Yvon Kermarrec

ARCHITECTURE OF THE DESIGN TO THE SIMULATION PROGRAM

The context of this research is related to the creation of new telecom services, which aims at providing reactively new functionality to end-users and at ensuring for the telecom companies a better presence in the market. A telecom service is mostly software that works in a specific environment. It combines and calls numerous lower level features and operates on a telecom platform. Telecom services are offered to the public and rely on heterogeneous telecom platforms that are composed of complex architectures. Thus, improving the qualities of the telecom service is a major issue.

Our objective in this thesis is to verify the design of telecom-complex system at an earlier stage before the implementation and deployment phases. We have designed and developed DeVerTes, a framework which provides design tools accompanied with features to detect and identify errors and quality flaws in the design artifacts. Instead of building tools from the scratch, DeVerTes uses external and widely-used tools such as network simulators. Moreover, DeVerTes relies on an Enterprise Architecture approach and considers multi views at the same design artifact. We have applied DeVerTes in two different applications: Video Conference and Object Localization in the Marine Observatories.

Résumé

Cette thèse s'inscrit dans le cadre des environnements de création des services de télécommunication. Dans cette introduction, nous mettons en évidence l'importance de la modélisation et de l'architecture d'entreprise, afin de représenter et expliciter des systèmes complexes. Elle présente la nécessité de produire des outils de modélisation afin d'améliorer le temps de développement et les qualités de services ICT. Cette amélioration inclut à la fois les activités de conception et de vérification avant la phase de la mise en oeuvre.

CONTEXTE Service de Création ICT

Aujourd'hui, en 2015, les services de télécommunications (TS) sont mis en oeuvre et déployés sur des logiciels et des plates-formes techniques de pointe (par exemple, le soussystème multimédia IP, Parlay), qui offrent des fonctions de haut niveau, et permettent de cacher les détails des infrastructures et des systèmes sophistiqués sous-jacents. La production de TS est basée, habituellement, sur les plates-formes coûteuses, déjà installées, et les réseaux de base afin de bénéficier des infrastructures, ainsi que utiliser des progrès technologiques les plus récents. Ces plates-formes offrent leurs fonctionnalités à un grand nombre de services à valeur ajoutée. Elles sont composées de systèmes distribués, qui peuvent être mis à une échelle à la fois grande et complexe. Les clients exigent, de plus en plus, des services de plus grandes qualités, et plus de fonctions permettant de satisfaire leurs besoins. De l'autre côté, les fournisseurs de services sont intéressés par le développement de services, permettant aux clients de bénéficier de la réduction des coûts et de s'adapter rapidement à l'évolution des technologies ICT. Le rôle de la création de services est, habituellement, la responsabilité des fournisseurs de services. Certaines approches confient cette tâche à l'utilisateur final. Cela est devenu possible, grâce aux interfaces graphiques, et d'autres plates-formes (Parlay, par exemple), qui aident à cacher la complexité des systèmes sous-jacents, et les interactions entre le grand nombre d'applications qui interagissent les unes avec les autres, pour fournir les fonctions de service.

Les systèmes de télécommunications sont un cas typique de l'étude des systèmes complexes [BDC + 89]. Une grande partie de nos travaux de recherche, s'inscrivent dans le contexte de la création de services de télécommunications (TS). Les intervenants impliqués dans les activités de création, diffèrent les uns des autres, en fonction de leurs intérêts et le rôle attribué à chacun d'entre eux, durant le processus de la création de service [START_REF] Combes | Service validation[END_REF]. Selon [START_REF]Systems and software engineering -Architecture description[END_REF], un intervenant est "une personne, une équipe, une organisation, ou catégories de ceux-ci, ayant un intérêt dans un système".

Les services de télécommunications comptent sur les systèmes distribués à grande échelle (par exemple, IMS). Ces derniers sont composés d'un grand nombre de composants logiciels et matériels. Un système est [START_REF] Sommerville | Software Engineering[END_REF]: "une collection délibérée d'éléments interxi CONTEXTE dépendants, de différents types, qui travaillent ensemble pour atteindre un objectif". Le logiciel qui fonctionne sur ces systèmes est distribué à travers les éléments matériels pour former le concept de systèmes distribués, qui apparaissent à l'utilisateur comme un seul système. Chaque noeud (ordinateur) du système distribué, échange des informations avec les autres noeuds, afin d'accomplir les tâches du système, tel que le sous-système multimédia IP (IMS) [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. La conception des services de télécommunications est complexe, car il contiennent un grand nombre d'applications qui interagissent les uns avec les autres. Ainsi, l'utilisation des architectures, pour décrire de tels systèmes complexes, peut être utile pour faciliter les activités de la phase de conception. Les fournisseurs de services et de réseaux, considèrent que les exigences de performances non-fonctionnelles (spatiale et temporelle) [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF], et évaluent la capacité du système à répondre à ces dernières (par exemple, l'évaluation de la performance du système de conférence, en vérifiant les retards des messages de signalisation [CJN + 05]).

Les environnements de conception pour des systèmes IT

Depuis les années 1970, la production d'un nouveau service IT passe par différentes phases, qui sont différentes les unes des autres, principalement par les intervenants qui sont impliqués dans leurs exigences, leurs sorties, et les outils qui sont utilisés pour atteindre leurs objectifs. Le concept des environnements de développement de système a été introduit dans les grandes entreprises (par exemple, les opérateurs nationaux), afin de: planifier, décrire, créer, tester et déployer des systèmes complexes avec une manière gérable et organisé. En effet, ces concepts constituent une évolution importante pour le soutien du processus de développement du système. Dans cette thèse, nous contribuons à la phase de la conception du processus de développement. En effet, nous considérons le concept de la de conception d'environnements ci-après. Le processus de la conception du système a pour but de décrire et préciser le système en tenant compte des exigences fonctionnelles et non-fonctionnelles, qui sont définis dans la phase de l'analyse des besoins. Le système peut être présenté de plusieurs façons: sur des tableaux, sur des papiers, ou modélisé en utilisant un langage de modélisation et un outil de conception graphique appropriée.

De plus en plus utilisé depuis les années 2000, la modélisation par des outils graphiques aide à gérer la complexité du système où il augmente l'abstraction de ses éléments et les comportements d'une manière claire à partir de codes complexes ou de grands textes. Une image peut exprimer des milliers de mots. En outre, la modélisation graphique peut contenir différents niveaux d'abstraction pour capturer les détails du système sous différents points de vue. Cela permet de gérer la complexité, où un concepteur peut faire un zoom avant, pour entrer dans les détails. En effet, il peut aussi rester à un niveau abstrait pour obtenir la grande image.

En outre, les outils graphiques permettent l'utilisation fonctionnalité glisser-déplacer, pour faciliter le travail du concepteur et de réduire le temps de développement, parce qu'ils améliorent la clarté de la conception. De nombreux langages de modélisation ont été introduits accompagnés de support d'outil graphique afin de soutenir les différentes activités de développement du système, y compris l'activité de conception (par exemple, UML). Certains de ces langages peuvent même décrire les architectures logicielles (par exemple, AADL).

Les architectures logicielles sont utilisées afin d'améliorer la compréhension et la comxii ABSTRACT munication de la composition et les propriétés des systèmes complexes. Les architectures logicielles [SG96, MT00] permettent d'exprimer la composition du système en termes de composants / modules qui communiquent entre eux, en se basant sur des relations spécifiques, et les opérateurs qui expriment la composition des systèmes à partir de soussystèmes.

Plusieurs langages de modélisation et ADLs ont été développés dans le but de décrire des systèmes complexes ainsi que leurs architectures. Cependant, dans plusieurs cas, ces langages restent génériques et manquent de concepts spécifiques, qui sont nécessaires pour spécifier de nouvelles technologies et plates-formes sophistiquées. Par exemple, on peut modéliser tous les types de systèmes utilisant le langage UML qui a besoin de profils plus étendus pour décrire des concepts spécifiques dans le domaine GSM (par exemple). En effet, le concept de "node" reste générique et peut être un serveur, mobile, PDA, routeur, etc. Ici le problème de spécificité de domaine relève dans le langage de conception qui devrait couvrir tous les besoins des différentes parties prenantes et de leurs connaissances en parallèle ou en conjonction avec le système de différentes technologies et applications.

Un environnement de création de services (SCE) [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] est "une collection d'outils logiciels (avec une infrastructure de réutilisation) utilisé selon la méthodologie de développement de services dans le but d'aider le développeur de service(s) lors de l'application de la méthodologie de développement des services en automatisant et en simplifiant autant que possible le processus de création de service, et de faciliter la cohérence et les contrôles de vérification". Dans le contexte des systèmes de services de télécommunications, les environnements de création de services (SCE)s ont été introduits plus tôt par [START_REF] Berndt | Service specification concepts in TINA-C[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. Dans cette thèse, nous nous concentrons sur la phase de conception du cycle de vie du développement de création de service. Compte tenu de leurs exigences (dans la phase de conception), à la fois, la création de services et les environnements de conception [START_REF] Jasone | Extending design environments to software architecture design[END_REF][START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF] ont des similitudes et des différences. Par exemple, les SCE couvrent les exigences du domaine de la conception de systèmes de télécommunication (par exemple, l'exploitation de nouvelles et/ou émergents concepts de communication), tandis que l'autre des deux environnements partagent de nombreuses préoccupations fondamentales des architectures logicielles (par exemple, la possibilité de réutilisation sur différents niveaux abstraits). Cette réutilisation peut être réalisé de différentes manières (par exemple, les "frameworks").

Selon [START_REF] Sommerville | Software Engineering[END_REF], il y a différentes façons d'atteindre la réutilisabilité du logiciel en fonction de différents facteurs clés: calendrier de développement; durée de vie du logiciel; antécédents et les compétences de l'équipe de développement; criticité du logiciel et les exigences non-fonctionnelles; le domaine d'application; la plate-forme sur laquelle le système fonctionne. Les "frameworks" [START_REF] Sommerville | Software Engineering[END_REF] soutiennent la réutilisation de la conception à l'utilisation de classes spécifiques dans le système puisqu'ils fournissent une squelette d'architecture pour l'application.

OBJECTIFS ET MOTIVATIONS

En se basant sur la définition d'une SCE (cf. section 1.1.2), et compte tenu de des liens entre deux conceptions de logiciels [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF] et les environnements la création de service TS [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF], les principales exigences de SCE actuels sont les suivantes: (1) fournir un l'outil de support avec une infrastructure de réutilisation; (2) se baser sur une méthodologie xiii OBJECTIFS ET MOTIVATIONS ou sur "framework" bien défini; (3) automatiser, autant que possible, le processus de création du logiciel; (4) et de faciliter les contrôles de cohérence et de vérification. La dernière exigence (4) se motiver à faciliter la vérification de la conception du système à un stade précoce, avant la phase de la mise en oeuvre. Cela permet de réduire les itérations dans le cycle de développement en cas de détection d'erreurs. En tenant compte du contexte cité ci-dessus ainsi que les exigences principales, et en se basant sur une thèse de doctorat récente [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF], l'objectif de nos travaux de thèse est de faciliter les activités de conception et de vérification à un stade précoce, tout en tenant compte des différentes parties prenantes (les fournisseurs de service et de réseau), qui sont impliquées dans le processus de création TS. Nous prenons en compte les différents rôles (Service de conception, Service de développement, et clients), durant les processus de conception et de vérification.

Nous respectons les normes standards, afin d'intégrer notre travail avec les communautés intéressés par la création de services de télécommunications. En outre, nous avons tendance à lisser les activités de conception et de vérification, et ainsi nous proposons un "framework" (DeVerTeS: a "Design and Verification framework for Telecommunication Services") utlisant les approches existantes permettant de nous aident à satisfaire les exigences mentionnées ci-dessus, et celles des environnements de conception. De cette façon, nous pouvons satisfaire le fournisseur de services et le client. De première main, le développeur de service nécessite un soutien de l'outil qui permet d'améliorer le temps de développement et le coût de la construction de services. De seconde main, l'utilisateur final doit requiert un coût et une qualité de service acceptables. Ainsi, la vérification de la conception du service en fonction de la qualité de service et les exigences de performances à un stade précoce, apporte une valeur ajoutée au produit: le service des ICT.

Dans le contexte de la création de services ICT, ils existent différents défis auxquels la création de services doit fait face. Ces défis peuvent être classés comme socio-économique (liés aux marchés des télécommunications et l'évolution des technologies sous-jacentes), ou techniques (liés aux technologies utilisés pendant le processus de la création de service). Les défis socio-économiques sont: l'amélioration de la qualité insi que le délai de commercialisation ("time-to-market"). Les défis techniques sont: la gestion de la complexité, intégrations des outils classiques externes avec les SCE, et aider le concepteur pour faire face aux erreurs de conception. Nous présentons, ci dessous, ces différents défis:

• Défi 1-Gestion de la complexité: Il y a différentes sources de complexité, dont nous mentionnons certaines d'entre elles: la différence de perspectives, l'abstraction, et la technologie utilisée entre les différents points de vue de conception. Un point de vue est défini comme " un produit de travail exprimant l'architecture d'un système à partir d'une perspective spécifique préoccupante ("a concerns") du système en question" [START_REF]Systems and software engineering -Architecture description[END_REF]. Cette préoccupation ("a concerns") est " un intérêt pertinent dans le système ' [START_REF]Systems and software engineering -Architecture description[END_REF] pour un ou plusieurs intervenants. Le TS repose sur différentes applications qui interagissent les unes avec les autres, ce qui forme une autre source de complexité [BDC + 89] qui vient de sa nature même. Il est important de gérer la complexité afin de faciliter le processus de conception et de réduire les erreurs qui peuvent être apportées par le concepteur.

• Défi 2-Améliorer le facteur de concurrence "time-to-market": Les fournisseurs TS aimeraient arriver sur le marché avant les autres concurrents, en lançant xiv ABSTRACT rapidement diverses TS avec une meilleure qualité, pour obtenir la satisfaction des clients et obtenir plus de revenus.

• Défi 3-Améliorer les qualités: Le service de télécommunication est offert à un grand nombre d'utilisateurs finaux, ainsi il devrait être en mesure de servir les clients en respectant les questions de qualité de service et d'autres qualités telles que la performance, la sécurité, etc. Dans ce travail de recherche, nous nous limitons aux exigences de la performance non-fonctionnelle [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] lors de l'évaluation de la conception de service. Les performances de la plate-forme sous-jacente doit être pris en considération. La performance de ces plates-formes distribuées (l'utilisation du processeur et de la mémoire, par exemple) est un facteur important pour assurer la continuité de la fonctionnalité de service, parce qu'il repose sur des plates-formes qui contiennent des composants matériels et logiciels. Ainsi, il est important de lisser et de soutenir le processus de la création de service par les différents outils classiques de conception et d'évaluation, tout en se basant sur les cadres standards, pour intégrer les progrès de la recherche, avec les communautés de télécommunication correspondants. Item Défi 4-Intégrer des outils classiques externes avec le SCE: Nous considérons celle qui est liée à la notion de la réutilisation de l'outil , de sorte que nous évitons de commencer notre développement à partir de rien. Ces outils doivent compter sur un bon degré d'automatisation et moins de complexité d'utilisation [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] et les "frameworks" de création sont mieux adaptés pour soutenir les différentes activités de la création de service respectant les normes telles que, TINA-C dans [START_REF] Berndt | Service specification concepts in TINA-C[END_REF]. Cette norme fournit un "framework" qui organise les activités de création de services. Le principal avantage de cette norme est la prise en compte des parties prenantes durant les processus de création de service [START_REF] Combes | Service validation[END_REF]. Nous inspirons de ces normes et "frameworks" existants dans la littérature pour fournir des solutions utiles qui font face aux caractéristiques de pointe et des outils largement utilisés dans les milieux académique et industriel. L'adaptation de ces outils externes avec des "frameworks" de modélisation, constitue une difficulté majeure liée à l'écart au niveau de la technologie utilisée pour configurer ces outils (par exemple, la différence entre les concepts de modélisation dans ArchiMate et NS-3 simulateur).

• Défi 5-Soutenir les concepteurs face à des erreurs de configuration : Certaines erreurs de conception nécessitent des processus de débogage compliqués pour être identifiés à l'aide des outils externes (par exemple, des erreurs dans les affectations réseau IP). La difficulté vient de la complexité des procédures de vérification et de la spécificité du domaine des outils d'évaluation. D'autres erreurs de sens peuvent être faites par le concepteur, au cours de l'activité de modélisation. Le concepteur peut connecter des fonctions ou des éléments qui appartiennent à différents systèmes ou des domaines technologiques et ne pouvant pas être directement liés. Une telle erreur est liée aux contraintes du langage de modélisation qui manquent la spécificité du domaine des technologies utilisées. Ainsi, nous avons l'intention d'étudier la possibilité de détecter ce type d'erreurs pendant ou juste après l'outil de conception, indépendamment de l'outil d'évaluation externe.

xv

QUESTIONS DE RECHERCHE

QUESTIONS DE RECHERCHE

Dans cette partie nous posons les différentes questions de recherche, en relation avec les défis mentionnés ci-dessus. La complexité des systèmes (liés au défi 1), peut entraîner différents types d'erreurs de conception durant les activités de construction de service. La détection d'une erreur de conception ou un défaut de qualité (par exemple: la performance) (la QoS est liée à la satisfaction de l'utilisateur dans le défi 3) pendant ou après la phase des éléments logiciels et matériels mises en oeuvre, peut entraîner des conséquences désastreuses, et engendrer ainsi des itérations indésirables entre la mise en oeuvre et les activités de conception. Ceci demande un coût et un temps de développement plus importants, outre les fais de l'installation/réinstallation, et par conséquent affecte le délai de commercialisation ("time-to-market") (défi 2). En effet, nos travaux de recherches sont basées sur les questions de recherche (QR) suivantes:

• QR1: Comment détecter et identifier les erreurs de conception et les défauts de qualité (QoS et les exigences de performances non-fonctionnelles) d'une façon précoce et avant la phase de la mise en oeuvre?

• QR2: Comment utiliser les résultats de la simulation et modifier la conception pou améliorer la performance du service?

L'organisation des deux principales questions de recherche, mentionnées ci-dessus, nous permettra de détecter et d'identifier l'erreur et le défaut de qualité, et ensuite utiliser et modifier la conception en question. Au cours de nos recherches, et en fonction des actions de développement nécessaires, nous avons prévu d'organiser notre travail de recherche sous la forme de différentes étapes et sous-questions de recherche. Ces différentes étapes visent à étendre le cadre de la création d'un service proposé dans [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF][START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF]. Ils ajoutent plus d'activités visant à faciliter le processus de vérification, qui est étroitement liée à la conception d'un service, vu que les entrées de vérifications précoces sont les exigences et les objets de conception. Ceci peut être réalisé grâce à l'utilisation d'outils classiques externes pour favoriser la vérification précoce de la conception de services. Par conséquent, la première question de recherche est divisée en 4 branches:

1. (QR1.1) Comment détecter et identifier les erreurs dans le sens du modèle de conception (cf. défi 5), avant la simulation du système en cours de développement en tenant compte des différents points de vue?

2. (QR1.2) Comment faire le lien entre les exigences d'analyse [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF], la conception, les activités de vérification, et identifier la/les mesure(s) qui sont liées à un besoin particulier?

3. (QR1.3) Comment sélectionner automatiquement la/les mesure appropriée(s)?

4. (QR1.4) Comment sélectionner le simulateur de réseau approprié qui peut fournir la/les mesure(s) spécifique(s)?

5. (QR1.5) Comment lier l'espace technique de modélisation à la simulation, dans le cadre de l'activité de vérification TS?

xvi ABSTRACT 6. (QR.5.1) Comment représenter les différents points de vue de la conception de l'espace technique de vérification?

En se référant à la deuxième question de recherche RQ2, nous pouvons poser les questions suivantes:

1. (QR.1) Comment analyser les mesures obtenus à partir de la simulation de l'activité? 2. (QR.2) Comment aider le concepteur à prendre une décision si une modification de la conception est nécessaire?

CONTRIBUTIONS ET APPROCHES

Notre méthodologie de recherche constitue un moyen de vérification de la conception du système en passant par différentes phases et en se basant sur un ensemble de méthodes qui aident le concepteur à détecter les erreurs et améliorer la performance du système à un stade précoce. Nous nous basons sur nos pratiques dans le domaine des télécommunications, en vue de fournir des solutions dans ce contexte, par le biais d'un travail expérimental, pour évaluer la conception du système. Ce travail est lié aux technologies et aux avancées actuelles des outils d'évaluation qui sont fournis et pris en charge par les différentes entreprises. Dans la discipline du génie logiciel [START_REF] Sommerville | Software Engineering[END_REF], nous comptons sur le "Model Driven Engineering" (MDE) pour vérifier et corriger la conception du système, et ceci, principalement, pour raisons suivantes: (1) MDE aide à gérer la complexité, car il repose sur la modélisation et le modèle de transformations. Le modèle de transformations aide à combler l'écart technique, et permet de connecter deux outils différents. Il permet de générer des outils à partir de modèles (par exemple: générer l'outil de modélisation Archi à partir des modèles ArchiMate); (2) il permet d'automatiser les activités de développement reposant sur les moteurs "workflow" (pris en charge par Eclipse IDE), et les modèles de transformations; (3) il prend en charge le concept d'abstraction des descriptions des systèmes, et permet de réutiliser des éléments de conception dans un grand espace d'applications (par exemple, en utilisant Business Process Modeling sur le réseau de base IMS ou Parlay). Compte tenu des différents domaines du développement et le partage des différents points de vues des parties prenantes de la même conception, aide à gérer la complexité. Selon la norme IEEE 1471-2000: " Un point de vue est considéré comme le concept central de l'organisation des architectures logicielles. Son objectif principal est de faciliter la compréhension de systèmes complexes en fournissant une séparation des 'préoccupations' ("concerns")". Nous avons choisi de se baser sur l'architecture de "Frameworks" d'entreprise (EA) [START_REF] Noran | An analysis of the zachman framework for enterprise architecture from the {GERAM} perspective[END_REF] et surtout TOGAF [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF][START_REF] Berrisford | Using ArchiMate with TOGAF-Part 1: Answers to nine general questions about methods[END_REF]. Ce "framework" permet de décomposer le modèle de système complexe en trois points de vue principales selon les domaines suivants: (1) Business Process Modeling; (2) Architecture d'application et la modélisation des capacités de système; (3) la modélisation technique et infrastructurel. Voici comment les approches TOGAF "framework" EA dans le domaine informatique, où ils ont proposé et publié un langage de modélisation comme une norme qui représente leur approche appelée ArchiMate. Le fait de se baser sur ArchiMate, nous aide à intégrer les différents éléments qui sont largement répandues avec le système d'information. Nous avons contribué à ce point, en se basant sur l'une des plateformes "core-network" les plus avancées xvii CONTRIBUTIONS ET APPROCHES et développées: Le sous-système multimédia IP (IMS), fournit une plate-forme basé sur la technologie IP, pour lier entre les différents systèmes de télécommunication,outre les autres réseaux IP.

Nos contributions sont principalement composées de trois parties:

• Nous proposons un DeVerTeS qui repose sur: (1) le langage de modélisation (étendu ArchiMate) représentée par son méta-modèle à travers toutes les activités du "framework"; (2) l'intégration entre les différents outils (internes pour la conception et externe pour la vérification) pour effectuer les activités de conception et de vérification.

Un "framework" est " un "framework" d'ingénierie de services de télécommunications qui se compose d'une méthodologie de développement de services, un environnement de création de service, et un support d'environnement de service, qui considère que les services télématiques comme étant des applications orientées objet distribuées fonctionnant sur des plates-formes d'objets distribués " cat Adamopoulos 2002. De-VerTeS répond à la première question de recherche (RQ1 1.3), tandis qu'il fournit un point de départ pour la recherche et le développement d'une extension qui vise à répondre à la deuxième question de recherche principale (RQ2 1.3) ;

• Une activité de liaison inclus dans le "framerwork" mentionné vise à relier les objectifs "softgoal" (exigences) de la conception et de vérification des éléments, grâce à un nouveau méta-modèle qui étend le standard ArchiMate. Le terme "softgoal" représente un "objectif qui n'a pas de définition et/ou critères claires quant à savoir s'il est satisfait ou pas " [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF]. Le méta-modèle mentionné ci-dessus constitue l'élément central de notre proposition de "framerwork" et supporte toutes les activités de conception et de vérification. Cette contribution répond directement à la question de recherche RQ1.2 et supporte toutes les contributions pour répondre RQ1 (cf 1.3) et fournissent une contribution partielle pour la RQ2 (cf 1.3); Nous proposons un modèle compilateur de "Domain-Specific dans le cadre de la conception et de la vérification qui repose sur notre projet de Domain-Specific Modeling Language (DSML). Ce compilateur de modèle fournit un moyen de relier directement la conception des activités de vérification. Il répond à la question de recherche RQ1.5;

• Nous proposons des méthodes pour générer des scénarios de simulation affinés en cartographiant l'architecture de langage pour les programmes de simulation généré et en se basant sur les concepts orientés objets. Cette contribution répond à la question de recherche RQ1.6. End itemize Le fait que la technologie la couche dans ArchiMate supporte les concepts réseaux, nous a aidé à générer des scénarios de simulation pour différents simulateurs de réseau pour tester la conception en exécutant le programme de simulation et de vérifier les sorties logs / traces. Cette activité est une partie du processus de vérification au début que nous proposons, où il y a d'autres activités de vérification (de détection d'erreur) qui sont proposées avant la simulation et durant le modèle compilation.

xviii

List of Figures

Introduction

This thesis is in the context of telecommunication service creation environments. This introduction motivates the needs for modeling and enterprise architecture in order to express complex systems. It presents the need to generate tools from models in order to improve the development time and qualities of ICT services. This improvement includes both design and verification activities before the implementation phase.

CONTEXT

ICT Service Creation

Nowadays, in 2015, Telecommunication Services (TS) are implemented and deployed over advanced software and technical platforms (e.g., the IP Multimedia Subsystem, Parlay) that offer high level functions and hide the details of the underlying sophisticated infrastructures and systems. The production of TSs usually rely on the already-installed and costly platforms and core networks in order to benefit the infrastructures and profit from the technology most recent advances. These platforms provide their functionalities to large number of value-added services. They are composed of distributed systems that can be large scaled and complex.

The customers want more and more, they demand services with higher quality and more functions that cover their needs. On the other side, the service providers are interested in developing services that satisfy the customers at lower costs and to rapidly adapt to the changes in the ICT technologies. The service creation role is usually the responsibility of service providers . Some approaches leave this task to the end-user. This became possible thanks to the graphical user interfaces, and other platforms (e.g., Parlay) that abstract and help in hiding complexity of the underlying systems and the interactions between the large number of applications that are interacting with each other to provide the service functions.

Telecommunication systems form a typical case study of complex systems [BDC + 89]. A major part of the thesis research is in the context of Telecommunication Service (TS) Creation. The stakeholders that are involved in the creation activities differ from each other according to their interests and the role assigned to each of them during the service creation process [START_REF] Combes | Service validation[END_REF]. According to [START_REF]Systems and software engineering -Architecture description[END_REF], a stakeholder is "is an individual, team, organization, or classes thereof, having an interest in a system".

The telecommunication services rely on large scaled distributed systems (e.g., IMS). These distributed systems are composed of large number of software and hardware components. A system is [START_REF] Sommerville | Software Engineering[END_REF]: "a purposeful collection of interrelated components, of 1 1.1. CONTEXT different kinds, which work together to achieve some objective". The software that runs over these systems is distributed across the hardware elements to form the concept of distributed systems that appear to the user as one system. Each node (computer) of the distributed system exchanges information with the others in order to perform the system tasks such as the IP Multimedia Subsystem (IMS) [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. A telecom service design is complex as it contains large number of applications that are interacting with each other. Thus, using architectures to describe such complex systems can be useful in order to facilitate the activities of the design phase. Service and network providers consider the performance non-functional requirements (space and time) [CNYM99] and evaluate the system's capability to satisfy these requirements (e.g., evaluating the performance of conferencing system by verifying the delays of signaling messages [CJN + 05]).

Design Environments for IT systems

Since the 1970s, the production of a new IT service goes through different phases that are different from each other mainly by the stakeholders that are involved in, their requirements, their outputs, and the tools that are used to accomplish their objectives. In the large companies (e.g., national operators), in order to plan, describe, create, test, and deploy complex systems with a manageable and organized way, the concept of system development environments was introduced and form an evolution to support the system development process. In this thesis, we contribute to the design phase of the development process , thus we consider the concept of design environments hereafter. The process of the system design aims to describe and specify the system taking into consideration the functional and non-functional requirements that are defined in the requirements analysis phase. The system can be presented in many ways: on board, papers, or modeled using a modeling language and a proper graphical design tool.

More and more used since the 2000's, modeling through graphical tools helps in managing the complexity of the system where it abstracts its elements and behaviors in a way that is clear from complicated codes or large texts. A picture may express thousands of words. Additionally, graphical modeling can contain different levels of abstraction to capture the details of the system in different views. This helps to manage the complexity, where a designer may want to zoom in to get into the details, while he/she can stay on an abstract level to get the big picture. Moreover, graphical tools support drag and drop feature to facilitate the designer job and reduce the development time as they improve the clarity of the design. Many modeling languages were introduced accompanied by graphical tool support in order to support the different activities of the system development including the design activity (e.g., UML). Some of these languages can even describe the software architectures (e.g., AADL).

Software Architectures are used in order to improve the understanding and communicating the composition and properties of the complex systems. Software Architectures [SG96, MT00] express the system composition in terms of components/modules that are communicating with each other relying on specific relationships, and operators that express the composition of systems from subsystems.

Many modeling languages and ADLs were developed in order to describe complex systems and their architectures, but in many cases these languages stay generic and lack to the specific concepts which are needed to specify new technologies and sophisticated platforms. For example, one can model all types of systems using UML which needs more extended profiles to describe specific concepts in GSM domain (for example), as the node concept stays generic and can be a server, mobile, PDA, router, etc. Here the domainspecificity problem raises in the design language that should cover all the needs of the different stakeholders and their backgrounds in parallel or in conjunction with the system different technological and application domains.

A Service Creation Environment (SCE) [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] is "a collection of software tools (together with a reuse infrastructure) used according to the service development methodology with the aim to assist the service developer(s) when applying the service development methodology by automating and simplifying as much as possible the service creation process, and facilitating consistency and verification checks". In the context of the telecommunication service systems, Service Creation Environments (SCE)s were introduced earlier by [START_REF] Berndt | Service specification concepts in TINA-C[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. In this thesis, we concentrate on the design phase in the service creation development life cycle. Considering their requirements (in the design phase), both the service creation and the design environments [RHR98, MT00] have similarities and differences. For instance, the SCEs cover the requirements of the telecommunication systems design domain (e.g., the exploitation of new and/or emerging communication concepts), whereas both of the two environments share many basic concerns of software architectures (e.g., the reusability at different abstract levels). This reusability can be achieved in different ways, frameworks are one of them.

According to [START_REF] Sommerville | Software Engineering[END_REF], there are different ways to achieve the software reusability according to different key factors: development schedule; software lifetime; background and skills of the development team; criticality of the software and non-functional requirements; the application domain; the platform on which the system will run. Frameworks [START_REF] Sommerville | Software Engineering[END_REF] support the design reuse through the usage of specific classes in the system and as they provide a skeleton architecture for the application.

OBJECTIVE AND CHALLENGES

Relying on the definition of an SCE (cf section. 1.1.2) and considering the intersection between both software design [MT00] and TS service creation [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] environments, the major requirements of actual SCEs are: (1) to provide tool support with a reuse infrastructure; (2) to rely on a methodology or a well-defined framework; (3) to automate as much as possible the software creation process; (4) and to facilitate consistency and verification checks. The final requirement (4) motivates us to facilitate the verification of the system design at an early stage before the implementation phase. This helps to reduce iterations in the development cycle in case of errors' detection.

In relation with the aforementioned context and major requirements, and relying on a recent PhD dissertation [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF], our objective in this thesis is to facilitate the design and verification activities at an earlier stage taking into account the different stakeholders (Service and Network Providers) that are involved in the TS creation process. We consider the different roles (Service Designer, Service Developer, and Customer) during the design and verification processes. We follow the standards in order to integrate our work with the communities that are interested in the telecommunication service creation. Additionally, we tend to smoothen the design and verification activities, thus we propose a framework (DeVerTeS: a Design and Verification framework for Telecommunication 1

OBJECTIVE AND CHALLENGES

Services) that reuses existing approaches which help us to satisfy the aforementioned requirements and the requirements of the design environments. In this way, we tend to satisfy both the service provider and the Customer. On the first hand, the service developer requires tool support that improves the development time, and the cost of the service construction. On the second hand, the end-user requires service with an acceptable QoS and cost. Thus, verifying the service design according to the QoS and performance requirements at an earlier stage brings added-value to the product: the ICT service.

In the ICT service creation context, there are different challenges that face the service creation. These challenges can be classified as socio-economical (related to the telecommunication markets and evolving underlying technologies), or technical (related to the technologies that are used during the process of service creation). The socio-economical challenges are: improving the time-to-market and the qualities. The technical challenges are: managing the complexity, integrating the external classical tools with SCEs, and supporting the designer to face the design errors. In the following, we present these different challenges:

• Challenge1-To manage the complexity: There are different sources of complexity, we mention some of them: the difference in perspectives, abstraction, and used technology between the different design views. A view is defined as a "a work product expressing the architecture of a system from the perspective of specific system concerns" [START_REF]Systems and software engineering -Architecture description[END_REF]. A concern is "an interest in a system relevant to one or more stakeholders" [START_REF]Systems and software engineering -Architecture description[END_REF]. The TS relies on different applications that interact with each other, this forms another source of complexity [BDC + 89] that comes from its nature. It is important to manage the complexity in order to facilitate the design process and to reduce the errors that can be made by the designer.

• Challenge2-To improve the time-to-market competition factor:

The TS providers would like to reach the market before the other competitors by launching various TSs rapidly with better quality to gain the customers' satisfaction and obtain more revenues.

• Challenge3-To improve the qualities: The telecommunication service is offered to large number of end-users, thus it should be able to serve the clients respecting the QoS issues and other qualities such as performance, security, etc. In this research, we limit ourselves to the performance non-functional requirements [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] during the evaluation of the service design. The performance of the underlying platform should be taken into consideration. The performance of such distributed platforms (e.g., cpu and memory utilization) is a major factor to insure the continuity of the service functionality as it relies on platforms that contain hardware and software components. Thus, it is important to smoothen and support the service creation process by the different design and evaluation classical tools and by relying on standard frameworks in order to integrate the research advances with the corresponding telecommunication communities.

• Challenge4-To integrate external classical tools with the SCE:

We consider one that is related to the concept of tool reuse, so we do not start our development from the scratch. These tools should rely on a proper degree of automation and less complexity of usage [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] and the creation frameworks are better to support the different activities of the service creation respecting the standards such as TINA-C in [START_REF] Berndt | Service specification concepts in TINA-C[END_REF]. This standard provides a framework that organizes the service creation activities. The major advantage of this standard is the consideration of the stakeholders during the service creation processes [START_REF] Combes | Service validation[END_REF]. We inspire from these existing standards and frameworks in our research in order to provide useful solutions that cope with the state of the art features and tools that are widely used in both the academy and industry communities. Adapting these external tools with modeling frameworks forms a major difficulty related to the gap in technology used to configure these tools (e.g., the difference between modeling concepts in ArchiMate and NS-3 simulator).

• Challenge5-To support the designer facing configuration errors: Some of the design errors need to trace complicated debugging process to be identified using external tools (e.g., errors in network IP assignments). The difficulty comes from the complexity of the verification procedures and the domain specificity of the evaluation tools. Other errors can be made by the designer in the meanings during the modeling activity. The designer may connect functions or components that belong to different systems or technological domains and cannot be directly linked. Such an error is related to the constraints of the modeling language which miss the domain-specificity of the used technologies. Thus, we intend to investigate the possibility of detecting such type of errors during or right after the design tool independently of the evaluation external tool.

RESEARCH QUESTIONS

In relation with the aforementioned challenges, we address our research questions in this section. The complexity of systems (related to challenges 1), may result in different types of errors in the design during the service construction activities. The detection of a design error or quality flaw (e.g., performance) (QoS is related to the user satisfaction in challenge 3) during or after the implementation phase of the software and hardware elements may result in expensive consequences, and cause unwanted iterations between the implementation and the design activities. This needs longer development time and costs more installation/reinstallation fees and affects the time-to-market (challenge 2). This makes us construct our research regarding the following research questions:

• RQ1: How to detect and identify the design errors and quality flaws (QoS and performance non-functional requirements) earlier and before the implementation phase?

• RQ2: How to use the results of the simulation and modify the design accordingly in order to improve the performance of the service?

Both of the aforementioned main research questions are organized in the manner of detecting and identifying the error and quality flaw, then to use and modify the design 1 1.4. APPROACH AND CONTRIBUTIONS accordingly. During our research and according to the necessary development actions, we have planned our research work to be composed of different steps and sub-research questions. These different steps extend the framework of the service creation that is proposed in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF][START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF]. They add more activities that aim to smoothen the verification process that is strictly related to the design one, as the early verification inputs are the requirements and the design artifacts. This can be achieved through the usage of classical external tools in order to support the early verification of the service design. Therefore, the first research question is divided into 4 branches:

1. (RQ1.1) How to detect and identify the errors in the meanings (cf. challenge 5) of the design model before the simulation of the system under development considering the different viewpoints?

2. (RQ1.2) How to Link between requirement analysis [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF], design, verification activities, and to identify the measurement(s) that are related to a specific requirement?

3. (RQ1.3) How to automatically select the proper measurement(s) accordingly?

4. (RQ1.4) How to select the proper network simulator that can provide the specific measurement(s)?

5. (RQ1.5) How to link the modeling technical space to the simulation one in the scope of TS verification activity?

6. (RQ1.5.1) How to represent the different viewpoints of the design in the verification technical space?

Regarding to the second research question RQ2, we raise the following branches:

1. (RQ2.1) How to analyze the measurements that are obtained from the simulation activity?

2. (RQ2.2) How to assist the designer to decide if a modification on the design is needed?

APPROACH AND CONTRIBUTIONS

Our research methodology constructs a way to verify the system design through different phases and set of methods that help the designer to detect errors and improve the performance of the system at an early stage. We rely on our practices in the telecommunications domain in order to provide solutions in this context through an experimental work to evaluate the design of the system. This work is related to the current technologies and advances in the evaluation tools that are provided and supported by the different companies and comities.

In the software engineering discipline [START_REF] Sommerville | Software Engineering[END_REF], we rely on Model Driven Engineering (MDE) to verify and correct the system design for the following main reasons: (1) MDE helps to manage the complexity as it relies on modeling and model transformations. Model transformations help to bridge the technical gap and to connect between two different tools.

They enable to generate tools from models (e.g., generating Archi modeling tool from ArchiMate models); (2) it helps to automate the development activities relying on workflow engines (supported by Eclipse IDE) and model transformations; (3) it supports the concept of abstracting system descriptions and makes it possible to reuse design elements in large space of applications (e.g., using Business Process Modeling over IMS core network or Parlay).

Considering the different domains of development and sharing the different viewpoints of stakeholders in the same design help to manage the complexity. According to the IEEE 1471-2000: "A viewpoint is considered as the central concept for organizing software architectures. Its main goal is to facilitate the comprehension of complex systems by providing separation of concerns". We choose to rely on Enterprise Architecture (EA) Frameworks [START_REF] Noran | An analysis of the zachman framework for enterprise architecture from the {GERAM} perspective[END_REF] and especially TOGAF [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF][START_REF] Berrisford | Using ArchiMate with TOGAF-Part 1: Answers to nine general questions about methods[END_REF]. This framework helps to decompose the complex system model into three main views according to the following domains: (1) Business Process Modeling; (2) Application Architecture and system capabilities modeling; (3) Technical and infrastructural modeling. This is how TOGAF approaches EA framework into the IT domain, where they have proposed and published a modeling language as a standard that represents their approach called ArchiMate. Relying on ArchiMate helps us to integrate the different elements that are widely spread with the information system. We have contributed to this point by relying on one of the most advanced actual and evolving core-network platforms: The IP Multimedia Subsystem (IMS). IMS provides a platform that relies on IP technology to bridge between the different telecommunication systems in addition to the other IP networks. Our contributions are mainly composed of three parts:

• We propose a Domain-Specific Design Framework (DeVerTeS) that relies on: (1) the modeling language (extended ArchiMate) represented by its meta-model through all the activities of the framework; (2) the integration between the different tools (internal for the design and external for the verification) to perform the design and verification activities. A Framework is "a telecommunications service engineering framework that consists of a service development methodology, a service creation environment, and a service support environment, that considers telematic services as distributed object-oriented applications operating on distributed object platforms" [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. DeVerTeS answers to the first research question (RQ1 1.3), while it provides a starting point to research and develop an extension that aims to answer to the second main research question (RQ2 1.3);

• A linking activity is included in the mentioned framework aims at linking softgoals (requirements) to the design and verification elements through a new meta-model that extends the ArchiMate standard one. The term softgoal represents a "goal that has no clear-cut definition and/or criteria as to whether it is satisfied or not" [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF]. The aforementioned meta-model forms the core element of our framework proposal and supports all of the design and verification activities. This contribution answers directly to the research question RQ1.2 and supports all of the contributions to answer RQ1 (cf 1.3) and provide partial contribution for the RQ2 (cf 1.3);

• We include a Domain-Specific Model Compiler in the design and verification frame-

1 1.5. MANUSCRIPT ORGANIZATION
work that relies on our proposed Domain-Specific Modeling Language (DSML). This model compiler provides a way to directly link the design to the verification activities.

It answers to the research question RQ1.5;

• We propose methods to generating fine-tuned simulation scenarios by mapping the language architecture to the simulation generated programs and relying on objectoriented concepts . This contribution answers to the research question RQ1.6.

The fact that the technology layer in ArchiMate supports networking concepts helped us to generate simulation scenarios for different network simulators to test the design by running the simulation program and checking the output logs/traces. This activity is a part of the early verification process that we propose, where there are other verification activities (error detection) that are proposed before the simulation and during the model compilation.

MANUSCRIPT ORGANIZATION

The thesis is organized in a way that presents background, related work, the DeVerTeS and contributions, and finally the examples of applications that were applied to validate DeVerTeS according to the different requirements of the telecommunication service development framework. Practically, we have started from the framework and DSML proposed in a recent dissertation [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. We have relied on the contributions according to the design phase and extended both activities and modeling language to cover the needs the early verification phase. Then, we have applied our extended framework to verify the design of a sensor-network system as an application for marine observatories systems. The manuscript is composed of two main parts: the state of the art and the solution (approach and contributions). The first part contains three chapters for the state of the art. The first chapter presents the problem domain that is connected to service creation environments for telecommunication services. The second and third present the domains that are related to our approach to solve the problem. The second presents the Model Driven Engineering and Software Architectures including the Enterprise Architecture. The third chapter presents the different verification methods that can be used to answer to our research questions. This organization of the state of the art helps to present the different advances and related researches in a way that follows the research paradigm: problem and motivation then comes the solution.

• We dedicate the chapter 2 to present the most important issues related to the service creation environments. Thus, we present service creation lifecycle and the different related works related to the same problem domain. The sources of errors are explained in this chapter as well. Moreover, we describe the different requirements that are related to the service creation process and compare the different related works according to them. These requirements are important and will be used in this and the next chapters of the state of the art for the comparison between the different approaches. In this chapter, we compare between the different related work and we highlight the major missing issues that are important and related to our research challenges.

• In chapter 3, we present the Model Driven Engineering discipline and the different modeling languages highlighting the Domain-Specific Modeling Languages (DSML)s concept and the different contribution according to them. We present the Enterprise Architecture and how ArchiMate language could translate into a modeling language that is able to describe software architectures. Then we present the different approaches for the Model Driven Analysis. We explain the benefits of using XPAND language as a model-to-text transformation language. Additionally, we present the different approaches and contributions that rely on model checking highlighting the difference with the model verification concept. Finally, we present the application frameworks and software production lines approaches with the related work accordingly.

• In chapter 4, we present the different approaches and methods that can be used in order to verify the system design at an early stage. We provide a state of the art for both model checking and discrete event simulation approaches. Moreover, we compare both of these approaches providing the reason of choosing the simulation one.

Regarding the contribution part, the organization of the two chapters shows the overall view of the DeVerTeS framework then covers detailed explanations of its macro activities. We organize this part in 3 chapters: approach (higher view of the DeVerTeS framework), macro activities of the DeVerTeS, and the validation of DeVerTeS. We intend to enable the reader to choose the level of details that will serve his/her objectives. The validation chapter comes at the end in order to present how did we test DeVerTeS framework.

• In chapter 5, we present our approach and proposed framework (DeVerTeS) to reply to the proposed two research questions. We discuss in details the main activities that compose the DeVerTeS and their relation with tools and actors.

• In chapter 6, we deeply go further and explain in details our different contributions in the scope of the approach that is mentioned in chapter 4, we link our contributions to the publications as well. Additionally, and in relation to our first contribution, we provide an overview to the IMS telecommunication platform that forms an important technology nowadays.

• In chapter 7, we present and analyze the experiments that we have done to validate the DeVerTeS framework using pilot validation way through two case-studies: (1) a video conferencing TS system; (2) an object-localization system that relies on IMS core-network to integrate smart sensors with the information system of the object localization for marine observatories.

• Finally, we analyze our results discussing the advantages and limitations of our approach, and we conclude. Then we present our proposed future directions for the community. These directions enable more developments and research to improve our results on two levels: the proposed methods and the validation by including real end users to test DeVerTeS in the future.

PART I : STATE OF THE ART

In this part, we present the state of the art related to both the problem and contribution domains. The first chapter is about Service Creation Environments which is the context of the problem domain. The second chapter presents the state of the art for the Model Driven Engineering and Enterprise Architecture, where both represent together a major part on which our approach relies on. The third chapter presents the state of the art of verification approaches.

This chapter aims to present the background and different actual approaches that are related to the context of service creation environments (SCE)s. It explains the different approaches comparing to the requirements of SCEs as shown in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. We ultimately extend the framework proposed in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF] in order to enable the verification at an early stage before the implementation phase.

PREAMBLE

In the context of Service Creation Environments (SCE)s [APP02, BPM94], the TS design is now a major activity where any mistake may result in major consequences in later phases of the lifecycle. It may lead to errors in the installation/deployment of the hardware and software elements. The Telecom Service (TS) designs contain process behaviors and structural elements that represent the underlying networks, operating systems, and services that are already developed.

In addition to the complexity of the system that is resulted from the different applications and their interactions, the TS design activity is complex due to the diversity of the different technologies with their applications and perspectives that are used . This complexity results in increasing the time of the design phase and the errors that can be made by TS designers. Design environments facilitate the design activity of IT systems through different tools and artifacts that help to communicate the design and to improve the time to market factor. This can be achieved through graphical user modeling tools that can simplify the process of system design and help to manage the complexity of the design process.

CHAPTER ORGANIZATION

In this chapter, we present the concept of distributed systems as used to run the telecommunication services. One of the major technologies nowadays is the IP Multimedia Subsystem (IMS) that we rely on in our contributions. Thus, we provide an overview to the IMS as it is used by the service providers to produce value-added services.

We highlight the different approaches of service creation environments and compare between them as we rely on the SCE definition, requirements and framework that are published in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. This comparison leads to find some requirements that are not full filed and that are important in the development process.

TELECOM SERVICES AND DISTRIBUTED SYSTEMS

TELECOM SERVICES AND DISTRIBUTED SYSTEMS

We adopt the definition of TSs that was mentioned in a recent related dissertation. According to [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] a Telecommunication Service is: "The offering of telecommunications for a fee directly to the public, or to classes of users as to be effectively available directly to the public, regardless of the facilities used". Telecom Services rely on distributed systems and architectures. According to Ian Sommerville [Som11], a distributed system is "a collection of independent computers that appears to the user as a single coherent system". The elements of these computers can be classified into: hardware and software. In the context of software development life-cycles, there are different activities during the software development [V-C15, BPM94] that are organized in time such as: Requirement Analysis, Design, Implementation, Testing, Verification and Validation, etc.

We limit ourselves in the design activities and we provide tools and methods that help during this phase. The activity of Telecom Service design involves different stakeholders that have different viewpoints1 and interests in the design. The stakeholders have different backgrounds and concerns about the design. In order to support the different stakeholders and their backgrounds, the design language is better to take into consideration the background of the end-user. The end-user can be given a role to create the design language [START_REF] Cho | Creating visual domain-specific modeling languages from end-user demonstration[END_REF] through set of models. Other approaches consider the background of the end-user and provides easy and highly abstract interfaces to create a service relying on a design tool like in [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF]. Other approaches take into consideration the role of the service and network providers to design a telecom service relying on an advanced core-network (IMS) like in [START_REF] Hartman | Model-based design and generation of telecom services[END_REF][START_REF] Maes | Service delivery platforms as it realization of oma service environment: Service oriented architectures for telecommunications[END_REF].

Complexity issues

The difference in the perspective, abstraction, and the used technology between the design views makes a gap between them. For example, the description of the infrastructures (such as IMS) [START_REF] Hartman | Model-based design and generation of telecom services[END_REF][START_REF] Maes | Service delivery platforms as it realization of oma service environment: Service oriented architectures for telecommunications[END_REF] is different from that on the service behavioral description level [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF]. This creates a difficulty to share them in the same design. In the first case, the designer needs to deal with both hardware (e.g., servers) and software elements (e.g., protocols). In the second case, the designer should be aware of the requirements that are related to the functionality of the system (functional requirements). The difficulty here is to integrate all of the existing design views (according to different backgrounds) together in one design artifact that is fluent and able to achieve all of the functional requirements. This is one of the complexity sources that face the designers when specifying a system. Another important source of complexity in service designs is that they contain several applications that interact with each other [BDC + 89].

One way of understanding the complexity of the system design is by classifying it according to the requirements [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] and the technology issues:

1. In the case of functional description, the behavior of the system can be represented in different abstraction levels. Activity diagrams can serve the behavioral represen-tation staying on a very highly level of abstraction. It is clear that this level is not enough without an implementation for each activity in terms of chains of applicationcalls supported by input parameters. These applications themselves need to be implemented in terms of APIs that are related to the platform (e.g., operating system platforms: Unix or OS/360) [START_REF] Douglas | Model-driven engineering[END_REF] that will execute their functions. The executing platform contains engines and functions to control the hardware elements, so to perform the functionality of the system.

2. In the case of non-functional requirements where we are interested in the performance [START_REF] Prof | 2 -software and systems engineering -software product quality requirements and evaluation (square) -guide to square[END_REF][START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF], there are different properties that need to be satisfied in the system. Space and Time Performances can be related to the hardware components of the system (e.g., CPU and memory usage). This should not prevent us from linking the functional requirements to the non-functional ones, as the behavior of a system affects its characteristics and vise-versa. In order to understand this point, and in the context of performance non-functional requirements, the functionality of a system may create a high demand of resources (e.g., memory) that are not available by the system hardware. Reversely, one can say that the available memory of an element in the system (e.g., a server) limits the performance of the system.

3. The last type in our classification is the technical complexity. It is the complexity that is related to the technology that is used in the underlying platforms which execute the system. It plays a major challenge in the investment of the IT-projects as it affects development time. The infrastructure has shared goals (as the infrastructure may serve different projects and applications) may differ from the business project goals [START_REF] Thorogood | Reducing the technical complexity and business risk of major systems projects[END_REF]. This creates a gap between both of the mentioned domains (business and technology). This gap represents a challenge where it is important to abstract the technology specifications in a way that simplifies and enables reusing them by the different business needs. The infrastructure should be flexible to serve the different business demands and with a reasonable cost.

Impacts on the design phase

The aforementioned three branches of complexity form a challenge for the design phase. A designer should take into consideration the different requirements of the system and make an efficient use of the underlying technologies at the same time. This difficulty affects the time to market aspect negatively. This forms the motivation behind integrating the different perspectives and viewpoints in the same design.

In the design phase, Telecom Services rely on highly abstract interfaces that represent the functions provided by the underlying technologies (e.g., set of activities that are organized in a sequence diagram). An example of the abstraction difference is relying on the Open Service Architecture (OSA) with Parlay from Ericsson [MBD07, GKDM03, GP02, BJ02]. The main concept of OSA is to hide the functional details of telecommunication applications and to provide libraries of Open APIs (e.g., CORBA) [START_REF] Ericsson | Parlay/OSA Developers Resource Guide: An introduction and resource guide for Parlay/OSA application developers[END_REF]. The integration between these applications in a specific procedure forms the functionality of the value-added service (VAS). These APIs can be used by designers who are not fully aware of the detailed procedures in the underlying platform

ICT Service Creation 2.4. APPROACHES TO MANAGE COMPLEXITY IN THE DESIGN

such as the ISDN, 2G, 3G, etc. For an instance, Parlay provides a set of the most wellknown telecom applications such as [START_REF] Ericsson | Parlay/OSA Developers Resource Guide: An introduction and resource guide for Parlay/OSA application developers[END_REF]: call barring, Email signature (call me back), calendar reminders, etc.

Telecom Services rely on networking infrastructures or core-networks to perform the communications/interactions between their different components. In distributed systems, messages play a major role to convey the control information between the different computers that are running independently from each other and may cooperate to execute the system behaviors. Hiding these details from the designer helps to manage the complexity. This concept can be applied directly to the underlying platforms or core-networks in the case of Telecom Services. The idea is to hide the details of the technological functions and then to enable the design of a Telecom Service relying on the functional requirements [START_REF] Sommerville | Software Engineering[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] that are defined in the requirement analysis phase. This point helps to manage the complexity of the underlying technology platforms during the design phase thanks to the separation between the views of both the technological and the architecture of service applications. .

APPROACHES TO MANAGE COMPLEXITY IN THE DESIGN

Software Architectures

In the context of managing complexity, Software Architectures [START_REF] Shaw | Software Architecture: Perspectives on an Emerging Discipline[END_REF] are used to organize the structure of the design of complex systems. Software Architecture is "a level of design that involves the description of elements from which systems are built, interactions among those elements, patterns that guide their composition, and constraints on these patterns" [START_REF] Shaw | Software Architecture: Perspectives on an Emerging Discipline[END_REF][START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF].

In addition to the data structures and algorithms, the software architectures rely on structural issues including: protocols of communication; data access; assignment of functionality to design elements; the composition of design elements; physical distributions; and selection among the design alternatives. This makes it possible to cover the different concepts of a system design according to both the logical and physical views. Software architectures enable the designer to describe the system in different levels of abstraction and to separate the description of requirements between functional and non-functional and to connect between them through different types of relationships. In order to describe the architecture of a complex system and specially when the software development is an architecture based process (e.g., TOGAF [TOG], KAOS [vL01b], etc.), many Architectural Description Languages (ADL)s [MT00, Hus13] were proposed in the 2000's. ADLs can enable the developers to control [Hus13] the development process from the beginning to the end. These issues decompose the system to represent it in different ways: (1) hardware/software decomposition; (2) domain-specificity and abstraction layering; (3) Activity and Objective decomposition (e.g., Requirements, Design, Verification, etc.). Generally, ADLs mainly differ from each other in the application domains, the frameworks and activities that they support. According to [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF], ADLs should be able to address the following areas of concern:

1. representation to model hierarchal compositions; 2. design process support; 3. static and dynamic analysis; 4. specification-time and execution-time evolution; 5. refinement; 6. traceability; 7. simulation/execution.

The design process support is directly mentioned through the previous concerns, this process is our scope in this thesis. Additionally, Simulation provides a proper approach to verify the design at an earlier stage (cf. chapter 4). There is a clear intersection between our research questions (cf section. 1.3) and the aforementioned concerns of ADLs when considering the design and error detection activities. We find that our interest is in the following concerns:

1. design process support: We focus on the design/specification and verification activities of the service creation lifecycle published in [START_REF] Berndt | Service specification concepts in TINA-C[END_REF], and ADLs provide support to the design process. This support can be provided by frameworks and tools which help to improve the development time and reduce the errors that can be made by the designers. This can be achieved through graphical modeling tools and by bridging the gap between the different technologies in the system architecture;

2. traceability [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF]: it is important to trace the changes across the different levels of architectural refinement. This concern becomes a major issue for ADLs because of the large technical gap between the design diagrams and the programming languages that represent the design architecture;

3. simulation/execution: this concern is important as we focus on the verification activity in this thesis. Simulation (cf. chapter 4) provides valuable feedbacks that can be analyzed in order to determine the satisfaction of functional and non-functional requirements without need for additional costs of hardware installations.

According to [START_REF] Shaw | Software Architecture: Perspectives on an Emerging Discipline[END_REF] and [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF], ADLs should consider seven levels of architecture specification capability: (1) capturing architectural information; (2) construction of an instance; (3) composition of multiple instances; (4) selection among design or implementation alternatives; (5) verifying adherence of an implementation to specification; (6) analysis; (7) automation. As the other design languages, ADLs are composed of abstract, concrete syntaxes (e.g., components and their reusable types with graphical representations) and semantics (high-level model of a component's behavior). Frameworks provide to the ADL the modeling and execution/verification abilities of the design (e.g., petri nets, finite state machines) where the major characteristics of frameworks are: extensibility and modifiability [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF].

We have presented so far the concept of Software Architectures and Architecture Description Languages (ADL)s. ADLs are used to design systems through design environments during different activities that precede the implementation phase. There are different interesting concerns of using the ADLs which intersect with the interests of the service creation environments presented in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF][START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF], thus ADLs are considered as

SERVICE CREATION ENVIRONMENTS (SCE)S

useful to support the service creation process. In the following, we present some of these design environments as we will link them to the concept of Service Creation Environments (SCE)s in the domain of telecommunication service construction.

SERVICE CREATION ENVIRONMENTS (SCE)S

The Service Creation Environment (SCE) is "a collection of software tools (together with a reuse infrastructure) used according to the service development methodology with the aim to assist the service developer(s) when applying the service development methodology by automating and simplifying as much as possible the service creation process, and facilitating consistency and verification checks" [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF].

This SCE considers two types of complexity that are related to: (1) the actors and their roles, concerns and skills; (2) the technical nature of the tasks involved.

The main motivation behind SCEs is to manage the complexity and to facilitate checking that the resulting telecom services are as planned and required by customers and service providers. In order to support the service development methodology and make it applicable, service creation environments are proposed supported by tools and frameworks.

Requirements of the Service Creation Environments

The objective of this section is to present the different requirements that a Service Creation Environment (SCE) should satisfy.

SCEs are focused on the domain of telecommunications where telecom services have specific requirements and nature that needs a specific development framework that suits the creation process. These requirements were identified in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] in order to satisfy the requirements of telecom service engineering process and to face the improvement of time to market, cost and quality competition factors. We limit ourselves to some of these requirements2 as we concentrate on specific phase which is the design and early verification (as an extension). These requirements are (Fig. 2.1): (R1) the reduction of complexity and increase of efficiency. This requirement intersects directly with our challenges; (R2) the efficient automation of the service creation process. This requirement meets the improvement of time to market challenge; (R3) the development of a rich variety of telecommunication services. This helps the service provider to produce larger number of telecom services using the same underlying platform and design tools; (R4) reusability at different abstraction levels. This requirement makes it possible to use the same design that is highly abstract with different underlying platforms or middlewares; (R5) the accommodation of legacy telecommunications services and systems. This requirement supports the reuse of widely used telecom services that are tested before as components of new ones; (R6) the interoperability of services. This requirement supports the ability of integrating the new service with other existing ones in order to provide certain functions to the enduser; (R7) the accommodation of the relevant standards. Thus, it is so useful to rely on standards such as 3GPP or standard platforms such as the IMS; (R8) we add the following requirement as important to manage complexity: support for sharing the viewpoints of Figure 2.1 : Requirements of Service Creation Environments according to [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] the different stakeholders in the design; (R9) The representation of hardware and software elements. This requirement is important for both design and early verification processes. In the case of performance non-functional requirements, there are many metrics (e.g., CPU usage, queues, etc.) that need hardware identification (e.g., server type) in order to map the design accurately to the simulation scenario; (R10) using external and trusted tools during the verification of the design. We have added this requirement as we find it important to reduce the cost of the development process and to provide a certain level of trust to the feedbacks of the verification process to the designer.

ADLs are proper languages to be used in the SCEs as they have requirements that intersect with those of SCEs. ADLs are languages that are useful to describe architectures and systems which are related to define concepts (e.g., roles, actors, application classes, networking nodes, communication paths, etc.), while design environments are related to activities (e.g., simulation, model checking, design, implementation, etc.) which is directly connected to roles, actors and tools. They can serve in the following activities [START_REF] Medvidovic | Domains of concern in software architectures[END_REF]: (1) representation; (2) design process support; (3) static and dynamic analysis; (4) specific-time and execution-time evolution; (5) refinement; (6) traceability; (7) simulation/executability. Additionally and according to [START_REF] Shaw | Software Architecture: Perspectives on an Emerging Discipline[END_REF], ADLs support: (8) automation during the different activities of the development process; (9) the verification of the system from implementation to the specification.

Service Creation Environments and Value-Added Services

Different approaches focused on designing TSs from a higher level of abstraction to hide the complexity of the systems from the designer. Different telecommunication platforms (e.g., OSA-Parlay [ERI02] [BJ02, GP02, GKDM03], Jain [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF]) were developed by the industry to abstract the telecommunication functions and their complexity from the designer. The objective from that is to improve the portability between these telecommunication platforms and the new VASs. This reuse issue needs a platform independent approach to describe the behaviors of each new service at a very high abstract level regardless to the hardware and physical network representations. Different approaches contributed to

SERVICE CREATION ENVIRONMENTS (SCE)S

this domain by defining domain-specific languages (e.g., CPL SCML [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF], graphical interface [START_REF] Glitho | A high level service creation environment for parlay in a sip environment[END_REF]) and other components to help and manage the creation of the VASs through frameworks and SCEs [START_REF] Glitho | Creating value added services in internet telephony: an overview and a case study on a high-level service creation environment[END_REF].

All of the aforementioned contributions do not consider the error detection during or right after the design phase and they do not rely on simulation before the implementation phase. This point is raised as a research question in this thesis as mentioned in the introduction 1.

In [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF], the presented XML-based scripting languages facilitate the creation of VASs as they provide reusable means (answers to the requirements: R4) to describe the service functions in a way that uses the APIs that are provided by the underlying platform (e.g., JAIN, Parlay). This answers to the requirement (R5 and R7). This way of creating VASs provides an abstract method but on the same level of the predefined APIs using scripting languages which does not fully support the requirement (R1) unlike the proposal in [START_REF] Glitho | A high level service creation environment for parlay in a sip environment[END_REF][START_REF] Glitho | Creating value added services in internet telephony: an overview and a case study on a high-level service creation environment[END_REF]. In this last proposal, graphical user interface was proposed which relies on a domain-specific language. This makes the last approach advances in the requirement (R1) in addition to the other requirements that are answered by [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF]. Additionally, scripts are automatically generated by the design tool to describe the service structure and functions which makes the approach in [START_REF] Glitho | A high level service creation environment for parlay in a sip environment[END_REF][START_REF] Glitho | Creating value added services in internet telephony: an overview and a case study on a high-level service creation environment[END_REF] answers to the requirement (R2). Both of the approaches in [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF][START_REF] Glitho | Creating value added services in internet telephony: an overview and a case study on a high-level service creation environment[END_REF] do not provide automated means to facilitate the early verification process before the implementation phase. The above mentioned approach does not allow the configuration of the hardware parameters or even accessing the network level as it is hidden by the platform interfaces that offer APIs only. This point does not answer to the requirement (R9) that is important to the verification of the design before the implementation phase.

TINA-C

In the context of software development lifecycles, there are many frameworks that were proposed in order to organize a system life through different phases that start from defining requirements and risks until the delivery and validation by end-users (e.g., V-Cycle, Agile, Waterfall, etc.).

Regarding the telecommunication services, service development frameworks were proposed to specify the development of the systems considering the different stakeholders that are involved in the creation of the telecom services. In the 90s, Service specification concepts were identified in the Telecommunications Information Networking Architecture Consortium (TINA-C) [START_REF] Berndt | Service specification concepts in TINA-C[END_REF] to meet the future market needs. This was considered in TINA-C by reducing costs associated with construction and deployment of new services respecting the needs of all stakeholders [START_REF] Combes | Service validation[END_REF] including the end-user. TINA-C is a software architecture like the ones mentioned in a previous section 2.4.1 but it is proposed to serve the objective of creating telecom services considering the different evolving technologies in the telecommunication arena. According to [START_REF] Berndt | Service specification concepts in TINA-C[END_REF], the telecom service software architecture contains three main parts: (1) Logical framework architecture; (2) Service architecture; (3) Management architecture. The challenges that face the telecom service creation [START_REF] Berndt | Service specification concepts in TINA-C[END_REF][START_REF] Combes | Service validation[END_REF] are different in the nature than other software services. They are related to different stakeholders (e.g., service provider, network operator, enduser) from different domains and backgrounds with different perspectives and concerns. In addition to the stakeholders the increase of competition in the market that acquires improvement of time to create and deploy the service. The TINA-C framework (Fig. 2.2) proposes a life-cycle that is specific for the development of telecom services and that replies to the goals of the enterprises which manage and operate the telecom service. In order to manage the complexity of heterogeneous distributed systems and facilitate the design and deployment, a separation between the different concerns is considered. This separation is proposed through the logical framework architecture of TINA-C [START_REF] Berndt | Service specification concepts in TINA-C[END_REF] into different viewpoints 2.3. In the same context, another approach contributed to the service engineering methods, where a service development methodology was proposed in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. This approach relies on the framework in TINA-C and improves the time to market issue as TINA-C framework is suitable for middle and long term projects [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF].

SERVICE CREATION ENVIRONMENTS (SCE)S

It considers the separation between the different viewpoints during the design phase. In order to reduce the time to market and accelerate the service life-cycle they propose a service creation methodology.

The previous definition of the SCE mentions the need to include verification methods and tools in the environment and its framework. In this thesis, we rely on this requirement to complement a previous work on the design phase in the dissertation [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF].

An SCE has specific requirements and criteria that should be respected during the development. We mention these requirements in the following subsection (2.5.1).

SCEs and IMS

According to the advance in the core-network technologies, the IP Multimedia Subsystem (IMS) [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF] was developed to cover the needs of VASs thanks to the application server concepts. Moreover, it provides a wide mediation between the different telecom systems [START_REF] Cuevas | The ims service platform: a solution for next-generation network operators to be more than bit pipes[END_REF] (2G, 3G, LTE, LTE+, PSTN, and the Internet) through an advanced packetswitched network that relies on IP and SIP proxy concepts to handle the communications. This IMS represents an advanced platform that provides wide range of opportunities to create the VASs thanks to the Application Server concept that is included in its architecture [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF].

Different approaches rely on the highly abstract logical functions of IMS in order to create new services through SCEs. In [YdAT + 08], the authors rely on IMS as an underlying platform [START_REF] Cuevas | The ims service platform: a solution for next-generation network operators to be more than bit pipes[END_REF] to provide a user-centric SCE using the platform-independent description for the service behavior. The most important feature of the user-centric service creation approach is that it makes use of the Internet technology. In this way, the users/administrators can easily access the service platform portal anywhere and anytime and using the relevant tools (e.g., mobiles/PDAs) [START_REF] Cuevas | The ims service platform: a solution for next-generation network operators to be more than bit pipes[END_REF]. Additionally, building the telecom service platforms on top of the Internet ones makes it possible to abstract a large set of telecom network functions (e.g., SMS, MMS, billing, call set-up and control, etc.) and reaching important online measures (e.g., bandwidth, identity information, etc.). Therefore, the authors in [YdAT + 08] rely on the Open Platform for User-centric service Creation and Execution (OPUCE) to interact with the service applications. The OP-UCE is deployed in OSA-Application servers through the IMS platform and can control the service behaviors on the network level, whereas it provides valuable measures for the different network elements and transmits them to the service portal application(s). This approach provides a way to manage/design the service at highly abstract level through all the phases of the Service Creation, but it does not provide a way to verify the design before the implementation/deployment phases. This makes this approach proper for creating rapidly VASs but it does not consider or verify the performance impact of the underlying platform (IMS) before the deployment. They can test the service when it is online, which may result in negative consequences on the service and or network performance for some reasons (e.g., number of users exceeds a certain limit). This approach facilitates the design process and makes it more efficient as it is assigned directly to the user thus it answers the requirement (R1). It depends on automated procedures that configure the OSA-Application Server thus it answers to the requirement (R2), while it does not consider the automation during the verification at an early stage. It helps to produce and compose large number of telecommunication services thanks to the concept of the Ap-plication Server in the architecture of IMS and especially the OSA-SCS server (see section 6.2.1). Thus, this user-centric approach answers to the requirement (R3). This approach simplifies and abstracts the system functions to the user with the ability of reusing the same platform and APIs in different services, thus it answers to the requirement (R4). This approach relies on standard telecommunication platform (IMS), this meets the requirements (R5) and (R7). It does not provide means to change hardware issues as it introduces the user in the design activities thus it does not answer to the requirement (R9). It does not consider the network provider viewpoint in the design thus it does not answer to the requirement (R8).

User-Centric SCEs

The user-centric approach for SCEs involves the user in the service creation process. The user-centric SCE in [START_REF] Shin | End-user driven service creation for converged service of telecom and internet[END_REF] is very close in nature, mechanism, and supportive tools to the one in [YdAT + 08], but differs in: (1) the portal that relies on the open APIs of Web 2.0 to present the interface through the Internet anywhere; (2) the authors rely on a simulation step although it is not clear if there is an automated compilation that generates the simulation scenarios directly from the design. Although it supports service simulation, this SCE does not provide the capability of an automated error detection step neither before the simulation and during the design activity nor after the simulation execution through analyzing the simulation results.

Regarding the requirements of SCEs, this approach provides a way to hide the complexity through graphical modeling interfaces, and it makes the design of new telecom services more efficient as it enables the end user to create his own service (supports the requirements R1 and R3) according to his/her needs. This last point helps to shorten the design time where the behavior of the service is defined directly by the customer. A certain level of automation to configure the network is achieved as there are mechanisms to generate configurations from the graphical user interface provided through the web. Thus, it answers to the requirement (R2) even partially as there is no mention about the verification before the implementation phase. It supports the accommodation of legacy TSs and systems (R5) and telecommunication relevant standards (R7) as it relies on systems such as IMS. Moreover, it provides a way to share the end-user in the service creation process (R8) although it does not provide a way to configure and specify the network elements directly in the same design phase. Neither the design tool nor the service simulator in this SCE provide support a way to configure the hardware elements of the system (IMS) or the network parameters, although there is a representation of some IMS elements during the service simulation activity. Thus, we consider that the requirement (R9) is partially satisfied by this approach.

Service Creation Environments and Context-Aware Services

There are similarities between the telecom and pervasive services, both rely on the functionality provided from set of applications that run in the underlying platforms. These platforms are themselves complex systems. They both have the same sources of complexity according to the architecture of the underlying platforms and the interactions between the applications that provide functions to the service components.

SERVICE CREATION ENVIRONMENTS (SCE)S

The context is "any information that comes from the interactions between humans, applications, or the surrounding environment" [START_REF] Anind | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF]. One of the challenges for services is to be aware of the context information that comes from the surrounding environment, and to be self-adapting with the underlying platforms that are running and providing functions to different services. This context-awareness [START_REF] Anind | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF], where a service software may rely on the information (e.g., sensor signal) sent from the applications that run in the different environments in order to change its behavior dynamically. The major challenge in this domain [START_REF] Anind | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF] is to build frameworks and toolkits that support help in building context-aware applications taking the advances in network and sensor technologies into consideration. This is because the context-aware services should work with different platforms and technologies.

Generally, the behavioral description of the service is highly abstracted in order to enable their configuration by end-users through interfaces (or portals) that are easily accessed anytime and anywhere thanks to the Internet technology. This way of service construction is applied in [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF], where the authors propose an SCE for the creation of context-aware pervasive services. Pervasive Services refer to "software applications that can operate in a dynamic environment and have the capability to run anytime, anywhere and on any device with minimal user attention" [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF]. The proposed SCE considers the context modeling ability with a highly abstracted level. Their SCE relies on a way of architectural description to separate between the platform independent (PIM) and dependant models (PSM) of the system. In the PIMs, the behavioral description is represented in addition to the reactions to the context information that are exchanged from the environment. Whereas the PSMs contains the details and specifications that are related to the programming language (operational semantics) where the generated code belongs to. Their proposed SCE contains supportive tools and automations for the different activities of the service creation in order to improve the development time and cost. Moreover, they provide a domain-specific design language that facilitates the modeling activities and respects software architectural concepts (PIMs and PSMs). Whereas like in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF], it does not provide any methods to automatically generate simulations or analyze the design in order to detect a possible error/flaw in the design before the implementation/deployment phases. Thus, this approach meets the requirements (R1, R2, R3, R5, R7). It does not support the configuration of system hardware elements nor representing the network parameters.

Service-Centric SCEs

In [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF], a service-centric approach is proposed to create VASs. A detailed view for the design phase is presented relying on the proposal in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]. The major point that helps to reduce the design complexity in this approach is that it divides the development activities into subsets in relation with the requirements that are to be specified during the design phase (Fig. 2.3). Every development phase relies on the previous one, and the requirements are to be considered in most of the development phases (e.g., testing should take into consideration the functional and non-functional requirements). The service development goes into a set of successive circles where new functions are to be tested in every cycle according to the requirements at the entry of the development process. Figure 2.3 shows that the design phase contains UML modeling concepts during the design phase and that the architectural description is separated from the other activities of that phase. It is so important to use a modeling language that can support the different activities including the architecture description. This approach does not present methods to test the services according to the underlying technologies while it presents an advanced framework that supports the service development process. It does not present methods that correlate the test tools with the development activities.

COMPARISON

The objective of this section is to highlight the major concerns that we tend to face in our contributions in order to compensate the weaknesses in the related work presented previously in this chapter. These weaknesses will be presented in the next subsection. There is no approach from the presented ones which can answer to all of them.

COMPARISON

Comparison of SCE approaches

The figure (Fig. 2.4) presents a comparison table between the different approaches that are considered as SCEs. The SCE in [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF] is for the context-aware services that may rely on different applications including telecommunication ones. We use different characters to state the level of satisfaction of the different SCE requirements. As a result of the comparison (Fig. 2.4) between the different approaches of SCEs in the different contexts of Context-Aware, Value-Added, and Telecom Services, we conclude that:

• all of them do not support the reuse of external tools for the verification activities.

External tools can provide ready-to-use modules to run specific tests on the design of the system. These modules are widely used and tested in the different laboratories. Some SCEs rely on platform that contain specific testing modules like Parlay from Ericsson [START_REF] Ericsson | Parlay/OSA Developers Resource Guide: An introduction and resource guide for Parlay/OSA application developers[END_REF] and SCEs that rely on IMS [BJ02, GP02, GKDM03, SYCK08], Jain [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF], the Context-Aware framework in [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF], and to execute systems that rely on SIP protocol [START_REF] Hartman | Model-based design and generation of telecom services[END_REF]. In all cases there is no usage of classical tools that are reusable in different applications of the networking domain such as NS-3 simulator;

• most of the SCEs do not support the representation and configuration of hardware elements in the design. All of the approaches in [ERI02, BJ02, GP02, GKDM03, SYCK08, HKKDP07, AYG10] do not represent hardware elements as components to be configured or used in the verification process (e.g., performance evaluation). Some approaches provide a generic method to evaluate the performance of the complex systems like in [TTH11, dMLP + 01], and they do not support the usage of external tools. The most interesting (in relation to the hardware issue) approaches for the evaluation of the performance of telecommunication designs are [MMN + 12, MLX08]. These two related work provide verification approaches, but they do not consider to provide an environment or framework to support both design and verification activities. The work in [MMN + 12] is limited to the conferencing systems only as an application of telecommunication services. The work in [START_REF] Meilian | Research and implementation of IMS simulation system based on ns2[END_REF] provides an approach to verify the design of systems in the networking domain and relies on NS-2 simulator as a classical and external tool which replies to the first weakness of the other related work and can be used as a component of an evaluation workbench to test telecom services;

• all of the mentioned SCEs do not support the representation of the viewpoints of the different stakeholders according to a specific framework (e.g., the framework of [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF]) that respects the specific requirements of the domain of the system to be produced. An advance on this issue is achieved in the context of end-user SCEs [START_REF] Shin | End-user driven service creation for converged service of telecom and internet[END_REF], but it does not support the other stakeholders that are involved in the process of the telecom service creation.

These last points motivate us to consider the external classical tools that are widely trusted in the verification activities. This enables the designer to obtain valuable feedbacks that are useful to detect the design errors and quality flaws. The difficulty here is to adapt the design artifacts to these external tools. Our major contribution faces this difficulty in order to integrate the design and verification tools in one framework.

Figure 2.4 : A comparison between the SCE approaches

Additionally, we consider the representation of the viewpoints of the different stakeholders in the design. This issue helps to manage the complexity of the design by relying on an ADL that will be used in the design and verification processes.

Moreover, we consider a major issue for the solution part: to include the hardware elements of the network representations of the design artifact. This issue enables to configure and specify network elements in the external tool modules. In another way, it helps to transmit the design network topology and configuration information to the external tool in order to run the system design and obtain the feedbacks about errors or quality flaws.

As far as we know (Fig. 2.4), there is no Telecommunication SCE approach till now that can answer to all of the requirements (from R1 to R10). This motivates us in our contributions to fulfill these requirements.

DISCUSSION

In this chapter, we have presented the state of the art related to Service Creation Environments (SCE)s with their requirements. SCEs provide frameworks and tools to reduce the complexity and facilitate the service creation process. They provide support for different service creation phases besides to the design one. In our research, we only focus on the design and verification activities that are situated before the implementation phase. Supporting these activities helps to improve the competition factors (time to market, and cost) of service creation as it helps to avoid errors and design flaws at an early stage.

We have explained the nature of the telecom services as example of complex systems and the different types of requirements that are important when specifying the system. Then we have focused on performance requirements and QoS that are important in the context of Telecommunication Services.

There are different approaches and SCEs that were proposed during the recent 20 years in order to facilitate the service creation process and satisfy its requirements. We rely on the requirements that were defined in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF], and we consider the requirements in that are mentioned in the section (Section. 2.5.1) to compare between the different approaches (Fig. 2.4). Nowadays, telecommunication services are supported by advanced telecommunication platforms such as the IMS. Thus, we have presented the IMS archi-tecture and SIP protocol. There is notable point between the different approaches: the user-centric one. It allows to produce TSs by the users themselves. This issue makes this approach more efficient concerning the marketing needs, where it reduces the surveys done by marketing agents when forecasting the market needs. Another point that is critical is the consideration of the different viewpoints in the same design and the consideration of the hardware and network issues during the design and verification activities. These last two points are not considered so far in the mentioned approaches in this chapter as they focus on abstracting the telecommunication APIs to the designer that can be an end-user or coming from the business domain. However, all of the approaches rely on telecommunication standards (e.g., IMS, Parlay, etc.) and legacy TSs that are already provided by the underlying platforms (e.g., OSA-SCS in IMS, Parlay from Ericson, etc.). The contextaware services rely on environmental information that are used by the service functions to decide the actions to be performed. This approach is supported by user interfaces that are applied directly in the mobile software. This approach focuses on the different levels of abstraction that a service design consists of, such as: environmental descriptions and the business modeling level that uses the highly abstract functions of the underlying platforms. All of the mentioned approaches in this chapter tend to reduce the complexity and increase the efficiency of the TS creation with a certain level of automation that does not reach the early verification process before the implementation phase.

In the context of managing the complexity of the design, we have presented the different approaches for service creation. We have presented the different approaches in the context of SCEs; next chapter will present solutions to manage complexity and improve the time to market. Thus, we will present Model Driven Engineering that provides solutions to manage the complexity and to generate tools from models. These tools facilitate the service creation process by supporting the different activities and following the domainspecific concepts and constraints.

IMS provides an evolving solution that integrates the different technologies of telecommunications through a packet switched network. It provides support to the concept of VASs thanks to the application servers in its architecture. These features make IMS a leading technology in the future. Thus, it is better to include solutions that support the design relying on IMS in any proposed TS development framework. Additionally, we consider that the reuse of external classical tools for the verification of the TS design is an interesting issue as they are well-known and certified. There is some advance in the field of including IMS architecture in the verification tools like in [START_REF] Meilian | Research and implementation of IMS simulation system based on ns2[END_REF], but it is still not widely supported by the different verification tools. We consider this point to be an important issue for the next future.

Model Driven Engineering and Enterprise Architecture

The objective of this chapter is to present the related work in the domain of Model Driven Engineering (MDE) and relies on software architectures. We dedicate this chapter for MDE including the domain-specific modeling languages, and software architectures, as they help to manage the complexity and improve the time to market.

PREAMBLE

In this chapter, we provide a state of the art to one of the domains that our approach relies on in order to address the proposed research questions. Model Driven Engineering (MDE) is one of the current, dynamic and promising disciplines in the domain of Software Engineering [START_REF] Sommerville | Software Engineering[END_REF]. Models are easily understood and modified by the different stakeholders. MDE facilitates the exchange of the design model between the different tools through the model transformation techniques. These tools support the different stages during the service development lifecycle.

Modeling helps to manage complexity of systems through abstracting their concepts and encapsulating them into modules and components that are easier to be understood and communicated between the different stakeholders as models rely on graphical representations (cf. section 1.1.2. Modeling languages provide facilities to model the systems as they contain simplified concepts that can be used to describe different types of systems (e.g., UML).

Framing

In the design activity of complex systems such as Telecommunication Services (TS)s, there is a need to consider the different stakeholders who are included in the service creation process. ADLs help to manage the complexity of these systems. Thus, we are going to present the EA and ADLs in this section.

Enterprise Architecture (EA) framework [START_REF] Noran | An analysis of the zachman framework for enterprise architecture from the {GERAM} perspective[END_REF][START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] provides the ability to involve and integrate the different stakeholders in the development process of a system. Archi-Mate [The13] modeling language relies on EA framework and helps to specify the system architecture in highly abstract level [Hus13]. It contains a multi-layered architecture that makes it possible to share the viewpoints of the different stakeholders in different contexts:

(1) requirement modeling; (2) business process modeling; (3) system capability and application modeling; (4) technology modeling. It respects the TOGAF R1 standard framework

MODELING LANGUAGES AND TOOLS

and focuses on the 4 mentioned frameworks.

ADLs (see chapter. 2) provide the ability to describe a system architecture thus enable to express and share the concepts of the different domains in one design. ArchiMate that follows the TOGAF R standard is supported by an open source design tool called Archi. Relying on model transformation, this modeling tool can be generated from the meta-model that represents the abstract syntax of ArchiMate language. ArchiMate mixes advantages of both EA and modeling together and provides full support to the concept of tool generation from models. This motivates us to consider ArchiMate modeling language in our approach.

Detecting a defect (error or flaw) in the system design after the implementation/deployment phases leads to major consequences especially if the hardware elements were installed. The system providers spend almost half of the development cost on the verification and validation activities [START_REF] Sommerville | Software Engineering[END_REF]. The design defects can be related to scalability and performance issues, or to conceptual errors in the design model that are done by the designer. Complexity and lack in domain experience can be reasons for such errors and quality flaws. Thus, it is better to support the designer by tools that rely on ADLs, and to verify the system before implementation in order to detect the errors at an earlier stage.

In this context, MDE helps to improve the development time factor. MDE provides the system developers with both modeling and model transformations that enable representing the system in different forms according to the needs of the development activities (e.g., design, verification). With MDE one can easily use models of highly abstract level and make the necessary verifications through tools that are complicated and require specific experience. Model transformations are useful to change the design models from one form to another in order to exchange its information between the different tools.

Chapter Organization

The main objective from this chapter is to compare between the different approaches that rely on MDE and Software Architectures, and to motivate the reason behind choosing MDE and the Enterprise Architecture in our approach.

In this chapter, we will rely on the same requirements that were presented previously in (subsection. 2.5.1). This will help to show the differences between approaches that rely on MDE and software architectures in order to face the aforementioned challenges in (section. 1.3). Although these approaches do not serve in the same application domain of SCEs for telecom services, but this comparison shows the different techniques to benefit from MDE and software architecture to support the design and early verification activities. MDE and software architectures are applied in different application domains and contexts in order to face the same challenges for the creation of telecom services.

MODELING LANGUAGES AND TOOLS

The system modeling is "the process of developing abstract models of a system, with each model presenting a different view or perspective of that system" [START_REF] Sommerville | Software Engineering[END_REF].

used by the world's leading organizations to improve business efficiency. It is the most prominent and reliable enterprise architecture standard, ensuring consistent standards, methods, and communication among enterprise architecture professionals [TOG].

The fact that the telecommunication systems contain different domain-specificities and backgrounds creates a necessity to separate between them during the design activities. Thus, system modeling helps to achieve this purpose.

According to [START_REF] Sommerville | Software Engineering[END_REF], models can be classified according to their objective in different types: (1) context models; (2) interaction models; (3) structural models; (4) behavioral model.

The context models are used to identify the boundaries of the system with its environment. It is important to know if the requirements of the system are provided by the environment or not. This will help to reduce the development time by knowing what are the new functionalities to be specified and using the already-existing ones. Activity diagrams can be used to describe the context models.

Regarding the interaction models, they describe the interactions between: (1) the user and the system; (2) intra-system, between the components; (3) and inter-system, between the system and other ones. Use-case and sequence diagrams in UML can be used for these models.

The structural models are used to represent the components of the system and their relationships. They can describe the system architecture. Class, package, and deployment diagrams (from UML) can be used to represent these models.

Regarding the behavioral models, they provide the ability to describe the system functionality and how it is going to provide its functional requirements when executed. Behavioral models contain different types of elements such as: events, data, actors. State diagrams (in UML) are used to represent the behavioral models.

In the same context of system modeling, Model Driven Architectures (MDA)s [Kle06, KBJV06] help to describe the system through the different activities from the design to the implementation. MDA enables the developers to represent the system architecture as it provides a separation between the generic and the domain-specific concepts. Thus, the system models are conceptually divided into [START_REF] Sommerville | Software Engineering[END_REF]: Computation Independent Models (CIM), Platform Independent Models (PIM), and Platform Specific Models (PSM).

Usually, CIMs and PIMs are created with the intervention of the system designer while it is possible (according to [START_REF] Sommerville | Software Engineering[END_REF]) to generate the PSMs from the PIMs according to the platform specific patterns and rules. Once the developer obtains the PSMs it is possible then to automatically generate codes that are executable to run the system in software environments. From the aforementioned discussion, it is clear that MDA enables to specify a system independently of the platform that supports it and to transform the system specification into one for a particular platform [START_REF] Miller | MDA Guide Version 1.0.1[END_REF].

ADLs [Hus13] enable the system modeling in the form of components with connections and configuring these components and connections. ADLs facilitate the communication of the system design between the different stakeholders in an organized architectural form. This supports long-term development of the system and makes the design elements more modular to be integrated in other systems.

Architecture and Analysis Design Language (AADL)

In this section, we provide an overview to an architecture description language that is used in the applications of automobile, avionics and real-time embedded systems. The idea is to show the

MDE and EA

MODELING LANGUAGES AND TOOLS

The Architecture and Analysis Design Language (AADL) [DBF + 06] is "an architecture description language standardized by the Society of Automotive Engineers (SAE) in November 2004, Aerospace Avionics Systems Division. The scope of this language is quite wide. It targets critical developments and offers appropriate modeling techniques to cover system and software engineering activities". It allows to describe both the hardware and software components of a system.

Software and hardware components in AADL can be applied in the contexts of critical developments [START_REF] Dissaux | Aadl model transformations[END_REF] and real-time systems [BBC + 09]. Regarding the software components they include: processes, threads, subprograms, data, etc. Hardware components include: processors, buses, memories, devices. All components can communicate with each other through ports, shared data, and synchronous calls. As a modeling language, AADL contains constraints in its syntax and semantics such as: a process must contain at least one thread or thread group, where a thread represents a sequential flow of execution.

AADL supports the system modeling on a highly abstract level where AADL specifications can be generated directly from the design. This helps to link the system models to the existing design and verification tools thanks to the code generators that are included. In the mission critical software development context, HOOD and Stood [START_REF] Dissaux | Using the aadl for mission critical software development[END_REF] software environments can support this method with managing the design complexity and achieving early verifications. The early verification is supported by different tools such as model checkers (Fiacre and Tina) that are based on Petri Nets [START_REF] Lyle | Petri net theory and the modeling of systems[END_REF] and simulators (Cheddar) [BBZ + 10, DS08]. All of the design and verification processes are supported by graphical interfaces that help to manage the complexity of their different activities. Model transformations help to link between the different tools.

This software development method improves the requirements that are presented in the previous chapter (Fig. 2.4). Both the graphical tools and the modeling support help in the reduction of the complexity and the increase of efficiency (R1) thanks to the drag and drop feature and the code generators that are co-existent with them. The model transformations (e.g., code generators to generate the codes of AADL for Stood and Cheddar) help to automate the development process (R2). Far from telecommunication services, this development method helps to develop various systems through the reusable design graphical interfaces (R3). Regarding the (R9) requirement, this development method enables also the change of the software and hardware specifications through the capability of modifying or adding new corresponding packages of AADL. Additionally, AADL supports the interoperability between the different services (supports R6) thanks to the joints and the relationships specified for the sequence diagrams [DBF + 06] (e.g., UML 2 specifications are supported by Stood tool). The graphical design tools for AADL such as the one included in Stood [START_REF] Dissaux | Stood and cheddar: Aadl as a pivot language for analysing performances of real time architectures[END_REF] or Topcased [START_REF] Pontisso | Topcased combining formal methods with model-driven engineering[END_REF] provide highly abstract level of specifications, easy to use, and a reusable way to specify the system (support for R4). The point that is missed in this development method is that there is no clear support to represent the system for the different viewpoints (no support for R8). This could be an important point when different experts need to share their knowledge in the same design model.

Service Oriented Petri Net modeling language (SOPN)

This approach is linked to the related work of pervasive service creation environments [AYG08, AYG10] which we have presented previously in (section. 2.5.5.1). Additionally, we have included this related work in our comparison in the previous chapter. In this subsection, we just present their method that relies on MDE to face the complexity and link design models to the verification tools.

In the context of Pervasive Service Creation process [START_REF] Achilleos | Pervasive service creation using a model driven petri net based approach[END_REF], a set of modeling languages are proposed to enable performing verifications on the behavior of the service at an early stage before the implementation phase.

These modeling languages rely on Model Driven Architecture (MDA) [MM03] from OMG2 . MDA helps in separating the application reasoning from the specifications of the underlying platform(s). This enables the generation of tools from meta-models that represent domain knowledge. In this approach, a generic meta-model is used. This meta-model represents the domain knowledge where a set of mappings (Fig. 3.1) are done to extract meta-models for the different activities between the design and implementation phases. The domain meta-model contains the semantics of the language. It is defined using the abstract syntax provided by the EMF meta-meta language. Both of the graphical and tooling meta-models represent the concrete syntax of the modeling language. Then both metamodels are mapped into one that contains all the necessary artifacts that are needed to generate distinct modeling frameworks of each language: User Interface Modeling Framework (UIMF), SOPN Modeling Framework (SOPNMF), and the Information Modeling Framework (IMF). The SOPN relies on Petri Nets to verify the service design models (e.g., checking against deadlocks).

Enterprise Modeling

Enterprise modeling involves the different stakeholders in the process of the system modeling. An Enterprise is one or more organizations which have a definite mission, goals and objectives to offer an output such as a product or a service [START_REF]2000 Industrial automation systems -Requirements for enterprise-reference architectures and methodologies[END_REF]. This includes the extended enterprise (integration of suppliers and customers) and virtual enterprise MDE and EA

MODELING LANGUAGES AND TOOLS

(oriented to interoperability of dynamic networked enterprises). Enterprises can be made up of many interconnected elements, both technical and social. The development of large and complex systems or organizations involve many people, stakeholders, each with their own viewpoint.

Modeling helps to communicate the complex systems between the different stakeholders that are involved in the development process. It helps to organize the business process through the Business Process Modeling (BPM). A project manager or an end-user would prefer to deal with goals and functional requirements rather than complications of the details of the infrastructure core-network or even issues that are connected to the question: how to perform the service functions.

BPM helps at this point and raises the abstraction level of the modeling. It facilitates the reasoning and description of the system behavior and composition. There are many languages that can help for this type of highly abstract modeling (e.g., UML [START_REF] Henderson-Sellers | OPEN modeling with UML[END_REF], SysML [START_REF] Huang | System and simulation modeling using sysml[END_REF], ArchiMate [The13]). These languages provide support for modeling business processes and activities which can be done by non-experts (e.g., project managers [START_REF] De Lucia | Deriving workflow enactment rules from uml activity diagrams: a case study[END_REF]) and far from the details of the system components and functions. BPM is suitable to describe the behavior of the systems in a highly abstract manner. This makes it proper to implement the workflow in relation to the different actors, roles and tools that are involved in the design phase. This is an important issue to manage the complexity of the design process by involving designers of different backgrounds without the need to know the details of the underlying platforms or system compositions. The BPM will be presented in a later section.

Requirement and Goal Modeling

Business modeling suits the domain-knowledge on the level of the business management. In the business level that is far from the technical details, it is so important to link between the requirements and the design decisions made by the designer. In the Requirements Engineering (RE) domain [START_REF] Siu | Modelling Strategic Relationships for Process Reengineering[END_REF], there are different methods and frameworks (Fig. 3.2) that can support requirement description and analysis such as KAOS, iStar (i*), Tropos, Gaia, Prometheus.

A goal is "an objective the system under consideration should achieve. Goal formulations thus refer to intended properties to be ensured; they are operative statements as opposed to indicative ones, and bounded by the subject matter" [vL01a]. They provide an explanation of the reason behind building the system [START_REF] Ross | Structured analysis for requirements definition[END_REF]. Goals cover different concerns: functional that are associated with the services, and non-functional concerns associated with quality of service (e.g., performance, accuracy, security, etc.) [vL01a]. Goal modeling aims at addressing the early-phase of requirements engineering process, where the stakeholders have defined their goals and the alternative system proposals that satisfy them are examined. In order to model goals it is important to consider their different characteristics like their types [START_REF] Sommerville | Software Engineering[END_REF][START_REF] Van Lamsweerde | Goal-oriented requirements engineering: a guided tour[END_REF], attributes (e.g., priority, utility, and feasibility) [vL01a] and links [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF].

KAOS is a specification language that supports the Goal-Oriented Requirements Engineering method proposed by Lamsweerde in [vL01b, vL01a]. It helps to capture the enterprise goals and to evaluate them through the KAOS framework. These goals can be associated with functional concerns like the service functionality or can be associated

Goal model elaboration

Elaboration of alternative models

Evaluation and selection of alternatives

Object model elaboration

Figure 3.3 : The KAOS Goal-Oriented Requirements Engineering method [vL01b] with non-functional ones like the quality of service issues (e.g., security, performance, accuracy, etc.). KAOS framework provides facilities that support the different concerns of goal-oriented requirements engineering. It supports eliciting, elaborating, structuring, specifying, documenting, analyzing, negotiating, and modifying the requirements. The KAOS method helps to elaborate different types of models that can describe the different concerns of goals and that enable the analysis on them (Fig. 3.3). All of the activities that are included in the mentioned method are supported by the KAOS modeling language through elements that respect the different characteristics and concerns of goals and requirements. This language is defined through a Metamodel [vL01b]. iStar (i*) [ACC + 05, Yu96] is another modeling framework that aims at modeling of the goals and requirements. It focuses on the softgoals [CNYM99] more than hard ones. iStar's

MDE and EA

MODELING LANGUAGES AND TOOLS

domain is the requirement analysis before the design phase. The iStar's language covers two types of agent-oriented models: Strategic Dependency (SD) and Strategic Rationale (SR). Agents are specializations from the concept of actors in the UML including their roles. This domain is not precisely in our research scope for this thesis, thus we will not go into details .

The iStar framework supported by the language considers the stakeholders as they set the goals/softgoals of the system. The iStar language provides different types of relations and operators that helps to model the softgoals and to link the different actors to the system through dependencies. It contains elements and relations to reason the actor decisions and configurations [START_REF] Siu | Modelling Strategic Relationships for Process Reengineering[END_REF].

Tropos framework [START_REF] Giunchiglia | The tropos software development methodology: Processes, models and diagrams[END_REF] supports developers during wider range of activities trying to cover most of the phases of the development life-cycle. Like iStar, Tropos is supported by a formal modeling language that facilitates the representation of the system from requirements until the end of the design phase. Both iStar and Tropos have graphical notation while Tropos supports UML including models, meta-models and meta-metamodels [ACC + 05]. Furthermore, Tropos enables the modeling of both types of goals: soft and hard ones [START_REF] Giunchiglia | The tropos software development methodology: Processes, models and diagrams[END_REF]. It provides means to involve the stakeholders in the design and to reason the design. The contribution relationship (see [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] for this type of relationships) between the different goals can be annotated by qualitative metrics such as (++, --, -, etc). After returning to the comparisons done in [ACC + 05] and in relation to the types of logical operators and annotation options, Tropos is more advanced than iStar.

In addition to the concepts that ArchiMate (see subsection 3.2.8.1) contains in order to support the design phase, a newer aspect that is called the motivation has been introduced recently [The13] to the aspects of ArchiMate language. This Motivation extension in [The13] corresponds to the "why" column of the Zachman framework [START_REF] Noran | An analysis of the zachman framework for enterprise architecture from the {GERAM} perspective[END_REF]. This column was not considered in the previous versions of ArchiMate since publishing the first standard [The09a]. The goal from this motivation aspect (Fig. 3.4) is to support the requirements management and to support the Phase A of TOGAF-ADM. This phase focuses on establishing the high-level business goals, architecture principles, and initial business requirements. From a system development scope, the importance of this new aspect comes from the fact that requirement analysis is an entry point to the design phase. From Enterprise Architecture vision, the goals from various stakeholders form the basis for any change to an organization. Thus, goals are needed to be translated into requirements on the organization's architecture.

This motivation extension considers the different concepts that affect the enterprise architecture from the top level. It contains concepts of stakeholders, drivers, and assessments. The Stakeholder concept in this extension (Fig. 3.5) represents the (groups of) persons or organizations that influence, guide, or constrain the enterprise. The Drivers represent internal or external factors which influence the plans and aims of an enterprise. These factors may affect negatively or positively the plans of the enterprise with respect of the goals of the different stakeholders.

In the same version (2.1) of ArchiMate there are other types of extensions like implementation and migration-oriented concepts. We do not consider these concepts in our research as they are not linked to our scope . Requirements and goals are needed in the verification analysis [Som11, CdPL09, CNYM99] and that includes both types of require- ments: functional and non-functional. The motivation concepts provide facilities to model the reasons for design and enterprise architecture changes. Thus, the motivation concepts constrain the design.

Figure 3.5 presents the different notations in ArchiMate (V2.1) that can be used to motivate and constrain the design. They are: stakeholder, driver, assessment, goal, principle, requirement and constraint. These concepts are inter-connected through different types of relationships: association, realization, influences and specializes. According to the definitions of requirements, the functional requirements are represented in the behavioral aspect of ArchiMate while the non-functional ones can be represented in the motivation aspects.

ArchiMate language is supported by different types of syntaxes that enable to model the system using graphical interfaces and tools.

Business Process Modeling

Business Process Modeling (BPM) is the activity of representing processes of an enterprise, so that the current process may be analyzed or improved. Functional requirements are represented by the behavioral descriptions that are supported by the business process modeling. Control flows can describe how the activities that compose services are orchestrated. A process can be represented in an executable language such as (BPML [TSPB02, ACD + 03], XPDL [START_REF] Shapiro | A technical comparison of xpdl, bpml and bpel4ws[END_REF], BPEL) or in a high-level modeling language such as BPMN, EPC [START_REF] Kindler | On the semantics of epcs: A framework for resolving the vicious circle[END_REF], or UML activity diagrams. The OMG Business Process Modeling and Notation (BPMN) language [(OM11] provides a high level of process description. The BPMN provides notation that is understandable by all business users [Whi04] (e.g., business analysts, technical developers, etc). BPMN includes events, messages, message flows, actors, tasks, etc. These elements support the description of services from different domains and especially the systems that have a distributed nature. In distributed systems, most of the transactions of every computer (part of the system) are related to the messages that are exchanged with the other computers. Thus, BPMN can facilitate modeling of the behavioral concepts in the design of complex and distributed systems in the business modeling domain.

MDE and EA

MODELING LANGUAGES AND TOOLS

BPML and BPEL are XML-based process definition languages. They can address all aspects of the enterprise business processes [START_REF] Shapiro | A technical comparison of xpdl, bpml and bpel4ws[END_REF] where activities form the basic element of the business process in these languages. BPML [START_REF] Thiagarajan | Bpml : a process modeling language for dynamic business models[END_REF] contains all elements to address the behavioral description of the system on the level of business process modeling. The BPML framework contains activity, component, control, and data concepts. It supports different activities through the development cycle thanks to the concepts of data definition, manipulation and workflow. These concepts provide capability to handle cross-platform and cross-language application integration as well.

Web Services Orchestration plays an important point when talking about the design of web services. A web service is generally composed of different processes that run on different servers which may be widely separated and communicating through the Internet. It is important for the designers of web services to implement the interactions between these different processes, thus design languages better to support this point. In this context and like the Web Service Choreography Interfaces (WSCI), BPML can specify the behavior of web service interfaces and its workflow. BPEL relies on business protocols to orchestrate between the different processes that compose the web service. In the case of XPDL, the workflow is described through the Wf-XML that is a language based on XML. Wf-XML enables synchronous and asynchronous interactions between the different processes. Unlike the XPDL, neither BPML nor BPEL contain the application concept [START_REF] Shapiro | A technical comparison of xpdl, bpml and bpel4ws[END_REF] as they stand in a higher abstract level. XPDL contains concepts that are proper to describe the distribution of the work more than both BPEL and BPML that concentrate on the transactions between the activities of the workflow. This makes BPML and BPEL more proper to specify web services and their orchestration.

Both of the BPML and BPEL languages rely on WSDL3 messages to exchange information between the different services. In the BPEL, processes are instantiated by the reception of a WSDL message that is exchanged between the system elements.

Regarding the verification of the service design, BPML does not support concepts that are needed to verify the execution of the business process against business metrics [START_REF] Thiagarajan | Bpml : a process modeling language for dynamic business models[END_REF]. The web services contain large number of applications that are distributed between different system components which creates complexity in their design. This complexity makes it difficult to understand and analyze their design models. In order to test the protocols that are used to organize the interactions between the different processes, different methods and tools were used. Colored Petri Nets (CPN) [ElM09, Pet81, DP04] can be used to analyze such type of behavioral descriptions in the web services. The Workflow Management Coalition (WfMC) representations of system processes is helpful and can replace the usage of CPNs especially when they are accompanied with transaction conditions and thus support different types of analysis [START_REF] Shapiro | A technical comparison of xpdl, bpml and bpel4ws[END_REF] using formal methods.

Regarding the activity concept definition, the BPML is capable to describe the activities using block structures with the ability of using declarations and recursive blocks to model complex activities by what is called: nested processes. XPDL is more abstract and permits the description of activities on the top level. BPEL does not support the description of nested processes too.

The business process modeling provides high level of abstraction to model the system behaviors, and is widely used to design web services that are complex and contains nested processes. This point supports the requirements (R1 and R5). Additionally, the mentioned BPM languages support service orchestration and interoperability (support requirement R9). Most of the mentioned languages mainly focus on the design more than analyzing it. The methods and tools that support the verification activity rely on formal methods and neglect the hardware representations of the system components which is a normal result of raising the abstraction level in the design models. There is a need to use other modeling languages that provide the capability to cover the requirements (R12, R11, R10, R8, and R7). ArchiMate language (see subsection 3.2.8.1) provides concepts for the business process modeling [Hus13] thanks to its business layer (Fig. 3.6).

MODELING LANGUAGES AND TOOLS

It contains Business Actors, Interfaces, Roles, Events, Functions and Processes, Services, etc. These concepts help to model the system in the business modeling level. Thus, they help to describe the workflow and the general behavior of the system. Some elements like Business Functions in the business layer can be interconnected with the elements of the application layer. This interconnection means that the functions of the business layer use the system functions that are represented in the application layer.

SysML

According to its simplicity and although UML is considered as a Process Description Language, but it does not contain operational semantics thus it is not executable [START_REF] De Lucia | Deriving workflow enactment rules from uml activity diagrams: a case study[END_REF]. SysML (System Modeling Language) is a standard that is defined by the Object Management Group (OMG) [Sys08]. It is a general purpose graphical modeling language for specifying, analyzing, designing and verifying complex systems. SysML is a modeling language that relies on UML but adds more semantics that are important to make the design model executable. There are many tools that are used to model systems using UML/SysML such as: Topcased, IBM Rational Software Architect, and ARTiSAN Studio support the XMI format from OMG.

With SysML one can model different types of systems. In the context of complex systems, a large gap exists between the generic SysML workflows and different underlying technologies such as Cloud Computing (e.g., AmazonEC2), CyberInfranstructure domain, etc. These workflows are required to be designed by non-expert stakeholders to manage and control the system processes in order to achieve the system's goal. A highly abstract workflow model(s) can be constructed using different tools such as Topcased [BBC + 09, PMG10, PC06].

Many methods and tools were developed to adapt the high abstract SysML workflows to the underlying domain-specific platforms. The workflow model is adapted to be used in a domain-specific workflow engine such as the SysFlow Workflow Engine (SWE) in [START_REF] Patel | Sysml-based domain-specific executable workflows[END_REF]. Domain-specific workflows can be generated through parsers (Fig. 3.7). The generated workflows are related to different domains such as Cloud Computing (e.g., Amazon EC2, Eucalyptus), CyberInfrastructure (e.g., Globus Toolkit), or general purpose computing (e.g., Databases).

Another method (Fig. 3.8) relies on simulation to verify the system highly abstract SysML models using automatic generation techniques [START_REF] Huang | System and simulation modeling using sysml[END_REF]. An analysis meta-model Figure 3.8 : System Integration: Architecture and Logic [START_REF] Huang | System and simulation modeling using sysml[END_REF] is mapped from the domain model that is represented by SysML and contains semantics such as generalization, composition, association, etc relationships. This new meta-model is combined with the domain model and exported as XMI which is an OMG standard. Xpath is used to generate a database that represents information of simulation package. Finally, a code generator creates the simulation program relying on the Xpath-generated database and the analysis meta-model.

Both of the aforementioned works [PMG10, HRM07] rely on a way of mapping between the different levels of abstraction where the original language is SysML that is used to describe the complex systems. They differ from each other in the way of which they verify or execute the design models.

The method in [START_REF] Patel | Sysml-based domain-specific executable workflows[END_REF] states a condition which is to add an activity diagram with the name "main" accompanied with the SysFlow Workflow Engine (SWE). This diagram guides the workflow engine. This SWE which executes the design model provides inbuilt functions that are coded using Java. A developer may customize new functions that rely on Java language. In the case of the related work in [START_REF] Huang | System and simulation modeling using sysml[END_REF], simulation models are generated from the design ones in order to verify the system design. In this approach, the analysis models (e.g., queuing models) are linked to one domain meta-model. This enables multiple analysis models to be applied onn one design model. This process is organized by workflows. If the analysis model relies on queuing theory then the parser will generate models that run in specific tools such as MathCAD. If the analysis model is of a simulation type, then the parser will generate models that can run with specific simulatio softwares. This logic is shown in (Fig. 3.8-the right hand side).

Application Modeling

Complex systems are composed of different applications that are interacting with each other [BDC + 89]. These applications are deployed on computers in order to run the software. When the system's software is distributed between computers and the end user can observe the whole system as installed on one computer, then it is a distributed system. The importance of application modeling comes from the need to separate between the concepts of software management and functionality and the hardware architecture that runs these software concepts. This helps to reduce the complexity of the system and makes it possible to use it regardless to the technical details that lay behind (e.g., network topology, computer architecture, etc). Moreover, application modeling helps the system engineer to focus and provide intensive efforts in the software domain and to describe the system functionality in terms of interfaces (API)s in order to abstract the system details.

This way of modeling supports the Service-Oriented Architecture (SOA) [MBD07] that relies on underlying systems which provide different applications and services to the upper architectural level. The orchestration between the functions offered by the different applications is then achieved by a higher level modeling such as BPM. Different specification languages enable the description of application concepts such as UML [START_REF] Henderson-Sellers | OPEN modeling with UML[END_REF], ArchiMate [The09a] as modeling languages, and IDL [Sie98] (used by CORBA) as a language to specify interfaces that objects present to the other world.

UML provides a universal modeling language that assists the developers and designers in modeling all types of systems thanks to the verity of its diagrams [START_REF] Sommerville | Software Engineering[END_REF] and the generality of its concepts including relationship definitions. Thus, using UML one can specify the application part of the system through the component element which can be used as an application component that is used by the system.

Middle-wares help to hide the complexity and details of the other systems and provide interfaces to the other system. For instance, IDL [Sie98] (for CORBA) provides a highly abstract language to specify interfaces of objects. It defines the structure of the applications from the system functionality viewpoint. Moreover, IDL supports the definition of structural elements that are used/accessed during the system processes. The CORBA mechanism generates the source code [Sie98] of the application program including abstractions of methods.

ArchiMate (see subsection 3.2.8.1) provides a layer that is dedicated to application modeling concepts. The concepts of the application layer (Fig. 3.9) contains different elements that help to model behavioral and structural elements including passive structural elements that are used/accessed by the other application elements. It contains Application Interfaces, Components, Functions, Services, etc, in addition to the passive structural element (Data Object) that can be used/accessed by the behavioral elements. In this way, the designer can model the system capabilities and interfaces to represent the system to the business layer which can be seen as to describe the service architecture.

Platform Specific Modeling

After specifying the system from different viewpoints and using highly abstracted and platform independent description methods and languages such as IDL in CORBA or UML models, it is important to specify and describe the platform(s) that will run the system functions. BPM helps to reason and describe the service behaviors while the application modeling describes the system capabilities including its functions and components. The concept that is missing here a specific model that contains the elements of the underlying platform which is capable to perform the functions of the applications that compose the service.

The mentioned underlying platform relies on a specific domain concepts or may contain concepts from different domains. In telecommunications, the IP Multimedia Subsystem (IMS) (see section 6.2.1) provides a platform that integrates different evolving technologies (e.g., 2G, 3G, LTE, PSTN, etc) [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. IMS enables the convergence between the fixed, mobile, and cable IP networks (Fig. 3.10). Moreover, IMS provides an IP mediation between networks from the different technologies thanks to the SIP proxy servers. In the context of SCEs, other platforms are used to run the abstracted design(s) such as Parlay/SIP glue (Fig. 3.11) where the CORBA can be used to generate the needed codes to be run in the mentioned platform. The highly abstract functions are shown on the top of the figure. The interaction messages that are coming into or from the underlying platform are shown on the bottom side of the figure.The Parlay/SIP glue helps to execute the methods that are represented by CORBA interfaces and to represent the exchanges of SIP messages between the different elements of the system. Parlay/SIP glue as presented in [START_REF] Glitho | A high level service creation environment for parlay in a sip environment[END_REF] enables the exchange of information between the higher abstract implementations and the underlying platforms that contain a network of servers and computers where the service execution is held. The previous architecture to execute the service and control it through the different levels of representation is referred as Service Delivery Platforms (SDP)s [START_REF] Magedanz | Evolution of soa concepts in telecommunications[END_REF]. The main objective of the SDPs is to manage the complexity according to the different backgrounds of the system developers. Thus, SDPs (Fig. 3.10) hide the complexity of systems when they do not belong to the domain of the stakeholder considering the SOA. In the SOA, there are different platforms that were developed in order to support managing complexity of the system. Like Parlay/SIP there is JAIN [START_REF] Bakker | Next generation service creation using xml scripting languages[END_REF] [GKDM03], ParlayX that provides API useful for web services.

ArchiMate [The09a] supports the platform-specific modeling through its technology layer (Fig. 3.12). This layer provides the representation of the underlying technology that is needed to execute the functions of the service through running the functions of its application components. The application functions are run in the technology layer by executing set of technology functions that are associated with each of them.

There are different types of relationships to represent the interactions between the application and the technology layers such as: deployed on, and association relationships. Thus, an application in the application layer is deployed on a node in the technology layer.

Enterprise Architecture Description Languages and ArchiMate

This section is related to a part of the background that our approach relies on. Enterprise Architecture Modeling Languages bring the concepts of Enterprise Architecture and the Architecture Description Languages accompanied with modeling concepts together. All of the previous modeling languages that are mentioned in the Enterprise Modeling context support the business process modeling. But few of them can support the description of the system from different viewpoints and aspects. In order to document, understand and master the complexity of an enterprise Information System, architectures are an important means [START_REF] Troche | Documenting Complex Systems in the Enterprise[END_REF]. The IEEE standard 1471-2000 defines the term architecture in this context as "the fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principle guiding its design and evolution" [START_REF]for Architectural Description of Software Intensive Systems[END_REF].

Specifying the multiple viewpoints of the different stakeholders and separating their different concerns can be a manner to master the complexity and communicate the system descriptions. A concern is an "interest in a system relevant to one or more stakeholders" [START_REF]Systems and software engineering -Architecture description[END_REF]. Enterprise Architecture is useful to describe the architecture of an enterprise. Many definitions were put to the Enterprise Architecture, e.g., [START_REF] Chen | Architectures for enterprise integration and interoperability: Past, present and future[END_REF] and [JLtD + 06]. Related to the variety and difference of definitions in the Enterprise Architecture discipline, [START_REF] Schoenherr | Towards a common terminology in the discipline of enterprise architecture[END_REF] considers that there is a lack of theoretical foundation, definitions or a common understanding within the authors who publish in this context. [JLtD + 06] defines the EA as "a coherent whole of principles, methods and models that are used in the design and realization of the enterprise's organizational structure, business process, information systems, and infrastructure".

The Enterprise Modeling (EM) describes the Enterprise Architecture from various viewpoints in detail to allow the system's specification and implementation [START_REF] Chen | Architectures for enterprise integration and interoperability: Past, present and future[END_REF]. Modeling languages are generally graphical in order to visualize, specify, construct and document the artifacts of a software-intensive system [START_REF] Booch | Unified Modeling Language User Guide, The Addison-Wesley Object Technology Series[END_REF]. An Enterprise Architecture Modeling Language (EAML) is a language with a high level of abstraction, which aims at representing the enterprise architectural structure, characteristics and properties at an early stage of the design phase [START_REF] Chen | Architectures for enterprise integration and interoperability: Past, present and future[END_REF]. A major challenge is to use the notions of general purpose modeling languages like UML to model Enterprise Architectures, e.g., [START_REF] Fatolahi | An investigation into applying UML to the Zachman framework[END_REF] .

According to [START_REF] Pandey | Architectural description languages (adls) vs uml: A review[END_REF], the most powerful advantages in UML is that it is a visual language and that it supports multiple views and numerous supporting tools are available. On the other side, most of the ADLs are not visual and lack the multiple view support. ADLs are usually more domain-specific while UML stays a general purpose modeling language. The most notable example of an Enterprise Architecture Model Language that merges the advantages of UML and the fulfill the requirements of ADLs [Hus13] is ArchiMate [The09a].

Among the Enterprise Architecture Frameworks, the most promising to date for telecommunications [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] is The Open Group Architecture Framework (TOGAF) [The09b]. TOGAF provides methods of assisting in the acceptance, production, use and maintenance of an Enterprise Architecture. At the core of TOGAF is the Architecture Development Methods (ADM). ADM provides an iterative process of continuous architecture development. It provides one of the most complete [START_REF] Sessions | Comparison of the Top Four Enterprise Architecture Methodologies[END_REF] guiding step-by-step process for creating an Enterprise Architecture. ADM consists of eight phases: the Pre-

MODELING LANGUAGES AND TOOLS

liminary Phase, Phase A: Architecture Vision, Phase B: Business Architecture, Phase C: Information System Architectures, Phase D: Technology Architecture, Phase E: Opportunities and Solutions, Phase F: Migration Planning, Phase G: Implementation Governance, Phase H: Architecture Change Management, Requirements Management.

One EAML is ArchiMate. It shares [START_REF] Berrisford | Using ArchiMate with TOGAF-Part 1: Answers to nine general questions about methods[END_REF] important concepts with TOGAF, and thus "the two are usable together". It models three phases of TOGAF Architecture Development Method into three layers: Business, Application and Technology (Fig. 3.4). It regulates the interoperability between them by defining possible dependencies. Therefore, ArchiMate helps to decompose the complexity through its different layers each according to the domain specificity. Additionally, ArchiMate provides separation between the design aspects (structural, behavioral, passive structural) to better understand and communicate the system architecture.

ArchiMate is a "visual design language with adequate concepts for specifying interrelated architectures, and specific viewpoints for selected stakeholders" [The09a]. Archi-Mate provides concepts (supported by graphical representation) that help to create a consistent and integrated model which reflects the TOGAF views. ArchiMate is designed to be as small as possible but usable for most enterprise architecture modeling tasks [The09a]. ArchiMate contains active structure, behavioral and passive structure elements. Passive structure elements are the objects on which the behaviors of the system are performed, while the active structure elements are responsible of performing the behaviors. ArchiMate supports two ways of understanding the system through: external and internal views on the system (Fig. 3.13). For external users, the behavioral aspect represents the essential functionality of the system to the external environment and the system's value. Service elements are accessible through interfaces (e.g., business interface element [The09a]) that constitute the external view on the active structural aspect (Fig. 3.13). The connection between the non-functional aspects such as quality of service, costs, etc., and the functional ones (according to an external view) is represented in the concept of contract or Service Level Agreement (SLA).

The most interesting point in the multi-layered architecture of ArchiMate is that it separates between the different domains and viewpoints of stakeholders as an internal view and shares them together when looking at the whole system design externally (Fig. 3.4). The Business Layer offers products and services to the external customers as realized by business processes that are performed by business actors. The Application Layer represents the software or applications that supports the business layer as application services. The Technology Layer provides the infrastructure services that are necessary to run/perform the applications of the application layer. It can include different types of services (e.g., processing, storage, and communication services) that are realized by computer and communication hardware and system software. This feature of the technology layer helped us in our contribution that is related to the IP Multimedia Subsystem (IMS). Including hardware and software elements in the technology layer of ArchiMate [The09a] makes it possible to represent different types of distributed systems that provide specific functionality to the different logical components (in the application layer) of the system.

Service

MODEL DRIVEN ENGINEERING

In Software Engineering, software reuse [START_REF] Sommerville | Software Engineering[END_REF] concept returns to the past 40 years. The main motivation behind the concept of software reuse is that systems of the same application domain can be similar and may have common components to reuse. This reuse can be applied to the whole software or some components that compose it reaching to the reuse of set of functions that are included in the software. For quicker software development, a developer is better to reuse off-the-shelf systems that can offer components, functions in libraries, interfaces, etc. One of the methods and approaches (Fig. 3.14) that supports the reusability of the software elements and architecture is Model Driven Engineering (MDE).

Model Driven Engineering is "a software development method which focuses on creating and exploiting domain models. It allows the exploitation of models to simulate, estimate, understand, communicate, and produce code" [Chi12, GMB09]. The MDE is composed of two main domains: (1) Modeling and Domain Specific Modeling Languages [GP96, DKV00]; (2) Model Transformations [START_REF] Kurtev | Model-based DSL frameworks[END_REF]. The main advantage of relying on MDE is to manage the complexity through modeling that facilitates the communication and understanding the concepts of the design. Additionally, model transformation helps to map the design concepts between different technical spaces. A technical space is "a model management framework containing concepts, tools, mechanisms, techniques, languages and formalisms associated to a particular technology. A technical space is determined by the meta-metamodel that is used" [START_REF] Mens | A taxonomy of model transformation[END_REF]. The concept of technical spaces can be applied to different types of activities such as design modeling and design verification against the functional and non-functional requirements.

These activities rely on tools that help to perform them. In MDE, the only entity that is exchanged between the different tools of the different technical spaces is the model. The exchange of models is performed through model transformations. Metamodels (see 3. Software Product Lines (SPL)s support the software reuse (Fig. 3.14). An SPL is "an application type that is generalized around a common architecture so that it can be adapted for different customers" [START_REF] Sommerville | Software Engineering[END_REF]. This common architecture enables to communicate the application components more easily so to reuse it more efficiently. A mixture between Model Driven Development (MDD) and SPL methods was proposed in [START_REF] Deng | Addressing domain evolution challenges in software product lines[END_REF] for distributed real-time and embedded systems. The main objective from this mixture is to reduce the effort of the evolution of SPL architectures. It exploits layered and compositional architecture to modularize the different design concerns.

According to [START_REF] Heckel | Towards model-driven testing[END_REF] the Model Driven Architecture (MDA) from the Object Management Group (OMG) is "a strategy towards interoperability across heterogeneous middleware platforms through the reuse of platform independent designs based on the distinction of, and transformation between, platform-independent and platform-specific models" . The main objective behind proposing the MDA framework [KWB03, JJ11] is to facilitate the software development through abstracting the models of a system and separating between the concepts according to the domain of knowledge. MDA contributes to portability problem where a software needs to be ported to the new technology or to a newer version of an existing technology. This feature returns to the description of the system between Platform Independent and Platform Specific models . Moreover, it helps to improve the interoperability between the software and existing systems, or between the different spanning technologies of the system under development. MDA defines the exchanged artifacts between the different development activities as models. These models are [KWB03]:

• Platform Independent Models (PIM)s;

• Platform Specific Models (PSM)s and executive codes;

• Computational Independent Models (CIM)s.

The PIMs are models with a high level of abstraction that is independent of any implementation technology [KWB03]. They help to describe the system from a viewpoint that supports business. PSMs are transformed (Fig. 3.15) from the PIMs (one PIM to one or many PSMs). The objective from a PSM is to describe the system in terms of the concepts of the implementation technology. Every PSM is specific and related directly to a technology platform. Thus, in order to generate different implementations for different platforms a transformation is needed for each one. The source model is a PIM and the target is multiple PIMs. The final stage is to generate code from PSM that can be run relying on the abilities of the technology platform (e.g., transforming a business process model to a PSM that relies on Java concepts, then generating Java code that can run by JVM). A third type of models in the MDA is called the computational Independent Model (CIM). A CIM is used during the requirements and analysis phase of the development lifecycle. Many languages can be used to model requirements such as iStar (i*), KAOS, ArchiMate, etc. The resulted models are the CIMs as they can be analyzed in later phases to verify the system design against the requirements and to enable reasoning behind the design choices when specifying the system.

The ability to generate PSMs and then codes from PIMs provides a method to hide the complexity of the underlying platforms and writing large codes from non-expert designers. Thus, it helps to decompose the design of the system to different viewpoints according to the domain of experience.

Domain Specific Modeling Languages

A Domain Specific Language (DSL) is "a language that offers, through appropriate notations and abstractions, expressive power focused on, and usually restricted to, a particular problem domain" [START_REF] Deursen | Domain-specific languages: an annotated bibliography[END_REF]. DSLs promise productivity increase [GK03] based on the conciseness of produced models. They are also easier to use, directly by domain experts [START_REF] Deursen | Domain-specific languages: an annotated bibliography[END_REF], they enable a high degree of reuse [START_REF] Biggerstaff | A perspective of generative reuse[END_REF] as they help to reuse the specific of technologies in different systems and to serve different objectives.

The main disadvantage of DSLs is the additional cost of designing, implementing and maintaining it. DSL development is hard, requiring both domain and language development expertise, which few people have [START_REF] Mernik | When and how to develop domainspecific languages[END_REF]. Therefore, it is important to balance the return, the benefits a DSL generates, with the investment in its development, before deciding to create it. Empirical studies [KOM + 10] show that programmers' success rate is around 15% better for DSL concerning learning, perception and evolution.

A Domain Specific Modeling Language (DSML) is taken in this dissertation to be a graphical language that offers, through appropriate notations and abstractions, expressive power focused on a particular problem domain, to visualize, specify, construct and document the artifacts of a software-intensive system. DSMLs allow experts in general to express, validate, modify solutions and achieve tasks specific to their domain. A DSML requires less cognitive [START_REF] Green | Usability Analysis of Visual Programming Environments: A 'Cognitive Dimensions' Framework[END_REF] effort from experts than a more general purpose language, as it offers a higher closeness of mapping between the problem world and the solution world.

A denotational, frequently used approach for defining graphical Modeling Languages is the Meta-Modeling Approach [START_REF] Clark | The MMF approach to engineering objectoriented design languages[END_REF], [START_REF] Kurtev | Model-based DSL frameworks[END_REF]. It defines a Modeling Language as a set of five components:

• Concrete syntax: a human-centric representation of the syntax domain. The syntax domain defines the symbols used to represent the concepts in the language. A Modeling Language may have different concrete syntaxes. Each one is defined by a "display surface" Meta-model;

• Abstract syntax : a computer-centric representation of the syntax domain. It expresses the notions specific to the domain of the language. In MDE, the domain is modeled through the use of a Meta-model. Therefore, the Meta-model describing the domain represents the abstract syntax of the Modeling Language. Meta-models play the same role for Modeling Languages as grammars do for programming languages [START_REF] Kleppe | A language description is more than a metamodel[END_REF];

• The semantic domain: the meaning of the concepts in the language. Formal semantic description is significant for the design, reasoning and standardization of programming languages, ensuring their final unambiguous execution. The semantic domain is the most difficult to define. It may be defined through the semantic mapping towards the precise semantics of an existing programming language [KBJV06];

• The display mapping: links the abstract syntax to the concrete syntax. It can be defined as a Model Transformation [START_REF] Kurtev | Model-based DSL frameworks[END_REF];

• The semantic mapping: links the abstract syntax to the semantic domain. It can be defined as a Model Transformation [START_REF] Kurtev | Model-based DSL frameworks[END_REF]; the most promising candidate is the Refinement (code generation) Model Transformation type.

Model Driven Approaches

During the last decade, many approaches in different application domains relied on the Model Driven Architecture (MDA) development process. UML is used to model the process of the system. These process models are then combined with security ones in order to generate the executable models with security constructions. A security meta-model is used in [START_REF] Lodderstedt | SecureUML: A UML-based modeling language for model-driven security[END_REF] in order to extend the UML profile and produce a domain-specific modeling language called SecureUML. The survey [START_REF] Jensen | Security in model driven development: A survey[END_REF] mentions SECTET and other contributions as MDS frameworks. SECTET (as an example) relies on the MDA as a methodical concept and the SOA as an architectural paradigm, and web services as technical standard. It is supported by different developments including a tool chain that performs the model-to-model transformations and model-to-code ones.

In the context of pervasive service creation, MDA provides a significant approach through the ability to separate between the design models and raising the level of abstraction. This point is important especially when the target is to introduce the end-user as a part of the design process. Thus, the end-user will not consider the complexity and the details of the underlying telecommunication platforms and software systems and environments. The end-user would like to use easy interfaces through his mobile phone to access and configure the different services. Achilleos et al., [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF] provided an approach of creating such type of services in the same manner, and illustrated their work through a case study of museum tourist guiding service.

Model Driven Testing [START_REF] Heckel | Towards model-driven testing[END_REF] relies on the MDA in order to generate test cases and executive artifacts on different target platforms. Thus, test cases are generated from models according to criteria on the design. Test oracles are generated to determine expected results of a test, and finally an execution (code) is generated from the models of the design. The first two transformations are platform independent while the third is platform specific according to the desired platform of the testing environment (e.g., Bridge and Proxy).

Model Driven Analysis is another approach that relies on the concepts of MDE [START_REF] Douglas | Model-driven engineering[END_REF] to develop methods that facilitate the performance analysis of systems. In [START_REF] Garbriel | Model-driven performance analysis[END_REF], reasoning frameworks [START_REF] Bass | Reasoning frameworks[END_REF] are used in order to perform performance analysis on the design of embedded systems. Their approach uses set of model transformations to exchange the design model (Intermediate Constructive Model [START_REF] Garbriel | Model-driven performance analysis[END_REF]) between different tools in order to perform the evaluation process in an early stage before the implementation phase. Their contribution to MDE is focused in generating analytic models from the design one relying on model transformation techniques (Fig. 3.16). They rely on the Rate Monotonic Analysis (RMA) and Queuing Theories to perform the performance evaluation through both analytic and simulation approaches [START_REF] Issariyakul | Introduction to Network Simulator NS2[END_REF]. These analytic theories help to evaluate both space and time performance non-functional requirements [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF]. The analytic model contains the performance constraints that are to satisfied by the design of the system.

Palladio [START_REF] Becker | Coupled model transformations for QoS enabled component-based software design[END_REF] is another component-based design and evaluation modeling software. Palladio relies on MDE and uses model transformations in order to exchange the design architecture between the different tools in a manner that is so close to the approach in [START_REF] Garbriel | Model-driven performance analysis[END_REF]). It uses simulation only to evaluate the design unlike the framework in [START_REF] Garbriel | Model-driven performance analysis[END_REF]). Another difference between Palladio and the framework in [START_REF] Garbriel | Model-driven performance analysis[END_REF]) is that the Intermediate Constructive Models are generated automatically from the architecture descriptions. In the same manner, Touraille et.al [START_REF] Touraille | A model-driven software environment for modeling, simulation and analysis of complex systems[END_REF] proposed an approach that relies on MDE to model and simulate the design of complex systems. Their work is based on the Discrete EVent Systems Specification (DEVS) formalism. DEVS relies on model transformation to improve the design and verification cycle. This is done by automating the generation of executable artifacts and integrating the analysis tools like SimStudio that provides a complete tool chain for modeling and simulation in a manner that is close to the one which is proposed in [START_REF] Stephen | Make models be assets[END_REF].

Performance prediction is one of the important activities in the design process of the real-time embedded systems. The model driven approach is applied in [FCH + 13] to decompose the design between different levels of abstraction. PIMs and middleware models are used to present the system under study through high-level description of the behavior for each component of the system thanks to DSMLs (see section 3.3.1). These DSMLs include the Platform Independent Component Modeling Language (PICML), the Component Behavior Modeling Language (CBML), and the Workload Modeling Language (WML) to model the component workload. Another model is used to describe how the mentioned software components to be deployed on the distributed hardware test-bed. PSMs de-Figure 3.17 : Examples on Vertical and Horizontal Model Transformations [START_REF] Mens | A taxonomy of model transformation[END_REF] scribe the scenario to apply the desired configurations to the test-bed after generating automatically testing scripts.

Model Transformations taxonomy

A Model Transformation (MT) is: The automatic generation of target model(s) from source model(s), according to a set of transformation rules" [KWB03]. A transformation rule is "a description of how one or more constructs in the source language can be transformed into one or more constructs in the target language" [START_REF] Mens | A taxonomy of model transformation[END_REF]. Model Transformations have been classified according to multiple dimensions. According to the number of source and target models, a MT may be performed on a set of source models to produce set of target models (Fig. 3.17). Model Merging is an example of the multi-model source and one target model. Extracting multiple PSM target models from one PIM forms an example of one source model and multiple target models.

MTs can be classified according to the language of the source and target models. Endogenous transformations are "transformations between models expressed in the same language" [START_REF] Mens | A taxonomy of model transformation[END_REF]. Exogenous transformations are "transformations between models expressed using different languages" [START_REF] Mens | A taxonomy of model transformation[END_REF]. Metamodels express the syntax and the semantics of the modeling language. An example of the exogenous transformations is the code generation (e.g., generating Java source code from design models of system).

Another classification for the MTs is recognized according to abstraction level of the source and target models. A horizontal transformation is "a transformation where the source and target models reside at the same abstraction level" [START_REF] Mens | A taxonomy of model transformation[END_REF]. A vertical transformation is "a transformation where the source and target models reside at different abstraction levels" [START_REF] Mens | A taxonomy of model transformation[END_REF]. An example of horizontal transformation is the Refactoring which is an endogenous, and the language migration that is exogenous too. An example of the vertical transformation is the formal refinement that is endogenous transformation, and the code generation as an exogenous one.

Model Transformations can be model to model (e.g., ATL [ATL15]) or model to text (e.g.

, XPAND [XPA15]).

There are different characteristics of a model transformation [START_REF] Mens | A taxonomy of model transformation[END_REF]: level of automation, complexity, and preservation. more details about this aspect can be added if necessary. They can be important to evaluate our model compiler especially the code generator part!

XPAND Eclipse IDE

XPAND was developed as a part of the openArchitectureWare project then it was adopted as a component in Eclipse IDE. XPAND is "a statically-typed template language featuring polymorphic template invocation, aspect oriented programming, functional extensions, a flexible type system abstraction, model transformation and validation" [XPA15]. It includes an editor which provides features like syntax coloring, error highlighting, navigation, refactoring and code completion. There different Model to Text transformation languages and frameworks such as Acceleo and JET. We have chosen XPAND as to be used to implement the model transformation rules in our work according to its features and accompanied tools (e.g., error checker) and the simplicity of its usage. Additionally, it accepts the XMI files that are generated by the design tool. Using XPAND (Fig. 3.18) needs only one meta-model that defines the syntax and semantics of the source model. It is capable to generate text files as outputs of the code generation process. XPAND uses different types of control flows (e.g., foreach, if, else, etc) that facilitate analyzing and querying the information from the source model relying on the meta-model as a parsing tree.

DISCUSSION

In this chapter, we have presented Model Driven Engineering as an approach of the software reuse. Additionally, we have presented the Enterprise Architecture that enables sharing the viewpoints of the different stakeholders in the same design model. These two points stand behind our approach to improve the time to market and manage the complexity of the design and verification activities. Both of them help to provide support to many requirements of Service Creation Environments that are mentioned in the first chapter (see 2.5.1).

ArchiMate language relies on the Enterprise Architecture concepts and represents the TOGAF framework during the system modeling. This enables sharing concepts from different domains and abstraction levels of the design model. ArchiMate provides support to the designer through business, application and technological modeling.

In the context of Model Driven Engineering, we have presented the different types of model transformations in the context of MDE. Model transformations help to smoothly exchange the information of the design model(s) between the different development ac-tivities. Thus, in our approach, we rely on model transformation techniques to enable the early verification activities at an earlier stage before the implementation/deployment phases. Eclipse IDE is an open software that supports MDE through different tools and plug-ins. Thus, we use Eclipse as an environment in order to develop our approach.

Moreover, we have presented set of well-known modeling languages that are specific to the business, application, and technological fields. Although they are highly abstract, but business process modeling languages are not capable to cover many requirements of the Service Creation activities. This raises the need to introduce more technological elements to the modeling language in order to express the domain knowledge to the designer. The reason is that telecommunication services are complex and rely on complex platforms such as IMS. IMS provides a standard platform that supports the value-added services. It helps to integrate between different systems through its IP network and relying on SIP-proxies. We argue that an approach which mixes between: Model Driven Engineering, Enterprise Architecture, and IMS core network can support and improve the requirements of the Service Creation Environments. This mixture of frameworks and technologies faces the time to market and complexity issues that challenge the service development process.

In the next chapter, we will present the different approaches to verify the design of complex systems at an early stage. We choose approaches that rely on Domain Specific Languages and Model Driven Engineering.

Design Verification Approaches

PREAMBLE

In the software engineering discipline, the complexity is "the degree to which a system or component has a design or implementation that is difficult to understand and verify" [IEE90]. In the context of telecommunication service creation, the complexity of a system comes from the different applications that are interacting with each other [BDC + 89], and the complexity of the system's components themselves. Additionally, building new services relying on the existing complex systems raises the need for telecommunication-based design tools with easy-to-use interfaces. Thus, managing this type of complexity can be achieved through providing graphical interfaces to the user (designer). On the other side, there is always a need to represent the overall design of the system in one artifact in order to show the consistency of the different components and layers of the system . This creates another source of complexity where it is difficult to communicate and verify the design of complex systems when all components are mixed together. Software architectures provides a way to separate and modularize the different concepts of a system in order to improve the clarity when communicating the design model(s).

We have presented the Architecture Description Languages (ADL)s in (chapter. 2) and the Enterprise Architecture (EA) in (chapter. 3). Both contribute to the mentioned complexity issue. According to the definition of complexity in the context of software engineering, complexity makes the design or implementation difficult to verify. In this chapter, we present the verification of the design model(s) relying on Model Driven Engineering (MDE) that is presented in (chapter. 3) and ADLs presented in (chapter. 2) as well. Both MDE and ADLs provide solutions to face the complexity problem, thus in this chapter, we present the different approaches that rely on them.

We consider the following definition of the term Verification: "the process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase" [IEE90]. The verification of the design forms an important activity to check the satisfaction of the functional and nonfunctional requirements. Our objective is to facilitate the design and verification activities through the development of supportive tools and automation techniques. Our research can be considered as a continuation of the contributions that were achieved in a previous dissertation [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF], where the early verification process was proposed as a requirement for the design phase. We focus on the early verification process that is strictly related to the activities of the design phase and is situated right before the implementation phase [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF][START_REF] Berndt | Service specification concepts in TINA-C[END_REF].

PREAMBLE

Performance is one of the most influential factors to be considered when verifying the system design [START_REF] Balsamo | Model-based performance prediction in software development: a survey[END_REF]. The reason is that a performance problems may be so severe that they may require considerable changes on the design (e.g., the architectural level). We limit ourselves to verify the design against the performance non-functional requirements and more specifically the ones that are non-critical as we do not analyze the models of real-time embedded systems. We consider both types of performance non-functional requirements: space and time [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF].

There are different approaches to verify the system design according to the functional and non-functional requirements. The verification process is mainly performed by one of the two different approaches [IH09, BDMIS04]: the analytic, and the simulation approaches. An example of an analytic methods is the model checking, where the Discrete Event Simulation (DES) is an example of the second. The main difference between these two approaches is that simulation approach relies on approximations to construct the model of the system in the simulator environment. These approximations can be acceptable in order to face the scalability challenge from which the formal methods suffer. Additionally, there are standard simulators that are widely trusted and used in both the academic and industrial laboratories (e.g., NS-3 [HRFR06, NS312], OPNET [START_REF] Chang | Network simulations with opnet[END_REF]). Moreover, the simulation through standard and widely used tools makes the verification process less complex. These reasons stand behind choosing the simulation approach in our research. On the other side, model checking can be more precise in confirming the correctness of the behavior of a system.

Different analytic theories [START_REF] Balsamo | Model-based performance prediction in software development: a survey[END_REF] can be applied when verifying a system such as the Generalized Rate Monotonic Analysis (GRMA)1 , Queuing theory [START_REF] Garbriel | Model-driven performance analysis[END_REF], Stochastic Petri Nets, and Stochastic Process Algebra. Both of the mentioned theories are useful in the performance evaluation domain including space and time performance non-functional requirements [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF].

There are many issues that are to be considered to compare between the different contributions in the context of Service Creation Environments (SCE)s. These issues were proposed in [START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] relying on the standard TINA-C [START_REF] Berndt | Service specification concepts in TINA-C[END_REF] and mentioned in the chapter 2.1. Here we highlight the most important ones:

• the activities that can be covered by the modeling language (e.g., design, verification, implementation, etc.);

• dealing with the complexity issue (R1) during the different development processes;

• sharing the different viewpoints in the same design model (R11) and considering them through the verification process. This issue helps to facilitate the communication of the design between the different stakeholders which helps to manage the complexity and improve the time of the development process. We recognize a lack in the approaches that support this issue while we contribute to it thanks to the Enterprise Architecture represented by the ArchiMate modeling language;

• type of the tools that are used to perform the verification process, whether they are classical and widely used or customized especially for the creation environment;

• the automation (R2) of the processes of the verification analysis on the system design as it is considered as a key factor during the performance analysis [START_REF] Balsamo | Model-based performance prediction in software development: a survey[END_REF].

DESIGN VERIFICATION

In the telecommunications domain, the complexity of a system comes from the different applications that are interacting with each other [BDC + 89]. Thus, hiding this type of complexity is achieved through providing interfaces to the user. Building new services relying on the existing complex systems raises the need for telecommunication-based design tools with easy-to-use graphical interfaces that supports drag and drop feature. In the software engineering wider discipline, the complexity is "the degree to which a system or component has a design or implementation that is difficult to understand and verify" [IEE90]. Thus, model verification is complicated, besides it needs different tools and software that belong in many cases to different domains according to the variety of the technologies (e.g., modeling the system through graphical design tool and verifying it though a network simulator in another platform). Formal methods (e.g., Model checking) and simulation are two different approaches that are applied to verify the design against functional and non-functional requirements.

In order not to neglect terms that are used in the context of evaluation of design models. There is an intersection between the two terms: verification and model-based testing. We consider the verification term when it relies on MDE as more wider than model-based testing. The reason is that the later contains few approaches [DNSVT07] that verify the system design against one of the non-functional requirements during the design phase. Additionally, the testing phase is usually performed after the implementation or the deployment of the system, while we consider our research on the verification activities at an early stage before the implementation phase. For the recent two reasons, we use the term design verification not testing. In software development lifecycles (e.g., V-cycle [V-C15]), there is an existence of the verification phase after the implementation phase. In our research, we do not consider the verification after the implementation phase , and we limit ourselves in the one between design and implementation phases.

Design Verification relying on formal methods

A formal method is a "method that has well-defined mathematical basis" [Win90]. Formal modeling allows to specify, analyze and verify the hardware and software systems. We present an overview on formal methods in this section for two reasons: (1) it forms a widely-used technology to verify behaviors of a software; (2) many approaches that are focused on the verification of the design against performance properties rely on static analysis like model checking [START_REF] Silva | A survey of automated techniques for formal software verification[END_REF] and other analytic theories [MM08, IM07] that can be used with simulation as well. For example, Queuing Theory [START_REF] Becker | Coupled model transformations for QoS enabled component-based software design[END_REF] is one of the analytic theories that are used in order to evaluate the space performance as non-functional requirement [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] like buffer (memory) performance evaluation. Model checking technology is one of the formal methods that helps to verify the behavior of a software. The major challenge that faces model checking is the scalability [START_REF] Chaki | The comfort reasoning framework[END_REF] and that it is not easy to be applied directly to system designs by engineers. Computers are limited by memories and processing resources, this forms a limitation during the verification process

DESIGN VERIFICATION

which is called the scalability issue. Furthermore, model checking relies on mathematical representations that can be complex and difficult to understand by designers of business management or telecommunications background .

In relation to our research questions in this thesis, we focus on the approaches that contribute to managing the complexity issue [Chi12, BDC + 89] during the design and verification activities. Therefore, we present (in the following) different related works according to two issues: managing of the complexity and facing the scalability challenge for model checking approach.

Model Checking Approaches

In [START_REF] Garavel | Cadp 2011: a toolbox for the construction and analysis of distributed processes[END_REF] a set of criteria was put to compare between the different tools that support the design and verification of parallel systems as a specific case. Regarding the design tool, the criteria were about the modeling language as: (a) the abilities to represent concurrency issues such as asynchronous parallel composition; (b) the support of userdefined data types such as lists, records, etc. Regarding the verification abilities: (c) can the tool support other abilities than model checking; (d) the distributed verification like running verification process over a cluster of machines rather than one machine. According to the verification process, the last criteria (d) may help to manage the scalability issue that faces the model checking and other formal methods. In [START_REF] Garavel | Cadp 2011: a toolbox for the construction and analysis of distributed processes[END_REF], the toolbox for the Construction and Analysis of Distributed Processes (CADP) contributes to the scalability issue by distributing the verification process in a cluster can be a reasonable solution. This criteria is a major one for the approaches that apply model checking to verify the system design. The other criteria (c) represents managing of the complexity by providing domain specific modeling languages to model that support parallel systems and distributed processes. This criteria is major in most of the approaches that rely on modeling for design and verification according to the evolution and variety of technologies and to build more precise models of the system.

Bandera [CDH + 00] software is a collection of analytic tools and transformation components that aim at generating program models from Java source codes. This program model is adapted to run in several existing verification tools. This approach uses model checking to verify the finite-state models that are generated from Java source code in order to check the correctness properties of the Java programs. There is no clear sign of handling the scalability issue in this approach, while complexity is managed through the automatic generation of the program models from the Java source codes in relation to the verification process.

Reasoning frameworks help to predict the behavior of the system before it is built. They contain different tools to support building systems and model checking activities. ComFoRT [START_REF] Chaki | The comfort reasoning framework[END_REF] is one of the reasoning frameworks. It includes the Copper model checker [Sag07, Cha07] in addition to component-based design tool that relies in the Construction and Composition Language (CCL). CCL is an architecture description language (see chapter 2.4.1). It contains components that represent the behavioral elements of the system. The runtime environment supports resource management policies (scheduling, synchronization, etc). Copper contains technology to overcome the state space explosion problem (scalability issue) that happens usually during the process of software verification. The ComFoRT framework helps in hiding the complexity (supports R1) of the verification process through generating automatically the state machines from the behavioral descriptions of the system. These state machines are then verified using the Copper model checker. Moreover, the framework contains code generator (supports R2) that enables the generation of code which can run in the Pin runtime environment in order to run the performance analysis [START_REF] Ivers | Model-driven development with predictable quality[END_REF]. This work contributes mainly to two types of issues: managing the complexity during the verification process and the scalability of the resources of the environment where the model checker runs in. Therefore, ComFoRT is well used in the Lambda performance reasoning framework [MH09] as Lambda relies on the CCL language.

The Property Specification Pattern Ontology Language for Service Composition (PROPOLS) [YMH + 06] helps the non-experts in temporal logic to understand and write formal specifications in order to perform the model checking in later stage. Thus, this specification language facilitates the specification of property patterns through raising the abstraction level of these patterns. The design of the system can be performed through service composition languages such as BPEL or BPML. In this approach, the verification process for the behavioral compliance of the service is performed through model checking after extracting the formal models of the design behavior (e.g., Labeled Transition Systems (LTS), Finite State Automata (FSA)). This approach handles the complexity as it uses tools to obtain automatically the formal models from the BPEL schemas (Fig. 4.1) of the service design, and it hides the domain specificity of the formal specifications from non-experts of the temporal logic domain.

The Tina verification platform in [BBZ + 10] enables to apply model checking to the design models in the context of real-time embedded systems as model checking helps to evaluate the correctness of the system's behavior that is important in critical applications such as avionics. The input model of the Tina verification activity is produced by a specific tool (Fiacre) that relies on both concurrency and real-time systems theories. Fiacre provides a formal description that permits to perform model checking on the real-time systems using the aforementioned Tina tool. This type of systems meets the telecommunication systems in the concept of describing hardware and software elements, but the properties that are verified in real-time systems are different from those for telecommunication services. Therefore, we do not rely on AADL to design telecommunication services in our approach. This work [BBZ + 10] applies MDE to provide support to manage the complexity of the systems thanks to modeling and model transformation techniques. Sharing the different viewpoints (R11) of the designers that are of different backgrounds does not appear in this approach where the design language is so specific to the real-time embedded systems. Model Transformations from both types model to model and model to text provide automation (R2) during the development process. The language AADL provides a clear support to the design phase including early verification before the implementation phase.

The verification process may rely on the theory of Petri Nets [START_REF] Lyle | Petri net theory and the modeling of systems[END_REF] as it comprises a formal technique, suitable for modeling the service dynamic behavior, due to its simple graphical representation and its concurrent and asynchronous nature. Petri Nets serve as the formal specification of the service functionality (e.g., the service tasks) and facilitates service validation. The combination between the MDA with the Petri Nets formalism provides the capability to define an effective and systematic service creation methodology. This model driven technique provides the potential to develop a supporting framework. In this context, the SOPN meta-model (Fig. 3.1) is produced using the import and inheritance capabilities provided by the EMF2 [Ecl], to extend the abstract PNML (Petri Net Modeling Language) core meta-model concepts. This process is used as an alternative of the UML merge concept, since EMF does not natively support the merge concept. The PNML is used then by the RENEW Petri Net tool to validate the service behavioral model. Code generators (model-to-text transformations) produce the executable code of the service from the PIMs (Fig. 4.

2).

This approach is limited to analyze the design models on the behavioral aspects only (functional requirements). It is suitable for checking deadlocks and other possible risks in the service model. The reason is that Petri Nets provide a formal specification of the service functionality (e.g., service tasks). Other types of requirements such as Performance Non-Functional Requirements are not considered in this approach.

This work is developed in the purpose of context modeling for context-aware pervasive service creation [START_REF] Achilleos | Context modelling and a contextaware framework for pervasive service creation: A model-driven approach[END_REF]. The authors provided tool support from the design to the implementation phases passing through an early validation activity. This activity relies on the aforementioned approach using Petri Nets. However, there is no mention concerning the scalability issue while they clearly contribute to the complexity management issue thanks to the MDE approach where they rely on model transformations and provide tools to support the modeling of pervasive services.

Discussion

Formal methods rely on analyzing all of the possible states of the system under study. Thus, formal methods provide more accurate analysis for the system design, they can detect important properties for critical systems such as deadlocks . The main challenge that faces formal methods is the scalability issue that consumes machine resources and takes long time to provide final verification results. Distributing the model checking procedure between set of machines of a cluster improves the computation performance of the model checking process. Simulation approach relies on approximations in the system model to analyze the design model. This point provides an improvement to scalability issue while it reduces the precision level of the results. Trusted simulators such as OPNET and NS-3 can provide an acceptable accuracy in the results in the network simulation domain. These simulators are equipped with ready-to-use modules that are widely used and trusted in the networking and core-network domains. These built-in modules help to reduce the complexity of implementing their transactions the simulation scenario through providing domain-specific libraries for each telecommunication domain (e.g., Ethernet, TCP/IP

SIMULATION APPROACH AND TOOLS

protocols, WiFi wireless modules, Server-Client paradigms, etc.) . Thus, we consider the simulation in our approach of this thesis.

Another major concern that is missed in the mentioned approaches is that there is no clear support to share the viewpoints of the different stakeholders (R11) in the same design model. Additionally, the telecom service design is so complex and is composed of large number of computing machines and complex functions. Using formal methods can be applied to verify designs of telecom services, but there will be a large amount of computational effort (scalability issue) according to the protocol transactions and other internal transactions of every hardware node (e.g., SIP proxy server in OPNET) in addition to the service behavioral description (business process models). Moreover, transforming these transactions and functions into analytical models that can be inputs to the procedures of the formal methods will be a complicated activity that can be automated through model transformations in some cases as shown in this section. Simulators avoid such point as they contain pre-existing modules and computation models of the domain-specific design elements (e.g., proxy servers, routers, propagation channels, etc.). The challenge that remains here is to generate simulation programs/scripts automatically from the original design model.

The next section will present the simulation approach and the methods that rely on it using Model Driven Engineering.

SIMULATION APPROACH AND TOOLS

In the context of simulation paradigms for complex systems [START_REF] Bernard P Zeigler | Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems[END_REF], simulation is important to enable advanced analysis on the system using an offline environment or platform that makes it possible to obtain valuable measures to verify the system against functional and non-functional requirements. According to [START_REF] Vangheluwe | An introduction to multiparadigm modelling and simulation[END_REF], the modeling and simulation approaches can be used in the following different contexts: Systems Theory, Control Theory, Numerical Analysis, Computer Science, Artificial Intelligence, or Operations Research.

In [START_REF] Vangheluwe | An introduction to multiparadigm modelling and simulation[END_REF], there are different definitions that are important to understand the Simulation approach. In the following, we take some of them in order to clarify the basics of the simulation approach. Simulation of a lumped model "in a certain formalism (such as Petri Net) computes the dynamic input/output behavior. Simulation may use symbolic as well as numerical techniques. Simulation, which mimics the real-world experiment, can be seen as virtual experimentation. A lumped model is "an abstract representation of a system within the context of a given experimental frame. Usually, certain properties of the system's structure and/or behavior are reflected by the model (within a certain range of accuracy)". A Base Model is "a hypothetical, abstract representation of the object properties, in particular, its behavior, which is valid in all possible contexts, and describes all the object's facets". An Experimental Frame (EF) "describes a limited set of circumstances under which a system (real or model) is to be observed or subjected to experimentation".

The figure (Fig. 4.3) presents the correspondence between both: the real-world entity on the one side, and the modeling and simulation approach on the second side. The figure shows that the real-world entity can be substituted by a base model that abstracts and describes its details. It considers that the system under study is to be modeled as an instance of the base model which represents the real world entity. Then, the simulation process is run to experiment the behavior of the system under study in order to obtain observation data that are important to analyze and correct the design of the system.

In our approach and according to the mentioned figure (Fig. 4.3), we do not perform the validation process that is a comparison between the simulation results and the experiment observed data in the reality.

Therefore, we use standard, well known, widely used and trusted simulators (e.g., NS-3 and OPNET) in order to obtain more confident and trusted results. In our approach we consider the performance non-functional requirements thus we choose the right tools that are capable to perform the proper verification and to generate the suitable measures.

Preamble

Different approaches are proposed to verify the system design relying on MDE and simulation. Relying on MDE helps to manage the complexity of the system for the designer(s) thanks to modeling and model transformations. Simulation can be a solution to the scalability issue that is major in the formal methods like model checking. In this section, our objective is to present some of the others' contributions in the context of both MDE and Simulation. We focus on the same issues that are mentioned in the section 4.1 when comparing between the different approaches.

Simulation to verify complex designs against Performance NFR

Model transformation mechanisms show an interesting mechanism when used in the domain of modeling and simulation of complex systems [START_REF] Vangheluwe | An introduction to multiparadigm modelling and simulation[END_REF]. In the following we present some of the approaches that rely on modeling and simulation to support the early verification of complex systems.

SIMULATION APPROACH AND TOOLS

In the critical real-time systems, errors are not allowed in the system design . Timing of the threads, scheduling of the tasks of the system behavior, and space (e.g., related to memory issues) non functional requirements are important to be verified as they affect the performance of the system. In [DPP + 09], the AADL is used to model, verify, and implement the ARINC653 systems in the safety-critical systems in applications of avionics. This approach relies on MDE to detect design errors and verify the design through simulation. It uses Ocarina as an AADL toolsuite, POK as an AADL/ARINC653 runtime, and Cheddar for the scheduling verification. This contribution presents a way to smooth the development lifecycle and specially through the phases from the design to the implementation thanks to the use of model driven engineering fundamentals and ADL concepts. It helps to hide the complexity of the design and verification activities through the usage of the different tools (for modeling and simulation) that are specific and certified in the domain of the real-time embedded systems (e.g., Cheddar simulation engine for the scheduling verification). This issue of managing the complexity appears in the usage of abstract modeling for the design and code generation (e.g., generating code for the AR-INC653 module) for the verification. Additionally, a validation process is done through comparing both the simulation and real-time execution results.

SimStudio [START_REF] Touraille | A model-driven software environment for modeling, simulation and analysis of complex systems[END_REF] is an SCE that is developed and built upon the DEVS formalism in order to provide supportive tools that rely on a modeling language to represent the DEVS models. SimStudio provides high level of abstraction and facilitates the exchange of design models through the different service creation activities. This exchange is achieved automatically by using the model transformations that enable the representation of the design in different forms. This mechanism helps to manage the complexity by hiding implementation details of every next step from the preceding one thanks to the automated transformations (model transformations) between the artifacts of the different activities. This approach covers different phases of the development lifecycle and smooth the exchange of information between them , as information are represented by models . However, sharing different viewpoints for the different stakeholder that are involved in the development process including separation between their domains is not presented in this approach.

The performance and QoS analysis are important to verify the design of the system before the implementation of the telecom services (e.g., conferencing services). By relying on infrastructural representations (e.g., servers, client computers, etc) in the design model one may be able to obtain valuable measures that are related to the hardware issues (e.g., CPU utilization). The IP Multimedia Subsystem (IMS) provides a promising platform that at least enables the development of the value-added and advanced telecom services (e.g., conferencing service) relying on the IP networks. The problem is that most of the well-known network simulators (e.g., NS-3, OPNET, NS-2) do not completely support the IMS platform through their modules and libraries. Therefore, formal modeling approach is proposed in [MMN + 12] to design and verify the system where one can obtain QoS and other performance feedbacks (e.g., CPU usage) from the system design that relies on the IMS platform and at an earlier stage. This approach mixes the formal modeling and simulation together to provide the valuable feedbacks on the performance of the system before the implementation phase. The formal modeling helps to avoid the lack of IMS support in the wide-used network simulators (e.g., NS-3, OPNET). There is a remarkable point in this work towards the separation between the concerns in the design model provides more clarity and understandability to the system design. There is a fine separation between the different concerns (User, Application, Device, Access Network, Management) that belong to the same domain (network level). On the same side, this approach does not consider the different levels of abstraction during both modeling and verification activities which makes it difficult to share the design between a set of designers from different domains and backgrounds (e.g., business process modeling to enable higher level view on the system's behavior). Although they consider the user level in the modeling activity but they define the functions and elements from the domain of conferencing services which is a specific case in the context of telecommunication services. This last issue is important to manage the complexity during the process of the system development. This work is validated by comparing the simulation results with the Real Data gathered from the real network.

Component Based Software Engineering

Component Based Software Engineering (CBSE) is one of the approaches of software engineering that aims at improving the level of reusability of each component and the level of predictability of the system during early design stage [START_REF] Becker | Coupled model transformations for QoS enabled component-based software design[END_REF][START_REF] Becker | The palladio component model for modeldriven performance prediction[END_REF]. The reason behind this is that the components can be expressed by certified models that are reusable when integrated in DSMLs, where DSMLs can capture the information available to a specific developer role. Additionally, components can be used in different contexts thanks to their representative models that can describe the parametric dependencies of each component. Components increase the predictability of the system as the design architecture may compose set of different components through their certified models that have specifications for functional and non-functional requirements (NFR)s. The approach in [START_REF] Becker | The palladio component model for modeldriven performance prediction[END_REF] contributes to the prediction of the performance NFRs (e.g., response time, throughput, resource utilization) and reliability (e.g., meantime to failure, probability of failure on demand). The Palladio framework [START_REF] Becker | Coupled model transformations for QoS enabled component-based software design[END_REF] relies on CBSE and provides the ability to verify the system design before the implementation through simulation relying on SimuCom simulation framework. It relies on component modeling to enable the performance prediction of the system design [START_REF] Becker | The palladio component model for modeldriven performance prediction[END_REF]. This work may meet our approach when considering that our model compiler is a component to verify the system design thanks to the model-based tool selection methods and implementations that we propose. Moreover, the performance prediction models are important in the telecommunication domain like the Queue performance predication (Fig. 4.4). This approach relies on MDE concepts through modeling and model transformations. Thus, it contributes to the complexity issues that we are interested in. It considers the different roles during the design and early verification activities like domain experts, system architects, etc (Fig. 4.4), although they are different from the viewpoints defined in the service creation [START_REF] Berndt | Service specification concepts in TINA-C[END_REF]. Thus, there is a difference in the nature between the type of the viewpoints between this approach and ours. For example, the resource model is assigned to system deployer in their approach, while we consider both the system designer and developer are the responsible for this activity according to the framework that is proposed in TINA-C standard [START_REF] Berndt | Service specification concepts in TINA-C[END_REF]. Thanks to the different types of model transformations (model to model and model to text) that are used (Fig. 4.4), this approach automates the evaluation process but it is not clear if there is a complete workflow that controls the whole process together or not.

This framework [START_REF] Becker | The palladio component model for modeldriven performance prediction[END_REF] supports the different activities (from design to implementation and deployment) thanks to the modeling language that is defined through meta- models (e.g., the repository meta-model). Modeling is done using the Graphical Modeling Framework (GMF) in Eclipse IDE, where domain-specific constraints were added to the UML definitions to limit some of the grammar in order to protect the developers from errors during the modeling activity. We consider this approach strictly close to ours from three points: (1) it relies on the same discipline MDE, and generates tools from metamodels using both GMF and EMF frameworks in Eclipse-IDE; (2) it relies on simulation to evaluate the performance of the system design in domains that are close to our simulation domain (network simulation). The difference is that we rely on standard, well-trusted and widely-used simulators such as (NS-3, OPNET); (3) the nature of the design modeling approach that relies on ADLs [MT00] in both cases.

SIMULATION APPROACH AND TOOLS

Discussion

In this section, we provide a summary for the comparison between the different approaches that rely on MDE and Simulation to verify the system design. In our comparison, we rely on 4 criteria: (1) considering the different viewpoint in the same design "R1"; (2) representing the system architecture in the simulation scenario "R2"; (3) if the modeling language can cover the different development activities "R3"; (4) does the approach relies on Components Off The Shelf (COTS) "R4"; (5) hiding complexity from the designer/developer "R5".

R1, R2 and R5 criteria are related to the issue of managing the complexity during the design and verification activities [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. While the third one (R3) is related to the reusability of the modeling language. R4 is of our interest as we consider that using tools that are well trusted (certified), widely used is an added value to the verification framework. The reason is that it reduces the time and efforts to develop customized verification tools that need specific understanding to their functions and features. Thus, it supports the reusability of already developed standard tools.

DISCUSSION

In this chapter, we have presented two types of design verification methods: model checking and simulation. Simulation helps to face the scalability challenge that model checking suffers from. We have presented different researches that rely on one of the aforementioned approaches, and explained their contributions to the requirements of Service Creation Environments. These approaches rely on Model Driven Engineering to improve the development process through managing complexity and decreasing the time to market. We have focused on the qualities issue and especially the performance.

The usage of the classical tools for verification purposes and sharing the design details of the viewpoints of the different stakeholders are major points that are not faced by these approaches. Moreover, only few of these researches links the designer directly to the verification tool.

In the next chapters, we will present our proposal and contributions that face these aforementioned points.

PART II : CONTRIBUTIONS

In the first chapter, we propose the DeVerTes framework and provide a global view on its architecture and tools. The second chapter presents the macro-activities of De-VerTes framework including the different model transformations and error detection rules. In the third chapter, we test our proposed framework through two examples of two different applications: Video Conference Telecom Service, and an Object Localization service in the Marine.

The objective of this chapter is to present our framework (DeVerTeS) through four main activities. It stays on a general level of explanation of these activities leaving the details and the explanation of the methods to the next chapter.

PREAMBLE

In the scope of the Telecom Service (TS) verification [START_REF] Combes | Service validation[END_REF], the designers needs to verify the design of the service and to know if it satisfies or not the predefined functional and nonfunctional requirements [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF]. This verification activity is better to be performed as early as possible, so to avoid the expensive consequences that may happen when correcting the design errors and flaws after the software and hardware installation.

Our main objective is to provide assistance to the different stakeholders that are involved in the TS design [START_REF] Combes | Service validation[END_REF], and to provide an approach that enables to manage the complexity, improve the time to market and the qualities [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] such as the performance, cost, etc.

As we have presented in the bibliography (cf. chapter 2), different approaches were proposed in the context of service creation environments (SCEs). Many of these approaches (cf. chapter 3) rely on Model Driven Engineering (MDE) as an approach that helps to manage the complexity and to facilitate the service creation process. We rely on MDE and we use models to represent the system architecture and design. Simultaneously, we rely on Enterprise Architecture (EA) as it helps to share the viewpoints of the different stakeholders in the same design artifact. The DeVerTeS framework enables the different stakeholders to share their domain experience during the design process. It enables to evaluate the design model earlier than the implementation phase.

The DeVerTeS framework helps the system developers to fulfill the requirements of the SCEs that are previously mentioned in section (sec. 2.5.1). It contributes to our research questions that are mentioned in the introduction of the Thesis (sec. 1.3). The design activity should be at higher level of abstraction without losing any details that are important to specify the service at a reasonable level of accuracy. The information that are included in the design model are exchanged between the different tools smoothly and using models. According to the difference between the tools and their configuration methods, models are adapted from one form to another through model transformations [vA10] in order to make them proper as inputs to the different supportive tools (e.g., Archi modeling tool, NS-3 simulator, etc.). Testing codes are auto-generated from the models thanks to the model-to-text transformation and fed to the network simulators as executable programs (case of NS-3) or configuration scripts (case of OPNET). Our approach and implementations take into consideration the architectural concepts of the Enterprise Architecture that are represented in ArchiMate modeling language. This point reflects positively in the auto-generated codes. The testing codes are better organized in a way that mimics the architecture of the design. This improves the clarity and the traceability of the design components and artifacts in the testing codes. This advantage comes from the point of reusing the same modeling language in all activities of the design and verification.

DEVERTES FRAMEWORK

Meta

External tools partially enable the designer to detect different types of errors and flaws in order to improve the qualities. After experimenting different cases of possible errors and trying manually (using our test-bed) to detect them, we have found different types of errors that may happen and cannot be automatically detected by the tools (e.g., NS-3, OPNET). It may take too much time to detect some of them using debugging tools where this tracing activity needs domain experience, patience, and accuracy according to the complexity of the design [BDC + 89] and the auto-generated testing codes. Thus, we propose different methods with their implementations to detect such types of errors.

In this chapter, we present our approach to extend the TS design phase by an early verification process that relies on the same design modeling language. Therefore, we present our DeVerTeS framework proposal that is composed of 4 main activities and supported by different types of tools to perform them. In the next chapter (cf. chapter 6), we provide more focused details for the different activities of DeVerTeS.

Requirements refinement

Artifacts synchronization

Service analysis

Service design

Service implementation

Early verification

Service validation and testing

Define:

•

DEVERTES FRAMEWORK

The framework shown in (Fig. 5.2) presents the different activities and phases of service creation proposed by Adamopoulos in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF]. The design activities rely on the requirements and system constraints that are coming from the requirement refinement and service analysis activities. During the design activity different models can be produced such as use cases, service architecture layers, etc. These models are used later in the implementation phase. We insert the early verification between the design and implementation activities. The extension is strictly connected to the service design activity as it shows in the figure. In our approach, the activities of both the design and early verification rely on a domain-specific modeling approach. In order to support these activities, we extend a Domain-Specific Modeling Language (DSML) which was proposed in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF], and discussed in the bibliography (cf. section 3.3.1). This modeling language extends the ArchiMate standard [The13, The09a] and helps the designer to model systems from the ICT domain and relies on the IP Multimedia Subsystem (IMS) as an underlying platform. This extended modeling language is reused all over the design and verification process. The whole framework relies on the IMS as an underlying platform to bridge between the different communication technologies (e.g., 2G, 3G, Internet, PSTN, etc.). We call this extended framework as DeVerTeS. DeVerTeS is composed of four main activities (Fig. 5.3):

1. Linking: The objective of this activity is to link the softgoals that are defined in the requirements phase to the design models that are produced in the design phase;

2. Model Adaptation: The objective of this activity is to select the right tool and then to transform accordingly the design models into a configuration script(s) that will configure the tool(s);

3. Measurement Analysis: The objective of this activity to analyze the measurements that are obtained from the tools relying on an analytic theory (e.g., Queuing Theory), so to verify whether the TS design satisfies the functional and non-functional requirements (e.g., Performance) or not;

4. Feedback: The objective of this activity is to benefit from the verification results and correct the design flaws, errors, and quality violations.

The only element that is exchanged between the different activities is model. The arrows between the different activities represent the data flow.

Linking Activity

In the linking activity, we rely on the DSML proposed in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] and we extend it to support further activities of early verification. The principal in our approach is that we generate tools and rely on the same meta-model that represents the language including the domain-specific constraints and standards. This meta-model is constructed and developed during the linking activities. It defines the elements and relations between these elements that belong to the different activities during the design and verification processes. The process of the meta-model construction is restricted only to the domain experts that have additional experience in modeling and simulation activities.

The figure (Fig. 5.1) presents our framework (DeVerTeS) in a way that shows the relation between activities, tools, and the domain-specific modeling language. The circular arrow indicates to the direction of the workflow. This workflow is controlled and guided for the moment by the developers, while it can be implemented using shell scripts to automate the process. The level of automation is not considered in our study as it should be related and controlled by the feedback activity of the framework. Activities are in the smallest central circle and numbered according to their execution sequence. This second circle refers to the tools that are used by the different activities. There is a clear separation between these activities and their tools which is represented by the four diagonal lines. All of the activities rely on the same meta-model. This meta-model contains the abstract syntax, grammar, and constraints that are used by the modeling and model compilation activities.

The linking activity diagram shown in (Fig. 5.4) presents the different linking activities and the models that are exchanged between them. These activities are related to the actors (Requirement Engineer, Domain Expert) that can create, access and modify the models of the whole framework which are created and linked in the Linking Activity. The softgoals [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF] are linked to the design functional elements using relations that are capable to show the effect (positive or negative) of these functions on the requirements of the system. It contains goal, tool selection capability and service design models. These models contain elements and relations that are well supported by the ArchiMate language and especially the requirement and softgoal concepts (see subsection. 3.2.4), where the motivation concept was introduced. Measurements are also linked to the design elements (structural and functional) in the meta-model which represents the parsing tree of the modeling language. This enables the designer to attach different types of measures to the design entities such as NodeInterfaces (e.g., adding a measure for packet drops) during the design activity.

Discussion

Our method in reusing the same meta-model in all activities of the framework helps to enable new features and capabilities to the designer from the level of the modeling language. Although the modifications of the meta-model are easy and simple, but they are risky and may cause critical problems in both activities: design and early verification. This returns mainly to two points: (1) the change in the meta-model means a change in the abstract syntax and the grammar of the language; (2) all model transformations that are used to adapt the models between the different tools will be affected as they rely on the same meta-model as a parsing tree that contains definitions of the elements and the relations. Thus, we assign the role of constructing/modifying the meta-model to domain experts that are aware of the standards and both modeling and simulation domains.

Model Adaptation Activity

The main objective from the model adaptation activity is to smoothen the exchange of the design model between the different tools in order to verify the design against functional and non-functional requirements. Moreover, in our approach, we add different mechanisms to detect automatically different types of errors in the design taking advantage from accessing the unified meta-model and the model transformation rules. Inserting the error checking rules in the same model transformation procedures helps to: (1) reuse the same model transformation language in both code generation and error detection activities. This facilitates the modification or addition of new error detection rules by the same developers who ; (2) easily control the position of the error detection procedures (before or during) the code generation. Additionally, we take the advantage of the graphical interface of the Archi modeling tool that is generated from the same meta-model to detect some types of errors during the design runtime. This type of error detection is an on-the-fly method that relies on Java events that are generated by the EMF but modified to be able to make graphical interactions when detecting an error by the designer. By this way we provide an integrated set of tools that enable both the error detection and quality improvement which can be done by analyzing the measures that are generated by the network simulators. In the model adaptation activity (Fig. 5.5) there are different sub-activities that are related to different actors: service designer, verification tool vendor/expert. These sub-activities are mainly:

DEVERTES FRAMEWORK

(1) the preparation of the tool specification models; (2) the preparation of measurement models; (3) an automated tool selection mechanism through XPAND language [XPA15]. In our method, every tool has its specific model transformation template.

Discussion

All of the mentioned sub-activities rely on models to exchange the design, tool and measurement information. This point simplifies and facilitates the modification of these models according to the fact that models are easier to understand and modify than text scripts. The tool selection mechanism is an automated process that relies on the workflow of the XPAND engine. This process is helpful when large number of verification tools are available and their most interesting features and capabilities (e.g., possible measures) are included in the tool specification models. The tool selection algorithm will provide the tools sorted according to their capabilities from the most proper to the least one in a list. Then the model transformation template can be chosen directly according to the most proper evaluation tool (e.g., NS-3 or OPNET). In order to enable the tool selection method through the model transformation mechanism, we have added different elements to the unified meta-model which is accessed by the different tools.

DEVERTES FRAMEWORK

Domain-Specific Model Compiler

Our main objective in the model adaptation activity is to connect the designer directly and automatically to the classical tools that are widely-used and certified. IMS (cf. section 6.2.1) provides a proper platform to integrate between the different end-user networks and information systems, and it offers support for the creation of value-added services that are of a highly abstract level. The complexity of such systems may lead to errors in the design. Modeling helps to cope with the complexity of the system design, but there is still a need to translate the system models to other forms for execution purposes. In order to hide the complexity, it is better for the design models to be highly abstract and to rely on languages that are rich with syntax and semantics that are adequate to describe the domain-specific concepts. Code generators can be used to bridge the language gap between the design model and the execution platform as they provide the capability to generate executable codes from highly abstract models.

Simulation offers an approach that makes it possible to evaluate the design models at an early stage before the implementation and deployment phases (cf. section 4.3). This results in reducing the time-to-market competition factor. Like the complexity; domain specificity forms another possible source of errors in the design model where the designer of a certain background may deal with a design from different domains (e.g., business process modeling, networking domain, etc.). Thus, we rely on ArchiMate language that fully respects the TOGAF Enterprise Architecture (EA) framework to share the different viewpoints of the designers from different domains.

We use model transformation (code generation) to link the highly abstract models directly to the network simulators. We implement our model transformation using Xpand language [XPA15] to perform it relying on Eclipse IDE. This code generation provides the ability of executing the design model in a different platform that needs a specific language to be configured. The design tool which extends Archi provided us with the ability of modeling different system designs in different contexts: Telecom Services [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] and Marine Observatories [AAK + 15] thanks to the concept of domain-specific modeling languages. This design tool prevents syntax and some semantic errors from occurring in the design thanks to the abstract and concrete syntaxes on which it relies.

The model compiler that we propose is mainly composed of a code generator that implements two types of rules (Fig. 5.6):

• code generation rules: to generate text code/program from the abstract model which is modeled using the domain-specific modeling language. This generated code is executable in a specific platform such as network simulator (NS-3). Therefore, the model transformation inserts new operational semantics in the generated code in order to make it executable. These semantics makes the model transformation oriented for a specific tool/platform. The generated code is structured in a proper way that suits the programming language of the target tool. The motivation from this point is to connect the designer directly to the verification tools (simulators in our case) in order to obtain valuable feedbacks to improve the performance of the system;

• error detection rules: The objective from these rules is to detect domain-specific errors that are possibly made by the designer according to the lack of knowledge in the domain or because of the complexity of the design. Some types of errors (e.g., an error in the network address assignment) may not be easily detected or traced by the designer. They need to be traced through debugging tools (e.g., ddd debugger for C++ programs) which is a complicated and time-consuming process that needs experience in both networking domain and programming language. This point forms the motivation of proposing the error detection rules which automate and facilitate the design process by reducing the complexity and the time of the design and verification processes.

Measurement Analysis Activity

The main objective of the measurement analysis is to check if the design satisfies the performance non-functional requirements (PNFR)s that are modeled in the linking activity (see section. 5.2.1).

We propose (Fig. 5.7) to perform measurement analysis relying on MDE. Generating analysis scripts/programs automatically from the design and requirement models is our objective in this activity. Model transformations help to automate all of the elements of this activity as ArchiMate provide support and concepts to model requirements through the motivation aspect. A link is to be established between the requirements, design and configuration profiles for devices in the linking activity in the meta-model level. Network simulators provide time-stamped measures in logs, we focus on the measures that are related to PNFRs. PNFRs are classified into two types [START_REF] Chung | Non-Functional Requirements in Software Engineering, volume I of II[END_REF]: space(e.g., memory and cpu usage) and time (e.g., delays, throughput).

Model Driven Analysis [START_REF] Garbriel | Model-driven performance analysis[END_REF] is proposed in order to complement the model to implementation path in the context of MDE. The objective of Model Driven Analysis is to perform evaluations on the system according to NFRs. This evaluation relies on analytic theory (e.g., Queuing Theory, Time Series Analysis). Both of the mentioned analytic theories are applicable in the networking domain.

There are different analysis and optimization tools (e.g., R, Wireshark, Cplex, Matlab, etc.) that can be used to analyze the simulation results and guided by the analysis script that is generated by the model transformation procedures. We propose to use Matlab according to its flexibility and ability to use different languages in the m files. It can handle ASCii traces that are generated by the network simulators.

This proposal [ACS + 15] is not implemented completely yet, linking models are prepared but the implementation of the model transformation rules is not done.

DISCUSSION

In this chapter, we have presented our approach of the domain-specific design and verification framework that relies on the one of service creation environment proposed in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF]. This framework focuses on a part of the service creation activities that is limited to design and verification before the implementation phase. We have proposed set of activities that smoothen the design and verification processes.

All of the activities that we have proposed rely on the same modeling language that extends the standard of ArchiMate which respects the TOGAF standard. We have extended this language to provide more domain-specificity and verification capabilities. The domain-specificity includes the IMS platform major specifications with hardware and software representations. This domain-specific modeling language shares the viewpoints of the different stakeholders that are included in the design and verification activities. Thus, it supports the usage of both design and verification tools. The design tool is generated from the meta-model with a concrete syntax description that is implemented in Java. The verification tools are connected to the designer directly through model transformations to adapt the abstract design model to the verification tools (network simulators in our case).

On the one hand, our approach and proposed framework answers to the research questions that are mentioned in the introduction section (see introduction. 1). This comes from both error detection and simulation processes. The error detection process helps to reduce the time of the development as it is an automated and simulation-independent process, although we propose an error detection method that generates events in the simulation code to detect design errors in addition to the simulation-independent rules (these rules will be presented in the next chapter). On the other hand, our proposed framework answers to the quality improvement thanks to the measures that are generated by the simulators. These measures are represented in different formats and stored in files and logs. Different tools can access these files and analyze the values relying on an analytic theory. Thus, we have proposed a measurement analysis activity that relies on the same type of model transformation (using Xpand/Eclipse) to generate the analytic script/program that can run directly in the analysis tools (e.g., Matlab). This last point is not completely performed and still needs developments as presented in [ACS + 15].

In our approach, the artifact that is exchanged between the different tools are models which are easy to be accessed, understood and modified. Moreover, we rely on classical and standard tools that are domain-specific and network oriented. We connect the designer directly to these tools in order to facilitate their usage by generating configuration scripts/programs that reflects transparently the design structure [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF]. Additionally, we generate the design tool from the meta-model of the language that we propose [START_REF] Chiprianov | Telecommunications service creation: Towards extensions for enterprise architecture modeling languages[END_REF] and which respects the IMS standards. It applies drag and drop mechanisms during the design activity preventing the designer from some types of errors directly and on the fly in both contexts of Telecom Service and Marine Observatory [START_REF] Alloush | A domainspecific framework for creating early trusted underwater systems relying on enterprise architecture[END_REF] [AAK + 15]. These achievements support our argument in managing the complexity during both design and early verification activities.

In the next chapter, more details about our above-mentioned contributions will be presented.

Macro Activities of the DeVerTeS

PREAMBLE

We focus on reusing the classical tools (e.g., NS-3, OPNET) that are widely trusted and used during the design and verification activities. This objective is not simple as every one of these tools differs from the others according to its configuration method. For instance, OPNET accepts XML scripts for configuration while NS-3 accepts C++ programs. This means that there are operational semantics needed to be added to the configuration script. These semantics are different according to each of the target tools. Thus, we use a different model transformation for each one of these tools. In addition to the script/program generation, we add new rules to check errors that are domain-specific and difficult to be detected by human especially in designs of complex systems. These error checking rules rely on the abstract syntax and grammar of the modeling language (the meta-model). This meta-model is extended from the original meta-model of the standard language ArchiMate [The13][The09a]. This extension does not affect the original concepts of the modeling language while it adds new concepts that specialize the standards of ArchiMate and represent the domain-specific concepts (e.g., IMS nodes, functions, and protocols).

The extended meta-model (modeling language) forms the basic brick of the framework that we propose. All of the design and verification activities need this meta-model in order to generate tools, scripts, and perform the error checking procedures relying on model transformations. Sharing the same standard and extended meta-model between all of the activities of the framework that we propose forms the major advantage in our approach. Moreover, relying on the same extended meta-model of ArchiMate permits us to benefit from the advantages of the Enterprise Architecture in the design activities and in the verification ones as well.

We present our contributions in a way that simplifies the explanation of the different parts of our proposed framework. Thus, we use an order that differs from the time schedule of our development that can be seen through the different articles. In this chapter, we are going to present our solutions and methods in order to detail the activities of our proposed framework that is presented in the previous chapter.

LINKING VERIFICATION, DESIGN AND MOTIVATION ELE-MENTS

The objective of this section is to present our contributions in the linking activity (the first activity in figure. 5.1) where we propose new elements with their relationships to be

LINKING VERIFICATION, DESIGN AND MOTIVATION ELEMENTS

Figure 6.1 : The 3GPP IMS architecture [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF] added to the meta-model of ArchiMate. These new additions are used in both design and early verification activities. The whole meta-model is used as a parsing tree including the new elements in the compilation process that generates executable codes directly from the design models, besides to the error detection procedures.

IMS architecture

In this subsection, we provide an overview to the architecture of the IP Multimedia Subsystem (IMS) and its different functions in order to support the understanding of our contribution related to the IMS meta-model. The IMS is an architectural framework for delivering Internet protocol multimedia services. The IMS can be integrated with the Internet as it handles all communications in the packet domain. Additionally, it plays an important mediation role between the different standard and widely-used telecommunication technologies. This allows the operators to provide common services between these technologies (e.g., 3G, 2G, LTE, wired IP networks, etc.). Thus, IMS gives a solution for such a requirement, as it contains the functions of the application server that helps to enable the creation of the Value Added Services (VAS)s, and relies on the SIP protocol (a widely-used Internet Application Protocol) to control sessions.

These features make IMS a suitable core network to rely on when designing telecom services that may work on different types of devices (Mobile, PDA, desktops, etc.). Figure 6.1 presents the architecture of IMS with the different interfaces that are used between its elements. On the left side of the figure, we find the user agent equipment (UA). This user agent can access the IMS through different types of systems (e.g., 3G, wired communications, etc). Then, the core elements of IMS stand in the rest of the figure. The protocols (e.g., SIP, Diameter, etc.) which are used in IMS differ from interface to another between the different types of nodes (e.g., Proxies, Application Server, HSS, etc.). The 3GPP defines the architecture of IMS in the form of functions that are linked by standardized interfaces. This way gives more flexibility to the vendors to implement one function in one node (the most followed case by vendors), combine several functions in one node or split one function between a set of nodes. Therefore, the names of the elements in the IMS architecture are always ended by the word "function".

The major functions in IMS are [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]:

• The Call/Session Control Functions (CSCF)s: the objective of these functions is to control the SIP sessions and they are the most essential functions in IMS. They are of three types:

-The Proxy-CSCF (P-CSCF): it is the first contact point between the IMS core and IMS terminal. Thus, all the requests that are initiated or destined to the IMS terminal must traverse the P-CSCF. The P-CSCF forwards SIP requests and responses in the appropriate direction (towards the IMS terminal or core network). SIP messages can be large as the SIP is a text-based protocol. Since the IMS terminal can be transmitted over a broadband connection, then it will be more efficient to compress these messages and save the transmission resources at the IMS terminal side. The same for the reverse direction, the P-CSCF should be able to decompress the SIP messages in order to forward them at the other end (the core network direction). The P-CSCF is responsible for the Policy Decision Function (PDF) where it authorizes the media plane resources and manages the Quality of Service over the media plane. Additionally, it generates the charging information and sends them to the charging collection node.

-The Interrogating-CSCF (I-CSCF): it is a SIP proxy server. The address of the I-CSCF is registered in the Domain Name System (DNS) of the domain. Thus, when a SIP server wants to find the next hop to forward a SIP message to, it obtains the address of an I-CSCF of the destination domain. The I-CSCF has an interface to both the HSS and the SLF. This interface uses the Diameter protocol not the SIP one. Through this interface, the I-CSCF can retrieve the user location and routes the SIP request to the proper destination. This destination is mostly the S-CSCF as it is the server that is responsible to process the SIP requests.

-The Serving-CSCF (S-CSCF): it is a SIP proxy server. It represents the central node of the signaling plane. The session control process is handled in the S-CSCF. Moreover, it has the registrar functionality as it binds between the user location and the user's SIP address which is known as the Public User Identity (PUI). It uses the Diameter protocol to communicate with the HSS through a specific interface. The S-CSCF downloads authentication information from the HSS and uses them to authenticate the user who tries to access the IMS network. It downloads the user's service profile in order to initiate the filter criteria process that may cause the generation of SIP message to be routed through one or more application servers. Additionally, the communication between the S-CSCF and the HSS can be used to inform the HSS about which S-CSCF is allocated to the user during the period of the registration. Each S-CSCF serves a number of IMS terminals, depending on the capacity of the node.

• The Application Server (AS): it is a sip entity that hosts and executes services. The AS has interfaces with the I-CSCF, S-CSCF and HSS nodes. The interfaces with both I-CSCF and S-CSCF are based on SIP protocol while the one with the HSS is based on Diameter protocol. Additionally, the application servers can provide direct interface with the IMS terminal for configuration purposes. There are 3 types of ASs (Fig. 6.2):

-The SIP Application Server (SIP AS): it is a SIP server where the new IMSspecific services will be developed in. It hosts and executes the IP Multimedia Services based on SIP protocol.

-The Open Service Access-Service Capability Server (OSA-SCS): this AS provides an interface to the Open Service Access (OSA) framework AS. It represents a SIP AS on the side of the S-CSCF while it represents an interface between the OSA AS and the OSA Application Programming Interface (API) that is described in the 3GPP standard "TS 29.198".

-The IP Multimedia Service Switching Function (IM-SSF): this AS allows to reuse the services (Customized Applications for Mobile network Enhanced Logic "CAMEL") that were developed for GSM in the IMS. The IM-SSF represents an AS when interfacing the S-CSCF and an Service Switching Function (SSF) when interfacing the GSM Service Control Function (gsmSCF) using the CAMEL Application Part (CAP) protocol defined in the 3GPP standard "TS 29.278".

• The Home Subscriber Server (HSS): the central repository for the user and user profile information. These user-related data are important to handle the multimedia sessions. These data can be location information, security information (including authentication and authorization information), user profile information that related to the services the user is subscribed to, and which S-CSCF is allocated for this user.

• The Subscription Locator Function (SLF): the SLF is a simple database that maps the users' addresses to the HSSs. A network that contains only one HSS does not need the SLF. The SLF uses the Diameter protocol with its interfaces.

• The Media Resource Function (MRF): it provides a source of media in the home network. It provides the ability to play announcements, mix media streams (e.g., in a centralized conference bridge), transcode between different codecs, obtain statistics, and do any sort of media analysis. The MRF is divided between two functions: the Media Resource Function Controller (MRFC) for the signaling plane and the Media Resource Function Processor (MRFP) that is responsible of the media plane. The MRFC controls the resources of the MRFP through H.248 interface. The MRFP handles all of the media functions (e.g., playing and mixing media).

• The Breakout Gateway Control Function (BGCF): it is a SIP server that includes routing functionality based on telephone numbers. The functions of the BGCF are only used with sessions that are initiated by an IMS terminal and targeted to a circuit-switched (CS) network such as the PSTN or the PLMN.

• The PSTN/CS Gateway (Fig. 6.3): it provides an interface toward a circuit-switched network. The PSTN/CS gateway provides functions that allow to make and receive calls to and from any circuit-switched network (e.g., PSTN).

-The Signaling Gateway (SGW): the Signaling Gateway interfaces the signaling plane of the CS network (e.g., the PSTN). The SGW is responsible for protocol conversion in the control plane (e.g., replacing the Media Transfer Protocol with the Stream Control Transmission Protocol over IP).

-The Media Gateway Control Function (MGCF): it handles the protocol conversion for the call sessions from the IMS side (SIP protocol) to the circuit-switched network (e.g., ISUP and BICC call control protocols). The protocol that is used between the MGCF and the MGW is H.248.

-The Media Gateway (MGW): it has the ability to receive and send the IMS media over the Real-Time Transport Protocol (RTP), and to convert the media data from and to the circuit-switched network using the Pulse Code Modulation (PCM). Moreover, it is responsible to perform the transcoding if the IMS terminal does not support the codec that is used in the circuit-switched side.

SIP Protocol

The main goal of the SIP protocol in IMS sessions is to deliver a session description to a user at their current location in order to initiate a new session [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. Then SIP is used again to modify/control the ongoing session by transporting the new session description data in order to change its characteristics. The SIP protocol is based on the well known Internet Session Description Protocol (SDP) and it is a text-based protocol that is used to describe the multimedia sessions. SIP uses URIs to identify the users. These URIs are formatted in the same way of email addresses and may contain other parameters that are separated by semicolons. Proxy servers are SIP routers. A proxy receives a SIP message from user or from another proxy and routes it toward its destination. A SIP message contains headers that is composed of a set of fields. A header field consists of the field's name, a colon, and the header field's value. The body of the SIP message contains the details and characteristics of the session (e.g., using RTP for video). The SIP protocol transactions rely on the methods that are described in the SIP message (Fig. 6.4). The figure (Fig. 6.5) presents an example of a regular transaction including two user agents: a client (UAC) and another server (e.g., AS) where the SIP proxy server stands in the middle to make the necessary forwards to the right destinations. The proxy server does not perform any action that affects the session duration. These transactions are described in diagrams that are called message flows. Message flows are important and simplified means to describe the behavior of a process such as session cancelation.

LINKING VERIFICATION, DESIGN AND MOTIVATION ELEMENTS

Supporting the Design Activity

Domain-specific modeling languages (DSML)s are important in order to facilitate the design process and to improve the time to market. Thus, we have proposed a new metamodel that extends the technology view of ArchiMate in order to facilitate the modeling of telecommunication services relying on IMS core-network. This meta-model extension contains domain-specific concepts for the IMS network that are represented in the GUI design tool with a full support to the drag and drop feature thanks to EMF that enables the generation of tools from models using Java packages.

IMS can be integrated with the Internet, as it handles all communications in Packet Domain. It plays an important mediation role which allows the operators to provide common services between 3G, Wi-Fi and other wired IP networks like the Digital Subscriber Line (DSL). These features IMS a suitable core network to rely on when designing telecom services that may work on different types of devices (Mobile, PDA, Laptop, etc.). Telecom Services are becoming more and more software based. IMS gives a solution for such revolution due to its Application Server (AS) component [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF], and the structure of the signaling protocol used to initialize the sessions (SIP protocol) which is an application layer protocol [SIP12].

We propose a meta-model (Fig. 6.6) that contains all types of aspects: active structural, passive structural, and behavioral ones. In figure 6.6, the entities that are tagged with (S character) are the active structural ones, entities that are tagged with (B character) are the behavioral ones, while the passive structural entities are information ones and tagged with (i character).

When building a meta-model for IMS, we have numerous solutions in joining the entities and their relationships. We provide below a few explanations and rationale: The meta-model is divided into 3 sections from aspect point of view, the artifact entity on the left "informational aspect", the Behavioral entities in the middle, and the structural entities on the right. The InfrastructureInterface and the InfrastructureService entities are positioned on the top of the MM, this shows the separation between the structural aspect and the behavioral one. The structural aspect represents the hardware part, while the behavioral one represents the software part of IMS core network. But there is also a usage relationship between them, where the InfrastructureService is assigned to the InfrastructureInterface. For example, the Policy Decision Function (PDF) is assigned to the P-CSCF node type [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. The InfrastructureService accesses the Artifact entity. This is logical, as software functions need sometimes input of data to perform their tasks. In the list below, we present the rest of rationales grouped by their aspects:

• Structural Entities -The connection between the NodeInterface entity and the protocol entity is the aggregation relationship. The NodeInterface should contain at least one protocol to use to communicate with other entities;

-The connection between the NodeInterface entity and the CommunicationPath entity is an association relationship. This means that an interface should have a physical communication media to send/receive data. "NodeInterface deals with software and hardware concepts";

-Every node entity has an aggregation relationship with the NodeInterface entity.

The source entity can have a group of the target entities, which are initiated and controlled by the source entity. For example: HSS has many interfaces with other nodes due to its central role. So it has (Fig. 6.1) Cx interfaces with the S-CSCF and I-CSCF, and Si interface with IM-SSF, etc.;

-A protocol entity can be: a Diameter, CAP, or SIP (inheritance relationship between the Protocol entity and the mentioned protocol types). But there are many other protocols used in IMS and we just included some of them. One can extend the Meta-Model (Fig. 6.6) and add new protocols;

-The CommunicationPath represents the communication route that may pass through several non-IMS nodes such as routers;

-A network entity is connected to the CommunicationPath entity through the realizes relationship, so the CommunicationPath is implemented by a Network.

• Behavioral Entities -Every behavioral entity inherits its specifications from the Technology Function entity. This relation provides the ability of defining common specifications for all behavioral entities such as the triggering relationship that is targeted from the TechnologyFunction to itself. For example, the StartSession function can call the Policy Decision Function (PDF) as they are both Technology Functions;

-Every behavioral entity is connected to a node entity through an assignment relationship, so a node cannot use a behavior that is not assigned to it. A node function could be one or sequence of behaviors that are assigned to that node, triggering relationship provides that sequence.

This extension of the meta-model enables the designer to model the network topology using an highly abstract level. Additionally, it adds IMS structural elements to the parsing tree of the model compilation which helps to construct the network topology that is represented in the network simulator (OPNET [ACKR12] or NS-3 [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF]). The reason is that the network simulators need domain-specific concepts that do not exist in generic modeling languages.

LINKING VERIFICATION, DESIGN AND MOTIVATION ELEMENTS

Linking Activity

The constraint is needed to configure both Network Simulation and the Analysis Tool

Supporting the verification Activity

We aim to support both design and early verification activities. Thus, we propose to add new concepts of Configuration Profiles that is associated with the constraint which realizes the requirements concept. Linking the Motivation aspect to the design and tool configuration concepts helps in reasoning the design choices and is supported by the recent versions of the ArchiMate standard. Additionally, we provide an application deployment relationship between the application component and node concepts. This deployment relationship is important according to the application testing phase during the simulation process. The configuration profile provides a direct access to the parameters of the different hardware concepts in the network simulator. This helps to specify testing conditions by the system designer. Figure 6.7 presents our proposed meta-model which is supported by the code generator to make it possible to configure hardware elements (Devices and Channels in the NS-3 simulator) by the designer in the same design model. Additionally, and for testing reasons, the "Deployed on" relationship is supported by our proposed code generator. This support enables the testing of user-plane streams during the simulation runtime. The code generator maps the corresponding Application Component into an application class in the NS-3 simulation scenario [ACS + 15, AAK + 15, AKR14].

Regarding the Resource Management (RM) part of the meta-model, this forms a proposal that we have not tested yet. According to the measurement part of the meta-model, measurements are configured automatically by the code generator and linked to the hardware elements of the simulation scenario [START_REF] Alloush | A transversal alignment between measurements and enterprise architecture for early verification of telecom service design[END_REF].

THE GENERIC STRUCTURE OF THE DOMAIN-SPECIFIC MODEL COMPILER

Our main contribution in this thesis is the model compiler that enables linking both of the design and verification tools. The main advantage of this model compiler is the concept of relying on one unified meta-model during the design and compilation activities. This model compiler belongs to the second activity the model adaptation (Fig. 5.1). We implement our model compiler through a model transformation process relying on the Xpand workflow (Fig. 5.6). Our contributions are distributed between different tracks (Fig. 6.8): (1) meta-modeling to prepare the modeling language in order to support the different activities of the proposed framework;

(2) the code generation (parsing) rules in order to add the new operation semantics to the generated code that enable it to be executable in the target platform (network simulator in our case); (3) the error detection rules which are of two types: independent and dependent of the simulation process. All of the mentioned development paths are dependent of the modeling language that is developed by domain experts to produce the domain-specific modeling language. Both the abstract syntax and the grammar of this modeling language is represented in the metamodel of ArchiMate that is developed in the first mentioned path. The domain-specific model compiler and the meta-model are fixed components in our proposed framework as they should be developed by domain experts. The meta-model is used to generate the design tool as a reusable GUI that supports the drag-and-drop feature to facilitate the design process. Moreover, this meta-model forms the unique parsing tree for both the code generation and error detection procedures. A compiler can handle the same program and represent it in multiple languages [START_REF] Kleppe | Mcc: A model transformation environment[END_REF]. In our case, the design model contains sequences that can form one or more programs to be executed in the evaluation tool. The fact that the design model is of a highly abstract level makes it possible to generate different representations from the same design to different languages of different tools. A compiler translates source code from high-level programming language (e.g., C++) to a lower level one (e.g., Assembly). The input of our model transformation is a model that is a visual representation of systems including sequences of behaviors and structural elements, with high level of abstraction. The implementation of the template of the model transformation differs according to the target evaluation tool: OPNET [CAKR11, ACKR12] or NS-3 [AKR14, AKR13c, AKR13b, AKR14]. In both cases, the design language (represented by the meta-model [START_REF] Chiprianov | Telecommunications service creation: Towards extensions for enterprise architecture modeling languages[END_REF]) is unified and conserved. Thus, error checking rules are not needed to be changed as they are related to the modeling language itself, so they are independent of the target tool except one method that relies on the Tcp events of the network simulator NS-3. The change is in the representation between two different tools and domains: modeling and simulation, according to the difference between the languages used in both of them.

Our proposed DSMC is composed of (Fig. 6.8): (1) a front-end related to the modeling (2) a back-end related to the target tool and relies on the modeling language syntax and semantics to collect and analyze the design model and to generate the code (executable) that can be run directly in the NS-3 simulator. According to the mentioned ends, it is clear that we generate simulation scenarii directly from the design models.

In the following sections, we will present the different parts of our proposed domainspecific model compiler.

CODE GENERATION USING ECLIPSE-XPAND

This macro activity belongs to the second activity (Fig. 5.1), which is the model adaptation. A code generation is an exogenous and vertical model transformation. An exogenous transformation is "a transformation between models expressed using different languages" [START_REF] Mens | A taxonomy of model transformation[END_REF]. A vertical transformation is "a transformation where the source and target models reside at different abstraction levels" [START_REF] Mens | A taxonomy of model transformation[END_REF]. In our approach, the main objective of the code generation is to obtain simulation scripts or executable programs from highly abstract models thus this model transformation is vertical, and the generated code contains information from the source models but differs in the syntax and semantics.

We map between two technical spaces1 : design, and network simulation. This mapping [ACKR12, AKR13b] includes software and hardware concepts as the underlying telecommunication platform (IMS) contains proxy servers, terminals, communication paths, etc. This results in mapping the abstract concepts of the design model to the modules of the network simulators. Additional operational semantics are needed to be added to the design information of the model when generating the executable code that represents the simulation program using XPAND language (Fig. 3.18). These semantics are related to the language of the target tool (e.g., C++, Java, etc.). The meta-model of the modeling language plays the role of a parsing tree that is used during the code generation process. It defines the types and relationships with their grammar that is used in many cases to trace the design topology and architecture (e.g., relationships between the different layers). These grammar and relationships are useful for the error detection rules as well as we will present very soon.

ArchiMate modeling language provides separation between the different concepts of the system between [The09a]: behavioral, active structural, and passive structural aspects (Fig. 6.9). The behavioral aspect represents the action to be performed by an active structural element of a system. This distinction between the different aspects makes it easier to iterate over every aspect separately and trace the different architectural elements of the design model. This iteration can be conditioned (filtered) to obtain a specific set of elements that are needed to be analyzed, manipulated or printed in the output file during the parsing process.

We have implemented the code generator through different versions with the time. These different versions [AKR14, AKR13c, AKR13b, ACKR12] contain large steps in the capabilities of the code generator and in the way it represents the architecture of the system in the verification technical space.

languages, and formalisms associated to a particular technology" [START_REF] Mens | A taxonomy of model transformation[END_REF] The main differences between the version presented in [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF] and the one presented in [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF] are related to the way of mapping and implementing the behavioral elements and their relationships. Additionally, we have developed a method to represent the multilayered architecture of ArchiMate in the generated code in [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF].

Mapping of behavioral and structural concepts

The first step in our development was to transform the behavioral and the structural elements described in the technology layer [ACKR12] [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF] to the simulation program/script. The information of the technology layer are enough to build a simulation scenario as they contain IMS specifications and the message transactions between the different nodes of the system in addition to the different technology functions.

The code generation rules add new syntax and operational semantics to the generated code in order to produce a program that runs directly in the simulator. In this version of our code generator, the code is built in the imperative programming way. Moreover, we have added a new capability to link the design elements to the measures of performance. This enables the designer to choose which type of measures is to be connected to each structural element of the network (e.g., communication channel, proxy server, etc.) in the technology layer of ArchiMate.

Our main advance in the next version [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF] is on this side, where the object oriented programming approach is used. The main feature in the newer version is that it represents the multi-layered architecture of ArchiMate in the generated C++ program (simulation scenario) that runs directly in the NS-3 simulator. This feature improves the granularity level of the generated program, thus it adds more clarity to the code. This advantage helps to trace the problems of the generated program in a better way, thus it helps to manage the complexity of the verification process.

We will present the aforementioned mapping methods in the next subsections.

Structural Aspect Mapping

We rely on the structural elements of the technology layer of ArchiMate to build the topology of the network in the network simulation scenario. This is the first step when constructing the simulation scenario, where functional implementation comes directly after the topology. Assignment relationships are used to link between the structural and functional elements in the design modeling language. The figure 6.10 presents an elementary model that shows how to connect between two nodes using the design tool and relying on the ArchiMate language. The model transformation rules (implemented using XPAND language) iterate over the communication paths in the design model, then they trace both sides using queries that rely on the meta-model (as a parsing tree) until reaching the two ending nodes for each communication path. This procedure is presented in the figure (Fig. 6.11). Figure 6.11 presents the different rules and iterations that enable the transformation of the structural information from the technology layer of the design model into the network simulator tool. The figure does not contain detailed information such as the syntax that is used configure the network simulator (we use NS-3 here), but shows the different activities that compose the code generation process for a specific and major part in the simulation program: the network topology. This procedure can be divided into two main phases: (1) Query and Data Collection Phase: to collect the information needed to create and configure nodes and edges of the topology respecting the network specifications and domain-specificity of the design. The rules of this phase are independent of the target tool;

(2) Code Implementation Phase: this phase is dedicated and dependent of the target tool (NS-3 in our case). The first phase is independent of the target tool, thus it can be used with any other simulator (e.g., OPNET) as we have done in [ACKR12]. The difference is that in the second phase which is related to the syntax and operational semantics of the configuration language that is accepted by the target tool to be configured. Thus, different transformation scripts are used. Each transformation script is used for a specific target tool (simulator). This point is covered by the tool selection method that we propose in [START_REF] Alloush | An automated tool selection method based on model transformation: Opnet and ns-3 case study[END_REF] (see section 6.5).

In a later development during the period of this thesis we have improved our structural mapping method to include the structural information from all layers rather than the technology one. This advance [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF] will be presented in the section 6.6.

The behaviors that are described in the system design are linked to the structural elements through relationships such as the Assignment one (Fig. 6.9). This type of relationships help us to represent the behavioral aspects of the design in the verification tools and relate them to the right structural element. For instance, in the technology layer, if function1 is assigned to node2, this means that function1 should be performed by the node2. This concept can be mapped in the programming languages (e.g., C++ for the NS-3 simulator) using the concept of classes and their own methods/functions. This point will be presented in the next subsection.

Behavioral Aspect Mapping

The behavior of the system is represented in different layers according to ArchiMate language (Fig. 6.9). Every one of the 3 layers of ArchiMate contains behavioral aspects (Fig. 6.12) that belong to a specific domain of modeling: business (e.g., business functions), application (e.g., application functions), and technology (e.g., technology functions). We map the behavioral elements with their relationships (e.g., triggering, assignment) from every layer to the simulation program. Like the first development step of the structural mapping between the design and simulation models, we map the behavioral elements of the technology layer to the simulation scenario [CAKR11, ACKR12, AKR13b]. These (2) the assignment relationship between a node and a function are understood as a class and its method/function in the configuration script of the target tool. So if a function is assigned to a node, it means that this function should belong to the class that represents this node;

(3) the access relationship between a function and a message to an input of the function in the code of the target tool.

The development steps of Model Compilation

This first version (MC1) is developed to generate Java code for the business and application layers, while it generates simulation code for the technology one (Fig. 6.13). The reason is that both of the business and application layers contain concepts that are very highly abstract which makes them proper to be presented using general purpose programming languages (Java in our case [START_REF] Chiprianov | Telecommunications service creation: Towards extensions for enterprise architecture modeling languages[END_REF]). The information of the technology layer contains domain-specific and networking concepts (IMS architecture [START_REF] Chiprianov | Telecommunications service creation: Towards extensions for enterprise architecture modeling languages[END_REF]ACKR12]) that makes it proper to map its information into network simulators. The procedure of generating the behavioral concepts of the design model (Technology Functions [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF]) starts by searching for the CreateInvite function (an IMS method [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]) or TFStart function (a logical abstract function that helps the designer to initiate the procedures of the technology layer). Then it follows the triggering relationships (Fig. 6.14) in order to trace the functional sequence of the message flow diagram of the service. Our mapping method considers that the exchange of messages between the different nodes is always done by the function "SendTo" that is defined in our extension (DSML for IMS core network [CAKR11] [Chi12]) to the technology layer of ArchiMate modeling language. The action of exchanging messages (SIP or Diameter [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]) between the different nodes of the network represents the exchange of the data in the control plane of the distributed complex system of IMS. Regarding the data of the user plane, they are represented in the data streams that flow between the different nodes according to the UDP/TCP traffic that is generated by the application functions which are represented in the application layer of ArchiMate. The application functions are related to the application components by assignment relationship. Every application component in the application layer can be deployed on a specific node in the technology layer. This deployment relationship is understood (by our proposed model compiler) as an initiation of user plane application during the simulation process.

In the second version (MC2), we have improved the mapping rules of the code generator to represent the whole architecture of ArchiMate language including the concepts of the 3 layers (Fig. 6.12) into the simulation program of NS-3 network simulator. This point will be presented in a later section (see section. 6.6). In this version [START_REF] Alloush | Transforming viewpoints of distributed designs to support simulation scenarios[END_REF], the code generation procedure searches for the "Start" logical function that is in the business layer and then it follows the triggering relationships (Fig. 6.14) in order to trace the functional sequence in each layer, while it follows the association relationships for function calls between each two neighboring layers.

TOOL SELECTION METHOD

The metrics associated with performance requirements are numerous, and it is difficult to find a unique tool that can handle the prediction of their values. Thus, we propose a tool selection method [START_REF] Alloush | An automated tool selection method based on model transformation: Opnet and ns-3 case study[END_REF] in order to automate the choice between the different possible verification tools (simulators in our case) according to their capabilities (measurements in our case) and relying on Model Driven Engineering concepts. This enables us to tackle the tool selection challenge for the non domain-expert designers taking into consideration the differences between tools and the large number of metrics that they can measure.

We have implemented the tool selection method (Fig. 6.15) using the same model transformation language: XPAND. This adds a new feature to our proposed framework. .17 : XPAND template using Eclipse Software

• Our method distributes the complexity of the tool selection method between two activities: Modeling and Model Transformation. The model transformation rules are fixed, while the tools and their specifications' models can be created/modified easily by domain and tool experts;

• The measurements may be previously implemented in tools, or they can be customized by assembling specific probes that are previously built in the tool. Thus, the tool is selected when it contains all of the probes that are needed by a measurement;

• There is one loop for the measurement selection (Y times) and 3 other nested loops that are used in the model transformation template (Fig. 6.17) and the complexity of the algorithm is computable due to its simplicity.

We estimate the complexity of the proposed algorithm taking into consideration the worst case, as the number of the probes is different from one tool to another and it is also different between the measurements.

Complexity = θ(Y + N * max(P M) * max(P T)); PM is number of probes defined for measurements, PT is the number of probes for tools (simulators), N number of tools (simulators), and Y is the number of the measurements.

This proposed tool selection method supports the rapid prototyping as the testing activity is right after the modeling one and before the implementation. Integrating this method with our proposed model compiler forms a way that easies the evolution of services as the transformation between design and verification tools is automated, so we improve the automation level of our proposed framework.

In the next section, we will present our method to map the multi-layered architecture of the modeling language (ArchiMate) into the verification technical space (simulation in our case).

TRANSFORMING THE MULTI-VIEWPOINT ARCHITECTURE OF THE DESIGN TO THE SIMULATION PROGRAM

The method proposed in this section aims to transform the multiple viewpoints of Archi-Mate from the Telecom Service highly abstract design to the scenario of classical network simulators. We develop our first version of the code generator [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF] to include the mapping of the multi-layered architecture of ArchiMate into the simulation tool (NS-3 in our case).

The objective from the viewpoints concept is to organize the different activities between the designers from different domains and backgrounds. The point of transforming this concept to the network simulation is to represent the different actors, components in order to: (1) trace the flow of execution of the design; (2) implement functions even if abstracted for override (reconfiguration) later by the developers according to their needs; (3) separate the concepts of the TS design (user and control planes) in the simulation program. On one hand, ArchiMate provides a language to describe the EA through its multiple layers and the different domains of concepts. On the other hand, NS-3 [START_REF] Henderson | ns-3 project goals[END_REF] relies on class concepts as it accepts the C++ language for configuration. The C++ program can control the simulation scenario through different APIs that are provided by the libraries of the NS-3 simulator. Our method in this section relies on these features of both the ArchiMate language and the NS-3 simulator to express the architecture of ArchiMate in the simulation C++ program.

XPAND enables performing syntax checks, and to analyze and manage the replacement of variables with their values from the design model. This replacement occurs side by side with the static implementations that respect the language of the target tool.

In the following we present the mapping rules that we implement through XPAND model transformation:

• Every Business Actor or Role, and Application Component in the design model is mapped as a class in the target tool (NS-3);

• Every Business Function or Activity, and Application Funciton in the design model is mapped as a function that is implemented in the corresponding class in the target tool (NS-3). The correspondence is represented by an assignment relationship in the design model;

• The relationship between the functions/activities of the different layers is accepted to be an association relationship while it is excluded (through the model transformation activities) when it occurs between elements that do not belong to two consequent layers;

• The calls between the functions on the simulation scenario are initiated by triggering and cross-layer association relationships in the design model;

• Regarding the technology layer mapping, it stays as implemented in the first version [START_REF] Alloush | A generalized model transformation approach to link design models to network simulators: Ns-3 case study[END_REF];

• The initialization behavior that starts the sequence of function calls in NS-3 is (by default) the starting function (logical function) of the business layer.

The first function that initiates the call sequence is the start function and should be in the business layer. The instantiation of its class (assigned business actor) and the function call are done in the main function of the simulation program (C++ program). In order to implement all of the classes in the same simulation program (one file), we start by implementing the application layer elements then we go up to the business ones. The reason is that the application classes are to be instantiated in the business ones so they should be declared beforehand. Figure 6.18 presents our proposed algorithm to list the application components of the application layer (in ArchiMate) in reverse order from that of the function calls. The same algorithm is used to order the elements of the business layer.

After having the model elements listed in the proper order for the simulation program, we iterate over these elements (application then business layers) to create an application class in NS-32 for each element. The assignment relationship helps to establish the correspondence between functions and structural elements (Fig. 6.12). This helps the code generator to correctly implement the functions in the corresponding application class of the simulation program. With regard to the calls between the different functions, there are two cases according to the triggering relationship (intra-layer callings): (1) the source and target functions belong to the same class/component -then there is no need to in-stantiate a class (call is direct); (2) the source and target functions belong to different classes/components -in this case there is a need to instantiate the target class in the source cone. Another case is considered: the association relationship between two functions that belong to different layers (inter-layer callings). In this case, we instantiate the class of the target function and then call the destination function (except for the case when the target belongs to the technology layer where we call the function directly because all of the technology functions are declared at the beginning of the simulation program).

Discussion

The intra and inter layer calls help to represent the interoperability between the different layers in the simulation program. Mapping the design aspects (behavioral, structural) using the application class concept helps to improve the fine-grained level of the simulation program. Additionally, relying on NS-3 enables us to verify and test designs of different distributed systems (different applications and objectives) according to the networking domain and performance non-functional requirements.

In addition to the rapid and automated code generation (few seconds) of the simulation program, our contribution helps the TS designer during the evaluation of the design model by: (1) improving the clarity of the generated code as it applies an object oriented concept (class concept); (2) improving the re-configurability of the simulation parameters and service functions as they are abstracted; (3) separating the control from the user planes descriptions thanks to the separation between the application and technology layers in the design model.

In the next section, we will present our methods to detect errors of the design model through the model compilation process.

ERROR CHECKING PROCEDURES

This macro activity belongs to the second the main activity of DeVerTeS (Fig. 5.1). The objective of this section is to present our methods to detect errors in the design using model transformation techniques and relying on the same code generation language (XPAND).

Detecting errors in complex designs in the IT domain is a daunting task that immobilizes multi-domain experience. The late detection of an error has direct impact on the time of delivery, the time of development lifecycle, and the cost of the deployment, especially when the design contains distributed and complex systems (e.g., telecommunication services, Marine Observatory Systems). In this section, we propose our methods that aim to detect domain-specific errors in the design model before and through simulation process. We propose two methods of error detection that are not related to the target tools and a method that is related to the network simulator (NS-3 in our case).

Telecommunication systems are complex. This complexity leads to errors in the design. Modeling helps to cope with the complexity of the system design but creates a need to be interpreted for execution purposes. In order to hide the complexity, it is better for design models to be highly abstract and to rely on languages that are rich with syntax and semantics that are adequate to describe the domain-specific concepts. Code generators can be used to bridge the language gap between the design model and the execution platform.

ERROR CHECKING PROCEDURES

Simulation offers an approach that makes it possible to evaluate the design models at an early stage before the implementation and deployment phases. This result in reducing the time-to-market competition factor. Our general objective is to provide the different stakeholders that are involved in the service creation activity with proper tools that help them to manage the complexity of the design and reduce the time-to-market competition factor.

In a previous section, we have proposed a model transformation that maps the mentioned viewpoints and reflects them into the executable simulation scenario (see section. 6.6). ArchiMate is supported by a design tool called Archi that contains a graphical user interface (GUI) with drag and drop feature to facilitate the design process. A domainspecific extension was performed to this modeling language in order to support the design of Telecom Services relying on the IMS underlying platform. This design tool can be generated from the meta-model that represents the syntax of the modeling language using Eclipse EMF framework.

This design tool has the capability of preventing during the design runtime some errors that are related to syntax or semantics by applying the language constraints. An example for this feature is when preventing the designer from using the triggering relationship between node and function. Detecting such types of errors is helpful to avoid errors when transforming the design model into another one to adapt it with other tools. In this case, it will be very difficult and time consuming to trace the error source and correct it.

Thus, we propose additional methods to detect errors at an early stage. There are two main reasons for the design errors: complexity and lack of domain-specific knowledge. The design tool can prevent some of errors from both types as modeling with GUI helps to manage complexity besides that the modeling language is extended to contain IMS elements accompanied with their design constraints. However, this is not enough. The major reason is that the designer may make design errors related to his own decision. The design tool cannot judge the designer decisions and configuration choices (e.g., when the designer forgets to make any association relationships between the functions of two consequent layers). It relies on drag and drop events to apply constraint checks on the design. The model transformation mechanism can do more deep analysis and checks on the design as it relies on the whole parsing tree (the meta-model) at once and can use powerful data collection and list features through no limitation of nested iterations usage. This forms the motivation behind our contribution in this section.

Active Checking Procedure

We call "Active" the error-checking procedure that stops the Xpand work-flow (Fig. 3.18) when an error is detected. The process of this type of checking should be enabled in the configuration script of the Xpand work-flow. Xpand provides a language to implement checking rules on the attributes of the different elements of the model. It relies on the syntax that is described in the same meta-model of ArchiMate/DSML. We have implemented checking rules to analyze directly the attributes of the elements of the design model, and to check the interoperability relations in order to follow the concepts of the modeling language (ArchiMate).

We apply the form shown in (Fig. 6.19) to implement our rules for the active checking. Most of these rules are related to the interoperability between the layers and to the functions of a same layer (semantics). The same figure shows an example of a rule to check the constraint of "any direct call (association) between two functions that belong to non-neighboring layers should be rejected", which is applied to the Technology and the Business layers. Another rule is defined for the vise-versa call. Relying on the mentioned general form in figure 6.19, we have implemented the following rules that are missing in the original language and proper to our usage (domain-specificity): (1) the length of the name of the design elements is less or equals to 1; (2) a usage of association relationships between functions from a same layer is rejected; (3) a usage of association relationship between functions from different layers is rejected. This checking language in Xpand offers limited syntax unlike the one of the Xpand main template that we use for the code generation rules. Thus, we rely on the Xpand template to perform the checks mentioned in the next subsection.

Passive Checking Procedure

We call "Passive" the error-checking procedure that does not result in stopping the Xpand work-flow (Fig. 3.18) when an error is detected. This procedure helps the designer to correct and modify the model by generating a report that contains detected errors according to deep analysis in relation with the domain-specific concepts and the modeling language constraints. Although we rely on the Xpand language to implement the rules of the passive checking procedure, this procedure is executed before the code generation rules that are responsible for generating the simulation program of the target tool (NS-3 simulator).

Relying on the Xpand language makes it possible to reach all of the elements of the design model and may contain as many loops, lists, comparisons, etc., as needed to investigate a constraint that may be related to the meta-model or to the meanings and choices done by the designer. This enables us to implement different algorithms that apply rules to check the possible errors that are related to the domain specificity. One can apply the same constraints of the active checking procedure here, but his won't be able to stop the code generation procedure when an error happens, while we want to extract all of the advantages of the Xpand work-flow to detect errors and notify the designer.

Using the Xpand language we have implemented two following checking rules.

1. The simulator will execute any program that is implemented correctly according to its programming language (C++) and networking concepts (NS-3 libraries). This program can be composed of many functions. It can also be a display statement only. A gap between two consequent layers will result in the implementation of the behaviors of all the layers, but there will be a discontinuity in the behavioral sequence between them (no calls). Thus, the simulation will compile and run normally, but the results will be missing. Hence, we have implemented the following rule (Fig. 6.20): There should be at least one call between two functions from every two neighboring layers (or what is called cross layer association). This type of interoperability checking is related to the logics of the modeling language (ArchiMate) and is executed by the workflow (Fig. 3.18) before the code generation mapping rules;

2. A service designer may make a mistake when configuring the attributes of the struc- tural elements. Consequently to the large number of structural elements in the network design of the technology layer, a designer may make a mistake in the configuration of the network addresses of two interfaces that are communicating though a P2P (point to point) link. This type of error can be related to a lack in domain experience, or to the complexity of the design itself. Therefore, we have implemented the following rule (Fig. 6.21): Every two interfaces that are connected to each other through a communication path should have the same network address. According to our practice, it is so complicated and time-consuming to trace such type of error through the simulation of complex designs. The designer may need to perform debugging steps as the NS-3 will show a runtime error that is difficult to be understood or analyzed without debugging.

DISCUSSION

The advantage of this link is to relate the behavior continuation with the interchanged messages between the different nodes of the distributed system regardless of the internal transactions of every node. Additionally, it relates the continuation of the behavior of the system with the conditions of the physical channel (disconnection, delays, etc.).

DISCUSSION

In this section, we have presented so far our different contributions in the context of service creation environments. We have proposed a domain-specific framework that relies on the one proposed in [START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF] and extends the design activities with early verification ones before the implementation phase. Our framework includes different activities and their supportive tools. It fully relies on models to represent the complex system of the telecom service. This helps to manage the complexity of the system design. Model Driven Engineering facilitates dealing with models as model transformations help to smoothen their exchange between the different tools which means achieving the tools' integration together.

We have proposed different methods that support the different activities of our proposed framework. We rely on model transformations to integrate between the different tools in both design and verification activities. This model transformation relies on Archi-Mate meta-model as a parsing tree to collect, analyze, and map the information of the design model into different target tools (OPNET, NS-3) and generate new executable codes with new syntax and operation semantics. Our framework is composed of linking and adaptation activities. In the linking activity, we have proposed a new meta-model that supports linking requirements, design, and verification elements together. This provides a modeling language that supports all of the design and early verification activities. Different constraints, relationships, and elements are added to the meta-model in order to support testing process through simulation such as application deployment relation between the application component and the technology node, and the configuration profile that can access the configuration attributes of the hardware components in the simulation scenario. Moreover, we have proposed an IMS meta-model that supports the design activity. It represents the abstract syntax of the domain-specific modeling language which is an extension of ArchiMate standard. We can generate graphical design tool with drag and drop feature to facilitate the design activity.

Additionally, we have proposed different methods in the adaptation activity. These methods help to improve the development time through adapting the design model to the verification tools (network simulators in our case). Therefore, we have proposed and implemented tool selection, code generation and error detection methods. The code generator and error detection methods form a model compiler that relies on the same meta-model as a parsing tree and can generate error logs and simulation scripts/programs that can run directly in the network simulators (OPNET [ACKR12], NS-3 [AAK + 15, AKR14, AAKR14]). Moreover, our model compiler respects the transformation of the multi-layered architecture of the design model into the simulation program. This helps to improve the granularity level of the simulation program and thus enhances the clarity and error traceability.

In the next chapter, we will present our implementation and methods to validate our proposal though two examples of complex systems that belong to two different domains: Marine Observatories, and Telecommunication Services.

Implementation and Validation

PREAMBLE

In this chapter, our objective is to present the validation examples that we apply to our framework activities in order to prove the its re-usability in the different application domains. These examples are from two different domains: Telecommunication Services (TS) and Marine Observatories (MO). An example of the TS that we use is the Video Conferencing (VC) system, while an example of the MO is the underwater object detection.

In the case of the MOs, we present an additional meta-model that adds new domainspecificity of the information system of MeDON to both the IMS extension and ArchiMate modeling language. This provides new constraints and elements that are specific to the system of MeDON. The overall extended meta-model is used to generate a graphical design modeling tool that applies the constraints during the design process.

The major interest in our validation process is to prove that the same framework including the same unified meta-model and model compiler with all of its components and features are applicable for the different complex systems: Telecommunication Services and Marine Observatories. Moreover, we intend to test our IMS extension of the meta-model of ArchiMate for integrating the different complex systems together through one evolving platform: the IMS.

We choose two complex systems that are proper examples of resources high-demanding systems as we are interested in verifying the system design against performance nonfunctional requirements. The video conferencing system is a high demanding one that requires resources [LLS + 99] necessary for both video and audio streaming. Audio/video streams can be sent by hydrophones or underwater cameras to the information system through the core-network (IMS) in the case of Marine Observatories.

We illustrate our approach and contributions by analyzing the results of the network simulations for each case of complex systems and the different types of outputs such as error-detection logs and measurements. Some of these error-detection outputs is collected even before the simulation process. This illustration includes real errors that were done by us to test the error-detection methods that we propose. The design models that we use represent cases that use the concepts of the new extensions to ArchiMate through the DSML that we propose besides to the original standard ones.

TELECOMMUNICATION SERVICE

In this section, we present our implementations of the main example of complex systems: the TS. A telecommunication service is composed of components and applications that The variety of the domains, to which the components of a TS belong to, leads us to choose ArchiMate (Fig. 7.1) that is an Architecture Description Language as a modeling language. The business layer of ArchiMate enables the modeling of the TS in a highly level of abstraction using business process modeling which can be used by designers from the business domain (e.g., project managers). Additionally, this point provides a clearer view to the service functionality and composition neglecting the technical details. The application layer of ArchiMate provides a view to the service composition from application viewpoint. The concepts of this layer (e.g., application components and functions) helps to represent middle-wares and how to use the underlying platform(s) from the level of system engineering domain. Finally, the technology layer provides a level of modeling that permits representing the hardware elements of the system (e.g., nodes) and the functions of the system from a technological viewpoint. It acquires more experience about the details of the system architecture and how to run its applications and functions.

UNDERWATER COMPLEX SYSTEMS

In this section, we present another domain of applications the Deep Sea Observatories (DSO)s as we rely on a case study from this domain later. This case study aims at validating our approach. Actually, DSO are complex systems that contain a large-scaled underwater sensor network that is to be integrated with an Information System (IS) in order to collect and analyze the data that they provide. This data has different characteristics: (1) can be continuous streams (e.g., video streaming in the case of underwater cameras); (2) can be time stamped text information (discrete). Thus, a reliable communication between the sensors and the information system is required to ensure the reliable results.

In another direction, there is an interest to access these results anywhere and anytime from a large number of users (e.g., administrators, analysts/scientists) using their laptops, PDAs, etc. The Internet technology provides this capability. For instance, a scientist would like to access the video recorded for a certain period which is stored in a data storage center of the information system.

Therefore, these information systems should rely on large and complex heterogeneous systems that represent the core-networks in order to: (1) be accessed by end-users using Internet technology considering reliability and security issues; (2) ensure the communication between the different components of the information system (e.g., database servers, data fusion servers, etc.).

To conclude, there are two sources of complexity in the case of underwater systems: (1) the complexity of the sensor network and information systems; (2) the complexity of the heterogeneous core-networks that form the infrastructure that provides the communication capabilities between the different elements of the information system and the accessibility to this information system anywhere and anytime by end-users.

COMPLEX SERVICE EXAMPLES

In this section, we provide an overview for two types of services that are different in application but close in system nature: the conference service and the underwater object localization one. Our motivation is to present these two services as we are going to use them as examples to validate our approach in the validation chapter. They are both distributed complex systems and rely on heterogeneous communication architectures. We provide the points of interest from studying both of systems in the scope of our research.

Conference Service

In the context of telecommunication services, a conference service is: " a virtual meeting, done with the help of a set of telecommunications technologies (e.g., telephone, video, web), which allows two or more geographically remote locations to interact in real-time via two-way video and/or audio and/or text transmissions simultaneously" [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. There are many examples of video conference services (e.g., Viber TM , Skype TM , WebEx TM) as software products, and Polycom R , Tandberg TM as hardware and complete ones. The case of conference service represents a complex service [BDC + 89] as it is composed of different applications (video, audio, chat, file transfer, etc.) that are interacting with each other. The challenge for such service is that it demands high network resources in order to achieve an acceptable level of QoS [LLS + 99]. There are two signaling protocols that can handle the conferencing services in the current state of the art: H.323 [START_REF] Toga | Itu-t standardization activities for interactive multimedia communications on packet-based networks: H.323 and related recommendations[END_REF] and Session Initiation Protocol (SIP). SIP protocol is gaining popularity according to its simplicity and flexibility in the IP-based conference services as its messages are text-based and rely on the concepts On the side of the behavioral description [START_REF] Rosenberg | A framework for conferencing with the session initiation protocol (sip)[END_REF], conference services contain different operations (functions) such as: Conference Creation, Participant Addition, Participant Remove, Conference Destroy, Obtaining Membership Information, Adding and Removing Media, Conference Announcements and Recordings. These operations represent highly abstract methods that are to be executed in the centralized control nodes (called the focus). The requests and reactions between the participants and the focuses rely on SIP protocol and are called SIP dialogs. These requests contain a method field [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF] in the SIP message stack that identifies the objective of the message (e.g., Conference Creation, Participant Addition). Later on, and in the validation chapter, we are going to rely on examples from these concepts when representing the service design. After the session is initialized, the media data exchange is done between the agent (participant) and the mixer node and is controlled through a specific protocol for the multimedia data transfer over IP called: the Real-Time Transport Protocol (RTP). The mixer encodes, decodes, mixes the multimedia streams to be distributed to the different participants. IMS supports the conference service, and SIP protocol plays a major role in the control plane of IMS.

Different developments for conference services took place in the last two decades, and their tools are widely spread and used. Security plays a major concern in this context, where sending the IP multicast to enable interactions between the participants creates a weakness in security [START_REF] Rosenberg | A framework for conferencing with the session initiation protocol (sip)[END_REF]. This challenge is faced by relying on the tightly-coupled (unlike the loosely-coupled model) model [START_REF] Levin | High-level requirements for tightly coupled sip conferencing[END_REF] of conference service where a centralized control server manages the conference. In this context, there are many working groups that made efforts to improve this model such as IETF SIPPING and XCON workgroups. The XCON work group contributed in the security of multimedia conferencing by developing set of protocols (e.g., floor control protocol [START_REF] Henning Schulzrinne | Requirements for floor control protocol[END_REF]).

The centralization concept makes a problem in the case of large-scale systems. From the business trend view the problem is in the large-scale architecture and the ability to gather large number of participants at the same time in one conference. On the technical trend, the same challenge comes from the way of handling and organizing the signaling between the different servers. This creates a delay in the SIP interactions between the different nodes and then affects negatively the overall performance of the service. The main argument in [CJN + 05] is about improving the scalability of the conferencing service that relies on SIP protocol. They propose to decentralize the control of the conference between primary center that controls the whole conference management, and local centers that manage the conference according to the regional participants. This reduces the delay of the SIP message which in return improves the overall service performance thanks to the improvement in service initiation period. Thus, measuring and evaluating the performance of the conferencing service is important before launching it in the market and providing it to the end-users. Another issue was raised in [LLS + 99] in relation with the optimal solution to efficiently reserve the resources needed for the services such as video conference service in order to satisfy the QoS requirements of the applications (data, video, audio).

From the two aforementioned works [LLS + 99, CJN + 05] we conclude that it is important to measure and evaluate the performance of conferencing services. This evaluation should consider the satisfaction of both QoS and QoE [START_REF] Khirman | Relationship between quality-of-service and quality-ofexperience for public internet service[END_REF]. In order to verify the design of the system of conference service it is important to measure different metrics in the net-

Modeling the video conference service

In this subsection, we illustrate our approach with an example of TS (video conference) relying on IMS platform [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. We are interested in the control plane (signaling) messages that are exchanged between the different nodes to perform the creation of the conference, and we focus on the messages of the application layer (in the OSI system). The SIP protocol is the main application protocol in IMS. SIP messages are text plain messages, the fact that makes it easier to read and analyze them.

We take the case of joining conference that is described in [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. According to the definitions of ArchiMate language, the design is decomposed of 3 layers: business, application, technology. This case study is a continuation of the work that is presented in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. Thus, we rely on the models that were constructed in that recent research for the case of video conference service. Additionally, we rely on the same domain-specific modeling language and extend it to support more activities in the early verification process such as configuration profiles and measurement elements and their relationships with the original elements of the ArchiMate language.

The Business Model

The business model (Fig. 7.3) provides the relation between the service and the external actors of the system. Additionally, it provides the high abstract description of the service business process and components. In the description of the conferencing service there can be two types of roles: Moderator and Participant. In this model, the concepts of Taking the decision (Fig. 7.3a) leads the Moderator to create the conference and to send the connection details to the rest of the participants (Fig. 7.3b). At any time, a participant may decide to enter the conference using the details received from the Moderator, starts the conference, chats, speaks, and/or sends video at the same time, as many times and in any order (s)he may want, until exiting the conference (Fig. 7.3c). Then the Moderator terminates the conference (Fig. 7.3d). Every one of the business functions can be associated with one or more application functions. This association relationship means a call between the two functions where each one of them belongs to one of the business/application layers. This relationship helps to keep the continuity of the execution between the behaviors of the different layers until reaching the technology level where a code generator can generate codes that can run in a different platform such as network simulators (NS-3 [AKR14], OPNET [ACKR12]) or Java executable codes for Java Virtual Machine (JVM) [START_REF] Chiprianov | Telecommunications service creation: Towards extensions for enterprise architecture modeling languages[END_REF].

Our scope for simulation

The Application Model

The application model presents how the system will execute the different activities mentioned in the business model. The figure 7.4 presents an excerpt from the application model for the video conference service. This model uses concepts from the DSML proposed in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] that extends the original meta-model of the ArchiMate language. This model shows the different choices to execute the <EnterConference> function by the system. The association relationship between the function <EnterConference> and the application functions (Conference console launching, Conference joining by sending invite, Response checking, Conference subscribing, Conference joining) provides the ability to call every one of the target functions from the source one in the business layer.

The action of <Entering Conference> is the most important phase, when the signaling is established (Fig. 7.4). The concepts of Application: <ServiceFunctionalOperation>, <ServiceFunctionalComponent>, and relations of 'triggering', 'assignment' used in Figure 7.4 are defined in the ArchiMate extension that is presented in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. The Client part (Application Component) of the conference system launches the console and tries to join the Participant to the conference (Application Component). If the connection is refused for 3 tries maximum by the ConferenceSystem (Application Component), an error message will be displayed. If everything is alright, the Participant subscribes and joins the conference. The function <join conference> is associated to another function from the technology layer to continue the sequence of function execution and then run the service in the underlying platform through executing the functions of the technology layer.

The Technology Model

The design model of the TS contains high abstract level of details such as Nodes, application protocols, messages, sequence of functions that call each other, etc. First, we present This method provides a direct mapping of the design structural aspects that are related to the network topology into the simulator tool (OPNET, NS-3). This statical view (Fig. 7.5) is mapped directly into the network topology of the target simulator (OPNET, NS-3). This model is inspired from the IMS reference [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF] and presents an example of a terminal that joins a conference through the IMS core-network. The model contains: (1) Terminal; (2) P-CSCF; (3) S-CSCF; (4) I-CSCF; (5) Application Server (AS); (6) Media Resource Function Processor (MRFP); (7) Home Subscriber Server (HSS). The code generator of the model compiler generates code (Fig. 7.6) from the mentioned design model and transforms the elements of the statical view into a network topology in the network simulator. This is realized through generating a configuration script (OPNET simulator) and a C++ program (NS-3 simulator). This code shows how the nodes are named in the network topology of the simulation scenario and some configuration statements in the generated C++ code to initiate the network specifications. The code is generated following the methods that is presented in the previous chapter (Fig. 6.11). The network topology is represented in the different network simulators transparently. In the figure (Fig. 7.7), we present a snapshot of the topology related to the example of joining conferencing service. We express this behavioral description of the service through the model of the technology layer. These behaviors mainly represent the message flow that is shown in (Fig. 7.8). We rely on our proposed model compiler (see section. 6.3) to generate the simulation code and correct domain-specific errors of the design model. The design tool generates an XMI file that contains the different information of the design model. The code generator (Fig. 6.8) translates the behavioral descriptions into the proper interactions between the different nodes of the network topology that are represented by the target network simulator. In the case of OPNET, the code generator provides an XML file that contains both the behavioral and structural implementations for the simulation program. OPNET simulator imports this file and implements the needed configurations with the ability to modify them through the GUI support (Fig. 7.9). In the case of NS-3 simulator, the code generator provides a C++ program that includes both structural and behavioral information from the design model. We run the generated program through NS-3 platform and observe the logs, animation (Fig. 7.7) that are generated automatically by the NS-3 simulator.

Compiling the models of Video Conference Service

The generated code is organized using the class concepts (object oriented approach) and relying on the method that we have presented in section (sec. 6.6). This way of implementing the simulation program helps to improve its granularity and clarity. Thus, we take advantage from the enterprise architecture to organize the simulation program in a clearer way. In the figure (Fig. 7.10), the generated code is implemented using the object oriented approach. We have included methods in section. 6.6 that enable generating a C++ simulation program with better granularity level.

Underwater Object Localization Service relying on multi-sensor data fusion

In this subsection, we present a background including motivation in relation to our research in the domain of underwater sensor networks that are used in the Deep Sea Observatories (DSO)s (section 7.3). This research aims at providing a validation application to our approach.

The work is in the context of the first phase of an DSO [START_REF] Zein | Smart sensor metamodel for deep sea observatory[END_REF] project: Marine e-Data Observatory Network (MeDON)1 . This initial phase aims at insuring the quality and experimenting the platform (sensor network and facilities to communicate with the information system) before it is deployed.

It takes long periods (months or years) to collect and analyze data in the DSOs. The maritime zone to be observed and monitored might be far from the coast and setting the equipments can thus require harsh preparation (moving to zone, preparing the specific ships, etc.). Additionally, the deployment of DSO equipments should take into consideration the difficult environment constraints (depth, temperature, obstacles, etc.).

These constraints impact on the communication conditions where, for example, the length of networking cables influences (error rate, delays, packet drops, etc.) the values/data and bandwidth. If the floating access points are connected to the deep underwater sensors by cables, then the concern is to deploy these access points according to the wireless channel conditions to communicate with other sensors or nodes. Such concerns should be taken into consideration to insure that the data collected from the sensors are received correctly and with acceptable rates according to the communication channel conditions. We consider these aforementioned motivations to instantiate a case study from the DSO context to apply underwater object localization service. This case study relies on data fusion analysis theory [START_REF] Liggins | Multisensor Data Fusion, Theory and Practice[END_REF] to localize objects and tends to present how do we apply our approach to integrate the underwater sensor networks with the information system using IP technology and IMS. We take the localization service as an example of such application.

The localization service for the underwater objects aims at identifying the location of an object after being detected by a sensor or set of sensors in the underwater environment. Acoustic hydrophones are proper sensors for the underwater applications where the electromagnetic waves cannot propagate for long distances.

In the context of data fusion, the topology of the sensor network and fusion servers is expressed by information graphs. Information graphs (Fig. 7.11) are "convenient means to understand how fusion process flows impact a network system" [START_REF] Liggins | Multisensor Data Fusion, Theory and Practice[END_REF].

The process of data fusion [START_REF] Durrant-Whyte | Multi Sensor Data Fusion[END_REF] combines information that are obtained from sets of different sources to provide a robust and complete description of an environment or process of interest. In the case of MeDON project, these sources are sensors [START_REF] Zein | Smart sensor metamodel for deep sea observatory[END_REF] that provide data to be fused later relying on multi-data fusion techniques [START_REF] Liggins | Multisensor Data Fusion, Theory and Practice[END_REF]. Localization algorithms are executed in the server (Fig. 7.11) node (e.g., fusion node) that applies the algorithm to determine and update the target location.

An extension to ArchiMate for MOs Applications

In order to test our model compiler in a different application domain facilitating the modeling activity, we propose (Fig. 7.12) an extension to ArchiMate for both business and application layers. This extension resides with the extension of the IMS technology. The residing between both extensions enables to integrate the information system of MeDON with underwater sensor network(s) through the IMS core-network. The new meta-model (Fig. 7.12) contains constraints (e.g., a smart sensor cannot communicate with another one) that are usable to prevent errors in relationships between elements of the information system. This meta-model enables to generate design tool that is coherent with Archi but contains additional concepts that are specific to the MeDON/MO domain ([DW01] for data fusion concepts). The generated design tool helps the designer to model the system and avoid syntax errors that may be made during the design activity. This meta-model is composed of two views: one for the business layer, and another for the application layer. We present our meta-model as the following (Fig. 7.12):

• Business Layer: we have extended the business actor of ArchiMate through two new concepts, the smart sensor and the data fusion. Smart sensor is responsible for the Data Acquisition activity, while the data fusion is responsible for other activities: AlgorithmSelection (performs a procedure to select the proper algorithm), DataTransmission (to transmit the data between the different fusion components), ObjectLocalization (to make the necessary actions that localize an object). These functions extend the business function concept in ArchiMate.

• Application Layer: we have extended the application component by two elements: the fusion system, and the smart sensor system.

Application Model

The application model represents the application components and functions of the system (information system of MeDON in our case). The model in (Fig. 7.13) shows different association relationships that links between business to application functions. These associations provide the same meaning of the triggering relationships between two functions. It provides meaning of call between two functions. For example, the InformA application function is called when sensor1A detects a dolphin and is performed in the SmartSen-sorSystemA component according to the assignment relationship between functions and components. Then the flow of execution is determined through the different triggering relationships between the application functions.

The application function SystemResourceReservationA is used to allocate the needed resources for the FusionSystemA to perform the next tasks which are ComputeCoordi-natesA and StoreCoordinatesA. After that, the coordination information are transmitted

Technology Model

The technology model contains the description of the topology and the functions to be performed in the different nodes of the network. Due to its large design, we focus on the technological implementations for the function InformA from the application layer. We present an excerpt from this large model (Fig. 7.14). A large series of technology functions are associated in the technology layer (e.g., SendTo) to execute the InformA application function. The SendTo function forwards/sends a message of type SIP or Diameter from one node to another.

Regarding the technology layer, we have relied on the IMS meta-model and ArchiMate to extend the Archi tool in [START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF]. This extension contains and considers mainly IMS specifications [START_REF] Camarillo | The 3G IP Multimedia Subsystem (IMS) Merging the Internet and the Cellular Worlds[END_REF]. The simulator NS-3 generates animation script after running the simulation program. This script is imported by the NetAnim tool in order to present the animation of the simulation scenario (Fig. 7.15) showing the messages that are exchanged between the different nodes. The generated topology and the observing the message exchanges between the different nodes shows the transparency of our model transformation rules.

Discussion

These results show the modularity of our model compiler as it can be used in different application domains: video conferencing (as a telecommunication service) and marine observatories systems. There is no need to make any change in both application except Figure 7.15 : Snapshot from the Net Animator tool of NS-3 simulator represents the topology of the network for the underwater localization example the input model (the design) which differs from system to another. The same model transformation rules are used in both cases as long as the same meta-model is applicable. Thus, our proposed framework is reusable in different application domains thanks to the unified meta-model that contains all of the needed concepts to perform a transparent model transformation.

TESTING ERROR DETECTION RULES

In addition to the code generation, our proposed model compiler contains an error detection part that is integrated with the adaptation activity (cf. section 6.3). This error detection is composed of three different types as mentioned in section (sec. 6.3): passive, active, and mining the simulation program with specific events to check the behavioral sequence. In this section, we present examples of errors that can be detected in the systems. We provide these examples from two different application domains: video conferencing service and marine observatories service (object localization relying on underwater sensor networks).

Active Error detection

Regarding the case of the active error detection, when an error is detected the workflow of XPAND will stop providing an error indication. We have implemented different rules of error detection that can detect errors in the design model, but limited in their abilities. We have implemented some rules (constraints) that can detect the errors in relationships between the different layers and the elements which belong to the same layer as well. The cases that we have considered are:

• checking the naming constraints: we consider a name of an element of length less than 2 characters as illegal. We have implemented this constraint using one checking rule (in Xpand);

• checking the existence of a crossed layer association or triggering relationship between the elements of two non neighboring layers. We have used 4 checking rules (in Xpand) to implement this constraint; • checking for any call between two functions that belong to the same layer using 3 checking rules (in Xpand).

Figure (Fig. 7.16) presents an example of detecting a crossed layer call between two functions that belong to two different non-neighboring layers. In this figure, one can notice the error that we made (on purpose) by associating two different functions between the technology and business layers. The workflow of Xpand runs the active error checks before the rules of the code generation template, and when an error is detected the workflow interrupts the workflow and shows a message. In this example, the error happens when a technology function called "Register" calls through an association relationship the business function "Chat". In this case, the reason for this error is a call between two functions that belong to two different non-neighboring layers.

Passive Error detection

Regarding the case of the passive error detection, the rules are implemented through the template of Xpand code generator. These rules precede the code generation rules that are responsible to generate the simulation scenario. This method generates a log file that contains errors detected in the design model. We choose a domain-specific error in the communication between an interface of a smart sensor in the underwater localization system and P-CSCF1 node of IMS. This error is related to the conflict in IP addresses. We change one of the network addresses of the P2P link (Fig. 7.17). An error log is generated by Xpand workflow contains explanation about this error (Fig. 7.17).

Linking Socket-Events to highly abstract Behaviors

In this subsection, we present examples of both types of distributed complex systems: the video conferencing, and the object localization in the marine observatories. In order to confirm the success of our method proposed in (section. 6.7.3) in linking TCP socketevents to the highly abstract behaviors of the system, we make analysis on the results of the simulation in terms of trace files. We use the Wireshark tool2 to analyze the traces (.pcap files) that are automatically generated by the network simulation process. We observe the TCP packet that are sent/received at every node interface, then we compare the results with the expected one at the design level. Additionally, we change the configuration of the delay in one of the communication paths (P2P links in our methods) and observe the delay resulted in the next behavior to be executed. We assign delays to the nodes according to each internal function. This causes no conflict with the concept of distributed systems, as we are interested in checking the design from higher level of abstraction, in this case, the exchanged messages are the most interesting issue.

• In the case of the object localization system in the context of Marine Observatories, we rely on the same model and design topology that is presented in (section. 7.5).

Using Wireshark, we observe the packets that are passing through the interface of the P-CSCF1 that is related to the communication path with the SmartSensor1A.

In the sequence of the behaviors of the technology layer, we choose to measure the starting time of executing the function (QuerySmartSensor1ALocation).

According to our proposed method, it should be called when the confirmation message is received by the previous node in the sequence diagram. We change the delay parameter of the communication channel between the two nodes (SmartSensor1A, P-CSCF1) and compare the values of starting time of executing the (QuerySmart-Sensor1ALocation) function. This starting time can be observed by the event log that is generated after the simulation run thanks to the (cout) function that is added automatically by our code generator at the critical events such as calling a function.

We change the delays linearly in two ranges: from 2 to 8 and from 50 to 150 ms (fixing the bitrate to 1Mbps). The result is corresponding linear changes (straight line in the plot for each range) in the starting time of the mentioned function from the behavioral sequence (Fig. 7.18). Observing the packets using Wireshark tool shows the correspondence between the confirmation message number and the SendTo technical function number of uses. This confirms to the transparency of our method.

• We repeat the same steps for the case of video conferencing system in the context of TSs. We choose the function CompressMessage from the video conferencing system (at the end of the sequence). Like the first example, after applying the design model to our proposed domain-specific model compiler, the simulation program is generated and is run directly with NS-3 without any problem. Observing the packets info using Wireshark and by comparing the number of the confirmation messages to the number of SendTo functions used in the design model, we have reached the same result of the first example (transparency of our mapping rules). Moreover, we have applied the same delays on the channel between Terminal1 and P-CSCF1 in

Video Conference (TS)

Starting

Discussion

The previous examples show that our method links directly the status of the channel to the behavior of the system, where the continuation of the behavior sequence is controlled by the messages exchanged between the nodes. This serves the concept of the distributed 7.7. DISCUSSION systems. Our method improves the granularity level of the simulation program and facilitates the error traceability. Additionally, our method makes it possible to bypass the internal functions of every node module, while one can substitute such operations with their equivalent delays. This helps to study the interactions and the physical channel effects on the behavior of the system without waiting for the development of modules for new technologies regarding the node internal behaviors.

DISCUSSION

Relying on the aforementioned results of error detection experiments, and after using examples from both application domains: video conferencing and marine observatories, we conclude that the error detection rules are applicable in both application domains. Actually, they are applicable in all of the application domains that can be covered by the concepts and the constraints of the meta-model. Adding new concepts to the meta-model may require modifications on the model transformation rules for both error detection and code generation activities.

Changing the target verification tool (simulator in our case) needs a complete change in the code generation rules and the one type of the error detection rules which performs the linking of socket-events to the technology functions as it relies on the environment of NS-3. The other two types of error detection (active and passive types) are not related to the target tool, thus they can be used independently of the simulator as they rely on the concepts and constraints of the modeling language (the meta-model).

The design tool uses graphical interface with drag-and-drop feature that facilitates the job of the designer. This design tool can prevent some types of errors that opposes the constraints of the modeling language but they may not detect errors that are related to the designer wrong choices. The design tool cannot judge the designer decisions but can prevent syntax and semantic errors that oppose the constraints of the modeling language. This point brings the motivation behind our contributions in the error detection rules, where we apply methods that can detect different types of architectural and domainspecific errors that are not included in the constraints of the modeling language. We have presented different examples of these types of errors.

We have presented two design models for both of the systems (video conference and marine observatories) showing their different views (business, application, and technology). These models are designed using our extended version of Archi tool that is generated from the ArchiMate meta-model. One can notice that our proposed framework relies completely on the meta-model that forms the origin of the modeling language and is used in every activity of this framework.

We have taken subjective pilot studies in order to validate our framework (DeVerTeS). These studies provided us with examples of applications from different domains. We leave the end-user validation for the future work and enterprises that can experiment the DeVerTeS with large number of engineers and developers.

Conclusion and Perspectives

CONCLUSION OF THESIS

Service Creation Environments (SCE)s support the service development process from the requirements capture and analysis to the validation phase. We have presented the domainspecific framework DeVerTeS. This framework provides a solution in the context of service development frameworks for telecommunication services. It facilitates the design phase and supports verification process at an early stage before the implementation phase relying on simulation. It relies on the Enterprise Architecture (EA) framework by using the ArchiMate modeling language through all of its activities. DeVerTeS connects the service designer to the different external tools that support both design and early verification activities. It avoids building tools from the scratch thanks to Model Driven Engineering (MDE). EA helps to share the viewpoints of the different stakeholders that are involved in the development process. Thus, it provides an architecture that respects the concerns of the different stakeholders. ArchiMate is one of the modeling languages that support EA. ArchiMate helps the designer to describe the systems in the ICT domain respecting the concerns and viewpoints of the different stakeholders (e.g., service developer, service designer, network provider, etc.).

Model Driven Engineering (MDE) provides support to smoothen the development process thanks to both modeling and model transformation. It supports the reuseability of the tools and models during the different phases of the development process. In MDE, tools can be generated from models which helps to improve the development time. It provides techniques like model transformation that can be used to form a bus to exchange the design information between the different tools.

Our main objective is to support the stakeholders that are involved in the telecommunication service creation process in order to improve the qualities, cost, and time-to-market competition factors. For DeVerTeS, we consider the design phase of the development process. Design is a critical phase where any error or quality flaw may cause major delays and deployment problems. Regarding the qualities issue, we focus on the performance nonfunctional requirements in our research as they are critical in the case of complex systems such as Telecommunication Services or Sensor Networks for Marine Observatories.

In the introduction of the thesis, in the context of ICT (cf. Introduction 1.1.1), we have presented the different challenges (see section 1.2) that face the service creation process. These challenges are:

1. Challenge1-To manage the complexity: we have replied to this challenge by

CONCLUSION OF THESIS

relying on two major approaches: MDE, and Software Architectures. Relying on MDE made it possible for us to generate the design tool directly from the metamodel, and to use the concept of Model Transformations. Relying on graphical modeling tools helps to manage the complexity. A graph may explain many details better than a text. Moreover, the graphical modeling tools support drag-and-drop actions and can provide events to enable error prevention during the design time. The model-to-text transformation helps to generate complex codes from models where the generated code can be executable in a platform that is different from the modeling one. This bridges the large gap between the design and the verification tools that rely on different modeling languages. We have relied on EA to share the viewpoints of the different stakeholders in the same design model. EA (through ArchiMate) helps to decompose the system architecture into different viewpoints. This forms one way of managing the complexity and helps to improve the time-to-market factor; 2. Challenge2-To improve the time-to-market competition factor: relying on MDE including the model transformation concept helps to improve the time-tomarket competition factor. Model transformations automate the process of obtaining models that are used to configure the verification tools from highly abstract models;

3. Challenge3-To improve the qualities: we have proposed an early verification activity that helps to improve the performance by detect errors and flaws in the design at an earlier stage thanks to the simulation approach and MDE. Simulation enables to obtain valuable feedbacks about the design, while MDE provides ability to detect design errors directly from models and to generate executable codes for the simulators. Additionally, we have provided a method to select the proper simulator according to its capabilities (performance measures in our case). This method relies on the same language of the model transformation as for the code generation. These all help to use the performance requirements directly in the verification process thanks to the capabilities of the recent versions of ArchiMate modeling language (motivation aspects in version 2.1);

Challenge4-To integrate external classical tools with the SCE:

we have proposed the model adaptation activity that connects the design models directly to external verification tools (simulators: OPNET, NS-3). These external tools are widely used and trusted;

5. Challenge5-To support the designer facing errors of design choices from different domains: we have proposed error checking procedures that help the designer to detect the errors made because of complexity of the system or the lack of knowledge needed to configure the parameters of the complex underlying platform.

Our approach and proposed framework (DeVerTeS) have answered to the research questions that are mentioned in the introduction section (see introduction. 1.3). This comes from both error detection and simulation processes. The research questions are:

• RQ1: How to detect and identify the design errors and quality flaws (QoS and performance non-functional requirements) earlier and before the implementation phase?

• RQ2: How to use the results of the simulation and modify the design accordingly in order to improve the performance of the service?

The first research question is divided into five branches:

1. (RQ1.1) How to detect and identify the errors in the semantics of the design model before the simulation considering the different viewpoints?

We have replied to this question by developing new methods that can detect design errors before the simulation activity and using the same model transformation language (Xpand). Moreover, we have proposed another method to link between the reception of signaling messages and the continuation of the behavioral sequence of the service;

2. (RQ1.2) How to Link between requirement analysis [CNYM99], design, verification activities, and to identify the measurement(s) that are related to a specific requirement?

We have answered this question through the linking activity by extending the metamodel of ArchiMate language. This enables the generation of specific configurations for the measures in the simulation executable code. The extended meta-model carries the syntax and grammar that are important for all of the activities of DeVerTeS;

3. (RQ1.3) How to automatically select the proper measurement(s) accordingly?

The answer to this question is included in our contribution of the extended metamodel which links the non-functional requirements to the design and verification elements. This enables the selection of measures according to the non-functional requirements;

4. (RQ1.4) How to select the proper network simulator that can provide the specific measurement(s)?

The tool selection method which implemented using Xpand model transformation language answers to this research question; We have answered to the question by developing a method that can lead the code generation to respect the same architecture of ArchiMate especially the 3 main layers: business, application and technology ones. This method improves the traceability of the design model and the clarity of the generated code;

DeVerTeS is composed of linking and adaptation activities. In the linking activity, we have proposed a new meta-model that supports linking requirements, design, and verification elements together. This provides a modeling language that supports both the design and early verification activities. Different constraints, relationships, and elements are added to the meta-model in order to support testing process through simulation such as application deployment relation between the application component and the technology node, and the configuration profile that can access the configuration attributes of the hardware components in the simulation scenario. Moreover, we have proposed an IMS meta-model that supports both the design and verification activity by adding the IMS specifications to the modeling language. This meta-model represents the abstract syntax of the domain-specific modeling language which is an extension of ArchiMate standard. Thanks to this meta-model, we can generate graphical design tool with drag and drop feature to improve the design activity. This drag and drop feature enables the usage of events (e.g., mouse click events) to detect and prevent design errors according to the language grammar and constraints directly at the design time.

We have proposed different model transformations in the adaptation activity. They help to improve the development time through adapting the design model to the verification tools (network simulators in our case). Therefore, we have proposed and implemented tool selection, code generation and error detection methods. The code generator and error detection methods form a model compiler that relies on the same meta-model as a parsing tree and can generate error logs and simulation scripts/programs that can run directly in the network simulators (OPNET [ACKR12], NS-3 [AAK + 15, AKR14, AAKR14]). Moreover, our model compiler respects the transformation of the multi-layered architecture of the design model into the simulation program. This helps to improve the architecture of the simulation program and thus enhances the clarity and error traceability.

These contributions answer to the previously mentioned research questions and partially to the RQ2.1 and RQ2.2 (cf. 1.3).

The DSML that we propose relies on the specifications of IMS core-network. We have taken into consideration the connections between the different nodes (the communication paths) in the code generation algorithm. This element can be used in different networking architectures more than IMS. The transformation rules rely on both the functions and structural elements of IMS. This point forms a limitation to the transferability of the design abilities to rely on another platforms. This wide usage and the incremental interest in IMS compensates this limitation.

To evaluate DeVerTeS, we have applied two examples from different application domains: video conferencing system and object localization through underwater sensor networks. The error detection rules are applicable in both application domains. Actually, they can be used in the application domains that can be covered by the concepts and the constraints of the meta-model. Adding new concepts to the meta-model may require modifications on the model transformation rules for both error detection and code generation activities.

Changing the target verification tool (simulator in our case) in DeVerTeS needs a complete change in the code generation rules and the one type of the error detection rules which performs the linking of socket-events to the technology functions as it relies on the environment of NS-3, this motivated us to provide a tool selection method [START_REF] Alloush | An automated tool selection method based on model transformation: Opnet and ns-3 case study[END_REF] implemented through Xpand. The other two types of error detection (active and passive types) are not related to the target tool, thus they can be used independently of the simulator as they rely on the concepts and constraints of the modeling language (the meta-model).

The DeVerTeS design tool uses graphical interface with drag-and-drop feature that facilitates the job of the designer. This design tool can prevent some types of errors that opposes the constraints of the modeling language but they may not detect errors that are related to the designer decisions. The design tool cannot judge the designer decisions but can prevent syntax and semantic errors that oppose the constraints of the modeling language. This point brings the motivation behind our contributions in the error detection rules, where we apply methods that can detect different types of architectural and domainspecific errors that are not included in the constraints of the modeling language. We have presented different examples of these types of errors in order to test and illustrate our contributions.

We have presented two design models for both of the systems (video conference and marine observatories) showing their different views (business, application, and technology). These models are designed using our extended version of Archi tool that is generated from the ArchiMate meta-model. Our proposed framework relies completely on the metamodel that forms the origin of the modeling language and is used in every activity of this framework.

PERSPECTIVES

In this section, we present our perspectives to develop and improve the results of this thesis. These perspectives are:

• We have proposed [ACS + 15] to analyze the measurements (see section 5.2.3) that are generated by the network simulators automatically by analytic tools (e.g., MatLab). The generated logs and traces from network simulators are time-stamped values. Thus, generating scripts for analytic tools will help to bridge the gap between the designer and detailed and complex analysis thanks to model transformations. This will help the designer to make decisions whether to modify the design or not. The inputs of this activity are the design model and the requirements. Making such a feedback to modify the design helps to close the loop (finite and controlled by the designer) between the design and verification and permits to perform set of modification/simulation processes until satisfying the requirements and qualities. This loop helps to improve the time-to-market and cost of the service creation process. It will use a set of iterations to improve the system design by error detections and performance improvements at an early stage before the implementation phase;

• For more developments in other domains, example Aerospace, Medical or Automotive, there is a necessity to make a revision on the modeling concepts of the underlying technology layer to include specifications of the technology, and especially the functions of the different nodes. We find that the communication path element can be reused with other technologies, and there is an opportunity to reuse IMS specifications as long as there is a communication ability with the ground networks.

IMS is an evolving technology and its core network is under development and widely used especially for its ability to integrate the different technologies (e.g., 3G, LTE,

PERSPECTIVES

LTE+, PSTN, etc.). Thus, we consider that our DSML and code generation algorithms can be developed in the future to include more futures and may be add other technologies side-by-side with the IMS;

• More error detection rules can be added to support the designer and facilitate the verification process. This should be done by domain experts who know the restrictions and constraints of the underlying platforms that are used and the other system components;

• A possible development to DeVerTeS framework is to enable an automated mapping between the elements of the business, application and technology layers. Such mapping should rely on specific profiles including runtime events that are accompanied with the generation of the design tool (Archi) from the models of ArchiMate;

• We have focused on the performance non-functional requirements, security can be interesting. In the telecommunications domain, security plays a major interest where the communication channels and user profiles are needed to be protected. The Model Driven Security approach [START_REF] Basin | Model driven security for processoriented systems[END_REF] relies on MDE and provides a possible way of modeling security requirements of a system. We propose to verify the security requirements at an early stage and relying on MDE through the usage of trusted and widely used external tools, or by generating specific executable scripts/programs that help to evaluate these requirements;

• Finally, We have taken subjective pilot studies in order to validate our framework (DeVerTeS). These studies provided us with examples of applications from different domains. We leave the end-user validation for the future work and enterprises that can experiment the DeVerTeS with larger number of engineers and developers.

 3.8 System Integration: Architecture and Logic [HRM07] 3.9 ApplicationLayer metamodel of ArchiMate [The13] 3.10 IMS as a unified-service control platform to converge between IP and non-IP, cabled and wireless technologies [MBD07] 3.11 Parlay/SIP glue [GP02] . 3.12 The metamodel of Technology Layer in ArchiMate V2.1 [The13] 3.13 Generic Metamodel: The Core Concepts of ArchiMate [The09a] 3.14 The reuse landscape [Som11], MDE is one of the reuse methods 3.15 The main steps of MDA development process [KWB03] 3.16 Model Driven Engineering and Model Driven Analysis [MM08] 3.17 Examples on Vertical and Horizontal Model Transformations [MVG06] . . . 3.18 XPAND workflow . 4.1 BPEL schema example [YMH + 06] . 4.2 Model-driven Petri Net based methodology [AYGA08] 4.3 Modeling and Simulation Concepts [VDLM02] 4.4 Process Description of Palladio Framework [BKR09] 5.1 DeVerTeS Framework: an integration between activities, tools, and language 5.2 Our approach: Extending the design activity by early verification in the service development framework, inspired from [Ada09] 5.3 Verification activities in our approach . 5.4 The Linking Activity Diagram in our proposed framework 5.5 Our approach: the model adaptation activities 5.6 Our approach: the model transformation workflow 5.7 Our approach: Measurement Analysis Activity (proposal) xix LIST OF FIGURES 6.1 The 3GPP IMS architecture [CGM08] . 6.2 The 3 types of Application Servers and their interfaces [CGM08] 6.3 The PSTN/CS gateway interfacing a CS network [CGM08] 6.4 SIP methods [CGM08] . 6.5 An example of SIP transaction [CGM08]

Figure 2

 2 Figure2.2 : The TINA-C service life-cycle[START_REF] Berndt | Service specification concepts in TINA-C[END_REF]

Figure 2 . 3 :

 23 Figure 2.3 : Service Design Phase Activities (according to [Ada09])

Figure 3

 3 Figure 3.1 : Developing the domain specific modeling frameworks [AYGA08]

Figure 3

 3 Figure 3.2 : Some Methodologies for Software Development [GMP03]

Figure 3

 3 Figure 3.4 : Correspondence between ArchiMate (including extension) and TOGAF [The13]

Figure 3

 3 Figure 3.5 : Motivation Extension Metamodel of ArchiMate [The13]

Figure 3

 3 Figure 3.6 : BusinessLayer metamodel of ArchiMate [The13]

Figure 3

 3 Figure 3.7 : A simplistic architecture of the SysFlow Workflow Engine (SWE) [PMG10]

 Figure 3.9 : ApplicationLayer metamodel of ArchiMate [The13]

Figure 3 .

 3 Figure 3.10 : IMS as a unified-service control platform to converge between IP and non-IP, cabled and wireless technologies [MBD07]

Figure 3

 3 Figure 3.13 : Generic Metamodel: The Core Concepts of ArchiMate [The09a]

Figure 3

 3 Figure 3.15 : The main steps of MDA development process [KWB03]

Figure 3 .

 3 Figure 3.16 : Model Driven Engineering and Model Driven Analysis [MM08]

 Figure 3.18 : XPAND workflow

Figure 4

 4 Figure 4.1 : BPEL schema example [YMH + 06]

Figure 4

 4 Figure 4.2 : Model-driven Petri Net based methodology [AYGA08]

Figure 4 . 3 :

 43 Figure 4.3 : Modeling and Simulation Concepts [VDLM02]

Figure 4

 4 Figure 4.4 : Process Description of Palladio Framework [BKR09]

Figure 5

 5 Figure 5.1 : DeVerTeS Framework: an integration between activities, tools, and language

Figure 5 . 2 :

 52 Figure5.2 : Our approach: Extending the design activity by early verification in the service development framework, inspired from[START_REF] Adamopoulos | A service-centric approach for exploiting network intelligence[END_REF]

Figure 5 . 3 :

 53 Figure 5.3 : Verification activities in our approach

Figure 5

 5 Figure 5.4 : The Linking Activity Diagram in our proposed framework

Starting

 Figure 5.5 : Our approach: the model adaptation activities

Figure 5 . 6 :

 56 Figure 5.6 : Our approach: the model transformation workflow

6. 2 .

 2 Figure 6.2 : The 3 types of Application Servers and their interfaces [CGM08]

Figure 6 . 3 :

 63 Figure 6.3 : The PSTN/CS gateway interfacing a CS network [CGM08]

Figure 6

 6 Figure 6.4 : SIP methods [CGM08]

Figure 6 . 7 :

 67 Figure 6.7 : An extension for ArchiMate meta-model to support linking between: Motivation and Measurement concepts)

Figure 6 . 8 :

 68 Figure 6.8 : DSMC general structure

Figure 6 . 9 :

 69 Figure 6.9 : The core concepts of ArchiMate: Generic Meta-Model, inspired from [The09a]

Figure 6 . 10 :Figure 6

 6106 Figure 6.10 : Generic model shows how to connect between two nodes in the network

Figure 6 Figure 6

 66 Figure 6.14 : The triggering relationship between two functions in each layer

Figure 6

 6 Figure 6.18 : Reverse ordering of structural elements in Application Layer of ArchiMate during mapping to NS-3

Figure 6

 6 Figure 6.19 : Active Checking Rules relying on Xpand check language

Figure 6

 6 Figure 6.20 : Passive Checking Rules (1) relying on the Xpand template language

7. 3 .

 3 Figure 7.1 : Telecommunication Service Architecture as mapped into the 3 main layers of ArchiMate (business, application, technology)

7. 4 .

 4 COMPLEX SERVICE EXAMPLESof the Session Description Protocol (SDP) [CGM08, SR + 98]. SIP uses and extends the headers of the widely-used and well-known HTTP protocol.

Figure 7

 7 Figure 7.2 : Conference service flow diagram as proposed in [CJN + 05]

7. 4 .

 4 Figure 7.3 : Business Model of the Video Conference Telecommunication Service, from [Chi12]

 Figure 7.4 : An excerpt from the Application Model of the Video Conference, from [Chi12]

7. 4 .

 4 Figure 7.5 : An excerpt from the technology model (statical view) of the conferencing service using the IMS extension of ArchiMate

Figure 7

 7 Figure 7.6 : C++ code sample as input of NS-3 and its corresponding design model (statical view)

Figure 7 . 9 :

 79 Figure 7.9 : Configuration of video conference service in OPNET

Figure 7

 7 Figure 7.11 : Information Graph examples [LLL09]

Figure 7 .

 7 Figure 7.13 : Business and Application views from the object localization model

Figure 7 .

 7 Figure 7.14 : An excerpt of the technology model for the underwater localization

Figure 7

 7 Figure 7.16 : An example of an active error detection in design of Video Conferencing Service

Figure 7 .

 7 Figure 7.17 : An example of an active error detection in design model of Marine Observatories system

Figure 7

 7 Figure 7.18 : Relation between channel delays and the sequence of the behavior calls

 5. (RQ1.5) How to link the modeling technical space to the simulation one in the scope of TS verification activity? We rely on model transformations to integrate between the different design and verification (simulation) tools. We have answered to this question through the code generation of simulation code for different external simulators (OPNET, NS-3). The generated code (model transformation) can run directly in the simulator. This model transformation relies on ArchiMate meta-model as a parsing tree to collect, analyze, and map the information of the design model into different target tools (OPNET, NS-3) and generate new executable codes; 6. (RQ1.6) How to represent the different viewpoints of the design in the verification technical space?

 2.1 Requirements of Service Creation Environments according to[START_REF] Adamopoulos | Advanced service creation using distributed object technology[END_REF] . . . 2.2 The TINA-C service life-cycle [BPM94] . 2.3 Service Design Phase Activities (according to [Ada09]) 2.4 A comparison between the SCE approaches 3.1 Developing the domain specific modeling frameworks [AYGA08] 3.2 Some Methodologies for Software Development [GMP03] 3.3 The KAOS Goal-Oriented Requirements Engineering method [vL01b] . . . 3.4 Correspondence between ArchiMate (including extension) and TOGAF [The13] . 3.5 Motivation Extension Metamodel of ArchiMate [The13] 3.6 BusinessLayer metamodel of ArchiMate [The13] 3.7 A simplistic architecture of the SysFlow Workflow Engine (SWE) [PMG10]

 . . . 6.6 Our proposed IMS meta-model (Extending the Technology Layer ArchiMate) 6.7 An extension for ArchiMate meta-model to support linking between: Motivation and Measurement concepts) . 6.8 DSMC general structure . 6.9 The core concepts of ArchiMate: Generic Meta-Model, inspired from [The09a] 6.10 Generic model shows how to connect between two nodes in the network . . 6.11 The rules to transform the network information of the design model into network topology in the simulator relying on ArchiMate meta-model as a parsing tree . 6.12 A simplified example of multi-layered architecture of ArchiMate 6.13 Generating executable code from the different layers of EA in our approachfirst version of the model compiler (MC1) [CAKR11, ACKR12] 6.14 The triggering relationship between two functions in each layer 6.15 Tool-Selection method based on model transformation 6.16 The algorithm of the tool selection method 6.17XPAND template using Eclipse Software .19 Active Checking Rules relying on Xpand check language 6.20 Passive Checking Rules (1) relying on the Xpand template language 6.21 Passive Checking Rules (2) relying on the Xpand template language 6.22 Activity diagram to explain the SendTo mechanism Conference service flow diagram as proposed in [CJN + 05] 7.3 Business Model of the Video Conference Telecommunication Service, from [Chi12] . 7.4 An excerpt from the Application Model of the Video Conference, from [Chi12]125 7.5 An excerpt from the technology model (statical view) of the conferencing service using the IMS extension of ArchiMate 7.6 C++ code sample as input of NS-3 and its corresponding design model (statical view) . 7.7 The network topology in NS-3, a snapshot from the NetAnimator of NS-3 . 7.8 The IMS conference joining message flow chart, from [CGM08] 7.9 Configuration of video conference service in OPNET 7.10 An excerpt from the generated simulation program shows code corresponds Extending business and application layers of ArchiMate: proposal of Marine Observatories Meta-Model . 7.13 Business and Application views from the object localization model 7.14 An excerpt of the technology model for the underwater localization 7.15 Snapshot from the Net Animator tool of NS-3 simulator represents the topology of the network for the underwater localization example 7.16 An example of an active error detection in design of Video Conferencing Service . 7.17 An example of an active error detection in design model of Marine Observatories system . 7.18 Relation between channel delays and the sequence of the behavior calls . . .

	LIST OF FIGURES
	7.12
	xx

6.18 Reverse ordering of structural elements in Application Layer of ArchiMate during mapping to NS-3 . 66.23 Procedure of linking the TCP-socket events to the behavioral sequence of the design model . 7.1 Telecommunication Service Architecture as mapped into the 3 main layers of ArchiMate (business, application, technology) 7.2 different layers . 7.11 Information Graph examples [LLL09] . xxi 1

A viewpoint[START_REF] Chiprianov | Collaborative Construction of Telecommunications Services. An Enterprise Architecture and Model Driven Engineering Method[END_REF] is a "work product establishing the conventions for the construction, interpretation, and use of architecture views to frame specific system concerns"

The requirements identified in this section and table 2.1 will be used in all chapters that contain comparisons between related approaches including our work.

TOGAF R : an Open Group Standard, is a proven enterprise architecture methodology and framework

OMG is a term of: Open Management Group

WSDL is an acronym of Web Service Description Language

The RMA is used for predicting the average and worst-case latency of periodic and stochastic tasks in real-time systems in[MH09]

EMF stands for: Eclipse Modeling Framework

A technical space is "a model management framework containing concepts, mechanisms, techniques,

In NS-3, an application class is a class that has start and stop application functions for overriding purpose. One-to-many application classes can be assigned to the node of NS-3.

MeDON official website: http://www.medon.info

Wireshark network-traffic analyzer: www.Wireshark.org

Acknowledgements

I would like to acknowledge and thank all persons who helped me complete this thesis.

MDE and EA

MODELING LANGUAGES AND TOOLS

Figure 3.11 : Parlay/SIP glue [START_REF] Glitho | A high level service creation environment for parlay in a sip environment[END_REF] Figure 3.12 : The metamodel of Technology Layer in ArchiMate V2.1 [The13] This type of interconnections between the different layers will be more explained in the contribution sections. The transformation script can be selected automatically by the tool selection method that relies on the tool capabilities in order to make the selection decision. It generates a list of set of tools that are proper to the simulation according to their capabilities. Using the same model transformation language to select between the different tools makes it easier to modify and develop the rules according to the different needs in the future or for additional features.

The tool selection method (Fig. 6.15) relies only on models as inputs. These models belong to two dimensional axis: the Tool Capability (Specification modeling), and the Tool (Tool modeling). These two dimensions reflect the modeling of the tool within its properties on the first hand and the modeling of every property alone on the other hand.

The tool selection is done by a model transformation, we choose XPAND language that is specific to generate plain-text files from models. Figure 6.16 presents the algorithm of the tool selection method, where the input of the algorithm is the required measurement. This measurement is identified in a previous activity where we select the needed measurements from the predefined softgoals.

We present the algorithm as: for a specific measurement i ∈ Y (Y is the size of a set of measurements), we iterate N times (N is the size of a set of tools), so to register which are the tools that have the probes needed (capability) for the specified measurement. The result is a set of tools that are selected by the algorithm.

We highlight the advantages of using our method:

• The reusability of the model transformation, as its input can be of different types (e.g., Measurements, Certification level, etc.), and rules of the transformation are defined with no hard coding (Fig. 6.17); These rules provide means to detect these errors before the simulation. They save time for the designer by generating simplified and precise error notes in additional logs, side by side to the generated code after the compilation process.

Linking TCP socket events to highly abstract behaviors

This part of our contribution is dedicated to the technology layer view of the design and is dependent of the target tool (NS-3 simulator). It relies on the networking concepts that form the domain of the extended technology layer in our approach [CAKR11, ACKR12].

In (Fig. 6.22), we describe the code generation activities that are strictly related to the target tool (NS-3 libraries and C++ syntax) and to the domain-specific concepts (SIP/Diameter message types, SendTo function). This procedure relies on the design language to identify the type of function (SendTo) that triggers the sending of messages between the different nodes of the distributed system. The inputs of this process are obtained from preceding activities in the code generation template. NS-3 provides the call-back concept that permits the user to implement methods to be called when an event happens. We rely on this feature to attach a method that is triggered automatically when a message is received by the socket of the source node (see Fig. 6.22: activity tagged by *, and bold-written activities). The concept of this method is to link, on the one side, the call of the next function (in the design model) of the system's behavior to, on the other side, the receipt of a confirmation from the destination node that it has received the request message and did process it. In our case, we choose an acknowledgement message to respond to the source node in order to confirm the correct receipt.

In figure 6.23, we present the procedure of linking the TCP socket events to the call sequence of the behavior of the system. This procedure explains the activity tagged by (*) in (Fig. 6.22). We choose the "ACK" context to be the one of the confirmation message, which is replied by the destination node to the sender one. The call of the next behavior is limited to the receipt of this confirmation message with the chosen context. These activities are implemented in the code generation template thus they do not add any complexity to the designer, while they add new code to the simulation scenario to provide linking between the highly abstract behaviors and the TCP-socket transactions. In the figure, the function "EnterConference" is implemented as a function in the class CustomerUser which represents a Business Actor [The09a]. In the same class, there is another method of code "ca0cf0e8" that contains a call to the function "SetParameters" that belongs to the Application Layer. This call is translated from an association relationship in the design model. The last mentioned function "SetParameters" calls the "JoinConference" function according to the triggering relationship that is used in the design model.

The function "JoinConference" calls another function "CreateInvite" in the technology layer according to an association relationship between these two functions. Then the sequence of calls follows the same sequence that is presented in (Fig. 7.8). The concept behind these different calls is that: we map every association between two functions of two neighboring layers as a call between functions, the same for the triggering between two functions that belong to the same layer.

OBJECT LOCALIZATION FOR MARINE OBSERVATORIES

In this section, we present an example of an application for Marine Observatories, the object localization. The FusionSystem is responsible for performing the following application functions: ManageResources (to manage the resources needed for the algorithm execution), CoordinatesStorageHandling (to store the coordinates correlated with time), Com-puteCoordinates (to compute the position according to a specific algorithm selected previously by the Data Fusion actor), and TransmitLocalizationData (to exchange information between the fusion servers/systems).

The SmartSensorSystem is responsible for performing the following functions: In-formServer (to inform the fusion server about any detection of a specific object), Voic-eStreaming (this function is useful in the case of hydrophones), and VideoStreaming (this function is useful for the camera underwater smart sensors).

Relying on these two extensions, we have used the design tool to model a case study of MO that will be presented in the next two subsections.

Business Model

The business model is constructed according to the elements and constraints that are included in the proposed meta-model. In the context of DSOs, the objective of the object localization system is to identify and localize an object that enters into the range of a sensor or a set of sensors. Sensors are connected to fusion servers that apply a distributed algorithm to compute the position of that object thanks to the data collected from these sensors.

In our approach, we concentrate on the interactions between the different nodes that are included in the DSO model. Internal actions can be implemented by extending the modules of the simulator. Our interest is to show our ability of modeling the DSO scenario relying on IMS core-network and generate simulation codes to be run directly in NS-3. This helps to evaluate the design according to the networking concepts and the constraints that are defined in the meta-model (DSML).

The business model represents the different activities and functions that should be performed when localizing an object in the underwater environment. We assume the existence of 6 smart sensors and 3 fusion servers in the architecture of the system. Both actors the smart sensor and the fusion server are considered as end-user terminals in the design of the network, while they play a major role in the information system. Thus, we choose to represent their functions in the business and application layers leaving the technology one to represent the network architecture and the functions that are related to the communication interactions of IMS.

Generally, every one of the smart sensors detects the dolphin independently and then sends the detection information to the fusion server that communicates with the other sensors. The fusion server then fuses these data and applies a localization algorithm to identify the position of the underwater object (dolphin) more precisely.

We use the business layer of ArchiMate to represent the different tasks of the object localization process (Fig. 7.13). The different smart sensors (1A, 2A, 3A, 1B, 2B, C) detect the dolphin when passing in the region of detection. This detection happens through the function DolphinDetection. Then every one of the DataFusion centers selects the proper algorithm to localize the object. This algorithm (trilateration) is run by the DataFusion centers and then the data is exchanged between the Data Fusion servers through the

PART III : CONCLUSION AND PERSPECTIVES

Conclusion and Perspectives