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Contexte et organisation de la these

Les motivations

Cette these s’intéresse a la commande basée sur la pradietisystemes incertains avec
une entrée retardée. Les causes de I'apparition d’un retenidgénéralement de deux types:

* Elles sont parfois intrinséques au systéme comme c’esadgour les phénomenes de
transport de matiére. On peut citer les exemples classapiksdouche, du chauffage ou
un peu moins connus mais tout aussi important dans l'inigusé recirculation des gaz
d’échappement ou le procédé de fraisage.

* Elles sont dues a la nature du systeme de commande. Parlexempemps de commu-
nication apparait si le systeme et 'organe de commandesgpatrés dans I'espace. Les
temps de calcul peuvent aussi étre a I'origine de retardsiggligeables.

Ces derniers retards sont de plus en plus présents du fagveloggpement des communications
sans fil et donc de la commande a distance. En particulierpddreux travaux s’intéressent
aux systemes commandes par réseaux (NCS) en prenant erecoot@inment les retards et
la perte de paquets introduite par le canal de communicafiditre d’exemple, on peut citer
la commande a distance d’engins volants par communicatios l. L'objectif final est de
prendre en compte les phénomenes induits par les retardsdaunication afin d’améliorer la
navigation de tels engins en totale autonomie. Depuis pergrhmunauté liée a la commande
des systémes est tres active sur le pilotage de drones. @aygeta plupart des travaux ne
prend pas en compte les retards dans la conception des la@isndmande. A long terme,
I'idée sous-jacente est la conception d’engins équipésageears bon marché et de modules
de communication capable d’envoyer des mesures et de iecgordres calculés par un
calculateur a distance.

Le schéma de la Figutemontre les différentes latences qui peuvent survenir dabsucle
de commande d’'un quadrirotor. On voit que plusieurs souleeetard interviennent simul-
tanément dans la boucle. On peut mentionner les retardswiuteaps de communication,
ceux dus aux temps de calcul et enfin ceux dus aux temps deené&sugénéral, il est difficile
d’évaluer ces retards et la plupart du temps, seules desrgapproximatives sont disponibles.
On peut aussi remarquer que les temps de calcul sont variabtpie les OS temps réels peu-
vent seulement garantir des valeurs maximales qui ne seagrdépassées. En ce qui concerne
la communication sans fil, les retards introduits vont délperde plusieurs facteurs :

* les standards de télécommunication,

* la configuration des modules émetteurs/récepteurs,
* I'état de la batterie,

* I'environnement (temps, obstacles)

qui influeront sur le canal de propagation. Linfluence dieate ces différents facteurs n’étant
pas quantifiable précisément, I'exacte valeur du retard@stent mal connue. La Figug

1
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montre une trame recue par deux modules Xbee R@g[2009 dont les configurations sont
différentes. La méme trame est envoyée sur les FiRaesd2b et pourtant les informations
sont recues differemment selon la configuration du récepBans les deux cas, I'information
est recue avec du retard. De plus, ce retard n’est pas conatdiamplitude de ces retards peut
varier del9 ms pour la configuration 1ams pour la configuration 2. Les raisons mentionnées
ci-dessus justifient notre objectif de considérer desdstaariants et mal connus.

50

4_—< LL Processor ) 0. 1

Figure 1 — Latences (en ms) affectant la boucle de commande gliadrirotor, extrait de
[Mellinger, 2012 pp. 24 ]. LL: Low Level, HL: High Level

Dans I'exemple de la Figurg, le retard cumulé est d’envirdtd ms. Cela signifie quo
ms séparent le moment entre lequel la commande est caldulées&ant pour lequel elle va
étre appliquée au drone. Pour des systemes dont les dyresrgqat trés faibles, un tel retard
n'affecterait que trés peu le comportement du systeme. rCigpe, les systemes ayant des
dynamiques trés rapides (comme les engins volants) peétentiéstabilisés par la présence
de trés petits retards. Une solution simple pour réduiragact de ces retards est donc de
diminuer les gains du contrdleur afin d’obtenir une dynaraidu systéme bouclé plus lente que
la valeur du retard. En contrepartie, cette méthode coaduoévitablement a une dégradation
de l'atténuation des perturbations et du suivi de trajeetai est donc nécessaire de trouver
des alternatives plus efficaces. La méthode classiquseagifpour compenser les retards dans
la commande est de prédire le futur état du systeme afin deopaompenser parfaitement le
retard. Pour calculer une prédiction précise, il est imgiféra

1) d’avoir un modeéle précis du systeme,
2) de connaitre la valeur du retard.

En reprenant I'exemple des engins volants, le point 1) rgésteralement pas satisfait a
cause de nombreux phénomenes tels que les couplageselssiefsols. De plus, les inerties

1. Dans le cas sans retard, les modéles trés précis ne sortrppsatibles avec la conception de lois de com-
mande du fait de leur complexité.
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sont souvent difficiles a identifier. De la méme maniere, datupbations extérieures telles
gue des rafales de vent ne sont pas prédictibles et vont templectement la qualité de la
prédiction. Par conséquent, I'un des objectifs de la thése est d’amélier la qualité de la
prédiction malgré les incertitudes de modele et les perturations extérieures. En ce qui
concerne le point 2), nous venons de voir un peu plus haut gfe'st pas toujours possible
de connaitre la valeur du retard. En pratique, seulemerthdases maximum et minimum
du retard sont généralement connu€sest pourquoi, une partie de la these sera dédiee
au développement de techniques d’estimation de retards€En conclusion, I'objectif de la
thése est d’appliquer des méthodes de commande basée sur fagiction pour piloter des
systémes incertains en présence d’un retard inconnu et vant dans le temps.

200v/ B 2.00v/ a & 11108 50008/ Stop § @ 212V 200v/ @ 2.00v/ & 12079 50008/ Stop § @ 212V

12ms 2ms pms2ms 2ins

m W 12ms !

14.5ms

'
1 3.4ms_3.4ms 3.4ms 3.4ms i-h‘hs
! &

d

43 Source « Select: Measure Clear Settings Thresholds 4 Source <o Select: Measure Clear Settings Thresholds
1 ~ 1 ~

Measurement Menu

Measurement Menu

Ampl Ampl Meas Ampl Ampl Meas

(a) Configuration 1 (b) Configuration 2

Figure 2 — Deux configurations différentes du récepteur Xre@

Organisation et contribution de la these

Pour répondre a ces objectifs, la thése est divisée en adies
* la premiére partie présente des solutions d’estimatiétatiet de retard,

* la deuxieme partie introduit des nouvelles techniquesotiencande basée sur la prédic-
tion,

* la troisieme partie illustre les précédents résultatdasgommande expérimentale d’un
moteur a courant continu.

L'organisation détaillée est décrite ci-dessous et estmég sur le schéma de la FigueLes
contributions sont rappelées dans la présentation de eldmgpitre Les théorémes encadrés,
présentés dans cette thése sont des résultats nouveaux ¢inant les contributions de la
these.

LaPartie | est dédiée ala présentation de nouvelles méthodes d’¢istmada fois du retard
et de I'état du systéme. L'intérét d’avoir une estimatiorrelard est double. Tout d’abord, cela
permet d’améliorer la qualité de I'observation de I'étaispgue les résultats existant considérent
généralement des solutions avec des grands gains powextt&nreur d’observation due aux
incertitudes sur le retard. De plus, une prédiction pew édtculée a partir du retard estimé.
La premiere contribution de cette partie est donc de propdee solutions d’observation qui
permettent d’estimer simultanément le retard et I'état.séa@onde contribution réside dans le
fait que ces résultats s’appliquent a des retards variarts & temps. Dans cette partie, on
étudiera seulement les performances des estimateurs ele lmawverte (pas de contrdleur).
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Dans leChapitre 2, une méthode d’observation basée sur la construction diiqua ob-
servateur est présentée. Une premiére version de ce taagtl publiée danséchappé et al.
[20153 pour des systemes linéaires. Une extension aux systénmelingaires est disponible
dansLéchappé et al20154. L'idée originale se trouve dans la construction d’'un atateur
a grand gain sur un systeme étendu qui considere le retarctheam nouvel état. La con-
vergence de I'erreur d’observation est prouvée formeltgnee des simulations illustrent les
performances de cette méthode

Une méthode basée sur la théorie des observateurs inteiésrest proposée dans le
Chapitre 3. Dans un premier temps, un nouvel observateur de pertarbast présenté afin
d’estimer I'entrée retardée. La nouveauté est d’intradaitificiellement un retard pour ap-
proximer la dérivée de la dynamique inconnue par la méthedaldférences finies. Ensuite,
I'idée générale de I'interconnexion des observateurat#itde retard est présentée. Il s’agit de
coupler un observateur d’état standard (disponible pogisggtemes sans retard) avec un obser-
vateur de retard. Les conditions de stabilité sont donnaes k& cas général puis illustrées sur
un exemple particulier. L'efficacité de la méthode est \édién simulation. Une comparaison
avec I'observateur du ChapitBeest aussi réalisée en simulation. Le contenu de ce chapttre e
résumé dans l'articleéchappé et a[201§.

La Partie Il est dédiée a la présentation de techniques de prédictiatjelctif principal
est de proposer des méthodes nouvelles qui offrent despenfices satisfaisantes en présence
d’incertitudes paramétriques, de perturbations extéegeat de retard inconnu. Des critéres ex-
plicites de stabilité sont obtenus grace a une analyse daubys-Krasovskii. Le sens physique
de ces critéres est analysé dans le détalil.

Le Chapitre 4 se concentre sur le cas d’un retard connu et est divisé ersgotions. Dans
la premiere sectionSection4.1), la prédiction standard, originellement concue pour darce
constant, est étendue a un retard variant. La stabilitérésepzée du moment que le retard
ne varie pas trop vite. Ce résultat, déja connu pour des bisodnmande par retour d’état
statique, est étendue ici a une classe plus large de loisrdmaade et au cas d’'une connais-
sance partielle de I'état. Une condition de stabilité estrde a I'aide d’'une fonctionnelle de
Lyapunov. La deuxieme sectio®éction4.2) vise a étendre un résultat récent qui permet de
calculer une prédiction a partir d’'un systeme dynamiquetéseltat original s’appliquant aux
retards constants et aux retours d’état statique est ésndretards variants, a une plus grande
classe de lois de commande et aux cas ou I'état est partesiemesuré. Enfin, la derniére
section Gection4.3) décrit une nouvelle prédiction qui présente de meillerepriétés de
robustesse que la prédiction classique vis a vis des patiaris extérieures et des incertitudes
paramétriques. L'idée est de concevoir une prédictionrguiut indirectement de I'information
des dynamiques non modélisées. Ce travail a été présergé éeamappé et al[2015¢ pour
le cas d’'une connaissance totale de I'état et dahappé et alf2015d pour le cas d'une
connaissance partielle. L'extension de ces travaux a desisevariants dans le temps est aussi
traitée dans cette section. Tous les résultats sont #sigiar des exemples académiques et font
I'objet d’'une étude détaillée en simulation.

Dans leChapitre 5, les résultats des Sectiodsl et 4.2 sont étendus aux retards inconnus,
respectivement dans |&ections5.1et5.2 Dans chaque cas, des fonctionnelles de Lyapunov
sont utilisées pour étudier la stabilité de la boucle fernhéeconstruction systématique de ces
fonctionnelles est une des contributions de ce chapiteutté contribution est la proposition de
lois de commande basée sur la prédiction pour contrélernydtsraes avec des retards inconnus
et variants. Ces lois de commande sont couplées, en sionlatil’'observateur de retard du
Chapitre3.

Les résultats présentés dans les chapitres précédenifiusirgs expérimentalement dans
la Partie Il1.
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Ainsi, dans le&Chapitre 6, un moteur a courant continu (DC) est piloté en présenceefiitudes
paramétriques, d’une perturbation extérieure et d'uneemetardée. Le retard étant artificielle-
ment introduit, il a été possible de tester de nombreuseffytmations. L'observateur de retard
du Chapitre3 est combiné aux méthodes prédictives de la PHrti®es tests avec des retards sur
I'entrée et sur la mesure, inconnus et variants, ont é®aiir montrer que ces méthodes pour-
ront étre étendues au cadre plus large de “sortie et enta@eées”. Les résultats de ce chapitre
ont été publiés danisechappé et a[20151 pour un retard constant et connu. L'extension a un
retard inconnu est disponible danéchappé et a[20154.

Figure 3 — Organisation de la thése (préd.:prédiction)
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1.1 Motivations

This thesis is dedicated to the prediction-based contralnafertain input delay systems.
The input delay can appear because of the physical natuine plant: it is usually due to trans-
port phenomenon. Consequently, these systems are very @orimnchemical, hydraulic and
pneumatic industries. The shower, the exhaust gas reafron] the air heater and the crushing
mill are classical examples. The other source of input delatyinsic to the system, can arise
from communication latencies, computation time or senseasurements. These delays are
more and more common because of the fast development of @sroatrollers. In particular,
lots of works are tackling the problem of network controlteyss (NCS) that can introduce
time-varying and/or packet drops asTipsuwan and Choy2003, Zhang et al[200]], Be-
mporad et al[201(J. Some more examples and further details are providdgrasch-Pietri
[2013, Chiasson and Loised@007, Vyhlidal et al.[2014, Zhong[200§. In our case, we are
interested in the wireless control of remote devices. Tha fioal is to improve the control of
flying objects. Recently, the control community has beely @gtive on this topic as shown by
the numerous works as Bouabdallalj2007, Mellinger[2013, Tayebi and McGilvray200qg
and references therein. Except a few articlesLbyano et al[2004, Ordaz et al[2013,

7
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Ossa-Gomez et g12017], most of existing works do not take into account delays a¢antrol
design. In the long run, the underlying idea is to designaks/equipped with low cost sensors
and communication modules able to send measurements agwkive control orders computed
by remote super computers.

The scheme given on Figutel displays the different latencies that can show up in the
control loop of a quadrotor. It can be observed that the comeoation delay comes along with
computation and sensor delays. These delays are difficoleasure and most of the time, only
an approximation is available. Remark that, computatidaydeare time-varying and real-time
OS can only guarantee a maximum bound on these delays. Abdawiteless channel, the
delay value depends on various factors such as

* telecommunication standards,

« configuration of the emitter/receiver modules,
* battery life,

e environment (weather conditions,obstacles).

These phenomena are not easy to quantify and the value okthg i@ generally not known
accurately. Figurd.2 shows a frame received by two Xbee PranodulesDig [2009 which
have different configurations. The same frame is sent onréggu2aand 1.2b and yet the
information is received differently according to the configtion of the receiver. In both cases,
it is clear that the information is delayed. In addition, enthhat this delay is not constant:
it varies from5 ms for configuration 2 td9 ms for configuration 1. That is why the final
objective of the thesis is to deal with unknown and time-uag\ydelays.

of HL Processor 0.1 |

ﬂ” 4_—)0< LL Processor ) 0.1 !

)

4.4

v

Figure 1.1 — Latencies in the experimental setup (ms) figi@lljnger, 2012 pp. 24 ] LL: Low
Level, HL: High Level.

In the application of Figuré.1, a total amount of abo&) ms can separate the control value
computation from its real application to the drone. Foreys with very slow dynamics, such
a delay would hardly affect their behaviors. However, upistaystems with fast dynamics like
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flying objects can be destabilized by the presence of smatitées. The simplest way to reduce
the delay effect is to decrease control gains in order to halesed-loop dynamics slower than
the delay value. This will necessarily lead to worst distumte attenuation and slower trajectory
tracking so it is necessary to find alternatives. The wetivikm method to control systems with
input delays is to predict the future state of the plant ireotd perfectly compensate the delay.
To compute an accurate prediction, it is imperative

1) to have a precise model of the plant and
2) to know the delay.

Coming back to the flying objects example, the first point isfallilled because some phe-
nomena like coupling, ground effect, asymmetric inert@difficult to model. Furthermore,
unknown disturbances such as wind gusts are very detriiteritee accuracy of the prediction.
Then, one of the objective of the thesis is to improve the quay of the prediction in spite
of model uncertainties and external disturbances Note that very recent articles Brmah
and Yi[2019, Sanz et al[2019, Sanz et al[2014], Alatorre et al[2014 have developed pre-
dictive techniques to improve the control of flying objectsieh confirms that this is a trendy
topic. As for the second point, we have just seen that it imfvedys possible to know the delay.
Usually in practice, only lower and upper bounds are avhlabhat is why an other part of
this thesis is focused on the development of delay estimagrUnlike most existing works,
it has been decided to address this problem from the obsamvabint of view. To sum up,
we can say thahe objective of this work is to apply prediction-based contol to uncertain
systems in presence of an unknown time-varying delay and arxeernal disturbance.

To deal with this challenging objective, the work has beetdéid into three parts:

* the first part presents some delay-state estimators farawk and time-varying delays,

 the second part presents new predictive techniques tcaver some limitation of the
standard predictive control,

« the third part illustrates previous results by performaxgerimental tests on a DC motor.

0 200v/ B 200v/ & 11102 50008/ Stop £ 212v 0 200v/ @ 2.00v/ & 12078 50008/ Stop £ 212V

Measurement Menu
+d Source = Select: Measure Clear Settings Thresholds +d Source = Select: Measure Clear Settings Thresholds
1 | - ~ 1 = ~

Measurement Menu

Ampl Ampl Meas Ampl Ampl Meas

(a) Configuration 1 (b) Configuration 2

Figure 1.2 — Two different configurations of the Xbee Pneceiver

1. For the delay free case, very accurate models are not citniepaith the design of controllers because of
their complexity.
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1.2 Overview of prediction-based control methods

In this section, the state of the art on predictive contrgiven to set the theoretical context
of the thesis. It is important to note that all the systemsaleg on Figurel.3can be controlled
by the same predictive techniques presented thereaft@areTdxist two major streams in the
control of input delay systems: memoryless and memory obets.

Memory free controllers In Mazenc et al[2003, it is shown that a chain of integrators with
an arbitrarily large delay in the input can be stabilizdy a bounded feedback. This conclu-
sion is extended to feedforward systemdviazenc et al[2004. Some works have also been
dedicated to the control of open-loop stable systems witlrated feedbacklsin and Haijun
[2007, Zhou et al.[201(0, Yakoubi and Chitouf2007. The disadvantage of these results is
that they generally lead to slow response time because titeotds designed for arbitrarily
large delays. Recent papers have also considered satacatd| but for a more general class
of systemsNang et al[2013, Liu and Fridman2014. In that case, some conditions on the
delay size appear to preserve the closed-loop stabilibedime exact delay compensation is not
possible and the systems are possibly unstable.

The works ofRichard et al[200]], Fridman et al[2003 and Gouaisbaut et a]2007 study
the influence of delay for sliding mode control. It has beeovwshthat the delay can induce
oscillations of finite frequencyaround the sliding surface and even instability. Specifiirs
mode controllers are presentedRithard et al[200]] and upper delay bounds preserving the
stability are provided. A descriptor approach is usedriimman et al[20033 to compute a
delay upper bound that guarantees the closed stability ébass of sliding mode controllers.
For more details about sliding modes for delay systems, aneeafer toHan et al[2017.

Some other control techniques have been revisited in presgirdelays. IrMichiels et al.
[2003, a continuous pole placement method is proposed to adsegnght most eigenvalue of
the closed-loop system. Adaptive output feedbacks have thesigned to stabilize a chain of
integrators: with a constant delay in the iniitoi and Lim[2004, Choi and Lim[2010H, with
an unknown but bounded time-varying del@joi and Lim[20104. A H., delay-scheduled
controller is proposed iBriat et al.[2009 for known time-varying delays. For more results
about infinite horizon LQRH ., control with time-varying delays, the reader can refeftial-
man[20144 and references therein.

To sum up, some particular systems can remain stable wittratly long delays but it is
often at the cost of very sluggish dynamics. For a large adisystems, the stability using
memoryless controllers is guaranteed only for sufficieathall delays.

Memory controllers  This interest has been explainedMiirkin and Raskif2003 where it is
shown that every stabilizing dead-time controller has aseoler/predictor structure. Quoting
Mirkin and Raskin[2003, state prediction is a fundamental concept for delay systemush
like state observation is for systems with incomplete steg@asurementd:his control technique
is especially required for unstable systems with large imj@lays. As a result, a large part of
the thesis will be focused on this technique. Since the fiegt & the 1950s by Smith, the active
1970s and the introduction of LMIs in 1990s, a vast literatisravailable on that topic. Here,
only a quick insight into the most important results will b@yided in order to contextualize
our contribution. For more information, one can refer torsyrpapersichard[2003, Gu and
Niculescu[2003 and to booksHale and Verduyn Lun€l1993, Bekiaris-Liberis and Krstic
[2013, Fridman[20144, Krstic [2009, Malisoff et al.[2019 andZhong[2004.

2. The global uniform asymptotic stability is proven.
3. The amplitude of such oscillations have been quantifidichard et al[2007.
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y(t —h) -
(a) Input delay (b) Output delay
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|

(c) Input and Output delay (d) Internal delay

Figure 1.3 — Equivalent systems from the transfer functioiniof view.

1.2.1 Prediction-based control for constant delays
Smith Predictor

The most well-known method to control dead time systemsabaily the Smith predictor.
This frequency approach was introduced by Smith at the etioeof 950s irSmith[1957 and
Smith[1959. The idea is based on the design of an inner loop that compufegediction of
the output (see Figure.4). The weakness of this controller is that it can only stabiktable
plants. Let us illustrate the cause of instability by studya first order example.

Example 1.2.1.Consider the system
& = ax + bu(t — h) (1.1)
witha € R, b € R andh > 0. Its transfer representation is

_ X(p) _ b
Hy(p) = Tp)  p—a

where X (p) and U(p) are respectively the Laplace transform «ft) and «(¢) and p is the
Laplace variable. Computing the transfer function of theenloop of schemé.4, one obtains

Ulp) (p—a)K

(1.2)

= 1.3
E(p) p—a+ Kb(1—erh)’ (1.3)
then —
—p
Yp) _ K be . (1.4)
E(p) p—a+Kb(l—erh)
Finally, the transfer function of the whole system is givgn b
Yp) _ Kb (1.5)

Y,(p) p—(a—Kb)"

It can be seen that the delay does not affect the stabilitheayain K can be selected as if
the system was delay free. With this input/output approtiehinstable zero is masked by the
pole-zero cancellation inl(4). However, the characteristic equation is

p—a —bePh

det (p—a)K p—a-+ Kb(l—ePh) =(—a)(p—(a—Kb)) =0.

(1.6)
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Thus, if the open-loop system is unstallex( 0), then the closed-loop system is also unstable
(independently of the controller). This conclusion can beagalized to any plank/, as in
Furukuwa and Shimemurfl983. In order to compare with the next techniques, the time
domain expression of the feedbacks computed by taking the inverse Laplace transform of
(1.3

t t—h

u(t) = —K |z(t) + /ea(ts)bu(s)ds — e 0k / e“(tfs)bu(s)ds (1.7)

0 —h

Figure 1.4 — Smith controller is displayed in red. The transf, represents the delay free
plant. Noting thatt,(p)U(p) is the prediction of the state df,(p)e~*"U(p) and computing
the errore,(t) = y, — y(t + h), then the control: = Ke, is able to perfectly compensateor
stable plantdd,.

Some works have extended the Smith predictor to unstableragsas irKwak et al.[1999,
De Paoi{1989, Watanabe and Itf1981H, Normey-Rico and CamacH@009 or to multivari-
able systems as iWWang et al.[2000J. An adaptive Smith Predictor for possibly open-loop
unstable plants is presentedfhiculescu and Annaswan2003. Various articles also deal
with the disturbance robustness of the predictor: Aseom et al.[1994, Liu et al. [2005,
Matausek and Mici§1999 and Watanabe and Itfi19811. The resulting controllers are some-
times called modified (or generalized) Smith predictor (N$¥ analysis of the digital version
of these controllers can be foundfalmor and Halevfil990d. For a more extensive review on
the Smith Predictor and these modifications the reader ¢antcePalmor[1999 andNormey-
Rico and Camach007.

Finite Spectrum Assignment (FSA) and model reduction

At the end of the 1970’s and the beginning of the 1980’s, tlsaltef Smith has been ex-
tended to state-space representation and unstable systéristein[1987, Kwon and Pearson
[1980Q, Olbrot[1978. The idea of these new approaches is described there@ibesider the
LTI system

#(t) = Az(t) + Bu(t — h) (1.8)
wherezx € R™, h > 0 and(A, B) is controllable. To obtait = (A + BK)xz(t), it is necessary
to haveu(t — h) = Kz(t) so

u(t) = Kx(t + h). (1.9)
This is a predictive feedback since it requires the knowdeagthe future state of the system
z(t + h). Reminding that the solutions o1.@) can be computed from any initial solution at
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x(to), by the formula
t
z(t) = ez (1) + /eA(t_S)Bu(s — h)ds (1.10)
to

for all ¢ > 0, it can be deduced that
t

z(t+ h) = ea(t) + / e Bu(s)ds. (1.11)
t=h
Thus, (.9) becomes
t
u(t) = K | eta(t) + / A=) Bu(s)ds| . (1.12)
t=h

The computation of the above control law requires previalaas of the control input be-
t
cause of the distributed delay terrh et=%) Bu(s)ds. Therefore, controllerd(12 is called a

t—h
memory feedback, otherwise, feedbacks that do not haveiatmpdted delay terms are called
memoryless feedbacks. The closed-loop dynamic&.gJ (vith controller (L.12) reads as

t

etz (0) + [eAM=*)Bo(s)ds if 0 <t <h
0

(A + BK)a(t) if ¢ > h

where ¢ is the initial condition ofu : u(s — h) = ¢,(s) for all s € [0,h]. As shown by
(1.13, delayed systeml(8) is turned into a delay free system with a finite spectrum.idies
this spectrum can be assigned thanks to the gairthat is why the method is called Finite
Spectrum Assignment (FSA). It has been proposel\gn and PearsofiL98( and Manitius
and Olbrot[1979 for input delay systems and extended to state delay and dgday systems
in Yanushevsky199]], Fiagbedzi and Pears$h98q, Jankovid201(J andKharitonov[2014
and to neutral systems with input delayKharitonov[2013. Input and output delays are also
considered irzhou et al.[2013. The recent paper byoon and Lin[2015 deals with input,
output and state delays. Note that, in the context of opticoatrol of systems with time-
lag, some articles have paved the way of the FSA by introdueieamory feedbackikleinman
[1969, Koivo and Lee[1973, Lewis [1979, Slater and Well§1973. Similarly, the work of
Mayne[1968 has received little attention though it can be considered aeminal work on
FSA technique.

The reduction method proposed Bytstein[1987 is similar to the FSA technique in the
sense that it uses a transformation based on the prediétmmever, it is more general because
any kind of predictive controllers can be designed on theiced system. Besides, Artstein’s
work deals with LTV systems with distributed delay in the uhp Here, only the point wise
delay case for LTI systems is described. Denoting

t

i(t) = (1.13)

2(t) = x(t) + / eAt=5"M By(s)ds, (1.14)
t—h
system {.8) can be rewritten in the following form
i(t) = Az(t) + e " Bul(t). (1.15)

System (.15 is now input delay free, the delay only appears as a parafheRemark that

4. Itis was proven irBanks et al[1971 that (A, B) is controllable if and only i 4, e=4" B) is controllable.
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z(t) = ehx(t + h) is a predictive transformation. Similarly, the transfotina can be carried
out with
z,(t) = z(t + h). (1.16)

Therefore, {.8) becomes
T, (t) = Ax,(t) + Bu(t). (1.17)

System {.17) is delay free which means that all the standard controlrtiegles developed for
this class of systems can be applied. In particular, thebfeeldu(t) = Kz,(t) that leads to
the assignment of the poles oft + BK). It is clear that the feedback(t) = Kx,(t) is the
same as the controllet (12 designed from the FSA technique. The advantage of the tieduc
method is that much more controllers can be designed notaostate feedback. For instance,
sliding mode controllers have been designedRmh and OH 1999 and Roh and OH2004
based on the reduced system. The reduction method has als@kiended to the partial state
knowledge case bi Loreto et al.[200§. In this later work, anH, controller is designed on
the reduced model. Other works Bgdmor[2000 and Zhong[2003 have also combined/
control with predictive control. The reduction method hodeen used to control a special
class of feedforward systems with a dynamic gaiKao et al.[2012].

Comparing feedbacKL(7) obtained from the Smith predictor and feedbatk.p from the
FSA technique, a difference can be observed as it was meutior{Krstic, 2009 p. 23]. This
minor difference comes from the way both controllers areot®d. In practice, this difference
is not significant as it will be displayed on the next simwat{Figurel.53.

Example 1.2.2.1n order to illustrate the features of these predictive t@gies, some simu-
lations have been run on the same model as in exath@d. Three controllers have been
compared:

» amemory less controlleri(t) = Kz(t) (no prediction),
* a predictive controller from FSA defined ih.(2),
« a Smith predictor presented in subsecti@r(1).

The results are displayed on Figuie5. On Figurel.5g the parameter; is equal to—1: the
open-loop system is stable. On the contrary, on Figubd the parametet is equal tol. Three
conclusions can be drawn from these graphs. First, the Sonétlictor and the predictive con-
troller from FSA give very similar results for a stable systé~ig. 1.53). It seems logical since
they both compensate perfectly the delay. Secondly, thé Sradictor is unstable for an open-
loop unstable system. Finally, the memory less feedbapkagts a larger overshoot than the
predictive controller in both cases (Figs.5aand1.50). Increasing the delay and/or increasing
the gainK would have magnify this overshoot and inevitably lead todastabilization of the
system with the memory less feedback. On the contrary, diggtive technique from FSA can
stabilize a perfectly known linear system for an arbitratidng (known) delay.

PDE Backstepping design

This method has been introduced Kgstic [2009. The idea is to model the delayed input
as a transport PDE

Buép,t) _ 8Vép,t)
t (O 1.18
{ v(h,t) = wu(t). ( )

The solution of the following first order-hyperbolic PDE is

v(p,t) =u(t+p—h) (1.19)
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Figure 1.5 — Controllers comparison for= az +bu(t — h) withb = 1, h = 0.5 s andz(0) = 0.
In both case, the gain 5" = 2.

and then
v(0,t) = u(t — h). (1.20)
Therefore, delayed systeri.8) can be represented by the combination of the OBE =

Az(t) + Br(0,t) with PDE (1.18) driven by the input: at its boundary as illustrated on Figure
1.6. As a result, the following ODE-PDE system is obtained

@(t) = Ax(t)+ Bv(0,1),
Av(p,t) _ ov(p,t) (1 21)
op '

ot
v(h,t) = wu(t).

Then the transformation
p
w(p,t) = v(p,t) — Ke*Px(t) — /KGA(p_y)BV(y,t)dy (1.22)
0

leads to the following systems

#(t) = (A+ BEK)a(t) + Bw(0,t),

Ow(p,t) _ Ow(p,t)

o) el (1.23)
w(h,t) = 0.

The value ofw is equal to 0 afterh seconds so the exponential convergence is guaranteed
provided thatd + BK is Hurwitz. In addition, reminding thai(¢) = v(h,t) it is clear that

the controller is the same a%.{2. The advantage of the transformed systdn2® is that

the boundary condition is null; then a stability analysia && performed using the candidate
Lyapunov functional

V(t) = z(t)' Px(t) + bh /(1 + p)w(p, t)*dp. (1.24)
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In the ideal case, the proof of stability is obvious since ipossible to compute the exact pre-
diction; thus the delayed system is turned into a delay fysgesns. However, as soon as some
uncertainties or external disturbances appeatr, it is sacg$o use a different method since the
delay can not be compensated exactly. Lyapunov functidoalsiemoryless feedbacks have
been known for a long time (séeidman[2014H) but the PDE backstepping technique is the
first result to extend the Lyapunov analysis to predictivedfeacks. This analysis method has
been particularly used in the adaptive framework; for deldgptive control irBresch-Pietri
and Krstic[201(, for delay and plant parameters adaptatioBrasch-Pietri and Krstif2009
andZhu et al.[2015 and also for disturbance estimationBnesch-Pietri et al[2019 or for
inverse optimal redesign ikrstic [20083.

After these first results on Lyapunov analysis for predetontrol, some other Lyapunov
functionals have been proposed. A technique to design lyapirasovskii functionals for
input delay systems stabilized by the reduction approapihagosed byMazenc et al[2017.
The resulting functionals allow to establish the ISS propef the closed-loop system with
respect to additive external disturbancesLilet al. [201414, a Lyapunov functional is used to
study the robustness of the predictor to delay uncertainkieLi et al. [20144, a new functional
Is constructed for linear systems with multiple input delagome more references can be found
in Lietal. [20144.

p
u(t) u(t —h) x(t)
v(h,t) - v(0,1)

convection direction

Figure 1.6 — PDE representation of the actuator delay #ostic [2009.

Predictive control of broader classes of systems

Predictive techniques have recently been extended to ératakses of systems. The finite
spectrum has been adapted to nonlinear systems very rege@tuchi[2015. The reduction
approach has been used to prove the stability of an appréedhpaediction for LTV systems
with a constant and arbitrarily large input delayNtazenc et al[2014. This work has been
extended to a class of nonlinear systemdiszenc and Malisoff2014. Other works that do
not use the reduction method but aim at compensating inpay s been done for nonlinear
systems (that maybe open-loop unstableXKbstic [2008 and Krstic [20104. More details
on this approach are available in the bookBekiaris-Liberis and Krsti§2013. An insight of
the method is given thereafter.

Consider forward-complete systems (systems that havedsousolutions time for any
bounded input functions)

#(t) = f(x(t),u(t — h)) (1.25)

for which there exists a continuous controliér) = k(x(t¢)) that guarantees the global asymp-
totic stability to the origin of the delay free system. Thig feedback(t) = k(z,(t)), where
the prediction is computed as follows

1(t) = a(t) + / F (), u(s))ds, (1.26)
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will exactly compensate the input delay. The forward completeness property is necessary to
guarantee that the system does not escape (in finite time)ebtfe control "kicks in" at time

t = h. In the nonlinear framework, the prediction is not alwaympatable:Karafyllis [201]]
presents the stabilization of globally Lipschitz systeimasnks to approximate predictors. In
Georges et a[2007 and Besancon et a[2009, a practical implementation of the prediction
based on an implicit Euler discretization and the online potation of the fixed point by a
dynamic inversion is proposéd The problem of sampled measurement and zero order-hold
controller for nonlinear systems with arbitrarily long utpand output delays is dealt with by
Karafyllis and Krstic[2013: Approximate predictors and high-gain observers aregihesi to
globally stabilize a class of globally Lipschitz systembgeTlcase of output feedback for nonlin-
ear systems with input and output delays is worked o#tarafyllis and Krstid2013H. In Koo

et al.[20120, an adaptive method is proposed to control a particulassctd feedforward and
non-feedforward nonlinear systems using past values ahihg. Saturated control involving
an integral term is designed Fischer et al[2013 to stabilize a class of uncertain nonlinear
systems. For further details on the control of nonlineatesys with delays, one can refer to
Bekiaris-Liberis and Krsti§2013 and Malisoff et al.[2015.

1.2.2 Prediction-based control for time-varying delays

In real-word applications, the delay is often time-varyilg common example is remote
control. In the case of NCS, the delay often depends on theonletraffic (seelLixian et al.
[2013). In the case of wireless communication, obstacles oadist can induce non constant
delays as irfGuerrero et al[l2013, Ploplys et al[2004, Colandairaj et all2005, Bresch-Pietri
and Petif2014. Similar predictive techniques available for constariagle can be extended to
time-varying delays. The first work is yihtila [1989 where a predictive adaptive controller is
designed. INihtila [1991]], the FSA property is worked out. The difference betweenliota/e
control for constant and time-varying delays is illustdhbelow. Consider the system

& = Az + Bu(n(t)) (1.27)

wheren(t) =t — h(t). Similarly to the constant delay case, the feedbaghk = Kx(t + h(t))
is applied. The resulting equation is

&= Az + BKa(t + h(t) = h(t + h(1))). (1.28)

TV
do not cancel anymore

When the delay is slow-varying, this solution can be effitlaust, in order to compensate per-
fectly the delay, the feedbaekt) = Kxz(n~1(t)) with

U0
a(n~ (1) = AT O D (1) + / AT D=9 Bu(n(s))ds (1.29)

t

has to be applied. The inverse functipn' represents the prediction horizon that is constantly
changing with time. To guarantee its existence, the delaytbde differentiable, bounded
h(t) € [0, hmae] @nd its derivative has to satisfig| < § with § < 1. The practical meaning of
this condition is that the delay is causal, it cannot varyeiathan the absolute time. Remark

5. The discretization of the integral is an important stegt tias to be carefully study in particular for nonlinear
systems.
6. For more details see the thesiBahayachg¢2009.
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that in the constant delay case, onefagt) = ¢+ h. However, in practical applications ! is
difficult to compute since it requires the knowledge;¢f) at all instant. This means that the
delay has to be known in advance in order to computeand then the exact predictioh.9).

As a consequence of this strong constraint, some results d@mputed approximate pre-
dictions and study their stability properties. An estingiaterizon is computed ikiVitrant et al.
[2007 thanks to a model of the communication channel. The resuéidested on a real ex-
perimentation inVitrant et al.[2011 and have been combined with a numerical approximation
of the feedback law iliseorges et al.2007 andBesancon et a[2009. A truncated predictor
(without the integral part) has been proposedraon and Lin[2013. However, these con-
trollers do not cope with large delays because they do nat hay memory of past instant.
The stability of the ideal predictive feedback by a Lyapuaoalysis has been solvedHKstic
[20104 by means of a backstepping technique similar to the one ofi@el.2.1 An ap-
proximated predictive feedback will be studied for time-vaying delays and some stability
conditions will be obtained by a Lyapunov analysis for knownand unknown delays in
Sections4.1and 5.1respectively.

Predictive control and Networked Control Systems (NCS) The presence of a communica-
tion channel between the system and the controller indus&sssues in the control design such
as packetisation, packet loss, quantization and of cotassrnission delays. Recently, this con-
trol method has become more and more common and numerous havk been published on
that topic creating a new field in the control literatditeang et al[2001], Hespanha et 82007
Gupta and C[2010. Indeed, control over a network necessarily involvesmdiscphenomenon
such as sampled measurement and hold control. As a consggueentinuous control methods
have been modified and extended to fit the context of NC&hbing et al[2001]], a sampled
feedback based on the standard prediction is used to comipdns a known time-varying de-
lay. In Hetel et al[2011], a delay dependent (not predictive) feedback is propossddon a
delay estimation. However, no delay estimation methodvsrgi InKruszewski et al[2017,

a switching gain controller is designed for known delaySome very recent works bylazenc
and Fridmarf2019 and Ahmed-Ali et al.[201q deals with discrete-time measurements and a
sampled input with a constant and known pointwise delay énitiput. The work oMazenc
and Fridmarf2014 uses a dynamic output feedback based on the standard fiwadithereas
an approximate (asymptotic) predictor is usedmed-Ali et al.[2014.

In the thesis, we will focus on continuous methods so we witisider that sample and hold
phenomenon can be neglected.

1.2.3 The limit of predictive control

In previous sections, it has been shown that predictivenigcies are available to control
systems with input delays. When the delay and the model afeqgbly known, exact delay
compensation can be achieved for arbitrarily long delaytaedcontroller can be designed as
if there were no delay. However, as soon as uncertaintiesaapine exact compensation is not
possible anymore and the robustness of the controller Hasitovestigated using tools for time-
delay systems. Another important point is the computatidheintegral term in the prediction

(1.11).

7. The switches are governed by the QoS of the communicatianre!.



1.2. OVERVIEW OF PREDICTION-BASED CONTROL METHODS 19

Sensitivity to parameter mismatch and external disturbane

External disturbance Systems are often subject to external disturbances. Shese tsig-
nals are unknown, they cannot be included directly in themaation of the prediction. As a
consequence, it is not possible to compute the exact preadiahd to compensate efficiently
the perturbation. On Figurg.73 it is clear that the prediction is not exact when the distur-
bance (Figurel.7b affects the system between= 10 s andt = 20 s. As a consequence,
the trajectory tracking is not accurate during this timesiaél. Some methods have adapted
the Smith predictor structure to reject step disturbancm asstrom et al.[1994, Watanabe
and Ito[19814. However, these methods apply only to stable plants. Festate space ap-
proach, an ISS Lyapunov functional is givenMazenc et al[2019 for a system controlled
by a standard predictive feedback but no solution is progp¢semprove disturbance attenu-
ation. InPolyakov et al[20131, the attractive ellipsoid method is used to tune the gains o
the predictive controller in order to reduce measuremergenand exogenous disturbance ef-
fect. Nevertheless, this method do not allow to reject péisfea constant disturbance. Adaptive
control is used to reject constant perturbatignesch-Pietri et alf2017 and sine perturbation
Pyrkin et al.[2010 andPyrkin and Bobstoy2013. In this framework, controllers are designed
as follows: u(t) = Ku,(t) — d(t) with d a disturbance estimation. However, the estimated
disturbance is not used to compute a more accurate preti¢ticGection 4.3, a new predic-
tion that indirectly includes some disturbance information is presented. It is proved that
designing a controller from this new prediction leads to pefect rejection of a constant dis-
turbance. It is also shown that the new predictive schem&performs a better disturbance
attenuation for a large class of time-varying disturbances

- - -reference

——state
—— prediction
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(b) Unknown disturbance applied to the system
Figure 1.7 — Robustness of the prediction for sysiem az + bu(t — h) witha = 1,6 = 1,

h = 0.5 s andz(0) = 0. An unknown disturbancé = —1 is applied between = 10 s and
t = 20 s. The controller is defined byt (12 with a correction term for the reference tracking.

8. The term "scheme" refers to the prediction and the cdetrdesign. The standard predictive scheme is
based on the standard predictidnl().
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Sensitivity to parameter uncertainties The work ofPalmor[198( provides one of the first
result to analyze the closed-loop performances in presaimbelay mismatch; an explicit crite-
rion is given thanks to the Nyquist criterion. Assuming thialty approximationst (respectively
B) of A (respectivelyB) defined in systemi(8), then the prediction reads as

t

T,(t) = eAhx(t) + / eA(t_S)Bu(s)ds. (1.30)
t—h
It is stated byFurukuwa and Shimemufa983 that, from the following equation
s, — A —Be~s"

LKA [, K(I— ety — Ayipf = (1.31)
the stability is preserved if the difference between thafdad the model are sufficiently small
but no quantitative criterion is given. Another classic hogt is to use Lyapunov functionals to
derive LMIs. The reduction method can be used to rewriteyktesn and derive LMI conditions
for known and constant delaloon et al.[2001], for unknown and constant input delayie
[2004 or for unknown and time-varyin@hen and Zhen§200qg, Yue and Harf2009. The
properties of the new predictive scheme presented in Sectict.3 will be also analyzed in
presence of parameter uncertainties. It will be shown thatle new prediction allows better
trajectory tracking in presence of parameter uncertainties than the standard one.

Sensitivity to delay uncertainty In real applications, the delay is usually very difficult to
measure with a good accuracy. That is why some delay esatmigchniques will be presented
in Partl of the manuscript. Furthermore, it is intuitive that cohperformances can be dete-
riorated with delay mismatch. That is why a lot of works hawed to quantify the amount of
delay uncertainty that can be accepted without destafgjitie system. The first works deal
with a frequency domain analysis. The papersrbynanaka and Shimemufa987, Michiels
and Niculescy2003 are focused on the effect of delay mismatched for Smithrodiet. A
maximal delay mismatch is derived Michiels and Niculesc(i2003. For more details about
the frequency approach, the reader can refer to the bohlkcotescu[2001].

More recently, a Lyapunov functional analysis has beenmgiveLi et al. [20144. In
Karafyllis and Krstid20134, an upper-bound on the delay uncertainty is found by caggiut
a particular form of small-gain analyis. Krstic [20083, Krstic [2009 and Bekiaris-Liberis
and Krstic[2013, a particular Lyapunov functional based on the backsteppchnique (Sec-
tion 1.2.7) is used to show the existence of an admissible upper boumideotielay estimation
error. In Section 5.1, some conditions on the delay error will be derived for consint or
time-varying delays by using a new Lyapunov functional.

Remark 1.2.1. Note that it is very well-known that predictive control ig nabust to parameter
uncertainties or delay mismatch. On the one hand, perfomasarare degraded when exact
model values are not perfectly known as shown on Figusdéespecially for delay mismatch).
On the other hand, for large input delays, this is the onlyikde technique and it can be
observed that an unstable system can preserve closed-iaoifity with about10 to 15% error
uncertainty.

Computation of the distributed control law

Predictive controllers are memory controllers becauskeirtegral term in equatiod (12).
If the system is open-loop stable, predictidnl(l) can be generated by the following process

zp(t) = eMa(t) + &u(t) (1.32)
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Figure 1.8 — Robustness of the prediction for sysiem az + bu(t — h) witha = 1,6 = 1,
h = 0.8 s andz(0) = 2. The predictive controllers are computed taking into act@ome
uncertainties on the parameterandb (Figure1.89 and on the delay value (Figure1.8h). In
both case, the controller gain is the same.

with .
&) = [ e Bu(s)ds
t=h
¢
— At A(t—s)
e¢(0) +bf€ bu(s)ds (1.33)
t—h
—eAh {eA(t_h)f(O)jL [ eAt=h=9by(s)ds
0

= {(t) —eME(t —h)

where{(t) is solution of the equation
£(t) = A&(t) + Bu(t). (1.34)

In this case, no integral discretization is neces&aHowever, for open-loop unstable systems,
these methods are not applicable anymore and the integréd he discretized. This step has to
be carefully executed because it can make the closed-l®iprayunstable. This destabilizing
effect has been pointed outWan Assche et a[1999 and the instability mechanism have been
explained inEngelborghs et al2001]. In order to explain the destabilizing phenomena and
illustrate safe implementation techniques, considerdlewing scalar example

& =a(t) +u(t—1). (1.35)

To stabilize this open-loop unstable system with a delayaktpuone, the following controller

is chosen
1

u(t) = —2,(t) = —2e' |2(t) + / s lu(t — s)ds| . (1.36)

9. SeeWatanabe and 1t$1981H and Furukuwa and Shimemufd 983 for more methods to compute the
prediction.
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Since this system is open-loop unstable, the integral hiae tiscretized. With the trapezoidal
rule, the following approximation is proposed:

1

/esu(t —s)ds ~ Ty

0

N-1

1 iTs : L,
§u(t) + ; e u(t —iTy) + 5¢ u(t —1) (1.37)

with T, = + and N the number of discretization points. The closed-loop respdor (.35
with feedback {.36) and discretizationl(.37) (7, = 100 ms) is displayed on Figurk.9aalong
with the ideal response. It can bee seen that the responseégttill aboutl5 s where high
frequency oscillations appear. Indeed, equatidri3y and (L.36) with discretization {.37) are
a system of retarded type with an infinite number of roots. e\m®v, a finite number of roots
are in the right half plane. IEngelborghs et a[200]], stability regions are plotted in function
of the delay value and the controller gain. To fix this prohlenow pass filter is introduced in
Mondié and Michiel§2003:

2t) = —fz(t) —2f (elx(t) + Ty {%u(t) + ]::211 eTou(t —iTy) + Letu(t — 1)})
u(t) = z(t)
(1.38)

with f the cutoff frequency. It is proved that there always exiétiarge enough such that the
closed-loop approximatiori(35-(1.38 is asymptotically stable provided that the ideal closed-
loop system is asymptotically stable. The results for déffe values off are shown on Figure
1.9bfor T, = 100 ms. Itis clear that the larggftis, the closer is the implementation to the ideal
response. However, if the cut off frequency is too large thgh frequency oscillations appear
again.

Other methods have been proposed.Pbpescu and RasvdA004, a sampled feedback
is designed on the discretized system. It is shown that @lerays exists a sufficiently small
sampling time such that the closed-loop system is asyngadbtistable. InZhong[2004,
implementations are based on approximationsld33 and (.34) in the z-domain and in the
s-domain. Based on similar approximations, some solutiompeovided inViirkin [2004. For
more details on implementation of distributed control lagee the book byhong[2004.

In the sequel of the thesis, all the prediction have been cbaspwith a time domain dis-
cretization (with sample-and-hold):

1

/esu(t —s)ds = Ty

0

with u; = u(nT —iT's) for t € [(n — 1)T, nT[ whereT is the step size of the solvef(> T).
As it is shown on Figurd..9cfor 7, = 100 ms andT" = 10 ms, this approximation is very
accurate provided' is sufficiently small.

Some works have be done in order to drop the integral parteoptidiction in order to
limit the implementation complexity: truncated predic{@P) in Yoon and Lin[2013, Zhou
et al.[2017 or pseudo-predictor feedback (PPF) for time-varying WefaZhou [2014. A
sequential sub predictors method, presentedayafi et al.[2013, allows to use the process
(1.33-(1.34) even for open-loop unstable systems provided that theaotdelay is sufficiently
small. This result is extended to partial measurement knowledge athknown and unknown
time-varying delay respectively in Section4.2and 5.2

Even if the integral computation is often pointed out as a welness of predictive con-
trol, the efficiency of such techniques on real systems is uistrated on a DC motor in
Chapter 6 of the manuscript.

N-1

1 , 1
§u(nT) + ; e ey, + §elu(nT -1) (1.39)
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Figure 1.9 — Comparison of different methods to computeiptied (1.11).

1.3 Observation in presence of delays

In order to compute the prediction, the state and the deleysecessary. However, they
are not always available so observers are needed to estiothtéhe state and the delay. In this
section, some background literature is given on that topitthe review is divided into three
points

« state observation in presence of delay,
 delay estimation,
e combination of state observation and delay estimation.

1.3.1 State observers for delayed systems

Numerous works have tackled the problem of state obsenatjoresence of delays. Theses
works can be organized according to the type of delays thattahe system: state delays, input
delays or output delays. Some important contributions ametioned in the sequel.
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State delay

One of the first works is byhat and Koivo[1979 where a state observer is designed for
linear systems with a constant and known delay. Other efudtinear systems with constant
and known delays are also given 8y10i and Chund1994 andHou et al.[2003. The main
limitation of these works is that they consider constant lamolvn delays. The works @thoi
and Chund 1997 and Darouach et al[1999 have considered an unknown but constant delay
whereas articles byparouach[200]] and Fridman et al.[20034 treat the time-varying but
known delay case.

All the previous references study linear systems. Ref@®@about nonlinear systems are
much more scarce. Among the few referendbsy [2009 deals with a constant and known
delay for nonlinear (triangular) systems andng et al[2007 considers nonlinear disturbances
and a time-varying and known delay. Some extra refereneegiaen in the survey papers by
Senamd2007] andRichard[2003.

State and input delays

More recently some works have been dedicated to state @iserfor systems with both
input and state delays. Most of the papers are restricteddeik delays such dssyva-Ramos
and Pearsoif1994, Zheng et al[2011 ° and Marquez-Martinez et a[.2007 for constant
delays orFarza et al[201(q for time-varying delays. The works &euret et al[2009 and
Ghanes et al[2013 deal with unknown delays. The idea in these last two refegsris to
substitute the real delay(t) by a known and constant approximatibi! an then to design a
robust observer to attenuate the delay estimation error. The disadvanthggsomethod is
that the observer gains have to be large to compensate fdethg estimation errors.

Input and output delays

The seminal paper bwatanabe and 1119814 works out the case of multiple input and
output (constant and known) delays for linear systems. Vecgntly, a finite dimensional
observer has been proposed Biyou et al.[2013 for the same class of systems. Cascaded
observers are proposed Bermani et al[2003, Kazantzis and Wrighf2003 and Ahmed-
Ali et al. [2017 to observe systems with constant and known delays in theubuEinally, an
interval observation technique has been introduced®blyakov et al[20133 to reconstruct
the state of linear systems with an unknown and time-vargiglgy in the input. The method
consists in designing two observers which generate solsitti@andz. Then, it is shown that the
stater is always in[z, z] in the component wise sense. None of the above papers coaside
unknown and time-varying delay. Furthermore, they arededwon linear system#n Part |,
two state observation solutions will be presented for nontiear systems with time-varying
and unknown delays in the input.

1.3.2 Delay estimation
Signal processing approach

Time delay identification has often been based on a signakgeing approach and partic-
ularly in the acoustic field as i@lifford [1981 andKnapp and Cartef1974. In this case, the

10. This works considers also a delay in the measurementlg®biaic framework is used to transform nonlin-
ear systems with commensurable delays into a canonicalrfuone appropriate to estimate the state.

11. Forinstancé = (hmin + hmaz)/2 in Seuret et al[2009 andh = hy,q. in Ghanes et a[2013

12. A sliding mode observer iBeuret et al[2009 and a high gain observer iBhanes et a[2013.
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general idea of TDE techniques is the following: a criteritit) is designed® and the evolu-
tion law for /» has to minimize the criteriori(h). A standard time-delay estimator is the direct
correlator (DC) that seeks the maximum value of the croseelaiion between the reference
and the delayed signal (s&mapp and Cartef1974). Other estimators exist such as the av-
erage square difference function estimator (ASDF) forréigctime techniques as dacovitti
and Scaranfl993. These methods are not well adapted in the control contedise they are
usually offline methods (DC, ASDF) and therefore suffer fratong computation time due to
the poor rate of convergence of the optimization algoritAsurvey of TDE techniques with a
signal processing focus is givenBj6rklund [2003.

Control oriented methods

In these approaches, the delay is usually considered asametar of the system and its
identification is often combined to the identification of etiparameters. A vast literature exists
on that topic: see the works @éfgarwal and Canudgd984, Belkoura et al[2009, Bresch-
Pietri and Krstid2009, Gomez et al[2007, Na et al.[2014, Orlov et al.[2003, Tuch et al.
[1994. Some authors use the frequency domain where the delayaeppe a parameter in
the terme="%. In Agarwal and Canudaldl98q, the terme~"° is approximated by a rational
transfer function of the Padé form; then a standard disdegigt-square algorithm is used to
minimize an objective function. The work diuch et al.[1994 is also based on a frequency
domain analysis. They proposed a continuous recursivedgasre algorithm. However, this
method does not work if the initial conditions of the systaates are not perfectly known. In
addition, their solution works only for strictly positive strictly negative controllers. INihtil&a
et al.[1997, a PDE approximation is used to extract the delayDiop et al.[2001]], a similar
techniques as ifluch et al[1994 is applied but the value af(¢t — 7) is required. InDrakunov
et al.[2004, observers have been used to identify the delay. Howell¢heastate and its time
derivatives are needed; so the method is very sensitiveise nceasurement. Belkoura et al.
[2008 and Belkoura et al[2009, an identification method using algebraic techniques dase
on annihilation and integration is proposed for transferctions. Very recently, an adaptive
method is proposed iNa et al.[2014 to estimate the system parameters and the delay of SISO
systems. The initial conditions of the estimated pararsdiare to be very close to the exact
value to guarantee the convergence of this method. A cosgadf three estimation methods
is shown on Figurd.10 One can observe that the techniqu®odkunov et al[2004 has a lot
of oscillations whose magnitude depends on the delay stzis.chattering phenomenon cannot
be reduced by decreasing the step size. It is clear that theoagefromTuch et al[1994 and
Na et al.[2014 are not suited for a time-varying delay. Indeed, both meéshmonverge quickly
to the constant delays betweerand20 seconds but they cannot converge anymore when the
delay varies from).4 to 1 s. Note that this problem is intrinsic to the estimator cqtic® and
that it does not come from a bad tuning of the gain. A reviewalag estimation techniques
has been done by’'Dwyer [2000.

Finally, four recent works design controllers that estintite delay. Unlike previously
mentioned papers, next references deal with closed-laogifitation method. IBresch-Pietri
and Krstic[2009, a delay estimator is designed from a Lyapunov analysisBresch-Pietri
and Krstic[2010, the delay estimator is obtained from the transport PDEasgntation of the
system. However, in both cases, only the state stabilizagiproven but not the convergence
of the delay estimator. A delay identification law is propbse Gaudette and Millef2014
for sampled systems. This law is based on a particular forsystems with two distinct real
eigenvalues of multiplicity one. Inlerrera and Ibea017, a multi-model scheme is used to

13. The delay is often denoted by the letheor 7. In this thesis, the notatiol will be used.
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estimate the delay and then this estimation is plugged intodified Smith predictor. However,
this latter work do not consider external disturbancedeeiparameter uncertainties.

Note that, in all previously mentioned articles exc&atudette and Millef2014 and Her-
rera and lbeaf2017, the delay is constantln Part |, two solutions will be introduced to
estimate an unknown and time-varying delay in the input.
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Figure 1.10 — Comparison of delay estimation techniquesiesysteni: = x + u(t — h(t))

1.3.3 Delay and state observation

As it has been mentioned above, many papers deal with stagg\attion for delay systems.
Similarly, various methods exist for delay estimation. Hweer, very few papers deal with both
delay identification and state reconstruction. Only twerehces about both delay and state
estimation are discussed thereafter. The first on&regch-Pietri et al[2013, is restricted to
linear systems with a constant delay. In addition, the exarmapdelay estimator proposed in
this paper is quite intricate to implement since it involvasious integral terms. The second
one, byGaudette and Millef2014, is also focused on linear systems since the delay estmati
technique relies on the existence of two different eigaresiofA. Besides, the design of the
state observer is largely based on a particular samplitgjfigstechnique. Finally, these articles
are interested in proving the closed-loop convergencenewdé¢lay estimation error convergence
is not establishedn Chapters 2 and 3, two methods will be presented to estimate the state
and the delay of a class of nonlinear systems with an unknownna time-varying delay in
the input.

1.4 Organization and contribution of the thesis

This thesis is divided into three parts:

» The first part is dedicated to the presentation of two soh#io estimate the state and the
delay of a class of nonlinear systems with a time-varyingyléi the input.

* The second part presents three predictions and studiesbeteaviors for known and
unknown delays.

» The third part is an experimental part that illustratevmes results.

A detail organization is given thereafter and displayed gufe 1.11. The contributions

are detailed throughout the presentation of each chdptee that, the theorems presented in
framed boxes in the thesis are new results that constitute thcontributions of this work.
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Part | is dedicated to the presentation of new methods to estirhatddlay and the state.
The objective of delay observation is twofold. First, oneds for improving the quality of state
observation; secondly, one wants to compute an accuratiicpo®. One of the contribution
comes from the simultaneous observation of the state ardéthg. The other main contribution
is to deal with a time-varying delay. The stability analysfishe observer is studied in open-loop
(no feedback).

In Chapter 2, a new observation method that allows to estimate both atatelelay thanks
to a single extended observer is proposed. A first versiohisfrhethod has been published
in Léchappé et al[20154 for linear systems. An extension to nonlinear systemsvermgin
Léchappé et a[20150. The original idea lies in the construction of high gain eh&r on an
extended system which includes the unknown delay as a pasgt aigmented state. A formal
convergence proof is given and some simulations illustregerformance of this method.

An interconnected observers scheme is introducedhapter 3. First, a new disturbance
observer, based on Extended State Observer (ESO) metluedjgsed in order to estimated the
retarded input. The novelty consists in introducing arfiardl delay to approximate the time
derivative of the unknown dynamics by a finite differenceesub. Then, the general framework
of interconnected state-delay observers is proposed.bised on the coupling of a standard
state observer (available for delay free systems) with aydebserver. A stability condition is
given for the general case and illustrated by a particulamgte. The efficiency of the method
is confirmed by simulations. A comparison with the method b&fter2 is also performed by
simulations. The content of this chapter is partially sumrupéchappé et a[201§.

Part Il presents various results on predictive control. The majeative is to offer new
techniques to achieve better performances in presencaagéer uncertainties, external dis-
turbances and to deal with unknown delays. Explicit stgbdonditions are provided for each
technigue thanks to a Lyapunov functional analysis. Thesiglay meaning of these conditions
is thoroughly analyzed.

Chapter 4 deals with known delays and is divided into three sectiome first one $ection
4.1) reminds that the standard prediction originally desigioedonstant delays can be used for
time-varying delays under some constraints on the delay fHbe result, already existing for
static feedbacks and full state knowledge, is extended toader class of controllers and to
partial state measurement. A stability condition is preddhanks to a simple Lyapunov func-
tional. The second sectioBéction4.2) aims at extending a recent result that allows to compute
a prediction from a dynamic system. The result originallgiable for constant delays, static
state feedback is extended to time-varying delays, andaderalass of controllers with partial
measurement knowledge. The exponential stability is atéeesied. Finally, the last section
(Section4.3) describes a new predictive scheme that is more robust tarettperturbation
and parameter uncertainties than the standard predicihense. The basic idea is to design a
prediction that indirectly includes information about umsheled dynamics. This work has been
presented in.échappé et a[20154 for the state feedback case and it is extended to the output
feedback inLéchappé et al[2015d. The extension of these works to time-varying delays is
also treated in this section. All the results are illustildtg academic examples and supported
by a thorough simulation analysis.

Chapter 5 extends the results of Sectiodsl and4.2 to unknown delays respectively in
Sections5.1and5.2 In each case, Lyapunov functionals are exhibited to sthdystability of
the closed-loop system. A contribution of this chapter ilethe systematic Lyapunov analysis
that leads to explicit stability conditions. The other adnition is the presentation of predictive
techniques to control systems with an unknown and timeingrgelay. The predictive control
laws are coupled with the delay estimator of Chater simulation.

Theoretical results presented in above chapters arerdbastinPart IIl .
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In Chapter 6, a DC motor is controlled in presence of parameter uncemtginexternal
disturbances and a time-varying and unknown delay. Sinea#hay is artificially added, it
has been possible to test a lot of configurations seen beftre.delay observer of Chaptar
is combined with the predictive techniques of RarSome experiments with input and output
unknown and time-varying delays are carried out to showtteatesult of this thesis can be
adapted to this larger framework. The results of this chapdge been published inéchappé
et al. [20151 for the constant and known delay case. The extension to knawn delay is
available inLéchappé et a[20154.

Figure 1.11 — Organization of the thesis
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Some of the results presented in this thesis have been pebla are under revision pro-
cess for publication in journals and conferences.

Journal papers

1) V. Léchappé, J. De Ledn, E. Moulay, F. Plestan, A. Glumin&elay-state observer for
SISO nonlinear systemsecond revision in Automatica.
Léchappé et a[20150

2) V. Léchappé, S. Rouquet, M. Gonzéles, F. Plestan, J. Dae,lEOMoulay, A. Glumineau
Delay estimation and predictive control of uncertain syssevith input delay: application to a
DC motor, accepted in IEEE Transactions on Industrial Electronics.

Léchappé et a[20154

3) V. Léchappé, E. Moulay, F. Plestan, A. Glumineau, A. CleiéNew predictive scheme for
the control of LTI systems with input delay and unknown distances Automatica, 52(2), 179-
184, 2015.

Léchappé et a[20154

Conference papers

1) V. Léchappé, E. Moulay, F. Plestan, A. Gluminebuterconnected delay and state observer
for nonlinear systems with time-varying input delaybmitted to American control Confer-
ence, Boston, USA, 2016

Léchappé et a[2014

2) V.Léchappé, J. De Leon, E. Moulay, F. Plestan, A. GluminBelay and state observer for
SISO LTI system&merican Control Conference, Chicago, USA, 2015
Léchappé et a[20153

3) V. Léchappé, E. Moulay, F. Plestan, A. Glumineau, A. GkeiePredictive scheme for
observer-based control of LTI systems with unknown disturbs European Control Confer-
ence, Linz, Austria, 2015

Léchappé et a[2015d

4) V. Léchappé, O. Salas, J. De Ledn, F. Plestan, E. Moula@l@dmineau Predictive control
of disturbed systems with input delay: experimental vaiiaon a DC motoy Time-Delay
System workshop, Ann Arbor, USA, 2015

Léchappé et a[20151
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Introduction

Organization

It has been seen in the literature review that many solutors for the state observation
problem in presence of delay. The delay estimation issualsasbeen widely studied. How-
ever, both problems are rarely combined. And yet, as soorelay dalue increases, it is the
only way to guarantee an accurate state observation. Beside prediction framework, both
state and delay values are necessary to design predictivltters. That is why this part is
dedicated to the presentation of new methods to observedteesnd the delay of systems with
input delay. Chapte? presents the design of a single observer that reconsthedalay and
the state. On the contrary, Chap8introduces a scheme that allows to interconnect standard
state observers (used in the delay free case) with a delaywys The additional contribution,
apart from the combined state and delay observation ressiltsat both methods apply to a
class of nonlinear systems with a time-varying delay. Mwegoformal convergence proofs
are given and the methods are illustrated and compared inlaion. Note that this part is
focused on observation: no closed-loop results will be ied. The organization of this part
is reminded on Figuré.12

Figure 1.12 — Organization of the part on delay-state esiima

General considerations

System presentation

The systems considered throughout this part are SISO reamlgystems with a time-varying
delayh(t) acting on the control input. More precisely, the class of systems is defined by

&= Az + f(z) + g(y)u(t — h(t))
(2) y=Cr=umx (1.40)
z(0) = xg
withz = [z1,...,2,]7 € R", y € R,u € R,

33
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= {O%Xl (I)T;j ER™, g(y) = [0,...,0.G(y)]" €R, (1.41)
fi(z1)
f(SU) = f2<l’?,x2> cR"” and C = [1707---,0]T€Rn_ (1.42)
fn(ZE1, e ,l‘n)

Assumption 1.4.1.The functions’ andG are respectively i (R", R") andC*(R, R) and f
is globally Lipschitz, i.e. there exists > 0 such that for all(z, z) € R™ x R™

1f(x) = F(2Il < el = =] (1.43)
Assumption 1.4.2.The functionG is bounded, i.e. there exists > 0 such that for ally € R
G(y)| < G. (1.44)

Assumption 1.4.3.The delay functiorh is either piecewise constant or differentiable and sat-
isfiesh(t) € [hmin, hmaz]- If it is differentiable, its dynamics, denotégt) = 7(¢), is unknown
and bounded

In()] < 7. (1.45)

Delay observability

The objective of this part is to propose new methods to eséirbath the delay and the
state of system() in (1.40. Usually, the delay is considered as a parameter of themsyst
when it is constanfgarwal and Canudd4.9864, Na et al.[2014. However, when the delay is
time-varying, it has been decided to treat it as a state okended system in order to apply
observation techniques. Denotidg= [z &), one obtains

S X = f(Xv u)
(E) { Y= Y(X) = CextX =T (146)

with

FOXE), wlt = he)) — (Ax(t) ) 3 o)t h(t») cR (L

andC,,; = [C,0] € R*"1. Note that in open-loop,1(46) is a finite dimension system because
u IS an external signal that does not dependrorHowever, (.46 would become an infinite
dimensional system in closed loop whes a function ofz.

SystemsY) in (1.40 and ) in (1.46) are equivalent in the sense that they have the same
state trajectories. As a result, the observer design andtéidity analysis can be performed
on this augmented system. First, the observability arabyfssystemX) is going to be worked
out. The concept of observability rank condition used indreen1.1is detailed inHermann
and Krenef1977. The definition is recalled here for clarity: denoting@®the smallest vector
space containing; and closed under the Lie derivativés, (for all 7 € O,L; (1) € O).

This vector space is the classical observation spaceOLie¢ the co-distribution spanned by
{dr,r € O}, system (.46 is said to be rank observableaif dim O(z) = n + 1. Itis said

to be rank observable if for all, dim O(z) = n + 1. This concept is very convenient to check
the observability of nonlinear systems: this is why it wil bsed in the observability analysis
performed thereafter. The following result is achieved.
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Theorem 1.1(Léchappé et a[2015H). SystemY) is rank-observable if and only if

Gly) #0 (1.48)

and
W(t) 0 Vit > —hpmae- (1.49)

Proof. Then first time derivatives of the outpytread as

(

Y = N
y = X9+ Oél(.fl)
:I./. = X + Ao\ ,ZE
3 2(21, T2) (1.50)
y(nil) = $n+an—1(x17"'7xN—1)
L y™ = GWult—h) + an(z1, ..., 2,)

where they; are combinations of th¢g;’s and their derivatives. Then, the Jacobian matrixof
and its time derivatives has the following form

(1 0 0 ... 0 ]

- ) *x 1 0 ... 0

(yany )| 5 (1.51)
S | 0
KRR G(y)aug}:h)_

Therefore, systent)) satisfies the rank observability condition ($¢ermann and Krenef1977)

a<y7y7 7y(n)> o
rank[ e =n-+1 (1.52)

Au(t—h

if and only if G (y) = ) does not cancel. In addition, for all> 0 andh € [Nmins Pmaz), ONE

has
du(t —h) _ Ou(t —h)
o = T (1.53)

Then, 2441 £  is equivalent 6?42 £ . Therefore, {.52) is equivalent to .49 and
(L.49 forallt > 0andh € [humin, himas) SiNCe the delay is differentiable. This ends the
proof. O

Condition (.49 is natural because if the input is constant, the delay hasfheence on the
system: it cannot be observed. Nevertheless, it is rasgibiecause it means that the input
should be strictly monotonic. For a certain class of obgsrtiee notion of persistenc§ can
be used to relax this condition. Another way to avoid the siagty problem inu(t) = 0 is to
assume that

14. Roughly speaking, an input is said to be persistent forstem if it is rich enough to excite this system
in order to estimate some parameters or to reconstructits. sThis concept is presentedShimkin and Feuer
[1987 from a parameter estimation point of view. See Proposi#iagmBesanc¢orj2007 for a characterization of
persistent inputs in the observation framework.
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Assumption 1.4.4(Diop et al.[2001]). There are time interval$, sufficiently large, where the
first derivative ofu is continuous and bounded: for dlle 1,

lu(t)] > o (1.54)
with o/ > 0.

Indeed, if L.54) holds, then 1.49 is automatically verified ord. Conditions (.48 and
Assumptionl.4.4are assumed to be verified in the next chapters.
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In this chapter, a new solution to estimate the state and¢ley df systemX) in (1.40
is presented. It is based on the design of a high gain observan extended system. The
main idea is to substitute the retarded input by its Taylgasion. That is why, the following
assumption is required:

Assumption 2.0.5.Letm € N*, the inputu is in C™ ([~ hya., +0oo[, R) and its derivatives
are known and bounded, i.e. for @l 1,...,m + 1, there exist constantg; > 0 such that for
all t > —h,e

()| < U;. (2.1)

2.1 Design of an extended system
System E) in (1.46) is not under an adequate form to estimatsince the delay appears

only through the delayed input(t — k). Therefore, the Taylor’s theorem is used to take the
delay out of the input. From Assumpti@n0.5 the input ism-times differentiable. Then, there

exists a functiony,, : [—hpa; +oo[— R such that for alt; > —h,4,,
ulty) = zm: =D 04 4t 1 — 1) 2.2)
1) — ’l' Ym\l,; U1 '
=0

37
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wherey,, is called the remainder. In particular takitg= ¢t — h(t) > —hy,,, leads to

u(t —h :Z IO uD () + Y (t, —h(1)) (2.3)

=0

forallt > —h,,.,. From Assumptior?.0.5 sinceu is m + 1-differentiable, the remainder,,
is such that

h(t)™! mar

|7m(t7 _h(t))| S mUm—i—l S mUm-H- (24)

Note that the expression (LR, (¢) is called the Taylor approximation eft — A()) up
1=0

to orderm. By substituting 2.3) in (X), the following system is obtained

() { X GOS0 0T 25)

with X = [T, h]T € R*+,

0 [nfl Onflxl

Aeat(€() = |0 Orpy E(t) | € RUFDX0HD, (2.6)
0 Oixn1 O
fear(X) = [f(2)T,0]" € R™*, (2.7)
gear(y) = [9(y)",0]" € R"™, (2.8)
L(t,y, h(t)) = [g(y(®) ym(t, =h(1)), n(t)]" € R™*! (2.9)
and .
Z hl i <i>(t) eR. (2.10)

i=1

Remark 2.1.1. The use of the Taylor approximatioh 8) requires the computations of the input
time derivatives. In open-loop, this is not a problem sireednalytical expression of the input
is known: the exact time derivatives can be computed acalljti In closed-loop, the standard
way to obtain time derivatives is to use numerical diffeiots®. It will be shown that the
error introduced by numerical differentiation can be lurdgato ~,,(t, —h(t)). Furthermore,
provided that this error is sufficiently small, it will not ahge the convergence property of the
delay-state observer. An alternative to avoid input timigedentiation is to insert a chain of
integrators preprocessing the input (dynamic feedback).

Extended system®{,,;) in (2.5 is equivalent to initial systend]) in the sense that they
exhibit the same trajectories. However, systémm,() is delay free, with respect to the input,
thanks to 2.3). The delayed nature of the plant is still present throygly, —h(¢)) in . The
Taylor's approximation is a convenient way to rewrite thateyn in order to apply existing
results from the observers literature for delay free systeihe error of approximation,, is
going to be considered as a perturbation in the design ofltkerger as well as the dynamics
of the delayn(t). This is a key point of the method: considering the delay dyica as a
perturbation and designing an observer that is able to st the system state in spite of
uncertaintyl". Indeed, it is often a hard task to find a good approximaticgh@flelay dynamics.

1. See for instance the work yevant[2003.
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2.2 Observer design and convergence analysis

Because of the form o®{.,;) and because it only has one tuning parameter, the following
high gain observer has been chosen in this work. Lef¢) € R+Dx(»+1) pe the diagonal

matrix defined by

10 0 0
01 0 0
AE)=10 0 (2.11)
Do 1 0
0 0 0 &]
andA € R+Dx(+1) pe the matrix
01 i,
0 0
A= Do (2.12)
0 0
0 0 |
Then, the following observer is designed:
;I, :/\extX + fext(X) + gea&t(y)u(t) - Ail(g)spilcg;:t(ceartX - y)
_ _ 2.13
pSp+ ATS, + S,A+ CLCopt = 0 (2.13)
hp = proj[hmznyhmaac}(h)
whereX = [#7, h]7 € R andA.yy = A (E(2)) € RTDX(04D) with
R ™ o(—1 z‘jli—1 .
én = o)y T o 214)

i=1

andh is the estimated delay. It is reminded that= z1. Note thath is computed from the

first equation of systen2(13 and its projection, denotdijp, is defined by the last equation of
(2.13. Theproj operator is given by

' 0, h=h,., andh > 0
POt e (1) = § 0, o= hypin @ndi < 0 (2.15)
h else
This projection guarantees that:
Lemma 2.2.1.If the initial condition is such thak(0) € [humin, fmaz] andﬁp = proj[hmmhmw](ﬁ)
then, for allt > 0, one has A
hp(t) € [hmzn7 hmax] (216)

The proof is given irLavretsky et al[201]]. As a result, it will be assumed in the rest of
the chapter that

2. See the works aBauthier et al[1997, Busawon et al[199¢, Busawon and De Léon Moral¢200( for
further details on high gain observers.
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Assumption 2.2.1.The initial condition of the estimated delay is such that
}AL<O) S [hmmu hmam] (217)

Remark 2.2.1. With a slight abuse of notation, the projected deﬁz@ywill be denotedh in the
sequel. It was shown ilmannou and Sup2017 that the projection retains the properties that
are established in absence of the projection and guararttests(2.16) is verified. Thus, the
error h(t) — h(t) is bounded for alt > 0.

The following notations will be used in the next computation

~

/\ea:t = Aext(é(t)),
Aot = Aeai(E(2)). (2.18)

Denotinge = X — X the estimation error, its dynamics is governed by

¢ = AetX = At X+ fout(X) = foat(X) = ANL(E)S1CL ,Cuie — D(t,y, h).  (2.19)

-1
P ext
For the proof of the main result, the next assumption is regjui

Assumption 2.2.2.There are time interval$ where the time derivative gfis bounded so for
allterl

£ < v (2.20)

with v > 0 and¢ verifies A
a < [§()] (2.21)

with o > 0.

Remark 2.2.2. Equation .20 is a technical condition that will be used in the next setto
prove the convergence of the estimation error; this conditirises because of the choice of the
high gain observer. Equatior2(21) appears because of the form of the extended systéin (
and is linked to the intrinsic observability conditio$y) # 0 and« # 0 presented in Theorem
1.1

It is now possible to state the main result of this chapters teminded that/,, ,; is the
bound of them time derivative ofu (Assumption2.0.5 and thaty is the upper bound of the
delay dynamics (Assumptidh4.3.

Theorem 2.1(Léchappé et al20150). Let I = [to, t] with ¢, > 0 such that Assumptions
141142143 2.0.52.21and2.2.2hold on/. Then, provided thap is sufficiently
large, there exisk, o, r > 0 such that for allt € I

le())]] < klle(to)lle™) + 1. (2.22)

Proof. The proof use similar argument as Busawon et al[199§. First note thatA.,; =
A HE)AN(E) and CopyA(€) = Cypy. Furthermore,

/A\emtX - /\e:ctX = (f\emt - /\e:mt>)2r + /\e:cte (223)

and the only non zero term (%f\m — /\m] X is

([/\m — /\m} X) 1) = G(y) {Z (—1);;11— u(z’)(t)_z (—1);;11— u(z’)(t)} h
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Since all the terms on the right hand side f44) are bounded then

< ¢ (2.25)

[([Au— 2] %)

(n,n+1)

with ¢y > 0. In addition, sincef is C'!' (Assumptiori.4.]) then f.,, is alsoC! and from the
mean value theorem one gets

dfemt (X)

e (2.26)

feot(X) = feur(X) =

K

for somex lying between the segment with end poiiitand X . Besides, the Jacobian matrix
of f... is lower triangular from the definition of in (1.42. Substituting2.23 and .26 in

(2.19
e = /\e:rt_A fS 10 Ce:cte_'_ Aext_AemtX+M e_Ft7y7h" 2.27
X

ext

LetA, be the diagonal matrix

1
A, = diag (1, —_— —) e Rm+Dx(n+1) (2.28)
pn
then it is shown irBusawon et alf 199§ that
1
Sp - ;ApSlAP (229)

whereS; is the solution of the Lyapunov equation 13 for p = 1. Now, se€ = A(é)Ape,
then

e = (A S 1Cextcext) (g)Ap(Aewt_Ae$t)X+A(g)Apdf&%)g)() Apilxil(é)é
FAOAT () = M)A (L, y, h). 2.30)
Furthermore A (§) A, st AIN-1(€) = A Lest @ A1 and
- an .
oh o ... 0 0
dfea}t(x) —1 por T2 .
@y |0 L 23
1 % l 8fn % 0
pn~10xy " pdrpn_1 Oxn
| 0 0 0 —

So since the partial derivative of the are bounded and choosing> 1, there exists a constant
¢o independent from such that

~ dfext<X) —1/&\ A1
e, P i,

<. (2.32)

Besides, the produdi(&)A (A . — A.¢) X results in a matrix whose coefficients are equal to

zero except one that depends @'f\m — /\emt] X)( : SO one gets
n,n+1

M2 At~ AcerX | < = (2.33)
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From Assumptio.2.2, one derives that

[Aen@ <= (2.34)
for all ¢t € 1. Define the following Lyapunov candidate functidras follows
V(t) =e(t)'S.e(t). (2.35)
The matrixS; verifies
gyllel]* <e’Sie < aile|f? (2.36)

with §,, 6, > 0 because itis the solution of the Lyapunov equatiorpfer 1 (seeGauthier et al.

[1997) so the Lyapunov functior2(35 is well defined. Note tht#%(f)ApH <lforp>1.
Differentiatingl” along the trajectories of4.30) and using above properties leads to

Vo< —pe"Sie+ 298| lel] + 2cul[ S| |lel)” + 2418 [lel]” + 2[1S || [IT(¢, v, b [[ell-
(2.37)
Thus, the following maximization dt.37) is obtained

Vo< —(pd; — 2a[ S]] = 22[ISu[D)11ell” + 2118122 + [IT(2, v, h)[DIfel - (2.38)

In addition, from equationd.4) and Assumption$.4.2 1.4.3and2.0.5 it can be deduced that
' is bounded and verifies

sup [[D(t,y, h)|| < T (2.39)
t>0
_ _ m—+1
with' = G%Umﬂ + 7. Consequently, the gajmcan be chosen sufficiently large such
m :

that the above inequality becomes
V(t) < —esV (1) + e/ V(1) (2.40)

with c; = (pd, — 2¢1|[S1]] = 2%|[S1]]) /61 > 0 andey = 2||S: (% +T)/+/4,. The comparison

lemma given inKhalil, 2002 Lemma 9.4] and the relatioris= A(£)A e ande = A A1 (§)e
ensure that equatior2(22 is satisfied. O

Note that the radius depends oi. Then for constant delayg & 0) and some particular inputs
such that the bound of the-time derivatives is equal to zet¢U,,, = 0), the convergence radius
is minimum. For time-varying delays and input such thatt, —h(t)) # 0, the observation

error converges to a neighborhood of the origin whose sipent#s on the accuracy of the

Taylor approximation and on the dynamics of the deldé#). Note that increasing the-

(m+1)
max

order of the Taylor expansion will decrease the size tecauselim = 0 where

Rt denotes the upper bound of the+ 1 time derivative ofh. However, it requires the
computation of input time derivatives so a trade off has tomlee between estimation precision
and computation complexity.

Remark 2.2.3. A similar result has been obtained for linear systems withaénté&n-like ob-
server in the particular case witlhh = 1 in Léchappé et al[20154. In the general case of
nonlinear systems, the convergence with the kalman-likervr is not ensured by choosing a
sufficiently high gain because of the nonlinear pgft).

3. An example of such an input is a ramp becaiuse0
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Remark 2.2.4. Theoren®.1can be extended to systems such thaepends on provided the
extra assumptionr Lipschitz is made|G(z) — G(z)| < K, ||z — z|| with K, > 0.

Remark 2.2.5.1n open-loop, the time derivatives of the input are anagjticcomputable if the
input is appropriately chosen. On the contrary, in closedd, even if the analytic expression of
the input is known, it is not so obvious; especially if theradditive noise or perturbation. Let
us take an academic example to illustrate this statemergurs that the system is defined by
& = Az + Bu(t — h) + d(t) with d an unknown external perturbation. Choosing the controller
u(t) = Kxz(t) implies that its time derivative reads aét) = K Ax(t) + K Bu(t — h) + Kd(t).
The termskK Az(t) and K Bu(t — h) may be perfectly known if the exact model of the system
is available. HoweverKd(t) is unknown sa: cannot be computed analytically in presence of
external perturbation. As a result, it can be necessary eorusnerical differentiator to compute
the successive time derivatives of the input. In this casjtable errors are introduced by the
differentiator. Denotingi¥) the estimated time derivatives ang = «( — ), one obtains
that

ul = e, + a9 (2.41)

so the Taylor approximatior2(3) becomes

=3 EM 00 4y, 0, i) (2.42)
with
Vi (t, =h(t)) = Y (t, (1)) + Z eul (t). (2.43)

If thee,,, are bounded and sufficiently small the€nis bounded and the extra error added by the
numerical differentiation will only decrease the obserwataccuracy (by increasing the radius
r defined in 2.22).

2.3 An extension to obtain a more accurate estimation

The original idea in the method presented above is to consiiéedelay as a state and to
use the Taylor’s theorem in order to take the delay out ofripet. To reduce the convergence
radius in .22), it can be interesting to estimate the perturbatian (>.,;) in (2.5). The term
9(y)ym(t, —h(t)) can be minimized by a wise choice of induiut it is not possible to act on
n(t). Consequently, the objective is to obsemv® try to reduce its influence. Various methods
are used to reconstruct perturbations as discussBadake and Zhigian§2004g: Disturbance
Observer (DOB), Unknown Input Observer (UIO) and ExtendeteSObserver (ESO). The
ESO technique consists in turning the original system intexdended one with the disturbance
as part of the new state. Miklosovic et al.[2004, the ESO method is modified to the GESO
(Global ESO) method by including time derivatives of thetpdyation. Indeed, this allows to
improve the estimation of time-varying disturbances. Apml the GESO technique t&(,;),
the augmented state becom¥és= [z7, h, h, ..., h@]T € R**1+4 and then the extended system
reads as:

X :/\€$tX+f€$t(X) +gemt(y)u(t) +F(t7 Y, h)
{ Y= ConsX = 1, (2.44)

with

4. The ternmy,, (t, —h(t)) is the remainder of the Taylor's approximation of the regarthputu(t — h(¢)).
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0 ]n—l 0n><1 o 0n><1 0n><1
0 0 G(y);%um 0 0 0
Aegt= 10 0 0 1 0 D | e RImFFOx(ntltg) (D 45)
0 0 0 0 0 1
0 0 0 0 0 0 |
feat(X) = [f(2)T,0,...,0]" € Rv+1H0), (2.46)
Gext(y) = [9()",0,...,0" € R+, (2.47)
and
L(t,y,h) = [9(y) vm(t, —h(1)),0,...,0,7/()]" € R+ (2.48)

whereh(@+1)(t) = 1/(t) is unknown.

For system2.44), an observer similar td®2(13 can be designed and the convergence proof
will be analogous to the one of Theoré provided that)’ is bounded.

The observer proposed here has three parameters: the,gae degreen of the Taylor
approximation and the number of delay dynamjdacluded in the extended system. To tune
them, one has to take into account various factors: the ctatipn time, the delay, the input
dynamics and the precision needed. For example, if a sloywinginput (with respect to the
delay magnitude) can be applied to the systentan be small because the Taylor approxima-
tion will be accurate (even for smah). In the same wayy can be equal to zero if the delay
varies slowly.

2.4 lllustrative example

2.4.1 Model presentation

A second order system has been chosen to illustrate prekesufis (see Section 1.2.1 in
Khalil [2003). It models the behavior of a pendulum and reads as

1(t) = i ;Cf_ L@} + [ (1)12} u(t — h(t)) (2.49)
y(t) = Ca(t) = 21(¢) '

with g the acceleration due to gravity,, the mass of the bold the length of the rod ank the
0 0

f(x) =10, —9sinz; — —:c2] andG(y) = z2 Functionsf andG comply with Assumptions
1.4.1and1.4.2 The delay used in the sequel are defined by

friction coefficient. Consequently, systeth49 has the form ofX) in (1.40 with A = {0 1} ,

0.6 for0 <t <20
1.2 for 20 <t < 40
ht) =19 o3 for 40 < ¢ < 60 (2.50)

0.8 + 0.45sin(0.2t) fort¢ > 60.

The delayh(t) is bounded iNAin, Amaz] With By = 0 s andh,,., = 1.5 s. The delay is
differentiable on the time intervab0, 120] seconds: Assumptioh.4.3is verified. When the
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delay is piecewise constant the differentiability is najuieed (see Assumptioh.4.3. Note
that these delays are very large in comparison with the diggof the pendulum: the time
constant associated to the linearized system is lesslteaRinally, the input signals applied to
system 2.49 are defined below

ui(t) = 0.009¢t
u(t) =< or (2.51)
us(t) = sin(0.15¢).

Both inputs are indefinitely differentiable and their timerigatives are bounded: Assumption
2.0.5is satisfied. Furthermore, the observability conditiam@ is always true sincé is
constant. Condition1(.49 is always verified for; but almost everywhere far,. However,u,
cancels only in isolated points so there exist time intervdiere Assumptioth.4.4is true and
therefore Assumptio.2.2as well. The design of the observer is given in the next suimsec
All system parameters are sum up in Tabl&

g (Mm.s™?) | my (kg) | L (M) | k(kg.s™") | h(s)

0.81 0.2 0.5 0.3 [0,1.5]

Table 2.1 — System parameters

2.4.2 Observer design

In above sections, the general case of the Taylor expan§naerm has been studied. In
practice, the choice ofi can be made according to the precision desirefl and the available
time derivatives of:. In this section, three observers are going to be testedmwith 1, m = 2
andm = 3 in order to study the impact of the choiceaf on the estimation result. For the
three observers, the gairhas been fixed t6. The observer equations are given below:

p

lj’l {i’l 0 0 i‘l_xl
To| = Acat |B2| + —§sm@1—mipa:«2 + ﬁ u(t) —A1()s,tCr, 0
i h 0 0 0
0 = pSp—l—ATSp‘i‘SpA‘i‘Cg;tCext
\ hP - proj[hmimhmax](h)
(2.52)
where
010 010 100
A=10 0 1], Aw=10 0 €[ A& =1]0 10 (2:53)
000 000 00 ¢
with
_#u form =1,
£ —_— _u+%uﬁ> form = 2, (2.54)
1 —u—l—%uﬁ—%u(?’)iﬁ) for m = 3,

andC.,; = [1,0,0]. The initial conditions of the system and the observer atkayad in Table
2.2
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x(0) [rad,rad.s~'] | #(0)[rad,rad.s~'] | A(0) (s) | p

0.87,0]T [0,0]” 03 |5

Table 2.2 — Observer parameter and initial conditions

2.4.3 Results

Four simulations have been carried out:

e Simulation 1: system2(49 and observerd.13 with u = w4,

« Simulation 2: system2(49 and observerd.13 with u = us,

e Simulation 3: system(49 and observerd.13 with u = u, and noisy measurement and

input,
» Simulation 4: systemX(49 and extended observer of Sect@Bwith ¢ = 1 andu = us,.
The following notations are used in the sequel:
e, = [”fl - ﬂ and e, =h— h. (2.55)
Lo — T2
The norm of the relative error is given by

leal|
IEl

(2.56)

|ex|lr =

Simulation 1 On Figure2.13 the input does not have any observation singularity. Besid
whenu = uy, the three observers have the same trajectories sinee0, andi = 0 that

is why all the curves are exactly identical. The dynamicshef delay is equal to zero from
t = 0stot =60 s son(t) = 0. Forarampy,(t,—h(t)) = 0: T" is equal to zero and system
(3ezt) In (2.5) is disturbance-free. The convergence radius(2.22) is minimum, we even see
that the estimation error converges exponentially to zersirulatior?. This is confirmed by
Figure2.1aBottom. Note that the fast delay variations have an effedihe state observation
error as shown by the peaks2its and40s on Figure2.1aTop. After60 s, the delay is time-
varying. One observes on FiguzelaTop that the state observation error converges to a small
neighborhood around the origin. However, the exponentiaVergence to zero is not achieved
anymore because of an additional error due to the dynamicBhe delay observation error
also stays in a ball around the exact value (FigudexBottom). The radius of the ball can be
reduced by increasing the observer gain

Simulation 2 With the inputu,, there is an observation singularity whésn = 0. This ob-
servability loss is clear on Figuiz1b-Bottom when, form = 1, some peaks precisely occur
whent, cancels. Remark that the peaks at 32 s andt = 74 s are truncated because of the
delay projection in the interval, 1.5]. It can be observed that the magnitude of the peaks are
related to the delay size: the larger the delay is, the laigepeaks are. Fon = 2 andm = 3,
these peaks are very small that they almost not affect tira&tsdbn anymore and the observa-
tion error stays in a small neighborhood of the origin. Tmalgsis confirms the advantage to

5. The convergence radiusas been overestimated because even if it is minimum wherv, it is not equal
to zero.
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include higher order time-derivatives of the input in theme& by attenuating the effect of the
observability los§. The size of this neighborhood is directly relatechicand the delay. The
largerm is, the more accurate the Taylor approximation is and thestmallery,, is. Similarly
the smaller the delay is, the smaltgy, is. These two remarks are illustrated on Fig@r2 It
can be seen that the convergence radiusifor 2 is larger than form = 3. However, this
difference is not significant and the extra computation tmsbmpute the third time derivative
may not worth the small accuracy improvement. Since therehen singularity is very detri-
mental form = 1, the observer withn = 2 seems to be a good tradeoff between precision and
computation cost. As a result, in the next simulations, ¢timéyresults forn = 2 will be shown.
Finally, note that the state observation is very accuraiwdsn the transient caused by the fast
delay variations (Figurg.1b-Top).

m:‘l m:‘l

—_ —_— — —_ _
o 15 m*? S 15 —_—m ?
8 —m=3 8 —m=3
& &
) )
o ol

i i
100 120 0 20

i
0 20

60 60
time (s) time (s)

(a) Simulation 1u(t) = uy(t) (ramp input) (b) Simulation 2:u(t) = us(t) (sinusoidal input)

Figure 2.1 — Comparison of the observer performances féerdiiit orders of the Taylor ap-
proximation.

Simulation 3 In practice, noise can affect the measurement and the ihpthtis simulation,
white noise has been added to the measured sigreahd the input signal. The variance has
been chosen to obtain a noise of abdut of the amplitude of the original signals. The time
derivativesu, i have been computed thanks to a Levant differentiatwant[1993 whose
equations are given below:

Zo =

vo = —AoL3|z0 — u(t)|3sign(zo — u(t)) + 2

Z o= 0 (2.57)
v = —ML3|z —volFsign(z — vp) + 2

Zo = —AQSigr(ZQ — Ul).

If the parameters\; and . are properly chosen, then the result ireyant 1993 Theorem 5]
guarantees that the following equalities are true in theades of input noises and after a finite
time:

20(t) = u(t) and z(t) = u(t) fori =1,2. (2.58)

6. It has been proposed lréchappé et al[20154 to turned off the observer (only the part concerning the
delay) when getting closer to the singularity. This solni®interesting only if the observer has already converged
and if the delay is constant otherwise this solution is npirapriate.
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Figure 2.2 — Simulation 2u(t) = uy(t) (sinusoidal input)

If the inputu is noisy then the estimation error converges in a ball aratedorigin whose
radius is proportional to the noise valueefyant 1993 Theorem 6].

Besides, a matri® = I3 with ¢ = 0.09 has been introduced in the observer to filter the
noise: the gain of observe2 (13 becomes\ ™ (zeta)S, ' RCZ,. The differentiator parameters
are\g = 3, \; = 1.5, A\, = 1 andL = 0.11. Figure2.3-Bottom shows that the singularity
are magnified because of the noise. However, between thesevalion singularities, the error
estimation tends to a small neighborhood of the origin. Quufé2.3-Top, one can see that the
state observation error still converges to a ball arounatiggn. However, its radius is slightly

amplified by the noise in comparison to Fig@édh

llez|lr (%)

: : : —H---h :
oL —h(m = 2)|]

0 20 40 60 80 100 120
time (s)

Figure 2.3 — Simulation 3u(t) = us(t) (sinusoidal input) with noise

Simulation 4 Finally, the extension presented in SectihB with ¢ = 1 is compared to the
above resultsg(= 0) . The simulation is carried out on systeth49. In both caseq = 0 and

q = 1), the second order Taylor approximation is used= 2). All the parameters are the same
as in the previous simulations. On Figu&, the convergence radius for the state observation
error has slightly decreased when the dynamics of the dslagded in the extended system
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(¢ = 1). The accuracy of the delay observation is largely improvwkd convergence radius is
about three times smaller fgr= 1.

15 —q=1
X
10
1 l
O . i e — i
0 20 40 60 80 100 120
time (s)
_— - b’ L
2 —h(g=0)
—_h (q = 1)
n 15 y
]
L ! i
|
0.5 1
o i | i i i
0 20 40 60 80 100 120
time (s)

Figure 2.4 — Extended observer(t) = us(t) (sinusoidal input)yn = 2

Summary of the simulation results Above simulations have confirmed theoretical results.
They illustrate the efficiency of the observation technitpue

* reconstruct the state of a system with an unknown and pggsie-varying delay in the
input,

 estimate the delay value.
Furthermore, the following properties are of particulderest:

» for m > 1, the observation singularity has almost no effect on theoagion for noise-
less signals,

* the convergence radius can be reduced using large valuesThis is particularly inter-
esting in open-loop when the time-derivatives of the inpaterfectly known.

The quality of delay estimation highly depends on the natirthe input. The input:
should not be too fast-varying in order to have a good Tayp@raximation (and a smail,,).

2.5 Summary

Contributions

[1 Estimation of both the state and the delay of a class of neali®&ISO systems.
[1 The method works for time-varying delays.

[] Use of a standard observation technique (high gain obgerver
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A solution to observe both the state and the delay has besangs=l in the previous chapter.
A drawback of the previous technique is that the dynamick®state and delay estimations are
governed by the same gain. An alternative solution thatvalla separate tuning of the delay
and state observers is proposed in this chapter. Firstag dstimator based on an optimization
method is presented. Then, a new extended state obsernv@) (E8esigned to estimate the
delayed input. Finally, an interconnected observers sehernntroduced to observe both the
state and the delay using standard state observers.

3.1 Gradient based delay observer

In this section, a delay estimation method based on a griadiéscent algorithrhis studied.

The idea is to compare the delayed sigm@l— h(t)) to a virtually retarded signal(t — h(t))
and find the value of(¢) that minimizes the criteriof

J(h(t)) = [u(t = h(t)) = ult — h(1))]’ (3.1)

1. See the work offiberzon and Temp§2004 for details about gradient descent algorithms.
2. InBresch-Pietri et al.2017, the authors use a similar technique but the criterionlireda state prediction.

51
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ON [Amin, hmaz|. Defining the dynamics of the delay estimatiothanks to the gradient descent
algorithm, one has

A~ ~

| i)
h(t) = =7 s ” prlu(t — h(t)) —u(t — h(t))] 7 ” (3.2)
with p, > 0. Since R R
ou(t—h)  Ou(t—nh)
it results that the dynamics éfis
h(t) = palu(t — h(t)) — u(t — h(e)]i(t — h(r). (3.4)

In order to compute3.4), the knowledge of: andu(t — h(t)) is necessary. In some practical
cases, this is not always possible so some methods have tetid¢aiestimate these quantities.
In the next sections, three cases are going to be analyzed:

* u(t — h) anda known in SectiorB8.1.1,
* u(t — h) known andu unknown in Sectior3.1.2
* u(t — h) anda unknown in Sectior8.1.3

3.1.1 wu(t— h)anda known

The ideal case is wheint — h) andu are perfectly known. In the control case, the assump-
tion u(t — h) known may be reasonable. In practice, if the packets arestamged then the
system that receives the delayed input can send it to thg dstemator as shown on Figugel.

As far asu is concerned, adding an integrator preprocessing the {jayuamic feedback), as
in Example3.1.1], allows to perfectly know the input time derivative.

. y(t)
u(t — h(t

a(t)
u(t — (1))

Figure 3.1 — Delay estimator with(t — h(t)) anda known

Example 3.1.1.Consider the scalar system
x(t) = ax(t) + bu(t — h(t)). (3.5)

Systemd.5) can be rewritten as follows

e e R it R EC B
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withv(t) = u(t) as a new input. Any kind of controllerscan be designed to stabilize extended
t

system.6); then the controk: can be deduced by(t) = [ v(s)ds.
0

The stability property of estimatoB(@) whenw(t — h) andu are perfectly known is given
in Theorem3.1

~

Theorem 3.1.Let I = [ty,t] with ¢, > 0 be such that — h(t) € I andt — h(t) € I,
if |u(s)| > a forall s € I, then the delay estimation error resulting from estimat#)
verifies

[le()I] < lle(to) [~ 4 —— sup [ (s)| 3.7)

pha s>to

forall t € I and withe(t) = A(t) — h(t).

Proof. For the sake of clarity the argumenwill be omitted when no confusion is possible. Let
V =~(h—h)? (3.8)

be a Lyapunov candidate function. Taking the time derieatit/l” along the trajectories of
(3.4) gives

V = pu(h — h)[u(t — h) — u(t — h)]Ja(t — h) — (h — h)h. (3.9)
Reminding that from the mean value theorem there egjsts|min(t —h, t —h), max(t —h, t —

~

h)] such that

W(¢y) = ult ;)l: (t=h) (3.10)

>

one gets A ) A '
V = —pn(h — h)*u(t — h)a(¢s) — (h — h)h. (3.11)

Sincet — h and ¢, are in the intervall, the termsi(t — h) andu(¢;) have the same sign. It
follows that

A~

V < —ppa*(h —h)?* — (h— h)h (3.12)

and then that
V() < —phoz2||h—h\\2+IIh—hllsgg\h(s)\- (3.13)
Applying Lemma 9.4 iKhalil [2007 leads to equation3.7). O

When the delay is constarit,= 0, the delay estimation error converges exponentially to.zer
In addition, note that the convergence rate is proportibméhe square of the time derivative
lower-bound.

3.1.2 wu(t — h) known and @ unknown

In practice,z may not be perfectly known. In that case, one has to compuéstmation
u. An estimation based on an interpolation strategy is chaséiop et al.[2001], a Levant
differentiatorLevant[2003 or any numerical differentiator can be used. The only cbodito
have an efficient delay estimator is thigt — (¢)) and its estimaté(t — i) have the same sign
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(the exact estimation is not required). That is why a simptdution has been chos&nthe
time derivative ofi is approximated by the finite difference as follows:

(o) = M=) th —h(t) = ) a1

with h; > 0 a virtual delay. Then, a similar estimator t8.4) is designed but using3(14)
instead ofu(t — h(t)):

~

h(t) = pulu(t — h(£)) — u(t — h(t)]u(t). (3.15)

The stability property of estimatoB(15 is given in Theoren3.2

A~

Theorem 3.2.Let] = [ty, t] witht, > 0 be such that — h(t) — hy € I andt — h(t) € I,
if |u(s)| > a for all s € I, then the delay estimation error resulting from estimati.p)
verifies

e (t— 1 ;
[le()]] < lle(to)[[e** 1) 4 —— sup [ (s)| (3.16)

PrOZ s>t

forall t € I and withe(t) = h(t) — h(t).

Noting that the mean value theorem ensures the existertge=oft — h,, t] such that
) uw(t—h) —ult—h—h
() = i) = L= 2] (3.17)

the result is deduced by similar computations as in Theddm
If hy is sufficiently small then the sign aft— %) andy(t) is the same then the same stability
property is obtained (see Figuse?).

u(t)

Figure 3.2 — Delay estimator with(t — h(t)) anda known

3.1.3 wu(t — h) and & unknown

If the delayed input is not available, the objective is to pome an estimation af(t — h).
An ESO method is going to be used to estimafe First, a standard ESO will be reminded in
order to compare its performance with respect to a new oreepted thereafter.

3. Numerical differentiators are often complex to impletreamd to tune.
4. SeeMadonski and Hermaf2014 for references on this method.
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Since the input only appears in the last equationXdfi6 (1.40, other equations are de-
liberately left out not to overload the presentation. Femthore, the full state knowledge is
considered since the focus is on delay estimation in thisexttion. In the next sections, the
goal is to design an extended observer to estimate the unktemu(t — h(t)) in the following
equation

in(t) = fu(2(t) + G(y(t))u(t — h(t)). (3.18)

As in Chapter2, the assumption below is required

Assumption 3.1.1.Letp € N*, the inputu is in CP*([—h,,40, +00[, R) and its derivatives are
known and bounded, i.e. for all= 1, ..., p + 1, there exist constants; > 0 such that for all
t Z _hmax

MG (3.19)

Before dealing with the design of ESO observers, the conakpersistence is recalled.
Consider a state affine system of the form

i(t) = A(s(t))a(t)
e (320
with s a known signalA € R"*™ andC' € R". The observability Grammian reads as
t+T
WKLTJ@Dzi/d5WJKﬁC®J&Oﬂ9 (3.21)

t

whered, (6, t) is the transition matrix of systen3 20

0.(0.1) = A(s(0))2.(0,1). (3.22)
Thus, the universality index is given by
w(t,T,s) =min \;(W (¢, T, s)). (3.23)

Definition 3.1.1 (Besancon et a[199€4). The signals is said to be regularly persistent for
system3.20) if there existy, 7', « > 0 such thatw(t, T, s) > « for all t > t,.

This condition usually allows to relax the observabilitynd@ion by allowing pointwise
observability losses.
Standard Extended State Observer

The idea of the ESO method is to consider the unknown termtanidnie derivatives as new
state variables. For instance, in the present case, thededesystem reads as

Z=Az+ f.(x) +1,(¢)
{yzoﬂzxn (3.24)

with 2z = [z,,, u(t — h), ..., u®D(t — h)]T € RP* forp € Nandp > 1,

0 G(y) 0 0 0
0 0 1 0 :
Ao=1: o 1o | eREFDXEHD, (3.25)
0 0 0 0 1
0 0 0 0 0
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f-(z) = [f()",0,...,0]" € R, (3.26)
T.(t) = [0, —ha(t — h), ..., (1 — b)u® (t — h)]" e RPF (3.27)

andC, = [1,0,...,0] € R, The termI', is bounded from Assumptioris4.3and3.1.1and
can be considered as a perturbation. An observability aisashows that the paiC’,, A,) is
observable if(y) # 0. It has been decided to use a Kalman-like obs€etrvardeed, provided
that G(y) is persistent for systenB(24), the Kalman-like observer can achieve exponential
convergence in the disturbance free case. The equatiohs obiserver are given below

5= p.s.- ATS Py v (3.28)
S.(0) = 5.(0)T > 0

with 2 = [2,,, a(t — h), ..., a»~D(t — h)]”. Consequently, the error dynamics, denatgd) =
z(t) — z(t), reads as
&u(t) = (A — S71CTC)en(t) — Ta() (3.29)

and its stability property is established in Theorgra

Theorem 3.3(Léchappé et a[2016). Suppose that Assumptiobgl.3and3.1.1hold and
thatG(y) is persistent for systen324). Then, there exist, o, > 0 such that

lle=(®)]] < Klle-(0)]le™" + T Sup [T ()] (3.30)

With T, (£) = [0, —ha(t — h), .., (1 — R)u® (¢ — h)]”.

The convergence proof of Theoréh8is similar to the one bydammouri and de Leon Morales
[199Q since f,(x) is a known signal that cancels when computing the observatimr.

New Extended State Observer

The major drawback of the previous method is that the timevatgre of the last term is
approximated by.?) (¢ — h(t)) ~ 0. Here, a different approximation is proposed by introdgcin
a virtual and constant delay; > 0:

uP=D(t — h(t) 4+ hy) — u®=V(t — h(t) — hy)
2hs '

u®(t — h(t)) ~ (3.31)
Choosingh, sufficiently small will make the approximation ef?) (¢t — h(t)) more accurate
hence the estimation af(t — h(t)) will be better and finally the delay estimation will be im-
proved. As a consequence, the tenifts V(¢ — h 4 hy) andu®~Y (¢t — h — hy) have to be added
to the extended state and their time derivatives are appiated by

uP=V(t — h(t) + hy) — uP=V(t — h(t))
ha

WPV (t — h(t) 4 hy) & (3.32)

and
uPV(t — h(t)) — uPV(t — h(t) — hy)

ho

5. See the works oBornard et al[1989 and Hammouri and de Le6n Moralé499Q for further details on
Kalman-like observers.

wPV(t — h(t) — hy) = (3.33)
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As a result, the extended system is

{ Z=Az+ f.(x) +T.(t)

y=0Cz=ux,

with z = [z, u(t — R), ..., u® D (t — h),u®PD(t — h + hy),u®PV(t — h — hy)]”

peN,p>1,
[0 Giy) 0 0 0 0 0 |
0 0 1 0
: : .0 0 0
A=lo 0o 00 1 0 0 |€RUVEIEE,
0 0 0 0 01 ﬁ — 5
0 0 0 0 “hs T 01
0 0 0 0 & 0 —3]
f.(z) = [f(x)T,0,...,0]" € RPF3
C.=[1,0,...,0] € RP*3
and
T.(t) = [0,—ha(t—h),....—hu®(t — h),

—hu(p) (t — h) + 61(h2), —hu(p)(t — h) + Eg(hg), —hu(p)(t — h) + Eg(hg)]
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(3.34)

€ RP+3 for

(3.35)

(3.36)
(3.37)

p+3
» €R

(3.38)

wheree; are functions such th%lﬁmo e;(he) = 0fori = 1,2,3. The termI’, can be seen as a
2—>

perturbation and is bounded from Assumpti@rs 3and3.1.1 An observability analysis shows
that the pair(C,, A.) is observable provided thét(y) # 0. Similarly to the previous case, it
has been decided to use a Kalman-like observer. IndeedidethatG(y) is persistent for

system 8.34), the Kalman-like observer can achieve exponential cqyerere in the disturbance

free case. The equations of the observer are given below

2:/\z+fz() S71CTC, 2 - 2]
S, =—p.S.—ALS.—S.A.+CTC,
S.(0) = SZ(O)T >0

(3.39)

with 2 = [&,, 4(t — h), ..., 0@V (t — h), 0P~V (t — h+ hy), a®~V(t — h — hy)]”. Consequently,

the error dynamics, denoted(t) = 2(t) — z(¢), reads as
e:(t) = (A, = ST1CICL)en(t) — T.(1)

and its stability property is established in Theorgm

(3.40)

for system3.34). Then, there exist’, o', > 0 such that

lle-@)I] < Klle=(0)]|e™" + 7' sup [T (s)]

i=1,2,3.

Theorem 3.4. Suppose that Assumptiohgl.3and 3.1.1hold and thatG(y) is persistent

with I, () = [0, —hi(t — h), ..., —hu®(t — h), —hu® (t — h) + €, (ha), —hu® (t — h) +
€2(hy), —hu® (t — h) + e3(hy)]” wheree; are functions such thatim €i(hy) = 0 for
2—>

(3.41)
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The convergence proof of Theorémntis similar to the one bydfammouri and de Le6n Morales
[199Q since f,(x) is a known signal that cancels when computing the observatimr.

The main difference with the standard ESO is the size of thieisd’.. It will be illustrated
in simulation that the new ESG (39 achieves a more accurate estimation:0f — £) than
observer 8.29. Note that when the delay is constaht= 0, andl’, in Theorem3.4becomes
[.(t) =[0,0,...,e1(ha), e2(ha), e3(h2)]T. Thus, the radius of the convergence ball can be made
arbitrarily small choosing a small,. This is not possible withi', = [0,...,0,u®(t — h)] in
Theorem3.3. However, in presence of noisg; cannot be reduced arbitrarily so the delay
estimation error will remain in a neighborhood of the origin

Application to delay estimation

The estimation ofi(¢ — h) obtained from the new ESO can now be substituted in the delay
estimator dynamics. Thus, estimat8r{5 becomes

~

h(t) = pulu(t — h(t)) — at — h(t))]u(t) (3.42)

wherey(t) is the same time derivative approximation as3rilé) anda (¢t — k) is obtained form
observer 8.39. The stability property of estimato842) is given in Theoren3.5.

~

Theorem 3.5.Let ] = [ty, t] witht, > 0 be such that — h(t) — hy € T andt — h(t) € 1,
if |u(s)| > aforall s € I, then the delay estimation error resulting from estimati.g)
verifies

a2t 1 .
lle@)I] < [le(to)] e =) 4 —— sup[pnUs [[e=(s)[] + [h(s)]] (3.43)
pha s>to

forall t € I and withe(t) = A(t) — h(t), e. verifying 3.43 and U, defined in Assumption
3.1.1

First, the existence @, € [t — hy, t] such that

u(t —h) —u(t —h — hy)

I (3.44)

ult) = a(6,) =
is guaranteed by the mean value theorem. Similarly, theisise € [t — hy, 1] such that
u(t —h) —a(t —h) = (h— h)u(¢:) — Cye.(t) with

C, =10,1,0,...,0]. (3.45)

The result is then deduced by similar computations as in figme8. L
From equation3.43, it can be noted that the errer due to the observation af(t — 1)
directly affects the accuracy of the delay estimatiovia the termsup|p, U, ||e.(s)|| + | ()]
S>t0

As a consequence, the error on the estimation(of- 1), Cye., direEtIy affects the accuracy of
the delay estimation.

Remark 3.1.1. For noisy signal, the alternative dynamics can be used

t

~

h(e) = 2 / fu(s — h(s)) — (s — h(s))|Tpu(s)ds (3.46)

t=T
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with 7" > 0 the window length that can be adjusted with respect to theenlgvel: the larger
the noise is, the largef’ should be. Note that it is a filtered version of the dynamidsdd in
(3.42. The integral acts as a low pass filter whose time-constanined by the parameté&r.
Similarly, if the input signal is fast varying3(46 can be normalized as follows

_ Pn I(t)

t ~
with I(t) = [ [u(s — h(s)) — u(s — h(s))] u(s)ds ande > 0. This normalization allows to
t—T
make the convergence speed almost independent from thedympamics.

3.2 Interconnected delay-state observers scheme

3.2.1 General presentation

In Chapter2, an observer that estimates both the delay and the stateckaspibesented.
However, the dynamics of the delay and the dynamics of theesysan be very different
so it should be possible to tune the observer dynamics imalgpetly. This is not possible
with observer 2.13: this drawback can be circumvented by using an other obsecheme
proposed in the sequel. It is based on the interconnecticn aélay observer with a state
observer: the scheme is displayed on Figdi® Especially, all the state observers existing for
delay free systems can be used. In this section, a genenaddvark is considered and some
particular observers will be studied in Secti®i2.2

u(t — h)

u(t)

Figure 3.3 — Delay estimator interconnected with a standiai@ observer

Remark 3.2.1. The words “estimator” and “observer” will be used withoutstinction here.

Following the notation of Figur8.3, the state estimation error is denoted by
€, =T —x (3.48)
and the errors of the delay estimator are
e,=%2—z and e, = h — h. (3.49)

The variablez is an auxiliary variable that will be useful to compute anraation of the delay.
The =z variable can contain for example the input — ) and its time derivative as shown


./chapter_input_optimization/figures/scheme_interconnected.ps

60 CHAPTER 3. INTERCONNECTED DELAY-STATE OBSERVERS

in observer 8.39. In the sequelV, (respectivelyV.;) will refer to a Lyapunov candidate
function for the state observer (respectively for the delstymator). These two estimators are
connected by the estimated delayhat enters the state observer through — h) and by the
state estimation that enters the delay estimator. To study the convergernte ofhole system,
the interconnected subsystems approach is going to be Tikechext theorem states a general
result for interconnected delay and state observers.

Theorem 3.6(Léchappé et a[2014). For the disturbance free system, suppose that thLere
exist a state observer such that

Vx < _Cx||ea:||2 + conllex]| |lenl| (3.50)
and a delay observer such that

Vo < —cllesll? = anllenll? 35
eanllesI| llenll + ezl el lleal

with c,, ¢, ¢, cun, C.0, c., > 0. An appropriate choice of,, c., ¢, guarantees the exis;
tence of a clas&€ L function, a finite time7" and an initial timet, such that the error
e =[el el e,]" of the disturbed system is uniformly bounded

eI < B([lz(to)l], t = to) (3.52)

foralltg <t <ty+ T and
le())]] <o (3.53)

forallt >ty +T.

Remark 3.2.2. The constants,, c., ¢., ¢.,, ., ¢, Will depend on the observer parameters. In
particular, ¢, c., ¢, will be directly proportional to the observer gains as it Mde shown in the
next section on particular examples.

Proof. First, the convergence of the disturbance free system ikedbout. Let the sum of the
Lyapunov functions of the isolated systems:

V=V,+Vy (3.54)

be a candidate Lyapunov function for the interconnectetegysConsequently, fror8.60 and
(3.51), the time derivative o¥ satisfies

) Cg _%sz _czTh HemH
V<lleall lle:ll llenll] | =3¢z ez =52 |lle:ll]. (3.55)
-5 =% a ] (el
-~
S

In order to havel” < 0, S has to be positive definite: then, the leading principal msnaf S
must be positive:

cy > 0,

CpCy — isz > 0, (3.56)

1.2 1.2 1 1, 2
CeCoCh— 7CopCe — 1 CanCz — 7CoaCahCah — 7ChCo, > 0.
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The terms:,, c., ¢, are proportional to the observers gains as mentioned in Rer8&.2s0
they can be chosen sufficiently large in order to mélaefinite positive.

The uniform boundedness of the disturbed system direclytsefrom the application of
Lemma 9.3 irkhalil [2003.

3.2.2 Particular example

In this section, some observation solutions are exhibaeatiustrate the general considera-
tion of the above section. First, a state observer is dedignd it is shown that it complies with
(3.50. Then, a delay observer is presented and condi8dsil) is checked.

State Observer

A high gain observet is chosen to observe the state of systéih i (1.40. Observer
equations are ‘ A
r=At+ f(&) + gy)u(t — h) — A TL(CE —y), (3.57)
whereA,, = diag [L, . in] andL such that
Pz~ Pr Pz
(A= LCY'P+ P(AN—LC) = —1I, (3.58)

with P > 0. Itis important to note that the inputis affected by the delay estimatiérand not
the real delay:. The dynamics of the state observation error is given by

¢ = (A=A, LO)e, + f(2) = (@) +g(y)[ult —h) —ult =h)].  (3.59)
Sincef is C! (Assumptionl.4.1), from the mean value theorem one gets

£(2) ~ f(a) = T

o (3.60)

o

for somey lying between the segment with end poimtandz. Besides, the Jacobian matrix is
lower triangular from the definition of in (1.42). Defininge, = A, e,, one obtains

df (x)
dx

ér = pue(A— LC)E, + A, Ap_wléx + A, 9(y)u(t — h) —u(t — h)]. (3.61)

v

sinceA,, AAT! = p,AandCAS! = p,C. Furthermore,

of :
L
1 9fs Of . :
Apz df([[’) Afl _ pz 011 Oza ’ ' (362)
1 _Ofn 1 _Ofn  Ofn
| pn=t 0z 7" prOzpn_1 Oxn

so forp, > 1 and since the partial derivative of tifeare bounded, there exists a consignt
independent fromp, such that

Afl

Px
ol

< ¢ (3.63)

dx

6. See the works aBauthier et al[1997, Busawon et al[199¢, Busawon and De Léon Moral¢200( for
further details on high gain observers.



62 CHAPTER 3. INTERCONNECTED DELAY-STATE OBSERVERS

Remark 3.2.3.1n (3.59), itis clear from the continuity of that the error termu(t—h)—u(t—h)
will tend to zero as soon dstends toh.

To prove that condition3.50 holds for state observeB(57), the following candidate Lya-
punov function is defined
V, = é. Pé,. (3.64)

Taking the time-derivatives df,, along the trajectories of3(61) and using 8.58 and @.63
leads to

Vo < —=pall&l P + 2[| Pllcol|E.|* + 28 PA,, G(y)[u(t — h) — u(t = h)]. (3.65)
Then, from Assumption%.4.1, 1.4.2and3.1.1, one derives the inequality
Ve < =(p = 2IPllco)1Ea]” + 2GUL[A,, || || Pl 1Ex]] 7 = hl. (3.66)
sincel |, || < [|A,, || [le]|, one gets
Ve < (o2 = 2l Plleo) |8, | Plleal? + 2GU A, IPIHTAp ] Teal] enll (3.67)
Taking p,. sufficiently large, the above equation can be rewritten bevig
V;c < _Cxlle:cHZ + cenllez| |lenl| (3.68)

with ¢, ¢, > 0. Consequently, this state observer satisfseSQ).

Gradient based delay observer

Here it is assumed that(¢t — h) and« are not available so the estimat&42) is used.
However, the outpuy = C.z = xz,, of observer .39 is not available sy = z,, is going to
be used as the measurement of the new extended obs&i¥@rgs shown on Figurd.4. Thus,

Delay observer

: s u(t—h)
) :
: — (1)

Figure 3.4 — Delay and state interconnected observerstiaydar example

error equation3.40 becomes

é. = [A. —S;ICTC e, + f.(2) — f.(x) + S;1CTChe, — T.(1) (3.69)
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with
C,=1[0,..,0,1] € R" (3.70)
andA,,C,,S,,T,, f, defined in3.1.3 The termf.(z) — f.(x) arises because here all the state

x is not measured anymore. As fof; !CTC,e,, it arises because the outputisinstead ofr,,
so the correction term becom&s'C?C,(C.2 — C,#) and since

C.2—-Cht = Z,—an
= Z,—xn— (T — Ty) (3.71)
= Che, — C,e,.

The delay estimator dynamics is

~

h(t) = pulult — h(t)) — alt — h(t)]u(t) (3.72)

wherep(t) is the same time derivative approximation as3riLé) anda (¢t — k) is obtained form
observer 8.39 with y = z,,. Thus, delay estimation error reads as

~ ~

én = pulu(t — h) — a(t — h)]a(t — h) — h(t). (3.73)

Note that the dynamicE, and/ are unknown and will be considered as a perturbation of the
error dynamics. To analyze the stability of this observieg, following Lyapunov candidate
function is defined

Vo=V, +V, (3.74)

with V, = eI'S.e, andV}, = %(ﬁ — h)%. After some computations similar to those in the proof
of Theorem3.1, one has

Vi, = —pn(h — h)2a(¢y)i(0,) — (b — h)put(6,)Cle (3.75)
for h = 0 andC,, defined in 8.45). So the maximization
Vi < —pna®llenl | + pnUi|lez]] [[enl| (3.76)

can be deduced using Assumpti®i.l Taking the time derivative df, along the trajectories
of (3.69 leads to

V.= —p.el'S.e, —el'C.CLe, +2¢7S, [f(2)— f(x)] + 2L CTC e, (3.77)
for I', = 0. Besides, there existg > 0, such that for alt > ¢,, .S, verifies
0.1, < S.(t) < 6.1, (3.78)

for p. sufficiently large and witld_ andJ, are positive constants (s€esancon et a[1996).
Since f is globally Lipschitz (Assumptiord.4.1) and from equations3(77) and @.78, one
obtains ‘

V. < —pd.llesl” + caalle:]| llea| (3.79)

with ¢,, > 0. Then, from 8.76) and @.79, one gets
Van S =czllea]]? + caallea] Hleall = enllenl? + canlle:|| [lenl] (3.80)

with ¢, = p.d,, cx = pra® ande,;, = p,U;. ThereforeV,,, satisfies condition3.51).

It has been seen that the conditions of TheoBefare verified for a particular choice of
state and delay estimators. In the next section, this oagen/scheme is going to be illustrated
by simulation.
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3.3 lllustrative example

3.3.1 Anonlinear example: the pendulum

Simulations are carried out on the same system as in Setdoithe pendulum equations
are reminded below

i(t) = [—%sinm(t) - mip@(w} + [m;ﬂ} u(t = (D)) (3.81)
y(t) = Cu(t) = x1(1).
The delay tested in the simulation is defined Byb() (see Sectior2.4). To illustrate the results

stated above, the following interconnected observer isisitad:
The state observer reads as

w(t) = Ax(t)+ {—zsm:zl(tf)) - m%:?:z(t)} ! { ? } =) = 4L [ﬁl(t} 0 xl(ﬂ

l mpl?

(3.82)
whereA = {8 (IJ A, = dlag[ , 2}, L is such thatA — LC' is Hurwitz and the delay
observer is defined by

(2= A2+ [(2) — STICT[C.2 — Coi]
S, =—p.S.—ATS.—-S.A.+CTC,
S.(0) = S.(0)" >0 (3.83)
h(t) = [ ( h(t)) — Culu(t)
(t) _ —u(t— h— h1)

\ h1

with A, defined in 8.39, C, in (3.34, C, = [0, 1] andC,, such that”,z = u(t — h). Note
that the definition ofA ., C, andC, depends on the choice pf the size of the new extended
observer. Their exact expression is not given here sincedifferent observer sizes will be
compareg = 1 andp = 2. The vectoiC; has to be introduced because ofjyis available and
notxs. Itis reminded that the general definitions@f andC,, are given respectively irB(45
and 3.70. The gains of this interconnected observer are tuned sl

* state observe3(82: p, = 10,
 delay observer3.83: p. = 10, p, = 5.

First, the extended state observe¥28 and @3.39 are compared on Figur&5and3.6. In
the noise free case, it is clear that the estimation erranalsr for the new extended observer.
The difference is particularly significant on Figu8e&sa(p = 1). Forp = 2, the estimation
error for the standard ESO has been largely reduced but th&B© still performs better and
almost cancel the observation error. The conclusions faisyrsignalu(t — h) are the same
(Figure 3.6) so the new extend observer is more efficient to estimate amirsignals. This
better accuracy will be very useful in the delay estimatiooes a small error on the observation
of u(t — h) leads to a large error on the delay estimation.

The estimation ofu(t — h) obtained above is now used to estimate the delay thanks to
estimator 8.42). The results are presented on FiguBesand3.8. On Figure3.7g the delay
estimation is similar for both estimatioi(t — %) from the standard ESO or from the new
ESO. However, when the input varies faster (Figaréb), the delay estimation is better for
the estimatiori(t — k) coming from the new ESO. Indeed, the approximatiéh = 0 is not
appropriate for fast input so the estimatiomudgt — h) is not accurate and as a consequence
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---u(t—h) ---u(t—h)
15 , , , , , —— standard ESO 15 , . . . . —— standard ESO
—— new ESO ——new ESO

A\ \

i i i i i i i i i i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

standard ESO ‘ —— standard ESO
——new ESO 04 : : — | ——new ESO ‘

14 16 18 20 ) 2 4 8 .10 12 14 16 18 20
time (s)

8 16 1‘2
time (s)
@p=1 (b) p =2

Figure 3.5 — Comparison of Extended State Observers (ES®)wi= 0.1 s andu(t) =

sin(0.8t) without noise.

---u(t—h) ---u(t—h)
15 . . . . . { —— standard ESO 15 . . ; ; ; —— standard ESO
. ——new ESO | —new ESO
=
| 0.5
E o
S
-05r
-ip i i i i i i n i i i i i i i i L i i
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
standard ES

— — standard ESO
QI 0.4 —new ESO "lt 0.4 , , , , , { ——new ESO
Na Na

S S

| |
= <=

| |
Na Nadt

3 S

8 .10 12 14 16 18 20 ) 2 4 8 .10 12 14 16 18 20
time (s) time (s)

@p=1 (b)p =2

Figure 3.6 — Comparison of Extended State Observers (ES®)wi= 0.1 s andu(t) =
sin(0.8t) with a white noise on the signalt — h).

the delay estimation is degraded. On the contrary, the dedtisnation using the estimation of
u(t — h) from the new ESO are similar for both input signals; which neethatu(t — h) is
properly estimated in both cases. As a comparison, the dése {t— ) known is presented on
Figure3.8 One can observe that the result from estima@ot?) with new ESO (¢t — h) anda
unknown) are very close to the “ideal” casé#{— i) andu known). Further analysis shows that
asymptotic convergence is achieved for a constant delayeabea small error remains when
the delay is time varying. This is in accordance with The@8m and3.2

3.3.2 Comparison with the high gain observer

Finally, interconnected schem®.82-(3.83 is compared to the high gain observary?
presented in Chapté& The relative norm, defined by 56), is reminded heref/e, ||, = “‘e;‘”'.
For a constant delay, the interconnected scheme achievay aacurate delay estimation, so
the state estimation is also very accurate (FighiBg. Observer 2.52 achieves an accurate

convergence for small delays (Figu3eb). For a time-varying delay, the delay estimation is
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- - -h(?)
15k —— h from estimator (3.42) with standard ESD
’ —— h from estimator (3.42) with new ESO

(sec)

L
0 20 40 60 80 100 120
time (s)

(@) u(t) = sin(0.4¢)

- - -h(?)
—— h from estimator (3.42) with standard ESD
15+ —— h from estimator (3.42) with new ESO

(sec)

time (s)

(b) u(t) = sin(0.8t)

Figure 3.7 — Comparison of delay estimators performance (for- #) and unknown f = 2
for both ESO).

more accurate for interconnected observar8)-(3.83 and especially when the delay is large.

Remark 3.3.1. The main difference between these two methods come frormrtbigiaty of the
high gain observer to the observation lossiin= 0. Indeed, the input presents observation
singularities because its time derivative cancels in sosoated points. However, the delay
estimator 8.83 does not shoot up during the observability loss.

3.4 Summary

[1 Presentation of a new Extended State Observer.

[1 Estimation of both the state and the delay of a class of nealti®ISO systems.
[1 The method works for time-varying delays.
O

Presentation of a delay observer that does not require thwlkdge of the input
time derivative.

[1 Use of an interconnected scheme that allows a separategytahthe state and the
delay observation dynamics.
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Conclusion

Two solutions have been provided to solve the problem ofydated state observation for
a class of nonlinear systems with a time-varying delay initipait. The first one is based on
the Taylor approximation of the retarded input. Then a nestesy is constructed with the
delay as a part of the extended state and finally a high gaieredsis designed to estimate
the augmented state. The second solution shows that it @hp@$o connect standard delay
free state observers with a delay observer; the convergeresured under some conditions.
Some simulations have shown the efficiency and the limit oheaethods. The reconstructed
state and the delay are useful to design predictive coatsollt will be studied in details in the
following part.

A comparison of the different strong points of each estiorathethod is drawn in Tabl& 1
Note that the comparison is based on the high gain obser@naghter2 and the interconnected
observer Chaptes (with the delay estimatoi3(42). Some explanations about the criteria are
given here:

 the “Complexity” criterion refers to the implementatioorsplexity to compute the esti-
mation,

« the “Singularity sensibility” criterion refers to the bahor of the estimator when going
through an observation singularitydit) = 0,

* the “Tuning” criterion refers to the complexity of the tugi process.

The classification arguments are detailed below. The coatipatof the input time derivatives
is a weak point of the high gain observer. On the contrarydtiay estimator3.42 does not
need the input time derivative. It has been seen in the sitioualaection (Sectio.3.2 that the
delay estimator proposed in the interconnected schemestows down but do not shoot up as
the high gain observer when crossing a singularity(if) = 0. Finally, the high gain observer
is easy to tune since it only has one gain to adjust. Howelveray be a weak point since the
dynamics of the delays can be very different from the dynarmfdhe system. The advantage
of the interconnected scheme is that the two gains can be separately. However, the delay
estimator gain should be adjusted with respect to the dycgafithe input.

) . Singularity :
Delay-state observer | Complexity sensibility Tuning
High gain * * * %
Interconnected observers * %k 0. 8.0, ¢ *

Table 3.1 — Comparison of the high gain observer and thedoiterected observers presented
respectively in Chapteizand3. Criteria are explained above.
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Introduction

Prediction-based control is the only technique able to ajutae a good level of perfor-
mances in presence of large input delays. However, soméslpnévent its use in practice.
The computation complexity, the exact knowledge of theydelahe sensibility to unmodeled
dynamics are some of its weak points. In this chapter, soicas are presented in order to
reduce these limitations and widen the application rangeediction-based control. Through-
out this part, the stability analysis will be performed tksuo the construction of systematic
Lyapunov-Krasovskii functionals inspired by the recentkgoof Ahmed-Ali et al.[2017 and
Mazenc et al[2014.

Organization

Three different predictions are going to be studied and @egpfor known delays (Chapter
4) and unknown delays (Chaptgy.

* the standard prediction,
« the dynamic prediction,

* the new prediction.

Remark 3.4.1. The term “prediction” refers to a way to predict the futuretbe state. There are
various methods to compute a predictive value of the statbese are various “predictions”.
However, there is only onexact prediction’.

The “standard” prediction is the one introduced Mwayne [196§ and Manitius and Olbrot
[1979 and is commonly used in predictive control of systems wittoastant input delay. The
computation of this prediction requires the discretizatd an integral term. Recently, another
predictive method has been presentedNajafi et al.[2013. They use a dynamic system to
compute a prediction. That is why this prediction will beledl“dynamic” predictiorf. Finally,

a novel prediction that is able to deal with parameter uagaies and external disturbances has
been proposed ibéchappé et a[20154. It will be referred to as the “new” prediction.

Remark 3.4.2. Even if the concept of dynamic prediction is not new, it haslveidely extended
in this thesis and constitutes a contribution in the same asathe new prediction for example.

The organization is reminded on FiguB€l0,

7. The exact prediction can be computed only in the ideal vdmn the system and the delay are perfectly
known.

8. In the work byBesancon et a[2007 (which we have been aware of only at the end of the redagtibe)
authors call this method “asymptotic prediction”.
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1 -.2

Figure 3.10 — Organization of the part on predictive control

General assumptions

Thereafter, some general assumptions that will be usedigheut Paril are introduced.
The systems considered have the following form

(&) @(t) = Ax(t) + Bu(t — h(t)) (3.84)
whereh(t) is the delay. The delay free systems associated to sygigrn((3.84) is
(&) (t) = Ax(t) + Bu(t) (3.85)

In this part, the objective is to design predictive conegrdlbased on classic delay free methods
and study the influence of the delay on the stability. Thabisay, the controller is designed
on the delay free system and then the prediction is “pluggedAs a consequence, throughout
this part it is assumed that

Assumption 3.4.1.There exists a time differentiable and globally Lipschantcoller v : x —
u(x), that guarantees the existence a functign R” — R

Vi(z) = 27 Pz (3.86)
with P an x n symmetric matrix that satisfies the inequalities

dla]|? < Vi(a) < ellx|],
V. (x(t) < —culle(®F (3.87)
| < el

withe, ¢, ¢,, ¢ > 0.

Remark 3.4.3. Note that the argument “t” inu(z(¢)) will be omitted for clarity. Furthermore,
the notations.(¢) or u(z) will be used indifferently when no confusion is possible.

Assumption3.4.1implies that controller:(x) globally exponentially stabilizes delay free
system B.85. Note that Theorem 4.14 bighalil [200] guarantees the existence of a Lya-
punov function that verifies3(87) for a general class of exponentially stable nonlinearesyst
However, here a special form (but classic) of the Lyapunextfion (/, = 27 Pz) is assumed.
Remark that differentiatindy, along the trajectories of3(85 and using equation8(87), one
gets

2T () [AT P + PAJx(t) + vl (t) BT Px(t) + 27 (t) PBu(t) < —cu||lz(t)|]. (3.88)
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In addition, since: : x — u(x) is globally Lipschitz, there exists > 0 such that
[lu(@)]] < L]|2|] (3.89)

for all z € R™. When only a part of the state is available, the output is tehg(t) = Cz(t)
with C' € RP*™ andp the number of measured states. Then an estimatoithe stater can
be computed thanks to an observer:

(0) z(t) = Ai(t) + Bu(t — h(t)) + g(Ca(t) — y(2)) (3.90)
where the correction termis such that

Assumption 3.4.2.There exists a globally Lipschitz functigrihat guarantees the existence of
afunctionV; : R” — R
Vy(e) = e’ Qe (3.91)
withe =  — x and@ an x n symmetric matrix that satisfies the inequalities
mlle]|* < Vy(e) < mlle||?,

Vi(e(t)) < —mylle(®)]?, (3.92)
| < mllell,

withm, m, m,,m > 0.

Remark 3.4.4. The notationy to denote the correction term has nothing to do with the fiomct
g defined by 1.40 in the previous part. Furthermore, by a slight abuse of tiotg g(C'e) will
sometimes denotede) to underline that it depends on the observation eeror

Assumption3.4.2implies that the functioy globally exponentially stabilizes the observa-
tion error
é(t) = Ae(t) + g(Ce(t)). (3.93)
Similarly to (3.88), one gets
" ()[ATQ + QAJe(t) + g™ (Ce(t))Qe(t) + " ()Qg(Ce(t)) < —mylle(t)|*.  (3.94)
In addition, sincey is globally Lipschitz, there existg > 0 such that
lg(Ce)ll < 1yl[Cell (3.95)
for all e € R™. Some assumptions are also made to characterize the tiryiegydelayh(t):

Assumption 3.4.3.The time-varying delak(¢) is bounded, i.e. there exiB},;,,, hma: > 0 such
that

hmin S h(t) S hmax- (396)
Assumption 3.4.4.The delay dynamics is bounded, i.e. there existsO such that
Ih(t)] <6 < 1. (3.97)

When the constant delay (respectively the time-varying delayt)) is not known, it is
supposed that a constant approximation of the delay derotegspectively time-varying ap-
proximationk(t)) is available. In addition, the time-varying estimatibft) complies with the
assumptions below

Assumption 3.4.5.The estimated delay is bounded, i.e.
hnin < () < o (3.98)
whereh,,.;, andh,,,, are the same as in Assumptidnt.3
Assumption 3.4.6.The estimated delay dynamics is bounded, i.e. there @xist8
h(t)] <3 < 1. (3.99)
In the following chapters of Palt, all these assumptions are fulfilled.
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Some mathematical reminders

Some useful inequalities that will be used in the followimgpters are reminded below.

* Young'’s inequality (se&oung[19179):
Leta, 5 > 0, then one has
Oz2 52
af < 5 + 5 (3.100)

» Jensen’s inequality (ségidman[20144):
Letwu : [0, +oo[— R™ be a continuous function arid¢) > 0, then one has

2
t t

_ / ||u(s)||2d3§—% /Hu(s)Hds . (3.101)

t—h(t) t—h(t)

» “Completing the square” method (sBarasimharj2009):
Leta, 5 € R then, for any, p > 0 andq € R, one has

2
— 00”4+ qaff — pB* = — <\/50z — QL\/E ) + <Z—Z —p) 32 (3.102)

« Leibniz differentiation rule (seElanderd1973):
Letg : R? — Rsuchthay and% are continuous oR? and let\; and)\, be differentiable
functions, then one has

A2 (t)

d A2 () ) . 5
I (/w) g(t, s)ds> = Xa(t)g(t, Aa(t)) — A (D)g(t, Ai(t)) +/w) ag@, s)ds.
(3.103)

 Particular case of Holder’s inequality (skaptsov[2001):
Letxy,...,z, € R, then one has

n 2 n
(Zw) <n 3 |al. (3.104)
=1 =1
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Predictive control is often studied for perfectly knownmkwith constant delays. How-
ever, these assumptions are very restrictive in practioegh&rmore, the computation effort to
discretize the integral term makes its application veryitih That is why, some new predic-
tive techniques are going to be presented in this chaptez.cbhstant and time-varying delay
cases are considered as well as the state feedback and fagghback cases. Closed-loop sta-
bility conditions will be given based on the systematic ¢angion of Lyapunov-Krasovskii
functionals.All the developments presented in this chapter are for knowrdelays

In Section4.], the closed-loop stability with the standard predictiow@ked out for con-
stant and time-varying delays (state feedback and outpdbfeck). A recent method based on
the computation of a prediction thanks to a dynamic systeextiended in Sectiod.2. The
main advantage of this technique is that it does not regheentegral discretization anymore.
Finally, a new prediction is introduced in Sectidi3and its robustness properties are compared
with the standard prediction in presence of parameter teiogies and an external disturbance.
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4.1 Standard prediction with a known delay

In this section, the work o§resch-Pietri2012 chap 10] is revisited using a recent Lyapunov-
Krasovskii functional. This analysis allows to obtain a mexplicit bound for stability con-
dition and to extend the result to a broader class of coet®ll As it has been mentioned in
Sectionl.2.2 it is usually not possible to compensate perfectly a tirmgAang delay because
its exact expression has to be known in advance. The stfarglaird idea is to use the same
prediction as for a constant delay and to substitute thetanhdelay by the time-varying one.
In this case, it is shown iBresch-Pietr{2017 that there exists an upper bound on the delay
derivative such that the solutions of the closed-loop sysgéobally exponentially converges
to the origin. The proof relies on the construction of a LyagKrasovskii functional via the
backstepping PDE method similar to the one in Sectiéhl Here, a simpler upper bound on
the delay time derivative is provided and its expressioniexly involves the system parame-
ters, the gain values and the maximum delay value. In adglitiee condition is extended to the
partial measurement case.

The section is organized as follows. The simple case of ataohand known delay is
reminded for state and output feedback in Sectidnl Then, these results are extended to a
time-varying delay in Sectioa.1.2

4.1.1 Constant delay

The class of systems considered is definedéhy ih (3.84) and is reminded below
(&n) x(t) = Az(t) + Bu(t — h)

whereh is a constant and known delay. Since Assump8ahlholds, there exists a feedback
u(z) that exponentially stabilizes syste#),J whenh = 0.

Full state knowledge

In the case of a constant and known delagnd when the whole state is available, the exact

prediction reads as
t

2(t) = eMa(t) + / e~ Bu(s)ds (4.1)
t=h

forall t > 0. Then a predictive feedbaek =) is applied to stabilize systerd).

Remark 4.1.1. On top of the initial condition on:, an initial conditionu(s) = ¢,(s) for
s € [—h, 0], with ¢,, a continuous functior,is needed to computst).

The stability property of the closed-loop system is givethinext theorem.

Theorem 4.1. Consider systent€y,), with a known and constant delédy and assume that
there exists a controller.(z) satisfying Assumptio.4.1 Suppose that systerfi,j is
controlled byu(z) with z defined by4.1) and define

T(t) = [la@®I* + sup lu(s)]|*. (4.2)

s€[t—h,t]

1. The extra conditiom,, (0) = u(z(0)) may be required to guarantee the continuityzcdtt = h (and
consequently of; att = h).
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Then, there exist, o > 0 such that one has
VE>0 T(t) < <Y(0)e (4.3)

Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
—+00

Proof. By differentiating 4.1) thanks to Leibniz’s rule3.103 and consideringd},), it can be
verified thatz(¢) is the solution of the following equation

2(t) = Az(t) + Bu(z(t)). (4.4)

Let
V(t) =21 (t)Pz(t), (4.5)

whereP is defined in Assumptio®4.1, be a Lyapunov candidate function. Differentiativig
along the trajectories of4.4) and using 8.88) leads to

V(t) < el < eV (#) (4.6)
with ¢; = . It follows from @.6) that
V(t) <V(0)e ! (4.7)

and since |z(t)||* < 2V (¢) (Assumptior8.4.1), one obtains

@)1 < V(e (4.38)
From the definition o¥/(¢) in (4.5), one has
V(0) < ell=(0)| " (4.9)

In addition, from @.1) and by using Holder’s inequality3(104 and Jensen’s inequality(101),
the following maximization can be deduced

0
12(0)11* < 2lle™|*||l+(0)]] + 2€2A"h\\3|l2h/ [lu(s)|[*ds. (4.10)
—h

Thus, maximizing the integral term gives

1200)[* < ea|[2(0)|[* + 3 o [Ju(s)|[? (4.11)
se|—nh,

with ¢, = 2||e4"||> and c; = 2¢21411%|| B||2h2. Combining ¢.9) with (4.11) leads to
V(0) < ¢, T(0) (4.12)
with ¢y = ¢ max(cs, c3). Then, from4.8) and @.12), one deduces
[2()]]” < e5T(0)e (4.13)
forall ¢ > 0 and withc; = % Sinceu(z) is Lipschitz with respect te for all ¢ > 0, one has
sel-h0] s€[0.1] (4.14)

Ly sup [[z(s)]]” t>h
s€t—h,t]

sup |Ju(s)|[* <
SEt—h,t]

{ sup_||u(s)[|* + 15 sup [[2(s)[]* ¢ <h
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SO
sup |Ju(s)||* <
SEt—h,t]
with cg = (13¢5 + 1)e“t". Noting thateg Y (0)e=* > Y(0) + 3¢5 (0) for all t € [0, k], one can
state that

{ T(0) + 2csT(0) ift <h (4.15)

ce L (0)e~ ! ift>nh

sup Ju(s)|[2 < e 0(0)e " (4.16)

SE[t—h,t]
for all £ > 0. Moreover, rearranging4.1) gives
t
z(t) = e My(t) — / A=) Buy(s)ds (4.17)
t—h
so by the same steps as th11), one gets

lz(@)I* < erllz(O1 + s s [lu(s)|[* (4.18)
se(t—n,

for all t > 0 with c; = 2||e~4"||2. Finally, from .13, (4.16) and (4.18), one obtains
Y(t) < cgT(0)e (4.19)
for all ¢ > 0 with Cg :C7C5+CG(1+03). O

Remark 4.1.2. The exponential convergence |of(¢)|| to zero can be directly deduced from
(4.18 and using 4.13 and @.16):

|z(t)|]* < cge™ (4.20)

with cg = (c7c5 + c3¢6)T(0). However, the constant, does not depend only dpe(0)|| that
is why the nornil" in (4.3) has to be introduced to deal with the initial conditions.iss a
standard method that allows to conclude on exponential stability (in the s®=of the norm

T) of input delay systems with predictive control. Note tiet term sup ||u(s)||*> can be
s€[t—h,t]

substituted by, [|u(s)||?ds as inKrstic [20084.

Partial state knowledge

The full state knowledge is required to compute predictibd)( However, when only the
outputy(t) = Cz(t) is available, a state observép)(3.90 has to be designed to estimate the
state of the system. In this case, it is assumed that theifungtcomplies with Assumption
3.4.2and the prediction is computed from the estimated state follows®

2(t) = eMi(t) + / A=) Bu(s)ds. (4.21)

t—h

The closed-loop stability property is given in Theordt. It is reminded that the estimation
errorz(t) — x(t) is denoteck(t).

2. See for examplKarafyllis and Krsti{20134, Bresch-Pietri and Krstif201(J andMazenc et al[2014.
3. See Remark.1.1for the definition of initial conditions and add the initiadredition z(0).
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Theorem 4.2. Consider systen¥y) and observer @), with a known and constant delay
h, and assume that there exist a controliér:) and a correction terny(e) satisfying As-
sumptions3.4.1and3.4.2respectively. Suppose that syste&fy) s controlled byu(z) with
z defined by 4.21) and define

T(t) = |z + lle®)]* + sup |lu(s)[* (4.22)

sEt—h,t]
Then, there exist, o > 0 such that one has
VE>0 Y(t) <cY(0)e 9. (4.23)

Thereforet lir+n ||lz(t)|| =0, tlir+n |le(t)|| = 0 and the convergence is exponential.
—+00 —+00

Proof. By differentiating 4.21) thanks to Leibniz’s rule3.103, one obtains that
2(t) = Az(t) + Bu(z(t)) + eMg(Ce(t)) (4.24)

wheree = & — z. Let
V(t) = Vi(t) +yVa(t) (4.25)

be a Lyapunov candidate function with(t) = 27 (t)Pz(t), Va(t) = el (t)Qe(t) where P
and @ are defined in Assumptior&4.1and 3.4.2and~ > 0. DifferentiatingV” along the
trajectories of §.24)-(3.93 and using 8.898), (3.94), (3.99, it follows that

V(1) < —cullzOI + 20| [PI] [l | [ICI @)1 lle@)]] = vmylle(@)] . (4.26)

Z(0)]] [le(?)

”and one gets

V) < SO+ (5~ ) eI @.27)

whereR = 21,||P|| ||C]| ||e*"||. Then, itis clear that choosing sufficiently large guarantees
that

V()<——H W = alle®)]? (4.28)

with ¢; = ymy — % > 0. From Assumption8.4.1and3.4.2 it can be deduced that

V(1) < ~SEVA() — V() (4.29)
so finally
V(t) < -V (1) (4.30)

with ¢; = min (%, <) > 0. Equation ¢.23 can be deduced fron#(30) by similar computa-

tions as in Theorem.1 O

For a constant and known delay, the predictive controller stabilize every controllable
and observable systems with an arbitrary long delay. In &x¢ section, the time-varying delay
case is investigated.
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4.1.2 Time-varying delay
The class of systems considered is defineddyy ih (3.84) and is reminded below
(&r) 2(t) = Az(t) + Bu(t — h(t))

whereh(t) is a known and time-varying delay. Since Assumpt®#.1holds, there exists a
feedback:(z) that exponentially stabilizes syste#,] whenh(t) = 0.

Full state knowledge

o u(t) u(t — h(t))

Figure 4.1 — Closed-loop scheme with standard predictiotifte-varying delay and full state
measurement

In this part, the delay.(¢) and the state:(¢) are known so the prediction is computed as

follows .

2(t) = eMOap(t) + / A=) Bu(s)ds. (4.31)
t—h(t)
Remark 4.1.3. On top of the initial condition orz, an initial conditionu(s) = ¢,(s) for
s € [~hmaz, 0], with ¢, a continuous functiort,is needed to computst).

The stability of the closed-loop system is given in Theore It is reminded thad stands
for the upper bound of the delay time derivatiye(t)| < 6 (Assumptiorn3.4.4).

Theorem 4.3. Consider systenty,), whereh(t) is known and complies with Assumptions
3.4.3and 3.4.4and assume that there exists a controli¢r) satisfying Assumptiod.4.1
Suppose that systerd,| is controlled byu(z) with = defined by4.31) and define

() =[lz@)*+ sup  [lu(s)]. (4.32)

SE[t—hmaxvt]

Then, there exist, o, * > 0 such that, provided < ¢*, one has

VE>0 T(t) <T(0)e (4.33)

4. The extra conditior,, (0) = u(z(0)) may be required to guarantee the continuity:adt¢ = h(t) (and
consequently of; att = h(t)).
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Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
—+00

Proof. By differentiating ¢.31) thanks to Leibniz’s rule3.103 and using £},), it can be verified
that the prediction:(t) is solution of the following equation

t
3(t) = Az(t) + Bu(t) + hAz(t) + he™Bu(t — h) — hA / e~ Bu(s)ds. (4.34)
t—h
for t > h. Remark that the delay has not disappeared in the above iequbécause the

prediction is not exact anymore. The following Lyapunoag€vskii functional candidate is
chosen

V(t) = Vi(t) + yVa(t) (4.35)
where
Vi(t) = 2T (t)P2(t) (4.36)
and t
Vo(t) = /(hmax + Ropin, + 8 — t)||u(s)||2ds (4.37)
t—h

and~ > 0. Note thatP is defined in Assumptidh4.1and thatl; is necessary to deal with de-
layed terms 0f4.34) that arise because of the time-varying delay. First, nbsg the inequality

t t
ﬂhHVHHPHWM|(/6“thUQﬁB §25HPHWMHHﬂkAMW”H4|/WW@NMS
—h

t—h t
(4.38)
holds. For details on matrix analysis, one can refer ofn and Johnson2012 pp. 501].
Then, by using Young’s inequality.( 00, one has

26M] |2 / u(s)|ds < 6 M {z% ( / u(s)ds) ] (4.39)

t

with M = ||P|| ||A]| || B||e/lAhme= . Furthermore, the Jensen’s inequality.{0]) guarantees
that

t
QWHmHHHMH‘/ﬁmﬂBwﬁﬁ < & M [[|2]]* + hllql’] (4.40)
t—h

with
t
oI = [ llu(s)|Fas. (4.41)
t—h
As a result, taking the time derivative \6f along the trajectories of4.34) and using equations
(3.88 and @.40), one obtains

Vi(t) < —cull=(0)|* + 20]| PIAJ [2(@)]1” + 20N [[z(0]] [[u(t — R)]|

LM |22 + haM|lq(0)]? (4.42)
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with N = || P|| || B]|e/AllIFme= . Besides, Leibniz’s rule3(103 leads to

Va(t) = (hma$+hmin)||u(t)||2_(hmax+hmin_h)(l_h)Hu(t_h)HQ_/ [lu(s)[|ds. (4.43)
t—h

Furthermore, from8.97) and sinceu(z) is globally Lipschitz (Assumptidh4.1), it follows that
Va(t) < 2hnaaly] |21 = honin (1= 0)|u(t = B)I|* = [la(t)]]> (4.44)
Applying Young's inequality3(100 leads to

V) < ~lew = 28/PI 1A = 2hmaely = 60 + N O (4.45)
—[(1 = 0)vhmin — ONT|[u(t = B)[[* = [ = Panazd M] [[q(2)]]".

It is sufficient to choose the three coefficients of the sqtemas positive to guarantee the
negativeness df. Thus, one gets

Cu — 2Vhmael? — 0(2||P|| ||Al]| + M + N) >0, (4.46)
Yhmin — O (Yhmin + N) > 0, (4.47)
Y — himag0M > 0. (4.48)
Defining
Cu — 27 hmaal?
0 = v , (4.49)
QCl[PI[IA]l+M + N)
’yhmin
Jg = ——— 4.50
and
Gy = — (4.51)
hmaaﬂM
and choosingy sufficiently small guarantees thétis positive. In this case, taking
d < 6" = min(dy, dg, 03) (4.52)
ensures that
V(t) < —allz@)IP - clla@)]? (4.53)
with ¢1, co > 0. Finally, from
1
— =017 < =) (4.54)
and since .
_ 2 - 4,
la@®)[|” < T hmmV?(t)’ (4.55)
one has
V(t) < —csV(t) (4.56)

with ¢3 = min (%, m) > 0. So equation4.33 can be deduced from (56) by similar

computations as in Theoreil O
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Qualitative analysis: Theoremd.3guarantees the exponential convergence wf zero pro-
vided that the delay dynamidﬁsét) is sufficiently slow. Even if the bound (52 is conservative,
because it is obtained via a Lyapunov analysis, it retaites@sting features. An important fact
is that the bounds,,,.. andh,,;, appear explicitly in the expression &f and that), andd; are
independent from the controller A qualitative analysis is given below.

» For a large value oh,,.., thené; andé; decrease which means that the larger the upper
bound of the delay is, the slower its variation has to be.

 For alarge value adf,,;,,, thend, increases which means that the smaller the delay interval
is, the faster the variation can be. For example, even if éhaydlisplayed on Figuré.2b
varies faster than the delay on Figur23a the closed-loop system may be stableAgr
and not forh,;.

» For alarge value df,, thend; decreases which means that the delay variations have to be
smaller for a fast controller.

These conclusions seem to capture the physical behavibedtstem, that was not the case
for the bounds irBresch-Pietr{2013.

h(t) h(t)

hmaw

min

}L171i11

(a) Slow delay with large amplitudéi; (b) Fast delay with small amplitudé:,

Figure 4.2 — Different types of time-varying delays

The methodology used in the proof of Theoré3 will be similar for the next proofs so it
Is detailed below.

When the prediction is not exact, the reduced system stitllues delays. For example,
when the exact predictian, is approximated by predictionin (4.31), the delayed input(t —
h(t)) still appears in reduced systerh34). As a result, Lyapunov-Krasovskii functionals have
to be designed to analyze the stability of the reduced systdmn steps of the stability proof are
the following

» Compute the reduced system from the predictioim order to make appeatz(t) +
B(z(1))),

» Use the Lyapunov function given for the delay free part (Aksption3.4.1) and add a
Lyapunov-Krasovskii functionals to deal with pointwisdaleed termsu(¢ — h) and the

t
distributed delay termsf e4(~*) Bu(s)ds.
t—h

» Conclude on the stability of the original systenmuiy using the prediction expression

Partial state knowledge

When only the outpug = C'z is measurable, predictiod (31) cannot be computed directly.
Therefore, an observef) in (3.90 can be designed to estimate the state of the system. In this
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< u(t) u(t — h(t))

Figure 4.3 — Closed-loop scheme with standard predictiorifoe-varying delay and patrtial
state measurement

case, it is assumed that the correction tefm) complies with Assumptio3.4.2 Thus, the
“reconstructed prediction” is computed thanks to the oke@state: as follows®

t
2(t) = ez (t) + / e~ Bu(s)ds. (4.57)
t—h(t)
The condition to guarantee the stability of the closed-lsggtem is given in Theored4. It is

reminded thad stands for the upper bound of the delay time derivativg)| < § (Assumption
3.4.4), and that the estimation erroft) — =(t) is denoted:(t).

Theorem 4.4. Consider systenty) and observer@), whereh(t) is known and complies
with Assumption8.4.3and3.4.4and assume that there exist a controllgrz) and a cor-

rection termg(e) satisfying Assumptiors4.1and 3.4.2respectively. Suppose that system
(&) is controlled byu(z) with = defined by4.57) in (3.90 and define

T(t) = lz@)I° +[le@®*+ sup  Ju(s)[] (4.58)

se[t—hmax,t]
Then, there exist, o, * > 0 such that, provided < ¢*, one has
VE>0 Y(t) <cT(0)e 2. (4.59)

Thereforet ligl llz(t)|| =0, thg_ﬂ lle(t)|| = 0 and the convergence is exponential.
—+0o0 —+0o0

Proof. The proof is similar to the one for full measurement statecasthe reader can refer to
the proof of Theorem.3for more detalils.
By differentiating 4.57) thanks to Leibniz’s rule3.103 and using the expression of the

5. See Remark.1.1for the definition of initial conditions and add the initiadredition z(0).
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original system{},), one deduces that predictians solution of the following equation

¢
i = Az 4 Bu(z) + e*'g(Ce) + hAz — hA / eA=% Bu(s)ds + he"Bu(t —h).  (4.60)

t—h

In this case, the dynamics efalso depends on the observation eregt). Obviously ife = 0,
equation .60 is equivalent to the one in the full state knowledge cds&y. In addition, if the
delay is constant ther(60) is equal to the constant delay caged4). Consider the following
Lyapunov-Krasovskii functional candidate

V(t) = Vi(t) +AVa(t) + Vs (t) (4.61)
where
Vi(t) = 2T (t)P=(t), (4.62)
vau>=:j/<hmmz+hmm,+s-—tnhwsnﬁds, (4.63)
t—h
Va(t) = e’ (t)Qe(t) (4.64)

and~,6 > 0. Note thatl;, and V; are the same as in the full state measurement case and
V3 is introduced to deal with the observer stability. Taking thme derivative oi/; along the
trajectories of 4.60 and using the same arguments as in TheofeBnone gets

Vi(t) < —cull2l* + Rllel] [|2]] + 26| P [|All ][

4.65
L2 [|21] llualt — B)|| + SM[=]1? + AunaaS Ml (t)]]2 (4.65)

t
with g(t) = [ [[u(s)|[*ds, M = [|P|| [|A]] || Bl|e/4!l"mes, N = || P[] || B||e/l 41" and R =
t—h

21, elAllhmaz| | P|| ||C|| . Besides, Leibniz’s rule3(103 leads to

Va(t) = (hmam+hmzn)HU(t)||2—(hmaﬁhmm—h)(l—ﬁ)||U(t—h)||2—/ [lu(s)[|*ds. (4.66)

and sinceu is globally Lipschitz 8.89 then
Va(t) < 2hmaclil|[2(0)]]* = hanan(1 = 8)[[ult = B)|* = [|a(t)]]. (4.67)
Finally, taking the time derivative df; along the trajectories 0f3.93, one gets
Va(t) = —my|le(t)] % (4.68)
", it follows that

Using equation3.102) allows to get rid of the cross term %

lle

V(t) < —[% = 3QIPI A + M+ N) = 29hmal] ||2(2)]]

(L = )Y — 6N |[us(t — h)|? (4.69)
1= oM (0|2 — (6, — 22 [Je()] 2

2¢y
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To haveV negative, one has the following conditions

(Cu

5 = 2yhumasll = 5(2||PI| | Al + M + N) >0, (4.70)
Yhmin — O(Yhmin + N) > 0, (4.71)
Y — B M > 0, (4.72)
RQ
_ ) 4.7
\ng 2 >0 (4.73)
Defining
Cu/2 = 29N manl?
0, = ‘. (4.74)
FQIPIAI + M+ N)
’yhmin
5y = — M 4.75
and y
05 = 4.76
S W (4.76)

and choosind sufficiently large and, sufficiently small guarantees that.{3 is true and that
01 is positive. In this case, taking

0< o' = min(él, 52, (53) (477)

ensures that '
V(t) < —allz®IP = cllg@)|]* = eslle(®)]]*. (4.78)

with ¢1, ¢9, c3 > 0. Finally, from Assumption3.4.1and3.4.2 it can be concluded that
V(t) < —eV (1) (4.79)

with¢, > 0. Equation .59 can be deduced frord (79 by similar computations as in Theorem
4.1 0]

Remark 4.1.4. Condition @.77) is very similar to the one in the full state measurement case
the quantitative analysis of the bound is the same.

4.1.3 lllustrative example

Consider the scalar system
&(t) = az(t) + bu(t — h(t)) (4.80)
witha = 1,b = 1, h(t) € [0.5, 2] and the static feedback
u(t) = kx(t). (4.81)

Remark that this system is unstable wher= 0 sincea > 0. It is clear that controller4.81)
complies with Assumptio8.4.1for any scalarP? > 0 whenk < —a/b. In this casel, = |k|
andc, = —2P(a + bk) sofork = —2, hypin = 0.5 8, hypee = 2S, P = 1 andy = 0.1, from
equation4.77), one obtaing* = 0.0067. Remark that it is possible to optimize the choicgof
and~ to increas&*. In order to illustrate the effect of delay variations onsgd-loop stability,
two simulations have been carried out:

 In Simulation 1, the upper bound on the delay variationlistrated.
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 In Simulation 2, it is shown that the stability property @depends on the size of the
delay and not only on its time derivative.

The delays in Simulation 1 are
« hi(t) = 1.24 0.75sin(0.1¢) S0k, (t) = 0.075 cos(0.1¢t) andmax hy(t) = 0.075 < 1,

o hy(t) = 1.2 4 0.75sin(0.8) S0hy(t) = 0.6 cos(0.8t) andmax ho(t) = 0.6 < 1,

* hg(t) = 1.2 4+ 0.75sin(1.3t) S0hs(t) = 0.975 cos(0.1t) andmax hs(t) = 0.975 < 1.

The delays in Simulation 2 are
e hy(t) = 0.5+ 0.4sin(t) S0hy(t) = 0.4 cos(t) andrg%x ha(t) = 0.4 < 1,

e hs(t) = 1.5+ 0.4sin(t) SO hs(t) = 0.4 cos(t) andr?;%x hs(t) = 0.4 < 1.

Note that the delay values are given in seconds in all sinomatand the delay derivatives are
much larger thai*. The computation of* has been done to provide an order of magnitude of
the conservativeness. Consequently, no numerical vallieavprovided in the next examples
but only some quantitative analysis will be made.

Remark 4.1.5. In this example, the variable has no particular physical meaning so it will be
displayed without unit in the next plots.

The results of Simulation 1 are plotted on Figdré. Delaysh,, h, andhs; have been chosen
such that they have an increasing delay dynamics: the mawivalues of the delay dynamics
aremax hi(t) < max ho(t) < max hs(t). Remark, that the maximum valus,,, is the same

for hy, hy andhs. Itis clear that the closed-loop response is degraded sverffaelays and it is
even unstable fok;. This confirms the existence of an upper bound on the delayardics to
preserve stability.

The results of Simulation 2 are displayed on Figdrg In this casej, andh; have the
same time derivative buiy(t) < hs(t) for all ¢. It is interesting to note that the closed-loop is
stable forh, and unstable fohs. It can be deduced that it would be less conservative to find a
condition that involves both the delay and its dynamics saagfor instancé,,,., + 6 < C*.

4.1.4 Summary

Contributions

[1 Explicit bounds on the delay dynamics that capture the glhysiehavior of the
system and preserve the closed-loop stability are provided

[1 Recent Lyapunov-Krasovskii functionals are used in th@fsrof stability.

[1 Extension of the result dBresch-Pietr{2017 to a larger class of controllers and
to the output feedback case.

J

Table4.1sums up the conclusions of this section. Note that the bétnthy have different
values for each case. In the next chapter, an extension towrkdelays will be studied.

4.2 Dynamic observation-prediction with a known delay

In this section, a recent predictive method for a constalatydend full state knowledge by
Najafi et al.[2013 is extended to systems with a time-varying delay and to adeo class of
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| [—stat T =+
e predlctlonz in (4 31) 20k : e predlctlonz in (4 31)

0
N © N A o ®
T

ha

(sec)

0 5 10 15 20 2t5ime3€S) 35 40 45 50 0 5 10 15 20 2t5ime3€S) 35 40 45 50
(a) Prediction 4.3 with controller @.81) and input  (b) Prediction 4.3 with controller @.81) and input
delayh (t) delayhs(t)

—statex ]
—— predictionz in (4.31)

h3

2fgime?s) ®
(c) Prediction 4.32) with controller @.81) and input
delayhs(t)

Figure 4.4 — Simulation 1: faster and faster delays areddsteee the influence on the closed-
loop stability.

controllers. Furthermore, the partial measurement casdsasvorked out. The major advantage
of this technique is that it does not require an integral réigzation. Indeed, a prediction is
computed from a delay free copy of the original system.

Remark 4.2.1. We have been aware very recently that the idea of such a pi@dicas been
reported before irBesancon et a[.2007 under the name of “asymptotic prediction”. IBe-
sancon et al[2009, they mention it as “direct dynamical computation scheme”

First, the original work oNajafi et al[2013 is recalled in Sectiod.2.1 Then, an extension
is proposed for a single dynamic observer-predictor iniSedt2.2and for dynamic sequential
sub observers-predictors in Sectib2.3

4.2.1 Presentation of existing results
Single predictor with a constant and known delay

In Najafi et al.[2013, a new predictive control method is proposed. The techmigiased
on the computation of a prediction thanks to a dynamic systémir result is described there-
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: : : : : : 1000 ﬁ — statex .

o tion= in (4.31) | ool - [——predictionzin (4.31) C ﬂ F |
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(a) Prediction 4.3 with controller @.81) and input  (b) Prediction 4.3 with controller @.81) and input
delayhq(t) delayhs(t)

Figure 4.5 — Simulation 2: two delays, with the same timavagive but different maximum
values, are compared.

Prediction Delay Convergence| Condition | Feedback| Theorem
state 4.1
h gl. & exp. | no condition
output 4.2
Standard | Known
state 4.3
h(t) | gl. &exp. d <6
output 4.4

Table 4.1 — Sum up of the convergence results for standadiigticn with a known delay.

* gl.: global — exp.: exponential
* h: constant delay
* h(t) € [Mmin, hmas] @Nd|R(t)| < &: time-varying delay

after. The same class of systefi)Xin (3.84) is considered in their work and is reminded below
(&) &(t) = Az(t) + Bu(t — h)
h x(0) = o,
with 2 a known and constant input delay. The variabmputed from the delay free system
2(t) = Az(t) + Bu(t)
2(0) = z(h),
is the exact prediction o},), that is to say:(t) = z(t + h). However, this is an “open-loop”
predictor and ifz(h) is not perfectly known, then(t) # z(t + h). Consequently, the idea is to

“close the loop” by adding a feedback term #h&2). Sincez(t + h) is not known, it has been
decided to use(t). As a result, 4.82 becomes

{ 2(t) = Az(t) + Bu(t) + L{z(t — h) — x(t)]
2(t) = 20(s) Vs € [—h,0].

(4.82)

(4.83)
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Assuming thatl, can be adequately chosen in order to hait¢ — z=(¢ + h), then a predictive
feedback
u(t) = Kz(t) (4.84)

can be designed to stabilize systefp)( This control scheme is displayed on Figdré. The

Tr u(t)

-
— 1

Figure 4.6 — Closed-loop scheme with dynamic predicio83 for known and constant delay
h

dynamic equation of the prediction error is
é(t) = Ae(t) + Le(t — h) (4.85)

wheree(t) = z(t) — z(t + h). The result ofNajafi et al.[2013 states that systenty) with
feedback 4.83-(4.84) is asymptotically stable under a LMI conditibimvolving the gainsk
andL. The result is based on the following proposition:

Proposition 4.2.1(Dugard and Verrieqt1997). Consider systemd(85). If A + L is Hurwitz,
then there exists a sufficiently smal), > 0 such that 4.85 is asymptotically stable for all
h € [0, hy).

It can be seen fron¥(85) that for a stable matrix, e(t) will asymptotically tend to zero if
L = 0 for any time delay:. For an unstable matriX4, Propositiord.2.1shows that asymptotic
stability can be achieved for a sufficiently small delay.

In Najafi et al.[2013, the argument is inverted since the delay is fixed but thentuwari-
ables are the gains” and L that have to satisfy an explicit LMI condition. However,ghiMI
condition is hardly ever satisfied for a large delay or anainistmatrixA. As a consequence,
Najafi et al.[2013, proposed a second result based on a sequential sub prsdttucture.

Sequential sub predictors with a constant and known delay

The idea is to split the time-delay and use cascaded preslictbe idea has been previously
proposed to estimate the state from a delayed measurenfenivarks ofGermani et al[2003
andKazantzis and Wright2005 consider a class of nonlinear systems with a constant delay
in the output wherea8hmed-Ali et al.[2017 deals with time-varying delays. The concept of
these three works can be combined with the worleafafi et al.[2013 as shown on Figure
4.7a Remark that the term “predictor” has been quoted becauseiéthere is a prediction in
the work of Ahmed-Ali et al.[2013, the word is generally reserved for the prediction of the

6. This condition is not copied here for sake of clarity.
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future state at + h and not at instant In this thesis, the focus is on input delay system; so,
the problem addressed thereafter is represented on Hgtinehat is a particular case of the
more general input and output delay case. The principle e¢aded predictors is reminded
thereatfter.

Input delay case
Najafi et al. [2013]

z(t) ——> 2(t) = z(t + hy)
Input and output delay case

2(t) = x(t + hy)
Output delay case
Ahmed-Ali et al. [2012]

y(t = ho) — 2(t) — 2(t)

(a) From cascaded observers and cascaded predictors taledsabservers-predictors;: input delay,
ho: output delay

Input delay case

z(t) > z(t + h)

(b) Cascade observers-predictors scheme considered isettion

Figure 4.7 — Cascaded observers and predictors schemes

Each of the- predictors predicts the state fhiseconds where

h= 2 r e N, (4.86)

Sequential sub predictors equations are as follows:

((21(t) = Az (t) + Bu(t) + Ly[z1(t — h) — 2(t)]

] Zz(t> = Az(t) + Bu(t — (i = 1)h) + Li[zi(t — h) = zi41(2)] (4.87)

L 5(0) = Az(0) + Bult — (r = D) + Lolz(t — B) — o(0)

wherez; € R*, ¢ = 1,...,r. Assuming an appropriate choice of the gainsit follows that
21 (t) approaches(t + h). Thus, the predictive feedback

u(t) = Kz (t) (4.88)

can be applied to stabiliz&€/). This control scheme is depicted on Figdr&for r = 2. The
advantage of splitting the prediction intosub predictions is to allow to deal with arbitrarily
large delays. Theorem 5.1 Najafi et al[2013 guarantees that feedback §8 with prediction
z1 computed by sequential sub predictots3() asymptotically stabilizest(,) provided thati’
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o u(t) u(t — h)

<~ u(t)
— /2

Figure 4.8 — Closed-loop scheme with two sequential subigieed @.87) for known and con-
stant delay:

and thel; satisfy a LMI conditior’. From Propositiod.2.1, it can be deduced that it is possible
to choose- sufficiently large such that the closed-loop system is stédil an arbitrarily large
delay.

Example 4.2.1.Consider the double integrator

i(t) = u(t — h) (4.89)

and its state-space representation
#(t) = Ax(t) + Bu(t — h) (4.90)
withz = [y, 9]", A = {8 (1)} andB = m . The control has the form(t) = Kz(t) (respec-

tively u(t) = Kz (t)) with 2 given by £.83 (respectively4.87) and K = [-2, —3]T chosen
in order to place the eigenvalues of the systemtoand —2. The delayh is equal tol s. The
influence of the gait is studied by drawing a comparison for 3 different valueg oThe gain

L is computed with a pole placement approach by consideriagthie whole state is measured.
Three combination of eigenvalues are tested:

 Simulation 1 (slowest case)(A — LC) = {—0.1,—0.2} so

—-0.1 -1
L= { 0 _0'2} : (4.91)
The closed-loop dynamics of the dynamic predictor impogddib slower than the delay
value.
* Simulation 2 (mean case)(A — LC) = {—0.5, -1} so
—-0.5 —1
L= { 0 _1] . (4.92)

The closed-loop dynamics of the dynamic predictor impogedis of the same order of
magnitude as the delay value.

7. This condition is not copied here for sake of clarity.
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 Simulation 3 (fastest case)(A — LC) = {—1,—1.4} so

L— [‘01 _‘f 4} . (4.93)

The closed-loop dynamics of the dynamic predictor impogddib faster than the delay
value.

Remark 4.2.2. In this example, the variablg has no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure4.9, it can be seen that the closed-loop system is stabilizeertofar each choice of
L. The convergence rate of the predictor, characterized byctivice ofl,, has to be carefully
chosen. IfL is large, some undesired oscillations appear as shown oaréig.9c A too large
value for this gain would end up destabilizing the systemL i§ small, there is no problem
for stable systemsA( Hurwitz) but unstable systems require a sufficiently largkie of L to
counterweight the instability caused byié” in (4.85.

A sine reference has been added to the input (Figut€) in order to study more precisely
the influence of. on the accuracy of the prediction For a smallL, it can be observed that
z(t) slowly approaches the exact prediction (Figutel0g. IncreasingL leads to a faster
convergence of the approximated prediction to the exact(Bigeire 4.108. However, a large
gain L can deteriorate the performances of the closed-loop syagesmown on Figurd.10c

When increasing the delay. (= 1.7 s) and keeping. defined by 4.92), the system is
unstable (Figuret.119. For a larger delay, there may not always exisand K satisfying the
LMI condition of Theorem 3.1 iNajafi et al.[2013. In that case, one can design sequential
sub predictors with- sufficiently large. On Figuré.11h two sequential sub predictors have
been designed with, = L, = L from (4.92. It is clear that the sequential sub prediction
technique allows to deal with a larger delay.

On Figure4.12 the feedback computed from the dynamic predictéb@7 is compared to
the feedback computed from the exact prediction (that reguhe integral discretization). It
can be observed that the response is slower but it can be wragrimcreasing the value of the
gainsL;. Note that the value ok is the same for all the Figure$.9, 4.10 4.16and4.12

Remark 4.2.3. In Najafi et al.[2013, only feedback controllers(t) = K=z(t) or u(t) =
Kz (t) are used. However, it will be shown in the next sections these results hold for a
larger class of controllers.

In the next sections, this valuable method will be extendaed time-varying delay and a
partial measurement knowledge. Schemes that matchedftbeedt cases are indexed in Table
4.2

Type of _ _
observer-predictor Constant delay | Time-varying delay
Single _ _
observer-predictor Figure4.6 Figure4.13
Sequential sgb Figure4.8 Figured.14
observers-predictors

Table 4.2 — Dynamic prediction for a known delay
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1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
time (s)

-15 ! ! ! I
0

(a) Simulation 1:L given in @.97) (slow case)
. =%, |
0 / /\/\ s

-15 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
time (s)

(b) Simulation 2:L given in @.92 (mean case)

3 T

=0, I

;\/\/\/\/\f\/\f\,\,x,x,x,

-2 . 4

-3 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
time (s)

(c) Simulation 3:L given in @.93 (fast case)

Figure 4.9 — Comparison of control scherdeB3-(4.84) for different values of. andh = 1 s.
The notation:' denotes the first component of the vector).

4.2.2 Single observer-predictor with a known delay

In this section, an extension of the method described ini@edt2.1is presented. The
work of Najafi et al.[2013 considers full state measurement and deals only with atanhs
delay. It is shown in the sequel that their results can benebei@ to a known time-varying delay
and partial state knowledge. Before tackling the time-wvayylelay case, the simpler case of a
constant delay with partial state measurement is studiedder to facilitate the exposition.

Constant delay

The class of systems considered is definedédyy i (3.84) and is reminded below

&(t) = Az(t) + Bu(t — h)
(&n) { y(t) = Calt).

The loop is closed with a feedbackthat verifies Assumptio3.4.1 Since “predictor” 4.83
has an observer structure, the prediction and the obsenvedin be made by a single dynamic
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25 —y(t) I
- - —exact pred

(1)

1 1 1 1 1
~o 5 10 15 20 25 30 35 40 45 50
time (s)

(a) Simulation 1:L given in @.9]) (slow case) with a sine trajectory reference

3 T
—y(1)
A - - —exact pred 7
Wooo 2 (t) i
W\
X/ \/\/
1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

time (s)

(b) Simulation 2:L given in 4.92 (mean case) with a sine trajectory reference

4 T
—y(t)
- - —exact pred
3r e 21 (t)
",
i
1 1
I \ o
2+ 1A [ ]
NS ) \'//\ s
f R Y “ ‘ AN p;
1k ! Y \ \ 1 Ky ’ N : » i
! ) Y \ // \ / N A N iy
' K \ RV N
0 1 \ : |
-1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
time (s)

(c) Simulation 3:L given in @.93 (fast case) with a sine trajectory reference

Figure 4.10 — Comparison of control scherde8Q)-(4.84) for different values of,, h = 1's
and a sine trajectory. The notatiehdenotes the first component of the vect(r).

system:
2(t) = Az(t) + Bu(t) + g[Cz(t — h) — y(t)] (4.94)

whereg satisfies AssumptioB.4.2

Remark 4.2.4. Note that to compute(¢), the initial conditionz(t) = ¢, (¢) for ¢t € [—h, 0] with
¢. a continuous function, is required. The predictiowill be continuous irt = h.

Denoting
ep(t) = z(t — h) — x(t) (4.95)
the prediction error, the following result holds when thedbacku(z) is applied to stabilize
system ).

Theorem 4.5. Consider systen€},), with a known and constant delay and assume tha
there exist a controller.(x) and a correction terny(e,) satisfying Assumptiors4.1and
3.4.2respectively. Suppose that systefp)(is controlled byu(z) with = computed by
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15

—_— t)
- — —exact pred
21 (t)

10

(&
T

o
7

5k

-10+

-15 1 1 1 1 1 1
0 5 10 15 20 25 30 35
time (s)

(a) Prediction with one predictor (gaihin (4.92): control scheme displayed on Figute

N —y(t)
'R - - - exact pred
#1 (1)
\
\\ :]:\,‘ —_—

-3 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
time (s)

(b) Prediction with two sequential sub predictors (gain= Ly, = L in (4.92): control scheme dis-
played on Figuret.8

Figure 4.11 — Comparison of control schemés88-(4.84) and @.87)-(4.89 (for r = 2) with

h = 1.7 s. The notatiorz! (respectivelyz{) denotes the first component of the vectdr)
(respectively: (t)).

observer-predictor4.94) and define

T(t) =@l + sup [lz(s)[I*+ sup |lé(s)lI* (4.96)

SE[t—h,t] SE[t—h,t]

Then, there exist, o, h* > 0 such that, provided < h*, one has

VE>0 Y(t) <cT(0)e .

(4.97)
Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
Proof. First, withe,(t) = z(t — h) — x(t), equation 4.94) becomes
Z(t) = Az(t) + Bu(z(t)) + g(Cep(t)). (4.98)
The dynamics aof,,(¢) reads as
éplt) = Aey(t) + g(Ce(t — h)) (4.99)
and can be rewritten as follows
Cep(t)
d
ép(t) = Aey(t) + g(Cey(t)) — / d—‘z(s)ds. (4.100)
Cep(t—h)

The following Lyapunov-Krasovskii functional candidag@roposed

V(t) = yValt) + Va(t) + Vs(t) (4.101)
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— Feedback with exact pred|ct|on
——seq-predL; = Lo = Lin (4.92
0.8 ——seqg-predl; = Lo = L in (4.93)]

0.6

0.4

0.2

,06 L L L L L
0 5 10 15 20 25 30
time (s)
Figure 4.12 — Comparison of the feedback computed from tlaeteprediction (integral dis-
cretization) and the sequential sub predictdr8T) for h = 0.5 s.

where
Vi(t) = 2T (t)P2(t), (4.102)
with P defined in Assumptia®i4.],
Va(t) = e, (1)Qep(1), (4.103)
with ) defined in Assumptiod.4.2
/ (h+ s —t)||ép(s)]|*ds. (4.104)
t—h

and~ > 0. Remark that function$; and V; are usually used for delay free systems. The
functionalV; is added to cope with the integral term ih.£00Q. From equation .88 and since
g is globally Lipschitz, the time derivatives 6f satisfies

Vi(t) < —cul 2O + Rl|=(@)]] [lep(®)]], (4.105)

with R = 2[,|| P|| ||C||. Furthermore, by substitution one gets

Cep(t) d t
g .
[ Ssias| <uliel [ les)las (4.106)
Cep(t—h) t—h

S0 using 8.99), it follows that
Va(t) < —mylley(t)|? + R |[ep(t)]] [|m(D)]] (4.107)

with B’ = 21,/|QI] [|C]| and ||m(#)]| = f é,(s)llds. Finally,

) =il O = [ lles)|ds (4.108)
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so, reminding that
2

t t
. 1 .

- [aoieas <=5 | [l ) (4.109)

t—h t—h

it follows that
t
. , 1 1 [,

Valt) < bl = oy llmOIP = 5 [ llen(o)lPds (4.110)

In addition, it can be deduced from.00Q and from Hdélder’s inequality3.104) that
leoll* < allepl]” + cof[m]]? (4.111)

with ¢, = 2(]|A|| +1,[|C|])* and ¢, = 2I2||C]]*. As aresult, from4.110 and @4.111), it can be
derived that

Va(t) < hellep(®)]]* + heallm(®)]? = gl lmOI — 3 f 1€, (s)|*ds. (4.112)

Thus, the following maximization is obtained

V() < —vcuIIZ(t)IIQﬂLvRHZ(t)HHep(t)ll—mgHep(t||2t+R’H€p(t)l|Hm(t)H

)
4.113
herlep )1+ heallm(®)F = il m (DI =3 ] [1ey(s) s (4.113)

SO

V(i) < -z

2

mg 2 /
2O = % = 3 — ke e = [ = £ = heo llm(®)

f [l (s)|*ds.

(4.114)
To prove the exponential stability of.08-(4.99), it is sufficient to find conditions which guar-
antee the following inequality

V(t)+eV(t) <0 (4.115)

with ¢ > 0. From equation4.114, Assumption8.4.1and3.4.2and since) < s —t+h < h
forall s € [t — h,t], one has

V(t)+eV(t) < —%

my 2 /2
01 - [ = 32 = ha eI = [3 ~ £~ v ImCo1P
f |lex(s)[|%ds + ecvl|2 ()H2+€mH€p()|l2+€hf |léx(s)1]%ds.

(4.116)
It follows that

VO +eV(e) < = [3 - 0 - [ - 5 = b= em] e

2 4117
[ £ n] e - (-] ol
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In order to haveV’ + <V negative, the following conditions have to be verified

( Cy
- — €t >0, (4.118)
R2
Mg T ey —ein > 0, (4.119)
2 2¢,
1 R/Q
— — —h 4.120
2h 2mg Co > 07 ( )
1
— —ch>0. (4.121)
\ 2
From (4.120, one has
h V%Hcr% ! (4.122)
< : < : :
202 vV 202
In addition, conditions4.119 and @.120 can be reformulated as follows
h < h* = min(hq, hs) (4.123)
with ,
1
=L (M 2 (4.124)
C1 2 QCU
and .
hy = —. 4,125
2= (4.125)

Choosingy ande sufficiently small guarantees that.(18 and @.121) are true and that, is
positive. In this case, taking < h* ensures that

V< —eV(t). (4.126)

It follows from @.126 that
V(t) <V(0)e (4.127)

and sincd|z(t)||? + ||e,(t)||> < LV (t) with ¢; = min(yc, m), one obtains
P c1
1
21 + [len(B)]* < C—lV(O)e_“- (4.128)

From the definitions o¥’ (¢) in (4.10J), one has

V) < el +mllep O+ sup ()] (4.129)
se|—n,

In addition, from &.95 and by using Hdlder’s inequality3(104), the following inequality can
be deduced

llep(0)[1* < 2[[z(=R)|* + 2||z(0)[|* < 2 sup [|2(s)[1 + 2[[z(0)|[? (4.130)
se|—n,

and then it follows that

el [2(O)II* + ml[ep(0)]]* < e S 12(s)I1* + [|2(0)][*) (4.131)
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with ¢ = ¢ + 2m. Combining 4.129 with (4.13]) leads to
V(0) < ¢3Y(0) (4.132)
with c3 = max(cy, h?). Then, from4.128 and @.132 one deduces
2O + [lep (O] < esT(0)e™ (4.133)

forall ¢ > 0 and withc; = 2. Sincel|x(1)[|* < 2|[2(t — h)||* + 2[|e,(t)|?, one gets

[|z(#)]* < 6 (0)e™ (4.134)
with cg = 2¢5(e" + 1). Besides
sup ||z(s)]]* < 7Y (0)e (4.135)
s€[t—h,t]

with ¢; = cse. From equation4.99 and using Holder’s inequality3(104, one can deduce
that
sup [lép(s)]]? < esT(0)e (4.136)

s€t—h,t]

with cs = 2¢5(| Al + I2]|C]|*e*")e". Finally, from @.134), (4.139 and (.13, one obtains
T(t) < Y (0)e (4.137)

fora"tZOWithCQZC6+C7+Cg. O

Qualitative analysis: This theorem shows that a predictive feedback computed fimn
observer-predictord(94) can always stabilize syster#,( provided that: is sufficiently small.
In addition, a qualitative analysis of the behavior/gfand h, (respectively in 4.124 and

(4.129) shows that:

» For a small value of, thenh; increases which means that a slow convergence rate of the
closed-loop system allows a larger value of the delay.

« For a large value of, 8 (that appears through andc,), thenh, andh, decrease which
means that the admissible delay is smaller for a fast observe

This result presents the first improvement with respect éopdper ofNajafi et al.[2013
since it works out the partial state measurement case amelvashexponential stability. Another
improvementis to consider a time-varying delay in the inftiis result is presented thereatfter.

Remark 4.2.5. A similar qualitative analysis is given iBesancon et alf2007. Similarly,
the extension of this method to linear systems with Lipactuhlinearities and to partial state
measurement is mentionedBesancon et a[.2007.

Remark 4.2.6. A similar result for nonlinear globally Lipschitz systemighwsampled measure-
ments and hold control has been published very recentBitiged-Ali et al[20149.

8. I, is the Lipschitz constant associated to the functi@md is defined in3.99.
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Time-varying delay
The class of systems considered is defineddpy énd is reminded below

#(t) = Ax(t) + Bult — h(t))
(&) { y(t) = C(t)

with h(t) a known and time-varying input delay. The observation aedpitediction are com-
puted by a single dynamic system

Z(t) = Az(t) + Bu(t) + g(Cz(t — h(t)) — y(t)]) (4.138)
with g a correction term verifying Assumptich4.2

Remark 4.2.7. Note that to compute(t), the initial conditionz(t) = ¢.(t) for t € [—hmaz, 0]
with ¢, a continuous function, is required. The predictiowill be continuous it = h(t).

Then, a predictive feedback that verifies Assump8ahlcan be applied to stabiliz€y).
The closed-loop scheme is given on Figdr&3 Denoting the prediction error

Lr u(t) u(t — h(t))

Figure 4.13 — Closed-loop scheme with observer-predictoa known time-varying delay and
partial state measurement

e,(t) = 2(t — h(t)) — x(t) (4.139)

and reminding thaf stands for the upper bound of the delay time derivatji¢t)| < J (As-
sumption3.4.4), it is now possible to introduce the following theorem.

Theorem 4.6. Consider systenty,), whereh(t) is known and complies with Assumptions
3.4.3and3.4.4 and assume that there exist a controli€r:) and the correction term(e,,)
satisfying Assumptiors4.1and3.4.2respectively. Suppose that systefx) (s controlled
by u(z) with z computed by observer-predictat.( 39 and define

() =lz@®F+ sup  |lz(s)F+  sup [ley(s)]]*. (4.140)

SE[t—hmaaw,t] SE[t—hmam,t]
Then, there exist, o, h*, §* > 0 such that, provided,,., < h* andd < §*, one has
VE>0 Y(t) <cT(0)e . (4.141)

Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
—+o0
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Proof. Note that the delay(t) (respectively:(t)) will be denoted: (respectively:) in the proof
to facilitate the reading. First, denoting,(¢) = z(t — h(t)) — x(t), equation 4.138 becomes

A(t) = Az(t) + Bu(t) + g(Ce,(t)). (4.142)

The dynamics aof,,(¢) reads as

é,(t) = Ae,(t) + g(Cep(t — h)) — h[Az(t — h) + Bu(t — h) + g(Ce,(t — h))]  (4.143)

and can be rewritten as follows

Cep(t)

&(t) = Acip(t)+g(06p(t))—%({_h)%(S)ds (4.144)

—h[Az(t — h) + Bu(t — h) + g(Ce,(t — h))].

The following Lyapunov-Krasovskii functional candidatgroposed

V(t) = AVi(t) + Va(t) + Va(t) + Va(t) (4.145)
where
Vi(t) = 27 (1) P2(t), (4.146)
with P defined in 8.86),
Va(t) = e, (1)Qep(1), (4.147)
with Q defined in 8.91),
)= [ O s = )5 s, (4.148)
t—hmaz
Va(t) = /(hmax + hunin + 5 = 1) (||2()]” + lep(s)1[*)ds (4.149)
t—h

and~ > 0. Remark that/, V; are the same as in the constant delay case. Functidriaid
V, are introduced to deal respectively with the integral terifdo144 and with the time-varying
delay. Since is globally Lipschitz and from3(88), the time derivatives df; satisfies

Vi(t) < —eull=(@)]1” + RI=@)]] eI, (4.150)

with R = 2[,|| P|| ||C||. Moevoer, by substitution one gets

Cep(t) d t
[ Seas| <uliel [ lelas (4.151)
Cep(t—h(t)) t—h(t)
S0 using 8.99), it follows that
Va(t) < —myllep(0)|* + R'lep (D] [fm(D)]] + dM|lep(t)]] [|2(t = R)] (4.152)

HOR [[ep(t)]] llep(t = h)|
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t
with " = 20,||Q[| [|Cl], M = 2|[P[| ([[A]| + L||B]]) and[[m(t)[| = fh |lép(s)[|ds. Further-
t—

more,
t

Valt) = sl a1 = [ lla(o)]ds (4.153)
t—hmax
so, reminding that
2
t t 1 t
[ enpas< = [P - | [ gl | L @ase

t—hmaz t—h(t) t—h(t)

it follows that

1

Vo) < bl lep (DI = 5

Im@IF =5 [ eGP @1ss)

tfhmaz

In addition, sinceu and g are globally Lipschitz and usingd(15]) and Hdolder’s inequality
(3.109, it can be deduced from# (144 that

lepll* < allep|]” + callml? + 36| 2(t = B)||* + cad®[len(t — 1) (4.156)
with ¢ = 4([[Al| + L |IC1)%, ez = AGC?, 5 = 4([[All + L] B]])* so

Va(t) < huaslerllep]* + ealml[* + €87 ||2(t = W) + c20°| e (t = R)|P]
t

—si—lm@)[* =5 [ lép(s)|[*ds.

t_hmaac

(4.157)

Finally,

Va(t) < (Panae + hnin) (|12 @)1 + [1ep(@)17) = hanin(L = 8)([]2(t = R)|* + [le,(t — h)[)

—tfth(HZ(S)H2 +le(s)][*)ds.

(4.158)
Thus, the following maximization is obtained

+oM|lep()]] [|2(t = R)[| + OB [lep@)]] [lep(t = )| + hmax[61|L6p||2 + colm?

+e30%||2(t = h)[|* + 20|l ey (t = 1)|[*] = g —[Im(®)I]* = 5 hf 1, (s)|*ds
t_ max

+2hmaa (|21 + [lep(D)]1) = hmin (1 = ) ([|2(t = WII* + lep(t = B)|[*)

—tfth(IIZ(S)II2 +le(s)[*)ds.

V(t) < —yell=OIF + 7RO llep®)I] = mgllep(0)]1* + Rley()]] [[m(t)]]
t

(4.159)
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The cross terms can be maximized 8102 and Young'’s inequality3(100); it gives

£

5 — D] 12| = [ = £ e llm(8)

B = P hae(2 4 1) = (M2 + B 2)] [ley(0)]

"
D = B + Bty + M2 ol = WP
— [hnin — 6(Pmin + 0Rmaaco + R'/2)] ||€p(t - )H2 - % f ||ép(5>||2d5

tfhmaz

t
- fh(||2(8)||2+ lle(s)[1*)ds
t_
(4.160)
To prove the exponential stability af.(42-(4.99), itis sufficient to find conditions which guar-

antee the following inequality

V(t)+eV(t) <0 (4.161)

with e > 0. From equation4.160, Assumption8.4.1and3.4.2 one has

[% — tham} ||Z(t)||2 - |:2h3’baz - % - hmamCQ} ||m(t)||2
[ - - how@+ ) =62+ R/2)] lle, (1)
— [Pmin = O(Nmin + Ohmazcs + M/2)]||2(t — R)||?
t
— [Pomin — 6 (Pmin + 0PmaeCo + R'/2)] ||€p(t - h)H2 - % f ||ép(5>||2d5

t_hmaw

t
veell2l|* +emllepl|* +& [ maallép(s)|[*ds

t hmaz

—[1 = &(hmaz + Pmin)] f (1z()* + llen(s)[1)ds

t_

(4.162)
It follows that
VeV € - [ 2he 9] [2OIF ~ [ — £ — B IO
— 5~ 3 b2+ 1) = (M2 + R/2) = em] [|e, (D]
— oamin — 5(Panin + Shinaacs + M/2)] ||2(t — )|
- [hmm - 5(hmm + 5hmax02 + R//2)] ||6p(t - h)||2 (4163)
t
- [% - 5hma:v} f ||ép<5)H2dS
t—hmaz
t
—[1 = 2ehyq] fh(IIZ(S)H2 + [lep(s)[[*)ds
t—

To makel/ () + <V (t) < 0, itis sufficient to have the coefficients pre multiplyinggouedratic
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terms negative. It leads to the following conditions

( % — 2Rhypaz — yEC > 0, (4.164)
1 R?

Ty 4.165
thax 2mg mazC2 > 07 ( )
m, R / _

S g~ (2 1) = 6(M/2+ R j2) —em > 0, (4.166)

hmin - 5(hmm + 5hmaxc3 + M/2) > 07 (4167)

hmin - 5(hmm + 5hmax02 + R,/Q) > 0, (4168)

1

S~ Sl > 0, (4.169)
(1 — 2ehmas > 0. (4.170)

First, (4.1649, (4.169 and @.170 can be reformulated as follows

Bz < 1 (4.171)
and
Bonaz < ho (4.172)
and
Bonaz < hs (4.173)
with Yo
hy = 5[3“ — &d] (4.174)
and )
hy = —. (4.175)
2e

Besides,4.169 can be rewritten in the following form

2
R/2 R/2
V() +2e - (45)

Rmar < < hs (4.176)
202
with )
hy = —. 4.177
= o (4.177)
Conditions ¢.167-(4.168 depend simultaneously @, andd. Rearranging the terms gives
Pomaz < hy (4.178)
and
Pomaz < hs (4.179)
with )
03(52
and .

0252
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Similarly condition 4.166 depends simultaneously @p,.,. andd and can be reformulated as
follows

Ponaz < he (4.182)
with P2
1 mg Y , _
= — — —0(M/2 2) — : 4.1
he 2+C1<2 2. d(M/2+ R'/2) 5m) (4.183)
In order to havehy, hs and hg positive,§ has to comply with the condition below
d < 6" = min(dy, 99, 03) (4.184)
with
5, = — ftmin___ (4.185)
" i + M2 '
5y = —ftmin___ (4.186)
2_hmin+R//2’ .
2 m, YR? ~
=— | —= — — . 4.187
%= I ) < 2 2¢, " (4.187)
Choosing: and~ sufficiently small guarantees that andd; are positive. In that case, taking
Ronaz < h* = min(hl, hz, h3, h4, h5, h6) (4188)
andj < ¢* ensures that '
V(t) < —eV(t). (4.189)
So equation4.141]) can be deduced fron# (189 by similar computations as in Theorefrb.
O

Quialitative analysis: This theorem shows that a predictive feedback computeddtaserver-
predictor ¢.94) can stabilize systeng() provided that the delay and its variation are sufficiently
small. In addition, a qualitative analysis of the boundsndd* is given below.

« For a small value of, thenh, h, andhg increase which means that a slow convergence

rate of the closed-loop system allows larger value of theydel

» Similarly, for a small value o, thenj; increases which means that the delay dynamics

can be faster for a slow convergence rate of the close-lostesy

« For a large value of,° (that appears through andc,), thenhs, hs and hg decrease
which means that the admissible delay is smaller for a fastier.

« For a large value of, 1° (that appears through), thenh, decreases which means that
the admissible delay is smaller for a fast controller.

» For a large value of, thend, andd, increase which means that the delay dynamics can

be faster for a small delay interval (see Figdr8).

» For a small value of, thenh,, h; andhg increase which means that a slow-varying delay
can have a larger amplitude.

Moreover, some simulation tests show that for stable sys{ghHurwitz), the real values*
ando* can be large. On the contrary, for unstable systems, thasedsdecome very small.
However, the use of sequential sub observers-predictons Bgjafi et al.[2013 may be a
solution to relax this constraint.

9. I, is the Lipschitz constant associated to the functi@md is defined in3.95).
10. [, is the Lipschitz constant associated to the functiand is defined in3.89).
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4.2.3 Sequential sub observers-predictors with a known day

As it was shown in Sectiod.2.], the sequential sub predictors allow to cope with a larger
delay when the full state is known and when the delay is consTdis idea can be extended to
partial state measurement and to a time-varying delayt, Eims sequential sub predictors idea
is applied to the partial state measurement case with aaardelay.

Constant delay

Each of ther sub systems estimates and predicts the state $econds where

_h
h=—, reN-. (4.190)

r

Sequential sub observer-predictor equations read as:

((4(t) = An(t) + Bu(t — (r — Dh) + g1([Caa(t — h) — y(1)])

Zz(t) = Az(t) + Bu(t — (r —i)h) + gi(Clzi(t — h) — zi-1(1)]) (4.191)

[ 5(0) = Az (t) + Bult) + g, (Clar(t — B) — 51 (0))
wherez; e R", i =1, ..., 7.

Remark 4.2.8. The name of the variables has been changed with respect watkeof Najafi
et al.[2013. Indeed, here:,.(t) — x(t + h) whereas it isz; () that tends toc(¢ + k) in their
work. The choice has been made in order to facilitate the irepdf the proof. Note that the
same convention is adopted Adhmed-Ali et al[2017, Germani et al[200d and Kazantzis
and Wright[2003.

Remark 4.2.9. To computez, (), the initial conditionsz;(t) = ¢..(¢) for t € [—h, 0] with ¢,
continuous functions, are required for al= 1, ..., r.

Assuming an appropriate choice of the gaipsit follows that z.(¢) tends tox(t + h).
Thus, a predictive feedback(z,) that verifies Assumptio8.4.1can be applied to stabilize
(£r). Reminding that is the number of sub observers-predictors and defining thediction
errors

ep, = 21(t — h) — z(t) (4.192)
and
ep;(t) = zi(t — h) — 21 (t) (4.193)

forall: = 2, ..., r, the following theorem holds.

Theorem 4.7. Consider systent€},), with a known and constant delédy and assume that
there exist a controller(z) and gainsg;(e,,) satisfying Assumptior3.4.1and 3.4.1re-
spectively. Suppose that systefy)(is controlled byu(z,) with z. computed by sequentia|
observers-predictorgi(197). Then, there exists' € N* such that, provided > r*, ||x(t)||
exponentially converges to zero.

Proof. The proof is divided into three steps:
* It will be shown that for ali = 1, ..., r the errors||e,, (¢)|| exponentially converge to zero,
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« then it will be proved thaf|z,(¢)|| exponentially tends to zero

« and finally that||z(¢)|| exponentially converges to zero

Step 1:
The dynamics of the sub prediction erra@gs can be rewritten as follows
( Cep, (1)
én(t) = Aey(t) +0(Cep(t) — [ (s)ds
Cep, (t—h)
Ceyp, ()
épi(t) Aepi(t) + gi(Cepi(t)) - f dgl( )ds — Gi— (Cepi—1 (t))
Ceyp, (t—h)
Cepr(t)
&, (1) = Aep,(t) +9:(Cep (1) — [

\

e (s)ds — gr1(Cep, (1)),
Cep7‘(t_h)

(4.194)

The dynamics of,, in (4.199 is similar to @4.100. Consequently, it can be shown by using the

following Lyapunov-Krasovskii candidate function

Vi(t) = ep, (t)Qep, () + /(5 +5 = 1)l|ép, (s)]]%ds

(4.195)
t—h

that||e,, || exponentially converges to zero provided thas sufficiently small

h < b}t

(4.196)

Consequently, the recursive process is initialized. Ireor prove by induction the conver-
gence of the errot|e,,|| to zero, it is supposed thée,, ,|| converges exponentially to zero
Then, let

t

—wﬂw@%aw1/@+s—wWMﬁww

(4.197)
t—h

be a Lyapunov-Krasovskii functional candidate. Similaoly4.107 and @.110 in the proof of
Theorem4.5, one gets

it) < —mylle O+ Rllen Ol lmall + Rllen@l lens (O]
el ey (I + Feallms()I + Fealleg (I = sEllm)E = & [ Nl (o)l
" (a.198)
mmﬁz%mmwmmzn—fmman—aMMJMWam@:ﬁwm

b (Ol [Im ()" s0

Vi) < =[5 = Fer] e (I + Rllen 0] llepr Ol + Bealeg, OIF

- [ = ot ] I = £ J V)P (4199
J

11. An explicit value can be computed following similar st in Theorem.5
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Reminding that

my 2 / mg R\’ R® 2
= llen I + Rllen )] llep, . (O] = = le pz(>l|—\/m_g +m—g|lepi,1(t>|l,
(4.200)
one deduces that
Vi) < =[5 = e eI + [hea + 22 ey, , ]2
(4.201)

B t
[ e Il - 4 [ ol

2h 2myg

To prove the exponential convergence, it is sufficient to émnditions which guarantee the
following inequality ‘
Vi(t) +eVi(t) <0 (4.202)

withe > 0. From equation4.199, Assumptior8.4.2 one has
Vit) +eVilt) < = [ —hes —em] [lep (O] + [hea + R—’Q} e, (1)1
P (4.203)
[ B 1P — [4 <] [ 11é(5)|ds.
t—h

It is possible to computk! such that for

h < h; (4.204)

and fory ande sufficiently small, the coefficients of the tefifas, (¢)||%,

m;(t)||* and f €, (s)]*ds
t—h
are positive (see proof of Theoreh®b). Thus, one has

Vilt) < —eVilt) + [hes + 22 ey, (]2 (4.205)
Since||e,,_, || exponentially converges to zero, the comparison lemrinalil [2007 guaran-
tees the exponential convergence|ef. || to zero. The induction process ensures @t || for
all i =1, ...,r exponentially converges to zero provided that

h<h*= min_(hy). (4.206)
This ends the first part of the proof.

Step 2:

In order to prove the exponential convergencé of | to zero, the following Lyapunov candidate
function is defined

V(t) = 2L (t) Pz, (t). (4.207)
Taking the time derivative df (¢) along the trajectories of, in (4.19]) gives
V(t) < —cullz O + Rz llep, ()] (4.208)

with R = 2,|| P|| ||C]|. One can rewrite4.20§ as follows

Cu , R? )
V(t) < =5 llz@IF + 5 - llep, (0l (4.209)
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and sincel|e,, (t)|| exponentially converges to zero, the comparison lemma Kdoatil [2007
ensures the exponential convergencégoit)|| to zero.

Step 3:

The last step consists in showing the exponential conveegefi|x(¢)|| to zero. Let

ep(t) = z.(t — h) — x(t) (4.210)

be the prediction error, then using the sub prediction esrgy;, one gets

T

ep(t) =D ep(t —h+ (r—i+1)h). (4.211)

i=1

so|le,(t)|| exponentially converges since for ak= 1, ..., n ||e;(¢)|| exponentially tends to zero
from step 1. The exponential convergencég«ft)|| to zero is deduced from the result of step 2.

Finally, takingr* = L%J with h* defined by4.206 and takingr > r* lead to the exponen-
tial convergence offz(t)|| to zero. O

Remark 4.2.10.In previous theorems, the exponential stability in the saithe nornil’ was
shown. Here, only the exponential convergencégadt)|| is proven because of the induction
proof and especially to the form of.2035.

Time varying delay

An example for the case of two cascaded sub observers-pyeslis given on Figurd.14
The idea is similar to the one for the constant delay caseepted before. Each of the
observers-predictors has a time-varying prediction looriz

h(t) = @ r e N*. (4.212)

The equations of the sequential sub observers-prediategeen below

((4(t) = Az(t) + Bu(t — (r — A1) + g1 ([Caa(t = h(t)) — y(1)])

(1) = Az(t) + Bult — (r — Dh(1) + g:(Claslt — h(t)) — 21 (D)) (4.213)

\ éé(t) = Az (t) + Bu(t) + g:(Clz(t = h(t)) = 21 (1)])
wherez; e R",i=1,...,r.

Remark 4.2.11. Note that to compute,(¢), the initial conditionsz;(t) = ¢,,(t) for t €
[—hmaz /T, 0] With ¢, continuous functions are required for alk= 1, ..., r.

A predictive output feedback( z, ) that verifies AssumptioB.4.1can be applied to stabilize
system ;). We define the sub prediction errors

ep, = 21(t — h(t)) — x(t) (4.214)
and B
ep(t) = zi(t — h(t)) — 21 (¢) (4.215)

forall i = 2,...,r. The advantage of the sequential structure is to relax thditon on the
maximum delay value as it is stated in Theorér@ It is reminded thab stands for the upper
bound of the delay time derivativéi(t)| < ¢ (Assumption3.4.4).
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Theorem 4.8. Consider systenty,), whereh(t) is known and complies with Assumptions
3.4.3and 3.4.4 and assume that there exist a controllgr:) and gainsg;(e,,) satisfying
Assumption8.4.1and 3.4.1respectively. Suppose that systefy) (s controlled byu(z,)
with z, computed by sequential observers-predictdr81{3. Then, there exist: € N* and
d* > 0 such that, provided > r* and¢é < ¢*, ||x(t)|| exponentially converges to zero.

The proof follows the same steps as the one of Theatéhand the computations for the first
step of the proof are similar to the those of the proof of Tkeaot.6.

The results of Theorem&.5 and4.6 hold for a given controller, and a given correction
termg. It has been shown that the stability is preserved for sefiity small delays < h*.
However, some choices afandg can lead to very small values af and then to very large
values ofr*. In practice, choosing a “slower” controller and a “slowedtrection term allows
to reduce the number of sub observers-predictors.

Remark 4.2.12. Note that from a practical point of view,* can be obtained from simulation
results in order not to overestimate the number of sub olessfpredictors.

Lr

u(t)

Zg(t)

R e e
<~ h(t)/2

Figure 4.14 — Closed-loop scheme with two sequential sukrgbss-predictors4(213 for a
known and time-varying delay and partial state measurement

4.2.4 lllustrative example
The same double integrator as in Examgl2.1is used to illustrate above results
§(t) = u(t — h(t)) (4.216)
with the state-space representation
#(t) = Ax(t) + Bu(t — h(t)) (4.217)

wherez = [y, 9", A = {8 0} andB = [ } The same controller as in Example2.1is

chosen here
u(t) = K=(t) (4.218)
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where the gaink’ = [—2, 3|7 is tuned in order to place the eigenvalues of the closed-loop
system to—1 and—2. The Luenberger observer-predictor reads as

2= Az + Bu(t) + L(Cz(t — h(t)) — y(t)) (4.219)

with the observer-predictor gain
L =[-15,05]" (4.220)

so the eigenvalues of+ LC' are—0.5 and—1. Remark that controlle#(218 and the correction
term LC'e comply with Assumption8.4.1and3.4.2respectively.

Remark 4.2.13.In this example, the variablg has no particular physical meaning so it will
be displayed without unit in the next plots.

On Figure4.15 the observer coupled with the standard predicdos?) is compared with
the observer-predictod(219. For a fair comparison, the gainis the same for both schemes.
It can be seen that the two methods have a similar behavitiidrcase the advantage of using
the observer-predictor structure over the standard onleaisit does not require an integral
discretization so the computations are easier.

—— standard predictive feedback
dynamic predictive feedback

i i i i i
0 5 10 15 20 25 30

i i
20 25 30

15
time (s)

Figure 4.15 — Comparison of the standard predictive feddba219-(4.57) with the dynamic
predictive feedback4(218-(4.219 for h(t) = 0.5 + 0.2 sin(0.3t).

On Figure4.16 the performances o#(218-(4.219 have been tested for different time-
varying delays:

e hi(t) = 0.5+ 0.1sin(t) S0hy(t) = 0.1 cos(t) andmax hi(t) = 0.1 andhy,,,, = 0.6,
e hy(t)=0.9 4 0.1sin(0.1¢) S0hy(t) =0.01 cos(0.1t) andmax ho(t)=0.01 andh,, . =1,
e hs(t) = 0.9+ 0.1sin(t) S0 hs(t) = 0.1 cos(t) andmax hs(t) = 0.1 andhs, . = 1.

On Figure4.163 one can observe that the system is stabilized in spite dagtevarying delay.
Figure4.16billustrates that the stability is particularly sensitieddrge delays because it can be
seen thay tends to zero only when the delay is sufficiently small. OruFégt.16¢ the system

is unstable because the delay is fast-varying and add a tasg@num value. As mentioned
before, the solution to stabilize systems with a larger trag/ing delay is to use sequential
sub observers-predictord.213-(4.219. On Figure4.17, the same delay as in Figufel6c
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‘| ‘ dyhamié pred‘ictive‘feedback\
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(b) ha(t) = 0.9 + 0.1sin(0.1¢): slow-varying but (c) hs(t) = 0.9 + 0.1sin(¢): fast-varying and large
large maximum value maximum value

Figure 4.16 — Performance comparison of dynamic prediééedback with a single observer-
predictor @.218-(4.219 for different time-varying delays.

has been used. In this case, it is clear that the sequenhalservers-predictors with = 2
andL,; = L, = L are able to stabilize the system. However, the number of bgkreers-
predictors cannot be increased arbitrarily since the peaition attenuation property worsens
with the number of sub structures as it is illustrated on Fegul8

Indeed, a constant external perturbatifdmas been added such that systdmi2{6 becomes
y(t) = u(t — h(t)) + d. It can be observed that the perturbation is less attendatetthe
dynamic predictive feedback with= 2 than withr = 1. This is due to an accumulation of the
observation errors in each sub observer-predictor. Asudtieseal applications, the number of
sub observers-predictors cannot be increased arbitr&ilyew prediction that is more robust
to external disturbances is presented in the next section.

4.2.5 Summary
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| [ | dyﬁamic‘predic‘tive féedba&k:2]

i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100

) 10 20 30 40 50 60 70 80 90 100
time (s)

Figure 4.17 — Dynamic predictive feedback with sequentidl sbservers-predictorg .13
with r = 2 with the same delay;(t) = 0.9 + 0.1sin(¢) as in Figure4.16¢

Contributions

[1 Extension of the work oNajafi et al.[2013 to
» atime-varying delay,
* alarger class of controllers,
* partial measurement knowledge.

[1 The exponential stability is proved whereas only asymgtatnvergence is given
in the original work.

[ Explicit stability conditions are provided.

7

Table4.3 sums up previous results. Note that the bousds:.* andr* may have different
values for each case.

Prediction Delay Conwv. Condition Theorem

Dynamic h | gl. & exp. homar < h 4.5

(1 obs/pred)

h(t) | 9l. &exp. | hpae < h* & 6 < 0* 4.6
Known

Dynamic h | gl. & exp. r>r 4.7

(r obs/pred)

h(t) | gl. &exp.| r>r*& §<d* 4.8

Table 4.3 — Sum up of the convergence results for dynamidgired with a known delay

* gl.: global — exp.: exponential
* h: constant delay
 h(t) € [Mmin, hmas] @Nd|R(t)| < &: time-varying delay
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dynamic predictive feedbaok=1
1k dynamic predictive feedbaok=2
- — —additive disturbancé

0 10 20 30 40 50 60 70
—h(t)
: :

0 1‘0 2‘0 3‘0 40 5‘0 66 70
time (s)
Figure 4.18 — Comparison of the disturbance attenuatiohevtiynamic prediction fok(¢) =

0.5+ 0.2sin(0.3t).

4.3 New prediction with a known delay

It has been shown in Sectidn2.3that predictive control strongly relies on the model accu-
racy. If the model is not perfectly known or if an externaltdibance appears then the standard
prediction is not accurate anymore and the controller basetthis prediction is less efficient.
In this section, a new prediction that compensates for modet¢rtainties and external distur-
bances is presented. It has been introduced for state fdetilyd échappé et a[2015¢ and
extended to output feedback bgchappé et a[2015d. The accuracy of this prediction will be
studied in the case of a constant delay in Secfighland for a time-varying delay in Section
4.3.1

In the above section, perfectly known systeifig defined in 8.84) have been considered.
However, in many practical cases, it is very difficult to knewactly the values ofl and B.
Consequently, some parameter uncertainties can be takeadcount as follows:

(t) = (A+ AA)x(t) + (B + AB)u(t — h(t)). (4.221)
Another source of model mismatch is the presence of an unkmeswernal disturbance such as
x(t) = Az(t) + Bu(t — h(t)) + d(t). (4.222)

Parameter uncertainties, represented by unknown matkidesndA B are supposed to comply
with the assumption below

Assumption 4.3.1.The matricesA A and A B do not affect the controllability property of the

system and
|AAll < ca (4.223)

and
I[AB]| < cp. (4.224)

with c4, cg > 0.

The external disturbance, represented by the veftoris assumed to verify the following
assumption
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Assumption 4.3.2.d is an unknown locally integrable function such that forzah 0,

d@®)]] < diaa < +00 (4.225)
and for allt > h (for a constant delay),
|d(t) — d(t — h)|| < hDpayw < +00. (4.226)
If the delay is time-varying, thed (226 is replaced by
|d(t) — d(t — h)|| < hmazDimaz < +00. (4.227)

4.3.1 Constant delay

SinceAA, AB andd(t) defined in 4.227) and @.222 are unknown, they cannot be in-
cluded in the computation of the prediction. In both cades sb-called “standard prediction”
at time ‘t”, of the state of the system at time-+ A", reads as

t

zp(t) = e (t) + / eA=%) Bu(s)ds. (4.228)
t—h
There is an inevitable prediction error becauge# x(t + ). In order to improve the predic-
tion accuracy even in presence of unknown terms, a so-caika prediction” is going to be

defined. The basic idea is to compare the “true” state of teeayat timeg, namelyz(t), with
its approximated prediction made at tithe h which isx;(t — h):

Definition 4.3.1(Léchappé et a[2015d). The new prediction is defined by
2(t) = wp(t) + x(t) — xp(t — h) (4.229)

I
correction term

where the standard predictiory, is
t
zp(t) = e (t) + / eA=%) Bu(s)ds. (4.230)
t—h
Note that when the system is perfectly knowp(t) = =(¢ + k) for all t > h, the correction
term is equal to zero. When there are some model uncertamtigisturbances, this correction
allows to indirectly introduce some information about urdel@d dynamics in the prediction.
Figure4.19illustrates the method to obtain this new prediction. Noig @ll the controllers
that use this new prediction will be referred at “new pradestontrollers”. Similarly, all the
controllers that use the standard prediction will be calidndard predictive controllers”.

The full state knowledge is required to compute the stangeediction @.230 and then to
compute new predictio(229. However, a “reconstructed new prediction” can be defined b

Definition 4.3.2(Léchappé et a[20154d). Let be an estimation of. The new reconstructed

prediction is defined by
Z2(t) = 25(t) + 2(t) — zp(t — h) (4.231)

where the reconstructed standard predictigns

t
Tp(t)=e i (t) —l—/eA(ts)Bu(s)ds. (4.232)
th

In the next section, the advantage of these new predicti¢respectively?) over the stan-
dard predictione; (respectivelyz;) is illustrated.



4.3. NEW PREDICTION WITH A KNOWN DELAY 119

New prediction

Figure 4.19 — New prediction design

Disturbance attenuation

In this section, the improvement of the new prediction imtgiof attenuation of the distur-
bance effect is studied. The systems under consideratimtha form

&(t) = Az(t) + Bu(t — h) + d(t). (4.233)

In this case, the exact prediction is

t
z,(t) = 2(t + h) = ea(t) + / A9 [Bu(s) + d(t + h)]ds (4.234)
t—h
but cannot be computed in practice since it requires the ladge of the disturbance. Remark
that computing the exact prediction would require the kralge of the future values of

(prediction of the perturbation). As a consequence, ordystandard predictiort(230 can be
computed and the prediction error is equal to

z(t+h) —xp(t) = / A=) d(s + h)ds. (4.235)

t—h

The interest of the prediction is to design a predictive culgr based on the reduced system
ip(t) = Azp(t) + Bu(t) + e*d(t). (4.236)

Indeed, the reduced system is input delay free so standatdotonethods can be applied to
stabilize it. However, one has the following proposition:

Proposition 4.3.1(Léchappé et a[20154d). For a constant disturbance, the convergence of
x;; to zero implies the convergencezofo [ftt_h eA(t*s)ds] d.

Proof. If 2, tends to zero, it can be deduced from236 that Bu(t) tends toe"d(t). As a
result, substituting3u(t) by e*"d(t) in (4.230 concludes the proof. O

In the general cas%,fffh eA(t—S)ds] d is different from zero so Propositigh3.1states that
even if the predictiornr; converges to zero, the statewill not converge to zero in presence
of an external disturbance. This is due to the inaccurachefstandard prediction that does
not take into account the perturbation in its computatioher&fore, it is necessary to design
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another prediction that includes some disturbance infdtomaThe new prediction computed
from (4.229 can be turned into the integral form

2(t) = \xﬁ(t) +a(t) — xp(t — hz = ey (t) + / eAt=s) [Bu(s) +d(s)|ds. (4.237)

e
computation method t—h

J/

B TV
integral form

It is important to note that the disturbance appears in ttegmal form @¢.237. The addition of
the correction term inr4.229 allows to add some disturbance information in the prealictirhe
only difference betweend(237 and the exact predictiod (234 is that “d(s)” appears instead
of “d(s + h)” in the integral so:(t) # =(t + h) but it is generally more accurate thag(t) and
the prediction error is equal to

x(t+h)—2(t) = / eA=I(d(s + h) — d(s)]ds. (4.238)

t—h

A substitution can be made with this new prediction and tlkeced system
A(t) = Az(t) + Bu(t) + d(t) + e [d(t) —d(t —h) (4.239)

is obtained. Applying a predictive controller to stabilizg) in (4.239 leads to the following
proposition

Proposition 4.3.2(Léchappé et al[20154d). For a constant disturbance d, the convergence of
z to zero implies the convergenceaxofo zero.

Proof. If x; tends to zero, it can be deduced frof239 that Bu(t) tends tad(t) + eA*[d(t) —
d(t—h)]. Sincedis constanti(t) —d(t—h) = 0, substitutingBu(t) by d(t) in (4.237 concludes
the proof. O

For constant disturbances, the convergence of the newgtigadio zero implies the conver-
gence ofr to zero. In the case of time-varying disturbances, the ec@vtergence to zero is not
possible anymore (even without delay) but Theorkef) that will be given in the sequel, shows
that designing a controller from the new prediction induad®tter attenuation than designing
it from the standard prediction. The details are given thkee.

Assume that(x;) verifies AssumptiorB.4.1thus system4.239 with d(t) = 0 is glob-
ally exponentially stable. In addition, the perturbatidnsgstem §¢.239 is bounded and the
following maximization holds

e d(t)|| < ||e||dmae, VYt > 0. (4.240)

Therefore, the assumptions of Lemma 9.&Kimalil [2007 are fulfilled (equations3.88 and
(4.240) so one deduces that for al>> 0

25| < Bllz(0)[le™" + Ll[e™"||dmax (4.241)

with «, 5 andl; positive constants. Sincé.36 and @.239 have the same form whetit) =
0, the same controller(z) guarantees that= 0 is a globally exponentially stable equilibrium
point of the nominal systen#(239 with d(¢) = 0. From Assumptior.3.2 the inequality

Hd(t) 4 eAn [d(t) —d(t - h)} H < dinas + 1|2 || Dy (4.242)
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is verified for allt > h. Similarly to @4.247), the following inequality is obtained
2@ < Bllz(0)]le™" + I | dmas + hlle""’HDmax] (4.243)

for all t > h. The constants, 5 andl; are the same as i@ (241 because they only depend
on the form of the undisturbed system. As it has been merdibeéore, systemsi(239 and
(4.239 have the same representatipr- Ax + Bu(t) when there is no perturbation. From the
evaluation of 4.239 and @.238 in “t — h”, it follows that

|z < [Jzp(t — P)|| + ladmaz (4.244)
and
@) < |[2(t = A)|| + loh D (4.245)
0
with [y = || [ e?*ds||. As a result, if system4(233 is controlled by the feedback(z;), the
—h
inequality

@)1 < BlI(0) e e + [1a + bl ]| da (4.246)

J

~~
T1

holds and, if system4(233 is controlled by the feedback =), the inequality
l2(t)|] < Bl|2(0)||e* e 4 lydmas + [ZQ + llHeAhH]tham (4.247)

~~
T2

is verified. This proves the following theorem.

Theorem 4.9(Léchappé et al[20154). Consider system4(233 and assume that there
exists a controlleru(x) satisfying Assumptio8.4.1 Suppose that predictor-controller
u(z) with z defined by4.229 andu(x;) with z; defined by4.230 result in uniform ulti-
mate bounds respectively in (4.249 andr, in (4.247). Then, there exist®* such that,
providedD,,.. < D*, the uniform ultimate bounds verify < r;.

U

Theorem.9shows that a feedback controller with the new predictiod$da a smaller uniform
ultimate bound than designing a controller with the stadgaediction for a sufficiently slow-
varying disturbance. Consequently, the new predictivesghis said to better attenuate the
slow-varying disturbances than the standard one. In ttge cha constant delay, for systems
such that|e?"|| > 1, an explicit value ofD* is given by

dmax(HeAhH —1)
hlle]]
Note that some additional assumptions on the eigenvaluésvafuld be necessary to determine

whether or not, equatiod (243 is fulfilled for a givenh. Besides, unstable systems are usually
such that|e?”|| > 1 so @4.248 can be approximated by

D =

(4.248)

d
"> . 4.249
Dmax > ( )

In this case, the attenuation only depends on the dynamitiseoperturbation with respect
to the delay size. However, the converse of Theo#e®is not true; even if the perturbation
does not comply with4.248, a controller using the new prediction can better attemntiae
perturbation but it is not guaranteed. This result can bereddd to the partial state knowledge
case by using the reconstructed predictions (Definiidh? to compute feedbacks(z;(t))
andu(2(t)). Then, Theorerd.9 can be rewritten as follows with(¢) = z(t) — x(¢).
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Theorem 4.10(Léchappé et al.2015d). Consider system?#(233, observer Q) in (3.90
and assume that there exist a controli€r:) and a correction terng(e) satisfying Assump-
tions3.4.1and 3.4.2respectively. Suppose that predictor-controllefs) with Z defined
by (4.231) andu(z;) with , defined by 4.232 result in uniform ultimate bounds respeq
tively 7, andry. Then, there exist®* such that provided,,,.., < D*, the uniform ultimate
bounds verify’y < 7.

The proof is very similar to the one of Theoreh® and is given irLéchappé et a[.2015d for

observer Q) in (3.90 being a Luenberger observer. O
The results of this section are gathered in Tablefor a particular controllet.(z) = K.

In order to compare the influence of the delay on attenuatiopeoty, the delay free case has

been added too.

Remark 4.3.1. The assumption globally Lipschitz is not used in this section, the local-Lip
schitz property is sufficient here. As a consequence, thdtsdsold for a large class of con-
trollers. This gives the possibility to robustly stabilizat zero. However, even if converges
to zero, there is an inevitable errafhD,,,.. In (4.249, independent from the control and that
cannot be reduced for time-varying disturbances.



With a constant and known delay
Control Without delay
Standard prediction: New prediction:
{ &= A+ Bu(t)+d(t) &= Az+Bu(t — h)+d(t) t=Ax+Bu(t — h)+d(t)
iy = Axs+ Bu(t)+ed(t) z=Az+Bu(t)+d(t)+eM[d(t)—d(t — h)]
FeSe?;ch with u(t) = Kz(t) = with u(t) = Kxy(t) = with u(t) = Kz(t) =
&= (A+BK)z+d(t) iy =(A+BEK)z;+ed(t) i=(A+ BE)z+d(t)+eM[d(t)—d(t — h)]
p p
TO:dmaxll ™ :dmax(llHeAhH + lg) T2:dmaxll +Dmaxh(ll||eAh|| + l2)
&= Az+ Bu(t)+d(t) &=Az+Bu(t — h)+d(1) &= Azx+Bu(t — h)+d(?)
{ = Ai+Bu(t)+ L(Ci—y) T=Al+Bu(t — h)+L(Ci—y) T=At+Bu(t — h)+L(CZ—y)
_ 25 =A%s+ Bu(t)+e M LCe(t) 2=A2+Bu(t)+LCe(t)+e"LCe(t) —e(t — h)]
Output | With u(t)=Kz(t) = _ _
P with u(t) = Ki(t) = with u(t) = K3(t) =
Feedback é=(A+LC)e—d(t) '
b= (At BE)a+ BEe(t)+d(t) | [ €0=(A+ LO)e()=d() é(t)=(A+LO)e(t)—d(t)
P d (1 n ||BK||Z:) 25(t)=(A+ BK)is(t)+e " LCe(t) 2=(A+BK)z+LCe( Y+eALC[e(t) —e(t—h)]
07 Tmaztl s 71 = Az (Isla]| €27 4 1) =dmazlzls + hDpaz (I3la] ||| + 12)

Table 4.4 — Disturbance attenuation of the standard and nesgtive schemes. The delay free case is added as a compeafsrence.

. et) = @(t) — x(t)

e Iy,1l5,13,14 > 0 only depends on matrices, B, C, K, L

* r; andr; are the convergence radius
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Parameter uncertainties

In this section, the improvement of the new prediction witbpect to the presence of param-
eter uncertainties is worked out for constant referenaking. In this section, it will be shown
that a controller using the standard predictiop)(is not able to guarantee thatconverges to
x, In presence of parameter uncertainties whereas it is gessith a controller using the new
prediction ¢). The systems under consideration have the form

#(t) = (A+ AA)x(t) + (B + AB)u(t — h) (4.250)
and the constant referenge verifies
0 = Az, + Bu,. (4.251)

The controlu, is the constant input required to maintairo the equilibrium pointc,.. In this
case, the exact prediction is

t
x,(t) = z(t + h) = A2 (1) + / eATADE=) (B L AB)u(s)ds (4.252)

t—h

but cannot be computed in practice since it requires the ledgye of AA and AB. As a
consequence, only the standard predictign

z5(t) = e (t) + / e Bu(s)ds (4.253)

t—h

can be computed in practice. The reduced system obtainetifyoeads as

Tp(t) = (A+ AA)x(t) + Bu(t) + ¢1(t) (4.254)
with
o1(t) = —AA / e Bu(s)ds + e ABu(t — h). (4.255)
t—h

The term¢, can be seen as a perturbation of the delay free system

Since system4.2589 is not retarded anymore, all the controllers availableifday free systems
can be used to stabilize; aroundz,. In particular, PID or sliding mode algorithms can be
designed to reject the “perturbation; and maker;(¢) tend toz,. With z; converging taz,,

it is expected that(¢) converges ta:;,. However,z; is not the exact prediction af because it
does not take into account the perturbation; so there is anaigtable error wherh A # 0 or
AB # 0. The consequence of this error is stated in the next prapositherez = z; — z,:

Proposition 4.3.3(Léchappé et al[l20154). Consider system4(250 and suppose that there
exists a predictive controller(z) continuous at the origin such that¢) and its time-derivative
tend to zero. Then, the convergence of the stétgto the reference:, is not ensured.
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Proof. The dynamics aof is governed by

(t) = (A+ AA)Z(t)+ AAz, + Bu(t) — Bu, + ¢1(t). (4.257)
Assuming that there exists a controller continuous at thigit? such thatr converges to zero,
then, one hatsli1+n u(z(t)) = u(tlir+n Z(t)) = u(T = 0) = us. Passing to the limit in4.257,
it can be deduced that

0
Bus, = —AAz, + Bu, — e ABuy, + | [ e2*ds| Bu
“h

(4.258)

= Bu,+®

with tEHloo l|u(t) — us|| = 0and ® = —AAx, — e"ABuy, + i et=*)ds Bu,,. Reminding
that Az, = —Bu,, equality @.258 becomes

Bus, = —Az, + ©. (4.259)
Besides, from4.253, it follows that

0
z, = e e+ /eAsds B (4.260)
—h
with tlir+n l|2(t) — 2s0|] = 0. Combining ¢.259 and @.260 and noting thatA and e=4¢
—+00
0
commute and that [ Ae~4*ds = I,, — e, one gets
—h
0
0=e(re — ) + / e 5ds| @. (4.261)

—h

0
For the systems such that [f e 4%ds| ® # 0 for all AA and AB, one obtainsc,, # ..
—h

This ends the proof. O

When a predictive controller is designed using the standeedictionz;, it is not possible
to drive the state: to the reference:,. due to modeling errors. On the contrary, using the new
prediction ¢.229, one has the reduced system

2(t) = (A+ AA)z(t) + Bu(t) + ¢oft) (4.262)

with
$2(t) = ABu(t —h) + ¢1(t) — d1(t — h). (4.263)

Similarly to (4.254, the termp, can be seen as a perturbation of the delay free system
2(t) = (A+ AA)z(t) + Bu(t). (4.264)

The consequence of this new prediction on the tracking excouracy is given in Proposition
4.3.4whereX = X; — z,.

12. Ifuis notcontinuous at the origin but one higs) = O forall ¢t > T, then it follows that:(Z(t)) = u(Z = 0)
forallt > T.
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Proposition 4.3.4(Léchappé et a[20154). Consider systen#(25Q and suppose that there ex-
ists a predictive controller(X') continuous at the origin such thaf(¢) and its time-derivative
tend to zero. Then, the statét) converges to the referenee.

Proof. The tracking error dynamics is governed by
Zt) = (A+AAEE) + AAx, + Bu(t) — Bu, + ¢a(t). (4.265)

Assuming that there exists a controller such thatonverges to zero, it can be deduced from
(4.269 that
(B+ AB)uy, = Bu,— AAx, (4.266)

with tLiEloo ||u(t) — uso|| = 0 (see the proof of propositiofh 3.3for the existence of the limit).
Reminding thatAz, = — Bu,., equality @.266 becomes
(B+ AB)us = —(A+ AA)z,. (4.267)

Besides, from the definition of the new predictidr2@9, it follows that

2(t) = eMa(t) — x(t — h)] + eATAVg(t — p)

+ ft et Blu(s) — u(s — h)]ds

t—h
0

(4.268)
+ [ e AFAN(B + AB)u(t + s — h)ds
—h
so if Z converges to zero, one has
0
z, = ATAaNhy 4 /e_(A+AA)Sds (B + AB)us (4.269)

—h

with tli+m ||z(t) — || = 0. Combining 4.267 and @.269 and noting thatA + AA and

0
e~ (ATANs commute and that [ (A + AA)e ATANsds = [, — e(A+24h leads to
—h

I e (4.270)
Sincee 2k oL ( for all AA andAB, z., = x,. This ends the proof. O

The consequence of this proposition is that, if it is pogstblfind a robust controller that
makes:z tend tox,, thenx will tend to z, in spite of parameter uncertainties. As a result, the
problem of robustness with respect to model uncertainbesnput delay systems is reduced
to a problem of robustness versus model uncertainties flaly deee systems. Note that the
uncertainties\ A andA B should be sufficiently smalf to be able to find a predictive controller
ensuring that(¢) tends taz,..

As in the disturbance attenuation case, this result can iy @xtended to the partial mea-
surement case using the reconstructed standard predictebtihe reconstructed new prediction
(Definition 4.3.2. Similarly to Propositiongt.3.3and4.3.4 the following results hold with
with e(t) = z(t) — z(t).

13. ¢4 andcp in Assumptiord.3.1has to be sufficiently small.
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Proposition 4.3.5. Consider system#(250 and observer@) in (3.90), with a correction term
g(e) that verifies AssumptioB.4.2 in closed-loop with a predictive controller such that the
standard predictionz; converges to the refereneg. Then, the convergence of the statéo
the referencer, is not ensured.

The proof is similar to the one of Propositidi3.3

Proposition 4.3.6. Consider system#(250 and observer@) in (3.90), with a correction term
g(e) that verifies Assumptio®i 4.2 in closed-loop with a predictive controller such that thesn
predictionz converges to the referenag. Then, the state converges to the referenas.

The proof is similar to the one of PropositidrB.4

To summarize, in this section, some properties of the nedigiien have been highlighted
for a constant and known delay. In the next section, the padace of the new prediction in
presence of a known and time-varying delay are analyzed.

4.3.2 Time-varying delay

Similarly to Definitions4.3.1and4.3.2 the new prediction can also be defined for a time-
varying delay.

Definition 4.3.3. The new prediction is defined by
2(t) = wp(t) + x(t) — 25(t — h(t)) (4.271)

-~

correction term

where the standard predictiory, is

t
z5(t) = eMOa(t) + / eA=%) Bu(s)ds. (4.272)
t—h(t)

Note that even if the system is perfectly known, the corogcterm is never equal to zero
because of the time-varying delay (Sectibi.?. For partial state knowledge, one has the
following definition.

Definition 4.3.4. The reconstructed new prediction reads as
2(t) = 2p(t) + 2(t) — 25(t — h(t)) (4.273)
where the reconstructed standard predictigns

t
Tp(t) =MD (1) + / (=% Bu(s)ds. (4.274)
t—h(t)
Disturbance attenuation
Let us consider disturbed LTI systems with a known time-wvagylelay as follows
#(t) = Az(t) + Bu(t — h(t)) + d(t). (4.275)
In this case, the reduced system with predictib274 reads as

p(t) = Axp(t) + Bu(t) + eMd(t) + h(t)iy (t) (4.276)
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t
with ¢, (t) = Azs(t)+e*"Bu(t—h)—A [ A=) Bu(s)ds. For a time-varying delay, Proposi-
t—h
tion4.3.2does not hold anymore. Indeed, the time-varying delay prtisstbe exact convergence
of z;(t) to zero; only the convergence in a ball around zero is achlewvaven for a constant
disturbance. However, Theoreftb can be extended to the time-varying case. 1lbé the new

prediction defined in4.271J), thus the reduced system is

() = Az(t) 4+ Bu(t) + d(t) + e Dd(t) — et — h) + he™ M d(t — h)

TV
due to the external disturbance

+ i (1) — (L= )h(t = k) (t — h) + hBu(t — h) + hAzs(t = h).

TV
due to inexact prediction for a time-varying delay

' (4.277)
It can be observed that in the slow-varying delay d&$e)| < 1, the reduced systerd 279
(respectively 4.277) tends to the reduced system for constant a defa33@Q (respectively
(4.239). Then, similarly to Theorem.9, the following result holds

Theorem 4.11. Consider system4(275 and assume that there exists a controligr)
satisfying Assumptio8.4.1 Suppose that predictor-controllets =) with z defined by
(4.277) andu(z;) with z; defined by4.272) result in uniform ultimate bounds respectively
r1 andr,. Then, there exist*, D* such that, provided < ¢* andD,,,. < D*, the uniform
ultimate bounds verify, < ry.

Proof. Only a sketch of proof is given because it is similar to thasfete. The proof is divided
into two steps. First, it is shown that systefiy)(is globally exponentially stable with the new
predictive feedback(z) when there is no disturbancé(¢) = 0) and provided that < ¢*.
The proof of this part is similar to the one of Theordm3. Then, in presence of an external
disturbance, the ultimate bounds are compared as in Thedr&m O

Theorem4.11 shows that a feedback controller with the new predictiordeto a smaller
uniform ultimate bound than a controller with the standareldpction for a sufficiently slow-
varying disturbance and a slow-varying delay. The condita D,,,.. is related to the delay
dynamicsi and no simple expression can be computed explicitly.

Remark 4.3.2. The global Lipschitz assumptionofs needed to show the exponential stability
of systemg;,) with the new predictive feedbaakz).

This result can be extended to the partial state knowledge log using the reconstructed
predictionsz,; andz (Definition 4.3.4) to compute design the controllers. Then, Theorefri
can be rewritten as follows with(t) = z(t) — z(t).

Theorem 4.12. Consider system4(279, observer Q) in (3.90 and assume that there
exist a controlleru(x) and a correction terny(e) satisfying Assumptior34.1and 3.4.2
respectively. Suppose that predictor-controllefg) wit z defined by 4.273 and u(z;)
with z; defined by4.274 result in uniform ultimate bounds respectivélyandr,. Then,
there exist*, D* such that provided < ¢* andD,,,, < D*, the uniform ultimate bounds
verify ro < 7.

The proof is divided into two steps as in Theordnil and uses the same argument as in
Theoremst.4and4.10
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Parameter uncertainties

The systems under consideration have the form
(t) = (A+ AA)x(t) + (B + AB)u(t — h(t)) (4.278)
and the constant tracking referenceverifies
0 = Az, + Bu,. (4.279)

In this case, the exact prediction is

t+h(t)
2y (t) = o(t+h) = A (1) 4 / eAFTAAE =) (B L AB)u(s—h(s))ds. (4.280)

t

but cannot be computed without the knowledgé\of andA B. As a consequence, the standard
predictionz; is often used in practice

zp(t) = e (t) + / e Bu(s)ds. (4.281)

t—h

The new prediction computed from.@77) has the following integral expression

) = MO0+ [ A Bus)ds + SO _ Aa(t — h(e)
t t—h(t) (4.282)
[ [eAANE)(B 4 AB) — eAt=%) Blu(s — h(s))ds.

t—h(t)

Itis clear that it includes some information about the utaietiesA A andA B. However, for a
time-varying delay, asymptotic tracking is not possiblgranre even with the new prediction:
Propositiord.3.4is not satisfied anymore. Only the convergence in a ball atdl@ constant
reference is possible in presence of parameter uncedsifgnd a non zero reference). It has
been noted in simulation that the radius of the ball is smédlecontrollers of the formu(z(t))
than foru(z;(t)). Nevertheless, no formal results is available.

4.3.3 lllustrative example

The same system as in Exampl@.1is used to illustrate above results
§(t) = u(t — h(t)) (4.283)
and its state-space representation

i(t) = Az(t) + Bu(t — h(t)) (4.284)

e Jo1 _[o
withz = [y,y|", A = [0 0] andB = L] .

Remark 4.3.3. In this example, the whole statas assumed to be measurable.



130 CHAPTER 4. PREDICTION WITH A KNOWN DELAY

Note that the components of a vector are denoted by the spty§trFor instance, one has
x5 = |zp1, 12]". Two PID controllers have been designed. The first one, baséde standard
predictionz;(t)

t
u(t) = kpxp(t) + kadp () + kl/ zp1(s)ds, (4.285)
0
and the second one based on the new predietion
t
u(t) = kpzi(t) + kaza(t) + k:l-/ z1(s)ds. (4.286)
0
The gains for both controllers and for all the simulationsigr= —8, k; = —4.5, k; = —10.

On Figure4.2Q a piecewise constant disturbance and a constant delayppliedito system
(4.289.

Remark 4.3.4. In this example, the variablg has no particular physical meaning so it will be
displayed without unit.

On both figures, the predictions andz are able to perfectly reject the disturbance. How-
ever, only the state from the system controlled by the newiptige scheme is stabilized to 0
(Figure4.200. This illustrates Propositior4.3.1and4.3.2 Indeed,z; — 0 does not imply
x — 0 for disturbed systems. On the contrary, in the case of a aohsisturbance; — 0
impliesz — 0.

———d®)
—— 151 Standard prediction N T g(t%ew prediction
. O] h

05 - —‘y with standard predictive feedback 05 1= =—=| —— 4 With new predictive feedback

i i T
0.4 | | 1
oaf | 1 |
02 ! ! !

I ! |
01 | : |

0
-0.1 I |
-0.2 : :
-03 : !
-04 ! i
1 |
-05f e e !
0 16 2‘0 .40 5‘0 66 70 0 16 2‘0 . 40 5‘0 66 70
time (s) time (s)

(a) Standard predictive controllet.285 (b) New predictive controller4.289

Figure 4.20 — Comparison of predictive schemes for a piesswonstant disturbance and a
constantdelay = 0.5 s

Figure 4.21 confirms the result of Theore®.9 since it can be observed that the time-
varying perturbation is more attenuated for the systemrotietl by the PID with new pre-
diction (4.286.

The influence of a time-varying delay on the disturbancenatiéon is shown on Figure
4.22for piecewise constant and time-varying disturbances. @h bBigures4.22aand4.22h
it is clear that the new predictive controller achieves adretisturbance attenuation than the
standard predictive controller. In addition, note thatekact rejection is not possible anymore
even for a constant disturbance as on Figu9h Also remark that the delay size influences
the magnitude of the attenuation.
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— With standard predicti{/e feedback
0.4 —— with new predictive feedback
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time (s)
Figure 4.21 — Comparison of predictive schemes for a timgiwg disturbanced(t) =
0.5sin(0.3) and a constant deldy= 0.5 s.
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(a) Piecewise constant perturbatién (b) Time-varying perturbatiod(t) = 0.5sin(0.3)

Figure 4.22 — Comparison of predictive schemes for a tinrgivg delay h(t) = 0.5 +
0.2sin(0.5¢) s

In order to test the robustness of the different methods tdainaccuracy, some parameter
uncertainties\ A and A B have been added to modél284:

0 0.1
AA = [0.15 0 } (4.287)
and
0
AB = [0'2} ) (4.288)

In the sequel, a constant referenge= [3,0]” has to be tracked. On Figurds23aand
4.23h it can be seen that both predictions track perfectly therezice. However, only the use
of the new predictive scheme makes the state of the systewemnto the desired trajectory
(Figure4.23h. When the standard predictive scheme is used, a conséaRtirig error appears
(Figure4.239. This phenomenon is in accordance with Propositb8s3and4.3.4

Figure4.24 shows the tracking performance of the two controllers irspnee of a time-
varying delay and parameter uncertainties. As above msesthle new predictive controller
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3.7
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(a) Standard predictive controllet.89 (b) New predictive controller4.289

Figure 4.23 — Comparison of the predictive schemes fordtafg tracking with a constant and
known delayh = 0.5 s and some parameter uncertaintled and A B defined in ¢.287 and

(4.289

(4.286 achieves better tracking performance than the contrbllesed on the standard pre-
diction (4.289. However, this result has not be demonstrated yet and chnbennoticed

numerically.

- — —tracking reference;,;
—— with standard predictive feedback
—— with new predictive feedback
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== h(0)
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Figure 4.24 — Comparison of the predictive schemes fordtayg tracking with a time-varying
and known delay:» = 0.5 + 0.2sin(0.5¢) s and some parameter uncertaintied and AB

defined in 4.287 and @.289

Finally, Figure4.25displays a comparison of the three predictions for distuckaatten-
uation. The PID controller fed by the dynamic prediction etcfon4.2is called a dynamic
predictive controller. Note that PID gains are the sameHerthree cases. It can be observed
that the dynamic predictive feedback rejects perfectlyctrestant disturbance (Figufe259.

It is the only controller that asymptotically stabilizegtbystem in presence of a constant dis-
turbance, the other only achieves stability in a ball arotinedorigin. However, the attenuation
is strongly worsen when the perturbation becomes timehvgigs shown on Figuré.25h The
new predictive controller performs the best attenuatiotheftime-varying disturbance.
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with dynamic pred feedback=1 with dynamic pred feedback=1
05 ‘ — —— with standard predictive feedback 05 ‘ ——with standard predictive feedbagk
04l —— with new predictive feedback 0.4 —— with new predictive feedback

0 10 20 50 60 70 0 10 20 50 60 70

a0 40
time (s) time (s)

(a) Piecewise constant perturbatién (b) Time-varying perturbatiod(t) = 0.5sin(0.3)

Figure 4.25 — Comparison of predictive schemes for a tingivg delay h(t) = 0.5 +
0.2sin(0.5¢) s

4.3.4 Summary

Contributions

[] Design of a new prediction (for a constant delay) that impsothe robustness of
predictive control to unmodeled dynamics:

* better attenuation of a large class of external disturegnc
* more accurate trajectory tracking in presence of paranuekeertainties.
[1 Extension of the new prediction to a time-varying delay.

The results for a constant delay are gathered in Téldle
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Convergence
Control objective

to a ball

to the origin around the origin

Stabilization or
Trajectory tracking a0
without parameter uncertainties

Trajectory tracking

with parameter uncertainties - =
Disturbance Constant - =
attenuation Time-varying 00

Table 4.5 — Comparison of the best convergence results\adiieefor thestandard predictive
methods [J) and thenew predictivanethod (1) for a known delay, a slow-varying disturbance,
and a constant reference
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In the previous chapter, the delay value was used to comipaidifferent predictions. How-
ever, the exact value d@f is rarely available in real applications. An alternativelicbbe to use
memoryless controllers that do not need the value of theydeMevertheless, these techniques
only achieve fast performances for a small delay. When #ited becomes larger, predictive
control is necessary to achieve fast behaviour. Sometitnesyean value of the delay is known
S0 an approximated prediction can be computed thanks tedhie and then the robustness to
delay variation is studied. In this chapter, it is assumex tihe exact value of the delay is not
known but that an estimation is available. This estimatian be obtained via the estimation
techniques of Paitfor example. The predictive techniques of Chapgtare going to be revis-
ited by considering the delay estimation instead of the ted@kay. The cases of a constant and
a time-varying delay estimation are going to be studied.

In Section5.], the standard prediction is computed from a delay estimatial some new
conditions for the closed-loop stability are establishedSection5.2, the stability of the dy-
namic observation-prediction method, introduced in $ecti2for a known delay, is analyzed
in presence of an estimated delay. The new prediction, ptedén Sectiont.3, is not extended
to the unknown delay case since its design is based on thd&dgevof an accurate delay value.

1. See the beginning of Sectidr?.1for references on memoryless controllers.

135
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5.1 Standard prediction with unknown delay

When the exact delay is not available, the exact predicteamot be computed. However,
an approximated prediction can be designed from an estilvalee of the delay. In this case,
the delay will not be perfectly compensated. The objectivthis section is to find stability
conditions for feedbacks that are based on this approxonatediction. First the reduction
method will be revisited and then a Lyapunov analysis willpeeformed using a Lyapunov-
Krasovskii functional.

Stability conditions are given in Sectidnl.1for an unknown and constant delay and in
Section5.1.2for an unknown and time-varying delay. State and outputliaekls are treated in
both sections.

5.1.1 Constant delay

The class of systems considered is definedédyy i (3.84) and is reminded below
(&n) x(t) = Az(t) + Bu(t — h)

whereh is an unknown and constant delay. Reminding that Assumgidri holds, there
exists a feedback(xr) that exponentially stabilizes systed,J whenh = 0. In addition, it is
supposed that a delay estimatiois available.

Full state knowledge

Since the whole state is known, the following predictionasnputed thanks to the constant

estimation: t

2(t) = eAhx(t) + / A=) Bu(s)ds. (5.1)
t—h

Remark 5.1.1. On top of the initial condition orr, an initial conditionu(s) = ¢,(s) for
s € [—h, 0], with ¢,, a continuous functiori,is needed to computst).

The following theorem describes the condition for the ofbkmp stability of the above
system.

Theorem 5.1. Consider systenty), with an unknown and constant delayand assume
that there exists a controller(z) satisfying Assumptio8.4.1 Suppose that systeid, is
controlled byu(z) with = defined by%.1), whereh is a constant estimation @f and define

(1) =ll=z@I*+ sup [u(s)|*+  sup [la(s)l” (5.2)

sE[t—h,t] se[t—max(h,h),t]

Then, there exist, o, D* > 0 such that, provided) = |ﬁ — h| < D*, for any initial
condition one has

VE>0 Y(t) <cY(0)e 9. (5.3)

2. See Chapterdanda3 for delay estimation techniques.
3. The extra conditior,, (0) = u(z(0)) may be required to guarantee the continuityzcdtt = h (and
consequently of; att = h).
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Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
—+00

Proof. Without loss of generality, the caBe> his considered here. By using Leibniz’s formula
for integral differentiation 8.103, it can be deduced that predictiob.() is solution of the

following equation
t—h

5(t) = A=(t) + Bu(t) + ¢* B / i(s)ds. (5.4)

t—h

Remark that if, = h then the delay is perfectly compensated afid = Az(t) + Bu(t). The
following Lyapunov-Krasovskii functional candidate i®posed

V(t) = Vi) ++Va(t) (5.5)
where
Vi(t) = 27 (t)Pz(t) (5.6)
with P defined in Assumptia®i4.],

/ (h+ s —t)|Ja(s)|[*ds (5.7)
t—h
and~ > 0. Note thatl/ is the standard Lyapunov function used in the delay free aasd/

is a functional that is introduced to deal with the mtegrﬁl u(s)ds that arises from the delay

t—h
mismatch. From equatior8(88 and taking the time derivative &f along the trajectories of

system¥%.4), one gets

Vi(t) < —culzOIP + N[z [w(®)]]

(5.8)
with N = 2||P|| ||B|| ||e**|| and ||w(t)|| = f ||u(s)||ds. In addition, the time derivative of
V5 is given by

t
Va(t) = hlla(t)||* - / [a(s)|*ds. (5.9)
Reminding that
t t—h
= [ atspas <= [ sy pas (5.10)
t—h t—h

and using Jensen’s inequalit$.(01), one has

(1) < Bl — 5l o] - / lis)] s (5.11)
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with D = |h — h|. Furthermore, since is globally Lipschitz and applying Holder’s inequality
(3.109 to (5.4), it can be deduced that

12017 < allz@)IP + callw(®)] (5.12)

with ¢; = 2(||A|| + L||B||)? and ¢ = 2||eA"BJ|2. From ||u(t)|| < 1.]|2(¢)|| wherel, is the
Lipschitz constant associated to the functio(see 8.89), one has

t
: ) . 1 1 [
Va(t) < hlzerl|2(0)]1° + hlzeallw()]]° = 551l @] = 5 / [[(s)][*ds. (5.13)

From (5.8) and 6.13), it follows that
V() < = [e—vhla] I20IF - |55 = vhize] llw@)]?

5.14
FN =) [t ||——fHu (5)]2ds. 514

Maximizing the cross term by (102, above equation becomes
t

V() < -5 —hite] 1201 - (55— £ - yhiZe] |u(t I =3 J Jids)|pds

2¢qy
(5.15)
To prove the exponential stability d.@), it is sufficient to find conditions which guarantee the
following inequality '
V(t)+eV(t) <0 (5.16)

with e > 0. From equation%.15, Assumption8.4.1and3.4.2 one has

V() +ev(t) < =[5 —vhla] I20IP - [55 - 35 = vhiZes| ()|
t

(5.17)
=3 J NI Pds + eell=()I + 7¢ J hllis)|ds.
t—h
It follows that
V() +eV(t) < — |5 —hide — | 01 - |35 — 25 = vhiZes) [lw()]?
(5.18)

-3 —veh]tfh fi(s) .

In order to makeV/ (t) + eV (t) < 0, it is sufficient to choose the coefficients multiplying the

guadratic terms negative so
( C

5” — yhi%e; —ee > 0, (5.19)
2
p<p—__22 (5.20)
N_ + ’}/hlgCg
1
S —ch>0. (5.21)

Choosingy and ¢ sufficiently small guarantees thai.(9 and 6.21) are true. In this case,
taking D < D* ensures that '
V(t) < —eV(t). (5.22)

Finally, inequality 6.3) can be deduced fronb(22 by similar computations as in Theorem
4.1 U
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Qualitative analysis: Condition 6.20 is intuitive because it means that the approximated
delay should be sufficiently close to the real delay. An exattie of D* is available but
because of the conservatism of the Lyapunov approach, #tigewvill be smaller than the
maximum admissible one. However, a qualitative analyste@bound is possible and is given
below.

« For a large value of, 4 then D* becomes smaller which means that the error estimation
has to be smaller for a fast controller.

« For a large estimated deldythen D* becomes smaller which means that the estimation
error is more prejudicial for a large delay.

Partial measurement knowledge

In this part, the state is partially measured so an estinse: is computed from observer
(O) in (3.90 with a correction terny that verifies Assumptio.4.2 Since the delay: is
unknown, the estimated deléyis used in the observef)) in (3.90), then the dynamics of the
estimation error3.93, denoted = = — z, becomes

~

é(t) = Ae(t) + g(Ce(t)) + Blu(t — h) — u(t — h)] (5.23)

and the predictionreads as

z(t) = eAh

=

(t) + /eA(tS)Bu(s)ds. (5.24)
“h

t

The following theorem describes the necessary conditingdsed-loop stability of the above
system. It is reminded thatt) = z(t) — z(t).

Theorem 5.2. Consider system&f) and observer @), with an unknown and constant
delayh, and assume that there exist a controli€r) and a correction terng(e) satisfying
Assumption8.4.1and 3.4.2respectively. Suppose that systefy) (s controlled byu(z)
with = defined by%.24), wherel is a constant estimation éf and define

T(t) = ll=@I” +lle®I*+ sup fuls)|*+  sup |la(s)[]” (5.25)

s€t—h,t] se[t—max(h,h),1]
Then, there exist, o, D* > 0 such that, provided = |fL — h| < D*, one has
VE>0 Y(t) <cY(0)e . (5.26)

Thereforet lir+n ||lz(t)|| =0, tlir+n |le(t)|| = 0 and the convergence is exponential.
—+00 —+00

Proof. Without loss of generality, the cage> h is considered here. The predictioB.24) is
solution of the following equation:

2(t) = Az(t) + Bu(t) + e g(Ce(t)). (5.27)

4. [, is the Lipschitz constant associated to the functiand is defined in3.89.
5. See Remark.1.1for the definition of initial conditions and add the initiadredition z(0).
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System%.27) is coupled with the observation error whose dynamics ismgivy

t—h
é(t) = Ae(t) + g(Ce(t)) + B / u(s)ds. (5.28)
t—h
Let

V(t) = Vi(t) +yVa(t) + 6V3(t) (5.29)

be a Lyapunov-Krasovskii functional candidate with
Vi(t) = 21 (t)Px(t), (5.30)
Vo(t) = /(?z + 5 — t)|]u(s)||*ds, (5.31)

t—h

Va(t) = €' (1)Qe(t), (5.32)

and~,6 > 0. By similar computations to those of Theorém, the asymptotic stability of

system §,) to the origin can be derived provided that = h— his sufficiently small. Note

that V;, and V; are the same as in Theorebl and thatV; is added to deal with the observer
dynamics. O

5.1.2 Time-varying delay

The class of systems considered is definedédyy i (3.84) and is reminded below
(&r) 2(t) = Az(t) + Bu(t — h(t))

whereh(t) is an unknown time-varying delay.

Full state knowledge

Since the whole state is known, the following predictionasputed thanks to the estimated

valueh
t

z(t) = eAB(t)x(t) + / eA=%) Bu(s)ds. (5.33)
t—h(t)

Remark 5.1.2. On top of the initial condition on:, an initial conditionu(s) = ¢,(s) for
s € [~hmaz, 0], with ¢, a continuous functior,is needed to computst).

The following theorem describes the necessary conditionglbsed-loop stability. It is

reminded thab stands for the upper bound of the estimated delay time divah(t)| < &
(Assumptior3.4.6.

Theorem 5.3. Consider system€y,), whereh(t) is unknown and complies with Assump-
tions3.4.3and3.4.4 and assume that there exists a controti¢r) satisfying Assumptio
3.4.1 Suppose that syster§i,] is controlled byu(z) with = defined by %.33), whereh(t)

6. The extra conditiom, (0) = u(z(0)) may be required to guarantee the continuity:adt ¢ = h(t) (and

consequently of; att = h(t)).
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Lr u(t) u(t — h(t))

Figure 5.1 — Closed-loop scheme with standard predictionpztied from an estimated delay
and the full state.

is an estimation of.(¢) that complies with Assumptio8s4.5and3.4.6 and define

() =@l + sup  lu(s)|*+ sup [[a(s)]. (5.34)

$E€[t—hmaz:t] s€[t—hmaa,t]

Then, there exist, 0, 6*, D* > 0 such that, provided < §* and D = max |h(t) — h(t)| <

D*, one has
VE>0 Y(t) <cT(0)e . (5.35)

Thereforet ligl ||z(t)|| = 0 and the convergence is exponential.
—+00

Proof. By using Leibniz’s formula for integral differentiatioB.003, the prediction: defined
by (5.33 is solution of the following equation:
t—h t
5= Az+ Bu(t)+ hAz+ e B / u(s)ds + he™Bu(t —h) — hA / e~ Bu(s)ds. (5.36)
t—h t—h
Note that the argumentt” in h(t), h(t), and ;z(t) may be omitted for clarity. Remark that

if » = h then 6.36) is equal to the ideal caset(34). The following Lyapunov-Krasovskii
functional candidate is proposed

V() = VA(H) +2Valt) + OV(1) (5.37)

with 8, ~ > 0 and where
Va(t) = 27 (1) P (1), (5.38)
Valt) = / (s + 5 — )]Jit(3)] s, (5.39)

t_hmaz
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V() = / (o + o + 5 — B)[Ju(s)]°ds. (5.40)
t—h

The functionV; is the standard Lyapunov function candidate used in theydizée case (As-
sumption3.4.1) and V, and V3 are functionals used to deal with the delay mismatch and the
time-varying delay respectively. From equatidh88 and taking the time derivative df;
along the trajectories of systerf.86), one obtains

Vi(t) < —lew — 28| PILHIAINIZOIP + NI2(@)]] [[w(@)]] + SN |=(0)]] [lu(t = h)]]
HOMI[=(0)]| o)

(5.41)
with M = 2| P|| [|A]] || B||e/Alhme=, N = 2| P]| || B|ellAllmes,
t
le®ll = [ lulids (5.42)
t—h
and
max(t—h,t—h)
o= [ laGs)las (5.43)
min(t—h,t—h)
The time derivative of; is given by
t
Va(t) = P |[(2)|[* = / |li(s)]?ds. (5.44)
t_hmaw
Since
t max(t—h,t—h)
= [ Naipas< - [ fats)pds (5.45)
t—hmaz min(t—h,t—h)
and from Jensen’s inequalit3 (L0
max(t—h,t—h) max(t—h,t—h) 2
. 1 .
S 1O I B TOI17% IR X )
min(t—h,t—h) min(t—h,t—h)
with D = max |h(t) — h(t)|. It follows that
1 1 /
Va(t) < huao [0(8)| > — == [Jw(®)|* = = / ||a(s)|[*ds. (5.47)
2D 2
t—hmaz

Furthermore, from%.36) and Holder’s inequality$3.1049), it can be deduced that

127 < allz@I + el fw(@)][* + e2d[[u(t = )I]? + ead®]Jo(0)] ] (5.48)
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with ¢, = 4(|[A[|(1 + ) + L||BI|)?, ¢ = delAlhmes || B||? ande = e2I4llmes| | A|%[| BI[2. As
a consequence5(47 becomes

Va(t) < hunaslfeal 2O + cal lw ()] + e28[[ult — )| + ead?[[o(0)] ]

— Sl =1 [ [fats)]ds. (5:49)

t_hmaw

The time derivative of; verifies

%(t) < (himaz + hmm)||u(t)||2 — i | [u(t — iL)HQ -

0l =5 [ I, 650
t—h

From the above maximizations, it follows that

V(t) < —[eu—20||PI [|AI[]l[=()]* + N||= ( M w(@)l] + ON|2(0)]] [lu(t - A)]|
+OM{|z@)]] [lv(@)]] +7hmaml201ll WP =7 (35 = hmaslace] |Jw(®)]?
Y hmarlied®||u(t — b)|[* = [ ’thazl%ﬁ llo(@®)1?

t
—3 [ 1al()|Pds + 20hmasl [w()]|* = Bhumin [ult — R)]]” - f||u (s)|[*ds.
t—hmaz

(5.51)
Applying 8.102 and Young'inequality3.100 to get rid of the cross terms leads to

V() < —lew = 20||P|[ [|A]| = DX = 260hmarl? — YhumazlZer — 0(N + M) /2]]|2(1)]?
- [ehmm A hanl2c28? — 5N/2} Ju(t — )2 = [ — hmamz%Q} |w(®)]]?

4D
t

~ [& — Vhmanliead? =M I = F [ is)lPds - zfm (s)][ds.
ti max
(5.52)
To prove the exponential stability &.86), it is sufficient to find conditions which guarantee the
following inequality '
V(t)+eV(t) <0 (5.53)

with e > 0. From equation%.52 and Assumption3.4.1, one has
VeV < —[ew — 20[|P|| [|Al| = D22 = 20hmasl2 — Yhumasl2er — O(N + M) /2][|2(t)]|*
- [Ghmm A maal2 8% — 5N/2] lu(t — B2 = [ — hmmz?cz} lw(t)]]?

~ ~ t
—[%—’thamlic452—5M/2]||v<>||2—1 [ lads)|[*ds — fHu (s)||2ds

t— hmaz

t t
ec||z(t)|1? + ey f Pomaz ||0(8)||?ds + €6 f (hmaz + hmm)Hu(s)szs.
t—hmas t—h

(5.54)
It follows that

VeV < —[ew — 20[| Pl [|Al] = D= = 20hmaal? = VimaslZer — 6(N + M) /2 — ed||(t)]|*
— Ohmin — Yhmawl2c20? — SN/z] u(t — M2 =5 [75 — hmal2ca] |Jw(t)]]?
& = Vmanl2eid® = 3M/2] o))

t
[ = chna] ] i) Pds = 0[5 = 2ehaa] [ u(s)]ds.

t—hmaz t—h

(5.55)
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In order to makeV/ (t) + eV (¢) < 0, it is sufficient to choose the coefficients multiplying the
guadratic terms negative. Thus, the following conditioagénhto be verified

)
N N2 o
cu — 20||P|| ||Al] = D— — 20hpmaal® — Yhmaslics — 0(N + M)/2 —ec >0,  (5.56)
g
ONmin — Yhamaal2c20% — ON/2 > 0, (5.57)
1
E - hmamlch > 0, (558)
0 ~ X
 — Yhmazl2csd® — SM/2 > 0, (5.59)
2h
1
5~ Ehmas > 0, (5.60)
1
~ — 2ehpmae > 0. (5.61)
[ 2

Rearranging the terms of conditioh.66 and (.58 gives

D < D, (5.62)
and
D < D, (5.63)
with
~ . -
Dy = 5 [w = SQ@IPI A+ (N + M)/2) = hnasl2(ver +26) = ec| . (5.64)
Dy = ! (5.65)
27 Ahppaol2e '

Solving the binomial inequations.67) and 6.59 in ¢ leads to

6 <6 (5.66)
and )
with
Hhmin
=N a2’ (5.68)

0
2vhh2,, 12cq

In order to guarantee thab;, is positive has to satisfy the following condition
§ <03 (5.70)

with

Cu = Pmazl?(ycy + 20) — ec
2[[PI[ Al + (N + M)/2
Choosingy, 6 ande sufficiently small guarantees th&.60 and (6.61) are true and thabs is
positive. In this case, taking

03 =

(5.71)

D < D* = min(Dy, D) (5.72)
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and o
d < 6" = min(dy, dg, 03) (5.73)
ensures that ‘
Vt) < —eV(t). (5.74)
Finally, inequality 6.35 can be deduced fronb(74) by similar computations as in Theorem
4.1 O

Qualitative analysis: The conditions obtained are intuitive because it meanghlesdpprox-
imated delay should be sufficiently close to the real delay/thaat it should be slow-varying.
It is interesting to note that this latter conditiai({) < ¢*) is similar to the one in the known
delay casé. Further qualitative comments on the bouti2lsands* are given below.

« For a large value of, 8 then D, and D, become smaller which means that the error
estimation has to be smaller for a fast controller.

 Similarly for a large value of, thend;, 9, andd; decrease which means that the admis-
sible delay variations are slower for a fast controller.

» For a “large” value ot then D, becomes smaller which means that the convergence rate
of the closed-loop system can be larger for a small erromegion.

» For “large” value ofe thend; decrease which means that the convergence rate of the
closed-loop system can be larger for slow delay variations.

» For a large value of,,... then all theD, andé; decrease which means that the estimation
error and the delay variations are more prejudicial for gdatelay.

Partial measurement knowledge

In this part, the state is partially measured so obser®@rirf (3.90) is introduced to esti-
mate the state with a correction tegnthat verifies Assumptio.4.2 Since the delay(t) is
unknown, the estimated delayt) is used in the observer and the observation error, denoted by
e = & — x, has the following dynamics

e(t) = Ae(t) + g(Ce(t)) + Blu(t — h(t)) — u(t — h(t))] (5.75)

and the predictiofis
t
2(t) = eAB(t)f(t) + / A=) Bu(s)ds. (5.76)
t—h(t)
The closed-loop scheme is given on Fig&r2 The following theorem describes the necessary
conditions for closed-loop stability of the above systemis Ireminded that stands for the

upper bound of the delay time derivativié,(t)] < 6 (Assumption3.4.6, and thate(t) =
(1) — a(t).

Theorem 5.4.Consider systenty) and observer@), whereh(t) is unknown and complie
with Assumption8.4.3and 3.4.4 and assume that there exist a controligtr) and a
correction termg(e) satisfying Assumption3.4.1 and 3.4.2 respectively. Suppose that

7. In Sectiord.1.2 the real delay:(¢) had to be slow-varying, here it is the estimated dézlet}).
8. [, is the Lipschitz constant associated to the functiand is defined in3.89).
9. See Remark.1.2for the definition of initial conditions and add the initiadredition z(0).
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— u(t) u(t — h(t))

Figure 5.2 — Closed-loop scheme with the standard predicanmputed from an estimated
delay and the estimated state.

system ;) is controlled byu(z) with = defined by %.76), whereh(t) is an estimation of
h(t) that complies with Assumptio8s4.5and3.4.6 and define

T(t) = [la@I +le@®I*+  sup |lu(s)|[P+  sup [la(s)|” (5.77)
SE[t—hmaw,t SE[t—hmaw,t
Then, there exist, o, 6*, D* > 0 such that, provided < 6* andD = max \h(t) — h(t)| <

D*, one has
VtE>0 YT(t) <cY(0)e . (5.78)

Thereforet ligl [|lz(t)|| = 0, tligl lle(t)|| = 0 and the convergence is exponential.
—+00 —+00

Proof. The predictior: in (5.76) is solution of the following equation
t
%2 = Az + Bu(z) + eABg(C’e) + lAzeABBu(t —h)+hAz —hA / A=) Bu(s)ds. (5.79)

t—h(t)

Let
V(t) = Vi(t) +~Va(t) + 0Vs(t) + CVa(t) (5.80)
be a Lyapunov-Krasovskii functional candidate with
Vi(t) = 2" (t)P=(t), (5.81)
t
Vat) = [ (s 5= D125 P, (5.82)
t—hmaz

Vy(t) = / (o + i + 5 — £)]]2(5)| s, (5.83)
“h

t
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Vi(t) = e’ (H)Qe(t), (5.84)
and~, ¢, ¢ > 0. By similar computations to those of Theoréii3and5.2, the global exponen-
tial stability of system&},) to the origin can be derived. Note thit, V; and V3 are the same
as in Theorenb.3andV} is added to deal with the observer dynamics. O

5.1.3 lllustrative example

Consider the same scalar system as in Seetibr8
x(t) = ax(t) + bu(t — h(t)) (5.85)

with « = 1 andb = 1. The same controllet(t) = kz(t) is going to be tested with the
feedback gairk = —2. Note thatk is chosen to havé(a + bk) = —1. A time-varying delay
h(t) = 1+ 0.3sin(0.3¢) is applied to the system.

Remark 5.1.3. In this example, the variable has no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure5.3, constant estimations have been used in order to study the influence of
the estimation errofh — ﬁ| on the convergence of the system. On Fighrég the delay is
underestimated and it is clear that the system is unstabeFi@Qure5.3h the mean value of
h(t) is used to compute the prediction. In this case, the delagnagon error is small and
the closed-loop is stable. The analysis of Fighrécshows that the system tends to stabilize
when|h — h| is small whereas it diverges when this error increases. e iesulations are in
accordance with the result of Theorén3.

Finally, the delay estimator presented in SecBoh2is used to obtain an estimation of the
delay. On Figuré.4, three phases can be distinguished. Betweand9 seconds the delay
estimation is far from the real value so the prediction isaxturate and the system diverges.
Between9 and20 seconds, the delay estimation is close to the real valueeofi¢hay so the
predictive feedback is able to stabilize the system. F20rseconds to the end, the system does
not move anymore so the input is constant and the delay hadlnence on the system. During
this period, the delay cannot be estimated simeconstant.

5.1.4 Summary

Contributions

[1 Extension of the results of Sectidnl to the unknown delay case.
[l Explicit stability conditions are provided.

Table5.1 sums up the results of this section. Note that the bouwndmd D* may have
different values for each case.

5.2 Dynamic observation-prediction with an unknown delay

The dynamic observation-prediction presented in Seetidis particularly interesting since
itis easy to compute. However, the exact delay knowledgedsssary. In this section, the goal
is to find a condition on the delay accuracy that preservesabdt of the known delay case.
The stability analysis is carried out thanks to an originapunov-Krasovskii functional.

The single observer-predictor with an unknown delay is wdrkut in Sectiorb.2.1and
Section5.2.2extends the result to sequential sub observers-predictors
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Figure 5.3 — Comparison of the closed-loop stability fofefént constant values of the esti-
mated delay: and for an unknown time-varying deléy¢) = 1 + 0.3 sin(0.3¢) s.

5.2.1 Single observer-predictor with an unknown delay

In this section, an extension of the method describetl 2for a known delay is extended
to the case of an unknown delay. Before dealing with the warging delay case, the case of a
constant delay is worked out in order to introduce the basncept of the proof.

Constant delay

The class of systems considered is definedédyy i (3.84) and is reminded below

#(t) = Ax(t) + Bul(t — h)
(&n) { y(t) = Calt).

The prediction: is computed from an estimated delapy the observer-predictor

~

i(t) = Az(t) + Bu(t) + g(Cz(t — h) — y(t)) (5.86)

where the correction termsatisfies AssumptioB.4.2
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—

I 1
0 i i ‘ i i i i i
0 5 10 15 20 25 30 35 40 45 50
time (s)

Figure 5.4 — Closed-loop performance for a predictive feebwith a delay estimation
computed by the delay observer of Secti®2.2 The unknown delay is equal th(t) =
1+ 0.3sin(0.3t) s.

Prediction Delay Convergence Condition Feedback| Thm
state 5.1
h gl. & exp. |h — h| < D*
output 5.2
Standard | Unknown
A A state 5.3
h(t) | gl. &exp. P 0 <Z .
T%X‘ (8) = ht)] < output | 5.4

Table 5.1 — Sum up of the convergence results for standadigtian with an unknown delay

* gl.: global — exp.: exponential
h: constant delay

h: constant delay estimation
h(t) € [Pumin, hmaz] @nd|i(t)| < 0: time-varying delay

J(t) € [Bomins homae] @d|1(1)| < 8: time-varying delay estimation

Remark 5.2.1. Note that to compute(t), the initial conditionz(¢) = ¢.(t) fort € [—h, 0] with
¢. a continuous function is required. The predictiowill be continuous int = h.

Since Assumptior8.4.1 holds, there exists a feedbaekz) that exponentially stabilizes

system £,) whenh = 0. Then a predictive feedback =) is going to be applied to stabilize
(&r)- Denoting

~

ep(t) = z(t — h) — x(t) (5.87)

the prediction error, the following result holds.
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Theorem 5.5. Consider systen€}), with an unknown and constant delayand assume
that there exist a controller(x) and a correction terng(e,,) satisfying Assumptior&4.1
and3.4.2respectively. Suppose that systefy) (s controlled byu(z) with = computed by
observer-predictor§.86), whereh is a constant estimation af and define

() =lz@)I* + sup [[=(s)II*+ sup [ley(s)||*+ sup [[u(s)l]>.  (5.88)

s€[t—h,t] s€lt—h,t] s€[t—h,t]

Then, there exist, o, h*, D* > 0 such that, provided < h* andD = |h — h| < D*, one
has
VE>0 T(t) <cT(0)e . (5.89)

Thereforet lir+n ||z(t)|| = 0 and the convergence is exponential.
—+00

Proof. Without loss of generality the cage> h is considered here. First, combining.86)
with (£,) leads to
Z(t) = Az(t) + Bu(t) + g(Ce,(t)). (5.90)

The dynamics aof,(¢) reads as
é,(t) = Aey(t) + Blu(t — h) — u(t — h)] + g(Cey(t — h)) (5.91)

and can be rewritten as follows

Cep(t)
d
éy(t) = Aey(t) + g(Cey(t)) — B / u(s)ds — / d—g(s)ds. (5.92)
t—h Cep(t—h)

The following Lyapunov-Krasovskii functional candidaig@roposed

V(t) =Va(t) 4+ Va(t) + Vs(t) + Va(t) (5.93)
where
Vi(t) = 27 (t)Pz(t), (5.94)
with P defined in Assumptia®i4.],
Va(t) = e, (£)Qep(1), (5.95)
with ) defined in Assumptiodi4.2
/ h+s—t ey ()] ds, (5.96)
t—h
Valt) = / (h+ 5 — t)lli(s) | Pds (5.97)
t—h
and~ > 0. Remark thal/; andV; are the standard Lyapunov function candidates used in the
Cep(t)

delay free case whereag andV are added to deal with the integralterms [ %(s)ds and

Cep(t—h)
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t—h
[ u(s)ds respectively. Using3.88 and taking the time derivative &f along the trajectories

tc;fh(5.9(), one obtains
Vi(t) < —eullz0 + R [lep(®)]] (5.98)

with R = 2[,|| P|| ||C||. By substitution one gets

Cep(t) d t
g .
[ i) <uliel [ les)las (5.99)
Cep(t—h) t—h

So using 8.99), it follows that

Va(t) < —mylley I + Rllen(]] lIm(®)]| + Nle, 0l w(®)]  (5.100)
with R — (1))l = f 1ey(s)llds and|luw(t)]| = f li(s) 1 ds.
In addition,

Valt) = hlleOIF = [ lles)|ds (5.101)
t—h
so, reminding that
t 1 t 2
- [eeiras< = | [ el | . (5.102)
h t—h
it follows that
t
. - 1 )
Valt) < BlleOIF = = limOIF = 5 [ nIPds (5.103)

From systemH.92) and using the Holder’s inequality3(104, the maximization
lépl* < eallepll® + callml]* + cs|[w]? (5.104)
is obtained withr; = 3(||A] + ,||C|])?, c2 = 3[|B||*, ¢s = 3I2||C||* s0
Va(t) < heallegl|® + heal[ml[* + he||wl[? = Z|lm(t)]|* - f llép(s)|[*ds.  (5.105)
Finally,

Va(t) = hlla(t)||* / [la(s)|[*ds (5.106)

and since

t t—h
- / Ja(s)]2ds < — / i(s)][2ds. (5.107)
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from Jensen’s inequality3(107), the following maximization is deduced

V) < hllato)| - 55 llw@IF - 5 [ lla)|Pds (5.108)

with D = h — h. From systemq.90, the maximization
122 < aallz]]? + csllep|? (5.109)

is obtained withey = 2(||A| +1.||B|])?, ¢s = 2I2||C||* so reminding thalji(z)|| < I,
gets

t
) . . 1 1 .
‘ﬂwSM#MAMF+M&M%@W—55WMMF—§/MM$W®- (5.110)

Maximizing the cross terms thanks 8102 and Young'’s inequality3(100, it can be derived
that

’ cu 7 mg 2 7
V() < =[5 i 101 [ = 3 = hler + Bes)| llep(0)]

2¢q,
12 7 2 /
—ﬁ—%-wQWMWKW%—%rWQWMWZ 5.111)
t
—3 f lep()[[Pds — 5 [ [l(s)|[ds.
t—h

To prove the exponential stability d.00 and (6.91), it is sufficient to find conditions which
guarantee the following inequality

V(t)+eV(t) <0 (5.112)
with e > 0. From equation%.111) and Assumption3.4.1and3.4.2 one has

Vrev < =g =i sOIP — [ = 3 — hler + es)] leg(t)

2¢y
/2 2 ~
i—%—MWWW—%—%—mMWW
t
“fM)W%—éHWIWHWMMPMMMW (5.113)
t—h
t
+e f hl|ép(s)|[2ds +¢ [ hl|u(s)][*ds.
t—h t—h

It follows that

VeV < =[5 - bl = e IO = [~ 55 bl + Bes)e = m] e

2cy
g ex IO = [ = 85 =] o)1
[ =] T lens)liPds = [§ = <h] [ fis)IPs.
t—h t—h

(5.114)
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In order to havel’ — ¢V negative, the following conditions have to be verified

% — hiZey — yee > 0, (5.115)
"o I e+ )~ em >0, (5.116)
213 - ifj; e > 0, (5.117)
. % s > 0, (5.118)
% i >0, (5.119)

Conditions .119, (5.116 and (6.117 can be rewritten as follows

h < h* = min(hy, ha, hs, hy) (5.120)
with v e
h :—(—“— *), 5.121
1 2y \2 ec ( )
1 m vR? _
ho — —9 _ — 5.122
2 1+ B2cs ( 3 2¢, 5m) ’ ( )
1
ha = 5.123
3 \/E7 ( )
1 1 3N?
hy = — | — — ) 5.124
YT <2D 4mg) ( )

In order to haveh, positive,D has to comply with the following condition
D<D"=—. (5.125)

Choosingy ande sufficiently small guarantees that, . are positive. In this case, taking
h < h*and D < D* ensures that

V(t) < —eV(t). (5.126)
So equationg.89 can be deduced frond(126 by similar computations as in Theorehd. [

Qualitative analysis: The conditionk < h* is similar to the condition for the known delay
case (Sectiod.2.2. The conditionD sufficiently small means that the delay estimation has to
be close enough to the real value of the delay. Some remadksg #ie qualitative behavior of
the bounds:* and D* are given below.

« For a large value of, ° thenh;, h, become smaller which means that the admissible
delay is smaller for a fast controller.

« For a large value of, ** thenh,, hy become smaller which means that the admissible
delay is smaller for a fast observer-predictor.

» For a large value of thenh;, hy become smaller which means that, to achieve a fast
convergence rate of the closed-loop system, the delay Hesgmall enough.

10. I, is the Lipschitz constant associated to the functiand is defined in3.89).
11. I, is the Lipschitz constant associated to the functi@md is defined in3.99.
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Time-varying delay
The class of systems considered is defineddyy ih (3.84) and is reminded below

#(t) = Ax(t) + Bult — h(t))
(&) { y(t) = Ca(t)

with A(t) an unknown time-varying input delay. Since the delay is uwkm the prediction is
computed from an estimated delagt) by the observer-predictor

~

2(t) = Az(t) + Bu(t) + g(Cz(t — h(t)) — y(t)) (5.127)
where the correction termsatisfies Assumptio.4.2

Remark 5.2.2. Note that to compute(¢), the initial conditionz(t) = ¢.(t) fort € [Thmm, 0]
with ¢, a continuous function is required. The predictiowill be continuous int = A(t).

Since AssumptiorB.4.1 holds, there exists a feedbaekz) that exponentially stabilizes
system £,) whenh(t) = 0. Then a predictive feedback =) is going to be applied to stabilize
(&r)- Denoting the prediction error

T,

u(t) u(t — h(t))

Figure 5.5 — Closed-loop scheme with observer-predictoufi&nown time-varying delay and
partial state measurement

[
bS]
—~

~
~—

I

I
—~

~

I
>

() — x(t) (5.128)

and reminding that stands for the upper bound of the delay time derivatjigt)| < 6 (As-
sumption3.4.9, it is now possible to introduce the theorem that extendswbrk ofNajafi et al.
[2013 to unknown and time-varying delays, to partial state kremigle and to a larger class of
controllers.

Theorem 5.6. Consider systen¥y), whereh(t) is unknown and complies with Assump-
tions3.4.3and 3.4.4 and assume that there exist a controliér:) and a correction term
g(e,) satisfying Assumptiors4.1and3.4.2respectively. Suppose that syste&fx) s con-
trolled byw(z) with = computed by observer-predictd.(27, whereh(t) is an estimation
of h(t) that complies with Assumptios4.5and3.4.6 and define

() =[lz@)*+ sup [lz(s)[*+ sup  [l(s)][*+ sup [la(s)]]*. (5.129)

s€lt—hmaz,t s€lt—hmaz,t s€[t—hmaz,t

Then, there exist, o, h*,6*, D* > 0 such that, provideth,,.. < h*, & < 0* and D =
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I?;&OXVL( ) — h(t)| < D*, < 6%, one has

VE>0 Y(t) <T(0)e (5.130)

Thereforet li+m ||z(t)|| = 0 and the convergence is exponential.
— 400

Proof. Note that the argumentt" may be omitted to facilitate the reading of the proof. Fjrst
combining 6.127) with (£,,) leads to

Z(t) = Az(t) + Bu(t) + g(Cey(t)). (5.131)

The dynamics of,,(¢) reads as

é,(t) = Ae,(t)+Blu(t—h)—u(t—h)]+g(Ce,(t—h))— h[A=(t—h)+ Bu(t— h)+g(Ce,(t—h))]

(5.132)
and can be rewritten as follows
Cep(t) d
e.(t) = Ae + g(Cey(t)) — B s)ds — 249 (s)ds
p( ) .p( )+ 9( p f Cep({ﬁ) ds( ) (5.133)
—h[Az(t — h) + Bu(t — h) + g(Ce,(t — h))].
The following Lyapunov-Krasovskii functional candidaig@roposed
V(t) = yVa(t) + Va(t) + Va(t) + Va(t) + Vs(t) + Vs(t) (5.134)
where
Vi(t) = 2T () P2(t), (5.135)

with P defined in Assumptia®i4.],

Va(t) = €l (1)Qey (1), (5.136)
with ) defined in Assumptiodi4.2

:/h+s—t €, (3)|*ds, (5.137)
t—h
Vi(t) = (h+s _ 1)[Ja(s)|[2ds, (5.138)
t—h
t
Va(t) = / (B + i + 5 — 1)||2(5)| 2, (5.139)
t—h
t
V00 = [ (s + i+ 5 = D)y s) s, (5.140)
t—h

and~y > 0. Remark that/;, V5, V3 and Vy are the same as in the constant delay case &nd

and V; are added to deal with the termiAz(t — h) + Bu(t — h) + g(Ce,(t — h))]” that
arises because of the time-varying delay. The end of thef gaabtained applying the same
arguments as in Theorerbs3and5.5. O
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5.2.2 Sequential sub observers-predictors with an unknowdelay

As it was shown in Sectiod.2, the sequential sub predictors allows to cope with a large an
known delay. This idea can be extended to an unknown delay.

Constant delay

First, the sequential sub predictors idea is applied to #negh state measurement case with
a constant unknown delay. Each of the sub system estimadgadicts the state fdr seconds
where

, reN (5.141)

with » a constant delay estimation. Sequential sub observedsepres equations are as fol-
lows:

((4(t) = Az(t) + Bu(t — (r — Dh) + 1([Cza(t — h) — y(1)])

zl(t) = Az(t)+ Bu(t — (r —i)h) + g:;(Clzi(t — h) — z;i_1(1)]) (5.142)

L 50 = Az(t) + Bu(t) + g, (Clan(t — B) = 201(8)
wherez; e R",i=1,...,r.

Remark 5.2.3. Note that to compute,(¢), the initial conditionsz;(t) = ¢.,(t) for t € [—h, 0]
with ¢, continuous functions are required for all= 1, ..., r.

Assuming an appropriate choice of the correction tegmst follows that z,(¢) tends to
z(t + h). Thus, a predictive controller(z,) that verifies AssumptioB.4.1can be applied to
stabilize €,). Reminding that is the number of sub observer-predictors and defining the sub
prediction errors

ep, = 2z1(t —h) —x(t) (5.143)

and
ep;(t) = zi(t — h) — 21 (t) (5.144)

foralli = 2, ..., r, the following theorem holds.

Theorem 5.7. Consider systen€}), with an unknown and constant delayand assume
that there exist a controllet(z) and correction termg;(e,,) satisfying Assumptior&4.1
and 3.4.1respectively. Suppose that systefy) (s controlled byu(z,) with z,. computed
by sequential observers-predictols.142 wherel is a constant estimation df. Then,
there exist* € N and D* > 0, such that provided > r* and |h — h| < D*, ||z(t)]]
exponentially converges to zero.

The proof follows the same steps as those of Theagtétand the computations for the first step
of the proof are similar to those of Theorénb.
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Time-varying delay

An example for the case of two cascaded sub observers-pyeglis given on Figur®.6.
The idea is similar to the constant delay case presentedebefo

Each of ther observer-predictor has a time-varying prediction horitwat depends on the
estimated delay

t
The equations of the sequential sub observers-prediatergeen below

((4(t) = Az(t) + Bu(t — (r = 1)A(1) + g1 ([Caa(t = h(t)) — y(1)])

sz(t) = Az(t) + Bu(t — (r —)h(t)) + g:(Clzi(t — h(t)) — zi-1(8)]) (5.146)

[ 5(0) = Az(®) + Bu(t) + g,(Clzn(t — b)) = -1(0)])

wherez; e R",i=1,...,r.

Remark 5.2.4.Note that to compute.(¢), the initial conditions;(t) = ¢.,(t) fort € [—hyas /T, 0]
with ¢, continuous functions are required for all= 1, ..., r.

Assuming an appropriate choice of the correction tegmst follows that 2,.(¢) tends to
x(t + h(t)). Thus, a predictives(z,) that verifies AssumptioB.4.1can be applied to stabilize
(&r). We define the sub prediction errors

ep, = 21(t — h(t)) — x(t) (5.147)

and

ep.(t) = 2i(t = h(t)) — 2i-1(t) (5.148)

foralls = 2, ...,r. The advantage of the sequential structure is to removedheitoon on the
maximum delay value as it is stated in Theorgr@ It is reminded thab stands for the upper

bound of the delay time derivativéi(t)| < 6 (Assumptior3.4.6).

Theorem 5.8. Consider system€f,), whereh(t) is unknown and complies with Assump-
tions3.4.3and 3.4.4 and assume that there exist a controllgtr) and correction terms
gi(e,,) satisfying Assumptiorg&s4.1and3.4.lrespectively. Suppose that systeh) (s con-
trolled by u(z,) with z. computed by sequential observers-predictérd46 whereﬁ(t)
is an estimation oh(¢) that complies with AssumptioBs4.5and 3.4.6 Then, there exist
r* € N, §* > 0andD* > 0, such that provided > 7*,0 < ¢* andmax \h(t)—h(t)| < D,

||x(t)|| exponentially converges to zero.

The proof follows the same steps as those of Theatarand the computations for the first step
of the proof are similar to those of Theorén®.

5.2.3 lllustrative example

The same system as in Examgl.1is used to illustrate above results. This is a double
integrator
§(t) = u(t — h(t)) (5.149)
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Figure 5.6 — Closed-loop scheme with two sequential subrebsepredictors4.213 for an
unknown and time-varying delay and partial state measuneme

with the state-space representation

&(t) = Ax(t) + Bu(t — h(t)) (5.150)
withz = [y, 9|7, A = {8 (1)} andB = m . The Luenberger observer-predictor reads as
Z= A2+ Bu(t) + L(Cz(t — h(t) — y(t)) (5.151)
with
L=[-15,05]". (5.152)
The eigenvalues oft + LC are placed te-0.5 and—1. Then, the static feedback
u(t) = Kz(t) (5.153)
where the gairk’ = [-2, —3]7 is chosen in order to place the eigenvalues of the systeni to

and—2.

Remark 5.2.5. In this example, the variablghas no particular physical meaning so it will be
displayed without unit in the next plots.

On Figure5.7, the dynamic predictive feedback with a single observeditor ¢ = 1) is
compared to the dynamic predictive feedback with sequiesttiservers-predictors = 2. The
delay estimation error is the same for Figusegaand5.7h However, it can be observed that
when the delay:(t¢) is small (Figure5.79 then the results are similar for both controllers. On
the contrary, when the delay is larger (Fig&&b), the controller withr = 1 diverges. This
illustrates that increasing the number of sub observezdigiors allows to deal with a larger
unknown delay.

Figure 5.8 shows a comparison between standard and dynamic predietdbacks. A
Luenberger state observer, with the same daidefined in §.152), is designed to estimate the
state and compute predictioB.{6). The performances of both feedbacks are very similar so it
confirms the interest of using a dynamic predictive contirdes it is much easier to implement.
Indeed, the dynamic prediction is computed thanks to a dymaystem whereas the standard
predictive control requires an integral discretizatiod arstate observer.
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Figure 5.7 — Comparison of dynamic predictive feedbackhk wisingle observer-predictor=
1 (5.127 and with sequential observers-predictors 2 (5.149.

Finally, the influence of the delay estimation accuracylissttated on Figur®.9. On the
one hand, a constant delay estimatigris used to compute the dynamic predictiér@g with
r = 2. On the other hand, a time-varying delay estimaﬁ@(t) computed thanks to the delay
observer 8.15 of Section3.1is used. Note that the initial condition of the delay estionas
equal toh;. It follows that the closed-loop system is unstable for thastant estimation,
whereas the dynamic predictive feedback usingtabilizes the system. It confirms that the
delay estimation has to be sufficiently accurate. As sooheasystem is stabilized, the delay
estimationk, does not move anymore and the estimation error becomes laugét has no
influence anymore because the input is constant.

5.2.4 Summary

Contributions

[1 Extension of the results of Sectidn2to the unknown delay case.
[ Explicit stability conditions are provided.

Table5.2 sums up the results of this section. Note that the bodhds* andr* may have
different values for each case.
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Figure 5.8 — Comparison of the standard predictive feed@adig-(5.157) with the dynamic
predictive feedbacky(149-(5.157) with r = 2.

Prediction Delay Convergence Condition Theorem
h | ol.&exp. |h<h*& |h—hl<D*| 55
Dynamic X A
a gbs/pred) fimaz < h" & 0 < 0"
h(t) | dl. &exp. X 5.6
max |h(t) — h(t)| < D*
Unknown — -
h gl. &exp. | r>r*& |h—h|<D* 5.8
Dynamic A
r>r"& § <6
(r obs/pred) h(t) | dl. &exp. X 5.8
max |h(t) — h(t)| < D*

Table 5.2 — Sum up of the convergence results for dynamidgired with an unknown delay

* gl.: global — exp.: exponential

h: constant delay

h: constant delay estimation
h(t) € [humin, hmas) @and|A(t)| < J: time-varying delay

J(t) € [Bomins homae] @A |1(1)] < 8: time-varying delay estimation
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Figure 5.9 — Influence of the delay estimation accuracy vinéhdynamic prediction computed
by sub observers-predictors= 2.
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Conclusion

Three predictive techniques have been presented in thisTgas standard predictive method
has been extended to an unknown and time-varying delay. éat@sethod based on a dynamic
system to compute a prediction has been revisited to delalpaittial state knowledge and with
an estimated delay. Finally, a new prediction has been gexpto include information about
unmodeled dynamics into the prediction. Explicit closedd stability conditions have been
provided in the case of known and unknown delays thanks tcapuuyov-Krasovskii analysis.
It has been proved that if the delay estimation is sufficieaticurate then the properties of the
known delay case are still true. As a consequence, obsenvichniques developed in Part
| can be coupled to the different predictive techniques sedhis part in order to compute
an approximated prediction. In addition, the technicaliargnt of global Lipschitz continuity
may be relaxed since, in practical applications, systemlvewn bounded domains. As a result,
the locally Lipschitz property is sufficient. In this cadee tresults presented in this part can be
applied to a large class of controllers. All the results hiagen illustrated and compared by
numerous simulations. In the next part, a validation of éhteshniques on an experimental
setup is done in order to evaluate their efficiency in reabdmns.

A comparison of the different strong points of each preditis drawn in Tabl&.3. Some
explanations about the criteria are given here:

« the “Accuracy” criterion refers to the prediction error @rhthe system is perfectly known
(no disturbance, no parameter uncertainty);

* the “Complexity” criterion refers to the implementatioonaplexity to compute the pre-
diction;
* the “Robustness” criterion refers to the performance ofealigtive feedback associated

with the prediction to attenuate an external disturbande guarantee an accurate trajec-
tory tracking in presence of parameter uncertainties.

The classification arguments are detailed below. The stdmptadiction and the new prediction
are exact for a perfectly known system with a constant déyen the delay is time-varying,
the correction term of the new prediction can slightly degréhe accuracy of the prediction.
The dynamic prediction only converges asymptotically eoeRact prediction for both constant
and time-varying delays. As far as the complexity, the im@atation of the dynamic predic-
tionis reduced to the integration of a dynamic system wissteastandard prediction requires a
more complex integral discretization. The new predictoodmputed from the standard predic-
tion and its delayed values so it requires a large computafilort. Finally, it has been proved
that the new prediction better attenuates the effect ofreatalisturbances and guarantees a
more accurate trajectory tracking in presence of paranuetegrtainties than the standard pre-
diction. No theoretical argument has been provided to diyahte robustness of the dynamic
prediction to unmodeled dynamics but the simulations hediat the end of Sectigh3 seem
to exhibit a good robustness property at least for a condiaturbance.

Table5.4 sums up previous results. Note that the lindits D*, 6*, h* and R* do not have
the same value in the different cases.
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Table 5.3 — Comparison of the different predictive methaatsaf known delay. Criterion are

explained above.

CHAPTER 5. PREDICTION WITH AN UNKNOWN DELAY

Prediction | Accuracy | Complexity | Robustness
Standard | kK * *
Dynamic * Yk K * %k

New * % * 1. 8.8 ¢
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Prediction Delay Conv. Condition Feedback| Thm
state 4.1
h | gl. &exp. no condition
output 4.2
Known
state 4.3
h(t) | gl. & exp. 0 <6
output 4.4
Standard
R state 5.1
h | gl. & exp. |h — h| < D*
output 5.2
Unknown
A A state 5.3
h(t) | gl. & exp. P 6 < ‘; .
T%X‘ (8) = ht)] < output | 5.4
h | gl. & exp. h < h* output 4.5
Known
Dynamic h(t) | gl. &exp.| hpee <h*& 6 <6 output 4.6
(1 obs/pred) h |gl.&exp.| h<h*&|h—h|<D* | output | 55
Unknown Ponas < h* & & < &*
h(t) | gl. & exp. . output 5.6
max |h(t) — h(t)| < D*
t>0
h | gl. & exp. r>nrt output 4.7
Known
Dynamic h(t) | gl. & exp. r>r*& <9 output 4.8
(r obs/pred) h |gl.&exp.| r>r*& |fz — h| < D* output 5.7
Unknown P> &0 <6t
h(t) | gl. & exp. . output 5.8
max |h(t) — h(t)| < D*

Table 5.4 — Sum up of the convergence result with a known on&nawn delay

h: constant delay

gl.: global — exp.: exponential

h: constant delay estimation
h(t) € [Pmin, hmaz] @nd|i(t)| < 0: time-varying delay

J(t) € [Bomins homae] @A |1(1)] < 8: time-varying delay estimation
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Experimental Setup: DC motor
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6.1 Introduction

DC motors are commonly used in many areas such as roboticglostry. Furthermore,
the simple modeling facilitates its use as a benchmark sy#te the evaluation of new con-
trol laws. Numerous techniques have been applied to cobttoinotors; for example, sliding
mode control inJtkin [1993, optimal control inPelczewski and Kungl99Q. However, only
few works consider DC motors with a delayed input. One cam fat exampleMatsuo et al.
[2004, which shows the influence of the delay time distributiortloa stability of a DC motor
with a PI controller. InLuck and Ray[1994, an observer-based delay compensator, associated
with buffers, is designed to reduce the unknown delay vianat An adaptive controller is used

169
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in Tipsuwan and Chow2003 to follow the "Quality-of-Service" (QoS) variations ofémet-
work. All these works consider very small and known delays@aperfect model (no parameter
uncertainty, no external perturbation).

Recently, numerous works on the control of DC motor througimmunication networks
have been published. They generally take into account rardkdays as irLiu et al. [2007
and often also both delay and packet dropout a€hai et al.[200], Zhang et al[201]],
Ahmadi et al.[2014, Sun et al[2014, Li et al. [2009. Memoryless controllers are used in
Zhang et al[201]] and Ahmadi et al[2014 because the delays are smatl {00 ms). When
the delay becomes larger, predictive techniques are used @sai et al.[200g, Liu et al.
[2007 and Sun et al[2014. The work byLi et al. [2009 does not use predictive control, that
is why the performances are clearly degraded when the detagases. Among the works that
use predictive techniques, none considers an externarbigtice or parameter uncertainties.

In the sequel, the estimation and control strategies ptedamPartd andll are used to con-
trol the speed of a DC motor in presence of a large delay (we#pect to the motor dynamics)
and unmodeled dynamics (external disturbance and paraoretertainties).

6.2 Experimental setup and model presentation

6.2.1 Experimental setup

The experimental setuips composed by a DC motor, a synchronous motor, a torque isenso
an asynchronous motor and an encoder. They are coupled liyldlgnxints. The platform is
represented on Figu@Ll The plant to control is the DC motor and the synchronous niwie
been used to introduce an external disturbance. The toeps®sand the asynchronous motor
are not used in these experimentations. The control is ctedthanks to a dSPACEboard
(DS1104). The optical encoder gives the angular positi@@@lpulses per revolution) and the
speed is derived from a Kalman filter. The dSPAQ#bard uses the real-time model produced
via Matlal®/Simulink®. The delay is artificially introduced in the loop by addingeday block
in the Simulink® model. The armature voltage of the DC motor is controlled by a PWghal
generated by the dSPACHrom the scaled input voltage(t) = % with v, = 54V,

DC Motor Synchronous Motor ~ Torque Sensor ~ Asynchronous Motor Encoder
(Plant) (Disturbance) (Not used) (Not used) (Measure)

Figure 6.1 — Experimental setup for the control of a DC motor

1. The experiments have been carried out in the FIME laboratithe University of Nuevo Leén (Mexico).
2. This delay can represent, for example, the communicédiency between the motor and the remote con-
troller.
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6.2.2 Modeling

The transfer function of the DC motor is:
Q(S) _ KDC
U(s) 14st
with 2 andU the Laplace transforms of the angular velocitand the input voltage respec-

tively. The steady-state gaili p and the time constant have been identified and are given
in Table6.1 The transfer functior{%ﬁ is a classical simplified model for DC motors where

(6.1)

Kpc (min_l) T (S)

894 1.10

Table 6.1 — DC Motor model parameters

the inductance term is neglected. The model is assumed todas bnd then does not take into
account any nonlinear phenomenon such as dry friction. Mewyéhe identification algorithm
gives a fitting rate of abo5%; so the model precisely describes the motor behavior. Ttyapp
above results, systerf.() has to be turned into its state-space representation

w(t) = aw(t) + bu(t) (6.2)
with « = —1/7 andb = Kpc/7. The reference trajectory is given hy.(¢) so from the

equilibrium equation, (t) = aw,(t)+bu,(t), one has,(t) = E(wT(t) — aw,(t)). Itisassumed
that

Assumption 6.2.1.The expression of the trajectoxy.(¢) is known for allt > 0.

Note that the argument™will be omitted inw, andu, when the reference is constant. In
the next sections, various tests are performed on the DCrnmtshow the efficiency of the
different techniques presented before. Only experimgmtds will be displayed.

6.3 Experimental results without delay

In this first section, some controllers have been tested @dé¢hay free system
w(t) = aw(t) + bu(t) + d(t) (6.3)

to assess the “ideal” response time and to have a comparsonhfpr the next sections when
an input delay will be added. In order to drive the motor spe¢d a desired positiow,., three
controllers have been designed. The objective is not to eoenime controllers themselves but
to illustrate that the predictive schemes can be applietiyaantroller that is able to stabilize
the delay free system. That is why some standard contrdikers been chosen: a static state
feedback, a PI controller and a Super Twisting algorithm.

Memoryless static feedback controller The static feedback controller, called “K” in the se-
quel, reads as
u(t) = —k(w(t) — w, () + u(t). (6.4)

The gaink chosen here is given in Tabte2



172 CHAPTER 6. EXPERIMENTAL SETUP: DC MOTOR

Memoryless PI controller The PI controller, called “PI” in the sequel, reads as

t
u(t) = up(t) — kp(w(t) — we(t)) — k;z/ (w(s) —wy(s))ds. (6.5)
0
The gaing:, andk; chosen here are given in Talfie2

Memoryless Super Twisting algorithmLevant[1993 The Super Twisting algorithm, called
“ST” in the sequel, reads as

ult) = u(0) + 3 [~alw(t) — w(0) — b Vo) — o (DIsig(t) — w.(1)) + (1) (6.6)

with the dynamics ofs governed by the following equation

v(t) = —koSignw(t) — w.(t)). (6.7)

The gains should satisfiy > 0 andk; > +/2k,. Their expressions for the control of the DC
motor are given in Tablé.2 This controller is a second order sliding mode controlteit sloes
not require the acceleration values and has a robust fimiedonvergence.

Controller
K \ Pl \ ST
k kp k; k1 ko
0.002 | 0.001 | 0.002 | 0.25 | 0.025

Table 6.2 — Controller gains for the control of the DC motor

Remark 6.3.1. Controller gains will be the same in all experimental resyltesented there-
after.

A comparison of the performance of these controllers is drawFigure5.2. The notations
wg, wpr andwgr hold for the state of systen®.(3) when the loop is closed respectively by
controllers K 6.4), Pl (6.5 and ST 6.6). It can be observed on Figufe2athat controllers
K and ST have the same response time of alBoggconds whereas controller Pl is slower (6
seconds response time). In the disturbance free case, ttog speeed accurately converges
to the reference (Figured&2aand6.2b). On Figures6.2cand6.2d it can be observed that
the constant disturbance is perfectly rejected by comtr®lPl and ST whereas a small error
remains for controller K. To sum up, Figuée2 validates the tuning of the different controllers
in the delay free case. In presence of a delay in the loop,gHenmances will be necessarily
worsen.
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Figure 6.2 — Comparison of controllers B.4), Pl (6.5 and ST 6.6), with and without distur-
bance and for two different trajectories.

6.4 Experimental results with a known input delay

6.4.1 Memoryless/Memory control

In this section, the input is retarded by a piecewise constigay’ so systemg.2) becomes

w(t) = aw(t) + bu(t — h) (6.8)

The delayh is not internal to the motor model but is supposed to be intced by the control
input, as for example, by the remote control over a network.order to design a memory
controller, the standard prediction is introduced

t
wp(t) = e™Mw(t) + / et bu(s)ds.
t=h

(6.9)

The computation ofu; from (6.9) requires an integration. Usually, the integral has to Ise di
cretized in a finite number of points. However, this method lead to instability for some
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systemsviondié and Michiel§2003. Since the DC motor is open-loop stable, it is possible to
compute the integral term 06 (9) without discretization, by using the structure giveiWatan-
abe and 1td1981. The method is reminded thereafter. The predictig(t) given by 6.9
can be rewritten as follows

wp(t) = ew(t) + &u(t) (6.10)
with
nlt) = &(t) —e™(t = h); (6.11)
£(t) being the solution of the equation
) = al(t)+ bu(?). (6.12)

Remark 6.4.1. Computingu,; from (6.10 gives the exact prediction.

In the rest of the section, the methodWwhtanabe and 1tf19814 will be used to compute
the prediction. From this prediction, the predictive cotiér can be obtained just by “plugging”
w; instead otv in the “delay free” controller as follows

Predictive static feedback controller Controller 6.4) becomes
u(t) = —k(wp(t) = w,) + v, (6.13)
with w,(t) defined by 6.9).

Predictive PI controller Controller 6.5 becomes

w(t) =ty — ey (w5 () — ) — ki /0 (ws(s) — wn)ds (6.14)

with w,(t) defined by 6.9).

Predictive Super Twisting algorithm Controller 6.6) becomes

1 .
ut) = ur + 4 | —alwp(t) — wr) = kiy/|wp(t) — wrlsigniw, () — wr) +v(t) (6.15)
with the dynamics ofs governed by the following equation

#(t) = —kssign(wy (t) — w,) (6.16)

wherew,(t) is defined by §.9).

Figures6.33 6.3cand6.3eshow the results of memoryless controllegsy, (6.5 and 6.6)
applied to delayed syster@.g) for different values of.. It can be seen that the performances are
worsen in comparison with the delay free case and that afiysims have large oscillations. Pl
and ST controllers even lead to closed-loop instability (hear because of input saturation) for
a two seconds delay and their performances drasticallyedserforh = 1 s. Static feedback
(6.4) seems to be less affected by the delay because it does rogelieven forh = 2 s.
Predictive controllersg.13, (6.14) and 6.15 allow to accurately compensate the delay and
guarantee an oscillation free stabilization as shown oaregf.3b 6.3dand6.3f.

On Figure6.4, a large piecewise constant delay has been applied to the @@r.nit can
be seen that some overshoot affects the system during artiergal of the delay size just after
the delay jump. However, in steady state, the tracking esrmot degraded even for a very
large delay. As a conclusion, memory controllers are veligient to control the DC motor in
presence of a large delay.



6.4.

u (normalized)

w (rpm)

u (normalized)

1000

w (rpm)

u (normalized)

0.8
0.6
0.4
0.2

1000

A Pa\
vV, v
h=29
—— h=15
—— h =08

XoaX
Wy
h=2s
——h=1s
‘ ‘ ‘ ‘ ‘ ‘ h=0s

5 10 15 20 35 40 45 50

25
time (s)

(a) Memoryless controller K&(4)

0.8-

©

0.6

o

0.4F

>

0.2
0

VI AT A
VVVVIE

h=2s
—— h=15|
— h=0s

0

5 10 15 20 25 30 35 40 45 50

800
600
400

200

[\/\/\/\/\/\

WY WY M
R O

5 10 15 20 35 40 45 50

25
time (s)

(c) Memoryless controller PB(5)

T

=2s
— h=15
‘ h=0s
30 35 40 45 50
1000
£ soor
2 w0
w
3 T
400 h=2s
200 ——h=1s
0 i i i i i i i i hzos
0 5 10 15 20 25 30 35 40 45 50

time (s)

(e) Memoryless controller ST6(6)

u (normalized)

w (rpm)

u (normalized)

w (rpm)

u (normalized)

w (rpm)

EXPERIMENTAL RESULTS WITH A KNOWN INPUT DELAY

175

0.8
0.6
0.4

0.2

>
[IRIn
O

[7:17:17,1
an

1000

v
=
o
=
w
N
o
N
a
wl
o
w
vl
B
S
S
[
wu
S

800

600
400
200

O
0woun

1|
So€

&
Gz

20 25 30
time (s)

(b) Memory controller K 6.13

0.8
0.6
0.4

0.2

O
m(pm ;

||
IR

1000

gill

SSTE
O
won

-

&
S

ill

5 10 15 20 35 50

25
time (s)

(d) Memory controller P1§.14)

o o o o
N D o ®
T

o

S
1
O
w@nl

aill

o

1000

4

o
v
=}

800
600
400
200

0
0

$
(11l

SSE|
oo
0w

ill

5 10 15 20 25 30 35
time (s)

(f) Memory controller ST §.15

Figure 6.3 — Memoryless and memory controllers K, Pl and $ilieg to delayed systent (8)

for different delaysh = 0s,h = 1 sandh = 2 s.
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6.4.2 Standard prediction with a time-varying delay

In this section, the input delay is time-varying and systérf)(becomes
w(t) = aw(t) + bu(t — h(t)) (6.17)

Thus, standard predictios.Q) becomes
ws(t) = e Ow(t) + / e pu(s)ds (6.18)

and the predictive feedbacks reads as follows.

Predictive static feedback controller Controller 6.13 becomes
u(t) = —k[ws(t) — we(t + h(t))] 4+ u(t + h(t)). (6.19)

with w, () defined by 6.18).
Predictive PI controller Controller 6.14) becomes
u(t) = u.(t + h(t)) — kplws(t) — we(t + h(t))] — ki /t[Wﬁ<S) —wy(s+ h(s))]ds. (6.20)
0

with w,(t) defined by 6.18).

Remark 6.4.2. Note that it is ‘w,.(¢t + k)" and not “w,.(¢)” in (6.19 and 6.20 because the
objective is to have(t) — w,(t). The termw; being theh seconds ahead prediction oft),
w;(t) must tend tov,. (¢ + k). Moreover, the trajectory, (¢) is known for allt > 0 (Assumption
6.2.]) thenw, (¢t + h) andw,.(t + h) can be computed at each instant

Figure 6.5 displays experimental results when controlierl® is applied to systent(17)
for different time-varying delay(¢). It can be observed that the tracking error slightly in-
creases when the delay dynamics is faster. This is consistgmthe theoretical result of Sec-
tion 4.1.2 Indeed, Theorem.3 states that there exists an upper bound on the delay dynamics
that preserves the closed-loop stability; so it is expetitatithe behavior of the system worsens
when the delay dynamics increases. Since the DC motor ikesdald has a relatively “sloW
dynamics, it may not be destabilized with a “snfaliielay even if it is fast-varying. On Figure
6.6, the Pl feedback, which is more sensitive to a large delay tha static state feedback (see
Section6.4.1), is applied to systenB(17) with a large and fast delayg%x |h(t)] > 1). In this

case, one can observe that the prediction and the trajeictmking are not accurate anymore.
However, the system does not diverge. A possible reasoatiitt DC motor is a stable system.

3. It has to be understood as “slow” with respect to the ingleyl
4. It has to be understood as “small” with respect to the mdymamics.



178 CHAPTER 6. EXPERIMENTAL SETUP: DC MOTOR

w
T T T T T T T T 7| — )

sooL “p

—

IS

S 600

g

=
400

(sec)

0 10 20 30 40 70 80 90 100

.50 60
time (s)

(@) h(t) =1+ 0.5sin(0.027t)

Wy
7| — )
__ 800 Wp
~
IS
o 600 g
= =
400 L
0 10 20 30 40 50 60 70 80 90 100
20 T
- -
€ €
o o
S S
S g
2 o
(]
R VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV A 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

time (s) time (s)

() h(t) = 1+ 0.5sin(0.47t) (©) h(t) = 1+ 0.5sin(0.87t)

Figure 6.5 — Static predictive feedbadk 19 with different time-varying delays

(rpm)

0 10 20 30 40 50 60 70 8 90 100
time (s)

Figure 6.6 — PI predictive feedbac&.20 with large and fast time varying delayt) = 5 +
4sin(mt)


./chapter_DC_motor/figures/known_delay/fig_1_mod.eps
./chapter_DC_motor/figures/known_delay/fig_2_mod.eps
./chapter_DC_motor/figures/known_delay/fig_3_mod.eps
./chapter_DC_motor/figures/known_delay/fast.eps

6.4. EXPERIMENTAL RESULTS WITH A KNOWN INPUT DELAY 179

6.4.3 Standard/Dynamic prediction

In this section, the dynamic prediction introduced in Secd.2is tested. A time-varying
delay affects the control input as follows

O(t) = aw(t) + bu(t — h(t))
{ = e e

In the case of the DC motor, all the state variables are medsaC = 1 andy(t) = w(t). As
a result, observer-predictot.(L39 becomes

2(t) = az(t) + bu(t) + L[z(t — h(t)) — w(t)]. (6.22)

Remark that choosing = 0 would lead to a similar method as the oneV@atanabe and Ito
[1981H (see Sectior6.4.1). However, this technique can only be applied to stableesystso
the gainL is intentionally taken different from zero to test the moemgral method proposed
in Section4.2

Predictive PI controller The dynamic predictive Pl controller is

() = up — oy [2(t) — wn] — ki /0 [2(s) — wilds. (6.23)

with z(¢) computed by §.22). Feedback@.23 is going to be compared to the predictive con-
troller computed from the standard prediction for timeyag delays given by

u(t) = up — kplwp(t) — w,] — ki/o [wp(8) — wy]ds. (6.24)

with
t

ws(t) = e Ow(t) + / et bu(s)ds. (6.25)
t—h(t)

The comparison is drawn on Figurés/ and 6.8 for different constant delays and on Figure
6.9 for a time-varying one. On Figuré.7g it is clear that predictive controller$.23 and
(6.24) lead to the same behavior. Wheéns larger, the standard prediction reacts similarly as
whenh = 1 s whereas some oscillations appear for the dynamic predi¢kigure6.7b. It
is mentioned in Sectiod.2.2that there exists an upper bound on the delay value to peeserv
closed loop stability: increasingagain will increase the oscillations magnitude and at tltk en
the system will become unstable flotarger thanl0 s. In order to circumvent this problem, the
sub predictor structure presented in Sectidh3can be used. On Figu8, the performance
of a predictive controller with one, two or four sub predistois displayed. It is clear that the
oscillations are reduced for= 2 andr = 4 with respect to the = 1 case (especially on the
second step). It seems in accordance with the fact that tlkemen delay to preserve stability
will also be larger for multiple sub predictors.

Finally, similar conclusions hold for the time-varying dglcase, provided that the delay is
slow-varying, as it can be observed on Figaré

5. The number of sub predictors is denoted] “
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6.4.4 External disturbance and parameter uncertainties

In this section, the robustness of the new prediction wiipeet to parameter uncertainties
and an external disturbance is studied. The following sysseconsidered

O(t) = (a+ Aa)w(t) + (b+ Abju(t — h) +d (6.26)

with ¢ andb known nominal termsAa and Ab unknown constant modeling errors adda
constant unknown external disturbance.

Remark 6.4.3. Only the constant disturbance case is studied because réatipal reasons,

it is not possible to apply a repeatable time-varying dibamce with the experimental setup
at our disposal. Indeed, the external disturbance was eeély connecting the synchronous
motor of Figure6.1to deliver a current into a resistor. The disturbance is tipeoportional to
the value of the resistor but this latter can not be modified.

The new prediction introduced in SectidrBis defined as follows

2(t) = wp(t) +w(t) — wp(t — h) (6.27)

where t
wp(t) = e™Mw(t) + / e =)pu(s)ds. (6.28)

t“h

Remark 6.4.4. As it has been explained in Rem#& k.3 the external disturbance is generated
by turning on the asynchronous motor. Therefore, the exalaevof perturbationi is not known
but it is the same value for each experiment.

Remark 6.4.5. The model of the motor is very accurate so some additionanaiaties have
been intentionally added to test the new prediction. Howéhe parameters of the DC motor
cannot be modified easily so the uncertainties are addedetadimputation of the prediction

t
wp(t) = eletBdhy (1) + / @A) ()t Ab)u(s)ds. (6.29)

t—h
with Aa = —0.2a and Ab = 0.2b (+£20% error).

The advantage of the predictive schemes is that it is p@ssibuse whatever controllers
available for delay free systems and just "plug" the préuiictu, or = instead of the state.
To test and compare the schemes, a PI controller and a Supstinby(ST) controller will be
designed. It is important to keep in mind that the objects/toicompare both predictions and
to illustrate that they can be used with any kind of contrslleConsequently, no comparison
between the PI controller and the ST will be drawn.

Predictive PI controller The PI controller reads as

ult) = u, — ky(x(t) — ) — &, / (x(s) — w)ds (6.30)

with x = w; or x = 2.
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Predictive Super Twisting algorithm The Super Twisting algorithm (ST) reads as

u(t) = e+ 3 [—al(0) ) — /IO —wnlsign(x(t) ) + 0] (6.30)

with the dynamics of’ governed by the following equation

#(t) = —ksSign(x(t) — w, (1)) (6.32)

andy = w; or x = 2.

Controllers based on the standard predictipns= w;, are called standard predictive con-
trollers whereas controllers that use the new predictios; z, are called new predictive con-
trollers. The comparison between standard predictiverotbets and new predictive controllers
is illustrated on Figur®&.10for a constant delay and on Figusel1for a time-varying one.

On Figure6.1Q it can be seen that both controllers (Pl and ST) achievetarbeacking
accuracy in presence of an external disturbance and of gé¢anmmcertainties by using the new
predictionz(t). Indeed, the constant disturbance between 50 s andt = 80 s is perfectly
rejected as stated in Propositidr.2 In addition, exact trajectory tracking is obtained even in
presence of parameter uncertainties. It is in accordanteRxopositiort.3.4 On the contrary,
there always exist constant tracking errors for the colar®lusing the standard prediction as
stated in Proposition4.3.1and4.3.3 The conclusions are the same for the time-varying case
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(a) Pl controller 6.30 with x = z (Top) andy = w; (b) ST controller 6.31) with x = z (Top) andy =
(Bottom) wp (Bottom)

Figure 6.10 — Comparison of the standayd= w;) and the new predictive controllerg & =)
for a constant and known deldy= 1 s. A constant perturbation is applied betweea 50 s
andt = 80 s parameter uncertainties are given in Rentatk4

presented on Figur@. 11 Both controllers are able to perfectly reject the extepmaturbation
and the parameter uncertainties so the predictions argiztalat the desired value. However,
only the speed controlled by the new predictive controllacks accurately the constant refer-
ence. Moreover, it can be noted that the tracking error forcrd predictive feedbacks depends
on the delay amplitude (middle plot on Figui&4laand6.11h. Note that the transient due to
the external disturbance is very small and almost not \@sabkhat scale.

An important improvement that would be studied in future kgois to compute the new
prediction thanks to the dynamic prediction as follows:

2(t) = 21(t) + w(t) — 21(t — h) (6.33)


./chapter_DC_motor/figures/known_delay/PID_1.eps
./chapter_DC_motor/figures/known_delay/STA_1.eps

6.4. EXPERIMENTAL RESULTS WITH A KNOWN INPUT DELAY 183

(rpm)
?
n
(rpm)
9
[
w g

40 60 80 100
Wy

(rpm)
€
3
(rpm)
/]
(SRS
3

(sec)
(sec)

a0 60
time (s)

(a) Pl controller 6.30 with x = z (Top) andy = w; (b) ST controller 6.31) with x = z (Top) andy =
(Bottom) wp (Bottom)

Figure 6.11 — Comparison of the standayd w;) and the new predictive controllerg & z)
for a time-varying delay: = 1 + 0.5sin(0.087t). A constant perturbation is applied between
t = 50 s andt = 80 s and parameter uncertainties are given in Reriatld

wherez; is computed by

Z(t) = az(t) + bu(t) + L{z1(t — h) — w(t)]. (6.34)

New predictions: in (6.27) andz; in (6.33 are different but the design idea is similar as shown
on Figure6.12 It is expected that the robustness properties of the nedigiren (6.33 are
preserved and in this case no integral discretization isired sincez; is computed byg.34).
Some preliminary tests have been done on the DC motor andshés are displayed on Figure
6.13 In both case the PI controlle8.30 is used but withy = z or y = z,. Figure6.13shows
that the results are similar for both computation methodgskvbonfirms the expectations.

(

u(t
x(t

PN

z5(t) + 2(t)
h >

=P G o
xp(t — h) x(t) z1(t —h) x(t)

(a) New prediction from standard prediction (b) New prediction from dynamic prediction

Figure 6.12 — Two (slightly) different new predictions

These experimental tests are in accordance with the thealregsults of Sectiod.3.1and

thus clearly show the advantage of the new prediction ovestandard prediction in presence
of unmodeled dynamics.
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andz; (6.34) with parameter uncertainties (Rem#&k.4 and an external perturbation between
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6.5 Experimental results with an unknown input delay

As previously mentioned, the exact value of the delay is ivahgs available. In this case,
two solutions are possible. A constant mean value of theyasla be used to compute the pre-
diction or a delay estimat8rcan be designed to get a delay approximation. This two swisti
are compared on Figu®15 Note that no disturbance nor parameter uncertainty affeaet
system. The standard predictive feedback given by

~ ~

u(t) = —kfwp(t) — wr(t + h(t))] + u.(t + h(t)) (6.35)

with
t

wp(t) = e“h(t)w(t) + / e pu(s)ds (6.36)
t—h(t)
is applied to control the DC motor. )
In the next experimentations, the delay estimatioa
» the mean value of the delay on Figuid 53

* the output of the delay estimator presented in Se@iom Figures.15h 6.16aand6.16h

~

h(t) = palu(t = h(1)) — u(t — h(t)]u(0). (6.37)

with x an approximation ofi(t — h) computed by the finite difference meth@i14)

ot —h) —u(t—h—hy)

u(t) = m (6.38)

This estimated value enters into the predictor block to aaephe predictionq.36) as shown
on Figure6.14

6. See Part for examples of delay estimators.
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u(t)

u(t = h(t))

Figure 6.14 — Closed-loop scheme of the predictive contithl wdelay estimator (see Remark
6.5.1for the explanation about the dashed line).

Remark 6.5.1. From an applicative point of view, the retarded inpL{t — /) can be sent by
the system along with the measurements (dashed line onefegLA).

It can be seen on Figu15athat the tracking error is smaller when the delay estimation
exact. On Figuré.15h it is clear that the same level of tracking error can be aguevith a
delay estimator but for a larger range of delay values. Thistrates the advantage of the delay
estimator. When an external disturbance and parametertamtees affect the system, the new
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Figure 6.15 — Influence of the delay estimate on the trackerfppmance

prediction can be constructed based on the estimated defajl@avs
2(t) = wy(t) + w(t) — wy(t — h(t)) (6.39)
wherew; is given by 6.36). The new predictive feedback

~

w(t) = up(t + h(t)) — kylz(t) — we(t + h(t))] — ki/o [2(s) —wr(s+ h(s))]ds  (6.40)

with z given by 6.39 and the standard predictive feedback

~ ~

u(t) = up(t + h(1)) = kylwp(t) —wr(t + ()] — ki /0 [ws(s) —wr(s + h(s))lds  (6.41)
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with w; given by 6.36) are compared on Figu@16

On Figure6.163 one can see that the piecewise constant delay is corresttipaged for
both predictive schemes. It can be noted that the delay astimis not destabilized by the
disturbance: this a very important advantage of this esttmanethod. As in the above section,
only the new predictive controlle6(40 allows an effective tracking of the velocity reference
in spite of the uncertainties and the external disturbangecorrectly tracksv, whereasu,
displays a large tracking error.

Figure 6.16bshows that when the delay is time-varying, exponential eagence of the
delay estimator cannot be achieved anymore. The smalllasmils that can be observed on
the delay estimate come from the periodic cancellation efitiput derivative. Indeed, when
u gets closer to zero, the dynamics of the estimator tendsrto ¢owever, the estimation is
sufficiently accurate to guarantee an efficient trackindpwie new predictive controller. As for
the previous cases, the standard predictive contrdldil) exhibits a large tracking error due
to modeling errorg\a, Ab and external disturbance

These two graphs show that the new predictive scheme conhhiitle the delay estimator
(6.37 provides an efficient trajectory tracking in presence afreetvarying and unknown delay
and in spite of parameter uncertainties and an externairbesbce.
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Figure 6.16 — Comparison of the standard and the new preeliBti controllers for different
unknown delays in presence of parameter uncertainties §Ret4.4 and an external distur-
bance between= 50 s andt = 80 s. The speed; and the delay estimation, are obtained
from thenew predictive schemwhereasv, and EQ are obtained from thetandard predictive
scheme

On Figure6.17, the persistence condition is illustrated. Various phaseslistinguishable.
First, when the input saturates then= 0 and the delay is unobservable. This explains the
two stages betweeh = 0 andt = t¢; and between = t, andt = t5. Remark that the
delay estimator does not diverge reaching this singulattifig is a crucial advantage over the
estimator presented in Chaptr Similarly, whenw has converged ta@,., the input becomes
constant sa. = 0. Consequently, the delay estimation cannot converge tbtiaarexact value:
see for example between= t, andt = t3 and between = ts andt = t4. The delay estimator
can only give a good estimation when the input varies. Thgiroof input variation can be the
change of the reference such as between t; andt = t, and between = ty andt = ¢y
or it can be due to a disturbance such as betweent; andt = ¢3 and between = ¢;; and
t = t1o S. This illustrates that the input should move sufficiemtiprder to estimate accurately
the delay. This constraint is inherent to the input delay tedquality of the estimation will
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always depend on the richness the input signal.
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Figure 6.17 — Experimental results with a Pl controller aret@wise constant and unknown
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scheme— Top: velocity trajectory — Middle: control input — Bottongxact delayh(t) and
estimated delay(¢).

6.6 Experimental results with input and output delays

Some experiments have been carried out to illustrate tleamtithods studied before may
be adapted to the case of an input delay &nd an output delayh(). This scenario is more
realistic than the single input delay case in particularréanote controlled devices. The DC
motor is now modeled as follows

{ O(t) = (a+ Aa)w(t) + (b+ Ab)u(t — hy(t)) +d (6.42)

y(t) = w(t = ho(t)).

6.6.1 External disturbance and parameter uncertainties wh a known de-
lay

Similarly to the input delay case, the new prediction andstiaadard prediction are

2(t) = wp(t) + w(t — ho(t)) — ws(t — h()) (6.43)
with t
wp(t) = e“h(t)w(t — ho(t)) + / e“(t*s)bu(s)ds (6.44)
t—h(t)
where
h(t) = hi(t) + ho(t). (6.45)

Then, standard and new predictive controllers can be degdign
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The PI controller reads as

u(t) = vy — kp(x(t) — wp) — k/o (x(s) — wr)ds (6.46)

with x equal tow; in (6.44) for the standard predictive controller agdequal toz in (6.43) for
the new predictive controller. In the same way, the Supesiiing algorithm (ST) reads as

u(t) = uy + 3 [~alx(t) = ) — b /IO — wrlsign(x(t) ) + ()] (647)

with the dynamics ofs governed by the following equation

p(t) = —kosign(x(t) — w.(t)) (6.48)

andy equal tow; in (6.44) or z in (6.43).

The results are shown on Figusel8 As it was expected, the results are very similar to the
case of a single input delay (FiguéelQ: new predictive controllers lead to a more accurate
trajectory tracking than standard predictive controllers
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(a) Pl controller 6.51) with x = z (Top) andy = w; (b) ST controller 6.47) with x = z (Top) andy =
(Bottom) wp (Bottom)

Figure 6.18 — Comparison of the standard and new predictim&@llers for known input and
output delaysh; = 0.6 s, h, = 0.4 s, with parameter uncertainties and an external distuganc

6.6.2 External disturbance and parameter uncertainties wh an unknown
delay

To compute the prediction$ {44 and ©.43, only the sum of the delays; andh, is re-
quired. Assuming that the retarded inpuit — h; — h,,) is known, a single delay estimatd.87)
can be used (as in the input delay case). In this case, tieatsti delay denotedwill be the
sum of the input and output delays. Note that the assumption—= h; — h,) known” is not
very restrictive in practice since the input value can be atng with the measurements and
then it will undergone the same output delay. The methodustiiated on Figuré.19 As a
result, the new prediction is computed as follows

~

2(t) = wp(t) + w(t — hy) —ws(t — h(t)) (6.49)
—_———

measurement
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Remote controller
5 e L o
: : u(t—hy)
i h(t) 1
l u(t) Cult = h(0) = u(t = ha(t) = ho(1))

Figure 6.19 — Predictor and delay estimator for input anguidelays

with
t

wp(t) = e“i‘(t)w(t — ho) + / e pu(s)ds (6.50)
t—h(t)

wherel is an estimation of,; + h,. Standard and new PI predictive controllers can be computed
from above predictions:

~

u(t) = ur(t + h(t)) = ky[x(t) — w (¢ + A(t)] — k; /0 [X(s) —w, (s +h(s)lds  (6.51)

with x equal tow; in (6.50 for the standard predictive controller agdequal toz in (6.49 for
the new predictive controller.

On Figure6.20 the same conclusion as in the input delay case can be dratw.ofly
difference is that the sum of the delays is estimated insbédlde input delay. Consequently,
the experiment shows that it is possible to achieve an attragectory tracking for unknown
input and output time-varying delays in presence of parametcertainties and an external
disturbance.
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Figure 6.20 — Comparison of the standard and the new preeliBti controllers for unknown
input and output delays in presence of parameter uncadsiand an external disturbance be-
tweent = 50 s andt = 80 s. The speed; and the delay estimatidhl are obtained from the
new predictive schenmwhereasuv, andh, are obtained from thstandard predictive scheme

6.7 Summary

Contributions

] Application of theoretical results on a practical setup.

[1 Experimental results and theoretical ones are very camtisthich shows the po-
tential of the methods presented in Pardsdll to control real devices.

[l The tracking performance of the DC motor with a large, unkmawd time-varying
input delay, is maintained in presence of parameter urioéga and an external
disturbance.
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Concluding Remarks and Future Works

In this thesis, some tools have been developed to contrelrtain systems with an unknown
time-varying delay in the input. This work has been espBcfatused on two main topics:

* the design of estimation techniques to reconstruct the atad the delay,
« the conception of new predictive control laws.

The main contributions of the thesis are recalled belowglsith some future works opportu-
nities.

Part I: In Chapter2, a delay-state observation method based on the constiuaitian ex-
tended system has been presented. This method relies oppghexenation of the delayed
input by its Taylor approximation. As a consequence, thishioe requires the knowledge of
the time derivatives of the inpuflhis is a major limitation of this technique that may be
relaxed by substituting the time derivatives by some approinations. Keeping in mind
that the exact knowledge of the delay is not always necessagome basic finite difference
approximation can be enough to achieve a satisfactory estiation accuracy. In Chapter3,
another technique to estimate both the delay and the statiedem proposed. The main idea is
to connect a standard state observer with a delay estimafeaurticular delay estimator based
on an optimization method and a new Extended State Obsdf&D) has been designed. A
comparison of the new ESO with a standard ESO has been domautason but no formal
comparison has been givelm order to compare formally both ESO, a precise quantifica-
tion of the estimation error has to be done. In addition, for both delay-state observation
techniques, an important direction is to study the influenceof external disturbances and
parameter uncertainties on the estimation accuracy. Furtermore, future developments
will aim at including a controller that will compute a predic tion using delay and state
estimations

Part Il . In Chapter4, some predictive techniques have been analyzed in preséadaown
delay. For each methods, stability conditions have beevwiged thanks to a systematic Lya-
punov analysis.The conclusion of Sectior4.1 has been drawn for LTI systems but sim-
ilar conclusions may probably be derived for nonlinear sysems under some conditions.
Moreover, reminding that the integral discretization is very complex in the case of non-
linear systems, the extension of the dynamic prediction mhbd (Section4.2) to nonlinear
systems is very promising. Furthermore, a possible extension of the dynamic predictie
scheme to input and output delays, as presented on Figure7a is worth considering for
future developments In Section4.3 a new prediction has been designed by comparing the
state and the retarded standard predictiArsimilar prediction can be computed for non-
linear systems because the underlying idea is independenbf the form of the system.
Further analysis is necessary to show that the robustness pperties will be preserved in

7. The main advantage of this method is to avoid the intedsatetization.
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the nonlinear case. It would also be interesting to study theobustness properties of the
dynamic prediction and compare with the new prediction. If the dynamic prediction does
not exhibit good robustness properties then a solution to aabine the attractive features
of both methods (easy implementation and robustness propges) is to compute the new
prediction from the dynamic one (see Figures.12) as tested at the end of Sectiof.4.4

In Chapter5, the techniques developed for a known delay have been eedeiodthe un-
known delay case except the one based on the new predictiba.régson is that from an
intuitive point of view, the delay mismatched could be seerhee effect of an external dis-
turbance: this solution is maybe not well suited for the wwmn delay caseThe size of the
tolerable delay uncertainty has to be precisely quantified ad some other robust methods
have to be thought about. The delay observer of Chaptgias been combined with the pre-
dictive techniques of Chaptdiin simulation and in experimentation; the results are aocivig
but have not been proven yef formal proof of the convergence of the coupled systems
(estimator/predictor) has to be provided®.

In addition, some new analysis tools have to be developed tetgrid of the assump-
tions on the delay rate § < 1) in order to deal with non causal delays Indeed, in NCS,
delays are usually unknown and also non causal which meamngahntrol values are not al-
ways received in chronological orddn future works, it may be more realistic to consider
stochastic delays. Furthermore, the extension of these nieids to input and output delays
has beenillustrated in the experimental section and seems be transposable directly from
the input delay case. Nevertheless, the theory behind thisaumption has to be deeply in-
vestigated. Results about input and output delays are partularly attractive for practical
applications.

Part Il : Finally, previous theoretical developments are testedcandirmed on a DC motor
in Chapter6. DC motor is a benchmark system since it is used in varioudsfidt is also quite
“easy” to control since it is open-loop stable and the atddlanodel is very accurateAs a
result, it will be relevant to test the algorithms on a more conplex system Furthermore,
since the predictions are computed numerically, the ialegrms have to be discretized and
the control laws sampledAs it has been mentioned in Chapterl, the discretization may
cause some instability so it would be interesting to take it account these phenomena
theoretically.

8. A convergence proof is given for each system separately.
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Résumé

Cette thése est dédiée a la commande prédictive
de systemes linéaires incertains en présence de

retards variants et inconnus affectant I'entrée de

commande. Des solutions d’observation sont

proposées pour estimer a la fois I'état et le retard.

De plus, de nouvelles techniques de prédiction
permettant de s’affranchir des contraintes
usuelles liées a la commande prédictive sont
présentées. La validité de ces nouvelles
méthodes est testée expérimentalement sur un
moteur a courant continu.
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Abstract

This thesis deals with the predictive control of
uncertain linear systems in presence of unknown
and time-varying input delays. Some observation
solutions are proposed to estimate the state and
the delay. In addition, new predictive techniques
that allows to overcome usual weak points of
predictive control are presented. The efficiency of
these new methods is tested experimentally on a
DC motor.
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