better equipped to clearly state the capabilities and limitations of a product that they produce.
Finally, an understanding of these limitations, and the way that they are proved, often reveals practical
solutions to practical problems. Consequently, “basic science” should be a required component of any
accredited Software Engineering program.”

Habrias has written about the problems of teaching formal methods when the students do not have a good
understanding of foundational mathematics such as logic and set theory[Hab08]. Much of the literature on teaching
formal methods directly addresses the need for firm mathematical foundations. We believe that the problem-based
learning approach helps students with the mathematics because they learn the mathematical concepts in the context
of their practical application.

More recently, Kiniry and Zimmerman discuss the use of “secret ninja” techniques[KZ08] “to integrate applied
formal methods into software engineering courses.” They demonstrate that formal methods can be taught through
“stealth” (without calling them formal methods) in a number of different courses; but note that this success would
not have been possible without good tool suppport. Their work is founded mostly on applying the design-by-
contract paradigm. This demonstrates that formal methods can and should be used in the teaching of software
design; and this view is supported by other research[GLR08b].

4.4.3.2 Education Theory

141

4.4 Related Work

There are numerous complementary, and competing, theories of learning. The review by Hilgard and Bower
published over half a century ago[HB56] is a good introduction to the foundations of learning theory. In this
proposal, we review the work of the researchers that have had most influence on our own research into teaching
formal methods.

Cognitive structure is the concept central to Piaget’s theory. (See the work by Brainerd[Bra78] for a good
overview and analysis of Piaget’s seminal contribution.) These structures are used to identify patterns underlying
certain acts of intelligence, and Paiget proposes that these correspond to stages of child development. Piaget’s
most interesting experiments focused on the development of mathematical and logical concepts. However, his
work predates the development of software engineering as a discipline.

Piaget’s theory is similar to other constructivist perspectives of learning (e.g., Bruner [Bru66]), which model
learning as an active process where learners construct new concepts upon their current knowledge and previous
experience. As a result of following this theory, teachers encourage students to discover principles by themselves:
this is the foundation upon which problem-based learning is built.

Similarites can be seen between the constructivist view and the theories of intelligence such as proposed by
Guildford’s structure of intellect (SI) theory [Gui67] and Gardner’s multiple intelligences[Gar83]. Typically, these
theories structure the learning space in terms of practical problem solving skills.

Piaget’s ideas also influenced the seminal work by Seymour Papert in the specific domain of computers and
education[PS80]. Papert argues that children can understand concepts best when they are able to explain them
algorithmicaly through writing computer programs.

We were also influenced by the domain of teaching mathematics. In particular, Alan Schoenfeld argues that
understanding and teaching mathematics should be treated as problem-solving [Sch85]. He identifies four skills
that are needed to be successful in mathematics: proposition and procedural knowledge, strategies and techniques
for problem resolution, decisions about when and what knoweldge and strategies to use, and a logical world view
that motivates an individual’s approach to solving a particular problem.

To conclude our review we mention Blooms taxonomy[BEF+56] of educational objectives which is a funda-
mental model of learning, providing a well-accepted foundation for research and development into the preparation
of learning evaluation materials. It structures understanding into 6 distinct levels: Knowledge, Comprehension,
Application, Analysis, Synthesis and Evaluation.

4.4.3.3 Problem-Based Learning (PBL) in Computer Science and Software Engineering (CSSE)
While there is no universal definition of PBL we present definitions from the last three decades. PBL was defined by
Barrows and Tamblyn[BT80] as “the learning which results from the process of working towards the understanding
of, or resolution of, a problem. The problem is encountered first in the learning process”. Woods defined it[Woo96]
as “an approach to learning that uses a problem to drive the learning rather than a lecture with subject matter which
is taught.” Torp and Sage define it[TS02] as “Focused, experiential learning (minds-on, hands-on) organised around
the investigation and resolution of messy, real-world problems.”

In 2003, Curran discussed the balancing required between Computer Science (CS) and Software Education
(SE) education[Cur03]:

“It is no longer clear whether SE topics reflect current industry needs or whether they are intended to
lead and update industry practices. But regardless of who leads whom, without some sort of rapid,
two-way communication, we run the risk of producing graduates who are out of touch, require much
re-training, and have trouble competing. Industry might indicate that they need specific skills and

142

4.4 Related Work

knowledge from their CS employees, and that the special skills required of software engineers would
be performed by software engineers, not by CS majors.”

He concluded by stating:

“. . . individual departmental goals for a degree in CS and the role of SE in the curriculum should be
clearly understood so that a balance can be struck between academic topics and skills training.”

We believe that PBL offers a natural solution to achieving this required balance and in using formal methods to
bridge the gap between CS and SE.

One of the major obstacles to the implementation of PBL, within any discipline, is the lack of a good set of
problems. However, good PBL problems usually do not appear in textbooks[TCL05]. Clearing houses provide an
avenue to allow for the sharing of problems, but unfortunately there is a lack of CS&SE problems28.

In practice, it is very difficult, if not impossible, to fairly evaluate whether the objective of improving the stu-
dents’ software development skills is being met by our PBL approach to teaching formal methods. O’Kelly and
Gibson have discussed the issues that arise when trying to validate PBL in the context of teaching programming[OG05],
and many of the issues that they identify are relevant when analysing whether the formal methods problems are
teaching the students how to be better software engineers (i.e. engineer better software)

In 2006 Wing discusses the importance of computational thinking in education[Win06]:

“Computational thinking involves solving problems, designing systems, and understanding human be-
havior, by drawing on the concepts fundamental to computer science. Computational thinking includes
a range of mental tools that reflect the breadth of the field of computer science.”

She then goes on to discuss the characteristics of such thinking:

1. Conceptualizing, not programming;

2. Fundamental, not rote skill;

3. A way that humans, not computers, think;

4. Complements and combines mathematical and engineering thinking;

5. Ideas, not artifacts;

6. For everyone, everywhere.

Such computational thinking starts from a very early age[GO05] and should be exploited in the teaching of
computer science (and formal methods) in schools[Gib08a]. Our experience shows that looking at simple formal
methods problems with school children improves their ability to think computationally. Thus, we believe that this
should also be true for university students.

4.4.3.4 E-voting: an educational case study
In 2005, Armen and Morelli wrote about Teaching about the risks of electronic voting technology[AM05]. They
note that:

28There is an abundance of CS programming problems available; however, the vast majority of these problems place emphasis on the learning
of a particular programming concept rather than problem solving.

143

4.5 Research Method: concrete to abstract and back to concrete

“computer scientists are increasingly called upon to help concerned citizens understand the risks in-
volved in the current generation of electronic voting machines.. . . ”

They go on to “suggest ways that discussions of the risks and the attendant societal and ethical issues might be
incorporated into the computer science curriculum.” They do not suggest that the problem be used in any particular
module/course, but argue that it could fit in many places in the curriculum.

More recently, Bishop and Frincke report on Achieving Learning Objectives through E-Voting Case Studies[BF07].
They focus on teaching security:

“the rapidly increasing use of electronic voting machines in US elections provides a wonderful op-
portunity to teach students about computer security. The complexity of transitioning from traditional
voting to an electronic environment allows educators to highlight threat models, requirements, and
trade-offs involving e-voting in the context of ongoing international discussions and current events.
Few issues include such a wide range of considerationsŮfrom the competing demands of accessibility
and confidentiality to threat models incorporating coercibility and vote selling and even the business
element of whether funding high assurance is a good way to increase voter confidence. ”

This paper follows a PBL approachn, based on explicit identificiation of learning objectives. The paper also
emphaises the role of formal specification/modelling.

In our own research on Weaving a Formal Methods Education With Problem-Based Learning[Gib08b] we
identify the value in problems such as e-voting which can be used in most, if not all, of the modules that one is
likely to have in a CS/CSSE programme:

“The problem has been re-used in teaching the following modules: introduction to programming,
object oriented programming, data structures and algorithms, HCI, testing, requirements and design,
rigorous software process, software process improvement.”

4.5 Research Method: concrete to abstract and back to concrete

The research method is based on the following initial engineering programme:

• Reverse engineer our existing e-voting system software (from the SAVE project) into a set of re-usable
artefacts (classes, interfaces and design structures)

• Construct the software for a new e-voting system, trying to maximise re-use of the components from the first
step.

• Analyse where formal concepts such as invariants, preconditions and postconditions can help in the testing
of the systems produced.

• Formally model the common aspects between both systems (using Event-B) and experiment with composi-
tional verification techniques.

• Build a prototype of a small e-voting system SPL, based on the previous Event-B models and proofs.

• Using this prototype, construct a novel voting system, following a correct-by-construction approach based
on refinement.

• Examine how the SPL itself can be extended and refined, linking regression testing of our concrete imple-
mentations with re-usable proof in our abstract specifications.

144

4.6 Fundamental Research: Feature Interactions in SPLs

• Construct a family of formal requirements models for a range of e-voting systems where common properties
have been verified through a single verification of the SPL formal model from which they were derived.

• Choose one such instance and develop it using three different approaches — formally using the formal SPL,
informally using the implemented SPL components (but not the formal Event-B models), and without using
a SPL of any kind. Compare and contrast the quality of the final systems produced in this way.

We see that this approach can be summarised as going from concrete to abstract and back to concrete. Applied
research will feedback into foundational research, whose results will then feed forward into real-word development.
A critical part of this research is that we will not restrict ourselves to a single semantic view on the problem of
interactions in product lines. There is much current work on integrating Event-B with other modelling languages
and tools, and we envisage adopting a mixed-semantic approach around the RODIN tool and associated plug-ins.

As a final component of our research, we also incorporate an educational research plan, which will leverage
and test the results of the engineering research:

• Develop a postgraduate module on model driven development (MDD) and SPLs using the e-voting SPL as
our standard problem.

• Incorporate the e-voting SPL problem into a postgraduate module on formal methods.

• Construct a PBL project to test whether students can build their own specific e-voting system using a formal
SPL, and analyse the verification techniques.

• Integrate the e-voting SPL problem into other complementary modules such as design (with UML), testing
and software maintenance.

4.6 Fundamental Research: Feature Interactions in SPLs

An e-voting system has a myriad of layers of inter-related legal requirements to meet. Further, each voting system
has to meet specific needs which are not directly addressed by the laws and standards. The requirements of the
system must somehow integrate these specific needs with multiple layers of laws and standards. As changes are
made to requirements within different layers, in parallel, then who is responsible for ensuring that the requirements
can be re-integrated in a coherent manner?

As an example, consider the most challenging requirements integration problem in e-voting: how to ensure
both anonymity and verifiability? This the classic example of requirements that appear to be contradictory —
how can an elector’s ballot be kept secret when we wish the elector to be able to verify that it has been correctly
counted? It would appear that verifiability requires a voter to be able to follow their ballot through the count
process (at the very least) but how can they do that without signing it, and if they sign it then how can it be kept
anonymous? Recent research in cryptographic e-voting protocols[RS07, ZA08, XSHT08] suggests that these two
requirements can be met, provided we refine the notion of verifiability and we require the electors to follow specific
verification procedures. However, it is clear that there are a number of subtle interactions between anonymity and
verifiability when they integrate with other voting features, which results in different protocols making different
compromises between competing criteria[CJC04]. Another major problem is that many of these schemes depend
on a reliable non-local network during the time in which an elector records their individual vote and so the QoS
feature is compromised.

Such interactions are common to all complex systems; and must be addressed in any proposed development of
a software product line for all domains, and not just e-voting.

145

4.7 Applied Research: A SPL for E-voting

4.7 Applied Research: A SPL for E-voting

Figure 25: The Re-use Knot

In figure 25, we see a graphical representation of our main problem, that of re-use: we know that requirements
modelling is critical in the production of quality systems, we understand that our system must meet certain stan-
dards and we wish to re-use particular components in order to provide innovative functionality. In effect, there is a
complex knot of lines of re-use that must be managed during design.

In figure 26, we illustrate how a high-level object-oriented view of the requirements of a particular voting
system, including optional features, can aid the process of identifying how features can be implemented using re-
usable components, and how these features can be composed in order for a voting system to meet its requirements.
The model in figure 26 is not intended to be generic; it is an example of how a requirements model for a specific
voting system can be engineered re-using a core architecture, together with feature increments.

Figure 26: Adding Features To Architecture

In the diagram we see that we have introduced elector authentication and authorisation features. We do not cat-
egorise these as core features because a minority of elections do not have these requirements. In the figure we show

146

4.7 Applied Research: A SPL for E-voting

the feature composition for authentication, authorisation and registration as simple aggregation relationships with
a single core feature. In the model we also see features that are introduced as specialisations of existing features:
procuration and obligation are specialisations of the registration process, whilst we chose to model recounting as a
specialisation of the count feature. Of course, each of these optional features are open to specialisation themselves.

Two other optional features of interest are voter anonymity and verifiability. It is not clear, due perhaps to our
lack of domain understanding, how such features could be cleanly plugged into a core architecture. In our model
in figure 26 we have represented these features as being interdependent with the whole voting system. In the next
subsection we show how anonymity is a much more complex feature, with many variants, than one would initially
suspect. We believe that aspects may hold the key to modelling e-voting features, like anonymity, that cut across
multiple components of the architectural core.

Through initial analysis of the standards — both national and international — we identified that some of
the chosen system requirements were not addressed, some were partially addressed, and some were completely
addressed. Also, many of the standards were not applicable to the chosen system. This can be seen in the top left
of figure 27.

Figure 27: Domain Modelling and Standards

In order to move from generic standards to specific requirements we need a complex process of choosing the
standards that are applicable, instantiating them to the parameters of our chosen system and then composing them
with the requirements that are specific to our chosen system. This is represented in the left hand side of figure 27.
We understand certain of our requirements well-enough that we can start to map them to particular re-usable
components. This can be seen in the top right of figure 27.

We have decided that our domain model should not be structured around the poorly engineered standards
documents. We will — where possible — try to validate our domain model against current standards, but the
domain model now plays a more important new role: as a requirements specification for our software product line.
The goal is to have a direct mapping between components in the SPL and the features (requirements increments)
in the domain model. This is illustrated in figure 28.

There are obvious advantages with this framework when compared with that in figure 27. Firstly, verification of
the correctness of refinements — a good example is the refinement of the voter interface[CGM07b] — can be done

147

4.8 Educational Research: Teaching Formal Software Engineering

Figure 28: The E-voting Feature-oriented SPL

at the generic level (facilitating re-use). Secondly, new components and features can be soundly integrated into
the framework through the process of abstraction into the domain model. Thirdly, we should be able to formalise
different composition mechanisms in order to automate the configuration process.

A major problem with e-voting systems is that they need to be trustworthy and trusted [Gib07]. There are
two key properties of SPLs that our proposal will examine: late binding and openness. Expecting electors to
trust a voting machine has, until now, required them to trust that they have been properly verified to do what they
are supposed to do. Thus, they trust the machines indirectly through their trust of the agents who have verified
them. This trust is dependent on the electors knowing that the machines they use to record their individual vote
are precisley the machines that have been verified. In a SPL, late binding of components opens up the question
of whether the precise system in front of the users has ever been verified. Furthermore, leaving a variant open to
later specialisation begs the question of whether trust can be compositional: if the delivered system is trusted and
the specialised variant is trusted then can the new system that binds the new variant to a specific feature be trusted
without having to reverify the whole system? Expecting users to trust the system in this way is unreasonable if we
cannot guarantee that our verification mechanisms are compositional. This returns us to developing an SPL specific
to voting systems that uses composition mechanisms that can guarantee absence of unwanted feature interactions
(before the system is delivered).

4.8 Educational Research: Teaching Formal Software Engineering

The final part of our proposed research focuses on the educational value of using this research in the classroom.
It is a universal challenge to bridge the gap between academia and industry, and between theory and practice.

This challenge is particularly critical in the discipline of software engineering and is often categorised as technology
transfer. One of the least well understood aspects of software development is in the move from requirements
to design. We support the view that software designers fail to treat design as a process, and as a consequence
become experts in representing the products using models/languages but fail to master the design process. Recent
developments in academia have shown that design can be more effectively taught using problem based learning
techniques. This appears to produce students who better understand design as a process; but how can we ensure

148

4.9 Summary of Research Proposed: The Potential Impact
— Résumé de la recherche proposée : l’impact potentiel

that this academic advancement will have a positive impact when these students move out into the real world?
Students act as one of the main conduits for technology transfer between academia and industry. Academics

are responsible for ensuring that their students understand the most up-to-date theory and practice, and students
are responsible for promoting these new techniques when they move out to an industrial setting.

SPLs are certainly a key future technology. It is critical that students are introduced to them when learning
about design, architectures and model driven development. By integrating our research into formal SPLs into the
teaching programme, we would also be exposing students to the power of formal methods.

4.9 Summary of Research Proposed: The Potential Impact
— Résumé de la recherche proposée : l’impact potentiel

The next generation of electronic voting sys- La prochaine génération de systèmes de vote élec-
tems should be better engineered than the current tronique devra être mieux construite que la génération
generation. A first step towards this is a more actuelle. Une analyse plus approfondie et plus précise
thorough and precise analysis of the voting do- du domaine du vote est une première étape vers ceci.
main. Then, procurement offices can leverage the Alors, les bureaux d’acquisition peuvent exercer une in-
understanding in such a model in order to better fluence sur la compréhension d’un tel modèle dans le but
specify their requirements. Consequently, manu- de mieux spécifier leurs besoins. Par conséquent, les fab-
facturers should be encouraged to develop a SPL ricants devraient être encouragés dans le developpement
for e-voting machines, in order to best manage d’une SPL pour les machines de vote électronique, afin de
the obvious commonalities and variations. mieux gérer les variations et points communs évidents.

In this proposal, we have shown that a Dans cette proposition, nous avons montré qu’une
feature-oriented approach can be applied to the approche “feature-oriented” peut être appliquée au de-
design of an e-voting SPL architecture. We be- sign d’une architecture de SPL pour le vote électronique.
lieve that refinement has a key role to play in Nous croyons que le raffinement a un rôle-clé à jouer
the development and application of such a SPL, dans le développement et l’application d’une telle SPL,
particularly in the re-use of verified feature com- en particulier dans la réutilisation de composants features
ponents. Integrating SPL techniques with for- vérifiés. Intégrer des techniques de SPL avec des méth-
mal methods is a promising approach: refinement odes formelles est une approche prometteuse : le raffine-
for re-use of trustworthy components has already ment pour la réutilisation de composants fiables a déjà été
been addressed with respect to e-voting machine traité en ce qui concerne les interfaces [CGM07b] et le
interfaces [CGM07b] and storage [CGM07a]. stockage [CGM07a] d’une machine de vote électronique.

Current research — based on the notion La recherche actuelle — fondée sur la notion d’un
of a feature interaction algebra[Gib98] — sug- algèbre d’interactions de services [Gib98] — suggère
gests that a correct-by-construction approach qu’une approche “correct-by-construction” pour garan-
to guaranteeing the functionality of e-voting tir la fonctionnalité des systèmes de vote électronique
systems[CGM07b, CGM07a] merits further in- [CGM07b, CGM07a] mérite davantage d’investigation.
vestigation. La construction d’un système de vote électronique

Building an e-voting system has a high risk comporte un risque élevé d’échec en raison de standards
of failure due to unstable standards [GM08] and instables [GM08] et le manque de compréhension du do-
lack of understanding of the problem domain. maine. “Requirements creep” constitue un problème ma-
Requirements creep has been a major problem jeur dans les systèmes de vote électronique. Ce qui con-

149

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

in e-voting systems. A good example is of stitue un bon exemple, c’est celui de l’exigence pour un
the requirement for a voter verifiable audit trail “voter verifiable audit trail” (VVAT) [BPR+04]. De nom-
(VVAT) for increased security [BPR+04]. Many breuses machines de vote électronique ne remplissent pas
current e-voting machines do not meet this re- cette exigence et n’ont pas été conçues pour le faire.
quirement, and were not designed to do so. How- Néanmoins, les administrateurs d’élections et les fabri-
ever, the election administrators and manufactur- cants semblent croire que cette fonctionnalité supplémen-
ers seem to believe that this additional function- taire peut d’une manière ou d’une autre être boulonnée
ality can be somehow bolted on to already pro- sans risque à des machines déjà procurées. Une SPL de
cured machines without risk. An e-voting SPL vote électronique devrait être développée afin de gérer le
should be developed in order to manage the risk risque d’exigences évoluents: la recherche actuelle sur le
of evolving requirements: current research on maintien des SPLs [SE08] suggèrent que développer une
maintaining SPLs [SE08] suggests that develop- SPL de vote électronique pouvant évoluer en parallèle
ing an e-voting SPL that can evolve as standards avec des standards qui changent est faisable en utilisant
change is feasible using current techniques, but des techniques actuelles, mais que cela reste un problème
that it is a non-trivial problem. This is the main pas banal. Ceci constitue la principale recherche actuelle
current and future research being proposed. et la future proposition de recherche.

Although, we focus on e-voting, the funda- Bien que nous nous concentrions sur le vote élec-
mental research will have wider impact on soft- tronique, la recherche fondamentale aura un impact plus
ware engineering in general; and formal methods large sur le génie logiciel en général, et sur les méthodes
and SPLs in particular. formelles et les SPLs en particulier.

The educational component of our proposal is Le composant pédagogique de notre proposition est
a key part of our strategy for technology transfer. un élément clé de notre stratégie pour le transfert de tech-
Without this component the potential impact of nologie. Sans ce composant, l’impact potentiel de notre
our proposed work could be compromised. proposition de travail pourrait être compromis.

4.A-Research Proposal For A Formal SPL for E-voting: Bibliography
[ABHV06] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open extensible tool en-

vironment for Event-B. In Zhiming Liu and Jifeng He, editors, Formal Methods and Software Engineering,
8th International Conference on Formal Engineering Methods, ICFEM 2006, volume 4260 of Lecture Notes in
Computer Science, pages 588–605, Macao, China, 2006. Springer.

[Abr07] Jean-Raymond Abrial. A system development process with Event-B and the Rodin platform. In Michael But-
ler, Michael G. Hinchey, and María M. Larrondo-Petrie, editors, Formal Methods and Software Engineering,
9th International Conference on Formal Engineering Methods, ICFEM 2007, volume 4789 of Lecture Notes in
Computer Science, pages 1–3, Boca Raton, FL, USA, 2007. Springer.

[ACC+08] Adam Aviv, Pavol Cerný, Sandy Clark, Eric Cronin, Gaurav Shah, Micah Sherr, and Matt Blaze. Secu-
rity evaluation of ES&S voting machines and election management system. In EVT’08: Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2008, Berkeley, CA, USA, July 2008. USENIX As-
sociation.

[AFT07] R. Anane, R. Freeland, and G. Theodoropoulos. E-voting requirements and implementation. In The 9th IEEE
International Conference on E-Commerce Technology and the 4th IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services, 2007. CEC/EEE, pages 382–392, Tokyo, Japan, July 2007.

150

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[AH07] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantiation of discrete models:
Application to event-b. Fundam. Inf., 77(1-2):1–28, 2007.

[AM05] Chris Armen and Ralph Morelli. Teaching about the risks of electronic voting technology. SIGCSE Bull.,
37(3):227–231, 2005.

[AR06] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based cryptographic voting. In Ari Juels
and Marianne Winslett, editors, Workshop on Privacy in the Electronic Society WPES, pages 29–40, Alexandria,
VA, USA, 2006. ACM.

[ASH+08] Nirwan Ansari, Pitipatana Sakarindr, Ehsan Haghani, Chao Zhang, Aridaman K. Jain, and Yun Q. Shi. Evaluating
electronic voting systems equipped with voter-verified paper records. IEEE Security and Privacy, 6(3):30–39,
2008.

[AW97] Mark A. Ardis and David M. Weiss. Defining families: the commonality analysis (tutorial). In ICSE ’97:
Proceedings of the 19th international conference on Software engineering, pages 649–650, New York, NY, USA,
1997. ACM.

[BB06] Nadja Braun and Daniel Brändli. Swiss e-voting pilot projects: Evaluation, situation analysis and how to proceed.
In Krimmer [Kri06], pages 27–36.

[BBC+08] Davide Balzarotti, Greg Banks, Marco Cova, Viktoria Felmetsger, Richard A. Kemmerer, William Robertson,
Fredrik Valeur, and Giovanni Vigna. Are your votes really counted?: Testing the security of real-world electronic
voting systems. In Barbara G. Ryder and Andreas Zeller, editors, Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis ISSTA, pages 237–248, Seattle, WA, USA, 2008. ACM.

[BEF+56] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl. Taxonomy of educational objectives
Handbook 1: cognitive domain. Longman Group Ltd., London, 1956.

[BEH+08] Kevin Butler, William Enck, Harri Hursti, Stephen McLaughlin, Patrick Traynor, and Patrick McDaniel. Sys-
temic Issues in the Hart InterCivic and Premier Voting Systems: Reflections on Project EVEREST. In EVT’08:
Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2008 on Electronic Voting Tech-
nology Workshop, Berkeley, CA, USA, July 2008. USENIX Association.

[Ben07] Josh Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In EVT’07: Proceedings of
the USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic Voting Technology Workshop,
Berkeley, CA, USA, August 2007. USENIX Association.

[BF07] Matt Bishop and Deborah A. Frincke. Achieving learning objectives through e-voting case studies. IEEE Security
and Privacy, 5(1):53–56, 2007.

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus Schmid, Tanya Widen, and
Jean-Marc DeBaud. Pulse: A methodology to develop software product lines. In SSR, pages 122–131, 1999.

[BFMV07] Volha Bryl, Roberta Ferrario, Andrea Mattioli, and Adolfo Villafiorita. Evaluating Procedural Alternatives in an
e-Voting Domain: Lessons Learned. Technical Report DIT-07-005, University of Trento, DIT, Italy, 2007.

[BGE07] Michael D. Byrne, Kristen K. Greene, and Sarah P. Everett. Usability of voting systems: baseline data for paper,
punch cards, and lever machines. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 171–180, New York, USA, 2007. ACM.

[BL05] Michael J. Butler and Michael Leuschel. Combining csp and b for specification and property verification. In John
Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes in Computer Science,
pages 221–236. Springer, 2005.

151

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[BLRS06] J W. Bryans, B Littlewood, P Y. A. Ryan, and L Strigini. E-voting: Dependability requirements and design for
dependability. In ARES ’06: Proceedings of the First International Conference on Availability, Reliability and
Security, pages 988–995, Washington, DC, USA, 2006. IEEE Computer Society.

[BLS+03] Benjamin B. Bederson, Bongshin Lee, Robert M. Sherman, Paul S. Herrnson, and Richard G. Niemi. Elec-
tronic voting system usability issues. In CHI ’03: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 145–152, New York, USA, 2003. ACM.

[Bos99a] Jan Bosch. Evolution and composition of reusable assets in product-line architectures: A case study. In WICSA1:
Proceedings of the TC2 First Working IFIP Conference on Software Architecture (WICSA1), pages 321–340,
Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[Bos99b] Jan Bosch. Product-line architectures in industry: a case study. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 544–554, Los Alamitos, CA, USA, 1999. IEEE Computer Society
Press.

[BPR+04] Jonathan Bannet, David W. Price, Algis Rudys, Justin Singer, and Dan S. Wallach. Hack-a-vote: Security issues
with electronic voting systems. IEEE Security & Privacy, 2(1):32–37, 2004.

[BR96] Joan Borrell and Josep Rifà. An implementable secure voting scheme. Computers & Security, 15(4):327–338,
1996.

[Bra78] C. Brainerd. Piaget’s Theory of Intelligence. Prentice Hall, Englewood Cliffs, NJ, 1978.

[Bre06] Peter Brent. The Australian ballot: Not the secret ballot. Australian Journal of Political Science, 41(1):39–50,
March 2006.

[Bru66] J. S. Bruner. Toward a theory of instruction. Belknap Press of Harvard University, Cambridge, Mass„ 1966.

[BT80] H.S. Barrows and R.M. Tamblyn. Problem-Based Learning: An Approach to Medical Education. Springer
Publishing Company, New York, 1980.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended abstract). In Twenty-
Sixth Annual ACM Symposium on Theory of Computing STOC, pages 544–553, Montréal, Québec, Canada, May
1994.

[BY86] Josh Cohen Benaloh and Moti Yung. Distributing the power of a government to enhance the privacy of voters
(extended abstract). In Fifth Annual ACM Symposium on Princiles of Distributed ComputingPODC, pages 52–62,
Calgary, Alberta, Canada, August 1986.

[CC97] Lorrie Faith Cranor and Ron K. Cytron. Sensus: A security-conscious electronic polling system for the internet.
In 30th Hawaii International Conference on System Sciences (HICSS) Volume 3, pages 561–570. IEEE Computer
Society, 1997.

[CC07] O. Cetinkaya and D. Cetinkaya. Verification and validation issues in electronic voting. The Electronic Journal of
e-Government, 5(2):117–126, 2007.

[CCM07] Michael E. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: A secure remote voting system. In Chaum
et al. [CKRR08].

[CEB+05] Deirdre Carew, Chris Exton, Jim Buckley, Margaret McGaley, and J.Paul Gibson. Preliminary study to empir-
ically investigate the comprehensibility of requirements specifications. In Psychology of Programming Interest
Group 17th annual workshop (PPIG), pages 182–202, University of Sussex, Brighton, UK, 2005.

[CEC+08] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and P. Vora. Scantegrity: End-to-end
voter-verifiable optical-scan voting. Security & Privacy, 6(3):40–46, May/June 2008.

152

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure election scheme (extended
abstract). In 26th Annual Symposium on Foundations of Computer Science(FOCS), pages 372–382, Portland,
Oregon, USA, October 1985. IEEE.

[CFM+08] Stefano Campanelli, Alessandro Falleni, Fabio Martinelli, Marinella Petrocchi, and Anna Vaccarelli. Mobile
implementation and formal verification of an e-voting system. In Abdelhamid Mellouk, Jun Bi, Guadalupe
Ortiz, Dickson K. W. Chiu, and Manuela Popescu, editors, Third International Conference on Internet and Web
Applications and Services (ICIW), pages 476–481, Athens, Greece, June 2008. IEEE Computer Society.

[CGM07a] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Formal verification of tamper-evident storage for
e-voting. In SEFM, pages 329–338. IEEE Computer Society, 2007.

[CGM07b] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive approach to formal
software design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci., 183:39–55, 2007.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-authority
election scheme. In EUROCRYPT, pages 103–118, Konstanz, Germany, May 1997.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the
ACM, 24(2):84–88, 1981.

[Cha04] David Chaum. Secret-Ballot Receipts: True Voter-Verifiable Elections. In Security & Privacy (Vol. 2, No. 1),
pages 38–47. IEEE, January/February 2004.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François Raskin. Model
checking lots of systems: Efficient verification of temporal properties in software product lines (to appear). In
32nd International Conference on Software Engineering, ICSE 2010, May 2-8, 2010, Cape Town, South Africa,
Proceedings. IEEE, 2010.

[CJC04] Yu-Yi Chen, Jinn-Ke Jan, and Chin-Ling Chen. The design of a secure anonymous internet voting system.
Computers & Security, 23(4):330–337, 2004.

[CKRR08] David Chaum, Miroslaw Kutylowski, Ronald L. Rivest, and Peter Y. A. Ryan, editors. Frontiers of Electronic
Voting, 29.07. - 03.08.2007, volume 07311 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[CN02] P. Clements and L. Northrop. Software product lines. Addison-Wesley Boston, 2002.

[Cra96] Lorrie Faith Cranor. Electronic voting: computerized polls may save money, protect privacy. Crossroads,
2(4):12–16, 1996.

[Cra01] Lorrie Faith Cranor. Voting after Florida: no easy answers. Ubiquity, 1(47):1, 2001.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable election scheme. In
Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, 10th European Symposium
On Research In Computer Security(ESORICS), volume 3679 of Lecture Notes in Computer Science, pages 118–
139, Milan, Italy, September 2005. Springer.

[Cur03] W. S. Curran. Teaching software engineering in the computer science curriculum. SIGCSE Bull., 35(4):72–75,
2003.

[DD07] Scott G Decker and Jim Dager. Software product lines beyond software development. In SPLC ’07: Proceedings
of the 11th International Software Product Line Conference, pages 275–280, Washington, DC, USA, 2007. IEEE
Computer Society.

[Dhu06] Deepak Dhungana. Integrated variability modeling of features and architecture in software product line engineer-
ing. In ASE, pages 327–330. IEEE Computer Society, 2006.

153

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Dij72] Edsger W. Dijkstra. Structured programming, chapter Notes on structured programming, pages 1–82. Academic
Press Ltd., London, UK, 1972.

[DJOS07] Jim Davies, Tomasz Janowski, Adegboyega Ojo, and Aadya Shukla. Technological foundations of electronic
governance. In ICEGOV ’07: Proceedings of the 1st international conference on Theory and practice of elec-
tronic governance, pages 5–11, New York, NY, USA, 2007. ACM.

[DKK+08] Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nicolaou, Alexander Russell, Andrew
See, Narasimha Shashidhar, and Alexander A. Shvartsman. Pre-election testing and post-election audit of op-
tical scan voting terminal memory cards. In EVT’08: Proceedings of the USENIX/Accurate Electronic Voting
Technology Workshop, Berkeley, CA, USA, July 2008. USENIX Association.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and receipt-freeness in electronic voting.
In Proceedings of the 19th IEEE workshop on Computer Security Foundations (CSFW), pages 28–42. IEEE
Computer Society, 2006.

[DLM82] Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt. Cryptographic protocols. In 14th Annual ACM
Symposium on Theory of Computing (STOC), pages 383–400, San Francisco, California, USA, May 1982. ACM.

[dMPQ07] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater. Simulation-based analysis of e2e voting
systems. In Chaum et al. [CKRR08].

[DS99] Jean-Marc DeBaud and Klaus Schmid. A systematic approach to derive the scope of software product lines. In
ICSE ’99: Proceedings of the 21st international conference on Software engineering, pages 34–43, New York,
NY, USA, 1999. ACM.

[EB08] Andrew Edmunds and Michael Butler. Linking event-b and concurrent object-oriented programs. Electr. Notes
Theor. Comput. Sci., 214:159–182, 2008.

[EBB06] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. Software product line modeling made practical. Commun.
ACM, 49(12):49–54, 2006.

[Eve07] Sarah P. Everett. The Usability of Electronic Voting Machines and How Votes Can Be Changed Without Detection.
PhD thesis, Rice University, Houston, TX, USA, 2007.

[FHF07] Ariel J. Feldman, J. Alex Halderman, and Edward W. Felten. Security analysis of the Diebold AccuVote-TS
voting machine. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop
2007, Berkeley, CA, USA, August 2007. USENIX Association.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large scale elections.
In ASIACRYPT ’92: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques,
volume 718 of Lecture Notes in Computer Science, pages 244–251, London, UK, 1993. Springer-Verlag.

[Gar83] H. Gardner. Frames of mind: the theory of multiple intelligence. Basic Books, New York, 1983.

[GGR07] Ryan Gardner, Sujata Garera, and Aviel D. Rubin. On the difficulty of validating voting machine software
with software. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2007,
Berkeley, CA, USA, August 2007. USENIX Association.

[GH07] Rop Gonggrijp and Willem-Jan Hengeveld. Studying the Nedap/Groenendaal ES3B voting computer: A com-
puter security perspective. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Work-
shop 2007, Berkeley, CA, USA, August 2007. USENIX Association.

[Gib98] J. Paul Gibson. Towards a feature interaction algebra. In Kristofer Kimbler and Wiet Bouma, editors, Feature
Interactions in Telecommunications and Software Systems V (FIW 1998), pages 217–231, Malmö, Sweden, 1998.
IOS Press.

154

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Gib00] J. Paul Gibson. Formal requirements engineering: Learning from the students. In Doug Grant, editor, 12th
Australian Software Engineering Conference (ASWEC 2000), pages 171–180. IEEE Computer Society, 2000.

[Gib07] J. Paul Gibson. E-voting and the need for rigourous software engineering - the past, present and future. In Jacques
Julliand and Olga Kouchnarenko, editors, B 2007, volume 4355 of Lecture Notes in Computer Science, page 1.
Springer, 2007.

[Gib08a] J. Paul Gibson. Formal methods - never too young to start. In Formal Methods in Computer Science Education
(FORMED), pages 149–159, March 2008.

[Gib08b] J. Paul Gibson. Weaving a formal methods education with problem-based learning. In T. Margaria and B. Steffen,
editors, 3rd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information Science (CCIS), pages 460–472, Porto Sani, Greece,
October 2008. Springer-Verlag, Berlin Heidelberg.

[GJ09] J. Paul Gibson and Doug Jones, editors. First International Workshop on Requirements Engineering for e-Voting
Systems (RE-VOTE09), Atlanta, GA, USA, August 2009. IEEE.

[GKK+06] Marcin Gogolewski, Marek Klonowski, Przemyslaw Kubiak, Miroslaw Kutylowski, Anna Lauks, and Filip Za-
górski. Kleptographic attacks on e-voting schemes. In Günter Müller, editor, International Conference on Emerg-
ing Trends in Information and Communication Security (ETRICS), volume 3995 of Lecture Notes in Computer
Science, pages 494–508. Springer, 2006.

[GLR08a] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Analysis of a distributed e-voting system architecture against
quality of service requirements. In Herwig Mannaert, Tadashi Ohta, Cosmin Dini, and Robert Pellerin, editors,
The Third International Conference on Software Engineering Advances (ICSEA 2008), pages 58–64, Sliema,
Malta, October 2008. IEEE Computer Society.

[GLR08b] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. How do I know if my design is correct? In Zoltan Istenes, editor,
Formal Methods in Computer Science Education (FORMED 2008), pages 61–70, Budapest, Hungary, March
2008. Accepted for publication in ENTCS.

[GLR10] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Engineering a distributed e-voting system architecture: Meeting
critical requirements. In Holger Giese, editor, Architecting Critical Systems, First International Symposium, IS-
ARCS 2010, Prague, Czech Republic, June 23-25, 2010, Proceedings, volume 6150 of Lecture Notes in Computer
Science, pages 89–108. Springer, 2010.

[GM98] J. Paul Gibson and Dominique Mery. Teaching formal methods: Lessons to learn. In Sharon Flynn and Andrew
Butterfield, editors, 2nd Irish Workshop on Formal Methods (IWFM 1998), Electronic Workshops in Computing,
Cork, Ireland, July 1998. BCS.

[GM08] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems and standards. In
Dan Remenyi, editor, 8th European Conference on e-Government, pages 283–289. Academic Publishing Inter-
national, July 2008. ISBN 978-1-906638-09-2.

[GO05] J. Paul Gibson and Jackie O’Kelly. Software engineering as a model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005 international workshop on Computing education research, pages
87–97, New York, NY, USA, 2005. ACM.

[Got06] Don Gotterbarn. E-voting: a failure of professionalism? In ITiCSE-WGR ’06: Working group reports on ITiCSE
on Innovation and technology in computer science education, pages 7–8, New York, USA, 2006. ACM.

[Gri02] Dimitris Gritzalis. Principles and requirements for a secure e-voting system. Computers & Security, 21(6):539–
556, 2002.

155

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Gri03] Dimitris Gritzalis, editor. Secure Electronic Voting, volume 7 of Advances in Information Security. Kluwer
Academic, 2003.

[Gro04a] Jens Groth. Evaluating security of voting schemes in the universal composability framework. In Markus Jakob-
sson, Moti Yung, and Jianying Zhou, editors, Applied Cryptography and Network Security, volume 3089 of
Lecture Notes in Computer Science, pages 46–60. Springer, 2004.

[Gro04b] Jeff Grove. ACM statement on voting systems. Communications of the ACM, 47(10):69–70, 2004.

[Gui67] J. P. Guilford. The Nature of Human Intelligence. McGraw-Hill, New York, 1967.

[Hab08] Henri Habrias. Teaching specifications, hands on. In Formal Methods in Computer Science Education
(FORMED), pages 5–15, March 2008.

[Hal08] Joseph Lorenzo Hall. Improving the security, transparency, and efficiency of California’s 1% manual tally proce-
dures. In EVT’08: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop, Berkeley, CA,
USA, July 2008. USENIX Association.

[HB56] E. R. Hilgard and G. H. Bower. Theories of Learning. Prentice Hall, Englewood Cliffs, NJ, 1956.

[HBL+05] Paul S. Herrnson, Benjamin B. Bederson, Bongshin Lee, Peter L. Francia, Robert M. Sherman, Frederick G.
Conrad, Michael Traugott, and Richard G. Niemi. Early appraisals of electronic voting. Social Science Computer
Review, 23(3):274–292, 2005.

[Hea07] James Heather. Implementing STV securely in Prêt à Voter. In 20th IEEE Computer Security Foundations
Symposium(CSF), pages 157–169, Venice, Italy, July 2007. IEEE Computer Society.

[HGM00] Geoff Hamilton, J. Paul Gibson, and Dominique Méry. Composing fair objects. In Fouchal and Lee, editors,
International Conference on Software Engineering Applied to Networking and Parallel/Distributed Computing
(SNPD ’00), pages 225–233, Reims, France, May 2000.

[HV07] Benjamin Hosp and Poorvi L. Vora. An information-theoretic model of voting systems. In Chaum et al.
[CKRR08].

[Hwa96] Jing-Jang Hwang. A conventional approach to secret balloting in computer networks. Computers and Security,
15(3):249–263, 1996.

[HWW87] I. D. Hill, B. A. Wichmann, and D. R. Woodall. Algorithm 123 — Single transferable vote by Meek’s method.
Computer Journal, 30:277–281, 1987.

[Ive91] Kenneth R. Iversen. A cryptographic scheme for computerized elections. In Joan Feigenbaum, editor, Advances
in Cryptology — CRYPTO ’91, 11th Annual International Cryptology Conference, volume 576 of Lecture Notes
in Computer Science, pages 405–419, Santa Barbara, California, USA, 1991. Springer.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In Vijay Atluri,
Sabrina De Capitani di Vimercati, and Roger Dingledine, editors, Workshop on Privacy in the Electronic Society
(WPES), pages 61–70, Alexandria, VA, USA, 2005. ACM.

[Jef07] David Jefferson. What happened in Sarasota county? The Bridge: Linking Engineering and Society, 37(2):17–23,
2007.

[JRSW04a] David Jefferson, Aviel D. Rubin, Barbara Simons, and David Wagner. Analyzing internet voting security. Com-
mun. ACM, 47(10):59–64, 2004.

[JRSW04b] David Jefferson, Aviel D. Rubin, Barbara Simons, and David Wagner. Analyzing internet voting security. Com-
munications of the ACM, 47(10):59–64, 2004.

[JZF03] Rui Joaquim, Andre Zuquete, and Paulo Ferreira. REVS - A Robust Electronic Voting System. In Proceedings
of the IADIS International Conference on e-Society, pages 95–103, Lisbon, Portugal, June 2003.

156

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[KCH+90] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU-SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon Uni-
versity, 1990.

[KCT07] Joseph R. Kiniry, Dermot Cochran, and Patrick E. Tierney. Verification-centric realization of electronic vote
counting. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2007 on
Electronic Voting Technology Workshop, Berkeley, CA, USA, august 2007. USENIX Association.

[KE03] Chethana Kuloor and Armin Eberlein. Aspect-oriented requirements engineering for software product lines. In
ECBS, pages 98–107. IEEE Computer Society, 2003.

[Kin07] Joseph Kiniry. Formally counting electronic votes (but still only trusting paper). In ICECCS, pages 261–269.
IEEE Computer Society, 2007.

[KLD02] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented product line engineering. IEEE Software,
19(4):58–65, 2002.

[KMC+06] Joseph R. Kiniry, Alan E. Morkan, Dermot Cochran, Martijn Oostdijk, and Engelbert Hubbers. Formal tech-
niques in a remote voting system. SIGSOFT Softw. Eng. Notes, 31(6):1–2, 2006.

[KMR+07a] Aggelos Kiayias, Laurent Michel, Alexander Russell, Narasimha Sashidar, Andrew See, and Alexander A.
Shvartsman. An authentication and ballot layout attack against an optical scan voting terminal. In EVT’07:
Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic Voting Tech-
nology Workshop, Berkeley, CA, USA, august 2007. USENIX Association.

[KMR+07b] Aggelos Kiayias, Laurent Michel, Alexander Russell, Narasimha Shashidhar, Andrew See, Alexander A. Shvarts-
man, and Seda Davtyan. Tampering with special purpose trusted computing devices: A case study in optical scan
e-voting. In ACSAC, pages 30–39. IEEE Computer Society, 2007.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the applied pi-calculus. In In European
Symposium on Programming, number 3444 in Lecture Notes in Computer Science, pages 186–200. Springer,
2005.

[Kri06] Robert Krimmer, editor. Electronic Voting 2006: 2nd International Workshop, Co-organized by Council of
Europe, ESF TED, IFIP WG 8.6 and E-Voting.CC, August, 2nd - 4th, 2006 in Castle Hofen, Bregenz, Austria,
volume 86 of LNI. GI, 2006.

[KS04] Paul Kocher and Bruce Schneier. Insider risks in elections. Commun. ACM, 47(7):104, 2004.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach. Analysis of an electronic voting
system. In IEEE Symposium on Security and Privacy (S&P04), pages 27–40. IEEE, 2004.

[KSW05] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting protocols: a systems perspective. In
SSYM’05: Proceedings of the 14th conference on USENIX Security Symposium, pages 3–3, Berkeley, CA, USA,
2005. USENIX Association.

[KTV07] Robert Krimmer, Stefan Triessnig, and Melanie Volkamer. The development of remote e-voting around the world:
A review of roads and directions. In Ammar Alkassar and Melanie Volkamer, editors, VOTE-ID, volume 4896 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

[KY04] Aggelos Kiayias and Moti Yung. The vector-ballot e-voting approach. In Ari Juels, editor, Financial Cryptogra-
phy, volume 3110 of Lecture Notes in Computer Science, pages 72–89. Springer, 2004.

[KZ08] Joseph R. Kiniry and Daniel M. Zimmerman. Secret ninja formal methods. In Jorge Cuéllar, T. S. E. Maibaum,
and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in Computer Science, pages 214–228. Springer, 2008.

[Lar99] Kai R. T. Larsen. Voting technology implementation. Commun. ACM, 42(12):55–57, 1999.

157

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Lau04] Thomas W. Lauer. The risk of e-voting. Electronic Journal of e-Government, 2:177–186, 2004.

[Liu07] Jing Liu. Handling safety-related feature interaction in safety-critical product lines. In ICSE Companion, pages
85–86. IEEE Computer Society, 2007.

[Lun07] David Lundin. Component based electronic voting systems. In Chaum et al. [CKRR08].

[Maa04] Epp Maaten. Towards remote e-voting: Estonian case. In Alexander Prosser and Robert Krimmer, editors,
Electronic Voting in Europe, volume 47 of LNI, pages 83–100. GI, 2004.

[MC04] Rebecca T. Mercuri and L. Jean Camp. The code of elections. Communications of the ACM, 47(10):52–57, 2004.

[McI68] D. McIlroy. Mass-produced software components. In Proceedings of the 1st International Conference on Soft-
ware Engineering, Garmisch Pattenkirchen, Germany, pages 88–98, 1968.

[Mer92] Rebecca Mercuri. Voting-machine risks. Commun. ACM, 35(11):138, 1992.

[Mer93] Rebecca Mercuri. Corrupted polling. Commun. ACM, 36(11):122, 1993.

[Mer02a] Rebecca Mercuri. Florida 2002: sluggish systems, vanishing votes. Commun. ACM, 45(11):136, 2002.

[Mer02b] Rebecca Mercuri. Government: a better ballot box? IEEE Spectr., 39(10):46–50, 2002.

[MG03] Margaret McGaley and J. Paul Gibson. E-voting: a safety critical system. Report NUIM-CS-TR-2003-2, De-
partment of Computer Science, National University of Ireland, Maynooth, 2003.

[MG06] Margaret McGaley and J. Paul Gibson. A critical analysis of the council of europe recommendations on e-voting.
In EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic
Voting Technology Workshop, pages 9–22, Berkeley, CA, USA, 2006. USENIX Association.

[MKSW06] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-evident, history-independent, subliminal-free data struc-
tures on prom storage — or — how to store ballots on a voting machine (extended abstract). IEEE Symposium
on Security and Privacy,, 2006.

[MLF06] Rebecca T. Mercuri, Vincent J. Lipsio, and Beth Feehan. COTS and other electronic voting backdoors. Commun.
ACM, 49(11):112, 2006.

[MM04] Margaret McGaley and Joe McCarthy. Transparency and e-Voting: Democratic vs. Commercial Interests. In
Electronic Voting in Europe - Technology, Law, Politics and Society, pages 153 – 163. European Science Foun-
dation, July 2004.

[MM06] Ülle Madise and Tarvi Martens. E-voting in estonia 2005. the first practice of country-wide binding internet
voting in the world. In Krimmer [Kri06], pages 15–26.

[MW93] P. Mukherjee and B. Wichmann. STV: A Case Study in VDM. Technical report, National Physical Laboratory,
Teddington, UK, 1993.

[MW95] Paul Mukherjee and Brian A. Wichmann. Formal specification of the stv algorithm. In Jonathan P. Bowen and
Michael G. Hinchey, editors, Applications of Formal Methods, pages 73–96, Upper Saddle River, NJ, USA, 1995.
Prentice Hall.

[MWC09] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. SAT-Based analysis of feature models is easy.
In Proceedings of the 13th International Software Product Lines Conference (SPLC’09), San Francisco, CA,
USA, pages 231–240, 2009.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM Conference on Computer and
Communications Security, pages 116–125, 2001.

[Neu90] Peter G. Neumann. Inside risks: risks in computerized elections. Commun. ACM, 33(11):170, 1990.

[Neu04] Peter G. Neumann. The problems and potentials of voting systems. Commun. ACM, 47(10), 2004.

158

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Neu05] Peter G. Neumann. Responsibilities of technologists. Commun. ACM, 48(2):128, 2005.

[NR95] Valtteri Niemi and Ari Renvall. How to prevent buying of votes in computer elections. In ASIACRYPT ’94:
Proceedings of the 4th International Conference on the Theory and Applications of Cryptology, pages 164–170,
London, UK, 1995. Springer-Verlag.

[NR99] Valtteri Niemi and Ari Renvall. Efficient voting with no selling of votes. Theor. Comput. Sci., 226(1-2):105–116,
1999.

[NS94] Hannu Nurmi and Arto Salomaa. Conducting secret ballot elections in computer networks: Problems and solu-
tions. Annals of Operations Research, 51(4):185–194, 1994.

[OG05] J. O’Kelly and J. Paul Gibson. PBL: Year one analysis — interpretation and validation. In PBL In Context —
Bridging Work and Education, 2005.

[PAB+04] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and Byoungcheon Lee. Multiplicative homomorphic e-voting.
In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer
Science, pages 61–72. Springer, 2004.

[Par76] David Lorge Parnas. On the design and development of program families. IEEE Trans. Software Eng., 2(1):1–9,
1976.

[PFF+08] M. Poppleton, B. Fischer, C. Franklin, A. Gondal, C. Snook, and J. Sorge. Towards reuse with “feature-oriented
event-b”. In McGPLE: Workshop on Modularization, Composition, and Generative Techniques for Product Line
Engineering, pages 1–6. Department of Informatics and Mathematics University of Passau, Germany, October
2008.

[PGL00] Gilda Pour, Martin L. Griss, and Michael J. Lutz. The push to make software engineering respectable. IEEE
Computer, 33(5):35–43, 2000.

[Pop97] Michael Poppleton. The single transferable voting system: Functional decomposition in formal specification. In
Henry McGloughlin and Gerard O’Regan, editors, IWFM, Workshops in Computing. BCS, 1997.

[Pop07] Michael Poppleton. Towards feature-oriented specification and development with event-b. In Peter Sawyer,
Barbara Paech, and Patrick Heymans, editors, REFSQ, volume 4542 of Lecture Notes in Computer Science,
pages 367–381. Springer, 2007.

[Pop08] Michael Poppleton. The composition of event-b models. In ABZ ’08: Proceedings of the 1st international
conference on Abstract State Machines, B and Z, pages 209–222, Berlin, Heidelberg, 2008. Springer-Verlag.

[PRH+07] Elliot Proebstel, Sean Riddle, Francis Hsu, Justin Cummins, Freddie Oakley, Tom Stanionis, and Matt Bishop.
An analysis of the hart Intercivic DAU eSlate. In EVT’07: Proceedings of the USENIX/Accurate Electronic
Voting Technology Workshop 2007 on Electronic Voting Technology Workshop, Berkeley, CA, USA, august 2007.
USENIX Association.

[PS80] S. Papert and J. Sculley. Mindstorms: children,computers, and powerful ideas. Basic Books, New York, 1980.

[PS06] David Lorge Parnas and Michael Soltys. Basic science for software developers. In Workshop on Formal Methods
in the Teaching Lab (FM-Ed 2006, pages 9–14, August 2006.

[QT07] Ghassan Z. Qadah and Rani Taha. Electronic voting systems: Requirements, design, and implementation. Com-
put. Stand. Interfaces, 29(3):376–386, 2007.

[RFAB06] José Rodrigues-Filho, Cynthia Alexander, and Luciano Batista. E-voting in brazil - the risks to democracy. In
Krimmer [Kri06], pages 85–94.

[RH07] Thomas P. Ryan and Candice Hoke. GEMS tabulation database design issues in relation to voting systems
certification standards. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop
2007 on Electronic Voting Technology Workshop, Berkeley, CA, USA, august 2007. USENIX Association.

159

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[Rot98] Susan King Roth. Disenfranchised by design: voting systems and the election process. Information Design
Journal, 9(1):1–8, 1998.

[RP05] Peter Y. A. Ryan and Thea Peacock. Prêt à voter: a systems perspective. Technical Report CS-TR-929, University
of Newcastle, 2005.

[RR06] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. IEEE Security and Privacy, 4(5):50–56,
2006.

[RS07] Ronald L. Rivest and Warren D. Smith. Three voting protocols: ThreeBallot, VAV, and Twin. In EVT’07: Pro-
ceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic Voting Technology
Workshop, Berkeley, CA, USA, august 2007. USENIX Association.

[RTS07] Ben Riva and Amnon Ta-Shma. Bare-handed electronic voting with pre-processing. In EVT’07: Proceedings of
the USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic Voting Technology Workshop,
Berkeley, CA, USA, august 2007. USENIX Association.

[Rub02] Aviel D. Rubin. Security considerations for remote electronic voting. Commun. ACM, 45(12):39–44, 2002.

[SB08] Colin F. Snook and Michael J. Butler. Uml-b: A plug-in for the event-b tool set. In Egon Börger, Michael J.
Butler, Jonathan P. Bowen, and Paul Boca, editors, ABZ, volume 5238 of Lecture Notes in Computer Science,
page 344. Springer, 2008.

[SBS09] Mar Yah Said, Michael J. Butler, and Colin F. Snook. Language and tool support for class and state machine re-
finement in uml-b. In Ana Cavalcanti and Dennis Dams, editors, FM, volume 5850 of Lecture Notes in Computer
Science, pages 579–595. Springer, 2009.

[Sch85] A. H. Schoenfeld. Mathematical Problem Solving. Academic Press, Orlando, Fla, 1985.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic.
In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 148–164.
Springer, 1999.

[Sch00] Berry Schoenmakers. Compensating for a lack of transparency. In CFP ’00: Proceedings of the tenth conference
on Computers, freedom and privacy, pages 231–233, New York, NY, USA, 2000. ACM.

[SD04] Tim Storer and Ishbel Duncan. Practical remote electronic elections for the uk. In PST, pages 41–45, 2004.

[SD05] Tim Storer and Ishbel Duncan. Electronic voting in the uk: Current trends in deployment, requirements and
technologies. In PST, 2005.

[SE08] Klaus Schmid and Holger Eichelberger. A requirements-based taxonomy of software product line evolution.
Electronic Communications of the EASST, 8:2–13, 2008. Software Evolution 2007.

[SG04] T. Selker and J. Goler. The save system — secure architecture for voting electronically. BT Technology Journal,
22(4):89–95, 2004.

[Sha00] David C. Sharp. Component-based product line development of avionics software. In Patrick Donohoe, editor,
SPLC, pages 353–370. Kluwer, 2000.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution to the implementation of
a voting booth. In EUROCRYPT, pages 393–403, 1995.

[SKW06] Naveen Sastry, Tadayoshi Kohno, and David Wagner. Designing voting machines for verification. In USENIX-
SS’06: Proceedings of the 15th conference on USENIX Security Symposium, pages 22–22, Berkeley, CA, USA,
2006. USENIX Association.

[SL03] Jörgen Svensson and Ronald Leenes. E-voting in europe: Divergent democratic practice. Information Polity,
8(1):3–15, 2003.

160

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[SMCO08] Borislava I. Simidchieva, Matthew S. Marzilli, Lori A. Clarke, and Leon J. Osterweil. Specifying and verifying
requirements for election processes. In dg.o’08: Proceedings of the 2008 international conference on Digital
government research, pages 63–72. Digital Government Society of North America, 2008.

[SP06] Krishna Sampigethaya and Radha Poovendran. A framework and taxonomy for comparison of electronic voting
schemes. Computers & Security, 25(2):137–153, 2006.

[SW07] Daniel Sandler and Dan S. Wallach. Casting votes in the auditorium. In EVT’07: Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic Voting Technology Workshop,
Berkeley, CA, USA, august 2007. USENIX Association.

[SW08] Daniel R. Sandler and Dan S. Wallach. The case for networked remote voting precincts. In EVT’08: Proceed-
ings of the USENIX/Accurate Electronic Voting Technology Workshop 2008 on Electronic Voting Technology
Workshop, Berkeley, CA, USA, july 2008. USENIX Association.

[TCL05] C. Tien, S. Chu, and Y. Lin. Four phases to construct problem-based learning instruction materials. In PBL In
Context Ð Bridging work and Education, pages 117–133. Tampere University Press, 2005.

[TR00] Nicolaus Tideman and Daniel Richardson. Better voting methods through technology: The refinement-
manageability trade-off in the single transferable vote. Public Choice, 103(1):13–34, April 2000.

[TRN08] Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant tallying for STV voting. In EVT’08: Pro-
ceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2008 on Electronic Voting Technology
Workshop, Berkeley, CA, USA, july 2008. USENIX Association.

[TS02] L. Torp and S. Sage. Problems as Possibilities: Problem-Based Learning for KŰ16 Education. Association for
Supervision and Curriculum Development (ASCD)„ Alexandria, VA, USA, 2002.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability in software product lines. In
WICSA, pages 45–54. IEEE Computer Society, 2001.

[Win00] Jeannette M. Wing. Invited talk: Weaving formal methods into the undergraduate computer science curriculum.
In Teodor Rus, editor, Algebraic Methodology and Software Technology. 8th International Conference, AMAST
2000, volume 1816 of Lecture Notes in Computer Science, pages 2–9, Iowa City, Iowa, USA, 2000. Springer.

[Win06] Jeannette M. Wing. Computational thinking. Commun. ACM, 49(3):33–35, 2006.

[Wit96] James Withey. Investment analysis of software assets for product lines. Technical Report CMU/SEI-96-TR-010,
Software Engineering Institute, Carnegie Mellon University, November 1996.

[WK04] Brit J. Williams and Merle S. King. Implementing voting systems: the georgia method. Commun. ACM,
47(10):39–42, 2004.

[WKV10] Komminist Weldemariam, Richard A. Kemmerer, and Adolfo Villafiorita. Formal specification and analysis of
an e-voting system. In ARES, pages 164–171. IEEE Computer Society, 2010.

[Woo96] D. R. Woods. Problem-based Learning: how to gain the most from PBL. Waterdown, Ontario, 1996.

[WV08] Komminist Weldemariam and Adolfo Villafiorita. Modeling and analysis of procedural security in (e)voting:
The trentino’s approach and experiences. In EVT’08: Proceedings of the USENIX/Accurate Electronic Voting
Technology Workshop 2008 on Electronic Voting Technology Workshop, Berkeley, CA, USA, july 2008. USENIX
Association.

[XM04a] Alexandros Xenakis and Ann Macintosh. Procedural security analysis of electronic voting. In Marijn Janssen,
Henk G. Sol, and René W. Wagenaar, editors, ICEC, volume 60 of ACM International Conference Proceeding
Series, pages 541–546. ACM, 2004.

[XM04b] Alexandros Xenakis and Ann Macintosh. Procedural security in electronic voting. In HICSS, 2004.

161

4.A-RESEARCH PROPOSAL FOR A FORMAL SPL FOR E-VOTING:
BIBLIOGRAPHY

[XM05a] A. Xenakis and A. Macintosh. E-electoral administration: organizational lessons learned from the deployment
of e-voting in the UK. In Proceedings of the 2005 national conference on Digital government research, pages
191–197. Digital Government Society of North America, 2005.

[XM05b] Alexandros Xenakis and Ann Macintosh. Procedural security and social acceptance in e-voting. In HICSS. IEEE
Computer Society, 2005.

[XSHT08] Zhe Xia, Steve A. Schneider, James Heather, and Jacques Traoré. Analysis, improvement, and simplification
of prêt à voter with paillier encryption. In EVT’08: Proceedings of the USENIX/Accurate Electronic Voting
Technology Workshop 2008 on Electronic Voting Technology Workshop, Berkeley, CA, USA, july 2008. USENIX
Association.

[YA07] Ahlem Ben Younes and Leila Jemni Ben Ayed. Using UML activity diagrams and Event-B for distributed
and parallel applications. In COMPSAC ’07: Proceedings of the 31st Annual International Computer Software
and Applications Conference - Vol. 1- (COMPSAC 2007), pages 163–170, Washington, DC, USA, 2007. IEEE
Computer Society.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164. IEEE,
1982.

[YB08] Alec Yasinsac and Matt Bishop. The dynamics of counting and recounting votes. IEEE Security and Privacy,
6(3):22–29, 2008.

[Yee07a] Ka-Ping Yee. Building Reliable Voting Machine Software. PhD thesis, University of California, Berkeley, CA,
USA, 2007.

[Yee07b] Ka-Ping Yee. Extending prerendered-interface voting software to support accessibility and other ballot features.
In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2007 on Electronic
Voting Technology Workshop, Berkeley, CA, USA, august 2007. USENIX Association.

[YWHB06] Ka-Ping Yee, David Wagner, Marti Hearst, and Steven M. Bellovin. Prerendered user interfaces for higher-
assurance electronic voting. In EVT’06: Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop 2006 on Electronic Voting Technology Workshop, pages 6–6, Berkeley, CA, USA, 2006. USENIX
Association.

[ZA08] André Zúquete and Filipe Almeida. Verifiable anonymous vote submission. In SAC ’08: Proceedings of the 2008
ACM symposium on Applied computing, pages 2159–2166, New York, NY, USA, 2008. ACM.

[ZHJ03] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Modélisation de lignes de produits en uml. L’OBJET,
9(1-2):227–240, 2003.

[ZS05] Bruno Zelic and Bernd Carsten Stahl. Does ontology influence technological projects? the case of irish electronic
voting. In Klaus-Dieter Althoff, Andreas Dengel, Ralph Bergmann, Markus Nick, and Thomas Roth-Berghofer,
editors, Wissensmanagement (LNCS Volume), volume 3782 of Lecture Notes in Computer Science, pages 657–
667. Springer, 2005.

162

5. CONCLUSIONS: WHAT HOLDS THE FUTURE?
CONCLUSION: QUE NOUS PRESAGE LE FUTUR ?

5 CONCLUSIONS: WHAT HOLDS THE FUTURE?
CONCLUSION: QUE NOUS PRESAGE LE FUTUR ?

I hope you become comfortable with the use of logic without being
deceived into concluding that logic will inevitably lead you to the correct Le présent est indéfini, le futur n’a de réalité

conclusion. qu’en tant qu’espoir présent, le passé n’a de
Neil Armstrong réalité qu’en tant que souvenir présent.

Jorge Luis Borges

5.1 Software Engineering: things can only get better?
— Génie logiciel : les choses peuvent-elles aller mieux ?

Twenty years ago — when I completed my Il y a vingt ans — lorsque nous avonsachevé notre
thesis — I was sure that my (and other people’s) thèse — nous étions certain que notre recherche (et celle
research on formal object oriented development of des autres) sur le développement formel OO de systèmes
software systems would become the de-facto in- logiciels deviendrait le standard industriel de facto en
dustrial standard within a few years. quelques années.

I was frustrated to learn — from fellow gradu- Nous étions frustré d’apprendre — de la part d’autres
ates who had moved on to industry — that poor diplômés qui étaient partis dans l’industrie — que de
software development practices were ubiquitous mauvaises pratiques dans le développement de logiciels
and that rigorous (never mind formal) methods étaient omniprésentes et que les méthodes rigoureuses
were the exception rather than the rule. (sans parler de formelles) étaient l’exception qui con-

Twenty years later, and my own experience firme la règle.
from analysis of software systems suggests that Vingt ans plus tard, et notre propre expérience tirée
not much has changed. Industrial pressure has de l’analyse de systèmes de logiciels, suggère que peu
tended to drive CS/CSSE programmes towards a changé. La pression industrielle a eu tendance à con-
teaching layers of technology rather than funda- duire les programmes informatiques/génie logiciel vers
mentals. Time spent talking to experienced “archi- l’enseignement de couches de technologie plutôt que les
tects” suggests that they have yet to master tech- fondamentaux. Le temps passé à parler avec des archi-
niques and tools that have existed for decades — tectes expérimentés suggère qu’ils ont encore à maîtriser
version control, automated testing, configuration les techniques et les outils qui ont existé depuis des dé-
management, model driven development, etc cennies : contrôle de version, test automatisé, gestion
They spend their time jumping from technology de configuration, model driven development, etc. . . Il
to technology that the foundational software engi- passent leur temps à sauter d’une technologie à l’autre
neering material is never mastered. de sorte que le fondement matériel du génie logiciel

However, I am more upbeat than ever. Many n’est jamais maîtrisé.
of the current international software engineering Pourtant, nous sommes plus optimiste que jamais.
research projects at European level have had to in- Actuellement, de nombreux projets internationaux de
corporate formal modelling. Multinational com- recherche en génie logiciel, au niveau européen, ont eu
panies — like Microsoft, Intel, Google, etc . . . — à incorporer la modélisation formelle. Des entreprises
have invested in formal software engineering tool multinationales — telles que Microsoft, Intel, Google,
developmment. Without formal methods there etc. . . — ont investi dans le développement d’outil de

163

5.2 Future Research Plans
— Plans pour une recherche future

would be little or no advances in self* systems, au- génie logiciel formel. Sans les méthodes formelles, il
tomated service composition, aspect-oriented de- n’y aurait peu ou pas d’avancées dans les secteurs de
velopment, high performance computing, SPLs, recherche offrant un challenge au domaine du logiciel
etc. . . : “self* systems”, composition de service automatisé,

For the first time, students are not just be- aspect-oriented development, computation à haute per-
ing presented with a stand-alone (often optional) formance, SPLs, etc. . .
formal methods course. They are seeing formal Pour la première fois, on ne présente pas aux étu-
methods as another tool in their conceptual tool- diants simplement un cours autonome (et souvent op-
box. Integrated development environments,such tionnel) de méthodes formelles. Ils voient les méthodes
as Eclipse, have led students to quite naturally formelles comme un autre outil dans leur boîte à outils
work with multiple models through a common in- conceptuelle. Des environnements de développement
terface. It is not so strange to see a student work- intégrés, tels que Eclipse, ont conduit les étudiantsà tra-
ing with Java, JUnit, UML and Event-B views all vailler assez naturellement avec de multiples modèles,
competing for screen space at the same time. Soft- à travers une interface commune. Il n’est pas excep-
ware engineering can only get better when our stu- tionnel de voir un étudiant travailler avec Java, JUnit,
dents can work at different levels of abstraction UML et sur des vues RODIN/ Event-B, rivalisant tous
and understand the underlying mathematics that pour une espace sur l’écran en même temps. Le génie
links these levels. logiciel peut seulement s’améliorer quand nos étudiants

peuvent travailler à différents niveaux d’abstraction et
comprendre les mathématiques sous-jacents qui relient
ces niveaux.5.2 Future Research Plans

— Plans pour une recherche future

As well as the research proposed in the previ- Tout autant que la recherche proposée dans la sec-
ous section, I have long term research plans that tion précédente, nous avons des plans de recherche à
include: long terme qui incluent :

Developing a software process to help small com- La construction d’un processus de développement logi-
panies to adopt formal methods in an incremental fash- ciel aidant les petites entreprises à adopter des méthodes

ion. formelles d’une manière incrémentielle.

Developing a PBL software engineering pro- Le développement d’un programme de génie logiciel
gramme where formal modelling is used in every mod- PBL où la modélisation formelle est utilisée dans chaque mod-

ule. ule.

Analysing various styles of specification in Event- L’analyse de styles variés de specification dans Event-B
B in order to better understand the way in which engi- afin de mieux comprendre la façon dont les ingénieurs combi-

neers combine top-down and bottom-up development nent les méthodes de développement de haut en bas et de bas

methods. en haut.

Twenty years ago I would never have thought Il y a vingt ans, nous n’aurions jamais imaginé faire
that I would be researching voting systems. Twenty de la recherche dans le domaine des systèmes de vote.
years from now who knows what I’ll be doing, but Dans vingt ans, qui sait ce que nous ferons, mais nous
I do know that — provided I am still working — savons une chose — à condition de toujours travailler
my experience in formal software engineering will — c’est qu’il existe a de fortes chances pour que notre

164

5.2 Future Research Plans
— Plans pour une recherche future

most likely help me in doing my work well. expérience dans le génie logiciel formel nous aiderons à
bien faire notre travail.

165

