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Contexte et organisation de la thèse

Les motivations

Cette thèse s’intéresse à la commande basée sur la prédiction de systèmes incertains avec
une entrée retardée. Les causes de l’apparition d’un retardsont généralement de deux types:

• Elles sont parfois intrinsèques au système comme c’est la cas pour les phénomènes de
transport de matière. On peut citer les exemples classiquesde la douche, du chauffage ou
un peu moins connus mais tout aussi important dans l’industrie: la recirculation des gaz
d’échappement ou le procédé de fraisage.

• Elles sont dues à la nature du système de commande. Par exemple, un temps de commu-
nication apparaît si le système et l’organe de commande sontséparés dans l’espace. Les
temps de calcul peuvent aussi être à l’origine de retards nonnégligeables.

Ces derniers retards sont de plus en plus présents du fait du développement des communications
sans fil et donc de la commande à distance. En particulier, de nombreux travaux s’intéressent
aux systèmes commandés par réseaux (NCS) en prenant en compte notamment les retards et
la perte de paquets introduite par le canal de communication. A titre d’exemple, on peut citer
la commande à distance d’engins volants par communication sans fil. L’objectif final est de
prendre en compte les phénomènes induits par les retards de communication afin d’améliorer la
navigation de tels engins en totale autonomie. Depuis peu, la communauté liée à la commande
des systèmes est très active sur le pilotage de drones. Cependant, la plupart des travaux ne
prend pas en compte les retards dans la conception des lois decommande. A long terme,
l’idée sous-jacente est la conception d’engins équipés de capteurs bon marché et de modules
de communication capable d’envoyer des mesures et de recevoir des ordres calculés par un
calculateur à distance.

Le schéma de la Figure1 montre les différentes latences qui peuvent survenir dans la boucle
de commande d’un quadrirotor. On voit que plusieurs sourcesde retard interviennent simul-
tanément dans la boucle. On peut mentionner les retards dus aux temps de communication,
ceux dus aux temps de calcul et enfin ceux dus aux temps de mesure. En général, il est difficile
d’évaluer ces retards et la plupart du temps, seules des valeurs approximatives sont disponibles.
On peut aussi remarquer que les temps de calcul sont variables et que les OS temps réels peu-
vent seulement garantir des valeurs maximales qui ne serontpas dépassées. En ce qui concerne
la communication sans fil, les retards introduits vont dépendre de plusieurs facteurs :

• les standards de télécommunication,

• la configuration des modules émetteurs/récepteurs,

• l’état de la batterie,

• l’environnement (temps, obstacles)

qui influeront sur le canal de propagation. L’influence directe de ces différents facteurs n’étant
pas quantifiable précisément, l’exacte valeur du retard estsouvent mal connue. La Figure2
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montre une trame reçue par deux modules Xbee Pro®Dig [2009] dont les configurations sont
différentes. La même trame est envoyée sur les Figures2aand2b et pourtant les informations
sont reçues différemment selon la configuration du récepteur. Dans les deux cas, l’information
est reçue avec du retard. De plus, ce retard n’est pas constant car l’amplitude de ces retards peut
varier de19 ms pour la configuration 1 à5 ms pour la configuration 2. Les raisons mentionnées
ci-dessus justifient notre objectif de considérer des retards variants et mal connus.

Figure 1 – Latences (en ms) affectant la boucle de commande d’un quadrirotor, extrait de
[Mellinger, 2012, pp. 24 ]. LL: Low Level, HL: High Level

Dans l’exemple de la Figure1, le retard cumulé est d’environ80 ms. Cela signifie que80
ms séparent le moment entre lequel la commande est calculée et l’instant pour lequel elle va
être appliquée au drone. Pour des systèmes dont les dynamiques sont très faibles, un tel retard
n’affecterait que très peu le comportement du système. Cependant, les systèmes ayant des
dynamiques très rapides (comme les engins volants) peuventêtre déstabilisés par la présence
de très petits retards. Une solution simple pour réduire l’impact de ces retards est donc de
diminuer les gains du contrôleur afin d’obtenir une dynamique du système bouclé plus lente que
la valeur du retard. En contrepartie, cette méthode conduira inévitablement à une dégradation
de l’atténuation des perturbations et du suivi de trajectoire: il est donc nécessaire de trouver
des alternatives plus efficaces. La méthode classique utilisée pour compenser les retards dans
la commande est de prédire le futur état du système afin de pouvoir compenser parfaitement le
retard. Pour calculer une prédiction précise, il est impératif

1) d’avoir un modèle précis du système,

2) de connaître la valeur du retard.

En reprenant l’exemple des engins volants, le point 1) n’estgénéralement pas satisfait à
cause de nombreux phénomènes tels que les couplages, les effets de sols1. De plus, les inerties

1. Dans le cas sans retard, les modèles très précis ne sont pascompatibles avec la conception de lois de com-
mande du fait de leur complexité.

./chapter_general_intro/figures/delay_scheme.eps
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sont souvent difficiles à identifier. De la même manière, des perturbations extérieures telles
que des rafales de vent ne sont pas prédictibles et vont impacter fortement la qualité de la
prédiction. Par conséquent, l’un des objectifs de la thèse est d’améliorer la qualité de la
prédiction malgré les incertitudes de modèle et les perturbations extérieures. En ce qui
concerne le point 2), nous venons de voir un peu plus haut qu’il n’est pas toujours possible
de connaître la valeur du retard. En pratique, seulement lesbornes maximum et minimum
du retard sont généralement connues.C’est pourquoi, une partie de la thèse sera dédiée
au développement de techniques d’estimation de retards. En conclusion, l’objectif de la
thèse est d’appliquer des méthodes de commande basée sur la prédiction pour piloter des
systèmes incertains en présence d’un retard inconnu et variant dans le temps.

19ms

2ms 2ms 2ms 2ms2ms

14.5ms

(a) Configuration 1

2ms 2ms 2ms 2ms 2ms

3.4ms 3.4ms 3.4ms 3.4ms 3.4ms

5ms

12ms

(b) Configuration 2

Figure 2 – Deux configurations différentes du récepteur XbeePro®

.

Organisation et contribution de la thèse

Pour répondre à ces objectifs, la thèse est divisée en trois parties:

• la première partie présente des solutions d’estimation d’état et de retard,

• la deuxième partie introduit des nouvelles techniques de commande basée sur la prédic-
tion,

• la troisième partie illustre les précédents résultats surla commande expérimentale d’un
moteur à courant continu.

L’organisation détaillée est décrite ci-dessous et est résumée sur le schéma de la Figure3. Les
contributions sont rappelées dans la présentation de chaque chapitre.Les théorèmes encadrés,
présentés dans cette thèse sont des résultats nouveaux constituant les contributions de la
thèse.

LaPartie I est dédiée à la présentation de nouvelles méthodes d’estimation à la fois du retard
et de l’état du système. L’intérêt d’avoir une estimation duretard est double. Tout d’abord, cela
permet d’améliorer la qualité de l’observation de l’état puisque les résultats existant considèrent
généralement des solutions avec des grands gains pour atténuer l’erreur d’observation due aux
incertitudes sur le retard. De plus, une prédiction peut être calculée à partir du retard estimé.
La première contribution de cette partie est donc de proposer des solutions d’observation qui
permettent d’estimer simultanément le retard et l’état. Laseconde contribution réside dans le
fait que ces résultats s’appliquent à des retards variants dans le temps. Dans cette partie, on
étudiera seulement les performances des estimateurs en boucle ouverte (pas de contrôleur).

./chapter_general_intro/figures/scope_1.eps
./chapter_general_intro/figures/scope_2.eps
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Dans leChapitre 2, une méthode d’observation basée sur la construction d’un unique ob-
servateur est présentée. Une première version de ce travaila été publiée dansLéchappé et al.
[2015a] pour des systèmes linéaires. Une extension aux systèmes non linéaires est disponible
dansLéchappé et al.[2015b]. L’idée originale se trouve dans la construction d’un observateur
à grand gain sur un système étendu qui considère le retard comme un nouvel état. La con-
vergence de l’erreur d’observation est prouvée formellement et des simulations illustrent les
performances de cette méthode

Une méthode basée sur la théorie des observateurs interconnectés est proposée dans le
Chapitre 3. Dans un premier temps, un nouvel observateur de perturbation est présenté afin
d’estimer l’entrée retardée. La nouveauté est d’introduire artificiellement un retard pour ap-
proximer la dérivée de la dynamique inconnue par la méthode des différences finies. Ensuite,
l’idée générale de l’interconnexion des observateurs d’état et de retard est présentée. Il s’agit de
coupler un observateur d’état standard (disponible pour des systèmes sans retard) avec un obser-
vateur de retard. Les conditions de stabilité sont données dans le cas général puis illustrées sur
un exemple particulier. L’efficacité de la méthode est validée en simulation. Une comparaison
avec l’observateur du Chapitre2 est aussi réalisée en simulation. Le contenu de ce chapitre est
résumé dans l’articleLéchappé et al.[2016].

La Partie II est dédiée à la présentation de techniques de prédiction. L’objectif principal
est de proposer des méthodes nouvelles qui offrent des performances satisfaisantes en présence
d’incertitudes paramétriques, de perturbations extérieures et de retard inconnu. Des critères ex-
plicites de stabilité sont obtenus grâce à une analyse de Lyapunov-Krasovskii. Le sens physique
de ces critères est analysé dans le détail.

Le Chapitre 4 se concentre sur le cas d’un retard connu et est divisé en trois sections. Dans
la première section (Section4.1), la prédiction standard, originellement conçue pour un retard
constant, est étendue à un retard variant. La stabilité est préservée du moment que le retard
ne varie pas trop vite. Ce résultat, déjà connu pour des lois de commande par retour d’état
statique, est étendue ici à une classe plus large de lois de commande et au cas d’une connais-
sance partielle de l’état. Une condition de stabilité est donnée à l’aide d’une fonctionnelle de
Lyapunov. La deuxième section (Section4.2) vise à étendre un résultat récent qui permet de
calculer une prédiction à partir d’un système dynamique. Lerésultat original s’appliquant aux
retards constants et aux retours d’état statique est étenduaux retards variants, à une plus grande
classe de lois de commande et aux cas où l’état est partiellement mesuré. Enfin, la dernière
section (Section4.3) décrit une nouvelle prédiction qui présente de meilleurespropriétés de
robustesse que la prédiction classique vis à vis des perturbations extérieures et des incertitudes
paramétriques. L’idée est de concevoir une prédiction qui inclut indirectement de l’information
des dynamiques non modélisées. Ce travail a été présenté dans Léchappé et al.[2015c] pour
le cas d’une connaissance totale de l’état et dansLéchappé et al.[2015d] pour le cas d’une
connaissance partielle. L’extension de ces travaux à des retards variants dans le temps est aussi
traitée dans cette section. Tous les résultats sont illustrés par des exemples académiques et font
l’objet d’une étude détaillée en simulation.

Dans leChapitre 5, les résultats des Sections4.1et 4.2sont étendus aux retards inconnus,
respectivement dans lesSections5.1et 5.2. Dans chaque cas, des fonctionnelles de Lyapunov
sont utilisées pour étudier la stabilité de la boucle fermée. La construction systématique de ces
fonctionnelles est une des contributions de ce chapitre. L’autre contribution est la proposition de
lois de commande basée sur la prédiction pour contrôler des systèmes avec des retards inconnus
et variants. Ces lois de commande sont couplées, en simulation, à l’observateur de retard du
Chapitre3.

Les résultats présentés dans les chapitres précédents sontillustrés expérimentalement dans
la Partie III .
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Ainsi, dans leChapitre 6, un moteur à courant continu (DC) est piloté en présence d’incertitudes
paramétriques, d’une perturbation extérieure et d’une entrée retardée. Le retard étant artificielle-
ment introduit, il a été possible de tester de nombreuses configurations. L’observateur de retard
du Chapitre3 est combiné aux méthodes prédictives de la PartieII . Des tests avec des retards sur
l’entrée et sur la mesure, inconnus et variants, ont été faits pour montrer que ces méthodes pour-
ront être étendues au cadre plus large de “sortie et entrée retardées”. Les résultats de ce chapitre
ont été publiés dansLéchappé et al.[2015f] pour un retard constant et connu. L’extension à un
retard inconnu est disponible dansLéchappé et al.[2015e].

Observateurs

Control prédictif

Nouvelle préd.

Moteur DC

Observation état/retard

Partie expérimentale

Retard inconnuRetard connu

Préd. standard Préd. dynamique Préd. standard Préd. dynamique

interconnectés

Observateur
à grand gain

Chapitre 2 Chapitre 3

Chapitre 4 Chapitre 5

Chapitre 6

Partie I

Partie II

Partie III

Section 4.1 Section 4.2 Section 4.3 Section 5.1 Section 5.2

Figure 3 – Organisation de la thèse (préd.:prédiction)
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1.1 Motivations

This thesis is dedicated to the prediction-based control ofuncertain input delay systems.
The input delay can appear because of the physical nature of the plant: it is usually due to trans-
port phenomenon. Consequently, these systems are very common in chemical, hydraulic and
pneumatic industries. The shower, the exhaust gas recirculation, the air heater and the crushing
mill are classical examples. The other source of input delay, extrinsic to the system, can arise
from communication latencies, computation time or sensor measurements. These delays are
more and more common because of the fast development of remote controllers. In particular,
lots of works are tackling the problem of network control systems (NCS) that can introduce
time-varying and/or packet drops as inTipsuwan and Chow[2003], Zhang et al.[2001], Be-
mporad et al.[2010]. Some more examples and further details are provided inBresch-Pietri
[2012], Chiasson and Loiseau[2007], Vyhlídal et al.[2014], Zhong[2006]. In our case, we are
interested in the wireless control of remote devices. The final goal is to improve the control of
flying objects. Recently, the control community has been very active on this topic as shown by
the numerous works as inBouabdallah[2007], Mellinger[2012], Tayebi and McGilvray[2006]
and references therein. Except a few articles byLozano et al.[2004], Ordaz et al.[2013],

7
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Ossa-Gomez et al.[2011], most of existing works do not take into account delays in the control
design. In the long run, the underlying idea is to design devices equipped with low cost sensors
and communication modules able to send measurements and to receive control orders computed
by remote super computers.

The scheme given on Figure1.1 displays the different latencies that can show up in the
control loop of a quadrotor. It can be observed that the communication delay comes along with
computation and sensor delays. These delays are difficult tomeasure and most of the time, only
an approximation is available. Remark that, computation delays are time-varying and real-time
OS can only guarantee a maximum bound on these delays. As for the wireless channel, the
delay value depends on various factors such as

• telecommunication standards,

• configuration of the emitter/receiver modules,

• battery life,

• environment (weather conditions,obstacles).

These phenomena are not easy to quantify and the value of the delay is generally not known
accurately. Figure1.2 shows a frame received by two Xbee Pro® modulesDig [2009] which
have different configurations. The same frame is sent on Figures 1.2aand1.2b and yet the
information is received differently according to the configuration of the receiver. In both cases,
it is clear that the information is delayed. In addition, note that this delay is not constant:
it varies from5 ms for configuration 2 to19 ms for configuration 1. That is why the final
objective of the thesis is to deal with unknown and time-varying delays.

Figure 1.1 – Latencies in the experimental setup (ms) from [Mellinger, 2012, pp. 24 ] LL: Low
Level, HL: High Level.

In the application of Figure1.1, a total amount of about80 ms can separate the control value
computation from its real application to the drone. For systems with very slow dynamics, such
a delay would hardly affect their behaviors. However, unstable systems with fast dynamics like

./chapter_general_intro/figures/delay_scheme.eps
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flying objects can be destabilized by the presence of small latencies. The simplest way to reduce
the delay effect is to decrease control gains in order to havea closed-loop dynamics slower than
the delay value. This will necessarily lead to worst disturbance attenuation and slower trajectory
tracking so it is necessary to find alternatives. The well-known method to control systems with
input delays is to predict the future state of the plant in order to perfectly compensate the delay.
To compute an accurate prediction, it is imperative

1) to have a precise model of the plant and

2) to know the delay.

Coming back to the flying objects example, the first point is not fulfilled because some phe-
nomena like coupling, ground effect, asymmetric inertia are difficult to model1. Furthermore,
unknown disturbances such as wind gusts are very detrimental to the accuracy of the prediction.
Then, one of the objective of the thesis is to improve the quality of the prediction in spite
of model uncertainties and external disturbances. Note that very recent articles byArmah
and Yi [2015], Sanz et al.[2015], Sanz et al.[2014], Alatorre et al.[2014] have developed pre-
dictive techniques to improve the control of flying objects which confirms that this is a trendy
topic. As for the second point, we have just seen that it is notalways possible to know the delay.
Usually in practice, only lower and upper bounds are available. That is why an other part of
this thesis is focused on the development of delay estimators. Unlike most existing works,
it has been decided to address this problem from the observation point of view. To sum up,
we can say thatthe objective of this work is to apply prediction-based control to uncertain
systems in presence of an unknown time-varying delay and an external disturbance.

To deal with this challenging objective, the work has been divided into three parts:

• the first part presents some delay-state estimators for unknown and time-varying delays,

• the second part presents new predictive techniques to overcome some limitation of the
standard predictive control,

• the third part illustrates previous results by performingexperimental tests on a DC motor.

19ms

2ms 2ms 2ms 2ms2ms

14.5ms

(a) Configuration 1

2ms 2ms 2ms 2ms 2ms

3.4ms 3.4ms 3.4ms 3.4ms 3.4ms

5ms

12ms

(b) Configuration 2

Figure 1.2 – Two different configurations of the Xbee Pro® receiver
.

1. For the delay free case, very accurate models are not compatible with the design of controllers because of
their complexity.

./chapter_general_intro/figures/scope_1.eps
./chapter_general_intro/figures/scope_2.eps
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1.2 Overview of prediction-based control methods

In this section, the state of the art on predictive control isgiven to set the theoretical context
of the thesis. It is important to note that all the systems depicted on Figure1.3can be controlled
by the same predictive techniques presented thereafter. There exist two major streams in the
control of input delay systems: memoryless and memory controllers.

Memory free controllers In Mazenc et al.[2003], it is shown that a chain of integrators with
an arbitrarily large delay in the input can be stabilized2 by a bounded feedback. This conclu-
sion is extended to feedforward systems inMazenc et al.[2004]. Some works have also been
dedicated to the control of open-loop stable systems with saturated feedbacksLin and Haijun
[2007], Zhou et al.[2010], Yakoubi and Chitour[2007]. The disadvantage of these results is
that they generally lead to slow response time because the control is designed for arbitrarily
large delays. Recent papers have also considered saturatedcontrol but for a more general class
of systemsWang et al.[2013], Liu and Fridman[2014]. In that case, some conditions on the
delay size appear to preserve the closed-loop stability since the exact delay compensation is not
possible and the systems are possibly unstable.

The works ofRichard et al.[2001], Fridman et al.[2002] andGouaisbaut et al.[2002] study
the influence of delay for sliding mode control. It has been shown that the delay can induce
oscillations of finite frequency3 around the sliding surface and even instability. Specific sliding
mode controllers are presented inRichard et al.[2001] and upper delay bounds preserving the
stability are provided. A descriptor approach is used inFridman et al.[2003a] to compute a
delay upper bound that guarantees the closed stability for aclass of sliding mode controllers.
For more details about sliding modes for delay systems, one can refer toHan et al.[2012].

Some other control techniques have been revisited in presence of delays. InMichiels et al.
[2002], a continuous pole placement method is proposed to assign the right most eigenvalue of
the closed-loop system. Adaptive output feedbacks have been designed to stabilize a chain of
integrators: with a constant delay in the inputChoi and Lim[2006], Choi and Lim[2010b], with
an unknown but bounded time-varying delayChoi and Lim[2010a]. A H∞ delay-scheduled
controller is proposed inBriat et al.[2009] for known time-varying delays. For more results
about infinite horizon LQR,H∞ control with time-varying delays, the reader can refer toFrid-
man[2014a] and references therein.

To sum up, some particular systems can remain stable with arbitrarily long delays but it is
often at the cost of very sluggish dynamics. For a large classof systems, the stability using
memoryless controllers is guaranteed only for sufficientlysmall delays.

Memory controllers This interest has been explained inMirkin and Raskin[2003] where it is
shown that every stabilizing dead-time controller has an observer/predictor structure. Quoting
Mirkin and Raskin[2003], state prediction is a fundamental concept for delay systems, much
like state observation is for systems with incomplete statemeasurements.This control technique
is especially required for unstable systems with large input delays. As a result, a large part of
the thesis will be focused on this technique. Since the first step in the 1950s by Smith, the active
1970s and the introduction of LMIs in 1990s, a vast literature is available on that topic. Here,
only a quick insight into the most important results will be provided in order to contextualize
our contribution. For more information, one can refer to survey papersRichard[2003], Gu and
Niculescu[2003] and to booksHale and Verduyn Lunel[1993], Bekiaris-Liberis and Krstic
[2013], Fridman[2014a], Krstic [2009], Malisoff et al.[2015] andZhong[2006].

2. The global uniform asymptotic stability is proven.
3. The amplitude of such oscillations have been quantified inRichard et al.[2001].
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Figure 1.3 – Equivalent systems from the transfer function point of view.

1.2.1 Prediction-based control for constant delays

Smith Predictor

The most well-known method to control dead time systems is probably the Smith predictor.
This frequency approach was introduced by Smith at the end ofthe 1950s inSmith[1957] and
Smith [1959]. The idea is based on the design of an inner loop that computes a prediction of
the output (see Figure1.4). The weakness of this controller is that it can only stabilize stable
plants. Let us illustrate the cause of instability by studying a first order example.

Example 1.2.1.Consider the system

ẋ = ax+ bu(t− h) (1.1)

with a ∈ R, b ∈ R andh > 0. Its transfer representation is

H0(p) =
X(p)

U(p)
=
be−ph

p− a
(1.2)

whereX(p) and U(p) are respectively the Laplace transform ofx(t) and u(t) and p is the
Laplace variable. Computing the transfer function of the inner loop of scheme1.4, one obtains

U(p)

E(p)
=

(p− a)K

p− a +Kb(1− e−ph)
, (1.3)

then
Y (p)

E(p)
=

Kbe−ph

p− a +Kb(1− e−ph)
. (1.4)

Finally, the transfer function of the whole system is given by

Y (p)

Yr(p)
=

Kb

p− (a−Kb)
e−ph. (1.5)

It can be seen that the delay does not affect the stability so the gainK can be selected as if
the system was delay free. With this input/output approach,the instable zero is masked by the
pole-zero cancellation in (1.4). However, the characteristic equation is

det

[
p− a −be−ph

(p− a)K p− a+Kb(1 − e−ph)

]

= (p− a)(p− (a−Kb)) = 0. (1.6)

./chapter_general_intro/figures/scheme_input_delay.ps
./chapter_general_intro/figures/scheme_output_delay.ps
./chapter_general_intro/figures/scheme_IO_delay_bis.ps
./chapter_general_intro/figures/scheme_internal_delay.ps
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Thus, if the open-loop system is unstable (a > 0), then the closed-loop system is also unstable
(independently of the controller). This conclusion can be generalized to any plantH0 as in
Furukuwa and Shimemura[1983]. In order to compare with the next techniques, the time
domain expression of the feedbacku is computed by taking the inverse Laplace transform of
(1.3)

u(t) = −K



x(t) +

t∫

0

ea(t−s)bu(s)ds− e−ah

t−h∫

−h

ea(t−s)bu(s)ds



 (1.7)

with yr = 0.

H0(p)e
−ph

K
e(t) u(t) y(t)yr ep(t)

H0(p)−H0(p)e
−ph

Figure 1.4 – Smith controller is displayed in red. The transfert H0 represents the delay free
plant. Noting thatH0(p)U(p) is the prediction of the state ofH0(p)e

−shU(p) and computing
the errorep(t) = yr − y(t+ h), then the controlu = Kep is able to perfectly compensateh for
stable plantsH0.

Some works have extended the Smith predictor to unstable systems as inKwak et al.[1999],
De Paor[1985], Watanabe and Ito[1981b], Normey-Rico and Camacho[2009] or to multivari-
able systems as inWang et al.[2000]. An adaptive Smith Predictor for possibly open-loop
unstable plants is presented inNiculescu and Annaswamy[2003]. Various articles also deal
with the disturbance robustness of the predictor: seeAstrom et al.[1994], Liu et al. [2005],
Matausek and Micic[1999] andWatanabe and Ito[1981b]. The resulting controllers are some-
times called modified (or generalized) Smith predictor (MSP). An analysis of the digital version
of these controllers can be found inPalmor and Halevi[1990]. For a more extensive review on
the Smith Predictor and these modifications the reader can refer toPalmor[1999] andNormey-
Rico and Camacho[2007].

Finite Spectrum Assignment (FSA) and model reduction

At the end of the 1970’s and the beginning of the 1980’s, the result of Smith has been ex-
tended to state-space representation and unstable systemsbyArtstein[1982], Kwon and Pearson
[1980], Olbrot [1978]. The idea of these new approaches is described thereafter.Consider the
LTI system

ẋ(t) = Ax(t) +Bu(t− h) (1.8)

wherex ∈ R
n, h > 0 and(A,B) is controllable. To obtaiṅx = (A +BK)x(t), it is necessary

to haveu(t− h) = Kx(t) so
u(t) = Kx(t + h). (1.9)

This is a predictive feedback since it requires the knowledge of the future state of the system
x(t + h). Reminding that the solutions of (1.8) can be computed from any initial solution at

./chapter_general_intro/figures/scheme_smith.ps
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x(t0), by the formula

x(t) = eA(t−t0)x(t0) +

t∫

t0

eA(t−s)Bu(s− h)ds (1.10)

for all t ≥ 0, it can be deduced that

x(t+ h) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (1.11)

Thus, (1.9) becomes

u(t) = K



eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds



 . (1.12)

The computation of the above control law requires previous values of the control inputu be-

cause of the distributed delay term
t∫

t−h

eA(t−s)Bu(s)ds. Therefore, controller (1.12) is called a

memory feedback, otherwise, feedbacks that do not have any distributed delay terms are called
memoryless feedbacks. The closed-loop dynamics of (1.8) with controller (1.12) reads as

ẋ(t) =







eAtx(0) +
t∫

0

eA(t−s)Bφ(s)ds if 0 ≤ t ≤ h

(A+BK)x(t) if t > h

(1.13)

whereφ is the initial condition ofu : u(s − h) = φu(s) for all s ∈ [0, h]. As shown by
(1.13), delayed system (1.8) is turned into a delay free system with a finite spectrum. Besides,
this spectrum can be assigned thanks to the gainK, that is why the method is called Finite
Spectrum Assignment (FSA). It has been proposed byKwon and Pearson[1980] andManitius
and Olbrot[1979] for input delay systems and extended to state delay and input delay systems
in Yanushevsky[1991], Fiagbedzi and Pearson[1986], Jankovic[2010] andKharitonov[2014]
and to neutral systems with input delay inKharitonov[2015]. Input and output delays are also
considered inZhou et al.[2013]. The recent paper byYoon and Lin[2015] deals with input,
output and state delays. Note that, in the context of optimalcontrol of systems with time-
lag, some articles have paved the way of the FSA by introducing memory feedbacksKleinman
[1969], Koivo and Lee[1972], Lewis [1979], Slater and Wells[1972]. Similarly, the work of
Mayne[1968] has received little attention though it can be considered as a seminal work on
FSA technique.

The reduction method proposed byArtstein [1982] is similar to the FSA technique in the
sense that it uses a transformation based on the prediction.However, it is more general because
any kind of predictive controllers can be designed on the reduced system. Besides, Artstein’s
work deals with LTV systems with distributed delay in the input. Here, only the point wise
delay case for LTI systems is described. Denoting

z(t) = x(t) +

t∫

t−h

eA(t−s−h)Bu(s)ds, (1.14)

system (1.8) can be rewritten in the following form

ż(t) = Az(t) + e−AhBu(t). (1.15)

System (1.15) is now input delay free, the delay only appears as a parameter 4. Remark that

4. It is was proven inBanks et al.[1971] that (A,B) is controllable if and only if(A, e−AhB) is controllable.
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z(t) = eAhx(t + h) is a predictive transformation. Similarly, the transformation can be carried
out with

xp(t) = x(t + h). (1.16)

Therefore, (1.8) becomes
ẋp(t) = Axp(t) +Bu(t). (1.17)

System (1.17) is delay free which means that all the standard control techniques developed for
this class of systems can be applied. In particular, the feedbacku(t) = Kxp(t) that leads to
the assignment of the poles of(A + BK). It is clear that the feedbacku(t) = Kxp(t) is the
same as the controller (1.12) designed from the FSA technique. The advantage of the reduction
method is that much more controllers can be designed not onlya state feedback. For instance,
sliding mode controllers have been designed byRoh and Oh[1999] and Roh and Oh[2000]
based on the reduced system. The reduction method has also been extended to the partial state
knowledge case byDi Loreto et al.[2008]. In this later work, anH∞ controller is designed on
the reduced model. Other works byTadmor[2000] andZhong[2003] have also combinedH∞

control with predictive control. The reduction method has also been used to control a special
class of feedforward systems with a dynamic gain inKoo et al.[2012a].

Comparing feedback (1.7) obtained from the Smith predictor and feedback (1.12) from the
FSA technique, a difference can be observed as it was mentioned in [Krstic, 2009, p. 23]. This
minor difference comes from the way both controllers are computed. In practice, this difference
is not significant as it will be displayed on the next simulation (Figure1.5a).

Example 1.2.2. In order to illustrate the features of these predictive techniques, some simu-
lations have been run on the same model as in example1.2.1. Three controllers have been
compared:

• a memory less controller:u(t) = Kx(t) (no prediction),

• a predictive controller from FSA defined in (1.12),

• a Smith predictor presented in subsection (1.2.1).

The results are displayed on Figure1.5. On Figure1.5a, the parametera is equal to−1: the
open-loop system is stable. On the contrary, on Figure1.5b, the parametera is equal to1. Three
conclusions can be drawn from these graphs. First, the Smithpredictor and the predictive con-
troller from FSA give very similar results for a stable system (Fig. 1.5a). It seems logical since
they both compensate perfectly the delay. Secondly, the Smith predictor is unstable for an open-
loop unstable system. Finally, the memory less feedback displays a larger overshoot than the
predictive controller in both cases (Figs.1.5aand1.5b). Increasing the delay and/or increasing
the gainK would have magnify this overshoot and inevitably lead to thedestabilization of the
system with the memory less feedback. On the contrary, the predictive technique from FSA can
stabilize a perfectly known linear system for an arbitrarily long (known) delay.

PDE Backstepping design

This method has been introduced byKrstic [2009]. The idea is to model the delayed input
as a transport PDE

{
∂ν(p,t)

∂t
= ∂ν(p,t)

∂p
,

ν(h, t) = u(t).
(1.18)

The solution of the following first order-hyperbolic PDE is

ν(p, t) = u(t+ p− h) (1.19)
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Figure 1.5 – Controllers comparison forẋ = ax+bu(t−h) with b = 1, h = 0.5 s andx(0) = 0.
In both case, the gain isK = 2.

and then
ν(0, t) = u(t− h). (1.20)

Therefore, delayed system (1.8) can be represented by the combination of the ODEẋ(t) =
Ax(t) +Bν(0, t) with PDE (1.18) driven by the inputu at its boundary as illustrated on Figure
1.6. As a result, the following ODE-PDE system is obtained







ẋ(t) = Ax(t) +Bν(0, t),
∂ν(p,t)

∂t
= ∂ν(p,t)

∂p
,

ν(h, t) = u(t).

(1.21)

Then the transformation

w(p, t) = ν(p, t)−KeApx(t)−
p∫

0

KeA(p−y)Bν(y, t)dy (1.22)

leads to the following systems






ẋ(t) = (A+BK)x(t) +Bw(0, t),
∂w(p,t)

∂t
= ∂w(p,t)

∂p
,

w(h, t) = 0.

(1.23)

The value ofw is equal to 0 afterh seconds so the exponential convergence is guaranteed
provided thatA + BK is Hurwitz. In addition, reminding thatu(t) = ν(h, t) it is clear that
the controller is the same as (1.12). The advantage of the transformed system (1.23) is that
the boundary condition is null; then a stability analysis can be performed using the candidate
Lyapunov functional

V (t) = x(t)tPx(t) + bh

h∫

0

(1 + p)w(p, t)2dp. (1.24)

./chapter_general_intro/figures/pred_comp_stable.eps
./chapter_general_intro/figures/pred_comp_unstable.eps
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In the ideal case, the proof of stability is obvious since it is possible to compute the exact pre-
diction; thus the delayed system is turned into a delay free systems. However, as soon as some
uncertainties or external disturbances appear, it is necessary to use a different method since the
delay can not be compensated exactly. Lyapunov functionalsfor memoryless feedbacks have
been known for a long time (seeFridman[2014b]) but the PDE backstepping technique is the
first result to extend the Lyapunov analysis to predictive feedbacks. This analysis method has
been particularly used in the adaptive framework; for delayadaptive control inBresch-Pietri
and Krstic[2010], for delay and plant parameters adaptation inBresch-Pietri and Krstic[2009]
andZhu et al.[2015] and also for disturbance estimation inBresch-Pietri et al.[2012] or for
inverse optimal redesign inKrstic [2008a].

After these first results on Lyapunov analysis for predictive control, some other Lyapunov
functionals have been proposed. A technique to design Lyapunov-Krasovskii functionals for
input delay systems stabilized by the reduction approach isproposed byMazenc et al.[2012].
The resulting functionals allow to establish the ISS property of the closed-loop system with
respect to additive external disturbances. InLi et al. [2014b], a Lyapunov functional is used to
study the robustness of the predictor to delay uncertainties. InLi et al. [2014a], a new functional
is constructed for linear systems with multiple input delays. Some more references can be found
in Li et al. [2014a].

ẋ = Ax +Bu(t− h)e−sh
u(t− h) x(t)u(t)

ν(h, t) ν(0, t)

p

convection direction

Figure 1.6 – PDE representation of the actuator delay fromKrstic [2009].

Predictive control of broader classes of systems

Predictive techniques have recently been extended to broader classes of systems. The finite
spectrum has been adapted to nonlinear systems very recently in Oguchi[2015]. The reduction
approach has been used to prove the stability of an approximated prediction for LTV systems
with a constant and arbitrarily large input delay inMazenc et al.[2014]. This work has been
extended to a class of nonlinear systems inMazenc and Malisoff[2014]. Other works that do
not use the reduction method but aim at compensating input delay has been done for nonlinear
systems (that maybe open-loop unstable) byKrstic [2008b] andKrstic [2010b]. More details
on this approach are available in the book ofBekiaris-Liberis and Krstic[2013]. An insight of
the method is given thereafter.

Consider forward-complete systems (systems that have bounded solutions time for any
bounded input functions)

ẋ(t) = f(x(t), u(t− h)) (1.25)

for which there exists a continuous controlleru(t) = k(x(t)) that guarantees the global asymp-
totic stability to the origin of the delay free system. Then,the feedbacku(t) = k(xp(t)), where
the prediction is computed as follows

xp(t) = x(t) +

t∫

t−h

f(xp(s), u(s))ds, (1.26)

./chapter_general_intro/figures/scheme_backstepping.ps
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will exactly compensate the input delayh 5. The forward completeness property is necessary to
guarantee that the system does not escape (in finite time) before the control "kicks in" at time
t = h. In the nonlinear framework, the prediction is not always computable:Karafyllis [2011]
presents the stabilization of globally Lipschitz systems thanks to approximate predictors. In
Georges et al.[2007] andBesançon et al.[2009], a practical implementation of the prediction
based on an implicit Euler discretization and the online computation of the fixed point by a
dynamic inversion is proposed6. The problem of sampled measurement and zero order-hold
controller for nonlinear systems with arbitrarily long input and output delays is dealt with by
Karafyllis and Krstic[2012]: Approximate predictors and high-gain observers are designed to
globally stabilize a class of globally Lipschitz systems. The case of output feedback for nonlin-
ear systems with input and output delays is worked out inKarafyllis and Krstic[2013b]. In Koo
et al.[2012b], an adaptive method is proposed to control a particular class of feedforward and
non-feedforward nonlinear systems using past values of theinput. Saturated control involving
an integral term is designed inFischer et al.[2013] to stabilize a class of uncertain nonlinear
systems. For further details on the control of nonlinear systems with delays, one can refer to
Bekiaris-Liberis and Krstic[2013] andMalisoff et al.[2015].

1.2.2 Prediction-based control for time-varying delays

In real-word applications, the delay is often time-varying. A common example is remote
control. In the case of NCS, the delay often depends on the network traffic (seeLixian et al.
[2013]). In the case of wireless communication, obstacles or distance can induce non constant
delays as inGuerrero et al.[2013], Ploplys et al.[2004], Colandairaj et al.[2005], Bresch-Pietri
and Petit[2014]. Similar predictive techniques available for constant delays can be extended to
time-varying delays. The first work is byNihtila [1989] where a predictive adaptive controller is
designed. InNihtila [1991], the FSA property is worked out. The difference between predictive
control for constant and time-varying delays is illustrated below. Consider the system

ẋ = Ax+Bu(η(t)) (1.27)

whereη(t) = t− h(t). Similarly to the constant delay case, the feedbacku(t) = Kx(t + h(t))
is applied. The resulting equation is

ẋ = Ax+BKx(t + h(t)− h(t+ h(t))
︸ ︷︷ ︸

do not cancel anymore

). (1.28)

When the delay is slow-varying, this solution can be efficient but, in order to compensate per-
fectly the delay, the feedbacku(t) = Kx(η−1(t)) with

x(η−1(t)) = eA(η−1(t)−t)x(t) +

η−1(t)∫

t

eA(η−1(t)−s)Bu(η(s))ds (1.29)

has to be applied. The inverse functionη−1 represents the prediction horizon that is constantly
changing with time. To guarantee its existence, the delay has to be differentiable, bounded
h(t) ∈ [0, hmax] and its derivative has to satisfy|ḣ| ≤ δ with δ < 1. The practical meaning of
this condition is that the delay is causal, it cannot vary faster than the absolute time. Remark

5. The discretization of the integral is an important step that has to be carefully study in particular for nonlinear
systems.

6. For more details see the thesis ofBenayache[2009].
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that in the constant delay case, one hasη−1(t) = t+h. However, in practical applicationsη−1 is
difficult to compute since it requires the knowledge ofη(t) at all instantt. This means that the
delay has to be known in advance in order to computeη−1 and then the exact prediction (1.29).

As a consequence of this strong constraint, some results have computed approximate pre-
dictions and study their stability properties. An estimated horizon is computed inWitrant et al.
[2007] thanks to a model of the communication channel. The resultsare tested on a real ex-
perimentation inWitrant et al.[2011] and have been combined with a numerical approximation
of the feedback law inGeorges et al.[2007] andBesançon et al.[2009]. A truncated predictor
(without the integral part) has been proposed inYoon and Lin[2013]. However, these con-
trollers do not cope with large delays because they do not have any memory of past instant.
The stability of the ideal predictive feedback by a Lyapunovanalysis has been solved inKrstic
[2010a] by means of a backstepping technique similar to the one of Section 1.2.1. An ap-
proximated predictive feedback will be studied for time-varying delays and some stability
conditions will be obtained by a Lyapunov analysis for knownand unknown delays in
Sections4.1and 5.1respectively.

Predictive control and Networked Control Systems (NCS) The presence of a communica-
tion channel between the system and the controller induces new issues in the control design such
as packetisation, packet loss, quantization and of course transmission delays. Recently, this con-
trol method has become more and more common and numerous works have been published on
that topic creating a new field in the control literatureZhang et al.[2001], Hespanha et al.[2007]
Gupta and C.[2010]. Indeed, control over a network necessarily involves discrete phenomenon
such as sampled measurement and hold control. As a consequence, continuous control methods
have been modified and extended to fit the context of NCS. InZhang et al.[2001], a sampled
feedback based on the standard prediction is used to compensate for a known time-varying de-
lay. In Hetel et al.[2011], a delay dependent (not predictive) feedback is proposed based on a
delay estimation. However, no delay estimation method is given. InKruszewski et al.[2012],
a switching gain controller is designed for known delays7. Some very recent works byMazenc
and Fridman[2016] andAhmed-Ali et al.[2016] deals with discrete-time measurements and a
sampled input with a constant and known pointwise delay in the input. The work ofMazenc
and Fridman[2016] uses a dynamic output feedback based on the standard prediction whereas
an approximate (asymptotic) predictor is used inAhmed-Ali et al.[2016].

In the thesis, we will focus on continuous methods so we will consider that sample and hold
phenomenon can be neglected.

1.2.3 The limit of predictive control

In previous sections, it has been shown that predictive techniques are available to control
systems with input delays. When the delay and the model are perfectly known, exact delay
compensation can be achieved for arbitrarily long delay andthe controller can be designed as
if there were no delay. However, as soon as uncertainties appear, the exact compensation is not
possible anymore and the robustness of the controller has tobe investigated using tools for time-
delay systems. Another important point is the computation of the integral term in the prediction
(1.11).

7. The switches are governed by the QoS of the communication channel.
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Sensitivity to parameter mismatch and external disturbance

External disturbance Systems are often subject to external disturbances. Since these sig-
nals are unknown, they cannot be included directly in the computation of the prediction. As a
consequence, it is not possible to compute the exact prediction and to compensate efficiently
the perturbation. On Figure1.7a, it is clear that the prediction is not exact when the distur-
bance (Figure1.7b) affects the system betweent = 10 s andt = 20 s. As a consequence,
the trajectory tracking is not accurate during this time interval. Some methods have adapted
the Smith predictor structure to reject step disturbance asin Astrom et al.[1994], Watanabe
and Ito[1981b]. However, these methods apply only to stable plants. For the state space ap-
proach, an ISS Lyapunov functional is given inMazenc et al.[2012] for a system controlled
by a standard predictive feedback but no solution is proposed to improve disturbance attenu-
ation. InPolyakov et al.[2013b], the attractive ellipsoid method is used to tune the gains of
the predictive controller in order to reduce measurement noise and exogenous disturbance ef-
fect. Nevertheless, this method do not allow to reject perfectly a constant disturbance. Adaptive
control is used to reject constant perturbationBresch-Pietri et al.[2012] and sine perturbation
Pyrkin et al.[2010] andPyrkin and Bobstov[2013]. In this framework, controllers are designed
as follows: u(t) = Kxp(t) − d̂(t) with d̂ a disturbance estimation. However, the estimated
disturbance is not used to compute a more accurate prediction. In Section 4.3, a new predic-
tion that indirectly includes some disturbance information is presented. It is proved that
designing a controller from this new prediction leads to perfect rejection of a constant dis-
turbance. It is also shown that the new predictive scheme8 performs a better disturbance
attenuation for a large class of time-varying disturbances.
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Figure 1.7 – Robustness of the prediction for systemẋ = ax + bu(t − h) with a = 1, b = 1,
h = 0.5 s andx(0) = 0. An unknown disturbanced = −1 is applied betweent = 10 s and
t = 20 s. The controller is defined by (1.12) with a correction term for the reference tracking.

8. The term "scheme" refers to the prediction and the controller design. The standard predictive scheme is
based on the standard prediction (1.11).
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Sensitivity to parameter uncertainties The work ofPalmor[1980] provides one of the first
result to analyze the closed-loop performances in presenceof delay mismatch; an explicit crite-
rion is given thanks to the Nyquist criterion. Assuming thatonly approximations̃A (respectively
B̃) of A (respectivelyB) defined in system (1.8), then the prediction reads as

x̃p(t) = eÃhx(t) +

t∫

t−h

eÃ(t−s)B̃u(s)ds. (1.30)

It is stated byFurukuwa and Shimemura[1983] that, from the following equation
[
sIn −A −Be−sh

−KeÃh Im −K(I − e−(sI−Ã)h)(sI − Ã)−1B̃

]

= 0, (1.31)

the stability is preserved if the difference between the plant and the model are sufficiently small
but no quantitative criterion is given. Another classic method is to use Lyapunov functionals to
derive LMIs. The reduction method can be used to rewrite the system and derive LMI conditions
for known and constant delayMoon et al.[2001], for unknown and constant input delayYue
[2004] or for unknown and time-varyingChen and Zheng[2006], Yue and Han[2005]. The
properties of the new predictive scheme presented in Section 4.3 will be also analyzed in
presence of parameter uncertainties. It will be shown that the new prediction allows better
trajectory tracking in presence of parameter uncertainties than the standard one.

Sensitivity to delay uncertainty In real applications, the delay is usually very difficult to
measure with a good accuracy. That is why some delay estimation techniques will be presented
in PartI of the manuscript. Furthermore, it is intuitive that control performances can be dete-
riorated with delay mismatch. That is why a lot of works have tried to quantify the amount of
delay uncertainty that can be accepted without destabilizing the system. The first works deal
with a frequency domain analysis. The papers byYamanaka and Shimemura[1987], Michiels
and Niculescu[2003] are focused on the effect of delay mismatched for Smith controller. A
maximal delay mismatch is derived inMichiels and Niculescu[2003]. For more details about
the frequency approach, the reader can refer to the book ofNiculescu[2001].

More recently, a Lyapunov functional analysis has been given in Li et al. [2014b]. In
Karafyllis and Krstic[2013a], an upper-bound on the delay uncertainty is found by carrying out
a particular form of small-gain analyis. InKrstic [2008a], Krstic [2009] and Bekiaris-Liberis
and Krstic[2013], a particular Lyapunov functional based on the backstepping technique (Sec-
tion 1.2.1) is used to show the existence of an admissible upper bound onthe delay estimation
error. In Section 5.1, some conditions on the delay error will be derived for constant or
time-varying delays by using a new Lyapunov functional.

Remark 1.2.1.Note that it is very well-known that predictive control is not robust to parameter
uncertainties or delay mismatch. On the one hand, performances are degraded when exact
model values are not perfectly known as shown on Figure1.8 (especially for delay mismatch).
On the other hand, for large input delays, this is the only available technique and it can be
observed that an unstable system can preserve closed-loop stability with about10 to 15% error
uncertainty.

Computation of the distributed control law

Predictive controllers are memory controllers because of the integral term in equation (1.12).
If the system is open-loop stable, prediction (1.11) can be generated by the following process

xp̂(t) = eAhx(t) + ξh(t) (1.32)
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Figure 1.8 – Robustness of the prediction for systemẋ = ax + bu(t − h) with a = 1, b = 1,
h = 0.8 s andx(0) = 2. The predictive controllers are computed taking into account some
uncertainties on the parametersa andb (Figure1.8a) and on the delay valueh (Figure1.8b). In
both case, the controller gain is the same.

with

ξh(t) =
t∫

t−h

eA(t−s)Bu(s)ds

= eAtξ(0) +
t∫

0

eA(t−s)bu(s)ds

−eAh

[

eA(t−h)ξ(0) +
t−h∫

0

eA(t−h−s)bu(s)ds

]

= ξ(t)− eAhξ(t− h)

(1.33)

whereξ(t) is solution of the equation

ξ̇(t) = Aξ(t) +Bu(t). (1.34)

In this case, no integral discretization is necessary9. However, for open-loop unstable systems,
these methods are not applicable anymore and the integral has to be discretized. This step has to
be carefully executed because it can make the closed-loop system unstable. This destabilizing
effect has been pointed out inVan Assche et al.[1999] and the instability mechanism have been
explained inEngelborghs et al.[2001]. In order to explain the destabilizing phenomena and
illustrate safe implementation techniques, consider the following scalar example

ẋ = x(t) + u(t− 1). (1.35)

To stabilize this open-loop unstable system with a delay equal to one, the following controller
is chosen

u(t) = −2xp(t) = −2e1



x(t) +

1∫

0

es−1u(t− s)ds



 . (1.36)

9. SeeWatanabe and Ito[1981b] and Furukuwa and Shimemura[1983] for more methods to compute the
prediction.

./chapter_general_intro/figures/pred_robustness_parameter.eps
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Since this system is open-loop unstable, the integral has tobe discretized. With the trapezoidal
rule, the following approximation is proposed:

1∫

0

esu(t− s)ds ≈ Ts

[

1

2
u(t) +

N−1∑

i=1

eiTsu(t− iTs) +
1

2
e1u(t− 1)

]

(1.37)

with Ts = 1
N

andN the number of discretization points. The closed-loop response for (1.35)
with feedback (1.36) and discretization (1.37) (Ts = 100 ms) is displayed on Figure1.9aalong
with the ideal response. It can bee seen that the response is correct till about15 s where high
frequency oscillations appear. Indeed, equations (1.35) and (1.36) with discretization (1.37) are
a system of retarded type with an infinite number of roots. However, a finite number of roots
are in the right half plane. InEngelborghs et al.[2001], stability regions are plotted in function
of the delay value and the controller gain. To fix this problem, a low pass filter is introduced in
Mondié and Michiels[2003]:






ż(t) = −fz(t)− 2f

(

e1x(t) + Ts

[

1
2
u(t) +

N−1∑

i=1

eiTsu(t− iTs) +
1
2
e1u(t− 1)

])

u(t) = z(t)
(1.38)

with f the cutoff frequency. It is proved that there always existsN large enough such that the
closed-loop approximation (1.35)-(1.38) is asymptotically stable provided that the ideal closed-
loop system is asymptotically stable. The results for different values off are shown on Figure
1.9bfor Ts = 100 ms. It is clear that the largerf is, the closer is the implementation to the ideal
response. However, if the cut off frequency is too large thenhigh frequency oscillations appear
again.

Other methods have been proposed. InPopescu and Rasvan[2004], a sampled feedback
is designed on the discretized system. It is shown that therealways exists a sufficiently small
sampling time such that the closed-loop system is asymptotically stable. InZhong [2004],
implementations are based on approximations of (1.33) and (1.34) in thez-domain and in the
s-domain. Based on similar approximations, some solutions are provided inMirkin [2004]. For
more details on implementation of distributed control laws, see the book byZhong[2006].

In the sequel of the thesis, all the prediction have been computed with a time domain dis-
cretization (with sample-and-hold):

1∫

0

esu(t− s)ds ≈ Ts

[

1

2
u(nT ) +

N−1∑

i=1

eiTsui +
1

2
e1u(nT − 1)

]

(1.39)

with ui = u(nT − iT s) for t ∈ [(n− 1)T, nT [ whereT is the step size of the solver (Ts ≥ T ).
As it is shown on Figure1.9c for Ts = 100 ms andT = 10 ms, this approximation is very
accurate providedT is sufficiently small.

Some works have be done in order to drop the integral part of the prediction in order to
limit the implementation complexity: truncated predictor(TP) in Yoon and Lin[2013], Zhou
et al. [2012] or pseudo-predictor feedback (PPF) for time-varying delay in Zhou [2014]. A
sequential sub predictors method, presented inNajafi et al.[2013], allows to use the process
(1.33)-(1.34) even for open-loop unstable systems provided that the constant delay is sufficiently
small.This result is extended to partial measurement knowledge and known and unknown
time-varying delay respectively in Section4.2and 5.2.

Even if the integral computation is often pointed out as a weakness of predictive con-
trol, the efficiency of such techniques on real systems is illustrated on a DC motor in
Chapter 6 of the manuscript.
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Figure 1.9 – Comparison of different methods to compute prediction (1.11).

1.3 Observation in presence of delays

In order to compute the prediction, the state and the delays are necessary. However, they
are not always available so observers are needed to estimateboth the state and the delay. In this
section, some background literature is given on that topic and the review is divided into three
points

• state observation in presence of delay,

• delay estimation,

• combination of state observation and delay estimation.

1.3.1 State observers for delayed systems

Numerous works have tackled the problem of state observation in presence of delays. Theses
works can be organized according to the type of delays that affect the system: state delays, input
delays or output delays. Some important contributions are mentioned in the sequel.
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State delay

One of the first works is byBhat and Koivo[1976] where a state observer is designed for
linear systems with a constant and known delay. Other results for linear systems with constant
and known delays are also given byChoi and Chung[1996] andHou et al.[2002]. The main
limitation of these works is that they consider constant andknown delays. The works ofChoi
and Chung[1997] andDarouach et al.[1999] have considered an unknown but constant delay
whereas articles byDarouach[2001] and Fridman et al.[2003b] treat the time-varying but
known delay case.

All the previous references study linear systems. References about nonlinear systems are
much more scarce. Among the few references,Ibrir [2009] deals with a constant and known
delay for nonlinear (triangular) systems andWang et al.[2002] considers nonlinear disturbances
and a time-varying and known delay. Some extra references are given in the survey papers by
Sename[2001] andRichard[2003].

State and input delays

More recently some works have been dedicated to state observation for systems with both
input and state delays. Most of the papers are restricted to known delays such asLeyva-Ramos
and Pearson[1995], Zheng et al.[2011] 10 and Márquez-Martínez et al.[2002] for constant
delays orFarza et al.[2010] for time-varying delays. The works ofSeuret et al.[2009] and
Ghanes et al.[2013] deal with unknown delays. The idea in these last two references is to
substitute the real delayh(t) by a known and constant approximationh̃ 11 an then to design a
robust observer12 to attenuate the delay estimation error. The disadvantage of this method is
that the observer gains have to be large to compensate for thedelay estimation errors.

Input and output delays

The seminal paper byWatanabe and Ito[1981a] works out the case of multiple input and
output (constant and known) delays for linear systems. Veryrecently, a finite dimensional
observer has been proposed byZhou et al.[2013] for the same class of systems. Cascaded
observers are proposed byGermani et al.[2002], Kazantzis and Wright[2005] and Ahmed-
Ali et al. [2012] to observe systems with constant and known delays in the output. Finally, an
interval observation technique has been introduced byPolyakov et al.[2013a] to reconstruct
the state of linear systems with an unknown and time-varyingdelay in the input. The method
consists in designing two observers which generate solutionsx̄ andx. Then, it is shown that the
statex is always in[x, x̄] in the component wise sense. None of the above papers consider an
unknown and time-varying delay. Furthermore, they are focused on linear systems.In Part I ,
two state observation solutions will be presented for nonlinear systems with time-varying
and unknown delays in the input.

1.3.2 Delay estimation

Signal processing approach

Time delay identification has often been based on a signal processing approach and partic-
ularly in the acoustic field as inClifford [1981] andKnapp and Carter[1976]. In this case, the

10. This works considers also a delay in the measurement. An algebraic framework is used to transform nonlin-
ear systems with commensurable delays into a canonical formmore appropriate to estimate the state.

11. For instancẽh = (hmin + hmax)/2 in Seuret et al.[2009] andh̃ = hmax in Ghanes et al.[2013]
12. A sliding mode observer inSeuret et al.[2009] and a high gain observer inGhanes et al.[2013].
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general idea of TDE techniques is the following: a criterionJ(ĥ) is designed13 and the evolu-
tion law for ĥ has to minimize the criterionJ(ĥ). A standard time-delay estimator is the direct
correlator (DC) that seeks the maximum value of the cross correlation between the reference
and the delayed signal (seeKnapp and Carter[1976]). Other estimators exist such as the av-
erage square difference function estimator (ASDF) for discrete time techniques as inJacovitti
and Scarano[1993]. These methods are not well adapted in the control context because they are
usually offline methods (DC, ASDF) and therefore suffer froma long computation time due to
the poor rate of convergence of the optimization algorithm.A survey of TDE techniques with a
signal processing focus is given inBjörklund [2003].

Control oriented methods

In these approaches, the delay is usually considered as a parameter of the system and its
identification is often combined to the identification of other parameters. A vast literature exists
on that topic: see the works ofAgarwal and Canudas[1986], Belkoura et al.[2009], Bresch-
Pietri and Krstic[2009], Gomez et al.[2007], Na et al.[2014], Orlov et al.[2003], Tuch et al.
[1994]. Some authors use the frequency domain where the delay appears as a parameter in
the terme−τs. In Agarwal and Canudas[1986], the terme−τs is approximated by a rational
transfer function of the Padé form; then a standard discreteleast-square algorithm is used to
minimize an objective function. The work ofTuch et al.[1994] is also based on a frequency
domain analysis. They proposed a continuous recursive least square algorithm. However, this
method does not work if the initial conditions of the system state are not perfectly known. In
addition, their solution works only for strictly positive or strictly negative controllers. InNihtilä
et al.[1997], a PDE approximation is used to extract the delay. InDiop et al.[2001], a similar
techniques as inTuch et al.[1994] is applied but the value ofu(t− τ) is required. InDrakunov
et al.[2006], observers have been used to identify the delay. However, all the state and its time
derivatives are needed; so the method is very sensitive to noise measurement. InBelkoura et al.
[2008] and Belkoura et al.[2009], an identification method using algebraic techniques based
on annihilation and integration is proposed for transfer functions. Very recently, an adaptive
method is proposed inNa et al.[2014] to estimate the system parameters and the delay of SISO
systems. The initial conditions of the estimated parameters have to be very close to the exact
value to guarantee the convergence of this method. A comparison of three estimation methods
is shown on Figure1.10. One can observe that the technique ofDrakunov et al.[2006] has a lot
of oscillations whose magnitude depends on the delay size. This chattering phenomenon cannot
be reduced by decreasing the step size. It is clear that the methods fromTuch et al.[1994] and
Na et al.[2014] are not suited for a time-varying delay. Indeed, both methods converge quickly
to the constant delays between0 and20 seconds but they cannot converge anymore when the
delay varies from0.4 to 1 s. Note that this problem is intrinsic to the estimator conception and
that it does not come from a bad tuning of the gain. A review of delay estimation techniques
has been done byO’Dwyer [2000].

Finally, four recent works design controllers that estimate the delay. Unlike previously
mentioned papers, next references deal with closed-loop identification method. InBresch-Pietri
and Krstic[2009], a delay estimator is designed from a Lyapunov analysis. InBresch-Pietri
and Krstic[2010], the delay estimator is obtained from the transport PDE representation of the
system. However, in both cases, only the state stabilization is proven but not the convergence
of the delay estimator. A delay identification law is proposed in Gaudette and Miller[2014]
for sampled systems. This law is based on a particular form ofsystems with two distinct real
eigenvalues of multiplicity one. InHerrera and Ibeas[2012], a multi-model scheme is used to

13. The delay is often denoted by the letterh or τ . In this thesis, the notationh will be used.
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estimate the delay and then this estimation is plugged into amodified Smith predictor. However,
this latter work do not consider external disturbances neither parameter uncertainties.

Note that, in all previously mentioned articles exceptGaudette and Miller[2014] andHer-
rera and Ibeas[2012], the delay is constant.In Part I , two solutions will be introduced to
estimate an unknown and time-varying delay in the input.
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Figure 1.10 – Comparison of delay estimation techniques on the systeṁx = x+ u(t− h(t))

1.3.3 Delay and state observation

As it has been mentioned above, many papers deal with state observation for delay systems.
Similarly, various methods exist for delay estimation. However, very few papers deal with both
delay identification and state reconstruction. Only two references about both delay and state
estimation are discussed thereafter. The first one, byBresch-Pietri et al.[2012], is restricted to
linear systems with a constant delay. In addition, the example of delay estimator proposed in
this paper is quite intricate to implement since it involvesvarious integral terms. The second
one, byGaudette and Miller[2014], is also focused on linear systems since the delay estimation
technique relies on the existence of two different eigenvalues ofA. Besides, the design of the
state observer is largely based on a particular sampling/holding technique. Finally, these articles
are interested in proving the closed-loop convergence but the delay estimation error convergence
is not established.In Chapters 2 and 3, two methods will be presented to estimate the state
and the delay of a class of nonlinear systems with an unknown and time-varying delay in
the input.

1.4 Organization and contribution of the thesis

This thesis is divided into three parts:

• The first part is dedicated to the presentation of two solutions to estimate the state and the
delay of a class of nonlinear systems with a time-varying delay in the input.

• The second part presents three predictions and studies their behaviors for known and
unknown delays.

• The third part is an experimental part that illustrates previous results.

A detail organization is given thereafter and displayed on Figure 1.11. The contributions
are detailed throughout the presentation of each chapter.Note that, the theorems presented in
framed boxes in the thesis are new results that constitute the contributions of this work.

./chapter_general_intro/figures/comp_delay_obs.eps


1.4. ORGANIZATION AND CONTRIBUTION OF THE THESIS 27

Part I is dedicated to the presentation of new methods to estimate the delay and the state.
The objective of delay observation is twofold. First, one looks for improving the quality of state
observation; secondly, one wants to compute an accurate prediction. One of the contribution
comes from the simultaneous observation of the state and thedelay. The other main contribution
is to deal with a time-varying delay. The stability analysisof the observer is studied in open-loop
(no feedback).

In Chapter 2, a new observation method that allows to estimate both stateand delay thanks
to a single extended observer is proposed. A first version of this method has been published
in Léchappé et al.[2015a] for linear systems. An extension to nonlinear systems is given in
Léchappé et al.[2015b]. The original idea lies in the construction of high gain observer on an
extended system which includes the unknown delay as a part ofits augmented state. A formal
convergence proof is given and some simulations illustratethe performance of this method.

An interconnected observers scheme is introduced inChapter 3. First, a new disturbance
observer, based on Extended State Observer (ESO) method, isdesigned in order to estimated the
retarded input. The novelty consists in introducing an artificial delay to approximate the time
derivative of the unknown dynamics by a finite difference scheme. Then, the general framework
of interconnected state-delay observers is proposed. It isbased on the coupling of a standard
state observer (available for delay free systems) with a delay observer. A stability condition is
given for the general case and illustrated by a particular example. The efficiency of the method
is confirmed by simulations. A comparison with the method of Chapter2 is also performed by
simulations. The content of this chapter is partially sum upin Léchappé et al.[2016].

Part II presents various results on predictive control. The main objective is to offer new
techniques to achieve better performances in presence of parameter uncertainties, external dis-
turbances and to deal with unknown delays. Explicit stability conditions are provided for each
technique thanks to a Lyapunov functional analysis. The physical meaning of these conditions
is thoroughly analyzed.

Chapter 4 deals with known delays and is divided into three sections. The first one (Section
4.1) reminds that the standard prediction originally designedfor constant delays can be used for
time-varying delays under some constraints on the delay rate. The result, already existing for
static feedbacks and full state knowledge, is extended to a broader class of controllers and to
partial state measurement. A stability condition is provided thanks to a simple Lyapunov func-
tional. The second section (Section4.2) aims at extending a recent result that allows to compute
a prediction from a dynamic system. The result originally available for constant delays, static
state feedback is extended to time-varying delays, and a broader class of controllers with partial
measurement knowledge. The exponential stability is also achieved. Finally, the last section
(Section4.3) describes a new predictive scheme that is more robust to external perturbation
and parameter uncertainties than the standard predictive scheme. The basic idea is to design a
prediction that indirectly includes information about unmodeled dynamics. This work has been
presented inLéchappé et al.[2015c] for the state feedback case and it is extended to the output
feedback inLéchappé et al.[2015d]. The extension of these works to time-varying delays is
also treated in this section. All the results are illustrated by academic examples and supported
by a thorough simulation analysis.

Chapter 5 extends the results of Sections4.1 and4.2 to unknown delays respectively in
Sections5.1and5.2. In each case, Lyapunov functionals are exhibited to study the stability of
the closed-loop system. A contribution of this chapter liesin the systematic Lyapunov analysis
that leads to explicit stability conditions. The other contribution is the presentation of predictive
techniques to control systems with an unknown and time-varying delay. The predictive control
laws are coupled with the delay estimator of Chapter3 in simulation.

Theoretical results presented in above chapters are illustrated inPart III .
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In Chapter 6, a DC motor is controlled in presence of parameter uncertainties, external
disturbances and a time-varying and unknown delay. Since the delay is artificially added, it
has been possible to test a lot of configurations seen before.The delay observer of Chapter3
is combined with the predictive techniques of PartII . Some experiments with input and output
unknown and time-varying delays are carried out to show thatthe result of this thesis can be
adapted to this larger framework. The results of this chapter have been published inLéchappé
et al. [2015f] for the constant and known delay case. The extension to an unknown delay is
available inLéchappé et al.[2015e].

Interconnected observersHigh gain observer

Predictive control

New prediction

DC motor

Delay-state observation

Experimental test

Unknown delayKnown delay

Standard prediction Dynamic prediction Standard prediction Dynamic prediction

Chapter 2 Chapter 3

Chapter 4 Chapter 5

Chapter 6

Part I

Part II

Part III

Section 4.1 Section 4.2 Section 4.3 Section 5.1 Section 5.2

Figure 1.11 – Organization of the thesis
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Introduction

Organization

It has been seen in the literature review that many solutionsexist for the state observation
problem in presence of delay. The delay estimation issue hasalso been widely studied. How-
ever, both problems are rarely combined. And yet, as soon as delay value increases, it is the
only way to guarantee an accurate state observation. Besides, in the prediction framework, both
state and delay values are necessary to design predictive controllers. That is why this part is
dedicated to the presentation of new methods to observe the state and the delay of systems with
input delay. Chapter2 presents the design of a single observer that reconstructs the delay and
the state. On the contrary, Chapter3 introduces a scheme that allows to interconnect standard
state observers (used in the delay free case) with a delay observer. The additional contribution,
apart from the combined state and delay observation results, is that both methods apply to a
class of nonlinear systems with a time-varying delay. Moreover, formal convergence proofs
are given and the methods are illustrated and compared in simulation. Note that this part is
focused on observation: no closed-loop results will be provided. The organization of this part
is reminded on Figure1.12.

Interconnected observersHigh gain observer

Delay-state observation

Chapter 2 Chapter 3

Part I

Figure 1.12 – Organization of the part on delay-state estimation

General considerations

System presentation

The systems considered throughout this part are SISO nonlinear systems with a time-varying
delayh(t) acting on the control inputu. More precisely, the class of systems is defined by

(Σ)







ẋ = Λx+ f(x) + g(y)u(t− h(t))
y = Cx = x1
x(0) = x0

(1.40)

with x = [x1, . . . , xn]
T ∈ R

n, y ∈ R, u ∈ R,
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Λ =

[
0n×1 In−1

0 01×n

]

∈ R
n×n, g(y) = [0, . . . , 0, G(y)]T ∈ R

n, (1.41)

f(x) =








f1(x1)
f2(x1, x2)

...
fn(x1, . . . , xn)







∈ R

n and C = [1, 0, . . . , 0]T ∈ R
n. (1.42)

Assumption 1.4.1.The functionsf andG are respectively inC1(Rn,Rn) andC1(R,R) andf
is globally Lipschitz, i.e. there existsc1 > 0 such that for all(x, z) ∈ R

n × R
n

||f(x)− f(z)|| ≤ c1||x− z|| (1.43)

Assumption 1.4.2.The functionG is bounded, i.e. there exists̄G > 0 such that for ally ∈ R

|G(y)| ≤ Ḡ. (1.44)

Assumption 1.4.3.The delay functionh is either piecewise constant or differentiable and sat-
isfiesh(t) ∈ [hmin, hmax]. If it is differentiable, its dynamics, denotedḣ(t) = η(t), is unknown
and bounded

|η(t)| ≤ η̄. (1.45)

Delay observability

The objective of this part is to propose new methods to estimate both the delay and the
state of system (Σ) in (1.40). Usually, the delay is considered as a parameter of the system
when it is constantAgarwal and Canudas[1986], Na et al.[2014]. However, when the delay is
time-varying, it has been decided to treat it as a state of an extended system in order to apply
observation techniques. DenotingX = [xT h]T , one obtains

(Σ̃)

{

Ẋ = f̃(X, u)
y = Y (X) = CextX = x1

(1.46)

with

f̃(X(t), u(t− h(t)) =

(
Λx(t) + f(x(t)) + g(y(t))u(t− h(t))

η(t)

)

∈ R
n+1 (1.47)

andCext = [C, 0] ∈ R
n+1. Note that in open-loop, (1.46) is a finite dimension system because

u is an external signal that does not depend onx. However, (1.46) would become an infinite
dimensional system in closed loop whenu is a function ofx.

Systems (Σ) in (1.40) and (̃Σ) in (1.46) are equivalent in the sense that they have the same
state trajectories. As a result, the observer design and thestability analysis can be performed
on this augmented system. First, the observability analysis of system (̃Σ) is going to be worked
out. The concept of observability rank condition used in Theorem1.1 is detailed inHermann
and Krener[1977]. The definition is recalled here for clarity: denoting byO the smallest vector
space containingx1 and closed under the Lie derivativesLf̃u

(for all τ ∈ O, Lf̃u
(τ) ∈ O).

This vector space is the classical observation space. LetÕ be the co-distribution spanned by
{dτ ,τ ∈ O}, system (1.46) is said to be rank observable atx if dim Õ(x) = n + 1. It is said
to be rank observable if for allx, dim Õ(x) = n + 1. This concept is very convenient to check
the observability of nonlinear systems: this is why it will be used in the observability analysis
performed thereafter. The following result is achieved.
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Theorem 1.1(Léchappé et al.[2015b]). System (̃Σ) is rank-observable if and only if

G(y) 6= 0 (1.48)

and
u̇(t) 6= 0 ∀t ≥ −hmax. (1.49)

Proof. Then first time derivatives of the outputy read as







y = x1
ẏ = x2 + α1(x1)
ÿ = x3 + α2(x1, x2)
... =

...
y(n−1) = xn + αn−1(x1, ..., xn−1)
y(n) = G(y)u(t− h) + αn(x1, ..., xn)

(1.50)

where theαi are combinations of thefi’s and their derivatives. Then, the Jacobian matrix ofy
and its time derivatives has the following form

∂(y, ẏ, ..., y(n))

∂X
=










1 0 0 . . . 0
∗ 1 0 . . . 0
...

. . . . . . . . .
...

∗ . . . ∗ 1 0

∗ . . . . . . ∗ G(y)∂u(t−h)
∂h










(1.51)

Therefore, system (Σ̃) satisfies the rank observability condition (seeHermann and Krener[1977])

rank

[
∂(y, ẏ, ..., y(n))

∂X

]

= n+ 1 (1.52)

if and only ifG(y)∂u(t−h)
∂h

does not cancel. In addition, for allt ≥ 0 andh ∈ [hmin, hmax], one
has

∂u(t− h)

∂h
= −∂u(t− h)

∂t
. (1.53)

Then, ∂u(t−h)
∂h

6= 0 is equivalent to∂u(t−h)
∂t

6= 0. Therefore, (1.52) is equivalent to (1.48) and
(1.49) for all t ≥ 0 and h ∈ [hmin, hmax] since the delay is differentiable. This ends the
proof.

Condition (1.49) is natural because if the input is constant, the delay has noinfluence on the
system: it cannot be observed. Nevertheless, it is restrictive because it means that the input
should be strictly monotonic. For a certain class of observers the notion of persistency14 can
be used to relax this condition. Another way to avoid the singularity problem inu̇(t) = 0 is to
assume that

14. Roughly speaking, an input is said to be persistent for a system if it is rich enough to excite this system
in order to estimate some parameters or to reconstruct its state. This concept is presented inShimkin and Feuer
[1987] from a parameter estimation point of view. See Proposition2 in Besançon[2007] for a characterization of
persistent inputs in the observation framework.
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Assumption 1.4.4(Diop et al.[2001]). There are time intervalsI, sufficiently large, where the
first derivative ofu is continuous and bounded: for allt ∈ I,

|u̇(t)| > α′ (1.54)

with α′ > 0.

Indeed, if (1.54) holds, then (1.49) is automatically verified onI. Conditions (1.48) and
Assumption1.4.4are assumed to be verified in the next chapters.
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In this chapter, a new solution to estimate the state and the delay of system (Σ) in (1.40)
is presented. It is based on the design of a high gain observeron an extended system. The
main idea is to substitute the retarded input by its Taylor expansion. That is why, the following
assumption is required:

Assumption 2.0.5.Letm ∈ N
∗, the inputu is in Cm+1([−hmax,+∞[,R) and its derivatives

are known and bounded, i.e. for alli = 1, ..., m+ 1, there exist constantsUi > 0 such that for
all t ≥ −hmax

|u(i)(t)| ≤ Ui. (2.1)

2.1 Design of an extended system

System (̃Σ) in (1.46) is not under an adequate form to estimateh since the delay appears
only through the delayed inputu(t − h). Therefore, the Taylor’s theorem is used to take the
delay out of the input. From Assumption2.0.5, the input ism-times differentiable. Then, there
exists a functionγm : [−hmax; +∞[→ R such that for allt1 > −hmax,

u(t1) =

m∑

i=0

(t1 − t)i

i!
u(i)(t) + γm(t, t1 − t) (2.2)

37
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whereγm is called the remainder. In particular takingt1 = t− h(t) > −hmax leads to

u(t− h(t)) =

m∑

i=0

(−1)ih(t)i

i!
u(i)(t) + γm(t,−h(t)) (2.3)

for all t > −hmax. From Assumption2.0.5, sinceu ism + 1-differentiable, the remainderγm
is such that

|γm(t,−h(t))| ≤
h(t)m+1

(m+ 1)!
Um+1 ≤

hm+1
max

(m+ 1)!
Um+1. (2.4)

Note that the expression
m∑

i=0

(−1)ih(t)i

i!
u(i)(t) is called the Taylor approximation ofu(t−h(t)) up

to orderm. By substituting (2.3) in (Σ̃), the following system is obtained

(Σext)

{
Ẋ=Λext(ξ(t))X+fext(X)+gext(y)u(t)+Γ(t, y, h)
y = CextX = x1

(2.5)

with X = [xT , h]T ∈ R
n+1,

Λext(ξ(t)) =





0 In−1 0n−1×1

0 01×n−1 ξ(t)
0 01×n−1 0



 ∈ R
(n+1)×(n+1), (2.6)

fext(X) = [f(x)T , 0]T ∈ R
n+1, (2.7)

gext(y) = [g(y)T , 0]T ∈ R
n+1, (2.8)

Γ(t, y, h(t)) = [g(y(t))Tγm(t,−h(t)), η(t)]T ∈ R
n+1 (2.9)

and

ξ(t) = G(y(t))
m∑

i=1

(−1)ihi−1(t)

i!
u(i)(t) ∈ R. (2.10)

Remark 2.1.1.The use of the Taylor approximation (2.3) requires the computations of the input
time derivatives. In open-loop, this is not a problem since the analytical expression of the input
is known: the exact time derivatives can be computed analytically. In closed-loop, the standard
way to obtain time derivatives is to use numerical differentiators1. It will be shown that the
error introduced by numerical differentiation can be lumped into γm(t,−h(t)). Furthermore,
provided that this error is sufficiently small, it will not change the convergence property of the
delay-state observer. An alternative to avoid input time differentiation is to insert a chain of
integrators preprocessing the input (dynamic feedback).

Extended system (Σext) in (2.5) is equivalent to initial system (Σ) in the sense that they
exhibit the same trajectories. However, system (Σext) is delay free, with respect to the input,
thanks to (2.3). The delayed nature of the plant is still present throughγm(t,−h(t)) in Γ. The
Taylor’s approximation is a convenient way to rewrite the system in order to apply existing
results from the observers literature for delay free systems. The error of approximationγm is
going to be considered as a perturbation in the design of the observer as well as the dynamics
of the delayη(t). This is a key point of the method: considering the delay dynamics as a
perturbation and designing an observer that is able to reconstruct the system state in spite of
uncertaintyΓ. Indeed, it is often a hard task to find a good approximation ofthe delay dynamics.

1. See for instance the work byLevant[2003].
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2.2 Observer design and convergence analysis

Because of the form of (Σext) and because it only has one tuning parameter, the following
high gain observer2 has been chosen in this work. Letλ(ξ) ∈ R

(n+1)×(n+1) be the diagonal
matrix defined by

λ(ξ) =










1 0 0 . . . 0
0 1 0 . . . 0

0 0
. . . . . .

...
...

...
. . . 1 0

0 0 . . . 0 ξ










(2.11)

andĀ ∈ R
(n+1)×(n+1) be the matrix

Ā =










0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
0 0 . . . 0 0










(2.12)

Then, the following observer is designed:






[
˙̂x
˙̂
h

]

=Λ̂extX̂ + fext(X̂) + gext(y)u(t)− λ
−1(ξ̂)S−1

ρ CT
ext(CextX̂ − y)

ρSρ + ĀTSρ + SρĀ+ CT
extCext = 0

˙̂
hp = proj[hmin,hmax](

˙̂
h)

(2.13)

whereX̂ = [x̂T , ĥ]T ∈ R
n+1 andΛ̂ext = Λext(ξ̂(t)) ∈ R

(n+1)×(n+1) with

ξ̂(t) = G(y)
m∑

i=1

(−1)iĥi−1

i!
u(i)(t) (2.14)

and ĥ is the estimated delay. It is reminded thaty = x1. Note that ˙̂h is computed from the

first equation of system (2.13) and its projection, denoted˙̂hp, is defined by the last equation of
(2.13). Theproj operator is given by

proj[hmin,hmax](
˙̂
h) =







0, ĥ = hmax and ˙̂
h > 0

0, ĥ = hmin and ˙̂
h < 0

˙̂
h else.

(2.15)

This projection guarantees that:

Lemma 2.2.1.If the initial condition is such that̂h(0) ∈ [hmin, hmax] and ˙̂
hp = proj[hmin,hmax](

˙̂
h)

then, for allt > 0, one has
ĥp(t) ∈ [hmin, hmax]. (2.16)

The proof is given inLavretsky et al.[2011]. As a result, it will be assumed in the rest of
the chapter that

2. See the works ofGauthier et al.[1992], Busawon et al.[1998], Busawon and De Léon Morales[2000] for
further details on high gain observers.
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Assumption 2.2.1.The initial condition of the estimated delay is such that

ĥ(0) ∈ [hmin, hmax]. (2.17)

Remark 2.2.1. With a slight abuse of notation, the projected delayĥp will be denoted̂h in the
sequel. It was shown inIoannou and Sun[2012] that the projection retains the properties that
are established in absence of the projection and guaranteesthat (2.16) is verified. Thus, the
error ĥ(t)− h(t) is bounded for allt > 0.

The following notations will be used in the next computations

Λ̂ext = Λext(ξ̂(t)),
Λext = Λext(ξ(t)).

(2.18)

Denotinge = X̂ −X the estimation error, its dynamics is governed by

ė = Λ̂extX̂ −ΛextX+fext(X̂)−fext(X)− λ
−1(ξ̂)S−1

ρ CT
extCexte− Γ(t, y, h). (2.19)

For the proof of the main result, the next assumption is required:

Assumption 2.2.2.There are time intervalsI where the time derivative of̂ξ is bounded so for
all t ∈ I

| ˙̂ξ(t)| ≤ ν (2.20)

with ν > 0 and ξ̂ verifies
α ≤ |ξ̂(t)| (2.21)

with α > 0.

Remark 2.2.2. Equation (2.20) is a technical condition that will be used in the next section to
prove the convergence of the estimation error; this condition arises because of the choice of the
high gain observer. Equation (2.21) appears because of the form of the extended system (2.5)
and is linked to the intrinsic observability conditionsG(y) 6= 0 andu̇ 6= 0 presented in Theorem
1.1.

It is now possible to state the main result of this chapter. Itis reminded thatUm+1 is the
bound of them time derivative ofu (Assumption2.0.5) and thatη̄ is the upper bound of the
delay dynamics (Assumption1.4.3).

Theorem 2.1(Léchappé et al.[2015b]). Let I = [t0, t] with t0 > 0 such that Assumptions
1.4.1, 1.4.2, 1.4.3, 2.0.5, 2.2.1and 2.2.2hold onI. Then, provided thatρ is sufficiently
large, there existk, σ, r > 0 such that for allt ∈ I

||e(t)|| ≤ k||e(t0)||e−σ(t−t0) + r. (2.22)

Proof. The proof use similar argument as inBusawon et al.[1998]. First note thatΛext =
λ
−1(ξ)Āλ(ξ) andCextλ(ξ) = Cext. Furthermore,

Λ̂extX̂ −ΛextX = (Λ̂ext −Λext)X̂ +Λexte (2.23)

and the only non zero term of
[

Λ̂ext −Λext

]

X̂ is

([

Λ̂ext −Λext

]

X̂
)

(n,n+1)
= G(y)

[
m∑

i=1

(−1)iĥi−1

i!
u(i)(t)−

m∑

i=1

(−1)ihi−1

i!
u(i)(t)

]

ĥ

= ĥG(y)
m∑

i=1

(−1)i

i!
u(i)(t)

[

ĥi−1 − hi−1
]

.
(2.24)
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Since all the terms on the right hand side of (2.24) are bounded then
∥
∥
∥
∥

([

Λ̂ext −Λext

]

X̂
)

(n,n+1)

∥
∥
∥
∥
≤ c0 (2.25)

with c0 > 0. In addition, sincef is C1 (Assumption1.4.1) thenfext is alsoC1 and from the
mean value theorem one gets

fext(X̂)− fext(X) =
dfext(X)

dX

∣
∣
∣
∣
κ

e (2.26)

for someκ lying between the segment with end pointsX andX̂. Besides, the Jacobian matrix
of fext is lower triangular from the definition off in (1.42). Substituting (2.23) and (2.26) in
(2.19)

ė = (Λext − λ
−1(ξ̂)S−1

ρ CT
extCext)e+ (Λ̂ext −Λext)X̂ + dfext(X)

dX

∣
∣
∣
κ
e− Γ(t, y, h). (2.27)

Let∆ρ be the diagonal matrix

∆ρ = diag

(

1,
1

ρ
, ...,

1

ρn

)

∈ R
(n+1)×(n+1) (2.28)

then it is shown inBusawon et al.[1998] that

Sρ =
1

ρ
∆ρS1∆ρ (2.29)

whereS1 is the solution of the Lyapunov equation in (2.13) for ρ = 1. Now, set̄e = λ(ξ̂)∆ρe,
then

˙̄e = ρ(Ā− S−1
1 CT

extCext)ē+ λ(ξ̂)∆ρ(Λ̂ext −Λext)X̂ + λ(ξ̂)∆ρ
dfext(X)

dX

∣
∣
∣
κ
∆−1

ρ λ
−1(ξ̂)ē

+λ̇(ξ̂)λ−1(ξ̂)ē− λ(ξ̂)∆ρΓ(t, y, h).
(2.30)

Furthermore,λ(ξ̂)∆ρ
dfext(x)

dX
∆−1

ρ λ
−1(ξ̂) = ∆ρ

dfext(x)
dX

∆−1
ρ and

∆ρ

dfext(x)

dX
∆−1

ρ =











∂f1
∂x1

0 . . . 0 0

1
ρ

∂f2
∂x1

∂f2
∂x2

. . .
... 0

...
. . . . . . 0

...
1

ρn−1

∂fn
∂x1

. . . 1
ρ

∂fn
∂xn−1

∂fn
∂xn

0

0 0 0 . . . 0











(2.31)

so since the partial derivative of thefi are bounded and choosingρ ≥ 1, there exists a constant
c0 independent fromρ such that

∥
∥
∥
∥
λ(ξ̂)∆ρ

dfext(X)

dX

∣
∣
∣
∣
κ

λ
−1(ξ̂)∆−1

ρ

∥
∥
∥
∥
≤ c1. (2.32)

Besides, the productλ(ξ̂)∆ρ(Λ̂ext −Λext)X̂ results in a matrix whose coefficients are equal to

zero except one that depends on
([

Λ̂ext −Λext

]

X̂
)

(n,n+1)
so one gets

∥
∥
∥λ(ξ̂)∆ρ(Λ̂ext −Λext)X̂

∥
∥
∥ ≤ c0

ρ
. (2.33)
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From Assumption2.2.2, one derives that
∥
∥
∥λ̇(ξ̂)λ−1(ξ̂)

∥
∥
∥ ≤ ν

α
(2.34)

for all t ∈ I. Define the following Lyapunov candidate functionV as follows

V (t) = ē(t)TS1ē(t). (2.35)

The matrixS1 verifies
δ1||ē||2 ≤ ēTS1ē ≤ δ̄1||ē||2 (2.36)

with δ1, δ̄1 > 0 because it is the solution of the Lyapunov equation forρ = 1 (seeGauthier et al.

[1992]) so the Lyapunov function (2.35) is well defined. Note that
∥
∥
∥λ(ξ̂)∆ρ

∥
∥
∥ ≤ 1 for ρ ≥ 1 .

DifferentiatingV along the trajectories of (2.30) and using above properties leads to

V̇ ≤ −ρēTS1ē+ 2 c0
ρ
||S1|| ||ē||+ 2c1||S1|| ||ē||2 + 2 ν

α
||S1|| ||ē||2 + 2||S1|| ||Γ(t, y, h)|| ||ē||.

(2.37)
Thus, the following maximization of (2.37) is obtained

V̇ ≤ −(ρδ1 − 2c1||S1|| − 2 ν
α
||S1||)||ē||2 + 2||S1||( c0ρ + ||Γ(t, y, h)||)||ē||. (2.38)

In addition, from equation (2.4) and Assumptions1.4.2, 1.4.3and2.0.5, it can be deduced that
Γ is bounded and verifies

sup
t≥0

||Γ(t, y, h)|| < Γ̄ (2.39)

with Γ̄ = Ḡ
hm+1
max

(m+ 1)!
Um+1 + η̄. Consequently, the gainρ can be chosen sufficiently large such

that the above inequality becomes

V̇ (t) ≤ −c3V (t) + c4
√

V (t) (2.40)

with c3 = (ρδ1 − 2c1||S1|| − 2 ν
α
||S1||)/δ̄1 > 0 andc4 = 2||S1||( c0ρ + Γ̄)/

√
δ1. The comparison

lemma given in [Khalil, 2002, Lemma 9.4] and the relations̄e = λ(ξ̂)∆ρe ande = ∆−1
ρ λ

−1(ξ̂)ē
ensure that equation (2.22) is satisfied.

Note that the radiusr depends on̄Γ. Then for constant delays (η̄ = 0) and some particular inputs
such that the bound of them-time derivatives is equal to zero3 (Um = 0), the convergence radius
is minimum. For time-varying delays and input such thatγm(t,−h(t)) 6= 0, the observation
error converges to a neighborhood of the origin whose size depends on the accuracy of the
Taylor approximation and on the dynamics of the delayη(t). Note that increasing them-

order of the Taylor expansion will decrease the size ofr because lim
m→∞

h
(m+1)
max

(m+ 1)!
= 0 where

h
(m+1)
max denotes the upper bound of them + 1 time derivative ofh. However, it requires the

computation of input time derivatives so a trade off has to bemade between estimation precision
and computation complexity.

Remark 2.2.3. A similar result has been obtained for linear systems with a Kalman-like ob-
server in the particular case withm = 1 in Léchappé et al.[2015a]. In the general case of
nonlinear systems, the convergence with the kalman-like observer is not ensured by choosing a
sufficiently high gain because of the nonlinear partf(x).

3. An example of such an input is a ramp becauseü = 0
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Remark 2.2.4. Theorem2.1can be extended to systems such thatG depends onx provided the
extra assumptionG Lipschitz is made:|G(x)−G(z)| ≤ Kg||x− z|| withKg > 0.

Remark 2.2.5. In open-loop, the time derivatives of the input are analytically computable if the
input is appropriately chosen. On the contrary, in closed-loop, even if the analytic expression of
the input is known, it is not so obvious; especially if there is additive noise or perturbation. Let
us take an academic example to illustrate this statement. Assume that the system is defined by
ẋ = Ax+Bu(t− h) + d(t) with d an unknown external perturbation. Choosing the controller
u(t) = Kx(t) implies that its time derivative reads asu̇(t) = KAx(t)+KBu(t−h)+Kd(t).
The termsKAx(t) andKBu(t − h) may be perfectly known if the exact model of the system
is available. However,Kd(t) is unknown sȯu cannot be computed analytically in presence of
external perturbation. As a result, it can be necessary to use numerical differentiator to compute
the successive time derivatives of the input. In this case, inevitable errors are introduced by the
differentiator. Denotinĝu(i) the estimated time derivatives andeui

= u(i) − û(i), one obtains
that

u(i) = eui
+ û(i) (2.41)

so the Taylor approximation (2.3) becomes

u(t− h(t)) =
m∑

i=0

(−1)ih(t)i

i!
û(i)(t) + γ′m(t,−h(t)) (2.42)

with

γ′m(t,−h(t)) = γm(t,−h(t)) +
m∑

i=0

(−1)ih(t)i

i!
eui

(t). (2.43)

If theeui
are bounded and sufficiently small thenγ′m is bounded and the extra error added by the

numerical differentiation will only decrease the observation accuracy (by increasing the radius
r defined in (2.22)).

2.3 An extension to obtain a more accurate estimation

The original idea in the method presented above is to consider the delay as a state and to
use the Taylor’s theorem in order to take the delay out of the input. To reduce the convergence
radius in (2.22), it can be interesting to estimate the perturbationΓ in (Σext) in (2.5). The term
g(y)γm(t,−h(t)) can be minimized by a wise choice of input4 but it is not possible to act on
η(t). Consequently, the objective is to observeη to try to reduce its influence. Various methods
are used to reconstruct perturbations as discussed inRadke and Zhiqiang[2006]: Disturbance
Observer (DOB), Unknown Input Observer (UIO) and Extended State Observer (ESO). The
ESO technique consists in turning the original system into an extended one with the disturbance
as part of the new state. InMiklosovic et al.[2006], the ESO method is modified to the GESO
(Global ESO) method by including time derivatives of the perturbation. Indeed, this allows to
improve the estimation of time-varying disturbances. Applying the GESO technique to (Σext),
the augmented state becomesX = [xT , h, ḣ, ..., h(q)]T ∈ R

n+1+q and then the extended system
reads as:

{
Ẋ=ΛextX+fext(X)+gext(y)u(t)+Γ(t, y, h)
y = CextX = x1

(2.44)

with

4. The termγm(t,−h(t)) is the remainder of the Taylor’s approximation of the retarded inputu(t− h(t)).
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Λext=














0 In−1 0n×1 . . . 0n×1 0n×1

0 0 G(y)
m∑

i=1

(−1)ihi−1

i!
u(i) 0 0 0

0 0 0 1 0
...

...
...

...
...

. . . 0
0 0 0 0 0 1
0 0 0 0 0 0














∈ R
(n+1+q)×(n+1+q), (2.45)

fext(X) = [f(x)T , 0, . . . , 0]T ∈ R
(n+1+q), (2.46)

gext(y) = [g(y)T , 0, . . . , 0]T ∈ R
(n+1+q), (2.47)

and
Γ(t, y, h) = [g(y)Tγm(t,−h(t)), 0, . . . , 0, η′(t)]T ∈ R

(n+1+q) (2.48)

whereh(q+1)(t) = η′(t) is unknown.
For system (2.44), an observer similar to (2.13) can be designed and the convergence proof

will be analogous to the one of Theorem2.1provided thatη′ is bounded.
The observer proposed here has three parameters: the gainρ, the degreem of the Taylor

approximation and the number of delay dynamicsq included in the extended system. To tune
them, one has to take into account various factors: the computation time, the delay, the input
dynamics and the precision needed. For example, if a slow-varying input (with respect to the
delay magnitude) can be applied to the system,m can be small because the Taylor approxima-
tion will be accurate (even for smallm). In the same way,q can be equal to zero if the delay
varies slowly.

2.4 Illustrative example

2.4.1 Model presentation

A second order system has been chosen to illustrate previousresults (see Section 1.2.1 in
Khalil [2002]). It models the behavior of a pendulum and reads as







ẋ(t) =

[
x2

−g

l
sin x1 − k

mp
x2

]

+

[
0
1

mpl2

]

u(t− h(t))

y(t) = Cx(t) = x1(t)

(2.49)

with g the acceleration due to gravity,mp the mass of the bob,l the length of the rod andk the

friction coefficient. Consequently, system (2.49) has the form of (Σ) in (1.40) withΛ =

[
0 1
0 0

]

,

f(x) = [0,−g

l
sin x1− k

mp
x2]

T andG(y) = 1
mpl2

. Functionsf andG comply with Assumptions
1.4.1and1.4.2. The delay used in the sequel are defined by

h(t) =







0.6 for 0 ≤ t < 20
1.2 for 20 ≤ t < 40
0.3 for 40 ≤ t < 60
0.8 + 0.45 sin(0.2t) for t ≥ 60.

(2.50)

The delayh(t) is bounded in[hmin, hmax] with hmin = 0 s andhmax = 1.5 s. The delay is
differentiable on the time interval[60, 120] seconds: Assumption1.4.3is verified. When the
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delay is piecewise constant the differentiability is not required (see Assumption1.4.3). Note
that these delays are very large in comparison with the dynamics of the pendulum: the time
constant associated to the linearized system is less than1 s. Finally, the input signals applied to
system (2.49) are defined below

u(t) =







u1(t) = 0.009t
or
u2(t) = sin(0.15t).

(2.51)

Both inputs are indefinitely differentiable and their time derivatives are bounded: Assumption
2.0.5 is satisfied. Furthermore, the observability condition (1.48) is always true sinceG is
constant. Condition (1.49) is always verified foru1 but almost everywhere foru2. However,u2
cancels only in isolated points so there exist time intervals where Assumption1.4.4is true and
therefore Assumption2.2.2as well. The design of the observer is given in the next subsection.
All system parameters are sum up in Table2.1.

g (m.s−2) mp (kg) l (m) k (kg.s−1) h (s)

9.81 0.2 0.5 0.3 [0, 1.5]

Table 2.1 – System parameters

2.4.2 Observer design

In above sections, the general case of the Taylor expansion of orderm has been studied. In
practice, the choice ofm can be made according to the precision desired onĥ and the available
time derivatives ofu. In this section, three observers are going to be tested withm = 1,m = 2
andm = 3 in order to study the impact of the choice ofm on the estimation result. For the
three observers, the gainρ has been fixed to5. The observer equations are given below:











˙̂x1
˙̂x2
˙̂
h




 = Λ̂ext





x̂1
x̂2
ĥ



+





0
−g

l
sin x̂1 − k

mp
x̂2

0



+





0
1

mpl2

0



 u(t)− λ
−1(ξ̂)S−1

ρ CT
ext





x̂1 − x1
0
0





0 = ρSρ + ĀTSρ + SρĀ + CT
extCext

˙̂
hp = proj[hmin,hmax](

˙̂
h)

(2.52)
where

Ā =





0 1 0
0 0 1
0 0 0



 , Λ̂ext =





0 1 0

0 0 ξ̂
0 0 0



 , λ̂(ξ̂) =





1 0 0
0 1 0

0 0 ξ̂



 (2.53)

with

ξ̂ =







− 1
ml2

u̇ for m = 1,
1

ml2

(

−u̇+ 1
2
üĥ
)

for m = 2,

1
ml2

(

−u̇+ 1
2
üĥ− 1

6
u(3)ĥ2

)

for m = 3,

(2.54)

andCext = [1, 0, 0]. The initial conditions of the system and the observer are gathered in Table
2.2.
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x(0) [rad,rad.s−1] x̂(0)[rad,rad.s−1] ĥ(0) (s) ρ

[0.87, 0]T [0, 0]T 0.3 5

Table 2.2 – Observer parameter and initial conditions

2.4.3 Results

Four simulations have been carried out:

• Simulation 1: system (2.49) and observer (2.13) with u = u1,

• Simulation 2: system (2.49) and observer (2.13) with u = u2,

• Simulation 3: system (2.49) and observer (2.13) with u = u2 and noisy measurement and
input,

• Simulation 4: system (2.49) and extended observer of Section2.3with q = 1 andu = u2.

The following notations are used in the sequel:

ex =

[
x̂1 − x1
x̂2 − x2

]

and eh = ĥ− h. (2.55)

The norm of the relative error is given by

||ex||r =
||ex||
||x|| . (2.56)

Simulation 1 On Figure2.1a, the input does not have any observation singularity. Besides,
whenu = u1, the three observers have the same trajectories sinceu̇ = 0, and ü = 0 that
is why all the curves are exactly identical. The dynamics of the delay is equal to zero from
t = 0 s to t = 60 s soη(t) = 0. For a ramp,γ1(t,−h(t)) = 0: Γ is equal to zero and system
(Σext) in (2.5) is disturbance-free. The convergence radiusr in (2.22) is minimum, we even see
that the estimation error converges exponentially to zero in simulation5. This is confirmed by
Figure2.1a-Bottom. Note that the fast delay variations have an effect on the state observation
error as shown by the peaks at20 s and40s on Figure2.1a-Top. After60 s, the delay is time-
varying. One observes on Figure2.1a-Top that the state observation error converges to a small
neighborhood around the origin. However, the exponential convergence to zero is not achieved
anymore because of an additional error due to the dynamicsη. The delay observation error
also stays in a ball around the exact value (Figure2.1a-Bottom). The radius of the ball can be
reduced by increasing the observer gainρ.

Simulation 2 With the inputu2, there is an observation singularity whenu̇2 = 0. This ob-
servability loss is clear on Figure2.1b-Bottom when, form = 1, some peaks precisely occur
whenu̇2 cancels. Remark that the peaks att = 32 s andt = 74 s are truncated because of the
delay projection in the interval[0, 1.5]. It can be observed that the magnitude of the peaks are
related to the delay size: the larger the delay is, the largerthe peaks are. Form = 2 andm = 3,
these peaks are very small that they almost not affect the estimation anymore and the observa-
tion error stays in a small neighborhood of the origin. This analysis confirms the advantage to

5. The convergence radiusr has been overestimated because even if it is minimum whenΓ = 0, it is not equal
to zero.
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include higher order time-derivatives of the input in the term ξ by attenuating the effect of the
observability loss6. The size of this neighborhood is directly related tom and the delay. The
largerm is, the more accurate the Taylor approximation is and then the smallerγm is. Similarly
the smaller the delay is, the smallerγm is. These two remarks are illustrated on Figure2.2. It
can be seen that the convergence radius form = 2 is larger than form = 3. However, this
difference is not significant and the extra computation costto compute the third time derivative
may not worth the small accuracy improvement. Since the observation singularity is very detri-
mental form = 1, the observer withm = 2 seems to be a good tradeoff between precision and
computation cost. As a result, in the next simulations, onlythe results form = 2 will be shown.
Finally, note that the state observation is very accurate between the transient caused by the fast
delay variations (Figure2.1b-Top).
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ĥ (m = 1)
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(a) Simulation 1:u(t) = u1(t) (ramp input)
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(b) Simulation 2:u(t) = u2(t) (sinusoidal input)

Figure 2.1 – Comparison of the observer performances for different orders of the Taylor ap-
proximation.

Simulation 3 In practice, noise can affect the measurement and the input.In this simulation,
white noise has been added to the measured signalx1 and the input signalu. The variance has
been chosen to obtain a noise of about5% of the amplitude of the original signals. The time
derivativesu̇, ü have been computed thanks to a Levant differentiatorLevant [1993] whose
equations are given below:







ż0 = v0
v0 = −λ0L

1

3 |z0 − u(t)| 23 sign(z0 − u(t)) + z1
ż1 = v1
v1 = −λ1L

1

2 |z1 − v0|
1

2 sign(z1 − v0) + z2
ż2 = −λ2sign(z2 − v1).

(2.57)

If the parametersλi andL are properly chosen, then the result in [Levant, 1993, Theorem 5]
guarantees that the following equalities are true in the absence of input noises and after a finite
time:

z0(t) = u(t) and zi(t) = u(i)(t) for i = 1, 2. (2.58)

6. It has been proposed inLéchappé et al.[2015a] to turned off the observer (only the part concerning the
delay) when getting closer to the singularity. This solution is interesting only if the observer has already converged
and if the delay is constant otherwise this solution is not appropriate.

./chapter_kalman_delay_observer/figures/simu_new_u1.eps
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Figure 2.2 – Simulation 2:u(t) = u2(t) (sinusoidal input)

If the inputu is noisy then the estimation error converges in a ball aroundthe origin whose
radius is proportional to the noise value [Levant, 1993, Theorem 6].

Besides, a matrixR = ǫI3 with ǫ = 0.09 has been introduced in the observer to filter the
noise: the gain of observer (2.13) becomesλ−1( ˆzeta)S−1

ρ RCT
ext. The differentiator parameters

areλ0 = 3, λ1 = 1.5, λ2 = 1 andL = 0.11. Figure2.3-Bottom shows that the singularity
are magnified because of the noise. However, between these observation singularities, the error
estimation tends to a small neighborhood of the origin. On Figure2.3-Top, one can see that the
state observation error still converges to a ball around theorigin. However, its radius is slightly
amplified by the noise in comparison to Figure2.1b.
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Figure 2.3 – Simulation 3:u(t) = u2(t) (sinusoidal input) with noise

Simulation 4 Finally, the extension presented in Section2.3 with q = 1 is compared to the
above results (q = 0) . The simulation is carried out on system (2.49). In both case (q = 0 and
q = 1), the second order Taylor approximation is used (m = 2). All the parameters are the same
as in the previous simulations. On Figure2.4, the convergence radius for the state observation
error has slightly decreased when the dynamics of the delay is added in the extended system

./chapter_kalman_delay_observer/figures/simu_new_u2_zoom.eps
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(q = 1). The accuracy of the delay observation is largely improved: the convergence radius is
about three times smaller forq = 1.
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Figure 2.4 – Extended observer:u(t) = u2(t) (sinusoidal input),m = 2

Summary of the simulation results Above simulations have confirmed theoretical results.
They illustrate the efficiency of the observation techniqueto

• reconstruct the state of a system with an unknown and possibly time-varying delay in the
input,

• estimate the delay value.

Furthermore, the following properties are of particular interest:

• for m > 1, the observation singularity has almost no effect on the observation for noise-
less signals,

• the convergence radius can be reduced using large values ofm. This is particularly inter-
esting in open-loop when the time-derivatives of the input are perfectly known.

The quality of delay estimation highly depends on the natureof the input. The inputu
should not be too fast-varying in order to have a good Taylor approximation (and a smallγm).

2.5 Summary

Contributions

✓ Estimation of both the state and the delay of a class of nonlinear SISO systems.

✓ The method works for time-varying delays.

✓ Use of a standard observation technique (high gain observer).

./chapter_kalman_delay_observer/figures/simu_new_u2_hdot.eps
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A solution to observe both the state and the delay has been presented in the previous chapter.
A drawback of the previous technique is that the dynamics of the state and delay estimations are
governed by the same gain. An alternative solution that allows a separate tuning of the delay
and state observers is proposed in this chapter. First, a delay estimator based on an optimization
method is presented. Then, a new extended state observer (ESO) is designed to estimate the
delayed input. Finally, an interconnected observers scheme is introduced to observe both the
state and the delay using standard state observers.

3.1 Gradient based delay observer

In this section, a delay estimation method based on a gradient descent algorithm1 is studied.
The idea is to compare the delayed signalu(t− h(t)) to a virtually retarded signalu(t− ĥ(t))
and find the value of̂h(t) that minimizes the criterion2

J(ĥ(t)) = [u(t− ĥ(t))− u(t− h(t))]2 (3.1)

1. See the work ofLiberzon and Tempo[2004] for details about gradient descent algorithms.
2. InBresch-Pietri et al.[2012], the authors use a similar technique but the criterion involved a state prediction.

51
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on [hmin, hmax]. Defining the dynamics of the delay estimationĥ thanks to the gradient descent
algorithm, one has

˙̂
h(t) = −ρh

2

dJ(ĥ)

dĥ

∣
∣
∣
∣
∣
ĥ(t)

= −ρh[u(t− ĥ(t))− u(t− h(t))]
∂u(t− ĥ)

∂ĥ

∣
∣
∣
∣
∣
ĥ(t)

(3.2)

with ρh > 0. Since
∂u(t− ĥ)

∂ĥ
= −∂u(t− ĥ)

∂t
, (3.3)

it results that the dynamics ofĥ is

˙̂
h(t) = ρh[u(t− ĥ(t))− u(t− h(t))]u̇(t− ĥ(t)). (3.4)

In order to compute (3.4), the knowledge oḟu andu(t − h(t)) is necessary. In some practical
cases, this is not always possible so some methods have to be used to estimate these quantities.
In the next sections, three cases are going to be analyzed:

• u(t− h) andu̇ known in Section3.1.1,

• u(t− h) known andu̇ unknown in Section3.1.2,

• u(t− h) andu̇ unknown in Section3.1.3.

3.1.1 u(t− h) and u̇ known

The ideal case is whenu(t− h) andu̇ are perfectly known. In the control case, the assump-
tion u(t − h) known may be reasonable. In practice, if the packets are timestamped then the
system that receives the delayed input can send it to the delay estimator as shown on Figure3.1.
As far asu̇ is concerned, adding an integrator preprocessing the input(dynamic feedback), as
in Example3.1.1, allows to perfectly know the input time derivative.

h(t)

System

u(t)
u(t− h(t))

u(t− h(t))

y(t)

Delay

Estimator

ĥ(t)
u̇(t)

Figure 3.1 – Delay estimator withu(t− h(t)) andu̇ known

Example 3.1.1.Consider the scalar system

ẋ(t) = ax(t) + bu(t− h(t)). (3.5)

System (3.5) can be rewritten as follows
[
ẋ(t)
u̇(t)

]

=

[
a 0
0 0

] [
x(t)
u(t)

]

+

[
0 b
0 0

] [
x(t− h(t))
u(t− h(t))

]

+

[
0
1

]

v(t) (3.6)

./chapter_input_optimization/figures/scheme_known_utmh.ps


3.1. GRADIENT BASED DELAY OBSERVER 53

with v(t) = u̇(t) as a new input. Any kind of controllersv can be designed to stabilize extended

system (3.6); then the controlu can be deduced byu(t) =
t∫

0

v(s)ds.

The stability property of estimator (3.4) whenu(t− h) andu̇ are perfectly known is given
in Theorem3.1.

Theorem 3.1. Let I = [t0, t] with t0 > 0 be such thatt − ĥ(t) ∈ I and t − h(t) ∈ I,
if |u̇(s)| > α for all s ∈ I, then the delay estimation error resulting from estimator (3.4)
verifies

||e(t)|| ≤ ||e(t0)||e−ρhα
2(t−t0) +

1

ρhα2
sup
s≥t0

|ḣ(s)| (3.7)

for all t ∈ I and withe(t) = ĥ(t)− h(t).

Proof. For the sake of clarity the argumentt will be omitted when no confusion is possible. Let

V =
1

2
(ĥ− h)2 (3.8)

be a Lyapunov candidate function. Taking the time derivative of V along the trajectories of
(3.4) gives

V̇ = ρh(ĥ− h)[u(t− ĥ)− u(t− h)]u̇(t− ĥ)− (ĥ− h)ḣ. (3.9)

Reminding that from the mean value theorem there existsφt ∈ [min(t−h, t− ĥ),max(t−h, t−
ĥ)] such that

u̇(φt) =
u(t− ĥ)− u(t− h)

h− ĥ
, (3.10)

one gets
V̇ = −ρh(ĥ− h)2u̇(t− ĥ)u̇(φt)− (ĥ− h)ḣ. (3.11)

Sincet − ĥ andφt are in the intervalI, the termsu̇(t − ĥ) and u̇(φt) have the same sign. It
follows that

V̇ ≤ −ρhα2(ĥ− h)2 − (ĥ− h)ḣ (3.12)

and then that
V̇ (t) ≤ −ρhα2||ĥ− h||2 + ||ĥ− h|| sup

s≤t

|ḣ(s)|. (3.13)

Applying Lemma 9.4 inKhalil [2002] leads to equation (3.7).

When the delay is constant,ḣ = 0, the delay estimation error converges exponentially to zero.
In addition, note that the convergence rate is proportionalto the square of the time derivative
lower-boundα.

3.1.2 u(t− h) known and u̇ unknown

In practice,u̇ may not be perfectly known. In that case, one has to compute anestimation
ˆ̇u. An estimation based on an interpolation strategy is chosenin Diop et al.[2001], a Levant
differentiatorLevant[2003] or any numerical differentiator can be used. The only condition to
have an efficient delay estimator is thatu̇(t− ĥ(t)) and its estimatė̂u(t− ĥ) have the same sign
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(the exact estimation is not required). That is why a simplersolution has been chosen3: the
time derivative ofu̇ is approximated by the finite difference as follows:

µ(t) =
u(t− ĥ(t))− u(t− ĥ(t)− h1)

h1
(3.14)

with h1 > 0 a virtual delay. Then, a similar estimator to (3.4) is designed but using (3.14)
instead ofu̇(t− ĥ(t)):

˙̂
h(t) = ρh[u(t− ĥ(t))− u(t− h(t))]µ(t). (3.15)

The stability property of estimator (3.15) is given in Theorem3.2.

Theorem 3.2.Let I = [t0, t] with t0 > 0 be such thatt− ĥ(t)− h1 ∈ I andt− h(t) ∈ I,
if |u̇(s)| > α for all s ∈ I, then the delay estimation error resulting from estimator (3.15)
verifies

||e(t)|| ≤ ||e(t0)||e−ρhα
2(t−t0) +

1

ρhα2
sup
s≥t0

|ḣ(s)| (3.16)

for all t ∈ I and withe(t) = ĥ(t)− h(t).

Noting that the mean value theorem ensures the existence ofθt ∈ [t− h1, t] such that

µ(t) = u̇(θt) =
u(t− ĥ)− u(t− ĥ− h1)

h1
, (3.17)

the result is deduced by similar computations as in Theorem3.1.
If h1 is sufficiently small then the sign ofu̇(t−ĥ) andµ(t) is the same then the same stability

property is obtained (see Figure3.2).

u(t)

t0 tt−h(t)t−ĥ(t)

I

u̇ > 0

t−ĥ(t)−h1

Figure 3.2 – Delay estimator withu(t− h(t)) andu̇ known

3.1.3 u(t− h) and u̇ unknown

If the delayed input is not available, the objective is to compute an estimation ofu(t − h).
An ESO method is going to be used to estimate it4. First, a standard ESO will be reminded in
order to compare its performance with respect to a new one presented thereafter.

3. Numerical differentiators are often complex to implement and to tune.
4. SeeMadonski and Herman[2015] for references on this method.
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Since the input only appears in the last equation of (Σ) in (1.40), other equations are de-
liberately left out not to overload the presentation. Furthermore, the full state knowledge is
considered since the focus is on delay estimation in this subsection. In the next sections, the
goal is to design an extended observer to estimate the unknown termu(t−h(t)) in the following
equation

ẋn(t) = fn(x(t)) +G(y(t))u(t− h(t)). (3.18)

As in Chapter2, the assumption below is required

Assumption 3.1.1.Letp ∈ N
∗, the inputu is inCp+1([−hmax,+∞[,R) and its derivatives are

known and bounded, i.e. for alli = 1, ..., p + 1, there exist constantsUi > 0 such that for all
t ≥ −hmax

|u(i)(t)| ≤ Ui. (3.19)

Before dealing with the design of ESO observers, the conceptof persistence is recalled.
Consider a state affine system of the form

{
ẋ(t) = A(s(t))x(t)
y(t) = Cx(t)

(3.20)

with s a known signal,A ∈ R
n×n andC ∈ R

n. The observability Grammian reads as

W (t, T, s(t)) =

t+T∫

t

Φs(θ, t)C
TCΦs(θ, t)dθ (3.21)

whereΦs(θ, t) is the transition matrix of system (3.20)

d

dθ
Φs(θ, t) = A(s(θ))Φs(θ, t). (3.22)

Thus, the universality index is given by

w(t, T, s) = min
i
λi(W (t, T, s)). (3.23)

Definition 3.1.1 (Besançon et al.[1996]). The signals is said to be regularly persistent for
system (3.20) if there existt0, T, α > 0 such thatw(t, T, s) > α for all t ≥ t0.

This condition usually allows to relax the observability condition by allowing pointwise
observability losses.

Standard Extended State Observer

The idea of the ESO method is to consider the unknown term and its time derivatives as new
state variables. For instance, in the present case, the extended system reads as

{
ż = Λzz + fz(x) +Γz(t)
y = Czz = xn

(3.24)

with z = [xn, u(t− h), ..., u(p−1)(t− h)]T ∈ R
p+1 for p ∈ N andp ≥ 1 ,

Λz=










0 G(y) 0 0 0

0 0 1 0
...

...
...

...
. . . 0

0 0 0 0 1
0 0 0 0 0










∈ R
(p+1)×(p+1), (3.25)



56 CHAPTER 3. INTERCONNECTED DELAY-STATE OBSERVERS

fz(x) = [f(x)T , 0, . . . , 0]T ∈ R
p+1, (3.26)

Γz(t) = [0,−ḣu̇(t− h), ..., (1− ḣ)u(p)(t− h)]T ∈ R
p+1 (3.27)

andCz = [1, 0, ..., 0] ∈ R
p+1. The termΓz is bounded from Assumptions1.4.3and3.1.1and

can be considered as a perturbation. An observability analysis shows that the pair(Cz,Λz) is
observable ifG(y) 6= 0. It has been decided to use a Kalman-like observer5. Indeed, provided
thatG(y) is persistent for system (3.24), the Kalman-like observer can achieve exponential
convergence in the disturbance free case. The equations of the observer are given below







˙̂z = Λz ẑ + fz(x)− S−1
z CT

z Cz[ẑ − z]

Ṡz = −ρzSz−Λ
T
z Sz−SzΛz+C

T
z Cz

Sz(0) = Sz(0)
T > 0

(3.28)

with ẑ = [x̂n, û(t− h), ..., û(p−1)(t− h)]T . Consequently, the error dynamics, denotedez(t) =
ẑ(t)− z(t), reads as

ėz(t) = (Λz − S−1
z CT

z Cz)ez(t)− Γz(t) (3.29)

and its stability property is established in Theorem3.3.

Theorem 3.3(Léchappé et al.[2016]). Suppose that Assumptions1.4.3and3.1.1hold and
thatG(y) is persistent for system (3.24). Then, there existk, σ, r > 0 such that

||ez(t)|| ≤ k||ez(0)||e−σt + r sup
s≥0

||Γz(s)|| (3.30)

with Γz(t) = [0,−ḣu̇(t− h), ..., (1− ḣ)u(p)(t− h)]T .

The convergence proof of Theorem3.3is similar to the one byHammouri and de León Morales
[1990] sincefz(x) is a known signal that cancels when computing the observation error.

New Extended State Observer

The major drawback of the previous method is that the time derivative of the last term is
approximated byu(p)(t−h(t)) ≈ 0. Here, a different approximation is proposed by introducing
a virtual and constant delayh2 > 0:

u(p)(t− h(t)) ≈ u(p−1)(t− h(t) + h2)− u(p−1)(t− h(t)− h2)

2h2
. (3.31)

Choosingh2 sufficiently small will make the approximation ofu(p)(t − h(t)) more accurate
hence the estimation ofu(t − h(t)) will be better and finally the delay estimation will be im-
proved. As a consequence, the termsu(p−1)(t−h+h2) andu(p−1)(t−h−h2) have to be added
to the extended state and their time derivatives are approximated by

u̇(p−1)(t− h(t) + h2) ≈
u(p−1)(t− h(t) + h2)− u(p−1)(t− h(t))

h2
(3.32)

and

u̇(p−1)(t− h(t)− h2) ≈
u(p−1)(t− h(t))− u(p−1)(t− h(t)− h2)

h2
. (3.33)

5. See the works ofBornard et al.[1989] andHammouri and de León Morales[1990] for further details on
Kalman-like observers.
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As a result, the extended system is
{
ż = Λzz + fz(x) +Γz(t)
y = Czz = xn

(3.34)

with z = [xn, u(t − h), ..., u(p−1)(t − h), u(p−1)(t − h + h2), u
(p−1)(t − h − h2)]

T ∈ R
p+3 for

p ∈ N, p ≥ 1,

Λz=















0 G(y) 0 0 0 0 0

0 0 1 0
...

...
...

...
...

...
. . . 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1

2h2
− 1

2h2

0 0 0 0 − 1
h2

1
h2

0

0 0 0 0 1
h2

0 − 1
h2















∈ R
(p+3)×(p+3), (3.35)

fz(x) = [f(x)T , 0, . . . , 0]T ∈ R
p+3, (3.36)

Cz = [1, 0, ..., 0] ∈ R
p+3 (3.37)

and

Γz(t) = [0,−ḣu̇(t− h), ...,−ḣu(p)(t− h),

−ḣu(p)(t− h) + ǫ1(h2),−ḣu(p)(t− h) + ǫ2(h2),−ḣu(p)(t− h) + ǫ3(h2)]
T

∈ R
p+3

(3.38)
whereǫi are functions such thatlim

h2→0
ǫi(h2) = 0 for i = 1, 2, 3. The termΓz can be seen as a

perturbation and is bounded from Assumptions1.4.3and3.1.1. An observability analysis shows
that the pair(Cz,Λz) is observable provided thatG(y) 6= 0. Similarly to the previous case, it
has been decided to use a Kalman-like observer. Indeed, provided thatG(y) is persistent for
system (3.34), the Kalman-like observer can achieve exponential convergence in the disturbance
free case. The equations of the observer are given below







˙̂z = Λz ẑ + fz(x)− S−1
z CT

z Cz[ẑ − z]

Ṡz = −ρzSz−Λ
T
z Sz−SzΛz+C

T
z Cz

Sz(0) = Sz(0)
T > 0

(3.39)

with ẑ = [x̂n, û(t−h), ..., û(p−1)(t−h), û(p−1)(t−h+h2), û(p−1)(t−h−h2)]T . Consequently,
the error dynamics, denotedez(t) = ẑ(t)− z(t), reads as

ėz(t) = (Λz − S−1
z CT

z Cz)ez(t)− Γz(t) (3.40)

and its stability property is established in Theorem3.4.

Theorem 3.4. Suppose that Assumptions1.4.3and3.1.1hold and thatG(y) is persistent
for system (3.34). Then, there existk′, σ′, r′ > 0 such that

||ez(t)|| ≤ k′||ez(0)||e−σ′t + r′ sup
s≥0

||Γz(s)|| (3.41)

with Γz(t) = [0,−ḣu̇(t − h), ...,−ḣu(p)(t− h),−ḣu(p)(t − h) + ǫ1(h2),−ḣu(p)(t − h) +
ǫ2(h2),−ḣu(p)(t − h) + ǫ3(h2)]

T where ǫi are functions such thatlim
h2→0

ǫi(h2) = 0 for

i = 1, 2, 3.
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The convergence proof of Theorem3.4is similar to the one byHammouri and de León Morales
[1990] sincefz(x) is a known signal that cancels when computing the observation error.

The main difference with the standard ESO is the size of the radiusΓz. It will be illustrated
in simulation that the new ESO (3.39) achieves a more accurate estimation ofu(t − h) than
observer (3.28). Note that when the delay is constant,ḣ = 0, andΓz in Theorem3.4becomes
Γz(t) = [0, 0, ..., ǫ1(h2), ǫ2(h2), ǫ3(h2)]

T . Thus, the radius of the convergence ball can be made
arbitrarily small choosing a smallh2. This is not possible withΓz = [0, ..., 0, u(p)(t − h)] in
Theorem3.3. However, in presence of noise,h2 cannot be reduced arbitrarily so the delay
estimation error will remain in a neighborhood of the origin.

Application to delay estimation

The estimation ofu(t− h) obtained from the new ESO can now be substituted in the delay
estimator dynamics. Thus, estimator (3.15) becomes

˙̂
h(t) = ρh[u(t− ĥ(t))− û(t− h(t))]µ(t) (3.42)

whereµ(t) is the same time derivative approximation as in (3.14) andû(t−h) is obtained form
observer (3.39). The stability property of estimator (3.42) is given in Theorem3.5.

Theorem 3.5.Let I = [t0, t] with t0 > 0 be such thatt− ĥ(t)− h1 ∈ I andt− h(t) ∈ I,
if |u̇(s)| > α for all s ∈ I, then the delay estimation error resulting from estimator (3.15)
verifies

||e(t)|| ≤ ||e(t0)||e−ρhα
2(t−t0) +

1

ρhα2
sup
s≥t0

[ρhU1||ez(s)||+ |ḣ(s)|] (3.43)

for all t ∈ I and withe(t) = ĥ(t)− h(t), ez verifying (3.43) andU1 defined in Assumption
3.1.1.

First, the existence ofθt ∈ [t− h1, t] such that

µ(t) = u̇(θt) =
u(t− ĥ)− u(t− ĥ− h1)

h1
. (3.44)

is guaranteed by the mean value theorem. Similarly, there exists φt ∈ [t − h1, t] such that
u(t− ĥ)− û(t− h) = (h− ĥ)u̇(φt)− Cuez(t) with

Cu = [0, 1, 0, ..., 0]. (3.45)

The result is then deduced by similar computations as in Theorem3.1.
From equation (3.43), it can be noted that the errorez due to the observation ofu(t − h)

directly affects the accuracy of the delay estimationĥ via the termsup
s≥t0

[ρhU1||ez(s)|| + |ḣ(s)|.
As a consequence, the error on the estimation ofu(t−h),Cuez, directly affects the accuracy of
the delay estimation.

Remark 3.1.1. For noisy signal, the alternative dynamics can be used

˙̂
h(t) =

ρh
T

t∫

t−T

[u(s− ĥ(s))− û(s− h(s))]Tµ(s)ds (3.46)
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with T > 0 the window length that can be adjusted with respect to the noise level: the larger
the noise is, the largerT should be. Note that it is a filtered version of the dynamics defined in
(3.42). The integral acts as a low pass filter whose time-constant is tuned by the parameterT .
Similarly, if the input signal is fast varying, (3.46) can be normalized as follows

τh(t) =
ρh
T

I(t)

ǫ+ |I(t)| (3.47)

with I(t) =
t∫

t−T

[u(s − ĥ(s)) − u(s − h(s))]Tµ(s)ds andǫ > 0. This normalization allows to

make the convergence speed almost independent from the input dynamics.

3.2 Interconnected delay-state observers scheme

3.2.1 General presentation

In Chapter2, an observer that estimates both the delay and the state has been presented.
However, the dynamics of the delay and the dynamics of the system can be very different
so it should be possible to tune the observer dynamics independently. This is not possible
with observer (2.13): this drawback can be circumvented by using an other observer scheme
proposed in the sequel. It is based on the interconnection ofa delay observer with a state
observer: the scheme is displayed on Figure3.3. Especially, all the state observers existing for
delay free systems can be used. In this section, a general framework is considered and some
particular observers will be studied in Section3.2.2.

State observer

u(t)
u(t)

u(t− ĥ)

ĥ(t)

y(t)

Delay estimator

x̂(t)

ẑ, ĥ

x̂

Figure 3.3 – Delay estimator interconnected with a standardstate observer

Remark 3.2.1. The words “estimator” and “observer” will be used without distinction here.

Following the notation of Figure3.3, the state estimation error is denoted by

ex = x̂− x (3.48)

and the errors of the delay estimator are

ez = ẑ − z and eh = ĥ− h. (3.49)

The variablêz is an auxiliary variable that will be useful to compute an estimation of the delay.
The z variable can contain for example the inputu(t − h) and its time derivative as shown

./chapter_input_optimization/figures/scheme_interconnected.ps
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in observer (3.39). In the sequel,Vx (respectivelyVzh) will refer to a Lyapunov candidate
function for the state observer (respectively for the delayestimator). These two estimators are
connected by the estimated delayĥ that enters the state observer throughu(t − ĥ) and by the
state estimation̂x that enters the delay estimator. To study the convergence ofthe whole system,
the interconnected subsystems approach is going to be used.The next theorem states a general
result for interconnected delay and state observers.

Theorem 3.6(Léchappé et al.[2016]). For the disturbance free system, suppose that there
exist a state observer such that

V̇x ≤ −cx||ex||2 + cxh||ex|| ||eh|| (3.50)

and a delay observer such that

V̇zh ≤ −cz||ez||2 − ch||eh||2
+czh||ez|| ||eh||+ czx||ez|| ||ex||

(3.51)

with cx, cz, ch, cxh, czx, czh > 0. An appropriate choice ofcx, cz, ch, guarantees the exis-
tence of a classKL functionβ, a finite timeT and an initial timet0 such that the error
e = [eTx , e

T
z , eh]

T of the disturbed system is uniformly bounded

||e(t)|| ≤ β(||x(t0)||, t− t0) (3.52)

for all t0 ≤ t ≤ t0 + T and
||e(t)|| ≤ δ (3.53)

for all t > t0 + T .

Remark 3.2.2.The constantscx, cz, cτ , cxτ , czx, czτ will depend on the observer parameters. In
particular, cx, cz, cτ will be directly proportional to the observer gains as it will be shown in the
next section on particular examples.

Proof. First, the convergence of the disturbance free system is worked out. Let the sum of the
Lyapunov functions of the isolated systems:

V = Vx + Vzh (3.54)

be a candidate Lyapunov function for the interconnected system. Consequently, from (3.50) and
(3.51), the time derivative ofV satisfies

V̇ ≤−[||ex||, ||ez|| ||eh||]





cx −1
2
czx − cxh

2

−1
2
czx cz − czh

2

− cxh
2

− czh
2

ch





︸ ︷︷ ︸
S





||ex||
||ez||
||eh||



. (3.55)

In order to haveV̇ ≤ 0, S has to be positive definite: then, the leading principal minors ofS
must be positive:







cx > 0,
cxcz − 1

4
czx > 0,

cxczch− 1
4
c2zhcx− 1

4
c2xhcz− 1

4
czxcxhczh− 1

4
chc

2
zx > 0.

(3.56)
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The termscx, cz, ch are proportional to the observers gains as mentioned in Remark 3.2.2so
they can be chosen sufficiently large in order to makeS definite positive.

The uniform boundedness of the disturbed system directly results from the application of
Lemma 9.3 inKhalil [2002].

3.2.2 Particular example

In this section, some observation solutions are exhibited to illustrate the general considera-
tion of the above section. First, a state observer is designed and it is shown that it complies with
(3.50). Then, a delay observer is presented and condition (3.51) is checked.

State Observer

A high gain observer6 is chosen to observe the state of system (Σ) in (1.40). Observer
equations are

˙̂x=Λx̂+ f(x̂) + g(y)u(t− ĥ)−∆−1
ρx
L(Cx̂− y), (3.57)

where∆ρx = diag
[

1
ρx
, 1
ρ2x
, ..., 1

ρnx

]

andL such that

(Λ− LC)TP + P (Λ− LC) = −In (3.58)

with P > 0. It is important to note that the inputu is affected by the delay estimationĥ and not
the real delayh. The dynamics of the state observation error is given by

ėx = (Λ−∆−1
ρx
LC)ex + f(x̂)− f(x) + g(y)[u(t− ĥ)− u(t− h)]. (3.59)

Sincef isC1 (Assumption1.4.1), from the mean value theorem one gets

f(x̂)− f(x) =
df(x)

dx

∣
∣
∣
∣
γ

ex (3.60)

for someγ lying between the segment with end pointsx andx̂. Besides, the Jacobian matrix is
lower triangular from the definition off in (1.42). Definingẽx = ∆ρxex, one obtains

˙̃ex = ρx(Λ− LC)ẽx +∆ρx

df(x)

dx

∣
∣
∣
∣
γ

∆−1
ρx
ẽx +∆ρxg(y)[u(t− ĥ)− u(t− h)]. (3.61)

since∆ρxΛ∆−1
ρx

= ρxΛ andC∆−1
ρx

= ρxC. Furthermore,

∆ρx

df(x)

dx
∆−1

ρx
=









∂f1
∂x1

0 . . . 0

1
ρx

∂f2
∂x1

∂f2
∂x2

. . .
...

...
. . . . . . 0

1
ρn−1
x

∂fn
∂x1

. . . 1
ρx

∂fn
∂xn−1

∂fn
∂xn









(3.62)

so forρx ≥ 1 and since the partial derivative of thefi are bounded, there exists a constantc0
independent fromρx such that

∥
∥
∥
∥
∥
∆ρx

df(x)

dx

∣
∣
∣
∣
γ

∆−1
ρx

∥
∥
∥
∥
∥
≤ c0 (3.63)

6. See the works ofGauthier et al.[1992], Busawon et al.[1998], Busawon and De Léon Morales[2000] for
further details on high gain observers.



62 CHAPTER 3. INTERCONNECTED DELAY-STATE OBSERVERS

Remark 3.2.3.In (3.59), it is clear from the continuity ofu that the error termu(t−ĥ)−u(t−h)
will tend to zero as soon aŝh tends toh.

To prove that condition (3.50) holds for state observer (3.57), the following candidate Lya-
punov function is defined

Vx = ẽTxP ẽx. (3.64)

Taking the time-derivatives ofVx along the trajectories of (3.61) and using (3.58) and (3.63)
leads to

V̇x ≤ −ρx||ẽx||2 + 2||P ||c0||ẽx||2 + 2ẽTxP∆ρxG(y)[u(t− h̃)− u(t− h)]. (3.65)

Then, from Assumptions1.4.1, 1.4.2and3.1.1, one derives the inequality

V̇x ≤ −(ρx − 2||P ||c0)||ẽx||2 + 2ḠU1||∆ρx|| ||P || ||ẽx|| |ĥ− h|. (3.66)

Since||ẽx|| ≤ ||∆ρx || ||ex||, one gets

V̇x ≤ −(ρx − 2||P ||c0)||∆ρx||2||ex||2 + 2ḠU1||∆ρx|| ||P || ||∆ρx || ||ex|| ||eh|| (3.67)

Takingρx sufficiently large, the above equation can be rewritten as follows

V̇x ≤ −cx||ex||2 + cxh||ex|| ||eh|| (3.68)

with cx, cxh > 0. Consequently, this state observer satisfies (3.50).

Gradient based delay observer

Here it is assumed thatu(t − h) and u̇ are not available so the estimator (3.42) is used.
However, the outputy = Czz = xn of observer (3.39) is not available soy = x̂n is going to
be used as the measurement of the new extended observer (3.39) as shown on Figure3.4. Thus,

u(t)

u(t− ĥ)

ĥ(t)

y(t)

b
b
b

ẑ(t) û(t− h)

µ(t)

u(t− ĥ)

x̂(t)

Delay observer

State observer

˙̂x=Λx̂+ f(x̂) + g(y)u(t − ĥ)−∆−1
ρx L(Cx̂− y)







˙̂z = Λz ẑ + fz(x̂)− S−1
z CT

z [Cz ẑ − x̂n]

Ṡz = −ρzSz−ΛT
z Sz−S−1

z Λz+CT
z Cz

Sz(0) = Sz(0)T > 0

˙̂
h(t)=ρh[u(t−ĥ(t))−û(t−h(t))]µ(t)

Figure 3.4 – Delay and state interconnected observers: a particular example

error equation (3.40) becomes

ėz = [Λz − S−1
z CT

z Cz]ez + fz(x̂)− fz(x) + S−1
z CT

z Cnex − Γz(t) (3.69)

./chapter_input_optimization/figures/scheme_interconnected_particular_2.ps
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with
Cn = [0, ..., 0, 1] ∈ R

n (3.70)

andΛz, Cz, Sz,Γz, fz defined in3.1.3. The termfz(x̂)− fz(x) arises because here all the state
x is not measured anymore. As for,S−1

z CT
z Cnex, it arises because the output isx̂n instead ofxn

so the correction term becomesS−1
z CT

z Cz(Cz ẑ − Cnx̂) and since

Cz ẑ − Cnx̂ = ẑn − x̂n
= ẑn − xn − (x̂n − xn)
= Czez − Cnex.

(3.71)

The delay estimator dynamics is

˙̂
h(t) = ρh[u(t− ĥ(t))− û(t− h(t))]µ(t) (3.72)

whereµ(t) is the same time derivative approximation as in (3.14) andû(t−h) is obtained form
observer (3.39) with y = x̂n. Thus, delay estimation error reads as

ėh = ρh[u(t− ĥ)− û(t− h)]u̇(t− ĥ)− ḣ(t). (3.73)

Note that the dynamicsΓz andḣ are unknown and will be considered as a perturbation of the
error dynamics. To analyze the stability of this observer, the following Lyapunov candidate
function is defined

Vzh = Vz + Vh (3.74)

with Vz = eTz Szez andVh = 1
2
(ĥ − h)2. After some computations similar to those in the proof

of Theorem3.1, one has

V̇h = −ρh(ĥ− h)2u̇(φt)u̇(θt)− (ĥ− h)ρhu̇(θt)Cuez (3.75)

for ḣ = 0 andCu defined in (3.45). So the maximization

V̇h ≤ −ρhα2||eh||2 + ρhU1||ez|| ||eh|| (3.76)

can be deduced using Assumption3.1.1. Taking the time derivative ofVz along the trajectories
of (3.69) leads to

V̇z = −ρzeTz Szez − eTz CzCzez + 2eTz Sz [f(x̂)−f(x)] + 2eTz C
T
z Cnex (3.77)

for Γz = 0. Besides, there existst0 > 0, such that for allt ≥ t0, Sz verifies

δzIn ≤ Sz(t) ≤ δ̄zIn (3.78)

for ρz sufficiently large and withδz andδ̄z are positive constants (seeBesançon et al.[1996]).
Sincef is globally Lipschitz (Assumption1.4.1) and from equations (3.77) and (3.78), one
obtains

V̇z ≤ −ρzδz||ez||2 + czx||ez|| ||ex|| (3.79)

with cxz > 0. Then, from (3.76) and (3.79), one gets

V̇zh ≤−cz||ez||2 + czx||ez|| ||ex|| − ch||eh||2 + czh||ez|| ||eh|| (3.80)

with cz = ρzδz, ch = ρhα
2 andczh = ρhU1. Therefore,Vzh satisfies condition (3.51).

It has been seen that the conditions of Theorem3.6 are verified for a particular choice of
state and delay estimators. In the next section, this observation scheme is going to be illustrated
by simulation.
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3.3 Illustrative example

3.3.1 A nonlinear example: the pendulum

Simulations are carried out on the same system as in Section2.4. The pendulum equations
are reminded below







ẋ(t) =

[
x2(t)

−g

l
sin x1(t)− k

mp
x2(t)

]

+

[
0
1

mpl2

]

u(t− h(t))

y(t) = Cx(t) = x1(t).

(3.81)

The delay tested in the simulation is defined by (2.50) (see Section2.4). To illustrate the results
stated above, the following interconnected observer is simulated:
The state observer reads as

˙̂x(t) = Λx̂(t) +

[
0

−g

l
sin x̂1(t)− k

mp
x̂2(t)

]

+

[
0
1

mpl2

]

u(t− ĥ(t))−∆−1
ρx
L

[
x̂1(t)− x1(t)

0

]

(3.82)

whereΛ =

[
0 1
0 0

]

, ∆ρx = diag
[

1
ρx
, 1
ρ2x

]

, L is such thatΛ − LC is Hurwitz and the delay

observer is defined by






˙̂z = Λzẑ + fz(x̂)− S−1
z CT

z [Cz ẑ − C2x̂]

Ṡz = −ρzSz−Λ
T
z Sz−SzΛz+C

T
z Cz

Sz(0) = Sz(0)
T > 0

˙̂
h(t) = ρh[u(t− ĥ(t))− Cuẑ]µ(t)

µ(t) = u(t−ĥ)−u(t−ĥ−h1)
h1

(3.83)

with Λz defined in (3.35), Cz in (3.34), C2 = [0, 1] andCu such thatCuẑ = û(t − h). Note
that the definition ofΛz, Cz andCu depends on the choice ofp, the size of the new extended
observer. Their exact expression is not given here since twodifferent observer sizes will be
comparedp = 1 andp = 2. The vectorC2 has to be introduced because onlyx̂2 is available and
notx2. It is reminded that the general definitions ofCu andCn are given respectively in (3.45)
and (3.70). The gains of this interconnected observer are tuned as follows

• state observer (3.82): ρx = 10,

• delay observer (3.83): ρz = 10, ρh = 5.

First, the extended state observers (3.28) and (3.39) are compared on Figures3.5and3.6. In
the noise free case, it is clear that the estimation error is smaller for the new extended observer.
The difference is particularly significant on Figure3.5a(p = 1). For p = 2, the estimation
error for the standard ESO has been largely reduced but the new ESO still performs better and
almost cancel the observation error. The conclusions for a noisy signalu(t − h) are the same
(Figure3.6) so the new extend observer is more efficient to estimate unknown signals. This
better accuracy will be very useful in the delay estimation since a small error on the observation
of u(t− h) leads to a large error on the delay estimation.

The estimation ofu(t − h) obtained above is now used to estimate the delay thanks to
estimator (3.42). The results are presented on Figures3.7 and3.8. On Figure3.7a, the delay
estimation is similar for both estimation̂u(t − h) from the standard ESO or from the new
ESO. However, when the input varies faster (Figure3.7b), the delay estimation is better for
the estimation̂u(t − h) coming from the new ESO. Indeed, the approximationu̇(p) = 0 is not
appropriate for fast input so the estimation ofu(t − h) is not accurate and as a consequence
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Figure 3.5 – Comparison of Extended State Observers (ESO) with h2 = 0.1 s andu(t) =
sin(0.8t) without noise.
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û
(t

−
h
)
−

u
(t

−
h
)

time (s)

(a)p = 1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

1.5

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

 

 

u(t− h)
standard ESO
new ESO

standard ESO
new ESO

û
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Figure 3.6 – Comparison of Extended State Observers (ESO) with h2 = 0.1 s andu(t) =
sin(0.8t) with a white noise on the signalu(t− h).

the delay estimation is degraded. On the contrary, the delayestimation using the estimation of
u(t − h) from the new ESO are similar for both input signals; which means thatu(t − h) is
properly estimated in both cases. As a comparison, the case with u(t−h) known is presented on
Figure3.8. One can observe that the result from estimator (3.42) with new ESO (u(t−h) andu̇
unknown) are very close to the “ideal” case (u(t−h) andu̇ known). Further analysis shows that
asymptotic convergence is achieved for a constant delay whereas a small error remains when
the delay is time varying. This is in accordance with Theorems3.1and3.2.

3.3.2 Comparison with the high gain observer

Finally, interconnected scheme (3.82)-(3.83) is compared to the high gain observer (2.52)
presented in Chapter2. The relative norm, defined by (2.56), is reminded here:||ex||r = ||ex||

||x||
.

For a constant delay, the interconnected scheme achieves a very accurate delay estimation, so
the state estimation is also very accurate (Figure3.9a). Observer (2.52) achieves an accurate
convergence for small delays (Figure3.9b). For a time-varying delay, the delay estimation is

./chapter_input_optimization/figures/optim_1.eps
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Figure 3.7 – Comparison of delay estimators performance foru(t− h) andu̇ unknown (p = 2
for both ESO).

more accurate for interconnected observers (3.82)-(3.83) and especially when the delay is large.

Remark 3.3.1.The main difference between these two methods come from the sensitivity of the
high gain observer to the observation loss inu̇ = 0. Indeed, the inputu presents observation
singularities because its time derivative cancels in some isolated points. However, the delay
estimator (3.83) does not shoot up during the observability loss.

3.4 Summary

Contributions

✓ Presentation of a new Extended State Observer.

✓ Estimation of both the state and the delay of a class of nonlinear SISO systems.

✓ The method works for time-varying delays.

✓ Presentation of a delay observer that does not require the knowledge of the input
time derivative.

✓ Use of an interconnected scheme that allows a separate tuning of the state and the
delay observation dynamics.
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Figure 3.8 – Comparison of delay estimators performance foru(t− h) known.
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Figure 3.9 – Comparison of the interconnected observer scheme and the high gain observer of
chapter2 for u(t) = sin(0.8t)
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Conclusion

Two solutions have been provided to solve the problem of delay and state observation for
a class of nonlinear systems with a time-varying delay in theinput. The first one is based on
the Taylor approximation of the retarded input. Then a new system is constructed with the
delay as a part of the extended state and finally a high gain observer is designed to estimate
the augmented state. The second solution shows that it is possible to connect standard delay
free state observers with a delay observer; the convergenceis ensured under some conditions.
Some simulations have shown the efficiency and the limit of each methods. The reconstructed
state and the delay are useful to design predictive controllers: it will be studied in details in the
following part.

A comparison of the different strong points of each estimation method is drawn in Table3.1.
Note that the comparison is based on the high gain observer ofChapter2 and the interconnected
observer Chapter3 (with the delay estimator (3.42)). Some explanations about the criteria are
given here:

• the “Complexity” criterion refers to the implementation complexity to compute the esti-
mation,

• the “Singularity sensibility” criterion refers to the behavior of the estimator when going
through an observation singularity inu̇(t) = 0,

• the “Tuning” criterion refers to the complexity of the tuning process.

The classification arguments are detailed below. The computation of the input time derivatives
is a weak point of the high gain observer. On the contrary, thedelay estimator (3.42) does not
need the input time derivative. It has been seen in the simulation section (Section3.3.2) that the
delay estimator proposed in the interconnected scheme onlyslows down but do not shoot up as
the high gain observer when crossing a singularity inu̇(t) = 0. Finally, the high gain observer
is easy to tune since it only has one gain to adjust. However, it may be a weak point since the
dynamics of the delays can be very different from the dynamics of the system. The advantage
of the interconnected scheme is that the two gains can be tuned separately. However, the delay
estimator gain should be adjusted with respect to the dynamics of the input.

Delay-state observer Complexity
Singularity

Tuning
sensibility

High gain ⋆ ⋆ ⋆⋆

Interconnected observers ⋆⋆⋆ ⋆⋆⋆ ⋆⋆

Table 3.1 – Comparison of the high gain observer and the interconnected observers presented
respectively in Chapters2 and3. Criteria are explained above.
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Introduction

Prediction-based control is the only technique able to guarantee a good level of perfor-
mances in presence of large input delays. However, some limits prevent its use in practice.
The computation complexity, the exact knowledge of the delay or the sensibility to unmodeled
dynamics are some of its weak points. In this chapter, some solutions are presented in order to
reduce these limitations and widen the application range ofprediction-based control. Through-
out this part, the stability analysis will be performed thanks to the construction of systematic
Lyapunov-Krasovskii functionals inspired by the recent works of Ahmed-Ali et al.[2012] and
Mazenc et al.[2014].

Organization

Three different predictions are going to be studied and compared for known delays (Chapter
4) and unknown delays (Chapter5):

• the standard prediction,

• the dynamic prediction,

• the new prediction.

Remark 3.4.1.The term “prediction” refers to a way to predict the future ofthe state. There are
various methods to compute a predictive value of the state sothere are various “predictions”.
However, there is only oneexact prediction7.

The “standard” prediction is the one introduced byMayne [1968] and Manitius and Olbrot
[1979] and is commonly used in predictive control of systems with aconstant input delay. The
computation of this prediction requires the discretization of an integral term. Recently, another
predictive method has been presented inNajafi et al.[2013]. They use a dynamic system to
compute a prediction. That is why this prediction will be called “dynamic” prediction8. Finally,
a novel prediction that is able to deal with parameter uncertainties and external disturbances has
been proposed inLéchappé et al.[2015c]. It will be referred to as the “new” prediction.

Remark 3.4.2.Even if the concept of dynamic prediction is not new, it has been widely extended
in this thesis and constitutes a contribution in the same wayas the new prediction for example.

The organization is reminded on Figure3.10.

7. The exact prediction can be computed only in the ideal casewhen the system and the delay are perfectly
known.

8. In the work byBesançon et al.[2007] (which we have been aware of only at the end of the redaction), the
authors call this method “asymptotic prediction”.
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Predictive control

New prediction

Unknown delayKnown delay

Standard prediction Dynamic prediction Standard prediction Dynamic prediction

Chapter 4 Chapter 5

Part II

Section 4.1 Section 4.2 Section 4.3 Section 5.1 Section 5.2

Figure 3.10 – Organization of the part on predictive control

General assumptions

Thereafter, some general assumptions that will be used throughout PartII are introduced.
The systems considered have the following form

(Eh) ẋ(t) = Ax(t) +Bu(t− h(t)) (3.84)

whereh(t) is the delay. The delay free systems associated to system (Eh) in (3.84) is

(E) ẋ(t) = Ax(t) +Bu(t) (3.85)

In this part, the objective is to design predictive controllers based on classic delay free methods
and study the influence of the delay on the stability. That is to say, the controller is designed
on the delay free system and then the prediction is “plugged”in. As a consequence, throughout
this part it is assumed that

Assumption 3.4.1.There exists a time differentiable and globally Lipschitz controller u : x 7→
u(x), that guarantees the existence a functionVu : Rn → R

Vu(x) = xTPx (3.86)

withP a n× n symmetric matrix that satisfies the inequalities






c||x||2 ≤ Vu(x) ≤ c̄||x||2,
V̇u(x(t)) ≤ −cu||x(t)||2,∥
∥dVu

dx

∥
∥ ≤ c||x||,

(3.87)

with c, c̄, cu, c > 0.

Remark 3.4.3. Note that the argument “t” inu(x(t)) will be omitted for clarity. Furthermore,
the notationsu(t) or u(x) will be used indifferently when no confusion is possible.

Assumption3.4.1implies that controlleru(x) globally exponentially stabilizes delay free
system (3.85). Note that Theorem 4.14 byKhalil [2002] guarantees the existence of a Lya-
punov function that verifies (3.87) for a general class of exponentially stable nonlinear systems.
However, here a special form (but classic) of the Lyapunov function (Vu = xTPx) is assumed.
Remark that differentiatingVu along the trajectories of (3.85) and using equations (3.87), one
gets

xT (t)[ATP + PA]x(t) + uT (t)BTPx(t) + xT (t)PBu(t) ≤ −cu||x(t)||2. (3.88)

./chapter_part_intro_pred/figures/flow_chart_part2.ps
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In addition, sinceu : x 7→ u(x) is globally Lipschitz, there existslu > 0 such that

||u(x)|| ≤ lu||x|| (3.89)

for all x ∈ R
n. When only a part of the state is available, the output is denotedy(t) = Cx(t)

with C ∈ R
p×n andp the number of measured states. Then an estimationx̂ of the statex can

be computed thanks to an observer:

(O) ˙̂x(t) = Ax̂(t) +Bu(t− h(t)) + g(Cx̂(t)− y(t)) (3.90)

where the correction termg is such that

Assumption 3.4.2.There exists a globally Lipschitz functiong that guarantees the existence of
a functionVg : Rn → R

Vg(e) = eTQe (3.91)

with e = x̂− x andQ a n× n symmetric matrix that satisfies the inequalities






m||e||2 ≤ Vg(e) ≤ m̄||e||2,
V̇g(e(t)) ≤ −mg||e(t)||2,∥
∥
∥
dVg

de

∥
∥
∥ ≤ m||e||,

(3.92)

withm, m̄,mu, m > 0 .

Remark 3.4.4.The notationg to denote the correction term has nothing to do with the function
g defined by (1.40) in the previous part. Furthermore, by a slight abuse of notation, g(Ce) will
sometimes denotedg(e) to underline that it depends on the observation errore.

Assumption3.4.2implies that the functiong globally exponentially stabilizes the observa-
tion error

ė(t) = Ae(t) + g(Ce(t)). (3.93)

Similarly to (3.88), one gets

eT (t)[ATQ+QA]e(t) + gT (Ce(t))Qe(t) + eT (t)Qg(Ce(t)) ≤ −mg||e(t)||2. (3.94)

In addition, sinceg is globally Lipschitz, there existslg > 0 such that

||g(Ce)|| ≤ lg||Ce|| (3.95)

for all e ∈ R
n. Some assumptions are also made to characterize the time-varying delayh(t):

Assumption 3.4.3.The time-varying delayh(t) is bounded, i.e. there existhmin, hmax > 0 such
that

hmin ≤ h(t) ≤ hmax. (3.96)

Assumption 3.4.4.The delay dynamics is bounded, i.e. there existsδ > 0 such that

|ḣ(t)| ≤ δ < 1. (3.97)

When the constant delayh (respectively the time-varying delayh(t)) is not known, it is
supposed that a constant approximation of the delay denotedĥ (respectively time-varying ap-
proximationĥ(t)) is available. In addition, the time-varying estimationĥ(t) complies with the
assumptions below

Assumption 3.4.5.The estimated delay is bounded, i.e.

hmin ≤ ĥ(t) ≤ hmax (3.98)

wherehmin andhmax are the same as in Assumption3.4.3.

Assumption 3.4.6.The estimated delay dynamics is bounded, i.e. there existsδ̂ > 0

| ˙̂h(t)| ≤ δ̂ < 1. (3.99)

In the following chapters of PartII , all these assumptions are fulfilled.
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Some mathematical reminders

Some useful inequalities that will be used in the following chapters are reminded below.

• Young’s inequality (seeYoung[1912]):
Let α, β ≥ 0, then one has

αβ ≤ α2

2
+
β2

2
. (3.100)

• Jensen’s inequality (seeFridman[2014b]):
Let u : [0,+∞[→ R

n be a continuous function andh(t) > 0, then one has

−
t∫

t−h(t)

||u(s)||2ds ≤ − 1

h(t)






t∫

t−h(t)

||u(s)||ds






2

. (3.101)

• “Completing the square” method (seeNarasimhan[2009]):
Let α, β ∈ R then, for anyo, p > 0 andq ∈ R, one has

− oα2 + qαβ − pβ2 = −
(√

oα− q

2
√
o
β

)2

+

(
q2

4o
− p

)

β2. (3.102)

• Leibniz differentiation rule (seeFlanders[1973]):
Let g : R2 → R such thatg and∂g

∂t
are continuous onR2 and letλ1 andλ2 be differentiable

functions, then one has

d

dt

(
∫ λ2(t)

λ1(t)

g(t, s)ds

)

= λ̇2(t)g(t, λ2(t))− λ̇1(t)g(t, λ1(t)) +

∫ λ2(t)

λ1(t)

∂

∂t
g(t, s)ds.

(3.103)

• Particular case of Hölder’s inequality (seeKuptsov[2001]):
Let x1, ..., xn ∈ R, then one has

(
n∑

i=1

|xi|
)2

≤ n
n∑

i=1

|xi|2. (3.104)
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Predictive control is often studied for perfectly known plants with constant delays. How-
ever, these assumptions are very restrictive in practice. Furthermore, the computation effort to
discretize the integral term makes its application very limited. That is why, some new predic-
tive techniques are going to be presented in this chapter. The constant and time-varying delay
cases are considered as well as the state feedback and outputfeedback cases. Closed-loop sta-
bility conditions will be given based on the systematic construction of Lyapunov-Krasovskii
functionals.All the developments presented in this chapter are for knowndelays.

In Section4.1, the closed-loop stability with the standard prediction isworked out for con-
stant and time-varying delays (state feedback and output feedback). A recent method based on
the computation of a prediction thanks to a dynamic system isextended in Section4.2. The
main advantage of this technique is that it does not require the integral discretization anymore.
Finally, a new prediction is introduced in Section4.3and its robustness properties are compared
with the standard prediction in presence of parameter uncertainties and an external disturbance.

77



78 CHAPTER 4. PREDICTION WITH A KNOWN DELAY

4.1 Standard prediction with a known delay

In this section, the work of [Bresch-Pietri, 2012, chap 10] is revisited using a recent Lyapunov-
Krasovskii functional. This analysis allows to obtain a more explicit bound for stability con-
dition and to extend the result to a broader class of controllers. As it has been mentioned in
Section1.2.2, it is usually not possible to compensate perfectly a time-varying delay because
its exact expression has to be known in advance. The straightforward idea is to use the same
prediction as for a constant delay and to substitute the constant delay by the time-varying one.
In this case, it is shown inBresch-Pietri[2012] that there exists an upper bound on the delay
derivative such that the solutions of the closed-loop system globally exponentially converges
to the origin. The proof relies on the construction of a Lyapunov-Krasovskii functional via the
backstepping PDE method similar to the one in Section1.2.1. Here, a simpler upper bound on
the delay time derivative is provided and its expression explicitly involves the system parame-
ters, the gain values and the maximum delay value. In addition, the condition is extended to the
partial measurement case.

The section is organized as follows. The simple case of a constant and known delay is
reminded for state and output feedback in Section4.1.1. Then, these results are extended to a
time-varying delay in Section4.1.2.

4.1.1 Constant delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh) ẋ(t) = Ax(t) +Bu(t− h)

whereh is a constant and known delay. Since Assumption3.4.1holds, there exists a feedback
u(x) that exponentially stabilizes system (Eh) whenh = 0.

Full state knowledge

In the case of a constant and known delayh and when the whole state is available, the exact
prediction reads as

z(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds (4.1)

for all t ≥ 0. Then a predictive feedbacku(z) is applied to stabilize system (Eh).

Remark 4.1.1. On top of the initial condition onx, an initial conditionu(s) = φu(s) for
s ∈ [−h, 0], withφu a continuous function,1 is needed to computez(t).

The stability property of the closed-loop system is given inthe next theorem.

Theorem 4.1. Consider system (Eh), with a known and constant delayh, and assume that
there exists a controlleru(x) satisfying Assumption3.4.1. Suppose that system (Eh) is
controlled byu(z) with z defined by (4.1) and define

Υ(t) = ||x(t)||2 + sup
s∈[t−h,t]

||u(s)||2. (4.2)

1. The extra conditionφu(0) = u(z(0)) may be required to guarantee the continuity ofz at t = h (and
consequently ofu at t = h).
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Then, there existς, ̺ > 0 such that one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.3)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. By differentiating (4.1) thanks to Leibniz’s rule (3.103) and considering (Eh), it can be
verified thatz(t) is the solution of the following equation

ż(t) = Az(t) +Bu(z(t)). (4.4)

Let
V (t) = zT (t)Pz(t), (4.5)

whereP is defined in Assumption3.4.1, be a Lyapunov candidate function. DifferentiatingV
along the trajectories of (4.4) and using (3.88) leads to

V̇ (t) ≤ −cu||z(t)||2 ≤ −c1V (t) (4.6)

with c1 = cu
c̄

. It follows from (4.6) that

V (t) ≤ V (0)e−c1t (4.7)

and since||z(t)||2 ≤ 1
c
V (t) (Assumption3.4.1), one obtains

||z(t)||2 ≤ 1

c
V (0)e−c1t (4.8)

From the definition ofV (t) in (4.5), one has

V (0) ≤ c̄||z(0)||2. (4.9)

In addition, from (4.1) and by using Hölder’s inequality (3.104) and Jensen’s inequality (3.101),
the following maximization can be deduced

||z(0)||2 ≤ 2||eAh||2||x(0)||2 + 2e2||A||h||B||2h
0∫

−h

||u(s)||2ds. (4.10)

Thus, maximizing the integral term gives

||z(0)||2 ≤ c2||x(0)||2 + c3 sup
s∈[−h,0]

||u(s)||2 (4.11)

with c2 = 2||eAh||2 andc3 = 2e2||A||h||B||2h2. Combining (4.9) with (4.11) leads to

V (0) ≤ c4Υ(0) (4.12)

with c4 = c̄max(c2, c3). Then, from (4.8) and (4.12), one deduces

||z(t)||2 ≤ c5Υ(0)e−c1t (4.13)

for all t ≥ 0 and withc5 =
c4
c

. Sinceu(z) is Lipschitz with respect toz for all t ≥ 0, one has

sup
s∈[t−h,t]

||u(s)||2 ≤







sup
s∈[−h,0]

||u(s)||2 + l2u sup
s∈[0,t]

||z(s)||2 t < h

l2u sup
s∈[t−h,t]

||z(s)||2 t ≥ h
(4.14)
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so

sup
s∈[t−h,t]

||u(s)||2 ≤
{

Υ(0) + l2uc5Υ(0) if t < h
c6Υ(0)e−c1t if t ≥ h

(4.15)

with c6 = (l2uc5 +1)ec1h. Noting thatc6Υ(0)e−c1t ≥ Υ(0)+ l2uc5Υ(0) for all t ∈ [0, h], one can
state that

sup
s∈[t−h,t]

||u(s)||2 ≤ c6Υ(0)e−c1t (4.16)

for all t ≥ 0. Moreover, rearranging (4.1) gives

x(t) = e−Ahz(t)−
t∫

t−h

eA(t−h−s)Bu(s)ds (4.17)

so by the same steps as in (4.11), one gets

||x(t)||2 ≤ c7||z(t)||2 + c3 sup
s∈[t−h,t]

||u(s)||2 (4.18)

for all t ≥ 0 with c7 = 2||e−Ah||2. Finally, from (4.13), (4.16) and (4.18), one obtains

Υ(t) ≤ c8Υ(0)e−c1t (4.19)

for all t ≥ 0 with c8 = c7c5 + c6(1 + c3).

Remark 4.1.2. The exponential convergence of||x(t)|| to zero can be directly deduced from
(4.18) and using (4.13) and (4.16):

||x(t)||2 ≤ c9e
−c1t (4.20)

with c9 = (c7c5 + c3c6)Υ(0). However, the constantc9 does not depend only on||x(0)|| that
is why the normΥ in (4.3) has to be introduced to deal with the initial conditions. This is a
standard method2 that allows to conclude on exponential stability (in the sense of the norm
Υ) of input delay systems with predictive control. Note that the term sup

s∈[t−h,t]

||u(s)||2 can be

substituted by
∫ t

t−h
||u(s)||2ds as inKrstic [2008a].

Partial state knowledge

The full state knowledge is required to compute prediction (4.1). However, when only the
outputy(t) = Cx(t) is available, a state observer (O)(3.90) has to be designed to estimate the
state of the system. In this case, it is assumed that the function g complies with Assumption
3.4.2and the prediction is computed from the estimated statex̂ as follows3

z(t) = eAhx̂(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (4.21)

The closed-loop stability property is given in Theorem4.2. It is reminded that the estimation
errorx̂(t)− x(t) is denotede(t).

2. See for exampleKarafyllis and Krstic[2013a], Bresch-Pietri and Krstic[2010] andMazenc et al.[2014].
3. See Remark4.1.1for the definition of initial conditions and add the initial conditionx̂(0).



4.1. STANDARD PREDICTION WITH A KNOWN DELAY 81

Theorem 4.2. Consider system (Eh) and observer (O), with a known and constant delay
h, and assume that there exist a controlleru(x) and a correction termg(e) satisfying As-
sumptions3.4.1and3.4.2respectively. Suppose that system (Eh) is controlled byu(z) with
z defined by (4.21) and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−h,t]

||u(s)||2. (4.22)

Then, there existς, ̺ > 0 such that one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.23)

Therefore lim
t→+∞

||x(t)|| = 0, lim
t→+∞

||e(t)|| = 0 and the convergence is exponential.

Proof. By differentiating (4.21) thanks to Leibniz’s rule (3.103), one obtains that

ż(t) = Az(t) + Bu(z(t)) + eAhg(Ce(t)) (4.24)

wheree = x̂− x. Let

V (t) = V1(t) + γV2(t) (4.25)

be a Lyapunov candidate function withV1(t) = zT (t)Pz(t), V2(t) = eT (t)Qe(t) whereP
andQ are defined in Assumptions3.4.1 and 3.4.2and γ > 0. DifferentiatingV along the
trajectories of (4.24)-(3.93) and using (3.88), (3.94), (3.95), it follows that

V̇ (t) ≤ −cu||z(t)||2 + 2lg||P || ||eAh|| ||C|| ||z(t)|| ||e(t)|| − γmg||e(t)||2. (4.26)

Applying equality (3.102) allows to get rid of the cross term “||z(t)|| ||e(t)||” and one gets

V̇ (t) ≤ −cu
2
||z(t)||2 +

(
R2

2cu
− γmg

)

||e(t)||2 (4.27)

whereR = 2lg||P || ||C|| ||eAh||. Then, it is clear that choosingγ sufficiently large guarantees
that

V̇ (t) ≤ −cu
2
||z(t)||2 − c1||e(t)||2 (4.28)

with c1 = γmg − R2

2cu
> 0. From Assumptions3.4.1and3.4.2, it can be deduced that

V̇ (t) ≤ −cu
2c̄
V1(t)−

c1
m̄
V2(t) (4.29)

so finally

V̇ (t) ≤ −c2V (t) (4.30)

with c2 = min
(
cu
2c̄
, c1
m̄

)
> 0. Equation (4.23) can be deduced from (4.30) by similar computa-

tions as in Theorem4.1.

For a constant and known delay, the predictive controller can stabilize every controllable
and observable systems with an arbitrary long delay. In the next section, the time-varying delay
case is investigated.
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4.1.2 Time-varying delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh) ẋ(t) = Ax(t) +Bu(t− h(t))

whereh(t) is a known and time-varying delay. Since Assumption3.4.1holds, there exists a
feedbacku(x) that exponentially stabilizes system (Eh) whenh(t) = 0.

Full state knowledge

z(t) = eAh(t)x(t) +
t∫

t−h(t)

eA(t−s)Bu(s)ds

u h(t) ẋ(t)=Ax(t)+Bu(t−h(t))
xr u(t) u(t− h(t))

z(t) x(t)

h(t)
u(t)

Figure 4.1 – Closed-loop scheme with standard prediction for time-varying delay and full state
measurement

In this part, the delayh(t) and the statex(t) are known so the prediction is computed as
follows

z(t) = eAh(t)x(t) +

t∫

t−h(t)

eA(t−s)Bu(s)ds. (4.31)

Remark 4.1.3. On top of the initial condition onx, an initial conditionu(s) = φu(s) for
s ∈ [−hmax, 0], withφu a continuous function,4 is needed to computez(t).

The stability of the closed-loop system is given in Theorem4.3. It is reminded thatδ stands
for the upper bound of the delay time derivative:|ḣ(t)| < δ (Assumption3.4.4).

Theorem 4.3. Consider system (Eh), whereh(t) is known and complies with Assumptions
3.4.3and3.4.4and assume that there exists a controlleru(x) satisfying Assumption3.4.1.
Suppose that system (Eh) is controlled byu(z) with z defined by (4.31) and define

Υ(t) = ||x(t)||2 + sup
s∈[t−hmax,t]

||u(s)||2. (4.32)

Then, there existς, ̺, δ∗ > 0 such that, providedδ < δ∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.33)

4. The extra conditionφu(0) = u(z(0)) may be required to guarantee the continuity ofz at t = h(t) (and
consequently ofu at t = h(t)).

./chapter_pred_known_delay/figures/scheme_full_state.ps
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Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. By differentiating (4.31) thanks to Leibniz’s rule (3.103) and using (Eh), it can be verified
that the predictionz(t) is solution of the following equation

ż(t) = Az(t) +Bu(t) + ḣAz(t) + ḣeAhBu(t− h)− ḣA

t∫

t−h

eA(t−s)Bu(s)ds. (4.34)

for t ≥ h. Remark that the delay has not disappeared in the above equation because the
prediction is not exact anymore. The following Lyapunov-Krasovskii functional candidate is
chosen

V (t) = V1(t) + γV2(t) (4.35)

where
V1(t) = zT (t)Pz(t) (4.36)

and

V2(t) =

t∫

t−h

(hmax + hmin + s− t)||u(s)||2ds (4.37)

andγ > 0. Note thatP is defined in Assumption3.4.1and thatV2 is necessary to deal with de-
layed terms of (4.34) that arise because of the time-varying delay. First, note that the inequality

2|ḣ| ||z|| ||P || ||A||

∥
∥
∥
∥
∥
∥

t∫

t−h

eA(t−s)Bu(s)ds

∥
∥
∥
∥
∥
∥

≤ 2δ ||P || ||A|| ||B||e||A||hmax ||z||
t∫

t−h

||u(s)||ds

(4.38)
holds. For details on matrix analysis, one can refer to [Horn and Johnson, 2012, pp. 501].
Then, by using Young’s inequality (3.100), one has

2δM ||z||
t∫

t−h

||u(s)||ds ≤ δ M



||z||2 +





t∫

t−h

||u(s)||ds





2

 (4.39)

with M = ||P || ||A|| ||B||e||A||hmax. Furthermore, the Jensen’s inequality (3.101) guarantees
that

2|ḣ| ||z|| ||P || ||A||

∥
∥
∥
∥
∥
∥

t∫

t−h

eA(t−s)Bu(s)ds

∥
∥
∥
∥
∥
∥

≤ δ M
[
||z||2 + h||q||2

]
(4.40)

with

||q(t)||2 =
t∫

t−h

||u(s)||2ds. (4.41)

As a result, taking the time derivative ofV1 along the trajectories of (4.34) and using equations
(3.88) and (4.40), one obtains

V̇1(t) ≤ −cu||z(t)||2 + 2δ||P || ||A|| ||z(t)||2 + 2δN ||z(t)|| ||u(t− h)||
+δM ||z||2 + hδM ||q(t)||2 (4.42)
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withN = ||P || ||B||e||A||hmax. Besides, Leibniz’s rule (3.103) leads to

V̇2(t) = (hmax+hmin)||u(t)||2−(hmax+hmin−h)(1−ḣ)||u(t−h)||2−
t∫

t−h

||u(s)||2ds. (4.43)

Furthermore, from (3.97) and sinceu(z) is globally Lipschitz (Assumption3.4.1), it follows that

V̇2(t) ≤ 2hmaxl
2
u||z(t)||2 − hmin(1− δ)||u(t− h)||2 − ||q(t)||2. (4.44)

Applying Young’s inequality (3.100) leads to

V̇ (t) ≤ − [cu − 2δ||P || ||A|| − 2γhmaxl
2
u − δ(M +N)] ||z(t)||2

− [(1− δ)γhmin − δN ] ||u(t− h)||2 − [γ − hmaxδM ] ||q(t)||2. (4.45)

It is sufficient to choose the three coefficients of the squareterms positive to guarantee the
negativeness oḟV . Thus, one gets







cu − 2γhmaxl
2
u − δ(2||P || ||A||+M +N) > 0,

γhmin − δ(γhmin +N) > 0,

γ − hmaxδM > 0.

(4.46)

(4.47)

(4.48)

Defining

δ1 =
cu − 2γhmaxl

2
u

(2||P || ||A||+M +N)
, (4.49)

δ2 =
γhmin

γhmin +N
(4.50)

and
δ3 =

γ

hmaxM
(4.51)

and choosingγ sufficiently small guarantees thatδ1 is positive. In this case, taking

δ < δ∗ = min(δ1, δ2, δ3) (4.52)

ensures that

V̇ (t) ≤ −c1||z(t)||2 − c2||q(t)||2 (4.53)

with c1, c2 > 0. Finally, from

− ||z(t)||2 ≤ −1

c̄
V1(t) (4.54)

and since

− ||q(t)||2 ≤ − 1

hmax + hmin

V2(t), (4.55)

one has
V̇ (t) ≤ −c3V (t) (4.56)

with c3 = min
(

c1
c̄
, c2
hmax+hmin

)

> 0. So equation (4.33) can be deduced from (4.56) by similar

computations as in Theorem4.1.
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Qualitative analysis: Theorem4.3guarantees the exponential convergence ofx to zero pro-
vided that the delay dynamicsḣ(t) is sufficiently slow. Even if the bound (4.52) is conservative,
because it is obtained via a Lyapunov analysis, it retains interesting features. An important fact
is that the boundshmax andhmin appear explicitly in the expression ofδ∗ and thatδ2 andδ3 are
independent from the controlleru. A qualitative analysis is given below.

• For a large value ofhmax, thenδ1 andδ3 decrease which means that the larger the upper
bound of the delay is, the slower its variation has to be.

• For a large value ofhmin, thenδ2 increases which means that the smaller the delay interval
is, the faster the variation can be. For example, even if the delay displayed on Figure4.2b
varies faster than the delay on Figure4.2a, the closed-loop system may be stable forh2
and not forh1.

• For a large value oflu, thenδ1 decreases which means that the delay variations have to be
smaller for a fast controller.

These conclusions seem to capture the physical behavior of the system, that was not the case
for the bounds inBresch-Pietri[2012].

t

h(t)

hmin

hmax

(a) Slow delay with large amplitude:h1

t

h(t)

hmin

hmax

(b) Fast delay with small amplitude:h2

Figure 4.2 – Different types of time-varying delays

The methodology used in the proof of Theorem4.3will be similar for the next proofs so it
is detailed below.

When the prediction is not exact, the reduced system still involves delays. For example,
when the exact predictionxp is approximated by predictionz in (4.31), the delayed inputu(t−
h(t)) still appears in reduced system (4.34). As a result, Lyapunov-Krasovskii functionals have
to be designed to analyze the stability of the reduced system. The steps of the stability proof are
the following

• Compute the reduced system from the predictionz in order to make appearAz(t) +
B(z(t))),

• Use the Lyapunov function given for the delay free part (Assumption3.4.1) and add a
Lyapunov-Krasovskii functionals to deal with pointwise delayed termsu(t − h) and the

distributed delay terms
t∫

t−h

eA(t−s)Bu(s)ds.

• Conclude on the stability of the original system inx by using the prediction expressionz.

Partial state knowledge

When only the outputy = Cx is measurable, prediction (4.31) cannot be computed directly.
Therefore, an observer (O) in (3.90) can be designed to estimate the state of the system. In this

./chapter_pred_known_delay/figures/scheme_delay_1.ps
./chapter_pred_known_delay/figures/scheme_delay_2.ps
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z(t) = eAh(t)x̂(t) +
t∫

t−h(t)

eA(t−s)Bu(s)ds h(t)
u(t)

u h(t)
ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)

xr u(t) u(t− h(t))

z(t)

y(t)

˙̂x = Ax̂+Bu(t− h(t)) + g(Cx̂− y)

x̂(t)

Figure 4.3 – Closed-loop scheme with standard prediction for time-varying delay and partial
state measurement

case, it is assumed that the correction termg(e) complies with Assumption3.4.2. Thus, the
“reconstructed prediction” is computed thanks to the observed statêx as follows5

z(t) = eAh(t)x̂(t) +

t∫

t−h(t)

eA(t−s)Bu(s)ds. (4.57)

The condition to guarantee the stability of the closed-loopsystem is given in Theorem4.4. It is
reminded thatδ stands for the upper bound of the delay time derivative,|ḣ(t)| < δ (Assumption
3.4.4), and that the estimation errorx̂(t)− x(t) is denotede(t).

Theorem 4.4. Consider system (Eh) and observer (O), whereh(t) is known and complies
with Assumptions3.4.3and3.4.4and assume that there exist a controlleru(x) and a cor-
rection termg(e) satisfying Assumptions3.4.1and3.4.2respectively. Suppose that system
(Eh) is controlled byu(z) with z defined by (4.57) in (3.90) and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−hmax,t]

||u(s)||2. (4.58)

Then, there existς, ̺, δ∗ > 0 such that, providedδ < δ∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.59)

Therefore lim
t→+∞

||x(t)|| = 0, lim
t→+∞

||e(t)|| = 0 and the convergence is exponential.

Proof. The proof is similar to the one for full measurement state case so the reader can refer to
the proof of Theorem4.3for more details.

By differentiating (4.57) thanks to Leibniz’s rule (3.103) and using the expression of the

5. See Remark4.1.1for the definition of initial conditions and add the initial conditionx̂(0).

./chapter_pred_known_delay/figures/scheme_partial_state.ps
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original system (Eh), one deduces that predictionz is solution of the following equation

ż = Az +Bu(z) + eAhg(Ce) + ḣAz − ḣA

t∫

t−h

eA(t−s)Bu(s)ds+ ḣeAhBu(t− h). (4.60)

In this case, the dynamics ofz also depends on the observation errore(t). Obviously ife = 0,
equation (4.60) is equivalent to the one in the full state knowledge case (4.34). In addition, if the
delay is constant then (4.60) is equal to the constant delay case (4.24). Consider the following
Lyapunov-Krasovskii functional candidate

V (t) = V1(t) + γV2(t) + θV3(t) (4.61)

where

V1(t) = zT (t)Pz(t), (4.62)

V2(t) =

t∫

t−h

(hmax + hmin + s− t)||u(s)||2ds, (4.63)

V3(t) = eT (t)Qe(t) (4.64)

and γ, θ > 0. Note thatV1 and V2 are the same as in the full state measurement case and
V3 is introduced to deal with the observer stability. Taking the time derivative ofV1 along the
trajectories of (4.60) and using the same arguments as in Theorem4.3, one gets

V̇1(t) ≤ −cu||z||2 +R||e|| ||z||+ 2δ||P || ||A|| ||z||2
+2δN ||z|| ||u(t− h)||+ δM ||z||2 + hmaxδM ||q(t)||2 (4.65)

with q(t) =
t∫

t−h

||u(s)||2ds, M = ||P || ||A|| ||B||e||A||hmax, N = ||P || ||B||e||A||hmax andR =

2lge
||A||hmax||P || ||C|| . Besides, Leibniz’s rule (3.103) leads to

V̇2(t) = (hmax+hmin)||u(t)||2−(hmax+hmin−h)(1−ḣ)||u(t−h)||2−
t∫

t−h

||u(s)||2ds. (4.66)

and sinceu is globally Lipschitz (3.89) then

V̇2(t) ≤ 2hmaxl
2
u||z(t)||2 − hmin(1− δ)||u(t− h)||2 − ||q(t)||2. (4.67)

Finally, taking the time derivative ofV3 along the trajectories of (3.93), one gets

V̇3(t) = −mg||e(t)||2. (4.68)

Using equation (3.102) allows to get rid of the cross term “||z|| ||e||”, it follows that

V̇ (t) ≤ −
[
cu
2
− δ(2||P || ||A||+M +N)− 2γhmaxl

2
u

]
||z(t)||2

− [(1− δ)γhmin − δN ] ||u(t− h)||2
− [γ − hmaxδM ] ||q(t)||2 −

(

θmg − R2

2cu

)

||e(t)||2.
(4.69)
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To haveV̇ negative, one has the following conditions






cu
2

− 2γhmaxl
2
u − δ(2||P || ||A||+M +N) > 0,

γhmin − δ(γhmin +N) > 0,

γ − hmaxδM > 0,

θmg −
R2

2cu
> 0.

(4.70)

(4.71)

(4.72)

(4.73)

Defining

δ1 =
cu/2− 2γhmaxl

2
u

(2||P || ||A||+M +N)
, (4.74)

δ2 =
γhmin

γhmin +N
(4.75)

and
δ3 =

γ

hmaxM
(4.76)

and choosingθ sufficiently large andγ sufficiently small guarantees that (4.73) is true and that
δ1 is positive. In this case, taking

δ < δ∗ = min(δ1, δ2, δ3) (4.77)

ensures that
V̇ (t) ≤ −c1||z(t)||2 − c2||q(t)||2 − c3||e(t)||2. (4.78)

with c1, c2, c3 > 0. Finally, from Assumptions3.4.1and3.4.2, it can be concluded that

V̇ (t) ≤ −c4V (t) (4.79)

with c4 > 0. Equation (4.59) can be deduced from (4.79) by similar computations as in Theorem
4.1.

Remark 4.1.4.Condition (4.77) is very similar to the one in the full state measurement caseso
the quantitative analysis of the bound is the same.

4.1.3 Illustrative example

Consider the scalar system

ẋ(t) = ax(t) + bu(t− h(t)) (4.80)

with a = 1, b = 1, h(t) ∈ [0.5, 2] and the static feedback

u(t) = kx(t). (4.81)

Remark that this system is unstable whenu = 0 sincea > 0. It is clear that controller (4.81)
complies with Assumption3.4.1for any scalarP > 0 whenk < −a/b. In this case,lu = |k|
andcu = −2P (a + bk) so fork = −2, hmin = 0.5 s,hmax = 2 s,P = 1 andγ = 0.1, from
equation (4.77), one obtainsδ∗ = 0.0067. Remark that it is possible to optimize the choice ofP
andγ to increaseδ∗. In order to illustrate the effect of delay variations on closed-loop stability,
two simulations have been carried out:

• In Simulation 1, the upper bound on the delay variation is illustrated.
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• In Simulation 2, it is shown that the stability property also depends on the size of the
delay and not only on its time derivative.

The delays in Simulation 1 are

• h1(t) = 1.2 + 0.75 sin(0.1t) soḣ1(t) = 0.075 cos(0.1t) andmax
t≥0

ḣ1(t) = 0.075 < 1,

• h2(t) = 1.2 + 0.75 sin(0.8t) soḣ2(t) = 0.6 cos(0.8t) andmax
t≥0

ḣ2(t) = 0.6 < 1,

• h3(t) = 1.2 + 0.75 sin(1.3t) soḣ3(t) = 0.975 cos(0.1t) andmax
t≥0

ḣ3(t) = 0.975 < 1.

The delays in Simulation 2 are

• h4(t) = 0.5 + 0.4 sin(t) so ḣ4(t) = 0.4 cos(t) andmax
t≥0

ḣ4(t) = 0.4 < 1,

• h5(t) = 1.5 + 0.4 sin(t) so ḣ5(t) = 0.4 cos(t) andmax
t≥0

ḣ5(t) = 0.4 < 1.

Note that the delay values are given in seconds in all simulations and the delay derivatives are
much larger thanδ∗. The computation ofδ∗ has been done to provide an order of magnitude of
the conservativeness. Consequently, no numerical value will be provided in the next examples
but only some quantitative analysis will be made.

Remark 4.1.5. In this example, the variablex has no particular physical meaning so it will be
displayed without unit in the next plots.

The results of Simulation 1 are plotted on Figure4.4. Delaysh1, h2 andh3 have been chosen
such that they have an increasing delay dynamics: the maximum values of the delay dynamics
aremax

t≥0
ḣ1(t) < max

t≥0
ḣ2(t) < max

t≥0
ḣ3(t). Remark, that the maximum valuehmax is the same

for h1, h2 andh3. It is clear that the closed-loop response is degraded for faster delays and it is
even unstable forh3. This confirms the existence of an upper bound on the delays dynamics to
preserve stability.

The results of Simulation 2 are displayed on Figure4.5. In this case,h4 andh5 have the
same time derivative buth4(t) < h5(t) for all t. It is interesting to note that the closed-loop is
stable forh4 and unstable forh5. It can be deduced that it would be less conservative to find a
condition that involves both the delay and its dynamics suchas for instancehmax + δ < C∗.

4.1.4 Summary

Contributions

✓ Explicit bounds on the delay dynamics that capture the physical behavior of the
system and preserve the closed-loop stability are provided.

✓ Recent Lyapunov-Krasovskii functionals are used in the proofs of stability.

✓ Extension of the result ofBresch-Pietri[2012] to a larger class of controllers and
to the output feedback case.

Table4.1sums up the conclusions of this section. Note that the boundδ∗ may have different
values for each case. In the next chapter, an extension to unknown delays will be studied.

4.2 Dynamic observation-prediction with a known delay

In this section, a recent predictive method for a constant delay and full state knowledge by
Najafi et al.[2013] is extended to systems with a time-varying delay and to a broader class of
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(c) Prediction (4.31) with controller (4.81) and input
delayh3(t)

Figure 4.4 – Simulation 1: faster and faster delays are tested to see the influence on the closed-
loop stability.

controllers. Furthermore, the partial measurement case isalso worked out. The major advantage
of this technique is that it does not require an integral discretization. Indeed, a prediction is
computed from a delay free copy of the original system.

Remark 4.2.1. We have been aware very recently that the idea of such a prediction has been
reported before inBesançon et al.[2007] under the name of “asymptotic prediction”. InBe-
sançon et al.[2009], they mention it as “direct dynamical computation scheme”.

First, the original work ofNajafi et al.[2013] is recalled in Section4.2.1. Then, an extension
is proposed for a single dynamic observer-predictor in Section 4.2.2and for dynamic sequential
sub observers-predictors in Section4.2.3.

4.2.1 Presentation of existing results

Single predictor with a constant and known delay

In Najafi et al.[2013], a new predictive control method is proposed. The technique is based
on the computation of a prediction thanks to a dynamic system. Their result is described there-

./chapter_pred_known_delay/figures/simu1_TV_known_1.eps
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(b) Prediction (4.31) with controller (4.81) and input
delayh5(t)

Figure 4.5 – Simulation 2: two delays, with the same time-derivative but different maximum
values, are compared.

Prediction Delay Convergence Condition Feedback Theorem

Standard Known

h gl. & exp. no condition
state 4.1

output 4.2

h(t) gl. & exp. δ < δ∗
state 4.3

output 4.4

Table 4.1 – Sum up of the convergence results for standard prediction with a known delay.

• gl.: global – exp.: exponential

• h: constant delay

• h(t) ∈ [hmin, hmax] and|ḣ(t)| ≤ δ: time-varying delay

after. The same class of system (Eh) in (3.84) is considered in their work and is reminded below

(Eh)
{
ẋ(t) = Ax(t) +Bu(t− h)
x(0) = x0,

with h a known and constant input delay. The variablez computed from the delay free system
{
ż(t) = Az(t) +Bu(t)
z(0) = x(h),

(4.82)

is the exact prediction of (Eh), that is to sayz(t) = x(t + h). However, this is an “open-loop”
predictor and ifx(h) is not perfectly known, thenz(t) 6= x(t + h). Consequently, the idea is to
“close the loop” by adding a feedback term in (4.82). Sincex(t + h) is not known, it has been
decided to usex(t). As a result, (4.82) becomes

{
ż(t) = Az(t) +Bu(t) + L[z(t − h)− x(t)]
z(t) = z0(s) ∀s ∈ [−h, 0]. (4.83)

./chapter_pred_known_delay/figures/simu2_TV_known_1.eps
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Assuming thatL can be adequately chosen in order to havez(t) → x(t + h), then a predictive
feedback

u(t) = Kz(t) (4.84)

can be designed to stabilize system (Eh). This control scheme is displayed on Figure4.6. The

ż = Az +Bu(t) + L[z(t− h)− x(t)]

ẋ(t)=Ax(t)+Bu(t−h)hK

xr u(t) u(t− h)

z(t) x(t)

h

u(t)

Figure 4.6 – Closed-loop scheme with dynamic predictor (4.83) for known and constant delay
h

dynamic equation of the prediction error is

ė(t) = Ae(t) + Le(t− h) (4.85)

wheree(t) = z(t) − x(t + h). The result ofNajafi et al.[2013] states that system (Eh) with
feedback (4.83)-(4.84) is asymptotically stable under a LMI condition6 involving the gainsK
andL. The result is based on the following proposition:

Proposition 4.2.1(Dugard and Verriest[1997]). Consider system (4.85). If A + L is Hurwitz,
then there exists a sufficiently smallhm > 0 such that (4.85) is asymptotically stable for all
h ∈ [0, hm].

It can be seen from (4.85) that for a stable matrixA, e(t) will asymptotically tend to zero if
L = 0 for any time delayh. For an unstable matrixA, Proposition4.2.1shows that asymptotic
stability can be achieved for a sufficiently small delay.

In Najafi et al.[2013], the argument is inverted since the delay is fixed but the tuning vari-
ables are the gainsK andL that have to satisfy an explicit LMI condition. However, this LMI
condition is hardly ever satisfied for a large delay or an unstable matrixA. As a consequence,
Najafi et al.[2013], proposed a second result based on a sequential sub predictors structure.

Sequential sub predictors with a constant and known delay

The idea is to split the time-delay and use cascaded predictors. The idea has been previously
proposed to estimate the state from a delayed measurement. The works ofGermani et al.[2002]
andKazantzis and Wright[2005] consider a class of nonlinear systems with a constant delay
in the output whereasAhmed-Ali et al.[2012] deals with time-varying delays. The concept of
these three works can be combined with the work ofNajafi et al.[2013] as shown on Figure
4.7a. Remark that the term “predictor” has been quoted because even if there is a prediction in
the work ofAhmed-Ali et al.[2012], the word is generally reserved for the prediction of the

6. This condition is not copied here for sake of clarity.
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future state att + h and not at instantt. In this thesis, the focus is on input delay system; so,
the problem addressed thereafter is represented on Figure4.7bthat is a particular case of the
more general input and output delay case. The principle of cascaded predictors is reminded
thereafter.

Cascaded

Cascaded

Input delay case

Output delay case

predictors

observers(-predictors)

x(t)

y(t− ho)

z(t) → x(t+ hi)

z(t) → x(t)

Cascaded

Input and output delay case

observers-predictors
y(t− ho) z(t) → x(t+ hi)

Najafi et al. [2013]

Ahmed-Ali et al. [2012]

(a) From cascaded observers and cascaded predictors to cascaded observers-predictors.hi: input delay,
ho: output delay

Cascaded

Input delay case

observers-predictors
y(t) z(t) → x(t+ h)

(b) Cascade observers-predictors scheme considered in this section

Figure 4.7 – Cascaded observers and predictors schemes

Each of ther predictors predicts the state forh̄ seconds where

h̄ =
h

r
, r ∈ N

∗. (4.86)

Sequential sub predictors equations are as follows:







ż1(t) = Az1(t) +Bu(t) + L1[z1(t− h̄)− z2(t)]
...
żi(t) = Azi(t) +Bu(t− (i− 1)h̄) + Li[zi(t− h̄)− zi+1(t)]
...
żr(t) = Azr(t) +Bu(t− (r − 1)h̄) + Lr[zr(t− h̄)− x(t)]

(4.87)

wherezi ∈ R
n, i = 1, ..., r. Assuming an appropriate choice of the gainsLi, it follows that

z1(t) approachesx(t + h). Thus, the predictive feedback

u(t) = Kz1(t) (4.88)

can be applied to stabilize (Eh). This control scheme is depicted on Figure4.8 for r = 2. The
advantage of splitting the prediction intor sub predictions is to allow to deal with arbitrarily
large delays. Theorem 5.1 inNajafi et al.[2013] guarantees that feedback (4.88) with prediction
z1 computed by sequential sub predictors (4.87) asymptotically stabilizes (Eh) provided thatK

./chapter_pred_known_delay/figures/scheme_obs_pred.ps
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ẋ(t)=Ax(t)+Bu(t−h)hK

xr u(t) u(t− h)

z1(t)

x(t)

h/2
u(t)

h/2
u(t)

z2(t)

ż2 = Az2(t) +Bu(t− h
2 ) + L2[z2(t− h

2 )− x(t)]

ż1 = Az1(t) +Bu(t) + L1[z1(t− h
2 )− z2(t)]

Figure 4.8 – Closed-loop scheme with two sequential sub predictors (4.87) for known and con-
stant delayh

and theLi satisfy a LMI condition7. From Proposition4.2.1, it can be deduced that it is possible
to chooser sufficiently large such that the closed-loop system is stable for an arbitrarily large
delay.

Example 4.2.1.Consider the double integrator

ÿ(t) = u(t− h) (4.89)

and its state-space representation

ẋ(t) = Ax(t) +Bu(t− h) (4.90)

with x = [y, ẏ]T , A =

[
0 1
0 0

]

andB =

[
0
1

]

. The control has the formu(t) = Kz(t) (respec-

tivelyu(t) = Kz1(t)) with z given by (4.83) (respectively (4.87)) andK = [−2,−3]T chosen
in order to place the eigenvalues of the system to−1 and−2. The delayh is equal to1 s. The
influence of the gainL is studied by drawing a comparison for 3 different values ofL. The gain
L is computed with a pole placement approach by considering that the whole state is measured.
Three combination of eigenvalues are tested:

• Simulation 1 (slowest case):λ(A− LC) = {−0.1,−0.2} so

L =

[
−0.1 −1
0 −0.2

]

. (4.91)

The closed-loop dynamics of the dynamic predictor imposed byL is slower than the delay
value.

• Simulation 2 (mean case):λ(A− LC) = {−0.5,−1} so

L =

[
−0.5 −1
0 −1

]

. (4.92)

The closed-loop dynamics of the dynamic predictor imposed by L is of the same order of
magnitude as the delay value.

7. This condition is not copied here for sake of clarity.
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• Simulation 3 (fastest case):λ(A− LC) = {−1,−1.4} so

L =

[
−1 −1
0 −1.4

]

. (4.93)

The closed-loop dynamics of the dynamic predictor imposed byL is faster than the delay
value.

Remark 4.2.2. In this example, the variabley has no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure4.9, it can be seen that the closed-loop system is stabilized to zero for each choice of
L. The convergence rate of the predictor, characterized by the choice ofL, has to be carefully
chosen. IfL is large, some undesired oscillations appear as shown on Figure4.9c. A too large
value for this gain would end up destabilizing the system. IfL is small, there is no problem
for stable systems (A Hurwitz) but unstable systems require a sufficiently large value ofL to
counterweight the instability caused by “Ae” in ( 4.85).

A sine reference has been added to the input (Figure4.10) in order to study more precisely
the influence ofL on the accuracy of the predictionz. For a smallL, it can be observed that
z(t) slowly approaches the exact prediction (Figure4.10a). IncreasingL leads to a faster
convergence of the approximated prediction to the exact one(Figure 4.10b). However, a large
gainL can deteriorate the performances of the closed-loop systemas shown on Figure4.10c.

When increasing the delay (h = 1.7 s) and keepingL defined by (4.92), the system is
unstable (Figure4.11a). For a larger delay, there may not always existL andK satisfying the
LMI condition of Theorem 3.1 inNajafi et al.[2013]. In that case, one can design sequential
sub predictors withr sufficiently large. On Figure4.11b, two sequential sub predictors have
been designed withL1 = L2 = L from (4.92). It is clear that the sequential sub prediction
technique allows to deal with a larger delay.

On Figure4.12, the feedback computed from the dynamic prediction (4.87) is compared to
the feedback computed from the exact prediction (that requires the integral discretization). It
can be observed that the response is slower but it can be improved increasing the value of the
gainsLi. Note that the value ofK is the same for all the Figures4.9, 4.10, 4.16and4.12.

Remark 4.2.3. In Najafi et al. [2013], only feedback controllersu(t) = Kz(t) or u(t) =
Kz1(t) are used. However, it will be shown in the next sections that these results hold for a
larger class of controllers.

In the next sections, this valuable method will be extended to a time-varying delay and a
partial measurement knowledge. Schemes that matched the different cases are indexed in Table
4.2.

Type of
Constant delay Time-varying delay

observer-predictor

Single
Figure4.6 Figure4.13

observer-predictor
Sequential sub

Figure4.8 Figure4.14
observers-predictors

Table 4.2 – Dynamic prediction for a known delay
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(a) Simulation 1:L given in (4.91) (slow case)
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(b) Simulation 2:L given in (4.92) (mean case)
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(c) Simulation 3:L given in (4.93) (fast case)

Figure 4.9 – Comparison of control scheme (4.83)-(4.84) for different values ofL andh = 1 s.
The notationz1 denotes the first component of the vectorz(t).

4.2.2 Single observer-predictor with a known delay

In this section, an extension of the method described in Section 4.2.1 is presented. The
work of Najafi et al.[2013] considers full state measurement and deals only with a constant
delay. It is shown in the sequel that their results can be extended to a known time-varying delay
and partial state knowledge. Before tackling the time-varying delay case, the simpler case of a
constant delay with partial state measurement is studied inorder to facilitate the exposition.

Constant delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh)
{
ẋ(t) = Ax(t) +Bu(t− h)
y(t) = Cx(t).

The loop is closed with a feedbacku that verifies Assumption3.4.1. Since “predictor” (4.83)
has an observer structure, the prediction and the observation can be made by a single dynamic

./chapter_pred_known_delay/figures/simu_1_ref_zero.eps
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(a) Simulation 1:L given in (4.91) (slow case) with a sine trajectory reference
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(b) Simulation 2:L given in (4.92) (mean case) with a sine trajectory reference
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z1(t)

time (s)

(c) Simulation 3:L given in (4.93) (fast case) with a sine trajectory reference

Figure 4.10 – Comparison of control scheme (4.83)-(4.84) for different values ofL, h = 1 s
and a sine trajectory. The notationz1 denotes the first component of the vectorz(t).

system:
ż(t) = Az(t) +Bu(t) + g[Cz(t− h)− y(t)] (4.94)

whereg satisfies Assumption3.4.2.

Remark 4.2.4.Note that to computez(t), the initial conditionz(t) = φz(t) for t ∈ [−h, 0] with
φz a continuous function, is required. The predictionz will be continuous int = h.

Denoting
ep(t) = z(t− h)− x(t) (4.95)

the prediction error, the following result holds when the feedbacku(z) is applied to stabilize
system (Eh).

Theorem 4.5. Consider system (Eh), with a known and constant delayh, and assume that
there exist a controlleru(x) and a correction termg(ep) satisfying Assumptions3.4.1and
3.4.2 respectively. Suppose that system (Eh) is controlled byu(z) with z computed by

./chapter_pred_known_delay/figures/simu_1_ref_sine.eps
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(a) Prediction with one predictor (gainL in (4.92)): control scheme displayed on Figure4.6
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z1
1
(t)

time (s)

(b) Prediction with two sequential sub predictors (gainL1 = L2 = L in (4.92)): control scheme dis-
played on Figure4.8

Figure 4.11 – Comparison of control schemes (4.83)-(4.84) and (4.87)-(4.88) (for r = 2) with
h = 1.7 s. The notationz1 (respectivelyz11) denotes the first component of the vectorz(t)
(respectivelyz1(t)).

observer-predictor (4.94) and define

Υ(t) = ||x(t)||2 + sup
s∈[t−h,t]

||z(s)||2 + sup
s∈[t−h,t]

||ėp(s)||2. (4.96)

Then, there existς, ̺, h∗ > 0 such that, providedh < h∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.97)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. First, with ep(t) = z(t − h)− x(t), equation (4.94) becomes

ż(t) = Az(t) +Bu(z(t)) + g(Cep(t)). (4.98)

The dynamics ofep(t) reads as

ėp(t) = Aep(t) + g(Cep(t− h)) (4.99)

and can be rewritten as follows

ėp(t) = Aep(t) + g(Cep(t))−
Cep(t)∫

Cep(t−h)

dg

ds
(s)ds. (4.100)

The following Lyapunov-Krasovskii functional candidate is proposed

V (t) = γV1(t) + V2(t) + V3(t) (4.101)
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time (s)

Figure 4.12 – Comparison of the feedback computed from the exact prediction (integral dis-
cretization) and the sequential sub predictors (4.87) for h = 0.5 s.

where
V1(t) = zT (t)Pz(t), (4.102)

withP defined in Assumption3.4.1,

V2(t) = eTp (t)Qep(t), (4.103)

withQ defined in Assumption3.4.2,

V3(t) =

t∫

t−h

(h + s− t)||ėp(s)||2ds. (4.104)

and γ > 0. Remark that functionsV1 and V2 are usually used for delay free systems. The
functionalV3 is added to cope with the integral term in (4.100). From equation (3.88) and since
g is globally Lipschitz, the time derivatives ofV1 satisfies

V̇1(t) ≤ −cu||z(t)||2 +R||z(t)|| ||ep(t)||, (4.105)

withR = 2lg||P || ||C||. Furthermore, by substitution one gets
∥
∥
∥
∥
∥
∥
∥

Cep(t)∫

Cep(t−h)

dg

ds
(s)ds

∥
∥
∥
∥
∥
∥
∥

≤ lg||C||
t∫

t−h

||ėp(s)||ds, (4.106)

so using (3.94), it follows that

V̇2(t) ≤ −mg||ep(t)||2 +R′||ep(t)|| ||m(t)|| (4.107)

withR′ = 2lg||Q|| ||C|| and||m(t)|| =
t∫

t−h

||ėp(s)||ds. Finally,

V̇3(t) = h||ėp(t)||2 −
t∫

t−h

||ėp(s)||2ds (4.108)

./chapter_pred_known_delay/figures/simu4_comp_exact.eps
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so, reminding that

−
t∫

t−h

||ėp(s)||2ds ≤ −1

h





t∫

t−h

||ėp(s)||ds





2

, (4.109)

it follows that

V̇3(t) ≤ h||ėp(t)||2 −
1

2h
||m(t)||2 − 1

2

t∫

t−h

||ėp(s)||2ds. (4.110)

In addition, it can be deduced from (4.100) and from Hölder’s inequality (3.104) that

||ėp||2 ≤ c1||ep||2 + c2||m||2 (4.111)

with c1 = 2(||A||+ lg||C||)2 andc2 = 2l2g ||C||2. As a result, from (4.110) and (4.111), it can be
derived that

V̇3(t) ≤ hc1||ep(t)||2 + hc2||m(t)||2 − 1
2h
||m(t)||2 − 1

2

t∫

t−h

||ėp(s)||2ds. (4.112)

Thus, the following maximization is obtained

V̇ (t) ≤ −γcu||z(t)||2 + γR||z(t)|| ||ep(t)|| −mg||ep(t)||2 +R′||ep(t)|| ||m(t)||

+hc1||ep(t)||2 + hc2||m(t)||2 − 1
2h
||m(t)||2 − 1

2

t∫

t−h

||ėp(s)||2ds. (4.113)

Moreover, equation (3.102) allows to get rid of the cross terms “||z|| ||ep||” and “ ||ep|| ||m||”
so

V̇ (t) ≤ −γcu
2
||z(t)||2 −

[
mg

2
− γR2

2cu
− hc1

]

||ep(t)||2 −
[

1
2h

− R′2

2mg
− hc2

]

||m(t)||2

−1
2

t∫

t−h

||ėp(s)||2ds.
(4.114)

To prove the exponential stability of (4.98)-(4.99), it is sufficient to find conditions which guar-
antee the following inequality

V̇ (t) + εV (t) ≤ 0 (4.115)

with ε > 0. From equation (4.114), Assumptions3.4.1and3.4.2and since0 ≤ s− t + h < h
for all s ∈ [t− h, t], one has

V̇ (t) + εV (t) ≤ −γcu
2
||z(t)||2 −

[
mg

2
− γR2

2cu
− hc1

]

||ep(t)||2 −
[

1
2h

− R′2

2mg
− hc2

]

||m(t)||2

−1
2

t∫

t−h

||ėp(s)||2ds+ εc̄γ||z(t)||2 + εm̄||ep(t)||2 + εh
t∫

t−h

||ėp(s)||2ds.
(4.116)

It follows that

V̇ (t) + εV (t) ≤ −γ
[
cu
2
− εc̄

]
||z(t)||2 −

[
mg

2
− γR2

2cu
− hc1 − εm̄

]

||ep(t)||2

−
[

1
2h

− R′2

2mg
− hc2

]

||m(t)||2 −
[
1
2
− εh

] t∫

t−h

||ėp(s)||2ds.
(4.117)
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In order to haveV̇ + εV negative, the following conditions have to be verified







cu
2

− εc̄ > 0,

mg

2
− γR2

2cu
− hc1 − εm̄ > 0,

1

2h
− R′2

2mg

− hc2 > 0,

1

2
− εh > 0.

(4.118)

(4.119)

(4.120)

(4.121)

From (4.120), one has

h <

√
R′4

4m2
g
+ 2c2 − R′2

2mg

2c2
<

1√
2c2

. (4.122)

In addition, conditions (4.119) and (4.120) can be reformulated as follows

h < h∗ = min(h1, h2) (4.123)

with

h1 =
1

c1

(
mg

2
− γR2

2cu
− εm̄

)

(4.124)

and

h2 =
1√
2c2

. (4.125)

Choosingγ andε sufficiently small guarantees that (4.118) and (4.121) are true and thath1 is
positive. In this case, takingh < h∗ ensures that

V̇ ≤ −εV (t). (4.126)

It follows from (4.126) that
V (t) ≤ V (0)e−εt (4.127)

and since||z(t)||2 + ||ep(t)||2 ≤ 1
c1
V (t) with c1 = min(γc,m), one obtains

||z(t)||2 + ||ep(t)||2 ≤
1

c1
V (0)e−εt. (4.128)

From the definitions ofV (t) in (4.101), one has

V (0) ≤ γc̄||z(0)||2 + m̄||ep(0)||2 + h2 sup
s∈[−h,0]

||ėp(s)||2. (4.129)

In addition, from (4.95) and by using Hölder’s inequality (3.104), the following inequality can
be deduced

||ep(0)||2 ≤ 2||z(−h)||2 + 2||x(0)||2 ≤ 2 sup
s∈[−h,0]

||z(s)||2 + 2||x(0)||2 (4.130)

and then it follows that

γc̄||z(0)||2 + m̄||ep(0)||2 ≤ c2( sup
s∈[−h,0]

||z(s)||2 + ||x(0)||2) (4.131)
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with c2 = γc̄+ 2m̄. Combining (4.129) with (4.131) leads to

V (0) ≤ c3Υ(0) (4.132)

with c3 = max(c2, h
2). Then, from (4.128) and (4.132) one deduces

||z(t)||2 + ||ep(t)||2 ≤ c5Υ(0)e−εt (4.133)

for all t ≥ 0 and withc5 =
c3
c1

. Since||x(t)||2 ≤ 2||z(t− h)||2 + 2||ep(t)||2, one gets

||x(t)||2 ≤ c6Υ(0)e−εt (4.134)

with c6 = 2c5(e
εh + 1). Besides

sup
s∈[t−h,t]

||z(s)||2 ≤ c7Υ(0)e−εt (4.135)

with c7 = c5e
εh. From equation (4.99) and using Hölder’s inequality (3.104), one can deduce

that

sup
s∈[t−h,t]

||ėp(s)||2 ≤ c8Υ(0)e−εt (4.136)

with c8 = 2c5(||A||2 + l2g ||C||2eεh)eεh. Finally, from (4.134), (4.135) and (4.136), one obtains

Υ(t) ≤ c9Υ(0)e−εt (4.137)

for all t ≥ 0 with c9 = c6 + c7 + c8.

Qualitative analysis: This theorem shows that a predictive feedback computed fromthe
observer-predictor (4.94) can always stabilize system (Eh) provided thath is sufficiently small.
In addition, a qualitative analysis of the behavior ofh1 andh2 (respectively in (4.124) and
(4.125)) shows that:

• For a small value ofε, thenh1 increases which means that a slow convergence rate of the
closed-loop system allows a larger value of the delay.

• For a large value oflg 8 (that appears throughc1 andc2), thenh1 andh2 decrease which
means that the admissible delay is smaller for a fast observer.

This result presents the first improvement with respect to the paper ofNajafi et al.[2013]
since it works out the partial state measurement case and achieves exponential stability. Another
improvement is to consider a time-varying delay in the input. This result is presented thereafter.

Remark 4.2.5. A similar qualitative analysis is given inBesançon et al.[2007]. Similarly,
the extension of this method to linear systems with Lipschitz nonlinearities and to partial state
measurement is mentioned inBesançon et al.[2007].

Remark 4.2.6.A similar result for nonlinear globally Lipschitz systems with sampled measure-
ments and hold control has been published very recently byAhmed-Ali et al.[2016].

8. lg is the Lipschitz constant associated to the functiong and is defined in (3.95).
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Time-varying delay

The class of systems considered is defined by (Eh) and is reminded below

(Eh)
{
ẋ(t) = Ax(t) +Bu(t− h(t))
y(t) = Cx(t)

with h(t) a known and time-varying input delay. The observation and the prediction are com-
puted by a single dynamic system

ż(t) = Az(t) +Bu(t) + g(Cz(t− h(t))− y(t)]) (4.138)

with g a correction term verifying Assumption3.4.2.

Remark 4.2.7. Note that to computez(t), the initial conditionz(t) = φz(t) for t ∈ [−hmax, 0]
with φz a continuous function, is required. The predictionz will be continuous int = h(t).

Then, a predictive feedback that verifies Assumption3.4.1can be applied to stabilize (Eh).
The closed-loop scheme is given on Figure4.13. Denoting the prediction error

ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)h(t)u

xr u(t) u(t− h(t))

z(t) y(t)

h(t)
u(t)

ż = Az +Bu(t) + g(Cz(t− h(t))− y(t))

Figure 4.13 – Closed-loop scheme with observer-predictor for a known time-varying delay and
partial state measurement

ep(t) = z(t− h(t))− x(t) (4.139)

and reminding thatδ stands for the upper bound of the delay time derivative:|ḣ(t)| < δ (As-
sumption3.4.4), it is now possible to introduce the following theorem.

Theorem 4.6. Consider system (Eh), whereh(t) is known and complies with Assumptions
3.4.3and3.4.4, and assume that there exist a controlleru(x) and the correction termg(ep)
satisfying Assumptions3.4.1and3.4.2respectively. Suppose that system (Eh) is controlled
byu(z) with z computed by observer-predictor (4.138) and define

Υ(t) = ||x(t)||2 + sup
s∈[t−hmax,t]

||z(s)||2 + sup
s∈[t−hmax,t]

||ėp(s)||2. (4.140)

Then, there existς, ̺, h∗, δ∗ > 0 such that, providedhmax < h∗ andδ < δ∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (4.141)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

./chapter_pred_known_delay/figures/scheme_PredObs.ps
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Proof. Note that the delayh(t) (respectivelẏh(t)) will be denotedh (respectivelẏh) in the proof
to facilitate the reading. First, denotingep(t) = z(t− h(t))− x(t), equation (4.138) becomes

ż(t) = Az(t) +Bu(t) + g(Cep(t)). (4.142)

The dynamics ofep(t) reads as

ėp(t) = Aep(t) + g(Cep(t− h))− ḣ[Az(t− h) +Bu(t− h) + g(Cep(t− h))] (4.143)

and can be rewritten as follows

ėp(t) = Aep(t) + g(Cep(t))−
Cep(t)∫

Cep(t−h)

dg

ds
(s)ds

−ḣ[Az(t− h) +Bu(t− h) + g(Cep(t− h))].

(4.144)

The following Lyapunov-Krasovskii functional candidate is proposed

V (t) = γV1(t) + V2(t) + V3(t) + V4(t) (4.145)

where
V1(t) = zT (t)Pz(t), (4.146)

withP defined in (3.86),
V2(t) = eTp (t)Qep(t), (4.147)

withQ defined in (3.91),

V3(t) =

t∫

t−hmax

(hmax + s− t)||ėp(s)||2ds, (4.148)

V4(t) =

t∫

t−h

(hmax + hmin + s− t)(||z(s)||2 + ||ep(s)||2)ds (4.149)

andγ > 0. Remark thatV1, V2 are the same as in the constant delay case. FunctionalsV3 and
V4 are introduced to deal respectively with the integral term of (4.144) and with the time-varying
delay. Sinceg is globally Lipschitz and from (3.88), the time derivatives ofV1 satisfies

V̇1(t) ≤ −cu||z(t)||2 +R||z(t)|| ||ep(t)||, (4.150)

withR = 2lg||P || ||C||. Moevoer, by substitution one gets

∥
∥
∥
∥
∥
∥
∥

Cep(t)∫

Cep(t−h(t))

dg

ds
(s)ds

∥
∥
∥
∥
∥
∥
∥

≤ lg||C||
t∫

t−h(t)

||ėp(s)||ds, (4.151)

so using (3.94), it follows that

V̇2(t) ≤ −mg||ep(t)||2 +R′||ep(t)|| ||m(t)||+ δM ||ep(t)|| ||z(t− h)||
+δR′ ||ep(t)|| ||ep(t− h)|| (4.152)
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withR′ = 2lg||Q|| ||C||, M = 2||P || (||A|| + lu||B||) and ||m(t)|| =
t∫

t−h

||ėp(s)||ds. Further-

more,

V̇3(t) = hmax||ėp(t)||2 −
t∫

t−hmax

||ėp(s)||2ds (4.153)

so, reminding that

−
t∫

t−hmax

||ėp(s)||2ds ≤ −
t∫

t−h(t)

||ėp(s)||2ds ≤ − 1

hmax






t∫

t−h(t)

||ėp(s)||ds






2

, (4.154)

it follows that

V̇3(t) ≤ hmax||ėp(t)||2 −
1

2hmax

||m(t)||2 − 1

2

t∫

t−hmax

||ėp(s)||2ds. (4.155)

In addition, sinceu and g are globally Lipschitz and using (4.151) and Hölder’s inequality
(3.104), it can be deduced from (4.144) that

||ėp||2 ≤ c1||ep||2 + c2||m||2 + c3δ
2||z(t− h)||2 + c2δ

2||ep(t− h)||2 (4.156)

with c1 = 4(||A||+ lg||C||)2, c2 = 4l2g ||C||2, c3 = 4(||A||+ lu||B||)2 so

V̇3(t) ≤ hmax[c1||ep||2 + c2||m||2 + c3δ
2||z(t− h)||2 + c2δ

2||ep(t− h)||2]

− 1
2hmax

||m(t)||2 − 1
2

t∫

t−hmax

||ėp(s)||2ds. (4.157)

Finally,

V̇4(t) ≤ (hmax + hmin)(||z(t)||2 + ||ep(t)||2)− hmin(1− δ)(||z(t− h)||2 + ||ep(t− h)||2)

−
t∫

t−h

(||z(s)||2 + ||e(s)||2)ds.
(4.158)

Thus, the following maximization is obtained

V̇ (t) ≤ −γcu||z(t)||2 + γR||z(t)|| ||ep(t)|| −mg||ep(t)||2 +R′||ep(t)|| ||m(t)||
+δM ||ep(t)|| ||z(t− h)||+ δR′ ||ep(t)|| ||ep(t− h)||+ hmax[c1||ep||2 + c2||m||2

+c3δ
2||z(t− h)||2 + c2δ

2||ep(t− h)||2]− 1
2hmax

||m(t)||2 − 1
2

t∫

t−hmax

||ėp(s)||2ds

+2hmax(||z(t)||2 + ||ep(t)||2)− hmin(1− δ)(||z(t− h)||2 + ||ep(t− h)||2)

−
t∫

t−h

(||z(s)||2 + ||e(s)||2)ds.
(4.159)
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The cross terms can be maximized by (3.102) and Young’s inequality (3.100); it gives

V̇ (t) ≤ −
[
γcu
2

− 2hmax

]
||z(t)||2 −

[
1

2hmax
− R′2

2mg
− hmaxc2

]

||m(t)||2

−
[
mg

2
− γR2

2cu
− hmax(2 + c1)− δ(M/2 +R′/2)

]

||ep(t)||2
− [hmin − δ(hmin + δhmaxc3 +M/2)] ||z(t− h)||2

− [hmin − δ(hmin + δhmaxc2 +R′/2)] ||ep(t− h)||2 − 1
2

t∫

t−hmax

||ėp(s)||2ds

−
t∫

t−h

(||z(s)||2 + ||e(s)||2)ds.
(4.160)

To prove the exponential stability of (4.142)-(4.99), it is sufficient to find conditions which guar-
antee the following inequality

V̇ (t) + εV (t) ≤ 0 (4.161)

with ε > 0. From equation (4.160), Assumptions3.4.1and3.4.2, one has

V̇ (t) + εV (t) ≤ −
[
γcu
2

− 2hmax

]
||z(t)||2 −

[
1

2hmax
− R′2

2mg
− hmaxc2

]

||m(t)||2

−
[
mg

2
− γR2

2cu
− hmax(2 + c1)− δ(M/2 +R′/2)

]

||ep(t)||2
− [hmin − δ(hmin + δhmaxc3 +M/2)] ||z(t− h)||2

− [hmin − δ(hmin + δhmaxc2 +R′/2)] ||ep(t− h)||2 − 1
2

t∫

t−hmax

||ėp(s)||2ds

γεc̄||z||2 + εm̄||ep||2 + ε
t∫

t−hmax

hmax||ėp(s)||2ds

−[1− ε(hmax + hmin)]
t∫

t−h

(||z(s)||2 + ||ep(s)||2)ds.
(4.162)

It follows that

V̇ + εV ≤ −
[
γcu
2

− 2hmax − γεc̄
]
||z(t)||2 −

[
1

2hmax
− R′2

2mg
− hmaxc2

]

||m(t)||2

−
[
mg

2
− γR2

2cu
− hmax(2 + c1)− δ(M/2 +R′/2)− εm̄

]

||ep(t)||2
− [hmin − δ(hmin + δhmaxc3 +M/2)] ||z(t− h)||2
− [hmin − δ(hmin + δhmaxc2 +R′/2)] ||ep(t− h)||2

−
[
1
2
− εhmax

] t∫

t−hmax

||ėp(s)||2ds

−[1− 2εhmax]
t∫

t−h

(||z(s)||2 + ||ep(s)||2)ds.

(4.163)

To makeV̇ (t) + εV (t) ≤ 0, it is sufficient to have the coefficients pre multiplying thequadratic
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terms negative. It leads to the following conditions







γcu
2

− 2hmax − γεc̄ > 0,

1

2hmax

− R′2

2mg

− hmaxc2 > 0,

mg

2
− γR2

2cu
− hmax(2 + c1)− δ(M/2 +R′/2)− εm̄ > 0,

hmin − δ(hmin + δhmaxc3 +M/2) > 0,

hmin − δ(hmin + δhmaxc2 +R′/2) > 0,

1

2
− εhmax > 0,

1− 2εhmax > 0.

(4.164)

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

First, (4.164), (4.169) and (4.170) can be reformulated as follows

hmax < h1 (4.171)

and
hmax < h2 (4.172)

and
hmax < h3 (4.173)

with
h1 =

γ

2
[
cu
2

− εc̄] (4.174)

and

h2 =
1

2ε
. (4.175)

Besides, (4.165) can be rewritten in the following form

hmax <

√
(

R′2

2mg

)2

+ 2c2 −
(

R′2

2mg

)

2c2
< h3 (4.176)

with

h3 =
1√
2c2

. (4.177)

Conditions (4.167)-(4.168) depend simultaneously onhmax andδ. Rearranging the terms gives

hmax < h4 (4.178)

and
hmax < h5 (4.179)

with

h4 =
1

c3δ2
[hmin − δ(hmin +M/2)] (4.180)

and

h5 =
1

c2δ2
[hmin − δ(hmin +R′/2)] . (4.181)
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Similarly condition (4.166) depends simultaneously onhmax andδ and can be reformulated as
follows

hmax < h6 (4.182)

with

h6 =
1

2 + c1

(
mg

2
− γR2

2cu
− δ(M/2 +R′/2)− εm̄

)

. (4.183)

In order to haveh4, h5 andh6 positive,δ has to comply with the condition below

δ < δ∗ = min(δ1, δ2, δ3) (4.184)

with

δ1 =
hmin

hmin +M/2
, (4.185)

δ2 =
hmin

hmin +R′/2
, (4.186)

δ3 =
2

(M +R′)

(
mg

2
− γR2

2cu
− εm̄

)

. (4.187)

Choosingε andγ sufficiently small guarantees thath1 andδ3 are positive. In that case, taking

hmax < h∗ = min(h1, h2, h3, h4, h5, h6) (4.188)

andδ < δ∗ ensures that
V̇ (t) ≤ −εV (t). (4.189)

So equation (4.141) can be deduced from (4.189) by similar computations as in Theorem4.5.

Qualitative analysis: This theorem shows that a predictive feedback computed fromobserver-
predictor (4.94) can stabilize system (Eh) provided that the delay and its variation are sufficiently
small. In addition, a qualitative analysis of the boundsh∗ andδ∗ is given below.

• For a small value ofε, thenh1, h2 andh6 increase which means that a slow convergence
rate of the closed-loop system allows larger value of the delay.

• Similarly, for a small value ofε, thenδ3 increases which means that the delay dynamics
can be faster for a slow convergence rate of the close-loop system.

• For a large value oflg 9 (that appears throughc1 and c2), thenh3, h5 andh6 decrease
which means that the admissible delay is smaller for a fast observer.

• For a large value oflu 10 (that appears throughc3), thenh4 decreases which means that
the admissible delay is smaller for a fast controller.

• For a large value ofδ, thenδ1 andδ2 increase which means that the delay dynamics can
be faster for a small delay interval (see Figure4.2).

• For a small value ofδ, thenh4, h5 andh6 increase which means that a slow-varying delay
can have a larger amplitude.

Moreover, some simulation tests show that for stable systems (A Hurwitz), the real valuesh∗

andδ∗ can be large. On the contrary, for unstable systems, these bounds become very small.
However, the use of sequential sub observers-predictors asin Najafi et al.[2013] may be a
solution to relax this constraint.

9. lg is the Lipschitz constant associated to the functiong and is defined in (3.95).
10. lu is the Lipschitz constant associated to the functionu and is defined in (3.89).
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4.2.3 Sequential sub observers-predictors with a known delay

As it was shown in Section4.2.1, the sequential sub predictors allow to cope with a larger
delay when the full state is known and when the delay is constant. This idea can be extended to
partial state measurement and to a time-varying delay. First, the sequential sub predictors idea
is applied to the partial state measurement case with a constant delay.

Constant delay

Each of ther sub systems estimates and predicts the state forh̄ seconds where

h̄ =
h

r
, r ∈ N

∗. (4.190)

Sequential sub observer-predictor equations read as:







ż1(t) = Az1(t) +Bu(t− (r − 1)h̄) + g1([Cz1(t− h̄)− y(t)])
...
żi(t) = Azi(t) +Bu(t− (r − i)h̄) + gi(C[zi(t− h̄)− zi−1(t)])
...
żr(t) = Azr(t) +Bu(t) + gr(C[zr(t− h̄)− zr−1(t)])

(4.191)

wherezi ∈ R
n, i = 1, ..., r.

Remark 4.2.8. The name of the variables has been changed with respect to thework ofNajafi
et al. [2013]. Indeed, herezr(t) → x(t + h) whereas it isz1(t) that tends tox(t + h) in their
work. The choice has been made in order to facilitate the reading of the proof. Note that the
same convention is adopted inAhmed-Ali et al.[2012], Germani et al.[2002] and Kazantzis
and Wright[2005].

Remark 4.2.9. To computezr(t), the initial conditionszi(t) = φzi(t) for t ∈ [−h̄, 0] with φzi

continuous functions, are required for alli = 1, ..., r.

Assuming an appropriate choice of the gainsgi, it follows that zr(t) tends tox(t + h).
Thus, a predictive feedbacku(zr) that verifies Assumption3.4.1 can be applied to stabilize
(Eh). Reminding thatr is the number of sub observers-predictors and defining the sub prediction
errors

ep1 = z1(t− h̄)− x(t) (4.192)

and
epi(t) = zi(t− h̄)− zi−1(t) (4.193)

for all i = 2, ..., r, the following theorem holds.

Theorem 4.7. Consider system (Eh), with a known and constant delayh, and assume that
there exist a controlleru(x) and gainsgi(epi) satisfying Assumptions3.4.1and 3.4.1re-
spectively. Suppose that system (Eh) is controlled byu(zr) with zr computed by sequential
observers-predictors (4.191). Then, there existsr∗ ∈ N

∗ such that, providedr > r∗, ||x(t)||
exponentially converges to zero.

Proof. The proof is divided into three steps:

• It will be shown that for alli = 1, ..., r the errors||epi(t)|| exponentially converge to zero,
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• then it will be proved that||zr(t)|| exponentially tends to zero

• and finally that||x(t)|| exponentially converges to zero.

Step 1:
The dynamics of the sub prediction errorsėpi can be rewritten as follows







ėp1(t) = Aepi(t) + g1(Cep1(t))−
Cep1(t)∫

Cep1 (t−h̄)

dg1
ds
(s)ds

...

ėpi(t) = Aepi(t) + gi(Cepi(t))−
Cepi(t)∫

Cepi (t−h̄)

dgi
ds
(s)ds− gi−1(Cepi−1

(t))

...

ėpr(t) = Aepr(t) + gr(Cepr(t))−
Cepr (t)∫

Cepr (t−h̄)

dgr
ds
(s)ds− gr−1(Cepr−1

(t)).

(4.194)

The dynamics ofep1 in (4.194) is similar to (4.100). Consequently, it can be shown by using the
following Lyapunov-Krasovskii candidate function

V1(t) = eTp1(t)Qep1(t) +

t∫

t−h̄

(h̄+ s− t)||ėp1(s)||2ds (4.195)

that ||ep1|| exponentially converges to zero provided thath̄ is sufficiently small

h̄ < h∗1
11. (4.196)

Consequently, the recursive process is initialized. In order to prove by induction the conver-
gence of the error||epi|| to zero, it is supposed that||epi−1

|| converges exponentially to zero.
Then, let

Vi = eTpi(t)Qepi(t) +

t∫

t−h̄

(h̄+ s− t)||ėpi(s)||2ds (4.197)

be a Lyapunov-Krasovskii functional candidate. Similarlyto (4.107) and (4.110) in the proof of
Theorem4.5, one gets

V̇i(t) ≤ −mg||epi(t)||2 +R′||epi(t)|| ||mi(t)||+R′||epi(t)|| ||epi−1
(t)||

+h̄c1||epi(t)||2 + h̄c2||mi(t)||2 + h̄c2||epi−1
(t)||2 − 1

2h̄
||mi(t)||2 − 1

2

t∫

t−h̄

||ėpi(s)||2ds

(4.198)

withR′ = 2lg||Q|| ||C||, ||mi(t)|| =
t∫

t−h̄

||ėpi(s)||ds, c1 = 3(||A||+ lg||C||)2 andc2 = 3l2g||C||2.

In addition, inequality (3.102) allows to get rid of the cross terms “||epi(t)|| ||mi(t)||” so

V̇i(t) ≤ −
[
mg

2
− h̄c1

]
||epi(t)||2 +R′||epi(t)|| ||epi−1

(t)||+ h̄c2||epi−1
(t)||2

−
[

1
2h̄

− R′2

2mg
− h̄c2

]

||mi(t)||2 − 1
2

t∫

t−h̄

||ėpi(s)||2ds.
(4.199)

11. An explicit value can be computed following similar steps as in Theorem4.5.
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Reminding that

− mg

4
||epi(t)||2 +R′||epi(t)|| ||epi−1

(t)|| = −
(√

mg

4
||epi(t)|| −

R′

√
mg

)2

+
R′2

mg

||epi−1
(t)||2,
(4.200)

one deduces that

V̇i(t) ≤ −
[
mg

4
− h̄c1

]
||epi(t)||2 +

[

h̄c2 +
R′2

mg

]

||epi−1
(t)||2

−
[

1
2h̄

− R′2

2mg
− h̄c2

]

||mi(t)||2 − 1
2

t∫

t−h̄

||ėpi(s)||2ds.
(4.201)

To prove the exponential convergence, it is sufficient to findconditions which guarantee the
following inequality

V̇i(t) + εVi(t) ≤ 0 (4.202)

with ε > 0. From equation (4.199), Assumption3.4.2, one has

V̇i(t) + εVi(t) ≤ −
[
mg

2
− h̄c1 − εm̄

]
||epi(t)||2 +

[

h̄c2 +
R′2

2mg

]

||epi−1
(t)||2

−
[

1
2h̄

− R′2

2mg
− h̄c2

]

||mi(t)||2 −
[
1
2
− εh̄

] t∫

t−h̄

||ėpi(s)||2ds.
(4.203)

It is possible to computeh∗i such that for

h̄ < h∗i (4.204)

and forγ andǫ sufficiently small, the coefficients of the terms||epi(t)||2, ||mi(t)||2 and
t∫

t−h̄

||ėpi(s)||2ds

are positive (see proof of Theorem4.5). Thus, one has

V̇i(t) ≤ −εVi(t) +
[

h̄c2 +
R′2

mg

]

||epi−1
(t)||2. (4.205)

Since||epi−1
|| exponentially converges to zero, the comparison lemma ofKhalil [2002] guaran-

tees the exponential convergence of||epi|| to zero. The induction process ensures that||epi|| for
all i = 1, ..., r exponentially converges to zero provided that

h̄ < h∗ = min
i=1,...,r

(h∗i ). (4.206)

This ends the first part of the proof.
Step 2:
In order to prove the exponential convergence of||zr|| to zero, the following Lyapunov candidate
function is defined

V (t) = zTr (t)Pzr(t). (4.207)

Taking the time derivative ofV (t) along the trajectories ofzr in (4.191) gives

V̇ (t) ≤ −cu||zr(t)||2 +R||zr(t)|| ||epr(t)|| (4.208)

withR = 2lg||P || ||C||. One can rewrite (4.208) as follows

V̇ (t) ≤ −cu
2
||zr(t)||2 +

R2

2cu
||epr(t)||2 (4.209)
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and since||epr(t)|| exponentially converges to zero, the comparison lemma fromKhalil [2002]
ensures the exponential convergence of||zr(t)|| to zero.
Step 3:
The last step consists in showing the exponential convergence of||x(t)|| to zero. Let

ep(t) = zr(t− h)− x(t) (4.210)

be the prediction error, then using the sub prediction errorsepi one gets

ep(t) =
r∑

i=1

epi(t− h + (r − i+ 1)h̄). (4.211)

so||ep(t)|| exponentially converges since for alli = 1, ..., n ||ei(t)|| exponentially tends to zero
from step 1. The exponential convergence of||x(t)|| to zero is deduced from the result of step 2.

Finally, takingr∗ = ⌊ h
h∗
⌋ with h∗ defined by (4.206) and takingr > r∗ lead to the exponen-

tial convergence of||x(t)|| to zero.

Remark 4.2.10. In previous theorems, the exponential stability in the sense of the normΥ was
shown. Here, only the exponential convergence of||x(t)|| is proven because of the induction
proof and especially to the form of (4.205).

Time varying delay

An example for the case of two cascaded sub observers-predictors is given on Figure4.14.
The idea is similar to the one for the constant delay case presented before. Each of ther
observers-predictors has a time-varying prediction horizon

h̄(t) =
h(t)

r
, r ∈ N

∗. (4.212)

The equations of the sequential sub observers-predictors are given below






ż1(t) = Az1(t) +Bu(t− (r − 1)h̄(t)) + g1([Cz1(t− h̄(t))− y(t)])
...
żi(t) = Azi(t) +Bu(t− (r − i)h̄(t)) + gi(C[zi(t− h̄(t))− zi−1(t)])
...
żr(t) = Azr(t) +Bu(t) + gr(C[zr(t− h̄(t))− zr−1(t)])

(4.213)

wherezi ∈ R
n, i = 1, ..., r.

Remark 4.2.11. Note that to computezr(t), the initial conditionszi(t) = φzi(t) for t ∈
[−hmax/r, 0] with φzi continuous functions are required for alli = 1, ..., r.

A predictive output feedbacku(zr) that verifies Assumption3.4.1can be applied to stabilize
system (Eh). We define the sub prediction errors

ep1 = z1(t− h̄(t))− x(t) (4.214)

and
epi(t) = zi(t− h̄(t))− zi−1(t) (4.215)

for all i = 2, ..., r. The advantage of the sequential structure is to relax the condition on the
maximum delay value as it is stated in Theorem4.8. It is reminded thatδ stands for the upper
bound of the delay time derivative:|ḣ(t)| < δ (Assumption3.4.4).
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Theorem 4.8. Consider system (Eh), whereh(t) is known and complies with Assumptions
3.4.3and3.4.4, and assume that there exist a controlleru(x) and gainsgi(epi) satisfying
Assumptions3.4.1and3.4.1respectively. Suppose that system (Eh) is controlled byu(zr)
with zr computed by sequential observers-predictors (4.213). Then, there existr∗ ∈ N

∗ and
δ∗ > 0 such that, providedr > r∗ andδ < δ∗, ||x(t)|| exponentially converges to zero.

The proof follows the same steps as the one of Theorem4.7 and the computations for the first
step of the proof are similar to the those of the proof of Theorem4.6.

The results of Theorems4.5 and4.6 hold for a given controlleru and a given correction
termg. It has been shown that the stability is preserved for sufficiently small delaysh < h∗.
However, some choices ofu andg can lead to very small values ofh∗ and then to very large
values ofr∗. In practice, choosing a “slower” controller and a “slower”correction term allows
to reduce the number of sub observers-predictors.

Remark 4.2.12.Note that from a practical point of view,h∗ can be obtained from simulation
results in order not to overestimate the number of sub observers-predictors.

ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)

h(t)u

xr u(t) u(t− h(t))

z2(t)

y(t)

h(t)/2
u(t)

h(t)/2
u(t)

z1(t)

ż1 = Az1(t) +Bu(t− h(t)
2 ) + g1(Cz1(t− h(t)

2 )− y(t))

ż2 = Az2(t) +Bu(t) + g2(C[z2(t− h(t)
2 )− z1(t)])

Figure 4.14 – Closed-loop scheme with two sequential sub observers-predictors (4.213) for a
known and time-varying delay and partial state measurement

4.2.4 Illustrative example

The same double integrator as in Example4.2.1is used to illustrate above results

ÿ(t) = u(t− h(t)) (4.216)

with the state-space representation

ẋ(t) = Ax(t) +Bu(t− h(t)) (4.217)

wherex = [y, ẏ]T , A =

[
0 1
0 0

]

andB =

[
0
1

]

. The same controller as in Example4.2.1 is

chosen here
u(t) = Kz(t) (4.218)
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where the gainK = [−2,−3]T is tuned in order to place the eigenvalues of the closed-loop
system to−1 and−2. The Luenberger observer-predictor reads as

ż = Az +Bu(t) + L(Cz(t− h(t))− y(t)) (4.219)

with the observer-predictor gain
L = [−1.5, 0.5]T (4.220)

so the eigenvalues ofA+LC are−0.5 and−1. Remark that controller (4.218) and the correction
termLCe comply with Assumptions3.4.1and3.4.2respectively.

Remark 4.2.13. In this example, the variabley has no particular physical meaning so it will
be displayed without unit in the next plots.

On Figure4.15, the observer coupled with the standard predictor (4.57) is compared with
the observer-predictor (4.219). For a fair comparison, the gainL is the same for both schemes.
It can be seen that the two methods have a similar behavior. Inthis case the advantage of using
the observer-predictor structure over the standard one is that it does not require an integral
discretization so the computations are easier.
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Figure 4.15 – Comparison of the standard predictive feedback (4.218)-(4.57) with the dynamic
predictive feedback (4.218)-(4.219) for h(t) = 0.5 + 0.2 sin(0.3t).

On Figure4.16, the performances of (4.218)-(4.219) have been tested for different time-
varying delays:

• h1(t) = 0.5 + 0.1 sin(t) so ḣ1(t) = 0.1 cos(t) andmax
t≥0

ḣ1(t) = 0.1 andh1max
= 0.6,

• h2(t)=0.9 + 0.1 sin(0.1t) soḣ2(t)=0.01 cos(0.1t) andmax
t≥0

ḣ2(t)=0.01 andh2max
= 1,

• h3(t) = 0.9 + 0.1 sin(t) so ḣ3(t) = 0.1 cos(t) andmax
t≥0

ḣ3(t) = 0.1 andh3max
= 1.

On Figure4.16a, one can observe that the system is stabilized in spite of thefast-varying delay.
Figure4.16billustrates that the stability is particularly sensitive to large delays because it can be
seen thaty tends to zero only when the delay is sufficiently small. On Figure4.16c, the system
is unstable because the delay is fast-varying and add a largemaximum value. As mentioned
before, the solution to stabilize systems with a larger time-varying delay is to use sequential
sub observers-predictors (4.213)-(4.218). On Figure4.17, the same delay as in Figure4.16c
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(a)h1(t) = 0.5 + 0.1 sin(t): fast-varying but small
maximum value
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(b) h2(t) = 0.9 + 0.1 sin(0.1t): slow-varying but
large maximum value
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(c) h3(t) = 0.9 + 0.1 sin(t): fast-varying and large
maximum value

Figure 4.16 – Performance comparison of dynamic predictivefeedback with a single observer-
predictor (4.218)-(4.219) for different time-varying delays.

has been used. In this case, it is clear that the sequential sub observers-predictors withr = 2
andL1 = L2 = L are able to stabilize the system. However, the number of sub observers-
predictors cannot be increased arbitrarily since the perturbation attenuation property worsens
with the number of sub structures as it is illustrated on Figure4.18.

Indeed, a constant external perturbationd has been added such that system (4.216) becomes
ẏ(t) = u(t − h(t)) + d. It can be observed that the perturbation is less attenuatedfor the
dynamic predictive feedback withr = 2 than withr = 1. This is due to an accumulation of the
observation errors in each sub observer-predictor. As a result in real applications, the number of
sub observers-predictors cannot be increased arbitrarily. A new prediction that is more robust
to external disturbances is presented in the next section.

4.2.5 Summary
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Figure 4.17 – Dynamic predictive feedback with sequential sub observers-predictors (4.213)
with r = 2 with the same delayh3(t) = 0.9 + 0.1 sin(t) as in Figure4.16c.

Contributions

✓ Extension of the work ofNajafi et al.[2013] to

• a time-varying delay,

• a larger class of controllers,

• partial measurement knowledge.

✓ The exponential stability is proved whereas only asymptotic convergence is given
in the original work.

✓ Explicit stability conditions are provided.

Table4.3 sums up previous results. Note that the boundsδ∗, h∗ andr∗ may have different
values for each case.

Prediction Delay Conv. Condition Theorem

Known

h gl. & exp. hmax < h∗ 4.5
Dynamic

(1 obs/pred)
h(t) gl. & exp. hmax < h∗ & δ < δ∗ 4.6

h gl. & exp. r > r∗ 4.7
Dynamic

(r obs/pred)
h(t) gl. & exp. r > r∗ & δ < δ∗ 4.8

Table 4.3 – Sum up of the convergence results for dynamic prediction with a known delay

• gl.: global – exp.: exponential

• h: constant delay

• h(t) ∈ [hmin, hmax] and|ḣ(t)| ≤ δ: time-varying delay
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Figure 4.18 – Comparison of the disturbance attenuation of the dynamic prediction forh(t) =
0.5 + 0.2 sin(0.3t).

4.3 New prediction with a known delay

It has been shown in Section1.2.3that predictive control strongly relies on the model accu-
racy. If the model is not perfectly known or if an external disturbance appears then the standard
prediction is not accurate anymore and the controller basedon this prediction is less efficient.
In this section, a new prediction that compensates for modeluncertainties and external distur-
bances is presented. It has been introduced for state feedback by Léchappé et al.[2015c] and
extended to output feedback byLéchappé et al.[2015d]. The accuracy of this prediction will be
studied in the case of a constant delay in Section4.3.1and for a time-varying delay in Section
4.3.1.

In the above section, perfectly known systems (Eh) defined in (3.84) have been considered.
However, in many practical cases, it is very difficult to knowexactly the values ofA andB.
Consequently, some parameter uncertainties can be taken into account as follows:

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t− h(t)). (4.221)

Another source of model mismatch is the presence of an unknown external disturbance such as

ẋ(t) = Ax(t) +Bu(t− h(t)) + d(t). (4.222)

Parameter uncertainties, represented by unknown matrices∆A and∆B are supposed to comply
with the assumption below

Assumption 4.3.1.The matrices∆A and∆B do not affect the controllability property of the
system and

||∆A|| ≤ cA (4.223)

and
||∆B|| ≤ cB. (4.224)

with cA, cB > 0.

The external disturbance, represented by the vectord(t), is assumed to verify the following
assumption
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Assumption 4.3.2.d is an unknown locally integrable function such that for allt ≥ 0,

||d(t)|| ≤ dmax < +∞ (4.225)

and for all t ≥ h (for a constant delayh),

||d(t)− d(t− h)|| ≤ hDmax < +∞. (4.226)

If the delay is time-varying, then (4.226) is replaced by

||d(t)− d(t− h)|| ≤ hmaxDmax < +∞. (4.227)

4.3.1 Constant delay

Since∆A, ∆B andd(t) defined in (4.221) and (4.222) are unknown, they cannot be in-
cluded in the computation of the prediction. In both cases, the so-called “standard prediction”
at time “t”, of the state of the system at time “t + h”, reads as

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (4.228)

There is an inevitable prediction error becausexp̂ 6= x(t + h). In order to improve the predic-
tion accuracy even in presence of unknown terms, a so-called“new prediction” is going to be
defined. The basic idea is to compare the “true” state of the system at timet, namelyx(t), with
its approximated prediction made at timet− h which isxp̂(t− h):

Definition 4.3.1(Léchappé et al.[2015c]). The new prediction is defined by

z(t) = xp̂(t) + x(t)− xp̂(t− h)
︸ ︷︷ ︸

correction term

(4.229)

where the standard predictionxp̂ is

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (4.230)

Note that when the system is perfectly known,xp̂(t) = x(t+h) for all t > h, the correction
term is equal to zero. When there are some model uncertainties or disturbances, this correction
allows to indirectly introduce some information about unmodeled dynamics in the prediction.
Figure4.19 illustrates the method to obtain this new prediction. Note that all the controllers
that use this new prediction will be referred at “new predictive controllers”. Similarly, all the
controllers that use the standard prediction will be called“standard predictive controllers”.

The full state knowledge is required to compute the standardprediction (4.230) and then to
compute new prediction (4.229). However, a “reconstructed new prediction” can be defined by

Definition 4.3.2(Léchappé et al.[2015d]). Let x̂ be an estimation ofx. The new reconstructed
prediction is defined by

ẑ(t) = x̂p̂(t) + x̂(t)− x̂p̂(t− h) (4.231)

where the reconstructed standard predictionx̂p̂ is

x̂p̂(t)=e
Ahx̂(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (4.232)

In the next section, the advantage of these new predictionsz (respectivelŷz) over the stan-
dard predictionxp̂ (respectivelŷxp̂) is illustrated.
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Controller h
System

u(t) u(t− h)xp̂(t)
x(t)

h

u(t)
Standard

Prediction

h

xp̂(t− h) x(t)

z(t)+

−

− +

New prediction

Uncertain

Figure 4.19 – New prediction design

Disturbance attenuation

In this section, the improvement of the new prediction in terms of attenuation of the distur-
bance effect is studied. The systems under consideration have the form

ẋ(t) = Ax(t) +Bu(t− h) + d(t). (4.233)

In this case, the exact prediction is

xp(t) = x(t + h) = eAhx(t) +

t∫

t−h

eA(t−s)[Bu(s) + d(t+ h)]ds (4.234)

but cannot be computed in practice since it requires the knowledge of the disturbance. Remark
that computing the exact prediction would require the knowledge of the future values ofd
(prediction of the perturbation). As a consequence, only the standard prediction (4.230) can be
computed and the prediction error is equal to

x(t + h)− xp̂(t) =

t∫

t−h

eA(t−s)d(s+ h)ds. (4.235)

The interest of the prediction is to design a predictive controller based on the reduced system

ẋp̂(t) = Axp̂(t) +Bu(t) + eAhd(t). (4.236)

Indeed, the reduced system is input delay free so standard control methods can be applied to
stabilize it. However, one has the following proposition:

Proposition 4.3.1(Léchappé et al.[2015c]). For a constant disturbanced, the convergence of

xp̂ to zero implies the convergence ofx to
[∫ t

t−h
eA(t−s)ds

]

d.

Proof. If xp̂ tends to zero, it can be deduced from (4.236) thatBu(t) tends toeAhd(t). As a
result, substitutingBu(t) by eAhd(t) in (4.230) concludes the proof.

In the general case,
[∫ t

t−h
eA(t−s)ds

]

d is different from zero so Proposition4.3.1states that

even if the predictionxp̂ converges to zero, the statex will not converge to zero in presence
of an external disturbance. This is due to the inaccuracy of the standard prediction that does
not take into account the perturbation in its computation. Therefore, it is necessary to design
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another prediction that includes some disturbance information. The new prediction computed
from (4.229) can be turned into the integral form

z(t) = xp̂(t) + x(t)− xp̂(t− h)
︸ ︷︷ ︸

computation method

= eAhx(t) +

t∫

t−h

eA(t−s)
[

Bu(s) + d(s)
]

ds

︸ ︷︷ ︸

integral form

. (4.237)

It is important to note that the disturbance appears in the integral form (4.237). The addition of
the correction term in (4.229) allows to add some disturbance information in the prediction. The
only difference between (4.237) and the exact prediction (4.234) is that “d(s)” appears instead
of “d(s+ h)” in the integral soz(t) 6= x(t+ h) but it is generally more accurate thanxp̂(t) and
the prediction error is equal to

x(t + h)− z(t) =

t∫

t−h

eA(t−s)[d(s+ h)− d(s)]ds. (4.238)

A substitution can be made with this new prediction and the reduced system

ż(t) = Az(t) +Bu(t) + d(t) + eAh
[

d(t)− d(t− h)
]

(4.239)

is obtained. Applying a predictive controller to stabilizez(t) in (4.239) leads to the following
proposition

Proposition 4.3.2(Léchappé et al.[2015c]). For a constant disturbance d, the convergence of
z to zero implies the convergence ofx to zero.

Proof. If xp̂ tends to zero, it can be deduced from (4.239) thatBu(t) tends tod(t) + eAh[d(t)−
d(t−h)]. Sinced is constantd(t)−d(t−h) = 0, substitutingBu(t) byd(t) in (4.237) concludes
the proof.

For constant disturbances, the convergence of the new prediction to zero implies the conver-
gence ofx to zero. In the case of time-varying disturbances, the exactconvergence to zero is not
possible anymore (even without delay) but Theorem4.9, that will be given in the sequel, shows
that designing a controller from the new prediction inducesa better attenuation than designing
it from the standard prediction. The details are given thereafter.

Assume thatu(xp̂) verifies Assumption3.4.1thus system (4.236) with d(t) = 0 is glob-
ally exponentially stable. In addition, the perturbation of system (4.236) is bounded and the
following maximization holds

||eAhd(t)|| ≤ ||eAh||dmax, ∀t ≥ 0. (4.240)

Therefore, the assumptions of Lemma 9.4 inKhalil [2002] are fulfilled (equations (3.88) and
(4.240)) so one deduces that for allt ≥ 0

||xp̂(t)|| ≤ β||x(0)||e−αt + l1||eAh||dmax (4.241)

with α, β andl1 positive constants. Since (4.236) and (4.239) have the same form whend(t) =
0, the same controlleru(z) guarantees thatz = 0 is a globally exponentially stable equilibrium
point of the nominal system (4.239) with d(t) = 0. From Assumption4.3.2, the inequality

∥
∥
∥d(t) + eAh

[

d(t)− d(t− h)
]∥
∥
∥ ≤ dmax + h||eAh||Dmax (4.242)
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is verified for allt ≥ h. Similarly to (4.241), the following inequality is obtained

||z(t)|| ≤ β||x(0)||e−αt + l1

[

dmax + h||eAh||Dmax

]

(4.243)

for all t ≥ h. The constantsα, β andl1 are the same as in (4.241) because they only depend
on the form of the undisturbed system. As it has been mentioned before, systems (4.236) and
(4.239) have the same representationχ̇ = Aχ+Bu(t) when there is no perturbation. From the
evaluation of (4.235) and (4.238) in “ t− h”, it follows that

||x(t)|| ≤ ||xp̂(t− h)||+ l2dmax (4.244)

and
||x(t)|| ≤ ||z(t− h)||+ l2hDmax (4.245)

with l2 =

∥
∥
∥
∥
∥

0∫

−h

eAsds

∥
∥
∥
∥
∥
. As a result, if system (4.233) is controlled by the feedbacku(xp̂), the

inequality

||x(t)|| ≤ β||x(0)||eαhe−αt +
[

l2 + l1||eAh||
]

dmax

︸ ︷︷ ︸
r1

(4.246)

holds and, if system (4.233) is controlled by the feedbacku(z), the inequality

||x(t)|| ≤ β||x(0)||eαhe−αt + l1dmax +
[

l2 + l1||eAh||
]

hDmax

︸ ︷︷ ︸
r2

(4.247)

is verified. This proves the following theorem.

Theorem 4.9(Léchappé et al.[2015c]). Consider system (4.233) and assume that there
exists a controlleru(x) satisfying Assumption3.4.1. Suppose that predictor-controllers
u(z) with z defined by (4.229) andu(xp̂) with xp̂ defined by (4.230) result in uniform ulti-
mate bounds respectivelyr1 in (4.246) andr2 in (4.247). Then, there existsD∗ such that,
providedDmax < D∗, the uniform ultimate bounds verifyr2 < r1.

Theorem4.9shows that a feedback controller with the new prediction leads to a smaller uniform
ultimate bound than designing a controller with the standard prediction for a sufficiently slow-
varying disturbance. Consequently, the new predictive scheme is said to better attenuate the
slow-varying disturbances than the standard one. In this case of a constant delay, for systems
such that||eAh|| > 1, an explicit value ofD∗ is given by

D∗ =
dmax(||eAh|| − 1)

h||eAh|| . (4.248)

Note that some additional assumptions on the eigenvalues ofAwould be necessary to determine
whether or not, equation (4.248) is fulfilled for a givenh. Besides, unstable systems are usually
such that||eAh|| ≫ 1 so (4.248) can be approximated by

dmax

Dmax

> h. (4.249)

In this case, the attenuation only depends on the dynamics ofthe perturbation with respect
to the delay size. However, the converse of Theorem4.9 is not true; even if the perturbation
does not comply with (4.248), a controller using the new prediction can better attenuate the
perturbation but it is not guaranteed. This result can be extended to the partial state knowledge
case by using the reconstructed predictions (Definition4.3.2) to compute feedbacksu(x̂p̂(t))
andu(ẑ(t)). Then, Theorem4.9can be rewritten as follows withe(t) = x̂(t)− x(t).
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Theorem 4.10(Léchappé et al.[2015d]). Consider system (4.233), observer (O) in (3.90)
and assume that there exist a controlleru(x) and a correction termg(e) satisfying Assump-
tions3.4.1and 3.4.2respectively. Suppose that predictor-controllersu(ẑ) with ẑ defined
by (4.231) andu(x̂p̂) with x̂p̂ defined by (4.232) result in uniform ultimate bounds respec-
tively r̂1 andr̂2. Then, there existsD∗ such that providedDmax < D∗, the uniform ultimate
bounds verifŷr2 < r̂1.

The proof is very similar to the one of Theorem4.9and is given inLéchappé et al.[2015d] for
observer (O) in (3.90) being a Luenberger observer.

The results of this section are gathered in Table4.4 for a particular controlleru(x) = Kx.
In order to compare the influence of the delay on attenuation property, the delay free case has
been added too.

Remark 4.3.1. The assumptionu globally Lipschitz is not used in this section, the local Lip-
schitz property is sufficient here. As a consequence, the results hold for a large class of con-
trollers. This gives the possibility to robustly stabilizez at zero. However, even ifz converges
to zero, there is an inevitable error,ηhDmax in (4.245), independent from the control and that
cannot be reduced for time-varying disturbances.



Control Without delay
With a constant and known delay

Standard prediction: New prediction:

{
ẋ=Ax+Bu(t)+d(t)

with u(t)=Kx(t) ⇒
{
ẋ=(A+BK)x+d(t)
r0=dmaxl1

{
ẋ= Ax+Bu(t− h)+d(t)
ẋp̂=Axp̂+Bu(t)+e

Ahd(t)

with u(t)=Kxp̂(t) ⇒
{
ẋp̂=(A+BK)xp̂+e

Ahd(t)
r1=dmax(l1||eAh||+ l2)

{
ẋ=Ax+Bu(t− h)+d(t)
ż=Az+Bu(t)+d(t)+eAh[d(t)−d(t− h)]

with u(t) = Kz(t) ⇒
{
ż=(A+BK)z+d(t)+eAh[d(t)−d(t− h)]
r2=dmaxl1 +Dmaxh(l1||eAh||+ l2)

State
Feedback

{
ẋ=Ax+Bu(t)+d(t)
˙̂x=Ax̂+Bu(t)+L(Cx̂−y)

with u(t)=Kx̂(t) ⇒






ė=(A+LC)e−d(t)
ẋ=(A+BK)x+BKe(t)+d(t)

r̂0=dmaxl1

(

1 + ||BK||l3
)







ẋ=Ax+Bu(t− h)+d(t)
˙̂x=Ax̂+Bu(t− h)+L(Cx̂−y)
˙̂xp̂=Ax̂p̂+Bu(t)+e

AhLCe(t)

with u(t)=Kx̂p̂(t) ⇒






ė(t)=(A + LC)e(t)−d(t)
˙̂xp̂(t)=(A +BK)x̂p̂(t)+e

AhLCe(t)
r̂1=dmax(l3l4||eAh||+ l2)







ẋ=Ax+Bu(t− h)+d(t)
˙̂x=Ax̂+Bu(t− h)+L(Cx̂−y)
˙̂z=Aẑ+Bu(t)+LCe(t)+eAhLC[e(t)−e(t− h)]

with u(t) = Kẑ(t) ⇒






ė(t)=(A+LC)e(t)−d(t)
˙̂z=(A+BK)ẑ+LCe(t)+eAhLC[e(t)−e(t−h)]
r̂2=dmaxl3l4 + hDmax(l3l4||eAh||+ l2)

Output
Feedback

Table 4.4 – Disturbance attenuation of the standard and new predictive schemes. The delay free case is added as a comparison reference.

• e(t) = x̂(t)− x(t)

• l1, l2, l3, l4 > 0 only depends on matricesA,B,C,K, L

• ri andr̂i are the convergence radius
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Parameter uncertainties

In this section, the improvement of the new prediction with respect to the presence of param-
eter uncertainties is worked out for constant reference tracking. In this section, it will be shown
that a controller using the standard prediction (xp̂) is not able to guarantee thatx converges to
xr in presence of parameter uncertainties whereas it is possible with a controller using the new
prediction (z). The systems under consideration have the form

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t− h) (4.250)

and the constant referencexr verifies

0 = Axr +Bur. (4.251)

The controlur is the constant input required to maintainx to the equilibrium pointxr. In this
case, the exact prediction is

xp(t) = x(t + h) = e(A+∆A)hx(t) +

t∫

t−h

e(A+∆A)(t−s)(B +∆B)u(s)ds (4.252)

but cannot be computed in practice since it requires the knowledge of∆A and∆B. As a
consequence, only the standard predictionxp̂

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds (4.253)

can be computed in practice. The reduced system obtained from xp̂ reads as

ẋp̂(t) = (A+∆A)xp̂(t) +Bu(t) + φ1(t) (4.254)

with

φ1(t) = −∆A

t∫

t−h

eA(t−s)Bu(s)ds+ eAh∆Bu(t− h). (4.255)

The termφ1 can be seen as a perturbation of the delay free system

ẋp̂(t) = (A+∆A)xp̂(t) +Bu(t). (4.256)

Since system (4.256) is not retarded anymore, all the controllers available fordelay free systems
can be used to stabilizexp̂ aroundxr. In particular, PID or sliding mode algorithms can be
designed to reject the “perturbation”φ1 and makexp̂(t) tend toxr. With xp̂ converging toxr,
it is expected thatx(t) converges toxr. However,xp̂ is not the exact prediction ofx because it
does not take into account the perturbation; so there is an unavoidable error when∆A 6= 0 or
∆B 6= 0. The consequence of this error is stated in the next proposition wherex̃ = xp̂ − xr:

Proposition 4.3.3(Léchappé et al.[2015e]). Consider system (4.250) and suppose that there
exists a predictive controlleru(x̃) continuous at the origin such thatx̃(t) and its time-derivative
tend to zero. Then, the convergence of the statex(t) to the referencexr is not ensured.
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Proof. The dynamics of̃x is governed by

˙̃x(t) = (A+∆A)x̃(t) + ∆Axr +Bu(t)−Bur + φ1(t). (4.257)

Assuming that there exists a controller continuous at the origin 12 such that̃x converges to zero,
then, one haslim

t→+∞
u(x̃(t)) = u( lim

t→+∞
x̃(t)) = u(x̃ = 0) = u∞. Passing to the limit in (4.257),

it can be deduced that

Bu∞ = −∆Axr +Bur − eAh∆Bu∞ +

[
0∫

−h

eA(t−s)ds

]

Bu∞

= Bur + Φ

(4.258)

with lim
t→+∞

||u(t) − u∞|| = 0 andΦ = −∆Axr − eAh∆Bu∞ +
0∫

−h

eA(t−s)dsBu∞. Reminding

thatAxr = −Bur, equality (4.258) becomes

Bu∞ = −Axr + Φ. (4.259)

Besides, from (4.253), it follows that

xr = eAhx∞ +





0∫

−h

e−Asds



Bu∞ (4.260)

with lim
t→+∞

||x(t) − x∞|| = 0. Combining (4.259) and (4.260) and noting thatA and e−As

commute and that−
0∫

−h

Ae−Asds = In − eAh, one gets

0 = eAh(x∞ − xr) +





0∫

−h

e−Asds



Φ. (4.261)

For the systems such that−
[

0∫

−h

e−Asds

]

Φ 6= 0 for all ∆A and∆B, one obtainsx∞ 6= xr.

This ends the proof.

When a predictive controller is designed using the standardpredictionxp̂, it is not possible
to drive the statex to the referencexr due to modeling errors. On the contrary, using the new
prediction (4.229), one has the reduced system

ż(t) = (A+∆A)z(t) +Bu(t) + φ2(t) (4.262)

with
φ2(t) = ∆Bu(t− h) + φ1(t)− φ1(t− h). (4.263)

Similarly to (4.254), the termφ2 can be seen as a perturbation of the delay free system

ż(t) = (A+∆A)z(t) +Bu(t). (4.264)

The consequence of this new prediction on the tracking erroraccuracy is given in Proposition
4.3.4whereX̃ = Xp̂ − xr.

12. Ifu is not continuous at the origin but one hasx̃(t) = 0 for all t > T , then it follows thatu(x̃(t)) = u(x̃ = 0)
for all t > T .
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Proposition 4.3.4(Léchappé et al.[2015e]). Consider system (4.250) and suppose that there ex-
ists a predictive controlleru(X̃) continuous at the origin such that̃X(t) and its time-derivative
tend to zero. Then, the statex(t) converges to the referencexr.

Proof. The tracking error dynamics is governed by

˙̃z(t) = (A+∆A)z̃(t) + ∆Axr +Bu(t)− Bur + φ2(t). (4.265)

Assuming that there exists a controller such thatz̃ converges to zero, it can be deduced from
(4.265) that

(B +∆B)u∞ = Bur −∆Axr (4.266)

with lim
t→+∞

||u(t) − u∞|| = 0 (see the proof of proposition4.3.3for the existence of the limit).

Reminding thatAxr = −Bur, equality (4.266) becomes

(B +∆B)u∞ = −(A +∆A)xr. (4.267)

Besides, from the definition of the new prediction (4.229), it follows that

z(t) = eAh[x(t)− x(t− h)] + e(A+∆A)hx(t− h)

+
t∫

t−h

eA(t−s)B[u(s)− u(s− h)]ds

+
0∫

−h

e−(A+∆A)s(B +∆B)u(t+ s− h)ds

(4.268)

so if z̃ converges to zero, one has

xr = e(A+∆A)hx∞ +





0∫

−h

e−(A+∆A)sds



 (B +∆B)u∞ (4.269)

with lim
t→+∞

||x(t) − x∞|| = 0. Combining (4.267) and (4.269) and noting thatA + ∆A and

e−(A+∆A)s commute and that−
0∫

−h

(A+∆A)e−(A+∆A)sds = In − e(A+∆A)h leads to

0 = e(A+∆A)h[x∞ − xr]. (4.270)

Sincee(A+∆A)h 6= 0 for all ∆A and∆B, x∞ = xr. This ends the proof.

The consequence of this proposition is that, if it is possible to find a robust controller that
makesz tend toxr, thenx will tend to xr in spite of parameter uncertainties. As a result, the
problem of robustness with respect to model uncertainties for input delay systems is reduced
to a problem of robustness versus model uncertainties for delay free systems. Note that the
uncertainties∆A and∆B should be sufficiently small13 to be able to find a predictive controller
ensuring thatz(t) tends toxr.

As in the disturbance attenuation case, this result can be easily extended to the partial mea-
surement case using the reconstructed standard predictionand the reconstructed new prediction
(Definition 4.3.2). Similarly to Propositions4.3.3and4.3.4, the following results hold with
with e(t) = x̂(t)− x(t).

13. cA andcB in Assumption4.3.1has to be sufficiently small.
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Proposition 4.3.5.Consider system (4.250) and observer (O) in (3.90), with a correction term
g(e) that verifies Assumption3.4.2, in closed-loop with a predictive controller such that the
standard prediction̂xp̂ converges to the referencexr. Then, the convergence of the statex to
the referencexr is not ensured.

The proof is similar to the one of Proposition4.3.3.

Proposition 4.3.6.Consider system (4.250) and observer (O) in (3.90), with a correction term
g(e) that verifies Assumption3.4.2, in closed-loop with a predictive controller such that the new
predictionẑ converges to the referencexr. Then, the statex converges to the referencexr.

The proof is similar to the one of Proposition4.3.4.
To summarize, in this section, some properties of the new prediction have been highlighted

for a constant and known delay. In the next section, the performance of the new prediction in
presence of a known and time-varying delay are analyzed.

4.3.2 Time-varying delay

Similarly to Definitions4.3.1and4.3.2, the new prediction can also be defined for a time-
varying delay.

Definition 4.3.3. The new prediction is defined by

z(t) = xp̂(t) + x(t)− xp̂(t− h(t))
︸ ︷︷ ︸

correction term

(4.271)

where the standard predictionxp̂ is

xp̂(t) = eAh(t)x(t) +

t∫

t−h(t)

eA(t−s)Bu(s)ds. (4.272)

Note that even if the system is perfectly known, the correction term is never equal to zero
because of the time-varying delay (Section4.1.2). For partial state knowledge, one has the
following definition.

Definition 4.3.4. The reconstructed new prediction reads as

ẑ(t) = x̂p̂(t) + x̂(t)− x̂p̂(t− h(t)) (4.273)

where the reconstructed standard predictionx̂p̂ is

x̂p̂(t)=e
Ah(t)x̂(t) +

t∫

t−h(t)

eA(t−s)Bu(s)ds. (4.274)

Disturbance attenuation

Let us consider disturbed LTI systems with a known time-varying delay as follows

ẋ(t) = Ax(t) +Bu(t− h(t)) + d(t). (4.275)

In this case, the reduced system with prediction (4.274) reads as

ẋp̂(t) = Axp̂(t) +Bu(t) + eAhd(t) + ḣ(t)ψ1(t) (4.276)
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with ψ1(t) = Axp̂(t)+e
AhBu(t−h)−A

t∫

t−h

eA(t−s)Bu(s)ds. For a time-varying delay, Proposi-

tion4.3.2does not hold anymore. Indeed, the time-varying delay prevents the exact convergence
of xp̂(t) to zero; only the convergence in a ball around zero is achievable even for a constant
disturbance. However, Theorem4.9can be extended to the time-varying case. Letz be the new
prediction defined in (4.271), thus the reduced system is

ż(t) = Az(t) +Bu(t) + d(t) + eAh(t)d(t)− eAh(t−h)d(t− h) + ḣeAh(t−h)d(t− h)
︸ ︷︷ ︸

due to the external disturbance

+ ḣψ1(t)− (1− ḣ)ḣ(t− h)ψ1(t− h) + ḣBu(t− h) + ḣAxp̂(t− h)
︸ ︷︷ ︸

due to inexact prediction for a time-varying delay

.

(4.277)
It can be observed that in the slow-varying delay case|ḣ(t)| ≪ 1, the reduced system (4.276)
(respectively (4.277)) tends to the reduced system for constant a delay (4.236) (respectively
(4.239)). Then, similarly to Theorem4.9, the following result holds

Theorem 4.11.Consider system (4.275) and assume that there exists a controlleru(x)
satisfying Assumption3.4.1. Suppose that predictor-controllersu(z) with z defined by
(4.271) andu(xp̂) with xp̂ defined by (4.272) result in uniform ultimate bounds respectively
r1 andr2. Then, there existδ∗,D∗ such that, providedδ < δ∗ andDmax < D∗, the uniform
ultimate bounds verifyr2 < r1.

Proof. Only a sketch of proof is given because it is similar to those before. The proof is divided
into two steps. First, it is shown that system (Eh) is globally exponentially stable with the new
predictive feedbacku(z) when there is no disturbance (d(t) = 0) and provided thatδ < δ∗.
The proof of this part is similar to the one of Theorem4.3. Then, in presence of an external
disturbance, the ultimate bounds are compared as in Theorem4.9.

Theorem4.11 shows that a feedback controller with the new prediction leads to a smaller
uniform ultimate bound than a controller with the standard prediction for a sufficiently slow-
varying disturbance and a slow-varying delay. The condition onDmax is related to the delay
dynamicsḣ and no simple expression can be computed explicitly.

Remark 4.3.2.The global Lipschitz assumption ofu is needed to show the exponential stability
of system (Eh) with the new predictive feedbacku(z).

This result can be extended to the partial state knowledge case by using the reconstructed
predictionŝxp̂ andẑ (Definition 4.3.4) to compute design the controllers. Then, Theorem4.11
can be rewritten as follows withe(t) = x̂(t)− x(t).

Theorem 4.12.Consider system (4.275), observer (O) in (3.90) and assume that there
exist a controlleru(x) and a correction termg(e) satisfying Assumptions3.4.1and3.4.2
respectively. Suppose that predictor-controllersu(ẑ) wit ẑ defined by (4.273) andu(x̂p̂)
with x̂p̂ defined by (4.274) result in uniform ultimate bounds respectivelyr̂1 and r̂2. Then,
there existδ∗,D∗ such that providedδ < δ∗ andDmax < D∗, the uniform ultimate bounds
verify r̂2 < r̂1.

The proof is divided into two steps as in Theorem4.11 and uses the same argument as in
Theorems4.4and4.10.
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Parameter uncertainties

The systems under consideration have the form

ẋ(t) = (A +∆A)x(t) + (B +∆B)u(t− h(t)) (4.278)

and the constant tracking referencexr verifies

0 = Axr +Bur. (4.279)

In this case, the exact prediction is

xp(t) = x(t+h) = e(A+∆A)h(t)x(t)+

t+h(t)∫

t

e(A+∆A)(t+h(t)−s)(B+∆B)u(s−h(s))ds. (4.280)

but cannot be computed without the knowledge of∆A and∆B. As a consequence, the standard
predictionxp̂ is often used in practice

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (4.281)

The new prediction computed from (4.271) has the following integral expression

z(t) = eAh(t)x(t) +
t∫

t−h(t)

eA(t−s)Bu(s)ds+ [e(A+∆A)h(t) − eAh(t)]x(t− h(t))

t∫

t−h(t)

[e(A+∆A)(t−s)(B +∆B)− eA(t−s)B]u(s− h(s))ds.

(4.282)

It is clear that it includes some information about the uncertainties∆A and∆B. However, for a
time-varying delay, asymptotic tracking is not possible anymore even with the new prediction:
Proposition4.3.4is not satisfied anymore. Only the convergence in a ball around the constant
reference is possible in presence of parameter uncertainties (and a non zero reference). It has
been noted in simulation that the radius of the ball is smaller for controllers of the formu(z(t))
than foru(xp̂(t)). Nevertheless, no formal results is available.

4.3.3 Illustrative example

The same system as in Example4.2.1is used to illustrate above results

ÿ(t) = u(t− h(t)) (4.283)

and its state-space representation

ẋ(t) = Ax(t) +Bu(t− h(t)) (4.284)

with x = [y, ẏ]T , A =

[
0 1
0 0

]

andB =

[
0
1

]

.

Remark 4.3.3. In this example, the whole statex is assumed to be measurable.
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Note that the components of a vector are denoted by the subscript “i”. For instance, one has
xp̂ = [xp̂1, xp̂2]

T . Two PID controllers have been designed. The first one, basedon the standard
predictionxp̂(t)

u(t) = kpxp̂1(t) + kdẋp̂1(t) + ki

∫ t

0

xp̂1(s)ds, (4.285)

and the second one based on the new predictionz(t)

u(t) = kpz1(t) + kdż1(t) + ki

∫ t

0

z1(s)ds. (4.286)

The gains for both controllers and for all the simulations are kp = −8, kd = −4.5, ki = −10.
On Figure4.20, a piecewise constant disturbance and a constant delay are applied to system
(4.284).

Remark 4.3.4. In this example, the variabley has no particular physical meaning so it will be
displayed without unit.

On both figures, the predictionsxp̂ andz are able to perfectly reject the disturbance. How-
ever, only the state from the system controlled by the new predictive scheme is stabilized to 0
(Figure4.20b). This illustrates Propositions4.3.1and4.3.2. Indeed,xp̂ → 0 does not imply
x → 0 for disturbed systems. On the contrary, in the case of a constant disturbance,z → 0
impliesx→ 0.
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(a) Standard predictive controller (4.285)
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(b) New predictive controller (4.286)

Figure 4.20 – Comparison of predictive schemes for a piecewise constant disturbance and a
constant delayh = 0.5 s

Figure 4.21 confirms the result of Theorem4.9 since it can be observed that the time-
varying perturbation is more attenuated for the system controlled by the PID with new pre-
diction (4.286).

The influence of a time-varying delay on the disturbance attenuation is shown on Figure
4.22for piecewise constant and time-varying disturbances. On both Figures4.22aand4.22b,
it is clear that the new predictive controller achieves a better disturbance attenuation than the
standard predictive controller. In addition, note that theexact rejection is not possible anymore
even for a constant disturbance as on Figure4.20b. Also remark that the delay size influences
the magnitude of the attenuation.
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Figure 4.21 – Comparison of predictive schemes for a time-varying disturbanced(t) =
0.5 sin(0.3) and a constant delayh = 0.5 s.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

 

with standard predictive feedback
with new predictive feedback

time (s)

d(t)
h(t)

||x
||

(a) Piecewise constant perturbationd
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(b) Time-varying perturbationd(t) = 0.5 sin(0.3)

Figure 4.22 – Comparison of predictive schemes for a time-varying delay h(t) = 0.5 +
0.2 sin(0.5t) s

In order to test the robustness of the different methods to model accuracy, some parameter
uncertainties∆A and∆B have been added to model (4.284):

∆A =

[
0 0.1

0.15 0

]

(4.287)

and

∆B =

[
0
0.2

]

. (4.288)

In the sequel, a constant referencexr = [3, 0]T has to be tracked. On Figures4.23aand
4.23b, it can be seen that both predictions track perfectly the reference. However, only the use
of the new predictive scheme makes the state of the system converge to the desired trajectory
(Figure4.23b). When the standard predictive scheme is used, a constant tracking error appears
(Figure4.23a). This phenomenon is in accordance with Propositions4.3.3and4.3.4.

Figure4.24shows the tracking performance of the two controllers in presence of a time-
varying delay and parameter uncertainties. As above results, the new predictive controller

./chapter_pred_known_delay/figures/new_pred_dist_3.eps
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(a) Standard predictive controller (4.285)
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Figure 4.23 – Comparison of the predictive schemes for trajectory tracking with a constant and
known delayh = 0.5 s and some parameter uncertainties∆A and∆B defined in (4.287) and
(4.288)

(4.286) achieves better tracking performance than the controllerbased on the standard pre-
diction (4.285). However, this result has not be demonstrated yet and can only be noticed
numerically.
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Figure 4.24 – Comparison of the predictive schemes for trajectory tracking with a time-varying
and known delayh = 0.5 + 0.2 sin(0.5t) s and some parameter uncertainties∆A and∆B
defined in (4.287) and (4.288)

Finally, Figure4.25displays a comparison of the three predictions for disturbance atten-
uation. The PID controller fed by the dynamic prediction of Section4.2 is called a dynamic
predictive controller. Note that PID gains are the same for the three cases. It can be observed
that the dynamic predictive feedback rejects perfectly theconstant disturbance (Figure4.25a).
It is the only controller that asymptotically stabilizes the system in presence of a constant dis-
turbance, the other only achieves stability in a ball aroundthe origin. However, the attenuation
is strongly worsen when the perturbation becomes time-varying as shown on Figure4.25b. The
new predictive controller performs the best attenuation ofthe time-varying disturbance.
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Figure 4.25 – Comparison of predictive schemes for a time-varying delay h(t) = 0.5 +
0.2 sin(0.5t) s

4.3.4 Summary

Contributions

✓ Design of a new prediction (for a constant delay) that improves the robustness of
predictive control to unmodeled dynamics:

• better attenuation of a large class of external disturbances,

• more accurate trajectory tracking in presence of parameter uncertainties.

✓ Extension of the new prediction to a time-varying delay.

The results for a constant delay are gathered in Table4.5.

./chapter_pred_known_delay/figures/new_pred_dist_6.eps
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Control objective
Convergence

to the origin
to a ball

around the origin

✓✔

Stabilization or
Trajectory tracking

without parameter uncertainties

✔ ✓
Trajectory tracking

with parameter uncertainties

Constant ✔ ✓
Disturbance
attenuation

Time-varying ✓✔

Table 4.5 – Comparison of the best convergence results achievable for thestandard predictive
methods (✓) and thenew predictivemethod (✔) for a known delay, a slow-varying disturbance,
and a constant reference
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In the previous chapter, the delay value was used to compute the different predictions. How-
ever, the exact value ofh is rarely available in real applications. An alternative could be to use
memoryless controllers that do not need the value of the delay 1. Nevertheless, these techniques
only achieve fast performances for a small delay. When this latter becomes larger, predictive
control is necessary to achieve fast behaviour. Sometimes,the mean value of the delay is known
so an approximated prediction can be computed thanks to thisvalue and then the robustness to
delay variation is studied. In this chapter, it is assumed that the exact value of the delay is not
known but that an estimation is available. This estimation can be obtained via the estimation
techniques of PartI for example. The predictive techniques of Chapter4 are going to be revis-
ited by considering the delay estimation instead of the exact delay. The cases of a constant and
a time-varying delay estimation are going to be studied.

In Section5.1, the standard prediction is computed from a delay estimation and some new
conditions for the closed-loop stability are established.In Section5.2, the stability of the dy-
namic observation-prediction method, introduced in Section 4.2for a known delay, is analyzed
in presence of an estimated delay. The new prediction, presented in Section4.3, is not extended
to the unknown delay case since its design is based on the knowledge of an accurate delay value.

1. See the beginning of Section1.2.1for references on memoryless controllers.

135



136 CHAPTER 5. PREDICTION WITH AN UNKNOWN DELAY

5.1 Standard prediction with unknown delay

When the exact delay is not available, the exact prediction cannot be computed. However,
an approximated prediction can be designed from an estimated value of the delay. In this case,
the delay will not be perfectly compensated. The objective of this section is to find stability
conditions for feedbacks that are based on this approximated prediction. First the reduction
method will be revisited and then a Lyapunov analysis will beperformed using a Lyapunov-
Krasovskii functional.

Stability conditions are given in Section5.1.1for an unknown and constant delay and in
Section5.1.2for an unknown and time-varying delay. State and output feedbacks are treated in
both sections.

5.1.1 Constant delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh) ẋ(t) = Ax(t) +Bu(t− h)

whereh is an unknown and constant delay. Reminding that Assumption3.4.1 holds, there
exists a feedbacku(x) that exponentially stabilizes system (Eh) whenh = 0. In addition, it is
supposed that a delay estimationĥ is available2.

Full state knowledge

Since the whole state is known, the following prediction is computed thanks to the constant
estimation̂h:

z(t) = eAĥx(t) +

t∫

t−ĥ

eA(t−s)Bu(s)ds. (5.1)

Remark 5.1.1. On top of the initial condition onx, an initial conditionu(s) = φu(s) for
s ∈ [−ĥ, 0], withφu a continuous function,3 is needed to computez(t).

The following theorem describes the condition for the closed-loop stability of the above
system.

Theorem 5.1. Consider system (Eh), with an unknown and constant delayh, and assume
that there exists a controlleru(x) satisfying Assumption3.4.1. Suppose that system (Eh) is
controlled byu(z) with z defined by (5.1), whereĥ is a constant estimation ofh, and define

Υ(t) = ||x(t)||2 + sup
s∈[t−ĥ,t]

||u(s)||2 + sup
s∈[t−max(h,ĥ),t]

||u̇(s)||2. (5.2)

Then, there existς, ̺,D∗ > 0 such that, providedD = |ĥ − h| < D∗, for any initial
condition one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.3)

2. See Chapters2 and3 for delay estimation techniques.
3. The extra conditionφu(0) = u(z(0)) may be required to guarantee the continuity ofz at t = ĥ (and

consequently ofu at t = ĥ).
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Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. Without loss of generality, the caseĥ > h is considered here. By using Leibniz’s formula
for integral differentiation (3.103), it can be deduced that prediction (5.1) is solution of the
following equation

ż(t) = Az(t) +Bu(t) + eAĥB

t−h∫

t−ĥ

u̇(s)ds. (5.4)

Remark that if̂h = h then the delay is perfectly compensated andż(t) = Az(t) + Bu(t). The
following Lyapunov-Krasovskii functional candidate is proposed

V (t) = V1(t) + γV2(t) (5.5)

where
V1(t) = zT (t)Pz(t) (5.6)

withP defined in Assumption3.4.1,

V2(t) =

t∫

t−ĥ

(ĥ+ s− t)||u̇(s)||2ds (5.7)

andγ > 0. Note thatV1 is the standard Lyapunov function used in the delay free caseandV2

is a functional that is introduced to deal with the integral
t−h∫

t−ĥ

u̇(s)ds that arises from the delay

mismatch. From equation (3.88) and taking the time derivative ofV1 along the trajectories of
system (5.4), one gets

V̇1(t) ≤ −cu||z(t)||2 +N ||z(t)|| ||w(t)||
(5.8)

with N = 2||P || ||B|| ||eAĥ|| and ||w(t)|| =
t−h∫

t−ĥ

||u̇(s)||ds. In addition, the time derivative of

V2 is given by

V̇2(t) = ĥ||u̇(t)||2 −
t∫

t−ĥ

||u̇(s)||2ds. (5.9)

Reminding that

−
t∫

t−ĥ

||u̇(s)||2ds ≤ −
t−h∫

t−ĥ

||u̇(s)||2ds (5.10)

and using Jensen’s inequality (3.101), one has

V̇2(t) ≤ ĥ||u̇(t)||2 − 1

2D
||w(t)||2 − 1

2

t∫

t−ĥ

||u̇(s)||2ds (5.11)
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withD = |ĥ− h|. Furthermore, sinceu is globally Lipschitz and applying Hölder’s inequality
(3.104) to (5.4), it can be deduced that

||ż(t)||2 ≤ c1||z(t)||2 + c2||w(t)||2. (5.12)

with c1 = 2(||A|| + lu||B||)2 and c2 = 2||eAĥB||2. From ||u̇(t)|| ≤ lu||ż(t)|| wherelu is the
Lipschitz constant associated to the functionu (see (3.89)), one has

V̇2(t) ≤ ĥl2uc1||z(t)||2 + ĥl2uc2||w(t)||2 −
1

2D
||w(t)||2 − 1

2

t∫

t−ĥ

||u̇(s)||2ds. (5.13)

From (5.8) and (5.13), it follows that

V̇ (t) ≤ −
[

cu − γĥl2uc1

]

||z(t)||2 −
[

γ

2D
− γĥl2uc2

]

||w(t)||2

+N ||z(t)|| ||w(t)|| − γ

2

t∫

t−ĥ

||u̇(s)||2ds.
(5.14)

Maximizing the cross term by (3.102), above equation becomes

V̇ (t) ≤ −
[
cu
2
− γĥl2uc1

]

||z(t)||2 −
[

γ

2D
− N2

2cu
− γĥl2uc2

]

||w(t)||2 − γ

2

t∫

t−ĥ

||u̇(s)||2ds.

(5.15)
To prove the exponential stability of (5.4), it is sufficient to find conditions which guarantee the
following inequality

V̇ (t) + εV (t) ≤ 0 (5.16)

with ε > 0. From equation (5.15), Assumptions3.4.1and3.4.2, one has

V̇ (t) + εV (t) ≤ −
[
cu
2
− γĥl2uc1

]

||z(t)||2 −
[

γ

2D
− N2

2cu
− γĥl2uc2

]

||w(t)||2

−γ

2

t∫

t−ĥ

||u̇(s)||2ds+ εc̄||z(t)||2 + γε
t∫

t−ĥ

ĥ||u̇(s)||2ds.
(5.17)

It follows that

V̇ (t) + εV (t) ≤ −
[
cu
2
− γĥl2uc1 − εc̄

]

||z(t)||2 −
[

γ

2D
− N2

2cu
− γĥl2uc2

]

||w(t)||2

−
[
γ

2
− γεĥ

] t∫

t−ĥ

||u̇(s)||2ds.
(5.18)

In order to makeV̇ (t) + εV (t) ≤ 0, it is sufficient to choose the coefficients multiplying the
quadratic terms negative so







cu
2

− γĥl2uc1 − εc̄ > 0,

D < D∗ =
γ/2

N2

2cu
+ γĥl2uc2

,

1

2
− εĥ > 0.

(5.19)

(5.20)

(5.21)

Choosingγ and ε sufficiently small guarantees that (5.19) and (5.21) are true. In this case,
takingD < D∗ ensures that

V̇ (t) ≤ −εV (t). (5.22)

Finally, inequality (5.3) can be deduced from (5.22) by similar computations as in Theorem
4.1.



5.1. STANDARD PREDICTION WITH UNKNOWN DELAY 139

Qualitative analysis: Condition (5.20) is intuitive because it means that the approximated
delay should be sufficiently close to the real delay. An exactvalue ofD∗ is available but
because of the conservatism of the Lyapunov approach, this value will be smaller than the
maximum admissible one. However, a qualitative analysis ofthe bound is possible and is given
below.

• For a large value oflu 4 thenD∗ becomes smaller which means that the error estimation
has to be smaller for a fast controller.

• For a large estimated delaŷh thenD∗ becomes smaller which means that the estimation
error is more prejudicial for a large delay.

Partial measurement knowledge

In this part, the state is partially measured so an estimatedstatex̂ is computed from observer
(O) in (3.90) with a correction termg that verifies Assumption3.4.2. Since the delayh is
unknown, the estimated delayĥ is used in the observer (O) in (3.90), then the dynamics of the
estimation error (3.93), denotede = x̂− x, becomes

ė(t) = Ae(t) + g(Ce(t)) +B[u(t− ĥ)− u(t− h)] (5.23)

and the prediction5 reads as

z(t) = eAĥx̂(t) +

t∫

t−ĥ

eA(t−s)Bu(s)ds. (5.24)

The following theorem describes the necessary conditions for closed-loop stability of the above
system. It is reminded thate(t) = x̂(t)− x(t).

Theorem 5.2. Consider system (Eh) and observer (O), with an unknown and constant
delayh, and assume that there exist a controlleru(x) and a correction termg(e) satisfying
Assumptions3.4.1and 3.4.2respectively. Suppose that system (Eh) is controlled byu(z)
with z defined by (5.24), whereĥ is a constant estimation ofh, and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−ĥ,t]

||u(s)||2 + sup
s∈[t−max(h,ĥ),t]

||u̇(s)||2. (5.25)

Then, there existς, ̺,D∗ > 0 such that, providedD = |ĥ− h| < D∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.26)

Therefore lim
t→+∞

||x(t)|| = 0, lim
t→+∞

||e(t)|| = 0 and the convergence is exponential.

Proof. Without loss of generality, the caseĥ > h is considered here. The prediction (5.24) is
solution of the following equation:

ż(t) = Az(t) +Bu(t) + eAĥg(Ce(t)). (5.27)

4. lu is the Lipschitz constant associated to the functionu and is defined in (3.89).
5. See Remark5.1.1for the definition of initial conditions and add the initial conditionx̂(0).
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System (5.27) is coupled with the observation error whose dynamics is given by

ė(t) = Ae(t) + g(Ce(t)) +B

t−ĥ∫

t−h

u̇(s)ds. (5.28)

Let
V (t) = V1(t) + γV2(t) + θV3(t) (5.29)

be a Lyapunov-Krasovskii functional candidate with

V1(t) = zT (t)Pz(t), (5.30)

V2(t) =

t∫

t−ĥ

(ĥ+ s− t)||u̇(s)||2ds, (5.31)

V3(t) = eT (t)Qe(t), (5.32)

and γ, θ > 0. By similar computations to those of Theorem5.1, the asymptotic stability of
system (Eh) to the origin can be derived provided thatD = ĥ − h is sufficiently small. Note
that V1 andV2 are the same as in Theorem5.1 and thatV3 is added to deal with the observer
dynamics.

5.1.2 Time-varying delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh) ẋ(t) = Ax(t) +Bu(t− h(t))

whereh(t) is an unknown time-varying delay.

Full state knowledge

Since the whole state is known, the following prediction is computed thanks to the estimated
valueĥ

z(t) = eAĥ(t)x(t) +

t∫

t−ĥ(t)

eA(t−s)Bu(s)ds. (5.33)

Remark 5.1.2. On top of the initial condition onx, an initial conditionu(s) = φu(s) for
s ∈ [−hmax, 0], withφu a continuous function,6 is needed to computez(t).

The following theorem describes the necessary conditions for closed-loop stability. It is

reminded that̂δ stands for the upper bound of the estimated delay time derivative: | ˙̂h(t)| < δ̂
(Assumption3.4.6).

Theorem 5.3. Consider system (Eh), whereh(t) is unknown and complies with Assump-
tions3.4.3and3.4.4, and assume that there exists a controlleru(x) satisfying Assumption
3.4.1. Suppose that system (Eh) is controlled byu(z) with z defined by (5.33), whereĥ(t)

6. The extra conditionφu(0) = u(z(0)) may be required to guarantee the continuity ofz at t = ĥ(t) (and
consequently ofu at t = ĥ(t)).
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delay

estimator

z(t) = eAĥ(t)x(t) +
t∫

t−ĥ(t)

eA(t−s)Bu(s)ds

ẋ(t)=Ax(t)+Bu(t−h(t))h(t)u
xr u(t) u(t− h(t))

z(t) x(t)

ĥ(t)

u(t)

Figure 5.1 – Closed-loop scheme with standard prediction computed from an estimated delay
and the full state.

is an estimation ofh(t) that complies with Assumptions3.4.5and3.4.6, and define

Υ(t) = ||x(t)||2 + sup
s∈[t−hmax,t]

||u(s)||2 + sup
s∈[t−hmax,t]

||u̇(s)||2. (5.34)

Then, there existς, ̺, δ̂∗, D∗ > 0 such that, provided̂δ < δ̂∗ andD = max
t≥0

|ĥ(t)− h(t)| <
D∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.35)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. By using Leibniz’s formula for integral differentiation (3.103), the predictionz defined
by (5.33) is solution of the following equation:

ż = Az+Bu(t)+
˙̂
hAz+ eAĥB

t−h∫

t−ĥ

u̇(s)ds+
˙̂
heAĥBu(t− ĥ)− ˙̂

hA

t∫

t−ĥ

eA(t−s)Bu(s)ds. (5.36)

Note that the argument “t” in h(t), ĥ(t), and ˙̂
h(t) may be omitted for clarity. Remark that

if ĥ = h then (5.36) is equal to the ideal case (4.34). The following Lyapunov-Krasovskii
functional candidate is proposed

V (t) = V1(t) + γV2(t) + θV3(t) (5.37)

with θ, γ > 0 and where

V1(t) = zT (t)Pz(t), (5.38)

V2(t) =

t∫

t−hmax

(hmax + s− t)||u̇(s)||2ds, (5.39)

./chapter_pred_unknown_delay/figures/scheme_h_unknown.ps
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V3(t) =

t∫

t−ĥ

(hmax + hmin + s− t)||u(s)||2ds. (5.40)

The functionV1 is the standard Lyapunov function candidate used in the delay free case (As-
sumption3.4.1) andV2 andV3 are functionals used to deal with the delay mismatch and the
time-varying delay respectively. From equation (3.88) and taking the time derivative ofV1
along the trajectories of system (5.36), one obtains

V̇1(t) ≤ −[cu − 2δ̂||P || ||A||]||z(t)||2 +N ||z(t)|| ||w(t)||+ δ̂N ||z(t)|| ||u(t− ĥ)||
+δ̂M ||z(t)|| ||v(t)||

(5.41)
withM = 2||P || ||A|| ||B||e||A||hmax,N = 2||P || ||B||e||A||hmax,

||v(t)|| =
t∫

t−ĥ

||u(s)||ds (5.42)

and

||w(t)|| =
max(t−h,t−ĥ)∫

min(t−h,t−ĥ)

||u̇(s)||ds. (5.43)

The time derivative ofV2 is given by

V̇2(t) = hmax||u̇(t)||2 −
t∫

t−hmax

||u̇(s)||2ds. (5.44)

Since

−
t∫

t−hmax

||u̇(s)||2ds ≤ −
max(t−h,t−ĥ)∫

min(t−h,t−ĥ)

||u̇(s)||2ds (5.45)

and from Jensen’s inequality (3.101)

−
max(t−h,t−ĥ)∫

min(t−h,t−ĥ)

||u̇(s)||2ds ≤ − 1

D






max(t−h,t−ĥ)∫

min(t−h,t−ĥ)

||u̇(s)||ds






2

, (5.46)

withD = max
t≥0

|ĥ(t)− h(t)|. It follows that

V̇2(t) ≤ hmax||u̇(t)||2 −
1

2D
||w(t)||2 − 1

2

t∫

t−hmax

||u̇(s)||2ds. (5.47)

Furthermore, from (5.36) and Hölder’s inequality (3.104), it can be deduced that

||ż(t)||2 ≤ c1||z(t)||2 + c2||w(t)||2 + c2δ̂
2||u(t− ĥ)||2 + c4δ̂

2||v(t)||2 (5.48)
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with c1 = 4(||A||(1 + δ) + lu||B||)2, c2 = 4e2||A||hmax||B||2 andc4 = e2||A||hmax||A||2||B||2. As
a consequence, (5.47) becomes

V̇2(t) ≤ hmaxl
2
u[c1||z(t)||2 + c2||w(t)||2 + c2δ̂

2||u(t− ĥ)||2 + c4δ̂
2||v(t)||2]

− 1
2D

||w(t)||2 − 1
2

t∫

t−hmax

||u̇(s)||2ds. (5.49)

The time derivative ofV3 verifies

V̇3(t) ≤ (hmax + hmin)||u(t)||2 − hmin||u(t− ĥ)||2 − 1

2ĥ
||v(t)||2 − 1

2

t∫

t−ĥ

||u(s)||2ds. (5.50)

From the above maximizations, it follows that

V̇ (t) ≤ −[cu − 2δ̂||P || ||A||]||z(t)||2 +N ||z(t)|| ||w(t)||+ δ̂N ||z(t)|| ||u(t− ĥ)||
+δ̂M ||z(t)|| ||v(t)||+ γhmaxl

2
uc1||z(t)||2 − γ

[
1
2D

− hmaxl
2
uc2
]
||w(t)||2

+γhmaxl
2
uc2δ̂

2||u(t− ĥ)||2 − [ θ

2ĥ
− γhmaxl

2
uc4δ̂

2]||v(t)||2

−γ

2

t∫

t−hmax

||u̇(s)||2ds+ 2θhmax||u(t)||2 − θhmin||u(t− ĥ)||2 − θ
2

t∫

t−ĥ

||u(s)||2ds.

(5.51)
Applying (3.102) and Young’inequality (3.100) to get rid of the cross terms leads to

V̇ (t) ≤ −[cu − 2δ̂||P || ||A|| −DN2

γ
− 2θhmaxl

2
u − γhmaxl

2
uc1 − δ̂(N +M)/2]||z(t)||2

−
[

θhmin − γhmaxl
2
uc2δ̂

2 − δ̂N/2
]

||u(t− ĥ)||2 − γ
[

1
4D

− hmaxl
2
uc2
]
||w(t)||2

−
[

θ

2ĥ
− γhmaxl

2
uc4δ̂

2 − δ̂M/2
]

||v(t)||2 − γ

2

t∫

t−hmax

||u̇(s)||2ds− θ
2

t∫

t−ĥ

||u(s)||2ds.

(5.52)
To prove the exponential stability of (5.36), it is sufficient to find conditions which guarantee the
following inequality

V̇ (t) + εV (t) ≤ 0 (5.53)

with ε > 0. From equation (5.52) and Assumptions3.4.1, one has

V̇ −εV ≤ −[cu − 2δ̂||P || ||A|| −DN2

γ
− 2θhmaxl

2
u − γhmaxl

2
uc1 − δ̂(N +M)/2]||z(t)||2

−
[

θhmin − γhmaxl
2
uc2δ̂

2 − δ̂N/2
]

||u(t− ĥ)||2 − γ
[

1
4D

− hmaxl
2
uc2
]
||w(t)||2

−
[

θ

2ĥ
− γhmaxl

2
uc4δ̂

2 − δ̂M/2
]

||v(t)||2 − γ

2

t∫

t−hmax

||u̇(s)||2ds− θ
2

t∫

t−ĥ

||u(s)||2ds

εc̄||z(t)||2 + εγ
t∫

t−hmax

hmax||u̇(s)||2ds+ εθ
t∫

t−ĥ

(hmax + hmin)||u(s)||2ds.

(5.54)
It follows that

V̇ −εV ≤ −[cu − 2δ̂||P || ||A|| −DN2

γ
− 2θhmaxl

2
u − γhmaxl

2
uc1 − δ̂(N +M)/2− εc̄]||z(t)||2

−
[

θhmin − γhmaxl
2
uc2δ̂

2 − δ̂N/2
]

||u(t− ĥ)||2 − γ
[

1
4D

− hmaxl
2
uc2
]
||w(t)||2

−
[

θ

2ĥ
− γhmaxl

2
uc4δ̂

2 − δ̂M/2
]

||v(t)||2

−γ
[
1
2
− εhmax

] t∫

t−hmax

||u̇(s)||2ds− θ
[
1
2
− 2εhmax

] t∫

t−ĥ

||u(s)||2ds.

(5.55)
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In order to makeV̇ (t) + εV (t) ≤ 0, it is sufficient to choose the coefficients multiplying the
quadratic terms negative. Thus, the following conditions have to be verified






cu − 2δ̂||P || ||A|| −D
N2

γ
− 2θhmaxl

2
u − γhmaxl

2
uc1 − δ̂(N +M)/2 − εc̄ > 0,

θhmin − γhmaxl
2
uc2δ̂

2 − δ̂N/2 > 0,

1

4D
− hmaxl

2
uc2 > 0,

θ

2ĥ
− γhmaxl

2
uc4δ̂

2 − δ̂M/2 > 0,

1

2
− εhmax > 0,

1

2
− 2εhmax > 0.

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

Rearranging the terms of condition (5.56) and (5.58) gives

D < D1 (5.62)

and
D < D2 (5.63)

with

D1 =
γ

N2

[

cu − δ̂(2||P || ||A||+ (N +M)/2)− hmaxl
2
u(γc1 + 2θ)− εc̄

]

, (5.64)

D2 =
1

4hmaxl2uc2
. (5.65)

Solving the binomial inequations (5.57) and (5.59) in δ̂ leads to

δ̂ < δ1 (5.66)

and
δ̂ < δ2 (5.67)

with

δ1 =

√

θhmin

γhmaxl2uc2
, (5.68)

δ2 =

√

θ

2γĥh2maxl
2
uc4

. (5.69)

In order to guarantee thatD1 is positive,̂δ has to satisfy the following condition

δ < δ3 (5.70)

with

δ3 =
cu − hmaxl

2
u(γc1 + 2θ)− εc̄

2||P || ||A||+ (N +M)/2
. (5.71)

Choosingγ, θ andε sufficiently small guarantees that (5.60) and (5.61) are true and thatδ3 is
positive. In this case, taking

D < D∗ = min(D1, D2) (5.72)
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and
δ̂ < δ̂∗ = min(δ1, δ2, δ3) (5.73)

ensures that
V̇ (t) ≤ −εV (t). (5.74)

Finally, inequality (5.35) can be deduced from (5.74) by similar computations as in Theorem
4.1.

Qualitative analysis: The conditions obtained are intuitive because it means thatthe approx-
imated delay should be sufficiently close to the real delay and that it should be slow-varying.
It is interesting to note that this latter condition (δ̂(t) < δ̂∗) is similar to the one in the known
delay case7. Further qualitative comments on the boundsD∗ andδ̂∗ are given below.

• For a large value oflu 8 thenD1 andD2 become smaller which means that the error
estimation has to be smaller for a fast controller.

• Similarly for a large value oflu thenδ1, δ2 andδ3 decrease which means that the admis-
sible delay variations are slower for a fast controller.

• For a “large” value ofε thenD1 becomes smaller which means that the convergence rate
of the closed-loop system can be larger for a small error estimation.

• For “large” value ofε then δ3 decrease which means that the convergence rate of the
closed-loop system can be larger for slow delay variations.

• For a large value ofhmax then all theDi andδi decrease which means that the estimation
error and the delay variations are more prejudicial for a large delay.

Partial measurement knowledge

In this part, the state is partially measured so observer (O) in (3.90) is introduced to esti-
mate the state with a correction termg that verifies Assumption3.4.2. Since the delayh(t) is
unknown, the estimated delayĥ(t) is used in the observer and the observation error, denoted by
e = x̂− x, has the following dynamics

ė(t) = Ae(t) + g(Ce(t)) +B[u(t− ĥ(t))− u(t− h(t))] (5.75)

and the prediction9 is

z(t) = eAĥ(t)x̂(t) +

t∫

t−ĥ(t)

eA(t−s)Bu(s)ds. (5.76)

The closed-loop scheme is given on Figure5.2. The following theorem describes the necessary
conditions for closed-loop stability of the above system. It is reminded that̂δ stands for the

upper bound of the delay time derivative,| ˙̂h(t)| < δ̂ (Assumption3.4.6), and thate(t) =
x̂(t)− x(t).

Theorem 5.4.Consider system (Eh) and observer (O), whereh(t) is unknown and complies
with Assumptions3.4.3 and 3.4.4, and assume that there exist a controlleru(x) and a
correction termg(e) satisfying Assumptions3.4.1 and 3.4.2 respectively. Suppose that

7. In Section4.1.2, the real delayh(t) had to be slow-varying, here it is the estimated delayĥ(t).
8. lu is the Lipschitz constant associated to the functionu and is defined in (3.89).
9. See Remark5.1.2for the definition of initial conditions and add the initial conditionx̂(0).
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delay

estimator

z(t) = eAĥ(t)x̂(t) +
t∫

t−ĥ(t)

eA(t−s)Bu(s)ds

ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)h(t)u

xr u(t) u(t− h(t))

z(t)

x̂(t)

ĥ(t)

u(t)

˙̂x = Ax̂+Bu(t−ĥ(t))+g(Cx̂− y)
u(t)

y(t)

Figure 5.2 – Closed-loop scheme with the standard prediction computed from an estimated
delay and the estimated state.

system (Eh) is controlled byu(z) with z defined by (5.76), whereĥ(t) is an estimation of
h(t) that complies with Assumptions3.4.5and3.4.6, and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−hmax,t]

||u(s)||2 + sup
s∈[t−hmax,t]

||u̇(s)||2. (5.77)

Then, there existς, ̺, δ̂∗, D∗ > 0 such that, provided̂δ < δ̂∗ andD = max
t≥0

|ĥ(t)− h(t)| <
D∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.78)

Therefore lim
t→+∞

||x(t)|| = 0, lim
t→+∞

||e(t)|| = 0 and the convergence is exponential.

Proof. The predictionz in (5.76) is solution of the following equation

ż = Az +Bu(z) + eAĥg(Ce) +
˙̂
heAĥBu(t− ĥ) +

˙̂
hAz − ˙̂

hA

t∫

t−ĥ(t)

eA(t−s)Bu(s)ds. (5.79)

Let
V (t) = V1(t) + γV2(t) + θV3(t) + ζV4(t) (5.80)

be a Lyapunov-Krasovskii functional candidate with

V1(t) = zT (t)Pz(t), (5.81)

V2(t) =

t∫

t−hmax

(hmax + s− t)||ż(s)||2ds, (5.82)

V3(t) =

t∫

t−ĥ

(hmax + hmin + s− t)||z(s)||2ds, (5.83)

./chapter_pred_unknown_delay/figures/scheme_h_unknown_x_unknown.ps
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V4(t) = eT (t)Qe(t), (5.84)

andγ, θ, ζ > 0. By similar computations to those of Theorems5.3and5.2, the global exponen-
tial stability of system (Eh) to the origin can be derived. Note thatV1, V2 andV3 are the same
as in Theorem5.3andV4 is added to deal with the observer dynamics.

5.1.3 Illustrative example

Consider the same scalar system as in Section4.1.3:

ẋ(t) = ax(t) + bu(t− h(t)) (5.85)

with a = 1 and b = 1. The same controlleru(t) = kz(t) is going to be tested with the
feedback gaink = −2. Note thatk is chosen to haveλ(a + bk) = −1. A time-varying delay
h(t) = 1 + 0.3 sin(0.3t) is applied to the system.

Remark 5.1.3. In this example, the variablex has no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure5.3, constant estimationŝh have been used in order to study the influence of
the estimation error|h − ĥ| on the convergence of the system. On Figure5.3a, the delay is
underestimated and it is clear that the system is unstable. On Figure5.3b, the mean value of
h(t) is used to compute the prediction. In this case, the delay estimation error is small and
the closed-loop is stable. The analysis of Figure5.3cshows that the system tends to stabilize
when|h − ĥ| is small whereas it diverges when this error increases. These simulations are in
accordance with the result of Theorem5.3.

Finally, the delay estimator presented in Section3.2.2is used to obtain an estimation of the
delay. On Figure5.4, three phases can be distinguished. Between0 and9 seconds the delay
estimation is far from the real value so the prediction is notaccurate and the system diverges.
Between9 and20 seconds, the delay estimation is close to the real value of the delay so the
predictive feedback is able to stabilize the system. From20 seconds to the end, the system does
not move anymore so the input is constant and the delay has no influence on the system. During
this period, the delay cannot be estimated sinceu is constant.

5.1.4 Summary

Contributions

✓ Extension of the results of Section4.1to the unknown delay case.

✓ Explicit stability conditions are provided.

Table5.1 sums up the results of this section. Note that the boundsδ∗ andD∗ may have
different values for each case.

5.2 Dynamic observation-prediction with an unknown delay

The dynamic observation-prediction presented in Section4.2is particularly interesting since
it is easy to compute. However, the exact delay knowledge is necessary. In this section, the goal
is to find a condition on the delay accuracy that preserves theresult of the known delay case.
The stability analysis is carried out thanks to an original Lyapunov-Krasovskii functional.

The single observer-predictor with an unknown delay is worked out in Section5.2.1and
Section5.2.2extends the result to sequential sub observers-predictors.
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Figure 5.3 – Comparison of the closed-loop stability for different constant values of the esti-
mated delaŷh and for an unknown time-varying delayh(t) = 1 + 0.3 sin(0.3t) s.

5.2.1 Single observer-predictor with an unknown delay

In this section, an extension of the method described in4.2 for a known delay is extended
to the case of an unknown delay. Before dealing with the time-varying delay case, the case of a
constant delay is worked out in order to introduce the basic concept of the proof.

Constant delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh)
{
ẋ(t) = Ax(t) +Bu(t− h)
y(t) = Cx(t).

The predictionz is computed from an estimated delayĥ by the observer-predictor

ż(t) = Az(t) +Bu(t) + g(Cz(t− ĥ)− y(t)) (5.86)

where the correction termg satisfies Assumption3.4.2.

./chapter_pred_unknown_delay/figures/simu_1_h_unknown.eps
./chapter_pred_unknown_delay/figures/simu_2_h_unknown.eps
./chapter_pred_unknown_delay/figures/simu_3_h_unknown.eps
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Figure 5.4 – Closed-loop performance for a predictive feedback with a delay estimation
computed by the delay observer of Section3.2.2. The unknown delay is equal toh(t) =
1 + 0.3 sin(0.3t) s.

Prediction Delay Convergence Condition Feedback Thm

Standard Unknown

h gl. & exp. |ĥ− h| < D∗

state 5.1

output 5.2

h(t) gl. & exp.
state 5.3

δ̂ < δ̂∗

max
t≥0

|ĥ(t)− h(t)| < D∗

output 5.4

Table 5.1 – Sum up of the convergence results for standard prediction with an unknown delay

• gl.: global – exp.: exponential

• h: constant delay

• ĥ: constant delay estimation

• h(t) ∈ [hmin, hmax] and|ḣ(t)| ≤ δ: time-varying delay

• ĥ(t) ∈ [hmin, hmax] and| ˙̂h(t)| ≤ δ̂: time-varying delay estimation

Remark 5.2.1.Note that to computez(t), the initial conditionz(t) = φz(t) for t ∈ [−ĥ, 0] with
φz a continuous function is required. The predictionz will be continuous int = ĥ.

Since Assumption3.4.1 holds, there exists a feedbacku(x) that exponentially stabilizes
system (Eh) whenh = 0. Then a predictive feedbacku(z) is going to be applied to stabilize
(Eh). Denoting

ep(t) = z(t− ĥ)− x(t) (5.87)

the prediction error, the following result holds.

./chapter_pred_unknown_delay/figures/fig_3.eps
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Theorem 5.5. Consider system (Eh), with an unknown and constant delayh, and assume
that there exist a controlleru(x) and a correction termg(ep) satisfying Assumptions3.4.1
and3.4.2respectively. Suppose that system (Eh) is controlled byu(z) with z computed by
observer-predictor (5.86), whereĥ is a constant estimation ofh, and define

Υ(t) = ||x(t)||2 + sup
s∈[t−ĥ,t]

||z(s)||2 + sup
s∈[t−ĥ,t]

||ėp(s)||2 + sup
s∈[t−ĥ,t]

||u̇(s)||2. (5.88)

Then, there existς, ̺, ĥ∗, D∗ > 0 such that, provided̂h < ĥ∗ andD = |ĥ − h| < D∗, one
has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.89)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. Without loss of generality the caseĥ > h is considered here. First, combining (5.86)
with (Eh) leads to

ż(t) = Az(t) +Bu(t) + g(Cep(t)). (5.90)

The dynamics ofep(t) reads as

ėp(t) = Aep(t) +B[u(t− ĥ)− u(t− h)] + g(Cep(t− ĥ)) (5.91)

and can be rewritten as follows

ėp(t) = Aep(t) + g(Cep(t))− B

t−h∫

t−ĥ

u̇(s)ds−
Cep(t)∫

Cep(t−ĥ)

dg

ds
(s)ds. (5.92)

The following Lyapunov-Krasovskii functional candidate is proposed

V (t) = γV1(t) + V2(t) + V3(t) + V4(t) (5.93)

where
V1(t) = zT (t)Pz(t), (5.94)

withP defined in Assumption3.4.1,

V2(t) = eTp (t)Qep(t), (5.95)

withQ defined in Assumption3.4.2,

V3(t) =

t∫

t−ĥ

(ĥ + s− t)||ėp(s)||2ds, (5.96)

V4(t) =

t∫

t−ĥ

(ĥ+ s− t)||u̇(s)||2ds (5.97)

andγ > 0. Remark thatV1 andV2 are the standard Lyapunov function candidates used in the

delay free case whereasV3 andV4 are added to deal with the integral terms
Cep(t)∫

Cep(t−h)

dg

ds
(s)ds and
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t−ĥ∫

t−h

u̇(s)ds respectively. Using (3.88) and taking the time derivative ofV1 along the trajectories

of (5.90), one obtains
V̇1(t) ≤ −cu||z(t)||2 +R||z(t)|| ||ep(t)|| (5.98)

withR = 2lg||P || ||C||. By substitution one gets

∥
∥
∥
∥
∥
∥
∥

Cep(t)∫

Cep(t−ĥ)

dg

ds
(s)ds

∥
∥
∥
∥
∥
∥
∥

≤ lg||C||
t∫

t−ĥ

||ėp(s)||ds. (5.99)

So using (3.94), it follows that

V̇2(t) ≤ −mg||ep(t)||2 +R′||ep(t)|| ||m(t)||+N ||ep(t)|| ||w(t)|| (5.100)

withR′ = 2lg||Q|| ||C||,N = 2||Q|| ||B||, ||m(t)|| =
t∫

t−ĥ

||ėp(s)||ds and||w(t)|| =
t−h∫

t−ĥ

||u̇(s)||ds.

In addition,

V̇3(t) = ĥ||ėp(t)||2 −
t∫

t−ĥ

||ėp(s)||2ds (5.101)

so, reminding that

−
t∫

t−ĥ

||ėp(s)||2ds ≤ −1

ĥ






t∫

t−ĥ

||ėp(s)||ds






2

, (5.102)

it follows that

V̇3(t) ≤ ĥ||ėp(t)||2 −
1

2ĥ
||m(t)||2 − 1

2

t∫

t−ĥ

||ėp(s)||2ds. (5.103)

From system (5.92) and using the Hölder’s inequality (3.104), the maximization

||ėp||2 ≤ c1||ep||2 + c2||m||2 + c3||w||2 (5.104)

is obtained withc1 = 3(||A||+ lg||C||)2, c2 = 3||B||2, c3 = 3l2g||C||2 so

V̇3(t) ≤ ĥc1||ep||2 + ĥc2||m||2 + ĥc3||w||2 − 1

2ĥ
||m(t)||2 − 1

2

t∫

t−ĥ

||ėp(s)||2ds. (5.105)

Finally,

V̇4(t) = ĥ||u̇(t)||2 −
t∫

t−ĥ

||u̇(s)||2ds (5.106)

and since

−
t∫

t−ĥ

||u̇(s)||2ds ≤ −
t−h∫

t−ĥ

||u̇(s)||2ds, (5.107)
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from Jensen’s inequality (3.101), the following maximization is deduced

V̇4(t) ≤ ĥ||u̇(t)||2 − 1

2D
||w(t)||2 − 1

2

t∫

t−ĥ

||u̇(s)||2ds (5.108)

withD = ĥ− h. From system (5.90), the maximization

||ż||2 ≤ c4||z||2 + c5||ep||2 (5.109)

is obtained withc4 = 2(||A||+ lu||B||)2, c5 = 2l2g||C||2 so reminding that||u̇(z)|| ≤ lu||ż||, one
gets

V̇4(t) ≤ ĥl2uc4||z(t)||2 + ĥl2uc5||ep(t)||2 −
1

2D
||w(t)||2 − 1

2

t∫

t−ĥ

||u̇(s)||2ds. (5.110)

Maximizing the cross terms thanks to (3.102) and Young’s inequality (3.100), it can be derived
that

V̇ (t) ≤ −
[
γcu
2

− ĥl2uc4

]

||z(t)||2 −
[
mg

3
− γR2

2cu
− ĥ(c1 + l2uc5)

]

||ep(t)||2

−
[

1

2ĥ
− 3R′2

4mg
− ĥc2

]

||m(t)||2 −
[

1
2D

− 3N2

4mg
− ĥc5

]

||w(t)||2

−1
2

t∫

t−ĥ

||ėp(s)||2ds− 1
2

t∫

t−ĥ

||u̇(s)||2ds.
(5.111)

To prove the exponential stability of (5.90) and (5.91), it is sufficient to find conditions which
guarantee the following inequality

V̇ (t) + εV (t) ≤ 0 (5.112)

with ε > 0. From equation (5.111) and Assumptions3.4.1and3.4.2, one has

V̇ + εV ≤ −
[
γcu
2

− ĥl2uc4

]

||z(t)||2 −
[
mg

3
− γR2

2cu
− ĥ(c1 + l2uc5)

]

||ep(t)||2

−
[

1

2ĥ
− 3R′2

4mg
− ĥc2

]

||m(t)||2 −
[

1
2D

− 3N2

4mg
− ĥc5

]

||w(t)||2

−1
2

t∫

t−ĥ

||ėp(s)||2ds− 1
2

t∫

t−ĥ

||u̇(s)||2ds+ γεc̄||z||2 + εm̄||ep||2

+ε
t∫

t−ĥ

ĥ||ėp(s)||2ds+ ε
t∫

t−ĥ

ĥ||u̇(s)||2ds.

(5.113)

It follows that

V̇ + εV ≤ −
[
γcu
2

− ĥl2uc4 − γεc̄
]

||z(t)||2 −
[
mg

3
− γR2

2cu
− ĥ(c1 + l2uc5)ε− m̄

]

||ep(t)||2

−
[

1

2ĥ
− 3R′2

4mg
− ĥc2

]

||m(t)||2 −
[

1
2D

− 3N2

4mg
− ĥc5

]

||w(t)||2

−
[
1
2
− εĥ

] t∫

t−ĥ

||ėp(s)||2ds−
[
1
2
− εĥ

] t∫

t−ĥ

||u̇(s)||2ds.

(5.114)
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In order to haveV̇ − εV negative, the following conditions have to be verified






γcu
2

− ĥl2uc4 − γεc̄ > 0,

mg

3
− γR2

2cu
− ĥ(c1 + l2uc5)− εm̄ > 0,

1

2ĥ
− 3R′2

4mg

− ĥc2 > 0,

1

2D
− 3N2

4mg

− ĥc5 > 0,

1

2
− εĥ > 0.

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

Conditions (5.115), (5.116) and (5.117) can be rewritten as follows

ĥ < ĥ∗ = min(h1, h2, h3, h4) (5.120)

with
h1 =

γ

l2uc4

(cu
2

− εc̄
)

, (5.121)

h2 =
1

c1 + l2uc5

(
mg

3
− γR2

2cu
− εm̄

)

, (5.122)

h3 =
1√
2c2

, (5.123)

h4 =
1

c5

(
1

2D
− 3N2

4mg

)

. (5.124)

In order to haveh4 positive,D has to comply with the following condition

D < D∗ =
2mg

3N2
. (5.125)

Choosingγ and ε sufficiently small guarantees thath1, h2 are positive. In this case, taking
ĥ < ĥ∗ andD < D∗ ensures that

V̇ (t) ≤ −εV (t). (5.126)

So equation (5.89) can be deduced from (5.126) by similar computations as in Theorem4.5.

Qualitative analysis: The condition̂h < ĥ∗ is similar to the condition for the known delay
case (Section4.2.2). The conditionD sufficiently small means that the delay estimation has to
be close enough to the real value of the delay. Some remarks about the qualitative behavior of
the boundŝh∗ andD∗ are given below.

• For a large value oflu 10 thenh1, h2 become smaller which means that the admissible
delay is smaller for a fast controller.

• For a large value oflg 11 thenh2, h3 become smaller which means that the admissible
delay is smaller for a fast observer-predictor.

• For a large value ofε thenh1, h2 become smaller which means that, to achieve a fast
convergence rate of the closed-loop system, the delay has tobe small enough.

10. lu is the Lipschitz constant associated to the functionu and is defined in (3.89).
11. lg is the Lipschitz constant associated to the functiong and is defined in (3.95).
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Time-varying delay

The class of systems considered is defined by (Eh) in (3.84) and is reminded below

(Eh)
{
ẋ(t) = Ax(t) +Bu(t− h(t))
y(t) = Cx(t)

with h(t) an unknown time-varying input delay. Since the delay is unknown, the predictionz is
computed from an estimated delayĥ(t) by the observer-predictor

ż(t) = Az(t) +Bu(t) + g(Cz(t− ĥ(t))− y(t)) (5.127)

where the correction termg satisfies Assumption3.4.2.

Remark 5.2.2. Note that to computez(t), the initial conditionz(t) = φz(t) for t ∈ [−hmax, 0]
with φz a continuous function is required. The predictionz will be continuous int = ĥ(t).

Since Assumption3.4.1 holds, there exists a feedbacku(x) that exponentially stabilizes
system (Eh) whenh(t) = 0. Then a predictive feedbacku(z) is going to be applied to stabilize
(Eh). Denoting the prediction error

ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)h(t)u

xr u(t) u(t− h(t))

z(t) y(t)
ĥ(t)

u(t)ż = Az +Bu(t) + g(Cz(t− h(t))− y(t))

delay

estimator

Figure 5.5 – Closed-loop scheme with observer-predictor for unknown time-varying delay and
partial state measurement

ep(t) = z(t− ĥ(t))− x(t) (5.128)

and reminding that̂δ stands for the upper bound of the delay time derivative:| ˙̂h(t)| < δ̂ (As-
sumption3.4.6), it is now possible to introduce the theorem that extends the work ofNajafi et al.
[2013] to unknown and time-varying delays, to partial state knowledge and to a larger class of
controllers.

Theorem 5.6. Consider system (Eh), whereh(t) is unknown and complies with Assump-
tions3.4.3and3.4.4, and assume that there exist a controlleru(x) and a correction term
g(ep) satisfying Assumptions3.4.1and3.4.2respectively. Suppose that system (Eh) is con-
trolled byu(z) with z computed by observer-predictor (5.127), whereĥ(t) is an estimation
of h(t) that complies with Assumptions3.4.5and3.4.6, and define

Υ(t) = ||x(t)||2+ sup
s∈[t−hmax,t]

||z(s)||2+ sup
s∈[t−hmax,t]

||ėp(s)||2+ sup
s∈[t−hmax,t]

||u̇(s)||2. (5.129)

Then, there existς, ̺, h∗, δ̂∗, D∗ > 0 such that, providedhmax < h∗, δ̂ < δ̂∗ andD =

./chapter_pred_unknown_delay/figures/scheme_PredObs_single_unknown.ps
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max
t≥0

|ĥ(t)− h(t)| < D∗, δ̂ < δ̂∗, one has

∀t ≥ 0 Υ(t) ≤ ςΥ(0)e−̺t. (5.130)

Therefore lim
t→+∞

||x(t)|| = 0 and the convergence is exponential.

Proof. Note that the argument “t” may be omitted to facilitate the reading of the proof. First,
combining (5.127) with (Eh) leads to

ż(t) = Az(t) +Bu(t) + g(Cep(t)). (5.131)

The dynamics ofep(t) reads as

ėp(t) = Aep(t)+B[u(t−ĥ)−u(t−h)]+g(Cep(t−ĥ))− ˙̂
h[Az(t−ĥ)+Bu(t−ĥ)+g(Cep(t−ĥ))]

(5.132)
and can be rewritten as follows

ėp(t) = Aep(t) + g(Cep(t))− B
t−h∫

t−ĥ

u̇(s)ds−
Cep(t)∫

Cep(t−ĥ)

dg

ds
(s)ds

− ˙̂
h[Az(t − ĥ) +Bu(t− ĥ) + g(Cep(t− ĥ))].

(5.133)

The following Lyapunov-Krasovskii functional candidate is proposed

V (t) = γV1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) (5.134)

where
V1(t) = zT (t)Pz(t), (5.135)

withP defined in Assumption3.4.1,

V2(t) = eTp (t)Qep(t), (5.136)

withQ defined in Assumption3.4.2,

V3(t) =

t∫

t−ĥ

(ĥ + s− t)||ėp(s)||2ds, (5.137)

V4(t) =

t∫

t−ĥ

(ĥ+ s− t)||u̇(s)||2ds, (5.138)

V5(t) =

t∫

t−ĥ

(hmax + hmin + s− t)||z(s)||2ds, (5.139)

V6(t) =

t∫

t−ĥ

(hmax + hmin + s− t)||ep(s)||2ds, (5.140)

andγ > 0. Remark thatV1, V2, V3 andV4 are the same as in the constant delay case andV5

andV6 are added to deal with the term “˙̂h[Az(t − ĥ) + Bu(t − ĥ) + g(Cep(t − ĥ))]” that
arises because of the time-varying delay. The end of the proof is obtained applying the same
arguments as in Theorems5.3and5.5.
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5.2.2 Sequential sub observers-predictors with an unknowndelay

As it was shown in Section4.2, the sequential sub predictors allows to cope with a large and
known delay. This idea can be extended to an unknown delay.

Constant delay

First, the sequential sub predictors idea is applied to the partial state measurement case with
a constant unknown delay. Each of the sub system estimates and predicts the state for̄h seconds
where

h̄ =
ĥ

r
, r ∈ N

∗. (5.141)

with ĥ a constant delay estimation. Sequential sub observers-predictors equations are as fol-
lows:







ż1(t) = Az1(t) +Bu(t− (r − 1)h̄) + g1([Cz1(t− h̄)− y(t)])
...
żi(t) = Azi(t) +Bu(t− (r − i)h̄) + gi(C[zi(t− h̄)− zi−1(t)])
...
żr(t) = Azr(t) +Bu(t) + gr(C[zr(t− h̄)− zr−1(t)])

(5.142)

wherezi ∈ R
n, i = 1, ..., r.

Remark 5.2.3. Note that to computezr(t), the initial conditionszi(t) = φzi(t) for t ∈ [−h̄, 0]
with φzi continuous functions are required for alli = 1, ..., r.

Assuming an appropriate choice of the correction termsgi, it follows that zr(t) tends to
x(t + ĥ). Thus, a predictive controlleru(zr) that verifies Assumption3.4.1can be applied to
stabilize (Eh). Reminding thatr is the number of sub observer-predictors and defining the sub
prediction errors

ep1 = z1(t− h̄)− x(t) (5.143)

and

epi(t) = zi(t− h̄)− zi−1(t) (5.144)

for all i = 2, ..., r, the following theorem holds.

Theorem 5.7. Consider system (Eh), with an unknown and constant delayh, and assume
that there exist a controlleru(x) and correction termsgi(epi) satisfying Assumptions3.4.1
and 3.4.1respectively. Suppose that system (Eh) is controlled byu(zr) with zr computed
by sequential observers-predictors (5.142) whereĥ is a constant estimation ofh. Then,
there existr∗ ∈ N andD∗ > 0, such that providedr > r∗ and |ĥ − h| < D∗, ||x(t)||
exponentially converges to zero.

The proof follows the same steps as those of Theorem4.7and the computations for the first step
of the proof are similar to those of Theorem5.5.
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Time-varying delay

An example for the case of two cascaded sub observers-predictors is given on Figure5.6.
The idea is similar to the constant delay case presented before.

Each of ther observer-predictor has a time-varying prediction horizonthat depends on the
estimated delaŷh

h̄(t) =
ĥ(t)

r
, r ∈ N

∗. (5.145)

The equations of the sequential sub observers-predictors are given below






ż1(t) = Az1(t) +Bu(t− (r − 1)h̄(t)) + g1([Cz1(t− h̄(t))− y(t)])
...
żi(t) = Azi(t) +Bu(t− (r − i)h̄(t)) + gi(C[zi(t− h̄(t))− zi−1(t)])
...
żr(t) = Azr(t) +Bu(t) + gr(C[zr(t− h̄(t))− zr−1(t)])

(5.146)

wherezi ∈ R
n, i = 1, ..., r.

Remark 5.2.4.Note that to computezr(t), the initial conditionszi(t) = φzi(t) for t ∈ [−hmax/r, 0]
with φzi continuous functions are required for alli = 1, ..., r.

Assuming an appropriate choice of the correction termsgi, it follows that zr(t) tends to
x(t + ĥ(t)). Thus, a predictiveu(zr) that verifies Assumption3.4.1can be applied to stabilize
(Eh). We define the sub prediction errors

ep1 = z1(t− h̄(t))− x(t) (5.147)

and
epi(t) = zi(t− h̄(t))− zi−1(t) (5.148)

for all i = 2, ..., r. The advantage of the sequential structure is to remove the condition on the
maximum delay value as it is stated in Theorem5.8. It is reminded that̂δ stands for the upper

bound of the delay time derivative:| ˙̂h(t)| < δ̂ (Assumption3.4.6).

Theorem 5.8. Consider system (Eh), whereh(t) is unknown and complies with Assump-
tions 3.4.3and 3.4.4, and assume that there exist a controlleru(x) and correction terms
gi(epi) satisfying Assumptions3.4.1and3.4.1respectively. Suppose that system (Eh) is con-
trolled byu(zr) with zr computed by sequential observers-predictors (5.146) whereĥ(t)
is an estimation ofh(t) that complies with Assumptions3.4.5and3.4.6. Then, there exist
r∗ ∈ N, δ̂∗ > 0 andD∗ > 0, such that providedr > r∗, δ̂ < δ̂∗ andmax

t≥0
|ĥ(t)−h(t)| < D∗,

||x(t)|| exponentially converges to zero.

The proof follows the same steps as those of Theorem4.7and the computations for the first step
of the proof are similar to those of Theorem5.6.

5.2.3 Illustrative example

The same system as in Example4.2.1is used to illustrate above results. This is a double
integrator

ÿ(t) = u(t− h(t)) (5.149)
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ẋ(t)=Ax(t)+Bu(t−h(t))
y(t)=Cx(t)

h(t)u

xr u(t) u(t− h(t))

z2(t)

y(t)

ĥ(t)/2

u(t)

u(t)

z1(t)

ż1 = Az1(t) +Bu(t− ĥ(t)
2 ) + g1(Cz1(t− ĥ(t)

2 )− y(t))

ż2 = Az2(t) +Bu(t) + g2(C[z2(t− ĥ(t)
2 )− z1(t)])

delay

estimator

Figure 5.6 – Closed-loop scheme with two sequential sub observers-predictors (4.213) for an
unknown and time-varying delay and partial state measurement.

with the state-space representation

ẋ(t) = Ax(t) +Bu(t− h(t)) (5.150)

with x = [y, ẏ]T , A =

[
0 1
0 0

]

andB =

[
0
1

]

. The Luenberger observer-predictor reads as

˙̂z = Aẑ +Bu(t) + L(Cz(t− ĥ(t)− y(t)) (5.151)

with
L = [−1.5, 0.5]T . (5.152)

The eigenvalues ofA+ LC are placed to−0.5 and−1. Then, the static feedback

u(t) = Kz(t) (5.153)

where the gainK = [−2,−3]T is chosen in order to place the eigenvalues of the system to−1
and−2.

Remark 5.2.5. In this example, the variabley has no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure5.7, the dynamic predictive feedback with a single observer-predictor (r = 1) is
compared to the dynamic predictive feedback with sequential observers-predictorsr = 2. The
delay estimation error is the same for Figures5.7aand5.7b. However, it can be observed that
when the delayh(t) is small (Figure5.7a) then the results are similar for both controllers. On
the contrary, when the delay is larger (Figure5.7b), the controller withr = 1 diverges. This
illustrates that increasing the number of sub observers-predictors allows to deal with a larger
unknown delay.

Figure 5.8 shows a comparison between standard and dynamic predictivefeedbacks. A
Luenberger state observer, with the same gainL, defined in (5.152), is designed to estimate the
state and compute prediction (5.76). The performances of both feedbacks are very similar so it
confirms the interest of using a dynamic predictive control since it is much easier to implement.
Indeed, the dynamic prediction is computed thanks to a dynamic system whereas the standard
predictive control requires an integral discretization and a state observer.

./chapter_pred_unknown_delay/figures/scheme_PredObs_seq_unknown.ps
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Figure 5.7 – Comparison of dynamic predictive feedbacks with a single observer-predictorr =
1 (5.127) and with sequential observers-predictorsr = 2 (5.146).

Finally, the influence of the delay estimation accuracy is illustrated on Figure5.9. On the
one hand, a constant delay estimationĥ1 is used to compute the dynamic prediction (5.146) with
r = 2. On the other hand, a time-varying delay estimationĥ2(t) computed thanks to the delay
observer (3.15) of Section3.1 is used. Note that the initial condition of the delay estimator is
equal toĥ1. It follows that the closed-loop system is unstable for the constant estimation̂h1
whereas the dynamic predictive feedback usingĥ2 stabilizes the system. It confirms that the
delay estimation has to be sufficiently accurate. As soon as the system is stabilized, the delay
estimationĥ2 does not move anymore and the estimation error becomes larger but it has no
influence anymore because the input is constant.

5.2.4 Summary

Contributions

✓ Extension of the results of Section4.2to the unknown delay case.

✓ Explicit stability conditions are provided.

Table5.2 sums up the results of this section. Note that the boundsδ∗, h∗ andr∗ may have
different values for each case.

./chapter_pred_unknown_delay/figures/dyn_pred_unknown_1.eps
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Figure 5.8 – Comparison of the standard predictive feedback(5.76)-(5.151) with the dynamic
predictive feedback (5.146)-(5.151) with r = 2.

Prediction Delay Convergence Condition Theorem

Unknown

h gl. & exp. ĥ < ĥ∗ & |ĥ− h| < D∗ 5.5

Dynamic

h(t) gl. & exp.
hmax < h∗ & δ̂ < δ̂∗

5.6
(1 obs/pred)

max
t≥0

|ĥ(t)− h(t)| < D∗

h gl. & exp. r > r∗ & |ĥ− h| < D∗ 5.8

Dynamic

h(t) gl. & exp.
r > r∗ & δ̂ < δ̂∗

5.8
(r obs/pred)

max
t≥0

|ĥ(t)− h(t)| < D∗

Table 5.2 – Sum up of the convergence results for dynamic prediction with an unknown delay

• gl.: global – exp.: exponential

• h: constant delay

• ĥ: constant delay estimation

• h(t) ∈ [hmin, hmax] and|ḣ(t)| ≤ δ: time-varying delay

• ĥ(t) ∈ [hmin, hmax] and| ˙̂h(t)| ≤ δ̂: time-varying delay estimation

./chapter_pred_unknown_delay/figures/dyn_pred_unknown_3.eps
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Figure 5.9 – Influence of the delay estimation accuracy with the dynamic prediction computed
by sub observers-predictorsr = 2.
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Conclusion

Three predictive techniques have been presented in this part. The standard predictive method
has been extended to an unknown and time-varying delay. A recent method based on a dynamic
system to compute a prediction has been revisited to deal with partial state knowledge and with
an estimated delay. Finally, a new prediction has been proposed to include information about
unmodeled dynamics into the prediction. Explicit closed-loop stability conditions have been
provided in the case of known and unknown delays thanks to a Lyapunov-Krasovskii analysis.
It has been proved that if the delay estimation is sufficiently accurate then the properties of the
known delay case are still true. As a consequence, observation techniques developed in Part
I can be coupled to the different predictive techniques seen in this part in order to compute
an approximated prediction. In addition, the technical argument of global Lipschitz continuity
may be relaxed since, in practical applications, systems evolve in bounded domains. As a result,
the locally Lipschitz property is sufficient. In this case, the results presented in this part can be
applied to a large class of controllers. All the results havebeen illustrated and compared by
numerous simulations. In the next part, a validation of these techniques on an experimental
setup is done in order to evaluate their efficiency in real conditions.

A comparison of the different strong points of each prediction is drawn in Table5.3. Some
explanations about the criteria are given here:

• the “Accuracy” criterion refers to the prediction error when the system is perfectly known
(no disturbance, no parameter uncertainty);

• the “Complexity” criterion refers to the implementation complexity to compute the pre-
diction;

• the “Robustness” criterion refers to the performance of a predictive feedback associated
with the prediction to attenuate an external disturbance orto guarantee an accurate trajec-
tory tracking in presence of parameter uncertainties.

The classification arguments are detailed below. The standard prediction and the new prediction
are exact for a perfectly known system with a constant delay.When the delay is time-varying,
the correction term of the new prediction can slightly degrade the accuracy of the prediction.
The dynamic prediction only converges asymptotically to the exact prediction for both constant
and time-varying delays. As far as the complexity, the implementation of the dynamic predic-
tion is reduced to the integration of a dynamic system whereas the standard prediction requires a
more complex integral discretization. The new prediction is computed from the standard predic-
tion and its delayed values so it requires a large computation effort. Finally, it has been proved
that the new prediction better attenuates the effect of external disturbances and guarantees a
more accurate trajectory tracking in presence of parameteruncertainties than the standard pre-
diction. No theoretical argument has been provided to quantify the robustness of the dynamic
prediction to unmodeled dynamics but the simulations provided at the end of Section4.3seem
to exhibit a good robustness property at least for a constantdisturbance.

Table5.4 sums up previous results. Note that the limitsδ∗, D∗, δ̂∗, h∗ andR∗ do not have
the same value in the different cases.
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Prediction Accuracy Complexity Robustness

Standard ⋆⋆⋆ ⋆⋆ ⋆

Dynamic ⋆ ⋆⋆⋆ ⋆⋆

New ⋆⋆ ⋆ ⋆⋆⋆

Table 5.3 – Comparison of the different predictive methods for a known delay. Criterion are
explained above.



5.2. DYNAMIC OBSERVATION-PREDICTION WITH AN UNKNOWN DELAY 165

Prediction Delay Conv. Condition Feedback Thm

Standard

Known

h gl. & exp. no condition
state 4.1

output 4.2

h(t) gl. & exp. δ < δ∗
state 4.3

output 4.4

Unknown

h gl. & exp. |ĥ− h| < D∗

state 5.1

output 5.2

h(t) gl. & exp.
state 5.3

δ̂ < δ̂∗

max
t≥0

|ĥ(t)− h(t)| < D∗

output 5.4

Known
h gl. & exp. h < h∗ output 4.5

h(t) gl. & exp. hmax < h∗ & δ < δ∗ output 4.6
Dynamic

(1 obs/pred)

Unknown

h gl. & exp. ĥ < ĥ∗ & |ĥ− h| < D∗ output 5.5

h(t) gl. & exp.
hmax < h∗ & δ̂ < δ̂∗

output 5.6
max
t≥0

|ĥ(t)− h(t)| < D∗

Known
h gl. & exp. r > r∗ output 4.7

h(t) gl. & exp. r > r∗ & δ < δ∗ output 4.8
Dynamic

(r obs/pred)

Unknown

h gl. & exp. r > r∗ & |ĥ− h| < D∗ output 5.7

h(t) gl. & exp.
r > r∗ & δ̂ < δ̂∗

output 5.8
max
t≥0

|ĥ(t)− h(t)| < D∗

Table 5.4 – Sum up of the convergence result with a known or an unknown delay

• gl.: global – exp.: exponential

• h: constant delay

• ĥ: constant delay estimation

• h(t) ∈ [hmin, hmax] and|ḣ(t)| ≤ δ: time-varying delay

• ĥ(t) ∈ [hmin, hmax] and| ˙̂h(t)| ≤ δ̂: time-varying delay estimation





III
Experimental validation

167





6
Experimental Setup: DC motor
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6.1 Introduction

DC motors are commonly used in many areas such as robotics or industry. Furthermore,
the simple modeling facilitates its use as a benchmark system for the evaluation of new con-
trol laws. Numerous techniques have been applied to controlDC motors; for example, sliding
mode control inUtkin [1993], optimal control inPelczewski and Kunz[1990]. However, only
few works consider DC motors with a delayed input. One can cite for exampleMatsuo et al.
[2006], which shows the influence of the delay time distribution onthe stability of a DC motor
with a PI controller. InLuck and Ray[1994], an observer-based delay compensator, associated
with buffers, is designed to reduce the unknown delay variations. An adaptive controller is used
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in Tipsuwan and Chow[2003] to follow the "Quality-of-Service" (QoS) variations of the net-
work. All these works consider very small and known delays and a perfect model (no parameter
uncertainty, no external perturbation).

Recently, numerous works on the control of DC motor through communication networks
have been published. They generally take into account random delays as inLiu et al. [2007]
and often also both delay and packet dropout as inChai et al.[2008], Zhang et al.[2011],
Ahmadi et al.[2014], Sun et al.[2014], Li et al. [2009]. Memoryless controllers are used in
Zhang et al.[2011] andAhmadi et al.[2014] because the delays are small (< 100 ms). When
the delay becomes larger, predictive techniques are used asin Chai et al.[2008], Liu et al.
[2007] andSun et al.[2014]. The work byLi et al. [2009] does not use predictive control, that
is why the performances are clearly degraded when the delay increases. Among the works that
use predictive techniques, none considers an external disturbance or parameter uncertainties.

In the sequel, the estimation and control strategies presented in PartsI andII are used to con-
trol the speed of a DC motor in presence of a large delay (with respect to the motor dynamics)
and unmodeled dynamics (external disturbance and parameter uncertainties).

6.2 Experimental setup and model presentation

6.2.1 Experimental setup

The experimental setup1 is composed by a DC motor, a synchronous motor, a torque sensor,
an asynchronous motor and an encoder. They are coupled by flexible joints. The platform is
represented on Figure6.1. The plant to control is the DC motor and the synchronous motor has
been used to introduce an external disturbance. The torque sensor and the asynchronous motor
are not used in these experimentations. The control is computed thanks to a dSPACE® board
(DS1104). The optical encoder gives the angular position (1000 pulses per revolution) and the
speed is derived from a Kalman filter. The dSPACE® board uses the real-time model produced
via Matlab®/Simulink®. The delay is artificially introduced in the loop by adding a delay block
in the Simulink® model2. The armature voltage of the DC motor is controlled by a PWM signal
generated by the dSPACE® from the scaled input voltageu(t) = v(t)

vmax
with vmax = 54V .

DC Motor

(Plant)

Synchronous Motor

(Disturbance)

Asynchronous Motor

(Not used)

Encoder

(Measure)

Torque Sensor

(Not used)

Figure 6.1 – Experimental setup for the control of a DC motor

1. The experiments have been carried out in the FIME laboratory of the University of Nuevo León (Mexico).
2. This delay can represent, for example, the communicationlatency between the motor and the remote con-

troller.

./chapter_DC_motor/figures/motor_bench.eps
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6.2.2 Modeling

The transfer function of the DC motor is:

Ω(s)

U(s)
=

KDC

1 + sτ
(6.1)

with Ω andU the Laplace transforms of the angular velocityω and the input voltageu respec-
tively. The steady-state gainKDC and the time constantτ have been identified and are given
in Table6.1. The transfer functionKDC

1+sτ
is a classical simplified model for DC motors where

KDC (min−1) τ (s)

894 1.10

Table 6.1 – DC Motor model parameters

the inductance term is neglected. The model is assumed to be linear and then does not take into
account any nonlinear phenomenon such as dry friction. However, the identification algorithm
gives a fitting rate of about95%; so the model precisely describes the motor behavior. To apply
above results, system (6.1) has to be turned into its state-space representation

ω̇(t) = aω(t) + bu(t) (6.2)

with a = −1/τ and b = KDC/τ . The reference trajectory is given byωr(t) so from the

equilibrium equatioṅωr(t) = aωr(t)+bur(t), one hasur(t) =
1

b
(ω̇r(t)− aωr(t)). It is assumed

that

Assumption 6.2.1.The expression of the trajectoryωr(t) is known for allt ≥ 0.

Note that the argument “t” will be omitted inωr andur when the reference is constant. In
the next sections, various tests are performed on the DC motor to show the efficiency of the
different techniques presented before. Only experimentalplots will be displayed.

6.3 Experimental results without delay

In this first section, some controllers have been tested on the delay free system

ω̇(t) = aω(t) + bu(t) + d(t) (6.3)

to assess the “ideal” response time and to have a comparison point for the next sections when
an input delay will be added. In order to drive the motor speedω to a desired positionωr, three
controllers have been designed. The objective is not to compare the controllers themselves but
to illustrate that the predictive schemes can be applied to any controller that is able to stabilize
the delay free system. That is why some standard controllershave been chosen: a static state
feedback, a PI controller and a Super Twisting algorithm.

Memoryless static feedback controller The static feedback controller, called “K” in the se-
quel, reads as

u(t) = −k(ω(t)− ωr(t)) + ur(t). (6.4)

The gaink chosen here is given in Table6.2.
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Memoryless PI controller The PI controller, called “PI” in the sequel, reads as

u(t) = ur(t)− kp(ω(t)− ωr(t))− ki

∫ t

0

(ω(s)− ωr(s))ds. (6.5)

The gainskp andki chosen here are given in Table6.2.

Memoryless Super Twisting algorithmLevant [1993] The Super Twisting algorithm, called
“ST” in the sequel, reads as

u(t) = ur(t) +
1

b

[

−a(ω(t)− ωr(t))− k1
√

|ω(t)− ωr(t)|sign(ω(t)− ωr(t)) + ν(t)
]

(6.6)

with the dynamics ofν governed by the following equation

ν̇(t) = −k2sign(ω(t)− ωr(t)). (6.7)

The gains should satisfyk2 > 0 andk1 >
√
2k2. Their expressions for the control of the DC

motor are given in Table6.2. This controller is a second order sliding mode controller so it does
not require the acceleration values and has a robust finite-time convergence.

Controller
K PI ST

k kp ki k1 k2
0.002 0.001 0.002 0.25 0.025

Table 6.2 – Controller gains for the control of the DC motor

Remark 6.3.1. Controller gains will be the same in all experimental results presented there-
after.

A comparison of the performance of these controllers is drawn on Figure6.2. The notations
ωK , ωPI andωST hold for the state of system (6.3) when the loop is closed respectively by
controllers K (6.4), PI (6.5) and ST (6.6). It can be observed on Figure6.2athat controllers
K and ST have the same response time of about3 seconds whereas controller PI is slower (6
seconds response time). In the disturbance free case, the motor speed accurately converges
to the reference (Figures6.2aand6.2b). On Figures6.2c and6.2d, it can be observed that
the constant disturbance is perfectly rejected by controllers PI and ST whereas a small error
remains for controller K. To sum up, Figure6.2validates the tuning of the different controllers
in the delay free case. In presence of a delay in the loop, the performances will be necessarily
worsen.
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(a) Trajectory tracking withωr = 600 rpm and with-
out disturbance (d = 0)
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(b) Trajectory tracking withωr = 600 rpm with a
constant disturbanced between20 s and40 s
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(c) Trajectory tracking with ωr = 700 +
100 sin(0.1πt) rpm and without disturbance (d = 0)
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(d) Trajectory tracking with ωr = 700 +
100 sin(0.1πt) rpm with a constant disturbanced
between20 s and40 s

Figure 6.2 – Comparison of controllers K (6.4), PI (6.5) and ST (6.6), with and without distur-
bance and for two different trajectorieswr.

6.4 Experimental results with a known input delay

6.4.1 Memoryless/Memory control

In this section, the input is retarded by a piecewise constant delayh so system (6.2) becomes

ω̇(t) = aω(t) + bu(t− h) (6.8)

The delayh is not internal to the motor model but is supposed to be introduced by the control
input, as for example, by the remote control over a network. In order to design a memory
controller, the standard prediction is introduced

ωp̂(t) = eahω(t) +

t∫

t−h

ea(t−s)bu(s)ds. (6.9)

The computation ofωp̂ from (6.9) requires an integration. Usually, the integral has to be dis-
cretized in a finite number of points. However, this method can lead to instability for some

./chapter_DC_motor/figures/delay_free/controller_KX_PID_STA_step.eps
./chapter_DC_motor/figures/delay_free/controller_dist_KX_PID_STA_step.eps
./chapter_DC_motor/figures/delay_free/controller_KX_PID_STA_sinus.eps
./chapter_DC_motor/figures/delay_free/controller_dist_KX_PID_STA_sinus.eps
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systemsMondié and Michiels[2003]. Since the DC motor is open-loop stable, it is possible to
compute the integral term of (6.9) without discretization, by using the structure given inWatan-
abe and Ito[1981b]. The method is reminded thereafter. The predictionωp̂(t) given by (6.9)
can be rewritten as follows

ωp̂(t) = eahω(t) + ξh(t) (6.10)

with
ξh(t) = ξ(t)− eahξ(t− h); (6.11)

ξ(t) being the solution of the equation

ξ̇(t) = aξ(t) + bu(t). (6.12)

Remark 6.4.1. Computingωp̂ from (6.10) gives the exact prediction.

In the rest of the section, the method ofWatanabe and Ito[1981b] will be used to compute
the prediction. From this prediction, the predictive controller can be obtained just by “plugging”
ωp̂ instead ofω in the “delay free” controller as follows

Predictive static feedback controller Controller (6.4) becomes

u(t) = −k(ωp̂(t)− ωr) + ur (6.13)

with ωp̂(t) defined by (6.9).

Predictive PI controller Controller (6.5) becomes

u(t) = ur − kp(ωp̂(t)− ωr)− ki

∫ t

0

(ωp̂(s)− ωr)ds (6.14)

with ωp(t) defined by (6.9).

Predictive Super Twisting algorithm Controller (6.6) becomes

u(t) = ur +
1

b

[

−a(ωp̂(t)− ωr)− k1

√

|ωp̂(t)− ωr|sign(ωp(t)− ωr) + ν(t)

]

(6.15)

with the dynamics ofν governed by the following equation

ν̇(t) = −k2sign(ωp(t)− ωr) (6.16)

whereωp(t) is defined by (6.9).
Figures6.3a, 6.3cand6.3eshow the results of memoryless controllers (6.4), (6.5) and (6.6)

applied to delayed system (6.8) for different values ofh. It can be seen that the performances are
worsen in comparison with the delay free case and that all thesystems have large oscillations. PI
and ST controllers even lead to closed-loop instability (not clear because of input saturation) for
a two seconds delay and their performances drastically decrease forh = 1 s. Static feedback
(6.4) seems to be less affected by the delay because it does not diverge even forh = 2 s.
Predictive controllers (6.13), (6.14) and (6.15) allow to accurately compensate the delay and
guarantee an oscillation free stabilization as shown on Figures6.3b, 6.3dand6.3f.

On Figure6.4, a large piecewise constant delay has been applied to the DC motor. It can
be seen that some overshoot affects the system during a time interval of the delay size just after
the delay jump. However, in steady state, the tracking erroris not degraded even for a very
large delay. As a conclusion, memory controllers are very efficient to control the DC motor in
presence of a large delay.
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(a) Memoryless controller K (6.4)
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(b) Memory controller K (6.13)
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(c) Memoryless controller PI (6.5)
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(d) Memory controller PI (6.14)
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(e) Memoryless controller ST (6.6)
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(f) Memory controller ST (6.15)

Figure 6.3 – Memoryless and memory controllers K, PI and ST applied to delayed system (6.8)
for different delaysh = 0 s,h = 1 s andh = 2 s.
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Figure 6.4 – Memory controller (6.14) applied to delayed system (6.8) with large delays (h =
2.5 s,h = 5 s,h = 10 s)
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6.4.2 Standard prediction with a time-varying delay

In this section, the input delay is time-varying and system (6.8) becomes

ω̇(t) = aω(t) + bu(t− h(t)) (6.17)

Thus, standard prediction (6.9) becomes

ωp̂(t) = eah(t)ω(t) +

t∫

t−h(t)

ea(t−s)bu(s)ds (6.18)

and the predictive feedbacks reads as follows.

Predictive static feedback controller Controller (6.13) becomes

u(t) = −k[ωp̂(t)− ωr(t+ h(t))] + ur(t + h(t)). (6.19)

with ωp̂(t) defined by (6.18).

Predictive PI controller Controller (6.14) becomes

u(t) = ur(t + h(t))− kp[ωp̂(t)− ωr(t+ h(t))]− ki

∫ t

0

[ωp̂(s)− ωr(s+ h(s))]ds. (6.20)

with ωp̂(t) defined by (6.18).

Remark 6.4.2. Note that it is “ωr(t + h)” and not “ωr(t)” in ( 6.19) and (6.20) because the
objective is to haveω(t) → ωr(t). The termωp̂ being theh seconds ahead prediction ofω(t),
ωp̂(t) must tend toωr(t+ h). Moreover, the trajectoryωr(t) is known for allt ≥ 0 (Assumption
6.2.1) thenωr(t+ h) andur(t+ h) can be computed at each instantt.

Figure6.5 displays experimental results when controller (6.19) is applied to system (6.17)
for different time-varying delaysh(t). It can be observed that the tracking error slightly in-
creases when the delay dynamics is faster. This is consistent with the theoretical result of Sec-
tion 4.1.2. Indeed, Theorem4.3 states that there exists an upper bound on the delay dynamics
that preserves the closed-loop stability; so it is expectedthat the behavior of the system worsens
when the delay dynamics increases. Since the DC motor is stable and has a relatively “slow3”
dynamics, it may not be destabilized with a “small4” delay even if it is fast-varying. On Figure
6.6, the PI feedback, which is more sensitive to a large delay than the static state feedback (see
Section6.4.1), is applied to system (6.17) with a large and fast delay (max

t≥0
|ḣ(t)| > 1). In this

case, one can observe that the prediction and the trajectorytracking are not accurate anymore.
However, the system does not diverge. A possible reason is that the DC motor is a stable system.

3. It has to be understood as “slow” with respect to the input delay.
4. It has to be understood as “small” with respect to the motordynamics.
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(a)h(t) = 1 + 0.5 sin(0.02πt)
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(b) h(t) = 1 + 0.5 sin(0.4πt)
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(c) h(t) = 1 + 0.5 sin(0.8πt)

Figure 6.5 – Static predictive feedback (6.19) with different time-varying delays
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Figure 6.6 – PI predictive feedback (6.20) with large and fast time varying delayh(t) = 5 +
4 sin(πt)
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6.4.3 Standard/Dynamic prediction

In this section, the dynamic prediction introduced in Section 4.2 is tested. A time-varying
delay affects the control input as follows

{
ω̇(t) = aω(t) + bu(t− h(t))
y(t) = Cω(t)

(6.21)

In the case of the DC motor, all the state variables are measured soC = 1 andy(t) = ω(t). As
a result, observer-predictor (4.138) becomes

ż(t) = az(t) + bu(t) + L[z(t − h(t))− ω(t)]. (6.22)

Remark that choosingL = 0 would lead to a similar method as the one ofWatanabe and Ito
[1981b] (see Section6.4.1). However, this technique can only be applied to stable systems so
the gainL is intentionally taken different from zero to test the more general method proposed
in Section4.2.

Predictive PI controller The dynamic predictive PI controller is

u(t) = ur − kp[z(t)− ωr]− ki

∫ t

0

[z(s)− ωr]ds. (6.23)

with z(t) computed by (6.22). Feedback (6.23) is going to be compared to the predictive con-
troller computed from the standard prediction for time-varying delays given by

u(t) = ur − kp[ωp(t)− ωr]− ki

∫ t

0

[ωp(s)− ωr]ds. (6.24)

with

ωp̂(t) = eah(t)ω(t) +

t∫

t−h(t)

ea(t−s)bu(s)ds. (6.25)

The comparison is drawn on Figures6.7 and6.8 for different constant delays and on Figure
6.9 for a time-varying one. On Figure6.7a, it is clear that predictive controllers (6.23) and
(6.24) lead to the same behavior. Whenh is larger, the standard prediction reacts similarly as
whenh = 1 s whereas some oscillations appear for the dynamic prediction (Figure6.7b). It
is mentioned in Section4.2.2that there exists an upper bound on the delay value to preserve
closed loop stability: increasingh again will increase the oscillations magnitude and at the end,
the system will become unstable forh larger than10 s. In order to circumvent this problem, the
sub predictor structure presented in Section4.2.3can be used. On Figure6.8, the performance
of a predictive controller with one, two or four sub predictors5 is displayed. It is clear that the
oscillations are reduced forr = 2 andr = 4 with respect to ther = 1 case (especially on the
second step). It seems in accordance with the fact that the maximum delay to preserve stability
will also be larger for multiple sub predictors.

Finally, similar conclusions hold for the time-varying delay case, provided that the delay is
slow-varying, as it can be observed on Figure6.8.

5. The number of sub predictors is denoted “r”.
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Figure 6.7 – Comparison of the the dynamic predictive feedback (6.23) and the standard pre-
dictive feedback (6.24) with L = 0.5.
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Figure 6.8 – Dynamic prediction with different numbers of sub predictorsr = 1, r = 2 and
r = 4.
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Figure 6.9 – Dynamique prediction
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6.4.4 External disturbance and parameter uncertainties

In this section, the robustness of the new prediction with respect to parameter uncertainties
and an external disturbance is studied. The following system is considered

ω̇(t) = (a+∆a)ω(t) + (b+∆b)u(t− h) + d (6.26)

with a and b known nominal terms,∆a and∆b unknown constant modeling errors andd a
constant unknown external disturbance.

Remark 6.4.3. Only the constant disturbance case is studied because, for practical reasons,
it is not possible to apply a repeatable time-varying disturbance with the experimental setup
at our disposal. Indeed, the external disturbance was created by connecting the synchronous
motor of Figure6.1to deliver a current into a resistor. The disturbance is thenproportional to
the value of the resistor but this latter can not be modified.

The new prediction introduced in Section4.3 is defined as follows

z(t) = ωp̂(t) + ω(t)− ωp̂(t− h) (6.27)

where

ωp̂(t) = eahω(t) +

t∫

t−h

ea(t−s)bu(s)ds. (6.28)

Remark 6.4.4. As it has been explained in Remark6.4.3, the external disturbance is generated
by turning on the asynchronous motor. Therefore, the exact value of perturbationd is not known
but it is the same value for each experiment.

Remark 6.4.5. The model of the motor is very accurate so some additional uncertainties have
been intentionally added to test the new prediction. However, the parameters of the DC motor
cannot be modified easily so the uncertainties are added to the computation of the prediction

ωp̂(t) = e(a+∆a)hω(t) +

t∫

t−h

e(a+∆a)(t−s)(b+∆b)u(s)ds. (6.29)

with∆a = −0.2a and∆b = 0.2b (±20% error).

The advantage of the predictive schemes is that it is possible to use whatever controllers
available for delay free systems and just "plug" the prediction wp̂ or z instead of the stateω.
To test and compare the schemes, a PI controller and a Super Twisting (ST) controller will be
designed. It is important to keep in mind that the objective is to compare both predictions and
to illustrate that they can be used with any kind of controllers. Consequently, no comparison
between the PI controller and the ST will be drawn.

Predictive PI controller The PI controller reads as

u(t) = ur − kp(χ(t)− ωr)− ki

∫ t

0

(χ(s)− ωr)ds (6.30)

with χ = ωp̂ or χ = z.
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Predictive Super Twisting algorithm The Super Twisting algorithm (ST) reads as

u(t) = ur +
1

b

[

−a(χ(t)− ωr)− k1
√

|χ(t)− ωr|sign(χ(t)− ωr) + ν(t)
]

(6.31)

with the dynamics ofν governed by the following equation

ν̇(t) = −k2sign(χ(t)− ωr(t)) (6.32)

andχ = ωp̂ or χ = z.
Controllers based on the standard prediction,χ = ωp̂, are called standard predictive con-

trollers whereas controllers that use the new prediction,χ = z, are called new predictive con-
trollers. The comparison between standard predictive controllers and new predictive controllers
is illustrated on Figure6.10for a constant delay and on Figure6.11for a time-varying one.

On Figure6.10, it can be seen that both controllers (PI and ST) achieve a better tracking
accuracy in presence of an external disturbance and of parameter uncertainties by using the new
predictionz(t). Indeed, the constant disturbance betweent = 50 s andt = 80 s is perfectly
rejected as stated in Proposition4.3.2. In addition, exact trajectory tracking is obtained even in
presence of parameter uncertainties. It is in accordance with Proposition4.3.4. On the contrary,
there always exist constant tracking errors for the controllers using the standard prediction as
stated in Propositions4.3.1and4.3.3. The conclusions are the same for the time-varying case
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(b) ST controller (6.31) with χ = z (Top) andχ =
ωp̂ (Bottom)

Figure 6.10 – Comparison of the standard (χ = ωp̂) and the new predictive controllers (χ = z)
for a constant and known delayh = 1 s. A constant perturbation is applied betweent = 50 s
andt = 80 s parameter uncertainties are given in Remark6.4.4.

presented on Figure6.11. Both controllers are able to perfectly reject the externalperturbation
and the parameter uncertainties so the predictions are stabilized at the desired value. However,
only the speed controlled by the new predictive controller tracks accurately the constant refer-
ence. Moreover, it can be noted that the tracking error for standard predictive feedbacks depends
on the delay amplitude (middle plot on Figures6.11aand6.11b). Note that the transient due to
the external disturbance is very small and almost not visible at that scale.

An important improvement that would be studied in future works is to compute the new
prediction thanks to the dynamic prediction as follows:

z2(t) = z1(t) + ω(t)− z1(t− h) (6.33)

./chapter_DC_motor/figures/known_delay/PID_1.eps
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(b) ST controller (6.31) with χ = z (Top) andχ =
ωp̂ (Bottom)

Figure 6.11 – Comparison of the standard (χ = ωp̂) and the new predictive controllers (χ = z)
for a time-varying delayh = 1 + 0.5 sin(0.08πt). A constant perturbation is applied between
t = 50 s andt = 80 s and parameter uncertainties are given in Remark6.4.4.

wherez1 is computed by

ż1(t) = az1(t) + bu(t) + L[z1(t− h)− ω(t)]. (6.34)

New predictionsz in (6.27) andz2 in (6.33) are different but the design idea is similar as shown
on Figure6.12. It is expected that the robustness properties of the new prediction (6.33) are
preserved and in this case no integral discretization is required sincez1 is computed by (6.34).
Some preliminary tests have been done on the DC motor and the results are displayed on Figure
6.13. In both case the PI controller (6.30) is used but withχ = z or χ = z2. Figure6.13shows
that the results are similar for both computation methods which confirms the expectations.
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(b) New prediction from dynamic prediction

Figure 6.12 – Two (slightly) different new predictions

These experimental tests are in accordance with the theoretical results of Section4.3.1and
thus clearly show the advantage of the new prediction over the standard prediction in presence
of unmodeled dynamics.
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Figure 6.13 – Comparison of the predictionsz andz2 computed respectively fromωp̂ (6.28)
andz1 (6.34) with parameter uncertainties (Remark6.4.4) and an external perturbation between
t = 50 s andt = 80 s.

6.5 Experimental results with an unknown input delay

As previously mentioned, the exact value of the delay is not always available. In this case,
two solutions are possible. A constant mean value of the delay can be used to compute the pre-
diction or a delay estimator6 can be designed to get a delay approximation. This two solutions
are compared on Figure6.15. Note that no disturbance nor parameter uncertainty affects the
system. The standard predictive feedback given by

u(t) = −k[ωp̂(t)− ωr(t+ ĥ(t))] + ur(t+ ĥ(t)) (6.35)

with

ωp̂(t) = eaĥ(t)ω(t) +

t∫

t−ĥ(t)

ea(t−s)bu(s)ds (6.36)

is applied to control the DC motor.
In the next experimentations, the delay estimationĥ is

• the mean value of the delay on Figure6.15a,

• the output of the delay estimator presented in Section3on Figures6.15b, 6.16aand6.16b:

˙̂
h(t) = ρh[u(t− ĥ(t))− u(t− h(t))]µ(t). (6.37)

with µ an approximation oḟu(t− h) computed by the finite difference method (3.14)

µ(t) =
u(t− ĥ)− u(t− ĥ− h1)

h1
(6.38)

with h1 = 0.1 s.

This estimated value enters into the predictor block to compute the prediction (6.36) as shown
on Figure6.14.

6. See PartI for examples of delay estimators.

./chapter_DC_motor/figures/known_delay/dyna_new.eps
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Figure 6.14 – Closed-loop scheme of the predictive control with a delay estimator (see Remark
6.5.1for the explanation about the dashed line).

Remark 6.5.1. From an applicative point of view, the retarded inputu(t − h) can be sent by
the system along with the measurements (dashed line on Figure6.14).

It can be seen on Figure6.15athat the tracking error is smaller when the delay estimationis
exact. On Figure6.15b, it is clear that the same level of tracking error can be achieved with a
delay estimator but for a larger range of delay values. This illustrates the advantage of the delay
estimator. When an external disturbance and parameter uncertainties affect the system, the new
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(b) Time-varying estimation̂h(t)

Figure 6.15 – Influence of the delay estimate on the tracking performance

prediction can be constructed based on the estimated delay as follows

z(t) = ωp̂(t) + ω(t)− ωp̂(t− ĥ(t)) (6.39)

whereωp̂ is given by (6.36). The new predictive feedback

u(t) = ur(t+ ĥ(t))− kp[z(t)− ωr(t+ ĥ(t))]− ki

∫ t

0

[z(s)− ωr(s+ ĥ(s))]ds (6.40)

with z given by (6.39) and the standard predictive feedback

u(t) = ur(t+ ĥ(t))− kp[ωp̂(t)− ωr(t+ ĥ(t))]− ki

∫ t

0

[ωp̂(s)− ωr(s+ ĥ(s))]ds (6.41)

./chapter_DC_motor/figures/scheme_Input_delay.ps
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with ωp̂ given by (6.36) are compared on Figure6.16.
On Figure6.16a, one can see that the piecewise constant delay is correctly estimated for

both predictive schemes. It can be noted that the delay estimation is not destabilized by the
disturbance: this a very important advantage of this estimation method. As in the above section,
only the new predictive controller (6.40) allows an effective tracking of the velocity reference
in spite of the uncertainties and the external disturbance:ω1 correctly tracksωr whereasω2

displays a large tracking error.
Figure6.16bshows that when the delay is time-varying, exponential convergence of the

delay estimator cannot be achieved anymore. The small oscillations that can be observed on
the delay estimate come from the periodic cancellation of the input derivative. Indeed, when
u̇ gets closer to zero, the dynamics of the estimator tends to zero. However, the estimation is
sufficiently accurate to guarantee an efficient tracking with the new predictive controller. As for
the previous cases, the standard predictive controller (6.41) exhibits a large tracking error due
to modeling errors∆a,∆b and external disturbanced.

These two graphs show that the new predictive scheme combined with the delay estimator
(6.37) provides an efficient trajectory tracking in presence of a time-varying and unknown delay
and in spite of parameter uncertainties and an external disturbance.
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ĥ1

ĥ2
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Figure 6.16 – Comparison of the standard and the new predictive PI controllers for different
unknown delays in presence of parameter uncertainties (Remark 6.4.4) and an external distur-
bance betweent = 50 s andt = 80 s. The speedω1 and the delay estimation̂h1 are obtained
from thenew predictive schemewhereasω2 andĥ2 are obtained from thestandard predictive
scheme

On Figure6.17, the persistence condition is illustrated. Various phasesare distinguishable.
First, when the input saturates thenu̇ = 0 and the delay is unobservable. This explains the
two stages betweent = 0 and t = t1 and betweent = t4 and t = t5. Remark that the
delay estimator does not diverge reaching this singularity; this is a crucial advantage over the
estimator presented in Chapter2. Similarly, whenω has converged toωr, the input becomes
constant sȯu = 0. Consequently, the delay estimation cannot converge toward the exact value:
see for example betweent = t2 andt = t3 and betweent = t8 andt = t9. The delay estimator
can only give a good estimation when the input varies. The origin of input variation can be the
change of the reference such as betweent = t3 andt = t4 and betweent = t9 andt = t10
or it can be due to a disturbance such as betweent = t7 andt = t8 and betweent = t11 and
t = t12 s. This illustrates that the input should move sufficiently in order to estimate accurately
the delay. This constraint is inherent to the input delay andthe quality of the estimation will
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always depend on the richness the input signal.
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Figure 6.17 – Experimental results with a PI controller and piecewise constant and unknown
delayh(t), with parameter uncertainties (Remark6.4.4) and a constant disturbanced between
60 s and90 s. The speedω and the delay estimatêh are obtained from thenew predictive
scheme– Top: velocity trajectory – Middle: control input – Bottom:exact delayh(t) and
estimated delaŷh(t).

6.6 Experimental results with input and output delays

Some experiments have been carried out to illustrate that the methods studied before may
be adapted to the case of an input delay (hi) and an output delay (ho). This scenario is more
realistic than the single input delay case in particular forremote controlled devices. The DC
motor is now modeled as follows

{
ω̇(t) = (a+∆a)ω(t) + (b+∆b)u(t− hi(t)) + d
y(t) = ω(t− ho(t)).

(6.42)

6.6.1 External disturbance and parameter uncertainties with a known de-
lay

Similarly to the input delay case, the new prediction and thestandard prediction are

z(t) = ωp̂(t) + ω(t− ho(t))− ωp̂(t− h(t)) (6.43)

with

ωp̂(t) = eah(t)ω(t− ho(t)) +

t∫

t−h(t)

ea(t−s)bu(s)ds (6.44)

where
h(t) = hi(t) + ho(t). (6.45)

Then, standard and new predictive controllers can be designed.

./chapter_DC_motor/figures/unknown_delay/fig_3_pers.eps
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The PI controller reads as

u(t) = ur − kp(χ(t)− ωr)− ki

∫ t

0

(χ(s)− ωr)ds (6.46)

with χ equal toωp̂ in (6.44) for the standard predictive controller andχ equal toz in (6.43) for
the new predictive controller. In the same way, the Super Twisting algorithm (ST) reads as

u(t) = ur +
1

b

[

−a(χ(t)− ωr)− k1
√

|χ(t)− ωr|sign(χ(t)− ωr) + ν(t)
]

(6.47)

with the dynamics ofν governed by the following equation

ν̇(t) = −k2sign(χ(t)− ωr(t)) (6.48)

andχ equal toωp̂ in (6.44) or z in (6.43).
The results are shown on Figure6.18. As it was expected, the results are very similar to the

case of a single input delay (Figure6.10): new predictive controllers lead to a more accurate
trajectory tracking than standard predictive controllers.
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(b) ST controller (6.47) with χ = z (Top) andχ =
ωp̂ (Bottom)

Figure 6.18 – Comparison of the standard and new predictive controllers for known input and
output delays,hi = 0.6 s,ho = 0.4 s, with parameter uncertainties and an external disturbance.

6.6.2 External disturbance and parameter uncertainties with an unknown
delay

To compute the predictions (6.44) and (6.43), only the sum of the delayshi andho is re-
quired. Assuming that the retarded inputu(t−hi−ho) is known, a single delay estimator (6.37)
can be used (as in the input delay case). In this case, the estimated delay denoted̂h will be the
sum of the input and output delays. Note that the assumption “u(t − hi − ho) known” is not
very restrictive in practice since the input value can be sent along with the measurements and
then it will undergone the same output delay. The method is illustrated on Figure6.19. As a
result, the new prediction is computed as follows

z(t) = ωp̂(t) + ω(t− ho)
︸ ︷︷ ︸
measurement

−ωp̂(t− ĥ(t)) (6.49)
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Figure 6.19 – Predictor and delay estimator for input and output delays

with

ωp̂(t) = eaĥ(t)ω(t− ho) +

t∫

t−ĥ(t)

ea(t−s)bu(s)ds (6.50)

whereĥ is an estimation ofhi+ho. Standard and new PI predictive controllers can be computed
from above predictions:

u(t) = ur(t + ĥ(t))− kp[χ(t)− ωr(t+ ĥ(t))]− ki

∫ t

0

[χ(s)− ωr(s+ ĥ(s))]ds (6.51)

with χ equal toωp̂ in (6.50) for the standard predictive controller andχ equal toz in (6.49) for
the new predictive controller.

On Figure6.20, the same conclusion as in the input delay case can be drawn. The only
difference is that the sum of the delays is estimated insteadof the input delay. Consequently,
the experiment shows that it is possible to achieve an accurate trajectory tracking for unknown
input and output time-varying delays in presence of parameter uncertainties and an external
disturbance.

./chapter_DC_motor/figures/scheme_IO_delay.ps
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Figure 6.20 – Comparison of the standard and the new predictive PI controllers for unknown
input and output delays in presence of parameter uncertainties and an external disturbance be-
tweent = 50 s andt = 80 s. The speedω1 and the delay estimation̂h1 are obtained from the
new predictive schemewhereasω2 andĥ2 are obtained from thestandard predictive scheme

6.7 Summary

Contributions

✓ Application of theoretical results on a practical setup.

✓ Experimental results and theoretical ones are very consistent which shows the po-
tential of the methods presented in PartsI andII to control real devices.

✓ The tracking performance of the DC motor with a large, unknown and time-varying
input delay, is maintained in presence of parameter uncertainties and an external
disturbance.
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Concluding Remarks and Future Works

In this thesis, some tools have been developed to control uncertain systems with an unknown
time-varying delay in the input. This work has been especially focused on two main topics:

• the design of estimation techniques to reconstruct the state and the delay,

• the conception of new predictive control laws.

The main contributions of the thesis are recalled below along with some future works opportu-
nities.

Part I : In Chapter2, a delay-state observation method based on the construction of an ex-
tended system has been presented. This method relies on the approximation of the delayed
input by its Taylor approximation. As a consequence, this method requires the knowledge of
the time derivatives of the input.This is a major limitation of this technique that may be
relaxed by substituting the time derivatives by some approximations. Keeping in mind
that the exact knowledge of the delay is not always necessary, some basic finite difference
approximation can be enough to achieve a satisfactory estimation accuracy. In Chapter3,
another technique to estimate both the delay and the state has been proposed. The main idea is
to connect a standard state observer with a delay estimator.A particular delay estimator based
on an optimization method and a new Extended State Observer (ESO) has been designed. A
comparison of the new ESO with a standard ESO has been done in simulation but no formal
comparison has been given.In order to compare formally both ESO, a precise quantifica-
tion of the estimation error has to be done. In addition, for both delay-state observation
techniques, an important direction is to study the influenceof external disturbances and
parameter uncertainties on the estimation accuracy. Furthermore, future developments
will aim at including a controller that will compute a predic tion using delay and state
estimations.

Part II : In Chapter4, some predictive techniques have been analyzed in presenceof a known
delay. For each methods, stability conditions have been provided thanks to a systematic Lya-
punov analysis.The conclusion of Section4.1 has been drawn for LTI systems but sim-
ilar conclusions may probably be derived for nonlinear systems under some conditions.
Moreover, reminding that the integral discretization is very complex in the case of non-
linear systems, the extension of the dynamic prediction method (Section4.2) to nonlinear
systems is very promising7. Furthermore, a possible extension of the dynamic predictive
scheme to input and output delays, as presented on Figure4.7a, is worth considering for
future developments. In Section4.3, a new prediction has been designed by comparing the
state and the retarded standard prediction.A similar prediction can be computed for non-
linear systems because the underlying idea is independent from the form of the system.
Further analysis is necessary to show that the robustness properties will be preserved in

7. The main advantage of this method is to avoid the integral discretization.
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the nonlinear case. It would also be interesting to study therobustness properties of the
dynamic prediction and compare with the new prediction. If the dynamic prediction does
not exhibit good robustness properties then a solution to combine the attractive features
of both methods (easy implementation and robustness properties) is to compute the new
prediction from the dynamic one (see Figure6.12) as tested at the end of Section6.4.4.

In Chapter5, the techniques developed for a known delay have been extended to the un-
known delay case except the one based on the new prediction. The reason is that from an
intuitive point of view, the delay mismatched could be seen as the effect of an external dis-
turbance: this solution is maybe not well suited for the unknown delay case.The size of the
tolerable delay uncertainty has to be precisely quantified and some other robust methods
have to be thought about.The delay observer of Chapter3 has been combined with the pre-
dictive techniques of Chapter4 in simulation and in experimentation; the results are convincing
but have not been proven yet.A formal proof of the convergence of the coupled systems
(estimator/predictor) has to be provided8.

In addition, some new analysis tools have to be developed to get rid of the assump-
tions on the delay rate (δ < 1) in order to deal with non causal delays. Indeed, in NCS,
delays are usually unknown and also non causal which means that control values are not al-
ways received in chronological order.In future works, it may be more realistic to consider
stochastic delays. Furthermore, the extension of these methods to input and output delays
has been illustrated in the experimental section and seems to be transposable directly from
the input delay case. Nevertheless, the theory behind this assumption has to be deeply in-
vestigated. Results about input and output delays are particularly attractive for practical
applications.

Part III : Finally, previous theoretical developments are tested andconfirmed on a DC motor
in Chapter6. DC motor is a benchmark system since it is used in various fields. It is also quite
“easy” to control since it is open-loop stable and the available model is very accurate.As a
result, it will be relevant to test the algorithms on a more complex system. Furthermore,
since the predictions are computed numerically, the integral terms have to be discretized and
the control laws sampled.As it has been mentioned in Chapter1, the discretization may
cause some instability so it would be interesting to take into account these phenomena
theoretically.

8. A convergence proof is given for each system separately.
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Commande prédictive et estimation de systèmes incertains a vec entrée
retardée

Predictive control and estimation of uncertain systems wit h an input delay

Résumé
Cette thèse est dédiée à la commande prédictive
de systèmes linéaires incertains en présence de
retards variants et inconnus affectant l’entrée de
commande. Des solutions d’observation sont
proposées pour estimer à la fois l’état et le retard.
De plus, de nouvelles techniques de prédiction
permettant de s’affranchir des contraintes
usuelles liées à la commande prédictive sont
présentées. La validité de ces nouvelles
méthodes est testée expérimentalement sur un
moteur à courant continu.

Abstract
This thesis deals with the predictive control of
uncertain linear systems in presence of unknown
and time-varying input delays. Some observation
solutions are proposed to estimate the state and
the delay. In addition, new predictive techniques
that allows to overcome usual weak points of
predictive control are presented. The efficiency of
these new methods is tested experimentally on a
DC motor.
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