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Introduction en français

Avant-propos

Cette thèse en logique appliquée et théorie descriptive des ensembles contri-
bue à la théorie des groupes topologiques et leurs systèmes dynamiques, et à ses
liens avec la théorie des modèles. Les travaux inclus dans ce manuscrit sont le ré-
sultat de deux projets de recherche différents, correspondant aux deux parties en
lesquelles la thèse est divisée, comme expliqué ci-dessous. Les sujets abordés sont
ainsi divers, mais peuvent s’inscrire dans un cadre général commun : l’étude de
groupes d’automorphismes de structures homogènes.

Le sujet de la première partie de la thèse, réalisée sous la direction d’Itaï Ben
Yaacov, est l’étude des groupes polonais Roelcke précompacts à travers les stru-
tures ℵ0-catégoriques qui leur sont associées, et réciproquement. Elle est consti-
tuée des articles suivants :

– Chapter 1 : [Iba14] The dynamical hierarchy for Roelcke precompact Polish groups,
à apparaître dans Israel Journal of Mathematics.

– Chapter 2 : [BIT15] Eberlein oligomorphic groups (travail en commun avec Itaï
Ben Yaacov et Todor Tsankov), soumis pour publication.

– Chapter 3 : [Iba16] Automorphism groups of randomized structures, soumis pour
publication.

La deuxième partie correspond à un travail en commun avec Julien Melle-
ray, portant sur les homéomorphismes minimaux de l’espace de Cantor et leurs
groupes pleins. Les résultats de ce travail en commun ont été recueillis dans les
articles suivants :

– Chapter 4 : [IM14] Full groups of minimal homeomorphisms and Baire category
methods, Ergodic Theory Dynam. Systems, vol. 36 (2016), no. 2, pp. 550-573.

– Chapter 5 : [IM15] Dynamical simplices and minimal homeomorphisms, soumis
pour publication.

Dans les sections qui suivent, nous donnons une introduction aux sujets de la
thèse ainsi qu’une présentation de ses résultats principaux.

Groupes et structures

Le point de rencontre entre logique et dynamique considéré dans cette thèse
réside dans l’étude de groupes d’automorphismes de structures. De nombreux
exemples intéressants de groupes topologiques se présentent naturellement sous
la forme G = Aut(M), où M est une structure classique (discrète) et la topologie
de G est celle de la convergence ponctuelle sur M . En fait, quitte à laisser tom-
ber le mot naturellement, la situation précédente comprend une très large classe
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10 INTRODUCTION EN FRANÇAIS

de groupes : tout groupe de permutations fermé (c-à-d, tout sous-groupe fermé du
groupe S∞ des bijections d’un ensemble dénombrable X) est le groupe d’automor-
phismes d’une structure dans le sens de la logique classique, à savoir, la structure
obtenue en additionnant des prédicats pour les orbites de G dans toutes les puis-
sances finies de X. Nous considérons X dénombrable car nous nous intéressons
uniquement à des groupes topologiques à base dénombrable.

Comme l’a remarqué Julien Melleray [Mel10], la situation s’étend à la classe
plus large de tous les groupes polonais, en passant de la logique classique à la lo-
gique continue, telle que développée dans [BU10, BBHU08]. On rappelle qu’un
espace topologique est polonais s’il est séparable et admet une métrique compa-
tible complète. Dans la logique continue, les structures sont des espaces métriques
complets, bornés, et les prédicats sont des fonctions à valeurs réelles, uniformé-
ment continues, bornées. La métrique remplace la relation d’identité : en particu-
lier, tous les automorphismes sont des isométries. Le groupe d’automorphismes G
d’une structure séparable M , muni de la topologie de la convergence ponctuelle,
est ainsi un sous-groupe polonais du groupe Iso(M) des isométries deM . Récipro-
quement, tout groupe polonais peut être obtenu de cette façon. En effet, par un
résultat classique de Birkhoff–Kakutani, tout groupe polonais G admet une mé-

trique dL compatible et invariante à gauche. Il suffit alors de considérerM = ĜL, la
complétion de G par rapport à dL, puis d’ajouter des prédicats pour les fonctions
distance à chaque orbite dans toutes les puissances finies de M . On a donc que G
agit sur M par isométries et, en fait, G = Aut(M). La construction est décrite plus
explicitement dans le Chapitre 1, §1.3.

Dans les exemples présentés naturellement, ce n’est pas surprenant que les
propriétés modèle-théoriques de la structureM donnent des informations impor-
tantes sur le groupe G, tout comme les propriétés particulières de toute autre ac-
tion intéressante de G. En revanche, les structures ad hoc décrites ci-dessus pour-
raient difficilement dire quelque chose de nouveau sur un groupe G donné (plutôt,
elles pourraient servir comme des exemples modèle-théoriques étranges). Néan-
moins, elles permettent le transfert de techniques du côté logique vers le côté dy-
namique (comme montré déjà dans [Mel10]), et suggèrent même que des concepts
et résultats théoriques généraux devraient aussi passer avec. Il se trouve que cela
est particulièrement le cas dans une certaine famille de groupes polonais, que nous
introduirons ensuite. La première partie de cette thèse porte sur l’élaboration d’un
dictionnaire précis entre les deux côtés de l’équation G = Aut(M) pour cette classe
particulière.

Un groupe topologique G est Roelcke précompact si pour tout ensemble ou-
vert U ⊂ G il y a un ensemble fini F ⊂ G tel que UFU = G. Afin d’expliquer
le nom, nous rappelons que tout groupe topologique est muni de quatre struc-
tures uniformes naturelles. Ce sont l’uniformité gauche (selon laquelle deux élé-

ments x,y ∈ G sont proches si le produit x−1y appartient à un entourage petit de

l’identité), l’uniformité droite (x,y sont proches si xy−1 est proche de l’identité),
l’uniformité supérieure (le suprémum des deux dernières) et l’uniformité inférieure
(leur infimum, appelée aussi uniformité de Roelcke par Uspenskij [Usp02]). Les uni-
formités gauche, droite et inférieure sont toujours compatibles avec la topologie du
groupe.
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Les complétions de G par rapport aux trois uniformités compatibles sont des
objets très intéressants, et une question basique est celle de savoir quand il leur
arrive d’être compacts ; c’est-à-dire, quand G est précompact par rapport à ces uni-
formités. Si G est polonais, alors on peut voir que la complétion à gauche (qui

est juste l’espace ĜL) est compacte si et seulement si G est compact (si et seule-
ment si la complétion à droite est compacte), donc cette condition ne donne rien
de nouveau. En revanche, le fait que la complétion par rapport à l’uniformité in-
férieure soit compacte (ce qui revient à la condition UFU = G indiquée plus haut,
expliquant le nom) s’avère définir une nouvelle et très riche classe de groupes po-
lonais. Hors le cas compact, ce sont toujours des groupes «infini-dimensionnels»
non-abéliens, en quelque sorte orthogonaux à la classe des groupes localement
compacts.

Des exemples fondamentaux de groupes polonais Roelcke précompacts, qui
apparaîtront à un moment ou un autre lors de cette thèse, incluent :

– le groupe symétrique infini, S∞ ;
– le groupe de bijections monotones des rationnels, Aut(Q,<) ;
– le groupe d’automorphismes du graphe aléatoire, Aut(RG) ;
– le groupe d’homéomorphismes de l’espace de Cantor, Homeo(2ω) ;
– le groupe unitaire, U(�2) ;
– le groupe de transformations invariantes d’un espace de Lebesgue, Aut(Ω) ;
– le groupe de transformations quasi-invariantes d’un espace de Lebesgue, Aut∗(Ω) ;
– le groupes d’isométries de l’espace d’Urysohn borné, Iso(U1) ;
– le groupe d’homéomorphismes croissants de l’intervalle, H+[0,1].

Les quatre premiers exemples de cette liste appartiennent à une classe de groupes
qui ont été étudiés en relation avec la logique depuis un moment. Ce sont les
groupes de permutations oligomorphes. Le terme, qui est censé signifier «peu de
formes», a été introduit par Cameron [Cam90] : un groupe de permutations fermé
G � X est oligomorphe s’il n’y a qu’un nombre fini de configurations possibles
de n-uplets de X, à G près. C’est-à-dire, si les espaces d’orbites Xn/G sont finis
pour tout n. (Dans le cas de Homeo(2ω), l’ensemble dénombrable X sous-jacent
est juste l’algèbre des sous-ensembles ouvert-fermés de 2ω.) Or, si X est regardé
comme une structure logique M appropriée de sorte que G = Aut(M), alors un
théorème classique de Ryll-Nardzewski montre que le fait que G � X soit oli-
gomorphe équivaut à que M soit ℵ0-catégorique (aussi dit dénombrablement ca-
tégorique) : toute structure dénombrable ayant les mêmes propriétés du premier
ordre que M , est isomorphe à M . Par conséquent, les groupes oligomorphes sont
précisément les groupes d’automorphismes de structures classiques dénombrable-
ment catégoriques, à une seule sorte. Dans les exemples précédents, on reconnaît :
l’unique ensemble dénombrable, l’unique ordre linéaire dense dénombrable sans
extrémités, l’unique graphe dénombrable homogène universel, et l’unique algèbre
de Boole dénombrable sans atomes.

Todor Tsankov [Tsa12] a observé que tout groupe oligomorphe est Roelcke pré-
compact. De plus, il a montré que les sous-groupes Roelcke précompacts fermés
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de S∞ sont précisément les limites inverses de groupes oligomorphes. C’est pour-
quoi nous appellerons ces groupes pro-oligomorphes. Un groupe polonaisG est pro-
oligomorphe si et seulement s’il peut être présenté comme G = Aut(M) pour une
structure classique dénombrablement catégoriqueM à plusieurs sortes.

Plus tard, Itaï Ben Yaacov et Todor Tsankov [BT14], et indépendamment Chris-
tian Rosendal [Ros13], ont réalisé qu’un groupe polonais arbitraire est Roelcke
précompact si et seulement s’il admet une action fidèle approximativement oligo-
morphe. Autrement dit, s’il peut être vu comme le groupe d’automorphismes d’une
structure ℵ0-catégorique dans le sens de la logique continue (aussi dit séparable-
ment catégorique). Des exemples basiques de telles structures (à part les cas dis-
crets) sont l’espace d’Hilbert séparable de dimension infinie, l’algèbre de mesure
d’un espace de Lebesgue sans atomes, les treillis de Banach Lp sans atomes, et
l’espace d’Urysohn borné de diamètre 1, chacun unique dans son genre.

La catégoricité séparable est un phénomène très intéressant et assez ubiquitaire
(il se manifeste tout au long du spectre de la stabilité), qui implique néanmoins des
propriétés très fortes pour la structure (saturation, homogénéité, définissabilité
des ∅-types partiels, par exemple). Or, une caractéristique commune importante
des structures ℵ0-catégoriques est qu’elles sont déterminées, à bi-interprétabilité
près, par leur groupes d’automorphismes, comme il a été montré dans [AZ86,
BK13]. Donc, on pourrait s’attendre à ce que les propriétés modèle-théoriques
d’une structure séparablement catégorique (du moins, celles qui sont préservées
par bi-interprétations) soient codées par des propriétés naturelles de son groupe
d’automorphismes. Ce principe directeur a motivé les résultats du travail de Ben
Yaacov et Tsankov [BT14], dans lesquels ils ont étudié l’une de ces propriétés fon-
damentales : la stabilité. L’idée a été développée et poussée plus loin dans les ar-
ticles qui forment les premiers chapitres de cette thèse.

Avant que l’on puisse aller dans plus de détails, nous examinerons d’autres
idées récentes reliant l’étude des groupes topologiques à encore un autre domaine
complètement différent.

Pour finir cette section, nous notons que les structures ℵ0-catégoriques sont un
cas spécial de structures homogènes, mais que de nombreuses structures intéres-
santes à beaucoup de symétries ne sont pas ℵ0-catégoriques. Une autre connexion
importante entre logique et dynamique, qui est pertinente pour la deuxième partie
de cette thèse, réside dans l’étude de structures homogènes et leurs groupes d’au-
tomorphismes par le biais de la théorie de Fraïssé. Nous reviendrons sur ce lien
dans une section ultérieure.

Systèmes dynamiques et leurs représentations

Un sujet classique en dynamique topologique est l’étude des propriétés de
périodicité des fonctions continues sur des groupes. Au-dehors du domaine des
groupes compacts, les orbites des fonctions continues f : G → R peuvent être as-
sez compliquées, et les notions classiques qui rentrent en jeu sont celles de presque
périodicité (lorsque l’orbite Gf est précompacte au sens de la norme dans C(G))
et faible presque périodicité (lorsque Gf est faiblement précompact). À leur tour,
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ces notions sont associées à des systèmes dynamiques intéressants qui viennent
attachés au groupe.

Si G est un groupe topologique, un G-ambit est donné par une action continue
de G sur un espace compact séparé X, accompagné d’un point distingué x0 ∈ X
tel que l’orbite Gx0 est dense dans X. (C’est la même chose qu’une compactification
G→ X, définie par le fait d’envoyer 1 sur x0.) L’algèbre de toutes les fonctions bor-
nées f : G→ R qui sont uniformément continues par rapport à l’uniformité droite
est dénotée par RUC(G). Puis, il existe une correspondance bijective entre les G-
ambits, à isomorphisme près, et les sous-algèbres fermées et invariantes à gauche
de RUC(G), qui de plus préserve l’ordre : des inclusions de sous-algèbres corres-
pondent à des facteurs entre des ambits. Des sous-algèbres intéressantes, comme
celles qui correspondent aux fonctions presque périodiques et faiblement presque
périodiques, induisent des ambits avec des propriétés algébriques intéressantes.
Le compactifié de Bohr, bG (qui correspond aux fonctions presque périodiques), est
un groupe topologique compact, tandis que la compactification WAP,W (G), est un
semi-groupe semi-topologique. L’algèbre RUC(G) elle-même induit le plus grand
ambit, βG, qui est un semi-groupe semi-topologique à droite. Ces trois sont des am-
bits universels pour leur propriétés correspondantes, par exemple, tout G-ambit
qui est un semi-groupe semi-topologique est un facteur deW (G).

Récemment, Eli Glasner et Michael Megrelishvili ont proposé une approche
complètement nouvelle de ce sujet, l’enrichissant et l’élargissant (un résumé en est
donné dans [GM14b]). Si G� X est un système dynamique compact et que V est
un espace de Banach, ils définissent une représentation de X dans V comme étant
une application faible∗-continue

ι : X→ V ∗

accompagnée d’un homomorphisme π : G→ Iso(V ) tel que, par rapport à l’action
duale induite G� V ∗, l’application ι est G-équivariante. Puis, si K est une classe
d’espaces de Banach, le système X est K-représentable s’il admet suffisamment de
représentations dans des espaces de Banach de la classe K. (On peut s’attendre à
avoir une représentation injective, soit juste des représentations qui séparent les
points, selon le contexte.)

En considérant la représentation injective X → C(X)∗ évidente, on voit que
tout système dynamique est Banach-représentable. Le fait intéressant est que la
représentabilité dans des bonnes classes d’espaces de Banach correspond à des
bonnes propriétés dynamiques. Ainsi, par exemple, par un résultat de Megrelish-
vili [Meg03], les G-ambits WAP (c-à-d, les facteurs deW (G)) sont précisément les
ambits réflexif -représentables. De façon similaire, les ambits presque périodiques
sont ceux qui sont euclidien-représentables.

Ensuite, dans les travaux [GM06, GM12], les auteurs étudient les propriétés
dynamiques des systèmes qui sont représentables dans certaines généralisations
naturelles des espaces réflexifs : les espaces Asplund et Rosenthal. Un espace de
Banach est Asplund si le dual de tout sous-espace séparable est séparable ; par
exemple, les espaces c0(Γ). Il est Rosenthal s’il ne contient pas une copie de �

1 ; par
exemple, tout espace Asplund est Rosenthal. L’inclusion est en fait stricte, mais
il n’est pas facile d’en exhiber un exemple. Il s’avère que les notions d’Asplund et
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Rosenthal-représentabilité sont robustes, admettant plusieurs présentations équi-
valentes. Par exemple, pour des systèmesmétrisables compacts G� X, la table sui-
vante montre comment la propriété d’être K-représentable est liée à la complexité
des orbites de fonctions f ∈ C(X). (Ci-dessous, Of dénote la clôture ponctuelle de

Gf dans RX , et B1(X) ⊂ RX est l’espace des fonctions de première classe sur X.)

Nom ClasseK Complexité des orbites
WAP Reflexif Of ⊂ C(X)
HNS Asplund Of est métrisable

Tame Rosenthal Of ⊂ B1(X)

Dans la direction opposée, on peut considérer la sous-classe des systèmes WAP
qui ne sont pas seulement reflexif-représentables mais Hilbert-représentables. La
sous-algèbre de RUC(G) correspondante est étroitement liée à l’algèbre de Fourier–
Stieltjes du groupe, qui consiste des coefficients matriciels des représentations uni-
taires de G.

Les systèmes Hilbert-représentables ont été étudiés dans [Meg08, GW12]. Il
s’avère que ceux-là forment une classe beaucoup plus subtile que les précédentes,
dont on manque encore d’une caractérisation dynamique satisfaisante. De plus,
la question basique suivante est toujours ouverte, même pour G =Z. Soient H(G),
GAsp etGRos les plus largesG-ambits Hilbert, Asplund et Rosenthal-représentables,

respectivement. Alors, il est connu que les facteurs de GAsp sont précisément les
G-ambits Asplund-représentables, et un énoncé analogue est vrai pour GRos par
rapport aux systèmes Rosenthal (et pourW (G) par rapport aux systèmes reflexifs,
comme dit auparavant). En revanche, on ne sait pas si tous les facteurs de H(G)
sont Hilbert-représentables.

Un autre problème intéressant est celui de comprendre sous quelles conditions
les fonctions WAP peuvent être approximées par des coefficients matriciels de re-
présentations unitaires de G. De façon équivalente, sous quelles conditions H(G)
est égal àW (G). Les groupes avec cette propriété sont dits Eberlein.

La classification des ambits en termes de leurs représentations de Banach que
nous venons de discuter induit la hiérarchie suivante de systèmes dynamiques
universels associés à un groupe donné :

βG→ GRos → GAsp →W (G)→H(G)→ bG.

Il est connu, par exemple, que ces ambits sont tous distincts pour le cas de G =Z.
Nous étudierons ces ambits et leur algèbres de fonctions correspondantes pour

le cas des groupes polonais Roelcke précompacts. Dans ce cas, il est important de
considérer en plus la compactification de Roelcke, R(G), qui correspond à l’algèbre
des fonctions qui sont uniformément continues par rapport à l’uniformité infé-
rieure. Par l’hypothèse de précompacité, ceci est juste la complétion du groupe
par rapport à l’uniformité inférieure. En particulier, R(G) est métrisable. L’ambit

R(G) est toujours plus large que GAsp, mais pas toujours plus large que GRos.
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Un dictionnaire pour des logiciens

L’observation fondamentale suivante a été faite dans [BT14]. Si G est le groupe
d’automorphismes d’une structure ℵ0-catégorique (métrique), alors une fonction
f ∈ C(G) est WAP si et seulement si elle peut s’écrire de la forme

(*) f (g) = ϕ(a,gb)

pour une formule continue stable ϕ(x,y) et des paramètres a,b deM (qui peuvent
être des uplets infinis). La même idée montre que si l’on enlève la condition de sta-
bilité et l’on considère donc des formules ϕ(x,y) arbitraires, alors on récupère, par
l’expression (*), la famille de toutes les fonctions basse-uniformément continues
(c’est-à-dire, uniformément continues pour l’uniformité inférieure). En particu-
lier, G est un groupe WAP (c-à-d,W (G) = R(G)) précisément siM est une structure
stable.

Ceci était notre point de départ pour le travail du Chapitre 1, dont le but était
de compléter la table de la section précédente avec une colonne pour la théorie des
modèles. Il s’avère que la représentabilité dans des espaces Rosenthal correspond à
une généralisation importante de la stabilité. Disons ici qu’une fonction continue
f : G → R est basse-apprivoisée si elle se factorise par GRos et que de plus f est
basse-uniformément continue.

Proposition (Ch. 1, §3). Une fonction continue f : G → R est basse-apprivoisée
si et seulement si elle peut s’écrire de la forme f (g) = ϕ(a,gb) pour une formule NIP
ϕ(x,y).

La correspondance entre fonctions WAP et formules stables est une consé-
quence d’un critère classique de Grothendieck pour la compacité faible dans les
espaces C(X) (voir [Ben13a]) ; à son tour, la correspondance entre fonctions basse-
apprivoisées et formules NIP repose sur un théorème de dichotomie célèbre de
Bourgain, Fremlin et Talagrand [BFT78] pour les clôtures ponctuelles des sous-
ensembles de C(X).

Il s’en suit que la notion de fonction Asplund-représentable devrait corres-
pondre à une propriété modèle-théorique intermédiaire entre stabilité et NIP, soit
collapser à l’une de ces deux.

Théorème (Ch. 1, §2). Si G est le groupe d’automorphismes d’une structure ℵ0-

catégorique, alorsW (G) = GAsp.

D’un point de vue modèle-théorique, la preuve est assez simple. L’ingrédient
principal est l’astuce standard de passer d’une suite indexée par N à une suite
indexée par Q préservant une propriété demandée : dans ce cas, témoigner de
l’instabilité. Cependant, ceci est nouveau du point de vue de la topologie, et nous
ne sommes pas au courant d’une preuve alternative d’inspiration topologique.

En fait, notre argument montre une identité plus forte2, à savoir :

W (G) = GSUC,

2On a toujours les facteurs R(G) → GSUC → GAsp → W (G). Or, on remarque que la métrisa-

bilité de R(G) implique déjà que GAsp = GSUC, comme on peut le déduire du résultat principal de

[GMU08].
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où GSUC est le plus grand facteur de la compactification de Roelcke qui est un
semi-groupe compact semi-topologique à droite. De plus, cette identité peut être
interprétée comme une reformulation de l’équivalence entre stabilité et définissa-
bilité de types.

Corollaire. Soit G un groupe polonais Roelcke précompact. Si G n’est pas un
groupe WAP, alors R(G) n’admet pas de structure de semi-groupe semi-topologique à
droite étendant la structure de groupe de G.

Une autre conséquence de l’identificationW (G) = GAsp est la suivante. Comme
il a été remarqué auparavant, tout système compact G� X est représentable dans
l’espace de Banach C(X). Cependant, l’espace C(X) est généralement, sous plu-
sieurs aspects, aussi compliqué qu’un espace de Banach peut l’être. Une exception
à ceci se présente lorsque X est dénombrable (ou, plus généralement, épars) : dans
ce cas, C(X) est en fait un espace Asplund.

Corollaire. Si G est un groupe polonais Roelcke précompact, alors tout G-ambit
dénombrable (ou épars) est WAP.

Les résultat énoncés jusqu’ici fournissent aussi une bonne source d’exemples de
systèmes dynamiques. Toute structure NIP, instable, séparablement catégorique,
par exemple, donne lieu à un système Rosenthal-représentable non Asplund-repré-
sentable. De plus, on peut profiter des outils modèle-théoriques comme l’élimina-
tion de quantificateurs pour donner des descriptions précises des algèbres de fonc-
tions presque périodiques (qui correspondent à des imaginaires dans la clôture
algébrique du vide), faiblement presque périodiques (en décrivant les formules
stables) et basse-apprivoisées (en décrivant les formules NIP) dans de nombreux
exemples concrets, commençant par ceux que nous avons listé au début de l’intro-
duction. Pour les fonctions WAP ceci a été fait dans [BT14]. Nous nous occupons
des autres algèbres dans le Ch. 1, §4. Par exemple, on a le résultat suivant.

Corollaire. Toute fonction basse-apprivoisée sur Iso(U1) est constante.

Glasner et Megrelishvili ont posé la question de savoir si tout groupe polonais
peut être plongé dans le groupe d’isométries d’un espace de Banach Rosenthal.
Le dernier corollaire suggère que Iso(U1) pourrait ne pas avoir de représentations
Rosenthal non-triviales du tout. Néanmoins, puisqu’il peut y avoir des fonctions
apprivoisées qui ne sont pas basse-uniformément continues, notre résultat ne suffit

pas pour assurer cette conclusion.3

Lors de l’analyse de quelques groupes d’automorphismes de structures clas-
siques, tels que Aut(RG) ou Homeo(2ω), il y a une difficulté technique qui survient,
qui a de l’intérêt en soi. Normalement, on peut donner des bonnes descriptions des
formules stables et NIP classiques (c-à-d, {0,1}-valuées). Cependant, pour décrire
les fonctionsWAP et basse-apprivoisées on a besoin de rendre compte de toutes les
formules continues de ces types (de plus, on considère stabilité et NIP sur des do-
maines restreints). Ainsi, on voudrait pouvoir assurer que les formules continues
stables/NIP sont des limites uniformes des combinaisons de formules stables/NIP
classiques, ce qui n’est pas clair a priori.

3Une réponse complète pourrait être obtenue par une étude appropriée des prédicats extérieu-

rement définissables dans U1, mais cela n’a pas encore été accompli.



UN DICTIONNAIRE POUR DES LOGICIENS 17

La difficulté a été résolue pour les formules stables dans [BT14], avec une
preuve topologique utilisant le théorème de point fixe de Ryll-Nardzewski pour
des ensembles convexes faiblement compacts dans des espaces de Banach. Leur
argument ne marche pas pour le cas NIP, et en fait nous ne savons pas si cette
propriété d’approximation est vraie en général pour NIP. Néanmoins, nous avons
identifié une propriété, que nous appelons avoir des extensions définissables de types
sur des ensembles finis, qui donne une condition suffisante. Cette condition est vé-
rifiée pour les formules stables, récupérant ainsi le résultat de [BT14], mais elle
est vérifiée aussi dans plusieurs structures instables, ce qui permet de comprendre
leurs formules NIP continues en termes des formules NIP classiques. Nous discu-
tons cette condition dans le Ch. 1, §4.1.

Avant de passer aux contenus du Chapitre 2, nous rappelons d’autres notions et
résultats importants de [BT14]. Supposons comme précédemment que l’on a G =
Aut(M) pour une structure séparablement catégoriqueM . Par l’homogéneité deM ,

la complétion à gauche ĜL peut être identifiée avec le semi-groupe topologique
d’endomorphismes élémentaires de M . Puis, la compactification de Roelcke R(G)
peut être présentée comme l’espace de types tp(x,y) où x,y ∈ ĜL ⊂ MM . Si l’on
considère la restriction des types tp(x,y) aux formules stables, alors on obtient
précisément la compactificationWAP deG. De plus, la loi de semi-groupe deW (G)
peut être décrite en termes de la relation d’indépendance stable deM .

Le travail du Chapitre 2, en commun avec Itaï Ben Yaacov et Todor Tsankov,
s’occupe du cas des ambits et fonctions Hilbert-représentables, pour la famille des
groupes pro-oligomorphes. C’est-à-dire, nous nous limitons aux structures dénom-
brablement catégoriques classiques.

La raison principale de cette restriction est l’existence d’un théorème de classi-
fication pour les représentations unitaires des groupes pro-oligomorphes, prouvé
dans [Tsa12]. Avec cette classification sous la main, nous pouvons montrer que
l’algèbre des fonctions Hilbert-représentables sur ces groupes est engendrées par
les fonctions de la forme f (g) = ϕ(a,gb) où ϕ(x,y) est une relation d’équivalence
définissable dans la structure classiqueM associée.

À son tour, ceci nous permet de donner une bonne description de la compa-
citifaction hilbertienne H(G). Cet ambit a toujours la structure d’un semi-groupe
semi-topologique.

Théorème (Ch. 2, §3.2). Soit G le groupe d’automorphismes d’une structure clas-
sique ℵ0-catégoriqueM . Alors H(G) est le semi-groupe semi-topologique des endomor-
phismes élémentaires partiels deMeq avec domaine algébriquement clos.

Ainsi, par exemple, la compactification hilbertienne de Aut(Q,<) est le semi-
groupe des bijections monotones partielles de Q, et la compactification hilber-
tienne de Aut(RG) est le semi-groupe des automorphismes de graphe partiels du
graphe aléatoire. En fait, ceux-là sont aussi leur compactifications WAP : ce sont
des groupes Eberlein.

Une conséquence du théorème précédent est que H(G) est un semi-groupe in-
versif, c’est-à-dire, que l’on a

(**) pp∗p = p
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pour tout p ∈ H(G). Ici, ∗ : H(G)→ H(G) désigne l’involution naturelle qui étend
l’opération d’inverse sur G. Il se trouve que cette propriété fournit une caractéri-
sation des groupes pro-oligomorphes Eberlein.

En fait, la condition (**) a une interprétation modèle-théorique intéressante

dans W (G). Si p = [x,y] ∈ W (G) est le type stable d’une paire x,y ∈ ĜL, alors on
a pp∗p = p si et seulement si x |�x∩y y (où l’intersection est calculée dans Meq).

Ceci explique comment la condition d’être mono-basé apparaît dans notre résultat
principal du Chapitre 2.

Théorème (Ch. 2, §3.3-§4). Soit G le groupe d’automorphismes d’une structure
classique dénombrablement catégoriqueM . Alors, sont équivalents :

(1) W (G) est un semi-groupe inversif.
(2) M est mono-basée pour la relation d’indépendance stable, c-à-d, A |�A∩BB

pour tous ensembles algébriquement clos A,B ⊂Meq.
(3) G est Eberlein, c-à-d, H(G) =W (G).

De plus, un ambit de ∗-semi-groupe semi-topologique est Hilbert-représentable si et
seulement s’il est un semi-groupe inversif.

Par conséquent, de la même façon que bG est l’ambit de groupe topologique uni-
versel et que W (G) est l’ambit de semi-groupe semi-topologique universel, pour les
groupes pro-oligomorphes nous pouvons caractériser H(G) comme l’ambit de ∗-
semi-groupe inversif semi-topologique universel.4

Ensuite, par un résultat classique de théorie des modèles, notre théorème im-
plique aussi la chose suivante.

Corollaire. On a H(G) = R(G) si et seulement siM est ℵ0-stable.

En considérant l’exemple célèbre de Hrushovski d’un pseudo-plan ℵ0-catégo-
rique stable, on peut alors montrer un exemple d’un groupe WAP qui n’est pas
Eberlein. Cela répond à une question de Glasner et Megrelishvili.

Ensuite nous passons à l’analyse de la représentabilité des facteurs arbitraires
de H(G). Pour cela nous sommes amenés à prouver un résultat intermédiaire, in-
téressant en soi. Notons que les compactifications H(G), W (G) et R(G) du groupe
d’automorphismes d’une structure ℵ0-catégorique classique sont toujours zero-
dimensionnelles, ce qui suit de leurs descriptions modèle-théoriques (pour le cas
de W (G), on rappelle que les formules stables classiques déterminent toutes les
formules stables continues).

Théorème (Ch. 2, §4). Si G est un groupe pro-oligomorphe, alors tous les facteurs
de H(G) sont zero-dimensionnels.

En revanche, il y a des exemples de facteurs non-zero-dimensionnels de la com-
pactification de Roelcke. Nous ne savons pas si le résultat précédent est valable
également pour les facteurs de la compactification WAP.

Finalement, nous pouvons répondre, pour les groupes pro-oligomorphes, à la
question ouverte mentionnée dans la section précédente.

4On note, cependant, que cette caractérisation algébrique est fausse sous des hypothèses plus

faibles ; par exemple, H(G) n’est pas un semi-groupe inversif dans le cas du groupe discret Z, ni

dans le cas du groupe polonais Roelcke précompact U(�2).
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Théorème (Ch. 2, §4). Si G est un groupe pro-oligomorphe, alors tous les facteurs
de H(G) sont Hilbert-représentables.

Le Chapitre 2 finit avec une remarque et une question sur la complexité des
ambits dénombrables de groupes pro-oligomorphes. SiM est classique, ℵ0-catego-
rique et ℵ0-stable, alors les espaces de types Sx(M) en un nombre fini de variables
sont dénombrables de rang fini. Nous remarquons que ceci peut se généraliser à
des groupes pro-oligomorphes arbitraires de la façon suivante.

Proposition (Ch. 2, §4). Tout ambit dénombrable Hilbert-représentable d’un groupe
pro-oligomorphe a rang de Cantor–Bendixson fini.

Puisque dans le cas ℵ0-stable l’hypothèse de Hilbert-représentabilité n’est pas
nécessaire (elle suit des autres), on peut demander si le résultat précédent est tou-
jours valable pour des ambits dénombrables arbitraires. Même si, comme on le
remarque avec un exemple dans Ch. 2, §3.3, un ambit dénombrable d’un groupe
pro-oligomorphe n’est pas forcément Hilbert-représentable.

Avec les résultats des Chapitres 1 et 2, nous accomplissons notre but déclaré
au début de cette section, qui était d’étendre le dictionnaire de la section précé-
dente avec une colonne pour la théorie des modèles. Par simplicité, nous le pré-
sentons ici sous la forme suivante : nous relions les propriétés de la structure ℵ0-
catégoriqueM avec les classes K d’espaces de Banach pour lesquelles la compacti-
fication de Roelcke R(G) (du groupe d’automorphismes deM) estK-représentable.
La deuxième ligne (pour Hilbert) est valable dans le cadre classique.5

ClasseK StructureM
Euclidien compact
Hilbert ℵ0-stable
Reflexif stable
Asplund stable
Rosenthal NIP

Structures randomisées

Dans plusieurs situations mathématiques, lorsque l’on considère un ensemble
ou bien une structureM d’un certain genre, il est intéressant de réfléchir aux élé-
ments aléatoires deM , et d’étudier leurs propriétés attendues. Dans [Kei99], Jerome
Keisler a proposé une approche modèle-théorique de ce thème : si l’on commence
avec une structure logique, alors les éléments aléatoires devraient former une nou-
velle structure, dans laquelle les prédicats originaux ϕ(x) seraient remplacés par
des nouvelles formules E�ϕ(x)� interprétées comme leurs espérances. En fait, il
y a différentes façons possibles de randomiser une structure, or, comme Keisler
l’a montré, elles partagent toutes la même théorie de premier ordre. Ainsi, étant

5Dans un travail en cours, non inclus dans ce manuscrit, nous avons trouvé des indices qui

suggèrent que ceci n’est pas valable dans le cadre métrique.
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donnée une théorie complète T , on obtient de façon canonique une théorie rando-
misée TR.

Initialement, cela a été fait dans le cadre de la logique du premier ordre clas-
sique, ce qui rendait la construction plutôt encombrante. Après le développement
de la logique continue, la théorie des randomisations a été adaptée à ce forma-
lisme par Ben Yaacov et Keisler. En effet, la logique continue offre un cadre parfait
pour l’étude des randomisations et, réciproquement, les structures randomisées
sont une source intéressante de structures métriques.

Avec le formalisme de la logique continue, les randomisations préservent beau-
coup de propriétés modèle-théoriques, dont la ℵ0-catégoricité. Ainsi, dans le cas
particulier oùM est une structure ℵ0-catégorique, il n’y a essentiellement qu’une
seule randomisation séparable de M , disons MR. Cela veut dire que, étant donné
un groupe polonais Roelcke précompact G (disons, le groupe d’automorphismes
de M), il y a un groupe polonais GR qui lui est canoniquement associé (le groupe
d’automorphismes deMR), et qui est lui aussi Roelcke précompact. Donc, quel est
ce groupe ? Le travail du Chapitre 3 était motivé par cette question.

Soit Ω un espace de probabilité standard. Étant donné un groupe polonais G
quelconque, nous considérons le produit semi-direct de L0(Ω,G), le groupe des
éléments aléatoires de G, et Aut(Ω), le groupe des transformations préservant la
mesure de Ω, qui agit naturellement sur le premier. Nous l’appelons le produit en
couronne mesurable de G et Aut(Ω), et on le dénote par

G 
Ω � L0(Ω,G)�Aut(Ω).

Le groupe G 
Ω est naturellement un groupe polonais.
Nous montrons ce qui suit, où MR désigne la randomisation borélienne d’une

structure séparable M . Ceci est un exemple canonique de randomisation ; essen-
tiellement,MR est donnée par l’ensemble L0(Ω,M) avec la structure appropriée.

Theorem (Ch. 3, §2.2). On a Aut(MR) � Aut(M) 
Ω en tant que groupes topolo-
giques.

Au-delà de la motivation modèle-théorique, les produits en couronne mesu-
rables sont une source intéressante de nouveaux groupes polonais. Dans le Ch. 3,
§2-3, nous étudions les propriétés des G 
Ω-actions induites par des actions de G.
Nous montrons le résultat suivant, dont la première partie donne une preuve al-
ternative de la préservation de l’ℵ0-catégoricité par des randomisations.

Théorème (Ch. 3, §2-3). Si un groupe polonais G agit fidèlement et de façon ap-
proximativement oligomorphe sur un espace métrique polonaisM , alors G 
Ω agit fidè-

lement et de façon approximativement oligomorphe sur L0(Ω,M). En particulier, si G
est Roelcke précompact, alors G 
Ω l’est aussi.

Dans ce cas, la compactification de Roelcke R(G 
Ω) peut être identifiée avec l’espace

M(Ω,R(G))� {λ ∈ R(Ω0 ×R(G)×Ω1) : λ|Ω0
= μ0, λ|Ω1

= μ0}.

(Ici, R(X) est l’espace compact des mesures de probabilité boréliennes sur X ; chaque Ωi
est un espace de probabilité standard de mesure μi , et λ|Ωi

est la mesure image de λ sur
Ωi .)
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Ensuite, nous étudions quelques propriétés de préservation des espacesM(Ω,X)
introduits ci-dessus. SiX est unG-ambit, alorsM(Ω,X) est naturellement unG
Ω-
ambit. De plus, cette construction se comporte bien par rapport aux semi-groupes
semi-topologiques.

Proposition (Ch. 3, §3). Si S est un semi-groupe semi-topologique compact métri-
sable, alorsM(Ω,S) admet une loi de semi-groupe semi-topologique naturelle. Si S est
un G-ambit, alors la loi deM(Ω,S) étend l’action naturelle de G 
Ω surM(Ω,S).

Si S est représentable par des contractions sur un espace d’Hilbert, alors M(Ω,S)
l’est aussi.

Supposons que G est un groupe Roelcke précompact polonais. Il suit du théo-
rème et de la proposition précédents que si G est un groupeWAP (c-à-d, siW (G) =
R(G)), alors G 
Ω l’est aussi. De même, si G satisfait H(G) = R(G), alors on a aussi

H(G 
Ω) = R(G 
Ω).6

On sait, par le dictionnaire discuté dans la section précédente, que la préser-

vation des groupes WAP a une contrepartie modèle-théorique. À savoir : la stabi-
lité est préservée par des randomisations. Cela avait été prouvé en toute généra-
lité dans [Ben13b]. Un autre résultat important du même genre, la préservation
des théories (et des formules) NIP par des randomisations, avait été établie dans
[Ben09]. Puisque la preuve du dernier est particulièrement compliquée, il nous a
paru intéressant de chercher aussi une preuve alternative de ce fait, même limitée
au cas ℵ0-catégorique.

Nous avons fini par prouver un résultat de préservation général pour des re-
présentations de Banach de certains flots randomisés. Pour cela, on définit qu’une
classe K d’espaces de Banach est R-fermée si l’espace de Bochner L2(Ω,V ) est dans
K dès queV est dansK (plus une condition technique sur les fonctionsK-représen-
tables, voir Ch. 3, Definition 3.15). Utilisant des résultats classiques de la théorie
des espaces de Banach (et des résultats récents de Glasner et Megrelishvili, pour
la condition technique), on voit que les classes des espaces d’Hilbert, reflexifs, As-
plund et Rosenthal sont toutes R-fermées.

Soit S(Ω,X) l’espace compact {λ ∈ R(Ω × X) : λ|Ω = μ}. Nous montrons que

ceci correspond à des espaces de types à paramètres : par exemple, ST
R

x (MR) �
S(Ω,STx (M)). Puis, le résultat de préservation est le suivant.

Théorème (Ch. 3, §3.3). Soit K une classe R-fermée d’espaces de Banach. Soit
G � X une action continue d’un groupe polonais sur un espace compact métrisable,
et supposons que G � X est K-représentable. Alors, le système G 
Ω � S(Ω,X) est
aussi K-représentable.

Combiné avec les résultats du Chapitre 1, cela donne des nouvelles preuves,
dans le cas ℵ0-catégorique, des faits suivants.

Corollaire. Si ϕ(x,y) est une formule NIP pour T , alors E�ϕ(x,y)� est une for-

mule NIP pour TR. Ceci reste vrai si l’on remplace NIP par stable.

6Il est naturel de conjecturer queW (G 
Ω) �M(Ω,W (G)) et que H(G 
Ω) �M(Ω,H(G)), mais

nous n’avons pas tranché cette question.
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D’autre part, notre dictionnaire pour l’Hilbert-représentabilité nemarche, pour
l’instant, que pour la logique classique. Ainsi, par exemple, on peut déduire de
nos résultats que si M est classique, ℵ0-catégorique, ℵ0-stable, alors R(Aut(M

R))
est Hilbert-représentable ; mais nous ne savons pas ce que cela dit, en termes
modèle-théoriques, sur MR. Puisque les résultats du Chapitre 2 étaient basés sur
la notion de théorie mono-basée, nous devrions chercher une généralisation mé-
trique de cette propriété. Dans la littérature, il existe une telle généralisation pro-

posée. À savoir, la notion des théories fortement finiment basées (SFB), introduite
dans [BBH14]. Une théorie stable, ℵ0-catégorique T est SFB si et seulement si la
théorie TP des belles paires de modèles de T est ℵ0-catégorique. Cela coïncide
avec les théories mono-basées dans le cadre classique, mais ça s’applique aussi
à quelques théories métriques importantes, comme celle des espaces d’Hilbert
infini-dimensionnels et celle de l’algèbre de mesure de l’intervalle.

Ainsi, on pourrait s’attendre à ce que la randomisation d’une théorie SFB soit

à nouveau SFB. À notre surprise, il s’avère que ceci n’est pas le cas. Plutôt, le
contraire est vrai.

Théorème (Ch. 3, §4). La théorie (TR)P de belles paires de modèles d’une théorie

randomisée stable TR n’est jamais ℵ0-catégorique, à moins que T ne soit la théorie d’une
structure compacte.

En fait, nous montrons que si N ≺M est une paire élémentaire de modèles sé-
parables d’une théorie stable T , alors on peut construire un modèle séparable de
(TR)P comme suit. Soit MR la randomisation donnée par l’ensemble de toutes les

variables aléatoires Ω2 →M , et soit S ⊂MR le sous-ensemble des variables aléa-
toires prenant des valeurs dans N qui sont mesurables par rapport à la première
coordonnée deΩ2 (c-à-d, celles qui se factorisent de la formeΩ2 →Ω→N →M).
Alors, avec la structure appropriée, la paire (MR,S) est un modèle de (TR)P . Cela
donne des modèles séparables non-isomorphes, par exemple pour les cas N = M
versus N �M .

De plus, on a le résultat suivant. Soit S1 l’ensemble correspondant au cas N =
M comme ci-dessus (et supposons que M est ℵ0-catégorique). Si l’on prend h ∈
End(M)Ω

2
, on peut définir Sh = {hr : r ∈ S1}. Alors, la paire Ph � (MR,Sh) est aussi

un modèle de (TR)P .

Théorème (Ch. 3, §4). Supposons que T est stable, ℵ0-catégorique. Alors, les mo-

dèles séparables de (TR)P sont précisément les paires isomorphes à Ph pour quelque

h ∈ End(M)Ω
2
.

En plus des résultats précédents, nous prouvons que la randomisation d’une
théorie métrique ℵ0-stable est à nouveau ℵ0-stable (cela avait été prouvé pour T
classique dans [BK09]). Finalement, le Chapitre 3 termine avec une description
des groupes d’automorphismes de paires de randomisations de la forme (MR,S)
induites par des modèlesM,N comme ci-dessus.
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Aspects descriptifs des groupes pleins

Nous passons maintenant aux sujets de la deuxième partie de la thèse. Les ré-
sultats mentionnés dans cette section et les suivantes ont été obtenus avec Julien
Melleray.

Nous oublierons les groupes d’automorphismes de structures logiques pour
un court moment —mais seulement avec le propos de convaincre le lecteur d’y
revenir.

Les groupes pleins sont un type particulier de groupes d’automorphismes qui
apparaissent en théorie ergodique et dans sa plus jeune sœur, la dynamique sur
l’espace de Cantor. Dans le dernier contexte, si g est un homéomorphisme mi-
nimal de l’espace de Cantor X � 2ω, on peut considérer la «structure» enrichie
sur l’espace X résultant de nommer les orbites de g sur X (N.B. ce n’est pas une
structure au sens de la logique), puis considérer le groupe d’automorphismes cor-
respondant. Ceci est appelé le groupe plein de g , dénoté par [g], et consiste donc
de tous les homéomorphismes h ∈ Homeo(X) tels que h(Og (x)) = Og (x) pour tout
x ∈ X, où Og (x) est la g-orbite de x.

Les groupes pleins de transformations préservant la mesure d’un espace de
probabilité standard Ω sont définis de façon similaire (et aussi les groupes pleins
d’actions de groupes dénombrables, ce qui est plus intéressant dans ce cas).

Un fait crucial sur les groupes pleins est qu’ils sont des invariants algébriques
complets pour l’équivalence orbitale. C’est-à-dire, si g et h sont des homéomor-
phismes minimaux de X tels que [g] � [h] en tant que groupes abstraits, alors il y
a un homéomorphisme de X tel que des éléments dans la même g-orbite sont en-
voyés sur des éléments dans la même h-orbite, et des éléments dans des g-orbites
distinctes sont envoyés sur des éléments dans des h-orbites distinctes. Cela a été
prouvé par Giordano, Putnam et Skau [GPS99]. Le théorème analogue dans le
cadre de la théorie ergodique avait été établi plusieurs décennies plus tôt par Dye,
et c’était à l’origine d’une étude intensive des groupes pleins.

Or, une caractéristique précieuse des groupes pleins dans le cadre de la théo-
rie ergodique est qu’ils ont un bon comportement du point de vue topologique.
D’abord, ils admettent une topologie de groupe polonaise. (C’est ne pourtant pas
la topologie induite par le groupe polonais ambiant Aut(Ω) ; plutôt, les groupes
pleins deviennent des groupes polonais sous la topologie uniforme de Aut(Ω).)
Cette topologie joue un rôle remarquable dans plusieurs résultats de la littérature,
par exemple lors des caractérisations de propriétés invariantes par l’équivalence
orbitale. Deuxièmement, les groupes pleins sont toujours des sous-ensembles bo-

réliens de Aut(Ω) de complexité relativement basse : ils sontΠΠΠ0
3 dans la hiérarchie

borélienne.
En revanche, aucune topologie polonaise n’a jamais été proposée pour les groupes

pleins d’homéomorphismes minimaux de l’espace de Cantor. Le travail du Cha-
pitre 4 s’occupe de cette situation, et son premier résultat est le suivant.

Théorème (Ch. 4, §2). Soit Γ ⊂Homeo(X) un groupe dénombrable agissant de fa-
çon minimale sur l’espace de Cantor. Alors, il n’y a pas de topologie de groupe Hausdorff,
Baire, à base dénombrable sur le groupe plein [Γ].
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En particulier, le groupe plein [g] d’un homéomorphisme minimal n’admet pas
de topologie de groupe polonaise.

Notons que, contrairement à la situation dans le cadre mesurable, ici on peut
fixer un point x ∈ X et regarder les permutations de l’orbite Og (x) induites par des
éléments de [g] ; puisque Og (x) est dénombrable, cela donne un homomorphisme

naturel de [g] dans le groupe de permutations d’un ensemble dénombrable. La
preuve du théorème précédent montre qu’une topologie Hausdorff, Baire sur [g]
rendrait cet homomorphisme continu. En fait, la topologie devrait raffiner la to-
pologie de la convergence ponctuelle sur X, ce qui rendrait impossible pour [g]
d’avoir une base dénombrable d’ouverts.

Ensuite, nous avons étudié la question de la complexité de [g] dedans Homeo(X).
Ici encore, la réponse s’avère être la pire possible.

Théorème (Ch. 4, §3). Soit g un homéomorphisme minimal de l’espace de Cantor.
Alors, [g] est un sous-ensemble coanalytique non-borélien de Homeo(X).

Ces résultats suggèrent que les groupes pleins dans le cadre de la dynamique
sur l’espace de Cantor risquent de ne pas être aussi utiles, en tant qu’invariant,
que leurs contreparties ergodiques ont démontré l’être. Ainsi, on pourrait essayer
d’étudier à leur place un objet relié qui se comporte mieux. Un candidat naturel est

la clôture du groupe plein dedans Homeo(X).7 Étant donné un homéomorphisme

minimal g , dénotons par Gg = [g] sa clôture.
Le groupe Gg présente deux caractéristiques importantes, en plus de sa topo-

logie de groupe polonaise évidente. La première est qu’il est aussi un invariant
algébrique complet pour l’équivalence orbitale, comme on le remarque dans le
Ch. 4, §4 ; cela suit d’un autre résultat profond de Giordano, Putnam et Skau.

La deuxième est que Gg admet une bonne description. En effet, il suit d’un
théorème de Glasner etWeiss queGg est précisément l’ensemble des h ∈Homeo(X)
qui préservent les mesures de probabilité g-invariantes sur X.

On rappelle queHomeo(X) peut être identifié avec le groupe d’automorphismes
de l’algèbre de Boole des sous-ensembles ouvert-fermés de X. Puisque Gg est un
sous-groupe fermé du groupe d’homéomorphismes de l’espace de Cantor, il doit
être le groupe d’automorphismes d’une expansion de l’algèbre des ensembles ouvert-
fermés de X. Comme nous le verrons dans la section suivante, la description de Gg
mentionnée plus haut nous permettra de donner une bonne présentation de cette
structure.

Une question intéressante que l’on peut se poser sur Gg est celle de savoir s’il

admet des éléments génériques. Un élément h ∈ Gg est générique si sa classe de

conjugaison {khk−1 : k ∈ Gg } est comaigre dans Gg . L’existence d’un élément gé-
nérique a des fortes conséquences pour la clôture d’un groupe plein. Par exemple,
elle implique queGg doit être simple, et que tout homomorphisme dans un groupe

7Un autre candidat naturel serait le normalisateur du groupe plein, N [g], qui est l’ensemble de

tous les h ∈Homeo(X) tels que h(Og (x)) = Og (h(x)) pour tout x ∈ X (c-à-d, N [g] est le groupe d’au-
tomorphismes de la relation d’équivalence induite par les orbites de g). On peut voir que N [g] est
aussi un invariant complet pour l’équivalence orbitale. Cependant, comme l’a observé Julien Mel-

leray lors d’une communication privée, utilisant que [g] est non-borélien dans Homeo(X), on peut

voir que N [g] n’est pas borélien non plus et qu’il n’admet pas de topologie de groupe polonaise.
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topologique séparable est automatiquement continu. Cette question peut être ap-
prochée au moyen des méthodes expliquées ci-dessous.

Théorie de Fraïssé pour les bonnes mesures

Un point de convergence majeur de la dynamique, la logique et la combinatoire
fut inauguré par Kecrhis, Pestov et Todorcevic dans leur célèbre papier [KPT05].
Dans ce travail, ils étaient concernés par l’étude des flots minimaux universels
de groupes polonais, ce dont on ne s’occupe pas dans cette thèse ; pourtant, leur
outil principal, l’étude des groupes polonais au moyen de la théorie de Fraïssé,
a été adapté depuis, de nombreuses façons, à l’étude d’autres problèmes avec ou
sans rapport avec le leur. Ici, nous serons concernés par le travail de Kechris et
Rosendal [KR07] (qui a été aussi inspiré par des travaux précédents de Hodges et
al. [HHLS93] et de Truss [Tru92]). Ils ont étudié le problème de déterminer sous
quelles conditions un groupe polonais admet une classe de conjugaison dense ou
comaigre.

Dorénavant, toutes les structures que nous considérons le sont au sens de la
logique classique. Une structure K est ultrahomogène si tout isomorphisme entre
des sous-structures finiment engendrées de K s’étend à un automorphisme de K.
Fraïssé a montré qu’une structure dénombrable ultrahomogène K est détermi-
née, à isomorphisme près, par son âge, qui est la classe des structures finiment
engendrées qui peuvent être plongées dans K. Ainsi, l’âge code toute l’information
modèle-théorique de K. Les idées de [KPT05] ou [KR07] sont basées sur le prin-
cipe que certaines propriétés combinatoires de l’âge de K codent des propriétés
dynamiques du groupe d’automorphismes Aut(K).

Soit K une structure ultrahomogène dénombrable et soit A son âge. Alors, on
peut considérer la classe Ap des paires (A,f ) où A ∈ A et f est un automorphisme

partiel de A. Kechris et Rosendal ont prouvé que Aut(K) a une classe de conjugai-
son dense si et seulement si Ap satisfait la propriété de plongement joint (JEP), c-à-
d, si n’importe quels deux automorphismes partiels de structures dans A peuvent
être fusionnés dans un automorphisme partiel d’une super-structure commune
dans A. De plus, Aut(K) a une classe de conjugaison comaigre si et seulement si
Ap satisfait JEP ainsi qu’une autre condition plus sophistiquée, appelée la propriété

d’amalgamation faible (WAP)8. Par exemple, ils ont réussi à montrer que JEP etWAP
sont vérifiées pour la classe des algèbres de Boole finies, qui est l’âge de l’algèbre
des ensembles ouvert-fermés de l’espace de Cantor. Par conséquent, ils ont établi
que l’espace de Cantor a un homéomorphisme générique.

De plus, ils ont étudié une autre propriété combinatoire forte et importante
dont quelques classes de structures finiment engendrées bénéficient, appelée la
propriété de Hrushovski, qui est liée à la possibilité d’étendre des automorphismes
partiels à des (vrais) automorphismes de structures plus larges.

Nous expliquons le rapport de tout cela avec notre sujet. Comme auparavant,
soit X l’espace de Cantor, et soit g un homéomorphisme minimal de X. On dénote
l’ensemble de mesures de probabilité g-invariantes sur X par Kg .

8N.B. sans aucun rapport avec la faible presque périodicité !
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Il suit d’un résultat de Glasner et Weiss que la minimalité de g implique la pro-
priété de Kg suivante : si A,B ⊂ X sont des ensemble ouvert-fermés tels que μ(A) < μ(B)
pour toute μ ∈ Kg , alors il existe un ensemble ouvert-fermé C ⊂ B tel que μ(C) = μ(A)
pour toute μ ∈ Kg . Lorsqu’un ensemble K de mesures de probabilité sans atomes à

support plein sur X bénéficie de cette propriété, on dit que K es bon (généralisant
la définition de [Aki05]). Un argument de va-et-vient standard montre la chose
suivante.

Lemme. Supposons que K est un bon simplexe de mesures de probabilité à support
plein sur X. Soit GK = {h ∈ Homeo(X) : ∀μ ∈ K h∗μ = μ}. Si A,B sont des ensembles
ouvert-fermés avec μ(A) = μ(B) pour toute μ ∈ K , alors il existe h ∈ GK tel que h(A) = B.

Ceci dit qu’une certaine structure est ultrahomogène. En effet, soit K comme
dans l’énoncé précédent, puis soit K l’algèbre de Boole des ensembles ouvert-
fermés de X augmentée avec des prédicats Pμ,r pour chaque μ ∈ K et r ∈ [0,1],
interprétés demanière à ce qu’un ensembleA vérifie Pμ,r si et seulement si μ(A) = r.
(En fait, par la séparabilité de l’espace de mesures de probabilité, on peut supposer
que le langage est dénombrable.) Alors on a GK = Aut(K), et le lemme implique
facilement que K est ultrahomogène.

En particulier, si l’on dénote par Kg la structure construite à partir de K = Kg ,
on obtient que la clôture du groupe plein [g] est Gg = Aut(Kg ). Ainsi, on peut

appliquer la théorie de [KR07] à l’étude deGg . Dans cette généralité, nous pouvons

montrer ce qui suit (grâce à une observation de Kostya Medynets ; notre résultat
original était plus faible).

Théorème (Ch. 4, §4). Soit g un homéomorphisme minimal de l’espace de Cantor,
et soit Kg comme ci-dessus. Alors, l’âge de Kg a la propriété de Hrushovski.

Cela a d’abord la conséquence suivante.

Corollaire. Le groupe Gg est moyennable.

De plus, combiné avec un résultat de Bezuglyi et Medynets [BM08], le théo-
rème implique aussi ce qui suit.

Corollaire. Le groupe Gg est topologiquement simple.

Ensuite, nous avons étudié les conditions JEP et WAP dans un cas particulier,
à savoir, lorsque g est uniquement ergodique. Fixons donc un homéomorphisme
minimal g , et supposons qu’il n’y a qu’une seule mesure g-invariante, μ, qui est
ainsi une bonne mesure au sens de [Aki05]. Soit Vμ l’ensemble (dénombrable) des

valeurs μ(A) ∈ [0,1] que μ prend sur des ensembles ouvert-fermés A ⊂ X. Alors,
l’âge de Kg ne dépend que de Vμ, et donc cet ensemble code toute l’information

importante de Kg et Gg . En étudiant la propriété de plongement joint en termes
de Vμ, nous obtenons la caractérisation technique suivante.

Proposition (Ch. 4, §5). Il existe une classe de conjugaison dense dans Gg si et

seulement si Vμ satisfait la condition suivante : à chaque fois que l’on a ai ,bj ∈ Vμ
et ni,mj ∈ N tels que

∑p
i=1niai = 1 =

∑q
j=1mjbj , on peut trouver ci,j ∈ Vμ tels que :

mjbj =
∑p
i=1ppcm(ni,mj )ci,j pour tout j , et niai =

∑q
j=1ppcm(ni,mj )ci,j pour tout i.



SIMPLEXES DYNAMIQUES 27

En particulier, cela est vrai lorsque Vμ +Z est un Q-sous-espace vectoriel de R, et

lorsque Vμ +Z est un sous-anneau de R.

Malheureusement, nous n’avons pas réussi à donner une caractérisation du
même genre pour l’existence d’une classe de conjugaison comaigre dansGg . Contrai-
rement à ce qui se passe dans de nombreux exemples de [KR07], où la propriété
de Hrushovski peut être utilisée pour prouver une forme forte de la propriété
d’amalgamation faible, cela semble ne pas suffire dans notre cas. Néanmoins, cette
méthode marche tout à fait pour une famille particulière de bonnes mesures, ce
qui nous permet de donner une nouvelle preuve du résultat d’Ethan Akin suivant
[Aki05].

Proposition (Ch. 4, §5). Supposons que Vμ+Z est unQ-sous-espace vetoriel de R.

Alors, il existe un homéomorphisme générique dans Gg .

Lors des résultats précédents, on a supposé que l’homéomorphisme minimal
uniquement ergodique g était donné. Or, si V est n’importe quel sous-ensemble
infini dénombrable de [0,1] contenant 0 et 1 et clos par des additions modulo 1,
alors on peut montrer qu’il existe une bonne mesure μ sur X telle que V = Vμ. De

plus, Akin a prouvé qu’alors il existe un homéomorphisme g tel que Kg = {μ}. Par
conséquent, par exemple, on peut utiliser la caractérisation donnée plus haut pour
montrer qu’il y a un homéomorphisme minimal g pour lequel Gg n’admet pas de
classe de conjugaison dense.

Simplexes dynamiques

Comme nous venons de le mentionner, étant donnée une bonne mesure μ sur
l’espace de Cantor, Akin [Aki05] a prouvé l’existence d’un homéomorphismemini-
mal dont μ est la seule mesure de probabilité invariante. Ainsi, les bonnes mesures
sont précisément les mesures invariantes des homéomorphismes minimaux uni-
quement ergodiques de l’espace de Cantor. Existe-il une caractérisation similaire
pour les ensembles de mesures de probabilité invariantes des homéomorphismes
minimaux arbitraires de l’espace de Cantor ? Nous nous occupons de ce problème
dans le travail du Chapitre 5.

Une réponse à cette question avait été donnée dans un travail non publié de
Heidi Dahl [Dah08]. Soit K un ensemble de mesures de probabilité de l’espace de
Cantor X. Dahl a montré qu’il y a un homéomorphisme minimal g de X tel que
K = Kg si, et seulement si, K est un simplexe de Choquet de mesures sans atomes
à support plein vérifiant les propriétés suivantes : les points extrémaux de K sont

mutuellement singuliers, K est bon, et les fonctions de la forme μ �→
∫
f dμ pour

f ∈ C(X,Z) sont denses dans les fonctions affines continues sur K . Sa preuve est
basée sur les complexes et puissantes méthodes de Giordano, Herman, Putnam et
Skau, qui dépendent des outils de la K-théorie, la théorie des groupes à dimension
et des diagrammes de Bratelli–Vershik.

Dans le Chapitre 5 nous adoptons une approche plus élémentaire, puis nous
donnons une caractérisation des simplexesKg pour g minimal qui reste plus proche
dans l’esprit de la condition d’Akin pour le cas uniquement ergodique. Plus pré-
cisément, nous proposons la définition suivante. Soit K un ensemble compact,
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convexe, non vide, de mesures de probabilité sans atomes à support plein sur X.
Nous disons que K est un simplexe dynamique si, en plus, K est bon (tel que défini
dans la section précédente) et approximativement divisible, c’est-à-dire, pour tous
ε > 0, n ∈ N∗ et tout ensemble ouvert-fermé A ⊂ X il existe un ensemble ouvert-
fermé B ⊂ A tel que, pour tout μ ∈ K , μ(A)− ε ≤ nμ(B) ≤ μ(A).

Ensuite, commençant avec un simplexe dynamique K , nous prouvons l’exis-
tence d’un homéomorphismeminimal g tel que K = Kg en construisant, par décou-
page et empilement, une suite de partitions ouvert-fermées deX visant à constituer
des partitions de Kakutani–Rokhlin de g .

Théorème (Ch. 5). Un ensemble K de mesures de probabilité sur X est un simplexe
dynamique si et seulement si K = Kg pour un homéomorphisme minimal g de X.

De plus, l’homéomorphisme g que nous obtenons est saturé, ce qui veut dire
que le groupe plein topologique [[g]] est dense dans Gg . Nous rappelons que [[g]]
consiste des h ∈ [g] pour lesquels il y a une partition ouvert-fermée A1, . . . ,Ak de
X et des entiers n1, . . . ,nk tels que h|Ai = gni |Ai pour chaque i = 1, . . . , k. Ainsi, notre
construction donne une preuve élémentaire de la chose suivante.

Corollaire. Si g est un homéomorphisme minimal de X, alors il existe un homéo-
morphisme minimal saturé g ′ avec Gg = Gg ′ .

Cela était connu antérieurement par desmoyens plus sophistiqués. Nous avions
utilisé ce résultat lors de la preuve de la propriété de Hrushovski énoncée dans la
section précédente.

On peut se demander si l’hypothèse de divisibilité approximée est vraiment
nécessaire, ou bien, de façon équivalente, s’il y a des bons simplexes qui ne sont
pas des simplexes dynamiques. Nous ne connaissons pas la réponse en général. Ce-
pendant, la divisibilité approximée est en effet redondante lorsque l’on considère
des simplexes fini-dimensionnels.

Corollaire. Soit K un bon simplexe de mesures de probabilité sans atomes à sup-
port plein sur X. Si K n’a qu’un nombre fini de points extrémaux, alors il existe un
homéomorphisme minimal g de X tel que K = Kg .

Ce corollaire avait déjà été obtenu par Dahl, sous l’hypothèse supplémentaire
que les points extrémaux de K sont mutuellement singuliers.



Introduction

Foreword

This thesis in applied logic and descriptive set theory contributes to the theory
of topological groups and their dynamical systems, and to its connections with
model theory. The works included in this manuscript are the result of two different
research projects, corresponding to the two parts in which the thesis is divided,
as explained below. The topics covered are thus diverse, but fit together within
a common, general frame: the study of automorphism groups of homogeneous
structures.

The subject of the first part of the dissertation, realized under the supervi-
sion of Itaï Ben Yaacov, is the study of Roelcke precompact Polish groups via the
ℵ0-categorical structures associated to them, and conversely. It consists of the fol-
lowing research papers:

– Chapter 1: [Iba14] The dynamical hierarchy for Roelcke precompact Polish groups,
to appear in Israel Journal of Mathematics.

– Chapter 2: [BIT15] Eberlein oligomorphic groups (joint work with Itaï Ben Yaacov
and Todor Tsankov), submitted for publication.

– Chapter 3: [Iba16] Automorphism groups of randomized structures, submitted for
publication.

The second part corresponds to a collaboration with Julien Melleray, about
minimal homeomorphisms of the Cantor space and their full groups. The results
of this collaboration have been collected in the following works:

– Chapter 4: [IM14] Full groups of minimal homeomorphisms and Baire category
methods, Ergodic Theory Dynam. Systems, vol. 36 (2016), no. 2, pp. 550-573.

– Chapter 5: [IM15] Dynamical simplices and minimal homeomorphisms, submitted
for publication.

In the following sections, we give an introduction to the subjects of the thesis
along with a presentation of its main results.

Groups and structures

The meeting point of logic and dynamics considered in this thesis lies in the
study of automorphism groups of structures. Many interesting examples of topo-
logical groups are naturally presented as G = Aut(M) where M is a classical (dis-
crete) structure and the topology on G is that of pointwise convergence overM . In
fact, if one is willing to drop the word naturally, the latter situation encompasses
a very large class of groups: every closed permutation group (i.e., every closed sub-
group of the group S∞ of bijections of a countable set X) is the automorphism
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group of a structure in the sense of classical logic, namely, the structure obtained
by adding predicates for the orbits of G in all finite powers of X. We ask X to be
countable since we are only interested in second-countable topological groups.

As pointed out by Julien Melleray [Mel10], the situation extends to the wider
class of all Polish groups, by passing from classical to continuous logic, as devel-
opped in [BU10, BBHU08]. We recall that a topological space is Polish if it is sep-
arable and admits a complete, compatible metric. In continuous logic, structures
are complete, bounded, metric spaces, and the predicates are uniformly contin-
uous, bounded, real-valued functions. The metric takes the place of the equal-
ity relation: in particular, all automorphisms are isometries. The automorphism
group G of a separable structureM , endowed with the topology of pointwise con-
vergence, is thus a Polish subgroup of the group Iso(M) of isometries of M . Con-
versely, any Polish group can be obtained in this fashion. Indeed, by a classical
result of Birkhoff–Kakutani, any Polish group G admits a left-invariant compatible

metric dL. Then it suffices to consider M = ĜL, the completion of G with respect
to dL, and add predicates for the distance functions to each orbit in every finite
power of M . Hence G acts on M by isometries and, moreover, G = Aut(M). The
construction is described more explicitly in Chapter 1, §1.3.

In the naturally presented examples, it is not surprising that themodel-theoretic
features of a structure M give important information about its automorphism
group G, as would do the particular features of any interesting action of G. On
the other hand, the ad hoc structuresM described above could hardly tell anything
new about a given group G (rather, they may serve as peculiar model-theoretic
examples). However, they allow for a transfer of techniques from the logical side
to the dynamical side (as shown already in [Mel10]), and even suggest that some
general theory should also go through. As it turns out, this is especially the case
within a certain family of Polish groups, which we shall now introduce. The first
part of this thesis deals with the elaboration of a precise dictionary between both
sides of the equation G = Aut(M) within this particular class.

A topological group G is Roelcke precompact if for every open set U ⊂ G there
is a finite set F ⊂ G such that UFU = G. In order to explain the name, we recall
that every topological group comes endowed with four natural uniform structures.
These are the left uniformity (where two elements x,y ∈ G are close if the product

x−1y belongs to a small neighborhood of the identity), the right uniformity (where

x,y are close if xy−1 is close to the identity), the upper uniformity (the supremum
of the latter two) and the lower uniformity (their infimum, also called the Roelcke
uniformity by Uspenskij [Usp02]). The left, right and lower uniformities are always
compatible with the topology of the group.

The completions ofGwith respect to the three compatible uniformities are very
interesting objects, and a basic thing to ask is when they happen to be compact;
that is, when G is precompact with respect to these uniformities. If G is Polish,

then one can see that the left completion (which is just the space ĜL) is compact
if and only if G is compact (if and only if the right completion is compact), so this
condition does not bring out anything new. On the other hand, the fact that the
completion with respect to the lower uniformity be compact (which boils down to
the condition UFU = G stated above, explaining the name) turns out to define a
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new, very rich class of Polish groups. Outside the compact case, these are always
“infinite-dimensional” non-abelian groups, in a sense orthogonal to the class of
locally compact groups.

Fundamental examples of Roelcke precompact Polish groups, which will ap-
pear at one time or another along the thesis, include:

– the infinite symmetric group, S∞;
– the group of monotone bijections of the rationals, Aut(Q,<);
– the automorphism group of the random graph, Aut(RG);
– the homeomorphism group of the Cantor space, Homeo(2ω);
– the unitary group, U(�2);
– the group of measure-preserving transformations of a Lebesgue space, Aut(Ω);
– the group of quasi-invariant transformations of a Lebesgue space, Aut∗(Ω);
– the isometry group of the bounded Urysohn space, Iso(U1);
– the group of increasing homeomorphisms of the interval, H+[0,1].

The first four examples in this list belong to a class of groups that has been
studied in connection to logic already for a while. These are oligomorphic per-
mutation groups. The term, intended to mean “few shapes”, was introduced by
Cameron [Cam90]: a closed permutation group G � X is oligomorphic if, mod-
uloG, there are only finitely many possible configurations of n-tuples ofX. That is,
if the orbit spaces Xn/G are finite for all n. (In the case of Homeo(2ω), the under-
lying countable set X is just the algebra of clopen subsets of 2ω.) Now, if X is seen
as an appropriate logic structure M in such a way that G = Aut(M), then a classi-
cal theorem of Ryll-Nardzewski shows that G� X being oligomorphic is equiva-
lent to saying that M is ℵ0-categorical (also said countably categorical): any count-
able structure sharing the same first-order properties of M , is isomorphic to M .
Thus, oligomorphic groups are precisely the automorphism groups of classical,
one-sorted, countably categorical structures. In the former examples, one recog-
nizes: the unique countable set, the unique countable dense linear order without
endpoints, the unique countable homogeneous universal graph, and the unique
countable atomless Boolean algebra.

Todor Tsankov [Tsa12] observed that every oligomorphic group is Roelcke pre-
compact. Moreover, he showed that Roelcke precompact closed subgroups of S∞
are precisely the inverse limits of oligomorphic groups. This is why we shall call
these groups pro-oligomorphic. A Polish group G is pro-oligomorphic if and only if
it can be presented as G = Aut(M) for a classical, multi-sorted, countably categori-
cal structureM .

Later, Itaï Ben Yaacov and Todor Tsankov [BT14], and independently Christian
Rosendal [Ros13], realized that an arbitrary Polish group is Roelcke precompact if
and only if it admits an approximately oligomorphic faithful action. In other words,
if it can be seen as the automorphism group of an ℵ0-categorical structure in the
sense of continuous logic (also called separably categorical). Basic examples of such
structures (other than the discrete ones) are the separable infinite-dimensional
Hilbert space, the measure algebra of an atomless Lebesgue space, the atomless
Lp Banach lattices and the bounded Urysohn space of diameter 1, each one unique
in its kind.
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Separable categoricity is a very interesting and quite ubiquitous phenomenon
(it occurs all along the stability spectrum), which nevertheless implies very strong
properties for the structure (saturation, homogeneity, definability of partial ∅-
types, for example). Now, an important common feature of ℵ0-categorical struc-
tures is that they are determined, up to bi-interpretability, by their automorphism
groups, as shown in [AZ86, BK13]. Hence onemay expect that themodel-theoretic
properties of a separably categorical structure (at least those that are preserved by
bi-interpretations) be coded by natural properties of its automorphism group. This
guiding principle motivated the results of Ben Yaacov and Tsankov’s work [BT14],
in which they studied one of these fundamental properties: stability. The idea was
further developed in the articles that form the first chapters of this thesis.

Before we can get into more details, we will review other recent ideas connect-
ing the study of topological groups to yet a completely different domain.

To end this section, let us remark that ℵ0-categorical structures are a special
case of homogeneous structures, but many interesting highly symmetric struc-
tures are not ℵ0-categorical. Another important connection between logic and
dynamics, which is relevant for the second part of this thesis, lies in the study of
homogeneous structures and their automorphism groups via Fraïssé theory. We
will review this link in a subsequent section.

Dynamical systems and their representations

An old theme in topological dynamics is the study of periodicity properties of
continuous functions on groups. Outside the realm of compact groups, the orbits
of continuous functions f : G→ R can be quite complicated, and the classical no-
tions that come into play are those of almost periodicity (when the orbit Gf is norm
precompact in C(G)) and weak almost periodicity (WAP) (when Gf is weakly pre-
compact). In turn, these notions are associated with interesting dynamical systems
that come attached to the group.

If G is a topological group, a G-ambit is given by a continuous action of G on a
compact Hausdorff space X, together with a distinguished point x0 ∈ X such that
the orbit Gx0 is dense in X. (This is the same as a compactification G → X, de-
fined by sending 1 to x0.) The algebra of all bounded functions f : G → R that
are uniformly continuous with respect to the right uniformity of G is denoted
by RUC(G). Then, there is a one-to-one correspondence between G-ambits and
closed, left-invariant subalgebras of RUC(G), which is moreover order-preserving:
inclusions of subalgebras correspond to factor maps between ambits. Interesting
subalgebras, such as those corresponding to almost periodic and weakly almost
periodic functions, induce ambits with interesting algebraic structures. The Bohr
compactification, bG (corresponding to almost periodic functions), is a compact
topological group, whereas the WAP compactification, W (G), is a semitopological
semigroup. The algebra RUC(G) itself induces the greatest ambit, βG, which is
a right topological semigroup. These three are universal ambits for their corre-
sponding properties, e.g., every semitopological semigroup G-ambit is a factor of
W (G).
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Recently, Eli Glasner and Michael Megrelishvili have proposed a completely
new approach to this subject, enriching and enlarging it (a survey of which is given
in [GM14b]). If G � X is a compact dynamical system and V is a Banach space,
they define a representation of X on V to be a weak∗-continuous map

ι : X→ V ∗

together with a continuous homomorphism π : G→ Iso(V ) such that, with respect
to the induced dual action G � V ∗, the map ι is G-equivariant. Then, if K is
a class of Banach spaces, the system X is K-representable if it admits sufficiently
many representations on Banach spaces of the classK. (One may expect to have an
injective representation, or just representations separating points, depending on
the context.)

By considering the obvious injective representation X → C(X)∗, one sees that
any dynamical system is Banach-representable. The interesting fact is that rep-
resentability on classes of well-behaved Banach spaces corresponds to good dy-
namical properties. Thus, for instance, by a result of Megrelishvili [Meg03], WAP
G-ambits (i.e., the factors ofW (G)) are precisely the reflexive-representable ambits.
Similarly, almost periodic ambits are the Euclidean-representable ones.

Then, in the works [GM06, GM12], the authors studied the dynamical proper-
ties of systems that are representable on some natural generalizations of reflexive
spaces: Asplund and Rosenthal spaces. A Banach space is Asplund if the dual of
every separable subspace is separable, e.g., c0(Γ) spaces. It is Rosenthal if it does
not contain an isomorphic copy of �1, e.g., every Asplund space is Rosenthal; the
inclusion is actually strict, but it is not easy to exhibit an example. As it turns
out, Asplund and Rosenthal-representability are robust notions, admitting several
equivalent presentations. For instance, formetrizable compact systems G� X, the
following table shows how the property of being K-representable is related to the
complexity of the orbits of functions f ∈ C(X). (Here, Of denotes the pointwise

closure of Gf inside RX , and B1(X) ⊂ RX is the space of Baire 1 functions on X.)

Name ClassK Complexity of orbits
WAP Reflexive Of ⊂ C(X)
HNS Asplund Of is metrizable

Tame Rosenthal Of ⊂ B1(X)

In the opposite direction, one can consider the subclass ofWAP systems that are
not only reflexive but also Hilbert-representable. The corresponding subalgebra
of RUC(G) is closely related to the Fourier–Stieltjes algebra of the group, which
consists of the matrix coefficients of unitary representations of G.

Hilbert-representable systems have been investigated in [Meg08, GW12]. It
turns out to be a much subtler class than the previous ones, and a satisfactory
dynamical characterization of it is still missing. Moreover, the following basic

question is open, even for G =Z. Let us denote by H(G), GAsp and GRos the largest
Hilbert, Asplund and Rosenthal-representable G-ambits, respectively. Then, it is

known that the factors of GAsp are precisely the Asplund-representable G-ambits,
and an analogous statement holds for GRos with respect to Rosenthal systems (and
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for W (G) with respect to reflexive systems, as said before). In contrast, it is un-
known whether all factors of H(G) are Hilbert-representable.

Another interesting problem is that of understanding whenWAP functions can
be approximated by matrix coefficients of unitary representations of G. Equiva-
lently, when H(G) equalsW (G). Groups with this property are called Eberlein.

The classification of ambits in terms of their Banach representations we have
just discussed gives the following hierarchy of universal dynamical systems asso-
ciated to a given group:

βG→ GRos → GAsp →W (G)→H(G)→ bG.

It is known, for instance, that these ambits are all distinct for the case of G =Z.
We will study these ambits and their corresponding function algebras for the

case of Polish Roelcke precompact groups. In this case, it is also important to
consider the Roelcke compactification, R(G), which corresponds to the algebra of
functions that are uniformly continuous with respect to the lower uniformity. By
the precompactness assumption, this is just the completion with respect to the
lower uniformity. In particular, R(G) is metrizable. The ambit R(G) is always

larger than GAsp, but not always larger than GRos.

A dictionary for logicians

The following key observation was made in [BT14]. If G is the automorphism
group of an ℵ0-categorical (metric) structure M , then a function f ∈ C(G) is WAP
if and only if it can be written in the form

(*) f (g) = ϕ(a,gb)

for a stable continuous formula ϕ(x,y) and parameters a,b from M (which might
be infinite tuples). The same idea shows that if one drops the condition of stability
and considers arbitrary formulas ϕ, one recovers, via the expression (*), the family
of all lower uniformly continuous functions on G (that is, right-and-left uniformly
continuous). In particular, G is a WAP group (i.e.,W (G) = R(G)) precisely ifM is a
stable structure.

This was the starting point of our work of Chapter 1, whose purpose was to
complete the table of the previous section with a column for model theory. As it is,
representability on Rosenthal spaces corresponds to an important generalization
of stability. Let us say here that a continuous function f : G→ R is lower tame if it

factors through GRos, and moreover f is lower uniformly continuous.

Proposition (Ch. 1, §3). A continuous function f : G → R is lower tame if and
only if it can be written in the form f (g) = ϕ(a,gb) for an NIP formula ϕ(x,y).

The correspondence between WAP functions and stable formulas is a conse-
quence of a classical criterion of Grothendieck for weak-compactness in C(X) spaces
(see [Ben13a]); in turn, the correspondence between lower tame functions and NIP
formulas reposes on a famous dichotomy theorem of Bourgain, Fremlin and Tala-
grand [BFT78] for pointwise closures of subsets of C(X).
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It follows that the notion of Asplund-representable functions should corre-
spond to a model-theoretic property intermediate between stability and NIP, or
collapse to one of these two.

Theorem (Ch. 1, §2). If G is the automorphism group of an ℵ0-categorical struc-

ture, thenW (G) = GAsp.

From a model-theoretic point of view, the proof is quite simple. The main
ingredient is the standard trick of passing from a sequence indexed by N to a
sequence indexed byQ preserving some required property: in this case, witnessing
unstability. However, this is novel from the standpoint of topology, and we are not
aware of an alternative, topologically inspired proof.

Actually, our argument shows a stronger9 identity, namely:

W (G) = GSUC,

where GSUC is the largest compact right topological semigroup factor of the Roel-
cke compactification. This identity can moreover be interpreted as a rephrasing of
the equivalence between stability and definability of types.

Corollary. Let G be a Polish Roelcke precompact group. If G is not a WAP group,
then R(G) does not admit the structure of a right topological semigroup extending the
group structure of G.

Another consequence of the identification W (G) = GAsp is the following. As
pointed out earlier, every compact system G � X is representable on the Banach
space C(X). However, the space C(X) is usually, in most respects, as complicated
as a Banach space can be. An exception to this is when X is countable (or, more
generally, scattered): in this case, C(X) is actually an Asplund space.

Corollary. If G is a Polish Roelcke precompact group, then every countable (or
scattered) G-ambit is WAP.

The results stated so far also provide a nice source of examples of dynamical
systems. Any NIP, unstable, separably categorical structure, for instance, gives rise
to a Rosenthal-representable, non Asplund-representable system. One can also
take advantage of model-theoretic tools such as quantifier elimination to give pre-
cise descriptions of the algebras of almost periodic functions (which correspond
to imaginaries in the algebraic closure of the empty set), weakly almost periodic
functions (by describing the stable formulas) and lower tame functions (by de-
scribing the NIP formulas) in various concrete examples, starting with those listed
at the beginning of the introduction. For WAP functions this was done in [BT14].
We take care of the other algebras in Ch. 1, §4. For instance, one has the following.

Corollary. Every lower tame function on Iso(U1) is constant.

Glasner and Megrelishvili have asked whether every Polish group can be em-
bedded in the isometry group of a Rosenthal Banach space. The latter corollary

9One always has factor maps R(G)→ GSUC → GAsp →W (G). However, we should remark that

the metrizability of R(G) already implies GAsp = GSUC, as can be deduced from the main result

of [GMU08].
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suggests that Iso(U1) might not admit non-trivial Rosenthal representations at all.
However, since there may be tame functions which are not left uniformly contin-

uous, our result is not enough to ensure that conclusion.10

In the analysis of some automorphism groups of classical structures, such as
Aut(RG) or Homeo(2ω), there is a technical difficulty that arises, which has some
intrinsic interest. One can usually give good descriptions of classical (i.e., {0,1}-
valued) stable and NIP formulas. However, to describe WAP and lower tame func-
tions one needs to give an account of all continuous such formulas (in fact, more-
over, one only considers stability and NIP in a restricted domain). Thus, one would
like to ensure that continuous stable/NIP formulas are uniform limits of combina-
tions of classical stable/NIP formulas, which is not obvious a priori.

The difficulty was solved for stable formulas in [BT14], with a topological proof
that uses Ryll-Nardzewski’s fixed-point theorem for weakly compact convex sets
in Banach spaces. Their argument does not carry on to the NIP case, and in fact we
do not know whether this approximation property is true in general for NIP. Nev-
ertheless, we have identified a property, which we call having definable extensions
of types over finite sets, which gives a sufficient condition. This condition holds for
stable formulas, thus recovering the result of [BT14], and also holds in many un-
stable structures, which permits to understand their NIP continuous formulas in
terms of the classical ones. We discuss this condition in Ch. 1, §4.1.

Before we go on to the contents of Chapter 2, let us recall some other important
notions and results from [BT14]. Suppose, as before, that we have G = Aut(M) for
a separably categorical structure M . By the homogeneity of M , the left comple-

tion ĜL can be identified with the topological semigroup of elementary endomor-
phisms of M . Then, the Roelcke compactification R(G) can be presented as the

space of types tp(x,y) where x,y ∈ ĜL ⊂MM . If one considers the restriction of the
types tp(x,y) to stable formulas, then one obtains precisely the WAP compactifica-
tion of G. Moreover, the semigroup law onW (G) can be described in terms of the
stable independence relation ofM .

The work of Chapter 2, a collaboration with Itaï Ben Yaacov and Todor Tsankov,
addresses the case of Hilbert-representable ambits and functions, for the family of
pro-oligomorphic groups. That is, we restrict our attention to countably categori-
cal classical structures.

The main reason for this restriction is the existence of a classification theorem
for the unitary representations of pro-oligomorphic groups, proven in [Tsa12].
With the classification at hand, we can show that the algebra of Hilbert-repre-
sentable functions on such a group is generated by the functions of the form
f (g) = ϕ(a,gb) where ϕ(x,y) is a definable equivalence relation on the associated
classical structureM .

In turn, this allows us to give a nice description of the Hilbert-compactification
H(G). This ambit always has the structure of a semitopological semigroup.

10A complete answer might follow from an appropriate study of externally definable predicates

in U1, but this has not been achieved yet.
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Theorem (Ch. 2, §3.2). Let G be the automorphism group of an ℵ0-categorical clas-
sical structure M . Then H(G) is the semitopological semigroup of partial elementary
endomorphisms ofMeq with algebraically closed domain.

Thus, for instance, the Hilbert compactification of Aut(Q,<) is the semigroup
of monotone partial bijections ofQ, and the Hilbert compactification of Aut(RG) is
the semigroup of partial graph automorphisms of the random graph. In fact, these
are also their corresponding WAP compactifications: they are Eberlein groups.

A consequence of the previous theorem is that H(G) is an inverse semigroup,
that is, we have

(**) pp∗p = p

for all p ∈ H(G). Here, ∗ : H(G)→ H(G) denotes the natural involution extending
the inverse operation on G. As it turns out, this property provides a characteriza-
tion of Eberlein pro-oligomorphic groups.

In fact, condition (**) has an interestingmodel-theoretic interpretation inW (G).
If p = [x,y] ∈ W (G) is the stable type of a pair x,y ∈ ĜL, then we have pp∗p = p if
and only if x |�x∩y y (where the intersection is taken in Meq). This explains how

the condition of one-basedness appears in our main result of Chapter 2.

Theorem (Ch. 2, §3.3-§4). Let G be the automorphism group of a countably cate-
gorical classical structureM . Then the following are equivalent:

(1) W (G) is an inverse semigroup.
(2) M is one-based for stable independence, i.e., A |�A∩BB for any algebraically

closed sets A,B ⊂Meq.
(3) G is Eberlein, i.e., H(G) =W (G).

Moreover, a semitopological ∗-semigroup G-ambit is Hilbert-representable if and only if
it is an inverse semigroup.

Thus, in the same way that bG is the universal topological group G-ambit and
W (G) is the universal semitopological semigroup G-ambit, for pro-oligomorphic
groups we can characterizeH(G) as the universal semitopological inverse ∗-semigroup

G-ambit.11

Now, by a classical result from model theory, our theorem also implies the
following.

Corollary. We have H(G) = R(G) if and only ifM is ℵ0-stable.

By resorting to the celebrated example of Hrushovski of an ℵ0-categorical, sta-
ble pseudoplane, we can then show an example of a WAP group which is not Eber-
lein. This answered a question of Glasner and Megrelishvili.

Then we go on to analyse the representability of arbitrary factors of H(G). For
this we are led to prove an intermediate result, of independent interest. Remark
that the compactifications H(G), W (G) and R(G) of the automorphism group of
a countably categorical classical structure are always zero-dimensional, as follows

11Note, however, that this algebraic characterization fails completely under weaker assump-

tions, e.g., H(G) is not an inverse semigroup in the case of the discrete group Z, nor in the case of

the Roelcke precompact Polish group U(�2).
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from the their model-theoretic descriptions (for the case ofW (G), one should recall
that classical stable formulas determine all continuous stable formulas).

Theorem (Ch. 2, §4). If G is a pro-oligomorphic group, then all factors of H(G) are
zero-dimensional.

In contrast, there are examples of non-zero-dimensional factors of the Roelcke
compactification. We do not know whether the previous result is valid, instead,
for the factors of the WAP compactification.

Finally, we can address, for pro-oligomorphic groups, the open question men-
tioned in the previous section.

Theorem (Ch. 2, §4). If G is a pro-oligomorphic group, then all factors of H(G) are
Hilbert-representable.

Chapter 2 ends with a remark and a question about the complexity of countable
ambits of pro-oligomorphic groups. IfM is classical countably categorical and ℵ0-
stable, then the type spaces Sx(M) in finite variables are countable of finite rank.
We observe that this can be generalized to arbitrary pro-oligomorphic groups in
the following way.

Proposition (Ch. 2, §4). Every countable Hilbert-representable ambit of a pro-
oligomorphic group has finite Cantor–Bendixson rank.

Since in the ℵ0-stable case the hypothesis of Hilbert-representability is unnec-
essary (it follows from the others), one may ask whether the previous result ac-
tually holds for arbitrary countable ambits. Although, as we point out with an
example in Ch. 2, §3.3, a countable ambit of a pro-oligomorphic group need not
be Hilbert-representable.

With the results of Chapters 1 and 2, we achieve the purpose declared at the
beginning of this section, which was to expand the dictionary of the previous sec-
tion with a column for model theory. For simplicity, let us state it in this manner:
we relate the properties of the ℵ0-categorical structure M with the classes K of
Banach spaces for which the Roelcke compactification R(G) (of the automorphism
group ofM) is K-representable. The second line (for Hilbert) holds in the classical

setting.12

ClassK StructureM
Euclidean compact
Hilbert ℵ0-stable
Reflexive stable
Asplund stable
Rosenthal NIP

12In an ongoing work, not included in this manuscript, we have found some evidence that

suggests that this fails in the metric setting.
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Randomized structures

In many mathematical situations, when considering a set or structure M of
some kind, it is interesting or convenient to think about random elements of M ,
and to study their expected properties. In [Kei99], Jerome Keisler proposed a
model-theoretic approach to this theme: if we start with a logic structure, then
the random elements should form a new structure, where the original predicates
ϕ(x) are replaced by new formulas E�ϕ(x)� that account for their expected values.
Actually, there might be several different ways of randomizing a structure, but, as
Keisler showed, they all share the same first-order theory. Hence, given a complete
theory T , we obtain a canonical randomized theory TR.

This was done, originally, in a classical first-order setting, which made the con-
struction rather cumbersome. After continuous logic was developed, the theory
of randomizations was adapted to this setting by Ben Yaacov and Keisler. In-
deed, continuous logic offers a perfect framework for studying randomizations,
and, conversely, randomized structures are an interesting source of metric struc-
tures.

With the formalism of continuous logic, randomizations preserve a lot of model-
theoretic properties, including ℵ0-categoricity. Thus, in the special case thatM is
an ℵ0-categorical structure, there is an essentially unique separable randomization
of M , say MR. This means that, given a Roelcke precompact Polish group G (say,
the automorphism group ofM), there is a canonically associated Polish group GR

(the automorphism group of MR), which is Roelcke precompact too. So, what is
this group? The work of Chapter 3 was motivated by this question.

Let Ω be a standard probability space. Given any Polish group G, we con-
sider the semidirect product of L0(Ω,G), the group of random elements of G, and
Aut(Ω), the group of measure-preserving transformations of Ω, which acts natu-
rally on the former. We call this the measurable wreath product of G and Aut(Ω),
and we denote it by

G 
Ω � L0(Ω,G)�Aut(Ω).

The group G 
Ω is naturally a Polish group.
We show the following, whereMR denotes the Borel randomization of a separa-

ble structure M . This is a canonical example of randomization; essentially, MR is
given by the set L0(Ω,M) with the appropriate structure.

Theorem (Ch. 3, §2.2). We have Aut(MR) � Aut(M) 
Ω as topological groups.

Beyond the model-theoretic motivation, measurable wreath products can be
seen as an interesting source of new Polish groups. In Ch. 3, §2-3, we investigate
the properties of G 
Ω-actions induced by actions of G. We show the following, the
first part of which gives an alternative proof of the preservation of ℵ0-categoricity
by randomizations.

Theorem (Ch. 3, §2-3). If a Polish group G acts faithfully and approximately oligo-
morphically on a Polish metric space M , then G 
Ω acts faithfully and approximately

oligomorphically on L0(Ω,M). In particular, ifG is Roelcke precompact, then so isG
Ω.
In that case, the Roelcke compactification R(G 
Ω) can be identified with the space

M(Ω,R(G))� {λ ∈ R(Ω0 ×R(G)×Ω1) : λ|Ω0
= μ0, λ|Ω1

= μ0}.
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(Here, R(X) is the compact space of Borel probability measures on X; each Ωi is a
standard probability space with measure μi , and λ|Ωi

is the pushforward of λ to Ωi .)

Then, we study some preservation properties of the spacesM(Ω,X) introduced
above. If X is a G-ambit, thenM(Ω,X) is naturally a G 
Ω-ambit. Moreover, this
construction behaves well with respect to semitopological semigroups.

Proposition (Ch. 3, §3). If S is a metrizable compact semitopological semigroup,
thenM(Ω,S) admits a natural semitopological semigroup law. If S is a G-ambit, then
the law ofM(Ω,S) extends the natural action of G 
Ω onM(Ω,S).

If S is representable by contractions on a Hilbert space, then so isM(Ω,S).

Suppose G is a Roelcke precompact Polish group. It follows from the previous
theorem and proposition that if G is a WAP group (i.e., ifW (G) = R(G)), then so is

G 
Ω. Similarly, if G is satisfies H(G) = R(G), then also H(G 
Ω) = R(G 
Ω).13

We know, by the dictionary discussed in the previous section, that the preser-
vation of WAP groups has a model-theoretic counterpart. Namely: stability is pre-
served under randomizations. This had been proved in all generality in [Ben13b].
Another important result of the same kind, the preservation of NIP theories (and
formulas) under randomizations, had been established in [Ben09]. Since the proof
of the latter is particularly involved, we found it interesting to look for an alterna-
tive proof of this fact too, even if limited to the ℵ0-categorical case.

We ended up proving a general preservation result for Banach representations
of certain randomized flows. For this, we define a class of Banach spaces K to
be R-closed if, whenever V ∈ K, the Bochner space L2(Ω,V ) is also in K (plus a
technical condition about K-representable functions, see Ch. 3, Definition 3.15).
Using some classical results of Banach space theory (together with some recent
results of Glasner and Megrelishvili, for the technical condition), one sees that the
classes of Hilbert, reflexive, Asplund and Rosenthal spaces are all R-closed.

Let S(Ω,X) denote the compact space {λ ∈ R(Ω × X) : λ|Ω = μ}. We show
that this corresponds to randomized type spaces with parameters: for instance,

ST
R

x (MR) � S(Ω,STx (M)). Then, the preservation result is the following.

Theorem (Ch. 3, §3.3). Let K be an R-closed class of Banach spaces. Let G� X be
a continuous action of a Polish group on a compact metrizable space, and suppose that
G� X is K-representable. Then, the system G 
Ω � S(Ω,X) is K-representable too.

Combined with the results of Chapter 1, this gives us new proofs, in the ℵ0-
categorical setting, of the following facts.

Corollary. If ϕ(x,y) is an NIP formula for T , then E�ϕ(x,y)� is an NIP formula

for TR. Similarly for stable formulas.

On the other hand, our dictionary for Hilbert-representability only works, for
the moment, for classical logic. Thus, for instance, we can deduce from our results
that if M is classical, ℵ0-categorical and ℵ0-stable, then R(Aut(MR)) is Hilbert-

representable; but we do not know what this says, model-theoretically, aboutMR.

13It is natural to conjecture that W (G 
Ω) �M(Ω,W (G)) and H(G 
Ω) �M(Ω,H(G)), though
we have not settled this question.
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Since the results of Chapter 2 were based on the notion of one-basedness, we
should look for a metric generalization of this property. In the literature, there
is one such proposed generalization. Namely, the notion of strongly finitely based
(SFB) theories, introduced in [BBH14]. An ℵ0-categorical, stable theory T is SFB
if and only if the theory TP of beautiful pairs of models of T is ℵ0-categorical. This
coincides with one-basedness in the classical setting, but it applies in addition to
some important well-behaved metric theories, such as the theories of an infinite-
dimensional Hilbert space and of the measure algebra of the interval.

Hence, one may expect that the randomization of an SFB theory be again SFB.
Surprisingly for us, this turns out to be false. Rather, the opposite holds.

Theorem (Ch. 3, §4). The theory (TR)P of beautiful pairs of models of a randomized

stable theory TR is never ℵ0-categorical, unless T is the theory of a compact structure.

In fact, we show that if N ≺M is any elementary pair of separable models of a
stable theory T , then we can construct a separable model of (TR)P as follows. We

letMR be given by the set of all random variables Ω2 →M , and we let S ⊂MR be
the subset of random variables taking values inN that are measurable with respect
to the first coordinate of Ω2 (i.e., those that factor as Ω2 → Ω → N →M). Then,
with the appropriate structure, the pair (MR,S) is a model of (TR)P . This yields
non-isomorphic separable models, for instance for the cases N =M versus N �M .

Moreover, we have the following. Let S1 be the set S corresponding to the case

N = M (and assume M is ℵ0-categorical). If we let h ∈ End(M)Ω
2
, we can define

Sh = {hr : r ∈ S1}. Then, the pair Ph � (MR,Sh) is also a model of (TR)P .

Theorem (Ch. 3, §4). Suppose T is stable, ℵ0-categorical. Then, the separable

models of (TR)P are exactly the pairs isomorphic to Ph for some h ∈ End(M)Ω
2
.

In addition to the previous results, we prove that the randomization of an arbi-
trary metric ℵ0-stable theory T is again ℵ0-stable (this had been proved for classi-
cal T in [BK09]). Finally, Chapter 3 ends with a description of the automorphism
groups of pairs of randomizations of the form (MR,S) induced by modelsM,N as
above.

Descriptive aspects of full groups

We now turn to the subjects of the second part of the thesis. The results re-
ferred to in this and the following sections have been obtained in collaboration
with Julien Melleray.

We will forget about automorphism groups of logic structures for a short mo-
ment —only with the purpose of convincing the reader of the importance of com-
ing back to them.

Full groups are a special kind of automorphism groups that appear in ergodic
theory and in its younger topological sibling, Cantor dynamics. In the latter con-
text, if g is a minimal homeomorphism of the Cantor space X � 2ω, one may
consider the enriched “structure” on the compact space X resulting of naming the
orbits of g on X (N.B. this is not a structure in the sense of logic), then consider
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the corresponding automorphism group. This is called the full group of g , de-
noted by [g], and consists thus of all homeomorphisms h ∈ Homeo(X) such that
h(Og (x)) =Og (x) for every x ∈ X, where Og (x) is the g-orbit of x.

Full groups of measure-preserving tranformations of a standard probability
spaceΩ are defined similarly (and, more interestingly in this case, also full groups
of actions of countable groups).

A crucial fact about full groups is that they are complete algebraic invariants
for orbit equivalence. That is, if g,h are minimal homeomorphisms of X such
that [g] � [h] as abstract groups, then there is a homeomorphism of X such that
elements in the same g-orbit are mapped into elements in the same h-orbit, and
elements in different g-orbits are mapped into elements in different h-orbits. This
was proved by Giordano, Putnam and Skau [GPS99]. The analogous theorem in
the framework of ergodic theory had been established several decades earlier by
Dye, and was at the origin of an intensive study of full groups.

Now, a valuable feature of full groups in the ergodic-theoretic setting is that
they are topologically well-behaved. First, they admit a Polish group topology.
(This is not the topology induced by the ambient Polish group Aut(Ω), though;
rather, full groups become Polish under the uniform topology of Aut(Ω).) This
topology plays a prominent role in various results in the literature, for instance in
characterizations of properties that are invariant under orbit equivalence. Second,
full groups are always Borel subsets of Aut(Ω) of relatively low complexity: they

areΠΠΠ0
3 in the Borel hierarchy.

On the other hand, no Polish topology has ever been proposed for full groups of
minimal homeomorphisms of the Cantor space. The work of Chapter 4 addresses
this situation, and its first result is the following.

Theorem (Ch. 4, §2). Let Γ ⊂Homeo(X) be a countable group acting minimally on
the Cantor space. Then, there is no second countable, Hausdorff, Baire group topology
on the full group [Γ].

In particular, the full group [g] of a minimal homeomorphism does not admit
any Polish group topology.

We may remark that, unlike the situation in the measurable context, here one
may fix a point x ∈ X and look at the permutations of the orbit Og (x) induced
by elements of [g]; since Og (x) is countable, this gives a natural homomorphism

from [g] into the permutation group of a countable set. The proof of the previous
theorem shows that a Hausdorff, Baire topology on [g] would make this homo-
morphism continuous. In fact, the topology would have to refine the topology of
pointwise convergence on X, which would make it impossible for [g] to be second
countable.

Then, we investigated the question of the complexity of [g] inside Homeo(X).
Here again, the answer turns out to be worst possible.

Theorem (Ch. 4, §3). Let g be a minimal homeomorphism of the Cantor space.
Then, [g] is a coanalytic non-Borel subset of Homeo(X).

These results suggest that full groups in the Cantor minimal setting might fail
to be as useful an invariant as their ergodic counterparts have proven to be. Hence,
one may attempt to study a gentler but related object instead. A natural candidate
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is the closure of the full group inside Homeo(X).14 Given a minimal homeomor-

phism g , let Gg = [g] denote this closure.
The group Gg offers two important features, in addition to its obvious Polish

group structure. The first one is that it is also a complete algebraic invariant for
orbit equivalence, as we point out in Ch. 4, §4; this follows from another deep
theorem of Giordano, Putnam and Skau.

The second is that Gg admits a nice description. Indeed, it follows from a

theorem of Glasner and Weiss that Gg is precisely the set of h ∈ Homeo(X) that
preserve every g-invariant probability measure on X.

We recall that Homeo(X) can be identified with the automorphism group of
the Boolean algebra of clopen subsets of X. Since Gg is a closed subgroup of the
homeomorphism group of the Cantor space, it must be the automorphism group
of a expansion of the algebra of clopen sets of X. As we will see in the next section,
the description of Gg mentioned above will allow us to give a nice presentation of
this structure.

An interesting question one may ask about Gg is whether it admits a generic

element. An element h ∈ Gg is generic if its conjugacy class {khk−1 : k ∈ Gg } is
comeager inGg . The existence of a generic element has strong consequences for the
closure of a full group. For instance, it implies thatGg must be simple, and that any
homomorphism into a separable topological group is automatically continuous.
This question can be approached by means of the methods explained below.

Fraïssé theory for good measures

Amajor point of convergence of dynamics, logic and combinatorics was brought
to light by Kechris, Pestov and Todorcevic in their celebratedwork [KPT05]. There,
they were concerned with the study of universal minimal flows of Polish groups,
which we are not in this thesis; however, their main tool, the study of Polish groups
by means of Fraïssé theory, has since then been adapted in a number of different
ways to the study of other related or unrelated problems. Here, we will be con-
cerned with the work of Kechris and Rosendal [KR07] (which was also inspired by
previous work of Hodges et al. [HHLS93] and Truss [Tru92]). They addressed the
problem of determining when a Polish group admits a dense or comeager conju-
gacy class.

From now on, all structures we consider are in the sense of classical logic.
A structure K is ultrahomogeneous if every isomorphism between finitely gener-
ated substructures of K extends to an automorphism of K. Fraïssé showed that
a countable ultrahomogeneous structure K is determined, up to isomorphism, by
its age, which is the class of all finitely generated structures that can be embedded
in K. Hence, the age codes all the model-theoretic information of K. The ideas of

14Another natural candidate is the normalizer of the full group, N [g], which is the set of all

h ∈ Homeo(X) such that h(Og (x)) = Og (h(x)) for every x ∈ X (that is, N [g] is the automorphism

group of the equivalence relation induced by the orbits of g). It can be seen that N [g] is also a

complete invariant for orbit equivalence. However, as observed by Julien Melleray in a private

communication, using that [g] is non-Borel inside Homeo(X), one can see that N [g] is also non-

Borel and does not admit a Polish group topology.
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[KPT05] or [KR07] are based on the principle that certain combinatorial proper-
ties of the age ofK code dynamical properties of the automorphism group Aut(K).

Let K be a countable ultrahomogeneous structure and let A denote its age.
Then, we may consider the class Ap of pairs (A,f ) where A ∈ A and f is a partial

automorphism of A. Kechris and Rosendal proved that Aut(K) has a dense conju-
gacy class if and only if Ap satisfies a the joint embedding property (JEP), i.e., if any
two partial automorphisms of structures in A can be merged into the partial au-
tomorphism of a common superstructure in A. Moreover, Aut(K) has a comeager
conjugacy class if and only if Ap satisfies JEP together with a more sophisticated

condition called the weak amalgamation property (WAP)15. For instance, they man-
aged to show that JEP and WAP hold true for the class of finite Boolean algebras,
which is the age of the algebra of clopen sets of the Cantor space. As a result, they
established that the Cantor space has a generic homeomorphism.

In addition, they studied another important, strong combinatorial property
that some classes of finitely generated structures enjoy, called the Hrushovski prop-
erty, which is related to the possibility of extending partial automorphisms to (full)
automorphisms of larger structures.

Let us explain how this relates to our problems. As before, let X denote the
Cantor space, and let g be a minimal homeomorphism of X. We denote the set of
all g-invariant probability measures on X by Kg .

Now, it follows from a result of Glasner and Weiss that the minimality of g
implies the following property of Kg : if A,B ⊂ X are clopen sets such that μ(A) < μ(B)
for all μ ∈ Kg , then there is a clopen subset C ⊂ B such that μ(C) = μ(A) for all μ ∈ Kg .
When a set K of atomless probability measures with full support on X enjoys this
property, we say that K is good (generalizing the definition of [Aki05]). A standard
back-and-forth argument shows the following.

Lemma. Assume K is a good simplex of probability measures on X with full support.
Let GK = {h ∈Homeo(X) : ∀μ ∈ K h∗μ = μ}. If A,B are clopen sets with μ(A) = μ(B) for
all μ ∈ K , then there is h ∈ GK such that h(A) = B.

This says that a certain structure is ultrahomogeneous. Indeed, let K be as in
the statement above, and letK be the Boolean algebra of clopen sets ofX expanded
with predicates Pμ,r for each μ ∈ K and r ∈ [0,1], interpreted so that a clopen set

A verifies Pμ,r if and only if μ(A) = r. (Actually, by separability of the space of

probability measures, the language can be assumed to be countable.) Then we
have GK = Aut(K), and the lemma implies readily that K is ultrahomogeneous.

In particular, if we let Kg denote the structure constructed from K = Kg , we

obtain that the closure of the full group [g] is Gg = Aut(Kg ). Thus we can apply

the theory of [KR07] to the study of Gg . In this generality, we were able to show

the following (thanks to an observation of Kostya Medynets; our original result
was weaker).

Theorem (Ch. 4, §4). Let g be a minimal homeomorphism of the Cantor space, and
let Kg be as above. Then, the age of Kg has the Hrushovski property.

This already has the following consequence.

15N.B. completely unrelated to weak almost periodicity!
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Corollary. The group Gg is amenable.

Moreover, combined with a result of Bezuglyi and Medynets [BM08], the theo-
rem also yields the following.

Corollary. The group Gg is topologically simple.

Then we studied the conditions JEP and WAP in a particular case, namely,
when g is uniquely ergodic. So let us fix a minimal homeomorphism g , and sup-
pose there is a unique g-invariant measure, μ, which is then a good measure in the
sense of [Aki05]. Let Vμ be the (countable) set of values μ(A) ∈ [0,1] that μ takes on

clopen subsets A ⊂ X. Then, the age ofKg depends only on Vμ, so this set codes all

the relevant information of Kg and Gg . By studying the joint embedding property
in terms of Vμ, we obtain the following technical characterization.

Proposition (Ch. 4, §5). There is a dense conjugacy class in Gg if and only if Vμ
satisfies the following condition: whenever ai ,bj ∈ Vμ and ni,mj ∈ N are such that∑p
i=1niai = 1 =

∑q
j=1mjbj , one can find ci,j ∈ Vμ such that: mjbj =

∑p
i=1 lcm(ni,mj )ci,j

for all j , and niai =
∑q
j=1 lcm(ni,mj )ci,j for all i.

This holds true in particular when Vμ +Z is a Q-vector subspace of R, and when

Vμ +Z is a subring of R.

Unfortunately, we have not succeeded in giving a characterization of the same
kind for the existence of a comeager conjugacy class inGg . Unlike what happens in

several examples of [KR07], where the Hrushovski property can be used to prove
a strong form of the weak amalgamation property, this does not seem to suffice
in our case. Nevertheless, this method does work for a particular family of good
measures, which allows us to give a new proof of the following result of Ethan
Akin [Aki05].

Proposition (Ch. 4, §5). Suppose Vμ +Z is a Q-vector subspace of R. Then, there

is a generic homeomorphism in Gg .

In the previous results, we have supposed that a uniquely ergodic minimal
homeomorphism g was given. Now, if V is any countable infinite subset of [0,1]
containing 0 and 1 and closed under addition modulo 1, then one can show that
there is a good measure μ on X such that V = Vμ. Moreover, Akin proved that there

exists then a minimal homeomorphism g such that Kg = {μ}. Thus, for instance,
one can use the characterization given above to show that there are minimal home-
omorphisms g for which Gg does not admit a dense conjugacy class.

Dynamical simplices

As we just mentioned, given a good measure μ on the Cantor space, Akin
[Aki05] proved the existence of a minimal homeomorphism for which μ is the
only invariant probability measure. Hence, good measures are exactly the invari-
ant measures of uniquely ergodic minimal homeomorphisms of the Cantor space.
Is there a similar characterization of the sets of invariant probability measures
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of arbitrary minimal homeomorphisms of the Cantor space? This problem is ad-
dressed in the work of Chapter 5.

An answer to this question had been given in an unpublished work of Heidi
Dahl [Dah08]. Let K be a set of probability measures on the Cantor space X. Dahl
showed that there is a minimal homeomorphism g of X such that K = Kg if, and
only if, K is a Choquet simplex of atomless probability measures with full support
satisfying the following properties: the extreme points of K are mutually singular,

K is good, and the functions of the form μ �→
∫
f dμ for f ∈ C(X,Z) are dense

within the continuous affine functions on K . Her proof is based on the complex
and powerful methods of Giordano, Herman, Putnam and Skau, which rely on
tools fromK-theory, the theory of dimension groups, and of Bratelli–Vershikmaps.

In Chapter 5 we take a more elementary approach, and give a characterization
of the simplices Kg for minimal g that stays closer in spirit to Akin’s condition for
the uniquely ergodic case. More precisely, we propose the following definition.
Let K be a non-empty compact convex set of atomless probability measures of full
support on X. We say that K is a dynamical simplex if, in addition, K is good (as
defined in the previous section) and approximately divisible, that is, for every ε > 0,
n ∈Z>0 and every clopen set A ⊂ X there is a clopen subset B ⊂ A such that, for all
μ ∈ K , μ(A)− ε ≤ nμ(B) ≤ μ(A).

Then, starting with a dynamical simplexK , we prove the existence of aminimal
homeomorphism g with K = Kg by constructing, via cutting and stacking, a series
of clopen partitions of X that are aimed to be Kakutani–Rokhlin partitions for g .

Theorem (Ch. 5). A set K of probability measures on X is a dynamical simplex if
and only if K = Kg for a minimal homeomorphism g of X.

Moreover, the homeomorphism g that we obtain is saturated, which means that
the topological full group [[g]] is dense inGg . We recall that [[g]] consists of those h ∈
[g] for which there is a clopen partition A1, . . . ,Ak of X and integers n1, . . . ,nk such
that h|Ai = gni |Ai for each i = 1, . . . , k. Hence, our construction gives an elementary
proof of the following.

Corollary. If g is a minimal homeomorphism of X, then there is a saturated mini-
mal homeomorphism g ′ with Gg = Gg ′ .

This was previously known by more sophisticated means. We had used this
result in the proof of the Hrushovski property stated in the previous section.

One may ask whether the hypothesis of approximate divisibility is actually
needed or, equivalently, whether there are good simplices which are not dynam-
ical simplices. We do not know the answer in general. However, approximate
divisibility is indeed redundant in the case of finite-dimensional simplices.

Corollary. Let K be a good simplex of atomless probability measures of full support
on X. If K has finitely many extreme points, then K = Kg for some minimal homeomor-

phism g of X.

This corollary had already been obtained by Dahl, under the additional as-
sumption that the extreme points of K are mutually singular.



Part 1

Automorphism groups of separably
categorical structures





CHAPTER 1

The dynamical hierarchy for Roelcke precompact Polish groups

Abstract. [Article to appear in Israel Journal of Mathematics.] We study several

distinguished function algebras on a Polish group G, under the assumption that G
is Roelcke precompact. We do this by means of the model-theoretic translation ini-

tiated by Ben Yaacov and Tsankov: we investigate the dynamics of ℵ0-categorical

metric structures under the action of their automorphism group. We show that, in

this context, every strongly uniformly continuous function (in particular, every As-

plund function) is weakly almost periodic. We also point out the correspondence

between tame functions and NIP formulas, deducing that the isometry group of

the Urysohn sphere is Tame∩UC-trivial.
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Introduction

In a series of recent papers, Glasner and Megrelishvili [GM06, GM08, Meg08,
GM12, GM13] have studied different classes of functions on topological dynami-
cal systems, arising from compactifications with particular properties. Thus, for
example, a real-valued continuous function on a G-space X might be almost pe-
riodic, Hilbert-representable, weakly almost periodic, Asplund-representable or tame,
and this classes form a hierarchy

AP(X) ⊂Hilb(X) ⊂WAP(X) ⊂ Asp(X) ⊂ Tame(X) ⊂ RUC(X)

of subalgebras of the class of right uniformly continuous functions. These algebras
can be defined in different ways. The latter coincides with the class of functions
that can be in some sense represented through a Banach space, and from this point
of view the previous subalgebras can be identified, respectively, with the cases
when the Banach space is asked to be Euclidean, Hilbert, reflexive, Asplund or

49
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Rosenthal. When X = G and the action is given by group multiplication, functions
might also be left uniformly continuous, and if they are simultaneously in RUC(G)
they form part of the algebra UC(G) of Roelcke uniformly continuous functions.

We study these algebras for the case of Roelcke precompact Polish groups, by
means of the model-theoretic translation developed by Ben Yaacov and Tsankov
[BT14]. As established in their work, Roelcke precompact Polish groups are ex-
actly those arising as automorphism groups of ℵ0-categorical metric structures.
Moreover, one might turn continuous functions on the group into definable pred-
icates on the structure. Under this correlation, the authors showed, weakly al-
most periodic functions translate into stable formulas: a most studied concept of
topological dynamics leads to one of the crucial notions of model theory. This
provides a unified understanding of several previously studied examples: the per-
mutation group S(N), the unitary group U (�2), the group of measure preserving
transformations of the unit interval Aut(μ), the group Aut(RG) of automorphisms
of the random graph or the isometry group Iso(U1) of the Urysohn sphere, among
many other “big” groups, are automorphism groups of ℵ0-categorical structures,
thus Roelcke precompact. In the first three cases the structures are stable, thus
WAP(G) = UC(G): theirWAP and Roelcke compactifications coincide. Usingmodel-
theoretic insight, the authors were able to prove for example that, whenever the
latter is the case, the group G is totally minimal.

The so-called dynamical hierarchy presented above has been partially described

for some of the habitual examples. For the groups S(N), U (�2) or Aut(μ) we have
in fact Hilb(G) = UC(G); see [GM14b, §6.3–6.4]. From [BT14, §6] we know, for
instance, that the inclusion WAP(G) ⊂ UC(G) is strict for the group Aut(Q,<) of
monotone bijections of the rationals. More drastically, Megrelishvili [Meg01a]
had shown that the group H+[0,1] of orientation preserving homeomorphisms of
the unit interval, also Roelcke precompact, has a trivial WAP-compactification:
WAP(G) is the algebra of constants; in [GM08, §10] this conclusion was extended
to the algebra Asp(G) (and indeed to the algebra SUC(G) of strongly uniformly con-
tinuous functions, containing Asp(G)). The same was established for the group
Iso(U1). If one drops the requirement of Roelcke precompactness, all inclusions
in the hierarchy are known to be strict in appropriate examples.

We show that in fact WAP(G) = Asp(G) = SUC(G) for every Roelcke precom-
pact Polish group G. In addition, we observe that Roelcke uniformly contin-
uous tame functions correspond to NIP formulas on the model-theoretic side.
Thus, for instance, Asp(G) � Tame(G)∩UC(G) = UC(G) for G = Aut(Q,<), while
WAP(G) = Tame(G)∩UC(G) �UC(G) for G = Aut(RG) or G = Homeo(2ω). We also
deduce that the Tame∩UC-compactification of Iso(U1) is trivial.

Our approach is model-theoretic, and we shall assume some familiarity with
continuous logic as presented in [BU10] or [BBHU08]; nevertheless, we give an
adapted introduction to ℵ0-categorical metric structures that we hope can be help-
ful to an interested reader with no background in logic. We will mainly study the
dynamics of ℵ0-categorical structures, then derive the corresponding conclusions
for their automorphism groups.
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The algebra Hilb(G) will not be addressed in this paper. Unlike the proper-
ties of stability and dependence, which can be studied locally (that is, formula-
by-formula), the model-theoretic interpretation of the algebra Hilb(G) presents a
different phenomenon, and will be considered in a future work.
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1. The setting and basic facts

1.1. G-spaces and compactifications. Most of the material on topology in this
and subsequent sections comes from the works of Glasner and Megrelishvili re-
ferred to in the introduction.

A G-space X is given by a continuous left action of a topological group G on a
topological spaceX. ThenG acts as well on the space C(X) of continuous, bounded,
real-valued functions on X, by gf (x) = f (g−1x). If X is not compact, however, the
action on C(X) need not be continuous for the topology of the uniform norm on
C(X). The functions f ∈ C(X) for which the orbit map g ∈ G �→ gf ∈ Gf ⊂ C(X) is
norm-continuous are called right uniformly continuous (RUC). That is, f ∈ RUC(X)
if for every ε > 0 there is a neighborhood U of the identity of G such that

|f (g−1x)− f (x)| < ε
for all x ∈ X and g ∈ U . When X = G is considered as a G-space with the regular
left action, we also have the family LUC(G) of left uniformly continuous functions,
where the condition is that |f (xg) − f (x)| be small for all x ∈ G and g close to the
identity. The intersection UC(G) = RUC(G)∩LUC(G) forms the algebra of Roelcke
uniformly continuous functions on G. The family RUC(X) is a uniformly closed G-
invariant subalgebra of C(X), and the same is true for LUC(G) and UC(G) in the
case X = G.

If X is compact, then RUC(X) = C(X); in the case X = G, UC(G) = C(G). More-
over, recall that a compact Hausdorff space X admits a unique compatible uni-
formity (see, for example, [Bou71, II, §4,№1]), and that any continuous function
from X to another uniform space is automatically uniformly continuous.

Note 1.1. Our spaces, when not compact, will be metric, and G will act on
X by uniformly continuous transformations (in practice, by isometries). In this
case, we will usually restrict our attention to those functions f ∈ RUC(X) that are
also uniformly continuous with respect to the metric on X; we denote this family
of functions by RUCu(X). It is a uniformly closed G-invariant subalgebra. The
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same subscript u might be added to the other function algebras in the dynamical
hierarchy, in order to keep this restriction in mind.

Our groups will be Polish. Whenwe takeX = G, we assume that a left-invariant,
compatible, bounded metric dL on G has been fixed; its existence is ensured by
Birkhoff–Kakutani theorem; see for example [Ber74, p. 28]. The subscript u will
then refer to this metric; notice that RUCu(G) = UC(G). The algebra SUC(G), con-
taining Asp(G) (both to be defined later), is always a subalgebra of UC(G) (see
Section 2); in particular, SUCu(G) = SUC(G) and Aspu(G) = Asp(G). As pointed
out to us by M. Megrelishvili, this is not the case for the algebra Tame(G) (see the
discussion after Theorem 4.15), so we will mind the distinction between Tame(G)
and Tameu(G) = Tame(G)∩UC(G).

From the equality RUCu(G) = UC(G) we see that RUCu(G) does not depend on
the particular choice of dL. Thus, so far, we could omit the metric dL and consider
simply the natural uniformities on G (see for instance [Bou71, III, §3, №1] for
an explanation of these). However, our approach will require to consider metric
spaces, and in fact complete ones. This is why we will consider the space (G,dL),
and mainly its completion ĜL = ̂(G,dL), which is naturally a G-space. We remark

that the restrictionmap RUCu(ĜL)→UC(G) is a norm-preservingG-isomorphism.

A compactification of a G-space X is a continuous G-map ν : X→ Y into a com-
pact Hausdorff G-space Y , whose range is dense in Y . In our context it will be
important to consider compactifications that are uniformly continuous: in this
case we shall say, to make the distinction, that ν is a u-compactification of X. A

function f ∈ C(X) comes from a compactification ν : X → Y if there is f̃ ∈ C(Y ) such
that f = f̃ ν; note that the extension f̃ is unique.

If f comes from a compactification of X, then certainly f ∈ RUC(X). The con-
verse is true. In fact, there is a canonical one-to-one correspondence between com-
pactifications of X and uniformly closed G-invariant subalgebras of RUC(X) (a
subalgebra is always assumed to contain the constants). The subalgebra Aν cor-
responding to a compactification ν : X → Y is given by the family of all functions

f ∈ C(X) that come from ν. Conversely, the compactification XA corresponding

to one such algebra A ⊂ RUC(X) is the space XA of maximal ideals of A together

with the map νA : X → XA, νA(x) = {f ∈ A : f (x) = 0}. We recall that the topology

on XA is generated by the basic open sets Uf ,δ = {p ∈ XA : |f̃ (p)| < δ} for f ∈ A and

δ > 0; here, f̃ (p) is the unique constant r ∈ R such that f − r ∈ p.
In this way we always have the equality A = AνA and a unique G-homeomor-

phism jν : X
Aν → Y with ν = jννAν . In particular, if f ∈ A, then f comes from νA

(and the extension f̃ ∈ C(XA) is defined as above). Finally, the correspondence is
functorial, in the sense that inclusionsA ⊂ B of subalgebras correspond bijectively

to continuous G-maps j : XB → XA such that νA = jνB . When we say that a given
compactification is minimal or maximal within a certain family, we refer to the
order induced by these morphisms; in the previous situation, for example, νB is
larger than νA.

More details on this correspondence can be found in [dV93, IV, §5], partic-
ularly Theorem 5.18 (though the construction given there is quite different, not
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based on maximal ideal spaces; for the basics on maximal ideal spaces see [Con90,
VII, §8]).

We point out here that the correspondence restricts well to our metric setting,
namely, it induces a one-to-one correspondence between u-compactifications of X
and uniformly closed G-invariant subalgebras of RUCu(X). Of course, if ν is a u-
compactification of X then any function coming from ν is uniformly continuous,
so Aν ⊂ RUCu(X). Conversely, we have the following.

Fact 1.2. If A is a uniformly closed G-invariant subalgebra of RUCu(X) then

νA : X→ XA is uniformly continuous.

Proof. Suppose to the contrary that there is an entourage ε of the uniformity

of XA such that for every n there are xn,yn ∈ X with distance d(xn,yn) < 1/n but
such that (νA(xn),νA(yn)) � ε. We can assume the entourage is of the form ε =⋃
i<k Ui ×Ui for some cover of XA by basic open sets

Ui = {p ∈ XA : |f̃i(p)| < δi}
given by functions fi ∈ A and positive reals δi .

Passing to a subnet we can assume that νA(xn) converges to p ∈ XA, say p ∈ Ui
for some i < k. Since A is contained in RUCu(X) (not merely in RUC(X)) for n
big enough we have |fi(xn) − fi(yn)| < 1

2(δi − |f̃i(p)|), and also |fi(xn) − f̃i(p)| < 1
2(δi −

|f̃i(p)|). Thus for the same n we have |fi(xn)| < δi and |fi(yn)| < δi . This implies
(νA(xn),νA(yn)) ∈ ε, a contradiction. �

Remark 1.3. Let G be a Polish group. Every u-compactification of G factorizes

through the left completion ĜL, and we have a canonical one-to-one correspon-

dence between u-compactifications of G and of ĜL.

The maximal u-compactification of a Polish group G, that is, the compactifica-

tion GUC associated to the algebra UC(G), is called the Roelcke compactification of
G. If we fix any g ∈ G, the function dg (h) = dL(g,h) is in UC(G). This implies that

the compactification G→ GUC is always a topological embedding.
On the other hand, for any f ∈ RUC(X) there is a minimal compactification of

X from which f comes, namely the one corresponding to the closed unital algebra
generated by the orbit Gf in C(X). It is called the cyclic G-space of f , and denoted
by Xf .

An important part of the project developed in [GM06,GM12, GM14b] has been
to classify the dynamical systems (and particularly their compactifications) by the
possibility of representing them as an isometric action on a “good” Banach space.
Although we will not make use of it in the present paper, the precise meaning of a
representation of a G-space X on a Banach space V is given by a pair

h : G→ Iso(V ), α : X→ V ∗,

where h is a continuous homomorphism and α is a weak∗-continuous bounded
G-map with respect to the dual action G × V ∗ → V ∗, (gφ)(v) = φ(h(g)−1(v)). The
topology on Iso(V ) is that of pointwise convergence. The representation is faithful
if α is a topological embedding.
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For a family K of Banach spaces, a G-space X is K-representable if it admits a
faithful representation on a member V ∈ K, and it is K-approximable if it can be
topologically G-embedded into a product of K-representable G-spaces.

1.2. Roelcke precompact Polish groups. Following Uspenskij [Usp02, §4], the
infimum of the left and right uniformities on a Polish group G is called the Roel-
cke uniformity of the group. Accordingly, G is Roelcke precompact if its completion
with respect to this uniformity is compact —and thus coincides with the Roelcke
compactification of G as defined above. This translates to the condition that for
every non-empty neighborhood U of the identity there is a finite set F ⊂ G such
that UFU = G.

Let G be a Polish group acting by isometries on a complete metric space X.
Given a point x ∈ X, we denote by [x] = Gx the closed orbit of x under the action.
Then, we define the metric quotient X �G as the space {[x] : x ∈ X} of closed orbits
endowed with the induced metric d([x], [y]) = infg∈G d(gx,y).

In the rest of the paper, given a countable (possibly finite) set α, we will identify
it with an ordinal α ≤ ω and consider the power Xα as a metric G-space with

the distance d(x,y) = supi<α 2
−id(xi ,yi) and the diagonal action gx = (gxi)i<α . Of

course, the precise choice of the distance is arbitrary and we will only use that
it is compatible with the product uniformity and that the diagonal action is by
isometries.

The action of G on X is approximately oligomorphic if the quotients Xα �G are
compact for every α < ω (equivalently, for α = ω). Then, Theorem 2.4 in [BT14]
showed the following.

Theorem 1.4. A Polish group G is Roelcke precompact if and only if the action of

G on its left completion ĜL is approximately oligomorphic or, equivalently, if G can be
embedded in the group of isometries of a complete metric space X in such a way that the
induced action of G on X is approximately oligomorphic.

Recall that the group of isometries of a complete metric space is considered as
a Polish group with the topology of pointwise convergence.

Roelcke precompact Polish groups provide a rich family of examples of topo-
logical groups with interesting dynamical properties. By means of the previous
characterization, Ben Yaacov and Tsankov initiated the study of these groups from
the viewpoint of continuous logic.

1.3. ℵ0-categorical metric structures as G-spaces. Thus we turn to logic. We
present the basic concepts and facts of the model theory of metric structures.
About the general theory we shall be terse, and we refer the reader to the thorough
treatments of [BU10] and [BBHU08]; in fact, we will mostly avoid the syntactical
aspect of logic. Instead, we will give precise topological reformulations for the
case of ℵ0-categorical structures. At the same time, we explain the relation to the
dynamical notions introduced before.

A metric first-order structure is a complete metric space (M,d) of bounded
diameter together with a family of distinguished basic predicates fi : M

ni → R (ni <
ω), i ∈ I , which are uniformly continuous and bounded. (The structure may also
have distinguished elements and basic functions from finite powers ofM intoM ,
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as is the case of the Boolean algebra B considered in the examples; but these can be
coded with appropriate basic predicates.) An automorphism of the structure is an
isometry g ∈ Iso(M) such that each basic predicate fi is invariant for the diagonal
action of g onMni , that is, fi(gx) = fi(x) for all x ∈Mni . For a separable structureM ,
the space Aut(M) of all automorphisms ofM is a Polish group under the topology
of pointwise convergence.

If M is separable and isomorphic to any other separable structure with the
same first-order properties, then M is ℵ0-categorical. A classical result in model-
theory (see [BBHU08], Theorem 12.10) implies that this is equivalent to say that
M is separable and the action of Aut(M) onM is approximately oligomorphic. In
particular, by Theorem 1.4, Aut(M) is Roelcke precompact.

The structure M is classical if d is the Dirac distance and the basic predicates
are {0,1}-valued. In this case,M is ℵ0-categorical if and only if it is countable and
the action of Aut(M) onM is oligomorphic, i.e., the quotientsMn�Aut(M) are finite
for every n < ω.

A definable predicate is a function f : Mα → R, with α a countable set, con-
structed from the basic predicates and the distance by continuous combinations,
rearranging of the variables, approximate quantification (i.e., suprema and infima)
and uniform limits. Every definable predicate is Aut(M)-invariant, uniformly con-
tinuous and bounded. IfM is ℵ0-categorical, then f : M

α → R is a definable pred-
icate if and only if it is continuous and Aut(M)-invariant; see for example [BK13],
Proposition 2.2.

Definition 1.5. In this paper, we shall use the term formula to denote a defin-

able predicate in two countable sets of variables, i.e., a function f : Mα ×Mβ → R,
for countable sets α,β, which is a definable predicate once we rewrite the domain
as a countable power ofM . We will denote it by f (x,y) to specify the two variables
of the formula. Given a formula f (x,y) and an a parameter a ∈Mα , we denote by

fa ∈ C(Mβ) the continuous function defined by fa(b) = f (a,b). When we make no
reference to α or β, we will assume that α = ω and β = 1.

Whenever we talk of a metric structureM as a G-space, we understand that the
group is G = Aut(M) and that it acts onM in the obvious way. This G-space comes
with a distinguished function algebra: the family of functions of the form fa for a
formula f (x,y) and a parameter a ∈Mω. We will denote it by Def(M), and it is in
fact a uniformly closed G-invariant subalgebra of C(M). More generally, if a ∈ Aω
for a subset A ⊂M (and the variable y is of any length β), we will say that fa is an
A-definable predicate in the variable y. A ∅-definable predicate is just a definable
predicate. The family of A-definable predicates in y is clearly a subalgebra of

C(Mβ), which is uniformly closed as the following shows.

Fact 1.6. A uniform limit of A-definable predicates is an A-definable predicate.

Proof. Say we have formulas f n(x,y) and parameters an ∈ Aω such that f nan con-
verges uniformly; without loss of generality we can assume that the tuples are the
same, say a = an. Passing to a subsequence we can assume that f nan converges fast
enough, then define f (x,y) as the forced limit of the formulas f n(x,y) (see [BU10,
§3.2], and compare with Lemma 3.11 therein). Then the limit of the predicates f na
is fa. �
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The starting point for our analysis is the following observation, based on the
ideas from [BT14, §5].

Proposition 1.7. For a metric structure M we have Def(M) ⊂ RUCu(M). If M is
ℵ0-categorical, then moreover Def(M) = RUCu(M).

Proof. For the first part consider a formula f (x,y) together with a parameter
a ∈Mω. Take a neighborhood U of the identity such that d(a,ga) < Δf (ε) for g ∈U ,

whereΔf is a modulus of uniform continuity for f (x,y). Thus ‖gfa−fa‖ = ‖fga−fa‖ <
ε whenever g ∈U . This shows that every fa ∈Def(M) is in RUCu(M).

Now let h ∈ RUCu(M), and set a ∈Mω to enumerate a dense subset of M . We
define f : Ga×M→ R by

f (ga,b) = gh(b) = h(g−1b).

This is well defined because a is dense in M ; note also that f is G-invariant and
uniformly continuous. Indeed, we have

|f (ga,b)− f (g ′a,b′)| ≤ |gh(b)− gh(b′)|+ |gh(b′)− g ′h(b′)|.
The first term on the right side is small if b and b′ are close: simply observe that
d(g−1b,g−1b′) = d(b,b′), so we use the uniform continuity of h. For the second,
given ε > 0 there is a neighborhood U of the identity of G such that ‖gh − g ′h‖ < ε
whenever g−1g ′ ∈ U , because h is RUC; since a is dense, there is δ > 0 such that

d(ga,g ′a) < δ implies g−1g ′ ∈U ; thus if d(ga,g ′a) < δ we have |gh(b′)− g ′h(b′)| < ε.
This means that f can be extended continuously to [a]×M (we recall the nota-

tion [a] = Ga). The extension remains G-invariant, so we may regard f as defined
on ([a]×M)�G, which is a closed subset of the metric space (Mω×M)�G. Then we
can apply Tietze extension theorem to get a continuous extension to (Mω ×M)�G.
Composing with the projection we get a G-invariant continuous function

f : Mω ×M→ R.

Finally, ifM is ℵ0-categorical then the G-invariant continuous function f is in fact
a formula f (x,y). Hence we have h = fa, as desired. �

In light of this result, if M is ℵ0-categorical, we can attempt to study the sub-
algebras of RUCu(M) with model-theoretic tools; this is our aim.

Our conclusions will translate easily from structures to groups, the latter be-
ing the main subject of interest from the topological viewpoint. Indeed, if G is
a Polish group, there is a canonical construction (first described by J. Melleray in

[Mel10, §3]) that renders the left completion M = ĜL a metric first-order struc-
ture with automorphism group Aut(M) = G. It suffices to take for I the set of all

closed orbits in all finite powers of ĜL, that is I =
⊔
n<ωM

n �G, then define the
basic predicates Pi : M

ni → R (if i ∈Mni �G) as the distance functions to the corre-
sponding orbits: Pi(y) = infx∈i d(x,y). By Theorem 1.4, if G is Roelcke precompact
then G acts approximately oligomorphically on its left completion and hence M
is an ℵ0-categorical structure. In addition we have the natural norm-preserving

G-isomorphism RUCu(ĜL) � UC(G). By this means, our conclusions about the dy-
namics of ℵ0-categorical structures will carry immediately to Roelcke precompact
Polish groups.
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Nevertheless, for the analysis of the examples done in Section 4 we shall use
the approach initiated in [BT14, §5–6] for the study of WAP(G). That is, we will
describe the functions on G in terms of the formulas of the “natural” structureM
for which G = Aut(M) (see particularly Lemma 5.1 of the referred paper). To this
end we have the following version of Proposition 1.7.

Proposition 1.8. LetM be a metric structure,G = Aut(M). If f (x,y) is an arbitrary
formula and a,b are tuples from M of the appropriate length, then the function g �→
f (a,gb) is in UC(G). If M is ℵ0-categorical and h ∈ UC(G), then there are a formula
f (x,y) in ω-variables x,y and a parameter a ∈ Mω such that h(g) = f (a,ga) for every
g ∈ G.

Proof. The proof of Proposition 1.7 can be adapted readily. Alternatively, we
remark that if a ∈ Mω enumerates a dense subset of M then [a] can be identified

with ĜL (see [BT14], Lemma 2.3). Thus the basic predicates Pi : (ĜL)
ni → R defined

above are simply the restrictions to [a]ni of the functions fi : (M
ω)ni → R, fi(y) =

infx∈i d(x,y), which are definable predicates ifM is ℵ0-categorical; similarly for the

general definable predicates on ĜL. The second claim in the statement then follows

from this together with the identifications UC(G) � RUCu(ĜL) = Def(ĜL). �
1.4. Types, extensions, indiscernibles. Before we go on, we recall some addi-

tional terminology from model theory that we use in our expositions and proofs.
Most of it could be avoided if we decided to give a prevailingly topological presen-
tation of our results, but we have chosen to emphasize the interplay between the
two domains.

LetM be a metric structure, A ⊂M a subset and let y be a variable of length β.
A (complete) type over A (in M) in the variable y can be defined as a maximal ideal
of the uniformly closed algebra of A-definable predicates of M in the variable y.
The type over A of an element b ∈Mβ is defined by

tp(b/A) = {fa : a ∈ Aω,f (x,y) a formula with f (a,b) = 0}.
For A = ∅ we denote tp(b/∅) = tp(b). A more model-theoretic presentation of types
in continuous logic is given in [BBHU08, §8] or in [BU10, §3]; there, a type is a set
of conditions which an element may eventually satisfy. A type p given as an ideal
is identified with the set of conditions of the form h(y) = 0 for h ∈ p.

The space of types over A (that is, the maximal ideal space of the algebra of
A-definable predicates, with its natural topology) is denoted by SMy (A), or by S(A)
when β = 1 and the structure is clear from the context. If A is G-invariant, then the
algebra of A-definable predicates is G-invariant and there is a natural action of G
on SMy (A). Thus, for example, the type space S(M) (together with the natural map

tp: M → S(M)) is just the compactification MDef(M). In particular, if G is Roelcke
precompact, then by Proposition 1.7, Remark 1.3 and the discussion about the

structure ĜL above, we have that S(ĜL) = G
UC is just the Roelcke compactification

of G.

Remark 1.9. Let f = f (x,y) be an arbitrary formula and let a ∈ Mα be a pa-
rameter. The cyclic G-space of fa (as defined after Remark 1.3) also has a name
in the model-theoretic literature, at least for some authors: it coincides with the
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space of f -types over the orbit Ga as defined in [TZ12, p. 132]. Their definition is
in the classical setting, but we can adapt it to the metric case by defining a (com-
plete) f -type over A ⊂Mα to be a maximal consistent set of conditions of the form
f (a′, y) = r for a′ ∈ A and r ∈ R. In other words, an f -type is a maximal ideal of
the closed unital algebra generated by {fa′ : a′ ∈ A}. The space of f -types over A is
denoted by Sf (A), and the identification Sf (Ga) = Xfa follows.

N.B. This does not coincide in general with the space Sf (A) as defined in [BU10],
Definition 6.6, or in [Pil96, p. 14]. To make the comparison simpler, say A = Bα

for some B ⊂ M . The two definitions agree when B = M . In the case B ⊂ M , the
latter authors define Sf (A) (or Sf (B) in their notation) as the maximal ideal space
of the algebra of B-definable predicates inM that come from the compactification
Sf (M). This is larger than the one defined above, and it fits better for the study of
local stability.

We shall understand Sf (A) in the former sense (except in Lemma 4.2).

A tuple b ∈ Mβ realizes a type p ∈ SMy (A) if we have tp(b/A) = p. A set q of

M-definable predicates in the variable y is approximately finitely realized in B ⊂M
if for every ε > 0 and every finite set of predicates fi ∈ q, i < k, there is b ∈ Bβ
such that |fi(b)| < ε for each i < k. Remark that any p ∈ SMy (M) is approximately

finitely realized inM : if for example fa ∈ p is bounded away from zero inM , then
1/fa is an A-definable predicate, hence 1 = 1/fa · fa ∈ p and p is not a proper ideal.
Conversely, by Zorn’s Lemma, any set of A-predicates in y approximately finitely

realized inM can be extended to a type p ∈ SMy (A).
The following terminology is not standard, so we single it out.

Definition 1.10. We will say that a structure M is ∅-saturated if every type
p ∈ SMy (∅) in any countable variable y is realized inM .

Suppose M is ℵ0-categorical. Then the projection Mβ → Mβ � G is a com-
pactification, and the functions that come from it are precisely the continuous
G-invariant ones, i.e., the ∅-definable predicates. Hence the projection to Mβ �G
can be identified with the compactification tp: Mβ → SMy (∅). A first consequence

of this identification is the following homogeneity property: if tp(a) = tp(b) for
a,b ∈Mβ and we have ε > 0, then there is g ∈ G with d(a,gb) < ε. A further conse-
quence is the following.

Fact 1.11. Every ℵ0-categorical structure is ∅-saturated.
A stronger saturation property is true for ℵ0-categorical structures (they are

approximately ℵ0-saturated, see Definition 1.3 in [BU07]), but we will not use it.

Remark 1.12. The left completion M = ĜL, when seen as a metric structure
as defined before, is ∅-saturated if and only if it is ℵ0-categorical. Indeed, if it is
not ℵ0-categorical then the quotientMn �G is not compact for some n < ω, which
means that there are ε > 0 and a sequence of orbits (ik)k<ω ⊂ Mn �G any two of
which are at distance at least ε. We may moreover assume that (ik)k<ω is maximal
such, since Mn is separable. If, as before, Pi : M

n → R denotes the distance to
the orbit i ∈ Mn �G, then the conditions {Pik (y) ≥ ε}k<ω induce a type over ∅ not
realized inM .
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Now suppose that we have a metric structure M given by the basic predicates
fi : M

ni → R, i ∈ I . An elementary extension ofM is a structure N with basic pred-

icates f̃i : N
ni → R, i ∈ I , such that: (i) M is a metric subspace of N , (ii) each

f̃i extends fi , and (iii) every type p ∈ SNy (M) is approximately finitely realized in

M ⊂ N . One can deduce that the M-definable predicates of M are exactly the re-
strictions toM of theM-definable predicates ofN (essentially, because (iii) ensures
that approximate quantification over M and over N coincide), and the restriction
is one-to-one. Hence, the spaces SMy (M) and SNy (M) can be identified. A metric

ultrapower construction as in [BBHU08, §5] can be used to prove the following.

Fact 1.13. Every metric structure M admits an elementary extension N such that
every type in Sy(M) in any countable variable y is realized in N . (In particular, every

structure has a ∅-saturated elementary extension.)

Thus, for most purposes, we can refer to types over M or to elements in ele-
mentary extensions of M interchangeably. For example, if p ∈ S(M), fa ∈ Def(M),
and b is an element in an elementary extension N ofM realizing p, we may prefer

to write f (a,b) instead of f̃a(p). We recall that the formula f (x,y) of M extends
uniquely to a formula of N , and we identify them.

An indiscernible sequence in a structureM is a sequence (ai)i<ω ⊂Mβ such that,
for any i1 < · · · < ik < ω, we have tp(ai1 . . . aik ) = tp(a1 . . . ak). In a finitary version,
if Δ is a finte set of definable predicates and δ is a positive real, then a sequence
(ai)i<ω is Δ-δ-indiscernible if |φ(ai1 , . . . , aik ) −φ(aj1 , . . . , ajk )| ≤ δ for every i1 < · · · < ik ,
j1 < · · · < jk and every definable predicate φ(y1, . . . , yk) ∈ Δ.

Finally, we shall say that a subset A ⊂Mα is type-definable if it is of the form {a ∈
Mα : fj(a) = 0 for all j ∈ J} for a family of definable predicates fj(x), j ∈ J . In partic-

ular, every type-definable set isG-invariant and closed. IfM isℵ0-categorical, then
any G-invariant closed set is type-definable, even by a single predicate, namely the
(continuous G-invariant) distance function PA(x) = d(x,A). In general, A is called
definable precisely when the distance function PA is a definable predicate. In the
latter case, if f (x,y) is any formula, then F(y) = supx∈A f (x,y) is a definable pred-
icate too, and similarly for the infimum (see [BBHU08], Theorem 9.17). If A is
definable and N is an elementary extension of M , PA will denote the definable
predicate that coincides with d(x,A) on Mα ; thus an element a ∈ Nα satisfying
PA(a) = 0 need not be in A.

1.5. Almost periodic functions. We end this section with some comments
about the smallest function algebra presented in the introduction. A continuous
bounded function h on a metric G-space X is almost periodic (AP) if the orbit Gh is
a precompact subset of C(X) (with respect to the topology of the norm). As is easy
to check, the family AP(X) of almost periodic functions on X is a uniformly closed
G-invariant subalgebra of RUC(X). Moreover, if h comes from a compactification
ν : X → Y , it is clear that h is AP if and only if its extension to Y is AP. By the
Arzelà–Ascoli theorem, we have that h ∈ AP(Y ) if and only if for every ε > 0 and
y ∈ Y there is an open neighborhood O of y such that

|h(gy)− h(gy′)| < ε
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for every y′ ∈O and g ∈ G. From the point of view of Banach space representations,
almost periodic functions are precisely those coming from Euclidean-approximable
compactifications of X; see [GM14b, §5.2] and [Meg08], Proposition 3.7.2.

The definition given in the following proposition will be useful for the de-
scription of AP functions in the examples of Section 4. (The terminology is not
standard.)

Proposition 1.14. Let M be a ∅-saturated structure. Let f (x,y) be a formula and

A ⊂ Mα , B ⊂ Mβ be definable sets. The following are equivalent, and in any of these
cases we will say that f (x,y) is algebraic on A×B.

(1) the set {fa|B : a ∈ A} is precompact in C(B);
(2) for every indiscernible sequence (ai)i<ω ⊂ A, the predicates f (ai ,y) are all

equivalent in B, i.e., we have f (ai ,b) = f (aj ,b) for all i, j and b ∈ B.

Proof. (1)⇒ (2). By precompactness, the sequence (fai )i<ω has a Cauchy sub-
sequence, so in particular there are i and j such that supy∈B |f (ai ,y) − f (aj ,y)| ≤ ε.
By indiscernibility, this is true for all i, j , and the claim follows.

(2)⇒ (1). Let ε > 0. If the set of conditions in the variables (xi)i<ω given by

|φ(xi1 , . . . ,xik )−φ(xj1 , . . . ,xjk )| = 0, PA(xi) = 0, sup
y∈B

|f (xi ,y)− f (xj ,y)| ≥ ε

(where φ varies over the definable predicates of M , i1 < · · · < ik , j1 < · · · < jk), was
approximately finitely realized in M , then by ∅-saturation we could get an indis-
cernible sequence inM contradicting (2). Therefore, there are a finite set Δ of de-
finable predicates and δ > 0 such that any Δ-δ-indiscernible sequence (ai)i<ω ⊂ A
satisfies supy∈B |f (ai ,y)− f (aj ,y)| < ε for all i, j .

For every n < ω let Δn, δn correspond to ε = 1/n as before. Starting with
an arbitrary sequence (ai)i<ω ⊂ A, by Ramsey’s theorem we can extract a Δ1-δ1-
indiscernible subsequence, say (a1i )i<ω. Inductively, let (an+1i )i<ω be a Δn+1-δn+1-

indiscernible subsequence of (ani )i<ω. If we take aωj = a
j
j then (aωj )j<ω is a subse-

quence of (ai)i<ω and (faωj )j<ω is a Cauchy sequence in C(B). �

Remark 1.15. As the reader can check, the previous proposition holds true if
A and B are merely type-definable. In particular, one may consider the case where
A = {a′ ∈Mα : tp(a′) = tp(a)} for some a ∈Mα , and B =Mβ . If the above equivalent
conditions hold in this case (for a saturated model M), it is standard terminology
to say that (the canonical parameter of) fa is algebraic over the empty set, in symbols
fa ∈ acl(∅). Alternatively, in the terminology of Pillay [Pil96, p. 9], fa is almost
∅-definable.

Set β = 1. Suppose M is ℵ0-categorical, so in particular A = [a] = Ga. Now,
since f (x,y) is uniformly continuous, the families Gfa and {fa′ : a′ ∈ [a]} have the
same closure in C(M). We can conclude by Proposition 1.7 that h ∈ APu(M) if and
only if h = fa for some predicate fa ∈ acl(∅).

The compactification b : G → bG = GAP associated to the algebra AP(G) is the
Bohr compactification of G. The space bG has the structure of a (compact) group
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making b a homomorphism (see [dV93, (D.12)3 and IV(6.15)3]). In fact, the com-
pactification b is the universal group compactification of G: if ν : G → K is a com-
pactification and also a homomorphism into a compact group K , it is easy to see
that Aν ⊂ AP(G), whence ν factors through b. I. Ben Yaacov has observed the
following fact.

Theorem 1.16. The Bohr compactification b : G → bG of a Roelcke precompact
Polish group is always surjective.

See [Ben15], Corollary 5.3. As mentioned there in the introduction, the model-
theoretic counterpart of this result is the fact that ℵ0-categoricity is preserved after
naming the algebraic closure of the empty set (see Proposition 1.15).

One could call a metric G-space X almost periodic if AP(X) = RUCu(X). This is a
very strong condition. Indeed, for an action of a topological group G by isometries
on a complete bounded metric space (X,d), the function Pa(y) = d(a,y) (which is
in RUCu(X)) is AP if and only if the closed orbit [a] is compact. If the space of
closed orbits X�G is compact, we can deduce that X is almost periodic if and only
if X is compact (the reverse implication following from Arzelà–Ascoli theorem).
This is the case for ℵ0-categorical structures. Also, if G is any Polish group with
AP(G) = UC(G) then b : G→ bG is a topological embedding into a compact Haus-
dorff group, which implies that G is already compact (see [dV93, D.12.4] together
with [BK96, p. 3–4]).

2. WAP = Asp = SUC

Let f : Mα ×Mβ → R be any formula on a metric structure M , and let A ⊂
Mα , B ⊂ Mβ be any subsets. We recall that f (x,y) has the order property, let us
say, on A × B if there are ε > 0 and sequences (ai)i<ω ⊂ A, (bj )j<ω ⊂ B such that

|f (ai ,bj )− f (aj ,bi)| ≥ ε for all i < j < ω. If f (x,y) lacks the order property on A ×B
we say that it is stable on A ×B. We invoke the following crucial result, essentially
due to Grothendieck, as pointed out by Ben Yaacov in [Ben13a] (see Fact 2 and the
discussion before Theorem 3 therein).

Fact 2.1. The formula f (x,y) is stable on A×B if and only if {fa|B : a ∈ A} is weakly
precompact in C(B).

(In the rest of this section we will only need the case B = M (β = 1), so we shall only
specify A when referring to stability or the order property.)

On the other hand, a function h ∈ C(X) on a G-space X is weakly almost pe-
riodic (WAP) if the orbit Gh ⊂ C(X) is weakly precompact (that is, precompact
with respect to the weak topology on C(X)). It is not difficult to check that the
family WAP(X) of weakly almost periodic functions on X is a uniformly closed
G-invariant subalgebra of C(X) (for instance, resorting to Grothendieck’s double
limit criterion: Fact 2 in [Ben13a]), but it is a bit involved to prove that WAP(X) is
in fact a subalgebra of RUC(X); see Fact 2.7 in [Meg03] and the references thereof.
If one knows that a function h ∈ C(X) comes from a compactification ν : X → Y , it
is an immediate consequence of Grothendieck’s double limit criterion (in the form

stated in [Ben13a]) that h ∈WAP(X) if and only if h̃ ∈WAP(Y ).
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From Fact 2.1 above we have, forM-definable predicates, that fa is WAP if and
only if f (x,y) is stable on A = Ga (equivalently, on its closure [a]). By Proposition
1.7 one concludes the following (compare with Lemma 5.1 in [BT14]).

Lemma 2.2. If M is ℵ0-categorical, then a continuous function is in WAPu(M) if
and only if it is of the form fa for a formula f (x,y) stable on [a].

The algebra WAP(X) can also be characterized as the class of functions com-
ing from a reflexive-representable compactification of X. This was first proven in
[Meg03], Theorem 4.6; for an alternative exposition see Theorem 2.9 in [Meg08].
(We also point out the paper of Iovino [Iov99] for an earlier treatment of the con-
nection between stability and reflexive Banach spaces.)

A natural generalization of weak almost periodicity is thus to replace reflexive
by Asplund in the latter characterization. Recall that a Banach space is Asplund if
the dual of every separable subspace is separable, and that every reflexive space
has this property. In this way one gets the family of Asplund functions, Asp(X).
This is a uniformly closed G-invariant subalgebra of RUC(X). See [Meg03, §7].

For a compact G-space Y , a function h ∈ C(Y ) is shown to be Asplund if and
only if the orbit Gh ⊂ C(Y ) is a fragmented family; see Theorem 9.12 in [GM06].
This means that for any nonempty B ⊂ Y and any ε > 0 there exists an open set
O ⊂ Y such that B∩O is nonempty and

|h(gy)− h(gy′)| < ε
for every g ∈ G and y,y′ ∈ B∩O. If X is an arbitrary G-space, then h ∈ C(X) belongs
to Asp(X) if and only if it comes from an Asplund function on some compacti-
fication of X. If a function h comes from two compactifications Y and Z with Y
larger than Z , it is an exercise (using the characterization by fragmentability) to
check that the extension of h to Y is Asplund if and only if so is its extension to Z
(see the proof of Lemma 6.4 in [GM06]). That is, any extension of h to some com-
pactification can be used to check whether h is Asplund; for example, a predicate
fa ∈Def(M) is Asplund if and only if its extension to S(M) or to Sf (Ga) satisfies the
fragmentability condition.

It will be interesting to bring in a further weaker notion, introduced in [GM08].
A function h ∈ C(Y ) on a compact G-space is strongly uniformly continuous (SUC)
if for every y ∈ Y and ε > 0 there exists a neighborhood U of the identity of G such
that

|h(gy)− h(guy)| < ε
for all g ∈ G and u ∈ U . In this case it is immediate that, if j : Y → Z is a
compactification between compact G-spaces, then h ∈ C(Z) is SUC if and only
if hj ∈ C(Y ) is SUC. A function h ∈ RUC(X) on an arbitrary G-space X is called
SUC if its extension to some (any) compactification (from which h comes) is SUC.
One can see readily that: (i) the family of all strongly uniformly continuous func-
tions on a G-space X forms a uniformly closed G-invariant subalgebra SUC(X) of
RUC(X); (ii) every Asplund function is SUC: in the fragmentability condition we
take B = Gy ⊂ Y , then use the continuity of the action of G on Y .

It follows from our remarks so far that, in general,

WAP(X) ⊂ Asp(X) ⊂ SUC(X) ⊂ RUC(X).
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It is also clear that SUC(G) ⊂ UC(G) for the regular left action of G on itself: we

apply the property defining SUC to the compactification Y = GRUC (for instance)
and the identity element y = 1 ∈ G ⊂ Y .

An important motivation for the algebra of SUC functions comes from the
viewpoint of semigroup compactifications of G. We have already mentioned the

universal property of GAP. Similarly, GWAP is the universal semitopological semi-

group compactification of G (see [Usp02, §5]). For their part, GAsp and GRUC are
right topological semigroup compactifications of G. In their work [GM08], the au-

thors showed that the compactification GSUC is also a right topological semigroup
compactification of G, and that SUC(G) is the largest subalgebra of UC(G) with
this property (see Theorem 4.8 therein). In particular, the Roelcke compacti-

fication GUC has the structure of a right topological semigroup if and only if
SUC(G) = UC(G).

We aim to prove the equalityWAP = SUC (restricted to RUCu) forℵ0-categorical
structures and for their automorphism groups.

Switching to logic language, let us say that a formula f (x,y) is SUC on a subset
A ⊂ Mα if for any b in any elementary extension of M and every ε > 0 there are
δ > 0 and a finite tuple c fromM such that for every a ∈ A and every automorphism
u ∈ G satisfying d(uc,c) < δ we have

|f (a,b)− f (ua,b)| < ε.
We readily get the following.

Lemma 2.3. For a metric structureM , a function fa ∈Def(M) is SUC if and only if
the formula f (x,y) is SUC on [a].

The most basic example of a non-stable formula in an ℵ0-categorical structure
is the order relation on the countable dense linear order without endpoints. It is
worth looking into this case.

Example 2.4. The order relation x < y on the (classical) structure (Q,<) is not
SUC on Q. Indeed, let r ∈ R \Q, c1, . . . , cn ∈Q. Suppose ci < ci+1 for each i, and say
ci0 < r < ci0+1. Take a ∈ Q, ci0 < a < r. There is a monotone bijection u fixing every
ci and such that r < ua < ci0+1. The claim follows.

We will generalize the analysis of this simple example to any non-stable for-
mula in any ℵ0-categorical structure. To this end we shall use the following stan-
dard lemma.

Fact 2.5. LetM be ∅-saturated, A ⊂Mω a type-definable subset. If a formula f (x,y)
has the order property on A, then there are an elementary extension N of M , distinct
real numbers r, s ∈ R and elements (ai)i∈Q ⊂ A, (bj )j∈R ⊂ N such that f (ai ,bj ) = r for
i < j and f (ai ,bj ) = s for j ≤ i.

Proof. Suppose there are ε > 0 and sequences (a′k)k<ω ⊂ A, (b′l)l<ω ⊂M such that

|f (a′k,b′l)−f (a′l , b′k)| ≥ ε for all k < l < ω. Since f is bounded, passing to subsequences

carefully we can assume that limk liml f (a
′
k,b

′
l) = r and limk liml f (a

′
l , b

′
k) = s, neces-

sarily with |r−s| ≥ ε > 0. Nowwe consider the conditions in the countable variables
(xi)i∈Q, (yj )j∈Q asserting, for each pair of rational numbers i < j ,

xi ∈ A, f (xi ,yj ) = r and f (xj ,yi) = s.
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The elements a′k,b
′
l can be used to show that these conditions are approximately

finitely realized in M . By saturation, there are (ai)i∈Q ⊂ A, (bj )j∈Q ⊂M satisfying
the conditions.

Finally, the conditions f (ai ,yj ) = r for i < j , i ∈ Q, j ∈ R \Q, together with

f (ai ,yj ) = s for j ≤ i, i ∈Q, j ∈ R \Q, are approximately finitely realized in {bj }j∈Q.
Hence they are realized by elements (bj )j∈R\Q in some elementary extension of
M . �

Proposition 2.6. Let M be ℵ0-categorical. If f (x,y) has the order property on a
definable set A, then f (x,y) is not SUC on A.

Proof. We apply the previous fact to find elements (ai)i∈Q ⊂ A, (bj )j∈R in some

elementary extension of M and real numbers r � s such that f (ai ,bj ) = r if i < j ,
f (ai ,bj ) = s if j ≤ i. Suppose f (x,y) has the SUC property for ε = |r − s|/2; since G
is second countable and R is uncountable, there is an open neighborhood U of the
identity that witnesses the property for an infinite number of elements bj , say for

every bj with j in an infinite set J ⊂ R. By passing to a subset we may assume that J
is discrete, and thus for each j ∈ J we may take a rational i(j) < j such that j ′ < i(j)
for every j ′ < j , j ′ ∈ J . We may assume that U is the family of automorphisms
moving a finite tuple c at a distance less than δ; say n is the length of the tuple c.
Now let η = Δf (|r − s|/2), where Δf is a modulus of uniform continuity for f (x,y).

Since M is ℵ0-categorical the quotient Mω �G is compact, so there must be a
pair j < j ′ in J and an automorphism u such that

d(u(cai(j)), cai(j ′)) <min(δ,η/2n).

In particular d(uc,c) < δ, so u ∈U . In addition, since d(uai(j), ai(j ′)) < η, f (ai(j ′), bj ) =
s and f (ai(j), bj ) = r, we have

|f (ai(j), bj )− f (uai(j), bj )| ≥ |r − s|/2,
contradicting the fact thatU witnesses the SUC property for bj and ε = |r−s|/2. �

Remark 2.7. We can offer a maybe more conceptual argument to a model-
theorist. Suppose M is ℵ0-categorical, take fa ∈ SUCu(M) ⊂ Def(M) (we recall
Proposition 1.7) and let p be a type in Sf (Ga). Consider dpf : Ga → R given by

dpf (ga) = gf̃a(p), which is well-defined and uniformly continuous. Now, the SUC

condition for the extension f̃a : Sf (Ga)→ R gives, for every ε > 0, a neighborhood
U of the identity of G such that

|dpf (u−1ga)− dpf (ga)| < ε
for every g ∈ G and u ∈ U . That is to say, dpf ∈ RUCu(Ga). A mild adaptation of

Proposition 1.7 allows us to deduce that dpf is anM-definable predicate on Ga. In
other words, every f -type over Ga is definable inM , which (bearing in mind thatM
is saturated and that [a] is definable) is well-known to be equivalent to the stability
of f (x,y) on Ga. For more on definability of types in continuous logic see [BU10,
§7] (particularly Proposition 7.7 for the equivalences of stability), and the topical
discussion of [Ben13a]. Yet an argument based on some variation of Fact 2.5 is
needed to prove that definability of types implies stability.
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The proposition and previous lemmas yield the desired conclusion.

Corollary 2.8. LetM be anℵ0-categorical structure. ThenWAPu(M) = Aspu(M) =
SUCu(M).

Theorem 2.9. LetG be a Roelcke precompact Polish group. ThenWAP(G) = Asp(G) =
SUC(G).

Proof. From Remark 1.3 we can deduce that the isomorphism RUCu(ĜL) �
UC(G) preserves WAP and SUC functions. Thus if f ∈ SUC(G) then its continuous

extension f̃ to ĜL is SUC, so by the previous corollary f̃ ∈ WAP(ĜL); hence f ∈
WAP(G). �

For the case of Asplund functions we can give a slight generalization, which ap-
plies for example to any M-definable predicate in an approximately ℵ0-saturated
separable structure.

If c is an n-tuple (of tuples) and I a is an n-tuple of intervals of R, let us write
f (c,d) ∈ I instead of (f (ck,d))k<n ∈

∏
k<n Ik . Let us call a formula f (x,y) Asplund on a

subset A ⊂Mα of a metric structureM if it lacks the following property: (SP) There
exist ε > 0 and a set B in some elementary extension of M such that, if f (c,d) ∈ I
for some d ∈ B, some tuple c from A and some tuple I of open intervals of R, then
there are b,b′ ∈ B, a ∈ A with f (c,b), f (c,b′) ∈ I and |f (a,b)− f (a,b′)| ≥ ε. This makes
a function fa ∈ Def(M) Asplund in the topological sense if and only if f (x,y) is
Asplund on the orbit Ga, or on its closure [a].

Proposition 2.10. Let M be a separable ∅-saturated structure. Let f (x,y) be a
formula and a ∈Mα a parameter, and suppose that the closed orbit [a] is type-definable.
If fa ∈ Asp(M), then fa ∈WAP(M).

Proof. Suppose f (x,y) has the order property on [a]. Let (ai)i∈Q ⊂ [a], (bj )j∈R
and r, s ∈ R be as given by Fact 2.5. SinceM is separable, it is enough to check the
condition SP for a countable family C of pairs (c, I ). There is at most a countable
number of reals l such that, for some (c, I ) ∈ C, we have f (c,bj ) ∈ I if and only

if j = l. So by throwing them away we may assume that, whenever f (c,bl) ∈ I ,
(c, I ) ∈ C, there is j � l with f (c,bj ) ∈ I ; if we then choose i ∈ Q lying between l
and j , we have |f (ai ,bl) − f (ai ,bj )| = |r − s|. Hence f (x,y) has SP for ε = |r − s| and
B = {bj }. �

The previous proposition can be used to get information about certain contin-
uous functions on some (non Roelcke precompact) Polish groups, but not via the

structure M = ĜL, which in general is not ∅-saturated as mentioned in Remark
1.12. Instead, it may be applied to automorphism groups of saturated structures
and functions of the form g �→ f (a,gb).

Example 2.11. Let us consider the linearly ordered set M = (Z,<) (which, as a
G-space, can be identified with its automorphism group, G = Z). The basic pred-
icate is given by P<(x,y) = 0 if x < y, P<(x,y) = 1 otherwise. The indicator func-
tion of the non-positive integers, f = 1Z≤0 ∈ C(Z), is an M-definable predicate,

f (y) = P<(0, y). It is clearly not in WAP(Z). However, it comes from the two-point
compactification X = Z∪ {−∞,+∞}, and it is easy to check that its extension to X
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satisfies the fragmentability condition, whence in fact f ∈ Asp(Z) (more generally,
see [GM06], Corollary 10.2). Of course,M is not ∅-saturated.

On the other hand, we can consider the linearly ordered set N =
⊔
i∈(Q,<)(Z,<)i

(where each (Z,<)i is a copy of (Z,<)), which is a ∅-saturated elementary extension

of M (say M = (Z,<)0). The automorphism group of N is G = ZQ �Aut(Q,<). As
an M-definable predicate on N , f is the indicator function of the set of elements
of N that are not greater than 0 ∈ M ⊂ N . As before, f � WAP(N ), but then by
Proposition 2.10 we have f � Asp(N ) either (note that the orbit of 0 is N ). As
per Proposition 1.8, the function h : g �→ f (g(0)) is in UC(G). Since the continuous
G-map g ∈ G �→ g(0) ∈ N is surjective, any compactification of N induces a com-
pactification of G. It follows that h ∈ UC(G) \Asp(G). (However, here one can also
adapt the argument of Example 2.4 to show that in fact f � SUC(N ) and hence
h � SUC(G).)

3. Tame∩UC = NIP = Null∩UC

Tame functions have been studied by Glasner and Megrelishvili in [GM12],
after the introduction of tame dynamical systems by Köhler [Köh95] (who called
them regular systems) and later by Glasner in [Gla06]. If the translation of Ben Yaa-
cov and Tsankov for Roelcke precompact Polish groups identifies WAP functions
with stable formulas, we remark in this section that tame functions correspond to
NIP (or dependent) formulas. The study of this model-theoretic notion, a gener-
alization of local stability introduced by Shelah [She71], is an active and impor-
tant domain of research, mainly in the classical first-order setting —though, as the
third item of the following proposition points out, the notion has a very natural
metric presentation.

Proposition 3.1. Let M be a ∅-saturated structure. Let f (x,y) be a formula and

A ⊂Mα , B ⊂Mβ be definable sets. The following are equivalent; in any of these cases,
we will say that f (x,y) is NIP on A×B.

(1) There do not exist real numbers r � s, a sequence (ai)i<ω ⊂ A and a family
(bI )I⊂ω in some elementary extension, with PB(bI ) = 0 for all I ⊂ ω, such that
for all i < ω, I ⊂ ω,

f (ai ,bI ) = r if i ∈ I and f (ai ,bI ) = s if i � I .
(2) For every indiscernible sequence (ai)i<ω ⊂ A and every b ∈ B (equivalently,

for every b in any elementary extension satisfying PB(b) = 0), the sequence
(f (ai ,b))i<ω converges in R.

(3) Every sequence (ai)i<ω ⊂ A admits a subsequence (aij )j<ω such that (f (aij ,b))j<ω
converges in R for any b in any elementary extension satisfying PB(b) = 0.

Proof. (1) ⇒ (2). Let (ai)i<ω ⊂ A be indiscernible, b arbitrary with PB(b) = 0.
If (f (ai ,b))i<ω does not converge, there exist reals r � s such that (replacing (ai)i<ω
by a subsequence) f (a2i , b) → r, f (a2i+1, b) → s. By ∅-saturation we may assume
that f (a2i , b) = r and f (a2i+1, b) = s for all i. Given I ⊂ ω, take a strictly increasing
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function τ : ω→ ω such that τ(i) is even if and only if i is in I . By indiscernibility,
the set of conditions

{f (ai ,y) = t : t ∈ {r, s}, f (aτ(i), b) = t}, PB(y) = 0,

is approximately finitely realized in M ; take bI to be a realization in some model.
Thus, for all i and I , f (ai ,bI ) = r if i ∈ I and f (ai ,bI ) = s if i � I , contradicting (1).

(2) ⇒ (3). We claim that for every ε > 0 there are some δ > 0 and a finite
set of formulas Δ such that, for any b with PB(b) = 0 and every Δ-δ-indiscernible
sequence (ai)i<ω ⊂ A, there exists N < ω with |f (ai ,b) − f (aj ,b)| < ε for all i, j ≥ N .
Otherwise, there are ε > 0 and, for any Δ, δ as before, a Δ-δ-indiscernible sequence
(ai)i<ω ⊂ A and a tuple b with PB(b) = 0 such that |f (a2i , b) − f (a2i+1, b)| ≥ ε for all
i < ω. By ∅-saturation, we can assume that (ai)i<ω is indiscernible and b ∈ B. Then,
by (2), the sequence (f (ai ,b))i<ω should converge, but cannot. The claim follows.

Now suppose that Δn, δn correspond to ε = 1/n as per the previous claim.
Given any sequence (ani )i<ω we can extract, using Ramsey’s theorem, a Δn+1-δn+1-
indiscernible subsequence (an+1i )i<ω. As in the proof of Proposition 1.14, starting

with any (ai)i<ω = (a0i )i<ω, proceeding inductively and taking the diagonal, we get a
subsequence (aij )j<ω such that (f (aij ,b))j<ω converges for any b satisfying PB(b) = 0.

(3)⇒ (1). Assume we have (ai)i<ω, (bI )I⊂ω and r, s contradicting (1). If (aij )j<ω is

as given by (3) and J ⊂ ω is infinite and coinfinite in {ij : j < ω}, then (f (aij ,bJ ))j<ω
converges to both r and s, a contradiction. �

A subset of a topological space is said sequentially precompact if every sequence
of elements of the subset has a convergent subsequence; we can restate the third
item of the previous proposition in the following manner.

Corollary 3.2. Let M be ∅-saturated and A ⊂ Mα , B ⊂ Mβ be definable sets. A

formula f (x,y) isNIP on A×B if and only if {f̃a|B∗ : a ∈ A} is sequentially precompact in

RB
∗
, where f̃a|B∗ is the extension of fa to B

∗ = {p ∈ Sy(M) : PB ∈ p}. If A′ ⊂ A is a dense

subset, it is enough to check that {f̃a|B∗ : a ∈ A′} is sequentially precompact in RB
∗
.

The proposition and corollary hold true, with the same proof and the obvious
adaptations regarding PB, if A and B are merely type-definable. In the literature, a
formula in a given theory is said simply NIP if the previous conditions are satisfied
onMα ×Mβ for some saturated modelM of the theory.

We turn to the topological side. Tame dynamical systems were originally in-
troduced in terms of the enveloping semigroup of a dynamical system, and admit
several equivalent presentations. The common theme are certain dichotomy the-
orems that have their root in the fundamental result of Rosenthal [Ros74]: a Ba-
nach space either contains an isomorphic copy of �1 or has the property that every
bounded sequence has a weak-Cauchy subsequence.

A Banach space is thus called Rosenthal if it contains no isomorphic copy of �1.
Then, a continuous function f ∈ C(X) on an arbitrary G-space is tame if it comes
from a Rosenthal-representable compactification of X. See [GM12], Definition 5.5
and Theorem 6.7. See also Lemma 5.4 therein and the reference after Definition 5.5
to the effect that the family Tame(X) of all tame functions on X forms a uniformly
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closed G-invariant subalgebra of RUC(X). For metric X we shall mainly consider
the restriction Tameu(X) = Tame(X)∩RUCu(X), as per Note 1.1.

From Proposition 5.6 and Fact 4.3 from [GM12] we have the following charac-
terization of tame functions on compact systems.

Fact 3.3. A function f ∈ C(Y ) on a compact G-space Y is tame if and only if every
sequence of functions in the orbit Gf admits a weak-Cauchy subsequence or, equiva-

lently, if Gf is sequentially precompact in RY .

Remark 3.4. A direct consequence of this characterization is the following
property: if j : Y → Z is a compactification between compact G-spaces and h ∈
C(Z), then h ∈ Tame(Z) if and only if hj ∈ Tame(Y ), which says that a function on
an arbitrary G-space X is tame if and only if all (or any) of its extensions to com-
pactifications of X are tame. (We had already pointed out the same property for
AP, WAP, Asplund and SUC functions.) In fact, observe that the property holds
true if j : Y → Z is just a continuous G-map with dense image between arbitrary
G-spaces, since in this case j induces a compactification jh : Yhj → Zh between the

corresponding (compact) cyclic G-spaces.

The link with NIP formulas is then immediate.

Proposition 3.5. LetM be an ℵ0-categorical structure. Then h ∈ Tameu(M) if and
only if h = fa for a formula f (x,y) that is NIP on [a]×M . More generally, if f (x,y) is a
formula, a ∈Mα , and B ⊂Mβ is definable, we have fa|B ∈ Tame(B) if and only if f (x,y)
is NIP on [a]×B.

Proof. The first claim follows from the second by Proposition 1.7. Fixed f (x,y),
a and B, the function fa ∈ RUCu(B) is tame if and only if its extension to B is

tame, where B is the closure in Sy(M) of the image of B under the compactification

Mβ → Sy(M). Then the second claim follows from Fact 3.3 and Corollary 3.2,

taking A′ = Ga. For this, one can see that Corollary 3.2 holds true with B instead of

B∗ or, alternatively, that B = B∗ using thatM is ℵ0-categorical. We show the latter.

Clearly, B ⊂ B∗. Let p ∈ B∗ and take b a realization of p in a separable elementary

extensionM ′ ofM . Let φ(z,y) be a formula, c ∈M |z| and ε > 0. By ℵ0-categoricity
there is an isomorphism σ : M ′ → M . Then tp(c) = tp(σc), so, by homogeneity,
there is also an automorphism g ∈ Aut(M) with d(c,gσc) < Δφ(ε). Hence gσb ∈ B
and |φ(c,b)−φ(c,gσb)| < ε. We deduce that p ∈ B. �

During the writing of this paper we came to know that, independently from
us, A. Chernikov and P. Simon also noticed the connection between tameness in
topology and NIP in logic, in the somehow parallel context of definable dynamics
[CS15]. More on this connection has been elaborated by P. Simon in [Sim14].

In fact, it is surprising that the link was not made before, since the parallelism
of these ideas in logic and topology is quite remarkable. As we have already
said, NIP formulas were introduced by Shelah [She71] in 1971, in the classical
first-order context. He defined them by the lack of an independence property (IP),
whence the name NIP. This independence property is the condition negated in the
first item of Proposition 3.1. In the classical first-order setting it can be read like
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this: a formula ϕ(x,y) has IP if for some sequence of elements (ai)i<ω and every
pair of non-empty finite disjoint subsets I , J ⊂ ω, there is b in some model that
satisfies the formula ∧

i∈I
ϕ(ai ,y)∧

∧
j∈J
¬ϕ(aj ,y).

In other words, ϕ(x,y) has IP if for some (ai)i<ω the sequence ({b : ϕ(ai ,b)})i<ω of the
sets defined by ϕ(ai ,y) on some big enough model of the theory is an independent
sequence in the sense of mere sets: all Boolean intersections are non-empty.

In the introductory section 1.5 of the survey [GM14b] on Banach representa-
tions of dynamical systems, Glasner and Megrelishvili write: «In addition to those
characterizations already mentioned, tameness can also be characterized by the lack of
an “independence property”, where combinatorial Ramsey type arguments take a lead-
ing role [. . . ]». The characterization they allude to is Proposition 6.6 from Kerr and
Li [KL07], and the independence property involved there can indeed be seen as a
topological generalization of Shelah’s IP (see also Fact 3.6 below). But the notion
of independence is already present in the seminal work of Rosenthal from 1974
[Ros74], where a crucial first step towards his dichotomy theorem implies show-
ing that a sequence of subsets of a set S with no convergent subsequence (in the

product topology of 2S ) admits a Boolean independent subsequence. Moreover, as
pointed out in [Sim14], the (not) independence property of Shelah, in its continu-
ous form, appears unequivocally in the work of Bourgain, Fremlin and Talagrand
[BFT78]; see 2F.(vi).

On the other hand, this is not the first time that the concept of NIP is linked
with a notion of another area. In 1992 Laskowski [Las92] noted that a formula
ϕ(x,y) has the independence property if and only if the family of definable sets of
the form ϕ(a,y) is a Vapnik–Chervonenkis class, a concept coming from probability
theory, and also from the 70’s [VC71]. He then profited of the examples provided
by model theory to exhibit new Vapnik–Chervonenkis classes. In Section 4 we
shall do the same thing with respect to tame dynamical systems, complementing
the analysis of the examples done by Ben Yaacov and Tsankov [BT14, §6].

We end this section by pointing out that Tameu(G) coincides, for Roelcke pre-
compact Polish groups, with the restriction to UC(G) of the algebra Null(G) of null
functions on G. Null functions arise from the study of topological sequence en-
tropy of dynamical systems, initiated in [Goo74]. A compact G-space Y is null
if its topological sequence entropy along any sequence is zero; we refer to [KL07,
§5] for the pertinent definitions. We shall say that a function f on an arbitrary
G-space X is null if it comes from a null compactification of X, and by Corollary
5.5 in [KL07] this is equivalent to checking that the cyclic G-space of f is null. For
compact X this definition coincides with Definition 5.7 of the same reference (the
G-spaces considered there are always compact), as follows from the statements 5.8
and 5.4.(2-4) thereof. The resulting algebra Null(X) is always a uniformly closed
G-invariant subalgebra of Tame(X) (closedness is proven as for Tame(X); for the
inclusion Null(X) ⊂ Tame(X) compare §5 and §6 in [KL07]).

The following fact is a rephrasing of the characterizations of Kerr and Li.



70 1. THE DYNAMICAL HIERARCHY FOR ROELCKE PRECOMPACT POLISH GROUPS

Fact 3.6. A function f ∈ RUC(X) is null if and only if there are no real numbers
r < s such that for every n one can find (gi)i<n ⊂ G and (xI )I⊂n ⊂ X such that

f (gixI ) < r if i ∈ I and f (gixI ) > s if i � I .
Proof. If f is non-null then its extension to any compactification is non-null,

and the existence of elements r, s and, for every n, (gi)i<n and (xI )I⊂n as in the
statement follows readily from Proposition 5.8 (and Definitions 5.1 and 2.1) in
[KL07]; we obtain the elements xI in the compactification, but we can approximate
them by elements x̃I in X, since we only need that f (gi x̃I ) be close to f (gixI ) for the
finitely many indices i < n.

Conversely, if we have r < s with the property negated in the statement, take

u,v with r < u < v < s and consider the sets A0 = {p ∈ Xf : f̃ (p) ≤ u}, A1 = {p ∈ Xf :

f̃ (p) ≥ v}; here, f̃ is the extension of f to the cyclic G-space Xf . Then A0 and A1

are closed sets with arbitrarily large finite independence sets. Hence by Proposition
5.4.(1) in the same paper there is an IN-pair (x,y) ∈ A0 ×A1, and by 5.8 we deduce
that f is non-null. �

When X = M is an ℵ0-categorical structure, it is immediate by ∅-saturation
that a formula f (x,y) is NIP on [a] ×M if and only if fa is null. Thus Nullu(M) =

Tameu(M), and by consideringM = ĜL (and recalling Remark 1.3) one gets Nullu(G)
= Tameu(G) for every Roelcke precompact Polish G.

4. The hierarchy in some examples

Several interesting Polish groups are naturally presented as automorphism
groups of well-known first-order structures. Moreover, most of these structures
admit quantifier elimination, which enables to describe their definable predicates
in a simple way. As a result, the subalgebras of UC(G) that correspond to nice
families of formulas can be understood pretty well in these examples.

Let G be the automorphism group of an ℵ0-categorical structureM . We recall
from Proposition 1.8 that the functions h in UC(G) are exactly those of the form
h(g) = f (a,gb) for a formula f (x,y) and tuples a,b fromM . Then h factors through
the orbit map g ∈ G �→ gb ∈ [b]. Bearing in mind Remark 3.4, it follows that

(1) h ∈ AP(G) if and only if f (x,y) is algebraic on [a]× [b] (Proposition 1.14);
(2) h ∈WAP(G) if and only if f (x,y) is stable on [a]× [b] (Fact 2.1);
(3) h ∈ Tameu(G) if and only if f (x,y) is NIP on [a]× [b] (Proposition 3.5).

However, a technical difficulty is that f (x,y) may be a formula in infinite vari-
ables, whereas it is usually easier to work with predicates involving only finite
tuples. This is especially the case in the study of classical structures, for which,
moreover, the results in the literature are stated, naturally, for {0,1}-valued formu-
las in finitely many variables. In the following subsection we elaborate a way to
deal with this difficulty. The reader willing to go directly to the examples may skip
the details and retain merely the conclusion of Theorem 4.6.

4.1. Approximation by formulas in finite variables. In this subsection x and
y will denote variables of length ω, and M will be a ∅-saturated structure. Any
formula f (x,y) is, by construction, a uniform limit of formulas defined on finite
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sub-variables of x,y. Moreover, if f (x,y) is, for instance, stable onMω ×Mω, then
one can uniformly approximate f by stable formulas depending only on finite
sub-variables of x,y. It suffices to take n < ω large enough so that, by uniform
continuity, |f (a,b)− f (a′, b′)| < ε whenever a<n = a

′
<n and b<n = b

′
<n; then define for

example fn(x,y) = f (x
′, y′), where x′nk+i = xi and y

′
nk+i = yi for all i < n, k < ω.

However, if f (x,y) is only known to be stable on A ×B for some subsets A,B ⊂
Mω, then the previous simple construction does not ensure the stability of fn. Be-
sides, it may not be possible to find a formula stable onMω ×Mω that agrees with
f on A×B.

In [BT14], Proposition 4.7, a topological argument is given that permits to ap-
proximate WAP functions by stable formulas in finitely many variables. In what
follows we give an alternative model-theoretic argument for this fact that can also
be applied, in several cases, to NIP formulas.

In what follows, given a set A ⊂ M , the term acl(A) will denote the algebraic
closure of A, including imaginary elements of M . The reader may wish to consult
[BBHU08, §10–11] for an account of algebraic closure and imaginary sorts in con-
tinuous logic. Alternatively, and with no loss for the examples considered later,
the reader may assume that acl(A) = A.

Definition 4.1. LetM be a metric structure, f (x,y) a formula.

(1) We will say that f (x,y) is in finite variables if there is n < ω such that
f (a,b) = f (a′, b′) whenever a<n = a

′
<n and b<n = b

′
<n.

(2) Let a ⊂ Mω be a tuple and B ⊂ Mω a definable set. We will say that
f (x,y) has definable extensions of types over finite sets on a,B if for every
large enough n < ω there are an acl(a<n)-definable predicate df (y) and a
realization a′ of tp(a/a<n) (in some elementary extension ofM) such that

f (a′, b) = df (b)

for every b ∈ B.
(3) We will say that M has definable extensions of types over finite sets if the

previous condition is true on a,Mω for every formula f (x,y) and any a ∈
Mω.

Lemma 4.2. Suppose f (x,y) is stable on A ×B for definable sets A,B. If a ∈ A, then
f (x,y) has definable extensions of types over finite sets on a,B.

Proof. Let n < ω. Since A and B are definable sets we can consider them as
sorts in their own right (say, of an expanded structureM ′), and consider f (x,y) as
a formula defined only onA×B (so x and y become 1-variables of the corresponding
sorts). Then f is a stable formula in the usual sense of [BU10], Definition 7.1, and
we may apply the results thereof. More precisely, we can consider the f -type of a
over C = acl(a<n), call it p ∈ Sf (C). Here, p is an f -type (in the variable x) in the

sense of [BU10], Definition 6.6. By Proposition 7.15 of the same paper, p admits a
definable extension q ∈ Sf (M ′). Moreover, the type q is consistent with tp(a/C), by
the argument explained in [BU10, §8.1]; note that, by adding dummy variables,
each predicate h(x) ∈ tp(a/C) can be seen as a formula h(x,y) (in the structure
expanded with constants for the elements of C), which is trivially stable. Then it
is enough to take for a′ any realization of q∪ tp(a/C). �
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Lemma 4.3. LetA,B ⊂Mω be definable sets. Given a formula f (x,y), define f̃ (y,x) =
f (x,y). Then f (x,y) is algebraic, stable or NIP on A × B if and only if so is f̃ (y,x) on
B×A.

Proof. This is clear for the stable case. For the NIP case, the proof is as in
[Sim15], Lemma 2.5. If f (x,y) is algebraic on A×B this means that K = {fa|B : a ∈ A}
is precompact in C(B), so given ε > 0 there are ai ∈ A, i < n, such that the functions
fai |B form an ε-net for K . Let Ij ⊂ R, j < m, be a partition of the image of f on

sets of diameter less than ε. For each function τ : n → m let bτ ∈ B be such that
f (ai ,bτ) ∈ Iτ(i) for every i < n, if such an element exists. Then the functions f̃bτ |A
form a 3ε-net for K̃ = {f̃b |A : b ∈ B} ⊂ C(A). This shows that K̃ is also precompact,

hence that f̃ is algebraic on B×A. �
In the following theorem we ask M to be ℵ0-categorical to ensure that the

closed orbits we consider are definable sets. The addition of imaginary sorts does
not affect the ℵ0-categoricity ofM .

Proposition 4.4. Let M be ℵ0-categorical, f (x,y) a formula, a,b ∈ Mω. Suppose
either

(1) f (x,y) is algebraic on [a]× [b],
(2) f (x,y) is stable on [a]× [b], or
(3) M has definable extensions of types over finite sets, and f (x,y) is NIP on [a]×

[b].

Then for every ε > 0 there is a formula f0(x,y) in finite variables such that

sup
x∈[a],y∈[b]

|f (x,y)− f0(x,y)| ≤ ε

and f0(x,y) is algebraic, stable or NIP, respectively, on [a]× [b].
Proof. Let n be large enough, so that in particular |f (u,v) − f (u′, v)| ≤ ε/2 for

any tuples u,u′, v with u<n = u
′
<n. Using Lemma 4.2 for cases (1) and (2) (remark

that a formula algebraic on A×B is stable on A×B) we have that in any case there
are a formula df (z,y), a parameter c ∈ acl(a<n) and a realization a′ of tp(a/a<n) in
some elementary extension ofM , such that f (a′, b′) = df (c,b′) for every b′ ∈ [b].

Let C be the set of realizations of tp(c/a<n). Since c ∈ acl(a<n), this set is com-
pact, a<n-definable and contained in the appropriate imaginary sort of M (see
[BBHU08], Exercise 10.8 and Proposition 10.6). Here, a<n-definable means that C
is a definable set in the structureM augmented with constants for the elements of
a<n (that is, d(x,C) is an a<n-definable predicate), and hence we can quantify over
C in this augmented structure: in particular, supz∈C df (z,y) is an a<n-definable
predicate. This says that there is a formula f ′ : Mn ×Mω → R such that, for every
b′ ∈ [b],

f ′(a<n,b
′) = sup

z∈C
df (z,b′).

For any a′′ with a′′<n = a<n we have supy∈[b] |f (a′′, y)−df (c,y)| ≤ ε/2, and the same is

true if we replace c by any c′ ∈ C. We obtain supy∈[b] |f (a,y)− f ′(a<n,y)| ≤ ε/2, and
thus

sup
x∈[a],y∈[b]

|f (x,y)− f ′(x<n,y)| ≤ ε/2.
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Now we consider each of the cases of the statement separately.

(1) Let (bj )j<ω be an indiscernible sequence in [b]. By the hypothesis and

Lemma 4.3, the value of f (a,bj ) is constant in j , and the same holds for

a′ instead of a. Thus df (c,bj ) is constant in j , and we can deduce that

df (z,y) is algebraic on [c] × [b]. Since C ⊂ [c], it follows that f ′(a<n,bj ) is
constant too. We can conclude that f ′(x<n,y) is algebraic on [a<n]× [b].

(2) Since f (x,y) is stable on (the definable sets) [a]× [b] andM is ∅-saturated,
no sequences a′i , b

′
j , in any elementary extension, with tp(a′i) = tp(a), tp(b′j ) =

tp(b), can witness the order property for f (x,y). Hence, the function
fa′ ∈ C([b]) is WAP. Since fa′ = dfc on [b], it follows that df (z,y) is stable
on [c]× [b]. Since C is compact, it is not difficult to deduce that f ′(x<n,y) is
stable on [a<n]× [b]. For example, we know that maxl<k dfcl is in WAP([b])
for every (cl)l<k ⊂ C, and f ′a<n |[b] is a uniform limit of functions of this form.

(3) Here, if (bj )j<ω ⊂ [b] is an indiscernible sequence and g is an automor-

phism of M , the sequence (df (gc,bj ))i<ω must converge in R. Indeed,

df (gc,bj ) = f (a′, g−1bj ), so the claim follows from the fact that f (x,y) is
NIP on [a]× [b] and (g−1bj )j<ω is also indiscernible. By uniform continuity

and a density argument, the same is true if we replace gc with any c′ ∈ [c].
We deduce that df (z,y) is NIP on [c] × [b]. As in the previous item, this
implies that f ′(x<n,y) is NIP on [a<n]× [b].

This is half what we intended. To complete the proof it suffices to apply the

same construction to the formula f̃ ′(y,x) = f ′(x<n,y). We obtain a formula f ′′(y<m,x);
we define f0(x,y) = f ′′(y<m,x), then f0(x,y) is in finite variables and satisfies the
other conditions of the statement. �

Question 4.5. Is the previous result true in the NIP case without the assump-
tion onM?

We remark that a {0,1}-valued formula is necessarily in finite variables. Also,
any formula with finite range can be written as a linear combination of {0,1}-
valued formulas. If M is classical ℵ0-categorical, then, conversely, any formula

in finite variables has finite range, since it factors through the finite spaceMk �G
for some k < ω. For G = Aut(M) it follows that UC(G) is the closed algebra gener-
ated by the functions of the form g �→ f (a,gb) where a,b are parameters and f (x,y)
is a classical (i.e., {0,1}-valued) formula.

Let us define cTameu(G) (respectively, cAP(G), cWAP(G)) as the closed subal-
gebra of UC(G) generated by the functions of the form g �→ f (a,gb) for {0,1}-valued
NIP (resp., algebraic, stable) formulas f (x,y). That is, these are the algebras gener-
ated by classical formulas of the appropriate corresponding kind. Here, assuming
M is classical ℵ0-categorical, it is indifferent to ask f (x,y) to be NIP only on [a]×[b]
or in its whole domain, since one can easily modify f so that it be NIP (resp., alge-
braic, stable) everywhere, without changing the function g �→ f (a,gb). Indeed, one
can assume that a,b ∈Mk for some k < ω, then set f to be 0 outside [a]× [b] (since
Mk is discrete and [a]× [b] is definable, the modified f is still definable).

From the previous proposition and discussion we obtain the following conclu-
sion, which extends Theorem 5.4 in [BT14].
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Theorem 4.6. Let M be a classical ℵ0-categorical structure, G its automorphism
group. Then cAP(G) = AP(G) and cWAP(G) =WAP(G). IfM has definable extensions
of types over finite sets, then also cTameu(G) = Tameu(G).

As we will see shortly, the assumption thatM has definable extension of types
over finite sets is satisfied in many interesting cases. The following is a useful
sufficient condition.

Lemma 4.7. Suppose M is classical, ℵ0-categorical, and that for every a ∈Mω and
n < ω there is a type p ∈ Sx(M) such that p extends tp(a/a<n) and p is a<n-invariant (i.e.,
p is fixed under all automorphisms of M fixing the tuple a<n). Then M has definable
extensions of types over finite sets.

Proof. Let a ∈Mω, n < ω; take p as in the hypothesis of the lemma, a′ a real-
ization of p. Given a formula f (x,y), the function df defined by df (b) = f (a′, b)
is a<n-invariant. Since M is classical ℵ0-categorical, the structure M expanded
with constants for the elements of a<n is ℵ0-categorical too (see [TZ12], Corollary
4.3.7). It follows that df (y) is an a<n-definable predicate, hence the conditions of
Definition 4.1 are satisfied. �

4.2. The examples. We describe the dynamical hierarchy of function algebras
for the automorphism groups of some well-known (unstable) ℵ0-categorical struc-
tures. We start with the oligomorphic groups Aut(Q,<), Aut(RG) and Homeo(2ω).

The unique countable dense linear order without endpoints, (Q,<), admits
quantifier elimination (see [TZ12, §3.3.2]). This implies, for G = Aut(Q,<), that
UC(G) is the closed unital algebra generated by the functions of the form g �→ (a =
gb) and g �→ (a < gb) for elements a,b ∈ Q —where we think of the classical pred-
icates x = y and x < y as {0,1}-valued functions. The formula x < y is NIP (and
x = y is of course stable), whence we deduce that every UC function is tame. On
the other hand, x < y is unstable, so g �→ (a < gb) is not WAP (in fact, as follows
from [BT14], Example 6.2, WAP(G) is precisely the unital algebra generated by the
functions of the form g �→ (a = gb)).

Now suppose f (x,y) is a formula algebraic on [a] × [b]. For slight convenience
we may assume, by Theorem 4.6, that f is classical and the tuples involved are
finite. For tuples c,d, let us write c < d to mean that every element of the tuple c
is less than every element of d. Let b′ ∈ [b]. We can choose a sequence of tuples

(ai)i<ω in Q (or in an elementary extension if we did not assume the tuples are

finite) such that a � ai as linear orders, a = a0, b < a1, b′ < a1, and ai < aj if i < j . By
quantifier elimination, the type of a tuple depends only on its isomorphism type

as a linear order; hence (ai)i<ω is an indiscernible sequence. By the hypothesis on

f we have that (f (ai ,b))i<ω is constant, and the same with b′ instead of b. But,

again by quantifier elimination, f (a1, b) = f (a1, b′). It follows that f (a,b) = f (a,b′).
We have thus shown that g �→ f (a,gb) is constant, and can deduce that G is AP-
trivial. (In fact, as is well-known, G is extremely amenable ([Pes98]), which is a

much stronger property: if f ∈ AP(G) then the compact G-space Gf must have a

fixed point; since the action of G on Gf is by isometries we conclude that Gf is a
singleton, i.e., that f is constant.)
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Putting these conclusions together we get the following (whereR stands for the
algebra of constant functions on G).

Corollary 4.8. For G = Aut(Q,<) we have R = AP(G) �WAP(G) � Tameu(G) =
UC(G).

The situation is different for the random graph RG, the unique countable, ho-
mogeneous, universal graph. It has quantifier elimination, which in this case im-
plies that UC(Aut(RG)) is the closed unital algebra generated by the functions of
the form g �→ (a = gb) and g �→ (a R gb) (where R denotes the adjacency relation of
the graph). Also, stable formulas on [a]× [b] are again exactly those expressible in
the reduct of RG to the identity relation ([BT14], Example 6.1). But in this case no
other formula is NIP on [a]× [b].

Lemma 4.9. On the random graph, every classical NIP formula is stable.

Proof. Theorem 4.7 in [She90, Ch. II] shows that if there is an unstable NIP
formula then there is a formula with the strict order property. The theory of the ran-
dom graph, being simple, does not admit a formula with the strict order property;
see [TZ12], Corollary 7.3.14 and Exercise 8.2.4. �

It follows for G = Aut(RG) that cTameu(G) = cWAP(G). Now we argue that RG
has definable extensions of types over finite sets, whence Tameu(G) = WAP(G) by
Theorem 4.6. For any a ∈ RGω and n < ω, the free amalgam of a and RG over a<n is a
graph containing RG and a copy a′ � a such that a<n = a

′
<n and, for every i ≥ n, ai is

not R-related to any element of RG outside a<n. The homogeneity and universality
of RG ensure that such a copy a′ is realized as a tuple in some elementary extension
of RG. Since RG has quantifier elimination it is clear that a′ realizes tp(a/a<n) and
that the type tp(a′/RG) is a<n-invariant, thus Lemma 4.7 applies. We can conclude
that Tameu(G) is the closed unital algebra generated by the functions of the form
g �→ (a = gb), a,b ∈ RG. An example of a non-tame function in UC(G) is of course
g �→ (a R gb).

If f (x,y) is a formula algebraic on [a]× [b] and b′ ∈ [b], we can take a sequence

(ai)i<ω of disjoint copies of a such that a = a0 and no element of ai , i ≥ 1, isR-related
to an element of b, b′ nor aj for j � i. It follows by quantifier elimination that (ai)i<ω
is indiscernible and that f (a1, b) = f (a1, b′). Since, by hypothesis, (f (ai ,b))i<ω and

(f (ai ,b′))i<ω must be constant, we obtain f (a,b) = f (a,b′). Thus g �→ f (a,gb) is
constant.

Corollary 4.10. For G = Aut(RG) we have R = AP(G) �WAP(G) = Tameu(G) �
UC(G).

The group G = Homeo(2ω) of homeomorphisms of the Cantor space, carrying
the compact-open topology, can be identified naturally with the automorphism
group of the Boolean algebra B of clopen subsets of 2ω, with the topology of point-
wise convergence. Up to isomorphism, B is the unique countable atomless Boolean
algebra. We consider it as a structure in the language of Boolean algebras, that is,
we have basic functions ∧,∨ : B2 → B and ¬ : B → B for meet, joint and comple-
mentation in the algebra, and constants 0 and 1 for the minimum and maximum
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of B. In this language B admits quantifier elimination (see [Poi85], Théorème
6.21). This means that two tuples c,d of the same length have the same type over
∅ if and only if c � d (i.e., the map ci �→ di extends to an isomorphism of the gen-
erated Boolean algebras). It also implies that UC(G) is the algebra generated by
the functions of the form g �→ (0 = t(a,gb)), where t(x,y) is a Boolean term in fi-
nite variables, i.e., a function Bn × Bm → B constructed with the basic Boolean
operations ∧,∨,¬.

Here it is easy to see that 0 = x∧ y is not NIP on [a]× [b] (for a,b � {0,1}), so the
function g �→ (0 = a∧ gb) is not tame. With this in mind, and following the idea of
[BT14], Example 6.3, one sees the following.

Lemma 4.11. On the countable atomless Boolean algebra, every classical NIP for-
mula is stable.

Proof. Let f (x,y) be a classical formula. If f is not stable, then it is not stable
on [a] × [b] for some tuples a, b from B. We may modify f (x,y), a and b (without
changing the function g �→ f (a,gb)) so that the elements of the tuple a form a finite
partition of 1, and the same for b.

Say a ∈ Bn, b ∈ Bm. In [BT14], Example 6.3, it is shown that f (x,y) is unstable
on [a]× [b] if and only if there is b′ ∈ [b] such that f (a,b) � f (a,b′) but the xy-tuples
ab and ab′ satisfy the same formulas of the form t(x) = s(y) for Boolean terms t, s.
Moreover, it is shown that in this case one can choose b′ so that, for some indices
i0, i1 < n, j0, j1 < m, we have (possibly changing b by a conjugate):

(1) ai0 ∧ bj0 = 0, ai0 ∧ bj1 � 0, ai1 ∧ bj0 � 0 and ai1 ∧ bj1 � 0;
(2) ai ∧ b′j � 0 for i ∈ {i0, i1} and j ∈ {j0, j1};
(3) ai ∧ bj = 0 if and only if ai ∧ b′j = 0, for every pair (i, j) � (i0, j0);
(4) f (a,b) � f (a,b′).

Nowwe fix an arbitrary l < ω and choose a partition c0, . . . , cl of ai1∧bj1. For each
k < l we let aki0 = ai0 ∨ ck and a

k
i1
= ai1 ∧¬ck . We also let aki = ai for every i � {i0, i1},

thus defining a tuple ak ∈ [a]. Similarly, for every K ⊂ l we let bKj0 = bj0 ∨ (
∨
k∈K ck)

and bKj1 = bj1 ∧ ¬(
∨
k∈K ck). We let bKj = bj for j � {j0, j1}, and this defines a tuple

bK ∈ [b]. By quantifier elimination, the type of the tuple akbK is determined by the

set of pairs i, j such that aki ∧ bKj = 0. It follows that

f (ak,bK ) = f (a,b′) if k ∈ K , and f (ak,bK ) = f (a,b) if k � K .
Hence f (x,y) is not NIP on [a]× [b]. �

The lemma shows that cTameu(G) = cWAP(G) for G = Aut(B), and that this
algebra is generated by the functions of the form g �→ (a = gb). Indeed, the proof
shows that an NIP formula on [a] × [b] is a combination of formulas of the kind
t(x) = s(y) for Boolean terms t, s; then simply note that s(gb) = gs(b), so the function
on G associated to a formula of latter kind is g �→ (c = gd) where c = t(a) and d =
s(b). Next we show that B has definable extensions of types over finite sets, in order
to conclude, by Theorem 4.6, that these functions actually generate Tameu(G).

Let a ∈ Bω, n < ω; with no loss of generality we may assume that a<n is a par-
tition of 1. We consider the free amalgam of a and B over a<n, which is a Boolean
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algebra generated by B together with a copy a′ � a such that a′<n = a<n and, for
every i < n, every d ∈ B and every c in the Boolean algebra generated by a′, we have
c ∧ ai ∧ d � 0 unless c ∧ ai = 0 or ai ∧ d = 0. Such a copy a′ is realized as a tuple in
some elementary extension of B, and the type tp(a′/B) is clearly a<n-invariant. By
Lemma 4.7, B has definable extensions of types over finite sets.

Finally, as with Aut(Q,<) and Aut(RG), we show that every AP function on
Homeo(2ω) is constant. If f (x,y) is algebraic on [a] × [b] and b′ ∈ [b], we can find

copies ai of a such that a = a0 and each ai , i ≥ 1, forms a free amalgam with Bi
over ∅, where Bi is the algebra generated by b, b′ and all aj , j < i. That is, c∧ d � 0
for every non-zero d ∈ Bi and every non-zero c in the algebra generated by ai .
Then (ai)i<ω is indiscernible and f (a1, b) = f (a1, b′). By hypothesis (f (ai ,b))i<ω and

(f (ai ,b′))i<ω are constant, and therefore f (a,b) = f (a,b′).

Corollary 4.12. For G = Homeo(2ω)we haveR = AP(G) �WAP(G) = Tameu(G)
�UC(G).

The previous examples come from classical structures; we consider now a purely
metric one: the Urysohn sphere U1. This is, up to isometry, the unique separable,
complete and homogeneous metric space of diameter 1 that is universal for count-
able metric spaces of diameter at most 1: any such metric space can be embedded
inU1. As a metric structure with no basic predicates (other than the distance),U1

is ℵ0-categorical and has quantifier elimination, which in this case means that the
type of a tuple b depends only on the isomorphism class of b as a metric space; see
[Usv08, §5]. It also says that UC(Iso(U1)) is generated by the functions of the form
g �→ d(a,gb) for a,b ∈U1.

We show that Iso(U1) is Tameu-trivial.

Theorem 4.13. Every function in Tameu(Iso(U1)) is constant.

Proof. Suppose f (x,y) is not constant on [a] × [b], so we have f (a,b) � f (a′, b′)
where a � a′ and b � b′ as metric spaces. We will need to assume that the elements
of a are separated enough from the elements of b, (the same for a′, b′), and that
the metric space ab is similar to a′b′; so we precise and justify this. Let 0 < ε < 1.
Note first that, by the universality and homogeneity of the Urysohn sphere, for
any tuples x,y in U1 (or in an elementary extension thereof) we can find ỹ in an
elementary extension such that y � ỹ, d(yn, ỹn) = ε and d(xn, ỹm) = (d(xn,ym)+ε)∧1
for all coordinates n,m (where r ∧ s denotes min(r, s)). Note secondly that finitely
many iterations of the process of replacing y by ỹ eventually end with d(xn,ym) = 1
for all n,m.

If we chose ε small enough and do one iteration of the previous process for

xy = ab, by continuity of f we can assume (replacing ab by ab̃) that

d(an,am) ≤ d(an,bk) + d(bk,am)− ε, d(bn,bm) ≤ d(bn,ak) + d(ak,bm)− ε
for all n,m,k —and still f (a,b) � f (a′, b′). So we have separated the elements of a
from those of b, and we do the same for a′, b′.

Next we iterate the process described above for ε/2, starting with xy = ab, thus
producing a finite sequence of copies of b, the last copy b̃ verifying d(an, b̃m) =
1 for all n,m. We do the same starting with a′, b′, finishing with a copy b̃′ with



78 1. THE DYNAMICAL HIERARCHY FOR ROELCKE PRECOMPACT POLISH GROUPS

the analogous property. Since the theory of U1 has quantifier elimination, we

have f (a, b̃) = f (a′, b̃′). So f differs in two consecutive steps of the process, and by
replacing our tuples ab, a′b′ by these consecutive tuples we may assume also that
a = a′ and |d(an,bm)− d(an,b′m)| ≤ ε/2 for all n,m.

With the previous assumptions in mind, we now construct a metric space con-

taining a sequence (ai)i<ω of different copies of a and, for each I ⊂ ω, a copy bI of
b � b′ such that aibI � ab if i ∈ I and aibI � ab′ if i � I . For i � j , I � J and each

n,m we define d(ain,a
j
m) = (d(an,am) + ε/2)∧ 1, d(bIn,b

J
m) = (d(bn,bm) + ε/2)∧ 1. The

triangle inequalities are satisfied; for example, for ain,a
j
m,b

I
k , i � j , i ∈ I , we have

d(ain,a
j
m) = (d(an,am) + ε/2)∧ 1 ≤ d(an,bk) + d(bk,am)− ε/2 ≤ d(ain,bIk) + d(bIk,a

j
m),

and also

d(ain,b
I
k) ≤ (d(ain,a

i
m) + ε/2)∧ 1+ d(aim,b

I
k)− ε/2 ≤ d(ain,a

j
m) + d(a

j
m,b

I
k).

The other inequalities are proved similarly.

By the universality of the Urysohn sphere we can assume that the tuples ai

lie in U1, the tuples bI in some elementary extension. By quantifier elimination,

f (ai ,bI ) = f (a,b) if i ∈ I and f (ai ,bI ) = f (a,b′) if i � I . This shows that f (x,y) is
not NIP on [a]× [b]. It follows that every tame function of the form g �→ f (a,gb) is
constant, which proves the theorem. �

In Question 7.10 from [GM13] it was asked whether the algebra Tame(G) sep-
arates points and closed subsets of G for every Polish group G. As we have seen,
this can fail drastically for the algebra Tameu(G). Unfortunately, we do not know
how big the gap between Tame(G) and Tameu(G) may be.

Question 4.14. Are there tame non-constant functions on Iso(U1)? Is there
a way to regularize a (non-constant) function f ∈ RUC(G) to get (a non-constant)

f̃ ∈UC(G), in such a manner that tameness is preserved?

Finally, we consider the group G = H+[0,1] of increasing homeomorphisms of
[0,1] with the compact-open topology —which coincides on G with those of point-
wise or uniform convergence. In spite of not being naturally presented as an au-
tomorphism group of some ℵ0-categorical metric structure, this group is Roelcke
precompact. See [Usp02], Example 4.4, for a description of its Roelcke compacti-
fication.

The following result was explained to us by M. Megrelishvili.

Theorem 4.15. UC(H+[0,1]) ⊂ Tame(H+[0,1]).

See [GM14a], Theorem 8.1. As remarked there, the inclusion is strict: the func-
tion f : G→ R given by f (g) = g(1/2), for example, is tame (it comes from the Helly
space, which is a Rosenthal compactification of G) but not left uniformly continu-
ous: supg |f (gh) − f (g)| = 1 for any h ∈ G with h(1/2) � 1/2. In fact, f is even null:

it is clear that, for reals r < s, there are no increasing functions g0, g1 ∈ [0,1][0,1]

and elements x{0},x{1} ∈ [0,1] such that gi(xI ) < r if i ∈ I and gi(xI ) > s if i � I . One
deduces that UC(G) �Null(G).
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Additionally, as we have already recalled, the celebrated result of [Meg01a]
says that H+[0,1] is WAP-trivial. On the other hand, one of the main results of
[GM08] (Theorem 8.3) is the stronger fact that H+[0,1] is SUC-trivial. In turn, this
allows the authors to deduce that Iso(U1) is also SUC-trivial ([GM08, §10]). By our
Theorem 2.9 we can recover these facts directly from the WAP-triviality of these
groups, and extend the conclusion to another interesting Roelcke precompact Pol-
ish group that is also known to be WAP-trivial.

Corollary 4.16. The groups H+[0,1] and Iso(U1) are SUC-trivial. The same is
true for the homeomorphism group of the Lelek fan.

Proof. The WAP-triviality of Iso(U1) was first observed in [Pes07], Corollary
1.4, using the analogous result for H+[0,1]; an alternative proof is given in [BT14],
Example 6.4, and of course also follows from Theorem 4.13 above. For the home-
omorphism group of the Lelek fan, WAP-triviality was proven in [BT14]: see the
discussion after Corollary 4.10 and the references therein. �

The previous facts about the group H+[0,1] lead to an interesting model-theo-
retic example, addressed in the following corollary.

If f (x,y) is a formula in the variables x,y (of arbitrary length), let us say that
f (x,y) is separated if it is equivalent to a continuous combination of definable pred-
icates fi(zi) where, for each i, zi = x or zi = y. Equivalently, f (x,y) is separated if it
factors through the product of type spaces Sx(∅)× Sy(∅) (by the Stone–Weierstrass

theorem, the continuous functions on a product X×Y of compact Hausdorff spaces
is the closed algebra generated by the continuous functions that depend only on
X or on Y ). Of course, separated formulas are stable. Let us say that a structure
is purely unstable if every stable formula f (x,y) is separated. No infinite classical
structure can be purely unstable, since the identity relation x = y is always stable
and never separated.

Corollary 4.17. The ℵ0-categorical structure M = ĜL associated to G = H+[0,1]
is purely unstable and NIP.

Proof. Of course, WAP-triviality implies thatM is purely unstable: if f (x,y) is
stable and a,b are parameters, then the function g �→ f (a,gb) belongs to WAP(G)
and so is constant. It follows that the value of f on a,b only depends on [a], [b],
that is, on tp(a), tp(b) sinceM is ℵ0-categorical; hence f (x,y) is separated.

On the other hand, Theorem 4.15 and Proposition 3.5 imply that every formula
f (x,y) with |y| = 1 is NIP. A well-known argument (see for example Proposition
2.11 in [Sim15], which adapts easily to the metric setting), shows that then every
formula is NIP. �

We finish with a remark relating sections 2 and 3 of this paper. Since reflexive-
representable functions correspond to stable formulas and Rosenthal-representable
functions correspond to NIP formulas, it is not surprising that, as we have seen,
the natural intermediate subalgebra of Asplund-representable functions collapses
to one of the other two: on the model-theoretic side, there is no known natu-
ral notion between stable and NIP. However, one might be slightly surprised to
find that WAP = Asp rather than Asp = Tameu (although, in fact, this was already
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known for G =H+[0,1]). Indeed, Asplund and Rosenthal Banach spaces were once
difficult to distinguish, with the first examples coming in the mid-seventies from
independent works of James and of Lindenstrauss and Stegall. It is thus worthy
to remark that, via our results and the Banach space construction of Glasner and
Megrelishvili [GM12] (Theorem 6.3), every NIP unstable ℵ0-categorical structure
yields an example of a Rosenthal non-Asplund Banach space.



CHAPTER 2

Eberlein oligomorphic groups

Abstract. [Joint work with Itaï Ben Yaacov and Todor Tsankov, submitted for

publication.] We study the Fourier–Stieltjes algebra of Roelcke precompact, non-

archimedean, Polish groups and give a model-theoretic description of the Hilbert

compactification of these groups. We characterize the family of such groups whose

Fourier–Stieltjes algebra is dense in the algebra of weakly almost periodic func-

tions: those are exactly the automorphism groups of ℵ0-stable, ℵ0-categorical

structures. This analysis is then extended to all semitopological semigroup com-

pactifications S of such a group: S is Hilbert-representable if and only if it is an

inverse semigroup. We also show that every factor of the Hilbert compactification

is Hilbert-representable.
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Introduction

It has long been recognized in model theory that the action of the automor-
phism group of an ℵ0-categorical structure on the structure (and its powers) cap-
tures all model-theoretic information about it. Moreover, by a classical result of
Ahlbrandt and Ziegler [AZ86], the automorphism group remembers the structure
up to bi-interpretability. As most interesting model-theoretic properties are pre-
served by interpretations, it is reasonable to expect that those would correspond
to natural properties of the automorphism group.

It turns out that many model-theoretic properties of the structure are reflected
in the behavior of a certain universal dynamical system associated to the group

81
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that we proceed to describe. First, recall that automorphism groups ofℵ0-categorical
structures are Roelcke precompact in the following sense.

Definition 0.1. A topological group G is called Roelcke precompact if for every
neighborhood U of the identity, there exists a finite set F such that UFU = G.

To each Roelcke precompact, Polish group G is naturally associated its Roelcke
compactification R(G), the completion of G with respect to its Roelcke (or lower)
uniformity; see Section 2.3 for more details. The natural action G � R(G) ren-
ders it a topological dynamical system. From the model-theoretic point of view,
if we represent G as the automorphism group of an ℵ0-categorical structure M ,
R(G) can be considered as a suitable closed subspace of the type space Sω(M) in
infinitely many variables over the model. Thus, there is a natural correspondence
between formulas with parameters from the model, on the one hand, and contin-
uous functions on R(G), on the other. This allows building a dictionary between
the model-theoretic and the dynamical setting. For example, stable formulas cor-
respond to weakly almost periodic functions and NIP formulas correspond to tame
functions.

Particularly relevant to us is the theory of Banach representations of dynam-
ical systems as developed by Glasner and Megrelishvili in a series of papers (see
[GM14b] and the references therein). If G� X is a topological dynamical system
and V is a Banach space, a representation of X on V is a pair of continuous maps
ι : X → B, π : G→ Iso(V ), where B is the unit ball of V ∗ equipped with the weak∗

topology, Iso(V ) is the group of linear isometries of V , equipped with the strong
operator topology, π is a homomorphism, and

〈v, ι(gx)〉 = 〈π(g)−1v, ι(x)〉,
for all x ∈ X, v ∈ V , g ∈ G. A representation is faithful if ι is an embedding. If K is a
class of Banach spaces, we say that G� X is K-representable if it admits a faithful
representation on a Banach space in the class K.

All dynamical systems are representable on some Banach space; however, if
one restricts to some (well-chosen) class of Banach spaces K, the K-representable
systems usually form an interesting family. Somewhat unexpectedly, in the ℵ0-
categorical setting, there are some precise connections between model-theoretic
properties of the structure and the classes of Banach spaces R(G) can be repre-
sented on: for example, M is stable iff R(G) can be represented on a reflexive Ba-
nach space [BT14, §5][GM14b, §5.1] andM is NIP iff R(G) can be represented on
a Banach space that does not contain a copy of �1 [Iba14, §4][GM14b, §8.1]. One
of the main motivating questions for this paper was what the appropriate model-
theoretic condition is for R(G) to be representable on a Hilbert space.

For some classes K of Banach spaces, there are dynamical systems that are uni-
versal for the K-representable ones. For example,W (G), the WAP compactification
of G is universal for reflexively representable systems and H(G), the Hilbert com-
pactification, is universal for Hilbert-representable systems. Both W (G) and H(G)
carry the structure of a compact semitopological semigroup and H(G) is a factor of
W (G).

The main focus of the paper are the automorphism groups of ℵ0-categorical
classical, discrete (multi-sorted) structures, or, equivalently, Roelcke precompact,
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Polish, non-archimedean groups. (A group is non-archimedean if it admits an open
basis at the identity consisting of open subgroups.) We make this assumption tac-
itly throughout the paper: when we say “ℵ0-categorical structure”, we will always
mean a classical one, as opposed to metric. A non-archimedean, Polish, Roelcke
precompact group will be called pro-oligomorphic; it is oligomorphic if the structure
can be chosen one-sorted.

For every non-archimedean group G, the compactification G→H(G) is a topo-
logical embedding. Our first result is a concrete description of H(G) for pro-
oligomorphic groups, in model-theoretic terms. More precisely, we have the fol-
lowing.

Theorem 0.2. Let M be an ℵ0-categorical structure and let G = Aut(M). Then
H(G) is isomorphic to the semigroup of partial elementary embeddings Meq → Meq

with algebraically closed domains.

Using this description, we give two characterizations of pro-oligomorphic groups
for which W (G) = H(G): one model-theoretic, and one in terms of the semigroup
W (G). This is the main result of the paper.

Theorem 0.3. Let M be an ℵ0-categorical structure and let G = Aut(M). The fol-
lowing are equivalent:

(1) The idempotents ofW (G) commute;
(2) M is one-based for stable independence;
(3) W (G) =H(G).

Using Theorem 0.3 and a classical, deep result in model theory, we can now
give a satisfactory answer of our initial question.

Corollary 0.4. Let M be an ℵ0-categorical structure and let G = Aut(M). Then
the following are equivalent:

(1) M is ℵ0-stable;
(2) R(G) is Hilbert-representable.

Corollary 0.4 and a well-known example of an ℵ0-categorical, stable, non-ℵ0-
stable structure, due to Hrushovski, give us the following corollary (cf. Exam-
ple 3.14) which answers a question of Glasner and Megrelishvili [GM14b, Ques-
tion 6.10].

Corollary 0.5. There exists an oligomorphic group G that satisfies R(G) =W (G) �
H(G).

While all factors of W (G) are known to be reflexively representable (or re-
flexively approximable, for a general topological group G), it is an open question
whether all factors of H(G) are Hilbert-representable [GM14b, Question 5.12.3].
We can give a positive answer to this question in the case of pro-oligomorphic
groups (cf. Theorem 4.8).

Theorem 0.6. Let G be a pro-oligomorphic group. Then all factors of H(G) are
Hilbert-representable.

The correspondence betweenmodel-theoretic properties ofℵ0-categorical struc-
tures and dynamical properties of their automorphism groups is not restricted to
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the non-archimedean case. The correct model-theoretic setting for dealing with
general Roelcke precompact, Polish groups is that of continuous logic and in both
[BT14] and [Iba14], the results are proved in full generality. However, the two
most important tools used in this paper are currently only available in the non-
archimedean setting: namely, the classification of the unitary representations on
the dynamical side and the notion of one-basedness on the model-theoretic side.
For the moment, we do not even have a plausible conjecture of what the model-
theoretic characterization of Hilbert-representable functions on a Roelcke precom-
pact Polish group should be in general. Theorem 0.3 clearly fails in the continuous
setting (for example, for the unitary group). While we do not have a counterex-
ample to Corollary 0.4 for general separably categorical structures, we strongly
suspect that it also fails.

As one of the goals of this paper is to provide a dictionary between model
theory and abstract topological dynamics, we have tried to make the exposition
fairly self-contained (apart from a couple of difficult model-theoretic results) and
accessible to people working in both areas.
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1. Preliminaries

1.1. Compactifications of topological groups. Let G be a topological group.
The algebra of complex-valued, continuous, bounded functions on G will be de-
noted by C(G). This algebra carries always the uniform norm, ‖f ‖ = supg∈G |f (g)|.
The group G admits a left and a right action on C(G), given, respectively, by
(gf )(h) = f (g−1h) and (f g)(h) = f (hg−1) for every f ∈ C(G) and g,h ∈ G. These
actions are isometric but in general not continuous.

When considering subalgebras of C(G), we will always assume that these are
unital and closed under complex conjugation. If we say that a subalgebra is closed,
we mean closed with respect to the uniform norm. Left-invariant, right-invariant
and bi-invariant refer to the actions of G defined above.

A compactification of G is a compact Hausdorff space X with a continuous left
action of G, together with a continuous G-map α : G→ X with dense image (where
G carries the natural left action on itself). Given a compactification α : G→ X, we
denote by A(α) := C(X) ◦ α the subalgebra of C(G) consisting of those functions
that factor through α. We may also denote it by A(X), if no confusion arises. The
algebra A(α) is always left-invariant, and the compactification will be called bi-
invariant if A(α) is moreover right-invariant.
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Given compactifications αX : G → X and αY : G → Y , we say that αY is a G-
factor of αX (or shortly, that Y is a factor of X) if there is a continuous surjective
G-map X→ Y commuting with αX and αY . In this case, this G-map is unique.

A function f ∈ C(G) is right uniformly continuous if the orbit map g ∈ G �→ gf ∈
C(G) is norm-continuous. Let RUC(G) denote the family of all right uniformly
continuous, bounded functions on G, which is a bi-invariant closed subalgebra
of C(G). Any function f ∈ C(G) that factors through a compactification of G is
in RUC(G). In fact, there is a one-to-one correspondence between compactifica-
tions of G (up to isomorphism) and left-invariant closed subalgebras of RUC(G). It
takes a compactification α to the algebra A(α). Conversely, it takes a left-invariant
closed subalgebra A ⊂ RUC(G) to the maximal ideal space GA (with its usual com-

pact Gelfand topology) together with the canonical G-map G → GA. Under this

correspondence, A is a subalgebra of B if and only if GB is a factor of GA.

1.2. The Fourier–Stieltjes algebra and theWAP algebra of a topological group.
We start by recalling the definition of positive definite functions and the GNS con-
struction. See, for example, [BdlHV08], Theorem C.4.10.

Definition 1.1. A function f : G→ C is positive definite if the following equiv-
alent conditions hold.

(1) For every g1, . . . , gn ∈ G, the matrix (f (g−1j gi))ij is positive semi-definite, i.e.,

for any c1, . . . , cn ∈ C we have∑
ij

cicj f (g
−1
j gi) ≥ 0.

(2) The exists a unitary representation π : G→ U(H) and a vector v ∈ H such
that, for all g ∈ G,

f (g) = 〈v,π(g)v〉.

In particular, every positive definite function is bounded: |f (g)| ≤ f (1) for all
g ∈ G. Besides, we can assume that v is a cyclic vector for the representation π : G→
U(H) (that is, H is the closed subspace generated by π(G)v); then π is continuous
if and only if f ∈ C(G).

The family of continuous positive definite functions on G is denoted by P(G).
The (not necessarily closed) subalgebra of C(G) generated by P(G) is the Fourier–
Stieltjes algebra of G, and is denoted by B(G).

Definition 1.2. A (unitary) matrix coefficient of a topological group G is a func-
tion f ∈ C(G) of the form

f (g) = 〈v,π(g)w〉
for a continuous unitary representation π : G → U(H) and vectors v,w ∈ H. We
will use the notation f =mv,w, or f =mπ

v,w if we wish to specify π.

Fact 1.3. B(G) is the family of matrix coefficients of G.

That matrix coefficients form an algebra follows from considering orthogonal
sums, tensor products, and duals of representations.
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In fact, every matrix coefficient is a linear combination of four positive definite
functions,

4mv,w =mv+w,v+w −mv−w,v−w + imv+iw,v+iw − imv−iw,v−iw,

so B(G) coincides with the linear span of P(G).
Next we recall weakly almost periodic functions, Grothendieck’s double limit

criterion and the reflexive representation theorem of Megrelishvili (see [Meg03],
Theorem 5.1).

Definition 1.4. A function f ∈ C(G) is weakly almost periodic if the following
equivalent conditions hold:

(1) The orbit Gf is precompact for the weak topology on C(G).
(2) For all sequences gi ,hj ∈ G, we have

lim
i
lim
j
f (gihj ) = lim

j
lim
i
f (gihj )

whenever both limits exist.
(3) There exists a continuous, isometric representation π : G → Iso(V ) on a

reflexive Banach space V and vectors v ∈ V , w ∈ V ∗ such that, for all g ∈ G,
f (g) = 〈v,π(g)w〉.

It follows easily that the family WAP(G) of weakly almost periodic functions
on G is a closed bi-invariant subalgebra of RUC(G) containing B(G). On the other
hand, B(G) is almost never closed in C(G) (see the beginning of Section 3). Follow-

ing [GM14b, §6], we will denote the closure B(G) by Hilb(G). It consists precisely
of the continuous functions on G that factor through Hilbert-representable com-
pactifications ofG (see the next subsection). The algebra B(G) is bi-invariant, hence
so is Hilb(G).

Thus we have

Hilb(G) ⊂WAP(G),

or equivalently: the Hilbert compactification G → H(G) associated to the closed
left-invariant algebra Hilb(G) is a G-factor of the WAP compactification G→W (G)
associated to WAP(G). We will review the main properties of these compactifica-
tions in Section 2.

Finally, we recall that a function f : G → C is Roelcke uniformly continuous if
the map (g,g ′) ∈ G ×G �→ gf g ′ ∈ C(G) is norm-continuous. The family of all Roel-
cke uniformly continuous functions on G is a closed bi-invariant subalgebra of
RUC(G), denoted by UC(G). We always have WAP(G) ⊂UC(G).

Definition 1.5. Let G be a topological group.

(i) G is Eberlein if Hilb(G) =WAP(G).
(ii) G is a WAP group if WAP(G) = UC(G).
(iii) G is strongly Eberlein if Hilb(G) = UC(G).

In his fundamental work [Ebe49], Eberlein introduced weakly almost periodic
functions (in the context of locally compact abelian groups) and proved the inclu-
sion B(G) ⊂WAP(G). In fact, all his examples of WAP functions lied in the closure
of B(G). Rudin writes in [Rud59] that Eberlein asked him whether the closure of
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B(G) may in fact coincide withWAP(G). Of course, by the Peter–Weyl theorem, this
is the case for compact groups (indeed, Hilb(G) = C(G)). However, Rudin showed
in the referred paper that this is not true in general. As an example, he exhibited
a concrete function f ∈WAP(Z) \Hilb(Z). Later, Chou proved that, more gener-
ally, the inclusion Hilb(G) ⊂WAP(G) is strict for any non-compact locally compact
nilpotent group [Cho82]. On the other hand, he remarked that equality does hold
for some non-compact locally compact groups, and introduced the name Eberlein
for this class.

The definitions of WAP groups and strongly Eberlein groups were introduced by
Glasner and Megrelishvili in [GM14b].

Examples of non-compact Eberlein groups include SLn(R) (and any semisimple
Lie group with finite center; see [Vee79]), the unitary group U(�2) [Meg08], the
group Aut(μ) of measure preserving transformations of the unit interval [Gla12]
and the symmetry group of a countable set, S∞ [GM14b]. The latter three are in
fact strongly Eberlein. We will give some new examples in Section 3.3.

1.3. Representations on Hilbert spaces. Let X be a compactification of a Pol-
ish group G. We say that X is Hilbert-representable if there exist a Hilbert space
H, an embedding ι : X → H (where H carries the weak topology) and a unitary
representation π : G → U(H) such that ι(gx) = π(g)ι(x) for all x ∈ X and g ∈ G.
This definition coincides, for the class of Hilbert spaces, with the notion of K-
representability given in the introduction.

Given a function f ∈ RUC(G), let Xf be the compactification of G associated

to the invariant closed subalgebra of RUC(G) generated by f . In [GW12, §2], it is
observed that Xf is Hilbert-representable whenever f is positive definite (in the

case G =Z); more generally, the following holds.

Lemma 1.6. If f ∈ B(G), then Xf is Hilbert-representable.

Proof. Write f = mπ0
v0,w0

for some continuous unitary representation π0 : G →
U(H0). Let H1 be the closed linear span of π(G)w0 and let v = ΠH1

v0 be the or-
thogonal projection of v0 to H1. Next let H be the closed linear span of π(G)v and
let w = ΠHw0 be the orthogonal projection of w0 to H. Consider the restriction
π = π0|H. Then f =mπ

v,w.
Let Z be the weak closure of π(G)w in H, which is naturally a (Hilbert-repre-

sentable) compactification of G via the map g �→ gw. Consider for each h ∈ G the
function Fh ∈ C(Z), Fh(z) = 〈π(h)v,z〉, and remark that Fh(gw) = hf (g). Since H is
generated by π(G)v, the functions Fh separate points of Z . Hence, by the Stone–
Weierstrass theorem, A(Z) is the closed algebra generated by Gf . In other words,
Z = Xf up to isomorphism. �

In contrast, if instead of a matrix coefficient we take any f ∈ Hilb(G), it is un-
known whether Xf is necessarily Hilbert-representable; see Question 1.9 below.

Proposition 1.7. Let α : G → X be a metrizable compactification of G. Then the
following are equivalent:

(1) α is Hilbert-representable.

(2) A(α) =A(α)∩B(G).
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Proof. Suppose (ι,π) is a representation of (X,G) on a Hilbert space H. The
functions Fv : w �→ 〈v,w〉 separate points of H, hence the algebra generated by
{Fvια}v∈H is dense in A(α) and contained in B(G).

Conversely, suppose that (2) holds. The metrizability assumption on X says
that A(α) is separable. Thus, let B ⊂ A(α)∩B(G) be a countable dense subset. By
the previous lemma, for each f ∈ B there is a representation (ιf ,πf ) of (Xf ,G) on a
Hilbert space Hf . We consider

H =
⊕
f ∈B

Hf

and let π =
⊕

f ∈Bπf : G → U(H) be the orthogonal sum of the representations

πf . For each f ∈ B let wf = ια(1) ∈ Hf . Since B is countable, by rescaling we may

assume that w = (wf )f ∈B is summable, i.e., w ∈ H. Now we define α′ : G → H by

α′(g) = π(g)w, and let Z be the weak closure of α′(G) in H. Then the restriction
α′ : G → Z is a Hilbert-representable compactification of G, which we claim is
isomorphic to α. Indeed, Z is homeomorphic to a subspace of the product

∏
f ∈BXf ,

so the projection maps Z → Xf separate points of Z ; hence A(α′) is the closed

algebra generated by the algebrasA(Xf ), f ∈ B. Since B is dense inA(α), we deduce

that A(α′) =A(α), which proves our claim. �
Remark 1.8. A basic consequence of the first implication of the above propo-

sition (which does not use the metrizability assumption) is that all Hilbert-repre-
sentable compactifications of G are factors of H(G).

Question 1.9 ([GM14b], Question 5.12.3; [Meg07], Question 7.6). Are Hilbert-
representable dynamical systems closed under factors; equivalently (for ambits),
are all factors of H(G) Hilbert-representable?

This question has also been investigated in [GW12]. In Section 4, we will see
that the answer is positive for pro-oligomorphic groups.

We should note that reflexively representable dynamical systems are preserved
under factors. In fact, the reflexively representable (or rather, when W (G) is not
metrizable, reflexively approximable) compactifications of G are exactly the factors
ofW (G). See [Meg08] and the references therein.

2. Semitopological semigroup compactifications

2.1. Definitions. A semitopological semigroup is a semigroup that carries a topo-
logical structure such that the product operation is separately continuous. That is
to say, multiplying by an arbitrary fixed element to the left is continuous, and sim-
ilarly to the right. We shall be interested in semitopological semigroups arising in
the following manner.

Definition 2.1. A compactification α : G → S is a semitopological semigroup
compactification if S admits a semitopological semigroup law that makes of α a
homomorphism.

Remark 2.2. Suppose α : G→ S is a semitopological semigroup compactifica-
tion.
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(1) Then S is in fact a monoid: α(1) is an identity.
(2) By Lawson’s joint continuity theorem, α(G) is a topological group ([Law74],

Corollary 6.3).
(3) The compactification is bi-invariant.

Both the Hilbert andWAP compactifications introduced before,H(G) andW (G),
are semitopological semigroup compactifications. Moreover, W (G) is universal
among these, in the following sense.

Fact 2.3. Let S be a bi-invariant compactification of G. The following are equiva-
lent.

(1) S is a semitopological semigroup compactification.
(2) S is a factor ofW (G).

Proof. See, for instance, [BJM78, Ch. III, §8], Corollary 8.5. �
Given a reflexive Banach space V , the semigroup Θ(V ) of linear contractions

of V ,

Θ(V ) = {T ∈ L(V ) : ‖T ‖ ≤ 1},
endowed with the weak operator topology, is compact and semitopological. It
turns out that every compact semitopological semigroup can be seen as a closed
subsemigroup of Θ(V ) for some reflexive Banach space V [Sht94, Meg01b]. Thus,
in this sense, every compact semitopological semigroup is reflexively representable.
A stricter notion of representability of semigroups is the following.

Definition 2.4. A semitopological semigroup S is Hilbert-representable if it can
be embedded in the compact semitopological semigroup Θ(H) of linear contrac-
tions of a Hilbert space H.

It is not difficult to see the following.

Fact 2.5. Let G be a topological group.

(1) H(G) is Hilbert-representable as a semitopological semigroup.
(2) G is Eberlein if and only ifW (G) is Hilbert-representable as a semitopological

semigroup.

In fact, the two notions of representability on Hilbert spaces discussed so far
essentially coincide. See Lemma 4.5 in [Meg08].

Fact 2.6. Let α : G→ S be a metrizable semitopological semigroup compactification
of G. Then S is a Hilbert-representable semitopological semigroup if and only if α is a
Hilbert-representable compactification.

In the non-metrizable case, Definition 2.4 is the correct property to consider,
while Hilbert-representability of dynamical systems has to be relaxed. However,
the semigroups that we study in this paper are metrizable.

Definition 2.7. Let α : G → S be a semitopological semigroup compactifica-
tion. We will say that α is ∗-closed or, equivalently, that α is a semitopological ∗-
semigroup compactification, if the inverse operation on the group α(G) extends to a
continuous involution ∗ : S→ S .
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Remark 2.8. α : G→ S is ∗-closed if and only if, whenever f ∈ A(α), the func-

tion g �→ f (g−1) is also in A(α).

It follows readily that both H(G) andW (G) are ∗-closed.
Proposition 2.9. Every Hilbert-representable semitopological semigroup compacti-

fication is ∗-closed.
Proof. Let α : G→ S be a compactification with an embedding β : S→Θ(H). It

suffices to see that the image of β is closed under the adjoint operation ∗ : Θ(H)→
Θ(H); indeed, then we can define s∗ as the preimage of β(s)∗, and this gives a con-
tinuous map ∗ : S → S that extends the inverse operation on α(G). Now, if s ∈ S
is the limit of a net α(gi) ∈ α(G), then βα(g−1i ) converges to β(s)∗; by compact-

ness we may assume that α(g−1i ) converges to some s′ ∈ S , so β(s′) = β(s)∗. Hence
β(s)∗ ∈ β(S). �

2.2. Inverse semigroups. In this short subsection, we review some general no-
tions of the theory of semigroups, and some particular facts that hold for compact
semitopological ∗-semigroups with a dense subgroup.

An element e in a semigroup S is an idempotent if e2 = e. If S has an involution ∗,
then e ∈ S is self-adjoint if e∗ = e.

Definition 2.10. Let S be a semigroup.

(i) An element p ∈ S is regular if there exists q ∈ S such that pqp = p.
(ii) S is regular if every element is regular.
(iii) An element q ∈ S is an inverse for p ∈ S if pqp = p and qpq = q.
(iv) S is an inverse semigroup if every element has a unique inverse.

The canonical example of an inverse semigroup is the symmetric inverse semi-
group of all partial bijections of a set, with composition where it is defined.

A proof of the following general characterization can be found in [How95],
Theorem 5.1.1.

Fact 2.11. The following are equivalent for a semigroup S .

(1) S is an inverse semigroup.
(2) S is regular and the idempotents commute.

When a compact semitopological structure is available, and the semigroup con-
tains a dense subgroup, much more is true. We formulate these additional proper-
ties in the case that we are interested in.

Fact 2.12. Let G→ S be a semitopological ∗-semigroup compactification.

(1) For every p,q ∈ S we have Sq = Spq if and only if q = p∗pq.
(2) Every idempotent is self-adjoint.
(3) Let e, f ∈ S be idempotents. The following are equivalent:

(a) e and f commute.
(b) ef is also an idempotent.

(4) Let p ∈ S . The following are equivalent:
(a) p is regular.
(b) pp∗p = p.
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(c) p has a unique inverse.
(5) In particular, the following are equivalent:

(a) S in an inverse semigroup.
(b) S is regular.

Proof.

(1) See Lawson [Law84], Proposition 4.1.
(2) This follows easily from (1).
(3) One implication is immediate and the other is clear using that idempo-

tents are self-adjoint.
(4) Suppose p is regular, so pqp = q for some q. Hence Sq = Spq, so by (1) we

have q = p∗pq, and then p = pqp = pp∗pqp = pp∗p.
If now we suppose that p = pp∗p, then p∗ = p∗pp∗, so p and p∗ are in-
verses. If q is another inverse, then as before we have q = p∗pq, whence
qp = p∗pqp = p∗p. Dually, pq = pp∗. Then q = qpq = qpp∗ = p∗pp∗ = p∗.

(5) Clear. �

2.3. The WAP compactification of pro-oligomorphic groups. In this subsec-
tion we will recall the model-theoretic description of the WAP compactification
given in [BT14] for Roelcke precompact Polish groups. Since the results of the
present paper are concerned with pro-oligomorphic groups, our presentation here
will be restricted to these, i.e., to automorphism groups of classical ℵ0-categorical
structures (as opposed to metric). Still, it will be convenient to consider formulas
as real-valued functions, taking values in {0,1}.

We refer to [TZ12] for the necessary background in model theory and for the
basics of ℵ0-categorical structures. Let us recall the definition of the family of
groups we will study.

Definition 2.13. A group G is oligomorphic if it can be presented as a closed
permutation group G ≤ S(X) of a countable set X such that the orbit spaces Xn/G
are finite for every n < ω. Equivalently: if G is the automorphism group of an
ℵ0-categorical one-sorted structure.

A Polish group G obtained as an inverse limit of oligomorphic groups will be
called pro-oligomorphic. Equivalently: G can be presented as the automorphism
group of an ℵ0-categorical multi-sorted structure. These are exactly the Roelcke
precompact, non-archimedean, Polish groups: see [Tsa12], Theorem 2.4.

Throughout this paper, whenever G is a pro-oligomorphic group and we write
G = Aut(M), we understand that M is an ℵ0-categorical structure and G is its
automorphism group. By the homogeneity of ℵ0-categorical structures, we have
the following.

Fact 2.14. Let G = Aut(M) be a pro-oligomorphic group and ĜL be the completion

of G with respect to its left uniformity, which is a topological semigroup. Then ĜL can
be identified with the topological semigroup E(M) of elementary embeddings ofM into
itself with the topology of pointwise convergence.

Proof. Let ξ ∈Mω be an enumeration ofM and define the distance dL on E(M)

by dL(x,y) = supi<ω 2
−id(x(ξi), y(ξi)), where d is the discrete distance on M . It
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induces the topology of pointwise convergence on E(M). The restriction of dL to
G is a compatible left-invariant metric, thus inducing the left uniformity of G.
By homogeneity, G is dense on E(M) with respect to dL. Since moreover E(M) is
complete with respect to dL, it is the left completion of G. �

Recall that if (X,d) is a metric space and G acts on X by isometries,

X �G = {Gx : x ∈ X}
is a metric space with distance

d(Gx,Gy) = inf{d(g1x,g2y) : g1, g2 ∈ G}.
The completion with respect to the Roelcke uniformity of a Polish group G (the

infimum of the left and right uniformities) can be described as the space of orbit

closures R(G) = (ĜL×ĜL)�G, whereG acts diagonally on ĜL×ĜL by left translation.
The group G is Roelcke precompact precisely when R(G) is compact. That is, when
the completion R(G) coincides with the compactification of G associated to the
algebra UC(G). Note that the completion R(G) is metrizable; thus, for Roelcke
precompact Polish groups, this is a metrizable compactification, and so are all its
factors.

For the rest of this section, we fix a pro-oligomorphic group G = Aut(M). By
Fact 2.14, in this case we can write R(G) = (E(M) × E(M)) � G. Given elements
x,y ∈ E(M), we denote the class of (x,y) in R(G) by [x,y]R. Now, each x ∈ E(M) can
be coded by a tuple x̃ ∈ Mω: x̃i = x(ξi) (if ξ ∈ Mω is a fixed enumeration of M).
Then, the element [x,y]R ∈ R(G) can be seen as the type tp(x̃, ỹ/∅). In other words,
[x,y]R is determined by the values

ϕ(x(a), y(b)),

where ϕ(u,v) varies over the formulas of M and a,b vary over tuples of M of the
appropriate length. In this fashion, a sequence [xn,yn]R in R(G) converges to [x,y]R
if the truth value ϕ(xn(a), yn(b)) converges to ϕ(x(a), y(b)) for all ϕ, a, and b.

Since WAP(G) is a subalgebra of UC(G), the WAP compactification W (G) is a
factor of R(G). We will denote the image of [x,y]R in W (G) simply by [x,y]. That
is to say, [x,y] is determined by the values ϕ(x(a), y(b)), as before, only that ϕ(u,v)
ranges over the stable formulas ofM . In particular, G is a WAP group if and only
if the structureM is stable.

The canonical G-map G→W (G) is given by

g �→ [1G,g],

and the G-action by

g[x,y] = [xg−1, y].

The involution ∗ : W (G)→W (G) extending the inverse on the image of G is given
by

[x,y]∗ = [y,x].

Moreover, the semitopological semigroup law of W (G) can be described in terms
of the stable independence relation ofM . In order to explain this, we first recall the
definition of imaginaries and some notions from stability theory.
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Let M be a structure. An imaginary element of M is the a class of a definable
equivalence relation on some finite power ofM . In other words, if a formulaϕ(u,v)
defines an equivalence relation onMn, then each class [a]ϕ ∈Mn/ϕ is an imaginary
ofM .

A standard model-theoretic construction allows to consider all the imaginaries
of M as actual elements in a larger (multi-sorted) structure, denoted Meq. See
[TZ12, §8.4] for the details. This enlargement of M is in many senses innocuous;
in particular, the natural restriction map Aut(Meq)→ Aut(M) is an isomorphism
between their automorphism groups. Thus, for many purposes, it is convenient to
work directly with the structureMeq.

Moreover, imaginary elements of ℵ0-categorical structures are in correspon-
dence with the open subgroups of its automorphism group. Indeed, a subgroup
V ≤ G is open if and only if it is the stabilizer of an imaginary element ofM . That
is to say, if and only if there is a definable equivalence relation ϕ(u,v) and a tuple
c such that

V = {g ∈ G : ϕ(c,gc)} = {g ∈ G : [c]ϕ = g[c]ϕ}.
See, for example, [Tsa12, §5].

A special kind of imaginaries is given as follows. If ϕ(u,v) is any formula, we
can define a formula Eϕ(u,u

′) by

Eϕ(u,u
′) := ∀v(ϕ(u,v)↔ ϕ(u′, v)).

Then Eϕ defines an equivalence relation on M |u|. An imaginary [c]Eϕ ∈ M |u|/Eϕ
should be seen as representing the formula ϕ(c,v); [c]Eϕ (also denoted simply by

[c]ϕ) is called the canonical parameter of ϕ(c,v),
Given a type t ∈ Su(M) and a formulaϕ(u,v), theϕ-definition of t is the function

dtϕ : M |v| → {0,1} given by

dtϕ(b) := ϕ(u,b)
t ,

where the right term denotes the value of ϕ(u,b) in the type t. Then, the formula
ϕ(u,v) is stable if and only if dtϕ is anM-definable predicate for every t ∈ Su(M). In
this case we can write dtϕ(v) in the form ψ(c,v), and then consider the canonical
parameter of this formula; we denote this canonical parameter by Cbϕ(t). (The
choice of the formula ψ can be done uniformly in t, that is, c depends on t but
ψ(w,v) does not.) The tuple

Cb(t) = (Cbϕ(t))ϕ stable

is the canonical base of t.
Finally, an element d ∈ Meq is in the algebraic closure of a set A ⊂ Meq if, for

some finite tuple a ⊂ A, d has only finitely many conjugates by automorphisms
fixing a. We denote the algebraic closure of A by acl(A) (which is always a subset
ofMeq). The set A is algebraically closed if A = acl(A).

Fact 2.15. Let a ∈ (Meq)|u| be a tuple and B ⊂ Meq be any subset. There is an
extension of the type tp(a/ acl(B)) to a type t ∈ Su(M) such that Cb(t) ⊂ acl(B). More-
over, Cb(t) does not depend on the particular extension; in other words, if s ∈ Su(M) is
another such extension, then dtϕ = dsϕ for every stable formula ϕ(u,v).
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Definition 2.16.

(i) If a, B and t are as in the previous fact, we define Cbϕ(a/B) := Cbϕ(t), Cb(a/B) :=
Cb(t).

(ii) Given any sets A,B,C ⊂ Meq, we say that A is stably independent from C over
B, denoted

A |�
B

C,

if for any tuple a ∈ A|u| we have Cb(a/B) = Cb(a/BC).
(iii) If a,c are tuples fromMeq and B is any subset, we write a ≡sB c to mean that a

and c have the same stable type over B, that is, ϕ(a,b) = ϕ(c,b) for any stable

formulaϕ(u,v) and parameter b ∈ B|v|. When B is empty we shall write simply
a ≡ c, since a ≡s∅ c is indeed equivalent to tp(a/∅) = tp(c/∅).

Note that the natural identification of Aut(M) and Aut(Meq) extends to an iden-
tification of E(M) and E(Meq).

Convention 2.17. We may consider the elements of E(M) as sets (notably, to
apply the relations |� and ≡s to them), and this shall be done in the following

way: an element x ∈ E(M) is interpreted as the set x(Meq), that is, the imaginary
completion of the image of x. For instance, x∩ y will denote x(Meq)∩ y(Meq).

If appearing as arguments of the relation ≡s, the elements of E(M) will be con-
sidered as infinite tuples indexed by M (or by ω via a fixed enumeration ξ , as
before).

In these contexts, the juxtaposition xy will denote the juxtaposed tuple (or
merely the union of sets).

The pair ( |�,≡s) satisfies the following usual properties.

Fact 2.18. Let x,y,z,w be any tuples fromMeq.

(1) (Invariance) If x |�y
z and xyz ≡ x′y′z′, then x′ |�y′

z′. If x |�y
z and x ≡syz x′,

then x′ |�y
z.

(2) (Symmetry) x |�y
z if and only if z |�y

x.

(3) (Transitivity) x |�y
zw if and only if x |�yz

w and x |�y
z.

(4) (Existence) There exist x′, y′, z′ such that x′y′ ≡ xy, y′z′ ≡ yz and x′ |�y′
z′.

(5) (Stationarity) Suppose y is algebraically closed. If x ≡sy z, x |�y
w and z |�y

w,

then x ≡syw z.
(6) (Non-triviality) If x |�y

z, then acl(x)∩ acl(z) ⊂ acl(y).

Proof. We refer the reader to [Pil96, Ch. 1, §2]. �

Fact 2.19. The semigroup law inW (G) is given by

[x,y][y,z] = [x,z] if x |�
y
z.

The properties of the independence relation stated above ensure that, for any p,q ∈
W (G), we can always find x,y,z ∈ E(M) such that p = [x,y], q = [y,z] and x |�y

z.
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The latter allows for a model-theoretic description of the idempotents ofW (G).
This was given in [BT14, §5]. Let us end this section by recalling this description
and giving a complete proof. Moreover, we complement it with a characterization
of the regular elements ofW (G), which will be used in our main result.

For the definition and properties of the ϕ-rank see [Pil96, Ch. 1, §3].

Lemma 2.20. Let p = [x,y] ∈W (G), C = x∩ y.
(1) The following are equivalent.

(a) p is an idempotent (i.e., pp = p).
(b) x ≡sC y and x |�C

y.
(2) The following are equivalent.

(a) p is regular (i.e., pp∗p = p).
(b) x |�C

y.

Proof. (1) Suppose p is an idempotent. By replacing x,y by an equivalent pair
if necessary, we can find z ∈ E(M) such that x |�y

z and xy ≡ yz. Then [x,y] =

[x,y][y,z] = [x,z], so y ≡sx z. It is easy to deduce that C = x ∩ z = y ∩ z, and further
that x ≡sC y.

Next we argue that x |�z
y. This is equivalent to show that for every stable for-

mula ϕ the ϕ-rank of x over yz equals the ϕ-rank of x over z: Rϕ(x/yz) = Rϕ(x/z).
Indeed, since x |�y

z and xy ≡ xz, we have

Rϕ(x/yz) = Rϕ(x/y) = Rϕ(x/z).

Thus x |�y
z and x |�z

y, so we have Cb(x/yz) ⊂ y ∩ z. This implies that x |�C
y.

Conversely, if x ≡sC y and x |�C
y, take z with x |�y

z and xy ≡ yz. It follows that

C = x ∩ z, x ≡sC z and x |�C
z. This implies y ≡sx z, i.e., [x,y] = [x,z], which means

that p is an idempotent.
(2) Suppose p is regular. Replacing x,y by an equivalent pair if necessary, we

can find z,w ∈ E(M) with x |�y
z, xy ≡ zy, x |�z

w and xy ≡ zw. Then the condition

p = pp∗p becomes
[x,y] = [x,y][y,z][z,w] = [x,w],

so y ≡sx w. It is easy to check that C = x∩ z = x∩w. Moreover, since e = pp∗ = [x,z]
is an idempotent, we have that x |�C

z. From x |�z
w we get then x |�C

w. Since

y ≡sx w, we have x |�C
y.

Suppose conversely that x |�C
y, and find z,w as above, so that in particular

pp∗p = [x,w]. From the hypothesis we get x |�C
z, and then x |�C

w. The condition
xy ≡ zw implies y ≡sC w, whence y ≡sx w. That is, pp∗p = [x,w] = [x,y] = p. �

3. The Fourier–Stieltjes algebra of pro-oligomorphic groups

3.1. Examples of functions inHilb(G)\B(G). Asmentioned before, the Fourier–
Stieltjes algebra B(G) is, as a general rule, strictly contained in its closure Hilb(G).
For example, if G is compact, then B(G) is not closed in C(G) unless G is finite
(see for instance [HR70], Theorem 37.4). Let us begin this section with a model-
theoretic argument showing that the same holds for pro-oligomorphic groups.
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For locally compact groups, the algebra C0(G) of functions vanishing at infinity
is always contained in Hilb(G). Indeed, the functions in C0(G) factor through the
one-point compactification of G, and the latter is a Hilbert-representable semi-
topological semigroup: it can be embedded into the contractions of L2(G,μ) by
sending the point at infinity to the zero operator, and otherwise extending the
regular representation of G.

Similarly, for closed subgroups of S∞, we have a simple way of producing func-
tions in Hilb(G). Recall that if a group G acts continuously on a discrete set X,
then we have a natural unitary representation π : G → U(�2(X)) defined (on the
canonical basis of �2(X)) by π(g)ex = egx.

Lemma 3.1. Let M be a structure, G = Aut(M). Let F : Mn → C be a function
vanishing at infinity and let a ∈Mn. Then the function f ∈ C(G) given by f (g) = F(ga)
belongs to Hilb(G).

Proof. We can assume that F is zero everywhere except on a finite set B ⊂Mn,
since the general case can be uniformly approximated by instances of this form.
Take the natural representation π : G→U(�2(Mn)) and the vectors v =

∑
b∈B F(b)eb,

w = ea. Then we have f (g) = 〈v,π(g)w〉, which shows that f ∈ B(G). �

Next, we see that, in contrast, functions in B(G) must satisfy a non-trivial decay
condition. Given an action by isometries G� X and a sequence (xi)i<ω ⊂ X, let us
say that (xi) is indiscernible if for all indices i1 < i2 < · · · < ik and j1 < j2 < · · · < jk we
have the equality

[xi1 ,xi2 , . . . ,xik ] = [xj1 ,xj2 , . . . ,xjk ]

in Xk �G.
Suppose G is pro-oligomorphic, so that E(M) = ĜL. Note then that every func-

tion f ∈ B(G), being left uniformly continuous, extends to a function on E(M).

Proposition 3.2. LetG be a pro-oligomorphic group, sayG = Aut(M). Let F : Mn→
C be a function vanishing at infinity, a ∈ Mn, and let f : E(M) → C be given by
f (x) = F(x(a)).

Suppose (xi)i<ω ⊂ E(M) is an indiscernible sequence such that (xi(a))i<ω is non-
constant. If f |G ∈ B(G), then ∣∣∣∣∣∣∣1n

∑
i<n

f (xi)

∣∣∣∣∣∣∣ =O(
1√
n
),

the implicit constant depending only on f .

Proof. Suppose we have a continuous unitary representation π : G → U(H)
such that f (g) = 〈v,π(g)w〉 for all g ∈ G. Being a homomorphism, π is left uni-
formly continuous, so it extends to a representation π : E(M)→ E(H). (Here, E(H)
is the semigroup of isometric linear endomorphisms of H, which is also the left
completion of U(H).) We have f (x) = 〈v,π(x)w〉 for all x ∈ E(M).

Since (xi) ⊂ E(M) is indiscernible, so is (wi) ⊂ H for wi = π(xi)w. Now, as the
reader can check, an indiscernible sequence (wi) in a Hilbert space is always of the
form wi = w

′ +w′i , where w′i ⊥ w′, ‖w′i‖ = ‖w′j‖ and w′i ⊥ w′j for i � j . In particular,
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w′ is the weak limit of (wi). Since F vanishes at infinity and (xia) is indiscernible
and non-constant, we have that f (xi)→ 0. That is, 〈v,w′〉 = 0. We deduce that∣∣∣∣∣∣∣1n

∑
i<n

f (xi )

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣〈v, 1n

∑
i<n

w′n〉
∣∣∣∣∣∣∣ ≤ ‖v‖ · ‖

∑
i<nw

′
i‖

n
=
‖v‖

√∑
i<n ‖w′i‖2

n
=
‖v‖ · ‖w′0‖√

n
≤ ‖v‖ · ‖w‖√

n
.

�

Corollary 3.3. Let G be pro-oligomorphic and infinite. Then B(G) is not closed in
the uniform norm.

Proof. Choose any non-constant indiscernible sequence (xi) ⊂ E(M) (which al-
ways exists if M is ℵ0-categorical) and an element a ∈M such that (xi(a)) is non-
constant. Then take F : M→ C vanishing at infinity and such that F(xi(a)) = 1/i1/3.
Then, by Lemma 3.1 and Proposition 3.2, we obtain that the function defined by
f (g) = F(ga) is in Hilb(G) and not in B(G). �

3.2. A model-theoretic description of the Hilbert compactification. As ex-
plained in Section 2.3, the WAP compactification of a pro-oligomorphic group G
is the space of types of pairs of embeddings x,y ∈ E(M) restricted to stable formulas.
Dually, this can be stated by saying that WAP(G) is the closed algebra generated
by the functions of the form

g �→ ϕ(a,gb),

where ϕ(u,v) is a stable formula and a,b are tuples from M . See [BT14, §5] or
[Iba14, §4]. Hence it is natural to ask which formulas ϕ(u,v) give rise, in the
preceding way, to functions in the subalgebra Hilb(G).

We start with the following basic observation.

Lemma 3.4. Let M be a structure, G = Aut(M). Let ϕ(u,v) be a formula defining
an equivalence relation onMn and let a,b ∈Mn. Then the function

f (g) = ϕ(a,gb)

(which takes the value 1 if the elements are related and 0 otherwise) is in B(G).

Proof. It suffices to consider the natural representation π : G→ U(�2(Mn/ϕ)),
then observe that f (g) = 〈e[a]ϕ ,π(g)e[b]ϕ〉. �

The reader can also check that f belongs to B(G) under the weaker assumption
that ϕ(x,b) defines a weakly normal set, that is to say, that the canonical parameter
of ϕ(x,b) is in the algebraic closure of any tuple a that satisfies the formula.

We want to give a converse to the previous lemma, for ℵ0-categorical struc-
tures. For this we invoke the classification theorem of unitary representations of
pro-oligomorphic groups proved in [Tsa12].

Fact 3.5 (Classification Theorem). Let G be a pro-oligomorphic group.

(1) Every continuous unitary representation of G is a direct sum of irreducible
representations.

(2) Every irreducible continuous unitary representation is a subrepresentation of

the quasi-regular representation πV : G → U(�2(G/V )) for some open sub-
group V ≤ G.
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Proposition 3.6. Let G be pro-oligomorphic, G = Aut(M). Then Hilb(G) is the
closed linear span of the functions of the form

g �→ ϕ(a,gb)

where ϕ(u,v) is a definable equivalence relation on some power Mn and a,b are tuples
inMn.

Proof. It suffices to show that every f ∈ B(G) can be uniformly approximated
by linear combinations of functions of this form. By the classification theorem,
every continuous unitary representation is a subrepresentation of one of the form

π : G → U
(⊕

k �
2(G/Vk)

)
, where each Vk is an open subgroup of G. Now, every

matrix coefficient of π can be uniformly approximated by a linear combination of
basic matrix coefficients, that is, given by

g �→ 〈eg0Vk ,π(g)eg1Vk 〉
for vectors eg0Vk , eg1Vk from the canonical basis of �2(G/Vk). Fix an open subgroup

V = Vk ; it is the stabilizer of some imaginary element [c]ϕ ∈Meq. If we take a = g0c
and b = g1c, we have that g0V = gg1V if and only if [a]ϕ = g[b]ϕ . In other words,

〈eg0V ,π(g)eg1V 〉 = ϕ(a,gb).
The proposition follows. �

Dually, this characterization of Hilb(G) will provide a nice model-theoretic de-
scription of the Hilbert compactification H(G).

We fix a pro-oligomorphic group G = Aut(M). We recalled earlier that the
left completion of G can be identified with the topological semigroup E(M) of

elementary embeddings M →M , which is the pointwise closure of G inside MM .
A natural generalization is to consider partial elementary maps ofM .

In fact, the correct framework will beMeq. Let K =Meq ∪ {∞} be the one-point
compactification ofMeq, and let

Ξ = {p ∈ KK : p(∞) =∞ and p is injective on p−1(Meq)}.
Then Ξ, equipped with composition and the product topology, is a compact semi-
topological inverse semigroup (in fact, isomorphic to the semigroup of partial bi-

jections of Meq). Let P(M) = G ⊂ Ξ be the closure of G in the product space KK

(where we set g(∞) =∞ for every g ∈ G). Then, if we think of an element p ∈ KK as
a partial mapMeq →Meq (undefined on a whenever p(a) =∞), we get the follow-
ing.

Proposition 3.7. The elements of P(M) are precisely the partial elementary maps
of M with algebraically closed domain. Besides, P(M) is closed under composition,
and with this operation it becomes a semitopological ∗-semigroup compactification of G,
which is moreover an inverse semigroup.

Proof. It is clear that any p ∈ P(G) is a partial elementary map of M , and also
that its domain must be algebraically closed. Conversely, let p : A → Meq be an
elementary map with A algebraically closed. Fix a finite tuple a from A, a finite
tuple b disjoint from A and a finite subset C ⊂Meq (intended as the complement of
a neighborhood of∞ in K); denote a′ = p(a). Choose a tuple b′ such that ab ≡ a′b′,
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then take b′′ satisfying b′′a′ ≡ b′a′ and b′′ |�a′
C. Since b is disjoint from acl(a) ⊂ A

we have that b′′ is disjoint from acl(a′), whence b′′ is disjoint from C. Now, by
homogeneity there is g ∈ G such that ga = a′ and gb = b′′. This shows that p can be

approximated by elements of G in the topology of KK .
Finally, P(M), being a closed subsemigroup of Ξ closed under inverses, is also

a compact inverse semitopological semigroup.
�

We remark that we have defined P(M) directly as a family of partial maps on
Meq, and not onM . Unlike the case of E(M), which can be identified with E(Meq),
the previous construction applied to M would yield a smaller object (a factor of
P(M)), which may loose information. However, it is easy to check the following.

Remark 3.8. The structure M has weak elimination of imaginaries (see for in-
stance [TZ12, §8.4]) if and only if P(M) coincides with its factor consisting of par-
tial elementary maps ofM with (relatively) algebraically closed domain.

We also observe that P(M) can be alternatively defined as the closure of the
image of G inside Θ(�2(Meq)), induced by the natural unitary representation G→
U(�2(Meq)). Indeed, by identifying ∞ ∈ K with the zero of the Hilbert space, we
have natural topological embeddings

G ⊂ Ξ ⊂Θ(�2(Meq)).

In particular, P(M) is a factor of the Hilbert compactification.

Theorem 3.9. Let G = Aut(M) be a pro-oligomorphic group. Then P(M) coincides
with the Hilbert compactification H(G).

Proof. This follows from the previous observation and the fact, implied by the
classification theorem, that every separable continuous unitary representation of
G is a subrepresentation of G→ U(�2(Meq)). Nevertheless, let us give an explicit
isomorphism H(G) → P(M) based on the model-theoretic description of W (G).
Given endomorphisms x,y ∈ E(Meq), let [x,y]H denote the image of [x,y] ∈ W (G)
under the canonical G-map W (G) → H(G). Proposition 3.6 says that [x,y]H is
the type determined by the values ϕ(x(a), y(b)) for definable equivalence relations
ϕ(u,v) and parameters a,b fromM . Equivalently, it is the type determined by the
values x(a) = y(b) for parameters a,b ∈Meq. We consider the map

[x,y]H ∈H(G) �→ x−1 ◦ y ∈ Ξ,
where, on the right, x,y are seen as elements of Ξ. By our description of H(G), this
is well-defined and injective, and it is clearly a continuous G-map. Since H(G) is
compact, its image is P(M). �

3.3. Characterization of Eberlein pro-oligomorphic groups. A corollary of
the previous results is that if a pro-oligomorphic group G is Eberlein (that is, if
we haveW (G) =H(G)), thenW (G) must be an inverse semigroup. As it turns out,
this is a sufficient condition. Moreover, this property is related to the following
model-theoretic notion.
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Definition 3.10. LetM be a structure. We will say thatM is one-based for stable
independence if for any algebraically closed sets A,B ⊂Meq we have

A |�
A∩B

B.

Equivalently: if for any tuple a and set B we have Cb(a/B) ⊂ acl(a).

Theorem 3.11. Let G = Aut(M) be a pro-oligomorphic group. The following are
equivalent.

(1) W (G) is an inverse semigroup.
(2) The idempotents ofW (G) commute.
(3) M is one-based for stable independence.
(4) G is Eberlein.

Proof. (1)⇒ (2) is just a consequence of the general characterization referred
in Fact 2.11.

(2) ⇒ (1): Let p ∈ W (G), say p = [x,y] for x,y ∈ E(M). We identify x,y with
their images under the embedding E(M)→W (G). Then we can write p = [x,y] =
[x,1][1, y] = x∗y. Now, for any z ∈ E(M) we have z∗z = 1, so the element zz∗ is an
idempotent. If idempotents commute, we obtain pp∗p = x∗yy∗xx∗y = x∗xx∗yy∗y =
x∗y = p.

(1)⇒ (3): By hypothesis, every element is regular, so by Lemma 2.20 we have
x |�x∩y y for any x,y ∈ E(M). Now take algebraically closed sets A,B ⊂ Meq. By

replacing AB by an equivalent copy if necessary, we can find x ∈ E(M) such that
A ⊂ x and x |�A

B. Again, by replacing xAB by an equivalent copy, we can find

y ∈ E(M) such that B ⊂ y and x |�B
y. In particular, x ∩ y = x ∩ B = A ∩ B. Since

x |�x∩y y and x∩ y = A∩B ⊂ y, we have x |�A∩B y. Hence A |�A∩BB.

(3)⇒ (4): Wewant to show that the canonicalG-mapW (G)→H(G) is injective.
Given p,q ∈ W (G), we can always choose x,y,z ∈ E(M) such that p = [x,y] and
q = [x,z]. If the images of p and q in H(G) coincide, then x ∩ y = x ∩ z =: C, and
moreover y ≡sC z. SinceM is one-based for stable independence, y |�C

x and z |�C
x.

By stationarity, we get y ≡sx z, that is to say, p = q.
(4)⇒ (1): Clear from the identification H(G) = P(M). �

Corollary 3.12. The following are equivalent.

(1) G is strongly Eberlein.
(2) M is ℵ0-stable (i.e., the space of types Su(M), in any finite variable u, is count-

able).
(3) The intersection

⋂
x∈E(M)E(M) · x is non-empty.

Moreover, if the previous conditions hold, the action of G on Su(M) is oligomorphic.

Proof. (1)⇔ (2): As mentioned before, G is a WAP group if and only if M is
stable. By the previous theorem, G is strongly Eberlein if and only if M is stable
and one-based. A classical result of Zilber (see Theorem 5.12 in [Pil96, Ch. 2],
and also [BBH14], Proposition 3.12) states that an ℵ0-categorical stable structure
is one-based if and only if it is ℵ0-stable.
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(2)⇔ (3): This is just a topological reformulation. Indeed, it is easy to see that

y ∈
⋂

x∈E(M)

E(M) · x

if and only if every type over the image M ′ = y(M) (possibly in countably many
variables) is realized in M . In turn, there exists a submodel M ′ of M with this
property if and only ifM is ℵ0-stable.

For the moreover part, it suffices to show that Su(M)/G is finite. We sketch the

(standard) argument. To every indiscernible sequence (ai)i<ω ⊂M |u| we assign its
limit type p ∈ Su(M). This is a surjective G-map. Since M is one-based, the type
of an indiscernible sequence (ai)i<ω is determined by tp(a0a1). By ℵ0-categoricity,
there are only finitely many types tp(a0a1). �

Example 3.13. As mentioned before, the group S∞ of permutations of a count-
able set X is (strongly) Eberlein; its Roelcke compactification is the semigroup of
partial bijections of X. We can give some new examples. Consider the following
oligomorphic groups:

(1) the automorphism group of a dense linear order, Aut(Q,<);
(2) the homeomorphism group of the Cantor space (or, equivalently, the au-

tomorphism group of its algebra of clopen sets), Homeo(2ω);
(3) the automorphism group of the random graph.

It follows from the results in [BT14, §6] (see also [Iba14, §4.2]) that for each of
these groups (as well as for S∞) the algebra WAP(G) is generated by the functions
of the form

g �→ a = gb

for elements a,b in the respective structures. Since these are obviously in Hilb(G),
we deduce that these groups are Eberlein. In fact, fixed some G = Aut(M) from
the above list, we deduce that the WAP compactification consists of the partial ele-
mentary mapsM →M with relatively algebraically closed domain. (In particular,
as is well-known, these structures have weak elimination of imaginaries.)

Example 3.14. A famous conjecture of Zilber claimed that an ℵ0-categorical
stable structure should be ℵ0-stable (equivalently, one-based, or still: not encoding
a pseudoplane). This was refuted by Hrushovski, who constructed anℵ0-categorical
stable pseudoplane. The details of the construction can be found in [Wag94]. It
follows from Theorem 3.11 that the automorphism group of this pseudoplane is
an oligomorphic WAP group that is not Eberlein. This answers Question 6.10 in
[GM14b].

Example 3.15. The previous example can be used to produce a countable com-
pact dynamical system of finite Cantor–Bendixson rank that is faithfully repre-
sentable on a reflexive Banach space, but not on a Hilbert space, in the sense of
representability defined in the introduction (see [Meg08] for more background).
Indeed, let M be Hrushovski’s stable pseudoplane, G = Aut(M), and choose some
formula ϕ(u,v) and parameters a,b such that f : g �→ ϕ(a,gb) is not in Hilb(G).
Now, the space Sϕ(M) of ϕ-types in the variable v, with parameters from M , in-

duces a compactification X of G via the map g �→ tpϕ(gb/M). Since f belongs to
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the associated algebra, the dynamical system G� X is not Hilbert-representable;
but it is reflexively representable, since ϕ is stable. Finally, as is well-known, the
space of local types Sϕ(M) of a stable formula over a countable structure is a count-

able compact zero-dimensional space of finite Cantor–Bendixson rank (see, for in-
stance, [Pil96], Remark 2.3 and Lemma 3.1).

4. Hilbert-representable factors

In this section we extend our analysis to the factors ofH(G) andW (G). We start
by showing that all factors of H(G) are zero-dimensional.

We recall that if π : G → U(H) is a continuous unitary representation, then π
extends naturally to a homomorphism π : H(G)→Θ(H).

Lemma 4.1. Let π : G→ U(H) be a continuous unitary representation of a Roelcke
precompact Polish group. Let η ∈ H be a vector such that π(V )η = η for some open
subgroup V ≤ G (i.e., π(v)η = η for all v ∈ V ). Then π(H(G))η is countable.

Proof. Since G is Polish, we can assume H is separable. As G is Roelcke pre-
compact and V is open, the space of double cosets V \G/V is finite. Since η is fixed
by V , the function g �→ 〈η,π(g)η〉 factors through V \G/V , hence the set

{〈π(g1)η,π(g2)η〉 : g1, g2 ∈ G}
is finite. By continuity, {〈π(p1)η,π(p2)η〉 : p1,p2 ∈H(G)} is equal to it, and therefore
also finite. Now the separability of H implies that π(H(G))η is countable. �

Proposition 4.2. Let G be a Roelcke precompact Polish group and let f ∈ C(H(G))
be a function such that V f = f for some open subgroup V ≤ G. Then f (H(G)) is
countable.

Proof. Let f = limn fn, where fn(g) = 〈ξn,π(g)ηn〉 for some representation π and
vectors ξn,ηn. First, we may assume that each ξn is fixed by π(V ). Indeed, let n
be such that ‖f − fn‖ ≤ ε and let ξ ′n be the element of minimal norm of co(π(V )ξn).
Note that ξ ′n is fixed by π(V ) and for every g ∈ G and v ∈ V ,

|〈ξn,π(g)ηn〉 − 〈π(v)ξn,π(g)ηn〉| = |fn(g)− vfn(g)| ≤ 2ε,

implying that

|〈ξn,π(g)ηn〉 − 〈ξ ′n,π(g)ηn〉| ≤ 2ε

and thus we can replace ξn by ξ
′
n without losing much.

Next, by replacing π with a sum of infinitely many copies of itself and rescaling
if necessary, we may assume that ξn = ξ for all n. Finally, apply Lemma 4.1 to
obtain that π(H(G))ξ is countable and let E be the equivalence relation on H(G)
given by p E q ⇐⇒ π(p∗)ξ = π(q∗)ξ (so that E has countably many classes). Now
all fn and f factor through E, so, in particular, the image of f is countable. �

Lemma 4.3. Suppose G is pro-oligomorphic and let A ⊂ WAP(G) be a closed sub-
algebra. Let A0 ⊂ A be the subalgebra of functions f such that V f = f for some open
subgroup V ≤ G, and let A1 ⊂ A be the subalgebra of functions with finite range.

(1) If A is invariant, then A0 is dense in A.
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(2) If A is bi-invariant, then A1 is dense in A.

Proof. This follows almost verbatim from the proofs of Proposition 4.7 and
Theorem 4.8 in [BT14]. �

Theorem 4.4. If G is a pro-oligomorphic group, then every factor of H(G) is zero-
dimensional.

Proof. Let S be a factor of H(G). Since A(S) is invariant, using Lemma 4.3.(1)
and Proposition 4.2, we see that continuous functions on S with countable range
separate points in S . This implies the conclusion of the theorem. �

Question 4.5. Is the same true for all factors ofW (G)?

The automorphism group of the dense, countable circular order acts minimally
on the circle and this dynamical system is a quotient of the Roelcke compacti-
fication of the group. So certainly some hypothesis is necessary to obtain zero-
dimensionality.

The previous theorem, restated as follows, is useful to show that Hilbert-repre-
sentability is preserved under factors.

Corollary 4.6. Let A ⊂Hilb(G) be an invariant closed subalgebra, and let A1 ⊂ A
be the subalgebra of functions with finite range. Then A1 is dense in A.

Proposition 4.7. Let G be a pro-oligomorphic group. If f ∈ Hilb(G) has finite
range, then f ∈ B(G).

Proof. Suppose first that f is {0,1}-valued. By Proposition 3.6, we know that
f can be approximated in norm by a linear combination of {0,1}-valued matrix
coefficients m0, . . . ,mn−1 ∈ B(G), say∥∥∥f −∑

i<n

λimi

∥∥∥ < 1/2.

Hence there is a Boolean function b : {0,1}n → {0,1} such that b
(
(mi(g))i<n

)
= f (g)

for every g ∈ G. This implies that f can be written as a Boolean combination of
the matrix coefficients mi . Now it is enough to note that, first, the negation of
a {0,1}-valued function m ∈ B(G) is again in B(G), since we can write it as the
difference ¬m = 1−m, and, second, the conjunction of two {0,1}-valued functions
m0,m1 ∈ B(G) is again in B(G), since it is simply the product m0 ∧m1 = m0m1. We
conclude that f is a matrix coefficient.

Finally, it is clear that every f ∈ Hilb(G) of finite range is a linear combination
of {0,1}-valued functions in Hilb(G). Hence f ∈ B(G). �

We can finally give an answer to Question 1.9 for pro-oligomorphic groups.

Theorem 4.8. Let G be a pro-oligomorphic group. Every factor of H(G) is Hilbert-
representable.

Proof. Let A be a subalgebra of Hilb(G) and let A1 ⊂ A be the subalgebra of
functions with finite range. By Corollary 4.6 and Proposition 4.7, we have that

A1 is dense in A and contained in A∩ B(G). Hence A = A∩B(G) and, by Proposi-
tion 1.7, the factor of H(G) corresponding to A is Hilbert-representable. �



104 2. EBERLEIN OLIGOMORPHIC GROUPS

Corollary 4.9. Every semitopological semigroup factor of H(G) is ∗-closed and is
an inverse semigroup.

Proof. The first claim follows from the previous theorem and Proposition 2.9.
Now, any such G-factor H(G) → S must preserve the involution. It follows that
pp∗p = p for every p ∈ S , hence S is an inverse semigroup. �

It turns out that the converse of the above corollary also holds. The following
is a generalization of Theorem 3.11.

Theorem 4.10. Let S be a semitopological ∗-semigroup compactification of a pro-
oligomorphic group G. The following are equivalent:

(1) S is an inverse semigroup;
(2) the idempotents of S commute;
(3) S is Hilbert-representable.

Proof. The equivalence (1)⇔ (2) is exactly as in Theorem 3.11. The implica-
tion (3)⇒ (1) is clear, for example by the previous corollary.

(1)⇒ (3): Let A ⊂WAP(G) be the algebra generated by the union of A(S) and
Hilb(G). By Theorem 4.8, to prove (3), it is enough to show that A = Hilb(G).

Let SH be the compactification of G associated to the subalgebra A ⊂WAP(G).
It follows from Fact 2.3 and Remark 2.8 that SH is a semitopological ∗-semigroup
compactification. Since S and H(G) are inverse semigroups, so is SH . Indeed, if
q ∈ SH and f ∈ A(S) or f ∈ Hilb(G), then f (qq∗q) = f (q), for this holds in S and in
H(G); hence this holds for any f ∈ A, which shows that qq∗q = q.

Let φ0 : W (G)→ SH and φ1 : SH →H(G) be the canonical factor maps. We need
to show that φ1 is injective, so that SH = H(G). The proof of Theorem 3.11 shows
that the canonical factor map φ1φ0 : W (G)→H(G) is injective on the set of regular
elements ofW (G).

Let p ∈ W (G) be any element, and let P be the closed subsemigroup of W (G)
generated by p∗p. Then P∗ = P, so by [BT14], Lemma 3.6, there exists an idempo-
tent ep ∈ P such that the setW (G)ep is contained in every setW (G)s for s ∈ P. Then
W (G)ep ⊂W (G)p∗pep ⊂W (G)pep ⊂W (G)ep, soW (G)pep =W (G)ep. It follows from

Fact 2.12.(1) that ep = p
∗pep. We set σ(p) = pep, and we remark that σ(p) is regular.

We claim that φ1(σ(p)) = φ1(p). Since P is generated by p∗p, there is a sequence
ni < ω such that (p∗p)ni → ep. By continuity, φ1(p(p

∗p)ni ) → φ1(pep), but we also

have φ1(p(p
∗p)ni ) = φ1(p) since φ1 is a homomorphism and SH is an inverse semi-

group.
Finally, let q,q′ ∈ SH and suppose φ1(q) = φ1(q

′). Let p,p′ ∈ W (G) be any el-
ements with φ0(p) = q and φ0(p

′) = q′. The associated elements σ(p) and σ(p′)
are regular and have the same image in H(G), hence σ(p) = σ(p′). It follows that
q = q′. �

We point out that, even for the group of integers G =Z, a Hilbert-representable
semitopological semigroup compactification of G need not be an inverse semi-
group. The semigroup considered in [BLM01] serves as a counterexample.

To conclude, we give a bound on the complexity of the countable factors of
H(G).
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Proposition 4.11. Let Z ⊂ H be a countable, weakly compact subset of a Hilbert
space H. Denote D(Z) = {‖ξ − η‖ : ξ,η ∈ Z} and assume that D(Z) is finite. Then
D(Z ′) � D(Z) (here Z ′ is the Cantor–Bendixson derivative of Z). In particular, the
Cantor–Bendixson rank of Z is bounded by |D(Z)|.

Proof. Let δ = maxD(Z); we show that δ � D(Z ′). Suppose, towards a contra-
diction, that ξ,η ∈ Z ′ are such that ‖ξ−η‖ = δ. By translating Z , we can assume that
ξ = 0. Let ηn→w η with ηn distinct elements of Z . As δ is maximal, D(Z) is finite,
ηn →w η, and the norm is lower semicontinuous in the weak topology, we must
have that eventually ‖ηn‖ = ‖η‖. This, in turn, implies that ηn→ η in norm, which
means that ηn is eventually constant (again, since D(Z) is finite). This contradicts
the choice of the sequence ηn. �

Recall that aG-ambit (X,x0) is just a compactification ofGwhere x0 is the image
of 1. If X is countable then x0 must be isolated.

Corollary 4.12. Let G be a Roelcke precompact group and let (X,x0) be a Hilbert-
representable G-ambit. Then X is countable if and only if the stabilizer Gx0 is open, and
in this case we have

rankX ≤ |{Gx0gGx0 : g ∈ G}|.
Proof. Follows from Lemma 4.1 (and its proof) and Proposition 4.11. �
Note that the previous result is a generalization of the followingmodel-theoretic

fact, which follows from one-basedness: in an ℵ0-categorical ℵ0-stable theory, the
Morley rank of any finite tuple a is bounded by the number of distinct types tp(b/a)
with tp(b) = tp(a).

Question 4.13. Do countable ambits of pro-oligomorphic groups necessarily
have finite Cantor–Bendixson rank?

We remark that every countable compactification of a Roelcke precompact Pol-
ish group G is a factor of W (G). Indeed, since countable compact systems are
Asplund-representable (see, for instance, [GM06], Corollary 10.2), this follows from
[Iba14], Theorem 2.9.

Akin and Glasner [AG14] construct countable WAP Z-ambits of arbitrarily
high rank. But of course, the group Z is not pro-oligomorphic.





CHAPTER 3

Automorphism groups of randomized structures

Abstract. We study automorphism groups of randomizations of separable struc-

tures, with focus on the ℵ0-categorical case. We give a description of the auto-

morphism group of the Borel randomization in terms of the group of the original

structure. In the ℵ0-categorical context, this provides a new source of Roelcke

precompact Polish groups, and we describe the associated Roelcke compactifica-

tions. This allows us also to recover and generalize preservation results of stable

and NIP formulas previously established in the literature, via a Banach-theoretic

translation. Finally, we study the separable models of the theory of beautiful pairs

of randomizations, and we show that this theory is in general not ℵ0-categorical.
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Introduction

A randomization of a structureM is a metric structure whose elements are ran-
dom variables taking values onM , and whose predicates account for the expected
values of the original predicates ofM . The idea goes back to Keisler [Kei99], where
it was developed in a classical first-order framework. Later, in [BK09], Keisler and
Ben Yaacov adapted the construction so that randomizations could be regarded as
metric structures (that is, in the sense of continuous first-order logic), and with this

107
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approach they proved several preservation results, supporting the claim that this
is the correct frame to develop the idea.

The construction was further adapted by Ben Yaacov in [Ben13b], so that ran-
domizations of metric structures could also be considered. In [Ben09], another
important and difficult preservation result was proved, concerning NIP formulas.
Further model-theoretic analysis of randomized structures have been carried out
in [AGK15a, AK15, AGK15b].

In the present work, we approach the subject from the viewpoint of descriptive
set theory. Our main motivation is the study of the symmetries of randomized
structures. More precisely, we describe and study the automorphism group of the
Borel randomization of a separable metric structure. This is the most basic example
of a randomization, yet encompassing most of the intuition of the subject. IfM is
a separable structure with automorphism group G, then the automorphism group
of its Borel randomizationMR is a measurable wreath product,

G 
Ω � L0(Ω,G)�Aut(Ω),

where Ω denotes a standard probability space. For instance, the symmetry group
of a randomized countable set, NR, is the semidirect product of the random per-
mutations of N and the measure-preserving transformations of Ω.

The group G 
Ω, induced by a given Polish group G, is an interesting object
in itself. It had already been considered by Kechris in [Kec10, §19ff.]. Here, we
investigate in detail the continuous actions of G 
Ω induced by actions of G. First,
in Section 2, we study the isometric actions of G 
Ω of this kind. We show that
every approximately oligomorphic faithful action of G induces an approximately
oligomorphic faithful action of G 
Ω. In particular, if G is Roelcke precompact,
then so is G 
Ω. Afterwards, we make the link with the automorphism groups of
randomized structures, as explained above.

Later, in Section 3, we investigate some compact G 
Ω-flows. This corresponds
to the study of type spaces in randomized structures. When G is Roelcke pre-
compact, we give an explicit description of the Roelcke compactification of G 
Ω,
denoted by R(G 
Ω), in terms of R(G). Furthermore, we show how some eventual
properties of R(G) (existence of a compatible semigroup law, representability by
contractions on Hilbert spaces) pass on to R(G 
Ω). We also prove a general preser-
vation result concerning Banach representations of randomized type spaces.

If M is the separable model of an ℵ0-categorical theory T , then most of the
model-theoretic information of T is coded by dynamical properties of G = Aut(M),
as per the recent works [BT14, Iba14, BIT15]. On the other hand, the randomized
theory TR is also ℵ0-categorical; hence, in this case, the Borel randomization en-
compasses all the model-theoretic information of TR, and this can be recovered
from the group G 
Ω. The preservation results of Section 3 get then a precise
model-theoretic meaning, and allow us to give new proofs (in the ℵ0-categorical
setting) of the theorems of preservation of stability and NIP from [BK09, Ben13b]
and [Ben09].

Finally, in Section 4, we come back to more model-theoretic concerns, and we
study the theory (TR)P of beautiful pairs of models of a randomized theory TR.
This is motivated by the results of [BBH14] on the problem of generalizing the
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notion of one-basedness to the metric setting. When T is ℵ0-categorical, we clas-
sify the separable models of (TR)P , and show in particular that (TR)P is never ℵ0-
categorical (except when T is the theory of a compact structure). We also extend
to the metric setting the result of preservation of ℵ0-stability from [BK09]. We
end with a description of the automorphism groups of some canonical models of
(TR)P .
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1. Preliminaries

1.1. Notation. Throughout the paper we fix an atomless Lebesgue space Ω,
say the unit interval [0,1] with Lebesgue measure μ.

If (X,d) is a Polish, bounded, metric space, then

XΩ � L0(Ω,X)

will denote the space of random variables r : Ω→ X (where X carries the Borel σ-
algebra), up to equality almost everywhere, endowedwith the induced L1-distance,

dΩ(r, s)�
∫
d(r(ω), s(ω))dμ(ω).

IfX is just a topological Polish space, thenwemay choose any compatible, bounded

distance d and define XΩ to be space L0(Ω,X) with the topology induced by dΩ .
This is independent of the choice of d: a sequence rn converges to r in XΩ if and
only if every subsequence of rn has a further subsequence that converges almost

surely to r. In both cases, as a metric or a topological space, XΩ is Polish. See, for
instance, [LM14, Annexe C] or [Kec10, §19].

An important particular case is the metric space X = [0,1]. Throughout the
paper, we denote

A� [0,1]Ω = L0(Ω, [0,1]).

Thus, the metric on A is given by E|R − S |, where E : A→ [0,1] is the expectation
function ER =

∫
R(ω)dμ(ω).

In the previous constructions, Ω might be replaced, later, by the unit square

Ω2. We remark that XΩ0×Ω1 is naturally isomorphic to (XΩ1)Ω0 via the natural
map r �→ r̃, r̃(ω0)(ω1) = r(ω0,ω1). For a proof, see [Fre06, 418R].

Given a compact metrizable space K , we will denote byR(K) the compact space
of Borel probability measures on K . The topology is the weak∗ topology as a subset
of the dual space of continuous functions on K .
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1.2. Ameasurable wreath product. We denote by Aut(Ω) the group of invert-
ible measure-preserving transformations of Ω, up to equality almost everywhere.

If X is a Polish space, then Aut(Ω) acts on XΩ by the formula

(tr)(ω) = r(t−1(ω)),

where t ∈ Aut(Ω) and r ∈ XΩ . If (X,d) is metric, then this action is by isometries on

(XΩ ,dΩ). In particular, Aut(Ω) can be seen as a subgroup of the isometry group of
A, which is a Polish group under the topology of pointwise convergence. With the

induced topology, Aut(Ω) is a Polish group. In addition, the action Aut(Ω)� XΩ

is continuous.
Given a Polish group G, the space GΩ is also a Polish group with the operation

of pointwise multiplication. Hence we have an action of Aut(Ω) on the group GΩ .

In this case, given g ∈ GΩ and t ∈ Aut(Ω), we will denote the action of t on g by t ·g .
(When Aut(Ω) and GΩ act simultaneously on a space Z , the term tg will denote
their product as homeomorphisms of Z .)

We introduce the following definition.

Definition 1.1. The measurable wreath product of G and Aut(Ω) is the semidi-
rect product

G 
Ω � GΩ �Aut(Ω),

which is a Polish group endowed with the product topology.

If G acts continuously on a Polish space X, then GΩ acts continuously on XΩ ,
by the formula

(gr)(ω) = g(ω)(r(ω)),

where g ∈ GΩ and r ∈ XΩ . Note that gr is indeed a random variable: if U ⊂ X is
open and {Ui}i∈N is a countable base for the topology of X, then

(gr)−1(U ) =
⋃
i∈N

(
r−1(Ui)∩ g−1({h ∈ G : h(Ui) ⊂U})

)
,

which is a measurable set since {h ∈ G : h(Ui) ⊂ U } = {h ∈ G : h−1(Uc) ⊂ Uc
i } is

a closed subset of G. That the action GΩ � XΩ is continuous can be deduced
from the fact that gnrn converges almost surely to gr if gn and rn converge almost
surely to g and r. If moreover the action G � (X,d) is by isometries, then so is

GΩ � (XΩ ,dΩ).
Now, given a continuous action G � X, we have, simultaneously, continuous

actions of Aut(Ω) and GΩ on XΩ . These induce a continuous action G 
Ω � XΩ .

Indeed, inside the group of homeomorphisms of XΩ , the elements t ∈ Aut(Ω),

g ∈ GΩ satisfy the relation t · g = tgt−1.
We say that an action by isometries G � (X,d) is faithful if the corresponding

group homomorphism G→ Iso(X) is a topological embedding. Here, Iso(X) is the
isometry group of X with the topology of pointwise convergence.

Lemma 1.2. Let G be a Polish group acting continuously by isometries on a Polish
metric space (X,d) with at least two elements. If the action is faithful, then so is the

induced action G 
Ω � (XΩ ,dΩ).
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Proof. The action Aut(Ω) � (XΩ ,dΩ) is faithful since X has at least two ele-
ments (we omit the details). Since the action G � (X,d) is faithful, we see that a

sequence in GΩ converges to the identity if and only if every subsequence has a
further subsequence gn such that, almost surely, gn(ω)(x) converges to x for every

x ∈ X. Let D ⊂ X be a countable dense subset and let C ⊂ XΩ be the family of

constant random variables taking a value from D. It follows that gn → 1 in GΩ if

and only if dΩ(gnc,c) → 0 for every c ∈ C. In particular, the action GΩ � XΩ is
faithful.

To see that the action G 
Ω � XΩ is faithful we must check that, whenever
gntn→ 1 in Iso(XΩ) for gn ∈ GΩ and tn ∈ Aut(Ω), we have gn→ 1 and tn→ 1. Now,

if dΩ(gntnr, r)→ 0 for every random variable r, specializing on the constants c ∈ C
(which are fixed under Aut(Ω)) we see that gn→ 1. Then also tn→ 1. �

1.3. Semigroup completions. Let G be a Polish group, and let dL be a left-
invariant compatible metric on G, which exists by the Birkhoff–Kakutani theorem
(see [Ber74, p. 28]). The completion of G with respect to dL will be denoted by

ĜL. Then, the group law on G extends to a jointly continuous semigroup operation

on ĜL. As a topological semigroup, ĜL does not depend on the particular choice
of dL (it is the completion of G with respect to its left uniformity). Similarly, the
completion of G with respect to a compatible right-invariant metric dR will be

denoted by ĜR, and is also a topological semigroup. The inverse operation on G
extends to a homeomorphic anti-isomorphism ∗ : ĜR→ ĜL.

The right completion of the group Aut(Ω) is the semigroup End(Ω) of measure-
preserving transformations ofΩ, up to equality almost everywhere (we will revisit
this fact later). Then, given any Polish metric space (X,d), the left completion

End(Ω)∗ acts by isometries on (XΩ ,dΩ) by the formula (s∗r)(ω) = r(s(ω)), where

s ∈ End(Ω), r ∈ XΩ .

Lemma 1.3. Let G be a Polish group. Then, the left completion of G 
 Ω is the

topological semigroup (ĜL)
Ω �End(Ω)∗.

Proof. Fix a compatible left-invariant metric dL on the left completion ĜL,
and consider the induced metric dΩL on (ĜL)

Ω . Since (ĜL,dL) is complete, so is

((ĜL)
Ω ,dΩL ) (see [Kec10], Proposition 19.6). Let dΩ be a compatible left-invariant

metric dΩ on End(Ω)∗. Then, the metric d = dΩL + dΩ is a complete, left-invariant

metric on (ĜL)
Ω � End(Ω)∗, compatible with the topology of G 
Ω. Since G 
Ω is

moreover dense in (ĜL)
Ω �End(Ω)∗, this must be its left completion. �

1.4. Borel randomizations. Given a structure or a class of models of a certain
first-order theory, there are several ways of producing randomizations from them.
For the most part of this paper, however, we will only be interested in one par-
ticular construction, which can be considered the basic, canonical example of a
randomization. In the ℵ0-categorical setting, which is of particular interest to us,
this is actually the one and only example one needs to consider, since randomiza-
tions preserve separable categoricity.
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Unless otherwise stated, all structures and theories we consider are in the sense
of first-order continuous logic, as per [BU10, BBHU08]. (Traditional discrete struc-
tures and theories, which form a particular case, are refer to as classical.) In par-
ticular, structures are complete metric spaces. Furthermore, we assume all our
structures to be separable in a countable language.

LetM be a metric structure with at least two elements, in a language L, which
we shall assume to be one-sorted for simplicity. We introduce below the Borel
randomization of M , denoted in this paper by MR, which is a structure in a two-

sorted language LR. We have borrowed the name from [AK15], Definition 2.1,
although, there, the term refers to the natural pre-structure whose completion
givesMR; also, they only define it for classicalM .

The main sort ofMR is the metric space (MΩ ,dΩ), and the auxiliary sort ofMR

is the spaceA with its natural metric. For each definable predicate ϕ : Mn→ [0,1]
there is a definable function

�ϕ(x)� : (MΩ)n→A,

given by

�ϕ(r)�(ω) = ϕ(r(ω)),

where r ∈ (MΩ)n � (Mn)Ω . In addition, the auxiliary sort A is equipped with a
predicate for the expectation function

E : A→ [0,1],

and with definable functions for the basic arithmetic operations between random
variables, which in fact permit to define all continuous pointwise-defined func-
tions An → A ([Ben13b], Lemma 2.13). Thus, as a reduct, A is a model of the
theory of [0,1]-valued random variables, in the sense of [Ben13b, §2].

For a syntactical presentation and an explicit description of the language LR,
see [Ben13b, §3] or, in the classical setting, [BK09, §2]. Let T denote the first-order
theory of M in the language L. Then, the randomization theory TR is the theory of

MR in the language LR.

Proposition 1.4. The theory TR has quantifier elimination. More precisely, if x and
y are tuples from the main and the auxiliary sort, respectively, then the TR-type of xy is
determined by the values Eτ(x,y) where τ(x,y) ∈A is a term on xy, that is, the result
of applying any operations of the auxiliary sort to any random variables from y and any
random variables of the form �ϕ(x)� for an L-formula ϕ.

Proof. See [Ben13b, §3.5]. �

One could present the Borel randomization MR as a structure in the sort MΩ

alone, by considering as predicates the functions E�ϕ(x)�. However,A would then
be present as an imaginary sort (and a very important one, which justifies to make
it a sort in its own right). Remark, in this respect, that the structure MALGμ, the

measure algebra of Ω (which can be thought of as 2Ω), is bi-interpretable with A

(see [Ben13b, §2]).
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1.5. Bochner spaces. Let V be a Banach space, which we will assume to be
separable. The Bochner space L2(Ω,V ) is the space of measurable functions f : Ω→
V , modulo equality almost everywhere, for which the norm

‖f ‖2�
(∫

‖f (ω)‖2V dω
)1/2

is finite. Equipped with this norm, L2(Ω,V ) is a Banach space.
If G is a Polish group and G � V is a continuous action by isometries, then

the action GΩ � VΩ (defined topologically, since the norm metric on V is not
bounded) restricts to an isometric action on L2(Ω,V ). Similarly for the action of
Aut(Ω). Thus, we obtain an isometric continuous action G 
Ω � L2(Ω,V ).

We recall a description of the dual space L2(Ω,V )∗. This can be identified with

the space L2w∗(Ω,V
∗) of weakly∗ measurable functions ψ : Ω → V ∗, modulo equal-

ity almost everywhere, for which there exists h ∈ L2(Ω) with ‖ψ(ω)‖V ∗ ≤ h(ω) for
almost every ω. There is a natural linear map L2w∗(Ω,V

∗) → L2(Ω,V )∗, defined
implicitly by the relation

〈f ,ψ〉 =
∫
〈f (ω),ψ(ω)〉dω

for f ∈ L2(Ω,V ) and ψ ∈ L2w∗(Ω,V ∗). This is in fact a bijection; see [CM97, §1.5].
We endow the space L2w∗(Ω,V

∗) with the weak∗ topology as the dual of L2(Ω,V ).
Every isometric continuous action G� V induces a dual action G� V ∗, given

by 〈v,gψ〉 = 〈g−1v,ψ〉 for v ∈ V and ψ ∈ V ∗. This action is continuous for the weak∗

topology on V ∗. In particular, we have a continuous action G 
Ω � L2w∗(Ω,V
∗),

which satisfies the relation (gtψ)(ω) = g(ω)(ψ(t−1(ω))) for g ∈ GΩ , t ∈ Aut(Ω) and

ψ ∈ L2w∗(Ω,V ∗).

2. Actions on randomized metric spaces

2.1. Quotients of isometric actions. If G � (X,d) is an action by isometries,
we define the metric quotient of X by G as the space of orbit closures

X �G� {Gx : x ∈ X}
endowed with the distance d(Gx,Gy) = infg∈G d(x,gy). If (X,d) is a Polish metric

space, then so is (X �G,d). The action G� (X,d) is approximately oligomorphic if
the metric quotient Xn �G of the diagonal action G � (Xn,d) is compact for all

n ∈ N. Equivalently, if the metric quotient XN �G is compact. Here, the metric

d on Xn or XN is any compatible distance for which the diagonal action of G is
isometric.

A Polish group G is Roelcke precompact if it admits a faithful approximately
oligomorphic action on a Polish metric space (X,d) (this is actually an equivalent
property, we will recall the original definition in §3.1). For example, the group
Aut(Ω) is Roelcke precompact and the action Aut(Ω)�A is approximately oligo-
morphic. See [BT14, Ben13b].

Let π : X → Y be a surjective map between topological spaces. A Borel selector
for π is a measurable map σ : Y → X such that πσ is the identity of Y .
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Lemma 2.1.

(1) Let G � (X,d) be an action by isometries on a Polish metric space X. Then,
the quotient map π : X→ X �G admits a Borel selector.

(2) Let π : K0 → K1 be a continuous surjective map between compact metrizable
spaces. Then π admits a Borel selector.

Proof. (1). We adapt the proof of Theorem 12.16 from [Kec95]. Let F(X) be the
Effros Borel space of closed subsets of X with the σ-algebra generated by the sets
[U ] = {F ∈ F(X) : F ∩U � ∅}, where U varies over the open subsets of X. As a set,
the quotient X �G is contained in F(X). Moreover, we have [U ]∩ (X �G) = π(U ),
which is an open subset of X�G if U is open in X. Indeed, let u ∈U and take ε > 0
such that d(u,v) < ε implies v ∈ U . Then, if d(π(u),π(x)) < ε, there is g ∈ G such
that d(u,gx) < ε, whence π(x) = π(gx) ∈ π(U ). It follows that A∩ (X �G) is a Borel
subset of X �G whenever A is Borel in F(X).

Now, by Theorem 12.13 in [Kec95], there is a measurable map d : F(X) → X
such that d(F) ∈ F for every non-empty closed set F ⊂ X. The restriction of d to
X �G is thus a Borel selector for π.

(2). As before, we know that there is a measurable map d : F(K0) → K0 with
d(F) ∈ F for F � ∅, thus it suffices to show that the fiber map π−1 : K1 → F(K0) is
measurable. Then again, if F ⊂ K0 is any subset, we have (π−1)−1([F]) = π(F). Now,
the σ-algebra of F(K0) is also generated by the sets [F] where F varies over the
closed subsets of K0. Since K0 is compact and π is continuous, π(F) is closed if F is
closed, so the fiber map is measurable. �

Remark that if G has a normal Polish subgroup N , then any isometric action

G� (X,d) induces an isometric action G� (X�N,d), by the formula gNx =Ngx.

Lemma 2.2. Let G be a Polish group and let G� (X,d) be an action by isometries
on a Polish metric space. Suppose G can be written as a product G = NH for Polish
subgroupsN,H < G withN normal in G. Then we have the following natural isometric
isomorphisms:

(1) X �G � (X �N )�H .

(2) XΩ �GΩ � (X �G)Ω .
(3) XΩ � (G 
Ω) � (X �G)Ω �Aut(Ω).

Proof. (1). We verify that the map Gx �→HNx is isometric. Indeed,

inf
h∈H

d(Nx,hNy) = inf
h∈H

d(Nx,Nhx) = inf
n∈N

inf
h∈H

d(x,nhx) = inf
g∈G

d(x,gx).

(2). The isomorphism is given by GΩr �→ r ′, where, for r ∈ XΩ , we let r ′ ∈ (X �

G)Ω be the random variable defined almost surely by r ′(ω) = Gr(ω). Lemma 2.1.(1)
ensures this map is surjective. We verify that it is isometric. Indeed, we have

dΩ(r ′, s′) = E inf
g∈G

d(r,gs) = inf
g∈GΩ

dΩ(r,gs) = dΩ(GΩr,GΩs),

where the second identity can be seen by approximating r, s ∈ XΩ by random vari-
ables of finite range.

(3). Follows from (1) and (2). �
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Proposition 2.3. Suppose G is a Polish group acting approximately oligomorphi-

cally on a Polish metric space (X,d). Then, the induced action G 
Ω � (XΩ ,dΩ) is also
approximately oligomorphic.

Proof. Since (XΩ)n � (Xn)Ω , by the previous lemma we have

(XΩ)n � (G 
Ω) � KΩ �Aut(Ω),

where the quotientK = Xn�G is assumed to be compact. As such, K is a continuous

image of the Cantor space, i.e., there exists a continuous surjective map 2N →
K . This induces a natural continuous map (2N)Ω → KΩ , which is surjective by

Lemma 2.1.(2). Finally, this gives us a continuous surjectivemap (2Ω)N�Aut(Ω)→
KΩ �Aut(Ω). Since the action Aut(Ω)� 2Ω is approximately oligomorphic (2Ω is

a closed subset of A), we deduce that KΩ �Aut(Ω) is compact, as we wanted. (In

other words, KΩ is an imaginary sort of the ℵ0-categorical structure A.) �

Corollary 2.4. If G is a Polish Roelcke precompact group, then so is G 
Ω.

Proof. Follows from the previous proposition and Lemma 1.2. �

It is true in general that the semidirect product of two Roelcke precompact
groups is again Roelcke precompact (see [Tsa12], Proposition 2.2), but in our case

GΩ is not expected to be Roelcke precompact. For instance, if G = 2 is the finite

group with 2 elements, then GΩ is non-compact and abelian, thus not Roelcke

precompact. In fact, the group GΩ alone may have rather unusual properties; see
[KLM15].

It will be useful to have an explicit description of the quotients KΩ �Aut(Ω)
for compact K : the orbit closures of compact-valued random variables should be
seen as probability distributions.

Lemma 2.5. Let (K,d) be a compact metric space, and consider the induced action

Aut(Ω) � (KΩ ,dΩ). Then, the quotient KΩ �Aut(Ω) is homeomorphic to the space
R(K) of Borel probability measures on K .

Proof. Let π : KΩ → KΩ � Aut(Ω) be the quotient map. Given r ∈ KΩ , the
pushforward of the Lebesgue measure by r is the measure r∗μ ∈ R(K) defined by∫
K
f dr∗μ =

∫
Ω
f rdμ. We consider the map θ : π(r) �→ r∗μ, which is clearly well-

defined and continuous.
Suppose r∗μ = s∗μ. Then, given any finite algebra B of Borel subsets of K , the

preimages r−1(B) and s−1(B) are isomorphic measure algebras. Hence, by the ho-
mogeneity of MALGμ, there is t ∈ Aut(Ω) such that t−1(r−1(B)) = s−1(B). By duality,

this yields π(r) = π(s), so θ is injective. Conversely, given any measure ν ∈ R(K),
the associated measure algebra MALG(K,ν) is separable, thus it embeds into the
measure algebra of Ω. By duality, this induces a measure preserving transforma-
tion rν : Ω → (K,ν), that is, (rν)∗μ = ν. Hence, θ is a continuous bijection. Since

KΩ �Aut(Ω) is compact, it is moreover a homeomorphism. �

Before passing to the next section we record the following expected counter-
point to the previous facts.
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Lemma 2.6. Let (X,d) be a Polish metric space and let G ≤ Iso(X,d) be any Polish

subgroup of isometries of X. We may see G as the subgroup of constant elements of GΩ .

Then, the quotient XΩ � (G ×Aut(Ω)) is compact if and only if X is compact.

Proof. We already know one implication. For the converse, ifX is not compact,
let xi ∈ X, i ∈ N, be such that d(xi ,xj ) > ε for i � j . For n ∈ N, let {Ani }i<2n be a

partition of Ω by sets of measure 1/2n. Take rn =
∑
i<n xiχAni . We claim that the

sequence rn has no convergent subsequence in XΩ �G ×Aut(Ω).

Suppose for a contradiction that there are a subsequence r̃n = rm(n), Ã
n
i = A

m(n)
i ,

and elements gn ∈ G, tn ∈ Aut(Ω) such that gntnr̃n =
∑
i<m(n) gnxiχtnÃni converges

in XΩ to a random variable r. Let δ = ε/16. For some N we have
∫
d(r, r̃n)dμ < δ

whenever n ≥ N . By Chebyshev’s inequality, the set A ⊂ Ω where we have simul-
taneously d(r, r̃N ) ≤ 4δ and d(r, r̃N+1) ≤ 4δ has measure μ(A) > 1/2. We can deduce

that there are i, j,k, j � k, such that both A ∩ ÃNi ∩ ÃN+1
j and A ∩ ÃNi ∩ ÃN+1

k are

non-empty; say ωj is in the former intersection and ωk in the latter. Then

ε < d(gN+1xj ,gN+1xk) = d(r̃N+1(ωj ), r̃N+1(ωk)) ≤ 8δ + d(r(ωj ), r(ωk))

≤ 16δ + d(r̃N (ωj ), r̃N (ωk)) = ε + d(gNxi ,gNxi) = ε,

a contradiction. �

2.2. The automorphism group of the Borel randomization. In this subsec-
tion we fix a (separable, metric) logic structureM , with at least two elements. The
automorphism group of M , Aut(M), is a Polish subgroup of the group of isome-
tries of M (that is, with the topology of pointwise convergence). For simplicity of
notation we will denote G = Aut(M).

Let MR be the Borel randomization of M , and let GR = Aut(MR). The groups

GΩ and Aut(Ω) act faithfully on MΩ , the main sort of MR. Additionally, Aut(Ω)

acts on the auxiliary sort A, and we can consider the trivial action of GΩ on A,

i.e., each g ∈ GΩ acts as the identity of A. Combining the actions on each sort,

we obtain actions GΩ �MR, Aut(Ω) �MR, which are clearly by isomorphisms.

Using Lemma 1.2, we deduce that G 
Ω is a topological subgroup of GR.

Lemma 2.7. If g ∈ GR is the identity on the auxiliary sort, then g ∈ GΩ .

Proof. If g is the identity on the auxiliary sort, then for every L-formula ϕ and

random variable r ∈MΩ we have �ϕ(gr)� = g�ϕ(r)� = �ϕ(r)�, that is,

(1) ϕ((gr)(ω)) = ϕ(r(ω)) for almost every ω.

Let D ⊂M be a countable dense subset and consider C ⊂MR the family of con-
stant random variables taking a value from D. Since the language L is countable,
by (1) we have

ϕ((gc)(ω)) = ϕ(c)

for every formula ϕ, every tuple c from C and every ω in a common full-measure
set F ⊂Ω. Now, for ω ∈ F and c ∈D we define

g(ω)(c)� (gc)(ω)
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(where the c on the right is the corresponding constant function on C), and this
induces and elementary map g(ω) : D → M , which extends by continuity to an
endomorphism ofM .

Next we check that, for every r ∈MΩ ,

(2) (gr)(ω) = g(ω)(r(ω)) for almost every ω.

By (1), for each r ∈MΩ there is a full-measure subset F ′ ⊂ F such that

d(gr(ω), gc(ω)) = d(r(ω), c)

for every c ∈ C and ω ∈ F ′. Let ω ∈ F ′, and take a sequence cn ∈ C such that
cn→ r(ω). Then we have d(gr(ω), gcn(ω)) = d(r(ω), cn)→ 0, and on the other hand
gcn(ω) = g(ω)(cn)→ g(ω)(r(ω)). That is to say, gr(ω) = g(ω)(r(ω)). This proves (2).

Note that g(ω) is surjective (i.e., g(ω) ∈ G) for almost every ω. Indeed, since the
image of g(ω) is closed, it is enough to see that it contains D. But for a constant

c ∈ C we have, by (2), g(ω)(g−1c(ω)) = g(g−1c(ω)) = c(ω) = c for every ω in a full-
measure set that depends on c. Since D is countable, we are done.

Finally, we check that the map ω ∈ F ⊂ Ω �→ g(ω) ∈ G is measurable, which

shows that it belongs to GΩ . It is enough to see that, for every c,d ∈ D and ε > 0,
the set A = {ω ∈ F : d(g(ω)(c),d) < ε} is measurable. This is clear, since A = {ω ∈ F :

d(gc(ω),d) < ε} and gc ∈MΩ is measurable. �
Let Aut(A) be the automorphism group of A as a reduct ofMR. Now, it is easy

to check that the map t ∈ Aut(Ω) �→ t∗ ∈ Aut(A) is surjective, where (t∗R)(ω) =
R(t(ω)) for R ∈A. (That is, the left actions Aut(Ω)�A and Aut(A)�A are anti-
isomorphic; remark also that, as topological groups, Aut(Ω) � Aut(A), since every
group is anti-isomorphic to itself.)

Theorem 2.8. For every separable structureM we have Aut(MR) = Aut(M) 
Ω.

Proof. We have already established that G 
Ω is a topological subgroup of GR.
Let σ ∈ GR. The restriction of σ to the auxiliary sort induces an automorphism of
A, say t∗ for t ∈ Aut(Ω). Let g = σt. Then g is the identity on the auxiliary sort, so

by the previous lemma we have g ∈ GΩ . We conclude that GR is the product of GΩ

and Aut(Ω), so the proof is complete. �
As an application we get a new proof of the following preservation result of

[BK09, Ben13b]. Recall that M is ℵ0-categorical if every separable model of its
first-order theory is isomorphic toM .

Corollary 2.9. IfM is ℵ0-categorical, then so isMR.

Proof. By the continuous version of the theorem of Ryll-Nardzewski, a struc-
ture N is ℵ0-categorical if and only if the action Aut(N ) � N is approximately
oligomorphic (see [BT14, §5]). Thus, the result follows from the previous theorem
and Proposition 2.3. �

In addition to the automorphism group ofM , one can consider the topological
semigroup of endomorphisms (elementary self-embeddings) of M , which we de-
note by End(M). For ℵ0-categorical structures we have the following pleasant fact,
observed in [BT14, §2.2].
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Proposition 2.10. SupposeM is ℵ0-categorical, G = Aut(M). Then ĜL = End(M),
that is, End(M) is the left completion of Aut(M).

Proof. See [BIT15], Fact 2.14. The proof adapts readily to the case of metric
structures, as per [BT14], Lemma 2.3. �

For instance, the left completion of Aut(Ω) � Aut(A) is End(A), and the latter
is anti-isomorphic to End(Ω) by the map t ∈ End(Ω) �→ t∗ ∈ End(A). This shows
that End(Ω) is the right completion of Aut(Ω).

Corollary 2.11. LetM be anℵ0-categorical structure,G = Aut(M). Then End(MR) =�(GR)L = End(M)Ω �End(Ω)∗.

Proof. Combine Corollary 2.9, Theorem 2.8, Proposition 2.10 and Lemma 1.3.
�

Remark 2.12. SupposeM is ℵ0-categorical. SinceM
R is ℵ0-categorical too, the

elementary submodels of MR are the images of its elementary self-embeddings.
We deduce from the previous corollary that (the main sort of) a submodel of MR

consists of random variables of the form hs∗r for r ∈ MΩ and some fixed pair

h ∈ End(M)Ω , s ∈ End(Ω). In other words, a submodel is given by choosing (mea-
surably) for each ω ∈Ω a submodelMω ≺M (the image of h(ω)), then considering
all sections Ω →⋃

ω∈ΩMω that are measurable with respect to a fixed factor of Ω
(the σ-algebra generated by s).

3. Randomized compactifications

3.1. The Markov randomization. The results of the previous section support
the view that the randomization of an isometric action G� (X,d) should be con-

sidered to be the action G 
Ω � (XΩ ,dΩ). A natural question is what should be
considered the randomization of a G-flow, that is, of a continuous action G � K
on a compact space. Seemingly, there is not a canonical answer for this question.
In this subsection, we will introduce a construction that provides a satisfactory
answer for the Roelcke compactification of Roelcke precompact Polish groups.

Let G be a Polish group, ĜL its left completion. As observed in [BT14, §2.1], the
metric quotient R(G) = (ĜL × ĜL)�G can be identified with the Roelcke completion
of G. Note that R(G) is a Polish space, and G acts continuously on it by the formula

gG(x,y) = G(xg−1, y),

where g ∈ G and x,y ∈ ĜL. Theorem 2.4 in [BT14] shows that G admits a faithful
approximately oligomorphic action if and only if R(G) is compact (i.e., G is Roelcke
precompact). In that case, we call R(G) the Roelcke compactification of G.

Given a compact metrizable space K and a probability measure λ ∈ R(Ω ×K),
we will denote by λ|Ω the pushforward of λ by the projection Ω ×K →Ω. In what
follows, we fix two copies Ω0 and Ω1 of Ω; we still denote the Lebesgue measure
on each of them by μ.
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Definition 3.1. Let K be a compact metrizable space. We define the Markov
randomization of K as the compact space

M(Ω,K)� {λ ∈ R(Ω0 ×K ×Ω1) : λ|Ω0
= μ, λ|Ω1

= μ}.
For instance, if 1 denotes the one-point space, thenM(Ω,1) is just the space of

self-joinings of the Lebesgue measure, which can be identified with the space of
Markov operators of L2(Ω) (see, for instance, [Gla03, Ch. 6, §2]).

IfG� K is a continuous action of a Polish group onK , thenwe have an induced
continuous action G 
Ω �M(Ω,K). In order to describe it, we observe first that
we can identify

M(Ω,K) � E �Aut(Ω),

where E = {(s,k, r) ∈ (Ω0 × K × Ω1)
Ω : s∗μ = μ, r∗μ = μ}, and Aut(Ω) acts on it

by restriction of the action Aut(Ω) � (Ω0 × K × Ω1)
Ω . Indeed, the identifica-

tion follows from a straightforward adaptation of the proof of Lemma 2.5; the
measure λ corresponding to the class of a triple (r,k, s) is defined by the relation∫
f dλ =

∫
f (r,k, s)dω, for f ∈ C(Ω0 ×K ×Ω1). Next, we remark that E is naturally

homeomorphic to the product End(Ω) ×KΩ × End(Ω). The corresponding action
of Aut(Ω) is given by t · (s,k, r) = (st−1, kt−1, rt−1), for t ∈ Aut(Ω), s, r ∈ End(Ω) and

k ∈ KΩ . Hence, by considering the quotient with respect to this action, we have

M(Ω,K) �
(
End(Ω)×KΩ ×End(Ω)

)
�Aut(Ω).

Let us denote by [s,k, r] ∈ M(Ω,K) the image by the previous homeomorphism of

the class of the triple (s,k, r). Then, given t ∈ Aut(Ω), g ∈ GΩ , we have natural
actions

t[s,k, r]� [ts,k, r], g[s,k, r]� [s, (s∗ · g)k, r].
Here, (s∗ ·g)k(ω) = g(s(ω))(k(ω)). These actions are compatible with the multiplica-

tion law of the semidirect product of GΩ and Aut(Ω), thus they induce an action
G 
Ω �M(Ω,K), which is moreover continuous.

Theorem 3.2. Let G be a Polish Roelcke precompact group. Then we have a G 
Ω-
equivariant homeomorphism

R(G 
Ω) �M(Ω,R(G)).

Proof. Using Corollary 1.3 and Lemma 2.2,

R(G 
Ω) �
(
(ĜL)

Ω ×End(Ω)∗ × (ĜL)Ω ×End(Ω)∗
)
� (G 
Ω)

�
(
End(Ω)∗ ×

(
(ĜL × ĜL)Ω �GΩ

)
×End(Ω)∗

)
�Aut(Ω)

�
(
End(Ω)×R(G)Ω ×End(Ω)

)
�Aut(Ω)

�M(Ω,R(G)).

It is easy to verify that the given homeomorphism respects the actions of G 
Ω. �

We remark next that the Markov randomization behaves well with respect to
semitopological semigroups. Recall that a topological space with a semigroup law is
semitopological if multiplication is separately continuous.
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Let S be a compact metrizable semitopological semigroup. Then, the space SΩ

is a semitopological semigroup with pointwise multiplication. Notice that, since
S is separable metrizable, then the product in S , being separately continuous, is

in fact jointly measurable. Hence the pointwise product of two elements of SΩ is

again in SΩ .
Now we can define a product on M(Ω,S), as follows. Given λ,ν ∈ M(Ω,S),

it is always possible to find t, s, r ∈ End(Ω) and p,q ∈ SΩ such that λ = [t,p, s], ν =
[s,q, r], and such that the σ-algebra onΩ generated by t,p is relatively independent
from the σ-algebra generated by q, r over the σ-algebra generated by s. Then, we
set

λν � [t,pq, r].

The relative independence condition ensures the good definition. Alternatively,
the measure λν can be defined by the formula∫

f dλν =

�
f (ω0,xy,ω1)dλ

ω(ω0,x)dνω(y,ω1)dω

for f ∈ C(Ω0 × S ×Ω1), where λω, νω are given by the disintegrations of λ, ν over
Ω1 and Ω0, respectively, i.e.,

λ =

∫
λω1 × δω1

dω1, ν =

∫
δω0

× νω0
dω0.

The product thus defined is associative and separately continuous; we omit the
(routine) verification. Hence we have the following.

Proposition 3.3. If S is a compact, metrizable, semitopological semigroup, then so
isM(Ω,S), with the product defined above.

In particular, if the Roelcke compactification is a semitopological semigroup
(that is, if it admits a semitopological semigroup law compatible with the group
law of G), then R(G 
 Ω) is a semitopological semigroup too (compatible with
G 
Ω). Suppose that G = Aut(M) for an ℵ0-categorical structure M . It follows
from [BT14], Theorem 5.5, thatM is stable if and only if R(G) is a semitopological
semigroup. Hence, from these two facts together we get a new proof (in the ℵ0-
categorical case) of the preservation of stability by randomizations: if T is stable,
then the randomized theory TR is stable ([Ben13b, §4.2][BK09, §5.3]).

Given a continuous function ϕ ∈ C(K), we can define an associated function
E�ϕ� ∈ C(M(Ω,K)), given by

E�ϕ�([s,k, r]) =

∫
ϕ(k(ω))dω.

Suppose then that K =W (G) is the WAP compactification of G, that is, the largest
semitopological semigroup compactification of G. Since M(Ω,W (G)) is a semi-
topological semigroup, it is a factor ofW (G 
Ω), theWAP compactification of G 
Ω.
Thus, if ϕ is a continuous function on the WAP compactification of G, then E�ϕ�
factors through the WAP compactification of G 
Ω.

As per [BT14, §5], every function ϕ ∈ C(W (G)) can be seen as a stable for-
mula ϕ(x,y) on the ℵ0-categorical structureM (defined on a certain domain), and
conversely. Under this translation, the function E�ϕ� corresponds to the formula
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E�ϕ(x,y)�. Hence, by the previous discussion, we recover also (for ℵ0-categorical
theories) the strong form of the preservation of stability ([Ben13b], Theorem 4.9).

Corollary 3.4. If ϕ(x,y) is stable for T , then E�ϕ(x,y)� is stable for TR.

The naïve converse of the previous fact is obvious: if ϕ(x,y) is unstable, then
E�ϕ(x,y)� is unstable (with the order property witnessed even by constant ran-
dom variables). However, one may ask for a more subtle converse: is every stable
formula Φ(x,y) in TR (say, with variables from the main sort) equivalent to a con-
tinuous combination of formulas of the form E�ϕ(x,y)� for stable formulas ϕ(x,y)?
We prefer to pose the question in the following terms.

Question 3.5. Do we have W (G 
Ω) �M(Ω,W (G)) for every Roelcke precom-
pact Polish group G?

Remark 3.6. The Bohr compactification of G 
Ω, that is, the largest topologi-
cal group compactification of G 
Ω, is trivial (i.e., a singleton). Indeed, the Bohr
compactification of the automorphism group of an ℵ0-categorical structure N can

be identified with the automorphism group of aclN (∅), the (imaginary) algebraic
closure of the empty set in N , as follows from [Ben15] (see also [Iba14, §1.5]).
However, the algebraic closure of ∅ inMR is trivial (regardless ofM), in the sense
that it coincides with the definable closure of ∅, as follows from [Ben13b], Theo-
rem 5.9.

3.2. Hilbert-representability. Asmentioned above, if an ℵ0-categorical struc-
tureM is stable, then the Roelcke completion of its automorphism group, R(G), is
a compact semitopological semigroup, and conversely. In that case, by a general
result of Shtern [Sht94], R(G) can be embedded (topologically and homomorphi-
cally) into the compact semitopological semigroup

Θ(V ) = {T ∈ L(V ) : ‖T ‖ ≤ 1}
of linear contractions of a reflexive Banach space V (endowed with the weak op-
erator topology). Thus, an interesting stronger property is satisfied if the space V
can be chosen to be a Hilbert space.

Definition 3.7. A semitopological semigroup S is Hilbert-representable if it can
be embedded into Θ(H) for a Hilbert space H.

For the case of R(G), this property is therefore a strengthening of stability,
and has been investigated as such in [BIT15]. We showed there that, for a clas-
sical ℵ0-categorical structure M , R(G) is a Hilbert-representable semitopological
semigroup if and only if M is stable and one-based (equivalently, ℵ0-stable). It
is unclear how to generalize this for metric structures; we will come back to this
discussion in Section 4. Here, we show that this property is preserved under ran-
domizations.

Given a Hilbert spaceH, we denote byH⊗n the n-fold tensor productH⊗·· ·⊗H
of Hilbert spaces. Also, we write

H⊗�
⊕
n∈N

H⊗n
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for the direct sum of all the n-fold tensor self-products of H. We recall that every
linear contraction of H acts naturally as a linear contraction on each H⊗n (satisfy-
ing the identity T (u1⊗· · ·⊗un) = Tu1⊗· · ·⊗Tun), and hence also on the direct sum
H⊗. That is, we have an inclusion of semitopological semigroups, Θ(H) <Θ(H⊗).

Theorem 3.8. Let S be a compact metrizable semitopological semigroup. If S is
Hilbert-representable, then so isM(Ω,S).

Proof. Let β : S → Θ(H) be an embedding into the semigroup of contractions
of a Hilbert space H, which we can also see as an embedding β : S → Θ(H⊗). We
consider the map

βR : M(Ω,S)→Θ(L2(Ω,H⊗))

defined implicitly by the inner product

〈f0,βR(λ)f1〉 =
∫
〈f0(ω0),β(x)f1(ω1)〉dλ(ω0,x,ω1),

where λ ∈M(Ω,S) and f0, f1 ∈ L2(Ω,H⊗). It is checked easily that βR(λ) is a linear

contraction of L2(Ω,H⊗) for every λ. Also, if the functions f0, f1 : Ω→H⊗ are con-
tinuous, then the function (ω0,x,ω1) �→ 〈f0(ω0),β(x)f1(ω1)〉 is continuous; hence, if
λn converge to λ, then the integrals 〈f0,βR(λn)f1〉 converge to 〈f0,βR(λ)f1〉. If f0, f1
are not continuous, we can approximate them in norm by continuous functions
f ′0 , f

′
1 ; in particular, the inner product 〈f0,βR(λ)f1〉 is approximated by 〈f ′0 ,βR(λ)f ′1〉,

uniformly on λ. We see, thence, that βR is continuous.

We now check that βR is a homomorphism. Let λ,ν ∈M(Ω,S). We note that, for

almost everyω, βR(ν)f1(ω) equals the vector-valued integral
∫
β(y)f1(ω1)dνω(y,ω1).

Hence,

〈f0,βR(λ)βR(ν)f1〉 =
�

〈f0(ω0),β(x)(β
R(ν)f1(ω))〉dλω(ω0,x)dω

=

�
〈f0(ω0),β(x)β(y)f1(ω1))〉dνω(y,ω1)dλ

ω(ω0,x)dω

= 〈f0,βR(λν)f1〉.

SinceM(Ω,S) is compact, we are only left to show that βR is injective. Since β
is an embedding, the continuous functions x �→ 〈u0,β(x)u1〉 for u0,u1 ∈ H separate
points of S . Hence, by the Stone–Weierstrass theorem, the unital algebra A gener-
ated by them is dense in C(S). The key observation then is that a function h ∈ A is
always of the form h(x) = 〈w0,β(x)w1〉 for appropriate vectors w0,w1 ∈ H⊗. Now, if

h is one such function and we are given e0, e1 ∈ C(Ω), we consider f0, f1 ∈ L2(Ω,H⊗)
defined by f0(ω0) = e0(ω0)w0, f1(ω1) = e1(ω1)w1. Then, if β

R(λ) = βR(ν), the iden-

tity 〈f0,βR(λ)f1〉 = 〈f0,βR(ν)f1〉 becomes∫
e0he1dλ =

∫
e0he1dν.

Since this holds for arbitrary e0, e1 ∈ C(Ω), h ∈ A, it follows that λ = ν. �

As a particular case we obtain the following.
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Corollary 3.9. IfG = Aut(M) for a classical ℵ0-categorical ℵ0-stable structureM ,
then R(G 
Ω) is a Hilbert-representable semitopological semigroup.

Proof. Follows from the previous results together with [BIT15], Corollary 3.12.
�

For any topological group G, there is always a largest Hilbert-representable
semitopological semigroup compactification of G, which we denote by H(G).

Question 3.10. Is it H(G 
Ω) �M(Ω,H(G)) for every Roelcke precompact Pol-
ish group G?

3.3. A general preservation result. We end this section with a general preser-
vation result about Banach representations of randomized type spaces (Theorem
3.18 below). Modulo some additional theory, this is indeed a generalization of the
preservation results discussed above, concerning stability and Hilbert-represen-
tability. Moreover, it allows us to recover, in the ℵ0-categorical case, the main
result of [Ben09] of preservation of NIP formulas.

In the previous subsections, we have considered a particular way of randomiz-
ing G-flows or, more generally, some interesting compact spaces. From a model-
theoretic point of view, the main compact spaces associated to a structure M are
its type spaces. In particular, the space S(M) of complete types with parameters
from M captures a large amount of model-theoretic information about the struc-
ture (and, in some cases, even about its theory). With the natural mapM→ S(M),
this type space is a compactification of M in which M embeds. Thus, the natural
randomized object to consider in this context is the compactificationMR→ S(MR),
which we describe below.

Given a compactmetrizable spaceK , we will consider the subspace of L2w∗(Ω,C(K)
∗)

(with the weak∗ topology) consisting of those elements p that take values in the
Borel probability measures on K . We observe that we have a homeomorphism

{p ∈ L2w∗(Ω,C(K)∗) : p(ω) ∈ R(K) μ-a.e.} � {λ ∈ R(Ω ×K) : λ|Ω = μ},
where each p corresponds to the measure λ that can be disintegrated as λω = p(ω)
almost everywhere. For convenience, we introduce a notation for this space.

Definition 3.11. For a compact metrizable space K we define

S(Ω,K)� {λ ∈ R(Ω ×K) : λ|Ω = μ},
which we may identify with {p ∈ L2w∗(Ω,C(K)∗) : p(ω) ∈ R(K) μ-a.e.} when conve-
nient.

If G � K is a continuous action, then we have an induced continuous action
G 
Ω � S(Ω,K). Indeed, observe first that G acts continuously by isometries on
C(K), by (gf )(x) = f (g−1x) for f ∈ C(K), g ∈ G and x ∈ K . Hence we have an induced

action G 
Ω � L2w∗(Ω,C(K)
∗) (as per §1.5), which restricts to a continuous action

on S(Ω,K).
Now, fix any separable metric structure M in a countable language L. Given

a set Δ of L-formulas ϕ(x,y), we let SΔ(M) be the space of quantifier-free Δ-types
in the variable x with parameters from M , which is a compact metrizable space.
The value of a type q ∈ Sx(M) on a formula ϕ(x,b) is denoted by ϕ(x,b)q (this is a
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real number in [0,1]). If G = Aut(M), then G acts continuously on SΔ(M) by the
relation ϕ(x,b)gp = ϕ(x,g−1b)p.

In addition, we let ΔR be the set of LR-formulas of the form Eτ(x,y,z) where
x,y are tuples of variables from the main sort, z is a tuple of variables from the
auxiliary sort, and τ(x,y,z) is a term on xyz built upon the formulas of Δ. More
precisely, τ(x,y,z) is constructed by applying any operations of the auxiliary sort
to any variables from z and to any term of the form �ϕ(x,y)� for ϕ ∈ Δ. Then,

we can consider the space SΔR(M
R) of quantifier-free ΔR-types in the variable x

(thus, from the main sort) with parameters fromMR, and the corresponding action
G 
Ω � SΔR(M

R).

Remark 3.12. Let τ(x,y,z) be a term as above. Then, if we substitute y by a tuple
b from M , and we substitute z by a tuple of real numbers c, then τ(x,b,c) can be
interpreted naturally as an L-formula with parameters from b, which is moreover
obtained by a combination of formulas ϕ(x,b) for ϕ(x,y) ∈ Δ. In particular, for
q ∈ SΔ(M) the value τ(x,b,c)q is defined, and this induces a continuous function
τ(x,b,c) : SΔ(M)→ [0,1].

For the rest of the paper, for simplicity of notation, given f ∈ C(K) and ν ∈
R(K), we may denote the expected value

∫
f dν by Eν(f ).

Lemma 3.13. For any set of L-formulas Δ, we have a G 
Ω-equivariant homeomor-

phism SΔR(M
R) � S(Ω,SΔ(M)).

Under this identification, a type p ∈ SΔ(MR) can be seen as a random variable with
values in R(SΔ(M)), and such that

Eτ(x,r, s)p =

∫
Ep(ω)(τ(x,r(ω), s(ω))dω

for every Eτ(x,y,z) ∈ ΔR, r ∈ (MΩ)|y| and s ∈A|z|.

Proof. Let us denote K = SΔ(M). For each measure λ ∈ S(Ω,K) we define a

type pλ ∈ SΔR(MR) by setting the value of pλ on a formula Eτ(x,r, s) (as in the
statement) to be

Eτ(x,r, s)pλ �
∫
τ(x,r(ω), s(ω))qdλ(ω,q) =

∫
Eλω(τ(x,r(ω), s(ω)))dω.

To see that this defines a type, we may write λ as the class of a pair (t,k) in the

quotient (End(Ω) × KΩ) � Aut(Ω) � S(Ω,K). Suppose first that t is actually in
Aut(Ω) and that k takes values on a finite set of realized types of SΔ(M), so that

we may write k(ω) = tpΔ(k
′(ω)) for some k′ ∈ (MΩ)|x|. Then pλ is a realized type,

namely pλ = tpΔR(k
′t−1). In the general case, (t,k) is a limit of pairs of the previous

form, which readily implies that pλ is approximately finitely satisfiable, i.e., a type.

The map f : ω �→ τ(x,r(ω), s(ω)) is in L2(Ω,C(K)), and we have Eτ(x,r, s)pλ =
〈f ,λ〉. Thus, the map θ : λ �→ pλ is clearly continuous. By representing measures
as we did in the previous paragraph, it is also clear that every realized type in
SΔR(M

R) is in the image of θ, hence that θ is surjective.
Checking that θ is G 
Ω-equivariant is a straightforward verification. Finally,

if λ � ν, then there are a set A ⊂ Ω and a function h ∈ C(K) such that Eλ(χAh) �
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Eν(χAh). Now, h is a continuous combination of functions induced by formulas

ϕ(x,b) for ϕ(x,y) ∈ Δ and b ∈ M |y|. It follows that χA(ω)h(q) = τ(x,r(ω), s(ω))q

for some appropriate term τ, where we can choose s = χA and r to be a tuple of
constant random variables. Hence, pλ and pν differ in the formula Eτ(x,r, s), so we
conclude that θ is injective. �

Next we recall some notions from the theory of Banach representations of dy-
namical systems as developed by Glasner and Megrelishvili; see, for instance, the
survey paper [GM14b]. A representation of a (compact, Hausdorff) flow G� X on
a Banach space V is given by an isometric continuous action G� V together with
a weakly∗ continuous map

α : X→ V ∗

that is G-equivariant with respect to the dual action G� V ∗. The representation
is faithful if α is injective. If the representation is faithful and K is any class of
Banach space containing V , then the flow is said K-representable.

We introduce in addition the following definitions.

Definition 3.14. Let X be a G-flow and K a class of Banach spaces. We say that
f ∈ C(X) is K-vector-representable if there are a representation α of G � X on a
Banach space V ∈ K and a vector v ∈ V such that, for all x ∈ X,

f (x) = 〈v,α(x)〉.
We denote the family of all K-vector-representable continuous functions on X by
BK(X).

We remark that if the class K is closed under Banach subspaces and G is sep-
arable, then in the previous definition we can always assume that V is separable.
Indeed, it suffices to replace V by the closed subspace generated by Gv.

Definition 3.15. Let K be a class of Banach spaces closed under isomorphisms
and subspaces. We say that K is R-closed if, in addition, the following conditions
hold.

(1) If V ∈ K, then L2(Ω,V ) ∈ K.
(2) If X is a K-representable G-flow, then BK(X) is dense in C(X).

The main classes of Banach spaces considered in [GM14b], and in the related
works of the same authors, are R-closed. Following them, we say that a Banach
space is Rosenthal if it does not contain an isomorphic copy of �1.

Lemma 3.16. The classes of Hilbert, reflexive, Asplund and Rosenthal Banach spaces
are R-closed.

Proof. We comment on the two conditions of the definition separately.
(1). This is obvious for Hilbert spaces. Asplund spaces can be characterized by

the property that L2(Ω,V )∗ is naturally identified with L2(Ω,V ∗) (see, for instance,
[DU77, IV., §1]), and from this fact the claim follows easily for reflexive and As-
plund spaces. For Rosenthal spaces this was proved by Pisier in [Pis78]; see also
[CM97, §2.2].
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(2). For the classes of reflexive, Asplund and Rosenthal spaces, it follows from
the works of Glasner and Megrelishvili that every K-representable G-flow X sat-
isfies BK(X) = C(X). Particularly, for Rosenthal spaces, this is a consequence of
[GM12], Theorem 6.7. For the class K of Hilbert spaces, by considering sums
and tensor products we see that BK(X) forms a unital subalgebra of C(X); if X is
K-representable, then BK(X) separates points of X, hence the Stone–Weierstrass
theorem implies that BK(X) is dense in C(X). �

Remark 3.17. Let K be an R-closed class of Banach spaces, and let X be a
metrizable G-flow. Suppose that the representations of X on Banach spaces of the
class K separate points of X. Then, X is actually K-representable. Indeed, since K
is closed under forming L2-spaces and subspaces, it follows that K is closed under
�2-sums; then, using that X is second countable, we can choose countably many
representations separating points and use them to construct a faithful representa-
tion on the �2-sum of the corresponding spaces, as is done in [Meg08], Lemma 3.3.

Let X be a metrizable flow of a Polish group G. We construct, for every rep-
resentation α : X → V ∗ of G � X on a separable Banach space V , an induced
representation

αR : S(Ω,X)→ L2(Ω,V )∗

of the action G 
Ω � S(Ω,X) on the Bochner space L2(Ω,V ).

The induced action of G 
Ω on L2(Ω,V ) was described in §1.5. As for αR, we
may define it by the relation

〈f ,αR(λ)〉 =
∫
〈f (ω),α(x)〉dλ(ω,x)

for f ∈ L2(Ω,V ) and λ ∈ S(Ω,X). By approximating f by continuous functions, it is

clear that αR is continuous, since α is. In addition, it is convenient to define αR(λ)
as an element of L2w∗(Ω,V

∗). Given a measure m ∈ R(X), the weak∗ expectation of
α with respect to m is the functional Em(α) ∈ V ∗ defined by

〈v,Em(α)〉 = Em(〈v,α〉) =
∫
〈v,α(x)〉dm(x)

for every v ∈ V . Then, given p ∈ S(Ω,X), we define αR(p) : Ω→ V ∗ by

αR(p)(ω) = Ep(ω)(α).

Since α is continuous, its image in V ∗ is bounded, and this ensures that αR(p) ∈
L2w∗(Ω,V

∗). Clearly, the two definitions of αR coincide. Also, it is straightforward

to check that αR is G 
Ω-equivariant.

Theorem 3.18. Let G � X be a continuous action of a Polish group on a com-
pact metrizable space. Let K be an R-closed class of Banach spaces. If G � X is K-
representable, then so is G 
Ω � S(Ω,X).

Proof. By Remark 3.17, it suffices to show that the representations on Banach
spaces of the class K separate points of S(Ω,X). Suppose that p,q ∈ S(Ω,X) cannot
be separated in this way. In particular, since K is R-closed, αR(p) = αR(q) for every



4. BEAUTIFUL PAIRS OF RANDOMIZATIONS 127

representation α : X→ V ∗ on a separable Banach space V ∈ K. For such α, if v ∈ V ,
we have then

〈v,Ep(ω)(α)〉 = 〈v,Eq(ω)(α)〉
for almost every ω.

Since X is K-representable, our hypothesis on K ensures that we can find a
countable dense family F ⊂ C(X) consisting of K-vector-representable functions.
For each f ∈ F, let αf be a representation of X on a separable Banach space Vf ∈
K with a vector vf ∈ Vf such that f (x) = 〈vf ,αf (x)〉 for every x ∈ X. Since F is

countable, we have that 〈vf ,Ep(ω)(αf )〉 = 〈vf ,Eq(ω)(αf )〉 for all f ∈ F and every ω in

a common full-measure set. That is, Ep(ω)(f ) = Eq(ω)(f ) for every f ∈ F and almost
every ω. Since F is dense in C(X), it follows that p(ω) = q(ω) almost everywhere.
That is, p = q, and the theorem follows. �

By thinking of X as a type space, the previous result can be thought of as a
Banach-theoretic counterpart to the preservation results of model-theoretic prop-
erties by randomizations, studied within [BK09, Ben13b, Ben09]. In the case of
ℵ0-categorical theories, by the translation discussed in [Iba14], this correspon-
dence is exact. Indeed, suppose T is separably categorical, and let ϕ(x,y) be any
formula. We obtain a new proof of the following (see [Ben09, §5]).

Corollary 3.19. If ϕ(x,y) is NIP for T , then E�ϕ(x,y)� is NIP for TR.

Proof. Let us fix a model M of T and G = Aut(M). It follows from [Iba14,
§3] that a formula ϕ(x,y) is NIP if and only if, for some set of formulas Δ con-
taining ϕ, the action G � SΔ(M) is Rosenthal-representable. In that case, by our

previous results, the action Aut(MR) � SΔR(M
R), which is the same as the action

G 
Ω � S(Ω,SΔ(M)), is Rosenthal-representable too. Since ΔR contains the for-
mula E�ϕ(x,y)�, we deduce that the latter is NIP. �

If instead of considering Rosenthal spaces we consider reflexive spaces, then
the same argument yields yet another proof of Corollary 3.4.

4. Beautiful pairs of randomizations

In this section we study the theory of beautiful pairs of models of a randomized
ℵ0-categorical theory. Let us first explain our motivation to do so.

For classical, stable, ℵ0-categorical structures, a number of very dissimilar prop-
erties turn out be equivalent. For instance, ifM is one such structure, T = Th(M),
G = Aut(M), then each of the following conditions implies the other:

(1) M is ℵ0-stable.
(2) M is one-based.
(3) The theory TP of beautiful pairs of models of T is ℵ0-categorical.
(4) The Roelcke compactification R(G) is Hilbert-representable.

Within these, the central notion is (2), which has direct, strong model-theoretic
consequences for M . That (1) is equivalent to (2) is a classical, intricate theorem.
The equivalence of (2) and (3) was proved in [BBH14], and the equivalence of (2)
and (4) was shown in [BIT15].
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When we pass from classical to continuous logic, the most basic and well-
behaved new structures we get fail to be one-based. Thus the question arises of
whether there exists an appropriate generalization of this notion to the metric set-
ting. In [BBH14], the authors propose a generalization (for metric, stable theo-
ries) that does hold in some important examples, which they call SFB (for strongly
finitely based). They focus on (metric, stable) ℵ0-categorical theories, and there
they show the following: T is SFB if and only if the theory TP of beautiful pairs of
models of T is ℵ0-categorical. We may take this as a definition.

We will point out here a weakness of this proposed generalization, by proving
a non-preservation result: the property SFB is not preserved by randomizations.
In fact, it fails badly for most randomized theories (even though it does hold for
the theory of the measure algebra of Ω).

4.1. The theory TP . We recall the basic definitions and facts about beautiful
pairs of models of a stable metric theory, and refer to [Ben12, §4] for more details.
An elementary pair of models of a theory T consists of a model M |= T together
with an elementary substructure N ≺ M . A beautiful pair of models of T is an
elementary pair (M,N ) such that N is approximately ℵ0-saturated (as per [BU07],
Definition 1.3) and M is approximately ℵ0-saturated over N , that is to say, the
structureM augmented with constants for the elements ofN is approximately ℵ0-
saturated. (We follow the definition of [Ben12], which is broader than the one
given in [BBH14], although both induce the same theory TP .)

Elementary pairs of models of an L-theory T are considered in the language
LP , which is L expanded with a predicate P for the distance to the smaller model
of the pair. We denote by TP the common theory of all beautiful pairs of models
of T in this language, and we write (M,N ) |= TP to say that M together with the
interpretation P(x) = d(x,N ) forms a model of TP .

When T is ℵ0-categorical, it can be shown that any saturated model of TP is
again a beautiful pair; this fact is expressed by saying that the class of beautiful
pairs of models of T is almost elementary. However, we will work with separable
models of TP , which need not be beautiful pairs. To this end, we will use the
following general characterization of the models of TP , which follows from the
proof of Theorem 4.4 of [Ben12].

Theorem 4.1. Suppose T is a stable L-theory whose class of beautiful pairs of models
is almost elementary. Let N ≺M be models of T . Then, (M,N ) |= TP if and only if the
following holds: for every ε > 0, every finite z-tuple c fromM , every 1-type p ∈ Sx(Nc)
and every finite set of L-formulas ϕi(x,yz), i < n, there is a ∈M such that

|ϕi(a,bc)−ϕi(x,bc)p | < ε
for every y-tuple b in N and each i < n. In other words, types over finite expansions of
N are approximately finitely realized inM uniformly on the parameters.

Remark 4.2. If (M,N ) |= TP and Ñ ≺N , then also (M,Ñ ) |= TP .
4.2. Separable models of (TR)P . We will consider two copies of the unit in-

terval Ω, say Ω0 and Ω1. Then, Ω
2 will denote the product space Ω0 ×Ω1, and Ω

will stand for its factor induced by Ω0; that is, Ω will denote the measure space
Ω0×Ω1 restricted to the sub-σ-algebra generated by the projectionΩ0×Ω1 →Ω0.
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In this way, if X is a subset of a Polish space Y , then XΩ becomes a subset of YΩ2
.

The measure on each of the spaces Ω0, Ω1, Ω or Ω2 will still be denoted by μ.

Let us denoteAΩ � [0,1]Ω andAΩ2 � [0,1]Ω
2
. Hence,AΩ is a substructure of

AΩ2. Let ARV denote Th(A), that is, the theory of [0,1]-valued random variables
over atomless probability spaces. Finally, we denote by AP the pair (AΩ2 ,AΩ),
which is a structure in the language of pairs of models of ARV .

Proposition 4.3. The theory ARVP of beautiful pairs of models of ARV is ℵ0-
categorical, and we have AP |= ARVP .

Proof. See [BBH14], Corollary 3.15. �
From now on, we fix an ℵ0-categorical, stable theory T and a separable model

M |= T . As before, the theory of beautiful pairs of models of T is TP and the
randomization of T is TR. The theory of beautiful pairs of models of TR is (TR)P .
Rather than describing the beautiful pairs of models of TR, we are interested in
the separable models of (TR)P .

Given any elementary pair P of models of TR, we can consider the reduct
formed by the pair of their auxiliary sorts. This is an elementary pair of mod-
els of ARV , which we denote by AP, and which we may call the auxiliary sort of
P.

Remark 4.4. If P |= (TR)P , then, clearly, AP |= ARVP .
Hence, if we have a separable model P |= (TR)P , then AP �AP . It follows that

we can identify the large model of the pair P with the Borel randomization MR

based on Ω2 (that is, with main sort MΩ2
and auxiliary sort AΩ2) and the small

model of the pair P with some substructure S ≺ MR whose auxiliary sort is AΩ .
Thus, in order to classify the separable models P |= (TR)P up to isomorphism, we
are left to understand the different possibilities for the main sort of S .

Notation 4.5. From now on, unless otherwise stated, MR will denote the ran-
domization ofM based onΩ2, as above. Given a submodel S ≺MR with main sort

S0 and auxiliary sortA, we will denote by (MΩ2
,S0)AP

the elementary pair (MR,S)
of models of TR.

It is natural to expect that, if (M,N ) is a model of TP , then (MΩ2
,NΩ)AP

should

be a model of (TR)P . This is correct, but we will prove that this does in no way

exhaust the models of (TR)P (except in trivial cases). Given h ∈ End(M)Ω
2
, let

Ph � (MΩ2
,Sh)AP

,

where Sh � {hs : s ∈MΩ}. The following is the main result of this section.

Theorem 4.6. Let P be a separable elementary pair of models of TR. Then, P |=
(TR)P if and only if AP �AP . Moreover, in that case, P � Ph for some h ∈ End(M)Ω

2
.

In particular, for anyN ≺M , the pair (MΩ2
,NΩ)AP

is a model of (TR)P . Clearly,
this leads to non-isomorphic models of (TR)P , as long as there exists a pair N ≺M
with N � M . Indeed, for such N , the pairs (MΩ2

,NΩ)AP
and (MΩ2

,MΩ)AP
are
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distinct models of (TR)P . Conversely, if M does not have proper elementary sub-
structures (which happens if and only if M is compact), then End(M) = Aut(M),

and in that case there is only one model of (TR)P up to isomorphism.

Corollary 4.7. The theory (TR)P is not ℵ0-categorical, unless T is the theory of a
compact structure.

As said before, this shows that the property SFB defined in [BBH14] is not
preserved by randomizations.

Example 4.8. The theory of the randomization of a countable set (with no fur-
ther structure) is not SFB. On the other hand, it is ℵ0-stable, and the Roelcke com-
pactification of S∞ 
Ω is Hilbert-representable.

We turn to the preliminaries for the proof of Theorem 4.6. Let S ≺ MR be
a submodel with auxiliary sort equal to AΩ . We have discussed the elementary
substructures ofMR in Remark 2.12. We know that S is the image of an endomor-

phism ht∗ ofMR, where h ∈ End(M)Ω
2
and t ∈ End(Ω2).

Then the image of t∗ ∈ End(AΩ2) must be AΩ , and hence the main sort of S is

{ht∗r : r ∈MΩ2} = {hs : s ∈MΩ} = Sh.
It follows that every model of (TR)P is isomorphic to Ph for some h ∈ End(M)Ω

2
.

We want to see that all these are indeed models of (TR)P .
Since Sh is an elementary substructure of S1 = MΩ (when endowed with the

auxiliary sort A), by Remark 4.2 it is enough to prove that P1 |= (TR)P . In fact,
we will give a proof of the following (which, incidentally, does not use the ℵ0-
categoricity ofM).

Proposition 4.9. LetN ≺M be any elementary substructure. Then, (MΩ2
,NΩ)AP

|=
(TR)P .

We need some preliminary lemmas.

Lemma 4.10. Let A ⊂Ω2 be a Borel subset. Suppose we are given a compact metriz-
able space X together with a weakly∗ measurable family (pω0

)ω0∈Ω0
of finite Borel mea-

sures on X,
ω0 ∈Ω0 �→ pω0

∈ C(X)∗,
with pω0

(X) = μ(Aω0
); here, Aω0

⊂ Ω1 is the section of A at ω0. Then, there is a
measurable function h : A→ X such that

(*)

∫
X
f dpω0

=

∫
Aω0

f ◦ hω0
dω1

for every f ∈ C(X) and almost every ω0 ∈Ω0; here, hω0
(ω1) = h(ω0,ω1).

Proof. We first note that for each ω0 we can find a measurable function
hω0

: Aω0
→ X satisfying (*). Indeed, the measure algebra of (X,pω0

) is separa-
ble, so it can be embedded in the measure algebra of (Aω0

,μ), since the latter is
atomless. By duality we get a measure preserving map hω0

: Aω0
→ X, which is

what we wanted.
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We have to ensure that we can choose the hω0
in a measurable way. We consider

partial measurable functions fromΩ1 toX: say S = (X∪{∗})Ω1, and for h0 ∈ S define

s(h0) = h
−1
0 (X) to be the support of h. Now, it is not difficult to see that the set

E = {(ω0,h0) ∈Ω0 × S : s(h0) = Aω0
and Epω0 (f ) = Eμ(χAω0 f ◦ h0) for all f ∈ C(X)}

is Borel. By the previous paragraph, the projection of E to Ω0 is Ω0, so from the
Jankov–von Neumann uniformization theorem (see [Kec95, §18.A]; note that ana-
lytic sets are Lebesgue measurable) we obtain a measurable function h : Ω0 → S
such that h(ω0) ∈ Eω0

almost surely. By the natural identification SΩ0 � (X ∪
{∗})Ω0×Ω1, this induces a measurable function h : A → X satisfying the require-
ments of the lemma. �

Lemma 4.11. Let M be a separable stable metric structure and ϕ(x,y) be any for-
mula.

(1) The uniform pseudo-distance

dϕ(p,q) = sup
b∈M |y|

|ϕ(x,b)p −ϕ(x,b)q |

on the type space Sx(M) is separable. Moreover, every open set for the distance
dϕ is Borel measurable for the logic topology of Sx(M).

(2) For every ε > 0 there is a natural number m ∈N such that for every q ∈ Sx(M)

there exists a sequence (al)l∈N ⊂ M |x| with the property that, for any tuple

b ∈M |y|,
|{l ∈N : |ϕ(al ,b)−ϕ(x,b)q | ≥ ε}| ≤m.

Proof. (1). The first assertion follows from the separability of M and the de-
finability of types in stable theories. See for example [Ben13a], Corollary 4. The
second follows directly from the separability ofM .

(2). By stability, there is a natural number m such that, whenever al is an in-
discernible sequence with limit type q and b is any tuple, the counting inequality
displayed in the statement is satisfied. The following argument by compactness
shows that there are a finite set of formulas Δ and a positive number δ such that
the same is true whenever al is a Δ-δ-indiscernible sequence (in the sense defined
in [Iba14, §1.4]) converging to q. Suppose this does not hold. Let dqϕ be the
ϕ-definition of q. Then, for any finite Δ and δ > 0 we can find a large finite Δ-δ-
indiscernible sequence al and an element b such that, for odd l,

|ϕ(al ,b)− dqϕ(b)| ≥ ε,
whereas, for even l,

|ϕ(al ,b)− dqϕ(b)| < ε/2.
By compactness, we get an infinite indiscernible sequence al and an element b with
this property, which yields a contradiction. The boundm can be chosen uniformly
in q since types are uniformly definable.

Now, if q ∈ Sx(M) is any type, we can take any sequence in M converging to q
and extract by Ramsey’s theorem a Δ-δ-indiscernible subsequence al . The lemma
follows. �
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Proof of Proposition 4.9. We have to check the condition of Theorem 4.1 for
the pair (MΩ2

,NΩ)AP
. For simplicity, we will only check it for basic formulas of

the form E�ϕi(x,yz)�, so in particular the tuples xyz will only contain variables
from the main sort. It is not difficult to see that this is actually enough. Moreover,

it suffices to check the condition for z-tuples consisting of simple elements ofMΩ2
,

that is, random variables of finite range.
So we fix formulas E�ϕi(x,yz)�, i < n, we fix a simple z-tuple t, and a type p ∈

ST
R

x (NΩt). Let C ⊂M |z| be the (finite) range of t. We fix c ∈ C, then set Ac = t
−1(c) ⊂

Ω2. By taking any extension of p to a type over MΩ2
, we may apply Lemma 3.13

and see p as a random variable p : Ω2 → R(STx (M))→ R(STx (Nc)).
We consider the type space X = STx (Nc). For each ω0 ∈ Ω0 and f ∈ C(X), say

with f induced by a formula ϕ(x,bc), we set

〈f ,pω0
〉 =

∫
(Ac)ω0

Ep(ω0,ω1)(ϕ(x,bc))dω1.

This defines a finitemeasure pω0
∈ C(X)∗ with pω0

(X) = μ((Ac)ω0
). Applying Lemma

4.10, we get a measurable function hc : Ac→ X that satisfies∫
(Ac)ω0

Ep(ω0,ω1)(ϕ(x,bc))dω1 =

∫
(Ac)ω0

ϕ(x,bc)hc(ω0,ω1)dω1

for almost every ω0 and every Nc-formula ϕ(x,bc).
Let ε > 0. Using the first item of Lemma 4.11, we can find a countable set

J ⊂ STx (M) and measurable functions jc : Ac→ J for each c ∈ C such that

|ϕi(x,bc)hc(ω) −ϕi(x,bc)jc(ω)| ≤ ε

for every b ∈ N |y|, c ∈ C, i < n and ω ∈ Ω2. Next, we apply the second item of the

lemma to get sequences (alq)l∈N ⊂ M for each q ∈ J and a natural number m ∈ N

such that, for each of the formulas ϕi(x,yz), i < n, and for any b ∈ N |y|, c ∈ C and
q ∈ J , we have

|{l ∈N : |ϕi(alq,bc)−ϕi(x,bc)q | ≥ ε}| ≤m.

In any case, |ϕi(alq,bc)−ϕi(x,bc)q | ≤ 1 since we assume formulas are [0,1]-valued.
Take k ∈ N with m/k < ε. For each c ∈ C and q ∈ J we can choose a Borel

partition {Alc,q}l<k of Ac,q � (hc)
−1(q) ⊂ Ac such that, for almost every ω0 ∈ Ω0, we

have

μ((Alc,q)ω0
) =

1

k
μ((Ac,q)ω0

).

Finally, we define r :Ω2 →M by

r =
∑

c∈C,q∈J ,l<k
alqχAlc,q .
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In this way, for any i < n and any tuple of random variables s ∈ (N |y|)Ω (which
depends only on the variable ω0 ∈Ω0), we get

|E�ϕi(r, st)�−E�ϕi(x,st)�
p | ≤

∑
c∈C

∣∣∣∣∣∣
∫
Ac

ϕi(r(ω0,ω1), s(ω0)c)−Ep(ω0,ω1)(ϕi(x,s(ω0)c))dμ

∣∣∣∣∣∣
≤

∑
c∈C

∫
Ω0

∣∣∣∣∣∣∣
∫
(Ac)ω0

ϕi(r(ω0,ω1), s(ω0)c)−Ep(ω0,ω1)(ϕi(x,s(ω0)c))dω1

∣∣∣∣∣∣∣dω0

=
∑
c∈C

∫
Ω0

∣∣∣∣∣∣∣
∫
(Ac)ω0

ϕi(r(ω0,ω1), s(ω0)c)−ϕi(x,s(ω0)c)
hc(ω0,ω1)dω1

∣∣∣∣∣∣∣dω0

≤ ε +
∑
c∈C

∫
Ω0

∫
(Ac)ω0

∣∣∣ϕi(r(ω0,ω1), s(ω0)c)−ϕi(x,s(ω0)c)
jc(ω0,ω1)

∣∣∣dω1dω0

= ε +
∑

c∈C,q∈J ,l<k

∫
Ω0

∫
(Alc,q)ω0

∣∣∣ϕi(alq, s(ω0)c)−ϕi(x,s(ω0)c)
q
∣∣∣dω1dω0

= ε +
∑

c∈C,q∈J

∫
Ω0

1

k
μ((Ac,q)ω0

)
∑
l<k

∣∣∣ϕi(alq, s(ω0)c)−ϕi(x,s(ω0)c)
q
∣∣∣dω0

≤ ε +
∑

c∈C,q∈J

∫
Ω0

(m
k
+ ε

)
μ((Ac,q)ω0

)dω0

< 3ε.

We have thus verified the condition of Theorem 4.1 for (MΩ2
,NΩ). �

Together with the discussion preceding Proposition 4.9, this completes the
proof of Theorem 4.6.

Remark 4.12. Suppose M is a classical structure, and that (M,N ) is in fact a
beautiful pair of (countable) models of T . In this case, the argument of Proposi-
tion 4.9 becomes much simpler, and yields more. Indeed, resuming the argument
after the third paragraph, for every type q ∈ STx (Nc) we can choose a realization

ac(q) ∈M |x|. Then we take r =
∑
c∈C(ac ◦ hc)χAc , and we see readily that r is a real-

ization of p. It follows that (MΩ2
,NΩ)AP

is a beautiful pair of models of TR.

By using the same ideas we obtain the following, which is the metric general-
ization of [BK09], Theorem 4.1.

Theorem 4.13. Let T be a metric theory in a countable language. If T is ℵ0-stable,

then so is TR.

Proof. Since T is ℵ0-stable, there is an elementary pair (M,N ) of separable
models of T such that N realizes every type over the empty set (possibly in count-
ably many variables) and M realizes every type over N . (In fact, there is even a
separable beautiful pair, as can be seen using [BU07], Proposition 1.16.) That is,

the canonical map π : M |x| → STx (N ) is surjective. We claim that it admits a Borel
selector. By the same argument of Lemma 2.1, it suffices to check that π(U ) is Borel

for every open set U ⊂M |x|. We will check it first for the metric topology of STx (M).
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Let a ∈U and take ε > 0 such that b ∈U whenever d(a,b) < ε. If d(π(a), q) < ε, then
by saturation there are a′, b ∈M |x| such that π(a′) = π(a), π(b) = q and d(a′, b) < ε.
Hence, π(U ) is open for the metric topology. Now, since T is ℵ0-stable and N is
separable, the metric topology of the type space is Polish, and it follows that U is
an Fσ set for the usual compact topology. We deduce that there is a Borel selector
for π, say a : STx (N )→M .

Now we may proceed as in Remark 4.12 (ignoring the variable z), to show that

MΩ2
realizes every type over NΩ . Indeed, given p ∈ STRx (NΩ), there is h : Ω2 →

STx (N ) such that
∫
Ep(ω0,ω1)(ϕ(x,b))dω1 =

∫
ϕ(x,b)h(ω0,ω1)dω1 for any ω0, b,ϕ. If we

define r = a ◦ h ∈MΩ2
, then r is a realization of p.

Similarly,NΩ realizes every type over the empty set. Then, the pair (MΩ2
,NΩ)AP

witnesses that TR is ℵ0-stable. �
It had already been observed in [BBH14] that an ℵ0-stable, ℵ0-categorical the-

ory need not be SFB. Namely, the theory ALpL of atomless Lp Banach lattices (for

any fixed p ∈ [1,∞)) is ℵ0-stable and admits only one separable model up to iso-
morphism, but the corresponding theory ALpLP of beautiful pairs admits exactly
two non-isomorphicmodels. To this example we can now add any randomized the-
ory TR where T is an ℵ0-stable, ℵ0-categorical theory with a non-compact model.

Nevertheless, they point out in [BBH14] that the theoryALpLP is ℵ0-categorical

up to arbitrarily small perturbations of the predicate P. For a general theory T , this
means that for every ε > 0 and any two separable models (M,N ), (M ′,N ′) |= TP ,
there exists an isomorphism ρ : M→M ′ such that

|d(x,N )− d(ρ(x),N ′)| ≤ ε
for every x ∈M . If TP has this property, let us say that T is approximately SFB. Then,
it was conjectured in [BBH14] that an ℵ0-stable, ℵ0-categorical theory should be
approximately SFB. Our new examples give an interesting family to test this con-
jecture.

Question 4.14. Let T be an SFB theory, for instance, a classical ℵ0-stable, ℵ0-
categorical theory. Is it true that the randomized theory TR is approximately SFB?

4.3. Automorphisms of pairs. Since this work originated in the study of auto-
morphism groups of randomized structures, let us finish with a description of the

automorphism group of a pair (MΩ2
,NΩ)AP

, in the fashion of Theorem 2.8.

We begin by describing the automorphism group of the auxiliary sort, HR
P �

Aut(AP ). Via the natural isomorphism [0,1]Ω
2 � ([0,1]Ω1)Ω0, we see that the struc-

ture AP (a model of ARVP ) can be in a sense identified with the randomization
(AΩ1

)R (a model of ARVR): they are bi-interpretable. In particular, they have the
same automorphism groups:

HR
P = Aut(Ω1) 
Ω0.

Now we let M be a separably categorical, stable structure, and we take G =
Aut(M). We fix an elementary substructure N ≺M , and we consider the automor-
phism group of the pair,

GP � Aut(M,N ),
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which is the subgroup of all g ∈ G that preserve the predicate P(x) = d(x,N ) (equiv-
alently: that fix N setwise). Similarly, we let

GRP � Aut((MΩ2
,NΩ)AP

)

be the automorphism group of the induced model of (TR)P , which is the subgroup

of Aut(MR) (=G 
Ω2) fixing NΩ and AΩ setwise. Furthermore, we consider the
subgroup

G∗P � (GP )
Ω2 ∩GRP .

Lemma 4.15. We have G∗P = {g ∈ GΩ2
: g |NΩ ∈ Aut(N )Ω}. Moreover, if g ∈ GRP is the

identity on the auxiliary sort AP , then g ∈ G∗P .

Proof. Let NR denote the smaller model of the pair (MΩ2
,NΩ)AP

, that is, NΩ

together with the auxiliary sort AΩ . If g ∈ GRP , then the restriction of g to the NR

is an automorphism of NR, that is, g |NR ∈ Aut(N ) 
Ω. If moreover g is the identity

onAP (which is the case if g ∈ G∗P ), then g ∈ GΩ2
and g |NR is the identity onAΩ , so

g |NR ∈ Aut(N )Ω .

Conversely, if we have g ∈ GΩ2
and g |NΩ ∈ Aut(N )Ω , then g fixes NΩ setwise

(and AΩ pointwise), so g ∈ GRP . Also, g ∈ (GP )
Ω2

. Indeed, let b be an element

in N , which we may see as a constant element of MΩ2
. Since g ∈ GRP , we have

d(gb,NΩ) = d(b,NΩ) = 0, hence g(ω)(b) ∈ N almost surely. By the separability of
N , this is true for every b ∈N and every ω in a common full measure set. Similarly
for g−1. Thus, g(ω) ∈ GP almost surely. �

Corollary 4.16. GRP � G∗P � (Aut(Ω1) 
Ω0) as topological groups.

Proof. As in the proof of Theorem 2.8, the moreover part of the previous
lemma shows that G∗P is the normal complement of HRP , which is what we want.

�
The previous description can be used to show that the actionGPR � (MΩ2

,NΩ)AP

is not approximately oligomorphic if M is not compact (adapting the method of
proof of Proposition 2.3, but with the opposite conclusion; for this, Lemma 2.6
is useful). This gives an alternative proof of Corollary 4.7, modulo showing that

(MΩ2
,NΩ)AP

|= (TR)P for some N ≺M (which is easier by assuming (M,N ) |= TP ).
This was actually our original proof of Corollary 4.7.
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CHAPTER 4

Full groups of minimal homeomorphisms and Baire category
methods

Abstract. [Joint work with Julien Melleray, published in Ergodic Theory and Dy-

namical Systems, vol. 36(02), pp. 550-573.] We study full groups of minimal ac-

tions of countable groups by homeomorphisms on a Cantor space X, showing that

these groups do not admit a compatible Polish group topology and, in the case of

Z-actions, are coanalytic non-Borel inside Homeo(X). We point out that the full

group of a minimal homeomorphism is topologically simple. We also study some

properties of the closure of the full group of a minimal homeomorphism inside

Homeo(X).
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Introduction

When studying a mathematical structure, one is often led to consider the prop-
erties of its automorphism group, and then it is tempting to ask to what extent the
group characterizes the structure. A particularly striking example is provided by
a theorem of Dye ([Dye59], [Dye63]) in ergodic theory: assume that two countable
groups Γ,Δ act on the unit interval [0,1] by measure-preserving automorphisms,
without any non-trivial invariant sets (i.e., the actions are ergodic), and consider
the groups [Γ] (resp. [Δ]) made up of all measurable bijections that map each Γ-
orbit (resp. Δ-orbit) onto itself. Then the groups [Γ] and [Δ] are isomorphic if, and
only if, there exists a measure-preserving bijection of [0,1] which maps Γ-orbits
onto Δ-orbits. One then says that the relations are orbit equivalent; [Γ] is called
the full group of the action. Using this language, Dye’s theorem says that the full
group of an ergodic action of a countable group on a standard probability space
completely remembers the associated equivalence relation up to orbit equivalence.

This result was the motivation for an intensive study of full groups in ergodic
theory, for which we point to [Kec10] as a general reference. More recently, it came
to light, initially via the work of Giordano–Putnam–Skau, that a similar phenom-
enon takes place in topological dynamics. In that context, one still considers actions

139
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of countable groups, replacing probability-measure-preserving actions with ac-
tions by homeomorphisms of a Cantor space. The two settings are related: for
instance, when Γ is a countable group, one could consider the Bernoulli shift ac-

tion of Γ on {0,1}Γ as a measure-preserving action (say, for the (1/2,1/2)-Bernoulli
measure) or as an action by homeomorphisms. As in the measure-theoretic setting,
one can define the full group of an action of a countable group Γ on a Cantor space
X: this time, it is made up of all homeomorphisms of X which map Γ-orbits onto
themselves. The counterpart of ergodicity here is minimality, i.e., the assumption
that all the orbits of the action are dense; the analog of Dye’s theorem for minimal
group actions was proved by Giordano–Putnam–Skau [GPS99].

The measure-theoretic and topological settings may appear, at first glance, to
be very similar; however, there are deep differences, for instance all ergodic group
actions of countable amenable groups are orbit equivalent (Connes–Feldman–Weiss
[CFW81]) while there exists a continuum of pairwise non-orbit equivalent actions
of Z by minimal homeomorphisms of a Cantor space. Still, it is interesting to in-
vestigate properties of full groups in topological dynamics, which has been done
by several authors over the last twenty years or so.

In both contexts discussed above, it is natural to consider the full group of an
action as a topological group, the topology being induced by the topology of the
ambient Polish group (measure-preserving bijections of [0,1] in one case, homeo-
morphisms of the Cantor space in the other). The usefulness of this approach is
however limited by the fact that the full group of an ergodic group action, or a
minimal group action, is not closed in the ambient group; in the first case the full
group is dense, in the second it seems that the closure is currently only understood

for actions of Zd .
It then comes as a blessing that, in the measure-theoretic context, one can en-

dow the full group with a stronger topology which turns it into a Polish group:
the uniform topology, induced by the distance given by d(g,h) = μ({x : g(x) � h(x)}).
This paper grew out of the following question: can one do the same thing in the
topological context? It is interesting to note that, shortly after the publication of
[GPS99], Bezyglyi and Kwiatkowski [BK02] introduced an analog of the uniform
topology in the context of topological dynamics, which is however far from being
as nice as the uniform topology of ergodic theory. This provides further motivation
for trying to understand whether a nice group topology exists at all.

Theorem. Let Γ be a countable group acting minimally by homeomorphisms on a
Cantor space X. Then any Hausdorff, Baire group topology on [Γ] must extend the
topology of pointwise convergence for the discrete topology on X. Consequently, there is
no second countable, Hausdorff, Baire group topology on [Γ].

This is bad news, but certainly not surprising —if a Polish group topology ex-
isted for that group, it would have been considered a long time ago. In the same
spirit, one can then wonder about the complexity of full groups inside the ambi-
ent automorphism group; in ergodic theory, full groups are always fairly tame, in
the sense that they can be written as countable intersections of countable unions of
closed sets [Wei05]. Yet again, the situation turns out to bemore dire in topological
dynamics.
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Theorem. The full group of a minimal homeomorphism of a Cantor space X is a
coanalytic non-Borel subset of Homeo(X).

This led us to study the closure of a full group inside the homeomorphism
group; this is a Polish group, and is also a complete invariant for orbit equiva-
lence if one is willing to restrict one’s attention to actions of Z, which we do in the
last sections of this article. It follows from a theorem of Glasner–Weiss [GW95]
that the closure of the full group of a minimal homeomorphism ϕ coincides with
the group of homeomorphisms which preserve all ϕ-invariant measures. Using
work of Bezuglyi–Medynets and Grigorchuk–Medynets, we obtain the following

result1.

Theorem. The closure of the full group of a minimal homeomorphism of the Cantor
space is topologically simple (hence, the full group itself is also topologically simple).

It is an open problem whether the full group of a minimal homeomorphism is
simple.

In the case of uniquely ergodic homeomorphisms, we also provide a criterion
for the existence of dense conjugacy classes in the closure of the full group (in
terms of the values taken by the unique invariant measure on clopen sets), and use
a Fraïssé theoretic approach to recover a result of Akin which describes a class of
uniquely ergodic homeomorphisms with the property that the closure of their full
group admits a comeager conjugacy class.

Acknowledgements. The second author’s interest in the subject was kindled by
twomeetings organized by D. Gaboriau and funded by the ANRNetwork AGORA,
and by lectures given by T. Giordano and K. Medynets at these meetings. We are
grateful to I. Ben Yaacov, D. Gaboriau and B. Weiss for useful discussions and
suggestions. We are indebted to K. Medynets for valuable comments made after
reading an earlier version of this article, and to an anonymous referee for useful
remarks.

The second author’s researchwas partially funded by the ANR network AGORA,
NT09-461407 and ANR project GRUPOLOCO, ANR-11-JS01-008.

1. Background and terminology

We now go over some background material and discuss in more detail some
facts that were mentioned briefly in the introduction.

Recall that a Cantor space is a nonempty, zero-dimensional, perfect compact
metrizable space; any two Cantor spaces are homeomorphic. Given a Cantor space
X, we denote by Clop(X) the Boolean algebra of all clopen subsets of X, and by
Homeo(X) the group of homeomorphisms of X. This group can be endowed with
the topology whose basic open sets are of the form

{g ∈Homeo(X) : ∀i ∈ {1, . . . ,n} g(Ui) = Vi},

1We originally proved this only for uniquely ergodic homeomorphisms; we thank K. Medynets

for explaining how to make the argument work in general.
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where n is an integer and Ui,Vi are clopen subsets of X. This turns Homeo(X)
into a topological group, namely the group operations (g,h) �→ gh and g �→ g−1 are
continuous with respect to this topology.

Definition 1.1. A Polish group is a topological group whose topology is induced
by a complete, separable metric.

Picking a compatible distance d on X, one can check that the topology defined
above on Homeo(X) is a Polish group topology, a compatible complete distance
being given by

d(g,h) = max
x∈X

d(g(x),h(x)) +max
y∈X

d(g−1(y),h−1(y)).

It might be a bit surprising at first that the two topologies we defined coincide; ac-
tually, this is a hint of a more general phenomenon: the unique second–countable
group topologies on Homeo(X) are the coarse topology and the Polish group topol-
ogy we defined above (this follows from results of [And58], [Gam91] and [RS07]).

Polish groups form a fairly general class of groups, yet the combination of sep-
arability and the use of Baire category methods make them relatively tame. The
fact that the Baire category theorem holds in Polish groups is particularly impor-
tant; we recall that, whenever G is a topological group for which the Baire category
theorem holds, H is a separable topological group and ϕ : G→H is a Borel homo-
morphism, then ϕ must actually be continuous (see e.g. [Kec95, Theorem 9.10]).

Definition 1.2. Let Γ be a countable group acting by homeomorphisms on a
Cantor space X. We denote by RΓ the associated equivalence relation and define
its full group as the group of all homeomorphisms ofX which preserve each Γ-orbit;
in symbols,

[RΓ] = {g ∈Homeo(X) : ∀x ∈ X∃γ ∈ Γ g(x) = γ · x}.
As is the case in ergodic theory, the full group of an action of a countable group

by homeomorphisms of a Cantor space X completely remembers the associated
equivalence relation, a fact made precise by the following definition and theorem.

Definition 1.3. Let Γ1,Γ2 be two countable groups acting by homeomorphisms
on a Cantor space X, and let RΓ1 ,RΓ2 be the associated equivalence relations. We
say that RΓ1 and RΓ2 are orbit-equivalent if there is a homeomorphism g of X such
that

∀x,y ∈ X
(
xRΓ1y

)
⇔

(
g(x)RΓ2g(y)

)
.

Theorem 1.4 ([GPS99], [Med11]). Let Γ1, Γ2 be countable groups acting by homeo-
morphisms on a Cantor space X; assume that all orbits for both actions have cardinality
at least 3, and for any nonempty U ∈ Clop(X) and i = 1,2 there exists x ∈ U such that
Γi · x intersects U in at least two points.

Denote by RΓ1 and RΓ2 the associated equivalence relations, and suppose that there
exists an isomorphism Φ from [RΓ1] to [RΓ2]. Then there must exist g ∈Homeo(X) such
that Φ(h) = ghg−1 for all h ∈ [RΓ1].

Consequently, [RΓ1] and [RΓ1] are isomorphic if, and only if, RΓ1 and RΓ2 are orbit
equivalent.
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The above result was first proved by Giordano–Putnam–Skau [GPS99] formin-
imal actions, which we define now, and then extended by Medynets [Med11].

Definition 1.5. Let Γ be a countable group acting by homeomorphisms on a
Cantor space. We say that the action is minimal if every point has a dense orbit.

Minimal actions are particularly well-studied when Γ = Z. In that case the
action is simply induced by one homeomorphism ϕ; accordingly, we will use the
notation [ϕ] to denote the full group of the associated equivalence relation. Simi-
larly, when the Z-action associated to a homeomorphism ϕ is minimal we simply
say that ϕ is minimal. In the case of minimal actions of Z, a particular subgroup
plays an important role and is well understood, mainly thanks to work of Matui.

Definition 1.6. Let ϕ be a homeomorphism of a Cantor space X. Its topological
full group [[ϕ]] is the set of elements g ∈Homeo(X) for which there is a finite clopen
partition U1, . . . ,Un of X such that on each Ui g coincides with some power of ϕ.

The topological full group [[ϕ]] is a countable subgroup of [ϕ]; note that, if all
orbits of ϕ are infinite, then for any element g in [ϕ] there exists a unique nx ∈ Z

such that g(x) = ϕnx(x); the group [[ϕ]] is simply made up of all g for which the
associated cocycle x �→ nx is continuous. Another equivalent (though apparently
weaker) definition is that [[ϕ]] is exactly the set of elements of [ϕ] for which the
map x �→ nx has a finite range. Indeed, each set of the form {x ∈ X : g(x) = ϕn(x)} is
closed, and these sets cover X if g belongs to [ϕ], so if there are only finitely many
nonempty such sets then they are clopen and g belongs to [[ϕ]].

Though it will not be featured prominently in this paper, the topological full
group plays an important part in the study of minimal homeomorphisms; it ap-
pears naturally as a subgroup of theC∗-algebra associated to (X,ϕ) (see for instance
[GPS95], [BT98]), and topological full groups of two minimal homeomorphisms
ϕ1,ϕ2 are isomorphic if and only if the associated systems are flip-conjugate, i.e., ϕ1

is conjugate to ϕ2 or ϕ−12 (Boyle–Tomiyama [BT98]). Recently, Juschenko–Monod
[JM13] proved that topological full groups of minimal homeomorphisms of Can-
tor spaces are amenable, a result which had been conjectured by Grigorchuk–
Medynets [GM]; in conjunction with work of Matui [Mat06], this provided the
first example of simple, finitely generated, infinite amenable groups. For further
information about these groups, we refer to de Cornulier’s thorough survey paper
[dC13].

The next result elucidates the action of the full group of a minimal homeomor-
phism on the algebra of clopen sets. Before stating it we set some notation for the
sequel.

Notation. Let X be a Cantor space and ϕ a homeomorphism of X. A Borel

probability measure μ on X is ϕ-invariant if μ(A) = μ(ϕ−1(A)) for any Borel subset
A ⊆ X (if this equality holds for clopen sets then it must hold for all Borel sets).
Given a homeomorphism ϕ, we denote byMϕ its set of invariant probability mea-
sures, which is a nonempty compact, convex subset of the space of all probability
measures on X.
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Theorem 1.7 ([GW95], Lemma 2.5 and Proposition 2.6). Let ϕ be a minimal
homeomorphism of a Cantor space X, and A,B be clopen subsets of X. Then the follow-
ing facts hold:

• If μ(A) < μ(B) for all μ ∈Mϕ then there exists g ∈ [[ϕ]] such that g(A) ⊂ B.
•

(
∀μ ∈Mϕ μ(A) = μ(B)

)
⇔ (∃g ∈ [ϕ]g(A) = B).

Remark 1.8. In both cases, one can add the assumption that g2 = 1 to the right-
hand statement. It is useful that in the first statement above, one can find g in the
topological full group and not merely in the full group; this is not always possible
when it comes to the second statement.

2. Topologies on full groups

Throughout this section we let Γ denote a countable group acting on a Cantor
space X, and R denote the associated equivalence relation, i.e., xRy if and only if
x = γ · y for some γ ∈ Γ. We make the following assumption on the action of Γ:
given any nonempty openU ⊆ X, there exist x � y ∈U and γ ∈ Γ such that γ ·x = y.
Equivalently, there exists no nonempty open subsetU ⊆ X such that the restriction
of R to U is trivial.

Note that this assumption implies that, given any nonempty open U , there
exists g ∈ [R] and a clopen V such that g2 = 1, g(V ) and V are nonempty disjoint
clopen subsets of U and g coincides with the identity outside of V ∪g(V ). We now
point out a further consequence.

Lemma 2.1. The set Ω = {x ∈ X : x is an accumulation point of Γ · x} is dense Gδ
in X.

Proof. Fix a compatible metric d on X. Recall that x is an accumulation point
of Γ · x if, and only if, the following condition holds:

∀ε > 0 ∃γ ∈ Γ (γ · x � x and d(γ · x,x) < ε)
The condition between brackets is open, showing thatΩ is indeed Gδ. By the Baire
category theorem, to check thatΩ is dense we only need to prove that for any ε > 0
the set {x : ∃γ ∈ Γ γ ·x � x and d(γ ·x,x) < ε} is dense, and this follows immediately
from our assumption on the action. �

For the next two lemmas and proposition, we let τ denote a group topology on
[R] which is Hausdorff and such that ([R] ,τ) is a Baire space.

Lemma 2.2. For any nonempty clopen subset U of X, the set ΔU = {g ∈ [R] : g�U =
id�U } is τ-closed.

Proof. We claim that g ∈ [R] coincides with the identity on U if, and only if,
gh = hg for any h ∈ [R] whose support is contained in U . Each set {g : gh = hg} is
closed since τ is a Hausdorff group topology, hence if we prove this claim we can
conclude that ΔU is an intersection of closed subsets of [R] so ΔU is closed.

Now to the proof of the claim: one inclusion is obvious; to see the converse,
assume that there exists x ∈ U such that x � g(x). This gives us a clopen subset
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W of U such that W and g(W ) are disjoint. By assumption, there exists a clopen
subset V ofW and an involution h ∈ [R] with support contained inW (hence in U )
and such that V and h(V ) are disjoint subsets ofW . Then hg(V ) = g(V ) is disjoint
from gh(V ), showing that g and h do not commute. �

Lemma 2.3. For any clopen subset U of X, the set ΣU = {g ∈ [R] : g(U ) = U } is
τ-closed.

Proof. We may assume that U is nonempty; also, since τ is a group topology
and (g(U ) = U ) ⇔ (g(U ) ⊆ U and g−1(U ) ⊆ U ), we only need to show that {g ∈
[R] : g(U ) ⊆U } = Σ′U is closed in [R]. To that end, one can use the same strategy as
above: this time, we claim that g ∈ Σ′U if and only if, for any hwhich coincides with

the identity on U , g−1hg coincides with the identity on U . Proving this will show
that Σ′U is an intersection of closed sets (by Lemma 2.2), which gives the result.

Again, one inclusion is obvious; to see the converse, we assume that g(U ) is not
contained in U . Then there exists a nonempty clopen subset W of U such that
g(W )∩U = ∅. One can find a nontrivial involution h with support in g(W ). This
gives us a nonempty clopen V ⊆ U such that hg(V ) and g(V ) are disjoint, hence

g−1hg does not coincide with the identity on U . �

Proposition 2.4. The set {g ∈ [R] : g(x) = x} is τ-clopen for all x ∈ X.

Proof. The result of Lemma 2.3 shows that the natural inclusion map from
([R] ,τ) to Homeo(X) is Borel. Since τ is assumed to be Baire (this is the first time
we are using that assumption) and Homeo(X) is separable, the inclusion mapmust
be continuous, showing that each set {g ∈ [R] : g(x) = x} is τ-closed. Now, fix x ∈ X
and let H denote the permutation group of the countable set Γ · x, endowed with
its permutation group topology, which is the topology of pointwise convergence
on Γ · x considered as a discrete set.

Since {g ∈ [R] : g(γ1 ·x) = γ2 ·x} is closed for all γ1,γ2 ∈ Γ, we see that the natural
homomorphism from ([R] ,τ) to H (given by g �→ (γ · x �→ g(γ · x)) is Borel. Thus
this homomorphism must be continuous, and {g ∈ [R] : g(x) = x} is τ-clopen. �

Let us sum up what we just proved.

Theorem 2.5. Let Γ be a countable group acting by homeomorphisms on a Cantor
spaceX. Assume that the restriction of the associated equivalence relation to a nonempty
open subset of X is never trivial.

Then any Hausdorff, Baire group topology on [R]must extend the topology of point-
wise convergence for the discrete topology on X. Consequently, there is no second count-
able, Hausdorff, Baire group topology on [R].

Proof. The statement in the first sentence corresponds exactly to the result of
Proposition 2.4. To see why the second statement holds, let us proceed by contra-
diction and assume that there exists a second countable, Hausdorff, Baire group
topology on [R].

We recall the result of Lemma 2.1: the set Ω made up of all x such that x is
an accumulation point of Γ · x is dense Gδ in X, thus in particular uncountable.
Assuming τ is second countable, the Lindelöff property implies that there exists a
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sequence (xi)i<ω of elements of Ω such that

{g ∈ [R] : ∃x ∈Ω g(x) = x} =
⋃
i<ω

{g ∈ [R] : g(xi) = xi}.

However, we claim that, for any countable subset {xi}i<ω ofΩ and any x ∈Ω \ {xi}i<ω,
there exists g ∈ [R] such that g(x) = x and g(xi) � xi for all i ; granting this, we ob-
tain the desired contraditcion.

To conclude the proof, we briefly explain why the claim holds. Using the fact
that each xi is an accumulation point of Γ · xi , one can construct inductively a
sequence of clopen sets Uj and elements γj of Γ with the following properties:

• for all i xi ∈
⋃
j≤i(Uj ∪γjUj );

• for all j , the diameter of Uj ∪γjUj is less than 2−j , and γjUj ∩Uj = ∅;
• for all j � k, (Uj ∪γjUj )∩ (Uk ∪γkUk) = ∅;
• for all j x � γjUj ∪Uj .

One can then define a bijection g of X by setting

g(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γj(y) if y ∈Uj for some j,

γ−1j (y) if y ∈ γj(Uj ) for some j,

y otherwise.

The fact that the diameter of Uj ∪γjUj vanishes ensures that g is continuous, so g
belongs to [R] and satisfies g(x) = x, g(xi) � xi for all i. �

Remark 2.6. It is not clear whether the Hausdorfness assumption is really
needed: if [R] is a simple group, then a non-Hausdorff group topology is neces-
sarily the coarse topology; indeed, the elements that cannot be separated from 1
by an open subset form a normal subgroup of [R]. So, if [R] is simple, then the
above result says that the unique Baire, second countable group topology on [R] is
the coarse topology. However, it is an open question whether [R] is simple, even in
the case when R is induced by a minimal action of Z.

The techniques of this section are close to those employed by Rosendal in
[Ros05], but it seems that his results do not cover the case studied here. It was
pointed out by the referee that the subgroups which appear in Lemma 2.2 were in-
troduced by Dye [Dye63] in the measurable context, and that he called them local
subgroups.

3. Borel complexity of the full group of a minimal homeomorphism

The following question was suggested to us by T. Tsankov: what is the com-
plexity (in the sense of descriptive set theory) of the full group of an equivalence
relation induced by a minimal action of a countable group on the Cantor space?
We answer that question for Γ = Z. Below we use standard results and notations
of descriptive set-theory, borrowed from Kechris’s book [Kec95].

In particular, we recall that if A is a countable set then a tree on A is a subset
T of the set A<ω of finite sequences of elements of A, closed under taking initial
segments (see [Kec95, §2] for information on descriptive-set-theoretic trees and a
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detailed exposition of related notions). The set T of trees on A can be endowed
with a topology that turns it into a Cantor space, by setting as basic open sets all
sets of the form

{T ∈ T : ∀s ∈ S s ∈ T and ∀s′ ∈ S ′ s′ � T },
where S and S ′ are finite subsets of A<ω.

When s ∈ A<ω and a ∈ A, we denote by s � a the sequence of length length(s)+1
obtained by appending a to s.

A tree T is said to be well-founded if it has no infinite branches; in this case one
can define inductively the rank of an element s of A<ω by setting

ρT (s) = sup{ρT (s � a) + 1: s � a ∈ T }.
In particular, elements not in T and terminal nodes in T all have rank 0; then
one defines the rank ρ(T ) of T as being equal to the supremum of all ρT (s) + 1 for
s ∈ A<ω; when T is nonempty, this supremum is equal to ρT (∅) + 1.

Having said all this, we can begin to work, which we do by pointing out the
obvious: whenever Γ is a countable group acting by homeomomorphisms on a
Cantor space X, the full group of the associated equivalence relation R is a co-
analytic subset of the Polish group Homeo(X). This is simply due to the fact that
each set {(g,x) ∈Homeo(X)×X : g(x) = γ ·x} is closed, and for all g ∈Homeo(X) one
has

g ∈ [R]⇔∀x ∈ X∃γ ∈ Γ g(x) = γ · x.
The above line shows that [R] is the co-projection of an Fσ subset of Homeo(X)×X,
hence is co-analytic.

One might expect that the descriptive complexity of [R] is not that high in
the Borel hierarchy. For instance, in the measure-preserving context, full groups
are always Borel of very low complexity: it is shown in [Wei05] that the full
group of an aperiodic, probability-measure-preserving equivalence relation is a

Π0
3-complete subset of the group of measure-preserving automorphisms (that is,

in that case the full group is a countable intersection of countable unions of closed
sets). Perhaps surprisingly, it turns out that full groups of minimal homeomor-
phisms are not Borel.

Below, we denote by ϕ a minimal homeomorphism of a Cantor space X and
recall that [ϕ] denotes the full group of the associated equivalence relation. We
also denote by T the space of all trees on Clop(X), endowed with the topology
discussed above.

Definition 3.1. To each g ∈ Homeo(X) we associate a tree Tg on Clop(X) as
follows: for any sequence (U0, . . . ,Un) of clopen sets, (U0, . . . ,Un) belongs to Tg iff
each Uj is nonempty, Uj+1 ⊆ Uj for all j ∈ {0, . . . ,n − 1} and g(x) � ϕ±j(x) for all
x ∈Uj .

Lemma 3.2. The map g �→ Tg is a Borel mapping from Homeo(X) to T . For any

g ∈Homeo(X), g belongs to [ϕ] if, and only if, Tg is well-founded.

Proof. We need to prove that for any finite sequence of nonempty clopen sub-
sets (U0, . . . ,Un) the set {g ∈ Homeo(X) : (U0, . . . ,Un) ∈ Tg } is Borel. For this, it is

enough to show that for any nonempty clopen subset U of X, the set {g : ∀x ∈
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U g(x) � x} is Borel. The complement of this set is {g : ∃x ∈ U g(x) = x}, which is
closed because U is clopen in X and thus compact: if gn is a sequence of homeo-
morphisms of X such that for all n there exists xn ∈ U such that gn(xn) = xn, and
gn converges to g in Homeo(X), then up to some extraction we can assume that xn
converges to x ∈ U ; the distance from g(xn) to gn(xn) must converge to 0, so gn(xn)
converges to g(x), showing that g(x) = x. This concludes the proof that g �→ Tg is
Borel.

Next we fix g ∈ Homeo(X). We first assume that g does not belong to [ϕ], i.e.,
there exists x ∈ X such that g(x) � ϕn(x) for all n ∈ Z. Then, using the continuity
of g and ϕ, one can build by induction a decreasing sequence of clopen neighbor-

hoods Ui of x such that for all i and all y ∈ Ui one has g(y) � ϕ±i(y), which yields
an infinite branch of Tg . Conversely, assume that Tg is not well-founded and let

(Ui)i<ω be an infinite branch of Tg . Then F =
⋂
i<ωUi is nonempty, and for all x ∈ F

g(x) is different from ϕn(x) for all n ∈Z, showing that g does not belong to [ϕ]. �
If [ϕ] were Borel, the set Tϕ = {Tg : g ∈ [ϕ]} would be an analytic subset of

T , hence the boundedness principle for coanalytic ranks (see [Kec95, Theorem
35.23]) would imply the existence of a countable ordinal α such that the rank of
any element of Tϕ is less than α. We want to prove that it is not the case, so we

need to produce elements of [ϕ] such that the associated tree has arbitrarily large
rank. Let us introduce some notation in order to simplify the work ahead.

Definition 3.3. For any g ∈ [ϕ] we let ρ(g) denote the rank of Tg . For any

finite sequence of clopen sets (U0, . . . ,Un), we let ρg (U0, . . . ,Un) denote the rank of

(U0, . . . ,Un) with regard to the tree Tg . If α and β are ordinals, we write α ∼ β to
express that there are only finitely many ordinals between them; we write α � β
when α ≥ β or α ∼ β.

An encouraging sign that our introduction of ρ is a good way to capture in-
formation about elements of [ϕ] is that the topological full group [[ϕ]] is exactly
made up of all g ∈Homeo(X) such that ρ(g) < ω.

In order to build elements of [ϕ] such that the associated tree has arbitrarily
large rank, the following observation will be crucial.

Lemma 3.4. Let g be an element of [ϕ], and assume that ρ(g) ≥ ω. Then for any
h ∈ [[ϕ]] one has ρ(g) ∼ ρ(hg).

Since ρ(g) = ρ(g−1), the above lemma also holds true when multiplying on the
right by an element of the topological full group.

Proof. For k < ω, let

T kg = {(Uk, . . . ,Un) : (U0, . . . ,Un) ∈ Tg for some U0, . . . ,Uk−1}.
If h ∈ [[ϕ]], then for some k < ω and for all x ∈ X there is j such that |j | ≤ k and

h(x) = ϕj(x). So if g(x) � ϕj(x) for all |j | ≤ n but hg(x) = ϕm(x) for some m, then

|m| > n − k. This implies that T kg ⊆ Thg . Since ρ(T kg ) ≥ ρ(Tg ) − k, we get ρ(Thg ) ≥
ρ(Tg )− k, and similarly ρ(Tg ) = ρ(Th−1hg ) ≥ ρ(Thg )− k, proving the claim. �

When U is a subset of X and g belongs to [ϕ], we set

n(g,U ) = min({|k| : ∃x ∈U g(x) = ϕk(x)})
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Lemma 3.5. Let α be an infinite ordinal belonging to {ρ(g) : g ∈ [ϕ]}, and N be an
integer. For any nonempty clopen U ⊆ X, there exists h ∈ [ϕ] with support S contained
in U (in particular, h(U ) =U), such that ρ(h) � α and n(h,S) > N .

Proof. Pick g ∈ [ϕ] such that ρ(g) = α is infinite and fix a nonempty clopen
U ⊆ X and an integerN . Using compactness of the space ofϕ-invariant probability
measures and the fact that they are all atomless, one can find a nonempty clopen
Ũ ⊆U such that (2N +2)μ(Ũ ) < μ(U ) for any ϕ-invariant measure μ.

Since ϕ is minimal, there exist i1, . . . , in such that X =
⋃n
j=1ϕ

ij (Ũ ). For all j ∈
{1, . . . ,n}, denote Uj = ϕij (Ũ ), and consider the tree Tj defined by

(V0, . . . ,Vn) ∈ Tj ⇔ (V0, . . . ,Vn) ∈ Tg and V0 ⊆Uj.
Denote by ρj the rank function associated to the well-founded tree Tj , and by ρ(Tj )
the rank of Tj . For any finite sequence (V0, . . . ,Vk) of clopen subsets of X, we have(

∀j ∈ {1, . . . ,n} ρj(V0 ∩Uj, . . . ,Vk ∩Uj ) = 0
)
⇒ ρg (V0, . . . ,Vk) = 0.

From this, we see by transfinite induction that ρ(g) = max{ρ(Tj ) : j ∈ {1, . . . ,n}}, so
there exists j such that ρ(Tj ) = α. Fix such a j ; any element of [ϕ] coinciding with
g on Uj must have rank larger than α.

Applying the Glasner–Weiss result recalled as Theorem 1.7, we can find f ∈
[[ϕ]] such that f (Uj ) =W ⊆U . We also have

μ(g(Uj )) < μ

⎛⎜⎜⎜⎜⎜⎝U \
N⋃

i=−N
ϕi(W )

⎞⎟⎟⎟⎟⎟⎠
for any ϕ-invariant μ, so applying Theorem 1.7 again we can find k ∈ [[ϕ]] such
that k(g(Uj )) is contained in U and disjoint from

⋃N
i=−N ϕ

i(W ). Now, let h be equal
to kgf −1 on W , to f g−1k−1 on kgf −1(W ), and to the identity elsewhere. We set
S =W ∪ h(W ). Using the fact that f ,k belong to [[ϕ]] and Lemma 3.4, we see that

ρ(h) � ρ(g). The construction ensures that h(W ) is disjoint from
⋃N
i=−N ϕ

i(W ), so
n(h,W ) > N ; since h is an involution, n(h,h(W )) = n(h,W ) is also strictly larger than
N . This ensures that n(h,S) > N and all the desired conditions are satisfied. �

Theorem 3.6. The full group of a minimal homeomorphism of a Cantor space X is
a coanalytic non-Borel subset of Homeo(X).

Proof. Let ϕ be a minimal homeomorphism of a Cantor space X. We explain
how to produce elements of [ϕ] with arbitrarily large rank. To that end, we fix for
the remainder of the proof a compatible distance on X, an element g of [ϕ] and a
countable family (Vi) of nonempty disjoint clopen subets of X with the following
property: the tree generated by terminal nodes (U0, . . . ,Un) of Tg such that Un = Vi
for some i has rank at least ω. Note that the value n associated to such a terminal
node is determined by i: we must have g = ϕ±(n+1) on Vi . We note n = Ni , and our
hypothesis is that (Ni) is unbounded.

We then pick an infinite sequence (Wi)i<ω of nonempty clopen subsets of X
such that the diameter of eachWi is less than 2−i andWi ⊆ Vi for all i. Now, let gi
be any sequence of elements of [ϕ] of infinite rank; using Lemma 3.5, we can find
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elements hi of [ϕ] with support Si contained inWi and such that ρ(hi) � ρ(gi). We
shall also ask that n(hi ,Si) > 2Ni +1. We then define h : X→ X by setting

h(x) =

{
ghi(x) if x belongs to someWi

g(x) otherwise
.

Note that, since the sets Wi are pairwise disjoint, h is well-defined. We next show
that h is continuous. Let (xi) be a sequence of elements of X converging to some x ∈
X. If x belongs toWj for some j then xi ∈Wj for i large enough and continuity of g
and hj ensure that h(xi) converges to h(x). So wemay assume that x does not belong
to ∪Wj ; in that case h(x) = g(x) and since g is continuous we may also assume
that xi belongs to some Wji for all i. Each Wi is clopen, so we must have ji →
+∞, hence the diameter of Wji converges to 0. Since g is uniformly continuous,

the diameter of g(Wji ) also converges to 0; h(xi) and g(xi) both belong to this set,

showing that d(g(xi),h(xi)) converges to 0. Hence h(xi) converges to g(x) = h(x),
proving that h is continuous. The construction also ensures that h is bijective,
so h is a homeomorphism of X, and h belongs to [ϕ]. The definition of h and

the argument of Lemma 3.4 (using the fact that g = ϕ±(Ni+1) on Wi) ensure that
ρ(h) � ρ(hi) for all i. If we have ρ(gi) ≥ αi for limit ordinals αi , we then obtain
ρ(h) ≥ supαi .

Now let α be a countable limit ordinal, and f an element of [ϕ] such that ρ(f ) ≥
α; we now explain how to produce an element of [ϕ] with rank greater than α+ω,
which will conclude the proof. The element in question, again denoted by h, is
obtained by applying the construction above with gi = f for all i. Let (U0, . . . ,Un),
U0 = Un = Vi , be a terminal node of Tg , so in particular g = ϕ±(n+1) on U0, n = Ni .
Since n(hi ,Si) > 2n + 1, the only way to have ghi(x) = ϕm(x) for x ∈ U0 is with
|m| > n, and this says that (U0, . . . ,Un) belongs to Tghi (and to Th) as well. Once

we know this, the argument of Lemma 3.4 implies that ρh(U0, . . . ,Un) � ρ(hi) ≥ α:
if (U ′

0, . . . ,U
′
k) ∈ Thi , U ′

0 ⊆ Un, 2n + 1 < k, then (U0, . . . ,Un,U
′
2n+2, . . . ,U

′
k) ∈ Th. We

conclude that ρ(h) ≥ α+n = α+Ni . Since this is true for every i, we get ρ(h) ≥ α+ω,
as expected. �

Remark 3.7. Given the result we just proved, it seems likely that the full group
of an equivalence relation induced by a minimal action of a countable group Γ on
a Cantor space is never Borel. The above argument may be adapted in large part,
but it is not clear to the authors how one can modify Lemma 3.5 in a context where
Theorem 1.7 does not hold.

One can nevertheless note that the above result extends to relations induced
by actions of Zd for all integers d, though this extension of the result is not re-
ally meaningful, indeed it is trivial once one knows that full groups associated to

minimal Zd-actions are the same as full groups associated to minimal Z-actions, a
powerful result proved in [GMPS10].
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4. Closures of full groups

We saw above that there does not exist a Hausdorff, Baire group topology on
the full group of a minimal homeomorphism ϕ of a Cantor space X. This pre-
cludes the usage of Baire category methods; however, the same cannot be said of
the closure of [ϕ], which is of course a Polish group since it is a closed subgroup of
Homeo(X) (and the arguments of Section 2 show that the topology induced by that
of Homeo(X) is the unique Polish topology on the closure of [ϕ] which is compat-
ible with the group operations). As pointed out in [GPS99], the closure of [ϕ] is
easy to describe thanks to Theorem 1.7: lettingMϕ denote the (compact, convex)
set of all ϕ-invariant probability measures, we have

[ϕ] = {g ∈Homeo(X) : ∀μ ∈Mϕ g∗μ = μ}.
Notation. Below we denote the closure of the full group of ϕ in Homeo(X)

by Gϕ .

This group is relevant when studying topological orbit equivalence of minimal
homeomorphisms, because of a theorem of Giordano–Putnam–Skauwhich implies
the following result.

Proposition 4.1. Let ϕ1, ϕ2 be two minimal homeomorphisms of a Cantor space
X; assume that Gϕ1

and Gϕ2
are isomorphic (as abstract groups). Then ϕ1 and ϕ2 are

orbit equivalent.

Proof. Assume that Φ : Gϕ1
→ Gϕ2

is a group isomorphism. First, the usual

reconstruction techniques (see e.g. [Med11]) show that there exists a homeomor-
phism h ∈Homeo(X) such that Φ(g) = hgh−1 for all g ∈ Gϕ1

.
So we have that

∀g ∈Homeo(X) g ∈ Gϕ1
⇔ hgh−1 ∈ Gϕ2

.

SinceMϕi is equal to the set of measures which are invariant under translation by

elements of Gϕi (for i = 1,2), this means that

∀μ μ ∈Mϕ1
⇔ h∗μ ∈Mϕ2

.

Then ([GPS95, Theorem 2.2(iii)]) implies that ϕ1 and ϕ2 are orbit equivalent.
�

Of course, the converse of the above statement is true: if ϕ1 and ϕ2 are orbit
equivalent, then their full groups are conjugated inside Homeo(X), so the closures
of the full groups are also conjugated. However, the statement above is only valid
a priori for actions of Z: while it is true that for any minimal actions of count-
able groups an isomorphism between the closures of the respective full groups
must be implemented by an homeomorphism of X, there is no reason why this
homeomorphism would be sufficient to prove that the full groups themselves are
isomorphic. Indeed, using ideas from ergodic theory, one can see that there are
plenty of examples of actions of countable groups Γ1, Γ2 on a Cantor space X such

that [RΓ1] = [RΓ2], yet the two associated relations are not orbit equivalent. The
example below was explained to us by D. Gaboriau.
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Proposition 4.2. There exists an action of Z and an action of the free group F3 on
three generators on a Cantor space X, such that the closures of the full groups of the two
actions coincide, yet the relations are not orbit equivalent.

Proof. Let Z act on the Cantor space {0,1}ω via the usual odometer map. Con-
sider the free group F2 on two generators acting by the Bernoulli shift on {0,1}F2;
using a bijection between ω and F2, one can see this as an action of F2 on {0,1}ω =
X. Let F3 = F2 ∗Z act on X, where the action of F2 is the Bernoulli shift and the
action of Z is via the odometer map. Then the actions of Z and F3 on {0,1}ω both
preserve the (1/2,1/2)-Bernoulli measure μ on 2ω; since the odometer is uniquely
ergodic, we see that for both actions the closure of the full group is equal to the
set of all homeomorphisms which preserve μ. Yet, there cannot even exist a μ-
preserving bijection h of X such that, for μ-almost all x,x′ ∈ X, one has

(xRZx
′)⇔ (h(x)RF3h(x

′)).

Indeed, the relation induced by the action of Z is hyperfinite, while the relation
induced by the action of F3 contains a subrelation which is induced by a free ac-
tion of F2, so it cannot be hyperfinite (see for instance [Kec10] for information
on probability-measure-preserving group actions and the properties we use here
without details). Since a homeomorphism realizing an orbit equivalence between
RZ and RF3 would have to preserve μ, we see that while the closures of both full
groups coincide, the associated relations cannot be orbit equivalent. �

In view of this, the following question might be interesting.

Question 4.3. Let Γ1, Γ2 be two countable amenable groups acting minimally on
a Cantor space X. Assume that the closures of the corresponding full groups are
isomorphic as abstract groups. Must the two actions be orbit equivalent?

If one knew that any minimal action of a countable amenable group is orbit
equivalent to a Z-action then the answer to the question above would be positive;
the result of [GMPS10] mentioned at the end of the previous section implies that
the above question has a positive answer when Γ1,Γ2 are finitely generated free
abelian groups.

We have already pointed out that it is unknown whether the full group of a
minimal homeomorphism ϕ is simple. This reduces to deciding whether the full
group coincides with its derived subgroup. Indeed, it is proved in [BM08, Theo-
rem 3.4] that any normal subgroup of [ϕ] contains its derived subgroup; the same
is true for Gϕ , as can be seen by following the proof of [BM08].

Unfortunately, it seems to be hard in general to decide which elements of [ϕ]
are products of commutators (though one might conjecture that every element has
this property; partial results in this direction can be found in [BM08]). The use of
Baire category methods might make things simpler in the case of Gϕ , especially in
view of the following folklore result.

Proposition 4.4. Let G be a Polish group; assume that G has a comeager conjugacy
class. Then every element of G is a commutator.
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Proof. Assume that Ω is a comeager conjugacy class in G, and let g ∈ G. The
intersection gΩ∩Ω is nonempty; picking an element g0 in this intersection, we see

that there exists k ∈ G such that gkg0k
−1 = g0, in other words g = g0kg

−1
0 k−1. �

It is thus interesting to understand when Gϕ has a comeager conjugacy class,
even more so because of the following observation.

Proposition 4.5. Let ϕ be a minimal homeomorphism of a Cantor space X, and
assume that Gϕ has a comeager conjugacy class. Then Gϕ has the automatic conti-

nuity property, i.e., any homomorphism from Gϕ to a separable topological group is
continuous.

Proof. The argument in [RS07, Theorem 12] adapts straightforwardly. �
In the next section, we will discuss in more detail the problem of existence

of comeager conjugacy classes in Gϕ in the particular case when ϕ is uniquely
ergodic, recovering in particular a result of Akin that provides many examples of
this phenomenon.

In the first version of this article, we proved a weaker version of the result
below, which worked only in the case when n = 1 and ϕ is a uniquely ergodic
homeomorphism (see the next section); we are grateful to K. Medynets for pointing
out to us the following stronger result.

Theorem 4.6 (Grigorchuk–Medynets [GM]). Let ϕ be a minimal homeomorphism
of a Cantor space X. Then {(g1, . . . , gn) : (g1, . . . , gn) generates a finite group} is dense in
[ϕ]n for all n.

Proof. Since this statement is not explicitly written down in [GM] (though
it is very close to Theorem 4.7 there), we describe the argument for the reader’s
convenience. We simply prove that the set of elements of finite order is dense in
[ϕ]; the proof of the general case is an easy consequence of this argument.

We may assume, replacing ϕ by a minimal homeomorphism which is orbit
equivalent to it (which does not affect the full group) that the topological full
group [[ϕ]] is dense in [ϕ]. This fact is pointed out in [BK02, Theorem 1.6], and
follows from a combination of [GW95, Theorem 2.2] and [GPS99, Lemma 3.3].
Under this assumption, we only need to prove that the set of elements of finite
order is dense in [[ϕ]].

We fix γ ∈ [[ϕ]]. We letDi = {x : γ(x) = ϕi(x)}, and Ek = {x : γ−1(x) = ϕk(x)} . The
sets Di form a clopen partition of X, as do the sets Ek ; we let jγ : X→Z (resp. kγ )
be the continuous function defined by jγ (x) = j iff x ∈Dj (resp. kγ (x) = k iff x ∈ Ek).
We also pick K such that Dj = ∅ = Ej for all |j | > K , fix a compatible distance d on

X for the remainder on the proof, and let δ > 0 be such that d(Di,Dj ) > δ for all

nonempty Di �Dj , and d(Ei,Ej ) > δ for all nonempty Ei � Ej .
Recall that a Kakutani–Rokhlin partition associated to ϕ is a clopen partition

of X of the form {ϕi(Bn) : 0 ≤ n ≤ N,0 ≤ i ≤ hn − 1}. The base of the partition is

B =
⋃N
n=0Bn, while its top is T =

⋃N
n=0ϕ

hn−1Bn. Note that ϕ(T ) = B. For all i, we set

Yi =
N⋃
n=0

ϕi(Bn) and Zi =
N⋃
n=0

ϕ−i(Bn)
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Kakutani–Rokhlin partitions exist because ϕ is minimal; actually, one can use
minimality to ensure that the following conditions are satisfied (see for instance
[GM] for a discussion of these partitions and references):

(1) The functions jγ and kγ are constant on each atom of the partition.

(2) min{hn : 0 ≤ n ≤N } ≥ 2K +2.
(3) The diameter of each Yi and each Zi is less than δ for all i ∈ {0, . . .K} (this

can be ensured because of the uniform continuity of ϕ and ϕ−1, and the
fact that one can build Kakutani–Rokhlin partitions whose base has arbi-
trarily small diameter).

Fix such a partition. Note that the third condition ensures that jγ and kγ are con-

stant on each Yi,Zi (|i | ≤ K), and the second condition guarantees that the sets
(Yi)0≤i≤K , (Zi)1≤i≤K are pairwise disjoint. We now define P ∈ [[ϕ]] as follows. For

all n, and all i ∈ {0, . . . ,hn−1}, let jγ (n, i) be the value of jγ on ϕi(Bn) = Bn,i .

• If 0 ≤ jγ (n, i) + i ≤ hn−1, then P(x) = γ(x) for all x ∈ Bn,i .
• If jγ (n, i)+ i < 0, then necessarily i < K , so Bn,i = Yi , and since jγ is constant

on Yi one has γ(Yi) ⊆ Zl for some 1 ≤ l ≤ K . The inclusion must be an

equality since kγ is constant on Zl . Then set P(x) = ϕ−i+hn−l(x) for all x ∈
Bn,i .

• If jγ (n, i)+i ≥ hn, then one must similarly have Bn,i = Zj for some 1 ≤ j ≤ K ,
γ(Zj ) = Yl for some 0 ≤ l < K , and one can set P(x) = ϕ−i+l(x) for all x ∈ Bn,i .

It is straightforward to check that P has finite order; also, the fact that the
diameter of each Yi , Zi for |i | ≤ K is small ensures that for all x one has both
d(P(x),γ(x)) ≤ δ and d(P−1(x),γ(x)) ≤ δ. Thus γ belongs to the closure of the set of
elements of finite order, which concludes the proof. �

Actually, as pointed out by K. Medynets, this argument shows that [ϕ] contains
a dense locally finite subgroup (the group of all elements which preserve a positive
semi-orbit; see the remarks in [GM, §5]). We will not need this fact so do not give
any details.

Even though we do not know whether Gϕ or [ϕ] are simple in general, we can
use Theorem 4.6 to prove that these groups do not have any non-trivial closed
normal subgroups.

Theorem 4.7. Let ϕ be a minimal homeomorphism of a Cantor space X. Then Gϕ
and [ϕ] are topologically simple.

Proof. We show that the derived subgroup of [ϕ] is dense, which implies the
simplicity of both groups by the result of Bezuglyi–Medynets recalled in the para-
graph before Proposition 4.4. Say that g ∈ [ϕ] is a p-cycle on a clopen set U if U is

the support of g , gp = 1 and there exists a clopenA such thatU = A$g(A) . . .$gp−1A
(this is the same as saying that the g-orbit of every element of U has cardinality p,
and every element outside U is fixed by g). Theorem 4.6 implies that products of
cycles are dense in [ϕ], so it is enough for our purposes to show that p-cycles are
products of commutators for any integer p.

Let g be a p-cycle on a clopen U , with U = $p−1i=0 g
i(A). Given a permutation σ

belonging to the permutation group Sp on p elements, we denote by gσ the element
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of [ϕ] defined by setting gσ (x) = x for all x outside U and

∀i ∈ {0, . . . ,p − 1} ∀x ∈ gi(A) gσ (x) = g
σ(i)−i(x).

The map σ �→ gσ is a homomorphism from Sp to [ϕ]. Since the commutator sub-
group of Sp is the alternating subgroup Ap, we thus see that whenever σ belongs
to Ap gσ is a product of commutators. In particular, g has this property if p is odd.

If p is even, let τ be the transposition of Sp which exchanges 0 and 1. Then [BM08,
Corollary 4.8] tells us that gτ is a product of 10 commutators in [ϕ]; since ggτ = gσ
for some σ ∈ Ap, g is also a product of commutators. �

It was pointed out by the referee that, since one can assume that [[ϕ]] is dense in
[ϕ], the density of the derived subgroup of [ϕ] directly follows from the fact that
that [[ϕ]] is contained in the derived subgroup of ϕ, a fact which is mentioned
without proof on [BM08, p. 419].

Let us mention another reason why we think it might be interesting to further
study the properties of closures of full groups.

Proposition 4.8. Let ϕ be a minimal homeomorphism of a Cantor space X. Then
Gϕ is an amenable Polish group.

Proof. By Theorem 4.6 there exists an increasing sequence of compact sub-
groups of Gϕ whose union is dense in Gϕ (see [KR07, Proposition 6.4]), which
must then be amenable.

The result would also follow immediately from the stronger fact that Gϕ actu-
ally contains a dense locally finite subgroup.

�
This fact is particularly interesting in view of a question of Angel–Kechris–

Lyons [AKL12, Question 15.1] askingwhether, whenever an amenable Polish group
has a metrizable universal minimal flow, the universal minimal flow is uniquely
ergodic. A positive answer to the following problem would then show that the
answer to Angel–Kechris–Lyons’ question is negative.

Question 4.9. Let ϕ be a minimal homeomorphism of a Cantor space X. Is the
universal minimal flow of Gϕ metrizable?

Remark 4.10. Proving that there exists one minimal homeomorphism ϕ which
is not uniquely ergodic, yet has a metrizable universal minimal flow would be
enough to answer negatively the question of Angel–Kechris–Lyonsmentioned above.
In the opposite direction, proving that the universal minimal flows of these groups
are not metrizable as soon as the homeomorphism is not uniquely ergodic, and are
metrizable otherwise, would point towards a positive answer to their question.

At the moment, this seems out of reach: for instance, when ϕ is equal to the
usual binary odometer, Gϕ is just the set of all homeomorphisms of the Can-

tor space {0,1}ω which preserve the usual (1/2,1/2)-Bernoulli measure on {0,1}ω.
Identifying the universal minimal flow of this group is already a very complicated
problem, studied in [KST12] where a candidate (which is metrizable) is proposed.
Thus it seems that the current state of the art does not, for the moment, allow us
to hope for an easy answer to our question.
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5. Uniquely ergodic homeomorphisms and Fraïssé theory

From now on, we focus on the case when ϕ is uniquely ergodic, i.e., there is a
unique ϕ-invariant probability measure.

Definition 5.1. A Borel probability measure μ on a Cantor space X is said to
be a good measure if μ is atomless, has full support, and satisfies the following
property: whenever A,B are clopen subsets of X such that μ(A) ≤ μ(B), there exists
a clopen subset C of B such that μ(C) = μ(A).

Note that in the definition above the fact that A,B,C are clopen is essential.
Good measures are relevant in our context because of the following fact.

Theorem 5.2 ([Aki05]; Glasner–Weiss [GW95]). Let μ be a probability measure on
a Cantor space X. There exists a minimal homeomorphism ϕ of X such that {μ} =Mϕ
if, and only if, μ is a good measure.

The fact that the goodness of μ is a necessary condition in the result above is
due to Glasner–Weiss (it follows directly from the result we recalled as Theorem
1.7); the fact that is is sufficient is due to Akin.

It seems natural to ask the following question, which we only mention in pass-
ing.

Question 5.3. Can one give a similar characterization of compact, convex sub-
sets K of the set of probability measures on a Cantor space X for which there exists
a minimal homeomorphism ϕ of X such that K is the set of all ϕ-invariant mea-
sures?

The following invariant of good measures is very useful.

Definition 5.4 (Akin [Aki05]). Let μ be a good measure on a Cantor space X.
Its clopen value set is the set

V (μ) = {r ∈ [0,1] : r = μ(A) for some clopen A ⊆ X}.
A goodmeasure μ on a Cantor spaceX is completely characterized by its clopen

value set, in the sense that for any two good measures μ,ν on X with the same
clopen value set there must exist a homeomorphism g of X such that g∗μ = ν (see
[Aki05, Theorem 2.9]; we discuss a different proof below). If μ is a good measure,
then V (μ) is the intersection of a countable subgroup of (R,+) and [0,1], contains
1, and is dense in the interval; conversely it is not hard to see that any such set is
the clopen value set of some good measure μ. The density condition corresponds
to the fact that μ is atomless, and is equivalent (since 1 ∈ V ) to saying that V is not

contained in 1
pZ for any integer p.

Definition 5.5. Given a goodmeasure μ on a Cantor spaceX, we follow [Aki05]
and denote by Hμ the set of all homeomorphisms of X which preserve μ. For a

countable V ⊂ [0,1], we denote by 〈V 〉 the intersection of the subroup of (R,+)
generated by V ∪{1}with [0,1]; we say that V is group-likewhen V is not contained

in 1
pZ for any integer p and V = 〈V 〉. In that case, we denote by μV the good

measure whose clopen value set is equal to V .
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Of course, μV above is only defined up to isomorphism; since we focus on
isomorphism-invariant properties we allow ourselves this small abuse of termi-
nology.

We would like to understand when there exists a comeager conjugacy class
in Hμ. Akin [Aki05, Theorem 4.17] proved that this holds true whenever V (μ) +Z

is a Q-vector subspace of R, or equivalently whenever any clopen subset can be
partitioned into m clopen subsets of equal measure for any integer m. One can
check that this also holds true, for instance, when μ is a Bernoulli measure (this
is explicitly pointed out in [KR07]), and it was our hope that this property would
be satisfied by all good measures. Unfortunately, such is not the case, as we will
see shortly; since we approach this problem via techniques developed by Kechris–
Rosendal [KR07], we quickly recall the framework for their results.

A signature L is a set {{(fi ,ni)}i∈I , {(Rj,mj )}j∈J , {ck}k∈K } where each fi is a function

symbol of arity ni , each Rj is a relation symbol of arity mj , and each ck is a constant

symbol.
Given a signature L, an L-structure M consists of a set M along with a family

{{(f Mi )}i∈I , {RMj }j∈J , {c
M
k }k∈K } where each f Mi is a function from Mki to M , each RMj

is a subset of Mmj , and each cMk is an element of M . In our context, one might
for instance consider the signature containing constant symbols 0 and 1, binary
functional symbols ∧ and ∨, and consider the class of structures in that signature
which are Boolean algebras with minimal element (the empty set) corresponding
to the constant 0, and maximal element (the whole set) corresponding to the con-
stant 1. It might also simplify matters to add a unary function symbol standing
for complementation. Here, we are not concerned merely with Boolean algebras,
but with probability algebras. One way to fit those into our framework is to first
fix a set V ⊆ [0,1] (the set of values allowed for the probability measure), and add
a unary predicate μv for each v ∈ V . Then, one can naturally consider the class
of probability algebras with measure taking values in V as a class of structures in
this signature LV .

There are natural notions of embedding/isomorphism of L-structures. Assume
that we have fixed a countable signature L (that is, each set I , J , K above is at most
countable), and that K is a class of finite L-structures. Then one says that K is a
Fraïssé class if it satisfies the four following conditions:

(1) K countains only countably many structures up to isomorphism, and con-
tains structures of arbitrarily large finite cardinality.

(2) K is hereditary, i.e., if A ∈ K and B embeds in K, then B ∈ K.
(3) K satisfies the joint embedding property (JEP), that is, any two elements of

K embed in a common element of K.
(4) K satisfies the amalgamation property (AP), that is, given A,B,C ∈ K and

embeddings i : A → B, j : A → C, there exists D ∈ K and embeddings
β : B→D and γ : C→D such that β ◦ i = γ ◦ j .

The point is that, given a Fraïssé class K, there exists a unique (up to isomor-
phism) L-structure K whose age is K and which is homogeneous. Here, the age of
a structure is the class of finite L-structures which embed in it, and a structure K

is homogeneous if any isomorphism between finite substructures of K extends to
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an automorphism of K. Conversely, if K is a countable homogeneous L-structure
whose finitely generated substructures are finite, then its age is a Fraïssé class.

For instance, the class of finite Boolean algebras is a Fraïssé class and its limit
is the unique countable atomless Boolean algebra, whose Stone space is the Can-
tor space —so the automorphism group of the limit is just the homeomorphism
group of the Cantor space in another guise. Note that the automorphism group of
any countable structure K may be endowed with its permutation group topology,
for which a basis of neighborhoods of the neutral element is given by pointwise
stabilizers of finite substructures.

Let us fix a good measure μ on a Cantor space X, set V = V (μ), and consider the
probability algebra (Clop(X),μ) made up of all clopen subsets of X endowed with
the measure μ, in the signature LV discussed above. Then it follows from The-
orems 5.2 and 1.7 that this is a homogeneous structure: any measure-preserving
isomorphism between two finite clopen subalgebras of X is induced by a measure-
preserving homeomorphism of X, i.e., an automorphism of the Boolean algebra
Clop(X) which preserves the measure μ. Also, an easy induction on the cardinality
of finite subalgebras of (Clop(X),μ) shows that its age consists of the finite proba-
bility algebras whose measure takes values in V . Hence this is a Fraïssé class; note
that this implies that two good measures μ1,μ2 such that V (μ1) = V (μ2) must be
isomorphic, by the uniqueness of the Fraïssé limit (this was first proved by Akin
[Aki05]).

Now we can return to the question of existence of dense/comeager conjugacy
classes in Hμ, when μ is a good measure. Assume again that K is a Fraïssé class in

some countable signature L, letK be its Fraïssé limit and let K1 denote the class of
structures of the form (A,ϕ), whereA belongs toK andϕ is a partial automorphism
of A, i.e., an isomorphism from a substructure of A onto another substructure of A.
An embedding between two such structures (A,ϕ) and (B,ψ) is an embedding α of
A into B such thatψ◦α extends α◦ϕ. Then, the existence of a dense conjugacy class
in Aut(K) is equivalent to saying that the class K1 satisfies the joint embedding
property (see [KR07, Theorem 2.1]).

The existence of a comeager conjugacy class is a little harder to state. Retaining
the notations above, say that a class of structuresK satisfies the weak amalgamation
property (WAP) if for any A ∈ K there exists B ∈ K and an embedding i : A→ B such
that for any C,D ∈ K and any embeddings r : B→ C, s : B→ D, there exists E ∈ K
and embeddings γ : C→ E and δ : D→ E such that γ ◦ r ◦ i = δ ◦ s ◦ i. Then [KR07,
Theorem 3.4] states that there exists a comeager conjugacy class in Aut(K) if and
only if K1 satisfies both (JEP) and (WAP).

We now know what combinatorial properties to study when looking at the au-
tomorphism groups of good measures; fix a good measure μ and consider the cor-
responding Fraïssé class Kμ, which is made up of all finite probability algebras
whose measure takes its values inside V (μ). Theorem 4.6 provides a good starting

point: indeed, it shows that any element of Kμ1 can be embedded in an element
of the form (A,ϕ), where ϕ is a global automorphism of A. We denote this class

by Kμaut.
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It follows from Theorem 4.6 that Kμaut is cofinal in K
μ
1. Hence, in order to un-

derstand when Kμ1 satisfies (JEP), we only need to consider automorphisms of fi-
nite algebras; explicitly, we now see that Hμ has a dense conjugacy class if and

only if the following condition is satisfied: whenever A,B are finite subalgebras of
Clop(X), and a,b are automorphisms of (A,μ), (B,μ) respectively, there exists a fi-
nite subalgebra C of Clop(X) and an automorphism c of (C,μ) such that there exist
μ-preserving embeddings α : A→ C and β : B → C satisfying c(α(A)) = α(a(A)) for
all A ∈ A, and c(β(B)) = β(b(B)) for all B ∈ B.

Unfortunately, this property does not always hold. Indeed, assume that μ sat-

isfies (JEP), and that there exists A ∈ Clop(X) such that μ(A) = 1
n for some inte-

ger n. Then, there exists an element a ∈ Hμ such that X is the disjoint union of

A, . . . , an−1(A). Let now r be any element of V (μ), B a clopen subset of X such that
μ(B) = r, and consider:

• the algebra A generated by A, . . . , an−1(A), with the automorphism a;
• the algebra B made up of B and its complement, with the identity auto-
morphism b.

Assume one can jointly embed (A, a) and (B, b) in (C, c); identify A,B with the

subalgebras of C associated with these embeddings. Then B = B ∩ $n−1i=0 c
i(A) =

$n−1i=0 c
i(B∩A), so B is cut into n clopen subsets of equal measure. This means that rn

must belong to V (μ). Hence, the joint embedding property fails for instance when

V = 〈12 , 1π 〉.
Analysing the above example, one can extract a combinatorial condition on V

that is equivalent to the existence of a dense conjugacy class in HμV .

Proposition 5.6. Let V be a group-like subset of [0,1]. Then there is a dense conju-
gacy class in HμV if, and only if, V satisfies the following condition: whenever ai ,bj ∈ V
and ni,mj ∈N are such that

∑p
i=1niai = 1 =

∑q
j=1mjbj , there exist ci,j ∈ V such that

∀j mjbj =
p∑
i=1

lcm(ni,mj )ci,j and ∀i niai =
q∑
j=1

lcm(ni,mj )ci,j .

This holds true in particular when V +Z is a Q-vector subspace of R, and when
V +Z is a subring of R.

As we already mentioned above, Akin [Aki05] actually proved that Hμ has a

comeager conjugacy class when V (μ) +Z is a Q-vector subspace of R, a fact that
we will recover below.

Proof of Proposition 5.6. To simplify the notation belowwe sometimes do not
mention the measure; in particular, all automorphisms are to be understood as
preserving μ.

Assume that the joint embedding property for partial automorphisms holds,
and consider (ai ,ni)1≤i≤p, (bj ,mj )1≤j≤q as above. Then one can consider a finite al-

gebraA with clopen atoms Ai,k for k ∈ {0, . . . ,ni −1} such that each Ai,k has measure
ai , and an automorphism a ofA such that a(Ai,k) = Ai,k+1 for all i, k (where addition
is to be understood modulo ni); similarly one can consider a finite algebra B with
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clopen atoms Bj,k (k ∈ {0, . . . ,mj − 1}) and the corresponding automorphism b of B.
For all i we let Ai = ∪Ai,k and Bj = ∪Bj,k .

Then we pick (C, c) such that (A, a) and (B, b) can be embedded in (C, c), where
c is an automorphism of the finite algebra C, and we identify them with the cor-
responding subalgebras of C. If for some i, j Ai ∩ Bj is nonempty, then it is a c-
invariant clopen set. Any atom of C contained in some Ai,k ∩ Bj,l must have an

orbit whose cardinality is a multiple of lcm(ni,mj ), so ci,j =
1

lcm(ni ,mj )
μ(Ai ∩Bj ) be-

longs to V . Then we have for all i:

niai = μ(Ai) =
q∑
j=1

μ(Ai ∩Bj ) =
q∑
j=1

ci,j lcm(ni,mj ).

The same reasoning holds for mjbj .
This proves one implication; to prove the converse, let us first note that, given

a clopen U and two cycles a,b on U of orders n,m respectively and such that
1

lcm(n,m)
μ(U ) belongs to V , there exists a cycle onU of orderN = lcm(n,m) in which

both a and b embed. Such a cycle is obtained by cutting U in N disjoint pieces Ci
(0 ≤ i ≤ N − 1) of equal measure, and setting c(Ci) = Ci+1 (modulo N ). Then, let
N = nr =ms; letting A0, . . . ,An−1 denote the atoms contained in U of the algebra on
which a is defined, one obtains the desired embedding by identifying each Ai with

$r−1k=0Cnk+i , and each Bj with $s−1k=0Cmk+j .

Now, let α,β in HμV be such that X = $pi=1Ai , where each Ai is clopen and α is

a product of cycles αi of order ni on Ai , and X = $qj=1Bj , where each Bj is clopen
and β is a product of cycles βj of order mj on Bj . It is enough to prove that α,β
embed in a common element of HμV . Let niai = μ(Ai) and mjbj = μ(Bj ), and apply

our assumption on V to get ci,j as in the lemma’s statement. Let I denote the set of
all (i, j) such that ci,j � 0; we may find a finite subalgebra of Clop(X) whose atoms

Cki,j ((i, j) ∈ I , 1 ≤ k ≤ lcm(ni,mj )) are of measure ci,j . For each (i, j) ∈ I , set

Di,j =

lcm(ni ,mj )⊔
k=1

Cki,j .

We saw that there exists a cycle δi,j on Di,j , of order lcm(ni,mj ), in which a cycle
αi,j on Di,j of order ni and a cycle βi,j on Di,j of order mj both embed. Let δ be the
product of all δi,j ; α embeds in δ as the product of all αi,j , and β embeds in δ as
the product of all βi,j .

To see that the property under discussion holds true when V +Z is a subring

of R, simply note that in that case aibj belongs to V ; thus ci,j = aibj
nimj

lcm(ni ,mj )
=

aibjgcd(ni,mj ) works.
When V +Z is a Q-vector subspace of R, which is equivalent to saying that

a
n ∈ V for any positive integer n and any a ∈ V , we skip the proof since we will
show a stronger property below. �
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The above criterion is probably of minimal practical interest, since it appears
to be fairly hard to check (certainly, it does not help much when tackling the case
when V +Z is a Q-vector subspace of R).

Definition 5.7. Following Akin [Aki05], we say that a group-like subset V ⊆
[0,1] is Q-like if V +Z is a Q-vector subspace of R; this is equivalent to saying that

V is group-like and 1
nV ⊆ V for any positive integer n.

Proposition 5.8. If V isQ-like, thenKμVaut satisfies the amalgamation property. (The
converse is also true.) Hence HμV has a comeager conjugacy class in that case.

Proof. Suppose that (A,ϕ) embeds in (B,ψ) and in (C,θ). We construct the
Boolean amalgam (B ⊗A C,ψ ⊗ θ) of (B,ψ) and (C,θ) over (A,ϕ) in the standard
way (see for example [KST12]), and only need to define the measures. We give an
argument in the fashion of the one contained in Theorem 2.1 of [KST12].

Fix an atom a ∈ A, and list the atoms of B and C contained in a by {bki }k<ni<nk

and {clj }l<mj<ml respectively, where bki and bk
′
i ′ are in the same ψ-orbit iff k = k′, and

analogously for the clj . We want to define the values xklij = μ(b
k
i ⊗clj ). Then we would

translate these values in the obvious manner to the products of the atoms of B and
C contained in the ϕ-translates of a; finally, we would proceed analogously for the
other orbits of (A,ϕ).

Other than being in V , the values xklij have to satisfy:

0 ≤ xklij ,

xklij = x
kl
i ′j ′ ,∑

ki

xklij = μ(c
l
j ),

∑
lj

xklij = μ(b
k
i ).

Denoting xkl = xklij , we can reformulate the conditions as:∑
k

nkmlx
kl =mlμ(c

l
0),

∑
l

nkmlx
kl = nkμ(b

k
0).

Considered as a system in the variables ykl = nkmlx
kl , we can find a solution in R,

namely ykl = nkml
μ(bk0)μ(c

l
0)

μ(a) . Since V is group-like and dense, there must also be

solutions ykl in V . Since it is also Q-like, we can take xkl = ykl

nkml
and we are done.

�
The amalgamation property for Kμaut is stronger than the existence of a comea-

ger conjugacy class in Hμ; for instance, if V (μ) is the set of dyadic numbers, then it

follows from [KR07, discussion after the statement of Theorem 6.5] that Hμ has a

comeager conjugacy class, but it is easy to see that Kμaut does not have the amalga-
mation property in that case. It does, however, admit a cofinal class which satisfies
the amalgamation property, which is sufficient to obtain (WAP) (that class is made
up of finite subalgebras all of whose atoms have the same measure). A priori, the

cofinal amalgamation property forKμaut is itself stronger than (WAP); yet we do not
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know of an example of measure for which Kμ1 has (WAP) but Kμaut does not have
the cofinal amalgamation property.



CHAPTER 5

Dynamical simplices and minimal homeomorphisms

Abstract. [Joint work with Julien Melleray, submitted for publication] We give a

characterization of sets K of probability measures on a Cantor space X with the

property that there exists a minimal homeomorphism g of X such that the set of

g-invariant probability measures on X coincides with K . This extends theorems

of Akin (corresponding to the case when K is a singleton) and Dahl (when K is

finite-dimensional). Our argument is elementary and different from both Akin’s

and Dahl’s.
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Introduction

The study of minimal homeomorphisms (those for which all orbits are dense)
on a Cantor space is a suprisingly rich and active domain of research. In a foun-
dational series of papers (see [HPS92], [GPS95] and [GPS99]), Giordano, Herman,
Putnam and Skau have pursued the analysis of minimal actions of Z (and later

Zd), and developed a deep theory. In particular, it is proved in [GPS95] that the
partition of a Cantor space X induced by the orbits of a minimal homeomorphism
g is completely determined, up to a homeomorphism of X, by the collection of all
g-invariant measures.

Gaining a better understanding of sets of invariant measures then becomes a
natural concern, and that is our object of study here: given a Cantor space X, and
a simplex K of probability measures, when does there exist a minimal homeomor-
phism g of X such that K is exactly the simplex of all g-invariant measures? Dow-
narowicz [Dow91] proved that any abstract Choquet simplex can be realized in
this way; here we are not given K as an abstract simplex, but already as a simplex
of measures, so the problem has a different flavour.

A theorem of Glasner–Weiss [GW95] imposes a necessary condition: if g is a
minimal homeomorphism, K is the simplex of all g-invariant measures, and A,B
are clopen subsets ofX such that μ(A) < μ(B) for all μ ∈ K , then there exists a clopen
subset C ⊆ B such that μ(C) = μ(A) for all μ ∈ K . This is already a strong, nontrivial
assumption when K is a singleton; in that case the Glasner–Weiss condition is
essentially sufficient, as was proved by Akin.

163
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Theorem (Akin [Aki05]). Assume that μ is a probability measure on a Cantor space
X which is atomless, has full support, and is good, that is, for any clopen sets A,B, if
μ(A) < μ(B) then there exists a clopen C ⊆ B such that μ(C) = μ(A).

Then there exists a minimal homeomorphism g ofX such that the unique g-invariant
measure is μ.

Following Akin, we say that a simplex is good if it satisfies the necessary condi-
tion established by Glasner andWeiss. Akin’s theorem suggests that, modulo some
simple additional necessary conditions, any good simplex of measures could be the
simplex of all invariant measures for some minimal homeomorphism. This idea
is further reinforced by an unpublished result of Dahl, which generalizes Akin’s
theorem.

Theorem (Dahl [Dah08]). Let K be a Choquet simplex made up of atomless prob-
ability measures with full support on a Cantor space X. Assume that K is good and has
finitely many extreme points, which are mutually singular. Then there exists a minimal
homeomorphism whose set of invariant probability measures coincides with K .

Dahl actually obtains a more general result. To formulate it, we recall her no-
tation: given a simplex K of probability measures on a Cantor space X, let Aff(K)
denote the set of all continuous affine functions on K , and G(K) ⊆ Aff(K) be the set
of all functions μ �→

∫
X
f dμ, where f belongs to C(X,Z).

Theorem (Dahl [Dah08]). Let K be a Choquet simplex made up of atomless prob-
ability measures with full support on X. Assume K is good and the extreme points of K
are mutually singular. If G(K) is dense in Aff(K), then there exists a minimal homeo-
morphism whose set of invariant measures is exactly K .

As pointed out in the third section of [Dah08], it follows from Theorem 4.4
in [Eff81] that G(K) being dense in Aff(K) is necessary for G(K) to be a so-called
simple dimension group, which is in turn necessary for the existence of g as above.
The other conditions are also necessary, so Dahl could have formulated her theo-
rem as an equivalence.

Using Lyapunov’s theorem, Dahl proves that any finite-dimensional Choquet
simplex of probability measures on X with mutually singular extreme points is
such that G(K) is uniformly dense in Aff(K), thus deducing the theorem we stated
previously from the one we just quoted. Dahl’s proof of her second theorem above
uses some high-powered machinery following the Giordano–Herman–Putnam–
Skau approach to topological dynamics via dimension groups, K-theory, Bratteli
diagrams and Bratteli–Vershik maps. By contrast, Akin’s proof is elementary and
rather explicit, though somewhat long.

Here, we take an approach which is different from both Akin’s and Dahl’s: we
build a minimal homeomorphism preserving a prescribed set of probability mea-
sures by constructing inductively a sequence of partitions which will turn out to
be Kakutani–Rokhlin partitions for that homeomorphism (we recall the definition
of Kakutani–Rokhlin partitions and other basic notions of topological dynamics in
the next section). While pursuing this approach, we unearthed a necessary condi-
tion for K to be the simplex of invariant measures for some minimal homeomor-
phism. This led us to the following definition.
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Definition 0.1. We say that a nonempty set K of probability measures on a
Cantor space X is a dynamical simplex if it satisfies the following conditions:

• K is compact and convex.
• All elements of K are atomless and have full support.
• K is good.
• K is approximately divisible, i.e., for any clopen A, any integer n and any
ε > 0, there exists a clopen B ⊆ A such that nμ(B) ∈ [μ(A) − ε,μ(A)] for all
μ ∈ K .

Note that, assuming that K is good, the assumption that B ⊆ A in the last item
above is redundant; we nevertheless include it because this is how approximate
divisibility is used in our arguments.

We borrow the terminology “dynamical simplex” fromDahl, but our definition
is different. Using Lyapunov’s theorem as in [Dah08], it is easy to see that the
condition of approximate divisibility is redundant when K is finite dimensional.
The main result of this paper is the following.

Theorem 0.2. Given a simplex K of probability measures on a Cantor space X, there
exists a minimal homeomorphism g whose set of invariant measures is K if, and only if,
K is a dynamical simplex.

Our construction produces a minimal homeomorphism g whose set of invari-
ant measures is K and such that the topological full group [[g]] is dense in the clo-
sure of the full group [g] (in the terminology of [BK02], g is saturated). When one
starts off by assuming that K is the simplex of T -invariant measures for some min-
imal homeomorphism T , the existence of such a homeomorphism follows from
a combination of theorems of Giordano–Putnam–Skau and Glasner–Weiss, see
[BK02, Theorem 1.6]. Here we provide an elementary proof of that fact, which
seems interesting on its own.

For finite dimensional simplices, our theorem generalizes Dahl’s result, show-
ing that the assumption that extreme points are mutually singular is actually a
consequence of her other hypotheses. It would be interesting to gain a better un-
derstanding of the relationship between her conditions and ours (see Remark 3.4
at the end of the paper).

We would like to point out that the ideas of our construction are different
from both Akin’s and Dahl’s, and relatively elementary; in particular our argu-
ment completely bypasses the use of dimension groups, Bratteli diagrams, etc. It
is our hope that such ideas could be used to give elementary dynamical proofs of
some other theorems of topological dynamics.

Acknowledgements. The authors are grateful to G. Aubrun for useful information
on vector measures, to I. Farah for interesting discussions, and to B. Weiss for
valuable comments.

1. Background and notations

Throughout, X is a Cantor space; we fix some compatible distance on X, and
whenever we mention the diameter of a set it will be with respect to this distance.
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We denote by Prob(X) the compact space of all probability measures on X, en-
dowed with its usual topology (which comes from seeing Prob(X) as a subset of
the dual of C(X), endowed with the weak-∗ topology).

The group Homeo(X) of all homeomorphisms of X is a Polish group when
endowed with the topology of uniform convergence on X. Since X is the Can-
tor space, one can also describe this topology using Stone duality: a homeomor-
phism of X corresponds to an automorphism of the Boolean algebra of clopen
sets of X, Clop(X); identifying Homeo(X) with automorphisms of this algebra
yields that a basis of neighbourhoods of identity is given by sets of the form {g ∈
Homeo(X) : ∀A ∈ A g(A) = A}, where A runs over all clopen partitions of X (note
that by compactness all clopen partitions are finite). It is readily checked that the
two topologies we just described coincide on Homeo(X).

Definition 1.1. Given g ∈Homeo(X), its topological full group [[g]] is the group
of all homeomorphisms h of X such that there exists a clopen partition A1, . . . ,An
and integers ni with the property that for all x ∈ Ai one has g(x) = hni (x).

The full group [g] is the group of all homeomorphisms h such that for all x there
exists n satisfying h(x) = gn(x).

By definition, the topological full group is countable (there are only countably
many clopen sets) and contained in the full group. The reason these groups are
relevant to our concerns is the following, which follows easily from Proposition
2.6 of [GW95].

Theorem 1.2 (Glasner–Weiss). Let g be a minimal homeomorphism. The closure of
[g] in Homeo(X) consists of all homeomorphisms which preserve all g-invariant prob-
ability measures on X.

Proof. LetH denote the group of all homeomorphisms which preserve each g-
invariant measure. By definition, H is closed and [g] ⊆H , so that [g] ⊆H . Towards
proving the converse inclusion, pick h ∈ H and an open neighborhood O = {k ∈
H : ∀A ∈ A k(A) = h(A)} of h, whereA is a clopen partition ofX. For anyA ∈ A there
exists, by Proposition 2.6 of [GW95], some kA ∈ [g] such that kA(A) = h(A). Then,
the map k defined by setting k(x) = kA(x) whenever x ∈ A is a homeomorphism
(because A is a clopen partition, and h as well as each kA are homeomorphisms)
and belongs to O∩ [g]. �

It is not always true that [[g]] is dense in [g]; when that happens we say that g
is saturated (this follows terminology introduced in [BK02]).

We next recall the definition of a Kakutani–Rokhlin partition associated to a
minimal homeomorphism.

Definition 1.3. A Kakutani–Rokhlin partition T associated to a minimal home-
omorphism g is a clopen partition of X of the form A0$ . . .Ak , where each Ai is fur-
ther subdivided in Bi,0, . . . ,Bi,ji (possibly ji = 0) and for all i and all r ∈ {0, . . . , ji −1},
g(Bi,r) = Bi,r+1.

The union of all Bi,0 is called the base of the partition, and the union of all Bi,ji
is its top. Each Ai is called a column of the partition, and the definition ensures
that g must map the top of the partition onto its base.
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To obtain such a partition, one can first choose a clopen base B; then subdivide

it into B1, . . . ,BN , with Bi made up of all x ∈ B such that i = min{j > 0: gj(x) ∈ B};
and set Bi,j = g

j(Bi) for all j ∈ {0, . . . , i − 1}.
Below we represent a Kakutani–Rokhlin partition; the arrows correspond to

the action of the homeomorphism on the partition, which is prescribed on all
atoms except those contained in the top (all we know there is that the top is
mapped onto the base). The base is colored in blue and the top in red; note that
on the picture the base and top do not intersect. They are allowed to, but will not
intersect as soon as we take a small enough base.

Figure 1. A Kakutani–Rokhlin partition

It is a standard, important fact in topological dynamics that, given a minimal
homeomorphism g , one can produce a sequence of Kakutani–Rokhlin partitions
for g whose atoms generate the algebra of clopen sets, and whose top and base have
vanishing diameter. Such a sequence naturally defines a basis of neighborhoods of
g in Homeo(X).

Below, to obtain a minimal homeomorphism with prescribed set of invari-
ant measures, we will define a sequence of partitions which will turn out to be
Kakutani–Rokhlin partitions for that homeomorphism.

We recall the definition of a dynamical simplex given in the introduction.

Definition 1.4. We say that a nonempty set K of probability measures on X is
a dynamical simplex if it satisfies the following conditions:

• K is compact and convex.
• All elements of K are atomless and have full support.
• K is good, i.e., for any two clopen sets A,B such that μ(A) < μ(B) for all
μ ∈ K , there exists a clopen subset C ⊆ B such that μ(C) = μ(A) for all
μ ∈ K .

• K is approximately divisible, i.e., for any clopen set A, any integer n and any
ε > 0, there exists a clopen B ⊆ A such that nμ(B) ∈ [μ(A) − ε,μ(A)] for all
μ ∈ K .

Given a set K of probability measures, and two clopen sets A,B, we use the
notation A ∼K B to denote the fact that μ(A) = μ(B) for all μ ∈ K . Note that, modulo
goodness, approximate divisibility may be stated equivalently by saying that there
exist B1, . . . ,Bn such that B1, . . . ,Bn are disjoint, contained in A, Bi ∼K Bj for all i, j ,
and A \⋃Bi has measure less than ε for all μ ∈ K .

We should point out again that we borrow the term “dynamical simplex” from
Dahl [Dah08], and that our definition is, at least formally, different from Dahl’s:
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the definition given in [Dah08] includes the assumption that K is a Choquet sim-
plex and extreme points of K are mutually singular, and does not mention ap-
proximate divisibility. We quickly discuss the relations between our conditions
and Dahl’s in Remark 3.4 at the end of the paper.

We note that, when K has finitely many extreme points, the assumption of
approximate divisibility is redundant, as follows from the proposition below.

Proposition 1.5. Assume that K is a compact subset of Prob(X), and all the mea-
sures in K are atomless and have full support. Then the following properties hold.

(1) For any nonempty clopen set A, inf{μ(A) : μ ∈ K} > 0.
(2) For any ε > 0, there exists δ > 0 such that, for any clopen set A of diameter less

than δ, one has μ(A) ≤ ε for all μ ∈ K .
(3) If K has finitely many extreme points, then K is approximately divisible.

Proof. The first two items are well-known when K is the simplex of all in-
variant measures for a minimal homeomorphism, and the proofs are simple and
similar to that case. We give them for the reader’s convenience.

For the first item, assume that there exists a sequence (μn) of elements of K and
a nonempty clopen set A such that μn(A) converges to 0. Then by compactness
of K we find some μ ∈ K such that μ(A) = 0, contradicting the fact that μ has full
support (it is perhaps worth recalling that a sequence μn of elements of Prob(X)
converges to μ ∈ Prob(X) exactly if μn(A) converges to μ(A) for all clopen set A).

The second item requires a bit more work; we follow the argument of [BM08,
Proposition 2.3] and assume for a contradiction that there exists a sequence of
clopen subsets (An) of vanishing diameter and ε > 0 such that μn(An) ≥ ε for all n.
Up to passing to a subsequence, we may assume that (An) converges to a singleton
{x} for the Hausdorff distance on compact subsets of X, and that μn converges to
μ ∈ K . Let O be any clopen neighborhood of x; we will have An ⊆ O for all large
enough n, so that μn(O) ≥ ε for all large n. As above, this implies that μ(O) ≥ ε for
all n, so that (taking the intersection over all clopen neighborhoods of x) μ({x}) ≥ ε,
contradicting the fact that μ is atomless.

To see why the third point holds, we argue in a way similar to [Dah08]. Fix
ε > 0 and let μ1, . . . ,μn denote the extreme points of K . Lyapunov’s theorem on
vector measures tells us that

{(μ1(B), . . . ,μn(B)) : B a Borel subset of A}
is convex. In particular, there exists a Borel subset B of A such that μi(B) =

1
nμi(A)

for i ∈ {1, . . . ,n}. Using the regularity of μ1, . . . ,μn we obtain a clopen subset C ⊂ A
such that μi(C) ∈ [μi (A)−εn , μi (A)n ] for all i, which is what we wanted. �

Remark 1.6. If we had assumed that the extreme points of K were mutually
singular, we would not have needed Lyapunov’s theorem to conclude that K is
approximately divisible when K has finitely many extreme points; but we do not
need to make this assumption. We also do not include the assumption that K is
a Choquet simplex in our definition of a dynamical simplex, as we do not need
it in the arguments. Both these assumptions are clearly necessary for K to be the
simplex of all invariant measures of an homeomorphism, hence follow from the
others, given the main result of the paper.
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We do not know if, in general, approximate divisibility is a consequence of the
other assumptions (to which one could add the fact that K is a Choquet simplex
with mutually singular extreme points, if necessary) as is the case when K is finite-
dimensional. The proof above does not seem to adapt: Lyapunov’s theorem does
extend to more general situations, but this extension (known as Knowles’ theorem,
see [DU77, IX.1.4]) requires the existence of a finite control measure ν, which will
exist only when K has finitely many extreme points. More precisely, one would
like to apply the Extension Theorem [DU77, I.5.2] to the vector-valued measure
F : Clop(X) → C(K), F(A)(μ) = μ(A), but then, assuming K has countably many
mutually singular extreme points, it is not difficult to see that the second item of
the theorem fails. Nevertheless, one can certainly prove that approximate divisi-
bility is redundant in some infinite-dimensional situations, for instance when the
extreme boundary of K has only one non-isolated point (this was remarked during
a conversation with I. Farah).

Proposition 1.7. Assume that g is a minimal homeomorphism of X, and that K is
the simplex of all g-invariant probability measures. Then K is a dynamical simplex.

Proof. Clearly g-invariant measures always form a compact convex subset of
Prob(X), and when g is minimal any g-invariant measure must be atomless and
have full support. The fact that the simplex K is good follows from the theorem of
Glasner and Weiss recalled in the introduction, so we only need to explain why K
is approximately divisible.

Start from a nonempty clopen setA, and consider themap gA defined by gA(x) =
gn(x), where n = min{i > 0: gi(x) ∈ A}. Then gA is a homeomorphism of A, and is
minimal. The restriction of any μ ∈ K defines a gA-invariant measure on A, which
we still denote by μ. Pick N ≥ n such that n/N < ε. Since gA is aperiodic, we can

find a clopen set U such that U,gAU, . . . , g
N
A U are disjoint. In particular, μ(U ) is

less than μ(A)/N for all μ ∈ K .
Now, consider a Kakutani–Rokhlin partition of A associated to gA, with baseU .

Let C0, . . . ,CM denote the columns of this partition; we have Ci = Ci,0$Ci,1 . . .$Ci,ni ,
with ni ≥ N ≥ n. Denote ni + 1 = kin + p, p ∈ {0, . . . ,n − 1}. For i ∈ {0, . . . ,M} and
j ∈ {0, . . . ,n − 1}, let Bi,j denote the union of the levels of Ci of height < kin and
equal to j modulo n, and let Bj be the union of all Bi,j . Then we have Bj ∼K Bl for
all j, l, and the complement of their union is of mesure less than nμ(U ) ≤ εμ(A) for
all μ ∈ K .

The following picture is supposed to illustrate the procedure we just described:
below, n = 3; the domains in blue, red and green are ∼K equivalent, and the mea-
sure of the remainder is less than 3 times the measure of the base, for all μ ∈ K .

�

The following proposition states an homogeneity property of the algebra Clop(X)
in relation to good simplices.

Proposition 1.8. Assume K is a good simplex of probability measures on a Cantor
space X with full support. Let G = {g ∈Homeo(X) : ∀μ ∈ K g∗μ = μ}. If U,V are clopen
sets with U ∼K V , then there is g ∈ G such that gU = V .
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Figure 2. A partition in three ∼K pieces plus a rest of small measure

Proof. We construct a K-preserving automorphism g of the algebra Clop(X)
by a standard back-and-forth argument. Let {An}, {Bn} be two enumerations of
Clop(X), with A0 = U and B0 = V . Let A0 be the partition of X into A0 and its
complement. We set gA0 = B0, g(X \A0) = X \B0. Now assume inductively that we
have defined g on the atoms of a finite clopen partition An such that: (i) the sets
{Ai}i<n are contained in the algebra generated byAn, (ii) the image gAn = {gC : C ∈
An} is a partition of X, (iii) μ(gC) = μ(C) for all C ∈ An, μ ∈ K , and (iv) the sets
{Bi}i<n are contained in the algebra generated by gAn.

Let C1, . . . ,Cm be the atoms of the partition An. We take C0
i = Ci ∩ An, C1

i =

Ci \An. Since K is good, we can find D0
i ⊆ gCi such that μ(D0

i ) = μ(C
0
i ) for all μ ∈ K ;

we set D1
i = gCi \D0

i . Now we take D
j,0
i = D

j
i ∩ Bn, D

j,1
i = D

j
i \ Bn. Again, since K

is good, we can find a clopen partition An+1 = {Cj,ki }j,k<2i<m such that C
j,k
i ⊆ Cji and

μ(C
j,k
i ) = μ(D

j,k
i ) for each i, j,k and all μ ∈ K . Then we extend the definition of g to

An+1 by setting gC
j,k
i = D

j,k
i . The construction ensures that properties (i)-(iv) are

preserved.
At the end we get a K-preserving automorphism of Clop(X) sending U to V .

By Stone duality, this induces an homeomorphism g as required. �

2. Construction of a saturated element

In this section and the next, we fix a dynamical simplex of measures K on a
Cantor space X, and we let G denote the group of all homeomorphisms g of X
such that g∗μ = μ for all μ ∈ K .

Definition 2.1. We say that g ∈ G is K-saturated if for any clopen setsU,V such
that U ∼K V there exists h ∈ [[g]] with h(U ) = V .

Proposition 2.2. Assume that g is K-saturated. Then [[g]] is dense in G and g is
minimal.

Proof. It is easy to see that [[g]] being dense in G is equivalent to g being K-
saturated once one has Theorem 1.2 in hand. To see that a K-saturated element is
minimal, pick any nonempty clopen set U . Given any x ∈ X, a sufficiently small
clopen neighborhood V of x will be such that supK μ(V ) < infK μ(U ), thus there
exists g ∈ G such that gU ⊇ V & x. Hence X =

⋃
g∈G gU .
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Now, for all h ∈ G there exists k ∈ [[g]] such that kU = gU , so thatX =
⋃
k∈[[g]] kU .

Since for all k ∈ [[g]] we have kU ⊆ ⋃
i∈Z g

iU , we obtain that X =
⋃
i∈Z g

iU . This
means that X is the unique nonempty open g-invariant set, which is the same as
saying that g is minimal. �

Next, we introduce partitions which resemble Kakutani–Rokhlin partitions.
Essentially, we are trying to build a homeomorphism from a sequence of parti-
tions, rather than the other way around.

Definition 2.3. A KR-partition T is a clopen partition of X of the form A0 $
. . .Ak , where each Ai is further subdivided into Bi,0, . . . ,Bi,ji (possibly ji = 0) and for

all i and all r, s ∈ {0, . . . , ji} Bi,r ∼K Bi,s.
The union of all Bi,0 is called the base of the partition, and the union of all Bi,ji

is its top. Each Ai is called a column of the partition.
To each KR-partition, one can associate the algebra AT whose atoms are all Bi,r

with r < ji , and the top of the partition; and the partial automorphism of Clop(X)
with domain A which maps each Bi,r to Bi,r+1 for all i and r < ji , and maps the top
of the partition to its base. Note that the ordering of atoms within each column
matters.

We say that a KR-partition S refines a KR-partition T if the base (respectively,
top) of S is contained in the base (respectively, top) of T , and S-towers are ob-
tained by cutting and stacking towers of T on top of each other (see Figure 2). More
precisely: for each column C = (Dj )0≤j≤J of S there exist columns Aik = (Bik,j )0≤j≤jik
of T (0 ≤ k ≤ K) and clopen subsets Skj ⊆ Bik,j such that J =

∑
0≤k≤K (jik +1) and such

that, for each k, we have Dj+∑l<k(jil+1)
= Skj for every 0 ≤ j ≤ jik .

Note that if S refines T then the algebra and partial automorphism associated
to S refine those that are associated to T .

Proposition 2.4. Given a KR-partition T , and ε > 0, there exists a KR-partition S
which refines T and which is such that the base and top of S both have diameter less
than ε.

Proof. We let again A0, . . . ,Ak denote the columns of T , Bi,0, Bi,ji denote re-
spectively the base and top of the i-th column, and B be the base of T .

We begin by describing how to deal with a very favorable particular case, where

there exists an integer n ≥ 2 such that μ(B0,0) = μ(B1,0) =
1
nμ(B) and both B0,0 and

B1,j1 have diameter less than ε. Let R = B \ (B0,0 ∪ B1,0). Then we have μ(R) =
(n−2)μ(B0,0) for all μ ∈ K , so, by goodness, as long as n > 2, we can find a copy C of

B0,0 insideR. Now, the bases ofA2, . . . ,Ak induce a partition ofC, C =
⊔k
j=2(C∩Bj,0).

Furthermore, by goodness (or homogeneity), we can find an equivalent cutting of
B0,0 into pieces Pj ∼K (C ∩ Bj,0). We pass on this cutting of B0,0 throughout the
column A0, and similarly we pass on the cutting of C throughout the columns
A2, . . . ,Ak . Finally, we stack each new column starting with C ∩ Bj,0 on the top of

the new column based on Pj ; this gives us a refinement T ′ of T .

As long as n′ = n − 1 > 2, we repeat this process, only that now we find copies
Cj ⊆ R′ = R \C of each Pj . As before, we cut them with the bases of A2, . . . ,Ak , then
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imitate this cutting on the corresponding Pj and pass it on throughout the columns;

then we stack the new columns based on subsets of R′ on top of the corresponding
new columns based on subsets of B0,0. Once this process has been repeated n − 2
times, we apply it, lastly, on A1. What we obtain is a refinement S of T whose base
is B0,0 and whose top is B1,j1.

The picture below illustrates the procedure we just described. The column
containing the new base is colored in blue, and the one containing the top is red;
we keep track of what happens to them in the picture (in a very simple case for
readability).

Figure 3. Cutting and stacking in the favorable case

That is the last picture that we will include in this article, as the next arguments
are a bit harder to illustrate; nevertheless, we invite the reader to draw her own
pictures, since we feel that the ideas become more transparent in this way.

To deal with the general case, we use the fact that K is good and approximately
divisible to reduce to this favorable case, modulo a small error (which would not
appear if K were exactly divisible). First, by cutting B0,0 (and throughout A0) if
necessary, we can ensure that B0,0 has small diameter. Moreover, by picking a
subset of B0,j0 of small diameter and cutting again, we can ensure that both the
top and base of the first column of our partition have small diameter. Cutting yet
again, we make sure that the union B0,j0 ∪ B1,j1 has small diameter. Cutting and

using goodness once more, we ensure μ(B0,j0) = μ(B1,j1) for all μ ∈ K .
Next, pick some integer n such that 1

n < μ(B0,0) for all μ ∈ K . Using the fact
that K is good and approximately divisible, we find clopen sets C0 ∼K C1 ∼K . . . ∼K
Cn−1 contained in B, pairwise disjoint, such that C0 ⊆ B0,0, C1 ⊆ B1,0 and E :=

B\⋃n−1
i=0 Ci ⊆ B0,0. We cut B0,0 into two pieces, one of which is the error E, inducing

a further KR-partition, one column of which has base E. We set apart this column
AE , that is, we consider Y = X \AE . Then, our current KR-partition of X induces a
KR-partition of Y ; cutting one last time we obtain columns based on C0 and on C1,
which we set to be, respectively, the first and the second column of that partition.
We have thus obtained a KR-partition (of Y ) which satisfies the assumptions of
the favorable case described above. Applying the stacking procedure given for
that case, we obtain a new KR-partition of Y whose base is contained in B0,0 and
whose top is contained in B1,j1. Finally, considering this partition together with the

column AE , we get a KR-partition of X whose base (contained in B0,0) and whose
top (contained in B0,j0 ∪B1,j1) have both small diameter. �

We say that a partition is compatiblewith a clopen setU ifU is a union of atoms
of the partition.
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Proposition 2.5. Given a KR-partition T , and two clopen subsets U ∼K V , one
can find a KR-partition S refining T , compatible with U and V , and such that in each
column there are as many atoms contained in U as atoms contained in V .

Note that then, if g is any element ofGwhich extends the partial automorphism
associated to S , there exists an h ∈ [[g]] such that h(U ) = V (because one can map
U to V while only permuting atoms within each column of S ).

Proof. First, note that by goodness there is a KR-partition S refining T and
compatible with U,V : consider the algebra generated by T and U,V , then pull
back the associated partion of atoms of T to the base of T (via an automorphism

gi,s ∈ G mapping Bi,s to Bi,0), and push it back up (using g−1i,s ). We obtain a new

KR-partition S , refining T , compatible with U and V (each column has been sub-
divided into smaller columns, and no stacking has taken place).

Now, for all such KR-partitions, we can associate to any column C the numbers

uC = �{atoms of C contained in U }, vC = �{atoms of C contained in V },
and nC = uC − vC . Our aim is to find a KR-partition with uC = vC for all columns.
We distinguish the columns of the following types: C+, the set of columns with
nC > 0, and C−, those where nC < 0. We let nS denote the maximum value of |nC |
among all columns C, and finally let n denote the smallest possible nS among all
S refining T and compatible with U,V .

We suppose for a contradiction that n � 0, and we pick S with nS = n. Without
loss of generality, we assume that n = nC for some C ∈ C+, and we consider the
set D of all columns C such that nC = n. Let B be the union of all the bases of
columns in D, and B′ the union of the bases of elements of C−. Then we observe
that either μ(B) = μ(B′) for all μ ∈ K , or μ(B) < μ(B′) for all μ ∈ K (otherwise μ(U )
and μ(V ) would not be equal). Thus one can build a new KR-partition by cutting
and stacking on top of each column of D some element of C− (just map arbitrarily
the union of the tops of elements of D into the union of the bases of C−, then refine
accordingly). This has the effect of producing a new KR-partition such that every
column in C+ satisfies nC < n. Doing the same (if necessary) with C−, we obtain a
contradiction to the minimality of n. �

The previous two propositions provide us with the tools to construct the K-
saturated homeomorphism we were looking for.

Proposition 2.6. There exists a K-saturated element in G.

Proof. Fix an enumeration (Un,Vn) of all pairs of clopen sets (U,V ) such that
U ∼K V . Using Propositions 2.4 and 2.5, we build a sequence of KR-partitions Sn
with the following properties:

(1) For all n, Sn+1 refines Sn.
(2) For all n, Sn is compatible with Un,Vn, and in each column of Sn there are

as many atoms contained in Un as atoms contained in Vn.
(3) The diameters of the base and top of Sn converge to 0.

Then, there exists a unique g ∈ Homeo(X) which extends the partial automor-
phisms associated to Sn. The construction ensures that g ∈ G, and that g is K-
saturated. �
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Remark 2.7. The set of all K-saturated homeomorphisms, as well as the set
of all minimal homeomorphisms in G, are Gδ subsets of G. The argument above
proves that the closure of the set of K-saturated elements contains all minimal
elements of G; thus, in G, a generic minimal homeomorphism if K-saturated. It
would be interesting to determine precisely the closure of the set of all minimal
homeomorphisms. It is tempting to believe that it corresponds to the set of all
g ∈ G such that, for any clopen A different from ∅ and X, one has g(A) � A (see
[BDK06, Theorem 5.9] for the analogous result in Homeo(X)).

So far, we have managed to build a K-saturated, hence minimal, element which
preserves all measures in a given dynamical simplex K . It is a priori possible that
this element preserves measures not belonging to K ; saturation prevents this from
happening. That was the original motivation for trying to build a K-saturated ele-
ment of G rather than merely a minimal homeomorphism belonging to G. To deal
with this issue, we have one remaining task: proving that the set of G-invariant
probability measures, which is by definition larger than K , coincides with K .

3. Saturated elements cannot preserve unwanted measures

We will denote the simplex of G-invariant probability measures by KG. Given
g ∈ G, the simplex of g-invariant probability measures will be denoted Kg .

Proposition 3.1. Let g be a K-saturated element. Then Kg = KG.

Proof. Clearly, KG ⊆ Kg . For any μ ∈ Kg and any h ∈ [[g]] we have h∗μ = μ.
Since {h : h∗μ = μ} is closed in Homeo(X), and the closure of [[g]] is G since g is
K-saturated, we obtain as desired that h∗μ = μ for all h ∈ G. �

The last remaining piece of our puzzle is thus the following proposition.

Proposition 3.2. We have KG ⊂ K .

Proof. We proceed by contradiction, and assume that ν � K is such that g∗ν = ν
for all g ∈ G. By homogeneity, if U,V are clopen sets with U ∼K V , then ν(U ) =
ν(V ).

Note first that, if μ(A) ≤ 1
n for all μ ∈ K , then there exist disjoint A1, . . . ,An such

that Ai ∼K A for all i ∈ {1, . . . ,n}; since by assumption ν(A1) = . . . = ν(An) = ν(A), we

also have ν(A) ≤ 1
n . This observation will be used twice below.

Using the Hahn–Banach theorem, we know that there exists a continuous func-
tion f : X→ R such that

∀μ ∈ K
∫
X
f dμ <

∫
X
f dν.

Replacing f by f +max{|f (x)| : x ∈ X}, and using the fact that all our measures are
probability measures, we may assume that f (x) ≥ 0 for all x. Using uniform con-
tinuity of f , we may further assume that f only takes finitely many values, which
are all non-negative rational numbers; multiplying by a large enough integer, we
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finally reduce to the case when f takes finitely many integer values. Hence we
have finitely many clopen sets (Ai)1≤i≤N and positive integers ni such that

∀μ ∈ K
N∑
i=1

niμ(Ai) <
N∑
i=1

niν(Ai).

Pick integers p,q > 1 such that

∀μ ∈ K
N∑
i=1

niμ(Ai) <
p

q
<

N∑
i=1

niν(Ai).

Using the fact that K is approximately divisible, we may find for all i some clopen
sets Bi,1 ∼K Bi,2 ∼K . . . ∼K Bi,p contained in Ai such that μ(Ai \

⋃
Bi,j ) is arbitrarily

small for all μ ∈ K , hence also ν(Ai \
⋃
Bi,j ) is arbitrarily small.

Thus,
ν(Ai )
p − ν(Bi,1) can be made arbitrarily small, so we can ensure that

∀μ ∈ K
N∑
i=1

niμ(Bi,1) <
1

q
<

N∑
i=1

niν(Bi,1).

We can then build a set B which is a disjoint union of n1 copies of B1,1 (that is,
n1 clopen sets which are ∼K -equivalent to B1,1), n2 copies of B2,1, etc; we have

∀μ ∈ K μ(B) <
1

q
and ν(B) >

1

q
.

This contradicts the observation made at the beginning of the proof. �
Corollary 3.3. Assume that g is a K-saturated element of G. Then K = Kg .

Proof. We have K ⊂ Kg by definition of G, and the converse inclusion follows
from the previous propositions. �

We have finally proved Theorem 0.2.

Remark 3.4. Using the idea of the proof of the previous proposition, one can
check that goodness and approximate divisibility imply that any affine function on

K of the form μ �→
∫
X
f dμ, where f ∈ C(X, [0,1]), can be approximated arbitrarily

well by an affine function of the form μ �→
∫
X
χB, where χB is the characteristic

function of a clopen set. This implies, in the terminology of Dahl, that G(K) is
dense in Aff(K).

It seems clear that G(K) being dense in Aff(K) and approximate divisibility are
related conditions; probably, whenever K is a Choquet simplex and G(K) is dense
in Aff(K), K must be approximately divisible. This seems to follow from Dahl’s
arguments in her paper but, not being experts in dimension groups, we cannot be
certain.

We conclude by discussing a further line of enquiry suggested by our work
here. As mentioned at the end of the introduction, our argument gives an ele-
mentary proof of the fact that, given a minimal homeomorphism g , there exists a
saturated homeomorphism h preserving the same measures as g . It follows from a
theorem of Krieger [Kri80], the proof of which is relatively short and elementary,
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that any two saturated homeomorphisms preserving the same measures are orbit
equivalent. It then becomes interesting to try and find a dynamical proof of the
fact that, if g is a minimal homeomorphism, S is a saturated minimal homeomor-
phism, and Kg = KS , then g and S are orbit-equivalent: combining such a proof, the
main result of this paper, and Krieger’s theorem, one would obtain a new dynami-
cal proof of the theorem of Giordano–Putnam–Skau relating orbit equivalence and
invariant measures.
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Model theory methods for topological groups

Abstract : This thesis gathers different works approaching subjects of topological
dynamics by means of logic and descriptive set theory, and conversely.

The first part is devoted to the study of Roelcke precompact Polish groups, which
are the same as the automorphism groups of ℵ0-categorical structures. They form a
rich family of examples of infinite-dimensional topological groups, including several
interesting permutation groups, isometry groups and homeomorphism groups of
distinguished mathematical objects. Building on previous work of Ben Yaacov and
Tsankov, we develop a model-theoretic translation of several dynamical aspects of
these groups, related to the complexity of the orbits of continuous functions and to
Banach representations of associated flows, as studied by Glasner and Megrelishvili.
Then we use this translation to prove some new results.

In Chapter 1, we prove that every strongly uniformly continuous function on a
Roelcke precompact Polish group is weakly almost periodic. We also show that
lower tame functions correspond to NIP formulas, and we use this to describe lower
tame functions in a number of important examples.

In Chapter 2 (with I. Ben Yaacov and T. Tsankov), we provide a model-theoretic
description of the Hilbert-compactification of oligomorphic groups, and we show that
Eberlein oligomorphic groups are precisely the automorphism groups of ℵ0-stable,
ℵ0-categorical discrete structures. We also give an account of their Hilbert-repre-
sentable ambits.

In Chapter 3, we study automorphism groups of randomized structures. This gives
new examples of Roelcke precompact Polish groups, and we study some associated
flows. We give new proofs of several preservation results, and show that Hilbert-
representability is preserved by randomizations. We also study the separable models
of the theory of beautiful pairs of randomizations, and we classify them in the ℵ0-
categorical case.

The second part (with J. Melleray) studies full groups of minimal homeomorphisms
of the Cantor space, and their invariant measures. Full groups are complete algebraic
invariants for orbit equivalence. Their counterparts in ergodic theory enjoy good,
important topological properties.

In Chapter 4, we show that, in contrast, full groups of minimal homeomorphisms
do not admit a Polish group topology, and are moreover non-Borel subsets of the
homeomorphism group of the Cantor space. We then study the closures of full groups
by means of Fraïssé theory.

Finally, in Chapter 5 we give a characterization of the sets of invariant measures
of minimal homeomorphisms of the Cantor space. We also present new, elementary
proofs of some results previously established by complex means.



Méthodes de théorie des modèles
pour l’étude de groupes topologiques

Résumé : Cette thèse rassemble des travaux qui abordent des sujets de la dynamique
topologique par le biais de la logique et de la théorie descriptive des ensembles, et
réciproquement.

La première partie est consacrée à l’étude des groupes polonais Roelcke précompacts.
Cette famille comprend plusieurs groupes de permutations, d’isométries et d’homéo-
morphismes d’objets mathématiques distingués. Basés sur des travaux précédents de
Ben Yaacov et Tsankov, nous développons une traduction modèle-théorique de plusieurs
aspects dynamiques de ces groupes. Puis nous utilisons cette traduction pour obtenir une
compréhension précise, dans ce cas, de la hiérarchie dynamique étudiée par Glasner et
Megrelishvili. Ensuite (avec I. Ben Yaacov et T. Tsankov), nous donnons une description
modèle-théorique de la compactification hilbertienne des groupes oligomorphes, et nous
caractérisons les groupes oligomorphes Eberlein.

Nous étudions également les groupes d’automorphismes des structures randomisées, ainsi
que les modèles séparables de la théorie des belles paires de randomisations.

Dans la deuxième partie (avec J. Melleray), nous étudions les groupes pleins d’homéo-
morphismes minimaux de l’espace de Cantor et leurs mesures invariantes. Nous montrons
que les groupes pleins des homéomorphismes minimaux n’admettent pas de topologie
polonaise, puis qu’ils sont des sous-ensembles non-boréliens du groupe d’homéomorphismes
de l’espace de Cantor. Ensuite, nous étudions les clôtures des groupes pleins au moyen
de la théorie de Fraïssé. Finalement, nous donnons une caractérisation des ensembles de
mesures invariantes des homéomorphismes minimaux de l’espace de Cantor.
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