
HAL Id: tel-01356217
https://hal.science/tel-01356217

Submitted on 25 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Activity monitoring through home automation devices
Julie Soulas

To cite this version:
Julie Soulas. Activity monitoring through home automation devices. Databases [cs.DB]. Télécom
Bretagne; Université de Bretagne Occidentale, 2016. English. �NNT : �. �tel-01356217�

https://hal.science/tel-01356217
https://hal.archives-ouvertes.fr




N° d’ordre : 2016telb0377

Sous le sceau de l’Université Bretagne Loire

Télécom Bretagne

En accréditation conjointe avec l’École Doctorale Sicma

ACTIVITY MONITORING THROUGH HOME AUTOMATION DEVICES

Thèse de Doctorat

Mention : STIC

Présentée par Julie Soulas

Département : Logique des usages, sciences sociales et sciences de l’information

Laboratoire : Lab-STICC, Pôle : CID 

Directeur de thèse : Philippe Lenca

Soutenue le 29 mars 2016

Jury : 

M. João Gama, Associate Professor, Université de Porto (Rapporteur)
M. Xiaolan Xie, Professeur, Mines de Saint-Étienne (Rapporteur)
M. Philippe Lenca, Professeur, Télécom Bretagne (Directeur de thèse)
M. André Thépaut, Directeur d’études, Télécom Bretagne (Encadrant de thèse)
M. Jérôme Boudy, Professeur, Télécom SudParis (Examinateur)
M. Pascal Poncelet, Professeur, Université de Montpellier (Examinateur)





Abstract

The aging of the population in the coming decades raises new challenges in
order to help elderly people live longer at home, independently and safely.
The emergence of assistive technologies, and in particular home automation
devices, sensor networks and communication devices open up new opportu-
nities to ease the interactions between the elderly and their environment,
and to monitor their health status remotely day after day. In particular, the
home automation sensors record information on the activity in the home and
make it possible to assess autonomy and well-being.

In this thesis, we focus on the mining of the data recorded by such sensor
networks. We focus more particularly on the discovery of habits. Indeed, the
daily routines help maintain autonomy. We thus propose unsupervised data
mining algorithms for the discovery and description of periodic behaviors. A
first contribution, the extended Episode Discovery algorithm (xED), allows
the discovery of such habits in transactional data, and the characterization of
their variability. xED was further developed for the handling of event streams
and the update of the habits when time passes. A top-k approach is also
described, for the discovery and update of regular patterns in event streams.
The interactions with the human supervisor (physician, caregiver, family
member) have also been studied, which lead to the design of a supervision
model, combining sequence mining with expert knowledge allows a custom
monitoring, tailored to the exact expectations of the supervisor. All of these
contributions are evaluated on real-life datasets, that have been extensively
used in the literature.

These contributions opens the way towards innovative methods for the mon-
itoring of isolated individuals, in particular thanks to the personalized adap-
tation of the home, anomaly detection, or the analysis of the evolution of
habits and heath status.



Abstract

Résumé

Le vieillissement de la population mondiale au cours des décennies à venir
pose de nouveaux défis pour la prise en charge, le logement, et les soins à
apporter à cette population. L’un de ces défis est de permettre aux personnes
âgées, souvent isolées et fragilisée de vivre dans leur domicile personnel le
plus longtemps possible, et dans les meilleures conditions de confort et de
sécurité. L’émergence de nouvelles technologies domotiques, des réseaux de
capteurs et de communication offrent de nouvelles opportunités pour faciliter
les interactions des personnes âgées avec leur environnement, et pour assurer
un suivi médical peu intrusif au jour le jour. En particulier, les capteurs
domotiques collectent des informations sur l’activité dans le logement, et
permettent d’évaluer l’autonomie ainsi que l’état de santé de la personne
suivie.

Dans cette thèse, nous nous concentrons sur l’exploitation des données enreg-
istrées par de tels réseaux de capteurs. Nous nous intéressons en particulier
à la découverte des habitudes, puisqu’elles jouent un rôle important dans
le maintien de l’autonomie chez les personnes âgées. Nous proposons donc
ainsi plusieurs méthodes pour la caractérisation et la découverte non super-
visée des habitudes. Une première contribution, extended Episode Discovery
(xED), est un algorithme permettant la découverte de telles habitudes dans
des données statiques, et la caractérisation de leur variabilité. xED a ensuite
été étendu pour la gestion de flots de données, et la mise à jour des habitudes
en fonction de leur évolution au cours du temps. Une troisième approche,
TKRES, est également proposée pour la découverte et la mise à jour des k
épisodes les plus réguliers dans les flots d’événements. Ces différentes con-
tributions sont évaluées qualitativement et quantitativement sur des jeux de
données réelles, issues de la littérature du domaine.

Ces contributions ouvrent la voie pour la mise en place de nouvelles méthodes
pour le monitoring d’individus isolés, notamment pour l’adaptation person-
nalisée du logement, la détection d’anomalies, ou l’analyse de l’évolution des
habitudes et de l’état de santé.
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General introduction

Research scope

With the aging of the population, especially in the industrialized countries,
people now live longer, and wish to continue living in their homes for as long
as possible. The elderly population is however frailer than the rest of the
population. Living alone at home is thus more dangerous for them.

Security and well-being at home is usually improved thanks to the home
visits of caregivers, medical staff and housekeeping services. The house is
also adapted to the reduced strength and mobility of elderly people, for
instance thanks to stair-climbing devices, support bars, or electric shutters.
Adapted communication devices, such as emergency pendants, allow them
to call for help whenever they need to.

Moreover, the emergence and wide spread of sensing and communication
technologies now allows new services to develop, such as home automation
and home hospitalization. These technologies offer promising opportunities
for aging at home: home automation eases the interactions between older
people and their environment, the communication devices help keep the link
with distant family members and facilitate the social insertion in the local
community. The sensors disseminated in the home continuously record ac-
tivity traces. These traces form patterns which carry information on the
health and well-being of the inhabitant, and are thus very valuable for the
physicians, caregivers and family members. There is thus an increasing need
for monitoring at home, via the analysis of sensor data.

The pursued objectives for such continuous monitoring include for instance
fall and danger detection, activity recognition, autonomy assessment, trend
analysis, etc. The mining of the sensor logs remains however challenging.
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General introduction

Objectives

The objective of this thesis is to contribute to the data analysis field for ac-
tivity monitoring. In particular, routines and habits are prominent behaviors
in the daily life, which have not been deeply investigated yet. This thesis
focuses thus mostly on the discovery and description of personal habits. We
propose a description formalism to characterize habits, as well as several
algorithms and tools for their unsupervised discovery.

Outline of this thesis

Chapter 1 introduces the socio-demographic context and details the current
approaches for the monitoring of the behavior at home, based on home-
sensing technologies. A particular focus is set on activity monitoring and the
challenges it entails.

Chapter 2 characterizes a class of human behaviors: the habits. Existing
habit monitoring frameworks are described and compared. Most existing
approaches present a major drawback: they do not handle well the variability
inherent in human life. We thus propose a new periodicity model for the
description of human habits. This model not only tolerates variability, but
also characterizes it. It is thus a powerful descriptive tool, which we then use
in our contributions described in chapters 3 and 4.

Chapter 3 details the extended Episode Discovery (xED) algorithm (Soulas
et al., 2013, 2015). This algorithm provides a solution for the unsupervised
discovery of the periodic patterns (the habits) in a transactional database.
xED uses the formalisms proposed in chapter 2 for the characterization of
the periodic episodes. xED is evaluated on real-life datasets and compared
to another algorithm from the literature (Heierman et al., 2004).

Chapter 4 further extends xED and adapts it for the handling of data streams.
The proposed algorithm (Soulas and Lenca, 2015), sxED (streaming xED)
allows the discovery of periodic patterns in a window sliding over the dataset,
and the update of the discovered habits when the home automation sensors
record new information. In particular, new habits are detected, and the
descriptions of existing habits are updated. sxED is evaluated on real-life
datasets and qualitatively compared to xED.
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Chapter 5 focuses on another type of periodicity description: regularity. This
periodicity model, though less robust to variability, remains however very
interesting, notably because of its simplicity and scalability. We propose in
this chapter TKRES (Amphawan et al., 2015), for the discovery and update
of the regular episodes in a sensor event stream. The top-k approach allows
us to constrain the size of the results in output. TKRES is also evaluated on
real-life datasets.

Chapter 6 concludes this thesis. It summarizes the main contributions of this
work, and highlights opportunities for future work.

The major contributions of this work are of an algorithmic nature. Neverthe-
less, we have also considered ways to include the medical staff and caregivers
in the monitoring process, which we describe in two appendices: appendix A
presents a user-centered process mining approach, allowing the supervisor to
input his or her knowledge and mining expectations and requirements. Ap-
pendix B contains some of the visual tools used to communicate about the
data to people who are not data experts.
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Chapter 1

Ambient assisted living and
activity monitoring

Chapter outline This introductory chapter points out the motivations
for this work, highlighting the socio-demographic context in which it is held
(section 1.1), and the rationale behind activity monitoring (section 1.2). Sec-
tion 1.3 introduced the smart homes and ambient assisted systems that are
used for activity monitoring. Some prominent projects are referred to, and
the used infrastructure and sensors are further detailed in section 1.4. Sec-
tions 1.5 and 1.6 review the two main trends for activity monitoring: activity
classification (supervised learning) and activity pattern discovery (unsuper-
vised learning). Finally, section 1.7 narrows down the specific context of this
thesis, and summarizes its main contributions.

1.1 Socio-demographic context

The population in many countries is getting older. For example, it is expected
that in 2025, a third of the European population will be over 60 years old
(Sölvesdotter et al., 2007, Chap. 2), and in China the proportion of people
older than 65 is predicted to be as high as 22.7% in 2050 (Zhang and Chen,
2006).

Meeting the needs of this aging population, which is more prone to health
problems and loneliness, is thus one of the big challenges of this century.
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Chapter 1. Ambient assisted living and activity monitoring

Elderly people are indeed frailer and more prone to chronic diseases. Falls
and malnutrition problems are frequently observed.

Because of the increasing mobility amongst the younger generations, many
older people’s families live far away, and cannot take care of their older
relatives on an daily basis. Because of these threats to the elderly people’s
health and well-being, it becomes more dangerous for them to live alone at
home, which is also a source of anxiety for them and their families. That is
notably why families tend to push them to move to a nursing-home. Health
is in fact the first reason why people over 75 move (Kotchera et al., 2005).

However, most elderly people would rather continue to live in their own
home (Kotchera et al., 2005). In addition, solutions enabling aging at home
are also usually cheaper for the society than the funding of nursing homes.
In particular, they allow a better control and management of the hospital
resources (Rodríguez-Verjan et al., 2013). Helping people stay in their home
longer and in better conditions is thus an active effort. Traditional means
to achieve this goal include the home visits of medical staff and the use of
technical aids, like support bars and emergency pendants. But thanks to
the development of sensor technologies, Smart Home and Ambient Assisted
Living (SHAAL) systems have also gained much attention during the last
decade.

1.2 Activities of daily living

In order to assess one’s ability to live alone, it is necessary to monitor the
activities occurring in the home, with a particular focus on the Activities
of Daily Living (ADLs). The ADLs are activities we carry out as part of
our daily life to ensure our own self-care, and are described by Katz (1983).
The classical ADLs (bathing, dressing, toileting, transferring, feeding) are
often supplemented by instrumental activities of daily living, such as using
the phone, shopping, preparing food, housekeeping, making laundry, taking
responsibility for own medication, handling finances, etc.). Being able to
perform such activities is a necessary condition for living independently, and
so for aging at home.

These activities are thus the activities that are assessed in order to determine
the degree of autonomy of a person. The autonomy level is measured thanks
to different scales. Law and Letts (1989) propose a critical review of the
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1.3. Smart homes and ambient assisted living

existing scales. The assessment is traditionally performed through a series of
tests and interviews in controlled environments by the physician. Autonomy
assessments thus occurs rarely, and could arguably benefit from day-to-day
activity monitoring.

The sensors in SHAAL systems allow such monitoring. Moreover, the gath-
ered information helps with the detection of anomalies and potential threats
for the health, comfort or happiness of the elderly. This has lead to the rapid
development of SHAAL systems for the evaluation and monitoring of the
activities of daily living. Next section presents some prominent work using
smart homes for ambient assisted living.

1.3 Smart homes and ambient assisted living

The sensors disseminated in the home collect information on the interactions
between the inhabitants and their environment. The activities occurring in
the house impact the measures: for example, a person preparing dinner might
trigger a motion detector in the kitchen, a door switch on the fridge door or on
a cupboard. An RFID tag on a pill-box could also register events related to
medication. The sensors thus capture data describing health-related events
as well as the ADLs.

Over the last couple decades, many smart home projects have thus been
proposed, see for example the surveys by Silva et al. (2012); Rashidi and
Mihailidis (2013); Acampora et al. (2013). One may for instance pay a par-
ticular attention to the historical projects AwareHome (Kidd et al., 1999) or
MavHome (Cook et al., 2003). Ongoing projects like CASAS (Cook, 2012),
DOMUS (Pigot, 2010), or the Gator Tech Smart House (Helal and Chen,
2009) keep raising new challenges and propose solutions for the improvement
of aging at home. More and more instrumented labs and smart homes are
being set up across the world.

The monitoring also allows the detection of anomalies or dangerous situa-
tions, like falls, and reassures distant families. Regardless of the end goal,
the monitoring systems focus primarily on one of two tasks: the recognition
of the ADLs (classification task), or the discovery of activity patterns (via
clustering, time-series analysis, frequent pattern mining). The results may
then used for prediction. Kim et al. (2010) introduce and explain the main
challenges for activity monitoring, and insist in particular on the differences
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Chapter 1. Ambient assisted living and activity monitoring

between activity recognition (supervised learning) and activity pattern dis-
covery (unsupervised learning).

1.4 Sensors

The sensors can be installed in the house, or worn by the user. In either
cases, the activity is not directly observed, but merely the effects it has
on the environment and the sensing devices. The underlying activity can
however be estimated from the sensor readings. For example, if a person
generates movement in the kitchen, and uses the fridge, it seems sound to
assume that the person is going to eat (but could also be putting away the
groceries, or cleaning the fridge).

The sensors in the house do not require the users to alter their behaviors:
they just carry out their everyday activities, as if the sensors were not in their
environment. However, such sensors do not discriminate the inhabitants:
the effects of the activities on the environment are recorded regardless of
who triggered the sensors (including visitors and pets). Initial attempts
at handling this situation have been proposed, for example by Wilson and
Atkeson (2005), who recognize and track the different inhabitants of a house.

The sensors in the home may be simple and fairly cheap sensors, like motion
detectors, opening sensors on the doors, windows and cabinets, pressure mats
on the chairs or in the bed, RFID tags, sensors measuring ambiance (tem-
perature, luminosity, humidity), etc. These sensors can be installed without
major renovation work, since they can be wireless and battery powered. They
can also be already present in the house, if the person already had a home
automation system (for example to control the heating system, reduce the
energy consumption, improve comfort or ensure security with an alarm sys-
tem). Each of these sensors provides a simple information (where the person
is, what object is used), which can often be used directly, without prepro-
cessing or feature extraction step. Thanks to the fairly low-level information
they record, these sensors are not considered intrusive. More complex knowl-
edge is built thanks to the multiplication of sensors and knowledge discovery
algorithms. Projects like CASAS (Cook et al., 2013a), MITes (Tapia et al.,
2004) or van Kasteren et al. (2010a) focus exclusively on this type of sensors.

More complicated sensors are also used, such as cameras (Pusiol et al., 2011),
microphones (Fleury et al., 2010), electricity consumption (Patel et al., 2007)
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1.4. Sensors

or water flow monitoring devices. The information provided by each sensor is
richer, but the sensors are also more intrusive. This raises privacy and user-
acceptance issues. Their processing is more costly, and requires dedicated
data preprocessing. Such sensors are often more expensive as well.

Previously existent home automation actuators can also be used as sensors:
indeed, reasoning on the interactions between the user and the home au-
tomation functionalities may allow the localization of the elderly, and the
understanding of their intentions (Truong et al., 2009; Allègre et al., 2012).
For example, if a user asks to turn on the light in the kitchen, then it means
that: (i) the user is in or intends to go to the kitchen, (ii) it is too dark in
the kitchen.

The monitored users may also wear sensors or their body (accelerometers,
RFID tag reader, physiological sensors) or on their clothes (smart fabric).
Accelerometers have for example proven to be very efficient for the recogni-
tion of body postures and falls (Luštrek et al., 2012). Usually, the sensor
recordings, directly linked to the activities of the monitored user, are sent
to a smartphone or PDA, which in turn sends them to a computing unit in
the monitoring system. Body-worn sensors allow a user-centered monitoring,
including outside of the home. However, body-worn sensors are also very in-
trusive, and the monitored elderly must remember to carry the sensors and
communication devices. Moreover, sensors cannot be worn all day long, and
dangerous situations, like the falls occurring while bathing, or while going to
the bathroom at night remain problematic.

Combinations of the different strategies have also been investigated. For
example, Stikic et al. (2008) combine RFID tags with accelerometers. The
combined use of the two types of sensors greatly improve the quality of the
activity recognition. But due to intrusiveness and privacy issues, there is
a trend toward fewer, more discrete sensors. Chernbumroong et al. (2013)
consider the use of a sport / smart watch, combining an accelerometer, a
temperature sensor, an altimeter and a gyroscope in a simple object. The
watch allows nevertheless good activity classification.

The wide range of available sensors makes it possible to monitor every activ-
ity of daily living. However, the sensors may also be intrusive and expensive.
Their data may be heterogeneous and noisy. The multiplication of sensors
however allows us to consolidate the information and extract reliable knowl-
edge from the raw data.
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The next sections introduce the main learning tasks for SHAAL systems:
activity recognition (section 1.5), and unsupervised activity analysis (sec-
tion 1.6).

1.5 Activity recognition

Activity recognition is a classification task: based on the sensor reading,
the task is to find the corresponding activity label. Research has been very
prolific on the topic, and tenths of relevant articles have been published over
the last decade. For clarity only the main trends are cited here, illustrated
with a couple of relevant articles.

The classical machine learning tools have been investigated. Static and dy-
namic probabilistic methods have been extensively used, thanks to their good
handling of uncertainty and noisy data. Static methods include Naive Bayes
(Tapia et al., 2004; Stikic et al., 2008), decision trees and random forests,
SVM (Fogarty et al., 2006; Fleury et al., 2010), or multiple binary classifiers
(Stikic et al., 2008). Luštrek and Kaluza (2009) compare eight algorithms
(C4.5 decision trees, RIPPER decision rules, Naive Bayes, kNN, SVM, ran-
dom forests, bagging and boosting) for the classification of body postures
(falling, lying down, standing, etc.). SVM classifiers appeared to be the
most accurate classifiers, including in the presence of noisy data.

Dynamic methods, such as Hidden Markov models (Stikic et al., 2008; Chen
et al., 2005), dynamic Bayesian Networks (Philipose et al., 2004), conditional
random fields (Nazerfard et al., 2010a) also consider the transitions between
the activities. van Kasteren et al. (2010a) compare dynamic models. Condi-
tional Random Fields and Hidden Markov Models both allow a good activity
classification. The authors moreover notice that the actual value of the sen-
sors is in general less relevant than the fact that their value changes.

Activities have also been learned and recognized thanks to neural networks
(Kim et al., 2015) and logical reasoning based on ontologies (Allègre et al.,
2012; Aloulou et al., 2014). (Roy et al., 2011) propose an hybrid methods,
involving both logical and probabilistic recognition rules for the plan recogni-
tion of Alzheimer patients, and the detection of errors in the plan realization.

Table 1.1 summarizes the main contributions to activity recognition.
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1.5. Activity recognition

Table 1.1 – Summary of activity recognition

Goals Sensors Algorithms

Tapia et al.
(2004) ADL classification State-change sensors,

taped on objects
Naive bayesian

classifiers
Philipose
et al.
(2004)

ADL classification RFID tags and glove Dynamic Bayesian
networks

Chen et al.
(2005)

Bathroom activity
monitoring

Microphone in the
bathroom

Classification with
HMM

Fogarty
et al.
(2006)

Water-related
activity

classification

Microphones
listening to the

water-flow
SVM

Stikic et al.
(2008) ADL classification RFID tags,

accelerometers
Naive Bayes, HMM,

Joint Boosting

Gu et al.
(2009)

Interleaved and
concurrent
activity

classification

RFID,
Accelerometers Emerging patterns

Luštrek
and Kaluza

(2009)

Body posture
recognition, fall

detection
Accelerometers

C4.5, decision rules,
Naive Bayes, kNN,

SVM, random forests,
bagging, boosting

Fleury
et al.
(2010)

ADL classification

Switch, presence and
ambiance sensors,
accelerometers,
microphones

SVM

van
Kasteren
et al.

(2010a)

ADL classification
Contact switches,
motion detectors,
pressure mats

HMM, CRF

Nazerfard
et al.

(2010a)
ADL classification Motion sensors,

temperature
Conditional random

fields

Roy et al.
(2011)

Plan recognition,
anomaly detection

Switch, motion and
pressure sensors,

RFID,
accelerometers

Hybrid logical /
probabilistic
algorithm

Dawadi
et al.
(2015)

Health and
well-being
assessment

Motion detectors,
ambiance sensors,
contact switches

time-series

Kim et al.
(2015)

Uncertainty
assessment in

ADL classification

Accelerometers on
objects, touch

sensors

Multi-layered neural
networks
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Getting annotated data A very large proportion of the aforementioned
algorithms rely on supervised learning. They require annotated data, which
is hard to get in the context of SHAAL systems (Cleland et al., 2013): two
main strategies are currently used. In the first one, the inhabitant is asked to
write down the name of every activity and the time when it was undertaken.
In the second one, cameras are installed in the home, and someone later
watches the video footprints and annotates the activities. Either method is
very demanding and time-consuming. They are also intrusive into the user’s
daily life, and prone to annotation errors.

Moreover, the set activities that may occur in the home is usually much
wider than the available annotations. This leads to an increasing interest for
unsupervised algorithms for the discovery of frequent and periodic activities
(Cook et al., 2013b).

1.6 Unsupervised activity analysis

Unsupervised activity discovery has used methods from other domain. Since
the sensors generate sequences of events, sensor logs have sometimes been
seen as documents containing words (the sensor values). Methods from the
natural language processing field have thus been adapted to this context.

Hamid et al. (2009) uses n-grams to represent the activities: they search
activities as a sequence of events, where an event is a key-object interaction.
The activities are encoded based on their contiguous event subsequences: a
window of fixed size n is slided over the instances of the activities. The
n-grams contained in the successive window are listed and counted, gener-
ating an histogram of n-grams for each instance. These encodings are then
compared thanks to a similarity measure to extract activity classes. Activi-
ties that deviate from the characteristics of the activity classes can then be
detected.

Huynh et al. (2008) exploit topic models. Activity patterns (low-level descrip-
tions, linked with posture and used objects) are inferred from the sensors,
and can be recognized thanks to traditional (supervised) activity recogni-
tion algorithms. However, Huynh et al. argue that higher-level descriptions
(working in the office, commuting, having dinner) are not fully characterized
by the objects and postures they involve. They thus describe each instant
as a probabilistic combination of topics, these topics being strongly linked to
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1.6. Unsupervised activity analysis

the users routine and learned from the data.

Zheng et al. (2008) successfully apply growing self-organizing maps to clus-
ter the ADLs in a house equipped with RFID-like sensors monitoring object
usage. The control of the growing rate of the network allows them to build
hierarchical clusters. Indeed, a coarse clustering (little network growth) al-
lows them to detect areas of interest, which are then further analyzed using
a finer-grained clustering.

Jakkula et al. (2009) studies the temporal relationships between the activi-
ties: they first mine the frequent sequences using an APriori-like algorithm.
Then, the temporal relationships between the events in the sequence are
searched (if A and B are two activities, the temporal relations could be: A
starts before B, A overlaps B, A starts at the same time than B, etc.). When
a new event is recorded, it is assessed in order to determine whether it is
an anomaly, based on its occurrence probability, derived from the frequent
temporal relationships and the context.

Li and Dustdar (2011) propose a semi-supervised classification framework for
high-dimensional heterogeneous data: an unsupervised subspace clustering
on the training data enables the discovery of activity classes (the clusters).
Each cluster is furthermore associated with a relevant subset of the dimen-
sions characterizing the cluster. The clusters are then labeled by an expert,
which provides the ground truth for a traditional classification algorithm.
Thanks to the data projection on a reduced set of dimensions, the expert
labeling is made easier, which reduces the labeling errors. Moreover, the un-
supervised subspace clustering allows the discovery of relevant, but unnoticed
activities, and a feature selection adapted to each target activity.

Rodner and Litz (2013) use association rules: the recorded events are pre-
processed to generate transactions of items. This preprocessing uses data
extraction, aggregation and transformation in order to enrich the raw events
with geographic data; the numeric data and dates are discretized, etc. The
transactions are then mined within the association rules framework to extract
frequent and confident rules. This approach relies a lot on the expressiveness
of the transactions, and hence depends on the richness of the preprocessing.

Truong et al. (2009) aim to increase the autonomy of disabled people by
simplifying their interactions with a smart environment. They thus use the
home automation control logs to identify relevant scenarios: the home au-
tomation commands (the services) are clustered into scenarios, thanks to
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Chapter 1. Ambient assisted living and activity monitoring

self-organizing maps. Services that are often used in succession, or within
a short time-span are more likely to be grouped together. The discovered
services allow the control of the devices with fewer interactions, and in a
manner that is fully adapted to the habits of the user.

Nazerfard et al. (2010b) study the occurrence patterns of the activities of
daily living: for each activity, the start time of the occurrences are gathered,
and clustered using K-Means. For each cluster, the mean start time and
standard deviation are computed, which produces for each activity a mix-
ture model representing the start time. A similar representation is produced
for the activity durations. This allows a description of the normal occur-
rences of the activities with temporal features. Temporal association rules
are then mined from these features, in order to discover for each cluster of
each activity, which activities are most likely to follow. Though this anal-
ysis is unsupervised, it requires activity data (instead of raw sensor data):
indeed, it needs to know when the activities occur, and how long they last.
The activities are analyzed, but not discovered.

Rashidi et al. (2011) propose ADM (Activity Discovery Method) for the
unsupervised discovery of activity models. They first discover frequent dis-
continuous sequences as well as their frequent variations. These interesting
sequences are then clustered using K-Means, in order to group the observa-
tions into activity definitions. The results of ADM are then learned to recog-
nize activity models, thanks to Hidden Markov models. This approach was
also extended (Rashidi and Cook, 2010) to address the problems of stream
mining and varying event densities in different areas in the home.

Avci and Passerini (2013) split the sequence of sensor records thanks to par-
titioning algorithms based on the geographic distance between the sensors
in the home, or based on the context (the recently observed events). The
segments are then clustered, and both the segments and clusters are used
to train a Hidden Semi-Markov Model. The frameworks allows the unsu-
pervised classification of the activities, even without knowing the kind or
number of activities in the dataset. However, interleaved activities and idle
times still raise issues for the segmentation and clustering of the activities.

Another approach, Episode Discovery (ED, extensively described in sec-
tion 3.3) (Heierman et al., 2004) searches for interesting habits. The interest
of the patterns is assessed on a combination of measures, including their
length, frequency and periodicity.
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Table 1.2 summarizes the characteristics of the aforementioned unsupervised
approaches. In particular, one can notice that the announced objectives are
quite different, and thus the shape of the searched patterns vary as well.

1.7 Positioning

The proposals of this thesis contribute to the unsupervised activity analysis
scope, and focus primarily on habit discovery and monitoring. The for-
malisms used for habit mining are presented in the next chapter, followed by
our three proposals for the discovery of habits:

• xED (Soulas et al., 2013, 2015) is described in chapter 3. It pro-
poses a strategy for the discovery of periodic episodes in a sensor event
database, and is built upon the proposal of Heierman et al. (2004);

• sxED (Soulas and Lenca, 2015), detailed in chapter 4, extends xED to
the context of event streams;

• TKRES (Amphawan et al., 2015) is presented in chapter 5. It proposes
a framework for the discovery of regular patterns in event streams.

The algorithms are designed to handle events recorded by simple sensors
disseminated in the home, such as motion detectors, contact switch sensors,
or RFID tags. Indeed, these sensors are not intrusive, do not require any
maintenance on behalf of the inhabitant, and are usually cheaper than the
more complex sensors.
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Table 1.2 – Summary of the characteristics of unsupervised approaches for
activity monitoring in SHAAL systems

Goals Sensors Algorithms

Heierman
et al. (2004)

Periodic
behavior
discovery

Synthetic data Event set generation,
periodicity analysis

Huynh et al.
(2008)

Unsupervised
classification Accelerometers topic models

Zheng et al.
(2008)

Activity
hierarchical
clustering

RFID Growing
Self-Organizing maps

Hamid et al.
(2009)

Automated
activity
discovery

Camera Suffix trees

Jakkula
et al. (2009)

Anomaly
detection

Motion detectors,
temperature, light,
humidity sensors

APriori Sequence
mining, temporal

relationship analysis
Truong

et al. (2009)
Scenario

identification
Home automation

commands
Reinforced graphs,

SOM
Nazerfard

et al.
(2010b)

Anomaly
detection

Motion detectors,
door/cabinet sensors

k-Means clustering,
temporal association

rule mining
Li and
Dustdar
(2011)

Activity class
discovery

∅, the paper is a proof
of concept Subspace clustering

Rashidi
et al. (2011)

Unsupervised
activity

recognition

Motion detectors,
contact switches

Sequence mining,
K-Means clustering,

HMM
Avci and
Passerini
(2013)

Unsupervised
activity

recognition

Motion detectors,
contact switches

Sequence
partitioning,

clustering, HSMM

Rodner and
Litz (2013)

Behavior
modeling,
Anomaly
detection

Motion detectors,
contact switches, water
meter, switches for

light and roller blinds

FP-Growth,
Association rule

mining
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Chapter 2

Habit monitoring

2.1 Introduction

Every individual tends to follow routines. These habits are exacerbated for
elderly people, as pointed out by Bergua et al. (2013). The authors argue
that such habits help the elderly people maintain control over the course of
their day and over their environment. Habits reduce the risks of experienc-
ing unexpected and unpleasant situations, and thus improve their well-being.
Habits and routines thus play an important role for the maintenance of au-
tonomy.

Moreover, changes in the routines may sometimes indicate that carrying out
everyday activities is becoming harder, or even account for the onset of a
disorder, like Alzheimer’s disease. For example, the symptoms of dementia
include increasing apathy or disorientation (Benoit et al., 2005). Such symp-
toms reflect on activity completion and habits. The study of habits and
routines thus is as an important aspect of activity monitoring.

The objective of this chapter is to characterize what habits look like, and how
they can be discovered in sensor data. A new formalism for the description
of periodic behaviors is proposed.

Chapter outline The remainder of this chapter is organized as follows:
section 2.2 focuses on the characterization of the habits. The properties of
a useful habit discovery algorithm are also listed. Section 2.3 presents the
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Table 2.1 – Examples of habits, expressed in a natural language

Id Condition Action

1 When time is around 8:00 the user wakes up
2 When lunch is ready the user eats it
3 When it rains the user takes an umbrella
4 On Tuesdays or Saturdays the user goes to the market

main trends that have been explored in the literature to monitor habits and
periodic behaviors. We propose a periodicity framework in section 2.4 (Soulas
et al., 2013), that is then used throughout the remainder of the thesis.

2.2 Habit characterization and discovery

Habits are behaviors each individual tends to follow given a particular con-
text. The context may be temporal (time, day, season), a personal feeling
(hunger, thirst, tiredness), a situation or an event that just occurred (it
started raining, mail was delivered, etc.). The behavior the user puts into
action to react to the condition is personal: two individuals are unlikely to
share the same habits, react in the same way, or share the same daily orga-
nization. Habits can usually be described using a natural language thanks
to sentences such as:

“When <condition>, the person usually <does something>”

The <condition> can also be a combination of conditions. Table 2.1 provides
some examples of such habits.

In the context of ambient assisted living, we monitor the ADLs, and habits
related to the ADLs are of particular interest, since they characterize normal
behaviors and landmarks to assess safety and well-being. Deviations from
usual habits and missing regular behaviors can hint a problem.

Habits triggered by an event and habits triggered by a temporal context
call for different tools to formalize and detect habits. For example, usual
reactions to an event that just occurred or a feeling (examples 2 and 3 in
table 2.1) are usually detected thanks to association rules (Rodner and Litz,
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Table 2.2 – Example of periodic habits

Id Period Relative timestamp Action

1 Every day when time is around 8:00 the user wakes up
4 Every week on Tuesday or Saturday the user goes to the market
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Figure 2.1 – Example of an histogram representing the observed occurrence
times (start time) of three typical ALDs: eating, waking up, going to bed.

These activities are extracted from the CASAS Aruba dataset1

2013) and temporal association rules to exhibit causality (Nazerfard et al.,
2010b), or thanks to frequent sequences (Rashidi and Cook, 2010).

In this thesis, we extend these approaches by focusing on habits triggered by
temporal contexts (time, date, such as examples 1 and 4 in table 2.1). Such
habits can also be expressed as:

“Every <period>, around <time position within the period>,
the user usually <does something>”

Some of the habits described in table 2.1 can be reformulated with this
(<period>, <time position>) formalism (table 2.2). We focus here on the
detection of this kind of behaviors.

The rhythm at which activities tend to occur (i.e. the period) varies from
one activity to the other. For example, waking up and meals occur daily
(even several times a day for the meals), shopping is weekly, visits to the
physician may occur once or twice a month, etc.

1http://ailab.wsu.edu/casas/datasets/aruba.zip, this dataset is more precisely
described in chapter 3
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Chapter 2. Habit monitoring

Figure 2.1 presents an example histogram of the occurrence times for three
typical ADLs: waking up, eating, and going to bed. It highlights some
characteristics of the habits:

• There may be more than one cluster of occurrences within the period
of interest (here, two meals at home a day: a breakfast around 8:00
and a dinner around 18:00). These clusters of occurrences form the
components of a habit;

• Each component has a preferential occurrence time (mean) and its own
variability (standard deviation). For example in the example figure 2.1,
the occurrence times vary less for dinner than for breakfast. The vari-
ability for going to bed is also lower than the variability of the waking
up activity.

• Some occurrences happen outside of the preferential occurrence inter-
vals: some occurrences do not follow the periodic trend. For example,
there are some “wake up” activities in the afternoon (probably occurring
after a nap) or during the night (for example to go to the bathroom).

Routine characterization Habits are thus personal and contextualized.
Even if they tend to follow strict patterns, habits are carried out by human
beings, not machines, and are thus prone to variability, which is activity-
dependent. Some activities, such as taking medication, should for instance
have a very low variance. But there may not be an underlying meaning to a
relatively high variance when studying bedtime, and this variability can for
instance be linked to the broadcasting of an interesting film on television, or
leisure-related activities.

We thus argue that a good habit discovery algorithm should thus learn habits
for each user, and be able to adapt to the variability inherent to human
lifestyle. We propose to search the habits in the form of periodic patterns.

2.3 Periodicity analysis

The discovery of patterns based on the temporal regularities in their occur-
rences is of great interest in a wide range of applications, such as genetic
data analysis (Glynn et al., 2006), social interactions analysis (Lahiri and
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Berger-Wolf, 2008), transactional database mining (Kiran and Reddy, 2010),
biological sustainability studies (Li et al., 2012), mobility (Baratchi et al.,
2013), etc., and of course ambient assisted living.

In order to find which patterns are periodic, the rhythm of the patterns
appearances is studied. There is however no standard, universally-accepted
definition for periodicity. Possible definitions can be classified into basic
categories:

Regularity It considers the maximal time gap between two consecutive
occurrences (Tanbeer et al., 2009; Amphawan et al., 2011). This simple
measure was originally defined to assess the regularity of itemsets in trans-
actional datasets. This measure is further exploited in TKRES (Amphawan
et al., 2015), the contribution presented in chapter 5. Regularity allows the
description of behaviors in the form:

“The user <does something> at least once every <time duration>”

Cycles of intervals The objective is to discover whether the time gaps
between consecutive occurrences form a repeating cycle. This is the definition
used by Episode Discovery (Heierman et al., 2004), described in details in the
next chapter (section 3.4). It is also used by Lahiri and Berger-Wolf (2008),
with cycles of length 1. The time gaps describe habits in the form:

“The user <does something>, then does it again after <gap 1>
has passed, then after <gap 2>, etc., then <gap n>, then again
after <gap 1>, etc.”

High probability behaviors The patterns are searched in the form:

“If time is around <time> then the monitored subject is likely to
<do something>”

In particular, this kind of approach is used by Nazerfard et al. (2010b); Li
et al. (2012); Baratchi et al. (2013). It is also the one we use for xED (Soulas
et al., 2013, 2015) (detailed in chapter 3) and sxED (Soulas and Lenca, 2015)
(see chapter 4).
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Table 2.3 – Overview of different visions of periodicity

Algorithm Raw
data

Searched
patterns

Periodicity
definition

Impact if an
occurrence is
missing extra

ED (Heierman
et al., 2004)

Event
sequence Episode Repeating

time intervals high high

Lahiri and
Berger-Wolf (2008)

Dynamic
graph Subgraphs Repeating

time interval high high

Tanbeer et al.
(2009)

Itemset
sequence Itemsets Regularity high low

Kiran and Reddy
(2010)

Itemset
sequence Itemsets Regularity high low

Nazerfard et al.
(2010b)

Activity
log

Temporal
association

rules

Rule
confidence low low

Li et al. (2012) GPS
track Location

Time-wise
location

probability
low low

Baratchi et al.
(2013)

GPS
track Location

Time-wise
location

probability
low low

xED (Soulas et al.,
2013, 2015)

Event
sequence Episode GMM low low

sxED (Soulas and
Lenca, 2015)

Event
sequence Episode GMM low low

TKRES
(Amphawan et al.,

2015)

Event
sequence Episode Regularity high low

Discussion Table 2.3 summarizes the above-mentioned algorithms and
their characteristics. Their ability to handle variability is also assessed: in
order to perform well, the produced models should not be modified much if
an unexpected occurrence of the habit is recorded, or if an expected occur-
rence is missing. The three main contributions of this thesis are positioned
with regards to the other periodic behavior discovery algorithms.

Most of these algorithms do not handle well unexpected behaviors. In par-
ticular, missing occurrences may greatly impact regularity measures and re-
peating cycles of time intervals. The probabilistic habit discovery algorithms
are much more suitable: the periodicity models are not impacted much by the
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presence of a few outliers. However, the methods presented in (Li et al., 2012)
and (Baratchi et al., 2013) focus on the prediction of the position (GPS co-
ordinates), not the discovery of activities. The periodicity model (described
in section 2.4) used in xED and sxED allows the discovery of habits and the
characterization of their usual variability. TKRES uses however regularity,
and is thus a bit more sensible to missing occurrences of expected patterns.

2.4 Periodicity as a Gaussian mixture model

We argue that a good way to apprehend periodicity is to describe the clus-
ters of occurrences, such as they are represented in figure 2.1, which we
propose to do thanks to Gaussian Mixture Models (GMM). Gaussian Mix-
ture Models are frequently used to model the behaviors of random variables.
We apply them here to periodicity description. This description covers the
desirable characteristics of a periodicity description for the characterization
of behaviors emanating from living species: in particular, it is not perturbed
by missing occurrences, and shows robustness with regard to the presence
of shifted or extra occurrences (see the coming paragraphs for more detail).
It also characterizes how and how often these unexpected behaviors occur.
The next paragraphs describe how the mixtures models are used in xED and
sxED.

Relative timestamps. For a period T (e.g. one day, one week, one
month), and a timestamp t, the relative timestamp tr refers to the posi-
tion of t within the period: tr = t mod T . For example, with a period of
one day, the relative timestamp corresponding to 2015-11-24 10:21:00 is
the time: 10:21:00. With a period of one week, it is the combination of
the day within the week and time: Tuesday, 10:21:00. The periodicity
description with GMMs aims at the description of the distribution of the
relative timestamps for a given period T .

Gaussian Mixture Models In this formalism, the periodicity (for a pe-
riod T ) of each habit E is described with a Gaussian Mixture Model MT

E ,
that is to say a list of components, described by their means and standard
deviations:

MT
E = {(µ1, σ1), . . . , (µm, σm)}
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The GMMmodels the usual relative occurrence timestamps of the habit. The
means µ1, . . . , µn of the components describe the relative timestamps around
which occurrences are expected to occur,and take values with the range [0, T ].
The standard deviations σ1, . . . , σn describe how much the actual relative
timestamps usually differ from the expected timestamps.

According to our characterization of the occurrence behavior of an habitMT
E ,

we expect m occurrences of E to occur during each period, once around each
mean µi in MT

E . More formally, we define the expected occurrences of an
episode E as follows:

Definition 2.1 (Expected occurrence). For every i ∈ [1,m] and every integer
n ≥ 0, let tn,i = n · T + µi (tn,i is a timestamp, µi a relative timestamp). An
occurrence of the episode is expected to start around each time tn,i (±a · σi),
that is to say that an occurrence is expected to start in the time interval
[tn,i−a·σi, tn,i+a·σi], where a is a user-defined parameter. Using the natural
habit description used in the explanation for high probability behaviors, we
could also say:

“If time is <around tn,i>, then the monitored subject is expected
to <do E>”

If several occurrences happen around the same time tn,i, the one closest to tn,i
is considered as the expected occurrence. The others are extra occurrences, as
well as all the occurrences that are recorded outside of the expected intervals.

The parameter a controls the proportion of the occurrences that are consid-
ered as normal. If the time distribution of an habit indeed follows a Gaussian
distribution, and if the mean and standard deviation of this distribution are
correctly estimated, a value a = 2 will classify an average of 95% of the occur-
rences as occurring as expected. In the experiments in subsequent chapters,
a = 2.

With this representation, each episode is attached to its own list of (mean
time, standard deviation) pairs: the proposed periodicity characterization
allows the construction of models that are highly adapted to each episode
and to the user.

Figure 2.2 represents the occurrences of an event kitchen over the course of
four days. The event occurs twice a day, once in the morning around 8:03
with a standard deviation of 13 minutes, and then again around 12:40, with
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d1 8:03 12:40 d2 8:03 12:40 d3 8:03 12:40 d4 8:03 12:40

kitchen kitchen kitchen kitchenkitchen kitchen kitchen kitchen

Figure 2.2 – Periodicity for episode {kitchen}

a standard deviation of 1 hour and 10 minutes. A periodicity description for
the kitchen event, with a period T =1 day is thus: {(8:03, 0:13), (12:40,
1:10)}.

The quality of the descriptions is evaluated on their accuracy (definition 2.2).

Definition 2.2 (Periodicity accuracy). The accuracy of a periodicity de-
scription is the proportion of the occurrences expected to occur that were
indeed observed.

Definition 2.3 (Periodic episode). An episode E is periodic on ∆t if its
accuracy is higher than an accuracy threshold Amin.

Depending on the considered period T , each episode can have several period-
icities. For instance, a “wake up” habit occurring on week days around seven
(with standard deviation σ), can be seen as a daily or weekly habit:

• Daily habit (T = 1day): its periodicity is {(7:00, σ)}, with expected but
missing occurrences on Saturdays and Sundays (accuracy: 5/7 = 71%),

• Weekly habit (T = 1week): its periodicity is {(Mon 7:00, σ), (Tue
7:00, σ), (Wed 7:00, σ), (Thu 7:00, σ), (Fri 7:00, σ)}. Since it occurs
as expected on the five week day, it has a 100% accuracy. This second
description is longer, but also more accurate.

2.5 Conclusion

Habits are instinctively seen as periodic patterns. The human life means
variability. However, there is currently no consensus on the definition of
periodicity, or on methods to characterize it. Most existing strategies do not
manage well the mining task when the behaviors do not follow exactly the
expected periodicity.
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We thus propose a first contribution for this thesis: a periodicity descrip-
tion based on mixture models, which we evaluate based on its accuracy. In
the subsequent chapters, we propose several strategies to discover patterns
that can be pertinently characterized with such periodicity descriptions, and
update them when habits evolve.
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Chapter 3

Periodic episode discovery in
static databases

3.1 Introduction

In this chapter, the information registered by the sensors is used as a data
source for the discovery of interesting patterns describing the habits, i.e. the
discovery of periodic patterns, such as they were described in the previous
chapter. We propose extended Episode Discovery, or xED for short (Soulas
et al., 2013, 2015), an unsupervised algorithm for the discovery of frequent
and periodic episodes over an event database. Being unsupervized, xED
automatically adapts to different users, and different periodicity patterns.
xED also describes the times when an expected behavior does not occur,
which is useful for anomaly detection.

Chapter outline Section 3.2 presents the activity patterns xED looks for.
Section 3.3 presents a related algorithm: the Episode Discovery algorithm
(Heierman et al., 2004), which looks for periodic patterns as well. As shown
in table 2.3, Episode Discovery is the closest algorithm to our habit mon-
itoring target, and has served as inspiration for xED. The differences with
our approach are highlighted. Our contribution, xED is described in sec-
tion 3.4. Its different components are detailed and analyzed. Section 3.5
presents experiments on six real-life datasets, as well as a comparison of the
performances of xED with Episode Discovery. Conclusions and perspectives
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are proposed in section 3.6.

3.2 Habits and episodes

This section presents the definitions used for the mining of periodic episodes.
The processed data is an event sequence, generated by the user activity
and recorded by the sensors disseminated in the smart home. Each event
is characterized with a timestamp and a label. The event label is usually
composed of an identifier characterizing the triggered sensor and its value.
They can also be obtained from a preprocessing algorithm, for instance an
activity classifier, such as those of van Kasteren et al. (2010b).

The periodic behavior, i.e. the action the user carries out periodically is
described as an episode, that is to say a collection of events labels (defi-
nition 3.1). The periodicity is then evaluated on the timestamps of their
occurrences (definition 4.2). The assumption behind the use of episodes is
that activities and behaviors can be at least partially characterized by the
sensors they trigger (and thus the events they generate). Each sensor records
just a simple piece of information (a location, the use of an appliance or a
resource), and is thus not accurate enough to discriminate activities, but the
combinations of sensors (the episodes) better tackle this task.

Definition 3.1 (Episode). An episode E is a set of event labels {e1, ..., en}.

The label order in the episode is thus not taken into account, and duplicate
labels are considered only once. Indeed, sensors like motion detectors or
RFID tag readers tend to generate bursts of events while the person moves,
or is located close the tagged object. However, the number of events in
the bursts is not relevant in this context. The relative order of the sensor
activations is not always relevant either: it is greatly impacted by sensor
sensibility or data transmission delays.

Definition 3.2 (Episode Occurrence). Let E = {e1, ..., en} be an episode.
There is an occurrence o of E at time t1 if there exists a permutation p of
(1, ..., n) and n timestamps t1 ≤ ... ≤ tn such that o = 〈(t1, ep(1)), ..., (tn, ep(n))〉
is a subsequence of the events in the dataset. tn− t1 is the duration of o (we
can also say that o lasts for tn − t1).

This definition for episode occurrence allows the recognition of an episode
even if it is interleaved with other events (e.g., an activity is temporarily
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d1 8:00 12:00 d2 8:00 12:00 d3 8:00 12:00 d4 8:00 12:00

kitchen kitchen kitchen kitchenkitchen kitchen kitchen kitchen
breakfast breakfast breakfast breakfastlunch lunch lunch lunch
coffee coffee coffee coffeecoffee coffee coffee

d1 7:51 kitchen; d1 7:59 breakfast; d1 8:02 coffee; d1 12:42 kitchen;
d1 12:46 lunch; d1 13:06 coffee; d2 7:43 kitchen; ...

Figure 3.1 – Toy example dataset

interrupted to do another one, and is resumed later): the recognition is thus
more robust. If two activities are frequently interleaved, then it is likely that
the episode of interest is the combination of both activities: for example, if
the user always listens to the news while preparing breakfast, then listening
to the news becomes a component of the breakfast routine.

The duration of the episode occurrences can be constrained with an upper
bound, the maximal episode duration parameter Tep. Occurrences that last
for a longer duration are not taken into account. The assumption behind
Tep is that two events that are close in time are likely triggered by the same
human activity. They should thus be considered as a pair. On the contrary,
events that are distant in time are likely unrelated. A reasonable value is
Tep = 30 minutes: it corresponds to the time needed for most daily life
activities (prepare a meal, take a shower, ...), according to physicians. It can
also be estimated thanks to data exploration and segmentation techniques.

Example A toy dataset is presented figure 3.1. It is used as a running
example in the current chapter. It contains 22 events spanning over four days
(d1, d2, d3, d4). Four event labels are stored: kitchen, breakfast, lunch,
coffee. Many episodes can be extracted, such as {kitchen, lunch}, or
{breakfast}. The episode {kitchen, breakfast, coffee} occurs four times
under the constraint Tep = 30 min: at 7:51 on day 1, at 7:43 on day 2, 8:01
on day 3, and 8:19 on day 4.

Problem statement The objective of xED is to discover the periodic
episodes in the event dataset. The periodicity is described with the Gaus-
sian Mixture Model formalism described in section 2.4, and evaluated by its
accuracy.
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3.3 Related work: Episode Discovery

To the best of our knowledge, algorithms used in SHAAL systems are not
designed for the same purposes as xED, that is to say: periodic episode
discovery and usual variability characterization. The closest algorithm is
Episode Discovery, the main focus of which is also the periodic episode dis-
covery (but with a different periodicity definition). This section details how
Episode Discovery works, and discusses its limitations.

Episode Discovery (ED) (Heierman et al., 2004) is based on theMin-
imum Description Length (MDL) principle (Rissanen, 1989), which states
that the best model to represent data is the one with the shortest descrip-
tion. Following this principle, ED replaces the occurrences of periodically
reoccurring episodes by a single header, describing the episodes and when
they occur. This allows the rewriting of the dataset into more compact rep-
resentations. ED iteratively follows three steps:

1. Generation of a list of candidate episodes

2. Periodicity analysis of each candidate. Two periodicity descriptions are
computed, with different granularities (the timestamps are truncated):

• a fine-grained periodicity (truncation to the full hour),

• a coarse-grained periodicity (truncation to the full day).

In ED, the periodicity of an episode is based on repeating cycles of
time intervals. For an episode E occurring at times t0, t1, ..., tn, the
periodicity analysis goes as follows:

• Truncation of the timestamps to the currently investigated gran-
ularity (hour or day): the resulting timestamps are t′0, t′1, ..., t′n;

• Computation of the intervals between the occurrences δt1, ..., δtn,
with δti = t′i − t′i−1 for 1 ≤ i ≤ n;

• Estimation of the most likely length l of the repeating cycle of
intervals, thanks to an autocorrelation measure;

• Processing of the occurrences: The first l intervals δt1, ..., δtl build
up the first periodicity description. δtl+1 is matched against δt1;
δtl+2 against δt2; etc., as long as the subsequent intervals match
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Table 3.1 – Periodicity analysis for episode {kitchen} with ED

Occurrences d1 7:51, 12:42, d2 7:43, 12:02, d3 8:01, 12:57, d4 8:19, 12:30

Fine

Truncated d1 7:00, 12:00, d2 7:00, 12:00, d3 8:00, 12:00, d4 8:19, 12:00
Intervals 5:00, 19:00, 5:00, 20:00, 4:00, 20:00, 4:00
Periodicity (5:00, 19:00) (4:00, 20:00)
Mistakes d3 8:01

Coarse
Truncated d1, d1, d2, d2, d3, d3, d4, d4
Intervals 0:00, 24:00, 0:00, 24:00, 0:00, 24:00, 0:00
Periodicity (0:00, 24:00)

the interval cycle. When the observed interval does not match
the expected one (too short or too long), the displaced occurrence
is marked as a mistake, and the next l intervals make up a new
periodicity.

3. Dataset factorization, using the periodicity information. The patterns
allowing the smallest dataset rewriting are deemed most interesting.

ED thus includes all the occurrences of an episode in the periodicity model:
every extra, shifted or missing occurrence is recorded as a mistake, and the
periodicity cycles need to be recomputed. In the worst-case scenario, a peri-
odicity description remains valid for l intervals only (the l intervals on which
it was built). Every l + 1 occurrence can potentially be a mistake: there
can thus be up to NMAX = dn+1−(l+1)

l+1
e such mistakes (n + 1 is the number

of occurrences for the episode, d·e denotes the ceiling function). Since there
is no such measure in the original paper describing ED, we here define the
mistake rate of an episode as the ratio between the mistake count and NMAX .
It measures how long the periodicity cycles remain valid: it should be very
low for a periodic episode.

Application on episode {kitchen} Table 3.1 sums up the periodicity
analysis for the {kitchen} episode for the toy dataset from figure 3.1. A fine-
grained and a coarse-grained periodicity is computed. After the truncation of
the timestamps and the computation of the interval lists, an autocorrelation
measure sets the length of the interval cycles to l = 2. The periodicities
are then described thanks to the intervals. For the fine-grain periodicity,
the first two intervals 5:00 and 19:00 form the first periodicity cycle (5:00,
19:00). The third interval 5:00 matches the expected interval (the first one
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Input:
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¬ Frequent
episode

discovery

FP-Growth

­ Periodicity
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periodic episodes
(habits)
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Output:
shorter
dataset

no

yes

Figure 3.2 – xED: general flowchart

in the cycle), but the fourth interval (20:00) does not match the expected
interval (19:00). The occurrence d3 8:01 is thus marked as a mistake, and
the two following intervals form a new periodicity cycle (4:00, 20:00). No
other mistake is detected until the end of the dataset. The error rate for this
periodicity description is thus 1

d 5
3
e = 50%.

Discussion ED has been successfully applied in the MavHome project
(Cook et al., 2003). However, it does not allow flexibility in the occur-
rence times of the episodes. It considers extra (unexpected) occurrences as
mistakes, when they can be perfectly normal, and may thus miss some inter-
esting episodes. The built periodicity descriptions are moreover complicated
and can be overwhelming for the caregiver, when many mistakes are found.

In the next section, we present and describe the second contribution of this
thesis, xED. In particular, we present the core enhancements of xED to cope
with the issues of ED.

3.4 Extended Episode Discovery

Each iteration of xED has three steps (see also the general flowchart figure 3.2
and the overview algorithm 1):

1. The discovery of frequent episodes (section 3.4.1),

32



3.4. Extended Episode Discovery

Algorithm 1 Overview of xED algorithm: find the periodic episodes
Input: data, Tep, Cep, Smin, Amin, SDmax,∆Tmax (see table 4.2 for a detailed

description of the parameters)
1: compressed← True
2: while compressed do
3: compressed← False
4: frequent_episodes ← list of the frequent (min support: Smin)

episodes (duration: Tep)
5: periodicities← [ ]
6: for all episode E in frequent_episodes do
7: (∆t,Descr)← output from the candidate study step (algorithm 2)

for E (∆Tmax, Smin, SDmax, Amin)
8: Add (∆t,Descr) to the interesting periodicities
9: Sort the descriptions by decreasing compression power (see section

3.4.3)
10: factorized_events← [ ]
11: while periodicities[0] does not involve events in factorized_events

and compression power > 1 do
12: Factorize data by periodicities[0]
13: Remove periodicities[0] from the list
14: Add all the factorized events to factorized_events
15: compressed← True /* Another iteration is needed */

16: return New, shorter description of data, highlighting the periodic
episodes

2. The periodicity analysis of the frequent episodes (section 3.4.2), and

3. The factorization of the most interesting periodic episodes (section 3.4.3).

In order to tune xED to the particular requirements and needs of the end-
user, several parameters help control the course of the algorithm, summarized
in table 4.2. A description of each parameter is given, as well as its area of
influence, and recommendations on the choice of its value. The parameters
are also referred to in the descriptions of the steps in which they take part.
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Table 3.2 – Overview of the parameters in xED

Name Description Influence
area

Value
range *

Episode
length
Tep

Maximal time interval between
events in an episode occurrence.

Should correspond to the maximal
duration of the ADLs.

Candidate
episode

construction

0 – 24h
(30 min)

Minimal
support
Smin

Minimal number of occurrences of
an episode, for that episode to be
considered as frequent. If set too
high, weekly patterns not found.

Candidate
episode

construction,
DBSCAN

> 1 (once a
week)

Maximal
standard
deviation
SDmax

Maximal standard deviation
considered as normal. Should be set

by a field expert (physician).

DBSCAN:
controls

neighborhood
size

> 0.0 (10 %
of the
period)

Tolerance
ratio
a

An event expected to happen at
time t (with standard deviation σ)
occurs as expected if it occurs in the

interval [t− a · σ, t+ a · σ].

Pattern
quality

assessment
> 0.0 (2)

Minimal
accuracy
Amin

Minimal accuracy for a periodicity
description to be considered as
interesting, and thus factorized.

Pattern
quality

assessment

0 – 100 %
(50 %)

Long
empty

interval
∆Tmax

If there is a gap > ∆Tmax between
two occurrences of an episode, the
occurrences before and after the gap
are split (different validity intervals).

Periodicity
analysis

> 0.0
(3× the
period)

* the suggested / default value is given between brackets. These value depend on the
application field, and are here adapted to SHAAL systems.

3.4.1 Candidate episode search in xED

Habits are by definition frequent behaviors. The candidate episodes are thus
the frequent episodes : their support needs to be greater than a support
threshold Smin. The early pruning of rare events and episodes also allows
faster computation. However, habits are not necessarily the most frequent
behaviors. The minimal support threshold Smin should thus be set to a rather
low value.

Looking for candidate episodes is actually the same as looking for frequent
itemsets (the sets of event labels describing the episodes) in a list of transac-
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tions (the events happening in an event-folding window of length Tep). The
classic frequent itemset mining algorithms can thus be used to find the fre-
quent episodes. These algorithms are then guaranteed to find all frequent
itemsets, i.e., all the frequent episodes.

We used FP-growth, since it is very scalable and efficient (Han et al., 2000).
FP-growth stores the transactions in an efficient FP-tree structure. This
structure contains a header table, referencing the frequent items, and a pre-
fix tree, containing the information about the item associations in the trans-
actions. FP-growth first builds a first instance of the FP-tree, and then
mines it recursively. The core strategy is to reduce complexity by dividing
the dataset into conditional datasets (projected databases), which are then
processed separately. The concatenation of the results for each projected
database gives the set of frequent patterns. The initial tree construction re-
quires two passes over the dataset, and costs O(Nevents), where Nevents is the
number of events in the dataset. Each path in the tree is, at least partially,
traversed Nitems,path∗Nitems,HT times, where Nitems,path is the number of items
in that path (the depth of the path in the tree), and Nitems,HT is the number
of different items in the tree. The cost of searching through all paths is thus
bounded by O(N2

items,HT ∗ Dtree) where Dtree is the depth of the tree. For
each frequent item in the FP-tree, a recursive call to FP-growth is made. The
parameters having the greatest influence on the search are thus the episode
length Tep (which is going to determine the length of the transactions) and
the minimal support threshold Smin.

3.4.2 Periodicity and variability characterization

The periodicity of each episode is searched as a Gaussian Mixture model
(GMM, see chapter 2), that is to say a list of Gaussian components, which
are characterized by their means and standard deviations. The episode is
expected to occur around the means of the GMM, and the quality of the
periodicity descriptions is then assessed on their accuracy.

In this section, we discuss a strategy for the tuning of the GMM to the ob-
served occurrences of the episode. For each occurrence (happening at times-
tamp t) of the considered episode, the relative occurrence time (tr = tmodulo
T , where T is the considered period) is computed. The GMM is trained on
these occurrence times, in two steps (see pseudo-code in algorithm 2):
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Algorithm 2 The candidate study step: find the periodicity of a candidate
episode
Input: occurrences of the considered episode, ∆Tmax, Smin, SDmax, Amin

1: for all candidate period T do /* Typically T = 24hours, T = 7days */
2: Compute the intervals between consecutive occurrences
3: if there is an interval which is too long (> ∆Tmax) then
4: /* There is a gap without any occurrence of the episode */
5: /* The habits are likely to be different before and after this gap */
6: Split the occurrences in groups, and process each subset separately
7: for all group of occurrences O′ do
8: L← [ ] /* Stores the relative occurrence times */
9: for all occurrence o ∈ O′ do
10: Append o.timestamp mod T to L
11: Ncomp ← Cluster L with DBSCAN(Smin, SDmax)
12: {(µ1, σ1), ...(µNcomp , σNcomp)} ← Fit a GMM on L using EM(Ncomp)
13: Periodicity P = (T, {(µ1, σ1), ...(µNcomp , σNcomp)})
14: ∆t← the earliest and latest occurrence in O′ expected by P
15: Compute the accuracy A
16: if A ≥ Amin and the description is the best so far then
17: ∆tbest ← ∆t
18: Descrbest ← {(µ1, σ1), ...(µNcomp , σNcomp)}
19: return the best description found: ∆tbest, Descrbest

1. Determination of the number of components

2. Training of the GMM

Determination of the number of components in the mixture model
The occurrences need to be separated between the several components of a
given activity. Indeed, a general activity (e.g. prepare a meal, figure 2.1) is
likely to generate different clusters when considering its specific sub-activities
(breakfast and dinner). This separation is reflected in the occurrence density
throughout the period T , and can thus be detected thanks to a density-based
clustering algorithm.

The relative occurrence times are thus clustered with DBSCAN (Ester et al.,
1996). This algorithm partitions the data points based on the estimated
density of the clusters: a point tr belongs to a cluster C when there are
at least Smin points from C in the neighborhood of tr. The neighborhood

36



3.4. Extended Episode Discovery

size controls the desired precision and tolerance for the periodic episodes
(controlled by the maximal standard deviation considered as normal SDmax).
The complexity of DBSCAN is of the order of O(N2

occ), where Nocc is the
number of occurrences.

DBSCAN is used here as a heuristic for the estimation of the number of
components. The number of clusters discovered by DBSCAN is used as the
number of components in the GMM. This approach was preferred to the
standard estimation via information criteria such as AIC (Akaike Informa-
tion Criteria, Akaike (1998)) or BIC (Bayesian Information Criteria, Schwarz
et al. (1978)) for execution speed matters. The use of AIC or BIC criteria
allows the comparison of several probability distribution models in order to
find a trade-off between the quality of the estimation and the complexity of
the model. It thus requires the computation and evaluation of several GMM
models. On the contrary, DBSCAN allows a fast estimation of the number
of components, making the periodicity analysis faster.

Training of the GMM The periodicity descriptions of the episodes are
then searched in the form of a Gaussian Mixture Model (GMM) with as many
components as the number of clusters discovered by DBSCAN. GMMs are
traditionally trained using the Expectation-Maximisation (EM) algorithm
(Dempster et al., 1977). EM initializes the means for the latent components
of the mixture model using the centers of the DBSCAN clusters. Then for
every occurrence time o of the episode and every component c in the mixture
model, the probability that o was generated by c is computed. The param-
eters of the components are then tweaked to maximize the likelihood of the
data point / component assignment. The complexity of EM is of the order of
O(Niter ∗ Ncomponents ∗ Nocc), where Niter is the number of iterations before
the convergence of EM (bounded by the user), and Ncomponents is the number
of components in the mixture model. The execution of this step depends
thus highly on the number of occurrences Nocc for the episode. The candi-
date study step is mostly impacted by the number of frequent episodes (each
has to be analyzed separately). However, the analysis of each candidate is
independent, and can thus be parallelized.
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3.4.3 Dataset rewriting

Dataset rewriting is guided by the Minimum Description Length (MDL) prin-
ciple: the episodes allowing the most compact representation of the dataset
are considered as the most relevant. From an information theory point-of-
view, such episodes carry more information. Following the MDL principle,
xED iteratively rewrites the dataset for each interesting periodic episode,
processing as follows:

1. Insertion of a header describing the episode, its validity interval, and
its periodicity;

2. Removal of the occurrences observed as expected, that is to say the
occurrences matching the periodicity description;

3. Creation of new events for the characterization of expected but missing
occurrences. These new events can themselves become part of periodic
episodes in the subsequent iterations of the algorithm;

4. The other events and episodes are left untouched.

Definition 3.3 (Compression power). The compression power of a periodic
episode is the ratio between the sizes of the dataset before and after the
compression of the periodic episode.

The database size accounts for the description of the event labels in the fac-
torized periodic episodes, their validity intervals and periodicities, and all
the other events in the dataset (including those introduced when an occur-
rence was missing). Compression power is thus a measure that favors long
episodes, periodic episodes having many occurrences following the periodic-
ity description, and those with few missing occurrences. It makes a rather
natural compromise between the three aspects.

Thus, the periodic episodes enabling the greatest compression are described
first, and used for the factorization of the dataset. As long as the factor-
izations remove disjoint occurrences, they can be carried out, thus saving a
few iterations of the algorithm. The others periodic episodes are factorized
on subsequent iterations, if they are still deemed interesting. When two pe-
riodic episodes have the same compression power, the one with the greatest
accuracy is compressed first. If they also have the same accuracy, the episode
that was first discovered is factorized first.
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Table 3.3 – Analysis of the episodes for the dataset from figure 3.1 using
xED

Episode Description Errors N A

kitchen, breakfast, coffee µ1=8:03, σ1=13min ∅ 12 100%

kitchen µ1=8:03, σ1=13min
µ2=12:30, σ2=29min ∅ 8 100%

kitchen, lunch, coffee µ1=12:25, σ1=25min coffee
missing on d3

10 75%

kitchen, lunch µ1=12:30, σ1=29min ∅ 8 100%

kitchen, coffee µ1=8:03, σ1=13min
µ2=12:25, σ2=25min

coffee
missing on d3

14 87.5%

N: Number of factorized events = as expected − missing A: Accuracy

When the dataset is rewritten thanks to the discovered interesting periodic
episodes, another iteration of xED starts. The candidate search finds frequent
episodes, which are then analyzed for periodicity. If the periodic episodes
allow a dataset compression, the dataset is rewritten once again, until no
new interesting episode is found.

3.4.4 Illustration with example 3.1

Table 3.3 illustrates the results of the episode analysis of xED, and the it-
erative rewritings of the dataset are given in figure 3.3. Episode {kitchen,
coffee} has the greatest compression power, with a compression by 14 events
(15 events are removed, 1 missing event is added): it is thus factorized first:
a header is inserted, the expected occurrences of {kitchen, coffee} are
removed, the missing occurrence of coffee is inserted on day d3. The oc-
currences of the second most interesting episode ({kitchen, breakfast,
coffee}) overlap with the already factorized episode: it is thus not factor-
ized in this iteration.

The next iteration then starts. The frequent episodes are {breakfast} and
{lunch}, both occurring four times. Since their periodic occurrences do not
overlap, both are factorized during this iteration. The resulting database
contains three episode descriptions in its headers, and one event: the missing
occurrence of coffee on d3. There are no frequent episode left in the database:
the compression is maximal, and xED finishes.
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d1 7:59: kitchen, breakfast, coffee d3 8:01: kitchen, breakfast, coffee
d1 12:46: kitchen, lunch, coffee d3 12:59: kitchen, lunch,
d2 7:53: kitchen, breakfast, coffee d4 8:19: kitchen, breakfast, coffee
d2 12:02: kitchen, lunch, coffee d4 12:30: kitchen, lunch, coffee

d1 → d4, T = 24h, {(8:03, 13min), (12:25, 25min)}, {kitchen, coffee}

d1 7:51: breakfast d3 8:01: breakfast
d1 12:42:

:::::
lunch d3 12:59:

:::::
lunch, missing coffee

d2 7:43: breakfast d4 8:19: breakfast
d2 12:02:

:::::
lunch d4 12:30:

:::::
lunch

d1 → d4, T = 24h, {(8:03, 13min), (12:25, 25min)}, {kitchen, coffee}
d1 → d4, T = 24h, {(8:08, 13min)}, {breakfast}
d1 → d4, T = 24h, {(12:35, 29min)}, {lunch}

d3 12:30: missing coffee

factorization of {kitchen, coffee}

factorization of {lunch} and {breakfast}

Figure 3.3 – Compression of the dataset from table 3.3

Next section details the experiments on six real-life datasets, and shows
xED’s ability to discover interesting periodic episodes in the data.

3.5 Case studies

xED is implemented in Python. It uses components from the Scikit-learn
library (Pedregosa et al., 2011). xED was tested on both simulated and real-
life data. The generated datasets were designed to validate xED’s behavior
in various typical situations (daily and weekly patterns, following uniform
and Gaussian distributions, absence of expected events, presence of non-
periodic noise patterns, etc.). We describe next into details the experiment
on the real-life dataset Kasteren House A, subsequently referred to as KA
(van Kasteren et al., 2010b). Five other datasets are also investigated. The
synthetic results are explained and discussed in section 3.5.2. Comparison
with ED and discussion are provided in section 3.5.3.
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290 T.L.M. van Kasteren, G. Englebienne, and B.J.A. Kröse

(a) House A
(b) House B

Fig. 2. Floorplan of houses A and B, the red boxes represent wireless sensor nodes.
(created using: http://www.floorplanner.com/)

house (house C), an overview of the datasets can be found in table 3. The
datasets are available at: http://www.science.uva.nl/~tlmkaste.

The layout of the houses differs strongly, for example, there are two toilets in
house C, the toilet in house B is in the same room as the shower, while the toilet
and shower in house A are in separate rooms. Furthermore, the inhabitants differ
as well, house A was occupied by a 26 year old male, house B by a 28 year old
male and house C by a 57 year old male. To further illustrate the differences
between the houses we have included the floorplans of houses A and B (Fig. 2)
and house C (Fig. 3).

We asked the inhabitants to annotate their behaviour using eight activities
based on the list of activities of daily living (ADLs), a health care standard for
monitoring elderly [13]. The activities in house A and B were annotated using
a wireless bluetooth headset, the inhabitant recorded the start and end point
of an activity while performing it. In house C activities were annotated using
a handwritten diary. The activities annotated are the same for all three houses

Table 3. Information about the datasets recorded in three different homes using a
wireless sensor network

House House A House B House C

Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6
Duration 25 days 13 days 18 days
Sensors 14 23 21
Recorded by Authors Authors Authors

Figure 3.4 – Plan of the KA house (figure from van Kasteren et al. (2010b))

10 50 100

use toilet
leave house
go to bed

take shower
get drink

prepare Breakfast
brush teeth

prepare Dinner

(a) Number of occurrences

30min 4 h 8 h
get drink

brush teeth
use toilet

prepare Breakfast
take shower

prepare Dinner
go to bed

leave house

(b) Average activity duration

Figure 3.5 – Characteristics of KA dataset

3.5.1 KA dataset

The KA dataset was recorded between February 25th, 2008 and March 21st,
2008, and is available online1. Fourteen binary sensors were installed in
a home, where a single 26-year-old man lived. The sensors include motion
detectors between the rooms, and contact switches on the kitchen appliances:
on the fridge door, the cupboards, the dishwasher, etc., as well as on the toilet
flush. The 25-day experiment resulted in 2458 on / off sensor events.

The user annotated the activities being carried out using a Bluetooth headset.
Each activity has a start and an end time, and these records are available with
the sensor data. We focus on finding habits in these activities (518 recorded
events), presented in figure 3.5. Figure 3.5a summarizes the occurrence count

1https://sites.google.com/site/tim0306/datasets, last consulted September
16th, 2015
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Table 3.4 – Periodic episodes discovered by xED in the KA dataset

# Episode Periodicity A
∆t , T , (µ, σ)

1 go to bed end, use toilet
start, use toilet end Feb 26th –Mar 22nd, 1 day , (7:58, 0:38) 71 %

2
take shower start, take
shower end, leave house

start
Feb 26th –Mar 22nd, 1 day , (8:56, 0:59) 62 %

3
use toilet start, use
toilet end, go to bed

start
Feb 26th –Mar 21st , 1 day , (22:29, 1:13) 74 %

4 prepare Breakfast start,
prepare Breakfast end Feb 26th –Mar 21st , 1 day , (8:23, 0:39) 74 %

5 leave house end Feb 26th –Mar 20th , 1 day , (17:57, 1:27) 70 %

6
use toilet start, use

toilet end, leave house
start

Mar 11th–Mar 19th , 1 day , (18:11, 0:59) 60 %

7 brush teeth start, brush
teeth end Feb 25th – Mar 7st , 1 day , (22:33, 0:27) 60 %

8
use toilet start, use
toilet end, prepare

Dinner start
Mar 5th –Mar 11th , 1 day , (18:22, 0:24) 100 %

9 get drink start, get
drink end Feb 25th – Feb 28th , 1 day , (19:27, 0:57) 100 %

10 brush teeth start, brush
teeth end Mar 17th–Mar 21st , 1 day , (23:29, 0:23) 100 %

11 Missing occurrence of
episode #4 Feb 28th –Mar 13th , 1 week, (Sun 8:23, 0)

(Tue 8:23, 0) 75 %

of the activities over the dataset (the least frequent event appears 9 times).
We set Smin = 3 in order to enable the discovery of weekly episodes (the
dataset lasts slightly less than four weeks). The episode length Tep is set to
30 minutes, which is long enough to consider as part of one episode both
the beginning and end of short activities, like preparing breakfast, or using
the toilet, as described by figure 3.5b. The tolerance ratio a is set to 2: if
the time distribution of an episode follows a normal distribution (reasonable
assumption when considering habits), an average of 95% of the occurrences
will be classified as expected occurrences.

Out of the 56 frequent episodes present in the dataset, 11 were deemed

42



3.5. Case studies

µ± 2 · σ occurrences µ

6:00 9:00 12:0015:0018:00
0
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8

(a) Episode 1: {go to bed end, use
toilet start, use toilet end}

6:00 9:00 12:0015:0018:00
0

2

4

6

(b) Episode 2: {take shower start,
take shower end, leave house start}

21:00 0:00 3:00
0

2

4

(c) Episode 3: {use toilet start, use
toilet end, go to bed start}

3:00 6:00 9:00 12:0015:00
0

2

4
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(d) Episode 4: {prepare Breakfast
start, prepare Breakfast end}

Figure 3.6 – Histograms for the top-four periodic activities discovered in
KA (period T = 1 day)

interesting thanks to their good accuracy and compression power. Table 3.4
summarizes all the periodic episodes that were discovered. Figures 3.6 and 3.7
show respectively for the top-4 most interesting episodes: the histograms of
their occurrence time, and a time line showing both the times at which an
activity is expected to happen, and the events that were actually recorded
during the experiment.

The discovered habits are the episodes 1 to 11. One can for instance notice
(episode 1) that the user goes to the toilet after waking up, which hap-
pens around 07:58. Other morning routines are also found, including taking
a shower and leave house (episode 2) and preparing breakfast (episode 4).
Episode 4 is modified by episode 11. Indeed, episode 4 was not observed
as expected on Sundays and Tuesdays in the first half of the dataset: the
missing occurrences are themselves regular, hence the discovery of episode
11. The standard deviation of the components may grow to be quite large
(e.g. episode 5, with a standard deviation of 5234s = 87 minutes). During
the clustering of the occurrence times of this episode by DBSCAN, most oc-
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Ep. 4: {prepare Breakfast start,
prepare Breakfast end}

Ep. 3: {use toilet start, use
toilet end, go to bed start}

Ep. 2: {take shower start, take
shower end, leave house start}

Ep. 1: {go to bed end, use toilet
start, use toilet end}

Figure 3.7 – The expected vs the observed occurrences, for the top-4 best
periodic episodes in KA, during the first week of recorded data

currences are kept in a single cluster: the standard deviation is high. With a
smaller value for the maximal standard deviation parameter SDmax (here the
default value, 10% of the period, i.e. a bit less than 2.5 hours), this episode
might not have been considered periodic.

In the histograms figure 3.6, the hashed area corresponds to the time interval
[µ − 2 · σ, µ + 2 · σ] (where µ and σ are the mean and standard deviation
of the components in the periodicity description). Some habits occur only
in the expected interval (episode 4, bottom right histogram), when others
happen also at other times (episodes 1, 2, 3).

Figure 3.7 allows day by day comparison, and highlights for each episode
the actually observed occurrences. In particular, the expected but missing
occurrences can be spotted where one can see an expected interval, but no
(round dot) observation occurs in the interval.

3.5.2 Synthetic results for six real-life datasets

Experiments were done with six datasets coming from real-life experiments,
where one person carried out daily life routines in a smart home, without
any kind of supervision or scripted scenarios. The used datasets are:

• the three datasets presented in (van Kasteren et al., 2010b), subse-
quently referred to as KA (described in the previous paragraph), KB,
and KC;
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• the two datasets presented in (Tapia et al., 2004), referred to as T1 and
T2 (consulted on September, 16th 2015 http://courses.media.mit.
edu/2004fall/mas622j/04.projects/home/);

• the Aruba dataset (Cook, 2012), referred to as CA (http://ailab.
wsu.edu/casas/datasets/index.html, consulted on September, 16th
2015).

Table 3.5 summarizes the characteristics of the six tested datasets.

Each dataset was processed separately, with an episode length of 30 minutes,
and Smin such that episodes are frequent if they happen, on average, at least
once a week (Smin = 3 for KA, Smin = 2 for KB, KC, T1 and T2 and
Smin = 30 for CA). The discovered episodes are different from one dataset
to the next. This is normal: the sensors are different, and the users have
different habits. Nevertheless, some ADL patterns appear in several datasets,
notably those describing eating and sleeping patterns. As already noted,
the ADLs determine one’s ability to live independently, and as thus very
interesting patterns in activity monitoring.

In order to allow a cross-dataset summarized visualization, and a compari-
son of the habits on standard ADLs, the discovered periodic episodes were
manually investigated, and classified in five categories thanks to the available
annotations: bedtime, waking up, eating, hygiene-related or other. The daily
habits matching the first four categories are represented in figure 3.8. The
represented band widths are the discovered time intervals where the episodes
are expected to happen (±2 · σ, where σ is the standard deviation of the
considered periodic episode). These results highlight the high inter-subject
variability when it comes to habits, and emphasize the need for algorithms
which do not require a priori knowledge on the subject.

3.5.3 Comparison between ED and xED

ED and xED are compared on the 6 activity datasets. Both algorithm dis-
cover interesting episodes, though not necessarily the same, since the period-
icity descriptions are different (see overview of the two periodicity definitions
table 3.6). Figure 3.9 presents some characteristics of the candidate and pe-
riodic episodes discovered by ED and xED for the 6 datasets. The following
paragraphs highlight the main differences in the results for both algorithms.
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Table 3.5 – Characteristics of the six datasets used for the validation of xED

Dataset Age Gender Duration # activity
labels # events

KA 26 Male 25 days 8 518
KB 28 Male 14 days 8 224
KC 56 Male 19 days 8 468

T1 30 Female 16 days 22 590
T2 80 Female 15 days 24 416

CA Unknown (has
grandchildren)

Female 220 days 11 12953

Table 3.6 – Comparative summary: periodicity description for ED and xED

ED xED

• Granularity (fine-/coarse-grained)
• Date of the first occurrence
• List of periodicity cycles (list of
length-l lists of intervals)
• Mistake list: the observed
occurrences that did not respect the
expected intervals, since they came
either too late (missing occurrence) or
too early (extra). The periodicity of an
episode at time t is the ithcycle, with i
such that tmistakei < t < tmistakei+1

.

• Validity interval ∆t
• Period (1 day, 1 week)
• List of (µ, σ) pairs describing the
statistical distribution of the periodic
occurrences
• Mistake list (expected but missing
occurrences): events are created and
introduced in the dataset, e.g.
2014-12-20 12:34:56 Missing
occurrence of episode #12. They
are thus available, but not required for
the understanding of the periodicity.

Candidate and periodic episode count (figure 3.9a) The minimal
support threshold in xED reduces the number of candidates. The greater
tolerance to extra occurrences increases the number of interesting periodic
episodes (denoted “factorisation count” in the figure).

Episode support (figure 3.9b) Since xED uses a minimal support thresh-
old, xED candidate episodes are on average slightly more frequent than ED’s:
amongst the candidates for ED, some episodes are rare. The support of fac-
torized episodes tends to be higher in ED than in xED. This comes from
the way both algorithms compute the periodicities: xED penalizes more the
missing occurrences, and favors more the longer episodes with a clear periodic
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Figure 3.8 – Overview of the periodic episodes discovered by xED in the six
activity datasets

component, rather than the very frequent ones.

For example in the KA dataset, ED factorizes first {use toilet begin, use
toilet end} (table 3.7 presents all periodic episodes in KA), and removes all
the occurrences before looking for other interesting episodes. On the contrary,
xED differentiates several contexts in which this activity occurs, and outputs
episodes such as {go to bed end, use toilet, use toilet end} (i.e. wake
up and go to the bathroom, in the morning), {use toilet, use toilet end,
go to bed} (i.e. go to the bathroom and go to bed, which occurs in the
evening), {use toilet, use toilet end, leave house start}, etc.

Table 3.7 – Interesting periodic episodes discovered by Episode Discovery

Episode CP Granularity

use toilet start/end 1.08 coarse
take shower start/end; leave house start 1.07 coarse
prepare Breakfast start/end 1.05 coarse
brush teeth start/end; go to bed start 1.03 fine
leave house end; get drink start/end 1.02 coarse
leave house end; brush teeth start/end; leave house start 1.01 fine
prepare Dinner end; get drink start/end 1.01 fine
CP: compression power
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(a) Candidate and periodic episode
counts

(b) Support distribution of the
candidate and periodic episodes in ED

and xED

(c) Length distribution of the candidate
and periodic episodes

(d) Distribution of the error rates for
the periodic episodes ED and xED

discovert

Figure 3.9 – Quantitative comparison of the results of ED and xED over
the 6 datasets

Episode length (figure 3.9c) The candidates are longer for xED, and
the factorized episodes are as long, or longer. This phenomenon is linked
with the lower frequency of the xED’s periodic episodes: longer episodes
characterize better activity contexts. They are thus more likely to follow
a periodic pattern, in the meaning of xED, but they are less frequent than
their shorter sub-episodes.

Description relevance and uncovered mistakes Both algorithms do
not focus on the same periodicity definition (table 3.6), and discover thus
fairly different episodes and periodicity descriptions. Each time ED records
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a mistake, a new periodicity cycle is computed. The main advantage is that
it takes into account the evolution of habits with time. But in practice, many
such lists are created: a lot of mistakes are reported (figure 3.9d shows a very
high error rate). This makes the interval lists harder to use for the supervisor
(physician, family member).

When ED includes all the occurrences of an episode in the periodicity descrip-
tion, xED distinguishes the periodic occurrences from the other occurrences.
These extra occurrences are not considered as abnormal, and are left un-
touched in the dataset. They can participate in the periodicity analysis of
other episodes. xED reports thus less events as anomalous (figure 3.9d). In
practice, this makes xED periodicity descriptions more readable, and easier
to understand by the supervisor.

3.5.4 Discussion

xED allows the discovery of activity patterns in event databases. As of now,
it relies a lot on the choice of the parameters. These parameters are primar-
ily based on expert knowledge, as well as statistical analysis and empirical
observations. An effort was produced in order to use parameters that are in
direct link with the searched behaviors: the duration of the activities, their
frequencies, by how much their occurrence times may vary, etc. All these
parameters are understandable and can be set by a caregiver (a physician
in particular). Preliminary results were presented to experts in the field of
functional rehabilitation (Kerpape rehabilitation center, in Brittany, France),
and they agree on the relevance of the discovered patterns.

However, an unsuitable parameter setting may lead to the missing of inter-
esting information, such as occurrences of episodes slightly longer than the
episode length parameter Tep. Tep acts as a good heuristic for the candidate
episode generation, since it reduces the complexity of the search space, and
emphasizes on the importance of temporal proximity. But other candidate
episode generation techniques should also be investigated in the future, such
as automated segmentation, or change point detection.

The comparison with ED highlights the differences between ED and xED,
both in the theoretical approach and in the obtained results. The main
difference comes from the way extra unexpected events are handled: when
ED fits all the occurrences of episode in the periodicity model, xED focuses
on the periodic components of episodes. Some occurrences may thus remain
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out of the periodicity description. A first consequence is that xED adapts
better to the variability inherent in real-life datasets. Another is that the
periodicity descriptions are more informative, and are useful to monitor the
habits.

3.6 Conclusion

The discovery of habits is of importance for the health monitoring of elderly
people. In particular, when linked to anomaly detection tools, it enables the
raise of alarms when unusual and possibly dangerous situations are detected.
Knowing the habits also allows the observation of change in the habits, which
can point out the onset of a disorder. We propose and analyze xED, which
enables the efficient discovery of habits. This unsupervised algorithm char-
acterizes periodic episodes, and quantifies the customary variability of these
habits.

The experiment with six datasets shows that xED is able to discover habits
from event logs. The habits differ a lot from one subject to the other.
The variability attached to each habit is also user-dependant and episode-
dependent. This highlights the need for personalized, adaptive monitoring
tools, which justifies our approach. These results show the ability of xED to
consistently extract ADLs in data coming from various houses, with different
inhabitants.

xED has also been extended for the handling of data streams (chapter 4), in
order to enable the real-time discovery and update of our knowledge of the
habits, as well as the analysis of their evolution. Interesting perspectives also
include the investigation of outlier detection, of an evaluation framework, as
well as data visualization tools.
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Chapter 4

Periodic frequent episode
discovery in event streams

4.1 Introduction

As highlighted in the previous chapter, the discovery of habits is an inter-
esting subproblem of activity monitoring in SHAAL systems. xED provides
a first approach for the discovery of such patterns. However, it also shows
drawbacks that limit its ability to perform efficiently in real-world scenarios:

• The iterative process allows the discovery of refined episodes, and most
particularly episodes involving expected but missing behaviors (such
as episode #11, table 3.4), but this process is time-consuming: the
complexity increases proportionally with the number of iterations,

• xED focuses mostly on the definition of ways to define, evaluate and
compute the periodicity of patterns. The candidate episodes are gen-
erated using basic itemset mining techniques. This naive approach is
however impractical in the context of stream mining, and calls for im-
provements in the formalisms and techniques used for the selection of
the candidates,

• xED considers static datasets, and habits are assumed to be stable.
However, in practice, habits evolve with time.
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Habit evolution Habits are not stationary. They may change because of
seasonal change: the daylight hours and the weather vary, and thus also the
activities outside of the house. The habits may also change because someone
else’s planning changes (e.g., the caregiver changes his/her visit schedule),
or because of the user chooses to change his/her routine. Some changes
might also not be voluntary. They may be linked to a greater difficulty to
carry out every day activities, or to the forgetting of some habits. Monitoring
algorithms should thus also be capable to adapt to concept drifts, and update
their knowledge when new events are recorded.

Stream processing Moreover, monitoring needs to produce results in a
real-time setting: the processed events form a data stream. With the rapidly
increasing amount of data recording devices (network traffic monitoring,
smart houses, sensor networks,...), stream data mining has gained major
attention. This evolution leads to paradigm shifts. For an extensive problem
statement and review of the current trends, see Gama (2012). In particular,
data streams tend to be:

• Voluminous: the complete dataset may not fit in the main memory,

• Unbounded: new data points keep arriving, and

• Evolving: the data distribution is generally not stationary.

These observations set new constraints on the algorithms used for the mining
of such data sources (Gama, 2012):

• The model should be built using a single pass over the data. Old data
points cannot be processed again.

• The integration cost of a new data point in the model should be small,
constant, and independent from the number of data points already used
in the model.

• The memory usage should be constant, and independent from the num-
ber of data points already used in the model.

• The models should be capable of adapting to concept drifts. Here in
the context of habit monitoring, habits may change with time, new
habits may emerge, some habits may disappear, and the periodicity
descriptions can evolve.

52



4.1. Introduction

Old window, of length ∆Twin

New window: the data of interest

Outdated data New data

Figure 4.1 – Sliding window framework

Most traditional data mining algorithms do not satisfy these constraints.
Several frameworks have been proposed to cope with this situation. In par-
ticular, sliding windows are very popular (see the explanatory schema fig-
ure 4.1). In this framework, only a subset of the data points is kept in the
main memory: the most recent ones. When new data points arrive, the old-
est points in the window become outdated. They are either just removed
from the window, and/or the model is also updated to cancel their influence.

Contribution In order to adapt habit monitoring to a changing streaming
context, we propose sxED (streaming extended Episode Discovery) for the
discovery of frequent and periodic episodes over event streams (Soulas and
Lenca, 2015). The main contributions of sxED are:

• A new structure and algorithm for the discovery and update of the
frequent parallel episode data streams,

• A heuristic for the online estimation of the periodicity of the episodes.

Chapter outline The rest of this chapter is organized as follows: sec-
tion 4.2 introduces episode mining, presents the formalisms that are in use
and links them with some prominent related work. Section 4.3 details our
proposition for frequent periodic pattern mining and updating in an event
stream. Experiments on real-life datasets illustrate the interest of this ap-
proach in section 4.4. Finally, some conclusions are drawn, and ideas for
future work are presented (section 4.5).

53



Chapter 4. Periodic frequent episode discovery in event streams

4.2 Mining event sequences: formalisms and
related work

This section introduces episode mining, and reviews the approaches that
have been used for episode mining so far. Frequent episode mining is a
data mining task introduced by Mannila et al. (1995), for the discovery of
interesting patterns in sequences of events (see definition 4.1).

Definition 4.1. An event is a pair (e, t), where e is the event label and t is
the timestamp.

The event label usually corresponds to a sensor reading, an identifier, an
alarm code, etc., and takes values in a finite alphabet A. The timestamps
induce a total order on the events, and allow to compute a distance on the
events: the time gaps / time intervals.

Episode mining focuses on the discovery of episodes, that is to say relevant
collections of event labels in an event sequence. Contrarily to traditional
itemset mining approaches, the temporality (order and distance) of the events
is a most important feature.

Over the last twenty years, episode mining has attracted a lot of attention,
and was refined into several subproblems, depending on the type of episodes
that are searched, the episode support measures, or the behaviors of interest
that are mined. These different concepts are introduced and discussed in the
following subsections.

Example 4.1. Figure 4.2 presents a sample event sequence, which is used
as a running example to illustrate the different definitions and concepts in
this section (4.2) and the next (4.3).

The displayed window of example 4.1 contains 12 events, with labels taking
values in the alphabet A = {A,B,C,D}. The last seen event is (A, 62). The
timestamps are represented by integer numbers and are regularly sampled in
this example, but it is usually not true for all event sequences. In the context
of sensor networks, the timestamps are composed of a date and a time, and
sensors are triggered by activity in the home, and are thus not evenly spread
over time.
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t
... A B C B D A B C A C C B A

50 55 60

Figure 4.2 – Example: a segment of an event stream

A

B

C

(a) EP1 Serial episode: A
occurs, then B, then C

A

B

(b) EP2 Parallel episode:
A and B occur, in any

order

A

B

C

(c) EP3 General episode: A
and B occur, in any order,

followed by C

Figure 4.3 – Examples of episodes

4.2.1 Episode families

Mannila et al. (1995) define episodes as partially ordered collections of event
labels. When the order is total, the episodes are called serial. When there
are no order constraints, the episode is called parallel. Episodes are tradi-
tionally assimilated to oriented graphs, where each node represents a label in
the episode, and edges denote the “happens before” relationship. Figure 4.3
presents examples of serial (4.3a), parallel (4.3b) and general (4.3c) episodes.

Definition 4.2 (Episode occurrence). An episode E occurs in an event se-
quence S if there are events in S having the same labels as those of E and
respecting the order constraints. These events then form an occurrence of E.

In example 4.1, EP1 (figure 4.3a) occurs for example on 〈 (A, 50), (B, 51),
(C, 52) 〉 or on 〈 (A, 50), (B, 53), (C, 57) 〉, etc. EP2 (figure 4.3b) occurs on
〈 (A, 50), (B, 51) 〉 or on 〈 (B, 53), (A, 55) 〉. EP3 (figure 4.3c) occurs for
instance on 〈 (A, 50), (B, 53), (C, 57) 〉, or on 〈 (B, 53), (A, 55), (C, 57) 〉.

If Mannila et al. (1995), as well as subsequent studies propose methods for the
discovery of all kinds of episodes, they also acknowledge that the complexity
of mining general episodes can be prohibiting: the general episodes are built
by testing all the combinations of serial and parallel episodes. Most studies
thus focus either on serial episodes or parallel episodes.
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4.2.2 Episode support measures

If it is fairly straightforward to count the support of an itemset in a transac-
tional database, it is however harder to settle on a single support definition
when it comes to episodes. Three main trends have emerged:

• Window-based support,

• Minimal occurrence count, and

• Maximal count of distinct occurrences.

Window-based methods They use a sliding window of fixed size (the
maximal duration of the occurrences), and count the number of windows in
which the episode occurs (Mannila et al., 1997; Casas-Garriga, 2003; Tatti
and Cule, 2011). This means that even if an episode occurs several times in a
window, it is counted only once. When a same occurrence appears in several
windows (which is often true), it also means that it is counted several times.
This measure thus tends to favor short episodes: a short episode occurrence
is more likely to appears in many windows than an occurrence of a longer
episode.

Minimal occurrences Another popular measure is the count of minimal
occurrences (Mannila and Toivonen, 1996; Zhu et al., 2010; Zhou et al., 2010;
Lin et al., 2014), see definition 4.3.

Definition 4.3 (Minimal occurrence - MO). Let E = {e1, ...en} be an
episode, and o an occurrence of E starting at timestamp t1 and finishing
at timestamp tn. o is a minimal occurrence if there is no other, shorter oc-
currence that occurs within the time interval [t1, tn]. That is to say, there
cannot be an occurrence o′ starting in t′1 and finishing in t′n such that t1 ≤ t′1,
t′n ≤ tn and t′n − t′1 < tn − t1.

Counting minimal occurrences does not have the same bias as window-based
support counting: each occurrence is counted exactly one time. However,
each event can participate to several occurrences: the minimal occurrences
may overlap.
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Distinct occurrences With both previous methods, some events partici-
pate in several occurrences of an episode. This lead to the creation of other
support measures: the counting of the maximal number of distinct occur-
rences (Patnaik et al., 2012), or the counting of non-overlapping occurrences.
Two distinct occurrences are occurrences such that they do not share com-
mon events. Two non-overlapping occurrences span over non-overlapping
intervals: the first occurrence finishes before the second one starts.

This last support family presents a natural definition: each occurrence is
counted at most once, and each event may participate in only one occur-
rence. However, computing the maximal count of distinct occurrences is
more complex.

Hybrid measures In order to benefit from the properties of different sup-
port families, the measures have also been combined. For example, minimal
occurrences are sometimes counted only if they are distinct from the already
counted minimal occurrences (Lin et al., 2014), non-overlapping (Zhu et al.,
2010), or if they last for less than a maximal duration bound, which is the
approach used here in sxED.

Illustration Depending on the definition used to count support, a same
episode may have different support values. Let us now consider the different
support values for episode EP3 (figure 4.3c) on example 4.1:

• Window-based support, with a window of size 4: we slide a window
over the example data. Episode EP3 occurs in the window starting at
timestamps 50, 53, 54, 55 and 56. It’s support is thus 5.

• Minimal occurrences-based support: episode EP3 has a support of 3,
and its minimal occurrences are:

– 〈 (A, 50), (B, 51), (C, 52) 〉,
– 〈 (A, 55), (B, 56), (C, 57) 〉, and
– 〈 (B, 56), (A, 58), (C, 59) 〉.

• Distinct occurrences: the support of episode EP3 is 3, and the distinct
occurrences are:

– 〈 (A, 50), (B, 51), (C, 52) 〉,
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– 〈 (B, 53), (A, 55), (C, 57) 〉 and
– 〈 (B, 56), (A, 58), (C, 59) 〉.

• Non-overlapping occurrences: the support of EP3 falls back to 2 when
considering non-overlapping occurrences:

– 〈 (A, 50), (B, 51), (C, 52) 〉,
– 〈 (B, 53), (A, 55), (C, 57) 〉.

4.2.3 Types of searched patterns

The most common task in episode mining is to find all the frequent episodes,
that is to say all the episodes having a support higher than a user-defined
support threshold. But similarly to the developments that were proposed
in the itemset mining community, other interesting tasks have also been
investigated. Such tasks include for instance the search for:

• Emerging/submerging patterns (Gan and Dai, 2014), i.e. episodes
whose support changes significantly with time,

• The top-k most frequent patterns (Patnaik et al., 2012), where instead
of constraining the minimal support of the frequent episodes, the user
chooses how many results the episode should yield,

• Closed episodes (Zhou et al., 2010; Tatti and Cule, 2011), i.e. episodes
such that no super-episodes has an equal or greater support.

4.2.4 Conclusion

Table 4.1 summarizes the characteristics of some prominent episode mining
algorithms. While most combinations of episode types, support measures,
search strategies and constraints have been explored, most approaches do
not adapt well to data streams, nor to a deeper periodicity analysis.

Positioning With sxED, we search the periodic parallel episodes in event
streams. The support is computed via the count of the non-overlapping min-
imal occurrences. We also introduce a maximal occurrence duration bound.
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Table 4.1 – Characteristics of some prominent episode mining algorithms

Algorithm Searched
episodes

Support
measure Strategy Stream

Mannila and Toivonen
(1996) General MO A-priori No

Mannila et al. (1997) General WF A-priori No

Casas-Garriga (2003) Serial +
Parallel WF A-priori No

Zhu et al. (2010) Serial Non-overlapping
MO A-priori No

Zhou et al. (2010) Closed
serial MO A-priori No

Tatti and Cule (2011) Closed
general WF PG No

Patnaik et al. (2012) General Distinct A-priori Yes
Lin et al. (2014) Serial Distinct MO PG Incremental

Gan and Dai (2014) Serial Custom WF PG Yes

sxED (Soulas and
Lenca, 2015) Parallel Non-overlapping

MO PG Yes

MO: minimal occurrences WF: window frequency PG: pattern growth

We propose in the next section an episode mining strategy for the discovery
of the frequent episodes, that also allows us to maintain the necessary infor-
mation for the computation and update of the periodicity of the episodes.

4.3 Frequent periodic pattern discovery and up-
date: the sxED algorithm

Ambient sensors and probes register events, forming a stream, where new
events arrive continuously, but not necessarily regularly. We process the
event stream using a sliding window, whose duration is denoted TW .

Habits are searched in the form of frequent and periodic episodes. In a smart
home setting, there may be delays with the activation of sensor events. For
example in a smart kitchen, the motion detector might detect the person
entering in the room either before the person starts using some kitchen ap-
pliances, or just after. It is usually just a matter of a couple seconds. In such
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situation, the relative order between the sensor readings is not relevant. We
thus focus on the discovery of parallel episodes, which we subsequently simply
refer to as episodes (definition 4.4), and measure the support (definition 4.5)
as the count of the non-overlapping occurrences.

Definition 4.4 (Episode, episode length). An episode E is a set of n distinct
event labels {e1, ..., en}. The order of the labels is not constrained. The length
of episode E is n.

Similarly to xED, descripbed in chapter 3, a constraint Tep on the maximal
occurrence duration can thus be set. Occurrences with a duration longer than
Tep are then discarded. Tep exploits expert or statistical knowledge regarding
the expected duration of the activities of daily living. It also serves as a
heuristic for the reduction of the search space (see section 4.3.4.1 for more
detail).

Definition 4.5 (Support). The support of an episode is the count of its
non-overlapping minimal occurrences that last for less than Tep.

A detailed overview of the measures and algorithms used to discover and char-
acterize habits was discussed in chapter 2. Since the periodicity description
used in xED is satisfactory for the discovery of the habits of the inhabitant
of a smart house, sxED uses the same definitions and models too. That is
to say, that the periodicity of an episode is described via a distribution of its
relative occurrence times within the period of interest (e.g 1 day, 1 week),
thanks to a Gaussian Mixture Model (GMM). The quality of a periodicity
description is evaluated on its accuracy, that is to say the proportion of the
expected occurrences that were actually observed.

Next sections (4.3.1, 4.3.2 and 4.3.3) present the data structures used for
episode mining with sxED. The frequent episode update strategy when a
new event is recorded is detailed in section 4.3.4. The methods proposed for
periodicity computation and update are described in section 4.3.5. Finally,
section 4.3.6 summarizes how sxED works.

4.3.1 Time queues

We define the time queue of an episode (definition 4.6) following the original
definition from Mannila et al. (1995) (who call it then the occurrence list)
and the formalism of (Lin et al., 2014).
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t
... A B C B D A B C A C C B A

50 55 60

MO1
{A,B,C}

TQ{A,B,C}

1 The non-overlapping minimal occurrences are marked with a bolder stroke

Figure 4.4 – Minimal occurrences and Time queue of episode {A, B, C}

Definition 4.6 (Time queue – TQ). The time queue of an episode E, noted
TQE, is the list of the distinct pairs of start and end timestamps of its
minimal occurrences. The time queue entry corresponding to an occurrence
o is noted : [o.start, o.end].

Illustration on the example 4.1 (first described page 4.1) with a maximal
occurrence duration Tep = 3, let us consider episode {A, B, C}:

• The events composing an occurrence are not necessarily contiguous:
(D, 54) occurs in the middle of occurrence 〈 (C, 52), (B, 53), (A, 55) 〉.

• 〈 (A, 50), (B, 51), (C, 52) 〉 is minimal, but 〈 (A, 50), (C, 52), (B, 53) 〉
is not.

• {A, B, C} has 7 minimal occurrences, spanning over 6 different intervals
(〈 (A, 58), (C, 59), (B, 61) 〉 and 〈 (A, 58 ), (C, 60), (B, 61) 〉 span over the
same interval [58, 61]). For the complete list of minimal occurrences
and time queue entries, see the schema figure 4.4.

• Among these 7 minimal occurrences, we can pick a maximal of 3 non-
overlapping occurrences, or also 3 non-overlapping intervals in the time
queue. The support of {A, B, C} is thus 3.

Properties of time queues. Minimal occurrences and time queues have
convenient properties for the mining of interesting episodes. Namely:

Property 4.1. Every event with label e corresponds to a minimal occurrence
of the length-1 episode {e}. In every such occurrence o, o.start = o.end.
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Property 4.2. An episode E has at most one time queue entry that starts
at a given timestamp t.
Proof: If tq1 = [ts, te] and tq2 = [ts, t

′
e] are distinct time queues entries, then

te 6= t′e. If te < t′e, then tq2 cannot correspond to a minimal occurrence
(contradiction with definition 4.3). Otherwise, then it is tq1 that cannot
correspond to a minimal occurrence.
Similar observations show that an episode has at most one time queue entry
that finishes at a given timestamp.

Property 4.3 (Downward closure of the support measure). For E an episode
and E ′ one of its sub-episodes (E ′ ⊂ E), the support (i.e. the count of non-
overlapping minimal occurrences) of E ′ is greater or equal to this of E. The
support verifies the downward closure property (Zhu et al., 2010).

Property 4.4. Knowing the time queues of two episodes E1 and E2, we can
easily build the time queue of the union episode E = E1∪E2. The procedure
to build the time queue of E is detailed in algorithm 3. This property is used
for the construction of the candidate frequent episodes.

Property 4.5. A new event (e, t) can be part of an occurrence of episode
E = {e}∪E ′ (where e 6∈ E ′) if the latest entry [t′s, t

′
e] in the time queue of E ′

started less than Tep prior to the arrival of the new event (i.e. t− t′s ≤ Tep).
Moreover, this occurrence is minimal if the beginning of the last entry TQE′

starts strictly after the latest entry [ts, te] in the time queue of E (t′s > ts).
Then, the time queue entry [t′s, t] can be added to the time queue of E ′.
Proof: Otherwise, it means that there is already an occurrence of E starting
at timestamp t′s. There would then be two time queue entries starting at t′s,
which is not possible according to property 4.2.

Property 4.5 gives a particular importance to the recently observed episodes
for the construction of the occurrences of the longer episodes. Recently ob-
served episodes are episodes whose last minimal occurrence started less than
Tep before the currently observed event.

4.3.2 Episode Lattice

The frequent episodes and their time queues are stored in a frequent episode
lattice (FEL). Each node in the lattice corresponds to an episode. However,
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Algorithm 3 Computation of the time queue TQ and support s of episode
E = E1 ∪ E2 from the time queues of E1 and E2

Input: TQ1 and TQ2 the time queues of E1 and E2, indexed respectively
on i and j

1: i← 0; j ← 0
2: TQ← [ ]; support s← 0
3: while i < |TQ1| and j < |TQ2| do
4: if TQ1[i] finishes after TQ2[j] then
5: Increment j as long as TQ2[j] ends before TQ1[i]
6: else
7: Increment i as long as TQ1[i] ends before TQ2[j]

8: start← min(TQ1[i].start, TQ2[j].start)
9: end← max(TQ1[i].end, TQ2[j].end)
10: if end− start ≤ Tep then /* New minimal occurrence */
11: Add (start, end) to TQ
12: s← s+ 1

13: if TQ1[i].start == start then
14: i← i+ 1

15: if TQ2[j].start == start then
16: j ← j + 1

17: return TQ, s

not every episode is stored in the lattice, it would otherwise grow imprac-
tical. Only the length-1 episodes and the frequent episodes are maintained
in the lattice. Length-1 episodes are kept even if they are not frequent in
order to keep the necessary information to build longer episodes if and when
they become frequent. Each node retains the time queue of the correspond-
ing episode and the Gaussian Mixture Model description that best fits the
episode.

The parents of a node (located at depth d) correspond to its sub-episodes of
length d− 1, and its children to its super-episodes of length d+ 1. The edges
linking two episodes are indexed on the only event label that is present in
the child episode but not in the parent: this facilitates the navigation within
the episode lattice.

In spite of its possibly big edge count, the lattice structure was chosen over
the standard prefix tree because it allows faster episode retrieval and update.
The episode lattice corresponding to example 4.1 is given in figure 4.5 (built
with minimal support threshold Smin = 3, maximal occurrence duration
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Window of interest

B New event integrated in the model

A Old event removed from the model

episode TQ Support FEL node
episode TQ Support Newly create FEL node

episode TQ Support FEL node that is also present in the RMN list

53-55 TQ entry

53-55 TQ entry overlapping with the previous TQ entry

53-55, 4 Newly discovered TQ entry, Updated support

t
... A B C B D A B C A C C B A

50 55 60

root

A 50-50,
55-55, 58-58 3 B 51-51,

53-53, 56-56 3 C 52-52, 57-57,
59-59, 60-60 4 D 54-54 1

AB 50-51, 53-55,
55-56, 56-58 3 AC

50-51, 52-
55, 55-57,

57-58, 58-59
3

A B C D

B C A A

Figure 4.5 – Lattice corresponding to the example stream figure 4.2, when
(C, 60) is the last seen event. The top box describes the conventions used
to highlight the changes induced by the updates. The same conventions are

used in figures 4.6 and 4.7

Tep = 3, window length TW = 10).

4.3.3 Recently modified nodes

As stated in property 4.5, the recently observed occurrences of an episode
may be extended with a new incoming event to form an occurrence of a longer
episode. Here, recently observed means that the latest occurrence started less
than Tep before the timestamp of the current event. This gives a particular
importance to the lattice nodes that were recently modified (RMN – recently
modified nodes). sxED thus stores the recently modified nodes in a layered
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Algorithm 4 Update of the Frequent Episode Lattice when a new event is
recorded
Input: new event (e, t), FEL, RMN-list
1: if label e is not in the first level of the FEL then
2: Create a node for episode {e} and link it to the FEL root
3: Update the time queue of episode {e}
4: if {e} is frequent then
5: Add it to the RMN-list
6: for all depth d in FEL do
7: for all node NE (characterizing episode E) in RMN-list[d] do
8: Check whether there is a new MO of E ∪ {e} (algorithm 5)
9: Remove outdated information

collection of lists if they are frequent (the RMN at depth 1, the RMN at
depth 2, etc.) subsequently called the RMN-list.

For example, the RMN-list associated with the lattice figure 4.5 is:

RMN = [ [ {A}, {C} ], [ {A, C} ] ]

{D} is not part of the RMN-list, since the episode is not frequent enough (its
support is 1, when Smin = 3). Episodes {B} and {A, B} where not observed
recently enough (last observation at timestamp 56, i.e. 4 clock ticks before
the current event, when Tep = 3).

4.3.4 Lattice update

4.3.4.1 Update with a new event

When a new event (e, t) arrives, the lattice update follows algorithm 4: the
episode of length 1 {e} is first updated with its new time queue entry [t, t]
(property 4.1). The event can also be part of a new minimal occurrence for a
longer episode E ′ = E∪{e} where E is an episode that was recently observed
(property 4.5). The RMN-list is thus traversed and its nodes are candidates
for the construction of longer episodes.

For each node NE in the RMN-list, E ′ = E ∪ {e} is investigated thanks to
the procedure detailed in algorithm 5. Algorithm 5 updates the Frequent
Episode Lattice and the RMN-list by taking advantage of the time queue
properties 4.1–4.5. Two critical paths are highlighted:
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Algorithm 5 RMN-based update when a new event (e, t) arrives
Recently modified node NE ,
characterizing episode E

e ∈ E?

Return
/*e cannot
extend E */

yes

E.lastMO
starts before
t − Tep?

no

Remove NE

from RMN list

yes

Return /* Too old */

NE has a
child NE′ on

label e?

no

E.lastMO
starts strictly after

E′.lastMO?

yes

/*E′ already
frequent*/

Add new en-
try to NE′ .TQ

yes

/*New MO*/

Add NE′ to the RMN list

Return

Return
/*Already a MO for E′

starting in E.lastMO.start*/

no

TQ, S =
merge(TQE , TQ{e})

no

/*E’ may become
frequent*/

S ≥
Smin

Create node NE′

for E′. Link it
to its parents

yes

Add NE′ to
the RMN list

Return Return
/*E′ rare*/

no

• The red path is followed when there is a new minimal occurrence (MO)
for the already frequent episode E ′ = E ∪ {e},

• The blue path is followed when E ′ becomes frequent thanks to the
newly observed minimal occurrence. When E ′ becomes frequent, a
new node NE′ is created, and is linked to its parents in the lattice. The
parents are the nodes describing the episodes E ′\{e′} for each e′ ∈ E,
and are accessible via NE.parent(e

′).child(e), where NE is the node
for the known subset E. Since the RMN list is layered, and explored
by increasing node depth, NE.parent(e

′).child(e) is always created and
properly linked in the Frequent Episode Lattice before NE′ tries to
access it.

4.3.4.2 Removal of outdated information

Events older than TW are outdated, and their influence in the Frequent
Episode Lattice needs to be removed. The time queue construction makes
it so that its entries are ordered by increasing start timestamp: the entries
that need to be removed are thus at the beginning of the time queue in
each node. If a node does not contain outdated time queue entries, then
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its children (and thus the complete sub-lattice of its super-episodes) do not
have outdated entries in their time queues. The Frequent Episode Lattice
can thus be traversed from the root using a breadth-first search algorithm,
where nodes are investigated and updated only if at least one of their parents
presents outdated occurrences.

If an episode becomes rare, all of its super-episodes become rare too (prop-
erty 4.3). This node and its children are thus removed from the Frequent
Episode Lattice (except the nodes at depth 1, which are still needed for when
they become frequent again).

4.3.4.3 Illustration on example 4.1

The update process of the Frequent Episode Lattice is illustrated twice on the
events of example 4.1, with first the arrival of a new event (B, 61) in figure 4.6
and this of (A, 62) in figure 4.7. With (B, 61), episodes {B, C} and {A, B, C}
become frequent. Their nodes are thus created and inserted in the Frequent
Episode Lattice, and in the RMN list. The arrival of (B, 61) also makes
(A, 50) outdated. Episode {A} looses an occurrence and its support becomes
2. Since {A} is rare, so are all the episodes in the sub-lattice starting from
node {A}. They are thus removed from the lattice. {A} is moreover removed
from the RMN list.

The arrival of (A, 62) makes {A} become frequent again. The nodes in the
RMN list are thus investigated to check whether they can be extended with
label A. The episodes {A, B}, {A, C} and {A, B, C} are thus introduced in the
lattice again. The removal of outdated event (B, 52) updates the nodes for
episodes {B} and {B, C} but does not change the structure of the lattice.

4.3.5 Periodicity discovery

The periodicity of an episode is described thanks to a Gaussian Mixture
Model. Each node in the Frequent Episode Lattice is associated with a
Gaussian Mixture Model describing the periodicity of the episode, which
is updated when new minimal occurrence are observed or occurrences re-
moved. Usually, a Gaussian Mixture Model is trained with the Expectation-
Maximization algorithm (Dempster et al., 1977) (EM), whose behavior was
described in the previous chapter, section 3.4.2: the characteristics of the
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t
... A B C B D A B C A C C B A
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A 50-50,
55-55, 58-58 3 B 51-51, 53-53,

56-56, 61-61 4 C 52-52, 57-57,
59-59, 60-60 4 D 54-54 1
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50-51, 53-
55, 55-56,

56-58, 58-61
3 AC

50-51, 52-
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56-57, 60-61 3
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50-52, 52-
55, 55-57,

56-58, 58-61
3

A B C D

B C A C A B

C B A

(a) Inclusion of event (B, 61) in the Frequent Episode Lattice: episodes {B, C} and
{A, B, C} become frequent.

t
... A B C B D A B C A C C B A

50 55 60

root

A 55-55, 58-58 2 B 51-51, 53-53,
56-56, 61-61 4 C 52-52, 57-57,

59-59, 60-60 4 D 54-54 1

BC 51-52, 52-53,
56-57, 60-61 3

A B C D

C B

(b) Removing outdated event (A, 50): episode {A} becomes rare, and thus the
episodes containing event label A are rare too, and their nodes are removed.

See the representation conventions in the legend of figure 4.5

Figure 4.6 – Update with event (B, 61)
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(a) Inclusion of event (A, 62) in the Frequent Episode Lattice: {A} becomes frequent
again, as well as {A, B}, {A, C} and {A, B, C}
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(b) Removing outdated event (B, 52): {B} loses a minimal occurrence but remains
frequent, {B, C} loses a minimal occurrence as well, but its support is not modified.

See the representation conventions in the legend of figure 4.5

Figure 4.7 – Update with event (A, 62)
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Gaussian component are iteratively tweaked to maximize their adherence to
the data.

The number of components in the Gaussian Mixture Model is tradition-
ally evaluated by trial and error, using the AIC or BIC information criteria.
This requires the training and maintenance of several mixture models. More-
over, since streaming data may be non-stationary, the number of components
may evolve, as well as their characteristics. We here extend Expectation-
Maximization with heuristics for the addition, removal and merging of com-
ponents. Algorithm 6 presents the general workflow for the periodicity up-
date. In particular:

• When a new minimal occurrence, starting at timestamp t is detected
for the episode, the position of the timestamp in the period tr = t
modulo period is computed. If tr does not match any of the exist-
ing components, i.e. for each component (µ, σ), |tr − µ| > σ, a new
component is added.

• When outdated data is removed from the sliding window, some compo-
nents may lose their importance. When a component is not enough rep-
resented among the non-overlapping minimal occurrences in the win-
dow, it is removed from the Gaussian Mixture Model.

• Finally, when two components (µ1, σ1), (µ2, σ2) become close to one
another, i.e if |µ1−µ2| < a∗(σ1+σ2) (with a = 1.5 in the experiments),
the two components are merged.

• In the general case, Gaussian Mixture Model updates do not change
much the model. Thus, when the number of components does not
change, a single Expectation-Maximization iteration is necessary to
update the characteristics of the components.

The interest of this approach was evaluated on synthetic data, following
known mixture of Gaussian models evolving with time. The heuristics allow
the detection of the main trends in the data: emergence of new components,
loss of old and rare components, shifting in the characteristics of the compo-
nents.
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Algorithm 6 Overview of the periodicity update (“comp” stands for Gaus-
sian Mixture Model component)

New
occ.

Comp.
match?

Create a
component

Distribution
update

Iteration of EM

Empty
comp.?

Remove
component

Close
comps.?

Merge
compo-
nents

New
occ.?

no

yes

yes

no

yes

no no

yes

4.3.6 General workflow

Algorithm 7 summarizes the main steps of sxED: when a new event is
recorded, the Frequent Episode Lattice is updated thanks to the frequent
episode discovery algorithm. Whenever a node is created or updated, its
periodicity is updated, and it is added in the RMN list. When the Frequent
Episode Lattice is up-to-date, the outdated events are removed.

Table 4.2 summarizes the parameters allowing a tuning of the overall algo-
rithm behavior.

4.4 Experimentation

In this section, we evaluate sxED on its ability to disover interesting frequent
periodic episodes in three activity datasets (section 4.4.1), and on its scalabil-
ity (memory usage and runtime, see section 4.4.2). A qualitative comparison
between sxED and xED is also proposed in section 4.4.3.

A prototype was implemented in Python. It was also instrumented to record
the episodes and lattice updates. The instrumentation slows down the ex-
perimentations: the execution times given are over-estimated.

We here describe the experiments on ambient assisted living datasets. An
experiment on data coming from an online video game was also conducted,
and is available in appendix C.
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Algorithm 7 General workflow for sxED
new event (e, t)

Update the length-1 episode {e}

Foreach episode
E in RMN list?

Investigate E ∪ {e}

New MO of a
frequent episode

New frequent
episode

Update node
periodicity

Remove outdated data

return

yes

no

yes

yes

no

no

4.4.1 Experiments with three activity datasets

The CASAS project (Cook et al., 2013a) uses home automation devices to
improve aging at home. Over the years, they have collected and published
several datasets. We present here our experimentations on the Aruba, Cairo
and Twor datasets1. These datasets record the daily living patterns over
a period ranging from 2 months (Cairo and Twor datasets) to 6 months
(Aruba dataset), using motion detectors. The obtained information was
annotated with activities labels (such as Sleeping, Housekeeping, etc.). These
annotations are our events. Table 4.3 summarizes the characteristics of the
datasets.

The datasets were processed using a period of one day, a window TW of
4 weeks, a minimal support Smin of 8, a maximal episode duration Tep of

1available online http://wsucasas.wordpress.com/datasets/, last consulted on Oc-
tober 5th, 2015
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Figure 4.8 – Execution log for the Aruba dataset
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Figure 4.9 – Execution log for the Cairo dataset
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Figure 4.10 – Execution log for the Twor dataset
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Table 4.2 – Overview of the parameters available to tune the online periodic
episode discovery algorithm

Parameter Description Area of
influence Value

Maximal
occurrence
duration Tep

Maximal time interval between
events in an episode occurrence FEL > 0 (e.g.

30 min)

Minimal
support Smin

Minimal number of occurrences for
an episode to be considered as
frequent. Only frequent episodes

are in the FEL.

FEL
> 0 (e.g.

1 occurrence
per week)

Window
length TW

Duration of the window. Only the
events that occurred less than TW

ago influence the results.

FEL,
Periodicity
description

> 0 (e.g.
4 weeks)

Period Used for periodicity computation. Periodicity
description

> 0 (usually
1 day,
1 week)

Minimal
accuracy
Amin

Minimal accuracy for a periodic
description to be considered as

interesting.

Periodicity
description

0− 100%
(e.g. 60%)

30 minutes, and an accuracy threshold of 70%. The parameter setting was
reinforced by a descriptive analysis of the data (e.g., it showed that most
activities last less than 30 minutes). The results obtained throughout the
course of the execution are given in figures 4.8 for the Aruba dataset, 4.9 for
the Cairo dataset and 4.10 for the Twor dataset.

During the first 4 weeks, the sliding window fills with the incoming events
(figures 4.8a, 4.9a and 4.10a), and the first frequent and periodic episodes
appear (figures 4.8b, 4.9b and 4.10b). Since the datasets are different, the

Table 4.3 – Characteristics of the ambient assisted living datasets

Aruba Cairo Twor

Recorded Nov 4th, 2010 – June
6th, 2011

June 10th – Aug 5th,
2009

Feb 2nd – Apr 4th,
2009

Duration 220 days 57 days 61 days
# Labels 22 26 32
# Events 12 954 1 200 1 004

74



4.4. Experimentation

observations are different too. Here are some remarks:

• The execution times (figures 4.8c, 4.9c and 4.10c) shows the scalability
of the approach for this kind of application. The longer execution time
for the CASAS dataset comes from the greater amount of events in
this dataset: the window is more dense, and the data structures are
updated more.

• In the Aruba dataset, the size of the window remains quite stable after
its initial filling (figure 4.8a). That is not true for the Cairo (4.9a) and
Twor (4.10a) datasets, hence the abrupt jumps in the episode counts. In
particular for the Twor dataset, there is a gap without event recording
between March 13th and March 23rd.

• The number of frequent periodic episodes is much smaller than the
number of frequent episodes. This makes the habits (i.e. the periodic
episodes) easier to track and analyze by the caregiver or physician.

Examples of periodic patterns The contents of the FEL in the last
window is investigated for the Aruba dataset. Some of periodic episodes
with the highest accuracy A are:

• {Sleeping end}: 50 non-overlapping minimal occurrences, 1 compo-
nent, µ = 6:00, σ = 2 hours, A = 100%

• {Enter_Home begin, Enter_Home end}: 61 non-overlapping minimal
occurrences, 1 component, µ =14:00, σ =3 hours, A = 88%

• {Sleeping end, Meal_Preparation begin, Meal_Preparation end,
Relax begin}: 26 non-overlapping minimal occurrences, 1 component,
µ =6:00, σ =1.45 hours, A = 82%

These patterns can be interpreted as habits: the person woke up every morn-
ing around 6:00, and also had breakfast in 82% of the mornings. The third
episode describes a movement pattern: the inhabitant usually goes out of
home at some time (it is another episode), and comes back in the early
afternoon.
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4.4.2 Parameter influence

In order to assess the influence of the parametrization on the scalability of
sxED, the CASAS Aruba dataset was mined using different settings. For each
setting, the maximal size of the FEL (maximal number of frequent episodes
and maximal number of frequent periodic episodes) and the total execution
time was recorded. Figure 4.11 presents the influence of the minimal support
Smin, which we set to values ranging from 2 to 30, with a step of 1. The other
parameters remained constant (Tep = 30min, TW = 3 weeks). Figure 4.12
draws the influence of the maximal occurrence duration Tep (ranging from
1s to 8hours, Smin = 5 and TW = 4 weeks). Figure 4.13 shows the influence
of the window duration TW (ranging from 1 to 24 weeks, with Tep = 30min
and Smin = 4 occurrences per week, i.e. Smin = 4 for TW = 1 week and
minimalsupport = 96 for TW = 24 weeks).

In particular, it shows that the execution time remains reasonable and scal-
able. The maximal episode duration parameter (figure 4.12) remains however
necessary to prevent an explosion of the complexity of the FEL. For habit
monitoring, 30 minutes is quite reasonable.

4.4.3 Qualitative comparison with xED on KA dataset

In order to compare sxED with its static dataset counter part, xED, the peri-
odic episodes discovered by xED and sxED on the KA dataset are compared.
In the previous chapter, table 3.4 lists the periodic episodes discovered by
xED. Table 4.4 lists all the periodic episodes discovered by sxED on the same
dataset, and with a similar setting: same episode maximal duration Tep =
30 minutes, same support threshold Smin = 3, and a window TW = 4 weeks
in order to cover the complete dataset. Since some of the most interest-
ing episodes according to xED had an accuracy as low as 60%, the minimal
accuracy threshold was lowered to Amin = 60% for sxED as well.

In this configuration, sxED discovers 16 interesting episodes. These episodes
are very similar to those xED discovers: they were either discovered by xED,
or are sub-episodes of episodes that were discovered by xED. The episodes
xED discovered but that were missed by sxED are episodes whose validity
interval was really short (#7 and #10 {brush teeth start, brush teeth end},
valid only from Feb 25th to March 7th and from March 17th to 21st; #8 {use
toilet start, use toilet end, prepare Dinner start}, valid only from March 5th
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Table 4.4 – Periodic episodes in the KA dataset in the window spanning
over the whole dataset

Episode S Periodicity A

use toilet start 109 (6:03:49, 3:21:53),
(19:57:13, 2:16:07) 82 %

use toilet end 109 (6:05:36, 3:21:57),
(19:58:57, 2:16:05) 82 %

use toilet start, use toilet end 109
(0:34:34, 1:33:18),
(7:49:31, 1:38:53),
(20:11:24, 2:06:54)

77 %

take shower start 22 (9:29:23, 2:02:41) 76 %
take shower end 22 (9:39:03, 2:01:11) 76 %

take shower start, take shower end 22 (9:29:23, 2:02:41) 76 %
go to bed end 22 (7:57:07, 0:42:53) 72 %

take shower end, leave house start 19 (9:27:37, 1:56:10) 68 %
go to bed end, use toilet start 21 (7:56:33, 0:41:33) 68 %

take shower start, leave house start 18 (9:23:30, 1:59:07) 64 %
take shower start, take shower end, leave

house start 18 (9:23:30, 1:59:07) 64 %

prepare Breakfast end 20 (8:27:10, 0:39:28) 64 %
go to bed end, use toilet end 20 (8:00:01, 0:39:37) 64 %

go to bed end, use toilet start, use toilet end 20 (7:59:57, 0:39:30) 64 %
prepare Breakfast start 20 (8:24:23, 0:39:05) 60 %

prepare Breakfast start, prepare Breakfast
end 20 (8:24:23, 0:39:05) 60 %

to March 11th; and #9 {get drink start, get drink end}, valid from Feb 25th
to 28th). Episode #11 could obviously not be discovered by sxED, since it
does not iterate the episode mining process several time.

The periodicity descriptions are also very similar (similar average occurrence
time for the morning routines), which is to be expected since the mixture
models were fit using the same Expectation Maximization methodology. The
main differences are observed for the episodes where the number of compo-
nents is different (use toilet start, use toilet end} and its sub episodes). sxED
thus performs as well as xED, while also adapting to concept drifts and con-
tinuously arriving data.

In terms of execution time, the incremental habit discovery by sxED gave
results much faster than xED (cumulative execution time of 0.7s for sxED,
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18s for the 6 iterations of xED, that is to say an average of 3s per itera-
tion). The better performance for sxED were expected, but should be put in
perspective, as neither of the implementations of xED and sxED were thor-
oughly optimized: it was not the main objective. Although both prototype
implementations for xED and sxED could be better optimized, this shows
the better performances of sxED.

4.5 Conclusion

Behavior pattern (episode) mining over event sequences is an important data
mining problem, with many applications, in particular for ambient assisted
living. Several frequent episode mining algorithms have been proposed for
both static data and data streams. But while periodicity was also shown to
be an interesting characteristic for the study of behaviors, very few algorithm
have addressed both frequent and periodic patterns, in a streaming context.
In this chapter, we have thus proposed sxED, an algorithm to mine frequent
periodic episodes in data streams.

Future work on this topic includes the automatic determination of the pe-
riod to consider. Due to the use of time queues, sxED does not scale well
when the maximal episode duration Tep threshold is high, or when the event
density increases. It would thus be very interesting to devise new ways to
compute periodicity and to evaluate its accuracy, that would not require the
occurrences timestamps. In particular, approximate support counting and
decay factors (instead of sliding windows) seem to be promising alternatives.
Solutions involving less parameters would also be easier to tune, especially
for the supervisor, who is in general a physician or a caregiver, and not an
algorithm expert.

79



Chapter 4. Periodic frequent episode discovery in event streams

80



Chapter 5

Top-k regular episodes

5.1 Introduction

The description of periodicity via Gaussian Mixture Models is a powerful
descriptive tool. It provides the supervisor with a detailed description of the
episodes, their periodicity and its components, a description of their variabil-
ity and of how often they occur, thanks to the accuracy measure. However,
the computation, maintenance and analysis of such periodicity descriptions
requires the storing of the occurrence times of the episodes of interest, which
may be resource-consuming. They can moreover be “cheated”: an arbitrar-
ily big standard deviation will tend to produce high-accuracy periodicity
descriptions.

We thus investigate another popular periodicity measure: regularity, which
studies the time intervals between the consecutive occurrences of an episode.
Moreover, since the setting of appropriate thresholds may be complicated and
overwhelming, we adopt a top-k approach: instead of setting a frequency or a
regularity threshold to separate interesting episodes from the non-interesting
ones, the supervisor sets the number k of desired results.

Thus, we propose TKRES (Top-k Regular Episodes in Streams) for the
discovery and update of the top-k most regular episodes in an event stream.

Chapter outline The rest of the chapter is organized as follows: sec-
tion 5.2 reviews some of the associated literature for regular pattern mining.
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Section 5.3 presents the formalisms, defines the problem we address, and pro-
poses a formalism for the discovery of the top-k regular episodes. Section 5.4
presents the TKRES algorithm, and section 5.5 present the performance eval-
uation of TKRES. Finally, section 5.6 concludes and presents lines of study
for future work.

5.2 Literature Review: regularity

Regularity was introduced in Tanbeer et al. (2008). It was originately de-
fined for itemset mining in transactional databases, and considers the gaps
between the occurrences of an itemset. It was also sometimes called “period-
icity”, which we do not do, in order to avoid confusions with the periodicity
definitions used in chapters 3 and 4.

Formally, let I = {i1, · · · , in} be a set of n items and TDB = {t1, ..., tm}
a transactional database. Each ti ∈ TDB is a transaction, identified by
a transaction identifier tidi, which contains an itemset Xi ⊆ I (Xi subset
of I). Let X be an itemset. The transaction ti supports X if X ⊆ Xi.
The identifiers of the transactions that support X are stored in a list TX =
{tidi1 , · · · , tidik} (with 1 ≤ i1 < · · · < ik ≤ m). The support of X is the
length of TX : k (there are k transactions identifiers in TX).

Regularity Let X be an itemset, and TX = {tidi1 , · · · , tidik} the identi-
fiers of the transactions that support X. The regularity of X is then the
maximal gap between two consecutive transactions supporting X. Two spe-
cial cases are also considered: the gap between the beginning of the dataset
and the first occurrence, as well as this between the last occurrence of X and
the end of the dataset. The regularity is thus the maximal value of:

• tidi1 − tid1 (which corresponds to the number of transactions from the
beginning of the data to the first occurrence of X)

• max1≤j<k tidij+1
− tidij (which corresponds to the maximal number of

transactions between two consecutive occurrences of itemset X)

• tidm− tidik (which corresponds to the number of transactions between
the occurrence of X and the end of the data)
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An itemset is then said to be regular if its regularity is lower than a user-
defined threshold. One can notice that an itemset is more regular if its
regularity value is small.

Moreover, if Y is a sub-itemset of X, then it is more regular than X (down-
ward closure property (Tanbeer et al., 2008)). This provides a stop criterion
when mining regular itemsets: if an itemset is not regular, then its super-
itemsets cannot be regular either.

Regularity has been extensively studied, especially by Tanbeer et al. and
Amphawan et al.. In particular, regularity was coupled with frequency for
the discovery of frequent-regular itemsets (Tanbeer et al., 2009; Surana et al.,
2011). It has been used in top-k approaches (Amphawan et al., 2011; Am-
phawan and Lenca, 2013), and for the discovery of closed itemsets (Am-
phawan and Lenca, 2015). The initial algorithms have also been extended to
allow an incremental discovery (Tanbeer et al., 2010b), or for the mining of
data streams (Tanbeer et al., 2010a).

However, this definition for regularity, and the algorithms used for the discov-
ery of regular itemsets need to be adapted in order to mining event sequences
and event streams. We thus propose in section 5.3 an extension of regularity
for episode mining in sensor streams.

5.3 Problem definition

An event stream is a potientially infinite sequence of events, ordered by their
timestamp. The events are gathered in batches of fixed duration (e.g.: one
day), and the stream of batches DS = 〈B1, · · · , Bn, · · · 〉 is processed using a
sliding window: only the last m batches of data are considered.

TKRES searches for the top-k most regular episodes (definition 5.1) in the
recent past, composed of the last m batches of data. Whenever a new batch
of data arrives, the interesting episode list is updated.

Definition 5.1 (Top-k regular episodes). An episode E is a top-k regular
episode if there are no more than k − 1 episodes that are more regular than
E.

Initially defined in the context of itemset mining in transactional data, reg-
ularity is not fit to describe episodes in event streams. We here extend the
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definition of regularity to cover episode mining as well. Instead of defining
the regularity as the number of transactions separating two transactions that
support the itemset, regularity becomes the time between consecutive non-
overlapping minimal occurrences (definition 5.2). The maximal duration of
the occurrences is bounded by a threshold Tep, which corresponds exactly to
the support threshold used in xED (chapter 3) and sxED (chapter 4). As
in sxED, the occurrences of the episodes are managed thanks to their time
queues (TQ, see definition 4.6).

Definition 5.2 (Regularity). Let E be an episode, and TQNOMO its time
queue restrained to the non-overlapping occurrence intervals. Let l be the
length of TQNOMO. Each entry t in TQNOMO is composed of a start and end
timestamp, noted t.start and t.end. The regularity of episode E is:

rE = max
0≤i≤l

(ri) where

• r0 = t1.end− tsw, with t1 the first occurrence in TQNOMO and tsw the
start time of the window (first regularity);

• ri = ti+1.end− ti.start for 1 ≤ i < l, where ti and ti+1 are two consec-
utive occurrences in TQNOMO;

• rl = tew− tl.start, with tl the last occurrence TQNOMO and tew the last
timestamp of the window.

Downward closure Similarly to the original regularity definition for item-
set mining, an episode E is more regular than another episode E ′ if rE < rE

′ .
This definition for regularity also maintains the downward closure property:
an episode is always as regular as or more regular than its super-episodes.
This means that if an episode is not a top-k regular episode, then none of its
super-episodes may be a top-k episode either.

Put in simple words, regularity measures the maximal time gap between the
start of an occurrence and the end of the next occurrence (start-to-end).
Other definitions like end-to-start, start-to-start or end-to-end would not
satisfy the downward closure property.

Problem statement With the user-given set of parameters (table 5.1): a
number of desired interesting episodes k, a batch duration |B|, a number m
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Table 5.1 – Parameters for the tuning of TKRES

Parameter Description Area of influence

k
Number of episodes in output. Only the
k most regular episodes are returned.

Depth of the
k-tree, length of
the top-k list

m Number of
batches in the
sliding window

The occurrences in the last m batches
are used to build episodes and compute
their regularity. Older data is discarded.

Defines how long
the occurrences
remain valid

Tep Maximal
occurrence
duration

Occurrences longer than Tep are not
considered in the regularity measures.

Time queue
construction and

update
|B| batch
duration Duration of a batch Update frequency

A B C B A A B C B A C B A B A A C B C B

5 10 15 20

Figure 5.1 – Example event stream, used as a running example in the
chapter

of batches in the window, the maximal duration of episodes occurrences Tep;
we address the problem of mining the top-k regular episodes. That is to say,
we discover the k episodes with the lowest regularity values in the window
(containing m batches) sliding over a sensor data stream DS.

5.4 Proposed TKRES algorithm

In this section, we introduce TKRES, an efficient single-pass algorithm for
mining the top-k regular episodes in a sensor data stream. The data struc-
tures and main steps of the algorithm are illustrated on an example (exam-
ple 5.1).

Example 5.1. Figure 5.1 presents an event stream, containing 20 events,
split in 4 batches (batch duration |B| = 5). This event stream is processed
with the following parameters: k = 4, m = 3, Tep = 3.
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TKRES searches the episodes in a sliding window containing m consecutive
batches of events, and can be divided in two main steps:

• the initialization (section 5.4.2): the dicovery of the top-k regular
episodes from the first window (the first m batches of the input stream
B1 to Bm), and

• the update with an incoming batch (section 5.4.3): the update of the
knowledge on the top-k regular episodes present in the new window
(the previous batches, except the oldest one, plus the new incoming
batch).

TKRES uses a list (called top-k list) to maintain the set of top-k regular
episodes during data processing, and a tree structure (the k-tree) to main-
tain the occurrence information for the short episodes and the top-k regular
episodes. The top-k list is ordered by ascending episode regularity, and is
always maintained in order throughout the mining process. The k-tree is
based on prefix trees.

5.4.1 k-tree

In order to maintain the necessary information for the episode construction
and update, and for the computation of the top-k list, TKRES uses a tree
structure (see example figure 5.2). Each node corresponds to an episode and
contains:

• a label: the episode corresponding to the node can be retrieved through
the list of labels in the path from the node to the root,

• a pointer to its next sibling. These pointers form a linked list of the
nodes sharing the same parent, and are used during the construction
of longer episodes (merging of two sibling nodes),

• a pointer to its children, indexed on their labels, and a pointer to the
first child (head of the sibling linked list),

• a pointer towards the next node located at the same depth, regardless
of whether the nodes are siblings or not,

• the time queue of the episode.

86



5.4. Proposed TKRES algorithm
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Figure 5.2 – Example of a k-tree, if the event alphabet is {A, B, C}, with a
highlight on the navigation possibilities within the tree

When a new node is added in the tree, the mappings are updated: it is linked
to its parent, appended to the linked list of its siblings, and appended to the
linked list of the nodes located at the same depth. Similarly, when a node is
removed from the tree (e.g. because the episode it represents is not in the
current window), the linked lists are updated too. Such structure allows a
fast tree traversal for the update of the k-tree and the retrieval of the top-k
episodes.

5.4.2 Initial mining

As described in algorithm 8, TKRES first creates nodes in the k-tree for all
the event labels. The timestamps of the length-1 episodes (the labels) are
collected from the events in the batches, and the regularities of these episodes
are computed. The k event labels with the lowest regularity are collected and
ordered by increasing regularity in the top-k list (lines 1–6). The kth least
regular event label gives an upper bound to the maximal regularity a top-k
episode may have.

TKRES then builds the k-tree to generate longer episodes. It reduces its
memory consumption by limiting the depth of the tree to Dk−tree (line 7).
This threshold is defined as the smallest possible depth enabling to hold k
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Algorithm 8 TKRES–initial mining
Input: k: number of episodes to be discovered,

m batches of sensor data 〈B1, . . . Bm〉
Output: top-k list, k-tree

1: for all batch Bi do
2: for all event (ej, tj) in Bi do
3: if the root has no child node for ej then Create the node
4: Add {ej}’s new occurrence tj
5: Compute the regularity of each event label
6: Collect the k labels with the lowest regularity into the sorted top-k list
7: Compute the depth Dk−tree of the k-tree to be created
8: for depth d = 1 to Dk−tree − 1 do
9: for all node EX at depth d do
10: for all EY siblings of EX do
11: Merge the time queues of EX and EY to form EZ

12: Create a node for EZ as the child of EX

13: Compute the regularity rEZ of EZ

14: if rEZ < rk then Update the top-k list with EZ

15: d = Dk−tree
16: while new episodes of length d get in the top-k list do
17: for all node EX at depth d such that EX is in the top-k list do
18: for all EY siblings of EX such that EY is in the top-k list do
19: Merge the time queues of EX and EY to form EZ

20: Compute the regularity of EZ

21: if rEZ < rk then
22: Update the top-k list with EZ

23: Create the node for EZ (child of EX)
24: d = d+ 1
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A B C B A A B C B A C B A B A A C B C B

5 10 15 20

root

B {B}
2-2, 4-4, 7-7,

9-9, 12-12, 14-14

[1, 2, 3, 2,
3, 2, 1]

A {A}
1-1, 5-5,

6-6, 10-10,
13-13, 15-15

[0, 4, 1, 4,
3, 2, 0]

C {C}
3-3, 8-8, 11-11

[2, 5, 3, 4]

B {A, B}
1-2, 4-5, 6-7, 9-10,

10-12, 12-13,
13-14, 14-15

[2, 4, 3, 4,
4, 3, 1]

C {A, C}
1-3, 3-5, 6-8,

8-10, 10-11, 11-13

[3, 7, 5, 5]

C {B, C}
2-3, 3-4, 7-8,

8-9, 9-11, 11-12

[3, 6, 4, 6]

Legend
label {episode}

Time queue: MO,
NOMO, MO

[Regularity, Max
regularity, ]

Figure 5.3 – Initial tree construction when the first m = 3 batches are read

episodes in the tree. It is computed based on k and on the size of the event
label alphabet ξ. For example, if the events take values among 5 labels and
the value of k is 25, then Dk−tree = 3: the 5 episodes of length 1, the 10
episodes of length 2, and 10 of the 30 episodes of length 3. In example 5.1,
Dk−tree = 2.

The episode construction step considers pairs of sibling episodes in the k-
tree (starting from depth 1 to Dk−tree − 1). For each pair of sibling episodes
EX and EY , a new entry for EZ = EX ∪ EY is created and linked to its
parent EX (if EX and EY are located at depth d, then EZ is located at
depth d+ 1). Based on the occurrence times of EX and EY , the time queue
of EX ∪ EY is computed and added to the corresponding node in the k-
tree. The corresponding regularity is computed and compared to the worst
regularity in the top-k list. If need be, the top-k list is updated (lines 8–14):
EZ is inserted and the kth entry (which has just become the k + 1 most
regular episode) is removed.

There is no guarantee that all the top-k regular episodes are shorter than
Dk−tree. A process similar to the construction of the episodes of length up
to Dk−tree is thus used to build these longer episodes: the pairs of top-k
episodes located at depth Dk−tree and higher are combined and their union
is investigated. If the new episode belongs to the top-k list, a node is created
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in the tree and the top-k list is updated. This new episode is then candidate
for further extension with other episodes of the same length (lines 15–24).

The initial tree construction process is illustrated on figure 5.3: the nodes,
time queues and regularities of the episodes of length 1 are computed based
on the contents of the first 3 batches. The respective regularities of {A},
{B}, and {C} are 4, 3, 5. Siblings {A} and {B} are then combined to form
{A, B} (regularity: 4), {A} and {C} form {A, C} (regularity: 7), {B} and {C}
form {B, C} (regularity: 6). The k = 4 most regular episodes are thus {B},
{A}, {A, B} and {C}. The constuction of the third level of the k-tree is not
necessary: there is only one top-k episode of length 2, and can therefore not
be merged with another top-k episode of length 2 to form a top-k episode of
length 3.

5.4.3 Mining new incoming batches

At the end of the first mining step, TKRES has built the top-k list and the
k-tree, which contains all entries for episodes in depth 1 to Dk−tree, and the
entries of top-k regular episodes at depth higher thanDk−tree. However, when
a new batch of sensor data arrives, the contents of the top-k list might not
be up to date anymore. Algorithm 9 details the steps for the maintenance of
the data structures.

When a batch Bi+m arrives, then the batch Bi becomes outdated, and the
information it contains is removed: the top-k list is emptied, the deeper levels
of the k-tree are removed (these nodes are not maintained, but they will be
built again if necessary), and the outdated entries in the time queues of the
nodes located at depth lower than Dk−tree are revoved (lines 1–3).

After the removal of the outdated information, the update follows a structure
similar to this of the initial tree construction. The episodes of length one are
first considered, and the new occurrences are registered (lines 4–8). The
tree is then updated: the minimal occurrences present in the new batch of
data are added to the corresponding nodes (lines 9–15). If necessary, new
nodes are created for the new episodes. The construction of the episodes
longer than Dk−tree occurs only if necessary, i.e. if there are top-k episodes
of length Dk−tree. This construction proceeds exactly like the construction
of the longer episodes in the initial mining (lines 16–25).

The update of the k-tree with the 4th batch of example 5.1 is illustrated on
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Algorithm 9 TKRES–mining a new incoming batch of sensor data
Input: k, Bi+m: the new batch, k-tree built when Bi+m−1 arrived
Output: new top-k list, updated k-tree

1: Empty the top-k list
2: Remove all the nodes at depth higher than Dk−tree
3: for all node do Remove the occurrence times occurring during Bi

4: for all event (ej, tj) in the new batch Bi+m do
5: if the root has no child for ej then Create the node
6: Add {ej}’s new occurrence tj
7: Recompute the regularity for the episodes at depth 1
8: Collect the k labels with the lowest regularity into the sorted top-k list
9: for depth d = 1 to Dk−tree − 1 do
10: for all node EX at depth d do
11: for all EY siblings of EX do
12: Merge the time queues of EX and EY (only the entries occur-

ring in Bi+m)
13: if EX has to child for EZ then
14: Create the node
15: if regularity rEZ < rk then Update the top-k list with EZ

16: depth d = Dk−tree
17: while new episodes of length d get in the top-k list do
18: for all node EX at depth d such that EX is in the top-k list do
19: for all EY siblings of EX such that EY is in the top-k list do
20: Merge the time queues of EX and EY to form EZ

21: Compute the regularity of EZ

22: if rEZ < rk then
23: Update the top-k list with EZ

24: Create the node for EZ (child of EX)
25: d = d+ 1
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Figure 5.4 – k-tree update when a new batch of data arrives

figure 5.4. After the removal of outdated information and the update of the
k-tree, the four most regular episodes are {A}, {B}, {C} and {A, B}. Here
again, the construction of the third level of the k-tree is not necessary.

5.5 Experimental study on home activity mon-
itoring datasets

5.5.1 Performance assessment

In this section, we investigate the output of TKRES on three real-life datasets,
the Aruba (#17), Cairo (#14) and Twor (#7) datasets1 from the CASAS
project (Cook and Schmitter-Edgecombe, 2009). Each dataset is composed
of two sub-datasets: the dataset of the raw sensor readings, and the cor-
responding activity annotations. For the three datasets, each sub-dataset
is considered separately. They are referred to as the “activity” and “sen-
sor” datasets. All three houses are equipped with motion detection sensors
and contact switches on doors. The Aruba and Cairo datasets also have

1http://ailab.wsu.edu/casas/datasets/, last consulted on Oct. 23rd, 2015
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Table 5.2 – Characteristics of the datasets

Aruba Twor Cairo

Start 2010-11-04 2009-02-02 2009-06-10
End 2011-06-11 2009-04-04 2009-08-05

Duration 7 months 2 months 2 months

# habitants 1 2 2+pet

# sensor events 1 602 986 130 347 647 487
# sensor labels 72 129 54

# activity events 12 954 1 004 1 200
# activity labels 22 32 26

temperature sensors, and the Twor dataset records water usage. The numer-
ical sensor reading (from the temperature and water sensors) were removed:
event label recognition is based on string matching, which is not suitable
for numerical values. The remaining sensors generate a binary information:
the motion sensors are either ON or OFF, and the doors are either OPENed
or CLOSEd. Table 5.2 summarizes the characteristics of the datasets. The
event distribution in the datasets are different. Figure 5.5 shows the number
of events in each batch of data (length of each batch: one day). If the event
distribution is fairly homogeneous in the Aruba and Cairo datasets, the Twor
dataset contains information for only six days of each week, and there is a
period of 9 days without data around March 15th.

In order to assess the performance and scalability of TKRES, we ran exper-
iments with different values for the three key parameters: the size of output
k, the length of the window m, and the maximal occurrence duration Tep.
When assessing the performance of one parameter, the other two parameters
are fixed. Table 5.3 summarizes the experimental setup. For example for the
evaluation of k, the mining of each dataset was repeated with k ranging from
10 to 300, with m = 30 and Tep = 30 minutes.

Figures 5.6–5.11 show the average regularity, support, length and stability of
the top-k episodes in each experiment and for each dataset. The regularity is
counted in hours, the support as the number of non-overlapping minimal oc-
currences, and the length is the number of labels composing the episode. The
stability of the top-k lists, defined for each episode as the percentage of up-
dates where it was part of the top-k list is also plotted. More detailed results,
including also the minimal and maximal values for the regularity, support,
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Figure 5.5 – Number of events per batch (batch duration = 1 day) for each
of the six datasets

Table 5.3 – Experimental setup for parameter influence assessment

Parameter Influence of k Influence of m Influence of Tep

k 10 to 300 20 20
m 30 1 to 60 30
Tep 30 minutes 30 minutes 10 minutes to 24 hours

Results figures 5.6 and 5.7 figures 5.8 and 5.9 figures 5.10 and 5.11

length and stability of the top-k episodes are available in appendix D.

Here are some remarks regarding the results:

• Higher values of k tend to result in a deeper k-tree (greater episode
length, see figures 5.6c and 5.7c), where the episodes are on average
less frequent (figures 5.6b and 5.7b).

• The number of batchesm in the window mostly influences the regularity
(figures 5.8a and 5.9a) of the top-k episodes, which tends to be higher
and thus less good (reminder: a higher regularity value means that the
episodes occur less regularly). The regularity is indeed computed over
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Figure 5.6 – Influence of k and the average regularity, support, length and
stability of the top-k episodes in the sensor datasets
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Figure 5.7 – Influence of k on the average regularity, support, length and
stability of the top-k episodes in the activity datasets
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Figure 5.8 – Influence of m and the average regularity, support, length and
stability of the top-k episodes in the sensor datasets
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Figure 5.9 – Influence of m on the average regularity, support, length and
stability of the top-k episodes in the activity datasets
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Figure 5.10 – Influence of Tep (in hours) and the average regularity,
support, length and stability of the top-k episodes in the sensor datasets
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Figure 5.11 – Influence of Tep (in hours) on the average regularity, support,
length and stability of the top-k episodes in the activity datasets
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longer periods of time, and the chance to have longer intervals between
the consecutive occurrences are higher.

• The support of the episodes also increases withm (figures 5.8b and 5.9b),
but not their frequency (the ratio between their support and the length
of the window).

• The strongly increasing stability for the Cairo and Twor dataset when
m increases (figures 5.8d and 5.9d) is mostly linked to the very small
number of updates performed: e.g., Twor contains 64 days of data.
With m = 60, the k-tree is initialized when the 60th batch of data is
read and updated three times, once for each remaining batch. With so
few updates moreover so close in time, it is normal to get very similar
or even the same top-k episodes and a high stability.

• The depth of the k-tree (the maximal length of the top-k episodes)
is obviously mostly influenced by the value of k (figures 5.6–5.11c).
Indeed, for a greater value of k, more episodes are requested, and the
deeper levels of the k-tree need to be investigated.

• When Tep increases, longer occurrences are taken into account. This al-
lows longer episodes to become more frequent (figures 5.10b and 5.11b).
Some of these longer episodes eventually become top-k episodes (fig-
ures 5.10c and 5.11c).

• The execution time is small and scalable. Figures 5.6e, 5.7e, 5.8e, 5.9e,
5.10e and 5.11e show the average time required for the update of the k-
tree and k-list when a new batch of data arrives. The time requirements
increase linearly with each of the three investigated parameters, the
influence of Tep being the least noticeable.

5.5.2 Qualitative analysis

Tables 5.4–5.6 detail the top-10 most regular episodes within the latest win-
dow (m = 30) for the Aruba, Cairo and Twor activity datasets. The dis-
covered episodes mainly concern expected daily habits: sleeping and eating
patterns. The results in the Twor dataset need to handled carefully: indeed,
there is a gap of almost 10 days in the recordings, which impacts much the
regularity.
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Table 5.4 – Top-10 regular episodes in the Aruba activity dataset

Episode Regularity Support

Sleeping end 1 day, 2:03:23 53
Sleeping begin 1 day, 2:05:51 53
Relax end 1 day, 6:20:26 350
Relax begin 1 day, 7:17:28 349
Relax end, Relax begin 1 day, 8:56:33 268
Meal_Preparation end 1 day, 11:32:12 207
Meal_Preparation begin 1 day, 11:57:49 207
Meal_Preparation end, Meal_Preparation begin 1 day, 12:08:29 200
Relax end, Meal_Preparation end 1 day, 18:10:49 101
Relax begin, Sleeping end 1 day, 22:40:27 29

Table 5.5 – Top-10 regular episodes in the Cairo activity dataset

Episode Regularity Support

R1 sleep end 1 day, 6:36:05 29
R1 sleep begin 1 day, 6:39:19 29
R2 sleep end 1 day, 7:00:25 29
R2 sleep begin 1 day, 7:06:45 29
R1 wake end 1 day, 21:05:31 29
R1 wake begin 1 day, 21:18:00 29
R1 wake end, R1 wake begin 1 day, 21:18:00 29
R2 sleep end, R2 sleep begin 1 day, 23:32:37 28
Dinner end 2 days, 0:09:53 22
Dinner begin 2 days, 0:19:30 22

Table 5.6 – Top-10 regular episodes in the Twor activity dataset

Episode Regularity Support

R1_work_at_computer begin 10 days, 1:34:40 21
R1_work_at_computer end 10 days, 1:42:27 21
R1_work_at_computer end,
R1_work_at_computer begin 10 days, 2:01:44 7

R1_groom begin 10 days, 2:11:27 20
R1_work_at_computer end, R1_groom begin 10 days, 2:11:27 5
R1_groom end 10 days, 2:13:39 20
R1_work_at_computer end, R1_groom end 10 days, 2:13:39 6
R1_groom end, R1_groom begin 10 days, 2:21:30 16
R1_bed_to_toilet end 10 days, 2:51:22 14
R1_bed_to_toilet begin 10 days, 3:07:05 14
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The most regular episodes in the Aruba and Cairo sensor datasets are drawn
on the maps of the smart homes figure 5.13 (the plans are provided with the
data on the CASAS webpage). For better clarity, only the involved sensors
and combinations of sensors involved in the top-50 episodes are displayed (the
value ON or OFF of the sensor is not). For both datasets, an area of interest
stands out (the bedroom for the Aruba datasets, an unlabeled room for the
Cairo dataset). This area of interest is very interesting for a supervisor: it
is very regularly used, and could thus be used for communication, or as a
check-up point.

5.6 Conclusion

TKRES addresses the problem of mining top-k regular episodes from a sen-
sor stream. It extends the traditional regularity measure to the context of
episode mining and designs a method for the discovery and update of such
episodes. By controlling the number results in the output, TKRES prevents
the supervisor from being overwhelmed with more results than he or she can
handle. The top-k approach also take a weight off the supervisor, who does
not need to set a support or regularity threshold, which is often a difficult
decision to make.

In order to discover the top-k regular episodes, we introduce the k-tree data
structure, which maintains the occurrence information of the episodes. We
propose to make a trade-off between the memory usage and the compu-
tational time to update episode knowledge when data changes, thanks to
the setting of a depth boundary Dk−tree on the k-tree: the episodes shorter
than Dk−tree are fully investigated, stored and maintained, when the longer
episodes are built only when they belong to the top-k list. Experimental
results on three smart home datasets show the efficiency of TKRES and its
ability to detect patterns relevant to the human activity monitoring commu-
nity.

This work could be further extended. In particular, using regularity only
favors the short episodes. However, regularity is not the only interesting
measure. The frequency, the length or the duration of the episodes could also
help better target the interesting patterns, via user-defined combinations of
these measures and regularity. It would also be interesting to investigate
closed regular episodes.
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Figure 5.12 – Combinations of sensors involved in the top-50 regular
episodes in the last window for the Aruba sensor datasets (Tep = 30

minutes, m = 30)

Figure 5.13 – Combinations of sensors involved in the top-50 regular
episodes in the last window for the Cairo sensor datasets (Tep = 30 minutes,

m = 30)
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Chapter 6

Conclusion

6.1 Summary and contributions

The work that is presented in this PhD thesis contributes to the activity
monitoring community. In particular, it focuses on the discovery and de-
scription of the habits of an habitant in a smart home. The main points that
have been covered by this work are:

• We have proposed a new periodicity description for reoccurring pat-
terns, as well as an accuracy measure to evaluate the quality of the
periodicity (Soulas et al., 2013). It is based on the description of its
occurrence time distribution within a period of interest (e.g. one day
or one week), via a mixture of Gaussian components. Each component,
described with its average occurrence time and a standard deviation,
means that an episode occurrence is expected to occur in the vicin-
ity of its average occurrence time (more or less its standard deviation).
Moreover, we have proposed a measure to evaluate the conformance be-
tween the mixture model and the observed occurrences of the episode:
the accuracy. It measures the proportion of the expected occurrences
that we indeed observed. This new formalism lead to the definition of
a new data mining problem: the discovery of such patterns.

• We have proposed two algorithms for the discovery of such periodic
patterns: extended Episode Discovery xED (Soulas et al., 2013, 2015)
for static databases, and extended Episode Discovery on streams sxED
(Soulas and Lenca, 2015) for evolving data.
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• We have extended the definition of regularity to event sequence, and
proposed an algorithm for the discovery of the top-k regular episodes
in event streams TKRES (Amphawan et al., 2015).

• We moreover proposed in (Simonin et al., 2015) a model driven engi-
neering approach to involve the supervisor in the activity monitoring.
This contribution is detailed in appendix A.

All the algorithms are evaluated both qualitatively and quantitatively on
real life data, coming from databases that are widely used in the activity
monitoring community. xED and the model-driven engineering approach
are designed for the discovery of habits on static data. sxED and TKRES
can also handle non-stationary data: the discovered knowledge is updated
with the arrival of new sensor readings, allowing us to maintain up-to-date
knowledge on the current behavior of the user.

6.2 Future work

6.2.1 Periodicity characterization and evaluation

The definition used to assess the periodicity of the episodes allows a nat-
ural description of the habits, since it translates sentences like “the user
wakes up around 7 during week days”. It also allows a characterization of
the usual time variations (the standard deviations of the components, which
is activity-dependent), and a quantitative assessment of how true the peri-
odicity description is (“in 80% of the week days, the user wakes up around
7”). This definition, coupled with xED and sxED allows the discovery of
relevant episodes, and provides the supervisor with an explanation on how
the pattern occurs. This description also allows the discovery of out-of-the
ordinary behaviors, like an occurrence of the pattern happening outside of
an identified component, or an expected but missing occurrence.

However using accuracy as the sole measure for periodicity interest ranking
puts the periodic components with a low standard deviations on an equal
footing with components having a high standard deviation. A description
with an arbitrary high standard deviation would thus perform better than
a more targeted but less accurate description: accuracy can be “deceived”
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into selecting the description with the high variability as the most suitable
periodicity.

This is not an actual problem for xED and sxED. Indeed, the methods used
for the tuning of components (based on Expectation-Maximization) do not
generate periodicities with a very high standard deviation. A threshold on
the maximal standard deviation can moreover further constrain the allowed
variability for periodic patterns.

An interesting follow-up study would be to develop and analyze alternative
quality measures. The compression power, used in xED, allows to favor
long and highly accurate episodes. It could also favor frequent episodes
if a factorization on frequent (yet not periodic) episodes is added as well,
and periodicities with low variability if the gap between the expected and
observed occurrence times are encoded too. Other interesting measures could
include the coverage of the periodicity (the percentage of the occurrences that
are explained by the periodicity description), and other compromises between
accuracy, variability, length and frequency.

6.2.2 Handling uncertainty

Sensor data contain noise, linked to the measuring errors, message trans-
mission failures, lack of battery, etc. Moreover, the sensors register activity
that may have not been triggered by the monitored person (but by a family
member, a caregiver, a pet, etc.). The sources for uncertainty are multiple,
but have not been tackled yet. Kim et al. (2015) list the sources for un-
certainty in activity recognition systems, and make a first attempt to assess
their relative contributions on the activity recognition performance.

The Gaussian Mixture Models and accuracy measure used in xED and sxED
tolerate and measure variability. However, they do not explain it, nor assess
its meaning on the health or well-being of the elderly people. Additional anal-
ysis of the variability, its sources, and its influence on the pattern discovery
algorithms would give new insights on the behaviors of the users.

Such analysis would also help refine habits, notably by assessing the statis-
tical relevance of the discovered episodes and their periodic components.
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6.2.3 Trend analysis and anomaly detection

A straightforward anomaly detection application of periodic and regular
episode discovery is the detection of expected but missing occurrences, or
the detection of unexpected occurrences. But it would be interesting to in-
vestigate more refined anomaly detection strategies.

Habits evolve with time. Some evolutions are perfectly normal, such as those
linked with seasonal change. However, a habit change may sometimes also
hint at an increasing difficulty to carry out daily activities, or at symptoms
of a degenerative disease: growing lack of interest, increasing apathy, disori-
entation, etc. There are thus interesting follow up studies to be carried out
in trend analysis and anomaly detection.

6.2.4 Episode and activity recognition

In xED, sxED and TKRES, episodes are defined as sets of event labels,
and the recognition of an episode is based on string matching on the labels
composing the episode. This approach restrains the algorithms to th use of
simple event labels, where string matching on the labels is relevant. This
does not adapt well to numerical data, or to more complex data types. This
also reduces the class of sensors that can be used for such analysis.

Moreover, a given activity may generate different sensor footages. For exam-
ple, depending on the type of food that is being cooked, the“prepare a meal”
activity does not involve the same sensors. It would thus be interesting
to investigate strategies for the clustering of the episodes into activities, as
well as the potential advantages of a periodicity analysis on episode clusters
compared to a periodicity analysis on raw episodes.

6.2.5 Feedback towards the users

In most current activity monitoring approaches, including the one developed
in this thesis, sensors are installed in the home of an elderly person, and the
generated data is analyzed, either on or off-line. The monitoring process is
transparent to the user, who carries out his or her daily life as if the sensors
were not active. Moreover the supervisors (physicians, caregivers, family
members, or even the monitored person) is usually not an algorithm expert.
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They need help parameterizing the algorithms and analyzing the results they
produce.

In order to complete the monitoring process and help the end-users take
the most of the opportunities offered by activity monitoring systems, it is
necessary to develop an integrated framework. This framework would allow
the tuning of the algorithms to each patient, and provide the supervisor with
the results of the analyses as well as data visualization tools.

Initial work towards such a framework has started, resulting in (Simonin
et al., 2015). This contribution is also included in appendix A, and details a
process mining approach, based on the automatic generation and transforma-
tion of models describing the data relevant to the supervisor. In particular,
the system hands back control to the supervisor, who, thanks to his or her
domain knowledge, can select some patterns considered as critical. A sta-
tistical analysis then selects other patterns the supervisor should also deem
interesting. Appendix B presents some of the visualizations that have been
used and could help the supervisor gain a better understanding of the be-
haviors of the user. They are mostly standard representations (pie charts,
heat maps, etc.), and lack depth: as of now, they are do not carry enough
information, are not self-sufficient cannot replace the textual results: new
ways to represent and communicate about activities and habits need to be
devised.
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Appendix A

Model driven engineering
approach for ADL supervision

A.1 Introduction

The behavior of the user is monitored by a supervisor, usually a physician,
a caregiver, or the user him/herself. This supervisor is not a data mining
expert, and could be overwhelmed by the amount of data, or the deployment
and tuning of the algorithms.

In order to make event logs more accessible to the supervisor, we suggest a
process mining approach (Simonin et al., 2015). Process mining is centered on
the processing of event logs (van der Aalst et al., 2004). It is more accessible
than a data mining approach for the supervisor, since it is closer to the
processes. It helps deal with the lack of structure in the event log. This is why
we propose and describe in the coming sections a process mining approach,
assisting the supervisor for the monitoring. This approach completes our
algorithmic contributions by including the user more actively in the mining
process.

The system (the smart house) supports one or more activities of the user,
where the system is specified in the system viewpoint and the activities in the
business viewpoint (Zachman, 1987). The support relationship established
between these viewpoints is considered as an alignment between a model of
the system, and a model of the activities composing the process (Simonin
et al., 2011).
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Understanding model, built
on the logged activities and
sequences (as-is description)

Intervention model, using expert
knowledge to model the expected activ-
ities and sequences (to-be description)

Observed but un-
expected behavior

Expected and ob-
served behaviors

Expected behavior
which is not observed

confirms
normal behavior

unexpected areas: either
anomalous, or incomplete model

Figure A.1 – Understanding and intervention models

This contribution includes first the design of an understanding model of the
activities of a system user (an as-is description: what activity is carried out,
and when). An intervention model completes the understanding model to
assist the supervisor (a to-be description). In particular, the intervention
model enables the supervisor to act on the critical activities, and to detect
anomalies. The models are automatically designed and built with a model
driven engineering (MDE) approach.

Figure A.1 presents the understanding and intervention models: They are
designed through rules, aiming at the design of relevant models for process
mining (van der Aalst, 2013). In particular, these rules help with data un-
derstanding: they highlight data dependencies, anomalies, etc. These mod-
els contain some instantiations of concepts (the concept of activity is for
example instantiated by the go to bed activity) that are represented in a
meta-model, following a MDE approach. The supervising tool is built via
the implementation of these rules.

This approach is complementary to classical data mining approach. Data
mining produces also some patterns based on event logs. But most of the
time, these patterns come only from machine learning algorithms without
taking into account the knowledge and goals of the supervisor. We propose
here to enhance the role of the system supervisor with the help of MDE:
the supervisor can define some rules specifying the expected behaviors of the
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Activity
identifier
name

Event
beginning /*start time*/
end /*end time*/

isAligned

Figure A.2 – The concepts in the understanding model, and their relations

system user.

We present in section A.2 the automatic design of an understanding model
for the monitored activities of a system user, based on event logs. The
intervention model is presented in section A.3 and allows the action of the
supervisor on the critical activities of the system user. Throughout sections
A.2 and A.3 the understanding and intervention models are illustrated on a
running example: the KA dataset (van Kasteren et al., 2010a) (this dataset
is also used in chapters 3 and 4). Section A.4 contains the conclusions and
perspectives.

A.2 Understanding model

The understanding model is the transformation of an event log model into a
process model. This contribution allows the supervisor to monitor sequences
of activities, both serial (ordered) and parallel.

The event logs do not represent unambiguously the real behaviors of the
system user. For example, some activities can be interleaved, which is not
easily detected by a human eye among a big set of event log. This entails
the transformation of an event logs model, constrained by the user activities,
into a process. The transformation results in a process model, highlighting
the activity sequences composing it.

A.2.1 Event Logs and Activities

The model in input of a transformation model must conform to a meta-model
representing the requirements for the model. The concepts used to design
this understanding model, as well as their relationships are represented in
figure A.2.
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A.2.2 Automated design of the understanding model

The understanding model results from a model transformation composed of
rules, applied on the set of event logs. These rules allow the automated
design of the understanding model activities, and the sequences between
these activities. The terms of mined activity and mined sequence are used
below to denote respectively an activity and a sequence in the understanding
model.

A.2.2.1 Design of mined activities

Alignment rule: A mined activity is an activity that is aligned with at
least one event log.

The basic alignment rule ensures that an activity is taken into account in the
understanding model if at least one event entry logs it. This rule allows the
supervisor to restrict the activities of the system user to those that are actu-
ally performed. The activities that are not transformed into mined activities
can be linked to a technical problem affecting the event log production. They
can also result from the user, who does not respect the procedure.

A.2.2.2 Mined sequence design

A mined sequence represents a temporal sequence from a mined activity
(called source) to a mined activity (another one or itself, called target).
For example, in the temporal sequence from the prepare breakfast activ-
ity to the take shower activity, the source activity is prepare breakfast
and the target activity is take shower. The presence of a sequence sug-
gests a relationship between two logged activities, thus helping the super-
visor understand the recorded data. The meta-model of the understanding
model defines a mined process, based on the concepts of mined activity and
mined sequence, conforming to the activity and sequence design rules, as de-
scribed in figure A.3. The MinedActivity and MinedSequence classes con-
tain attributes for the assessment of their relevance (input/outputWeight,
timeSigma/Square/, etc.).

The mined sequences are discovered from the event log set through four
Mined Sequence Design Rules. The rules are also represented thanks to
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MinedActivity
name
inputWeight /*number

of sequence instances
where the mined activity
is the target activity*/

outputWeight /*num-
ber of sequence instances
where the mined activity
is the source activity*/

MinedSequence
identifier
weight /*number of instances*/
coherence
coupling
loop
timeSigma /*sum of the instances durations*/
timeSquare /*sum of their squared durations*/
timeMinimum /*minimal duration value*/
timeMedian /*median duration*/
timeMaximum /*maximal duration*/
timeExpected /*average duration*/
timeSdtDev /*standard deviation*/

source

target

Figure A.3 – Definition of the MinedActivity and MinedSequence classes

graphs in figure A.4. In the following description of the mined sequence
design rules, let A1 and A2 be two mined activities, respectively aligned with
event logs E1 and E2. Let S be the mined sequence from A1 to A2:

Coherence (figure A.4a): S verifies the coherence property if A2 is coherent
with A1: (E1.beginning < E2.beginning) AND (E2.end < E1.end)

Coherence highlights a scenario where two activities are interleaved
(parallel).

Splitting (figure A.4b): If S has a coherence property, then the A1 activity
is split into two activities A1_begin and A1_end, respectively aligned
with E1.beginning and E1.end.

When a mined sequence has a coherence property, the splitting rule
proposes an appropriate sequence design: it creates three sequences:

• a sequence from the A1_begin activity to the A1_end activity,

• a sequence from A1_begin to A2,

• a sequence from A2 to A1_end.

Coupling (figure A.4c): S has a coupling property if:
(E1.end < E2.beginning) AND there exists no event log E3 such that:
(E1.end < E3.end < E2.beginning) OR (E1.end < E3.beginning <
E2.beginning)
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A1

A2

E1.beginning <
E2.beginning

E2.end <
E2.end

(a) Coherence design rule

A1

begin

A1

end
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(b) Splitting design rule

A1

A3

A3

A2

E1.end < E2.beginning

E1.end < E3.end

E1.beginning <
E3.beginning

E3.end <
E2.beginning

E3.beginning <
E2.beginning

(c) Coupling design rule

A1

A3

A3

E11.end
< E3.end

E11.end <
E3.beginning

E11.end <
E12.beginning

E3.end <
E12.beginning

E3.beginning <
E12.beginning

(d) Looping design rule

Figure A.4 – Representation of the design rules by a graph

This property specifies that there is a coupling between two activities
of a system user when no activity beginning or end is logged between
the end of the first activity and the beginning of the second one. The
monitoring of the consecutive activities of the user is based on coupling.

Looping: Let A1 be a mined sequence ,aligned with two event logs E11 and
E12. The mined sequence S, designed from A1 to A1 has a loop property
if:
(E11.end < E12.beginning) AND there exists no event log E3 such that:
(E11.end < E3.end < E12.beginning) OR (E11.end < E3.beginning <
E12.beginning)

A loop is a mined sequence from an activity to itself, satisfying the
coupling property. A loop allows the supervisor to group the instances
of one activity (see figure A.4d).

The understanding model can be represented by a graph where every vertex
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is a mined activity. Every directed edge is a mined sequence, automatically
generated by the model transformation implementing the previous four mined
sequence design rules. An oriented edge from the mined activity A1 towards
the mined activity A2 means that A1 comes before A2. An edge represents
a mined sequence having either a coherence property, a coupling property
or a loop property. The number of instances of each sequence (the weight
attribute) is given in the label of each edge.

A.2.3 Illustration on the KA dataset

A dataset containing 245 event logs of one person living in a smart house (van
Kasteren et al., 2010a) is used throughout this contribution for illustration
purposes (KA dataset, also used in chapter 3). The system is the house and
the user is the person living there. The supervisor can be a doctor or anyone
in charge of taking care of the user. The technical view of the system is based
on a wireless sensor network. Every node of the network sends an event every
time a change is detected by a sensor.

From a supervisor point of view, the size of the event log file is overwhelming,
and prevents a good understanding of the system user activities. A first
assistance is the representation of the activities and the activity sequences,
aligned with the event logs. A sequence is an activity relationship specifying
that an activity comes just after another activity.

The understanding model is automatically derived from the application of
the mined sequence design rules, implemented by a model transformation.
In the dataset (van Kasteren et al., 2010a), the splitting rule is applied twice:

• The prepare Dinner activity is split because of its coherence with the
use toilet activity;

• The go to bed activity is split because of its coherence with the use
toilet activity.

Figure A.5 presents the understanding model that is deduced from the 245
activity logs. This model is a graph as defined previously: e.g., the ori-
ented edge from the prepare breakfast vertex to its successor vertex take
shower means that a mined sequence from the prepare breakfast mined
activity to the take shower mined activity is discovered in the set of event
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Figure A.5 – Understanding model of the KA dataset, represented by a
graph

logs. This mined sequence is supported by 11 instances (edge weight of 11),
and verifies the coupling property.

A.3 Intervention model

The intervention model results from a transformation of the understanding
model based on the monitoring needs of the supervisor. The supervisor of the
activities of the system user chooses some sequences that he or she considers
as critical. Critical activities (resp. sequences) are marked as such based
on the supervisor’s expert knowledge. The intervention model contains the
critical sequences as well as all the mined sequences that have at least the
same importance in the understanding model. The importance is defined by
various statistical characteristics, detailed in the coming subsections.
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A.3.1 Sequence pruning based on critical sequences

In the intervention meta-model, a critical attribute and a pruned attribute
are added to the understanding meta-model in the MinedSequence class (see
figure A.3). The supervisor can choose statistical rules to specify useful
thresholds for the pruning of irrelevant sequences. When a mined sequence
is pruned in the intervention model, the supervisor can also analyse the
reasons of this pruning. We select two statistical thresholds each defined by
a mined sequence pruning rule. The thresholds are estimated in relation to
the critical sequences: a critical sequence cannot be pruned.

Instance weight: Amined sequence is maintained in the intervention model
if its number of instances (weight attribute of the MinedSequence
class) divided by the number of instances of all the mined sequences
having the same property is greater than a TIW threshold.

This rule allows the supervisor to ignore the mined sequences that are
not frequent enough.

Maximal duration: A mined sequence is maintained in the intervention
model if the maximum duration (timeMax attribute) is lower than a
duration threshold TMD, where the duration equals the time interval
between the beginning of the target activity and the end of the source
activity of the sequence.

This allows the supervisor to prune sequences that take too much time
(the dependence between the source and the target might not be rele-
vant). Depending on the context, a minimal duration threshold could
be relevant too.

A.3.2 System using anomaly detection

Anomalies are searched for critical mined sequences of the intervention model,
and are conditioned by the understanding model. We suggest defining the
detection of an anomaly through mined sequence anomaly rules:

Source weight: There is an anomaly for a critical mined sequence S in the
intervention model when the instance count of S (weight attribute)
divided by the sum of the weights of the mined sequences having the
same source activity is lower than a threshold TSW .
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This rule assesses the relative weight of a critical mined sequence, com-
pared with all the mined sequences sharing the same source mined
activity. The supervisor can thus obtain information about the rele-
vance of the critical mined sequence when the system user participates
in the source activity of this sequence.

Target weight: There is an anomaly for a critical mined sequence S in the
the intervention model when the instance count of S (weight attribute)
divided by the sum of the weights of the mined sequences having the
same target activity is lower than a threshold TTW .

This rule is the counterpart of the previous rule, focusing this time on
the target activity.

The next two rues compare the critical sequences to other indirect paths
linking the source to the target activities in the critical sequence.

Time factor: There is an anomaly for a critical mined sequence S in the
intervention model if the average time span of the mined sequence paths
(expectedValue attribute of the mined sequences used in the paths)
from the source to the target of S divided by the average time span of
S is greater than a threshold TTF .

This rule informs the supervisor of situations when too much time is
spent between the source and the target activity of a critical mined
sequence, compared to the duration of the indirect paths.

Weight factor: There is an anomaly for a critical mined sequence S in
the intervention model if the average weight (weight attribute) of the
indirect paths from the source of S to the target of S divided by the
weight of S is greater than a threshold TWF .

This rule highlights situations when the critical mined sequence is less
used by the user than some indirect paths, and could highlight for
example a poor organization of the house, which does not allow a fast
traversal.

A.3.3 Experimental results

For the experiment, two mined sequences were chosen as critical: from go
to bed_end to use toilet and from prepare breakfast to take shower.
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Appendix A. MDE approach for ADL supervision

The sequence pruning rules are implemented with minimum thresholds of
5.0 for the time factor and 0.15 for the weight factor, fixed based on the
needs of the supervisor. Here are some remarks on the automatic detection
of anomalies resulting from the implemented transformation:

1. The TSW ratio (source weight rule) shows that the go to bed_end to
use toilet mined sequence is the main sequence having the go to
bed_end mined activity as source: it represents 20 / (20 + 4) = 83% of
the mined sequences starting with go to bed_end (the other sequence
is from go to bed_end to prepare breakfast and has a weight of 4);

2. The TSW ratio shows that prepare breakfast to take shower is the
most important mined sequence having the prepare breakfast mined
activity as source: it represents 55% of the mined sequences starting
with prepare breakfast;

3. The TTW ratio (target weight rule) shows that the go to bed_end to
use toilet mined sequence is not a very significant activity sequence
in relation to the eight sequences having use toilet mined activity as
target: it represents only 18% of them;

4. The TTW ratio shows that the prepare breakfast to take shower
mined sequence is significant among the two sequences having the take
shower mined activity as target (48%);

5. The average time of the go to bed_end → prepare breakfast →
take shower→ leave house→ use toilet sequence path has a 8.17
factor (time factor rule) in relation to the average time of the go to
bed_end to use toilet critical mined sequence. The weight of the go
to bed_end → prepare breakfast → take shower → leave house
→ use toilet sequence path has a 0.2 factor (weight factor rule) in re-
lation to the average time of the go to bed_end to use toilet mined
sequence. The direct path spans much less time, and is more frequent
than the indirect path;

6. The average time of the go to bed_end→ prepare breakfast→ use
toilet sequence path has a 5.37 factor (see the time factor rule) in re-
lation to the average time of the go to bed_end to use toilet mined
sequence. The weight of the go to bed_end→ prepare breakfast→
use toilet sequence path has a 0.2 factor (see the weight factor rule)
in relation to the average time of the go to bed_end to use toilet
mined sequence.

120



A.4. Conclusion and Perspectives

Figure A.6 represents a styled view of the house: the rooms are represented
separately, and are linked to one another when there exists a door between
them in the real house. The paths for two mined sequences are repre-
sented: the take shower to leave house sequence (A.6a) and the prepare
breakfast to use toilet sequence (A.6b). The later is considered abnor-
mal: the target weight of the sequence is 8/(8 + 20 + 1 + 23 + 2 + 16) = 0.1,
which is lower than the weight factor (0.15): this sequence is significantly
less frequent than the others ending with use toilet, and is thus reported.

A.4 Conclusion and Perspectives

In this contribution, we propose some rules to automatically design an under-
standing and intervention model of the activities of a user. This support tool
targets here the sequential and parallel activities of the user. The rules are
implemented using a MDE approach. This implementation provides first an
understanding model representing the behavior of the system user. When the
supervisor chooses critical sequences, the rules for the intervention model al-
low the pruning of irrelevant mined sequences from the understanding model,
thus producing a custom and compact intervention model, adapted to the su-
pervisor’s needs and expertise. The anomalies in the critical mined sequences
are detected with appropriate statistical measures (the set of measures could
also be further enriched).

The perspective is the design of a relevant event log model with a statistical
pruning of the dependencies between event logs. This pruning should be
consistent with the activity sequence pruning suggested here. The second
concept is related to the technical nodes used to generate the events (for
example sensors in our experiment). A second perspective would be to align
the existence of a communication link between technical nodes with a depen-
dency between event logs. The objective of a tool enabling the supervisor to
easily monitor the activities of a system user remains the same. Currently,
the system is used offline and a perspective is to extend it for data streams.
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Appendix A. MDE approach for ADL supervision

1 MEDUSA / MDE

1° scénario de visualisation du comportement réel 
Séquence en accord avec le comportement attendu

(a) Expected occurrence of a critical sequence

2 MEDUSA / MDE

1° scénario de visualisation du comportement réel 
Séquence en anomalie / comportement attendu

(b) Anomaly detected for a critical sequence

Figure A.6 – Normal and abnormal critical sequences
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Appendix B

Activity pattern visualization

In order to help the supervisor (physician, caregiver, family, user him/herself)
get a better grasp on the activities and habits giving its tempo to the life
in the smart home, it is necessary to provide tools for the visualization of
the data and the extracted patterns. Initial attempts were for instance pro-
posed as part of the CASAS project (Chen and Dawadi, 2011; Thomas and
Crandall, 2011).

Over the course of this PhD, we have used graphical representations adapted
from standard data visualization schemes. These visual tools were gathered
in a web-platform, accessible from computers, tablets and cell phones. In
particular, the service contains the following visual representations:

• The status table (figure B.1a) allows the quick verification of the last
time an activity occurred. The color of the dots could for instance
depend on the regularity of the corresponding episode. Such a figure
could help reassure the family by showing that the ADLs are carried
out regularly.

• Standard pie charts (figure B.1b) help assess the time spent on each
ADL, or the time spent in different area of the house.

• The frequent succession of the activities can be viewed thanks to cord
diagrams (figure B.1c) or tree maps (figure B.1d). In the cord dia-
gram, the ADLs are represented around the wheel, their width being
proportional to their occurrence count. The cords link each activity
to the activities that are performed right after. The color of the cord
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Appendix B. Activity pattern visualization

defines the reading order: it is the same color as the first activity in
the sequence, and the width of the cord represents the frequency of
the sequence. The tree map represent the same information: each box
corresponds to a sequence, and the surface of the boxes is proportional
to the frequency of the sequence.

• Heat maps are traditional representations for visualizing spatio-temporal
data. Figure B.1e allows for instance to assess the solicitation of the
different areas in the house for the ADLs (the presence of red in the
blue circles indicates a greater occurrence frequency)

• The clock representation (figure B.1f) summarizes the periodic pat-
terns: it shows, for each activity, the times at which the activity is
likely to occur. The opacity of the color depends on the accuracy of
the corresponding component.
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Mars 2015 Page 2 

Measures 

 

Last time green dot : the last time the activity has been performed is less than 0.5 days. 

 

Last time orange dot : the last time the activity has been performed is between 0.5 and one  

day. 

 

Last time red dot : the last time the activity has been performed is more than one day. 

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

Not useful here as it is compared with the current date time. 

 

Example of Status Table : 
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Visualization Platform : ADLs page (default page) 

First Graph : Status Table 
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How to read the graph? 

 

This graph provides information about the last time an activity has been performed by the 

patient. If the dot is red, it may means that an anomaly has occurred. 
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(a) Summary status table

Mars 2015 Page 3 

Measures 

 

Event : the performed activity during the considered period 

 

Frequency : the occurrences of the performed activity during the given period. 

 

Duration : the proportion of time it represents regarding to the selected period (in percents). 

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

 

Example of a pie chart and its details table: 
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Visualization Platform : ADLs page (default page) 

Second Graph : Time Consuming Activities Pie Chart 
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How to read the graph? 

 

These graph shows you how the time is spent during a selected period. The table completes the 

pie chart by given all the results numbers included the smallest ones. You will then be able to 

check how often an activity is realized by the patient in a given time. U
T

IL
IZ

A
T

IO
N

 

(b) Pie chart

Mars 2015 Page 5 

Measures 

 

Relation between activities branch : activities directly related (one happens juste after the 

other) and frequency of this relation thanks to the length of the branch  

 

Activity: the performed activity during the considered period 

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

 

Example of a chord diagram: 

G
R

A
P

H
 :

 C
H

O
R

D
 D

IA
G

R
A

M
 

1 

2 

Visualization Platform : Dependency page 

First Graph : Chord Diagram 
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How to read the graph? 

First you can focus on the relation of one activity by clicking 

On it. It will fade the other relations away. Then the length of  

the branch on the considered activity side represents how often  

it is realized after the linked activity and, the same way, the  

length of the same branch on the linked activity side displays 

the times the considered activity is followed by this one  

(inversed relation) 
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(c) Cord diagram

Mars 2015 Page 7 

Measures 

 

Activity: the performed activity during the considered period given by a specific color. 

 

Next Activity Frequency: the occurrences of the activity following the considered activity 

given by the size of the rectangle. 

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

 

Example of a tree map: 
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Visualization Platform : Dependency page 

Third Graph : Tree Map 
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How to read the graph? 

 

Each color represents a performed activity during the considered period. The rectangles 

represents the sequence frequency of another activity following this one. The sum of all the 

rectangles of the same color give logically the frequency of the corresponding activity. 

On a click or hoover in a rectangle we can see the frequency value, its proportion (in percent) 

regarding the parent activity and finally its proportion regarding all rectangles.  
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(d) Tree map

Mars 2015 Page 8 

Measures 

 

Sensor : the activated sensor during the considered period. 

 

Frequency : the occurrences of the sensor activation given by a gradient color on its 

geographic point on the map. 

 

AvgDuration : the mean time the sensor is activated during the considered period.  

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

 

Example of a heat map and its details table: 
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Visualization Platform : Sensors page 

Graph : Heat Map 
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How to read the graph? 

 

The heat map will show you the most frequent position taken by the patient at a given period. 

The frequency is represented by a gradient color going from the blue (cold color) for few 

passages to yellow for medium passages to red for very frequent positions. A details table 

completes the heat map graph by giving for each sensor the frequency exact value and also 

providing the average time the sensor stays activated during the considered period.  
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(e) Heat map

Mars 2015 Page 4 

Measures 

 

Hour of the day : from midnight to 11pm.  

 

Activity: the performed activity during the considered period 

 

Frequency Gradient Color : the occurrences of the performed activity at the given hour of 

the day  during the considered period 

 

Filters 

 

Patient : selection of the patient from the navigation bar. Result given for this patient. 

 

Dates : selection of a date of start and a date of end to consider activities data. 

 

Example of a circular heat chart: 
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Visualization Platform : ADLs page (default page) 

Third Graph : Circular Heat Chart 
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How to read the graph? 

 

The graph enables you to check the habits of your patient and deduce a potential typical day. 

Indeed you can for instance see when the patient is used to going to bed or eating. 
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(f) Clock heat map

Figure B.1 – Data visualization proposal for a user-oriented platform
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Appendix C

Experiment: sxED on the Travian
game dataset

Travian is a web-browser game, where players, organized into alliances, fight
for the fulfilling of objectives and the control of territories. The game com-
pany releases each day a snapshot of the server status: it contains information
on the players (villages, alliance membership). These daily updates were col-
lected for the 2014 fr5 game round, from July 8th to November 23rd. We
focus here on the players alliance shifts: the event labels look like "Player P
[joined|left] alliance A". 27674 such events are recorded, but most labels are
rare (25985 labels).

The dataset was processed with a period of one week, a window TW = six
weeks, a minimal support Smin = 5 and a maximal episode duration Tep = 1
day. Figure C.1 presents the evolution of the window size, episode counts, and
execution time during the mining. The results are fairly different from those
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Figure C.1 – Execution log for the Travian fr5 alliance membership dataset
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of the home automation dataset, but were explained by a player (picturing
a domain expert). During the first 6 weeks, the window fills rapidly with
events: new players register onto the game, and the diplomacy begins. The
players join or switch alliances. After the 6 weeks, the event count in the
window decreases with time. Several explanations: (i) the opening of a
new game round (on August 22nd) slowed down the number of new player
registrations (players tend to join the most recent game round); (ii) most
players have found an alliance they like: they stop changing alliances. Until
October, little frequent and periodic patterns are detected, but their number
increases rapidly after that. The periodic episodes discovered in the Sep, 18th
– Oct, 30th (maximal count of periodic episodes) contain notably:

• {1SixCentDix8 left Vétérans, 1SixCentDix8 joined iChiefs}: 8 MO, 2
components, µ1 = Fri. 0:00, µ2 = Mon. 0:00, σ1 = σ2 = 0, A = 80%

• {1SixCentDix8 left iChiefs, 1SixCentDix8 joined Vétérans}: 8 MO, 2
components, µ1 = Sat. 0:00, µ2 =Tue. 0:00, σ1 = σ2 = 0, A = 80%

• {Jill left Bakka, Jill joined LI}: 10 MO, 2 components, µ1 = Mon.
18:00, σ1 = 1 day, µ2 = Fri. 0:00, σ2 = 0, A = 75%

Some players periodically change of alliance: 1SixCentDix8 leaves Vétérans
for iChiefs on Mondays and Fridays, and goes back to Vétérans one day
later. Jill goes from Bakka to LI either on Mondays or Tuesdays, as well as
on Fridays. This actually highlights a strategy allied alliances (iChiefs and
Vétérans on one side, and Bakka and LI on the other side) have developed to
share with one another the effects of artifacts owned by players 1SixCentDix8
and Jill, respectively.
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Appendix D

Full results for TKRES, on the
Aruba datasets (sensors and
activities)
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Figure D.1 – Influence of k on Aruba activities
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Figure D.2 – Influence of k on Aruba sensors
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Appendix D. Full results for TKRES, on the Aruba datasets (sensors and
activities)
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Figure D.4 – Influence of m on Aruba sensors
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Résumé en français : Monitoring
de l’activité via la fouille de
capteurs domotiques

Introduction générale et objectifs

Les personnes âgées vivent aujourd’hui plus longtemps, et souhaitent pour la
plupart rester dans leur logement aussi longtemps que possible. Cette popu-
lation est cependant plus fragile que la population générale : il leur est plus
dangereux de vivre seuls. L’émergence et la diffusion de technologies de me-
sure et de communication permet désormais le développement de nouveaux
services, et en particulier la domotique et l’hospitalisation à domicile. Ces
technologies promettent de belles avancées pour le vieillissement à domicile :
l’automatisation des équipements facilite les interactions de la personne âgée
avec son environnement, les systèmes de communication aident à maintenir
un lien avec la famille géographiquement éloignée et améliorent l’insertion
sociale dans la communauté locale.

Les capteurs disséminés dans le logement enregistrent en continu une trace de
l’activité. Ces traces forment des motifs porteurs d’information sur la santé
et le bien-être de l’habitant. Des besoins ont donc émergé pour le monitoring
à domicile, via l’exploitation de données issues de capteurs. En particulier,
les objectifs en terme de monitoring incluent la détection de chutes ou de
dangers, la reconnaissance des activités de la vie quotidienne, l’évaluation de
l’autonomie, l’analyse des habitudes, etc.

Objectifs Cette thèse contribue au domaine de la fouille de données pour le
monitoring de l’activité. Nous nous intéressons en particulier aux routines et
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habitudes, qui sont des comportements fondamentaux de la vie quotidienne
des individus, mais qui n’ont que peu été étudiés par le passé. Cette thèse
se concentre sur la découverte et la description des habitudes d’individus,
via la fouille des données issues de réseaux de capteurs domotiques. Nous y
proposons un formalisme de description pour la caractérisation des habitudes,
ainsi que plusieurs algorithmes et outils pour leur découverte automatique.
L’exposé des résultats de la thèse se déroule sur six chapitres, ici résumés.

Assistance à domicile

Résumé Le premier chapitre introduit le contexte socio-démographique et
détaille les approches actuelles pour le monitoring des comportements dans
le domicile à partir de capteurs disséminés dans la maison. Ce chapitre se
concentre sur le monitoring de l’activité et les challenges liés à ce domaine.

Contexte démographique Le vieillissement de la population, notamment
dans les pays industrialisés, change actuellement le profil démographique
mondial. Les populations âgées, plus fragiles, présentent une plus forte in-
cidence de situations de handicap et de maladies chroniques. Elles sont en
général également plus isolées que les jeunes générations. Leur prise en charge
est actuellement problématique. Le vieillissement à domicile offre une double
réponse au problème actuel : il permet de contrôler les besoins en institution
spécialisée, et apporte aux personnes âgées la satisfaction de rester chez elles.

Activités de la vie quotidienne Vivre dans son domicile présuppose
d’être autonome, c’est à dire d’être en mesure de réaliser les activités de la
vie quotidienne (AVQ). Ce sont les activités que l’on réalise pour assouvir
nos besoins fondamentaux (se nourrir, se déplacer, etc). Monitorer l’activité
permet donc de s’assurer de l’autonomie du patient suivi. Les capteurs domo-
tiques permettent un tel suivi : l’activité réalisée au sein du logement influe
sur les valeurs prises par les nombreux capteurs qui s’y trouvent (détecteur
de mouvement, consommation électrique, capteur d’ouverture de porte, etc).

Systèmes d’aide pour le vieillissement au domicile Au cours des
vingt dernières années, les initiatives exploitant des données domotiques pour
l’assistance à la personnes se sont multipliées, voir notamment les revues de
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la littératures de Rashidi and Mihailidis (2013) ou Acampora et al. (2013).
Les objectifs des différents projets sont très variés : détection d’anomalies,
reconnaissance de l’activité, évaluation de l’état de santé, tracking, etc. En
terme de fouille de données, les différentes approches peuvent néanmoins être
regroupées en deux grandes familles : la reconnaissance d’AVQ (classification
supervisée), et la découverte de motifs d’activité (méthodes non-supervisées).

L’utilisation de la classification supervisée a déjà été largement étudiée dans
le cadre de l’assistance à domicile. Elle nécessite cependant d’avoir accès à
des données annotées pour la phase d’apprentissage. Mais de telles annota-
tions sont en pratique très rarement disponibles. Dans cette thèse, nous nous
concentrons donc sur des techniques non supervisées d’extraction de motifs
pertinents. Les méthodes non supervisées concurrentes incluent entre autres
des transpositions au domaine de techniques issues du traitement automa-
tique du langage (Hamid et al., 2009; Huynh et al., 2008), l’utilisation de
cartes auto adaptatives (Zheng et al., 2008), la découverte de règles d’asso-
ciation (Rodner and Litz, 2013; Jakkula et al., 2009) et la recherche de motifs
fréquents (Rashidi et al., 2011).

Monitoring des habitudes

Résumé Le chapitre 2 caractérise une classe de comportements humains :
les habitudes. Nous y décrivons et comparons différentes plates-formes de
monitoring des habitudes, et constatons notamment que la majorités des
approches de la littérature présentent un manque majeur : elles ne prennent
pas suffisamment en compte de la variabilité inhérente à la vie humaine.
Nous proposons donc un nouveau modèle de périodicité pour la description
des habitudes. Ce modèle est non seulement robuste vis-à-vis de la variabilité,
mais la caractérise également. Il s’agit donc d’un outil de description puissant,
par la suite utilisé dans les contributions décrites dans les chapitres 3 et 4.

Caractérisation des habitudes Les habitudes peuvent en général être
décrites via des phrases du type “Si <condition>, alors la personne <réalise
une action>”. Dans cette thèse, nous nous intéressons aux habitudes liées
à un contexte temporel. De telles habitudes peuvent être décrites ainsi :
“Chaque <période>, aux environs de <position temporelle au sein de
la période>, l’utilisateur <réalise une action>”.
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Figure a – Histogramme présentant la répartition temporelle de trois AVQ
classiques : manger, se lever, et aller se coucher. Ces activités sont extraites

du jeu de données CASAS Aruba, utilisé par la suite avec tous les
algorithmes.

Le rythme auquel les habitudes ont lieu (la période) dépend de l’activité :
les repas ont lieu quotidiennement, les courses sont faites chaque semaine,
les visites chez le médecins une à deux fois par mois par exemple. Pour
caractériser la périodicité de ces habitudes, il est intéressant d’observer la
répartition temporelle des occurrences. La figure a présente un histogramme
des occurrences de trois AVQ classiques : se lever, manger, et se coucher. Il
apparait en particulier que :

• Il peut y avoir plusieurs clusters d’occurrences au sein de la période
analysée, que l’on appelle par la suite composantes de la périodicité ;

• Chaque composante a ses propres moyenne et écart type ;

• Les composantes n’expliquent pas l’intégralité des données : certaines
occurrences ont lieu en dehors des zones denses

Mesures de périodicité Plusieurs tentatives de description de la pério-
dicité ont été proposées dans la littérature. On peut les classer dans trois
catégories :

• La régularité (Tanbeer et al., 2009; Amphawan et al., 2011) mesure
l’intervalle maximal entre deux occurrences successives d’une activité.
C’est une mesure simple et d’interprétation aisée. Elle est en général
peu impactée par la variabilité temporelle des heures d’occurrences,
mais reste sensible aux occurrences manquantes. Nous utilisons cette
mesure dans TKRES, la proposition décrite au chapitre 5.
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• Les cycles d’intervalles (Heierman et al., 2004; Lahiri and Berger-Wolf,
2008) décrivent les intervalles entre les occurrences successives. Cette
classe de descriptions est très sensible à la variabilité dans les données,
et donc peu adaptée à la description de comportements humains.

• Distributions de probabilité (Nazerfard et al., 2010b; Li et al., 2012;
Baratchi et al., 2013) : Ces descriptions associent à chaque instant
une probabilité d’occurrence d’une activité. Ces descriptions sont en
général moins impactées par la présence d’outliers dans les données
sur lesquelles elles sont construites. Les propositions décrites dans les
chapitres 2, 3 et 4 sont basées sur ce type de périodicité.

Description comme loi mélange de Gaussiennes Nous estimons qu’une
description à la fois simple et expressive de la périodicité tient dans la des-
cription des composantes d’occurrences qui émergent dans les histogrammes
de répartition temporelle. Nous proposons d’assimiler chaque cluster à une
composante Gaussienne, décrite par sa moyenne (quand l’habitude a lieu) et
son écart type (comment l’heure habituelle d’occurrence varie).

MT
E = {(µ1, σ1), · · · , (µm, σm)}

Une telle description a des propriétés à la fois descriptives (une observation
correspond-elle à la périodicité attendue ?) et prédictives (quand s’attend-on
à observer la prochaine occurrence ?). Une occurrence est attendue, si elle a
lieu dans un intervalle de ±a · σi autour de la date µi où (µi, σi) est l’une
des composantes du modèle, et a est un paramètre choisi par l’utilisateur
(typiquement, a = 2). On appelle par la suite précision (accuracy dans la
version originale de la dissertation) la proportion des occurrences attendues
qui sont effectivement observées. On distingue ainsi les habitudes (bonne
précision) des autres comportements, dont la précision est plus faible.

Les chapitres suivants proposent des stratégies pour le calcul de la périodicité
des comportements et l’extraction des habitudes.

Découverte de motifs périodiques dans des don-
nées statiques

Résumé Le chapitre 3 décrit l’algorithme extended Episode Discovery (xED)
(Soulas et al., 2013, 2015). Cet algorithme, non-supervisé, découvre les mo-

147



Résumé en français

Input :
data-
set

¬ Frequent
episode

discovery

FP-Growth

­ Periodicity
analysis

DBSCAN, EM

candidate
episodes

Interesting
episodes ?

periodic epi-
sodes (habits)

® Rewriting

MDL

Output :
shorter
dataset

no

yes

Figure b – xED : fonctionnement général

tifs périodiques (les habitudes) dans une base statique d’événements. xED
utilise le formalisme proposé dans le chapitre 2 pour la caractérisation de la
périodicité des épisodes. xED est évalué sur des jeux de données réels issus
de la littérature et est comparé à un algorithme concurrent.

Formalismes Les données sont une séquence d’événements, où chaque évé-
nement est décrit par un timestamp (une date) et un label (une description,
en général textuelle, de ce qui a lieu). Les habitudes sont recherchées sous la
forme d’épisodes, c’est à dire de collections de labels qui apparaissent périodi-
quement ensemble. Une occurrence d’un épisode E = {e1, · · · en} correspond
à l’observation des labels qui composent E au cours d’une période Tep. La
périodicité de E est calculée à partir des dates d’occurrence de E.

Fonctionnement général L’algorithme proposé dans le chapitre 3, xED,
est inspiré du fonctionnement de l’algorithme Episode Discovery (ED, Heier-
man et al. (2004)). ED vise également la découverte de motifs périodiques
dans une séquence d’événements. La structure globale pour la recherche des
épisodes est préservée entre les deux algorithmes : fonctionnement itératif en
trois étapes. En revanche, le fonctionnement intrinsèque de chaque étape dif-
fère fortement : le modèle de périodicité est différent. ED recherche des cycles
d’intervalles qui se répètent, xED recherche un mélange de Gaussiennes avec
une forte précision.

La figure b présente le fonctionnement global de xED. Dans un premier
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temps, la séquence d’événements est parcourue avec une fenêtre glissante, et
le contenu de la fenêtre glissante à chaque étape forme une transaction (un
ensemble de labels qui ont lieu dans un même intervalle de temps). Un algo-
rithme de recherche d’itemsets fréquents (ici FP-Growth, Han et al. (2000))
peut alors trouver les épisodes (itemsets) candidats. La périodicité de chaque
candidat est alors analysée : un modèle mélange est appris pour chaque épi-
sode. Les périodicités les plus convaincantes sont alors sélectionnées. Les deux
étapes-clés pour la découverte des habitudes sont l’analyse de périodicité, et
la sélection des épisodes périodiques.

Caractérisation de la périodicité La première étape est la détermina-
tion du nombre de composantes, via le clustering des dates d’occurrence avec
DBSCAN (Ester et al., 1996) : chaque cluster dans DBSCAN correspond à
une composante périodique.

Les caractéristiques des composantes sont ensuite apprises grâce à un al-
gorithme d’Espérance-Maximisation (EM, Dempster et al. (1977)). Ce pro-
cessus itératif assigne chaque date observée à la composante qui la décrit
le mieux. Les caractéristiques des composantes sont alors mises à jour pour
maximiser la vraisemblance de l’assignation. Le processus est répété jusqu’à
convergence. Il est alors aisé de calculer la précision de la description.

Sélection des épisodes intéressants Les épisodes sont sélectionnés en
se basant sur le principe de longueur de description minimale (Rissanen,
1989). Ce principe, issu de la théorie de l’information, précise que le meilleur
encodage est le plus court : une telle description capture et exploite les ca-
ractéristiques saillantes du message. Les épisodes périodiques sont donc ici
utilisés pour réécrire les données sous une forme plus compacte : un en-tête
est inséré, décrivant l’épisode et sa périodicité. Toutes les occurrences de
l’épisode qui correspondent à la périodicité attendue sont retirées des don-
nées, et un événement spécial marquant l’absence d’une occurrence est inséré
aux dates où une occurrence attendue n’a pas été observée. On obtient ainsi
un jeu de données équivalent aux données initiales, mais mettant en avant
la périodicité des épisodes concernés. Les épisodes permettant la plus grande
compression sont donc les plus intéressants.

Évaluation L’évaluation de xED sur différents jeux de données issus de
benchmarks classiques de l’assistance à domicile montre les capacités de xED
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à découvrir des motifs périodiques, que l’on peut directement relier aux AVQ
recherchés : en particulier, les routines du matin et du soir sont particuliè-
rement marquées. La comparaison avec ED est également probante : xED
explore plus efficacement l’espace des solutions, et génère des descriptions
d’habitudes plus informatives pour l’utilisateur final.

Découverte de motifs périodiques fréquents dans
des flots d’événements

Résumé Le chapitre 4 poursuit des développements initiés avec xED et
propose des adaptations pour la gestion de flots de données. L’algorithme
proposé, sxED (streaming xED, Soulas and Lenca (2015)) permet la décou-
verte d’habitudes, mais surtout la mise à jour des habitudes au fur et à
mesure que de nouvelles mesures arrivent et la détection de nouveaux motifs.
sxED est évalué sur des benchmarks réels et comparé à xED.

Évolution des habitudes xED considère les habitudes comme des com-
portements périodiques stables sur la durée de l’expérimentation. Dans la
pratique, les habitudes évoluent. Les changements d’habitudes peuvent aussi
être des facteurs d’inquiétude car souvent observés quand les maladies neuro-
dégénératives évoluent. Il est donc nécessaire de prendre en compte, voire de
détecter une évolution dans les habitudes. En terme de fouille de données,
cela se traduit par la nécessité de gérer des flots d’événements, ce qui pose
des contraintes sur les algorithmes utilisés. La contrainte la plus marquante
est qu’ils ne peuvent pas avoir accès à l’historique des observations. Ils ne
peuvent de plus pas supposer que la distribution des données est stable.

Fonctionnement général de sxED Afin de détecter et monitorer les ha-
bitudes dans un flot d’événements, nous proposons sxED, qui maintient à jour
les motifs périodiques dans le passé récent. sxED utilise une fenêtre glissante
pour repérer la période d’intérêt, et exploite des structures de données dé-
diées pour parcourir et mettre à jour efficacement les épisodes périodiques à
chaque nouvelle observation. sxED est composé de deux étapes principales :
(i) la recherche des épisodes fréquents (les candidats), et (ii) l’analyse de
périodicité. Pour chacune de ces étapes, une contribution est proposée.
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Algorithm a Mise à jour d’un noeud récemment modifié avec un nouvel
événement (e, t). Le chemin rouge correspond à l’observation d’une nouvelle
occurrence minimale, le bleu à la découverte d’un nouvel épisode fréquent.

Recently modified node NE ,
characterizing episode E

e ∈ E ?

Return
/*e cannot
extend E */

yes

E.lastMO
starts before
t − Tep ?

no

Remove NE

from RMN list

yes

Return /* Too old */

NE has a
child NE′ on

label e ?

no

E.lastMO
starts strictly after

E′.lastMO ?

yes

/*E′ already
frequent*/

Add new en-
try to NE′ .TQ

yes

/*New MO*/

Add NE′ to the RMN list

Return

Return
/*Already a MO for E′

starting in E.lastMO.start*/

no

TQ, S =
merge(TQE , TQ{e})

no

/*E’ may become
frequent*/

S ≥
Fmin

Create node NE′

for E′. Link it
to its parents

yes

Add NE′ to
the RMN list

Return Return
/*E′ rare*/

no

Recherche d’épisodes fréquents Nous définissons le support comme le
nombre d’occurrences minimales (Mannila and Toivonen, 1996) disjointes.
Cette mesure est monotone : le support d’un épisode est inférieur à celui de
ses sous-episodes. Afin de faciliter la recherche et la mise à jour des épisodes
fréquents, nous proposons une structure de treillis, dont chaque nœud dé-
crit un épisode et sa file d’occurrence (time queue, en version originale). La
time queue précise les intervalles couverts par les occurrences minimales. Elle
permet le calcul du support, et se met à jour incrémentalement.

Une autre information permet l’intégration rapide de nouvelles données : la
connaissance des nœuds mis à jour récemment. En effet, seuls les descendants
de ces nœuds sont susceptibles d’être mis à jour, ce qui réduit très considé-
rablement l’espace de recherche. La mise à jour du treillis quand un nouvel
événement arrive se fait alors en partant des nœuds récemment modifiés, en
suivant l’algorithme a

Mise à jour de la périodicité des épisodes Quand la time queue d’un
épisode change, sa périodicité est susceptible de changer également. Il suffit
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Window of interest

B New event integrated in the model

A Old event removed from the model

episode TQ Support FEL node
episode TQ Support Newly create FEL node

episode TQ Support FEL node that is also present in the RMN list

53-55 TQ entry

53-55 TQ entry overlapping with the previous TQ entry

53-55, 4 Newly discovered TQ entry, Updated support

t
... A B C B D A B C A C C B A

50 55 60

root

A 50-50,
55-55, 58-58 3 B 51-51,

53-53, 56-56 3 C 52-52, 57-57,
59-59, 60-60 4 D 54-54 1

AB 50-51, 53-55,
55-56, 56-58 3 AC
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55, 55-57,
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3

A B C D

B C A A

Figure c – Treillis des épisodes fréquents pour un jeu de données fictif
(donné en milieu de figure), quand (C, 60) est le dernier événement en date.
La boite du haut décrit les conventions utilisées dans le treillis (partie basse

de la figure).
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Algorithm b Stratégie générale pour la mise à jour de la périodicité

New
occ.

Comp.
match ?

Create a
component

Distribution
update

Iteration of EM

Empty
comp. ?

Remove
component

Close
comps. ?

Merge
components

New
occ. ?

no

yes

yes

no

yes

no no

yes

dans le cas général simplement de réaliser une itération supplémentaire de
Espérance-Maximisation, en utilisant la nouvelle time queue : les habitudes
changent en général peu. Mais il peut parfois être également nécessaire de
faire évoluer le nombre de composantes dans la loi mélange décrivant la pé-
riodicité. Nous proposons à cet effet des heuristiques permettant l’ajout de
composantes quand les observations ne correspondent pas aux attentes, et la
fusion de composantes existantes similaires (figure b).

Évaluation de sxED L’évaluation est réalisée sur différents jeux de don-
nées réels, issus de la littérature. On y étudie en particulier l’évolution des
habitudes le long de l’expérimentation, ainsi que les capacités de passage à
l’échelle de sxED. Une comparaison qualitative entre xED et sxED est égale-
ment réalisée. Elle montre que sxED trouve des épisodes très similaires à ceux
trouvés par xED, avec un temps d’exécution significativement plus rapide.

Monitoring des k motifs les plus réguliers

Résumé Le chapitre 5 étudie un autre type de description de périodicité :
la régularité. Ce modèle de périodicité est moins robuste vis-à-vis de la varia-
bilité temporelle des habitudes, mais demeure intéressant par sa simplicité et
ses capacités de passage à l’échelle. Dans ce chapitre, nous proposons TKRES
(Amphawan et al., 2015), un algorithme permettant la découverte et la mise
à jour des épisodes les plus réguliers dans un flot de données domotiques.
L’approche top-k permet de contrôler la taille de l’espace des résultats, ce
qui facilite l’analyse des résultats par l’utilisateur final. TKRES est également
évalué sur des jeux de données réels validés dans la littérature.
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Formalismes La description de la périodicité via une distribution de pro-
babilité sur une période d’intérêt est un outil puissant et extressif, mais dont
la maintenance est gourmande en ressources. Nous étudions donc une me-
sure alternative de périodicité : la régularité, qui étudie les intervalles entre les
occurrences successives d’un comportement. Initialement définie pour la re-
cherche d’itemsets dans des données transactionnelles (Tanbeer et al., 2008),
la régularité est ici adaptée aux flots d’événements. Nous définissons la ré-
gularité d’un épisode E comme l’intervalle de temps maximal entre le début
d’une occurrence minimale de E et la fin de l’occurrence minimale disjointe
suivante : la régularité est donc monotone.

Nous proposons TKRES pour la découverte et la mise à jour des k épisodes
les plus réguliers dans un flot d’événements parcouru par une fenêtre glis-
sante composée de m batchs. L’approche top-k a deux avantages majeurs :
l’utilisateur final défini la taille des résultats produits en fonction de ses ca-
pacités de traitement, et il n’a pas besoin de fixer de seuil de fréquence ou
de régularité, une tâche réputée difficile.

Structures de données La recherche des k épisodes les plus réguliers est
réalisée à partir de deux structures dédiées :

• Un arbre k-tree (figure d) des préfixes contenant les time queues des
épisodes. La navigation au sein de l’arbre est accélérée par l’utilisation
de pointeurs permettant également un parcours transversal de l’arbre ;

• Une liste chainée (k-list) à k éléments : les épisodes recherchés.

Puisqu’on ne cherche que k épisodes, il n’est pas nécessaire de construire
l’intégralité du k-tree : il suffit en général qu’il soit suffisamment profond
pour contenir k nœuds : la régularité étant monotone, les nœuds les moins
profonds sont plus réguliers que leurs descendance. Certains nœuds peuvent
néanmoins manquer, ils sont alors construits au besoin, mais ne sont pas
maintenus. Cette stratégie permet de trouver un compromis entre espace de
stockage nécessaire et vitesse de mise à jour.

Évaluation TKRES a été évalué sur des jeux de données issus de la litté-
rature du monitoring d’activité. Nous y montrons la capacité de TKRES à
maintenir à jour la k-list en temps (quasi-)réel quand les paramètres varient.
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Figure d – Exemple de k-tree, si l’alphabet des labels d’événements est
{A, B, C}. On met ici l’accent sur les mécanismes de navigation au sein de

l’arbre

L’analyse qualitative des épisodes extraits permet de mettre à jour certaines
habitudes quotidiennes (rythmes de sommeil, repas), et met en avant cer-
taines zones géographiques du logement.

Conclusions et perspectives

Résumé Le chapitre 6 conclue cette thèse. Il résume les contributions prin-
cipales et met en avant des pistes à explorer par la suite.

Contributions Le travail présenté dans cette thèse se situe dans le do-
maine du monitoring de l’activité. Il se concentre en particulier sur la décou-
verte et la description des habitudes des habitants d’environnements intelli-
gents. Les contributions principales sont :

• Nous proposons un nouveau formalisme de description de la périodicité
de motifs récurrents, basé sur la description de la distribution tempo-
relle des événements au sein de la période considérée. Nous proposons
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également une mesure, la précision, qui évalue l’adéquation entre le
modèle de périodicité proposé et les observations des capteurs.

• Nous proposons deux algorithmes pour la découverte de motifs pério-
diques suivant ce formalisme : xED (Soulas et al., 2013, 2015) et sxED
(Soulas and Lenca, 2015). xED est conçu pour l’analyse de bases de
données statiques, sxED permet la gestion de données évolutives.

• Nous étendons le concept de régularité aux séquences d’événements,
et proposons un algorithme, TKRES (Amphawan et al., 2015) pour la
découverte des k épisodes les plus réguliers dans des flots d’événements.

• Nous évaluons les algorithmes qualitativement (pertinence des motifs
trouvés pour le monitoring de l’activité) et quantitativement (utilisa-
tion des ressources et passage à l’échelle des solutions proposées) sur
des jeux de données réels.

Les contributions de ce travail sont principalement algorithmiques. Néan-
moins, nous nous sommes aussi intéressés à l’inclusion du personnel médical
et des aidants dans le processus de monitoring. Ces contributions sont dé-
crites dans les annexes de la thèse. L’annexe A présente une approche pour
la fouille de processus qui place l’expertise du superviseur au centre de la re-
cherche, ce qui une fouille adaptée à ses attentes et ses requêtes, et utilisant
ses connaissances. L’annexe B propose des outils de visualisation de données.

Pistes pour des travaux futurs

• Caractérisation de la périodicité : nous évaluons la périodicité sur sa
précision seulement. D’autres mesures de qualité pourraient certaine-
ment enrichir l’approche.

• Gestion de l’incertitude : les données provenant de capteurs, elles sont
par nature incertaines, ce qui a des conséquences sur les résultats.

• Analyse de tendance : plus que les habitudes elles-mêmes, c’est souvent
leur évolution dans le temps qui nous renseignent sur l’état de santé.

• Reconnaissance d’activités : les activités sont ici assimilées à des épi-
sodes, ce qui ne prend pas en compte la variabilité possible dans la
réalisation des activités.
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