
HAL Id: tel-01352625
https://hal.science/tel-01352625

Submitted on 8 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential Detection and Isolation of Cyber-physical
Attacks on SCADA Systems

van Long Do

To cite this version:
van Long Do. Sequential Detection and Isolation of Cyber-physical Attacks on SCADA Systems.
Signal and Image Processing. 2015, 2015. English. �NNT : �. �tel-01352625�

https://hal.science/tel-01352625
https://hal.archives-ouvertes.fr


 

Thèse 
de doctorat 

de l’UTT 

Van Long DO 

Sequential Detection and Isolation
of Cyber-physical Attacks 

on SCADA Systems  
 

Spécialité : 
Optimisation et Sûreté des Systèmes 

2015TROY0032 Année 2015 

 



 
 

 
 

THESE 
 

pour l’obtention du grade de 
 

DOCTEUR de l’UNIVERSITE 
DE TECHNOLOGIE DE TROYES 

Spécialité : OPTIMISATION ET SURETE DES SYSTEMES 
 
 

présentée et soutenue par  
 

Van Long DO 
 

le 17 novembre 2015 
 

Sequential Detection and Isolation 
of Cyber-physical Attacks on SCADA Systems 

 
JURY 

 

M. D. BRIE PROFESSEUR DES UNIVERSITES Président  

M. L. FILLATRE PROFESSEUR DES UNIVERSITES Directeur de thèse 

M. M. KINNAERT PROFESSEUR ORDINAIRE Rapporteur  

M. R. LENGELLÉ PROFESSEUR DES UNIVERSITES Examinateur 

M. I. NIKIFOROV PROFESSEUR DES UNIVERSITES Directeur de thèse 

M. P. WILLETT PROFESSOR Rapporteur 

 

 

Personnalités invitées 
 

M. F. CAMPAN CHEF DE PROJET ONDEO Systems 

M. M. VUILLAUME INGENIEUR D'ETUDES ONDEO Systems 

 



Acknowledgments

This PhD thesis has been carried out within the Laboratory of Systems Modeling and Depend-
ability (LM2S) at the University of Technology of Troyes (UTT) under the co-supervision of
Professor Igor NIKIFOROV and Professor Lionel FILLATRE.

First of all, I would like to express my deepest gratitude to my supervisors, Professor Igor
NIKIFOROV and Professor Lionel FILLATRE, for their highly professional guidance, unlimited
support and unceasing encouragement. Their expertise in science and mathematics as well as
their valuable remarks have contributed the most part to the success of my PhD thesis. I am
extremely thankful and indebted to them for that.

I would like to express my sincere thanks to Professor Peter WILLETT and Professor Michel
KINNAERT for accepting to review my PhD thesis. I am also grateful to Professor Régis
LENGELLÉ and Professor David BRIE for agreeing to examine this thesis. I wish also to
thank M. Francis CAMPAN and M. Martin VUILLAUME for their respectful presence in the
committee. The valuable remarks provided by the respectful experts in both academy and
industry have helped in improving the quality of this manuscript.

I gratefully acknowledge the French National Research Agency (ANR), the Suez environment,
the Ondeo Systems, and the University of Technology of Troyes for providing me with financial
and technical support through the project SCALA.

I would like to extend my thanks to secretaries of doctoral school of UTT, Isabelle LECLERCQ,
Thésèse KAZARIAN and Pascale DENIS, for their availability and understanding. I also thank
to secretaries of ROSAS department, Bernadette ANDRÉ and Véronique BANSE, for their
support and availability. I would like to thank all members of LM2S team for a friendly and
adorable environment, as well as for providing me with all necessary facilities for doing research.

A special word of thank should go to M. Phuc DO for offering me an opportunity to study
in France. Also, I would like to express my gratitude to M. Noël PHAM and his wife,
Ms. Huong BUI, for their unlimited support during the last four years in France. I would
like thank all Vietnamese students and friends at Troyes for sharing with me unforgettable
moments.

I would like to take this opportunity to thank my colleague, Patric, and his wife, Sandy, for
sharing with me the moments of fraternal exchanges and friendliness during these three years.

I am very grateful to my mother for her understanding, unlimited support and encouragement,
and to my little brother for taking care of my mother during the last four years.

Finally, I am greatly indebted to my wife, Hong Nhung NGUYEN, for her love, understanding
and encouragement, and to my little daughter to be born in several months. You have made my
life more meaningful. I love you both!

– Van Long DO –

i



ii



To my Mom, my Dad, and my little brother,

To Hong Nhung, my wife,

for their unlimited support, encouragement, and love.

iii



iv



Abstract

This PhD thesis is registered in the framework of the project “SCALA” which received fi-
nancial support through the program ANR-11-SECU-0005. Its ultimate objective involves the
on-line monitoring of Supervisory Control And Data Acquisition (SCADA) systems against
cyber-physical attacks. The problem is formulated as the sequential detection and isolation
of transient signals in stochastic-dynamical systems in the presence of unknown system states
and random noises. It is solved by using the analytical redundancy approach consisting of two
steps: residual generation and residual evaluation. The residuals are firstly generated by both
Kalman filter and parity space approaches. They are then evaluated by using sequential analysis
techniques taking into account certain criteria of optimality. However, these classical criteria
are not adequate for the surveillance of safety-critical infrastructures. For such applications, it
is suggested to minimize the worst-case probability of missed detection subject to acceptable
levels on the worst-case probability of false alarm and false isolation. For the detection task, the
optimization problem is formulated and solved in both scenarios: exactly and partially known
parameters. The sub-optimal tests are obtained and their statistical properties are investigated.
Preliminary results for the isolation task are also obtained. The proposed algorithms are applied
to the detection and isolation of malicious attacks on a simple SCADA water network.

Keywords: Sequential analysis, Signal detection, Change-point problems, Linear models
(Statistics), Computer crimes.

Résumé

Cette thèse s’inscrit dans le cadre du projet “SCALA” financé par l’ANR à travers le programme
ANR-11-SECU-0005. Son objectif consiste à surveiller des systèmes de contrôle et d’acquisition
de données (SCADA) contre des attaques cyber-physiques. Il s’agit de résoudre un problème de
détection-localisation séquentielle de signaux transitoires dans des systèmes stochastiques et dy-
namiques en présence d’états inconnus et de bruits aléatoires. La solution proposée s’appuie sur
une approche par redondance analytique composée de deux étapes : la génération de résidus, puis
leur évaluation. Les résidus sont générés de deux façons distinctes, avec le filtre de Kalman ou
par projection sur l’espace de parité. Ils sont ensuite évalués par des méthodes d’analyse séquen-
tielle de rupture selon de nouveaux critères d’optimalité adaptés à la surveillance des systèmes
à sécurité critique. Il s’agit donc de minimiser la pire probabilité de détection manquée sous la
contrainte de niveaux acceptables pour la pire probabilité de fausse alarme et la pire probabilité
de fausse localisation. Pour la tâche de détection, le problème d’optimisation est résolu dans
deux cas : les paramètres du signal transitoire sont complètement connus ou seulement partiel-
lement connus. Les propriétés statistiques des tests sous-optimaux obtenus sont analysées. Des
résultats préliminaires pour la tâche de localisation sont également proposés. Les algorithmes
développés sont appliqués à la détection et à la localisation d’actes malveillants dans un réseau
d’eau potable.

Mots-clés: Analyse séquentielle, Détection du signal, Rupture (statistique), Modéles linéaires
(statistique), Criminalité informatique.
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ŤWLR Stopping time of the VTWL WLR test
φkk−L+1 (k0) Concatenated vector of transient profiles
ψkk−L+1 (k0) Concatenated vector of transient profiles by Kalman filter approach
ϕkk−L+1 (k0) Concatenated vector of transient profiles by parity space approach
ξkk−L+1 (k0) Concatenated vector of random noises
%kk−L+1 (k0) Concatenated vector of random noises by Kalman filter approach
ςkk−L+1 (k0) Concatenated vector of random noises by parity space approach
ρ01 Kullback-Leibler distance between P0 and P1
ρKF Kullback-Leibler distance of the residuals generated by Kalman filter approach
ρPS Kullback-Leibler distance of the residuals generated by parity space approach
τa Attack period
θ Parameter of a test
θ1, θ2, · · · , θL Vector of transient change profiles (or attack profiles)
θkk−L+1 (k0) Concatenated vector of transient profiles
Λ Likelihood ratio
Φ (·) Standard normal cumulative distribution function
Σ Covariance matrix of the random noise vector ξkk−L+1
E Mathematical expectation
E0, E∞, El∞ Mathematical expectation w.r.t. the pre-change mode
Ek0 , Elk0

Mathematical expectation w.r.t. the change-point k0 and the change-type l
P Probability measure
Pfa Worst-case probability of false alarm
P̃fa Upper bound for the worst-case probability of false alarm
Pfi Worst-case probability of false isolation
P̃fi Upper bound for the worst-case probability of false isolation
Pmd Worst-case probability of false missed detection
P̃md Upper bound for the worst-case probability of false missed detection
N (θ,Σ) Gaussian distribution with mean vector θ and covariance matrix Σ
P0, P∞, P l∞ Joint distribution of random variables w.r.t. the pre-change mode
Pk0 ,P lk0

Joint distribution of random variables w.r.t. the change-point k0 and the
change-type l

xxiv



General Introduction

Context and Motivation

This manuscript addresses the problem of sequential detection and isolation of cyber-physical
attacks on Supervisory Control And Data Acquisition (SCADA) systems. The SCADA systems
are large-scale industrial control systems designed for controlling and monitoring geographically
dispersed assets such as electric power grids, gas pipelines and water distribution networks. The
rapid development in information and communication technology renders modern SCADA sys-
tems more and more susceptible to cyber-physical attacks, not only on physical elements but
also on cyber infrastructures. The security of SCADA systems against malicious attacks has
been receiving a great deal of research attention over the past few years, especially after the
Stuxnet incident in 2010 [47]. Methods proposed for improving the security of safety-critical
infrastructures can be broadly classified into two main categories: protection and surveillance.
The protection of SCADA systems focuses mainly on the confidentiality, the integrity and the
availability of data by information security measures [16]. The surveillance of SCADA sys-
tems, on the other hand, consists in distinguishing their nominal operation from their abnormal
behavior and identifying between different types (or locations, sources) of malicious attacks.
The system surveillance can be globally divided into two smaller classes: parametric approach
and non-parametric approach. The parametric approach consists in determining a set of math-
ematical equations governing the operation of the system under normal operation as well as
under abnormal behavior. The system is said to operate normally if its outputs correspond to
those generated from the parametric model under normal operation. On the other hand, if the
outputs of the system are consistent with one abnormal mode of the parametric model, the sys-
tem is said to be in that abnormal behavior. The parametric model of the system is sometimes
difficult to obtain in many practical situations. Hence, the non-parametric approach is generally
considered as an alternative solution to the parametric approach in such circumstances. The
non-parametric approach, which does not require the parametric model, focuses mainly on an-
alyzing the relationship of observed data (i.e., system outputs). The system is said to be in
abnormal behavior if the observations are sufficiently scattered from those obtained during the
normal operation.
This PhD thesis is registered in the framework of the project “SCALA” (i.e., Surveillance Con-
tinue d’Activité et Localisation d’Agression), received financial support from the “Agence Na-
tionale de la Recherche” through the program “Concepts, Systèmes et Outils pour la Securité
Globale”, i.e., ANR-CSOSG, Project ANR-11-SECU-0005). The ultimate target of this project
is to develop monitoring schemes for detecting and isolating cyber attacks on SCADA systems.
In the project SCALA, there are two PhD theses focusing on two aforementioned methods, i.e.,
parametric approach and non-parametric approach. This PhD thesis follows the parametric
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General Introduction

setting where it is required to develop the models of SCADA systems under normal operation
as well as under different attack scenarios.
The physical layer of most SCADA systems can be described by a set of partial differential
equations (PDEs). Sometimes, it is more convenient to describe the SCADA systems in the
discrete-time state space model by linearizing the PDEs around the operating point. Gener-
ally, the discrete-time state space model is infected by random noises, i.e., process noises and
sensor noises. The process noises are injected into the state evolution equation for reflecting
some non-modeled phenomena or model uncertainties. The sensor noises are added to the sen-
sor measurement equation for describing the inaccuracy of measurement instruments. In this
manuscript, the process noises and the sensor noises are assumed to be independent identically
distributed (i.i.d.) zero-mean multivariate normal random vectors. The cyber-physical attacks,
on both the physical layer and the cyber layer, are modeled as additive signals of short duration
on both system equations. For this reason, the on-line monitoring of SCADA systems against
malicious attacks is transformed into the sequential detection and isolation of transient changes
in stochastic-dynamical systems in the presence of unknown system states (often regarded as
the nuisance parameter) and Gaussian random noises.
The monitoring of safety-critical applications against cyber-physical attacks is closely related to
the fault detection and isolation (FDI) problem in the fault diagnosis community. The ultimate
objective of a statistical FDI problem consists in deciding whether something has gone wrong
or everything is fine and then determining the location as well as nature of the fault [206].
Generally, the fault diagnosis problem is solved by the analytical redundancy approach which
is comprised of two steps: residual generation and residual evaluation. The negative impact
of unknown system states is eliminated by utilizing the residual generation techniques in the
fault diagnosis literature and the negative effect of random noises is reduced by exploiting well-
known methods in statistical decision theory. This manuscript focuses mainly on the sequential
detection and isolation of anomalies in the sequence of residuals.
The sequential change detection and isolation techniques are suitable to the on-line monitoring
of SCADA systems against cyber-physical attacks due to their ability to process observed data
in real time. The operation of a SCADA system is assumed to be initially in normal behavior
and, at an unknown time instant (i.e., the change-point k0), it may unexpectedly undergo an
abrupt (or a gradual, an incipient) change-of-state from normal to abnormal because of the
malicious attacks. The problem of interest is to design detection-isolation algorithms being
capable of detecting the change-point and identifying the change-type subject to certain criteria
of optimality [175].
The criteria of optimality for the classical quickest change detection problem, which deals with
the change of infinitely long duration, should attain a trade-off between the risk associated with
raising the false alarm and the risk related to the detection delay. Globally, the optimality
criteria should be in favor of minimizing the “worst-case” average detection delay subject to an
acceptable value on the false alarm rate. The “worst-case” operation is imposed on all possible
values of the change-point k0 since it is generally unknown. The false alarm rate can be measured
by either the average run length (ARL) to false alarm or the (conditional) probability of false
alarm within any time window of predefined length. Taking into account such criteria, several
optimal or asymptotically optimal detection algorithms have been proposed for both Bayesian
approach (i.e., where the change-point k0 is considered as unknown and random) and non-
Bayesian approach (i.e., where the change-point k0 is considered as unknown but non-random).
The sequential change detection-isolation problem is considered as a generalization of the quick-
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est change detection problem where there are several change types (i.e., multiple hypotheses on
the change types). The criteria of optimality for the joint detection-isolation problem must take
into consideration the risk associated with the false isolation. Classical optimality criteria for the
joint detection-isolation problem aim at minimizing the worst-case average delay for detection-
isolation subject to acceptable levels on the false alarm and false isolation rates. Similar to the
detection problem, the false alarm rate can be measured by either the ARL to false alarm or the
probability of false alarm within any time window of predefined length. The false isolation rate,
on the other hand, can be evaluated by multiple indexes, including the ARL to false isolation,
the (worst-case, conditional) probability of false isolation and the probability of false isolation
within any time window of given length. Asymptotically optimal procedures with respect to
various detection-isolation criteria have been proposed under both Bayesian and non-Bayesian
settings.

The classical quickest change detection-isolation problem posits that the post-change period
is infinitely long. The average delay for detection-isolation is, therefore, the only quantity
of interest for evaluating the risk associated with the detection of abrupt changes. Recently,
special attention has been paid to the problem of detecting transient changes, i.e., the changes
of short period. The traditional quickest change detection criterion minimizing the average
detection delay subject to an acceptable level of false alarms is not adequate for the detection of
short-duration signals. In such circumstances, the criteria of optimality should be favorable of
maximizing the “worst-case” probability of detection (or minimizing the “worst-case” probability
of missed detection) subject to an acceptable level of false alarms.

In addition, for safety-critical infrastructures such as electric power grids, water distribution
networks, or gas pipelines, a hard limit L is generally imposed on the detection delay since
the detection of signals with the delay greater than L may cause catastrophic damage. The
acceptable delay L represents the “point of no return” since it is impossible to bring the system
back to normal operation after being compromised for a period greater than L. This value L
can be calculated a priori from the gravity of the changes (i.e., the magnitude of the changes)
and the permitted consequence of the changes. Any detection of the changes with detection
delay greater than the predefined value L is considered as missed. Hence, the optimality criteria
for safety-critical applications aim also at maximizing the “worst-case” probability of detection
(or minimizing the “worst-case” probability of missed detection) subject to an acceptable level
of false alarms.

The on-line monitoring of SCADA systems against cyber-physical attacks considered in this
manuscript includes both aforementioned types of transient changes. The malicious attacks are
generally performed within a short period due to the resource limits of the attackers. More-
over, it is needless to say that the SCADA systems have been playing an extremely important
role in almost safety-critical infrastructures, including electric power grids, gas pipelines, water
networks or industrial processes. For these reasons, it is extremely suitable to formulate the
attack detection-isolation problem as the problem of detecting and identifying transient signals
in stochastic-dynamical systems. The optimality criteria involves the minimization of the worst-
case probability of missed detection subject to acceptable levels of false alarm and false isolation
rates.
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General Introduction

Structure of the PhD Thesis

This manuscript is organized as follows. The security of SCADA systems against cyber-physical
attacks is introduced in chapter 1. The rest of the manuscript is split into two parts, consisting
of five chapters. The first part, which includes chapter 2, chapter 3 and chapter 4, focus mainly
on the sequential detection and isolation of transient signals on stochastic-dynamical systems. In
chapter 2, we recount recent results on the statistical decision theory, including non-sequential
hypothesis testing, sequential hypothesis testing, sequential change detection and isolation, and
sequential detection of transient signals. Chapter 3 and chapter 4, which are the principal
contribution of this thesis, are reserved for designing suboptimal algorithms for detecting and
isolating additive signals of short duration in the discrete-time state space model driven by
Gaussian noises. The second part of this manuscript, which is comprised of chapter 5 and
chapter 6, is dedicated to applying theoretical results obtained in the first part to the detection
and isolation of cyber-physical attacks on two SCADA systems, including a simple SCADA gas
pipeline and a simple water distribution network. The models of two aforementioned SCADA
systems as well as cyber-physical attacks are developed in chapter 5. In chapter 6, the detection-
isolation schemes designed in chapter 3 and chapter 4 are applied to the detection and isolation
of several attack scenarios. Several concluding remarks are drawn on the basis of the numerical
examples. The details of each chapter are presented in the following.

Chapter 1 is dedicated to studying the security of SCADA systems against cyber-physical at-
tacks. Firstly, we study the architecture of modern SCADA systems and investigate system
vulnerabilities as well as susceptible points which could be exploited by adversaries for per-
forming malicious attacks. Secondly, we resume various approaches for improving the security
of SCADA systems, including the information security approach, the secure control theory ap-
proach and the fault detection and isolation (FDI) approach. Following the FDI approach, the
SCADA systems are described as the discrete-time state space model with Gaussian noises and
the cyber-physical attacks are modeled as additive signals of short duration of both system equa-
tions. The on-line monitoring of safety-critical infrastructures is formulated as the sequential
detection and isolation of transient signals on stochastic-dynamical systems.

The state-of-the-art of statistical decision theory is reviewed in chapter 2. In this chapter, we
present essential methods for dealing with random noises in a stochastic system. The statistical
decision theory considered in this chapter is split into four main sub-classes. The first sub-class
is the non-sequential hypothesis testing which deals with the choice between two or more hy-
potheses on the basis of the fixed number of observations generated from random variables. The
second sub-class is concerned with the sequential hypothesis testing problem where the sample
size is not a priori fixed but depends on the observations themselves. The sequential detection
and isolation of abrupt changes (i.e., changes of infinitely long duration) in a stochastic system
are classified into the third sub-class. Various optimal or asymptotically optimal detection-
isolation algorithms with respect to different criteria of optimality are considered. The results
of the third sub-class is closely related to the final sub-class, i.e., the sequential detection of
transient signals (i.e., changes of short duration) in a stochastic system. Similar to the third
sub-class, several criteria for the transient change detection problem as well as optimal (and sub-
optimal) algorithms are also reviewed. Up to our best knowledge, the joint detection-isolation
of transient signals has not been considered.

Chapter 3 presents the main contribution of this PhD thesis. The on-line monitoring of SCADA
systems against cyber-physical attacks is officially formulated as the detection of additive signals
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of short duration on both equations of the discrete-time state space model in the presence of
unknown system states (i.e., the nuisance parameter) and Gaussian random noises. The criterion
for the transient change detection problem, minimizing the worst-case probability of missed
detection for a given value on the worst-case probability of false alarm within any time window
of predefined length, is utilized through this chapter. The nuisance parameter is eliminated by
exploiting classical techniques in fault diagnosis community, i.e., the steady-state Kalman filter
and the fixed-size parity space approaches. The unified statistical model of residuals generated
by both aforementioned techniques is developed. The Variable Threshold Window Limited
(VTWL) CUSUM algorithm, which was first introduced in [67, 69] for independent Gaussian
observations, is adapted to the unified statistical model. The optimal choice of thresholds with
respect to (w.r.t.) the transient change detection criterion is solved and it is shown that the
optimized VTWL CUSUM test is equivalent to the simple Finite Moving Average (FMA) test.
In addition, a numerical method is introduced for investigating th statistical performance of
these detection rules. Furthermore, the proposed numerical method is exploited for analyzing
the sensibility of the sub-optimal FMA test w.r.t. several operational parameters. Finally,
a more practical scenario where the transient change parameter is partially known (i.e., the
change profiles are assumed to be known but the change magnitude is unknown) is considered.
Sub-optimal detection procedures are also proposed for such circumstances.
Chapter 4 generalizes the results obtained in chapter 3 to the joint detection-isolation of transient
signals on the discrete-time state space model. The unified statistical model is revised so as to
adapt to the detection-isolation problem where there are multiple transient change hypotheses.
A completely novel criterion of optimality for the transient change detection-isolation problem
is introduced. The criterion involves the minimization of the worst-case probability of missed
detection subject to acceptable levels on the worst-case probability of false alarm within any time
window of predefined length and the worst-case probability of false isolation during the transient
change period. Traditional algorithms for the quickest change detection-isolation problem are
adapted to the transient change scenario, including the generalized WL CUSUM test, the matrix
WL CUSUM test and the vector WL CUSUM test. Especially, we propose the FMA version for
the transient change detection-isolation problem. Upper bounds on the error probabilities of the
FMA test are also calculated. Though no optimality result is obtained, the FMA detection rule
is shown to offer better statistical performance than traditional detection rules by simulation
results.
In order to demonstrate theoretical results obtained in chapter 3 and chapter 4, we develop in
chapter 5 the models of two typical SCADA systems, including a simple SCADA gas pipeline
and a simple SCADA water distribution network under normal operation as well as under cyber-
physical attacks. By linearizing a set of PDEs around the operating point, the physical layer of
both systems can be described in the discrete-time state space model driven by Gaussian random
noises. The cyber-physical attacks on both physical layer and cyber layer can be modeled as
additive signals of short duration on both state evolution and sensor measurement equations.
In chapter 6, we apply the theoretical results obtained in chapter 3 and chapter 4 to the detec-
tion and isolation of cyber-physical attacks on the SCADA gas pipeline and the SCADA water
network developed in chapter 5. This chapter is organized as follows. Firstly, the negative
impact of several types of cyber-physical attacks on closed-loop control systems is demonstrated
by performing different attack scenarios on the simple SCADA gas pipeline. Secondly, theoret-
ical findings in chapter 3 are applied to the detection of cyber-physical attacks on the simple
SCADA water network. The statistical performance of several detection procedures is investi-
gated by both Monte Carlo simulation and numerical method. It is shown that the FMA test
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performs better than traditional detection rules, including non-parametric χ2 detector, CUSUM
detector and WL CUSUM detector, for both the steady-state Kalman filter approach and fixed-
size parity space approach. The sensitivity analysis of the FMA test w.r.t. several operational
parameters is carried out by both numerical method and Monte Carlo simulation. The com-
parison between two residual-generation methods, i.e., Kalman filter and parity space, is also
performed. The statistical performance of several detection algorithms under partially known
transient change parameters is also examined by the Monte Carlo simulation. Finally, a more
complex SCADA water network is utilized for investigating the statistical performance of sev-
eral detection-isolation algorithms proposed in chapter 4. The proposed FMA test is compared
with the generalized WL CUSUM, the matrix WL CUSUM and the vector WL CUSUM under
different scenarios. It is shown that the FMA detection-isolation rule offers better statistical
performance than traditional methods.

Contribution of the PhD Thesis

The main results of this PhD thesis have been reported in the following papers.
Citation Publication in referenced international journals

[40]
Van Long Do, Lionel Fillatre, and Igor Nikiforov. “Statistical approaches for
detecting cyber-physical attacks on SCADA systems”. In preparation to submit
to the IEEE Transactions on Control Systems Technology, 2015.

Citation Publication in referenced national journals

[38]
Van Long Do, Lionel Fillatre, and Igor Nikiforov. “Sequential detection of tran-
sient changes in stochastic-dynamical systems”. In Journal de la Société Française
de Statistique (J-SFdS), pages 60–97, Vol. 156, No. 4, 2015.

Citation Publication in international conferences with full papers

[36]
Van Long Do, Lionel Fillatre, and Igor Nikiforov. “A statistical method for de-
tecting cyber/physical attacks on SCADA systems”. In 2014 IEEE Conference on
Control Applications (CCA), pages 364– 369. IEEE, 2014.

[41]

Van Long Do, Lionel Fillatre, and Igor Nikiforov. “Two sub-optimal algorithms
for detecting cyber/physical attacks on SCADA systems”. In Proceedings of
the X International Conference on System Identification and Control Problems
(SICPRO’15), 2015.

[39]

Van Long Do, Lionel Fillatre, and Igor Nikiforov. “Sequential monitoring of
SCADA systems against cyber/physical attacks”. In 9th IFAC Symposium on
Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS
2015), Paris, France, September 2015.

[37]
Van Long Do, Lionel Fillatre, and Igor Nikiforov. “Sensitivity analysis of the
sequential test for detecting cyber-physical attacks”. In 23rd European Signal
Processing Conference (EUSIPCO 2015), September 2015.

Citation Publication in national conferences with full papers

[24]

Francis Campan, Van Long Do, Patric Nader, Paul Honeine, Pierre Beauseroy, Li-
onel Fillatre, Philippe Cornu, Igor Nikiforov, Guillaume Prigent, Jérôme Rouxel.
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Chapter 1

Security of SCADA Systems against
Cyber-physical Attacks
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1.1 Introduction to SCADA Systems

As defined in [172], Supervisory Control And Data Acquisition (SCADA) systems1 are highly
distributed control systems used to control geographically dispersed assets, often scattered over
thousands of square kilometers, where centralized data acquisition and control are critical to
system operation. These large-scale industrial control systems (i.e., SCADA systems) have
been playing an extremely important role in almost safety-critical infrastructures [98] such as
electric power grids, transportation systems, communication networks, oil and gas pipelines,
water distribution and irrigation networks and multiple facilities, including heating, ventilation
and air conditioning (HVAC) systems for buildings, or traffic control systems for airports, etc.
These safety-critical assets, however, are becoming more and more susceptible to cyber-physical

1SCADA systems are closely related to several types of control systems, including Distributed Control Systems
(DCS) [172], Networked Control Systems (NCS) [71,77], Process Control Systems (PCS) [172], Industrial Control
Systems (ICS) [172], and Cyber-Physical Systems (CPS) [108, 140]. In order to avoid confusion, these terms are
utilized interchangeably in this manuscript.
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attacks2, not only on the physical infrastructures but also on the communication network and
the control center.

The typical architecture of a modern SCADA system, as shown in figure 1.1, consists of three
layers: supervisory control layer, automatic control layer and physical layer. The exchange of
data among elements in the system is carried out through the communication network [61].

Figure 1.1 – Typical architecture of a modern SCADA system.

Supervisory control layer

The supervisory control layer (or the control center) is responsible for controlling, monitoring and
supervising the operation of a SCADA system by gathering data from field devices, performing
supervisory tasks, and sending control commands to field controllers through the communication
network. The control center of a typical SCADA system consists of following elements:

• SCADA server : Being considered as the heart of the control center, the SCADA server is
in charge of controlling and supervising the operation of the system.

• Communication server : The communication sever, as its name implies, enables the data
exchange between the control center and lower-level layers. The OLE (Object Linking and
Embedding) for Process Control (or OPC server) is an example of communication server,

2In this manuscript, we use the term “cyber-physical attack(s)” instead of “cyber attack(s)” for describing the
coordination of both cyber and physical activities into the malicious attack(s).

8



1.1. Introduction to SCADA Systems

acting as an interface for different software packages to access data from field devices such
as Master Terminal Units (MTUs), Remote Terminal Units (RTUs) or Programmable
Logic Controllers (PLCs).

• Builder server : The builder server is used to load, unload or re-program field devices such
as PLCs or RTUs through Ethernet and/or serial cables. An example of a builder server
is the software package WinCC/STEP7 of Siemens.

• Diagnostic server : The diagnostic server is equipped with intrusion detection systems
(IDSs) to detect and identify any abnormal situations, including faults and attacks, oc-
curring to the system.

• Application server : The application server is any software framework that helps in devel-
oping and implementing complementary applications to the operation of SCADA systems.
For instance, the optimal power flow or the electric price policy in power grids are generally
located in the application server.

• Human Machine Interface: The Human Machine Interface (HMI) is an application that
allows system operators to graphically interact with SCADA systems, enabling them to
modify control commands and to monitor system variables.

• Database server : The database server (or data historian) is a centralized database for
logging all process information. This information is then used by the diagnostic server for
detecting and identifying any abnormal situations occurring to the system. It can be used
also for data analysis, varying from process control analysis to company’s plan level.

• Operators: The operators working at the control center are in charge of monitoring and
supervising the operation of the system and taking action in case of abnormal situations
such as faults, failures or even cyber-physical attacks.

Automatic control layer

The automatic control layer (or regulatory control layer) is responsible for regulating the oper-
ation of physical processes based on the control commands transmitted from the control center
and the sensor measurements received from field devices. The control signals, which are the
outputs of the controllers, are then sent to the actuators through the communication network.
System variables, including control commands, sensor measurements, and control signals, are
gathered to the control center for supervisory and management purposes. In large-scale SCADA
systems, the automatic control layer is often divided into sub-stations (or sub-systems), whose
center is Master Terminal Units (MTUs), and field devices such as Remote Terminal Units
(RTUs), Programmable Logic Controllers (PLCs) or Intelligent Electronic Devices (IEDs).

• Master Terminal Unit: The MTU, the center of a sub-station, is in charge of exchanging
information between the control center and field devices (i.e., RTUs, PLCs or IEDs). The
MTU can be regarded as the control center of a small part of a large-scale SCADA system.

• Remote Terminal Unit: The RTU is a standalone, special-purpose control and data ac-
quisition unit designed to monitor and control equipments at remote locations from the
central station (MTU). Modern RTUs are often equipped with wireless communication
such as radio or satellite for exchanging information with the MTU.
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• Programmable Logic Controller : The PLC is a small industrial computer originally de-
signed for performing logic functions. Nowadays, modern PLCs are developed with the
capability of controlling complex processes such as Proportional-Integral-Derivative (PID)
control algorithms or file manipulations. In modern SCADA systems, PLCs are used
substantially as field devices because they are more economical, more flexible and more
configurable than special-purpose RTUs.

• Intelligent Electronic Device: The IEDs are smart sensors/actuators which can perform
simple control algorithms and data-processing methods. Modern IEDs are generally
equipped with wireless technology for communicating with other field devices such as
RTUs, PLCs or even MTUs.

Physical layer

The physical processes, including electric power grids, gas pipelines or water networks, are
equipped with actuators (e.g., motors, compressors, pumps, valves), sensors (e.g., temperature
sensors, pressure sensors, flow sensors, level sensors, speed sensors) and other protection devices
(e.g., circuit breakers, protective relays) to realize technological processes. The physical elements
are controlled and monitored by the control center through the automatic control layer and the
communication network.

The physical layer of most SCADA systems can be described by a set of partial differential
equations (PDEs). These PDEs are generally linearized around the operating point for obtaining
the continuous-time state space model. Sometimes, it is preferable to transform the continuous-
time state space model into the discrete-time counterpart for exploiting precious results in the
digital control theory domain. This task can be realized by utilizing either the zero-order hold
method, the first-order hold method, or the Tustin’s approximation method [56] with the sample
time TS . For this reason, we employ throughout this manuscript the following discrete-time state
space model for describing the physical layer of a SCADA system:{

xk+1 = Axk +Buk + Fdk + wk

yk = Cxk +Duk +Gdk + vk
; x0 = x0, (1.1)

where xk ∈ Rn is the vector of system states with unknown initial values x0 ∈ Rn, uk ∈ Rm is
the vector of control signals, dk ∈ Rq is the vector of disturbances, yk ∈ Rp is the vector of sensor
measurements, wk ∈ Rn is the vector of process noises and vk ∈ Rp is the vector of sensor noises;
the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, G ∈ Rp×q are assumed
to be completely known. The components Duk and Gdk stand for the feed-through effect from
the control signals uk and the disturbances dk to the sensor measurements yk, respectively.

Communication network

The communication network plays an extremely important role in the operation of a modern
SCADA system. Hence, a profound understanding about the communication network will help
in analyzing SCADA vulnerabilities. The communication network in a SCADA system can be
classified into the corporate network, the process network, the field network and the vendor
network [172] (see also figure 1.1).

10



1.2. Security of SCADA Systems

• Corporate network: The corporate network is a group of computers linked together in a
particular area, allowing personnel in a company to work collaboratively. Nowadays, the
enterprise network is connected to the process network of a SCADA system, enabling the
management board to access the process information always and everywhere.

• Process network: The process network is a set of servers connected together in the control
center of a SCADA system. The cooperation of the servers via the process network helps in
monitoring and supervising the operation of the system. The process network is connected
to the field network that is responsible for controlling field devices. It is also linked to the
business network for sharing process information with the management board.

• Field network: The field network connects local controllers (MTUs, RTUs, PLCs, or IEDs)
together and links the controllers with actuators/sensors for realizing technological pro-
cesses. For the maintenance purpose, modern SCADA systems allow to access to the field
controllers directly from local access points. This convenience may expose the systems to
cyber-physical attacks.

• Vendor network: The majority of modern SCADA systems are connected to the vendor
network for the purpose of maintenance or technical support. This fact renders modern
SCADA systems susceptible to cyber attacks because malicious agents may get access to
the SCADA network from the vendor network [213].

The evolution of industrial communication networks has undergone three distinct generations
[61,162], from the traditional serial-based fieldbus protocols (e.g., Modbus, Profibus or DNP3) to
the industrial Ethernet-based networks (e.g., Modbus-TCP/IP, Ethernet/IP) and the wireless-
based communication technologies (e.g., WLAN, WiMAX or Blue-tooth). The standardization
of communication protocols renders modern SCADA systems more vulnerable to cyber attacks.
More precisely, powerful attackers can break into the communication channels, enabling them to
modify the command signals, control signals or sensor measurements for disrupting the systems.

1.2 Security of SCADA Systems

The evolution of the SCADA architecture and the communication technology makes modern
SCADA systems more and more susceptible to cyber-physical attacks, not only on the physical
infrastructures but also on the communication network and the control center [53]. In addition,
cyber attacks have become an attractive choice of malicious adversaries to sabotage critical
infrastructures since they are cheaper, less risky and easier to execute in comparison with tra-
ditional physical methods. Sometimes, malicious adversaries integrate both cyber and physical
activities in a coordinated manner for causing more catastrophic damage. A great deal of re-
search effort has been devoted to improve the security of SCADA systems against cyber attacks.
For example, the National Institute of Standards and Technology (NIST) in the U.S. has issued
even a guide to industrial control systems security [172].
In order to improve the security of SCADA systems and protect safety-critical infrastructures,
it is required to investigate system vulnerabilities and to review previous cyber incidents. The
vulnerability analysis helps in understanding the susceptible points of the systems and how they
might be exploited to launch malicious attacks. The survey of cyber incidents, on the other
hand, provides us with a general idea of how the attacks have been carried out in the past so
that protection measures can be implemented for avoiding future attacks [118].
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1.2.1 SCADA cyber incidents

Numerous cyber incidents involving safety-critical infrastructures have been documented over
the last decades. Though the attacks might cause huge damage or not, they have raised a big
concern about the security of SCADA systems, especially after the Stuxnet incident in 2010. In
the following, we present outstanding cyber incidents occurred to ICSs in chronological order.
Siberian pipeline explosion (1982). The first cyber incident involving safety-critical infras-
tructures might be counted as the explosion of the gas pipeline in Siberia in 1982 [156]. It was
believed that a Trojan horse had been planted in the SCADA system that controls the Siberian
gas pipeline. By changing the cooperation of pumps, turbines and valves, the malicious program
caused the pressure in gas pipelines to increase far beyond the acceptable level, leading to an
explosion with the power of three kilotons of TNT [189].
Salt river project hack (1994). Between July 8th and August 31st, 1994, Mr. Lane Jarrett
Davis gained unauthorized access to the computer network of the Salt River Project via a dial-
up modem, enabling him to steal and alter essential information such as the water and power
monitoring and delivery, customer information, or computer system log files [189]. The hacker
installed also a back door to the system so that he could access to the system later.
Russian gas pipelines (1999). In 1999, hackers broke into Gazprom, the Russian biggest
gas company, through the collaboration with a disgruntled employee [118]. It was believed that
the attacker had used Trojan horse to gain control of the central switchboard which controls
gas flow through the pipelines. This incident was reported in 2000 by the Interior Ministry of
Russia [26,152,188].
Maroochy water breach (2000). In 2000, Mr. Boden, a disgruntled ex-employee, used
a laptop computer and a radio transmitter to take control of 150 sewage pumping stations in
Maroochy Shire, Queensland, Australia [168]. Over a three-month period, he released one million
liters of untreated sewage into a storm-water drain from where it flowed to local waterways. The
attack was motivated by his revenge after he failed to obtain a job at the Maroochy Shire Council.
Slammer worm crashed Ohio nuke plant network (2003). In January 2003, a Slammer
worm penetrated into a private computer network at Ohio’s Davis-Besse nuclear power plant
and disabled a safety monitoring system for nearly five hours, despite a belief by plant personnel
that the network was protected by a firewall [84, 149]. The Slammer worm spread from the
enterprise network to the SCADA systems controlling the nuclear power plant by exploiting the
vulnerabilities of the MS-SQL. It was reported that the HMI and the plant process computers
had crashed for hours, causing big trouble to system operators.
Taum Sauk hydroelectric power station failure (2005). The Taum Sauk incident in
December 14, 2005 [159] was not an attack but a failure of a hydroelectric power station.
Various reasons, including design/construction flaws, instrumentation errors, and human errors,
have been attributed to the catastrophic failure of an upper reservoir. It was reported in [159]
that the sensors failed to indicate that the reservoir was full and the pumps were not shut down
until the water overflowed for about 5-6 minutes. This overflow undermined the parapet wall,
resulting in the collapse of the reservoir. Though this incident was not an attack, the idea
behind it can be exploited to perform undetectable attacks in safety-critical infrastructures. For
example, the authors in [7] have designed stealthy attacks on a SCADA water irrigation canal
by sending compromised feedback signals (i.e., false sensor measurements) to the control center.
Cyber incident blamed for nuclear power plant shutdown (2008). In March 2008, a
nuclear power plant in Georgia was forced into an emergency shutdown for 48 hours because a
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computer used to monitor chemical and diagnostic data from the corporate network rebooted
after a software update [97]. For more details, when the updated computer restarted, it reset the
data on the control system. The safety systems interpreted the lack of data as the reduction in
water reservoirs that cool the plant’s radioactive nuclear fuel rods, triggering a system shutdown.
Though this cyber incident was not an attack, it has raised a big concern about the security of
industrial control systems that operate safety-critical infrastructures.
Electricity grid in U.S. penetrated by spies (2009). The World Street Journal reported
on April 8, 2009 [66] that cyber spies had penetrated into the U.S. electric power grid and left
behind a software program that could be used to disrupt the system. Previously, on August
14, 2003 [111], the Northeast and Midwest regions of the United States and some provinces in
Canada suffered from a serious blackout due to a software bug. Though there is no connection
between two incidents, they have raised a big concern about the security of electric power grids
since disrupting power systems might cause catastrophic damage on economic losses and even
human life.
Stuxnet virus (2010). Stuxnet [20, 47, 48] is a computer worm that was primarily written
to target Iranian nuclear centrifuges. Its final goal is to disrupt industrial control systems by
modifying programs implemented on PLCs to make them work in a manner that the attacker
intended and to hide those changes from system operators.
It is believed that Stuxnet is introduced to a computer network through an infected removable
drive. The virus, once penetrated into a Windows computer, installs its own drivers by using
stolen certificates from well-known companies, JMicron and Realtek. In order to hide itself while
spreading across the network and realizing the final target, the virus installs a Window rootkit by
exploiting four zero-day vulnerabilities. The goal of the virus is to search for the WinCC/Step7
software, a typical software of Siemens for programming and monitoring the PLCs. If Stuxnet
does not find the software, it does nothing; otherwise, it replaces some *.dll files in WinCC/Step7
folders by infected *.dll files. According to [47], these *.dll files are responsible for loading and
unloading PLC programs from Windows computers and the connected PLCs. By this way,
the virus is able to infect the PLCs and modify their programs. For hiding itself in the PLC
environment, Stuxnet uses the first known PLC rootkit. Interested readers are referred to [48]
for more information about how the virus propagates from a Windows computer to the PLC
environment.
It has been announced by well-known security companies, including Symantec and Kaspersky,
that Stuxnet was the most sophisticated attack at that time [27]. Its sophistication leads to
some speculation that Stuxnet was written with state-level financial support. The success of
the virus to penetrate into the PLC environment clearly shows that information security-based
techniques are not sufficient for the security of safety-critical infrastructures. Therefore, it is
required to implement the defense-in-depth strategy [22, 25, 26] for the complete protection of
these critical assets.
Duqu (2011) and Flame (2012). Duqu and Flame [14] are computer malwares that were
discovered in 2011 and 2012, respectively. It has been reported that Duqu is nearly identical to
Stuxnet but with completely different purpose. The goal of Duqu is to collect information that
could be useful in attacking ICSs later. Similar to Stuxnet and Duqu, Flame uses the rootkit
functionality to evade information security methods. Flame is said to be the most sophisticated
virus ever found [14]. The virus contains up to 20 megabytes, which is 20 times more powerful
than existing computer malwares, including Stuxnet. Unlike Stuxnet, which was designed to
sabotage ICSs, the target of Flame is to gather technical diagrams such as AutoCAD drawings,
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PDFs and text files. Though Duqu and Flame were not designed to target ICSs directly, the
computer worms have raised a big concern about the security of safety-critical infrastructures.
Their recent activities, acquiring information about the systems, may be exploited for completely
stealthy attacks in the future.

Pumping station in U.S. (2011). On November 8, 2011, the SCADA system of the city
water utility in Springfield, Illinois, U.S. was hacked [213]. The system kept turning on and off,
leading to the burnout of a water pump. The investigation showed that the attackers penetrated
into the control system by exploiting the backdoor left by a control system software vendor. In
order to provide maintenance and update services, the software vendor used remote access to
the SCADA system of its customers. By some methods, the intruders obtained usernames and
passwords and gained unauthorized access to the vendor network, providing them with a path
to hack into the control system, causing real physical damage.

Telvent in Canada (2012). A breach on the internal firewall and security systems of Telvent
Canada [154], a company that supplies remote administration and monitoring tools to the energy
sector, was discovered on September 10, 2012. After penetrating into the network, the intruders
stole project files related to the OASyS SCADA product, a remote administration tool allowing
companies to combine older IT equipments with modern “smart grid” technologies. It is very
likely that the adversaries gathered information about the novel product in order to find the
vulnerabilities of the software and to prepare for future attacks against SCADA systems in
energy sector.

Georgia Water treatment plant (2013). The incident [33] occurred at the Carters Lake
Water Treatment Plant in Murray County, Northwest of Atlanta, U.S. on April 26, 2013. It
is believed that someone entered the water treatment plant and tampered with the equipment
controlling how much chlorine and fluoride should be added to the water. Though this incident
was not a cyber attack, similar attack scenarios may be performed if the water network is
connected to the Internet. For example, in stead of entering the plant directly, the intruders can
break into the SCADA network and modify the set points of chlorine and fluoride levels.

1.2.2 SCADA vulnerabilities

Recent cyber incidents clearly show that the vulnerabilities of modern SCADA systems have
been well exploited for performing malicious attacks on safety-critical infrastructures. In order
to improve the security of these important assets, it is required to investigate the vulnerabili-
ties of modern SCADA systems so that appropriate protection measures could be taken. The
vulnerabilities of modern ICSs can be broadly classified into five categories [53]: architectural
vulnerabilities, security policy vulnerabilities, software and hardware vulnerabilities, communi-
cation network vulnerabilities and other vulnerabilities.

Architectural vulnerabilities. In general, modern SCADA architectures are not so different
in principle from the architectures used in the ’80s and ’90s except the move from an “isolated
environment” to an “open environment”. This advanced feature renders modern SCADA systems
more and more vulnerable to cyber attacks. Firstly, the majority of SCADA networks are
connected to the corporate network for being more flexible in management process. For example,
many SCADA systems store process data and process logs in data historian units, enabling
the management board to gain access to the information from the business network. This
flexibility leaves a backdoor for computer malwares to enter the process network through the
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enterprise network [149]. Secondly, a large number of SCADA systems have been using web-
based applications for monitoring physical processes and this direct connection to the Internet
could be one possible path for hackers to penetrate into the SCADA network. Moreover, local
access points to field devices could be another backdoor for malicious agents to get into the field
network of the system. Finally, adversaries can break into the SCADA network through their
connection with the vendor network which is available in modern SCADA systems [213].
Security policy vulnerabilities. Several security policies, such as patching or anti-virus up-
date, might cause negative impact to SCADA systems. The utilization of several patches and
anti-virus software often (1) grants the process network access to the Internet, which may addict
the systems with malicious agents and (2) requires system reboot, which may lead to the dis-
ruption of the systems. An excellent demonstration for this vulnerability is the cyber incident
blamed for the shutdown of a nuclear power plant [97] after a software update. Therefore, it is
preferable to use software patches and update the anti-virus software rarely so as to keep the
process network as isolated as possible.
Software and hardware vulnerabilities. In order to respond to industrial requirements,
SCADA systems have become more and more complex in both their software and hardware.
It is inevitable for modern SCADA systems to contain software bugs and hardware failures
[111]. Typical software bugs can be listed as [214]: buffer overflow, SQL-injection, and format
string, etc. In fact, the cyber incident [84, 149] was due to the vulnerabilities of the MS-SQL
software. Moreover, SCADA systems are real-time operating systems, preventing the systems
from implementing traditional encryption algorithms due to the requirement for the availability
of data. This real-time demand makes it difficult to implement data encryption algorithms,
exposing SCADA systems to integrity attacks.
Communication protocol vulnerabilities. Historically, with the idea in mind that SCADA
systems would be isolated from other networks, SCADA designers paid little attention to
the security problems such as integrity checking mechanism, authentication mechanism, anti-
repudiation and anti-replay mechanism. Many SCADA communication protocols, including
Modbus, DNP3 and Allen-Bradley Ethernet/IP, lack authentication features to prove the origin
or the freshness of network traffic [62]. Hence, these systems are susceptible to Denial-of-Service
(DoS) attacks, man-in-the-middle attacks and replay attacks.
Being implemented with proprietary communication protocols, traditional SCADA systems were
thought to be secure. However, the “security through obscurity” is not obvious in modern
world. The information technology has been evolving rapidly, leading to the adoption of common
communication protocols such as Ethernet, TCP/IP or wireless networks [155] such as radio
frequencies, satellite communication, IEEE 802.x and Bluetooth in the majority of modern
SCADA systems. This evolution has reduced the isolation of SCADA systems from outside
environment.
Other vulnerabilities. The existence of organized cyber-crime groups (terrorists or state-
funded groups) enhances the attacker’s capabilities to perform powerful attacks on safety-critical
infrastructures. There has been speculation that such complex computer worms as Stuxnet,
Duqu or Flame received financial support from state-sponsored groups.

1.2.3 Possible attack points

The review of cyber incidents and the analysis of system vulnerabilities allow us to figure out the
vulnerable points which might be exploited begin malicious attacks. As shown in figure 1.2, the
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back-doors to modern SCADA systems can be broadly classified into three categories [7]: cyber
attacks on supervisory control layer, cyber attacks on automatic control and communication
layer and physical attacks on technical processes.

Figure 1.2 – Possible attack points to modern SCADA systems.

Cyber attacks on supervisory control layer

It is required to discover how an adversary can penetrate into the control center of a SCADA
system so that appropriate measures could be taken. According to previous analysis, there are
three main back-doors for the attacker to enter the control center:

• Attack point A1 : Modern SCADA systems use web-based applications for being flexible
to management process. In accordance with those advantages, web-based applications
also exhibit some inconvenience, especially as regards cybersecurity. An attacker can gain
unauthorized access to the control center through those applications.

• Attack point A2 : A disgruntled employee of a company plugs a USB key containing a
virus into a computer in the corporate network. The virus can break through misconfigured
firewalls between the business network and the SCADA network and take control of system
operation. For example, powerful computer worms such as Stuxnet or Flame are able to
bypass traditional IDSs designed by information technology methods.
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• Attack point A3 : In some scenarios, a USB key containing malicious software can be
plugged directly into a computer of the control center. Once it enters the process network,
the malware can propagate across the network and perform its malicious target.

The control center hosts the SCADA server, the communication server, the builder server, the
diagnostic server, the database server, the HMI, and the application server. Since these servers
are critical to system operation, an attack on a single element could cause severe consequences.

• Attack on SCADA server : Since the SCADA server is responsible for controlling and
monitoring the operation of the system, the penetration into the SCADA server may lead
to catastrophic damage. For example, the attacker may force the system to stop operating
or he may send wrong commands to lower-level stations for disrupting the system.

• Attack on communication server : The communication server acts as a bridge to exchange
data between the control center and sub-stations. Therefore, the attacker can prevent the
data flow between the control center and lower-level devices (DoS attack) or modify the
data (integrity attack) when gaining access to the server.

• Attack on builder server : The builder server is in charge of loading, unloading or modifying
programs from MTUs, RTUs and PLCs. Therefore, if the attacker takes control of builder
server, he can re-program the PLCs to disrupt the operation of physical processes3.

• Attack on diagnostic server : The attacker can hack into the diagnostic server to modify the
outputs of diagnostic algorithms while conducting other attacks so that system operators
are unable to recognize what are wrong with the system4.

• Attack on database server : The database server contains important information such as
process data or set-points used for monitoring and controlling physical processes. For
example, the diagnostic server uses real-time data from database server to perform the
intrusion detection algorithms or the HMI displays process status to system operators.
Therefore, by attacking the database server, the attacker can hide other malicious attacks
from the operators. In addition, the attacker can steal essential information and then use
them for negative purposes.

• Attack on HMI : If the attacker can modify some data displayed on the HMI, he can prevent
the operators from discovering what is wrong with the system.

Cyber attacks on automatic control layer

Modern SCADA systems contain numerous vulnerabilities which could be exploited by malicious
agents for launching cyber attacks. Hence, it is essential to recognize how the adversaries could
penetrate into the automatic control layer and what they would do afterward. The attackers
could begin their malevolent activities through following vulnerable points (see also [7]):

3This kind of attack is exactly what the virus Stuxnet did when it got access to the control center from a USB
key. Stuxnet attacked on the builder server located on computers which had been installed STEP7, a software
used for programming PLCs of Siemens. By replacing the file *.dll used by STEP7 to load and unload the
programs, the virus could modify the programs loaded into PLCs.

4The output of a diagnosis algorithm depends on sensor measurements. Hence, adversaries can modify con-
trol/sensor signals for altering the output of the diagnostic server.
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• Attack point A4, A5 and A6 : By exploiting the vulnerabilities of communication protocols
such as ModBus, DNP3, Ethernet/IP or wireless-based protocols, the attacker can get ac-
cess to communication channels between control center and sub-stations (i.e., attack point
A4). Once broken into this channel, the intruder may introduce fake control commands
to the MTUs, send back false data to the control center, or even jam the communication
channels by launching DoS attack. The attack on the communication links between the
MTUs and the PLCs/RTUs (i.e., attack points A5 and A6) can be carried out in the same
manner.

• Attack point A7 and A8 : For being flexible in maintenance and update services, modern
SCADA systems support communication links between field devices and vendor networks
(i.e., attack point A7) or local terminals (i.e., attack point A8). This flexibility leaves a
backdoor for malicious hackers to take control of field devices. In fact, an attack has been
carried out successfully via the vendor network, causing real physical damage [213].

• Attack point A9 and point A10 : The communication between local controllers (i.e., RTUs
or PLCs) and field devices (actuators or sensors) are sometimes implemented by insecure
technologies (i.e., wireless, satellite or radio). As a result, the control signals sent from
the controllers to the actuators (i.e., attack point A9) and the feedback signals transmit-
ted from the sensors to the controllers (i.e., attack point A10) are susceptible to cyber
attacks. These vulnerabilities may be exploited for designing coordinated attacks, causing
catastrophic damage.

Physical attacks on technological processes

Due to their geographically dispersed characteristics, it is very difficult to protect SCADA sys-
tems from physical attacks (i.e., attack point A0) like cutting the communication cables or
compromising sensors and actuators. Sometimes, malicious adversaries integrate both physical
and cyber activities into a coordinated attack to cause more catastrophic damage. For these rea-
sons, it is necessary to enforce security measures for protecting physical assets, thus eliminating
negative impact of the attack.

1.3 Attack Detection and Isolation Methods

SCADA systems are at the core of safety-critical infrastructures, playing a vital role in the
development of a nation. Previous analysis has pointed out that these large-scale ICSs are
becoming more susceptible to cyber-physical attacks than ever before. It is needless to say that
greater concern should be paid for improving the resilience of SCADA systems against cyber-
physical attacks so as to avoid physical destruction, economic losses or even human life. There
exists a vast literature on the security of SCADA systems against cyber-physical attacks. These
methods can be broadly classified into three groups: the information technology (IT) approach,
the secure control approach and the fault detection and isolation (FDI) approach.

1.3.1 Information technology approach

The information technology (IT) approach focus mainly on ensuring confidentiality, integrity and
availability of information [16]. The confidentiality is related to the non-disclosure of information
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Figure 1.3 – Attack detection and isolation methods.

to unauthorized parties. The confidentiality of data is generally performed by authentication
or access control methods. The integrity of data, on the other hand, refers to the trustworthi-
ness of data (i.e., there is no unauthorized modification of data contents or properties). The
data integrity is generally realized by both prevention mechanisms (i.e., encryption algorithms,
authentication and/or access control) and detection mechanisms (i.e., integrity checking meth-
ods). The availability of data is concerned with the utilization of information or resources when
needed.

Guidelines and methods [32,42,98,172] have been proposed for improving the security of SCADA
systems against cyber-physical attacks. Some examples, among others, include (1) designing spe-
cific firewalls between the process network and the corporate network or between the MTUs and
RTUs/PLCs, (2) utilizing the Demilitarized Zones (DMZs) for isolating the process network from
the corporate network, (3) exploiting Virtual Private Networks (VPNs) for transmitting data
over public networks, and (4) developing the Intrusion Detection Systems (IDSs) for SCADA sys-
tems [215]. In addition, sequential methods have been proposed in [175,182] for the monitoring
of network traffic in computer systems against Denial-of-Service (DoS) attacks.

It is believed that appropriate utilization of aforementioned information security measures may
help in reducing the number of cyber incidents as well as their consequences. However, these
methods are mainly applicable for protecting SCADA systems from cyber attacks on the control
center (i.e., attack points A1, A2 and A3 in figure 1.2) and on the communication layer between
the control center and the MTUs (i.e., attack point A4 in figure 1.2). Sometimes, firewalls
and VPNs can be utilized for preventing the intrusion into SCADA systems through vendor
networks and local terminals (i.e., attack points A7 and A8 in figure 1.2). However, the Stuxnet
incident [47,48] and the pumping station incident [213] have given a strong evidence that these
IT-based tools can offer only necessary mechanisms for the security of SCADA systems. The
complete protection of these large-scale ICSs against cyber-physical attacks requires a defense-
in-depth strategy [22, 25, 26, 28], where safety-critical infrastructures are protected by layers of
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security.
Moreover, SCADA systems are very different from IT systems in many aspects. Firstly, the
requirement of continuous operation prevents SCADA systems from applying IT security solu-
tions like anti-virus software updates. Secondly, it is extremely difficult to implement traditional
security solutions to lower layers of SCADA systems. For example, advanced encryption algo-
rithms, which require a huge amount of computational resources, can not be implemented in
communication channels between PLCs and sensors/actuators due to the hard real-time require-
ments [214]. In addition, wireless technologies are often utilized for transmitting data over long
distances due to the geographically dispersed characteristics. Finally, the key difference between
SCADA systems and IT systems lies in the interaction of the control systems to the physical
world. However, traditional IT-based solutions do not exploit the compatibility of the cyber
layer (i.e., control algorithms, command signals, control signals and sensor measurements) with
the physical layer (i.e., actuators, sensors or physical processes), thus being ineffective against
cyber-physical attacks targeting at disrupting the physical processes [141].

1.3.2 Secure control theory approach

In contrast to IT methods, the secure control approach, as its name implies, focuses mainly
on analyzing the security of networked control systems against cyber attacks. The general
approach consists in investigating the negative impact of different types of cyber attacks on
particular systems. Especially, a great deal of research effort has been dedicated to investigating
the vulnerabilities of networked control systems, designing stealthy/deception attacks which can
partially or completely bypass traditional anomaly detectors, and proposing countermeasures
for revealing undetectable attacks.

Secure control framework

A secure control framework for resource-limited adversaries has been proposed in [184, 187] for
studying the cyber security of networked control systems against malicious attacks (see also
figure 1.4). The capabilities of attackers are described by an attack space, including the model
knowledge (i.e., the information about the system and attack models), the disclosure resources
(i.e., the ability to capture control and sensor signals) and the disruption capabilities (i.e., the
ability to modify captured signals). It has been shown that this secure control framework can
be used for modeling and analyzing various attack scenarios (i.e., attack strategies) found in
literature.
The following discrete-time state space model is generally employed for describing the operation
of networked control systems under cyber attacks:{

xk+1 = Axk +Buk + Fdk +Kauk + wk

yk = Cxk +Duk +Gdk +Hauk +Mayk + vk
; x0 = x0, (1.2)

where xk ∈ Rn is the vector of system states with unknown initial value x0 = x0, uk ∈ Rm is the
vector of control signals, dk ∈ Rq is the vector of disturbances, yk ∈ Rp is the vector of sensor
measurements, auk ∈ Rm is the attack vector on control signals, ayk ∈ Rp is the attack vector
on sensor measurements, wk ∈ Rn is the vector of process noises and vk ∈ Rp is the vector of
sensor noises; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rp×q, C ∈ Rp×p, D ∈ Rp×m, G ∈ Rp×q,
K ∈ Rn×m, H ∈ Rp×m and M ∈ Rp×p are assumed to be known to system operators.
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Figure 1.4 – Secure control framework for studying cyber-physical attacks on networked control
systems.

Remark 1.1. The system matrices A, B, F , C, D and G depend only on the system ar-
chitecture. On the other hand, the attack matrices K, H and M depend not only on the
system architecture but also on the capability of malicious adversaries to compromise control
and/or sensor signals. As discussed in [99], the attack matrices K, H and M should satisfy:
span (K) ⊆ span (B), span (H) ⊆ span (D) and span (M) ⊆ Rp, where span (∆) denotes the sub-
space spanned by the columns of matrix ∆. For example, if the attackers are able to gain access
to all control and sensor channels, the attack matrices K, H and M can be chosen, without loss
of generality, as K , B, H , D and M , Ip where Ip ∈ Rp×p is the identity matrix of size p.

Remark 1.2. The discrete-time state space model (1.2) is more general than those employed in
literature for describing networked control systems under cyber attacks. For example, the authors
in [184,187] consider the vector of disturbances dk as faults (i.e., anomalies) in fault diagnosis
literature [30]. Moreover, both the vector of disturbances dk and the feed-through components
Duk and Gdk are excluded from the discrete-time state space model used in [88, 99, 120, 122].
Finally, the deterministic state space model (i.e., without random noises wk and vk) has been
used substantially in literature (see, for example [141,169,186]).

Remark 1.3. Let us add some comments on the attack duration τa. In the literature, two differ-
ent approaches have been considered for modeling the attack duration. The first approach posits
that the attack duration is infinitely long, i.e., τa = [k0,+∞), where k0 is the unknown attack
instant (see, for example, in [88, 99, 141]). The second approach assumes that the malicious
action is of short duration, i.e, τa = [k0, k0 + L− 1], where k0 is the unknown attack instant
and L is the attack duration (see, for instance, in [7,27,80,184,186,187]).
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The attacks on SCADA systems can be realized by designing the attack vectors auk and ayk
on, respectively, control signals and sensor measurements in stead of launching physical at-
tacks directly on physical processes. The design of such attack vectors depends heavily on the
targets and the capabilities of malicious adversaries. The cyber attacks on SCADA systems
can be broadly classified into two main categories [99, 141]: Denial-of-Service (DoS) attacks
and integrity attacks, as shown in figure 1.5. DoS attacks refer to such attempts and efforts
that aim at disrupting temporarily or indefinitely the exchange of data among entities in the
network, for instance, by jamming the communication channels or compromising the routing
protocols [99]. The integrity attacks, on the other hand, refer to the possibility of compromising
the integrity of data packets (e.g., command signals, control signals or sensor measurements)
and they are performed by altering the behavior of actuators and sensors or by breaking into the
communication channels between the physical layer and the control center [141]. The integrity
attacks can be further divided into two smaller sub-classes: simple integrity attacks and stealthy
integrity attacks. The simple integrity attacks include such attack strategies that the modifica-
tion of data packets is carried out without knowledge about the system models. The stealthy
integrity attacks, on the other hand, require the model knowledge, the disclosure resources and
the disruption capabilities for bypassing classical detection schemes. Less powerful attackers can
choose simple attack strategies such as DoS attacks or simple integrity attacks. However, more
powerful adversaries equipped with model knowledge, disclosure resources and disruption capa-
bilities may perform stealthy/deception attacks for partially or completely bypassing traditional
anomaly detectors.

Figure 1.5 – Classification of cyber attacks on SCADA systems.

Consider now the transmission of signals (e.g., command signals, control signals or sensor mea-
surements) from a transmitter to a receiver through a communication channel. Let zk be the
sourced signals sent by the transmitter and z̃k be the targeted signals arriving at the receiver.
The targeted signals may be different from the original ones due to the malicious attacks on the
communication channel (i.e., z̃k 6= zk). Let us assume also that the malicious attack is performed
within a short period τa = [k0, k0 + L− 1], where k0 is the attack instant and L is the attack
duration. The mathematical models of several attack strategies are described in the following.
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DoS attacks

A great deal of research effort has been paid to studying the negative impact of DoS attacks
on networked control systems over the last few years. For example, the authors in [3] studied
the robust feedback control design against DoS attacks; and the impact of random packets drop
on controller and estimator performance was investigated in [163, 167]. The first mathematical
model of DoS attacks was proposed in [26], where the targeted signals z̃k are considered as zero
if the sourced signals zk do not arrive at the receiver. Such an attack strategy can be modeled
as

z̃k =
{
zk if k /∈ τa
0 if k ∈ τa

. (1.3)

The second mathematical model of DoS attacks was introduced by [80], the received signals z̃k
are considered as the last arrived signals (i.e., z̃k = z̃k0−1 = zk0−1) if the sourced signals zk do
not arrive at the receiver. The mathematical model of this DoS attack strategy can be described
as

z̃k =
{
zk if k /∈ τa
zk0−1 if k ∈ τa

. (1.4)

The mathematical models (1.3)–(1.4) refer to perfect DoS attacks where powerful attackers are
able to completely block the communication channel between the transmitter and the receiver.
In practice, malicious adversaries are able to jam the communication link so that data packages
are dropped during the transmission process. More precisely, some packages may arrive at the
receiver and the others may not [77, 163, 167]. The following model is utilized to describe such
realistic scenarios [3]:

z̃k =
{
zk if k /∈ τa
γkzk if k ∈ τa

, (1.5)

where γk ∈ {0, 1}. The authors in [3] has proposed an optimal causal feedback controller (for
a discrete-time linear system) that minimizes an objective function subject to safety and power
constraints under the assumption that the coefficient γk follows the Bernoulli distribution.

Simple integrity attacks

Let Z = [zmin, zmax] be reasonable union of signals, where zmin and zmax denote, respectively, the
minimal and maximal values for both sourced and targeted signals. Performing simple integrity
attacks requires no information about the system. For conducting an integrity attack, the
attacker captures the sourced signals zk transmitted over the network, modifies the captured
signals, and re-transmits the compromised signals z̃k to the receiver. This strategy is often
referred to as the “man-in-the-middle” attack. In the following, we introduce some examples
of simple integrity attacks that have been introduced in [80], including min-max attack, scaling
attack and additive attack.

• Min, max attack: Min (resp. max) attack can be carried out simply by returning extremely
low (resp. high) values to the receiver. They can be modeled as

z̃k =
{
zk if k /∈ τa
zmin if k ∈ τa

, for min attack; z̃k =
{
zk if k /∈ τa
zmax if k ∈ τa

, for max attack.

(1.6)
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• Scaling attack: For the scaling attack, the adversary needs to capture the sourced signals
zk and multiples with a predefined coefficient αk. The model of the scaling attack is
described as

z̃k =


zk if k /∈ τa
αkzk if k ∈ τa and αkzk ∈ Z
zmin if k ∈ τa and αkzk < zmin

zmax if k ∈ τa and αkzk > zmax

, (1.7)

where the coefficient αk is defined by the attacker.

• Additive attack: Similar to the scaling attack, the additive attack is performed by adding
predefined values zak to the sourced signals zk. The model of the additive attack is written
as

z̃k =


zk if k /∈ τa
zk + azk if k ∈ τa and zk + azk ∈ Z
zmin if k ∈ τa and zk + azk < zmin

zmax if k ∈ τa and zk + azk > zmax

, (1.8)

where the additive value azk is designed by the attacker.

Stealthy integrity attacks

It has been shown in literature that powerful adversaries equipped with model knowledge, dis-
closure resources and disruption capabilities are able to perform stealthy/deception attacks for
partially or completely bypassing traditional anomaly detectors. The stealthiness of an attack
strategy depends heavily on the capabilities of adversaries to coordinate the attack vectors
on control signals and sensor measurements. The characteristic difference between such un-
detectable attacks lies in how to coordinate the attack vectors auk and ayk on control signals
and sensor measurements, respectively. In the following, we resume several well-known stealthy
integrity attacks on networked control systems.
Replay attack. The negative effect of replay attack on a feedback control system has been
studied in [120, 122, 187]. The system is described by the discrete-time linear time-invariant
Gaussian model driven by an infinite horizon Linear Quadratic Gaussian (LQG) controller, i.e.,
consisting of the Kalman filter and the Linear Quadratic Regulator (LQR). The χ2 detector is
employed to detect any abnormal behavior occurring to the system. The replay attack strategy is
carried out by two steps. In the first step, the attacker records sensor measurements for a certain
amount of time before performing the attack. In the second step, he replaces actual sensor
measurements by previously recorded signals while performing malicious attacks on control
signals for driving system states out of their normal behavior. It has been shown in [120, 122]
that the replay attack is able to bypass the χ2 detector. Two countermeasures have been
proposed in [120,122] for revealing the replay attack. It has been also discussed in [140] that the
replay attack is not the worst-case stealthy attack since it can be detected by an active monitor
(i.e., an anomaly detector that injects unknown auxiliary signals to the control signals).
Static false data injection attack. The problem of static false data injection attacks on the
Power System State Estimator (PSSE) of DC power models was first considered in [112]. It has
been shown that the adversary could launch cyber attacks on sensor measurements with the
target of introducing arbitrary errors into certain state variables while bypassing existing bad
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data detection (BDD) schemes. Following the work in [112], the authors in [153, 183] studied
stealthy/deception attacks on AC power grids based on outdated, inaccurate and incomplete
system models. Furthermore, the authors in [210,211] have shown that malicious attackers could
modify sensor measurements in order to bias the estimated state variables for profiting in electric
prices. In addition, the problem of cyber attacks on PSSE affecting the optimal power flow and
load redistribution has been also mentioned in [185] and [212], respectively. Sequential analysis
methods have been considered in [93–95] and [79] for detecting cyber attacks on the PSSE
instead of using traditional BDDs. Interested readers should refer to [17, 34, 79, 93–95, 160, 174]
for other research about deception attacks on the PSSE.
Dynamic false data injection attack. In [119, 121], the authors have studied the negative
impact of false data injection attack on a discrete-time linear time-invariant Gaussian system.
The Kalman filter is used to perform state estimation and a failure detector is employed to
detect abnormal situations. The target of the attacker is to fool the state estimator by carefully
injecting a certain amount of false data into sensor measurements transmitted to the state
estimator over a communication channel. Necessary and sufficient conditions under which the
attacker could destabilize the system are also given. According to an analysis in [140, page 46],
the false data injection attacks proposed in [119,121] correspond to the output attacks rendering
an unstable mode (if any) of the system unobservable. The analysis in [119,121,140] shows that
the false data injection attacks are inapplicable if either the system has no unstable pole or some
“critical” sensors are protected.
Zero-dynamics attack. By utilizing the output-nulling controlled invariant subspace in geo-
metric control theory, the authors in [186] have studied the zero-dynamics attack on networked
control systems. The disclosure of the zero-dynamics attack strategy has also been considered,
including the modification of the system’s structure. Moreover, the authors in [88] have proposed
a method to render the attack detectable by triggering data losses on control signals corrupted
by the attack. Two observations can be drawn from studying the zero-dynamics attack strategy.
Firstly, this attack strategy requires only the modification of control signals for its stealthiness.
However, the attack signals added to the control signals can not be chosen freely. These non-zero
signals must be designed in such way that their effects to the outputs are null by exploiting the
output-nulling problem in the automatic control theory. Simulation results in [186] have shown
that there are situations where the attack signals drive the system into a saturation region (i.e.,
the control signals are greater than the capacity actuators). The zero-dynamics attack strategy
reveals itself in such circumstances. Secondly, it has been proved in [186] that the zero-dynamics
attack can be revealed by equipping the system with more sensors. It seems that this sensor
placement strategy is effective in revealing not only the zero-dynamic attack but also other
stealthy attacks.
Covert attack. Another kind of stealthy attack, namely the covert attack on networked control
systems, has been investigated in [169]. The covert attack strategy consists in coordinating
control signals and sensor measurements into a malicious attack. The idea of the covert attack
is as follows. Firstly, the state attack vector can be chosen freely based on malicious targets
and available resources. Secondly, the sensor attack vector is designed in such a way that it
can compensate for the effects of the state attack vector on the sensor measurements. It has
been shown that the covert attack is completely stealthy to any anomaly detectors. The covert
attack strategy can be considered as the worst-case attack due to its ability to completely bypass
traditional anomaly detectors. The disadvantage of this strategy, however, lies in the strategy
itself. More precisely, the covert attack requires to compromise enough number of sensors for
assuring its stealthiness. By exploiting this inconvenience, defenders can reveal the covert attack
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by protecting some important sensors or even equipping new secure sensors.

Surge attack, bias attack and geometric attack. While studying the security of process
control systems against cyber attacks, the authors in [27] have designed three types of stealthy
attacks, named as the surge attack, the bias attack and the geometric attack. The surge attack
seeks to maximize damage as soon as possible while the bias attack tries to modify the system
by small perturbations over a long period of time. Finally, the geometric attack integrates the
surge attack and the bias attack by shifting the system behavior gradually at the beginning and
maximizing the damage at the end.

Covert attack strategy and sensor protection framework

Consider the discrete-time state space model under cyber attacks (1.2). The attack vectors auk
and ayk can be designed by the covert attack strategy as follows:

• The attack vector auk on control signals can be chosen arbitrarily based on the target and
available disruption resources of the attacker.

• The attack vector ayk on sensor measurements is calculated by the following equation:{
xa,k+1 = Axa,k +Kauk
ayk = −Cxa,k −Hauk

; {xa,k}k≤k0
= 0, (1.9)

where xa,k ∈ Rn denotes the “attacked” states, reflecting the difference between the system
states under attack and those under normal operation.

The covert attack strategy has been shown to be undetectable to any anomaly detectors if the
attackers are able to compromise enough number of sensor measurements. In addition, it has
been discussed in [140,141] that an attack is undetectable if and only if it excites the system zero-
dynamics. In order to reveal stealthy attacks, it is required to reduce the disruption capabilities
of the attackers.

In this manuscript, we propose to utilize the sensor protection framework for rendering the covert
attack detectable. This framework includes the sensor protection scheme or the sensor placement
strategy. The sensor protection scheme consists in implementing some protection measures
so that the measurements of some “critical” sensors can not be modified by the attackers.
These critical sensors should be chosen such that their sensor measurements are suffered from
abrupt/recipient changes under attack conditions. The sensor placement strategy focus on
equipping the system with more secure sensors for creating physical redundancy. Similar to the
sensor protection scheme, it is required that the effects of the attacks are reflected in the changes
in measurements of these new equipped sensors.

The sensor protection scheme is reflected in the protection matrixM . Without loss of generality,
it can be assumed that the matrix M is diagonal, i.e., M = diag (γj) such that γj = 0 if the
sensor Sj is protected and γj = 1 if the sensor Sj is vulnerable. The sensor placement strategy
can be modeled in the same manner. It has been also shown that the sensor placement strategy
can be utilized for rendering different types of stealthy attacks (see, for example, in [121], [186]
or [99]).
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1.3.3 Fault detection and isolation approach

It has been discussed in [26] that the distinct difference between SCADA systems and IT systems
lies in the interaction of the former with the physical world. The information security approach
is dedicated to improving the security of SCADA systems by protection measures. The com-
patibility between the cyber layer and the physical infrastructure has not been considered. The
secure control theory approach focuses mainly on investigating system vulnerabilities, designing
stealthy/deception attacks, and proposing countermeasures for revealing undetectable attacks.
The joint detection and isolation of attacks have not been considered seriously. Fortunately, the
fault diagnosis community has contributed with methodologies for dealing with abnormal sit-
uations occurring to stochastic-dynamical systems under the model uncertainties, disturbances
and random noises [30]. Recently, the fault detection and isolation (FDI) techniques have been
adapting to the detection and isolation of cyber attacks on SCADA systems.

Fault diagnosis

Fault diagnosis, together with fault-tolerant control, is an active domain of control theory. Fault
diagnosis is concerned with the detection, isolation and identification of faults. According to
[206], the fault detection and isolation (FDI) problem consists in “making a binary decision -
either that something has gone wrong or everything is fine, and of determining the location as
well as nature of the fault” while the purpose of fault identification is to estimate the size, type
or nature of the fault. The target of fault-tolerant control, on the other hand, is to ensure the
normal operation of the system under faulty condition by reconfiguration mechanisms.

There has been an extremely vast literature on the fault diagnosis of stochastic-dynamical sys-
tems, see, for example, in [10,30,35,65,81,83]. The main purpose of a statistical FDI algorithm
is to decide whether the fault has occurred and then to identify the types of the fault with
respect to random noises and unknown system states (often regarded as the nuisance param-
eter). This task consists in calculating a pair (T, ν), where T is the stopping time at which
the final decision ν, i.e., the change type, is decided. The fault diagnosis problem is gener-
ally solved by utilizing the analytical redundancy approach, which is comprised of two steps:
residual generation and residual evaluation. The so-called residuals are first generated by em-
ploying traditional techniques such as the state observer approach [55,92,190,209], the Kalman
filter approach [10,116,205,207,208], the parity space approach [31,54,64,73] or the parameter
estimation approach [82], etc. They are then evaluated by utilizing statistical decision the-
ory [10,109,175], including non-sequential hypothesis testing [19,49,109], sequential hypothesis
testing [105,175,194,195] or sequential change-point detection and isolation [10,105,175].

The preliminary step of model-based FDI methods, however, is to develop the mathematical
model of SCADA systems. By linearizing the PDEs around the operating point, the majority of
SCADA systems can be described in the time-invariant state space model (1.1). The derivation
of system model under faulty condition depends on the type and the position of the fault.
Generally, faults occurring to a dynamical system can be classified into three main categories:
component fault, actuator fault and sensor fault. In FDI literature, these faults are assumed to
be non-colluding, i.e., there is only one fault occurring at any time instant.

The system model under faulty condition (i.e., actuator faults, component faults and sensor
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Figure 1.6 – Structure of model-based fault diagnosis: residual generation and residual evalua-
tion.

faults) can be described as{
xk+1 = Axk +Buk + Fdk +K1f

c
k +K2f

a
k + wk

yk = Cxk +Duk +Gdk +H1f
c
k +H2f

a
k +Mf sk + vk

, x0 = x0, (1.10)

where f ck ∈ Rn is the vector of component faults, fak ∈ Rm is the vector of actuator faults,
fsk ∈ Rp is the vector of sensor faults; the matrices K1 ∈ Rn×n, K2 ∈ Rn×m, H1 ∈ Rp×n,
H2 ∈ Rp×m, and M ∈ Rp×p are assumed to be known.

Remark 1.4. Let us discuss the system model under a faulty condition (1.10). Generally, faults
are assumed to be non-colluding, i.e., there is only one fault occurring at any time instant.
For example, if there is a fault occurring at the actuator j-th (i.e., modeled by fak (j) 6= 0 for
1 ≤ j ≤ m and fak (l) = 0 for 1 ≤ l 6= j ≤ m, where fak (j) denotes the fault of actuator j-th),
the component faults and the sensor faults must not occur (i.e., f ck = 0 and fsk = 0) and vice
versa.

Faults and attacks

It has been shown that FDI tools could be used for detecting and mitigating the negative impact
of cyber attacks on networked control systems [187]. However, these tools might be exploited
more successfully if we could figure out the similarities and the differences between faults and
attacks. Both faults and attacks occur at an unknown time instant and they cause unpredictable
changes in the behavior of physical systems. Moreover, it follows from (1.2)–(1.10) that both
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faults and attacks can be modeled as additive signals on both equations of the discrete-time
state space model. Faults and attacks, however, possess inherently distinct features, making it
difficult for traditional FDI techniques to be directly applied to detect cyber-physical attacks.
Firstly, the most significant difference between a fault and an attack lies in that the fault is
considered as a phenomenon occurring randomly in each component (such as actuators, sensors,
or communication channels, etc...) of a system while the attack is an intentional action performed
by malicious adversaries. In addition, simultaneous faults are generally assumed to be non-
colluding while cyber attacks could be performed in a coordinated way. For these reasons,
cyber-physical attacks may cause more catastrophic damage to the system than faults do.
Secondly, in comparison with faults, cyber-physical attacks are much more difficult to de-
tect/isolate since they can be performed in a coordinated way. It has been shown that attack
vectors can be manipulated for partially or completely bypassing traditional anomaly detectors
(e.g., replay attack [120, 122], false data injection attack [119, 121], zero-dynamics attack [186],
or covert attack [169]). Hence, it is required to implement some a priori methods for rendering
the attacks detectable/identifiable before applying detection/isolation techniques. Fortunately,
revealing methods may be available from the security analysis process by the secure control
theory approach.
Finally, faults often occur for a long time until they are detected/isolated and repaired while
malicious attacks may be performed within a short period due to the limited resources of the
adversaries [7, 26, 27, 80]. From the other hand, for safety-critical applications, it is required
to detect the attacks with the detection delay upper bounded by a certain prescribed value
[9,68–70]. For these reasons, the detection and identification of attacks should be formulated as
the sequential detection and isolation of transient changes in stochastic-dynamical systems.

Related works

The application of traditional FDI techniques to the detection and isolation of cyber attacks has
received considerable amount of research effort. For instance, the authors in [27] have formulated
the problem of detecting cyber attacks on process control systems as the fault diagnosis problem.
The process control systems are described as a discrete-time linear time-invariant system. The
estimated outputs are compared to the received measurements, which are probably compromised,
to generate the sequence of residuals. The residuals are then evaluated by using either sequential
hypothesis testing or sequential change-point detection techniques. In order to circumvent the
unknown parameters, the authors propose using the non-parametric CUSUM algorithm to detect
the attack. The disadvantages of this work, however, lie in that it has not considered neither
the effects of random noises nor the isolation problem.
Moreover, the security problem of SCADA water irrigation canals against cyber-physical attacks
has been treated in [4–7]. The SCADA architecture for water irrigation networks is proposed.
The system architecture consists of three layers: supervisory control layer, regulatory control
layer and physical layer. The physical layer is modeled by the discrete time-delay state space
model [92]. This model is obtained by solving a set of partial differential equations. The
automatic control layer contains PI controllers to regulate water flow in the network while the
supervisory control layer is equipped with a model-based diagnosis scheme. The diagnosis scheme
is designed by utilizing a set of Unknown Input Observers (UIO) [30] adapted to the time-delay
system [92]. It has been shown that the UIO-based diagnosis scheme can detect and isolate only
the random faults in sensors or actuators. However, this UIO-based scheme can not diagnose
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malicious attacks from intelligent adversaries who have knowledge about the system’s model,
diagnosis scheme and have capability to compromise control signals and sensor measurements.
A comprehensive framework has been proposed in [140,141] for detecting and identifying attacks
on cyber-physical systems. The following discrete-time state space model5 has been considered{

xk+1 = Axk +Buk + Fdk +Baak

yk = Cxk +Duk +Gdk +Daak
; x0 = x0, (1.11)

where ak ∈ Rn+p is the attack vector, the attack matrices Ba ∈ Rn×(n+p) and Da ∈ Rp×(n+p). It
has been shown in [140, 141] that the model (1.11) can be utilized for describing various types
of cyber attacks found in literature, including the replay attack, the false data injection attack
and the covert attack.
The necessary and sufficient conditions for constructing undetectable and unidentifiable attacks
are introduced. Moreover, centralized and distributed algorithms are proposed to detect and
isolate the detectable and identifiable attacks. Similar to the work in [6,7], the isolation problem
is solved by exploiting the UIO techniques. It has been shown that these algorithms are optimal
in the sense that they can detect (resp. identify) any detectable (resp. identifiable) attacks. The
main drawback of this work is that it has been formulated in deterministic framework (without
random noises).

1.3.4 Discussion

The defense-in-depth of SCADA systems against cyber attacks requires the integration of both
information security approach, secure control theory approach and fault detection and isolation
approach. The IT-based methods provide us with countermeasures for protecting safety-critical
infrastructures from cyber attacks on the control center. The secure control theory-based meth-
ods focus mainly on (1) investigating the vulnerabilities of networked control systems mod-
eled by discrete-time state space form, (2) designing stealthy/deception attacks for partially
or completely bypassing traditional anomaly detectors, and (3) proposing countermeasures for
revealing such undetectable attacks. The FDI approach, on the other hand, deals with the
detection and identification of cyber attacks by adapting traditional FDI techniques to attack
detection-isolation scenarios.
The state space model has often been employed for describing the operation of SCADA systems
under normal operation as well as under cyber attacks. Specially, cyber attacks are modeled as
additive signals impacting both state evolution and sensor measurement equations. The secure
control framework (1.1)–(1.2) proposed in [187] can be utilizing for analyzing the security of
networked control systems against various types of cyber attacks. However, this framework can
be even improved by integrating both cyber and physical activities into a coordinated attack.
Let us consider the following discrete-time state space model under cyber-physical attacks:{

xk+1 = Axk +Buk + Fdk +K1a
p
k +K2a

u
k + wk

yk = Cxk +Duk +Gdk +H1a
p
k +H2a

u
k +Mayk + vk

; x0 = x0, (1.12)

5Originally, the continuous-time descriptor system without the vector of control signals uk and the vector of
disturbances dk is utilized in [140, 141] for describing cyber-physical systems under attack. However, it has been
discussed that similar results in [140, 141] can be applied directly to the discrete-time descriptor systems and/or
non-singular systems with known inputs (e.g., the control signals uk and the disturbances dk). For these reasons,
the discrete-time state space model with both control signals uk and disturbances dk is written here for being
consistent with previously used models.
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Figure 1.7 – Cyber-physical attacks on SCADA systems: physical attacks on processes (i.e.,
modeled by physical attack vector apk), cyber attacks on control signals (i.e., modeled by control
attack vector auk), and on sensor measurements (i.e., modeled by sensor attack vector auk).

where apk ∈ Rn is the attack vector on physical processes, auk ∈ Rm is the attack vector on
control signals, ayk ∈ Rp is the attack vector on sensor measurements; the matrices K1 ∈ Rn×n,
K2 ∈ Rn×m, H1 ∈ Rp×n, H2 ∈ Rp×m and M ∈ Rp×p.

For simplifying the model (1.12), the attack vectors apk and auk are grouped into the state attack
vector axk =

[(
apk
)T
, (auk)T

]T
∈ Rr, where r = n + m. The corresponding attack matrices are

K = [K1,K2] ∈ Rn×r and H = [H1, H2] ∈ Rp×r. The discrete-time state space model (1.12) can
be rewritten as {

xk+1 = Axk +Buk + Fdk +Kaxk + wk

yk = Cxk +Duk +Gdk +Haxk +Mayk + vk
; x0 = x0. (1.13)

For simplifying the model (1.13), let us define the attack matrices Ba = [K, 0] ∈ Rn×s and
Da = [H,M ] ∈ Rp×s and the attack vector ak =

[
(axk)T ,

(
ayk
)T ]T ∈ Rs, where s = r+p. Finally,

the discrete-time state space model (1.13) can be simplified as{
xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x0 = x0, (1.14)

where the attack vector ak is designed by the attacker and the attack matrices Ba and Da are
decided by system operators.

The reaction of SCADA systems to cyber-physical attacks is determined by the attack com-
ponents Baak and Daak. The attack matrices Ba and Da depend on the system architecture,
i.e., system operators, while the attack vector ak is designed by the attacker. Sometimes, the
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adversary may be forced to perform his malevolent action within a short period due to the re-
source limit. In addition, the malicious attack should be terminated once the attacker achieves
his target. For these reasons, the attack vector ak should be designed such that ak 6= 0 if k ∈ τa
and ak = 0 otherwise, where τa = [k0, k0 + L− 1] is the attack duration.
Remark 1.5. Let us add some comments on several key differences between the proposed
discrete-time state space model (1.12)–(1.14) and various models used in the literature. Firstly,
it can be noticed that the system model under the faulty condition (1.10) and the system model
under cyber-physical attack (1.12) have the same structure, i.e., the attack vector on physical
processes apk corresponds to the component fault vector f ck, the attack vector on control signals
auk corresponds to the actuator fault vector fak , and the attack vector on sensor measurements ayk
corresponds to the sensor fault vector fsk . The principal difference between the models (1.10) and
(1.12) lies in the assumption on the faulty vectors (i.e., f ck, fak and fsk) and the attack vectors
(i.e., apk, auk and ayk) themselves. In fault diagnosis literature, the faults are generally assumed
to be non-colluding, i.e., there is always at most one fault occurring at any time instant, while
cyber-physical attacks can be performed at the same time. Secondly, the secure control framework
(1.2) proposed in [187] has not taken into consideration the physical attack on processes. In fact,
the authors in [187] have considered the physical attack vector apk as the unknown signals rep-
resenting the effects of faults. Moreover, the attack vector on control signals auk and the attack
vector on sensor measurements ayk have not been integrated into a single vector, thus making
difficult for the design of detection-isolation schemes. Finally, the modeling framework (1.11)
proposed in [140, 141] has not taken into consideration the random noises. For these reasons,
it can be concluded that the proposed models (1.12)–(1.14) are the generalization of those found
in literature. These models will be utilized throughout this manuscript for analyzing the security
of SCADA systems against cyber-physical attacks as well as for designing detection-isolation
schemes.

1.4 Conclusion

Industrial control systems in general and SCADA systems in particular have been playing a
vital role in safety-critical infrastructures of a nation, including transportation systems, electric
power grids, gas pipelines, water distribution networks, etc. Along with the development in
information and communication technology, modern SCADA systems are becoming more and
more vulnerable to cyber-physical attacks, not only on physical infrastructures, but also on
the communication network and the control center. Due to their essential role, the security of
SCADA systems against malicious attacks has received significant research attention over the
last few years.
Though information security approach may provide some protection methods that help in im-
proving the security of SCADA systems, these methods appear to be not sufficient for the
defense-in-depth of the systems against malicious attacks being capable of bypassing informa-
tion security layers, as in the case of Stuxnet incident in 2010. Hence, the secure control approach
is considered as a complementary partner to IT-based methods in protecting large-scale ICSs
against cyber attacks. However, secure control methods have focused mainly on investigating
the vulnerabilities of networked control systems, designing stealthy/deception attacks on the
systems and then proposing some countermeasures for rendering these attacks detectable.
The FDI approach, on the other hand, concentrates on the detection and identification of de-
tectable and identifiable attacks. The statistical FDI problem was generally solved by the
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analytical redundancy approach, which is composed of residual generation and residual evalu-
ation approach. The residuals are first generated by utilizing traditional methods such as the
Kalman filter approach, the parity space approach or the parameter estimation approach. Due
to the irreducible effects of random noises, the residuals must be evaluated by using statistical
hypothesis testing or the change-point detection/isolation methods.

Sequential analysis seems to be the most suitable tool to the monitoring of SCADA systems
against cyber-physical attacks due to inevitable effects of random noises. Based on the idea
introduced in [140,141,187], we utilize the discrete-time linear state space model with Gaussian
noises impacting both equations to describe SCADA systems. The cyber-physical attacks are
modeled as additive signals of short duration on both state evolution and sensor measurement
equations. As an extension to the modeling framework in [140,141,187], our framework contains
almost recent cyber-physical attack strategies, including both DoS attacks, simple integrity
attacks and stealthy/deception attacks. The attack signals are modeled as additive changes
of short period to reflect the resource limits (if any) of the attacker. Moreover, for safety-
critical applications, it is required to detect the attacks with the detection delay upper bounded
by a certain prescribed value [9, 67, 69]. For these reasons, it is more adequate to formulate
the detection and identification of cyber-physical attacks on SCADA systems as the sequential
detection and isolation of transient changes in stochastic-dynamical systems.
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Part I

Sequential Detection and Isolation of
Transient Signals in

Stochastic-dynamical Systems
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In the first chapter, we have introduced the problem of detecting and isolating cyber-physical
attacks on SCADA systems. It has been pointed out that current tools in fault diagnosis
community should be revised so as to adapt to the attack scenarios. Due to the inevitable
effects of random noises, statistical tools must be considered in the decision-making processes.
This part consists of developing some detection and isolation algorithms that are appropriate for
the on-line monitoring of safety-critical infrastructures against malicious attacks by integrating
current tools in both fault diagnosis and statistics.

In chapter 2, we describe the state of the art in statistical decision theory, including the classical
hypothesis testing, sequential hypothesis testing, sequential change-point detection and isolation,
and sequential detection of transient changes. The sequential detection of transient signals,
integrated with some residual-generation methods from the FDI community, will be shown to
be the most appropriate approach for the on-line surveillance of SCADA systems against cyber-
physical attacks. For this reason, we formulate the attack detection problem as the problem of
detecting transient changes in stochastic-dynamical systems. This problem will be considered
in chapter 3, where several sub-optimal detection algorithms are proposed and their statistical
properties are investigated. Finally, some preliminary results on problem of jointly detecting
and isolating transient signals in stochastic-dynamical systems are considered in chapter 4.
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Chapter 2. Statistical Decision Theory

2.1 Introduction

The security of SCADA systems against cyber-physical attacks has been introduced in chap-
ter 1. It has been discussed that the problem of attack detection and identification could be
formulated as the problem of detecting and isolating transient changes (i.e., the changes of short
duration) in stochastic-dynamical systems. The attack detection and isolation problem is, there-
fore, closely related to the fault diagnosis problem. The target of a statistical FDI problem is
to distinguish the “normal” operation from the “abnormal” behavior under the effects of model
uncertainties, disturbances and random noises. The model uncertainties and disturbances can
be reduced or even eliminated by utilizing robust model-based fault detection techniques [30].
The effects of random noises, on the other hand, must be treated by exploiting results from the
statistical decision theory. The statistical decision theory, which is concerned with the decision-
making process in the presence of random variables, includes three sub-domains: the classical
(non-sequential) hypothesis testing problem, the sequential hypothesis testing problem and the
sequential change-point detection-isolation problem.

Figure 2.1 – Sub-domains in statistical decision theory.

The classical hypothesis testing theory, whose main results are given in section 2.2, is concerned
with the choice between two or multiple conjectures (or hypotheses) based on the set of fixed-size
samples Yn = (y1, y2, · · · , yn). The sequential hypothesis testing problem, on the other hand,
deals with any statistical tests where the number of samples is not a priori fixed but it depends on
the observations themselves. The sequential change-point detection-isolation problem addresses
the detection and identification of abrupt changes (i.e., the changes of infinitely long duration)
in stochastic processes. Recent results on the sequential analysis domain, which includes the
sequential hypothesis testing and quickest change-point detection-isolation, are introduced in
section 2.3 and section 2.4, respectively. The sequential detection of transient changes (i.e., the
short-duration signals) is resumed in section 2.5.

2.2 Non-sequential Hypothesis Testing

The classical (non-sequential) hypothesis testing problem consists of deciding one of multiple
hypotheses H0,H1, · · · ,HK based on the observations Yn = (y1, y2, · · · , yn) of fixed size n gen-
erated from a parametric family of distributions P = {Pθ, θ ∈ Θ} depending on the parameter θ.
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2.2. Non-sequential Hypothesis Testing

Since the sample size n is fixed, non-sequential tests are often called the Fixed-Size Sample (FSS)
tests. Denote by Θ the parameter space including all possible values of θ. The parameter space
Θ can be divided into K + 1 non-empty disjoint sets Θ0,Θ1, · · · ,ΘK satisfying Θl ∩Θj = ∅ for
l 6= j and Θ0∪Θ1∪ · · · ∪ΘK = Θ. The target of the hypothesis testing problem is to decide one
of K + 1 hypotheses Hl = {θ ∈ Θl} , 0 ≤ l ≤ K based on the observations Yn = (y1, y2, · · · , yn).
Let Ω denote the observation space which is defined as all possible values of the observations
Yn = (y1, y2, · · · , yn). The problem of testing K + 1 hypotheses {Hl}0≤l≤K corresponds to the
fragmentation of the observation space Ω into K+1 disjoint regions Ωl, for 0 ≤ l ≤ K, on which
the hypotheses Hl, for 0 ≤ l ≤ K, are accepted.
Generally, the statistical hypothesis testing problem is asymmetric. The hypothesis H0 is called
the null hypothesis, corresponding to the normal operation of a system and other hypotheses
H1,H2, · · · ,HK are denoted as the alternative hypotheses (or simply as the alternatives), cor-
responding to the abnormal behavior of the system. When K = 1 (i.e., the detection task), the
problem is to decide the null hypothesis H0 against the alternative hypothesis H1. When K > 1
(i.e., the diagnosis task), the problem is to select one of multiple hypotheses H0,H1, · · · ,HK .

Figure 2.2 – Classical hypothesis testing methods.

This section is organized as follows. In subsection 2.2.1, we give some basic definitions about the
statistical hypothesis testing problem. The problem of testing between two simple and composite
hypotheses is introduced in subsection 2.2.2 and subsection 2.2.3, respectively. Finally, the
multiple hypothesis testing problem is considered in subsection 2.2.4.

2.2.1 Basic definitions

In this subsection, we introduce main definitions and optimality criteria of the statistical hy-
pothesis testing framework.

Definition 2.1. (Simple Hypothesis [19, 50, 67, 126]). A simple hypothesis is any assumption
which uniquely determines the distribution of the observations Yn = (y1, y2, · · · , yn).

In the parametric framework, a hypothesis Hl = {θ ∈ Θl} depending on the parameter θ is
simple if the distribution Pθ of the observations Yn = (y1, y2, · · · , yn) under the hypothesis Hl is
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specified completely. In other words, the subset Θl is reduced to Θl ≡ {θl}, for 0 ≤ l ≤ K, where
θ0, θ1, · · · , θK are fixed points from Θ. Hence, the problem is to choose one of multiple hypotheses
Hl = {θ = θl} or Hl = {y1, y2, · · · , yn ∼ Pθl}, where the parameters θl, for l = 0, 1, · · · ,K, are
completely known.

Definition 2.2. (Composite Hypothesis [50,67,126,175]). Any non-simple hypothesis is called
a composite hypothesis.

In the parametric case, a composite hypothesis Hl can be written as Hl = {θ ∈ Θl} or Hl =
{y1, y2, · · · , yn ∼ Pθ|θ ∈ Θl}, for 0 ≤ l ≤ K, where the subsets Θl ∩ Θj = ∅ for l 6= j and Θl is
not reduced to a single point θl, for 0 ≤ l ≤ K.

Definition 2.3. (Statistical Test [19, 50, 67, 126]). A statistical test for testing between K + 1
hypotheses is any measurable mapping δ : Ω 7→ {H0,H1, · · · ,HK} from the observation space Ω
onto the set of hypotheses H0,H1, · · · ,HK .

Statistical tests can be broadly classified into two types: randomized tests and non-randomized
tests. In this manuscript, we consider only non-randomized tests. Interested readers are referred
to [175] for more details on randomized tests.
The statistical test δ (Yn), therefore, can be considered as a random “variable” which takes on
the values H0,H1, · · · ,HK . If δ (Yn) = Hl, then we accept hypothesis Hl, that is, we decide
that the parameter θ ∈ Θl, for 0 ≤ l ≤ K.
In hypothesis testing problems, some optimality criteria are often introduced for comparing
various statistical tests. For the sake of simplicity, let us consider now the case of testing between
multiple simple hypotheses H0,H1, · · · ,HK . The quality of a test δ is generally characterized
by the set of probabilities of erroneous decisions:

αjl (δ) = Pθj (Yn ∈ Ωl) = Pθj (δ (Yn) = Hl) , 0 ≤ j 6= l ≤ K, (2.1)
αj (δ) = Pθj (Yn /∈ Ωj) = Pθj (δ (Yn) 6= Hj) , 0 ≤ j ≤ K, (2.2)

where Pθj (·) is the probability of an event (·) when the hypothesis Hj is true (i.e., θ = θj), αjl (δ)
denotes the probability of deciding hypothesis Hl when hypothesis Hj is true, and αj (δ) stands
for the probability of rejecting hypothesis Hj when it is true. This number αj (δ) = ∑

l 6=j αjl (δ)
is also denoted as the probability of errors of j-th kind for the test δ [19].
The probability of rejecting the null hypothesis H0 when it is true is called the probability of
false alarm and it is defined mathematically as

α0 (δ) = Pθ0 (δ (Yn) 6= H0) . (2.3)

The power of the test δ, on the other hand, is defined by the set of probabilities of correct
decisions

βj (δ) = Pθj (δ (Yn) = Hj) , j = 1, 2, · · · ,K. (2.4)
It is clear that βj (δ) = 1 − αj (δ), for all j = 0, 1, · · · ,K. It is desirable that the probabilities
of errors αj (δ), for a given test δ, be as small as possible. However, since the sample size of
the observations is fixed at n, it is impossible to make all probabilities αj (δ) arbitrarily small.
Then, the question that arises naturally is how to compare various tests.

Definition 2.4. (Better Test [19]). A test δ1 is better than δ2 if, for all j = 0, 1, · · · ,K, we
have αj (δ1) ≤ αj (δ2), and the inequality must be strict for at least one j.
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However, it is not always possible to compare two tests δ1 and δ2 in this sense. Three possible
optimality criteria have been introduced for comparing statistical tests, including the most
powerful approach, the Bayesian approach and the minimax approach. Readers are referred
to [175, pages 88–90] for the philosophical backgrounds of these criteria.

Most powerful approach. Denote by Cα0,··· ,αK−1 a class of tests with K upper bounds for
probabilities of errors of rejecting the true hypotheses:

Cα0,··· ,αK−1 = {δ : αj (δ) ≤ αj , j = 0, 1, · · · ,K − 1} . (2.5)

Within the class Cα0,··· ,αK−1 , it is possible to order various tests by the value αK (δ): the smaller
αK (δ), the better the test δ.

Definition 2.5. (Most Powerful Test [19, 175]). A test δ∗ ∈ Cα0,··· ,αK−1 is the most powerful
test in the class Cα0,··· ,αK−1 if for any δ ∈ Cα0,··· ,αK−1, we have

αK (δ∗) ≤ αK (δ) . (2.6)

Bayesian approach. This approach assumes the a priori distribution Q = (q0, q1, · · · , qK) on
the set of hypotheses H0,H1, · · · ,HK , where qj = P (Hj) ≥ 0, for 0 ≤ j ≤ K and ∑K

j=0 qj = 1,
are a priori probabilities of the hypotheses Hj . Let also Ljl = Lj (δ = Hl) be the loss function
associated with the acceptance of hypothesis Hl when hypothesis Hj is true. The following
average (integrated or weighted) loss can be utilized for comparing tests:

JQ (δ) =
K∑
j=0

K∑
l=0

Lj (δ = Hl)P (Hj)Pθj (δ (Yn) = Hl) =
K∑
j=0

K∑
l=0

Ljlqjαjl (δ) . (2.7)

The average loss JQ (δ) is sometimes called the Bayes risk associated with the loss function Ljl.

Definition 2.6. (Bayesian Test [19,175]). A test δ̄ is called the Bayes test if it minimizes the
average loss JQ (δ), for a given a priori distribution Q, i.e,

δ̄ = arg inf
δ
JQ (δ) , (2.8)

where the infimum is taken over all FSS tests.

In the particular case of the 0− 1 loss function, i.e., Ljl = 0 if l = j and Ljl = 1 otherwise, the
average loss JQ (δ) is reduced to the average error probability αQ (δ):

JQ (δ) = αQ (δ) =
K∑
j=0

K∑
l=0
l 6=j

qjαjl (δ) =
K∑
j=0

qj

 K∑
l=0
l 6=j

αjl (δ)

 =
K∑
j=0

qjαj (δ) . (2.9)

In this case, the Bayes test δ minimizes the average error probability αQ (δ) = ∑K
j=0 qjαj (δ)

over all FSS tests.
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Minimax approach. The minimax approach is concerned with the maximum value αmax (δ)
of the probabilities of errors:

αmax (δ) = max
j
αj (δ) = max

Q
αQ (δ) . (2.10)

It is clear that the value αmax (δ) can be utilized for ordering tests.

Definition 2.7. (Minimax Test [19, 175]). A test δ̃ is called the minimax test if it minimizes
the maximum probability of error αmax (δ), i.e.,

δ̃ = arg inf
δ
αmax (δ) , (2.11)

where the infimum is taken over all FSS tests.

Remark 2.1. The Bayesian tests do have strong connections with both the minimax tests and
the most powerful tests. Sometimes, it is possible to find some a priori distribution Q of the
hypotheses so that the Bayesian tests become the minimax tests or the most powerful tests.
See [19,50,109,175] for further discussion.

2.2.2 Testing between two simple hypotheses

Let Yn = (y1, y2, · · · , yn) be the sequence of observations generated from the distribution Pθ
depending on the parameter θ which may take either θ0 or θ1. The problem is to decide between
the null hypothesis H0 = {θ = θ0} and the alternative one H1 = {θ = θ1} based on the obser-
vations Yn = (y1, y2, · · · , yn). In this case, the error probability of type I (i.e., the probability
of false alarm), α0 (δ) = Pθ0 (δ 6= H0), is called the size of the test or the level of significance
of the test. The value β (δ) = 1 − α1 (δ) = Pθ1 (δ = H1) is called the power of the test, where
α1 (δ) = Pθ1 (δ 6= H1) is the error probability of type II (i.e., the probability of missed detection).
In order to compare various tests, let us define the class

Cα = {δ : Pθ0 (δ (Yn) 6= H0) ≤ α} , (2.12)

including all FSS tests with the probability of false alarm upper bounded by a given value
α ∈ (0, 1).

Definition 2.8. (Likelihood Ratio). The Likelihood Ratio (LR) Λ (Yn) is defined as

Λ (Yn) = pθ1 (Yn)
pθ0 (Yn) = pθ1 (y1, y2, · · · , yn)

pθ0 (y1, y2, · · · , yn) , (2.13)

where pθj (Yn) = pθj (y1, y2, · · · , yn) is the joint probability density function (p.d.f.) of the ob-
servations Yn = (y1, y2, · · · , yn) under the distribution Pθj , for j = 0, 1.

When the observations y1, y2, · · · , yn are independent identically distributed (i.i.d.), the joint
p.d.f. of Yn is calculated as pθj (Yn) = ∏n

i=1 fθj (yi), where fθj (yi) is the p.d.f. of the random
variable yi. The LR Λ (Yn) plays a critical role in constructing optimal tests, including the most
powerful approach, the Bayesian approach and the minimax approach.
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Neyman-Pearson (N-P) Test. The Neyman-Pearson test (or the most powerful test) for
deciding betweentwo simple hypotheses is given in the following theorem. It is based on the
fundamental lemma of Neyman-Pearson.

Theorem 2.1. (Neyman-Pearson Test [19, 109]). Suppose that the function c 7→ R (c) =
Pθ0 (Λ (Yn) ≥ c) is continuous for all c > 0. Then, the MP test δ∗ (Yn) in the class Cα given in
(2.12) is defined as

δ∗ (Yn) =
{
H1 if Λ (Yn) ≥ h
H0 if Λ (Yn) < h

, (2.14)

where the threshold h can be found by solving the equation Pθ0 (Λ (Yn) ≥ h) = α.

Bayesian Test. Let qj = P (Hj) ≥ 0, for j = 0, 1 and q0 + q1 = 1, be the a priori probabilities
of the hypothesis Hj . Consider the 0 − 1 loss function case. The Bayes risk JQ (δ) associated
with the a priori distribution Q = (q0, q1) corresponds to the average error probability αQ (δ)
and it is written as

JQ (δ) = αQ (δ) = q0α0 (δ) + q1α1 (δ) . (2.15)

Theorem 2.2. (Bayesian Test [19,109]). The Bayesian test δ (Yn) which minimizes the average
error probability αQ (δ) in (2.15) is defined as

δ (Yn) =
{
H1 if Λ (Yn) ≥ h
H0 if Λ (Yn) < h

, where h = q1
q0
. (2.16)

Minimax test. In the case of testing between two simple hypothesesH0 andH1, the maximum
value of error probabilities is given as αmax (δ) = max (α0 (δ) , α1 (δ)). The minimax test is given
in the following theorem.

Theorem 2.3. (Minimax Test [19, 109]). The minimax test δ̃ (Yn) which minimizes the maxi-
mum value αmax (δ) of the error probabilities is defined as

δ̃ (Yn) =
{
H1 if Λ (Yn) ≥ h
H0 if Λ (Yn) < h

, (2.17)

where the threshold h is chosen such that Pθ0 (Λ (Yn) ≥ h) = Pθ1 (Λ (Yn) < h).

It is worth noting that the N-P test (2.14), the Bayesian test (2.16) and the minimax test (2.17)
are likelihood ratio-based tests, i.e., the decision is made by comparing the LR Λ (Yn) with a
threshold which is chosen for assuring an acceptable level of false alarm. Interested readers are
referred to [19,50,109,175] for further discussion on the relationship between the most powerful
approach, the Bayesian approach and the minimax approach in statistical hypothesis testing.

2.2.3 Testing between two composite hypotheses

Consider now the problem of testing between two composite hypotheses H0 = {θ ∈ Θ0} and
H1 = {θ ∈ Θ1}, where Θ0 ∩ Θ1 = ∅. In this case, the fundamental Neyman-Pearson lemma is
no longer valid. Hence, optimality criteria used for testing two simple hypotheses need to be
revised so as to adapt to composite scenarios.
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Definition 2.9. (Size of Composite Test [19,109,175]). The size or the error probability of the
first kind α0 (δ) for a composite test δ is defined as the maximal probability of rejecting the null
hypothesis H0 when it is true, i.e.,

α0 (δ) = sup
θ∈Θ0

Pθ (Yn /∈ Ω0) = sup
θ∈Θ0

Pθ (δ (Yn) 6= H0) . (2.18)

Definition 2.10. (Power of Composite Test [19, 109, 175]). The power β (δ, θ) of a composite
test δ is now a function of parameter θ and it is defined as the probability of correct acceptance
of hypothesis H1 when the true parameter value is θ, i.e.,

β (δ, θ) = Pθ (Yn ∈ Ω1) = Pθ (δ (Yn) = H1) , θ ∈ Θ1, (2.19)

where β (δ, θ) is also called the power function of the test δ since it depends on the parameter θ.

Let Cα denote a class of composite tests with the level of significance α, for α ∈ (0, 1), i.e.,

Cα =
{
δ : sup

θ∈Θ0

Pθ (δ (Yn) 6= H0) ≤ α
}
. (2.20)

Of course, it is desirable to construct a test δ in the class Cα given in (2.20) to maximize the
power function β (δ, θ) for all values of θ ∈ Θ1.

Definition 2.11. (UMP Test [19,109,175]). A test δ∗ (Yn) is said to be uniformly most powerful
(UMP) test in the class Cα given in (2.20) if, for all other tests δ ∈ Cα, we have

β (δ∗, θ) ≥ β (δ, θ) , for all θ ∈ Θ1. (2.21)

Unfortunately, such UMP tests rarely exist in practical situations. Theoretical results on the hy-
pothesis testing between two composite hypotheses have been developed for only some particular
cases. We consider in the following two special cases.

Monotone Likelihood Ratio and UMP test. Let Yn = (y1, y2, · · · , yn) be generated from
a parametric family of distributions P = {Pθ|θ ∈ Θ} depending on the scalar parameter θ and
the family P possesses monotone likelihood ratio. The UMP test exists in the case of testing
between two composite hypotheses H0 = {θ ≤ θ0} and H1 = {θ > θ0}. Main results are given
in the following.

Definition 2.12. (Monotone LR [19, 109, 175]). Let Yn = (y1, y2, · · · , yn) be a sequence of
random samples belonging to a parametric family of distributions P = {Pθ|θ ∈ Θ} with the
corresponding densities pθ (Yn), where the parameter θ is scalar. The family P is said to be
with monotone likelihood ratio (LR) if there exists a function T (Yn) such that, for all θ1 and θ0
satisfying θ1 > θ0, the LR

Λ (Yn) = pθ1 (Yn)
pθ0 (Yn) = g (T (Yn)) (2.22)

is a non-decreasing or non-increasing function of T (Yn).

Theorem 2.4. (UMP Test [19, 109, 175]). Suppose that the sequence of random samples Yn =
(y1, y2, · · · , yn) is generated from a parametric family of distributions P = {Pθ|θ ∈ Θ} depending
on the scalar parameter θ and that the family P admits the monotone LR Λ (Yn) = g (T (Yn)).
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Let θ0 be a fixed real number, then the UMP test δ∗ (Yn) for testing hypothesis H0 = {θ ≤ θ0}
against hypothesis H1 = {θ > θ0} in the class Cα given in (2.20) is defined as

δ∗ (Yn) =
{
H1 if T (Yn) ≥ h
H0 if T (Tn) < h

, (2.23)

where the threshold h can be found by solving the equation Pθ0 (T (Yn) ≥ h) = α.

Unbiased Test. So far we have discussed the one-sided alternative hypotheses. In many
applications, it is required to consider two-sided alternative hypotheses, for example, to test
H0 = {θ = θ0} against H1 = {θ 6= θ0}. However, no UMP test exists except for particular
examples [19,109,175]. Let us introduce, therefore, a subclass Cα of the so-called unbiased tests
in the class of UMP tests.

Definition 2.13. (Unbiased Test [19,109,175]). A test δ for testing hypothesis H0 = {θ ∈ Θ0}
against hypothesis H1 = {θ ∈ Θ1} in the class Cα defined in (2.20) is said to be unbiased if the
following condition holds:

α0 (δ) = sup
θ∈Θ0

Pθ (δ 6= H0) ≤ inf
θ∈Θ1

Pθ (δ 6= H0) = inf
θ∈Θ1

β (δ, θ) . (2.24)

It should be noted that this condition is very natural because the probability of rejection of
H0 when it is false (i.e., infθ∈Θ1 β (δ, θ)) must not be less than the probability of rejection of
H0 when it is true (i.e., α0 (δ)). Before introducing the unbiased UMP test, let us consider the
exponential family of distributions.

Definition 2.14. (Exponential family of distributions [19, 109]). Let P = {Pθ|θ ∈ Θ} be a
parametric family of distributions depending on the scalar parameter θ. The family P is said to
be exponential if its p.d.f. has the form

pθ (X) = c (θ)h (X) exp {ν (X) θ} , (2.25)

where X 7→ h (X) and X 7→ ν (X) are functions from Rn to R and θ 7→ c (θ) is a function from
R to R.

The problem is to design the unbiased UMP test for testing hypothesis H0 = {θ ∈ [θ0, θ1]}
against hypothesis H1 = {θ /∈ [θ0, θ1]}, where θ0, θ1 ∈ R and θ0 ≤ θ1, based on the observations
Yn = (y1, y2, · · · , yn) generated from an exponential family of distributions P = {Pθ|θ ∈ Θ} with
scalar parameter θ.

Theorem 2.5. (Unbiased UMP Test [19, 109]). Let Yn = (y1, y2, · · · , yn) be random samples
generated from an exponential family of distributions P = {Pθ|θ ∈ Θ} depending on the scalar
parameter θ. The unbiased UMP test δ̌ (Yn) for testing hypothesis H0 = {θ ∈ [θ0, θ1]} against
hypothesis H1 = {θ /∈ [θ0, θ1]} in the class Cα given in (2.20) is defined as

δ̌ (Yn) =
{
H1 if T (Yn) /∈ [k0, k1]
H0 if T (Yn) ∈ [k0, k1]

, (2.26)

where T (Yn) = ∑n
i=1 ν (yi) and the thresholds k0 and k1 can be found by solving following

equations:
Pθ0

(
δ̌ = H1

)
= Pθ1

(
δ̌ = H1

)
= α. (2.27)
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Generalized Likelihood Ratio (GLR) Test. So far we have seen that the optimal tests
exist just in several particular cases. Unfortunately, the state of the art of the statistical theory
has shown that it is impossible to define a test that is optimal in all situations (e.g. two or
simple hypotheses, simple and composite hypotheses, scalar or vector, etc.). Even giving up
the optimality criteria, it is difficult to formulate a test that is similar to the Neyman-Pearson
test, i.e., by utilizing the LR, since the parameter θ is unknown. In order to circumvent this
difficulty, it is proposed to utilize the Maximum Likelihood Estimation (MLE) of the parameter
θ in Θ0 and Θ1 instead of its exact value for calculating the LR. The LR that uses the MLE of
parameter θ is called the Generalized LR (GLR) and it is defined mathematically as

Λ̂ (Yn) =
supθ∈Θ1 pθ (Yn)
supθ∈Θ0 pθ (Yn) =

supθ∈Θ1 pθ (y1, y2, · · · , yn)
supθ∈Θ0 pθ (y1, y2, · · · , yn) . (2.28)

Definition 2.15. (GLR Test [19, 109, 175]). The Generalized Likelihood Ratio (GLR) test in
the class Cα for testing between

H0 = {θ ∈ Θ0} againt H1 = {θ ∈ Θ1}

is defined as

δ̂ (Yn) =
{
H1 if Λ̂ (Yn) ≥ h
H0 if Λ̂ (Yn) < h

, (2.29)

where the threshold h satisfies the following relation supθ∈Θ0 Pθ
(
Λ̂ (Yn) ≥ h

)
= α.

It has been shown that the GLR test δ̂ (Yn) is in many situations not optimal [109]. However,
in some particular circumstances, it coincides with an optimal test (in the Bayesian approach,
for example). Therefore, the GLR test is one of the most popular and important methods for
solving the composite hypothesis testing problem.

Bayesian approach for composite hypotheses. The Bayesian approach for testing be-
tween two composite hypotheses H0 = {θ ∈ Θ0} and H1 = {θ ∈ Θ1}, where Θ0 ∩ Θ1 = ∅, is
based on the a priori distribution Q = (q0, q1), where q0 = P (H0), q1 = P (H1) and q0 + q1 = 1,
on the hypotheses and the a priori distributions Gj (θ), for j = 0, 1, on the parameter θ. The
idea is to replace the unknown densities pθ (Yn) under Hj by following average (or integrated)
densities over Θj , for j = 0, 1, i.e.,

pGj (Yn) =
∫

Θj
pθ (Yn) dGj (θ) . (2.30)

Theorem 2.6. (Bayesian Test [19, 109,175]). The Bayesian test which minimizes the average
error probability αQ (δ) = q0α0 (δ) + q1α1 (δ) for testing between two composite hypotheses H0 =
{θ ∈ Θ0} against H1 = {θ ∈ Θ1} is given by

δ (Yn) =


H1 if pG1 (Yn)

pG0 (Yn) ≥
q1
q0

H0 if pG1 (Yn)
pG0 (Yn) <

q1
q0

, (2.31)

where αj (δ) =
∫

Θj Pθ (δ 6= Hj) dGj (θ), for j = 0, 1.
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Minimax approach for composite hypotheses. Similar to the Bayesian approach, the
minimax approach assumes also the a priori distributions Gj (θ) concentrated on Θ∗j ⊂ Θj , for
j = 0, 1. In contrast to the Bayesian approach, the minimax approach does not assume the a
priori distribution on the hypotheses. Therefore, this approach is sometimes called the partially
Bayesian approach.

Definition 2.16. ( [19,109,175]). A test δ̃ (Yn) for deciding between two composite hypotheses
H0 = {θ ∈ Θ0} and H0 = {θ ∈ Θ1} is minimax in the class Cα given in (2.20) if, for all tests
δ ∈ Cα, we have

inf
θ∈Θ1

Pθ
(
δ̃ (Yn) = H1

)
≥ inf

θ∈Θ1
Pθ (δ (Yn) = H1) .

In order to determine the minimax test δ̃ (Yn) between two composite hypotheses H0 and H1,
let us define the “auxiliary” Neyman-Pearson test for testing between two simple hypotheses

HG0 = {(y1, y2, · · · , yn) ∼ PG0} against HG1 = {(y1, y2, · · · , yn) ∼ PG1} ,

where the distributions PGj are with the densities pGj (Yn) =
∫

Θ∗j
pθ (Yn) dGj (θ), for j = 0, 1.

The MP test between HG0 against HG1 in the class C̃α = {δ : PG0 (δ (Yn) 6= H0) ≤ α} is given
by

δ∗G0G1 (Yn) =


H1 if pG1 (Yn)

pG0 (Yn) ≥ h

H0 if pG1 (Yn)
pG0 (Yn) < h

, (2.32)

where the threshold h is such chosen that PG0

(
pG1 (Yn)
pG0 (Yn) ≥ h

)
= α. The power of the test

δ∗G0G1
(Yn) is then defined as

βG0G1

(
δ∗G0G1

)
= PG1

(
δ∗G0G1 (Yn) = H1

)
. (2.33)

Theorem 2.7. (Minimax Test [19,109,175]). Suppose that there exist the a priori distributions
G0 and G1 defined on the subsets Θ∗0 ⊂ Θ0 and Θ∗1 ⊂ Θ1, respectively, such that

sup
θ∈Θ0

Pθ
(
δ∗G0G1 (Yn) 6= H0

)
≤ α and inf

θ∈Θ1
Pθ
(
δ∗G0G1 (Yn) = H1

)
= βG0G1 ,

then the MP test δ∗G0G1
is minimax in the class Cα given in (2.20) for testing hypothesis H0 =

{θ ∈ Θ0} against hypothesis H1 = {θ ∈ Θ1}.

Theoretical results obtained for the hypothesis testing between two composite hypotheses are
quite limited. The UMP tests and unbiased UMP tests exist in very limited scenarios. For
practical situations, the Bayesian approach and the GLR approach are generally considered. The
a priori distribution on parameter θ is required for constructing the (completely or partially)
Bayesian tests. Hence, the Bayesian tests are quite sensitive to the choice of the a priori
distribution. On the other hand, the GLR tests do not require any a priori information on the
parameter θ but their optimality can not be guaranteed.

2.2.4 Testing between multiple hypotheses

The problem of hypothesis testing between two (simple and composite) hypotheses has been
reviewed in previous subsections. In this subsection, we consider the problem of testing between
multiple hypotheses.
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Bayesian approach for multiple simple hypotheses. Let Yn = (y1, y2, · · · , yn) be random
samples of size n generated from one of K + 1 distinct distributions Pθj , for j = 0, 1, · · · ,K.
Seeking for simplicity, let us assume that the distributions Pθj are absolutely continuous, i.e.,
the densities pθj (Yn) are continuous functions w.r.t. the samples Yn. The problem becomes
deciding between K + 1 simple hypotheses, i.e., Hj = {θ = θj}, for j = 0, 1, · · · ,K.
Consider now the Bayesian approach. Let qj = P (Hj) > 0, with ∑K

j=0 qj = 1, be the a priori
probabilities of hypothesis Hj , for j = 0, 1, · · · ,K. Consider the case of 0 − 1 loss function.
In this case, the Bayes risk JQ (δ) defined in (2.7) is reduced to the average error probability
αQ (δ) given in (2.9). The Bayesian test for multiple simple hypotheses are given in the following
theorem.

Theorem 2.8. (Bayesian test [49, 175]). Consider the multiple hypothesis testing problem be-
tween K + 1 simple hypotheses H0,H1, · · · ,HK with the loss function 0 − 1 and the a priori
probabilities q0, q1, · · · , qK . The Bayesian test which minimizes the average error probability
αQ (δ) given in (2.9) is defined as

δ (Yn) = Hl if l = arg max
0≤j≤K

qjpθj (Yn) . (2.34)

Under above assumption that the distributions Pθj are absolutely continuous, the event
qlpθl (Yn) = qjpθj (Yn) has the µ-measure zero for l 6= j; hence the maximum in (2.34) is unique
with probability 1. Moreover, the Bayesian test (2.34) coincides with the maximum a posteriori
(MAP) decision rule: choose index l of hypothesis Hl that maximizes the posterior probability
qjpθj (Yn) over j = 0, 1, · · · ,K, i.e., l = arg max0≤j≤K qjpθj (Yn).

Constrained minimax approach for multiple simple hypotheses. Let us introduce a
class of tests Cα for deciding between multiple hypotheses as follows:

Cα = {δ : Pθ0 (δ (Yn) 6= H0) ≤ α} . (2.35)

Definition 2.17. (Constrained minimax test [12,175]). A test δ̃ (Yn) is constrained minimax of
level α between the hypotheses H0,H1, · · · ,HK if δ̃ (Yn) ∈ Cα and for any other test δ (Yn) ∈ Cα,
the following inequality is satisfied

max
1≤l≤K

αl
(
δ̃ (Yn)

)
≤ max

1≤l≤K
αl (δ (Yn)) , (2.36)

where αl (δ (Yn)) is the probability of rejecting hypothesis Hl when it is true.

Theorem 2.9. (Constrained minimax test [12, 175]). Let q0, q1, · · · , qK ≥ 0 be weighting co-
efficients satisfying

∑K
j=0 qj = 1. The following weighted GLR test between the hypotheses

H0,H1, · · · ,HK

δ̃ (Yn) =


Hl if max1≤j≤K

(
qj
pθj (Yn)
pθ0 (Yn)

)
≥ h

H0 if max1≤j≤K

(
qj
pθj (Yn)
pθ0 (Yn)

)
< h

, l = arg max
1≤j≤K

(
qj
pθj (Yn)
pθ0 (Yn)

)
(2.37)

is constrained minimax if the threshold h is selected so that

Pθ0

(
max

1≤j≤K

(
qj
pθj (Yn)
pθ0 (Yn)

)
≥ h

)
= α,
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and that the weighted coefficients are chosen so that the probability of false classification

αl
(
δ̃ (Yn)

)
= αj

(
δ̃ (Yn)

)
, ∀l, j 6= 0

is constant over the set of alternative hypotheses H1,H2, · · · ,HK .

The above theorem allows us to design an “equalizer test” which maximizes the common power

β = Pθl
(
δ̃ (Yn) = Hl

)
= Pθj

(
δ̃ (Yn) = Hj

)
, ∀l, j 6= 0 (2.38)

in the class Cα defined in (2.35).

Bayesian approach for multiple composite hypotheses. It is of practical interest to
consider now the problem of testing between multiple composite hypotheses Hj = {θ ∈ Θj}, for
0 ≤ j ≤ K. The Bayesian approach for testing multiple hypotheses is based on the a priori
distribution Q = (q0, q1, · · · , qK) on the hypotheses, i.e., qj = P (Hj), for 0 ≤ j ≤ K, and the a
priori distributions Gj (θ), for j = 0, 1, · · · ,K, on the parameter θ. For the sake of simplicity,
let us consider now the case of 0 − 1 loss function. In such a case, the Bayes risk is equivalent
to the following average error probability:

JQ (δ) = αQ (δ) =
K∑
j=0

qjαj (δ) =
K∑
j=0

qj

∫
Θj

Pθ (δ 6= Hj) dGj (θ) . (2.39)

The Bayesian approach for testing multiple composite hypotheses is given in the following the-
orem.

Theorem 2.10. (Bayesian Test). Consider the problem of multiple hypothesis testing between
K + 1 composite hypotheses H0,H1, · · · ,HK with the a priori distribution Q = (q0, q1, · · · , qK)
on the hypotheses, i.e., qj = P (Hj), for 0 ≤ j ≤ K, and the a priori distributions Gj (θ), for
j = 0, 1, · · · ,K, on the parameter θ. Suppose also the 0 − 1 loss function. The Bayesian test
δ (Yn) which minimizes the Bayes risk JQ (δ) defined in (2.39) is given by

δ (Yn) = Hl, if l = arg max
0≤j≤K

[
qj

∫
Θj
pθ (Yn) dGj (θ)

]
. (2.40)

Similar to the multiple simple hypothesis testing problem, the Bayesian test (2.40) for deciding
between multiple composite hypotheses coincides also to the maximum a posteriori (MAP)
decision rule: choose index l that maximizes the posterior distribution qj

∫
Θj pθ (Yn) dGj (θ) over

all j = 0, 1, · · · ,K.

2.2.5 Conclusion

In this section, we have briefly presented basic definitions and different results on the classical
(non-sequential) statistical hypothesis testing theory. Several optimality criteria, by the most
powerful approach, the Bayesian approach and the minimax approach, have been introduced.
It has been shown that optimal (or suboptimal) procedures for testing two (or more) simple (or
composite) hypotheses could be designed to attain a given criterion of optimality. Generally,
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the statistical performance of a decision rule is proportional to the number of observations.
In non-sequential setting, however, the sample size is a priori fixed. Therefore, the classical
hypothesis testing theory is particularly useful for off-line applications. For on-line monitoring
tasks, however, another data-processing method needs to be considered for more efficiently
reducing the number of observations. These sequential methods for hypothesis testing and
change-point detection-isolation will be reviewed in section 2.3 and section 2.4, respectively.

2.3 Sequential Hypothesis Testing

The purpose of this section is to introduce some sequential methods for testing between two or
multiple hypotheses. The sequential hypothesis testing problem consists in seeking a detection
rule δ that is carried out in real time k = 1, 2, · · · based on the observations y1, y2, · · · yk. The
decision of stopping the test at time k or continuing the test at time k + 1 depends on the
observed data y1, y2, · · · , yk itself.

This section is organized as follows. Basic definitions are given in subsection 2.3.1. Several
results on the sequential tests between two simple and composite hypotheses are introduced in
subsection 2.3.2 and subsection 2.3.3, respectively. Finally, we consider in subsection 2.3.4 the
problem of sequential testing between multiple hypotheses.

2.3.1 Introduction

In the classical hypothesis testing problem, the sample size n is a priori fixed. The problem
consists of seeking a detection rule δ satisfying a given optimality criterion. For example, in the
case of testing between two simple hypotheses H0 = {θ = θ0} and H1 = {θ = θ1}, we wish to
maximize the power of the test β (δ) = Pθ1 (δ = H1) for a given value on the probability of false
alarm α0 (δ) = Pθ0 (δ 6= H0). The error probabilities, i.e., α0 (δ) and α1 (δ) = 1− β (δ), depend
on the sample size n which has not been pointed out explicitly. It is well-known that the N-P
test given in (2.14) is the most powerful test in the class Cα = {δ : α0 (δ) ≤ α}.

The question arises [19]: “Is it possible to improve this statistical procedure?”. Of course, the
answer is negative under the above-mentioned criterion. However, if we drop the assumption
that the sample size is fixed, that is, make n be a random variable depending on the samples
already observed, then improvement is possible [19]. This sequential hypothesis testing method
is critical in such applications that require some cost for performing experiments. In fact,
the theoretical study of sequential hypothesis testing has been ushered by A. Wald [193, 195]
in response to demands for more efficient testing of anti-aircraft gunnery during World War
II [105].

For testing between two hypotheses H0 and H1, the sequential procedure can be described as
follows [193]. At any stage of an experiment, a procedure is given for making one of the following
three decisions: (1) to accept hypothesis H0, (2) to accept hypothesis H1, or (3) to continue
the experiment by making an additional observation. Thus, such a decision rule is performed
sequentially. Based on the basis of k, for k ≥ 1, observations, one of the aforementioned three
decisions is made. If the first or second decision is made, the test is terminated by accepting
either hypothesis H0 or hypothesis H1, respectively. If the third decision is made, on the other
hand, the experiment is continued taking the k + 1 observation. The process continues until
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either hypothesis H0 or hypothesis H1 is accepted. The time instant N at which the process
terminates is a random variable since it depends on the outcomes of observed data.

Definition 2.18. (Stopping time [67, 126, 133]). A stopping time with respect to a sequence of
random variables y1, y2, · · · is a Markov random variable N with values in {1, 2, · · · } and the
property that for each k ∈ {1, 2, · · · }, the occurrence or non-occurrence of the event {N = k}
depends only on the values of {y1, y2, · · · , yk}.

Definition 2.19. (Sequential test [19,67,126]). A sequential test δ between hypothesis H0 and
hypothesis H1 is a pair (N, ν), where N is the stopping time and ν is the final decision.

In sequential hypothesis testing, it is desirable to achieve the trade-off between the average
sample number (ASN) and the error probabilities. The comparison between various sequential
tests can be performed with the aide of following definitions.

Definition 2.20. (Better Sequential Test [68,193]). Consider the problem of sequential testing
between two simple hypotheses: H0 = {θ = θ0} and H1 = {θ = θ1}. Let δ̃ and δ be two sequential
procedures with the error probabilities of type I and type II being equal to α0 and α1 and with
the stopping times Ñ (α0, α1) and N (α0, α1), respectively. The test δ̃ is said to be better than
the test δ if

Eθ0

[
Ñ (α0, α1)

]
≤ Eθ0 [N (α0, α1)] and Eθ1

[
Ñ (α0, α1)

]
≤ Eθ1 [N (α0, α1)] , (2.41)

where Eθj [N ] is the ASN under hypothesis Hj (i.e., θ = θj), for j = 0, 1.

Definition 2.21. (Class of Sequential Test [68, 193]). Let α0, α1 ∈ [0, 1] be two real numbers.
The class of all sequential tests with the error probabilities of type I and type II being smaller
than or equal to α0 and α1, respectively, is defined as

Cα0,α1 =
{
δ = (N, ν) : αj (δ) ≤ αj and Eθj [N ] <∞, j = 0, 1

}
. (2.42)

Definition 2.22. (Optimal Sequential Test [68,193]). Consider the problem of sequential testing
between two simple hypotheses: H0 = {θ = θ0} and H1 = {θ = θ1}. The test δ̃ =

(
Ñ , ν̃

)
is said

to be optimal in the class Cα0,α1 if, for all sequential tests δ = (N, ν) in the class Cα0,α1, the
following conditions are satisfied:

Eθ0

[
Ñ
]
≤ Eθ0 [N ] and Eθ1

[
Ñ
]
≤ Eθ1 [N ] . (2.43)

2.3.2 Sequential testing between two simple hypotheses

In this sub-section, we consider the Sequential Probability Ratio Test (SPRT), which was first
introduced in [193], for testing hypothesis H0 = {θ = θ0} and hypothesis H1 = {θ = θ1}. The
Bayesian approach can be found in [19,196].

Sequential Probability Ratio Test (SPRT). Let y1, y2, · · · be i.i.d. random variables
which have a common p.d.f. fθ (y) with respect to some sigma-finite measure µ. The joint p.d.f.
of Yk = (y1, y2, · · · , yk) is calculated as

pθj (Yk) = pθj (y1, y2, · · · , yk) =
k∏
i=1

fθj (yi) , for j = 0, 1. (2.44)
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Figure 2.3 – Sequential probability ratio test between two simple hypotheses.

Let h0 < 0 < h1 be two real numbers (thresholds) and

Sk1 = log pθ1 (Yk)
pθ0 (Yk)

= log
∏k
i=1 fθ1 (yi)∏k
i=1 fθ0 (yi)

=
k∑
i=1

log fθ1 (yi)
fθ0 (yi)

(2.45)

be the log-likelihood ratio (LLR) between hypothesis H1 and hypothesis H0 on the basis of
the observations Yk = (y1, y2, · · · , yk). The sequential procedure δ̃ =

(
Ñ , ν̃

)
introduced by

Wald [193] is described as

Ñ = inf
{
k ≥ 1 : Sk1 /∈ (h0, h1)

}
, ν̃ =

{
H1 if SÑ1 ≥ h1

H0 if SÑ1 ≤ h0
, (2.46)

where the thresholds h0 and h1 are chosen for assuring acceptable levels on the error probabilities
of type I and type II.

Performance of SPRT. Several properties of the SPRT are given in following theorems. The
approximation of the error probabilities and the average sample numbers of the SPRT (2.46) is
given in Theorem 2.11 and Theorem 2.12, respectively. Finally, the optimality property of the
SPRT (2.46) is shown in Theorem 2.13.

Theorem 2.11. (Error probabilities of SPRT [67,175,193]). Consider Wald’s SPRT δ̃ =
(
Ñ , ν̃

)
given in (2.46) with thresholds h0 < 0 < h1. The relations between the error probabilities of type
I and type II and the thresholds are described as follows:

log

 α1
(
δ̃
)

1− α0
(
δ̃
)
 ≤ h0, log

1− α1
(
δ̃
)

α0
(
δ̃
)

 ≥ h1. (2.47)
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The exact calculation of thresholds for assuring acceptable values on the error probabilities is
elaborate. For this reason, Wald [193] suggested the following approximations:

h0 ' log
α1
(
δ̃
)

1− α0
(
δ̃
) , h1 '

1− α1
(
δ̃
)

α0
(
δ̃
) , when α0

(
δ̃
)
, α1

(
δ̃
)
→ 0. (2.48)

Theorem 2.12. (Average Sample Number of SPRT [19,193,194]). Consider the Wald’s SPRT
δ̃ =

(
Ñ , ν̃

)
given in (2.46). Then, as α0

(
δ̃
)
, α1

(
δ̃
)
→ 0, the average number of samples

Eθ0

[
Ñ
]
and Eθ1

[
Ñ
]
are given by

Eθ0

[
Ñ
]
'

(
1− α0

(
δ̃
))

log

1− α0
(
δ̃
)

α1
(
δ̃
)

− α0
(
δ̃
)

log

1− α1
(
δ̃
)

α0
(
δ̃
)


Eθ0

[
log

(
fθ0 (y)
fθ1 (y)

)] , (2.49)

Eθ1

[
Ñ
]
'

(
1− α1

(
δ̃
))

log

1− α1
(
δ̃
)

α0
(
δ̃
)

− α1
(
δ̃
)

log

1− α0
(
δ̃
)

α1
(
δ̃
)


Eθ1

[
log

(
fθ1 (y)
fθ0 (y)

)] . (2.50)

Theorem 2.13. (Optimality of SPRT [19, 193, 194]). Let y1, y2, · · · be the sequence of i.i.d.
random observations generated from a parametric family of distributions P = {Pθ|θ ∈ Θ} de-
pending on the parameter θ. Consider the problem of testing hypothesis H0 = {θ = θ0} against
hypothesis H1 = {θ = θ1}. Let Cα0,α1 given in (2.42) be the class of all tests (sequential and non-
sequential) with upper bounds on the error probabilities. Then, the Wald’s SPRT δ̃ =

(
Ñ , ν̃

)
is

optimal in the class Cα0,α1. In other words, it minimizes the average number of samples Eθ0

[
Ñ
]

and Eθ1

[
Ñ
]
among all (sequential and non-sequential) tests δ = (N, ν) in the class Cα0,α1, i.e.,

Eθ0

[
Ñ
]
≤ Eθ0 [N ] and Eθ1

[
Ñ
]
≤ Eθ1 [N ] . (2.51)

It follows from Theorem 2.13 that the SPRT (2.46) for testing between two simple hypothesesH0
and H1 minimizes the average sample numbers under both hypotheses among all (i.e., sequential
and non-sequential) tests in the class Cα0,α1 defined in (2.42). The problem of testing between
two composite hypotheses is considered in the following subsection.

2.3.3 Sequential testing between two composite hypotheses

It is of practical interest to consider the problem of sequential testing between two compos-
ite hypotheses H0 = {θ ∈ Θ0} and H1 = {θ ∈ Θ1}, for Θ0 ∩ Θ1 = ∅ (see also, for example,
in [78, 89, 100, 101, 115, 193, 194, 196]). For solving this problem, Wald [193] suggested to uti-
lize the Weighted Sequential Probability Ratio Test (WSPRT) and the Generalized Sequential
Probability Ratio Test (GSPRT).
Let y1, y2, · · · be i.i.d. random variables with a common density fθ (y), depending on the pa-
rameter θ, with respect to some finite-measure µ. Consider the problem of testing the simple
hypothesis H0 = {θ = θ0} against the composite hypothesis H1 = {θ ∈ Θ1}, where θ0 /∈ Θ1.
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The first method is to apply the generalized likelihood ratio (GLR) approach, replacing the
unknown LLR Sk1 by the GLR statistic

Ŝk1 = log sup
θ∈Θ1

k∏
i=1

[fθ (yi) /fθ0 (yi)] , (2.52)

resulting in the following GSPRT δ̂ =
(
N̂ , ν̂

)
:

N̂ = inf
{
k ≥ 1 : Ŝk1 /∈ (h0, h1)

}
, ν̂ =

{
H1 if ŜN̂1 ≥ h1

H0 if ŜN̂1 ≤ h0
, (2.53)

where the thresholds h0 and h1 are selected for assuring acceptable levels of error probabilities.
The second method consists of replacing the LLR Sk1 by the weighted LLR statistic

S
k
1 = log

∫
θ∈Θ1

w (θ)
k∏
i=1

[fθ (yi) /fθ0 (yi)] dθ, (2.54)

where w (θ) is a suitably selected weighted function on Θ1, leading to the following WSPRT
δ =

(
N, ν

)
:

N = inf
{
k ≥ 1 : Sk1 /∈ (h0, h1)

}
, ν =

H1 if S
N
1 ≥ h1

H0 if S
N
1 ≤ h0

, (2.55)

where the thresholds h0 and h1 are also chosen for assuring acceptable levels of error probabilities.
In a more general case where the null hypothesis is also composite, i.e., H0 = {θ ∈ Θ0}, Wald
[193] proposed to exploit the WSPRT given in (2.55) with the following weighted LLR

S
k
1 = log

∫
θ∈Θ1

w1 (θ)∏k
i=1 fθ (yi) dθ∫

θ∈Θ0
w0 (θ)∏k

i=1 fθ (yi) dθ
, (2.56)

where w0 (θ) and w1 (θ) are suitably selected weighted functions on Θ0 and Θ1, respectively.
By changing the measures and applying the Wald’s likelihood ratio identity [175, pages 223–224],
the average error probabilities α0

(
δ
)
and α1

(
δ
)
are upper bounded by

α0
(
δ
)

=
∫

Θ0
Pθ
(
δ 6= H0

)
w0 (θ) dθ ≤ e−h1 , (2.57)

α1
(
δ
)

=
∫

Θ1
Pθ
(
δ 6= H1

)
w1 (θ) dθ ≤ eh0 , (2.58)

where the thresholds h0 ≤ 0 < h1.
For practical purposes, the upper bounds on the maximal error probabilities of type I and type
II would be more preferable than the upper bounds on the average error probabilities, which
depend on the choice of weighted functions. Let us introduce the class

Cα0,α1 =
{
δ : sup

θ∈Θ0

Pθ (δ 6= H0) ≤ α0, sup
θ∈Θ1

Pθ (δ 6= H1) ≤ α1

}
, α0 + α1 < 1 (2.59)

for testing between two composite hypotheses. The upper bounds on the maximal error proba-
bilities of the WSPRT and the GSPRT have not been obtained in the general case. Interested
readers are referred to [175, chapter 5] for more discussion on this topic.
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2.3.4 Sequential testing between multiple simple hypotheses

Over the last few decades, a great deal of effort has been devoted to study the sequential mul-
tihypothesis testing problem. The majority of work has concentrated on proposing suboptimal
procedures based on the modification of the sequential probability ratio test for i.i.d. observa-
tions. For example, Sobel and Wald [171] considered the problem of sequential testing between
three normal distributions. Independently, Armitage [8] proposed a sequential procedure for
testing between multiple simple hypotheses. Based on Bayesian framework, the multiple se-
quential hypothesis testing procedures were introduced in [11, 43, 44, 192]. The multihypothesis
testing problem for non-i.i.d. stochastic models has been also considered in [43,44,104,180].
Definition 2.23. (Sequential Multihypothesis Test [43,175]). A sequential multihypothesis test
δ = (N, ν) between K + 1 hypotheses is defined as a pair (N, ν), where N ≥ 1 is the Markov
stopping time and ν ∈ {0, 1, · · · ,K} is the final decision. The event {ν = l}, for 0 ≤ l ≤ K,
means that we accept hypothesis Hl for some stopping time N <∞.

Let y1, y2, · · · be i.i.d. random variables with a common density fθ (y), depending on the pa-
rameter θ, with respect to some finite-measure µ. Consider the problem of sequential testing
between multiple simple hypotheses Hl = {θ = θl}, for 0 ≤ l ≤ K. The MSPRT δ = (N, ν) can
be defined in the following manner:

Nl = inf
{
k ≥ 1 : min

0≤j 6=l≤K

{
Sk1 (l, j)− hlj

}
≥ 0

}
(2.60)

N = min
l=0,1,··· ,K

Nl (2.61)

ν = arg min
l=0,1,··· ,K

Nl, (2.62)

where

Sk1 (l, j) = log
∏k
i=1 fθl (yi)∏k
i=1 fθj (yi)

=
k∑
i=1

log fθl (yi)
fθj (yi)

(2.63)

is the log-likelihood ratio between hypothesis Hl and hypothesis Hj on the basis of the obser-
vations y1, y2, · · · , yk and hlj are chosen thresholds. Readers are referred to [43,44,175, chapter
4] for the asymptotic optimality properties of the MSPRT and also the Bayesian approach for
the problem.

2.3.5 Conclusion

In this section, we have considered the problem of sequential testing between two simple hy-
potheses, two composite hypotheses and multiple simple hypotheses. Theoretical results have
shown that the sequential tests reduce significantly the number of observations in order to
achieve a significant level compared to the non-sequential counterparts. The sequential hy-
pothesis testing introduced in this section is essential in understanding the on-line change-point
detection-isolation techniques, which is the subject of the following section.

2.4 Sequential Change-point Detection and Isolation

In this section, we focus on the design and analysis of techniques for the quickest change detection
and isolation problem. This approach is extremely suitable to surveillance applications, including
the monitoring of SCADA systems against cyber-physical attacks.
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2.4.1 Introduction

The sequential change-point detection deals with the on-line detection of a change in the state
of a process, subject to an acceptable level on the risk of false alarms. Specially, the process
is assumed to be in a normal state before the surveillance begins and it may unexpectedly
undergo an abrupt (or a gradual, an incipient) change-of-state from normal to abnormal. With
the arrival of each new observation, the problem is to decide whether the process is in normal
behavior or it has been changed to an abnormal state. If the state has become abnormal, we
are interested in detecting the change, usually as soon as possible, so that appropriate responses
could be provided. The time instant k0 at which the process changes its state from normal to
abnormal is referred to as the change-point and the time instant T at which we raise an alarm is
denoted as the stopping time or the alarm time. If an alarm is raised before the change occurs
(i.e., T < k0), one has a false alarm. On the other hand, if the alarm is raised after the change
has occurred (i.e., T ≥ k0), one has a correct detection but with the detection delay T − k0 + 1.
Hence, a good sequential change-point detection scheme should be able to obtain a trade-off
between the loss associated with the detection delay and that associated with raising a false
alarm.

The subject of change-point detection started to emerge from the requirement in quality control
which is concerned with the monitoring and evaluation of the quality of products from a contin-
uous production process. Firstly, Shewhart [165] introduced the fundamental concept of a “state
of statistical control”, in which he proposed a process inspection scheme that takes samples of
fixed size at regular time intervals and computes from the samples a suitably chosen statistic,
which can be presented graphically in the form of a control chart. Efficient sequential detection
procedures were developed later in the 1950-1960’s, after the introduction of Sequential Analy-
sis, a branch of statistics ushered by Wald [193]. To improve the sensitivity of the Shewhart’s
charts, Page [139] and Shiryaev [166] modified Wald’s theory of sequential hypothesis testing to
develop the CUSUM and the Shiryaev-Roberts charts, respectively, that attain certain optimal-
ity properties. This platform has paved the way for the development of sequential change-point
detection problem, on both theory and practice [10,103,113,166,175].

Four different approaches have been considered for solving the change-point detection problem
[146, 175], including the Bayesian approach, the generalized Bayesian approach, the minimax
approach, and the approach related to multicyclic detection of a distant change in a stationary
regime. In the following, we follow the minimax approach under which the change-point k0
is considered as unknown but non-random. Interested readers are referred to [175] for recent
results of other approaches.

2.4.2 Sequential change-point detection

Let y1, y2, · · · be a sequence of independent random observations generated from a parametric
family of distributions P = {Pθ|θ ∈ Θ} depending on the parameter θ. Let k0 ≥ 1 be the
unknown change-point at which the parameter θ changes its value from θ0 to θ1 6= θ0. In
other words, the random variables y1, y2, · · · , yk0−1 have the distribution Pθ0 while the random
variables yk0 , yk0+1, · · · have the distribution Pθ1 . The statistical model for the quickest change
detection is described as

yk ∼
{
Pθ0 if k < k0

Pθ1 if k ≥ k0
. (2.64)
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Figure 2.4 – Sequential change-point detection problem.

Let Pk0 denote the probability measure when the observations y1, y2, · · · , yk0−1 ∼ Pθ0 and
yk0 , yk0+1, · · · ∼ Pθ1 and P0 , P∞ corresponds to k0 = ∞ (i.e., y1, y2, · · · ∼ Pθ0). Let Pk0

(res. P0 , P∞) and Ek0 (res. E0 , E∞) are, respectively, the probability and the expectation
w.r.t. the probability measure Pk0 (res. P0 , P∞). Suppose that the distributions Pθ0 and Pθ1

receive the densities fθ0 and fθ1 , respectively.

Minimax optimality criteria

The objective of an abrupt change detection algorithm is to achieve a trade-off between the risk
associated with the detection delay and the risk of raising a false alarm. A large number of opti-
mality criteria have been proposed for interpreting the compromise between these contradictory
performance indexes. In general, a criterion of optimality should be favorable of minimizing the
average detection delay (ADD) while avoiding frequent false alarms.

Let T be the stopping time of a quickest change detection procedure. The first optimality
criterion is due to Lorden [113] who suggested to minimize the following “worst-worst-case”
average detection delay (WWADD):

E∗ [T ] = sup
k0≥1

ess supEk0 [T − k0 + 1 |T ≥ k0, y1, y2, · · · , yk0−1 ] (2.65)
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among all stopping times T ∈ Cγ in the class

Cγ = {T : E0 [T ] ≥ γ} (2.66)

satisfying the average run length (ARL) to false alarm6 constraint. The following theorem,
whose proof can be found in [113], gives the lower bound for the WWADD E∗ [T ] defined in
(2.65).

Theorem 2.14. (Lorden’s Asymptotic Theory [10,113]). Let T be a stopping time in the class
Cγ given in (2.66) and n (γ) be the lower bound on E∗ [T ] defined in (2.65). Let also ρ10 =
Eθ1 [log (fθ1 (y) /fθ0 (y))] be the Kullback-Leibler distance between fθ1 and fθ0, satisfying 0 <
ρ10 <∞. For independent observations {yk}k≥1, we have

n (γ) ∼ log (γ)
ρ10

as γ →∞. (2.67)

Lorden [113] showed that the Cumulative Sum (CUSUM) procedure, first introduced by Page
[139], is first-order asymptotically optimal as γ →∞. By using different arguments, Moustakides
[124] and Ritov [157] proved that the CUSUM algorithm is exactly optimal w.r.t. Lorden’s
criterion (2.65)–(2.66) for any γ > 1.
Though the optimality of the CUSUM test w.r.t. Lorden’s criterion (2.65)–(2.66) is a very
strong result, this criterion seems to be too pessimistic since it is, in fact, a double-minimax
approach [146]. For this reason, it is more natural to find a procedure that minimizes the
following conditional average detection delay (CADD):

Ẽ [T ] = Ek0 [T − k0 |T ≥ k0 ] , (2.68)

for all k0 ≥ 1 simultaneously. Since such a uniformly optimal procedure does not exist, Pol-
lak [142] suggested to minimize the following “worst-case” conditional average detection delay
(WCADD):

Ẽ∗ [T ] = sup
k0≥1

Ek0 [T − k0 |T ≥ k0 ] , (2.69)

among all stopping times T ∈ Cγ satisfying the baseline ARL constraint E0 [T ] ≥ γ, where γ > 1
is a prescribed value.
Recently, Lai [103, 107] has generalized Lorden’s asymptotic theory to non-i.i.d. scenario un-
der the convergence assumption on the conditional probability for the log-likelihood ratio
(LLR). Suppose that under P0, the conditional density function of yk given y1, · · · , yk−1 is
fθ0 (·|y1, · · · , yk−1) for any k ≥ 1 and that under Pk0 , the conditional density function is
fθ0 (·|y1, · · · , yk−1) for k < k0 and fθ1 (·|y1, · · · , yk−1) for k ≥ k0. In this non-i.i.d. scenario,
the LLR is defined as

si = log fθ1 (yi|y1, · · · , yi−1)
fθ0 (yi|y1, · · · , yi−1) . (2.70)

To generalize the Lorden’s asymptotic theory beyond the i.i.d. setting, Lai [103,107] has imposed
the following assumption on the LLR si defined in (2.70):

lim
k→∞

sup
k0≥1

ess supPk0

max
t≤k

k0+t∑
i=k0

si ≥ kρ10 (1 + δ)

∣∣∣∣∣∣ y1, · · · , yk0−1

 = 0, ∀δ > 0, (2.71)

6The average run length to false alarm is also denoted as the mean time to false alarm or the mean time
between false alarms.
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where ρ10 > 0 is a positive number. For the i.i.d. case, the number ρ10 coincides with the
Kullback-Leibler distance between fθ1 and fθ0 .

Under the assumption (2.71), Lai [103,107] has showed that both the WWADD E∗ [T ] proposed
by Lorden [113] and the WCADD Ẽ∗ [T ] suggested by Pollak [142] are asymptotically lower
bounded by

E∗ [T ] ≥ Ẽ∗ [T ] ≥
(
ρ−1

10 + o (1)
)

log (γ) as γ →∞, (2.72)

for all stopping times T ∈ Cγ satisfying the baseline ARL constraint E0 [T ] ≥ γ.

It has been discussed in [103,176] that the baseline ARL constraint E0 [T ] ≥ γ implies the asymp-
totic lower bound

(
ρ−1

10 + o (1)
)

log (γ) for the CADD Ek0 [T − k0|T ≥ k0] for only some unspeci-
fied values k0. However, it is the most desirable to obtain the lower bound for Ek0 [T − k0|T ≥ k0]
uniformly for all k0 ≥ 1 subject to the ARL constraint. Since no such detection procedure exists,
Lai and Tartakovsky suggested to replace the global false alarm constraint (i.e., the baseline ARL
constraint E0 [T ] ≥ γ) by the worst local (conditional) probability of raising a false alarm within
a time window of given length, i.e., supl≥1 P0 (l ≤ T < l +mα) ≤ α for the non-conditional ver-
sion [103] and supl≥1 P0 (T < l +mα|T ≥ l) ≤ α for the conditional version [176], respectively.
Moreover, for some practical applications, including intrusion detection in computer networks
and a variety of surveillance applications, it is more desirable to control the worst local false
alarm rate at a certain value [176]. Let

Cα =
{
T : Pfa (T ;mα) = sup

l≥1
P0 (l ≤ T < l +mα) ≤ α

}
, (2.73)

where
lim inf mα/ |log (α)| > ρ−1

10 but log (mα) = o (log (α)) when α→ 0 (2.74)

be the class of all stopping times T satisfying the worst-case probability of false alarm within any
time window of length mα upper bounded by a predefined value α ∈ (0, 1). Lai [103] has given
an asymptotic lower bound for Ek0

[
(T − k0)+

]
uniformly over all k0 ≥ 1 under the following

relaxation of assumption on the convergence of the LLR:

lim
k→∞

sup
k0≥1

Pk0

max
t≤k

k0+t∑
i=k0

si ≥ kρ10 (1 + δ)

 = 0, ∀δ > 0. (2.75)

The following theorem, whose proof can be found in [103], gives the asymptotic lower bound for
Ek0

[
(T − k0)+

]
if the condition (2.75) is satisfied.

Theorem 2.15. (Asymptotic lower bound [103]). Suppose that the conditions (2.74) and (2.75)
hold for some positive number ρ10. Then as α→ 0

Ek0

[
(T − k0)+

]
≥ |log (α)|

(P0 (T ≥ k0)
ρ10

+ o (1)
)
, uniformly in k0 ≥ 1. (2.76)

The lower bound (2.76) has been used in [103] to prove the asymptotic optimality of the CUSUM
procedure and the window limited (WL) CUSUM procedure. The method is to show that these
procedures (i.e., CUSUM and WL CUSUM) with appropriately chosen parameters asymptoti-
cally reach the lower bound (2.76) subject to the false alarm constraint (2.73).
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Figure 2.5 – Sequential quickest change detection procedures.

Detection procedures when the post-change parameter is known

The objective of this sub-subsection is to resume several well-known detection algorithms that
may attain the aforementioned optimality criteria. We focus only on the non-Bayesian approach
where the change-point k0 is assumed as unknown and non-random.

Fixed-Size Sample (FSS) procedure. Let n ∈ Z+ be a positive integer. The fixed-size
sample (FSS) strategy7 is, effectively, a repeated hypothesis testing procedure based on the
samples of fixed size L observed sequentially. At each time instant k = nL, for n ≥ 1,
the FSS algorithm performs a classical hypothesis test δ between the null hypothesis H0 :{
y(n−1)L+1, · · · , ynL ∼ Pθ0

}
and the alternative hypothesis H1 :

{
y(n−1)L+1, · · · , ynL ∼ Pθ1

}
.

The FSS procedure continues until the decision dn of the test is favorable of hypothesis H1 for
some n ≥ 1. Since the solution to the non-sequential hypothesis testing problem is given by the
fundamental Neyman-Pearson lemma, the optimal FSS procedure is designed as follows:

TFSS = inf
n≥1
{k = nL : dn = 1} , (2.77)

where the decision dn of the Neyman-Pearson test is defined as

dn =

1 if SnL(n−1)L+1 ≥ h
0 if SnL(n−1)L+1 < h

, SnL(n−1)L+1 =
nL∑

i=(n−1)L+1
log fθ1 (yi)

fθ0 (yi)
, (2.78)

where h is a chosen threshold. The demonstration of the FSS detection procedure (2.77)–(2.78)
is given in figure (2.6).

Consider now the family of Gaussian distributions

yk ∼
{
N
(
θ0, σ

2) if k < k0

N
(
θ1, σ

2) if k ≥ k0
, (2.79)

7The fixed-size sample procedure is often denoted as the Shewhart control chart in quality control.
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Figure 2.6 – Fixed-size sample (FSS) detection procedure.

where θ0, θ1 and σ are assumed to be known. In this case, the LLR SnL(n−1)L+1 is given as

SnL(n−1)L+1 = θ1 − θ0
σ2

nL∑
i=(n−1)L+1

(
yi −

θ1 + θ0
2

)
(2.80)

Lorden’s criterion of optimality has been studied by Nikiforov [131] in the class of all FSS tests.
The main results are given in the following theorem.

Theorem 2.16. (FSS detection procedure [131]). Let us consider the observation model (2.79).
Consider the FSS detection procedure (2.77)–(2.78) with the LLR computed in (2.80). The
optimal FSS algorithm verifies

E∗ [TFSS] ' 2
log

(
T
)

ρ10
, L '

log
(
T
)

ρ10
, h ' log

(
T
)
, as T →∞, (2.81)

where T = E0 [TFSS] is the ARL to false alarm, E∗ [TFSS] is the WWADD, h is the chosen
threshold, L is the sample size and ρ10 is the Kullback-Leibler information which is computed in
the Gaussian case as ρ10 = 0.5 (θ1 − θ0) /σ2.

Finite Moving Average (FMA) procedure. The Finite Moving Average (FMA) procedure
is an algorithm that, for each time instant k ≥ 1, carries out a test between the null hypothesis
H0 : {yk−L+1, · · · , yk ∼ Pθ0} and the alternative hypothesis H1 : {yk−L+1, · · · , yk ∼ Pθ1}, based
on the block of L observations yk−L+1, · · · , yk. For the time instant k+ 1, the procedure moves
one step by rejecting the last observation yk−L+1 and employing the novel one yk+1 to form the
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Figure 2.7 – Finite moving average (FMA) detection procedure.

novel block of observations yk−L+2, · · · , yk+1 for constructing the test between H0 and H1. The
stopping time of the FMA procedure is defined as

TFMA = inf
{
k ≥ L :

L∑
i=1

γi log fθ1 (yk−i+1)
fθ0 (yk−i+1) ≥ h

}
, (2.82)

where h is a chosen threshold and γi > 0, for i = 1, · · · , L, are predefined coefficients. Some
results on the FMA test (2.82) were investigated in [106].

Cumulative Sum (CUSUM) procedure. By exploiting Wald’s theory on sequential anal-
ysis [195], Page [139] developed the Cumulative Sum (CUSUM) detection scheme that contains
many optimality properties. The idea of the CUSUM procedure is to take into account the
variation of the log-likelihood ratio (LLR) si = log [fθ1 (yi) /fθ0 (yi)] before and after the change.
In fact, the LLR si possesses the negative mean before the change (i.e., Eθ0 [si] < 0) and it has
the positive mean after the change (i.e., Eθ1 [si] ≥ 0). The are several derivations of the CUSUM
procedure [10,175]. The CUSUM procedure can be described as

TCS = inf
{
k ≥ 1 : max

1≤i≤k
Ski ≥ h

}
, Ski =

k∑
t=i

log fθ1 (yt)
fθ0 (yt)

, (2.83)

where h is the chosen threshold. The CUSUM procedure can be also expressed in a recursive
manner as

TCS = inf {k ≥ 1 : gk ≥ h} , (2.84)

64



2.4. Sequential Change-point Detection and Isolation

where the decision function gk = max1≤i≤k S
k
i is calculated recursively as

gk =
(
gk−1 + log fθ1 (yk)

fθ0 (yk)

)+
, g0 = 0, (2.85)

where (x)+ = max (0, x).

Figure 2.8 – CUSUM detection procedure.

Lorden [113] showed that the CUSUM detection scheme is asymptotically optimal in the sense
that it minimizes the WWADD E∗ [T ] defined in (2.65) among all stopping times T ∈ Cγ
satisfying the baseline ARL constraint E0 [T ] ≥ γ. Especially, he showed that if the threshold h
is such chosen as h ∼ log (γ) and E0 [TCS] ∼ γ, then

E∗ [TCS] = inf
T∈Cγ

{
E∗ [T ]

}
∼ log (γ)

ρ10
, as γ →∞. (2.86)

Recently, Lai [103] showed that the CUSUM test with suitably chosen threshold h attains also
the asymptotic lower bound for the WCADD Ẽ∗ [T ] defined in (2.69) among all stopping times
T ∈ Cγ , i.e.,

Ẽ∗ [TCS] = inf
T∈Cγ

{
Ẽ∗ [T ]

}
∼ log (γ)

ρ10
, as γ →∞. (2.87)
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The exact optimality (i.e., non-asymptotic for any γ ≥ 1) of the CUSUM procedure w.r.t.
Lorden’s criterion has been studied by Moustakides [124] and Ritov [157], respectively.

Window Limited CUSUM procedure. The Window Limited (WL) CUSUM algorithm
was first introduced by Willsky and Jones [205] for the detection of abrupt changes in linear
systems. The idea of the WL CUSUM procedure is to utilize the last mα observations for the
decision-making. The stopping time TWL of the WL CUSUM test is defined as

TWL = inf
{
k ≥ mα : max

k−mα+1≤i≤k
Ski ≥ h

}
, Ski =

k∑
t=i

log fθ1 (yt)
fθ0 (yt)

, (2.88)

where h is a chosen threshold. The WL CUSUM algorithm can be utilized also for the non-i.i.d.
scenario, where the LLR Ski becomes

Ski =
k∑
t=i

log fθ1 (yt|y1, · · · , yt−1)
fθ0 (yt|y1, · · · , yt−1) . (2.89)

Theorem 2.17. (Properties of the WL CUSUM detection procedure [103]). Consider the WL
CUSUM detection procedure defined in (2.88)–(2.89). If the threshold h is such chosen that
2mαe

−h = α, where the window size mα satisfies (2.74), then

Pfa (TWL;mα) = sup
l≥mα

P0 (l ≤ TWL ≤ l +mα − 1) ≤ 2mαe
−h. (2.90)

Moreover, if the constraint (2.75) and the following constraint:

lim
k→∞

sup
1≤k0≤t

ess supPk0

(
k−1

t+k∑
i=t

si ≤ ρ10 − δ
∣∣∣∣∣ y1, y2, · · · , yt−1

)
= 0 ∀δ > 0, (2.91)

are satisfied, then as α→ 0, we have

Ek0

[
(TWL − k0)+

]
∼ |log (α)|

(P0 (TWL ≥ k0)
ρ10

+ o (1)
)

uniformly in k0 ≥ 1. (2.92)

It follows from the above theorem that if the conditions (2.74), (2.75) and (2.91) are satisfied and
the threshold h is chosen as 2mαe

−h = α, the WL CUSUM procedure is asymptotically optimal
in the sense that it minimizes Ek0

[
(TWL − k0)+

]
uniformly in k0 ≥ 1 among all stopping times

in the class Cα defined in (2.73), as α→ 0.

Detection procedures when the post-change parameter is unknown

In many practical situations, the pre-change hypothesis is often simple (i.e., H0 = {θ = θ0}) but
the post-change hypothesis is composite (i.e., H1 = {θ ∈ Θ1}, where Θ1 ⊆ Θ \ {θ0}). There are
two approaches for dealing with such circumstances [103,175]. The first one utilizes a weighting
function G (θ), which is often considered as the a priori distribution of the unknown parameter
θ ∈ Θ1, for weighting the LR w.r.t. all possible values of the parameter θ ∈ Θ1. The second one
involves the generalized LR approach, which replaces the unknown parameter θ by its maximum
likelihood estimate (MLE).
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Weighted Likelihood Ratio (WLR) procedure. The weighted likelihood ratio (WLR)
detection procedure can be defined directly as

T̃ = inf
{
k ≥ 1 : max

1≤i≤k
log Λ̃ki ≥ h

}
, (2.93)

where h is a chosen threshold and Λ̃ki is the weighted LR, being calculated by

Λ̃ki =
∫

θ∈Θ1

k∏
t=i

fθ (yt|y1, · · · , yt−1)
fθ0 (yt|y1, · · · , yt−1)dG (θ) , (2.94)

where fθ (yt|y1, · · · , yt−1) is the conditional density function of yt given y1, · · · , yt−1 and G (θ)
is the a priori distribution of the parameter θ on Θ1.

Similar to the case of GLR scheme, let us consider the exponential family of distributions
P = {Pθ|θ ∈ Θ} whose p.d.f. is given in (2.100), where the parameter value θ = θ0 before the
change and θ 6= θ0 after the change. In this case, the weighted LR statistic is computed as

Λ̃ki =
∫

Θ1

exp
{

(θ − θ0)Ski − (k − i+ 1) (d (θ)− d (θ0))
}
dG (θ) , (2.95)

where Ski = ∑k
t=i yt. The approximation of the WWADD E∗θ

[
T̃
]
of the WLR detection procedure

in the case of exponential family of distributions is shown in Theorem 2.18.

Theorem 2.18. (Properties of the WLR detection procedure [10, 143]). Consider the WLR
detection procedure given in (2.93) with the weighted LR statistic calculated in (2.95). Suppose
that the weighting function G (θ) has a positive derivative in the neighborhood of θ and the
threshold h is such chosen that T = E0

[
T̃
]
. Then, as T → ∞, the approximation of the

WWADD E∗θ
[
T̃
]
is given as

E∗θ
[
T̃
]
≈

log
(
T
)

+ 1
2 log

[
log(T)
ρ(θ,θ0)

]
ρ (θ, θ0) − 1

2ρ (θ, θ0)

{
log

[
2π Ġ

2 (θ)
d̈ (θ)

]
− 1

}
+ o (1) , (2.96)

where the K-L distance is calculated as

ρ (θ, θ0) = (θ − θ0) ḋ (θ)− (d (θ)− d (θ0)) . (2.97)

It follows from (2.96) that the WWADD E∗θ
[
T̃
]
for the WLR detection rule does not reach

the infimum of mean delay log
(
T
)
/ρ (θ, θ0) for the class of detection procedures satisfying the

constraint on the ALR2FA T ≥ γ when γ →∞. The additional term can be considered as the
price to be paid for the unknown a priori information about the parameter θ.

Generalized Likelihood Ratio (GLR) procedure. By replacing the unknown parameter
θ ∈ Θ1 with its maximum likelihood estimate, the so-called generalized CUSUM detection
procedure is defined as

T̂ = inf
{
k ≥ 1 : max

1≤i≤k
log Λ̂ki ≥ h

}
, (2.98)
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where h is a chosen threshold and Λ̂ki is the generalized likelihood ratio, being calculated as

Λ̂ki = sup
θ∈Θ1

k∏
t=i

fθ (yt|y1, · · · , yt−1)
fθ0 (yt|y1, · · · , yt−1) , (2.99)

where fθ (yt|y1, · · · , yt−1) is the conditional density function of yt given y1, · · · , yt−1.

Consider the exponential parametric family of distributions P = {Pθ|θ ∈ Θ} whose p.d.f. has
the form

fθ (y) = g (y) exp {θy − d (θ)} , (2.100)

where g : y 7→ g (y) and d : θ 7→ d (θ) are two functions from R to R.

Suppose that the parameter value θ = θ0 before the change and θ ∈ Θ1 ≡ [θ1,∞), where θ1 > θ0,
after the change. In this case, the GLR procedure is given by

T̂ = inf
{
k ≥ 1 : max

1≤i≤k
sup
θ≥θ1

{
(θ − θ0)Ski − (k − i+ 1) (d (θ)− d (θ0))

}
≥ h

}
, (2.101)

where Ski = ∑k
t=i yt and h is a chosen threshold. The following theorem, whose proof can be

found in [114], gives the upper bound on the WWADD E∗θ
[
T̂
]
, which depends on the parameter

θ, of the GLR procedure (2.101) subject to the ARL constraint E0
[
T̂
]
≥ γ.

Theorem 2.19. (Properties of the GLR detection procedure [10, 67, 114]). Consider the GLR
detection procedure given in (2.101). When the threshold h and the error probability α are
connected through

e−h = α

3 log (α−1)
[
1 + 1

ρ(θ1,θ0)

]2 , (2.102)

then the ARL to false alarm T satisfies

T = E0
[
T̂
]
≥ α−1, (2.103)

and the WWADD E∗θ
[
T̂
]
is upper bounded by

E∗θ
[
T̂
]
≤

log
(
T
)

+ log
(
log

(
T
))

ρ (θ, θ0) +
2 log

(√
3
[
1 + 1

ρ(θ1,θ0)

])
ρ (θ, θ0) + θ2

ρ2 (θ, θ0)
∂2d (θ)
∂θ2 + 1, (2.104)

for all θ ≥ θ1, where ρ (θ, θ0) = Eθ [log (fθ (y) /fθ0 (y))] is the K-L distance between fθ and fθ0.

Theorem 2.19 allows us to establish the relation between the WWADD E∗θ
[
T̂
]
and the ARL2FA

E0
[
T̂
]
. Moreover, the upper bound on the WWADD E∗θ

[
T̂
]
of the GLR detection procedure

obtained in Theorem 2.19 can be utilized to compare with the upper bound on the WWADD
E∗θ
[
T̃
]
of the WLR detection procedure in Theorem 2.18.
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Window Limited Weighted Likelihood Ratio (WL WLR) procedure. The window-
limited weighted likelihood ratio (WL WLR) detection procedure utilizes the mixture LR statis-
tics Λ̃ki given in (2.94). The WL WLR procedure is defined as

T̃WL (h) = inf
{
k ≥ mα : max

k−mα+1≤i≤k
log Λ̃ki ≥ h

}
, (2.105)

where the time window mα satisfying mα/ |log (α)| → ∞ but log (mα) = o (log (α)) as α → 0.
The following theorem, whose proof can be found in [103], proves the asymptotic optimality of
the WL WLR detection procedure.
Theorem 2.20. (Properties of the WL WLR detection procedure [103]). Suppose that for every
δ > 0, there exist Θδ ⊂ Θ1 and k (δ) ≥ 1 such that θ1 ∈ Θδ, G (Θδ) > 0, and

sup
k≥k(δ)

sup
1≤k0≤t0

ess supPθk0

 inf
θ∈Θδ

t0+k∑
i=t0

si (θ) ≤ k (ρ (θ1, θ0)− δ)

∣∣∣∣∣∣ y1, y2, · · · , yt0−1

 ≤ δ, (2.106)

where the LLR si (θ) is calculated as

si (θ) = log fθ (yi|y1, . . . , yi−1)
fθ0 (yi|y1, . . . , yi−1) ,

and ρ (θ1, θ0) is the K-L distance. If the window size mα is such chosen that α = 2mαe
−h, then

supl≥1 P0
(
l ≤ T̃WL < l +mα

)
≤ α as α→ 0 and then

sup
k0≥1

ess supEθ1
k0

[(
T̃WL − k0 + 1

)+
∣∣∣∣ y1, · · · , yk0−1

]
≤ h1 + o (1)

ρ (θ1, θ0) , (2.107)

Eθ1
k0

[(
T̃WL − k0

)+
]
≤ h

P0
(
T̃WL ≥ k0

)
ρ (θ1, θ0) + o (1) , uniformly in k0 ≥ 1. (2.108)

It follows from Theorem 2.20 that the WL WLR procedure (2.105) based on the mixture LLRs
with appropriately chosen parameters is asymptotically optimal in the sense that it minimizes
the ADD Eθ1

k0

[(
T̃WL − k0

)+
]
uniformly in k0 ≥ 1 over all stopping times satisfying the constraint

(2.73) as α→ 0.

Window Limited Generalized Likelihood Ratio (WL GLR) procedure. The idea of
the window limited generalized likelihood ratio (WL GLR) approach is due to Willsky and
Jones [205] who proposed to utilize the last mα observations at each time instant instead of all
observed samples. The stopping time of the WL GLR procedure is defined as

T̂WL = inf
{
k ≥ mα : max

k−mα+1≤i≤k−m̃α
sup
θ∈Θ1

log Λ̂ki ≥ h
}
, (2.109)

where the GLR Λ̂ki is calculated in (2.99) and m̃α < mα is the number of necessary observations
for the MLE and h is a chosen threshold. It has been shown in [103, 107] that the WL GLR
defined in (2.109), with the parameters are such chosen that h ∼ |log (α)|, m̃α ∼ o (|log (α)|)
and mα = 1

2α exp (h), attains the lower bound for the ADD Ek0

[
(T − k0)+

]
uniformly for all

k0 ≥ mα among all stopping times T in the class Cα defined in (2.73). Recursive methods for
the implementation of the WL GLR detection procedure and numerical examples have been
performed in [102,107].
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2.4.3 Sequential change-point detection-isolation

In the previous section, we have resumed several optimality criteria and detection procedures
for the problem of detecting abrupt changes in a stochastic system. In this section, we continue
with the joint detection and isolation problem which was first introduced by Nikiforov [130].

Problem statement

In the case of multiple hypotheses, there are several post-change hypotheses Hl, for 1 ≤ l ≤ K.
As before, let y1, y2, · · · be a sequence of independent random observations generated from a
parametric family of distributions P = {Pθ|θ ∈ Θ}, where the parameter space Θ = ⋃K

l=0 θl.
Similar to the detection problem, the parameter θ receives its nominal value θ = θ0 under
normal operation. From an unknown change-point k0 ≥ 1, the system shifts to another mode,
causing the parameter θ to change its value from θ = θ0 to θ = θl, for l = 1, · · · ,K, where K
stands for possible change modes. In other words, the random variables y1, y2, · · · , yk0−1 have
the distribution Pθ0 while the random variables yk0 , yk0+1, · · · have the distributions Pθl . The
statistical model for the change-point detection-isolation is described as

yk ∼
{
Pθ0 if k < k0

Pθl if k ≥ k0
, l = 1, · · · ,K. (2.110)

Denote by P lk0
the probability measure when the observations y1, y2, · · · , yk0−1 ∼ Pθ0 and the

observations yk0 , yk0+1, · · · ∼ Pθl , for 1 ≤ l ≤ K. Also, we denote by P0 , P l∞ , P0
k0
, for all 0 ≤

l ≤ K and all k0 ≥ 1, the pre-change probability measure when the observations y1, y2, · · · ∼ Pθ0 .
Let Plk0

(res. P0 , Pl∞ , P0
k0
) and Elk0

(res. E0 , El∞ , E0
k0
) be, respectively, the probability

and the expectation with respect to the probability measure P lk0
(res. P0 , P l∞ , P0

k0
).

The change detection and isolation algorithm should calculate a pair (T, ν) based on the obser-
vations y1, y2, · · · , where ν, for 1 ≤ ν ≤ K, is the final detection and T is the stopping time
at which the change type ν is declared. It it intuitively obvious that the detection-isolation
algorithm should be favorable of small delay for detection-isolation with few false alarm and few
false isolation rates.

Minimax optimality criteria

In the following, we note several optimality criteria for the quickest change detection-isolation
problem by the minimax approach, where the change-point k0 is unknown and non-random.

Worst-worst-case conditional detection-isolation delay. For evaluating the false alarm
and false isolation rates, suppose that the observations (yk)k≥1 are coming from the distribution
Pθl , for 0 ≤ l ≤ K. Consider the following sequence of alarm times and final decisions (Tr, νr):

T0 = 0 < T1 < T2 < · · · < Tr < · · · , and ν1, ν2, · · · , νr, · · · ,

where Tr is the alarm time of the detection-isolation algorithm applied to yTr−1+1, yTr−1+2, · · ·
and νr is the corresponding final decision. The first false alarm/isolation T ν=j of the j-type is
defined as

T ν=j = inf {Tr : νr = j} , 1 ≤ j 6= l ≤ K,
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2.4. Sequential Change-point Detection and Isolation

where it is assumed that inf {∅} =∞ and that the system restarts from scratch after each false
alarm/isolation.
For measuring the risk associated with the detection-isolation delay, consider the sequence of
observations (yk)k≥1 which are coming from the observation model (2.110). If the change is
detected/isolated correctly after the change-point k0 (T ≥ k0 and ν = l), the delay for detection-
isolation of the l-type change is defined as

τl = T − k0 + 1. (2.111)

As discussed in [130], the detection delay τl = T −k0 +1, for 1 ≤ l ≤ K, should be stochastically
small and the mean time to false alarm/isolation T ν=j = inf {Tr : νr = j}, for any combination
of j 6= l, should be stochastically large. By generalizing Lorden’s criterion for the detection
problem, Nikiforov [130] proposed to minimize the worst-worst-case mean delay for detection-
isolation

τ∗ (δ) = sup
k0≥1,1≤l≤K

ess supElk0 [ (T − k0 + 1)|T ≥ k0, y1, y2, · · · , yk0−1] (2.112)

among all procedures δ = (T, ν) ∈ Cγ satisfying

Cγ =
{
δ = (T, ν) : min

0≤j≤K
min

0≤l 6=j≤K
El [inf {Tr : νr = j}] ≥ γ

}
, (2.113)

where El [·] , El1 [·], for 1 ≤ l ≤ K, and γ is the minimum value for the mean time to false
alarm/isolation. The asymptotic lower bound n (γ) for the worst-worst-case delay (2.112)–
(2.113) is obtained in [130] as

n (γ) = inf
(T,ν)∈Cγ

(τ∗) ?
log (γ)
ρ∗

, as γ →∞, (2.114)

where ρ∗ = min1≤l≤K min0≤j 6=l≤K ρlj and ρlj = Eθl
[
log

(
fθl (y1) /fθj (y1)

)]
is the K-L informa-

tion between fθl and fθj .

Uniformly constrained conditional probability of false isolation. The drawback of
the criterion (2.112)–(2.113) lies in that the change-point k0 is constrained at the onset time
k0 = 1 for evaluating false isolation probabilities. For circumventing this inconvenience, a more
tractable criterion has been introduced in [129,132], involving the minimization of the maximum
mean delay for the detection-isolation

τ̃∗ (δ) = sup
k0≥1,1≤l≤K

Elk0 [T − k0 + 1|T ≥ k0] (2.115)

among all stopping procedures δ = (T, ν) ∈ Cγ,β satisfying

Cγ,β =
{
δ = (T, ν) : E0 [T ] ≥ γ, max

1≤l≤K
max

1≤j 6=l≤K
sup
k0≥1

Plk0 (ν = j|T ≥ k0) ≤ β
}
. (2.116)

An asymptotic lower bound n (γ, β) for the maximum mean delay (2.115)–(2.116) over all pro-
cedures in the class Cγβ is given by [132]:

n (γ, β) ? max
{

log γ

ρ∗fa
, log β

−1

ρ∗fi

}
, as min

{
γ, β−1

}
→∞, (2.117)

where ρ∗fa = min1≤j≤K ρj0 and ρ∗fi = min1≤l≤K min1≤j 6=l≤K ρlj .
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Uniformly constrained probabilities of false alarm and false isolation within a time
window. In aforementioned criteria, the false alarm constraint E0 [T ] ≥ γ stipulates a large
mean time to false alarm. However, a long expected duration to false alarm does not necessarily
imply the small value for the probability of false alarm within any time window of given length
[103, 104, 176]. Moreover, for safety-critical applications, it is preferable to warrant that the
local probabilities of false alarm and false isolation within a time window of predefined length
are upper bounded [176]. For these reasons, Lai [104] suggested to replace the ARL to false
alarm and false isolation constraints by the following worst-case probabilities of false alarm and
false isolation within a time window:

Pfa = sup
l≥1

P0 (l ≤ T < l +mα) , Pfi = max
1≤l≤K

sup
k0≥0

Plk0 (k0 ≤ T < k0 +mα, ν 6= l) , (2.118)

where Pfa denotes the worst-case probability of false alarm and Pfi stands for the worst-case prob-
ability of false isolation and mα satisfies lim inf mα/ |log (α)| > 1 |ρ∗| but log (mα) = o (log (α))
as α→ 0. Let

Cmα =
{
δ = (T, ν) : Pfa (δ) ≤ αmα, Pfi (δ) ≤ αmα

}
, (2.119)

be the class of all detection-isolation procedures satisfying constraints on Pfa and Pfi. As α→ 0,
an asymptotic lower bound for the mean delay for detection-isolation Elk0

[
(T − k0 + 1)+

]
, for

every 1 ≤ l ≤ K, in the class Cmα is obtained in [104]:

Elk0

[
(T − k0 + 1)+

]
≥ P0 (T ≥ k0) |log (α)|

ρl + o (1) uniformly in k0 ≥ 1, (2.120)

where ρl = minj 6=l ρlj .

Detection and isolation procedures

Several detection-isolation algorithms which attain different optimality criteria have been pro-
posed in literature. In the following, we consider typical ones, including the generalized CUSUM
procedure [130], matrix CUSUM procedure [138], recursive vector CUSUM procedure [129,132]
and the non-recursive window limited vector CUSUM procedure [104].

Generalized CUSUM procedure. By utilizing the idea of the class of extended stopping
variables, Nikiforov [130] generalized the Page’s CUSUM procedure [139] to the problem of joint
detection and isolation. The generalized CUSUM procedure δGCS = (TGCS, νGCS) introduced by
Nikiforov [130] can be described as

TGCS = min
1≤l≤K

{
T lGCS

}
, (2.121)

νGCS = arg min
1≤l≤K

{
T lGCS

}
, (2.122)

where T lGCS is the stopping time responsible for the detection of hypothesis Hl against other
alternative hypotheses {Hj}0≤j 6=l≤K and it is defined as

T lGCS = inf
{
k ≥ 1 : max

1≤i≤k
min

0≤j 6=l≤K
Ski (l, j) ≥ h

}
, Ski (l, j) =

k∑
t=i

log fθl (yt)
fθj (yt)

, (2.123)

where h is the chosen threshold and Ski (l, j) is the LLR between hypothesis Hl and hypothesis
Hj .
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Theorem 2.21. (Asymptotic optimality of generalized CUSUM procedure [130]). Consider the
generalized CUSUM procedure (2.121)–(2.123) in the class Cγ defined in (2.113) and h ∼ log (γ)
as γ →∞, especially h = log (γ). Then

τ∗ (TGCS) ≤ max
1≤l≤K

El [TGCS] ∼ log γ
ρ∗

as γ →∞, (2.124)

where ρ∗ = min1≤l≤K min0≤j 6=l≤K ρlj, where 0 < ρlj < ∞ for all 0 ≤ l 6= j ≤ K is the minimal
Kullback-Leibler information between two closet hypotheses.

Matrix CUSUM procedure. As discussed in [138], the main drawback of the generalized
CUSUM algorithm (2.121)–(2.123) lies in that it does not permit a recursive form, which makes
it computationally prohibitive for on-line applications. For this reason, Oskiper and Poor [138]
designed the matrix CUSUM procedure δMCS = (TMCS, νMCS) which can be expressed in a
recursive manner. The authors suggested to replace the max−min operands in (2.123) by
the min−max operands, leading to the following extended stopping time T lMCS for the matrix
CUSUM procedure:

T lMCS = inf
{
k ≥ 1 : min

0≤j 6=l≤K
max
1≤i≤k

Ski (l, j) ≥ h
}
. (2.125)

The stopping time and the final decision of the matrix CUSUM algorithm is described as

TMCS = min
1≤l≤K

{
T lMCS

}
, (2.126)

νMCS = arg min
1≤l≤K

{
T lMCS

}
. (2.127)

It can be notified from (2.125) that the CUSUM statistic gk (l, j) = max1≤i≤k S
k
i (l, j) can be

calculated recursively as

gk (l, j) = (gk−1 (l, j) + sk (l, j))+ , 1 ≤ l ≤ K, 0 ≤ j 6= l ≤ K, (2.128)

where (x)+ = max (x, 0), sk (l, j) = log
[
fθl (yk) /fθj (yk)

]
and initial condition g0 (l, j) = 0, for

all 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K. The recursive matrix CUSUM procedure can be described as

TMCS = inf
{
k ≥ 1 : max

1≤l≤K
min

0≤j 6=l≤K
gk (l, j) ≥ h

}
, (2.129)

νMCS = arg max
1≤l≤K

{
min

0≤j 6=l≤K
gTMCS (l, j)

}
. (2.130)

It has been shown in [138, 175] that the matrix CUSUM procedure (2.129)–(2.130) is fully
recursive and its statistical properties asymptotically coincides with the generalized CUSUM
algorithm (2.121)–(2.123). Another version of the matrix CUSUM procedure with different
thresholds can be found in [175,181].

Vector CUSUM procedure. As discussed in [129, 132, 175, 181], both the generalized
CUSUM algorithm and the matrix CUSUM procedure depend heavily on the mutual ge-
ometry of the hypotheses. Sometimes, the probability of false isolation increases signifi-
cantly when the change time k0 → ∞ due to an uncontrolled growth of some cumulative
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sums under the pre-change hypothesis H0 (see [175, pages 507-508] for detailed explana-
tion). In order to circumvent this difficulty, Nikiforov [129, 132] suggested to replace the
statistic max1≤i≤k S

k
i (l, j), which may be stochastically large under H0 for some l, j, by the

statistic max1≤i≤k S
k
i (l, 0) − max1≤i≤k S

k
i (j, 0), which is stochastically small under H0 for all

1 ≤ l, j ≤ K, leading to the following recursive vector CUSUM procedure δVCS = (TVCS, νVCS):

TVCS = inf
{
k ≥ 1 : max

1≤l≤K
min

0≤j 6=l≤K
[gk (l, 0)− gk (j, 0)− hlj ] ≥ 0

}
, (2.131)

νVCS = arg max
1≤l≤K

{
min

0≤j 6=l≤K
[gTVCS (l, 0)− gTVCS (j, 0)− hlj ]

}
. (2.132)

where the function gk (l, 0) is defined in a recursive manner as
gk (l, 0) = (gk−1 (l, 0) + sk (l, 0))+ , 1 ≤ l ≤ K, (2.133)

with initial condition g0 (l, 0) = 0 1 ≤ l ≤ K and g0 (0, 0) = 0. The thresholds hl,j are chosen
in the following way

hl,j =
{
hfa if 1 ≤ l ≤ K and j = 0
hfi if 1 ≤ l, j ≤ K and j 6= l

, (2.134)

where hfa and hfi stand for the detection and isolation thresholds, respectively.
The statistical properties of the vector CUSUM procedure δVCS = (TVCS, νVCS) have been
investigated in [129,132] with respect to the optimality criterion (2.115)–(2.116).
Theorem 2.22. (Asymptotic optimality of vector CUSUM procedure [129,132,175]). Consider
the vector CUSUM procedure δVCS = (TVCS, νVCS) given in (2.131)–(2.134). Suppose that 0 <
ρlj < ∞ for all 0 ≤ l 6= j ≤ K and the following regularity condition is fulfilled: the moment-
generating function ϕ (ς) = El

[
eςsk(l,j)

]
<∞ exists for all real number ς ∈ (−η, η), where η > 0,

and for all 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K. Let hlj be given by (2.134) and hfa > hfi. Let also
γ →∞, β → 0 and log (γ) ≥ log

(
β−1) (1 + o (1)). If the thresholds are selected as hfa ∼ log (γ)

as γ →∞ and hfi ∼ log
(
β−1) as β → 0, then

E0 [TVCS] ≥ γ, max
1≤l≤K

max
1≤j 6=l≤K

sup
k0≥1

Plk0 (νVCS = j|TVCS ≥ k0) ≤ β (1 + o (1)) , (2.135)

and
τ̃∗ (δVCS) ≤ max

(
log (γ)
ρ∗fa

,
log

(
β−1)
ρ∗fi

)
(1 + o (1)) . (2.136)

It follows from the Theorem 2.22 that the vector CUSUM procedure δVCS = (TVCS, νVCS) is
asymptotically optimal in the class Cγβ defined in (2.116).

Window Limited vector CUSUM procedure. Pursuing the asymptotic theory for the
detection problem [103, 107], Lai [104] has generalized the results of Nikiforov in [130] for the
non-i.i.d. case under the convergence condition on the log-likelihood ratio. He proposed also the
following window limited vector CUSUM procedure δVWL = (TVWL, νVWL), where the stopping
time TVWL and the final decision νVWL are given by

TVWL = inf
{
k ≥ 1 : max

1≤l≤K
min

0≤j 6=l≤K

[
max

k−mα+1≤i≤k
Ski (l, 0)− max

k−mα+1≤i≤k
Ski (j, 0)

]
≥ h

}
,

(2.137)

νVWL = arg max
1≤l≤K

{
max

TVWL−mα+1≤i≤TVWL
STVWL
i (l, 0)

}
, (2.138)
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where h is a chosen threshold. The statistical properties of the window limited vector CUSUM
procedure have been investigated in [104], whose i.i.d. case is shown in the following theorem.

Theorem 2.23. (Asymptotic optimality of the window limited vector CUSUM procedure [104]).
Consider the window limited vector CUSUM procedure δVWL = (TVWL, νVWL) given in (2.137)–
(2.138). Suppose that mα = O (|log (α)|) and h ∼ |log (α)| as α→∞. Especially, if the threshold
h is such chosen that 2Ke−h = α, then

Pfa (δVWL) = sup
l≥1

P0 (l ≤ TVWL < l +mα) ≤ αmα, (2.139)

Pfi (δVWL) = max
1≤l≤K

sup
k0≥0

Plk0 (k0 ≤ TVWL < k0 +mα, ν 6= l) ≤ K − 1
K

αmα, (2.140)

and for every 1 ≤ l ≤ K, as α→ 0

Elk0

[
(TVWL − k0 + 1)+

]
≤ P0 (T ≥ k0) |log (α)|

min0≤j 6=l≤K ρlj + o (1) uniformly in k0 ≥ 1, (2.141)

thus proving that the window limited vector CUSUM procedure δVWL = (TVWL, νVWL) is asymp-
totically optimal in the class Cmα defined in (2.119) in the sense that it minimizes the worst-case
conditional mean delay for detection-isolation defined in (2.115).

It follows from (2.120) and (2.141) that the window limited vector CUSUM procedure (2.137)–
(2.138) is asymptotically optimal in the sense that it minimizes the average delay for detection-
isolation Elk0

[
(TVWL − k0 + 1)+

]
, for all 1 ≤ l ≤ K, uniformly in k0 ≥ 1 over all stopping times

T in the class Cmα defined in (2.119).

2.4.4 Conclusion

Several criteria and optimal procedures for the sequential change-point detection-isolation prob-
lem have been reviewed in this section. In the quickest change detection problem, the criteria of
optimality are to minimize the risk associated with the detection delay for a given value on the
false alarm rate. For the joint detection-isolation problem, it is proposed to minimize also the
risk connected to the delay for detection-isolation subject to the false alarm and false isolation
rates.
The abrupt change detection-isolation problem posits that the post-change duration is infinitely
long and that the detection probability is unity once the change has occurred. In practice,
however, there exist certain situations where the post-change duration is short, including the
detection of a “burst” acoustic signature or a “pulse” in radio astronomy signals, the passive
underwater surveillance or the on-line monitoring of SCADA systems against cyber-physical
attacks. The problem of detecting transient signals will be considered in the following section.

2.5 Sequential Detection of Transient Changes

In previous section, we have presented different results on the classical quickest change detection-
isolation problem which deals with an abrupt change of infinitely long duration in distribution of
a stochastic process. The objective of this section is to introduce recent results on the transient
change detection problem. Several transient detectors with respect to different optimality criteria
will be discussed.
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2.5.1 Introduction

The classical quickest change detection-isolation methods are extremely suitable to the on-line
surveillance of technological processes against abnormal behaviors of infinitely long duration.
The criteria of optimality should be favorable of small mean delay for the detection/isolation
subject to acceptable levels on the false alarm and false isolation. The transient change detection
problem, on the other hand, is interested in the reliable detection of transient signals. The
transient change detection problem can be broadly classified into two types [67, 69]: short-
duration signals and safety-critical applications.

Transient changes involving short-duration signals

In practice, there exist a large number of applications where the input data contains, in addition
to random noises, suddenly arriving signals of short period, including radar and sonar [2], non-
destructive testing [164], a “burst” in acoustic signatures [29], a “pulse” in radio astronomy
signals [57], the monitoring of water quality in distribution networks [70], or the surveillance of
SCADA systems against cyber-physical attacks [80]. In such applications, the transient signals
should be detected before their disappearance. The following statistical model is often used for
describing short-duration changes in a stochastic system [29,69,75,173,199]:

yk ∼


Pθ0 if k < k0

Pθ1 if k0 ≤ k < k0 + L

Pθ0 if k ≥ k0 + L

, (2.142)

where Pθ0 denotes the distribution of the observations yk under the pre-change mode and the
post-change mode, Pθ1 stands for the distribution of the observations yk under the transient
change mode, k0 is the unknown change-point and L is the transient change duration.

Unlike the traditional quickest change detection problem where the change duration is infinitely
long (corresponding to L→∞), three scenarios may occur in the case of short-duration signals
(see figure 2.9) as:

• False alarm: The change is detected before its occurrence (i.e., T < k0). The false alarm
rate can be evaluated by either the ARL to false alarm [113] or the probability of false
alarm within any time window of predefined length [102,103,176].

• Timely (correct) detection: The change is detected within the transient change period (i.e.,
k0 ≤ T ≤ k0 + L − 1). Generally, the timely (correct) detection rate is measured by the
probability of detection, i.e., the probability of detecting the change within the transient
window [k0, k0 + L− 1].

• Missed (latent) detection: The change is detected after its disappearance (i.e., k0 + L ≤
T <∞) or the change is never revealed (i.e., T →∞). The missed detection rate should
be evaluated by the probability of missed detection. The authors in [75] have considered
the latent detection (i.e., k0 + L ≤ T < ∞) as legitimate detection. In our opinion, the
latent detection should be considered as the missed detection since the change has already
terminated.
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Figure 2.9 – Transient change detection problem for short-duration signals.

In the quickest change detection problem, the change should be detected with the probability
of 1 since the change duration is assumed to be infinitely long. Hence, the detection delay is
the only quantity of interest for evaluating the detection of the change [75]. The criteria of
optimality should be favorable of small detection delay subject to an acceptable level of false
alarm. In contrast, the transient change detection problem posits that the change duration
is finite and short, leading to the fact that the probability of detection of the change may
be smaller than 1. The probability of detection and the probability of missed detection are,
therefore, two quantities of interest when dealing with short-duration changes. The criteria of
optimality should be favorable of high probability of detection (or small probability of missed
detection) subject to an acceptable level of false alarm.

Transient changes involving safety-critical applications

The second type of transient change detection problem involves safety-critical applications such
as the integrity monitoring of GPS systems [9], the quality monitoring of water supply [67,69,70],
or the surveillance of SCADA systems against cyber-physical attacks [6,7,141]. For the security
of such safety-critical infrastructures, the maximum permitted detection delay is often limited by
a prescribed value L even if the changes are of infinitely long duration [9,69,123]. In other words,
a predefined hard limit L is imposed on the detection delay. This value L can be calculated from
the gravity of the change (i.e., the magnitude of the change) and the permitted consequence of
the change. As it can be seen from figure 2.10, following scenarios may occur:

• False alarm: Similar to the case of short-duration signals, the false alarm is any declaration
that takes place before its occurrence (i.e., T < k0). For safety-critical applications, the
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Figure 2.10 – Transient change detection problem for safety-critical applications.

false alarm rate should be measured by the probability of false alarm within any time
window of predefined length since this criterion is more stringent than the ARL to false
alarm constraint [103,176].

• Timely detection: Since a hard limit L is imposed on the detection delay, the change is
said to be correctly detected only if the alarm is raised within the predefined window of
size L right after the change (i.e., k0 ≤ T ≤ k0 + L − 1). The probability of detection is,
therefore, an appropriate performance index for measuring the detection rate.

• Missed detection: Any declaration of the change with the detection delay greater than a
prescribed value L is considered as missed (i.e., T ≥ k0 +L). The missed detection rate is
generally evaluated by the probability of missed detection.

As it has been discussed in [9, 69, 123], the drawback of the classical quickest change detection
criterion lies in the existence of the right “tail” in the distribution of the detection delay. Roughly
speaking, a small average detection delay does not guarantee that the probability of having the
detection delay greater than a required time-to-alert L (i.e., the probability of missed detection)
is negligible. Moreover, the declaration of the change with detection delay greater than L is
undesirable, especially for safety-critical applications, since the latent detection would cause
catastrophic damage to the systems. In contrast, in the case of timely detection (i.e., k0 ≤ T ≤
k0 + L− 1), the true detection delay T − k0 + 1 is always smaller than or equal to the required
time-to-alert L. In such cases, the true detection delay has no significance since the impact of
the change on the system is negligible. For these reasons, the risk associated with the detection
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of the change should be evaluated by either the probability of detection or the probability of
missed detection in stead of classical performance indexes involving the mean detection delay.

Discussion

Following from above analysis, there exists a fundamental difference between two aforementioned
types of transient change detection problems. The first type deals with short-duration signals
while the second type involves safety-critical applications even if the changes are of infinitely
long duration. However, the optimality criteria for both types should favor high probability of
detection or small probability of missed detection subject to an acceptable level on the false
alarm rate.

In practice, there are several applications comprising of both types of transient changes, including
the monitoring of water quality against malevolent activities [67,70] or the surveillance of SCADA
systems against cyber-physical attacks [7, 80]. Let us take an example of malicious attacks on
SCADA systems. On one hand, the cyber-physical attacks on SCADA systems can be modeled
as additive signals of short-duration on both system equations, as it has been discussed in
chapter 1. On the other hand, the SCADA systems involve a large number of safety-critical
infrastructures such as electric power grids, gas pipelines or water networks. For these reasons,
the security of SCADA systems against cyber-physical attacks addressed in this manuscript
perfectly fits into the transient change detection framework.

Let us discuss now the attack duration. Let L be the true attack duration and L be the required
time-to-alert designed by system operators. The putative value (i.e., designed value) L is known
a priori but the true value L is generally unknown. Let us consider three following scenarios.
Firstly, two types of transient changes perfectly coincide if the true value is equal to the putative
value (i.e., L = L). Secondly, if the true attack duration is greater than the required time-to-
alert (i.e., L > L), any detection of attack with a delay greater than L is undesirable. Such an
alarm should be considered as missed since it may cause catastrophic damage to safety-critical
infrastructures. Hence, any detection of attack with detection delay greater than L is considered
as missed even if the true detection is greater the required time-to-alert L. Thirdly, if the true
attack duration is smaller than the putative value (i.e., L < L), it is desirable to detect the attack
before its termination, of course. However, the detection of the change after its termination and
before the hard limit L (i.e., L < T ≤ L) is still acceptable. The known hard limit L can be
used in place of the unknown true value L in the case L < L. In summary, the attack duration
could be assumed to be known (i.e., being equal to the hard limit L) and any detection of the
change with detection delay greater than the prescribed value L is considered as missed.

Staring from now, we denote by P the probability measure. Let P0 , P∞ (resp. P0 , P∞ and
E0 , P0) be the joint distribution (resp. probability measure and mathematical expectation)
of the observations y1, y2, · · · , yk0 , · · · when the observations y1, y2, · · · follow the pre-change
mode (i.e., yk ∼ P0 for all k ≥ 1). Let Pk0 (resp. Pk0 and Ek0) denote the joint distribution
(resp. probability measure and mathematical expectation) of the observations y1, y2, · · · , yk0 , · · ·
when the observation yk follows the observation model (2.142). Different criteria of optimality
for the transient change detection problem will be investigated in the following sub-section.
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2.5.2 Criteria of optimality

In contrast to the classical quickest change detection problem, the optimality criteria for the
transient change detection problem should be of high probability of detection or small probability
of missed detection subject to an acceptable level of false alarm. The false alarm rate can
be measured by either the ARL to false alarm or the probability of false alarm within any
time window of predefined length. In the literature, various criteria of optimality under both
Bayesian and non-Bayesian approaches have been proposed for comparing different transient
change detection procedures.

Bayesian approach

The Bayesian approach considers the change-point k0 as an unknown and random variable
following some known a priori distribution Q. The a priori distribution Q is often chosen as
either the geometric distribution Q (p) or the zero-modified geometric distribution Q (π, p). The
geometric distribution Q (p) has the form: P (k0 = k) = p (1− p)k−1 for any k ≥ 1 with the
parameter p ∈ (0, 1]. On the other hand, the zero-modified geometric distribution Q (π, p) has
the form: P (k0 ≤ 0) = π and P (k0 = k) = (1− π) p (1− p)k−1 for any k ≥ 1 with the parameters
π ∈ [0, 1] and p ∈ (0, 1]. It can be seen clearly that the geometric distribution Q (p) is a special
case of the zero-modified geometric distribution Q (π, p) with π = 0.

The first optimality criterion under the Bayesian setting was found in [18] where the author
suggested to maximize the probability of detection P (|T − k0 + 1| ≤ L). By imposing the a
priori geometric distribution Q (p) on the change-point k0, the Bayesian optimization problem
was solved for the case of independent and identically distributed (i.i.d.) observations under
simple hypotheses. The optimal solution to the problem, which was obtained for any L =
1, 2, · · · , turned out to be the simple Shewhart control chart [165]. The probability maximizing
idea was utilized also in [145, 161]. For example, Sarnowski and Szajnowski [161] extended
the results in [18] to the case of dependent observations generated from Markov processes.
In addition, Pollak and Krieger [145] considered the i.i.d. observations but the post-change
parameter θ was assumed to follow some a priori known parametric family of distributions
G (θ). The Bayesian problem of maximizing P (|T − k0 + 1| ≤ L) was solved in [145] for the
special case L = 1. It is worth noting that, in the aforementioned work [18, 144, 161] under the
Bayesian framework, the authors did not attempt to control the false alarm rate in any sense,
as discussed in Moustakides [123].

In an attempt to control the false alarm rate, the authors in [150] suggested to maximize the
probability of detection P (k0 ≤ T ≤ k0 + L− 1) subject to the the probability of false alarm
P (T < k0) ≤ α, where α ∈ (0, 1) is the prescribed value. Following the same probability
maximizing approach, Moustakides [123] studied multiple optimality properties of the Shewhart
control chart [165] with respect to different criteria of optimality, under both Bayesian approach
and non-Bayesian approach. Under the Bayesian setting, Moustakides [123] imposed the zero-
modified a priori distribution Q (π, p) on the change-point k0 and suggested two new criteria of
optimality.

The first criterion proposed by Moustakides [123] involves the maximization of the following
conditional probability of detection:

sup
T∈Cα

{
PM
d (T ;L) = P (k0 ≤ T ≤ k0 + L− 1|T ≥ k0)

}
, (2.143)
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over all stopping times T ∈ Cα in the class Cα = {T : P (T < k0) ≤ α}, where α ∈ (0, 1) is a
prescribed value on the false alarm rate and PM

d (T ;L) denotes the conditional probability of
detection which depends on the a priori distribution Q (π, p). It has been discussed in [123]
that one of the main drawbacks of the Bayesian approach is the requirement to properly specify
the distribution Q (π, p) which depends heavily on the parameters π and p. For this reason,
Moustakides [123] suggested an alternative criterion to (2.143), which is independent from the
distribution Q (π, p). The second criterion proposed by Moustakides [123] consists of maximizing
the following worst-case conditional probability of detection:

sup
T∈Cγ

{
PM
d (T ;L) = inf

Q(π,p)
P (k0 ≤ T ≤ k0 + L− 1 |T ≥ k0 )

}
, (2.144)

over all stopping times T ∈ Cγ in the class Cγ = {T : E0 [T ] ≥ γ}, where γ ≥ 1 is an acceptable
level on the ARL to false alarm and PM

d (T ;L) stands for the worst-case conditional probability
of detection over all a priori distributions Q (π, p). The problem was solved in [123] for the case
L = 1. It was shown in [123] that the optimum detection procedures w.r.t. both aforementioned
optimality criteria turned out to be the modified Shewhart control chart [165].

Non-Bayesian approach

Several criteria of optimality have been proposed under the non-Bayesian framework in which the
change-point k0 is assumed to be unknown but non-random. The optimality criteria often involve
the maximization of the (worst-case, conditional) probability of detection or the minimization
of the (worst-case, conditional) probability of missed detection subject to an acceptable level on
the false alarm rate.
By modifying the optimality criteria suggested by Lorden [113] and Pollak [143], initially pro-
posed for the classical quickest change detection problem, Moustakides [123] introduced two
new performance indexes for measuring the risk associated with the detection of the change.
The first criterion of optimality, obtained by modifying the Lorden’s criterion [113], consists in
maximizing the following worst-worst-case conditional probability of detection:

sup
T∈Cγ

{
PM1
d (T ;L) = inf

k0≥1
ess infPk0 (k0 ≤ T ≤ k0 + L− 1 |y1, y2, · · · , yk0−1, T ≥ k0 )

}
(2.145)

among all stopping times T ∈ Cγ in the class Cγ = {T : E0 [T ] ≥ γ}, where γ ≥ 1 is a prescribed
value on the ARL to false alarm and PM1

d (T ;L) denotes the worst-worst-case conditional prob-
ability of detection proposed by Moustakides in [123].
The second criterion of optimality, obtained by modifying the Pollak’s criterion [143], involves
the maximization of the following worst-case conditional probability of detection:

sup
T∈Cγ

{
PM2
d (T ;L) = inf

k0≥1
Pk0 (k0 ≤ T ≤ k0 + L− 1|T ≥ k0)

}
(2.146)

among all stopping times T satisfying E0 [T ] ≥ γ, where γ ≥ 1 is a prescribed value on the
ARL to false alarm and PM2

d (T ;L) stands for the worst-case conditional probability of detection
proposed by Moustakides in [123].
Previously, the optimality criterion (2.146) was adopted by Pollak and Krieger [145] for the
special case L = 1 under the semi-Bayesian setting where the change-point k0 was supposed to
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be unknown and deterministic but the post-change parameter θ was assumed to be a random
variable following some known a priori parametric family of distributions G (θ). The criterion
of optimality involves the maximization of the following worst-case conditional probability of
detection (for L = 1):

sup
T∈Cγ

{
PP
d (T ) = inf

k0≥1
Pk0 (T = k0 |T ≥ k0 )

}
, (2.147)

among all stopping times T ∈ Cγ in the class Cγ = {T : E0 [T ] ≥ γ}, where γ ≥ 1 is a prescribed
value on the ARL to false alarm, and PP

d (T ) stands for the worst-case conditional probability of
detection suggested by Pollak and Krieger [145], implicitly depending on the distribution G (θ).
It was shown in [145] that the optimal detection procedure was the generalized Shewhart control
chart [165].

Remark 2.2. The criterion (2.147) suggested by Pollak and Krieger [145] was a special case of
the criterion (2.146) proposed by Moustakides [123] for the case L = 1. Though the optimality
criteria (2.145)–(2.146) were written for any L = 1, 2, · · · , Moustakides was able to solve the
problem only for the special case L = 1, which coincided with the work of Pollak and Krieger
[145]. The optimal stopping times for both max-min criteria turned out to be the generalized
Shewhart control chart [165].

Under the non-Bayesian framework, the probability minimizing approach has been also consid-
ered in [9,69]. The optimality criteria involved the minimization of the worst-case (conditional)
probability of missed detection subject to an acceptable level on the worst-case probability of
false alarm within any time window of predefined length. The first probability minimizing idea
was proposed by Bakhache and Nikiforov in [9], where the authors suggested to minimize the
following worst-case (non-conditional) probability of missed detection:

inf
T∈CB

α

{
PB
md (T ;L) = sup

k0≥1
Pk0 (T − k0 + 1 > L)

}
(2.148)

among all stopping times T ∈ Cα satisfying

CB
α =

{
T : PB

fa (T ;mα) = sup
l≥1

P0 (l ≤ T < l +mα) ≤ α
}
, (2.149)

where PB
md (T ;L) denotes the worst-case probability of missed detection and PB

fa (T ;mα) stands
for the worst-case probability of false alarm within any time window of length mα and α ∈ (0, 1)
is a prescribed value on the false alarm rate.

It has been discussed in [69] that, for safety-critical applications, the worst-case probability of
missed detection supk0≥1 Pk0 (T − k0 + 1 > L) should be replaced by the worst-case conditional
probability of missed detection supk0≥1 Pk0 (T − k0 + 1 > L|T ≥ k0). Under the assumption that
the change does not occur during the “preheating” period (i.e., k0 ≥ L), Guépié et al [69]
suggested to minimize the following worst-case conditional probability of missed detection:

inf
T∈CG

α

{
PG
md (T ;L) = sup

k0≥L
Pk0 (T − k0 + 1 > L|T ≥ k0)

}
(2.150)
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among all stopping times T ∈ CG
α satisfying

CG
α =

{
T : PG

fa (T ;mα) = sup
l≥L

P0 (l ≤ T < l +mα) ≤ α
}
, (2.151)

where PG
md (T ;L) denotes the worst-case conditional probability of missed detection and

PG
fa (T ;mα) stands for the worst-case probability of false alarm within any time window of length
mα and α ∈ (0, 1) is a prescribed value on the false alarm rate. It should be noted that the
window size mα and the false alarm rate α, independent from each other, are decided by system
operators.

2.5.3 Detection procedures

The objective of this subsection is to resume several detection procedures which can be used for
detecting transient changes in the statistical model (2.142). We focus only on the non-Bayesian
setting where the change-point k0 is unknown but non-random. For both academic and practical
purposes, we consider two scenarios: known transient change parameters and unknown transient
change parameters. It should be noted that the a priori information about the change plays
an extremely important role in the design of detection procedures. In other words, the more a
priori information about the parameters we have, the better the detection procedures would be
designed.

Known transient change parameters

The assumption on the known transient parameters, including the shape of the change, the
magnitude of the change and the duration of the change, is mainly applicable for the academic
purpose. The only unknown parameter is the change-point k0. Under these assumptions, optimal
and/or suboptimal detection procedures w.r.t. certain optimality criteria may be obtained (see,
for example, in [9, 67–70,123,145]).

It is well-known that, when dealing with an abrupt change of infinitely long duration, the
CUSUM procedure proposed by Page [139] is optimal in the sense that it minimizes the worst-
worst-case mean detection delay for a given value on the ARL to false alarm. Hence, it is
reasonable to consider the Page’s CUSUM test in detecting temporary signals (i.e., transient
signals or signals of short duration). For example, the CUSUM procedure has been employed
for detecting transient signals in radio astronomy [57] or transient changes in hidden Markov
models [29].

In addition, Han et al in [75] have investigated the statistical performance of the CUSUM
procedure applied to the detection of transient signals modeled in (2.142). The stopping time
TCS of the CUSUM procedure in the recursive form can be described as

TCS = inf
k≥1
{Zk ≥ h} , Zk = max {0, Zk−1 + log [fθ1 (yk) /fθ0 (yk) ]} , Z0 = 0, (2.152)

where Zk is the CUSUM statistic. The authors in [75] have considered three scenarios for
the probability of detection, including standard detection, initial-point detection and latent
detection.
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Figure 2.11 – Three scenarios of detection with the Page’s CUSUM procedure (from [75]).

• Standard detection: The CUSUM statistic Zk is zero at the change’s onset (i.e., Zk0 =
0) and the threshold is crossed before the change has disappeared. The probability of
detection is described as

Pstd
d (TCS;L) = P (0 ≤ TCS − k0 + 1 ≤ L |Zk0 = 0) . (2.153)

• Initial-point detection: The CUSUM statistic Zk is non-zero when the change starts (i.e.,
Zk0 = z0 6= 0) and the threshold is crossed before the change has terminated. The
probability of detection is approximated as

Pinit
d (TCS;L) =

∫
z0

P (0 ≤ TCS − k0 + 1 ≤ L |Zk0 = z0 ) dFss (z0) , (2.154)

where dFss (z0) is the probability distribution of z0 at the change’s onset.

• Latent detection: The CUSUM statistic Zk is non-zero at the change’s onset and the
threshold is crossed after the disappearance of the change. Taking into account the latent
detection, the probability of detection is written as

Plat
d (TCS;L) =

∫
z0

P (0 ≤ TCS − k0 + 1 ≤ L |Zk0 = z0 ) dFss (z0) + (2.155)

∫
z0

∫
zL

P (decide H1;h− zL;−zL) dF (zL |TCS − k0 + 1 > L,Zk0 = z0 ) dFss (z0) ,

where zL is the value of the CUSUM statistic Zk at the time instant k = k0 + L − 1,
P (decide H1;h− zL;−zL) denotes the probability of crossing the upper threshold in a
standard sequential test with upper and lower thresholds, respectively, h − zL and −zL,
and dF (zL |TCS − k0 + 1 > L,Zk0 = z0 ) refers to the probability function of the CUSUM
statistic Sk at the end of the transient signal (i.e., k = k0 + L − 1) accounting for both
the non-initial value z0 and under the condition that the detection is raised after the
termination of the change (i.e., TCS ≥ k0 + L).
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It has been discussed in [75] that the latent detection is of legitimate interest. The relationship
between three types of detection is, therefore, described as

Pstd
d (TCS;L) ≤ Pinit

d (TCS;L) ≤ Plat
d (TCS;L) . (2.156)

Several methods (three analytical and two numerical) have been proposed for approximating the
probability of detection Plat

d (TCS;L). Three analytical methods include the ternary quantization
method, the continuous-time moment matching method and the Brownian motion method. Two
numerical methods are the matrix approach and the fast Fourier transform approach. Interested
readers are referred to [75] for more details.
In addition, the Window Limited (WL) CUSUM procedure, initially proposed by Willsky and
Jones [205], has been shown by Lai [102,103,107] to be an asymptotically optimal detection rule.
In order to render the WL CUSUM procedure more flexible, Guépié [67] developed the so-called
Variable Threshold Window Limited (VTWL) CUSUM algorithm for the detection of transient
signals. Under the assumption that the change does not occur during the “preheating” period
(i.e., k0 ≥ L), the VTWL CUSUM algorithm can be described as

TVTWL = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ski − hk−i+1

)
≥ 0

}
, (2.157)

where Ski is the log-likelihood ratio (LLR) and the thresholds h1, h2, · · · , hL are considered as
tuning parameters for optimizing the VTWL CUSUM algorithm w.r.t. the transient change
detection criterion (2.150)–(2.151).
Consider the following Gaussian independent observation model:

yk ∼


N
(
0, σ2) if k < k0

N
(
θ1, σ

2) if k0 ≤ k < k0 + L

N
(
0, σ2) if k ≥ k0 + L

, (2.158)

where the change-point k0 is unknown but the change duration L is assumed to be known. The
parameters of the Gaussian distribution θ1 and σ are completely known. The VTWL CUSUM
algorithm is expressed in the Gaussian case as

TVTWL = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ski − hk−i+1

)
≥ 0

}
, Ski =

k∑
t=i

θ1
σ2

(
yt −

θ1
2

)
. (2.159)

The optimal choice of thresholds h1, h2, · · · , hL of the VTWL CUSUM procedure (2.159) in the
Gaussian model (2.158) w.r.t. the transient change detection criterion (2.150)–(2.151) has been
addressed in [67]. It has been shown that the optimized VTWL CUSUM algorithm is equivalent
to the following Finite Moving Average (FMA) detection rule:

TFMA
(
h̃L
)

= inf
k≥L


k∑

t=k−L+1
yt ≥ h̃L

 , (2.160)

where the threshold h̃L is chosen for assuring an acceptable level of false alarm.
In addition, Guépié [67] addressed also the detection of transient signals following some known
profiles with constant signs and he obtained similar results in such cases by utilizing the concept
of the associated random variables [46]. It has been shown by simulation in [67, 68, 70] that
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the FMA detection rule outperforms than the CUSUM algorithm w.r.t. the transient change
detection criterion (2.150)–(2.151).

Recently, Moustakides [123] has obtained an exact optimal solution w.r.t. a different transient
change detection criterion. Though the criteria of optimality (2.145)–(2.146) suggested in [123]
were written for any L ≥ 1, Moustakides was able to find the optimal solution for the particular
case L = 1 only. In the case of i.i.d. observations before and after the change with corresponding
densities fθ0 and fθ1 and for L = 1, Moustakides proved that the following simple Shewhart
control chart:

TSH = inf {k ≥ 1 : log [fθ1 (yk) /fθ0 (yk) ] ≥ h} , (2.161)

where h is a chosen threshold, minimizes both the worst-worst-case conditional probability
of detection (2.145) and the worst-case conditional probability of detection (2.146) among all
stopping times satisfying the ARL to false alarm constraint. It is worth noting that the Shewhart
test (2.161) coincides with the repeated Neyman-Pearson test applied to one observation at each
time instant k ≥ 1. A more general result was obtained previously by Pollak and Krieger [145]
under the semi-Bayesian setting where the change-point k0 is unknown and non-random but
the transient change parameter θ follows a known a priori distribution G (θ). The optimal
results in [123,145], which were obtained for the special case L = 1, have very limited practical
application. It can be applied only to “loud-and-short” transient changes.

Unknown transient change parameters

In practice, there are a large number of applications involving unknown transient change parame-
ters. In other words, hypotheses on the transient signals are highly composite w.r.t. the duration
of the change, the shape of the change and the magnitude of the change. In such circumstances,
it is desirable to design detection procedures offering robust performance with minimum infor-
mation about the transient change parameters. From a literature review, transient detectors
for unknown parameters can be classified into four main categories: CUSUM-based algorithms,
generalized likelihood ratio (GLR-based) detectors on the basis of some preliminary transforma-
tions, min-max detectors, and transient detectors based on power-law statistics in the frequency
domain.

The CUSUM-based algorithms have been employed extensively for dealing with the the transient
changes of unknown parameters (i.e., location, length, strength and form). For example, the
CUSUM procedure has been shown in [200] to perform relatively well regardless of various forms
of the transient signals. However, the CUSUM test has been shown [199] to be quite sensitive
to the transient length. In other words, the CUSUM procedure designed for long-and-quite
transients would perform badly for short-and-loud signals and vice versa [199]. The robustness
of the CUSUM procedure with respect to the transient length has been improved by using
time-varying thresholds [198, 199, 203, 204]. The stopping time TVTP of the so-called Variable
Threshold Page (VTP) test can be described as

TVTP = inf
k≥1
{Zk ≥ hk} , Zk = max {0, Zk−1 + log [fθ1 (yk) /fθ0 (yk) ]} , Z0 = 0, (2.162)

where the thresholds hk are tuned for assuring an acceptable level of false alarm. The design
and implementation of the VTP algorithm for the case of Gaussian shift-in-variance have been
elaborated in [198, 199]. In addition, it has been shown by simulation that the VTP test offers
competitive performance w.r.t. several transient detectors found in literature.
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The integration between the GLR structure and a class of linear transformations has been
considered in [59,148] as an alternative solution to CUSUM-based procedures for detecting short-
duration signals. This approach has been utilized for comparing different GLR-based transient
detectors on the basis of several linear time-frequency analysis techniques, including the short-
time Fourier transform [59], the Gabor representation [58] and the wavelet transform [2, 60].
Borrowing from [59,148], the signal model is described as

y = Cθ + e+ ξ, (2.163)

where y ∈ Rp is the vector of observations, C ∈ Rp×n is the observation matrix, θ ∈ Rn is the
signal descriptor, e ∈ Rp stands for the signal mismatch, and ξ ∈ Rp denotes the random noises.
Let W ∈ Rm×p be the matrix of orthonormal rows. The signal model after a linear transform is
written as

z = Wy = WCθ +We+Wξ, (2.164)

where the signal descriptor θ is assumed to be zero under H0 and non-zero under H1. The
transient detector designed for the ideal model (i.e., there is no model mismatch or e = 0) raises
an alarm if the GLR statistic

TGLR (y) = yTW TWC
(
CTW TWC

)−1
CTW TWy (2.165)

is greater than a threshold h which is normally chosen for assuring an acceptable level of false
alarm. Interested readers are referred to [59,148] for more details.

In addition, the authors in [173] have proposed the hyperparameter approach for detecting
unknown transient signals, where the unknown parameters are assumed to follow some known
a priori distribution with unknown parameters. Let y be an observation vector following a
distribution Fθ (y) depending on the parameter θ. The detection problem consists in deciding
hypothesis H0 = {θ ∈ Θ0} against hypothesis H1 = {θ = Θ1}, where Θ0 ∩ Θ1 = ∅. Since the
hypotheses are composite, the a priori distribution G (θ) is imposed on the parameter θ where
the distribution Gθ (z) is known but its parameter is unknown. For these reasons, the authors
in [173] suggested to jointly estimate the parameter θ and the parameters of Gθ (z) via the
estimation-maximization (EM) algorithm. The transient detector [173] raises an alarm if the
following statistic

TEM = maxθ∈Θ1 {
∫
z dF (y|z) dGθ (z)}

maxθ∈Θ0 {
∫
z dF (y|z) dGθ (z)}

is crossing a threshold. Interested readers are referred to [173] for detailed implementation of
the EM algorithm.

In [74], Han et al have developed the min-max detector for detecting transient signals. This min-
max idea was initiated by Baygun and Hero [12] in the statistical hypothesis testing framework.
The criterion of optimality involves the minimization of the maximum probability of missed
detection subject to an acceptable level on the probability of false alarm. The minimization
is over all tests and the maximization is over all possible alternatives (i.e., change-point and
change duration). Let N be the number of observations and L be the minimum value of change
duration. It has been shown that, when the number of observations N goes to infinity, the
min-max detector raises an alarm once the following statistic

TMM =
N−L+1∑
i=1

i+L−1∏
j=i

fθ1 (yj)
fθ0 (yj)

,
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where fθ0 (yj) and fθ1 (yj) are the p.d.f. of the observation yj under H0 and H1, respectively,
is greater than the threshold h. The comparison between the min-max detector and the Page’s
CUSUM test has been also performed for the case of Gaussian shift-in-mean transient. The
min-max test outperforms the CUSUM test for the worst-case scenario while the CUSUM test
offers better performance in some others.

The so-called power-law statistics proposed by Nuttall [134, 135], operating on the basis of
the magnitude-squared discrete Fourier transform (DFT) bins, have been shown to be simple,
effective and reliable detectors when dealing with transient signals with unknown structure,
location, length and strength. Especially, when some a priori information about the transient
signals, i.e., transient length, is available, the “maximum” detector proposed by Nuttall [136] has
been shown to perform extremely well compared to other detectors [200]. The drawback of the
power-law detector lies in that its data must be pre-normalized and spectrally white, as has been
discussed in [202]. In order to circumvent this difficulty, Wang and Willett [201, 202] proposed
several novel power-law detectors in both frequency and wavelet domains. These detectors can
be considered as all-purpose and plug-in solutions for detecting transient signals since they offer
exceptional performance, are easy to implement and require minimal information about transient
signals.

2.5.4 Conclusion

In this section, we have resumed recent results on the transient change detection problem which
consists of two types: short-duration signals and safety-critical applications. For both types of
transient changes, the criteria of optimality should be favorable of maximizing the probability
of detection or minimizing the probability of missed detection subject to an acceptable level
of false alarm. Taking into account the transient change detection problem, various detection
procedures have been proposed for detecting transient signals, for both academic and practical
purposes.

It has been discussed in [199] that if the information about the transient changes (i.e., struc-
ture, length and strength) is available, that information should be exploited. Such essential
information may exist in several (though quite limited) practical scenarios. In addition, the
assumption on the known transient change parameters enables to establish theoretical results.
Optimal and/or suboptimal procedures w.r.t. several transient change detection criteria have
been obtained. In the literature, exactly optimal results have been derived in [123, 145] for the
special case L = 1. Unfortunately, the case L = 1 has a very limited practical application. For
a more general case L ≥ 1, suboptimal results have been obtained in [67,69].

It is of practical interest to design detection rules capable of detecting transient signals regardless
of their structure, location, length and strength [199]. However, existing methods for unknown
transient change parameters, including the min-max detector, GLR-based detectors on the basis
of preliminary transformations and transient detectors based on power-law statistics, are mainly
applicable to finite observation intervals, i.e., to a posteriori transient change detection. The
only exclusions include CUSUM-based detection procedures [29, 57, 75, 198, 199] where infinite
observations are processed in the real time.
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2.6 Conclusion

In this chapter, we have discussed contemporary results on the statistical decision theory, includ-
ing the classical (non-sequential) hypothesis testing problem, the sequential hypothesis testing
problem, the sequential change-point detection and isolation problem and the sequential de-
tection of transient signals. Non-sequential methods utilize a fixed number of observations for
designing statistical tests between two (or more) hypotheses. This fixed-size sample approach
is particularly suitable to off-line applications but not to on-line monitoring of safety-critical
infrastructures. Sequential methods, on the other hand, seem to be more adequate for on-line
monitoring applications. The sequential hypothesis testing theory allows us to design optimal
(or suboptimal) procedures for deciding between two (or more) hypotheses while reducing the
number observations compared to non-sequential detection rules. The sequential hypothesis
testing techniques, however, appear inappropriate for the surveillance of safety-critical infras-
tructures. In such applications, it is assumed that the random observations are firstly generated
by a common distribution Pθ0 , corresponding to normal behavior of the systems, and then
from an unknown change-point k0, these random variables follow another common distribution
Pθ1 6= Pθ0 . The sequential change detection-isolation techniques are extremely suitable to the
detection and identification of abrupt changes in stochastic systems.

The security of SCADA systems against cyber-physical attacks, involving both short-duration
signals and safety-critical infrastructures, has been shown to perfectly fit into the transient
change detection framework due to the inevitable effect of random noises. The existing methods
working with finite observation intervals are not adequate for the on-line monitoring of SCADA
systems since the decision has to be made in real-time. In addition, exactly optimal results
obtained in [123, 145] for the case L = 1 have a very limited significance. For a more general
case of L ≥ 1, several suboptimal results have been introduced in [67,69].

In his PhD thesis, Guépié [67] suggested to minimize the worst-case probability of missed de-
tection for a given value on the worst-case probability of false alarm within any time window
of predefined length. He designed also sub-optimal detection algorithms w.r.t. the transient
change detection criterion. However, Guépié [67] was able to solve the problem for the inde-
pendent Gaussian variables where transient profiles are of constant sign. The design and the
study of the transient change detectors in the previous work depend heavily on the concept of
associated random variables, see details and results in [46, 110]. It is questionable whether the
results obtained in obtained in [67] remain valid for the dependent observations generated from
the discrete-time state space model in the presence of unknown system states (nuisances) and
random noises. Moreover, the calculation of the upper bound for the worst-case probability
of false alarm depends heavily on the assumption that the transient profiles must be of con-
stant sign. The question arises naturally is whether the results obtained in [67] hold when the
sign of the transient profiles is not constant. Finally, Guépié [67] used the simple observation
model which may not suitable to such applications as the monitoring of SCADA systems against
cyber-physical attacks.

Pursuing the work started in [67], we consider in the following chapter the problem of detecting
transient signals on stochastic-dynamical systems. Especially, the discrete-time state space
model driven by Gaussian noises is employed to describe SCADA systems. Cyber-physical
attacks are modeled as additive signals of short duration on both state evolution and sensor
measurement equations. Moreover, the remaining problems after the work of Guépié [67] will
be also treated in the next chapter.
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3.1 Introduction

The security of SCADA systems against cyber-physical attacks has been investigated in chap-
ter 1. Several approaches have been considered for protecting, detecting and isolating malicious
activities on these large-scale industrial control systems. The majority of safety-critical in-
frastructures, including electric power grids, gas pipelines or water distribution or irrigation
networks, can be described in the discrete-time state space model (see chapter 5 for more de-
tails). It has been discussed in chapter 1 that the attack detection and identification problem
is closely related to the fault detection and isolation (FDI) problem in automatic control com-
munity. The statistical FDI problem is concerned with deciding whether the fault has occurred
and then to identify the types of the fault with respect to (w.r.t.) random noises and unknown
system states (often regarded as the nuisance parameter). This problem is generally solved by
using the analytical redundancy approach, which is comprised of two steps: residual generation
and residual evaluation. The residuals are first generated by using some techniques [30, 35, 83]
such as the Kalman filter or the parity space to eliminate the negative impact of the nuisance
parameter. Next, they are evaluated by utilizing the change detection techniques [10, 175] for
circumventing the random noises.

The model-based fault diagnosis methods concentrate mainly on the generation of robust resid-
uals which are decoupled from the model uncertainties (i.e., the disturbances). For example, the
unknown input observer (UIO) techniques have been utilized in [4, 6, 7, 140, 141] for detecting
and identifying cyber-physical attacks on SCADA systems. However, the negative impact of
random noises on the decision-making process has not been considered seriously. On the other
hand, the statistical decision theory, which has been excerpted in chapter 2, focuses mainly
on the evaluation of random residuals based on relatively simple observation models. Optimal
detection-isolation algorithms exist in only limited scenarios with a simple abstraction. The
majority of work in this field is, therefore, dedicated to finding asymptotically optimal or sub-
optimal detection-isolation algorithms w.r.t. a given criterion of optimality.

It has been discussed in chapter 1 and chapter 2 that the on-line monitoring of SCADA sys-
tems against cyber-physical attacks should be formulated as the sequential detection of transient
signals in stochastic-dynamical systems. This chapter is organized follows. In section 3.2, we
formulate the detection of cyber-physical attacks on SCADA systems as the problem of detect-
ing transient signals in stochastic-dynamical systems. Traditional residual generation methods,
including the steady-state Kalman filter approach and the fixed-size parity space approach, are
presented in section 3.3. Several sub-optimal detection algorithms w.r.t. the transient change
detection criterion for completely known transient change parameters and partially known tran-
sient change parameters are considered in section 3.4 and section 3.5, respectively. Finally, some
concluding remarks are offered in section 3.6.

3.2 Transient Changes in Stochastic-Dynamical Systems

In this section, we formulate the detection of cyber-physical attacks on SCADA systems as the
problem of detecting transient changes in stochastic-dynamical systems. The SCADA systems
are described as discrete-time state space models driven by Gaussian noises. The cyber-physical
attacks are modeled as additive signals of short duration on both state evolution and sensor
measurement equations. The criterion of optimality for this problem, which was first introduced
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in [67–70], is officially stated. This optimality criterion will be utilized through this chapter for
designing sub-optimal detection procedures.

3.2.1 System and attack models

The following discrete-time state space model is utilized throughout this manuscript for describ-
ing SCADA systems under normal operation8:{

xk+1 = Axk +Buk + Fdk + wk

yk = Cxk +Duk +Gdk + vk
; x1 = x1, (3.1)

where xk ∈ Rn is the vector of system states with unknown initial values x1 ∈ Rn, uk ∈ Rm
is the vector of control signals, dk ∈ Rq is the vector of disturbances, yk ∈ Rp is the vector of
sensor measurements, wk ∈ Rn is the vector of process noises and vk ∈ Rp is the vector of sensor
noises; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, G ∈ Rp×q are
assumed to be completely known.
The process noises wk ∼ N (0, Q), where Q ∈ Rn×n, and the sensor noises vk ∼ N (0, R), where
R ∈ Rp×p, are assumed to be independent identically distributed (i.i.d.) zero-mean Gaussian
random vectors, i.e., cov (wk, wl) = Qδkl, cov (vk, vl) = Rδkl and cov (wk, vl) = 0, where δkl = 1
if k = l and δkl = 0 otherwise. The noise covariance matrices Q and R are assumed to be exactly
known and R is positive-definite.
For simplicity, the control signals uk and the disturbances dk are assumed to be completely
known. The control signals uk are known since they are the outputs of controllers. In many
important applications such as electric power grids, gas pipelines or water distribution and
irrigation networks, the disturbances dk correspond to customers’ demands. In such applications,
the demands are often estimated by specially-designed software with an acceptable level of error.
Generally, these estimation errors are unbiased, so they can be integrated into the process noises
wk and/or sensor noises vk.
The system model under cyber-physical attacks can be described as follows:{

xk+1 = Axk +Buk + Fdk +Kaxk + wk

yk = Cxk +Duk +Gdk +Haxk +Mayk + vk
; x1 = x1, (3.2)

where axk ∈ Rr is the state attack vector, ayk ∈ Rp is the sensor attack vector; the attack matrices
K ∈ Rn×r, H ∈ Rp×r and M ∈ Rp×p are assumed to be known.

Remark 3.1. The vector axk is denoted as the state attack vector since the component Kaxk
impacts the system dynamics directly. The component Haxk is due to feed-through effects from
the state attack vector to the sensor measurements. The vector ayk is called the sensor attack
vector since the component Mayk impacts the sensor measurements directly. The attack vectors
axk and ayk are designed by the attacker for realizing his malicious target while the attack matrices
K, H, and M are decided by system operators.

Remark 3.2. It has been shown that the attack vectors axk and ayk could be coordinated to disrupt
the systems while remaining stealthy to traditional anomaly detectors [141]. The stealthiness of
an attack depends heavily on the model knowledge, the disclosure resources and the disruption

8From this point, the SCADA systems are assumed to start operating at time instant k = 1.
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capabilities [187]. Being equipped with perfect model knowledge and necessary resources, pow-
erful attackers could design undetectable attacks by the replay attack strategy [120], the false
data injection attack strategy [121], the zero-dynamics attack strategy [186] or the covert attack
strategy [169]. To render those stealthy attacks detectable, the security analysis process is re-
quired. For example, more secure sensors can be sited in vulnerable points of the systems, making
the stealthy attacks detectable (see, for example, [121], [186] or [99]). For these reasons, only
detectable attacks are considered in this manuscript.

Example 3.1. The covert attack strategy (1.9) introduced in [169] is based on the coordination
of cyber attacks on control signals and sensor measurements only. This attack strategy can be
generalized to the cyber-physical attack scenarios as follows:

• The attack vector axk on control signals can be chosen arbitrarily based on the target and
available disruption resources of the attacker.

• The attack vector ayk on sensor measurements is calculated by the following equation:{
xa,k+1 = Axa,k +Kaxk
ayk = −Cxa,k −Haxk

; {xa,k}k≤k0
= 0, (3.3)

where xa,k is the vector of “attacked states” reflecting the difference between the system
states under normal operation and those under attack.

It should be noted that the difference between the covert attack model (3.3) for cyber-physical
attacks and the covert attack model (1.9) for cyber attacks on control signals and sensor mea-
surements lies in the attack vectors axk (i.e., in (3.3)) and auk (i.e., in (1.9)). The covert attack
model (3.3) will be utilized throughout this manuscript from this point.

3.2.2 Model of transient signals

Let the state attack vector axk and the sensor attack vector ayk be grouped into the attack vector
ak =

[
(axk)T ,

(
ayk
)T ]T ∈ Rs, where s = r + p. Also, let Ba = [K, 0] ∈ Rn×s and Da = [H,M ] ∈

Rp×s be attack matrices. The attack components Baak = Kaxk and Daak = Haxk +Mayk, leading
to the following simplified model of SCADA systems under cyber-physical attacks:{

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x1 = x1. (3.4)

Let us suppose that the adversary performs his malicious attack during a short period τa =
[k0, k0 + L− 1], where k0 is the attack instant (unknown) and L is the attack period (assumed
to be known). The attack vector ak is then described by

ak =


0 if k < k0

θk−k0+1 if k0 ≤ k < k0 + L

0 if k ≥ k0 + L

, (3.5)

where θ1, θ2, · · · , θL ∈ Rs are the attack profiles defined in τa. Sometimes, the attack profiles
θ1, θ2, · · · , θL are denoted as the attack signatures.
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Remark 3.3. The a priori information about the attack signatures θ1, θ2, · · · , θL is extremely
important in designing detection procedures. For the monitoring of safety-critical infrastructures
against cyber-physical attacks, this critical information could be obtained via the security analysis
process. For example, it is possible to figure out which attack scenarios may occur to the system
by investigating the system’s vulnerabilities. Since each attack scenario leads to a particular
signature (i.e., a specific profile), the “shape” of the attack could calculated from the dynamics
of the system. Sometimes, the magnitude of the profile is also available in particular situations.
Let us consider a simple SCADA water distribution network described in figure 5.5 in chapter
5, where a pump is utilized for supplying water to a reservoir. It is assumed that the water
network is equipped with a constant speed pump which operates in two modes: “on” and “off”.
It is assumed that the attacker performs his malicious attack for switching the pump “off” while
it is functioning (see [213] for a real attack on a water utility). In such an attack scenario, the
attack profiles θ1, θ2, · · · , θL are completely specified.

Remark 3.4. In this thesis, we consider two scenarios: the attack profiles are completely known
(i.e., in section 3.4) and the attack profiles are partially known (i.e., in section 3.5). The
first scenario involves complete information about the attack signatures, including both shape
and magnitude. This assumption is important in evaluating the best theoretically achievable
performance of detection procedures. In the second scenario, it is assumed that the shape of the
attack profiles is known but their magnitude is unknown. It is clear that the second scenario is
more practical than the first one. However, theoretical results obtained in such practical cases
are often limited.

3.2.3 Criterion of optimality

The detection algorithm consists of calculating the stopping time T at which the attack is
declared. Historically, the optimality criteria favor minimizing the risk associated with detection
delay (e.g., the worst-worst-case detection delay [113] or the worst-case conditional detection
delay [142]) subject to an acceptable level of false alarms, which could be measured by either
the ARL to false alarm or the probability of false alarm within any time window of predefined
length. It is our opinion that traditional optimality criteria are not adequate for the detection
of cyber-physical attacks on SCADA systems due to following reasons.
Firstly, the adversary may prefer to perform his malicious attack within a short period due to
limited capabilities (see, for example, [7, 25, 80]). This malevolent action leads to the transient
change (i.e., the change of short duration) in sensor measurements. Therefore, it is prefer-
able to detect the change before its disappearance since any detection of the signal after its
disappearance makes no sense.
Secondly, in safety-critical applications, the permitted detection delay L is often given by norms
or standards. This value L can be calculated from the gravity of the attack (i.e., the magnitude
of the attack) and the permitted consequence of the attack. The detection of attack with the
delay smaller than L is considered to be negligible (i.e., no matter the detection delay is small or
large) since its impact to the system is often small and limited (see [9] for an example about the
navigation systems integrity monitoring). Any detection with the delay greater than or equal
to the prescribed value L is considered as a missed detection since its impact to the system is
negative.
For these reasons, the criterion of optimality for the transient change detection problem, which
was first introduced in [67, 69], will be used throughout this thesis. This optimality criterion
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Figure 3.1 – Transient change detection criterion.

involves the minimization of the following worst-case probability of missed detection:

inf
T∈Cα

{
Pmd (T ;L) = sup

k0≥L
Pk0 (T − k0 + 1 > L|T ≥ k0)

}
, (3.6)

among all stopping times T ∈ Cα satisfying

Cα =
{
T : Pfa (T ;mα) = sup

l≥L
P0 {l ≤ T < l +mα} ≤ α

}
, (3.7)

where Pmd denotes the worst-case probability of missed detection and Pfa stands for the worst-
case probability of false alarm within any time window of length mα (see figure 3.1).

3.3 Residual Generation Methods

In this section, we consider two compelling approaches for generating the residuals, including
the steady-state Kalman filter method and the fixed-size parity space method. Specially, we
integrate two residual models into the unified statistical model which will be used in designing
detection procedures.

3.3.1 Steady-state Kalman filter-based residual generation

Let us assume that the steady-state Kalman filter is used for generating the sequence of innova-
tions (i.e., or residuals). In practice, if the system is detectable [85], the Kalman filter converges
very fast after several iterations. Consequently, the optimal Kalman gain Kk converges also to
its steady-state value K∞. The steady-state Kalman gain K∞ is calculated as

K∞ = P∞C
T
(
CP∞C

T +R
)−1

, (3.8)

where P∞ denotes the steady-state covariance matrix of the state estimation error, which can
be found by solving the following discrete-time algebraic Riccati equation:

P∞ = AP∞A
T −AP∞CT

(
CP∞C

T +R
)−1

CP∞A
T +Q. (3.9)
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The operation of the steady-state Kalman filter is then described asx̂k+1|k = Ax̂k|k−1 +Buk + Fdk +AK∞
(
yk − ŷk|k−1

)
ŷk|k−1 = Cx̂k|k−1 +Duk +Gdk

, x̂1|0 = x1, (3.10)

where x̂k|k−1 ∈ Rn is state estimate and ŷk|k−1 ∈ Rp is the output estimate.
Let rk = yk − ŷk|k−1 ∈ Rp be the vector of innovations. It has been shown [10, 116] (see also
Appendix A.1) that the innovations {rk}k≥1 are independent Gaussian vectors with covariance
matrix J , CP∞C

T + R. Under normal operation, these residual vectors {rk}k≥1 are inde-
pendent identically distributed (i.i.d.) zero-mean Gaussian vectors, i.e., rk ∼ N (0, J). Under
abnormal situations (i.e., faults or attacks occurring at an unknown time instant k0), the inno-
vations {rk}k≥1 are still independent Gaussian vectors but their means change from the baseline
value (i.e., E0 [rk] = 0 for k < k0) to the non-zero profiles (i.e., Ek0 [rk] = ψk−k0+1 for k ≥ k0),
where E0 [rk] and Ek0 [rk] are expectations of the residual vector rk under normal operation (i.e.,
k0 → ∞) and abnormal behavior from time instant k0, respectively, and the change profiles
ψ1, ψ2, · · · ∈ Rp can be calculated from the system dynamics.
Let %1, %2, · · · ∈ Rp be a sequence of i.i.d. random vectors satisfying a zero-mean multivariate
Gaussian distribution satisfying %k ∼ N (0, J). The statistical model of the innovations can be
expressed by

rk =


%k if k < k0

ψk−k0+1 + %k if k0 ≤ k < k0 + L

ψ̃k + %k if k ≥ k0 + L

, (3.11)

where ψ1, ψ2, · · · , ψL are the transient change profiles, being calculated from the attack profiles
θ1, θ2, · · · , θL by the following equation:{

εk+1 = (A−AK∞C) εk + (Ba −AK∞Da) θk
ψk = Cεk +Daθk

; ε1 = 0, (3.12)

and the post-change profiles ψ̃k (i.e., for k ≥ k0 + L) are of no interest. Interested readers are
referred to [10,107] or Appendix A.1 for more details on the calculation of innovation signatures.

Let rkk−L+1 =
[
rTk−L+1, · · · , rTk

]T
∈ RLp be the concatenated vector of residuals, %kk−L+1 =[

%Tk−L+1, · · · , %Tk
]T
∈ RLp be the concatenated vector of random noises, and ψkk−L+1 (k0) ∈ RLp

be the vector of transient signals depending on the relative position of the change-point k0 within
the time window [k − L+ 1, k] by the following relation:

ψkk−L+1 (k0) =



[0] if k < k0
[0]
ψ1
...

ψk−k0+1

 if k0 ≤ k < k0 + L

[
ψ̃kk−L+1 (k0)

]
if k ≥ k0 + L

, (3.13)

where [0] is the null vector of appropriate dimension and the vector of post-change profiles
ψ̃kk−L+1 (k0) ∈ RLp is of no interest. Putting together (3.11)–(3.13), the statistical model of the
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innovation vector rkk−L+1 generated by the steady-state Kalman filter is described as

rkk−L+1 = ψkk−L+1 (k0) + %kk−L+1, (3.14)

where the random noises %kk−L+1 ∼ N (0,Σ%), where Σ% = diag (J) ∈ RLp×Lp is a block-diagonal
matrix formed of blocks J .

Remark 3.5. In his PhD thesis [67], Guépié has addressed the problem of detecting transient
changes of constant sign in a sequence of independent Gaussian random variables (i.e., the
scalar case). Theoretical results obtained in [67] can be generalized to the vector case without
any difficulty if each component constituting the vector of profiles is of constant sign. However,
the transient profiles ψ1, ψ2, · · · , ψL generated from the steady-state Kalman filter, in general, do
not satisfy such a condition. For example, the arguments utilized by Guépié [67] for obtaining
sub-optimal detection procedures are inapplicable here.

3.3.2 Fixed-size parity space-based residual generation

In this subsection, we develop the statistical model of the residuals generated by the fixed-size
parity space. Suppose that the attack does not occur during the “preheating” period (i.e.,
k0 ≥ L) and that our algorithms operate from time instant k ≥ L. By utilizing the last L
observations, for each time instant k ≥ L, the observation model is described as

yk−L+1
yk−L+2

...
yk


︸ ︷︷ ︸

yk
k−L+1

=


C
CA
...

CAL−1


︸ ︷︷ ︸

C

xk−L+1 +


Da 0 · · · 0
CBa Da · · · 0
...

... . . . ...
CAL−2Ba CAL−3Ba · · · Da


︸ ︷︷ ︸

M


ak−L+1
ak−L+2

...
ak


︸ ︷︷ ︸
θk
k−L+1(k0)

+


D 0 · · · 0
CB D · · · 0
...

... . . . ...
CAL−2B CAL−3B · · · D


︸ ︷︷ ︸

D


uk−L+1
uk−L+2

...
uk


︸ ︷︷ ︸

uk
k−L+1

+


0 0 · · · 0
C 0 · · · 0
...

... . . . ...
CAL−2 CAL−3 · · · 0


︸ ︷︷ ︸

H


wk−L+1
wk−L+2

...
wk


︸ ︷︷ ︸

wk
k−L+1

+


G 0 · · · 0
CF G · · · 0
...

... . . . ...
CAL−2F CAL−3F · · · G


︸ ︷︷ ︸

G


dk−L+1
dk−L+2

...
dk


︸ ︷︷ ︸

dk
k−L+1

+


vk−L+1
vk−L+2

...
vk


︸ ︷︷ ︸

vk
k−L+1

, (3.15)

or in a simpler form as

ykk−L+1 = Cxk−L+1 +Dukk−L+1 + Gdkk−L+1 +Mθkk−L+1 (k0) +Hwkk−L+1 + vkk−L+1, (3.16)

where ykk−L+1 ∈ RLp is the concatenated vector of measurements, ukk−L+1 ∈ RLm is the con-
catenated vector of control signals, dkk−L+1 ∈ RLq is the concatenated vector of disturbances,
wkk−L+1 ∈ RLn is the concatenated vector of process noises, vkk−L+1 ∈ RLp is the concatenated
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vector of sensor noises, θkk−L+1 (k0) ∈ RLs is the concatenated vector of transient signals; the ma-
trices C ∈ RLp×n, D ∈ RLp×Lm, G ∈ RLp×Lq, H ∈ RLp×Ln andM∈ RLp×Ls. The process noises
wkk−L+1 ∼ N (0,Q) and the sensor noises vkk−L+1 ∼ N (0,R), where Q = diag (Q) ∈ RLn×Ln
and R = diag (R) ∈ RLp×Lp are block-diagonal matrices formed of blocks Q and R, respectively.
Let also ηkk−L+1 = Hwkk−L+1 + vkk−L+1 be a concatenated vector of random noises, integrating
both process noises and sensor noises. It is clear that ηkk−L+1 ∼ N (0,S), where the covariance
matrix S = HQHT +R ∈ RLp×Lp is symmetric and positive-definite.
The concatenated vector of attack profiles θkk−L+1 (k0), depending on the relative position of the
change-point k0 within the window [k − L+ 1, k], is described as

θkk−L+1 (k0) =



[0] if k < k0
[0]
θ1
...

θk−k0+1

 if k0 ≤ k < k0 + L

[
θ̃kk−L+1 (k0)

]
if k ≥ k0 + L

, (3.17)

where [0] is a null vector of appropriate dimension and the post-change profiles θ̃kk−L+1 (k0) ∈ RLs
are of no interest.
Since the vector of control signals uk and the vector of disturbances dk are assumed to be exactly
known, they can be eliminated by subtraction from the observation model (3.15)–(3.16), leading
to the following statistical model:

zkk−L+1 = ykk−L+1 −
(
Dukk−L+1 + Gdkk−L+1

)
= Cxk−L+1 +Mθkk−L+1 (k0) + ηkk−L+1, (3.18)

where zkk−L+1 ∈ RLp is the simplified observation vector.
It is worth noting that the nuisance parameter xk−L+1 has to be eliminated from (3.18) in order
to avoid its negative impact on detection algorithms. The rejection of the nuisance parameter
has been discussed in [52] by applying the invariant hypothesis testing theory. Specially, the
method used in [52] coincides with the parity space approach in the fault diagnosis community.
The main idea is as follows. The simplified observation vector zkk−L+1 is projected onto the
orthogonal complement space R (C)⊥ of the column space R (C) of matrix C (i.e., the left-null
space of matrix C), which is assumed to be full column rank (i.e., rank (C) = n). The residual
vector is calculated as rkk−L+1 = Wzkk−L+1, where the rows of the matrix W ∈ R(Lp−n)×Lp are
composed of the eigenvectors of the projection matrix P⊥C = I − C

(
CTC

)−1
CT corresponding

to eigenvalue 1, where I is the identity matrix of appropriate dimension. The rejection matrix
W satisfies the following conditions: WC = 0, WTW = P⊥C and WWT = I. Hence, the residual
vector rkk−L+1 is independent from the nuisance vector xk−L+1. The statistical model of the
residuals generated by the fixed-size parity space is expressed by

rkk−L+1 =Wzkk−L+1 =WMθkk−L+1 (k0) +Wηkk−L+1. (3.19)

In order to develop a statistical model similar to (3.14), let us define, respectively, the vector
of transient profiles ϕkk−L+1 (k0) = WMθkk−L+1 (k0) ∈ RLp−n and the vector of random noises
ςkk−L+1 =Wηkk−L+1 ∈ R(Lp−n)×(Lp−n). The statistical model of residual vector rkk−L+1 in (3.19)
is then reduced to

rkk−L+1 = ϕkk−L+1 (k0) + ςkk−L+1, (3.20)
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Figure 3.2 – Nuisance parameter rejection by the orthogonal projection of the observations onto
the parity space.

where the random noises ςkk−L+1 ∼ N (0,Σς), where the covariance matrix Σς = WSWT ∈
R(Lp−n)×(Lp−n).

3.3.3 Relation to sliding window Kalman filter approach

In this subsection, we investigate the relation between the fixed-size parity space approach
and the so-called “sliding window Kalman filter” approach [72, 73] for residual generation. In
order to eliminate the negative impact of the nuisance parameter, Gustafsson suggested to
utilize the least-square estimate x̂k−L+1 of system state xk−L+1. Under the linear and Gaussian
assumptions, the least-square estimate coincides with the maximum likelihood estimate [10],
which is written as

x̂k−L+1 =
(
CTSC

)−1
CTS−1zkk−L+1. (3.21)

Since the matrix S is symmetric and positive-definite, it can be decomposed into S = VVT and
S−1 = V−TV−1, then

zkk−L+1 − Cx̂k−L+1 =
[
I − C

(
CTSC

)−1
CTS−1

]
zkk−L+1 = VP⊥V−1CV

−1zkk−L+1, (3.22)

where P⊥V−1C is the projection matrix onto the left-null space R
(
V−1C

)⊥ of matrix V−1C, which
is calculated as

P⊥V−1C = I −
(
V−1C

) [(
V−1C

)T (
V−1C

)]−1 (
V−1C

)T
. (3.23)

Since the projection matrix P⊥V−1C is singular, i.e., rank
(
P⊥V−1C

)
= Lp−n, the covariance matrix

of zkk−L+1 − Cx̂k−L+1 is singular, as well. In order to circumvent this difficulty, Gustafsson
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[72, 73] suggested to replace the idempotent (but not symmetric) matrix VP⊥V−1CV
−1 by the

matrix WLS ∈ R(Lp−n)×Lp, where its rows form a basis for the row space of matrix VP⊥V−1CV
−1,

thus satisfying WLSC = 0. It is clear that the rows of WLS form also a basis for the left-null
space R (C)⊥ of matrix C. The statistical model of the residuals generated by the least-square
estimation method

rkk−L+1 =WLSMθkk−L+1 (k0) +WLSη
k
k−L+1 (3.24)

coincides with the statistical model (3.19) of the residuals generated fixed-size parity space.
The difference between two residual-generation methods lies in the choice of the rejection matrix
W, where the rows of W form a basis for the left-null space R (C)⊥ of matrix C. It has been
discussed in [72, 73] that the sliding window Kalman filter method generates the residuals with
minimum covariance. However, the residuals with minimum covariance do not guarantee the
statistical performance of a detection procedure since a small noise covariance matrix WSWT

is often associated with small value of the change magnitude WMθkk−L+1 (k0). A more ap-
propriate performance index for comparing residual-generation methods will be considered in
subsection 3.3.5.

3.3.4 Unified statistical model of the residuals

In this subsection, we propose a unified statistical model of the residuals generated by either
the steady-state Kalman filter approach or the fixed-size parity approach. It follows from (3.14)
and (3.20) that both residual-generation methods lead to the following unified statistical model:

rkk−L+1 = φkk−L+1 (k0) + ξkk−L+1, (3.25)

where rkk−L+1 is the vector of residuals, φkk−L+1 (k0) is the vector of transient signals and
ξkk−L+1 ∼ N (0,Σ) is the vector of random noises. For the steady-state Kalman filter approach,
the transient profiles φkk−L+1 (k0) = ψkk−L+1 (k0) and the random noises ξkk−L+1 = %kk−L+1 (i.e.,
Σ = Σ%). On the other hand, we have that the transient profiles φkk−L+1 (k0) = ϕkk−L+1 (k0) and
the random noises ξkk−L+1 = ςkk−L+1 (i.e., Σ = Σς) for the fixed-size parity space approach.
Let us add some comments on the transient profiles φkk−L+1 (k0) and the random noises ξkk−L+1
of the unified statistical model (3.25). Firstly, the vector of transient profiles φkk−L+1 (k0) reflects
the impact of the attack to the statistical model of the residuals. Under normal operation (i.e.,
k < k0), φkk−L+1 (k0) is the null vector. During the attack period (i.e., k0 ≤ k < k0+L), the vector
φkk−L+1 (k0) depends on the relative position of index k0 within the time window [k − L+ 1, k].
For the post-change period (i.e., k ≥ k0 + L), the post-change profiles φ̃kk−L+1 (k0) are of no
interest since any detection of attack with the detection delay equal to or greater than L is
considered as missed.
Secondly, the random noises ξkk−L+1, for k ≥ L, are exchangeable (i.e., ξL1 , ξL+1

2 , · · · , ξkk−L+1, · · ·
follow the same distribution) and the covariance matrix Σ is positive-definite. This property of
the random noises ξkk−L+1 is important in investigating the statistical performance of the detec-
tion procedures proposed in the following sections. For the steady-state Kalman filter approach,
the vector of random noises %kk−L+1 =

[
%Tk−L+1, · · · , %Tk

]T
, where {%k}k≥1 are i.i.d. zero-mean

Gaussian random vectors with positive-definite covariance matrix J . Hence, it is clear that the
random noises %L1 , %L+1

2 , · · · , %kk−L+1, · · · follow the same distribution (i.e., %kk−L+1 ∼ N (0,Σ%),
where Σ% is positive-definite). For the fixed-size parity space approach, the vector of ran-
dom noises is ςkk−L+1 = W

(
Hwkk−L+1 + vkk−L+1

)
, where wkk−L+1 =

[
wTk−L+1, · · · , wTk

]T
and
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vkk−L+1 =
[
vTk−L+1, · · · , vTk

]T
. Since the process noises {wk}k≥1 and the sensor noises {vk}k≥1

are i.i.d. zero-mean Gaussian vectors, the random noises ςL1 , ςL2 , · · · , ςkk−L+1, · · · follow the same
distribution, i.e., ςkk−L+1 ∼ N (0,Σς), where Σς =WSWT is positive-definite.

3.3.5 Comparison of residual-generation methods

This section is dedicated to the comparison of residual-generation methods by means of the
Kullback-Leibler (K-L) information number (or the K-L distance). It is well-known [10] that the
residuals with higher K-L distance should offer better statistical performance than the residuals
with lower K-L distance.
Starting from now, let Pk0 (resp. P0 , P∞) be the joint distribution of the residuals
rL1 , r

L+1
2 , · · · , rkk−L+1, · · · when they follow the statistical model (3.25). Let also Ek0 (resp. E0 ,

E∞) denote the corresponding mathematical expectations, and pk0 (resp. p0 , p∞) stand for the
probability density function. It is assumed, for the sake of simplicity, that k = L and k0 = 1.
Then, the K-L distance between the distribution P0 and the distribution P1 is defined as

ρ =
+∞∫
−∞

p0
(
rL1

)
log

p0
(
rL1

)
p1
(
rL1
) drL1 , (3.26)

where ρ is the K-L distance. Let us stack transient vectors ψ1, ψ2, · · · , ψL (resp. ϕ1, ϕ2, · · · , ϕL)
into the concatenated vector ψL1 (1) (resp. ϕL1 (1)), corresponding to the steady-state Kalman
filter approach (resp. the fixed-size parity space approach). The K-L distances are calculated
for the Gaussian noises [10] as

ρKF = 1
2
[
ψL1 (1)

]T [
Σ−1
%

] [
ψL1 (1)

]
, (3.27)

ρPS = 1
2
[
ϕL1 (1)

]T [
Σ−1
ς

] [
ϕL1 (1)

]
, (3.28)

where ρKF and ρPS are the K-L distances generated by the steady-state Kalman filter and the
fixed-size parity space approaches, respectively.
In the following, we consider the choice of rejection matrix W by the parity space approach by
means of K-L distance. The comparison between the Kalman filter and the parity space will be
performed numerically later.

Lemma 3.1. (Choice of rejection matrix). Let W ∈ R(Lp−n)×n be a matrix such that the rows
of W form a basis (not necessarily orthonormal) for the left-null space R (C)⊥ of matrix C, thus
satisfying WC = 0. The following K-L distance

ρPS = 1
2
[
MθL1 (1)

]T [
WT

(
WSWT

)−1
W
] [
MθL1 (1)

]
(3.29)

does not depend on the choice of the rejection matrix W.

Proof. Since matrix S is symmetric and positive-definite, it can be decomposed (i.e., by Cholesky
factorization) as S = VVT which satisfies S−1 = V−TV−1, where the matrix V is lower-
triangular and non-singular. It follows from [117, page 210] that rank (WV) = rank (W) =
Lp − n and rank

(
V−1C

)
= rank (C) = n since matrix V is non-singular. Putting together
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with (WV)
(
V−1C

)
= 0, the columns of matrix (WV)T form a basis (not necessarily or-

thonormal) for the left-null space R
(
V−1C

)⊥ of matrix V−1C. It follows from [117, pages
429-430] that projection matrix P⊥V−1C from RLp onto R

(
V−1C

)⊥ is calculated as P⊥V−1C =
(WV)T

[
(WV) (WV)T

]−1
(WV) and that P⊥V−1C does not depend on the choice of WV, thus

being independent from the choice of W. Let W1 and W2 be two different choices of W, then

(W1V)T
[
(W1V) (W1V)T

]−1
(W1V)− (W2V)T

[
(W2V) (W2V)T

]−1
(W1V) = 0⇔

VTWT
1

[
W1SWT

1

]−1
W1V − VTWT

2

[
W2SWT

2

]−1
W2V = 0⇔

VT
(
WT

1

[
W1SWT

1

]−1
W1 −WT

2

[
W2SWT

2

]−1
W2

)
V = 0⇔

V−TVT
(
WT

1

[
W1SWT

1

]−1
W1 −WT

2

[
W2SWT

2

]−1
W2

)
VV−1 = 0⇔

WT
1

[
W1SWT

1

]−1
W1 −WT

2

[
W2SWT

2

]−1
W2 = 0,

leading toWT
1

[
W1SWT

1

]−1
W1 =WT

2

[
W2SWT

2

]−1
W2, thus proving that the K-L distance ρPS

defined in (3.29) is independent from the choice of rejection matrix W.

An analogous problem of optimal fault detection has been addressed within the statistical frame-
work in [51]. A linear model with nuisance parameters and a general covariance matrix (not
necessarily diagonal) has been considered in the context of the unknown but non-random nui-
sance parameters. Two different invariant tests have been designed in such a case. The first
invariant statistics was based on the knowledge of the observation matrix and the noise covari-
ance matrix and the second one was based on the observation matrix only. It was shown that the
two methods are equivalent. The numerical examples are given in chapter 6 for demonstrating
theoretical results obtained in this subsection.

3.3.6 Discussion

The results of Lemma 3.1 helps in choosing the rejection matrixW for the fixed-size parity space
approach. Under the K-L distance criterion, the rejection matrixW, which satisfiesWC = 0, can
be chosen arbitrarily. Though the sliding window Kalman filter method generates the residuals
with minimum noise covariance [72, 73], this method is just as efficient as the traditional fixed-
size parity space approach. In addition, from the least-square estimation point of view, the
authors in [10, pages 230-231] calculated the K-L information number by

ρLS = 1
2
[
MθL1 (1)

]T [
V−TP⊥V−1CV

−1
] [
MθL1 (1)

]
= ρPS, (3.30)

since the projection matrix P⊥V−1C = (WV)T
[
(WV) (WV)T

]−1
(WV).

Let us discuss now the comparison between the the steady-state Kalman filter approach and
the fixed-size parity space approach. Firstly, we have not found any analytical expression for
comparing the compelling residual-generation methods (i.e., Kalman filter and parity space).
However, the comparison between these methods can be performed easily by the numerical
calculation of the K-L distances.
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Secondly, under perfect conditions (i.e., the model matches the real system, the process noises
and the sensor noises are white, the noises covariance matrices are exactly known, the initial
condition is Gaussian, and the system is detectable), the steady-state Kalman filter is an optimal
estimator. At each time instant k ≥ L, the steady-state Kalman filter utilizes the information
about the a priori state estimate x̂k|k−1 for estimating the system state x̂k+1|k. For this reason,
it is intuitive that the steady-state Kalman filter-based detectors will perform better than the
fixed-size parity space-based detectors. This point will be shown by numerical examples in
chapter 6.
Finally, the Kalman filter is no longer optimal in many practical situations, including modeling
errors or unknown noise covariance matrices. The residuals are no longer independent and the
proposed statistical model (3.14) is not valid. In such circumstances, the parity space approach
may offer better statistical performance than the Kalman filter approach does. This point will
be investigated by the simulation results in chapter 6.

3.4 Detection Algorithms under Known Transient Change Pa-
rameters

This section is organized as follows. The VTWL CUSUM algorithm is designed in subsec-
tion 3.4.1. Next, the statistical properties of the VTWL CUSUM algorithm as well as the
optimal choice of thresholds are solved in subsection 3.4.2. It is shown that the optimal choice
of thresholds leads to the simple Finite Moving Average (FMA) detection rule. In addition,
a numerical method is proposed in subsection 3.4.3 for estimating the error probabilities of
both VTWL CUSUM and FMA detectors. Finally, the robustness of the proposed FMA test
w.r.t. several operational parameters is investigated in subsection ??.

3.4.1 Variable Threshold Window Limited (VTWL) CUSUM algorithm

In this subsection, we adapt the VTWL CUSUM algorithm (2.159), which was first introduced
by Guépié [67,69] for the i.i.d. Gaussian observations, to the unified statistical model (3.25). The
idea of the VTWL CUSUM algorithm is derived from the off-line point of view of the change
detection problem [10]. Based on the statistical model (3.25), it is convenient to introduce, for
each time instant k ≥ L, the following hypotheses about the change-point k0:

H0 , {k0 > k} and Hj , {k0 = k − L+ j} , for j = 1, 2, · · · , L, (3.31)

where rkk−L+1 ∼ N (0,Σ) under hypothesis H0 and rkk−L+1 ∼ N
(
φkk−L+1 (k − L+ j) ,Σ

)
under

hypothesis Hj . The change-point detection problem reduces to the problem of testing the null
hypothesis H0 against L alternative hypotheses Hj , for 1 ≤ j ≤ L. The alarm is raised if one of
the hypotheses Hj , for 1 ≤ j ≤ L, is declared.
The standard statistical method consists in estimating the change-point k0 by the maximum
likelihood ratio (MLE) principle. Let i = k − L + j, the log-likelihood ratio (LLR) between
hypothesis Hj and hypothesis H0 is calculated as

Ski = log
pφk

k−L+1(i)

(
rkk−L+1

)
p0
(
rkk−L+1

) , (3.32)
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where pφk
k−L+1(i)

(
rkk−L+1

)
and p0

(
rkk−L+1

)
is the probability density function (p.d.f.) of the

residual vector rkk−L+1 under hypothesis Hj and hypothesis H0, respectively.
By utilizing the MLE principle with small modification (i.e., using variable thresholds), we
introduce the following VTWL CUSUM algorithm:

TVTWL = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ski − hk−i+1

)
≥ 0

}
, (3.33)

where TVTWL is the alarm time of the VTWL CUSUM algorithm, h1, h2, · · · , hL are chosen
thresholds and the LLR Ski is calculated in the Gaussian case as

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1 −

1
2φ

k
k−L+1 (i)

]
. (3.34)

The VTWL CUSUM algorithm proceeds as follows. For each instant k ≥ L, the algorithm
uses the last L measurements yk−L+1, · · · , yk for decision making. For each time index i from
k − L + 1 to k, the LLR Ski is first calculated by (3.34), depending on either the steady-state
Kalman filter or the fixed-size parity space is employed. Next, the LLR Ski is compared to each
threshold hk−i+1 and the alarm time TVTWL is raised if one of the LLRs is greater than or equal
to its corresponding threshold. Especially, the thresholds h1, h2, · · · , hL are considered as tuning
parameters for optimizing the VTWL CUSUM algorithm.

3.4.2 Optimization of the VTWL CUSUM algorithm and the FMA test

This subsection is dedicated to investigate the statistical properties of the proposed VTWL
CUSUM algorithm (3.33)–(3.34). The properties of the worst-case probability of false alarm Pfa
and the worst-case probability of missed detection Pmd are given in Theorem 3.1.

Theorem 3.1. Consider the VTWL CUSUM algorithm defined in (3.33)–(3.34). Then,

1. The worst-case probability of false alarm within any time window of length mα corresponds
to the first time window, i.e.,

Pfa (TVTWL;mα;h1, h2, · · · , hL) = P0 (L ≤ TVTWL ≤ L+mα − 1) . (3.35)

2. The worst-case probability of missed detection is upper bounded by

Pmd (TVTWL;L;h1, h2, · · · , hL) ≤ P̃md (TVTWL;hL) , Φ
(
hL − µSL1
σSL1

)
, (3.36)

where Φ (x) =
∫ x
−∞

1√
2π exp

{
−1

2 t
2
}
dt is the c.d.f. of the standard normal distribution,

P̃md (TVTWL;hL) is the proposed upper bound for the worst-case probability of missed detection
Pmd, and the parameters µSL1 and σSL1 are calculated by

µSL1
= 1

2
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
, (3.37)

σ2
SL1

=
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
. (3.38)

Proof. The proof is given in Appendix A.2.

105



Chapter 3. Sequential Detection of Transient Signals in Stochastic-dynamical Systems

It is worth noting that the simultaneous minimization of both the worst-case probability of
missed detection Pmd and the worst-case probability of false alarm Pfa is contradictory. Moreover,
their analytical expression is not available due to mathematical complexity. For these reasons, we
propose minimizing the upper bound P̃md (TVTWL;hL) for the worst-case probability of missed
detection subject to an acceptable level of the worst-case probability of false alarm within any
time window of length mα. Before considering the optimization problem, let us impose the
following assumption of the transient change profiles φL1 (1). This assumption is essential in
solving the optimization problem.

Assumption 3.1. It is assumed that the vector of transient change profiles φL1 (1) defined in
(3.25) is non-null (i.e., ψL1 (1) 6= 0 for the steady-state Kalman filter and ϕL1 (1) 6= 0 for the
fixed-size parity space).

Assumption 3.1 plays an extremely important role in choosing the thresholds of the VTWL
CUSUM algorithm. This assumption provides sufficient condition for the following lemma.

Lemma 3.2. Let S ∈ Rmα be a Gaussian random vector consisting of mα log-likelihood ratios
(LLRs) SL1 , SL+1

2 , · · · , SL+mα−1
mα . If Assumption 3.1 is satisfied, then the covariance matrix ΣS ∈

Rmα×mα of the random vector S is positive-definite.

Proof. The proof is given in Appendix A.3.

By exploiting the results of Lemma 3.2, the optimal choice of thresholds w.r.t. the criterion
(3.6)–(3.7) is formulated and solved in Theorem 3.2.

Theorem 3.2. Consider the VTWL CUSUM algorithm defined in (3.33)–(3.34). Then,
1. The optimal choice of the thresholds h1, h2, · · · , hL leads to the following optimization problem:{

infh1,h2,··· ,hL P̃md (TVTWL;hL)
subject to Pfa (TVTWL;mα;h1, h2, · · · , hL) ≤ α

, (3.39)

where α ∈ (0, 1) is the acceptable level for the worst-case probability of false alarm within any time
window of length mα. The optimization problem (3.39) has the unique solution (h∗1, h∗2, · · · , h∗L)
for a given α ∈ (0, 1), where h∗1, h∗2, · · · , h∗L−1 → ∞ and h∗L is calculated from the following
equation:

P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < h∗L

})
= 1− α. (3.40)

2. The optimized VTWL CUSUM algorithm is equivalent to the following FMA detection rule:

TFMA
(
h̃L
)

= inf
{
k ≥ L :

[
φL1 (1)

]T [
Σ−1

]
rkk−L+1 ≥ h̃L

}
, (3.41)

where the threshold h̃L = h∗L +µSL1
. Especially, the upper bound for the worst-case probability of

missed detection of the FMA test (3.41) is calculated as

Pmd
(
TFMA; h̃L

)
≤ P̃md

(
TFMA; h̃L

)
, Φ

 h̃L − 2µSL1
σSL1

 . (3.42)

Proof. The proof of is given in Appendix A.4.
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3.4.3 Numerical calculation of error probabilities

In this subsection, we propose a numerical method for estimating the worst-case probability
of false alarm Pfa and the worst-case probability of missed detection Pmd for both VTWL
CUSUM algorithm and FMA detection rule. This numerical method includes both steady-
state Kalman filter approach and fixed-size parity space approach. The results are obtained by
utilizing the numerical calculation of the multivariate Gaussian cumulative distribution function
(c.d.f.) introduced in [63]. This algorithm has been implemented in Matlab’s Statistics Toolbox
by the function mvncdf.

Proposition 3.1. The worst-case probability of false alarm Pfa and the worst-case probability of
missed detection Pmd for the VTWL CUSUM algorithm in (3.33)–(3.34) and the FMA detection
rule in (3.41) are calculated numerically by the following formulas:

1. The worst-case probability of false alarm is computed as

Pfa (TVTWL;mα;h1, h2, · · · , hL) = 1− P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} , (3.43)

Pfa
(
TFMA;mα; h̃L

)
= 1− P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

})
. (3.44)

2. The worst-case probability of missed detection is calculated as

Pmd (TVTWL;h1, h2, · · · , hL) = sup
k0≥L

Pk0

k0+L−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

}
Pk0

k0−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} , (3.45)

Pmd
(
TFMA; h̃L

)
= sup

k0≥L

Pk0

k0+L−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

}
Pk0

k0−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

} . (3.46)

Proof. The proof of equations (3.43)–(3.46) is given in Appendix A.5.

Remark 3.6. The formulas for numerical calculation of the worst-case probability of false alarm
Pfa and the worst-case probability of missed detection Pmd are given in Proposition 3.1. In order
to calculate the c.d.f. of a multivariate Gaussian distribution by utilizing the mvncdf function, it
is required to formulate and to compute the threshold vector, the mean vector and the covariance
matrix. Such calculations are elaborated in Appendix A.5.

Remark 3.7. The equations (3.43)–(3.44) are derived from the results of Theorem 3.1 which
shows that the worst-case probability of false alarm Pfa within any time window of length mα

corresponds to the first time window [L;L+mα − 1]. The worst-case probability of missed detec-
tion Pmd, on the other hand, involves the “supremum” operation over all change-point k0 ≥ L.
In other words, the worst-case probability of missed detection Pmd does not correspond to the
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first time window [L; 2L− 1]. Fortunately, simulation results show that the probability of missed
detection Pk0 (T ≥ k0 + L|T ≥ k0) receives high values for some small values of k0, where T
can be stopping time of the VTWL CUSUM algorithm or the FMA detection rule. For these
reasons, we replace the “supremum” operation over all k0 ≥ L by “maximum” operation over
some k0 ∈ [L,L+ δL], where δL ∈ N+, for approximating the worst-case probability of missed
detection Pmd.

Remark 3.8. The numerical method permits us to estimate the worst-case probability of false
alarm Pfa and the worst-case probability of missed detection Pmd instead of the traditional Monte
Carlo simulation method. It is worth noting that the proposed method is more efficient than the
Monte Carlo simulation regarding the computational time. Moreover, this numerical method
can be exploited for investigating the robustness of the FMA test, which will be introduced in
subsection ??.

3.4.4 Sensitivity analysis of FMA test

In this subsection, we perform the sensitivity analysis of the FMA test given in (3.41) in order to
evaluate its robustness w.r.t. several operational parameters, including the attack duration L,
the attack profiles θ1, θ2, · · · , θL, the process noise covariance matrix Q, and the sensor noise co-
variance matrix R. This sensitivity analysis process is important in practical circumstances since
the operational parameters are generally not exactly known. In other words, their true values
are often associated with their putative values through some levels of deterministic uncertainty.
Let L and L be the putative and true values of the attack duration and θ1, θ2, · · · , θL and
θ1, θ2, · · · , θL be the putative and true values of the attack profiles, respectively. Let also Q and
Q be the putative and true values of the process noise covariance matrix, and R and R be the
putative and true values of the sensor noise covariance matrix, respectively. It is worth noting
that the putative operational parameters (i.e., attack duration L, attack profiles θ1, θ2, · · · , θL,
process noise covariance matrix Q and sensor noise covariance matrix R) remain unchanged and
they are considered as the designed parameters. The variation in true operational parameters
(i.e., attack duration L, attack profiles θ1, θ2, · · · , θL, process noise covariance matrix Q and
sensor noise covariance matrix R) leads to the change in parameters of the unified statistical
model (3.25). However, the numerical method introduced in Proposition 3.1 can also be used
for investigating the robustness of the FMA test w.r.t. these parameters.

The worst-case probability of false alarm Pfa
(
TFMA;mα; h̃L

)
and the worst-case probability

of missed detection Pmd
(
TFMA; h̃L

)
can be calculated numerically by (3.44) and (3.46), re-

spectively. The mean vector and the covariance matrix, for both Pfa
(
TFMA;mα; h̃L

)
and

Pmd
(
TFMA; h̃L

)
, can be formulated in exactly the same manner as in Appendix A.5. How-

ever, the mathematical expectations E0
[
Ski

]
and Ek0

[
Ski

]
and the covariance cov

(
Sk1
i1
, Sk2

i2

)
need to be revised since the true parameters are different from their putative values (i.e., L 6= L,
θ1, θ2, · · · , θL 6= θ1, θ2, · · · , θL, Q 6= Q and R 6= R).

The mathematical expectations E0
[
Ski

]
and Ek0

[
Ski

]
depend only on the true attack duration

L and the true attack profiles θ1, θ2, · · · , θL while the covariance cov
(
Sk1
i1
, Sk2

i2

)
depends on

the true process noise covariance Q and the true sensor noise covariance R. For the fixed-size
parity space approach, the computation of cov

(
Sk1
i1
, Sk2

i2

)
can be generalized from Appendix A.5
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without difficulty. On the other hand, for the steady-state Kalman filter, since the true noise
covariances are different from their putative values, the Kalman filter is no longer optimal and
the innovations are no longer independent. For this reason, it is required to re-calculate the
covariance between two innovations (see Appendix A.1). In short, the calculation of E0

[
Ski

]
,

Ek0

[
Ski

]
and cov

(
Sk1
i1
, Sk2

i2

)
, for both steady-state Kalman filter approach and fixed-size parity

space approach, are elaborated in Appendix A.6.

3.5 Detection Algorithms under Partially Known Transient
Change Parameters

It is of practical interest to consider circumstances where the attack profiles θ1, θ2, · · · , θL are
completely unknown. For the quickest change detection problem, several scenarios on the a
priori information about the post-change profiles have been investigated in [10]. In this section,
we consider a special case where the change direction is exactly known but the change magnitude
is unknown.

This special scenario is motivated by the detection of cyber-physical attacks on SCADA systems.
The SCADA systems have been playing an extremely important role in safety-critical infras-
tructures and the security of SCADA systems against malicious attacks has received increasing
concern from both research institutions, industries and governments. Therefore, the security
analysis process is required in investigating vulnerable points that could be exploited for per-
forming malevolent activities. Through this analysis process, the attack profiles θ1, θ2, · · · , θL
are often partially known. For example, if we know exactly which command signals, control
signals and/or sensor measurements will be compromised but the power of the attack (i.e., the
magnitude of attack signals) is unknown, then the shape of attack profiles θ1, θ2, · · · , θL are
known but their magnitude is unknown. This section treats such cases.

Assume that the putative values θ1, θ2, · · · , θL are known but their true values θ1, θ2, · · · , θL are
partially known. More precisely, the true attack profiles can be described in terms of putative
profiles as θk = γθk, where the coefficient γ is unknown. It can be shown without difficulty that

φ
k
k−L+1 (k0) = γφkk−L+1 (k0) , (3.47)

where the transient vector φkk−L+1 (k0) ∈ RLp can be calculated from the true attack profiles
θ1, θ2, · · · , θL in the same manner as φkk−L+1 (k0) in (3.25). Since the attack magnitude γ
is unknown, the generalized likelihood ratio (GLR) and the weighted likelihood ratio (WLR)
approaches are considered for solving the problem.

3.5.1 Generalized Likelihood Ratio (GLR) Approach

The generalized likelihood ratio (GLR) approach consists of replacing the unknown parameter
γ by its maximum likelihood estimate (MLE). The generalized log-likelihood ratio (generalized
LLR) Ŝki can be computed as

Ŝki = sup
γ

[
γφkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1 −

1
2γφ

k
k−L+1 (i)

]
. (3.48)
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The generalized LLR Ŝki can be calculated, after some simple transformations, as follows:

Ŝki =
[
rkk−L+1

]T [
Σ (i)

] [
rkk−L+1

]
, (3.49)

where the matrix Σ (i), which depends on the index i, is computed as

Σ (i) =
[
Σ−1] [φkk−L+1 (i)

] [
φkk−L+1 (i)

]T [
Σ−1]

2
[
φkk−L+1 (i)

]T
[Σ−1]

[
φkk−L+1 (i)

] . (3.50)

The VTWL GLR detection rule, which utilizes the generalized LLR statistic Ŝki , is described as

T̂GLR = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ŝki − hk−i+1

)
≥ 0

}
(3.51)

where the thresholds h1, h2, · · · , hL are considered as the tuning parameters for optimizing the
VTWL GLR algorithm.

3.5.2 Weighted Likelihood Ratio (WLR) Approach

The weighted likelihood ratio (WLR) approach assumes that the unknown parameter γ follows
the a priori distribution. The weighted log-likelihood ratio (weighted LLR) Ški is then calculated
as

Ški = log

∫ [
pφk

k−L+1(i)

(
rkk−L+1

)]
pγdγ

p0
(
rkk−L+1

) , (3.52)

where pγ is the density distribution function of the unknown parameter γ.
For the sake of simplicity, let us suppose that the unknown parameter γ follows the uniform
distribution U (γ0, γ1), where the bounds 0 < γ0 < γ1 are assumed to be known. The density
distribution function pγ = 1/(γ1−γ0). After some calculations, we obtain

Ški =
[
rkk−L+1

]T [
Σ (i)

] [
rkk−L+1

]
+ log

[ √
2π

b (i) (γ1 − γ0)

]
+

log
[
Φ
(
b (i) γ1 −

a (i)
b (i)

)
− Φ

(
b (i) γ0 −

a (i)
b (i)

)]
, (3.53)

where the coefficients a (i) and b (i) are calculated as

a (i) =
[
φkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1

]
, (3.54)

b (i)2 =
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (i)

]
. (3.55)

The VTWL WLR detection rule, which utilizes the weighted LLR statistic Ški , is described as

ŤWLR = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ški − hk−i+1

)
≥ 0

}
(3.56)

where the thresholds h1, h2, · · · , hL are considered as the tuning parameters for optimizing the
VTWL WLR algorithm.
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3.5.3 Statistical properties of VTWL GLR and VTWL WLR

In this subsection, we investigate the statistical properties of the VTWL GLR and VTWL WLR
detection rules. Main results are given in Theorem 3.3 and Theorem 3.4.

Theorem 3.3. Consider the VTWL GLR test defined in (3.51) and the VTWL WLR test
defined in (3.56), respectively. Then,

1. The worst-case probability of false alarm within any time window of length mα is calculated
as

Pfa
(
T̂GLR

)
= P0

(
L ≤ T̂GLR ≤ L+mα − 1

)
, (3.57)

Pfa
(
ŤWLR

)
= P0

(
L ≤ ŤWLR ≤ L+mα − 1

)
. (3.58)

2. The worst-case probability of missed detection is upper bounded by

Pmd
(
T̂GLR

)
≤ P̃md

(
T̂GLR;hL

)
= P1

(
ŜL1 < hL

)
, (3.59)

Pmd
(
ŤWLR

)
≤ P̃md

(
ŤWLR;hL

)
= P1

(
ŠL1 < hL

)
, (3.60)

where P̃md
(
T̂GLR;hL

)
and P̃md

(
ŤWLR;hL

)
are the upper bounds for the worst-case probability

of missed detection of the VTWL GLR and VTWL WLR algorithms, respectively.

Proof. Theorem 3.3 can be proved by utilizing the same arguments as Theorem 3.1.

In the following theorem, we wish to minimize the upper bound P̃md
(
T̂GLR;hL

)
(resp. the

upper bound P̃md
(
ŤWLR;hL

)
) for the worst-case probability of missed detection Pmd

(
T̂GLR

)
(res. Pmd

(
ŤWLR

)
) subject to a given value α ∈ (0, 1) on the worst-case probability of false alarm

Pfa
(
T̂GLR

)
(resp. Pfa

(
ŤWLR

)
).

Theorem 3.4. Consider the VTWL GLR test defined in (3.51) and the VTWL WLR test
defined in (3.56). Then,

1. The optimal choice of the thresholds h1, h2, · · · , hL leads to the following optimization problem:

inf
h1,··· ,hL

P̃md
(
T̂GLR;hL

)
subject to Pfa

(
T̂GLR;mα;h1, h2, · · · , hL

)
≤ α, (3.61)

inf
h1,··· ,hL

P̃md
(
ŤWLR;hL

)
subject to Pfa

(
ŤWLR;mα;h1, h2, · · · , hL

)
≤ α, (3.62)

where α ∈ (0, 1) is the acceptable level on the false alarm rates. Let ĥ∗L and ȟ∗L be, respectively,
the minimum real numbers satisfying following inequalities:

P0

(
L+mα−1⋂
k=L

{
Ŝkk−L+1 < ĥ∗L

})
≥ 1− α, (3.63)

P0

(
L+mα−1⋂
k=L

{
Škk−L+1 < ȟ∗L

})
≥ 1− α. (3.64)
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Then, the optimization problem (3.61) (resp. (3.62)) has the solution ĥ∗1, · · · , ĥ∗L−1 → +∞
(resp. ȟ, · · · , ȟ∗L−1 → +∞) and ĥ∗L (resp. ȟ∗L).

2. The optimized VTWL GLR and VTWL WLR algorithms lead to the following FMA detection
rules:

T̂FMA = inf
{
k ≥ L : Ŝkk−L+1 ≥ ĥ∗L

}
(3.65)

ŤFMA = inf
{
k ≥ L : Škk−L+1 ≥ ȟ∗L

}
(3.66)

where T̂FMA is the stopping time of the FMA GLR test and ŤFMA is the stopping time of the
FMA WLR test, and the thresholds ĥ∗L and ȟ∗L are chosen for assuring acceptable levels of false
alarms.

Proof. The proof is given in the Appendix A.7.

Remark 3.9. Let us add some comments on the results of Theorem 3.3 and Theorem 3.4. The
numerical estimation of the probability of false alarm and the probability of missed detection for
the FMA GLR test given in (3.65) and the FMA WLR test given in (3.66) have not been found
due to mathematical complexity. The statistical performance of the FMA GLR test and FMA
WLR test will be investigated by Monte Carlo simulation in chapter 6.

3.6 Conclusion

In this chapter, we have considered the sequential detection of transient signals in stochastic-
dynamical systems, applied to the detection of cyber-physical attacks on SCADA systems. The
SCADA systems are described as a discrete-time linear time-invariant state space model driven
by Gaussian noises. The cyber-physical attacks are modeled as additive signals of short duration
on both state evolution and sensor measurement equations. The optimality criterion involves
the minimization of the worst-case probability of missed detection subject to an acceptable level
on the worst-case probability of false alarm within any time window of predefined length.

The traditional two-step approach, including the residual-generation step and the residual-
evaluation step, has been considered for solving the problem. For the first step, the residuals are
generated by utilizing well-known techniques: the steady-state Kalman filter approach and the
fixed-size parity space approach. The unified statistical model of the residuals generated by both
aforementioned methods has been developed. Moreover, the Kullback-Leibler (K-L) information
number has been considered as the performance index for comparing residual-generation meth-
ods. The problem of choosing the parity space has been long discussed in the fault diagnosis
community. It has been shown in this chapter that the K-L distance of the residuals generated
by the fixed-size parity space is independent from the choice of parity space (i.e., Lemma 3.1).

Based on the unified statistical model (3.25), the VTWL CUSUM algorithm, which was initiated
by Guépié in [67, 68, 70] for detecting transient changes in a sequence of independent Gaussian
observations, has been adapted to the detection of transient signals on the discrete-time state
space model. The idea of utilizing the variable thresholds is to make the algorithm flexible
and the thresholds are considered as tuning parameters for optimizing the VTWL CUSUM
algorithm. In order to find optimal thresholds w.r.t. the transient change detection criterion,
it is required to investigate the properties of the worst-case probability of false alarm and the
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worst-case probability of missed detection. It has been shown in Theorem 3.1 that the worst-
case probability of false alarm Pfa corresponds to the first time window [L;L+mα − 1] and the
upper bound P̃md for the worst-case probability of missed detection is proposed instead of its
exact value Pmd.

The optimization problem has been formulated and solved in Theorem 3.2, taking into account
the transient change detection criterion. Due to the mathematical complexity, the optimization
problem is considered as the optimal choice of thresholds for the VTWL CUSUM algorithm,
being favor of minimizing the upper bound P̃md for the worst-case probability of missed detection
Pmd for a given value on the worst-case probability of false alarm Pfa within any time window
of length mα. It has been shown that the optimal choice of thresholds leads to the simple FMA
test.

Since their analytical expressions (i.e., Pfa and Pmd) are not available, we have proposed a
numerical method for estimating the worst-case probability of false alarm Pfa and the worst-
case probability of missed detection Pmd, for both the VTWL CUSUM algorithm and the FMA
detection rule. This numerical method is based on the numerical computation of the c.d.f. of
a multivariate Gaussian distribution. Specially, the proposed method has been exploited for
investigating the robustness of the FMA test w.r.t. several operational parameters, including
the attack duration, the attack profiles, the process and sensor noise covariances. Especially, a
recursive algorithm has been proposed for calculating the covariance between two innovations
generated by the discrete-time Kalman filter under imperfect conditions (i.e., the true noise
covariances are different from their putative values).

The attack profiles are generally unknown in practical situations. In the final section of this
chapter, we consider a special scenario where the attack profiles are partially known. More
precisely, the shape of the change is assumed to be completely known but the magnitude of
the change is unknown. Two standard approaches, including the GLR approach and the WLR
approach, have been considered for solving the problem. Similar to the previous cases, the
corresponding VTWL GLR and VTWL WLR algorithms have been considered. It has been
shown that the optimal choice of thresholds w.r.t. the transient change detection criterion leads
also to the FMA GLR test and the FMA WLR test, respectively. However, the numerical
method for estimating the worst-case probability of false alarm and the worst-case probability
of missed detection for the FMA GLR test and the FMA WLR test has not been found. This
point is dedicated to future study.
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4.1 Introduction

The problem of detecting cyber-physical attacks on SCADA systems has been addressed in
chapter 3. The attack detection problem is concerned with making a binary decision of whether
a malicious attack has been performed or the system is operating normally. The criterion of
optimality involves the minimization of the worst-case probability of missed detection subject
to an acceptable level on the worst-case probability of false alarm within any time window of
predefined length.
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It follows from the security analysis process performed in chapter 1 that there are multiple
vulnerable points (i.e., attack types or attack scenarios) which might be exploited for launching
malicious attacks on SCADA systems. It is of great interest to determine not only whether the
system is under attack (i.e., detection problem) but also the attack types (i.e, isolation problem).

The problem of jointly detecting and identifying cyber-physical attacks (and/or faults) on
SCADA systems has been considered in [4, 6, 7, 140, 141] in the deterministic framework (i.e.,
without random noises). The continuous-time (resp. time-delay continuous-time) state space
model has been utilized to describe SCADA systems [140, 141] (resp. SCADA water irrigation
networks [4,6,7]). The cyber-physical attacks are modeled as additive signals to both state evo-
lution and sensor measurement equations. The detection-isolation schemes have been designed
by utilizing the Unknown Input Observer (UIO) techniques. However, the negative impact of
random noises has not been considered.

This chapter is dedicated to the joint detection-isolation of transient changes in stochastic-
dynamical systems. The organization of this chapter is as follows. Firstly, the problem formu-
lation is given in section 4.2. Secondly, we develop in section 4.3 the unified statistical model of
the residuals generated by either the steady-state Kalman filter approach and the fixed-size par-
ity space approach. This unified statistical model is the generalization of the unified statistical
model (3.25) developed in chapter 3 to the joint detection-isolation problem. Thirdly, several
detection-isolation schemes are introduced in section 4.4 for jointly detecting and identifying
transient changes of known profiles. Finally, some concluding remarks are drawn in section 4.5.

4.2 Problem Formulation

In this section, we formulate the attack detection-isolation problem as the problem of jointly de-
tecting and isolating transient changes in stochastic-dynamical systems. The model of transient
changes in stochastic-dynamical systems is introduced in subsection 4.2.1. A novel criterion of
optimality, dedicated to the detection-isolation of suddenly arrived signals of short (and known)
duration, is proposed in subsection 4.2.2.

4.2.1 System and attack models

Similar to the detection problem, the following discrete-time state space model is employed to
describe SCADA systems and cyber-physical attacks:{

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x1 = x1, (4.1)

where xk ∈ Rn is the vector of system states with unknown initial values x1, uk ∈ Rm is the
vector of control signals, dk ∈ Rq is the vector of disturbances, yk ∈ Rp is the vector of sensor
measurements, ak ∈ Rs is the vector of attack signals, wk ∈ Rn is the vector of process noises
and vk ∈ Rp is the vector of sensor noises; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q,
C ∈ Rp×n, D ∈ Rp×m, G ∈ Rp×q, Ba ∈ Rn×s and Da ∈ Rp×s are assumed to be completely
known.

It is assumed also that the control signals uk and the disturbances dk are exactly known. The
process noises wk and the sensor noises vk are assumed to be i.i.d. zero-mean Gaussian random

116



4.2. Problem Formulation

vectors, i.e., cov (wk, wl) = Qδkl, cov (vk, vl) = Rδkl and cov (wk, vl) = 0, where δkl = 1 if k = l
and δkl = 0 otherwise. The noise covariance matrices Q and R are assumed to be exactly known
and the matrix R is positive-definite.

The adversary performs his malicious attack during a short period τa = [k0, k0 + L− 1], where
k0 is the unknown attack instant and L is the attack duration, assumed to be known. For
the detection-isolation problem, there are K distinct (isolated) attack profiles associated with
possible attack scenarios. The attack vector ak is then described as follows:

ak =


0 if k < k0

θk−k0+1 (l) if k0 ≤ k < k0 + L

0 if k ≥ k0 + L

, (4.2)

where l, for 1 ≤ l ≤ K, is the attack type and K is the number of transient hypotheses. The
attack profiles θ1 (l) , θ2 (l) , · · · , θL (l) of type l, for 1 ≤ l ≤ K, are assumed to be completely
known.

Definition 4.1. A change detection-isolation algorithm has to compute a pair (T, ν) based on
the observations y1, y2, · · · , where T > 0 is the stopping time at which the final decision ν, with
1 ≤ ν ≤ K, is decided.

This chapter is dedicated to designing a detection-isolation procedure δ = (T, ν) for jointly
detecting and isolating the transient signals modeled in (4.2) in the discrete-time state space
model described in (4.1) subject to certain criteria of optimality.

4.2.2 Criterion of optimality

There are several criteria for evaluating the performance of a change detection-isolation algo-
rithm. Traditional quickest change detection-isolation criteria involve the minimization of the
mean detection-isolation delay under the constraint on the false alarm and/or false isolation rates
(see, for example, [104, 128–130, 132]). For safety-critical applications (see, for example, [127]),
it is essential to minimize the worst-case probability of missed detection subject to acceptable
levels on the risks of false alarm and/or false isolation.

For the transient change detection-isolation problem, there are four scenarios (see also figure 4.1):

• False alarm: The change is declared (i.e., detected and isolated) before its occurrence (i.e.,
T ≤ k0). Similar to the quickest change detection-isolation problem, the false alarm rate
can be measured by either the ARL to false alarm or the probability of false alarm within
any time window of predefined length (see figure 4.1).

• False isolation: The change is detected within the transient change window (i.e., k0 ≤ T <
k0 + L) but it is incorrectly classified. For example, the procedure δ = (T, ν) in figure 4.1
raises the alarm T ∈ [k0, k0 + L− 1] but the final decision ν = 3 while the true change
type is l = 1 (i.e., ν 6= l). The false isolation rate should be measured by the probability
of false isolation within the transient change window.

• Correct detection and isolation: The change is detected within the transient change window
(i.e., k0 ≤ T < k0 +L) and it is correctly classified. For example, the procedure δ = (T, ν)
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Figure 4.1 – Transient change detection-isolation problem.

in figure 4.1 raises the alarm T ∈ [k0, k0 + L− 1] and the final decision ν = 1 while the
true change type is l = 1 (i.e., ν = l). The correct detection-isolation rate should also
be gauged by the probability of correct detection-isolation within the transient change
window.

• Missed detection: The change is declared after its disappearance (i.e., T ≥ k0 +L). Similar
to the detection problem, the missed detection rate should be evaluated by the probability
of missed detection, i.e., the probability of detecting and isolating the transient signal after
its disappearance.

Following the above analysis, we propose in this manuscript a novel optimality criterion for
the transient change detection-isolation problem. The criterion of optimality involves the min-
imization of the worst-case probability of missed detection subject to acceptable levels on the
worst-case probability of false alarm within any time window of predefined length and the
worst-case probability of false isolation within the transient change window. The mathematical
formulation of such an optimality criterion is given in the following.

Let Pmd (T ;L) be the worst-case probability of missed detection, Pfa (T ;mα) be the worst-case
probability of false alarm within any time window of length mα and Pfi (T ;L) be the worst-case
probability of false isolation within the transient change window. Similar to the transient change
detection problem, let us assume that the change does not occur before the “preheating” period
(i.e., k0 ≥ L) and the detection-isolation procedure does not operate in this period (i.e., k ≥ L).
The false alarm and false isolation rates are defined mathematically, respectively, as

Pfa (T ;mα) = sup
l0≥L

P0 (l0 ≤ T < l0 +mα) , (4.3)

Pfi (T ;L) = sup
k0≥L

max
1≤l≤K

Plk0 (k0 ≤ T < k0 + L; ν 6= l) , (4.4)

where P0 denotes the probability under the pre-change mode and Plk0
stands for the probability

under the change-point k0 and the change-type l.
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The criterion of optimality involves the minimization of the following worst-case conditional
probability of missed detection:

Pmd (T ;L) = sup
k0≥L

max
1≤l≤K

Plk0 (T − k0 + 1 > L|T ≥ k0) (4.5)

among all stopping times T in the class Cα satisfying

Cα =
{
T : Pfa (T ;mα) ≤ α;Pfi (T ;L) ≤ α

}
, (4.6)

where α ∈ (0, 1) denotes an acceptable level on the false alarm and false isolation rates.

4.3 Residual Generation Methods

Both classical residual-generation techniques, steady-state Kalman filter and fixed-size parity
space, are utilized for generating the sequence of residuals. The unified statistical model adapted
to the transient change detection-isolation problem is also developed.

4.3.1 Steady-state Kalman filter approach

In this subsection, we develop the statistical model of residuals generated by the steady-state
Kalman filter approach. Similar to the detection problem, let us assume that the steady-state
Kalman filter is used for generating the sequence of residuals. The steady-state Kalman gain
K∞ is calculated as

K∞ = P∞C
T
(
CP∞C

T +R
)−1

, (4.7)

where P∞ denotes the steady-state covariance matrix of the state estimation error, which can
be found by solving the following discrete-time algebraic Riccati equation:

P∞ = AP∞A
T −AP∞CT

(
CP∞C

T +R
)−1

CP∞A
T +Q. (4.8)

The operation of the steady-state Kalman filter is described by the following equations:x̂k+1|k = Ax̂k|k−1 +Buk + Fdk +AK∞
(
yk − ŷk|k−1

)
ŷk|k−1 = Cx̂k|k−1 +Duk +Gdk

, x̂1|0 = x1, (4.9)

where x̂k|k−1 ∈ Rn is state estimate and ŷk|k−1 ∈ Rp is the output estimate.
Let {%k}k≥1 ∈ Rp be a sequence of independent identically distributed (i.i.d.) zero-mean Gaus-
sian random vectors with covariance matrix J , CP∞CT +R and rk = yk − ŷk|k−1 ∈ Rp be the
innovations (or the residuals). The statistical model of the innovations is described as

rk =


%k if k < k0

ψk−k0+1 (l) + %k if k0 ≤ k < k0 + L

ψ̃k (l) + %k if k ≥ k0 + L

, (4.10)

where transient profiles ψ1 (l) , ψ2 (l) , · · · , ψL (l) ∈ Rp are calculated from the attack profiles
θ1 (l) , θ2 (l) , · · · , θL (l) of type l by the following equation:{

εk+1 = (A−AK∞C) εk + (Ba −AK∞Da) θk (l)
ψk (l) = Cεk +Daθk (l)

; ε1 = 0, (4.11)
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and the post-change profiles ψ̃k (l) (i.e., for k ≥ k0 + L) are of no interest.

Similar to the transient change detection problem, let rkk−L+1 =
[
rTk−L+1, · · · , rTk

]T
∈ RLp be

the concatenated vector of innovations, %kk−L+1 =
[
%Tk−L+1, · · · , %Tk

]
∈ RLp be the concatenated

vector of random noises, and ψkk−L+1 (k0, l) ∈ RLp be the concatenated vector of transient signals,
depending on the relative position of the change-point k0 within the window [k − L+ 1, k] and
the change-type l by the following relation:

ψkk−L+1 (k0, l) =



[0] if k < k0
[0]
ψ1 (l)

...
ψk−k0+1 (l)

 if k0 ≤ k < k0 + L

[
ψ̃kk−L+1 (k0, l)

]
if k ≥ L

, (4.12)

where the vector of post-change profiles ψ̃kk−L+1 (k0, l) ∈ RLp is of no interest. Putting together
(4.10)–(4.12), the statistical model of the residual vector rkk−L+1 generated by the steady-state
Kalman filter is described as

rkk−L+1 = ψkk−L+1 (k0, l) + %kk−L+1, (4.13)

where the random noises %kk−L+1 ∼ N (0,Σ%), where Σ% = diag (J) ∈ RLp×Lp is a block-diagonal
matrix formed of blocks J .

4.3.2 Fixed-size parity space approach

In this subsection, we develop the statistical model of residuals generated by the fixed-size parity
space approach. Similar to the detection problem, the observation model obtained by grouping
the last L measurements is described as

yk−L+1
yk−L+2

...
yk


︸ ︷︷ ︸

yk
k−L+1

=


C
CA
...

CAL−1


︸ ︷︷ ︸

C

xk−L+1 +


Da 0 · · · 0
CBa Da · · · 0
...

... . . . ...
CAL−2Ba CAL−3Ba · · · Da


︸ ︷︷ ︸

M


ak−L+1
ak−L+2

...
ak


︸ ︷︷ ︸
θk
k−L+1(k0,l)

+


D 0 · · · 0
CB D · · · 0
...

... . . . ...
CAL−2B CAL−3B · · · D


︸ ︷︷ ︸

D


uk−L+1
uk−L+2

...
uk


︸ ︷︷ ︸

uk
k−L+1

+


0 0 · · · 0
C 0 · · · 0
...

... . . . ...
CAL−2 CAL−3 · · · 0


︸ ︷︷ ︸

H


wk−L+1
wk−L+2

...
wk


︸ ︷︷ ︸

wk
k−L+1

+


G 0 · · · 0
CF G · · · 0
...

... . . . ...
CAL−2F CAL−3F · · · G


︸ ︷︷ ︸

G


dk−L+1
dk−L+2

...
dk


︸ ︷︷ ︸

dk
k−L+1

+


vk−L+1
vk−L+2

...
vk


︸ ︷︷ ︸

vk
k−L+1

, (4.14)
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or in a simpler form as

ykk−L+1 = Cxk−L+1 +Dukk−L+1 + Gdkk−L+1 +Mθkk−L+1 (k0, l) +Hwkk−L+1 + vkk−L+1, (4.15)

where ykk−L+1 ∈ RLp is the concatenated vector of measurements, ukk−L+1 ∈ RLm is the con-
catenated vector of control signals, dkk−L+1 ∈ RLq is the concatenated vector of disturbances,
wkk−L+1 ∈ RLn is the concatenated vector of process noises, vkk−L+1 ∈ RLp is the concatenated
vector of sensor noises, θkk−L+1 (k0, l) ∈ RLs is the concatenated vector of transient signals de-
pending on the change-point k0 and the change-type l; the matrices C ∈ RLp×n, D ∈ RLp×Lm, G ∈
RLp×Lq, H ∈ RLp×Ln andM ∈ RLp×Ls. The process noises wkk−L+1 ∼ N (0,Q) and the sensor
noises vkk−L+1 ∼ N (0,R), where Q = diag (Q) ∈ RLn×Ln and R = diag (R) ∈ RLp×Lp are block-
diagonal matrices formed of blocks Q and R, respectively. Let also ηkk−L+1 = Hwkk−L+1 +vkk−L+1
be concatenated vector of random noises, integrating both process noises and sensor noises. It
is clear that ηkk−L+1 ∼ N (0,S), where the covariance matrix S = HQHT + R ∈ RLp×Lp is
symmetric and positive-definite.
The concatenated vector of attack profiles θkk−L+1 (k0, l), depending on the relative position of
the change-point k0 within the window [k − L+ 1, k] and the change type l, is described as

θkk−L+1 (k0, l) =



[0] if k < k0
[0]
θ1 (l)
...

θk−k0+1 (l)

 if k0 ≤ k < k0 + L

[
θ̃kk−L+1 (k0, l)

]
if k ≥ k0 + L

, (4.16)

where the post-change profiles θ̃kk−L+1 (k0, l) ∈ RLs are of no interest.
Since the control signals uk and the disturbances dk are assumed to be exactly known, they can
be eliminated from the observation model (4.14)–(4.15) by subtraction, leading to the following
simplified statistical model:

zkk−L+1 = ykk−L+1 −
(
Dukk−L+1 + Gdkk−L+1

)
= Cxk−L+1 +Mθkk−L+1 (k0, l) + ηkk−L+1, (4.17)

The rejection of unknown system state vector xk−L+1 can be performed in the same manner as
it has been done in the detection problem. The simplified observation vector zkk−L+1 is projected
onto the orthogonal complement space R (C)⊥ of the column space R (C) of matrix C (i.e., the left-
null space of matrix C), which is assumed to be full column rank (i.e., rank (C) = n). The residual
vector is calculated as rkk−L+1 = Wzkk−L+1, where the rows of the matrix W ∈ R(Lp−n)×Lp are
composed of the eigenvectors of the projection matrix P⊥C = I −C

(
CTC

)−1
CT corresponding to

eigenvalue 1, where I is the identity matrix of appropriate dimension. The rejection matrix W
satisfies the following conditions: WC = 0, WTW = P⊥C and WWT = I. The statistical model
of the residuals, which are independent from the nuisance parameter xk−L+1, can be described
as

rkk−L+1 = ϕkk−L+1 (k0, l) + ςkk−L+1, (4.18)
where the transient profiles ϕkk−L+1 (k0, l) = WMθkk−L+1 (k0, l) and the random noises
ςkk−L+1 = Wηkk−L+1, thus satisfying ςkk−L+1 ∼ N (0,Σς), where the covariance matrix Σς =
W
(
HQHT +R

)
WT is positive-definite.
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4.3.3 Unified statistical model

In this subsection, we develop the unified statistical model of the residuals generated by either
steady-state Kalman filter approach or fixed-size parity space approach. It follows from (4.13)
and (4.18) that both residual-generation methods lead to the following unified statistical model:

rkk−L+1 = φkk−L+1 (k0, l) + ξkk−L+1, (4.19)
where rkk−L+1 is the vector of residuals, φkk−L+1 (k0, l) is the vector of transient signals and
ξkk−L+1 ∼ N (0,Σ) is the vector of random noises. For the steady-state Kalman filter approach,
the transient profiles φkk−L+1 (k0, l) = ψkk−L+1 (k0, l) and the random noises ξkk−L+1 = %kk−L+1
(i.e., Σ = Σ%). On the other hand, the transient profiles φkk−L+1 (k0, l) = ϕkk−L+1 (k0, l) and the
random noises ξkk−L+1 = ςkk−L+1 (i.e., Σ = Σς) for the fixed-size parity space approach.
Similar to the detection problem, the Kullback-Leibler (K-L) distance is employed for comparing
two residual-generation methods (i.e., the steady-state Kalman filter ad the fixed-size parity
space approaches). Let P lk0

(resp. P0 , P∞ , P0
k0
) be the probability measure when the

sequence of residuals rL1 , rL+1
2 , · · · , rkk−L+1, · · · follows the unified statistical model (4.19), Elk0

(resp. E0 , E∞ , E0
k0
) denote the corresponding mathematical expectations, and plk0

(resp. p0 ,

p∞ , p0
k0
) stand for the corresponding probability density function.

Without loss of generality, let us assume that the change-point k0 = 1. The K-L distance ρ (j, l)
between Pj1 and P l1, for 0 ≤ j 6= l ≤ K, is defined as

ρ (j, l) =
+∞∫
−∞

pj1

(
rL1

)
log

pj1

(
rL1

)
pl1
(
rL1
) drL1 , (4.20)

where the residual vector rL1 ∼ N
(
φL1 (1, l) ,Σ

)
under the probability measure P l1, for 0 ≤ l ≤ K.

For the Gaussian case, the K-L distances obtained by the steady-state Kalman filter approach
and the fixed-size parity space approach are calculated as

ρKF (j, l) = 1
2
[
ψL1 (1, l)− ψL1 (1, j)

]T [
Σ−1
%

] [
ψL1 (1, l)− ψL1 (1, j)

]
, (4.21)

ρPS (j, l) = 1
2
[
ϕL1 (1, l)− ϕL1 (1, j)

]T [
Σ−1
ς

] [
ϕL1 (1, l)− ϕL1 (1, j)

]
, (4.22)

where ρKF (j, l) and ρPS (j, l) are the K-L distances between Pj1 and P l1 of the residuals generated
by the steady-state Kalman filter and the fixed-size parity space, respectively.
Remark 4.1. By exploiting the results of Lemma 3.1, it can be shown that the K-L distances
ρPS (j, l) between Pj1 and P l1, for 0 ≤ j 6= l ≤ K, are independent from the choice of rejection
matrix W. The comparison between the steady-state Kalman filter approach and the fixed-size
parity space approach for the transient change detection-isolation problem will be performed by
simulation in chapter 6.

4.4 Detection-isolation Algorithms

In this section, we design several detection-isolation schemes for jointly detecting and isolating
transient changes in the unified statistical model (4.19). By generalizing the traditional CUSUM-
based algorithms (i.e., see subsection 2.4.3), we propose several detection-isolation schemes (i.e.,
generalized, matrix and vector Window Limited (WL) CUSUM algorithms). In addition, the
FMA detection-isolation rule will be also introduced.
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4.4.1 Generalized WL CUSUM algorithm

For the joint detection and isolation problem, Nikiforov [130] and Lai [104] have introduced,
respectively, the generalized CUSUM test and the generalized WL CUSUM test (see also subsec-
tion 2.4.3). Let us define directly the generalized WL CUSUM algorithm δGWL = (TGWL, νGWL),
which utilizes the last L observations at each time instant k ≥ L, as follows:

TGWL = inf
{
k ≥ L : max

1≤l≤K
max

k−L+1≤i≤k
min

0≤j 6=l≤K

(
Ski (l, j)− h

)
≥ 0

}
, (4.23)

νGWL = arg max
1≤l≤K

max
TGWL−L+1≤i≤TGWL

min
0≤j 6=l≤K

STGWL
i (l, j) , (4.24)

where h is the chosen threshold and Ski (l, j), for k−L+1 ≤ i ≤ k, 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K,
is the log-likelihood ratio (LLR), which is calculated in the Gaussian case as

Ski (l, j) =
[(
φkk−L+1 (i, l)− φkk−L+1 (i, j)

)]T [
Σ−1

] [
rkk−L+1 −

φkk−L+1 (i, l) + φkk−L+1 (i, j)
2

]
.

(4.25)
The generalized WL CUSUM algorithm (4.23)–(4.24) proceeds as follows. For each time in-
stant k ≥ L, the generalized WL CUSUM algorithm uses a block of L last measurements
yk−L+1, · · · , yk for decision-making. Firstly, the unified statistical model (4.19) is formulated by
either the steady-state Kalman filter approach or the fixed-size parity space approach. Secondly,
for each time index i from k−L+1 to k, the LLRs Ski (l, j), for all 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K,
are calculated. The alarm time TGWL is raised if there exists such l, for 1 ≤ l ≤ K, that for
some i ∈ [k − L+ 1, k], all LLRs Ski (l, j), for 0 ≤ j 6= l ≤ K, are greater than or equal to the
threshold h.

4.4.2 Matrix WL CUSUM algorithm

The matrix CUSUM algorithm was first introduced in [138] by revising the generalized CUSUM
algorithm to obtain the recursive form. Let us define directly the matrix WL CUSUM algorithm
δMWL = (TMWL, νMWL), which utilizes the last L observations at each time instant k ≥ L, as
follows:

TMWL = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K
max

k−L+1≤i≤k

(
Ski (l, j)− h

)
≥ 0

}
, (4.26)

νMWL = arg max
1≤l≤K

min
0≤j 6=l≤K

max
TMWL−L+1≤i≤TMWL

STMWL
i (l, j) , (4.27)

where h is the chosen threshold and the LLRs Ski (l, j), for k − L + 1 ≤ i ≤ k, 1 ≤ l ≤ K and
0 ≤ j 6= l ≤ K, are calculated in (4.25).
Remark 4.2. The matrix WL CUSUM algorithm (4.26)–(4.27) proceeds in the same manner as
the generalized WL CUSUM algorithm (4.23)–(4.24) except for the replacement of the “max-min”
operation in (4.23)–(4.24) by the “min-max” operation in (4.26)–(4.27).

4.4.3 Vector WL CUSUM algorithm

The vector WL CUSUM algorithm is obtained by replacing the statistic maxk−L+1≤i≤k S
k
i (l, j)

in the matrix WL CUSUM algorithm (4.26)–(4.27) by the following statistic:

gk (l, j) = max
k−L+1≤i≤k

Ski (l, 0)− max
k−L+1≤i≤k

Ski (j, 0) . (4.28)
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The vector WL CUSUM algorithm δVWL = (TVWL, νVWL) is then defined as follows:

TVWL = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K
(gk (l, j)− h) ≥ 0

}
, (4.29)

νVWL = arg max
1≤l≤K

min
0≤j 6=l≤K

gTVWL (l, j) , (4.30)

where h is the chosen threshold and the LLRs Ski (l, j), for k − L + 1 ≤ i ≤ k, 1 ≤ l ≤ K and
0 ≤ j 6= l ≤ K, are calculated in (4.25).

4.4.4 FMA detection-isolation rule

The FMA detection-isolation rule δFMA (TFMA; νFMA), which is the FMA version of the gener-
alized WL CUSUM, the matrix WL CUSUM and the vector WL CUSUM algorithms, can be
described as

TFMA = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
≥ 0

}
, (4.31)

νFMA = arg max
1≤l≤K

min
0≤j 6=l≤K

STFMA
TFMA−L+1 (l, j) , (4.32)

where h is the chosen threshold and the LLRs Skk−L+1 (l, j), for 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K,
are calculated in (4.25).

Remark 4.3. It can be seen that the FMA detection-isolation rule (4.31)–(4.32) is the general-
ization of the FMA detection rule (3.41) for the detection problem. The detection-isolation rule
(4.31)–(4.32) is also the FMA version of the generalized WL CUSUM algorithm (4.23)–(4.24),
the matrix WL CUSUM algorithm (4.26)–(4.27), and the vector CUSUM algorithm (4.29)–
(4.30). The statistical properties of the FMA detection-isolation rule (4.31)–(4.32) will be inves-
tigated in the following subsection.

4.4.5 Statistical properties of FMA detection-isolation rule

In this section, we investigate the statistical performance of the FMA detection rule (4.31)–
(4.32). Especially, we calculate the upper bound on the worst-case probability of false alarm,
the upper bound on the worst-case probability of false isolation and the upper bound on the
worst-case probability of missed detection. Main results are given in Theorem 4.1.

Theorem 4.1. Consider the FMA detection rule given in (4.31)–(4.32). Let P̃fa, P̃fi and P̃md
be, respectively, the upper bounds for Pfa (δFMA), Pfi (δFMA) and Pmd (δFMA). Then,

1. The worst-case probability of false alarm within any time window of length mα corresponds
to the first time window [L;L+mα − 1], i.e.,

Pfa (δFMA;mα;h) = P0 (L ≤ TFMA ≤ L+mα − 1) , (4.33)

and it is upper bounded by

Pfa (δFMA;mα;h) ≤ P̃fa (δFMA;mα;h) , 1− P0

(
L+mα−1⋂
k=L

K⋂
l=1

{
Skk−L+1 (l, 0) < h

})
. (4.34)
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2. The worst-case probability of false isolation within any transient change window corresponds
to the first time window [L; 2L− 1], i.e.,

Pfi (δFMA;L;h) = max
1≤l≤K

PlL (L ≤ TFMA < 2L; νFMA 6= l) , (4.35)

and it is upper bounded for the case of threshold h ≥ 0 as

Pfi (δFMA;L;h) ≤ P̃fi (δFMA;L;h) , max
1≤l≤K

1− max
0≤j̃≤K

PlL

2L−1⋂
k=L

K⋂
j=1
j 6=j̃,l

{
Skk−L+1

(
j, j̃
)
< h

}
 .

(4.36)
3. The worst-case probability of missed detection is upper bounded by

Pmd (δFMA;L;h) ≤ P̃md (TFMA;L;h) , max
1≤l≤K

K∑
j=0
j 6=l

Φ
(
h− µSL1 (l,j)

σSL1 (l,j)

)
, (4.37)

where µSL1 (l,j) and σSL1 (l,j) are calculated as

µSL1 (l,j) = 1
2
[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
, (4.38)

σ2
SL1 (l,j) =

[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
. (4.39)

Proof. The proof of Theorem 4.1 is given in Appendix A.8.

Let us add some comments on the results of Theorem 4.1. The upper bound P̃md for the
worst-case probability of missed detection can be calculated analytically. On the other hand,
the upper bound P̃fa for the worst-case probability of false alarm and the upper bound P̃fi for
the worst-case probability of false isolation can be estimated numerically by utilizing the same
technique as in Proposition 3.1. In addition, the threshold h can be such chosen that the upper
bound P̃fa (δFMA;mα;h) ≤ α and the upper bound P̃fi (δFMA;L;h) ≤ α, thus assuring the true
worst-case error probabilities Pfa (δFMA) ≤ α and Pfi (δFMA) ≤ α.

4.5 Conclusion

The attack detection-isolation problem has been formulated as the problem of jointly detecting
and identifying transient changes in stochastic-dynamical systems. Similar to the detection prob-
lem, the discrete-time state space model driven by Gaussian noises is utilized to describe SCADA
systems. The cyber-physical attacks are modeled as additive signals of short duration on both
state evolution and sensor measurement equations. In order to eliminate the nuisance parameter,
the steady-state Kalman filter and the fixed-size parity space are employed. For the detection-
isolation problem, there are multiple attack types (i.e., or attack scenarios) where each attack
kind produces a specific attack signature (i.e., or attack profile) after the residual-generation
engine. It has been also shown that the utilization of both residual-generation methods leads to
the unified statistical model which is then utilized for designing detection-isolation schemes.
In order to compare various detection-isolation algorithms, we have proposed a novel criterion
of optimality which aims at minimizing the worst-case probability of missed detection subject
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to acceptable levels on the worst-case probability of false alarm and the worst-case probability
of false isolation. Several detection-isolation schemes have been adapted to the detection and
isolation of transient changes. The FMA detection rule proposed in chapter 3 has been revised
for jointly detecting and isolating transient changes in the unified statistical model. The up-
per bounds on the worst-case probability of false alarm, false isolation and missed detection
have been introduced. Though no optimal (or sub-optimal) algorithms have been obtained, we
have proposed a simple and efficient detection-isolation test. The comparison between different
algorithms will be investigated by the Monte Carlo simulation in chapter 6.
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Sequential Monitoring of SCADA
Systems against Cyber-physical

Attacks
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In the first part, we have proposed several algorithms for detecting and isolating transient
changes in stochastic-dynamical systems. The target of the second part is to apply the theoretical
results to the sequential monitoring of SCADA systems against cyber-physical attacks. This
part consists of two chapters. The models of SCADA systems and cyber-physical attacks are
developed in chapter 5. Two safety-critical infrastructures, including a simple SCADA gas
transmission pipeline and a simple SCADA water distribution network, are described in the
discrete-time state space form driven by Gaussian noises. Several types of cyber-physical attacks,
including DoS attacks, simple integrity attacks and stealthy integrity attacks are also considered.

The models of SCADA systems and cyber-physical attacks will be utilized in chapter 6 for
demonstrating theoretical results obtained in chapter 3 and chapter 4. The negative impact
of DoS attacks, simple integrity attacks and stealthy integrity attacks on closed-loop control
systems will be demonstrated by performing these malicious attack strategies on the simple
SCADA gas pipeline. Theoretical results obtained in chapter 3 (i.e., detection schemes) will
be applied for detecting the covert attack strategy on the simple SCADA water distribution
network. A more complex water network will be used for showing the performance of detection-
isolation schemes proposed in chapter 4.
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Chapter 5

Models of SCADA Systems and
Cyber-physical Attacks
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5.1 Introduction

The objective of this chapter is to develop the models of SCADA systems and cyber-physical
attacks. Generally, the physical layer of almost SCADA systems can be described by a set of
partial differential equations (PDEs). The PDEs can be also linearized around the operating
points for obtaining the discrete-time state space model driven by Gaussian noises. The cyber-
physical attacks are then modeled as additive signals of short duration impacting both system
equations.

For the demonstration purpose, we develop in this chapter the models of a simple SCADA
gas pipeline and a simple SCADA water distribution network. These geographically dispersed
assets are generally controlled and monitored by the SCADA technology, becoming more and
more susceptible to malicious attacks. Over the last decades, there has been an increasing
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number of cyber incidents involving gas pipelines [152, 156] and water networks [33, 168, 213].
Therefore, the monitoring of these safety-critical infrastructures against malicious attacks plays
an extremely important role in ensuring system normal operation and avoiding catastrophic
consequences.

A great deal of effort has been devoted to the security of SCADA gas pipelines against cyber-
physical attacks. For example, the vulnerabilities and protection measures for gas transmission
and distribution systems have been considered in [23, 197]. Numerous techniques have been
proposed to detect and isolate gas leaks in transmission and distribution pipelines [15, 125].
However, up to our best knowledge, the monitoring of SCADA gas pipelines against cyber-
physical attacks has not been considered seriously.

Water distribution networks, on the other hand, have received much more attention from the re-
search community. The surveillance of these safety-critical infrastructures can be classified into
two categories: hydraulic surveillance and quality monitoring. The quality monitoring problem
requires the detection and isolation of contaminants injected into water distribution networks.
The problem of modeling contaminant dynamics and fault diagnosis in water distribution net-
works has been considered in [45]. Moreover, Guépié [67] has proposed sequential methods for
monitoring the water quality based on the concentration of chlorine level in the water network.
The hydraulic surveillance problem consists in developing the hydraulic model of the systems
and then utilizing the fault detection-isolation techniques for detecting and identifying any faults
occurring to the systems. This approach has been considered in [5–7] for studying the security
of water irrigation canals against cyber-physical attacks.

This chapter is organized as follows. In section 5.2, we develop the models of a simple SCADA gas
pipeline and several cyber attack scenarios on the gas pipeline. The models of a simple SCADA
water network and cyber-physical attacks on the water network are derived in section 5.3.
Finally, some concluding remarks are drawn in section 5.4.

5.2 Model of SCADA Gas Pipelines

In this section, we develop the model of a simple SCADA gas pipeline and several attack sce-
narios. The architecture of the gas pipeline is described in subsection 5.2.1. The components of
the physical layer and the cyber layer are modeled in subsection 5.2.2 and subsection 5.2.3, re-
spectively. The discrete-time state space model of the gas pipeline is described subsection 5.2.4.
Finally, we consider in subsection 5.2.5 several attack scenarios on the gas pipeline.

5.2.1 System architecture

The architecture of a typical SCADA gas distribution network consists of two layers: the physical
layer and the cyber layer [86, 90, 170]. The physical layer includes physical elements such as
gas pipelines, compressors, valves and sensors. The co-operation of these components helps in
transporting and distributing gas from production plants to final consumers. The cyber layer is
comprised of Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs), Master
Terminal Units (MTUs) and communication devices. In gas pipeline technology, local control
algorithms are programmed in PLCs/RTUs and global control algorithms are implemented in
MTUs. The communication between the MTUs and the PLCs/RTUs are normally carried out
by wireless technology such as radio frequencies or satellites.
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Figure 5.1 – A simple SCADA gas distribution network.

For the sake of simplicity, we study a simple SCADA gas pipeline as shown in figure 5.1. The
physical layer consists of a gas pipeline G1, a compressor P1, a customer C1, and pressure
and flow rate sensors. The gas flow in the pipeline is controlled and monitored by the cyber
layer comprised of the PLC1 and the MTU1. The PLC1 is in charge of controlling the outlet
pressure of the pipeline G1 by regulating the speed of the compressor P1 based on the set-point
transmitted from the MTU1.

5.2.2 Model of physical layer

In this subsection, we develop the model of each physical element of the SCADA gas pipeline
described in figure 5.1. The physical components include the gas pipeline G1, the compressor
P1, the customer C1 and the pressure and flow rate sensors.

Model of gas flow in a pipeline. Under the isothermal conditions, transient gas flow through
a pipeline is governed by the following set of partial differential equations (PDEs) [1,13,76,96]:

∂ρ

∂t
+ ∂ (ρu)

∂x
= 0, (5.1)

∂ (ρu)
∂t

+ ∂
(
ρu2 + p

)
∂x

= −ρu |u|2D f − ρg sinα, (5.2)

p = ρZRT, (5.3)

where ρ is the gas density, p is the gas pressure, u is the gas axial velocity, g is the gravitational
acceleration, α is the pipe inclination, f is the friction factor, Z is the gas compressibility factor,
and D is the pipeline diameter.
The variables of interest are the pressure p (x, t) and the mass flow rate q (x, t) at the position x
and the time t. The inputs to the model are the outlet flow rate qout (t) = q (L, t) and the inlet
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Figure 5.2 – Inputs (pin (t) and qout (t)) and outputs (pout (t) and qin (t)) of the gas pipeline
model.

pressure pin (t) = p (0, t). The outlet flow rate qout (t) corresponds to the customer’s demands
and the inlet pressure pin (t) is equivalent to the pressure supplied by the compressor. It is
required to calculate the outlet pressure pout (t) = p (L, t) and the inlet flow rate qin (t) = q (0, t)
(see figure 5.2) from the inlet pressure pin (t), the outlet flow rate qout (t), the PDEs (5.1)–(5.3),
and the initial conditions.
For an isothermal process [87], the following relation satisfies p = c2ρ and q = ρuA = ρQ =
ρnQn, where c is the speed of sound, q is mass flow rate, Q is the volumetric flow rate in the
pipeline, ρn and Qn are gas density and volumetric flow rate at standard conditions9 and A is
the pipeline cross section and A = π (D/2)2.
Some methods have been proposed for solving the PDEs (5.1)–(5.3), including the numerical
methods [76, 87, 96, 137], the transfer function method [13] and the state space method [1].
The numerical methods appear inappropriate for the design of control schemes and monitoring
algorithms. For these reasons, the transfer function method and the state space method, which
are based on the linearized model of gas flow through a pipeline, are considered. The transfer
function model is useful in designing control algorithms while the state space model has an
advantage in developing monitoring schemes.
Putting together the PDEs (5.1)–(5.3), we obtain the following simplified PDEs:

1
ZRT

∂p

∂t
= − 1

A

∂q

∂x
, (5.4)

∂p

∂x
+ 1
A

∂q

∂t
+ ZRT

A2
∂

∂x

(
q2

p

)
= − f

2D
ZRT

A2
q |q|
p
− g sinα p

ZRT
. (5.5)

For simplicity, let p0 = p (x, 0) and q0 = q (x, 0) be the initial pressure and the initial flow rate
at a given position x (i.e., the subscript x is eliminated), respectively. Let also u0 be the initial
average gas velocity which is calculated [96] as

u0 = (qin (0) + qout (0))ZRT
(pin (0) + pout (0))A , (5.6)

where pin (0), pout (0), qin (0) and qout (0) are the initial values of inlet pressure, outlet pressure,
inlet flow rate and outlet flow rate, respectively. Let us assume that qin (0) = qout (0) = ρnQn (0).
Then, the initial outlet pressure pout (0) can be calculated as in [76] by the following equation:

pout (0) =

√
p2
in (0)− fL

D

(2cρnQn (0)
A

)2
. (5.7)

9Standard conditions are sets of conditions on the temperature and pressure for comparing between different
sets of data. The National Institute of Standards and Technology (NIST) uses the temperature of 20°C (293.15
K, 68 °F) and the absolute pressure of 101.325 kPa (14.696 psi, 1 atm).
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In order to obtain the transfer function model, the PDEs (5.4)–(5.5) are linearized around the
operating points. The variables p0, q0 and u0 are considered as references and some dimensionless
variables are defined [13] as follows:

x∗ = x

L
, L∗ = L

D
, t∗ = tc

L
, p∗ = p

p0
, q∗ = qc

p0A
, u∗ = u0

c
. (5.8)

The linearized model of transient gas flow through a pipeline is described in terms of dimen-
sionless variables as

∂∆q∗
∂x∗

= −∂∆p∗
∂t∗

, (5.9)(
1− u∗2

) ∂∆p∗
∂x∗

= −∂∆q∗
∂t∗

+ 2u∗∂∆p∗
∂t∗

− |u∗|fL∗∆q∗ +
(
fL∗

2 u∗ |u∗| − g∆h
c2

)
∆p∗. (5.10)

Since u∗ � 1 for the practical subsonic transient flow, the component u∗2 at the left-hand side of
(5.10) is omitted. Therefore, the Laplace transform of (5.9)–(5.10) leads to the following linear
ordinary differential equations:

∂∆q∗ (s)
∂x∗

= −s∆p∗ (s) (5.11)

∂∆p∗ (s)
∂x∗

= − (u∗fL∗ + s) ∆q∗ (s) +
(
fL∗

2 u∗ |u∗| − g∆h
c2 + 2u∗s

)
∆p∗ (s) (5.12)

By solving the equation (5.11)–(5.12) with the boundary conditions (i.e. the inlet pressure ∆pin
and the outlet flow rate ∆qout) and returning to their real values, we obtain that

∆pout (s) = Fpoutpin∆pin (s) + Fpoutqout∆qout (s) , (5.13)
∆qin (s) = Fqinpin∆pin (s) + Fqinqout∆qout (s) , (5.14)

where the transfer functions Fpoutpin (s), Fpoutqout (s), Fqinpin (s) and Fqinqout (s) are obtained by
taking into account only the zero-order and the first-order differential components as

Fpoutpin (s) = k1
1

a1s+ 1 and Fqinpin (s) = c1s

â1s+ 1 , (5.15)

Fpoutqout (s) = −k2
b1s+ 1
â1s+ 1 and Fqinqout (s) = 1

d1s+ 1 , (5.16)

where the coefficients in the equations (5.15)–(5.16) can be found in [1, 13].

Model of a compressor. In gas distribution systems, compressors are used to increase the
gas pressure at the inlet of a pipeline so that it can have enough energy to reach to its outlet.
A simple model of a centrifugal compressor, comprised of a motor and a compressing chamber
where the pressure is increased, is described in figure 5.3.

The increased pressure ∆p through the compressor depends on the inlet pressure, the outlet
pressure, the inlet mass flow rate, the outlet mass flow rate, and the motor speed by a non-
linear relationship. More details about the characteristics of a centrifugal compressor can be
found in [191]. For simplicity, let us assume that the increased pressure ∆p is controlled by
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Figure 5.3 – A centrifugal compressor under control.

such a high performance controller that it is related to the control signal ∆u by the following
first-order differential equation:

∆p (s) = Ka

Tas+ 1∆u (s) (5.17)

where Ka is the gain factor of the compressor, Ta is the time constant of the compressor, s is the
Laplace operand, ∆p (s) and ∆u (s) are the Laplace transform of the increased pressure ∆p (t)
and the control signal ∆u (t), respectively.

Model of a sensor. There are several types of sensors utilized in gas distribution systems,
such as pressure sensors, flow rate sensors, or temperature sensors. Under the assumption that
the gas transmission process is isothermal, we are interested in modeling the pressure sensors
and flow rate sensors. Due to of the slow dynamics of the transient gas flow in the network, the
model of a pressure sensor and a flow rate sensor can be described as

yp (t) = Kpp (t) + vp (t) , (5.18)
yq (t) = Kqq (t) + vq (t) , (5.19)

where p (t) and q (t) are the pressure and flow rate at a measured point, yp (t) and yq (t) are the
measurements of pressure p (t) and flow rate q (t), Kp and Kq are gain coefficients of the sensors
and vp (t) and vq (t) are sensor noises, respectively. Generally, the sensor noises are assumed to
be zero-mean normal variables, i.e., vp (t) ∼ N

(
0, σ2

p

)
and vq (t) ∼ N

(
0, σ2

q

)
, for all t ≥ 0.

Model of a customer. In a gas distribution network, the customer demands fluctuate sig-
nificantly during a given period (i.e., one day). This fluctuation is due to the difference in gas
consumption of individuals and industries in different hours. In such safety-critical infrastruc-
tures as gas pipelines, the variation in customer demands can be estimated by specially-designed
software (i.e., using a neural network). For this reason, the customer demand d (t) is assumed
to be completely known.

136



5.2. Model of SCADA Gas Pipelines

5.2.3 Model of cyber layer

In this subsection, we develop the model of the cyber layer which consists of the MTU1 and the
PLC1. The PLC1 is responsible for regulating the outlet pressure of the pipeline G1 based on
the set-point transmitted from the MTU1.

Model of a PLC. The control algorithm is designed and implemented in the PLC1 for regu-
lating the outlet pressure at the pipeline G1. Seeking for simplicity, we design a simple control
algorithm whose architecture is shown in figure 5.4.

Figure 5.4 – Structure of the outlet pressure controller.

The controller is comprised of two parts. The disturbance rejection controller Fdr (s), which is
an open-loop controller, is designed to compensate for the variation in the outlet pressure ∆pout
due to the change in customer’s demand ∆qout. The Proportional-Integral (PI) controller is
designed to regulate the outlet pressure ∆pout at a desired value by using closed-loop control
techniques. By utilizing simple control design techniques, the disturbance rejection controller
and the PI controller can be written as

Fdr (s) = k2
k1Ka

(a1 + b1) s+ 1
â1s+ 1 , FPI (s) = KP + KI

s
, (5.20)

where the coefficients KP and KI can be tuned by utilizing well-known techniques in automatic
control theory.

Model of a MTU. For simplicity, let us assume that the MTU1 takes responsibility for
sending command signals y∗pout (t) to the PLC1 for regulating the outlet pressure pout (t) of the
gas pipeline G1. The command signals are transmitted over long distance from the MTU1 (i.e.,
from the control center or from a control sub-station) to the PLC1 (i.e., in the field), therefore,
they are susceptible to several types of cyber attacks.
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5.2.4 Discrete-time state space model

The physical layer and the cyber layer of the simple SCADA gas pipeline have been modeled in
subsection 5.2.2 and subsection 5.2.3, respectively. The target of this subsection is to develop
the model of transient gas flow through the network, i.e., from the gas stock to final customers,
by combining the physical elements (i.e., pipeline G1, compressor P1 and pressure sensors S1
and S2 and flow rate sensors S3 and S4) and cyber elements (i.e., the MTU1 and the PLC1).

The method introduced in [1] is utilized for developing the state space model of transient gas
flow through the pipeline. Let x (t) = [x1 (t) , · · · , x4 (t)]T be state vector which is expressed in
terms of the inlet pressure ∆pin (t) and the outlet flow rate ∆qout (t) as follows:

ẋ1 (t) = − 1
a1
x1 (t) + k1

a1
∆pin (t), (5.21)

ẋ2 (t) = − 1
â1
x2 (t) + 1

â1
∆pin (t), (5.22)

ẋ3 (t) = − 1
â1
x3 (t)− k2

â1
∆qout (t), (5.23)

ẋ4 (t) = − 1
d1
x4 (t) + 1

d1
∆qout (t). (5.24)

The outputs ∆pout (t) and ∆qin (t) can be calculated from the inputs ∆pin (t) and ∆qout (t) and
the state variables x1 (t) , · · · , x4 (t) as follows:

∆pout (t) = x2 (t) +
(

1− b1
â1

)
x3 (t)− b1k2

â1
∆qout (t), (5.25)

∆qin (t) = − c1
â1
x2 (t) + x4 (t) + c1

â1
∆pin (t). (5.26)

Let also y (t) = [y1 (t) , · · · , y4 (t)]T ∈ R4 be the measurements of ∆pin (t), ∆pout (t), ∆qin (t)
and ∆qout (t), respectively. In other words, the measurement equations can be described as

y1 (t) = Kp∆pin (t) + vp (t) , y2 (t) = Kp∆pout (t) + vp (t) , (5.27)
y3 (t) = Kq∆qin (t) + vq (t) , y4 (t) = Kq∆qout (t) + vq (t) . (5.28)

For simplicity, let us assume that the time constant of the compressor is much smaller than the
gas time constants (i.e., Ta � a1, â1), and hence the relationship between the control signals
u (t) and the inlet pressure of the pipeline ∆pin (t) can be approximated as ∆pin (t) ≈ Kau (t).
Let also d (t) = ∆qout (t) be the variation in customer’s demands. The transient gas flow through
the pipeline is then described as{

ẋ (t) = Ãx (t) + B̃u (t) + F̃ d (t) + w (t)
y (t) = C̃x (t) + D̃u (t) + G̃d (t) + v (t)

; x (0) = x0, (5.29)

where x (t) ∈ R4 is the vector of system states, u (t) ∈ R is the vector of control signals, d (t) ∈ R
is vector of disturbances, y (t) ∈ R4 is the vector of sensor measurements, w (t) ∈ R4 is the vector
of process noises accounting for the model uncertainty, v (t) ∈ R4 is the vector of sensor noises;
the matrices Ã ∈ R4×4, B̃ ∈ R4×1, F̃ ∈ R4×1, C̃ ∈ R4×4, D̃ ∈ R4×1 and G̃ ∈ R4×1 are calculated
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as

Ã =



− 1
a1

0 0 0

0 − 1
â1

0 0

0 0 − 1
â1

0

0 0 0 − 1
d1


, B̃ =


Ka

k1
a1

Ka
1
â1

0
0

 , F̃ =


0
0
−k2
â11
d1

 , (5.30)

C̃ =


0 0 0 0
Kp 0 Kp

(
1− b1

â1

)
0

0 −Kq
c1
â1

0 Kq

0 0 0 0

 , D̃ =


KpKa

0
KqKa

c1
â1

0

 , G̃ =


0

−Kp
b1k2
â1

0
Kq

 .
(5.31)

Since the detection-isolation schemes are designed in the discrete-time domain, it is more conve-
nient to convert the continuous-time state space model (5.29) into the discrete-time state space
model. This task can be carried out simply by the exploiting the digital control theory [56]:{

xk+1 = Axk +Buk + Fdk + wk

yk = Cxk +Duk +Gdk + vk
; x0 = x0, (5.32)

where xk ∈ Rn is the vector of system states, uk ∈ Rm is the vector of control signals, dk ∈ Rq
is the vector of disturbances (corresponding to the consumption by customers), wk ∈ Rn is
the vector of process noises, yk ∈ Rp is the vector of sensor measurements, vk ∈ Rp is the
vector of sensor noises; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m,
and G ∈ Rp×q can be calculated from the corresponding matrices Ã, B̃, F̃ , C̃, D̃, G̃ in the
continuous-time domain and the sample time TS (i.e., n = 4, m = 1, p = 4 and q = 1). The
process noises wk and the sensor noises vk are assumed to follow zero-mean normal distribution
with known covariance matrices Q and R (i.e., wk ∼ N (0, Q) and vk ∼ N (0, R), where R is
positive-definite), respectively.

5.2.5 Model of cyber-physical attacks

As shown in figure 5.1, there are assumed to exist three possible attack points that can be
exploited by adversaries for performing malicious attacks on the SCADA gas pipeline, including
the introduction of false command signals sent from MTU1 to the PLC1, the modification of
control signals sent from the PLC1 to the compressor P1 and the injection of false data into
sensor measurements transmitted from sensors to the PLC1 and/or the MTU1.
The system model under cyber attacks on the control signals and the sensor measurements can
be described as: {

xk+1 = Axk +Buk + Fdk +Kauk + wk

yk = Cxk +Duk +Gdk +Hauk +Mayk + vk
; x0 = x0, (5.33)

where auk ∈ Rm is the attack vector on the control signals and ayk ∈ Rp is the attack vector
on the sensor measurements. The attack matrices K ∈ Rn×m, H ∈ Rp×m and M ∈ Rp×p.
The attack matrices K and H should satisfy the following condition: span (K) ⊆ span (B) and
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span (H) ⊆ span (D). The matrices K and H are chosen as K = B and H = D. The matrix M
is assumed to be diagonal, i.e., M = diag (γj), where γj = 1 signifies that sensor Sj is vulnerable
and γj = 0 means that sensor Sj is secure. In this numerical example, n = 4, m = 1, p = 4,
q = 1, r = 1 and s = 5.

For simplifying the model (5.33), let ak =
[
(axk)T ,

(
ayk
)T ]T be the attack vector, Ba = [K, 0] and

Da = [H,M ] be the attack matrices. The system model under attack is rewritten as{
xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x0 = x0, (5.34)

where ak ∈ Rs, with s = m+ p, is the attack vector, Ba ∈ Rn×s and Da ∈ Rp×s are the attack
matrices.

5.3 Model of SCADA Water Distribution Networks

In this section, we develop the model of a simple SCADA water distribution network and several
attack scenarios. The architecture of a simple SCADA water distribution network is described
in subsection 5.3.1. The components of the physical layer and the cyber layer of the water
network are modeled in subsection 5.3.2 and subsection 5.3.3, respectively. Some possible attacks
scenarios on the water network are shown in subsection 5.3.4.

5.3.1 System architecture

Similar to SCADA gas pipelines, the architecture of a SCADA water distribution system is
also divided into the physical layer and the cyber layer. The physical layer is comprised of
a large number of reservoirs, tanks, junctions, pumps, valves, pipelines, sensors and other hy-
draulic components which help in transmitting and distributing water from production plants
to final customers. The cyber layer, including SCADA control center, communication devices,
controllers and anomaly detectors, is in charge of monitoring and supervising the operation of
the system based on the data acquired from field devices.

For simplicity, we study a simple SCADA water distribution system as shown in figure 5.5. The
physical layer consists of a treatment plant W1, a reservoir R1, a pump P1, 3 junctions N2, N3
and N4, 4 pipelines G01, G12, G23, and G24 and 2 consumers d1 and d2. Two pressure sensors
S1 and S2 are equipped for measuring pressure heads h1 at the reservoir and h2 at the node N2,
respectively. The cyber layer is comprised of the SCADA control center which is responsible for
regulating the pressure head h1 at the reservoir and monitoring the operation of the network.

5.3.2 Model of physical layer

The model of hydraulic components such as treatment plants, reservoirs, tanks, junctions,
pipelines, pumps, valves and customer’s demands can be found in [21]. By utilizing the model
of each element and exploiting laws of mass and energy conservation, the water flow through a
network can be described by a set of non-linear equations. These non-linear equations can be
linearized around operating points [151] in order to obtain the linearized state space model [140].
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Figure 5.5 – Architecture of a simple SCADA water distribution network.

System model under normal operation

The linearized model of the water network in figure 5.5 is obtained by exploiting mass and
energy balance equations of water flow through the network. The mass balance equations at the
reservoir R1 and the junctions N2, N3 and N4 can be written as follows:

A1ḣ1 (t) = Q01 (t)−Q12 (t) , (5.35)
0 = Q12 (t)−Q23 (t)−Q24 (t) , (5.36)
0 = Q23 (t)− d1 (t) , (5.37)
0 = Q24 (t)− d2 (t) , (5.38)

where A1 is the cross section of the reservoir, h1 (t) is the pressure head at the reservoir, Qij (t)
is the water flow rate through the pipeline Gij , d1 (t) and d2 (t) are the consumption at the
junctions N3 and N4, respectively.

For simplicity, let us assume that the pump P1 is regulated by an extremely high performance
local controller so that the water flow rate Q01 (t) is proportional to the control signal u (t) sent
from the SCADA control center. The energy balance equation through the pump P1 is then
simplified as

0 = u (t)− g01Q01 (t) , (5.39)

where g01 is a known coefficient. The energy balance equations through the pipelines G12, G23
and G24 are written as

0 = h1 (t)− h2 (t)− g12Q12 (t) , (5.40)
0 = h2 (t)− h3 (t)− g23Q23 (t) , (5.41)
0 = h2 (t)− h4 (t)− g24Q24 (t) , (5.42)
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where h2 (t), h3 (t) and h4 (t) are pressure heads at the junctions N2, N3 and N4, respectively;
g12, g23 and g24 are known coefficients obtained linearizing the Hazen-Williams equation for
pressure head loss of water flow through the pipelines G12, G23 and G34, respectively.
The mass and energy balance equations can be expressed in the matrix form as

A1ḣ1 (t)
0
0
0
0
0
0
0


︸ ︷︷ ︸

Eẋ(t)

=



0 0 0 0 1 −1 0 0
0 0 0 0 −g01 0 0 0
1 −1 0 0 0 −g12 0 0
0 1 −1 0 0 0 −g23 0
0 1 0 −1 0 0 0 −g24
0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

A



h1 (t)
h2 (t)
h3 (t)
h4 (t)
Q01 (t)
Q12 (t)
Q23 (t)
Q24 (t)


︸ ︷︷ ︸

x(t)

+



0
1
0
0
0
0
0
0


︸ ︷︷ ︸
B

u (t) +



0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1


︸ ︷︷ ︸

F

[
d1 (t)
d2 (t)

]
︸ ︷︷ ︸

d(t)

. (5.43)

In practical applications, the customer’s demands d1 (t) and d2 (t) can be estimated by some
specially-designed software [21] with an acceptable level of accuracy. In addition, the model of
the pump under control may not be completely accurate due to some tolerance levels of motors,
sensors, etc. These uncertainties are often modeled by so-called the process noises w (t). Taking
into account the process noise vector w (t), the state evolution equation can be rewritten as

Eẋ (t) = Ax (t) +Bu (t) + Fd (t) + w (t) ; x (0) = x0, (5.44)

where x (t) ∈ Rn is the vector of system states, u (t) ∈ Rm is the vector of control signals,
d (t) ∈ Rq is the vector of disturbances; the matrices E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m,
F ∈ Rn×q, where n = 8, m = 1, q = 2 in this time-continuous state space model.
For simplicity, let us assume that two pressure sensors S1 and S2 are utilized for measuring the
pressure head h1 (t) at the reservoir and the pressure head h2 (t) at the junction N2, respectively.
The measurement equation is then expressed as

[
y1 (t)
y2 (t)

]
︸ ︷︷ ︸

y(t)

=
[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
︸ ︷︷ ︸

C



h1 (t)
h2 (t)
h3 (t)
h4 (t)
Q01 (t)
Q12 (t)
Q23 (t)
Q24 (t)


︸ ︷︷ ︸

x(t)

+
[
v1 (t)
v2 (t)

]
︸ ︷︷ ︸

v(t)

, (5.45)
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where y1 (t) and y2 (t) are the measurements of the sensors S1 and S2, respectively; v1 (t) and
v2 (t) are sensor noises. The sensor measurement equation can be rewritten in a simpler form as

y (t) = Cx (t) + v (t) , (5.46)

where y (t) ∈ Rp is the vector of sensor measurements and v (t) ∈ Rp is the vector of sensor
noises; the matrix C ∈ Rp×n with p = 2 in this case.
Putting together (5.44) and (5.46), the linearized model of water flow through the network can
be expressed by the following time-continuous state space form:{

Eẋ (t) = Ax (t) +Bu (t) + Fd (t) + w (t)
y (t) = Cx (t) + v (t)

; x (0) = x0. (5.47)

From singular form to non-singular form

It is worth noting that the matrix E in (5.47) is singular (i.e., det (E) = 0), therefore, it is
necessary to transform the system model (5.47) into a non-singular form. This task can be
carried out by exploiting specific results from the index-one singular systems as shown in [140].
Seeking for simplicity but without loss of generality, let us assume that the state space model
(5.47) has the following form:[

E11 0
0 0

]
︸ ︷︷ ︸

E

[
ẋ1 (t)
ẋ2 (t)

]
︸ ︷︷ ︸

ẋ(t)

=
[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

[
x1 (t)
x2 (t)

]
︸ ︷︷ ︸

x(t)

+
[
B1
B2

]
︸ ︷︷ ︸

B

u (t) +
[
F1
F2

]
︸ ︷︷ ︸

F

d (t) +
[
I1
I2

]
︸ ︷︷ ︸

I

w (t) ,

(5.48)

y (t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1 (t)
x2 (t)

]
︸ ︷︷ ︸

x(t)

+v (t) , (5.49)

where E11 ∈ Rn1×n1 and A22 ∈ Rn2×n2 are non-singular matrices, I ∈ Rn×n is the identity
matrix, and the system states x (t) ∈ Rn are comprised of the dynamic states x1 (t) ∈ Rn1 and
the algebraic states x2 (t) ∈ Rn2 , where n = n1+n2. The algebraic states x2 (t) can be calculated
from the dynamic states x1 (t) by the following equation:

x2 (t) = −A−1
22 A21x1 (t)−A−1

22 B2u (t)−A−1
22 F2d (t)−A−1

22 I2w (t) . (5.50)

The elimination of algebraic states x2 (t) leads to a non-singular time-continuous state space
model as

ẋ1 (t) = E−1
11

(
A11 −A12A

−1
22 A21

)
︸ ︷︷ ︸

Ã

x1 (t) + E−1
11

(
B1 −A12A

−1
22 B2

)
︸ ︷︷ ︸

B̃

u (t) +

E−1
11

(
F1 −A12A

−1
22 F2

)
︸ ︷︷ ︸

F̃

d (t) + E−1
11

(
I1 −A12A

−1
22 I2

)
︸ ︷︷ ︸

Ĩ

w (t) , (5.51)

y (t) =
(
C1 − C2A

−1
22 A21

)
︸ ︷︷ ︸

C̃

x1 (t) +
(
−C2A

−1
22 B2

)
︸ ︷︷ ︸

D̃

u (t) +
(
−C2A

−1
22 F2

)
︸ ︷︷ ︸

G̃

d (t) + v (t) ,(5.52)
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and in a simpler form as{
ẋ1 (t) = Ãx1 (t) + B̃u (t) + F̃ d (t) + Ĩw (t)
y (t) = C̃x1 (t) + D̃u (t) + G̃d (t) + v (t)

, (5.53)

where the matrices Ã, B̃, F̃ , Ĩ, C̃, D̃ and G̃ can be calculated from the original matrices E, A,
B, F , I and C.

The non-singular continuous-time state space model (5.53) can be transformed into the discrete-
time counterpart by the sample time TS without any difficulty. For notation convenience, we
eliminate the “tilde” from the matrices, replace the dynamic states x1 (t) by the system states
xk with unknown initial condition x0, and employ n as the number of dynamic states in place
of n1. As a result, the linearized model of the water distribution network is described in a
discrete-time state space form as{

xk+1 = Axk +Buk + Fdk + wk

yk = Cxk +Duk +Gdk + vk
; x0 = x0 (5.54)

where xk ∈ Rn is the vector of system states corresponding the pressure head h1 at the reservoir,
uk ∈ Rm is the vector of control signals transmitted from the control center to the pump P1,
dk ∈ Rq is the vector of disturbances (corresponding to customer’s demands), wk ∈ Rn is the
vector of process noises, yk ∈ Rp is the vector of sensor measurements (sensors S1 and S2),
vk ∈ Rp is the vectors of sensor noises; the matrices with appropriate dimension A ∈ Rn×n,
B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, and G ∈ Rp×q, where n = 1, m = 1, p = 2
and q = 2 in this numerical example. The process noises wk and the sensor noises vk are
assumed to follow zero-mean normal distribution with known covariance matrices Q and R (i.e.,
wk ∼ N (0, Q) and vk ∼ N (0, R), where R is positive-definite), respectively.

5.3.3 Model of cyber layer

The cyber layer of the water distribution network is responsible for regulating water flow from
production plants to final customers, controlling water quality, monitoring abnormal situations
occurring to the system, acquiring data for management, or doing other important functions. In
this numerical example, we focus on the hydraulic monitoring of water flow through the network.
For the sake of simplicity, let us assume that the water flow rate Q01 into the reservoir R1 is
controlled by a simple algorithm which sends constant control signals (i.e., uk = constant) from
the control center to the local controller for regulating the pump P1 operating at a constant
speed. It should be noted that more complicated control algorithms do not alter the principal
results since the control signals are completely known to the system operators.

5.3.4 Model of cyber-physical attacks

This subsection is dedicated to developing the model of cyber-physical attacks on the water
distribution network described in figure 5.5. Firstly, we figure out several possible attack points
that can be exploited by the attacker for launching malicious attacks. Secondly, we develop the
model of cyber-physical attacks on the water network, from the singular continuous-time state
space model to the non-singular discrete-time state space model.
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Possible attack scenarios

Let us assume that the adversary is able to perform the following malicious activities:

• Physical attack on the reservoir : The attacker can launch a physical attack for stealing
water from the reservoir (e.g., by utilizing an external pump) with a flow rate Q0 (t) > 0,
leading to a reduction in water pressure at the reservoir as well as a decrease in the pressure
over the network.

• Cyber attack on control signals: The malicious agent can also modify the control signals to
the pump, forcing the control signals u (t) become u (t) + au (t), where au (t) is the attack
signal added to the control signals u (t).

• Cyber attack on sensor measurements: The powerful hacker can compromise sensor mea-
surements (e.g., by breaking into the communication channels between the local devices
and the control center), causing the measurements yj (t) of sensor Sj become yj (t)+ayj (t),
where {ayj (t)}1≤j≤p are the attack signals added to the measurements of sensor Sj . The
sensor attack vector ay (t) ∈ Rp is then described as ay (t) = [ay1 (t) , · · · , ayp (t)]T .

Model of cyber-physical attacks

Let us assume that the adversary launches a coordinated attack by withdrawing water from
the reservoir (i.e., by the attack vector ap (t) = −Q0 (t)), modifying the control signals (i.e., by
the attack vector au (t)) and compromise sensor measurements (i.e., by the attack vector ay (t))
during the attack period τa = [k0, k0 + L− 1], where k0 is an unknown attack instant and L is
the attack duration. The state evolution equation under the physical attack on the reservoir
and the cyber attack on the control signals can be described as

Eẋ (t) = Ax (t) + K1a
p (t)︸ ︷︷ ︸

stealing water

+Bu (t) + K2a
u (t)︸ ︷︷ ︸

modifying control signals

+Fd (t) + w (t) , (5.55)

where the component K1a
p (t) ∈ Rn denotes the physical attack for stealing water from the

reservoir and K2a
u (t) ∈ Rn stands for the cyber attack for modifying the control signals. Let

ax (t) =
[
ap (t)
au (t)

]
∈ Rr, where r = 2, be the state attack vector and K = [K1,K2] ∈ Rn×r be

the attack matrices. The state attack component Kax (t) can be described as

Kax (t) =



1
0
0
0
0
0
0
0


︸ ︷︷ ︸
K1

ap (t)

︸ ︷︷ ︸
stealing water

+



0
1
0
0
0
0
0
0


︸ ︷︷ ︸
K2

au (t)

︸ ︷︷ ︸
modifying control signals

=



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


︸ ︷︷ ︸

K

[
ap (t)
au (t)

]
︸ ︷︷ ︸

ax(t)

︸ ︷︷ ︸
state attack component

. (5.56)
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The cyber attack on sensors impact their measurements directly and the measurement equation
can be expressed as

y (t) = Cx (t) + Muy (t)︸ ︷︷ ︸
compromised sensors

+v (t) , (5.57)

where the matrix M ∈ Rp×p reflects the attacker’s capability to compromise sensor measure-
ments. Seeking for simplicity, it is assumed that M = diag (γj), where γj = 1 signifies that the
sensor Sj is vulnerable and γj = 0 means that the sensor Sj can not be compromised.
By combining (5.55)–(5.57), the model of the water network under cyber-physical attack can be
described in a singular continuous-time state space model as{

Eẋ (t) = Ax (t) +Bu (t) + Fd (t) +Kax (t) + w (t)
y (t) = Cx (t) +May (t) + v (t)

; x (0) = x0. (5.58)

where the matrices E, A, B, F , C in (5.58) are the same as those in (5.47).
By utilizing the same techniques as previous subsection, the singular continuous-time state space
model (5.58) can be transformed into the following non-singular discrete-time state space model:{

xk+1 = Axk +Buk + Fdk +Kaxk + wk

yk = Cxk +Duk +Gdk +Haxk +Mayk + vk
; x0 = x0, (5.59)

where the system matrices A, B, F , C, D, G, K, H and M in the non-singular discrete time
state space model (5.59) are different from the system matrices A, B, F , C, K,M in the singular
continuous-time state space model (5.58) due to the transformation from the singular form to
the non-singular form and from the continuous-time form to the discrete-time form. We hope
that the utilization of such notations does not cause any confusion to readers.

Let ak =
[
(axk)T ,

(
ayk
)T ]T ∈ Rs, where s = r + p, be the attack vector, Ba = [K, 0] ∈ Rn×s and

Da = [H,M ] ∈ Rp×s be the attack matrices. The system model under attack is rewritten as{
xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x0 = x0, (5.60)

where xk ∈ Rn is the vector of system states with unknown initial states x0, uk ∈ Rm is the
vector of control signals, dk ∈ Rq is the vector of disturbances (corresponding to the consumption
of customers), yk ∈ Rp is the vector of sensor measurements, ak ∈ Rr+p is the vector of attack
signals, wk ∈ Rn and vk ∈ Rp are the vectors of process noises and sensor noises, respectively; the
matrices with appropriate dimension A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m,
G ∈ Rp×q, Ba ∈ Rn×s and Da ∈ Rp×s. In this numerical example, the parameters are chosen as
n = 1, m = 1, p = 2, q = 2, r = 2 and s = r + p = 4.

5.4 Conclusion

The physical layer of the majority of SCADA systems can be described in the discrete-time state
space model driven by Gaussian noises. The cyber-physical attacks (i.e., malicious attacks on
both physical layer and cyber layer) can be modeled as additive signals of short duration to
both state evolution and sensor measurements equations. For the demonstration purpose, we
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5.4. Conclusion

have developed the models of a simple SCADA gas pipeline and a simple SCADA water network
under normal operation as well as under cyber-physical attacks. Especially, we have modeled
also several attack strategies found in literature, including DoS attacks, simple integrity attacks
and stealthy integrity attacks.

The negative impact of cyber-physical attacks on closed-loop control systems will be demon-
strated in the next chapter by launching DoS attacks, simple integrity attacks and stealthy in-
tegrity attacks on the command signals, control signals and sensor measurements of the SCADA
gas pipelines. In addition, the SCADA water network under the covert attack strategy will
be utilized for demonstrating the effectiveness of the detection-isolation schemes proposed in
chapter 3 and chapter 4.
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Numerical Examples
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6.1 Introduction

In chapter 3 and chapter 4, we have proposed several sub-optimal algorithms for detecting
and isolating transient signals in stochastic-dynamical systems. In order to demonstrate the
theoretical findings, we have developed two simulation models, including the model of a simple
SCADA gas pipeline and the model of a simple SCADA water distribution network in chapter 5.
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The target of this chapter is to apply the proposed algorithms to the detection and identification
of several attack scenarios on both the SCADA gas pipeline and the SCADA water network.

This chapter is split into three main sections. In section 6.2, we study the effect of several types
of cyber-physical attacks on the SCADA gas pipeline. Specially, we show that DoS attacks and
simple integrity attacks (i.e., min-max, scaling and additive attacks) can be detected easily even
by traditional anomaly detectors. In contrast, stealthy integrity attacks (i.e., replay attack and
covert attack, for example) are much more difficult to detect.

The statistical performance of the proposed detection algorithms are demonstrated in section 6.3.
Simulation results are given for comparing between the proposed FMA detection rule and tradi-
tional tests, and between the steady-state Kalman filter-based algorithms and the fixed-size par-
ity space-based detection procedures. The comparison between the proposed numerical method
and the Monte Carlo simulation method is also carried out. In addition, the robustness of
the FMA test with respect to several operational parameters is investigated by both Monte
Carlo simulation and numerical method. Furthermore, we examine the statistical performance
of several detection schemes when the transient change parameters are partially known.

In section 6.4, we investigate the performance of the proposed detection-isolation schemes. It will
be seen that the FMA test is quite effective in detecting and isolating cyber-physical attacks
on SCADA systems. Especially, the performance of the FMA test is compared with several
traditional tests, including the generalized WL CUSUM test, the matrix WL CUSUM test and
the vector WL CUSUM test in different scenarios.

6.2 Cyber-Physical Attacks on Gas Pipelines

In this section, we investigate the negative impact of several attack scenarios on the SCADA gas
pipeline described in figure 5.1. It has been pointed out in section 5.2 that the adversary can
launch his malicious attacks on the command signals, control signals and sensor measurements
by either DoS attack strategies, simple integrity attack strategies or stealthy integrity attack
strategies.

6.2.1 Introduction

A Matlab-Simulink model has been developed for studying the negative impact of cyber-physical
attacks on the simple SCADA gas pipeline described in figure 5.1. The simulation model, which
is shown in figure 6.1, consists of the physical layer (i.e., the gas stock GS1, the compressor P1,
the gas pipeline G1, the pressure sensors S1, S2 and the flow rate sensors S3, S4) and the cyber
layer (i.e., the PLC1 and the MTU1). The cooperation of the physical layer and the cyber layer
helps in transporting and distributing gas from the gas stock GS1 to the customer C1.

The simulation parameters are chosen as follows (i.e., the same as those in [76]). The pipeline
parameters include the pipe length L = 100 km, the pipe diameter D = 0.6 m, the friction
factor f = 0.03. The gas parameters include the gas compressibility factor Z = 0.88, the gas
constant R = 392 m2/s2K, the isothermal speed of sound c = 310 m/s and the gas density at
standard condition ρn = 0.7165 kg/m3. The environment parameters include the temperature
T = 278 K, the gravity acceleration g = 9.81 m/s2 and the pipe inclination h = 0 m (i.e., the
straight horizontal pipeline). The initial inlet pressure is pin,0 = 50 bar. The volumetric flow
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Figure 6.1 – Simulation model of a simple SCADA gas pipeline.

rates at standard conditions are Qn,0 = 70 m3/s. The initial mass flow rates are calculated from
Qn,0 by the following equation: qin,0 = qout,0 = ρnQn,0 = 50.16 kg/s. The initial outlet pressure
is calculated from (5.7) as pout,0 = 43.53 bar. The linearized parameters are obtained from [1,13]
as k1 = 1.0350, k2 = 2.6178 104, a1 = 3.8213 103, b1 = 1.2751 103, c1 = 0.2993, d1 = 3.8289 103

and â1 = 3.8251 103.

The parameters of the compressor include the gain factor Ka = 105 and the time constant
Ta = 600 s. The gain factors of the pressure sensors and the flow rate sensors are Kp = 10−5 and
Kq = 1, respectively. The noise variances are σ2

p = 1 for the pressure sensors (i.e., S1 and S2)
and σ2

q = 2 for the flow rate sensors (i.e., S3 and S4), respectively. The sample time is chosen
as TS = 30 s and the simulation time is TSIM = 48 hours.

The parameters of the cyber layer are chosen as follows. The discrete-time PI controller is de-
signed with the proportional gain KP = 0.4 and the integral gain KI = 2 10−4. The parameters
of the disturbance rejection controller Fdr can be transformed from the continuous-time repre-
sentation (5.20) to the discrete-time representation by either the zero-order hold method, the
first-order hold method or the Tustin’s method [56]. During normal operation, it is assumed that
the command signals transmitted from the MTU1 to the PLC1 remain constant at y∗pout = 50
for regulating the outlet pressure at the constant value of pout = 50 bar.

The normal behavior of the SCADA gas pipeline is exemplified in figure 6.2. The outlet mass
flow rate qout (i.e., the blue curve), which corresponds to the customers’ demands, fluctuates
periodically around the nominal value of 50.16 kg/s. In order to regulate the outlet pressure pout
(i.e., the magenta curve) around the value of 50 bar, the PLC1 performs the control algorithm
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(a) Inlet and outlet pressures (i.e., pin and pout).

0 4 8 12 16 20 24 28 32 36 40 44 48
20

30

40

50

60

70

80

90

100

(b) Inlet and outlet mass flow rates (i.e., qin and qout).

Figure 6.2 – Normal operation of the SCADA gas pipeline.

and sends the control signals to the compressor P1 for regulating the inlet pressure pin (i.e., the
red curve). In turn, the change in the inlet pressure leads to the variation in the inlet mass flow
rate qin (i.e., the green curve).

6.2.2 DoS attacks

This subsection is dedicated to studying the negative impact of several DoS attack strategies
on the SCADA gas pipeline. The DoS attack strategies (1.3), (1.4) and (1.5) are performed on
the command signals, on the control signals and on the sensor measurements, respectively. The
attack duration is τa = [20, 32] hours.
The effect of the DoS attack strategy (1.3) on the command signals transmitted from the MTU1
to the PLC1 is described in sub-figure 6.3a. During the attack duration τa, the commands
received by the PLC1 are considered as zero since the true signals can not arrive at the PLC1. In
response to this attack, the outlet pressure pout is regulated to keep track of the false commands
(i.e., zero). As a consequence, both the inlet pressure pin and the outlet pressure pout are forced
to reduce significantly.
In sub-figure 6.3b, we show the effect of the DoS attack strategy (1.4) on the control signals
sent from the PLC1 to the compressor P1. During the attack duration τa, the control signals
received by the compressor P1 remain the same as the control signals just before the attack (i.e.,
uk = uk0−1 for every k ∈ [k0, k0 + L− 1]). As a consequence, the inlet pressure pin remains
almost constant and the outlet pressure pout reduces slightly in response to the augmentation in
customer’s demands.
For the DoS attack strategy (1.5), the feedback signals ypout are transmitted successfully to
the PLC1 with the probability p1 = P (γk = 1), where γk is a random variable following the
Bernoulli distribution. We consider two scenarios: p1 = 0.95 (i.e., 95% of the feedback signals
are transmitted successfully to the PLC1) and p1 = 0.05 (i.e., 5% of the feedback signals are
transmitted successfully to the PLC1). The DoS attack strategy (1.5) on the feedback signals
with p1 = 0.95 and p1 = 0.05 is described in sub-figure 6.3c and sub-figure 6.3d, respectively.
In both cases, the controller is unable to perform its task due to the lack of feedback signals.
In the first scenario where the attacker is able to block only 5% of signals, the measurements of
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(a) DoS attack strategy (1.3) on the command signals.
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(b) DoS attack strategy (1.4) on the control signals.
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(c) DoS attack strategy (1.5) on the feedback signals
with p1 = 0.95.
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(d) DoS attack strategy (1.5) on the feedback signals
with p1 = 0.05.

Figure 6.3 – DoS attack strategies on the SCADA gas pipeline.

sensor S2 are deflected slightly from their normal values. In the second scenario, on the other
hand, the outlet pressure pout is out of control since only 5% of feedback signals are transmitted
successfully to the PLC1.

6.2.3 Simple integrity attacks

In this subsection, we investigate the negative effect of simple integrity attacks on the SCADA
gas pipeline, including the injection of false data into command signals, control signals, and
feedback signals. The operational ranges for the command signals, the control signals and the
feedback signals are chosen as Y∗ , [30, 70], U , [30, 80] and Y , [30, 70], respectively.

Attack on command signals

In figure 6.4, we show the reaction of the SCADA gas pipeline under several simple integrity
attack strategies (i.e., min attack, max attack, scaling attack and additive attack) on the com-
mand signals sent from the MTU1 to the PLC1. Theoretically, the simple integrity attacks on
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the command signals are equal to the modification of the set-points. For a closed-loop control
system, the controller is responsible for regulating the system outputs to keep track of the set-
points. Since the SCADA gas pipeline is also a closed-loop control system, the outlet pressure
will be controlled for tracking the false commands arrived at the PLC1. The command signals
transmitted from the MTU1 are always fixed at y∗pout = 50. Since the command signals trans-
mitted from the MTU1 to the PLC1 are susceptible to either the min attack, the max attack,
the scaling attack or the additive attack, the set-points received by the PLC1 are different from
the original ones (i.e., ỹ∗pout 6= y∗pout).
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(b) Max attack strategy on command signals.
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(c) Scaling attack strategy on command signals.
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(d) Additive attack strategy on command signals.

Figure 6.4 – Simple integrity attacks on command signals transmitted from the MTU1 to the
PLC1.

Since the set-point transmitted from the MTU1 is fixed at y∗pout = 50, the PLC1 receives the
false command signals of ỹ∗pout = min {Y∗} = 30, ỹ∗pout = max {Y∗} = 70, ỹ∗pout = αy∗pout = 40 and
ỹ∗pout = y∗pout + δy∗pout = 60 under the min attack strategy, the max attack strategy, the scaling
attack strategy with α = 0.8 and the additive attack strategy with δy∗pout = 10, respectively. The
measurements of sensor S1 (i.e., inlet pressure pin) and sensor S2 (i.e., outlet pressure pout) under
aforementioned attack strategies are shown in sub-figure 6.4a, sub-figure 6.4b, sub-figure 6.4c
and sub-figure 6.4d, respectively.

For simple integrity attack strategies on command signals, the outlet pressure pout is tracking the
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false commands arriving at the PLC1. It is worth noting that each attack strategy results in a
specific attack signature (i.e., attack profile) of the outlet pressure pout. If the attack information
is known a priori (i.e., min-max values, scaling factor or additive value), the attack profile will
be available. As discussed in chapter 3 and chapter 4, this information is essential in designing
detection-isolation schemes.

Attack on control signals

The reaction of closed-loop control systems under several simple integrity attack strategies on
control signals is investigated in figure 6.5. The min attack strategy, where the control signals
uk are replaced with the minimum value umin = min {U} = 30 during the attack duration
τa = [20, 32] hours, is shown in sub-figure 6.5a. Under this attack strategy, the controller is
unable to perform its task since the control signals received by the compressor P1 (i.e., the blue
curve) are fixed at umin = 30. As a consequence, the inlet pressure of the pipeline (i.e., the
red curve) is regulated at a fixed value of pin = 30 bar, leading to a significant reduction in
the outlet pressure (i.e., the magenta curve). Since the outlet pressure is decreasing during the
attack period, the controller perceives that it should increase the control signals. Therefore, the
true control signals (i.e., the green curve) issued by the PLC1 increases dramatically until it
touches the maximum value umax = 80.

The max attack strategy, where the control signals uk are replaced with the maximum value
umax = max {U} = 80 during the attack period τa = [20, 32] hours, is described in sub-
figure 6.5b. Under this attack strategy, the inlet pressure (i.e., the red curve) increases to
the value of pin = 80 bar since the control signals received by the compressor P1 (i.e., the blue
curve) are fixed at umax = 80. The increase in the inlet pressure pin leads to the augmentation
in the outlet pressure pout. Since the outlet pressure is increasing, the controller performs its
task by reducing the control signals (i.e., the green curve). However, those signals can not reach
the compressor P1 due to the max attack strategy.

The scaling attack strategy and the additive attack strategy on control signals are shown in sub-
figure 6.5c and sub-figure 6.5d, respectively. The reaction of the system under these malicious
attacks can be analyzed in the same manner as the min-max attack strategies. The scaling
attack and the additive attack on control signals can be considered as the disturbances on the
system since the system variables are deflected from their nominal values for a certain amount
of time and afterward they return to their normal states thanks to the closed-loop controller.

Attack on sensor measurements

In figure 6.6, we investigate the reaction of closed-loop control system under several simple
integrity attack strategies (i.e., min attack, max attack, scaling attack and additive attack)
on feedback signals (i.e., the measurements of sensor S2). Under the min attack strategy (see
sub-figure 6.6a), the measurements ypout of sensor S2 are replaced with the minimum value of
ymin = min {Y} = 30. Since the feedback signals (i.e., ypout = 30) are always smaller than the
set-points (i.e., y∗pout = 50), the PLC1 orders the compressor P1 to speed up so as to enhance the
inlet pressure up to the maximum value of around pin = 80 bar. The augmentation in the inlet
pressure leads to the increase in the outlet pressure, thus raising the measurements of sensor S2.
Other attack strategies (i.e., max attack, scaling attack and additive attack) can be analyzed in
the same manner.
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(a) Min attack strategy on control signals.
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(b) Max attack strategy on control signals.
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(c) Scaling attack strategy on control signals.
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(d) Additive attack strategy on control signals.

Figure 6.5 – Simple integrity attacks on control signals transmitted from the PLC1 to the
compressor P1.

It follows from the simulation results that each simple integrity attack strategy (i.e., min attack,
max attack, scaling attack and additive attack) leads to a change in sensor measurements with a
specific attack signature. If the information about the attack (i.e., attack strategies and attack
parameters) is known a priori, efficient detection-isolation schemes can be designed for jointly
detecting the attack and identifying attack scenarios. In some situations, powerful attackers are
able to perform stealthy attacks for disrupting the system while bypassing traditional anomaly
detection schemes. The negative effect of such undetectable attacks on the SCADA gas pipeline
and several countermeasures will be investigated in next subsection.

6.2.4 Stealthy integrity attacks

This subsection is dedicated to studying the negative impact of stealthy integrity attack strate-
gies on the SCADA gas pipeline. For the demonstration purpose, we consider only two attack
strategies: replay attack and covert attack.
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(a) Min attack strategy on feedback signals.
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(b) Max attack strategy on feedback signals.
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(c) Scaling attack strategy on feedback signals.

0 4 8 12 16 20 24 28 32 36 40 44 48

30

40

50

60

70

80

(d) Additive attack strategy on feedback signals.

Figure 6.6 – Simple integrity attacks on feedback signals transmitted from sensor S2 to the
PLC1.

Replay attack strategy

The negative impact of the replay attack on the SCADA gas pipeline is shown in figure 6.7.
Under normal operation (see sub-figure 6.7a), the outlet pressure (i.e., the magenta curve) is
regulated at the constant value of pout = 50 bar. The control signals sent from the PLC1 (i.e.,
the green curve) are the same as those received by the compressor P1. The inlet pressure pin (i.e.,
the red curve) is tracking the control signals arriving at the compressor P1. The measurements
of both sensors S1 and S2 are transmitted successfully to the PLC1.
The replay attack strategy on the gas pipeline is performed as follows. During the recording
period τr = [16, 18] hours, the feedback signals (i.e., the measurements of sensor S2) are recorded.
During the attack period τa = [20, 30] hours, the true measurements are replaced with the
previously recorded signals and the control signals are modified by adding a value of δuk = 20.
It can be seen from sub-figure 6.7b that, during the attack period, the feedback signals received
by the PLC1 (i.e., the blue curve) are almost constant (i.e., around 50) and the control signals
issued by the PLC1 (i.e., the orange curve) are almost the same as those from normal operation.
Therefore, the relay attack is stealthy to any anomaly detectors which utilize only the command
signals, the control signals sent from the PLC1 and the feedback signals received by the PLC1.
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(a) Control signals and sensor measurements under
normal operation.
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(b) Control signals and sensor measurements under re-
play attack strategy.

Figure 6.7 – Replay attack strategy on the SCADA gas pipeline. The recording period is
τr = [16, 18] hours and the attack period is τa = [20, 32] hours. The attacker increases the
control signals by a value of δuk = 20 while replaying previously recorded signals during the
attack duration.

The negative impact of the replay attack depends mostly on the modification of the control
signals. In this numerical example, the control signals are modified by a value of δuk = 20,
leading to the augmentation in both inlet pressure (i.e., the red curve) and outlet pressure (i.e.,
the magenta curve) by a value of about 20 bar. It can be noticed that if the measurements of
sensor S1 (i.e., the inlet pressure pin) are utilized, the replay attack is no longer stealthy since the
information about the attack is contained in these measurements. It should be noted that the
measurements of sensor S1 can not be replayed successfully since the inlet pressure pin depends
on the consumer’s demands.

Covert attack strategy

The negative impact of the covert attack on the SCADA gas pipeline is shown in figure 6.8. The
normal operation of the system is described in sub-figure 6.8a, where the outlet pressure (i.e., the
magenta curve) is regulated at the constant value of 50 bar. The reaction of the system under
the covert attack strategy is described in sub-figure 6.8b. During the attack period τa = [20, 32]
hours, the control signals are modified by a value of δuk = 20. At the same time, the attack
signals to the sensor measurements are calculated in such a way that they can compensate for
the modification of the control signals (i.e., by the covert attack strategy (1.9)). As a result,
the control signals sent from the PLC1 (i.e., the orange curve) and the sensor measurements
(i.e., the blue curve and the green curve) received by the PLC1 are the same as those in normal
operation. However, the true inlet pressure pin and outlet pressure pout (i.e., measured by sensor
S1, the red curve, and sensor S2, the magenta curve, respectively) are increased significantly.
Therefore, the covert attack strategy has the potential to cause huge damage (i.e., explosion of
gas pipeline for example) without being detected by traditional anomaly detectors.

Up to the author’s best knowledge, the covert attack strategy can not be revealed by analytical
methods. For rendering the covert attack detectable, we propose to implement the sensor pro-
tection framework which consists of a sensor protection scheme and a sensor placement strategy.
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(a) Control signals and sensor measurements under
normal operation.
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(b) Control signals, sensor measurements and feedback
signals under covert attack.

Figure 6.8 – Covert attack strategy on the SCADA gas pipeline. The attack duration is τa =
[20, 32] hours.

The sensor protection scheme consists in implementing some protection countermeasures so that
the measurements of several critical sensors can not be modified by the attacker. The sensor
placement strategy, on the other hand, deals with the equipment of new secure sensors for trans-
mitting trusted measurements to the control center. In this numerical example, the covert attack
becomes detectable of the measurements of sensor(s) S1 and/or S2 are transmitted successfully
to the PLC1.

6.2.5 Conclusion

In this section, the security of the simple SCADA gas pipeline has been investigated. Several
types of cyber-physical attacks found in literature, including DoS attack strategies, simple in-
tegrity attack strategies and stealthy attack strategies, have been considered. Theoretical DoS
attack strategies (1.3)–(1.4) can be detected easily by our methods since the attack signatures
are known. A real DoS attack strategy (1.5), on the other hand, is more difficult to detect since
the attack profiles depend heavily on the percentage of the successfully transmitted signals,
which is generally unknown to system operators. Simple integrity attack strategies, including
the min attack, max attack, scaling attack and additive attack, may cause huge damage to gas
pipeline in particular and the closed-loop control systems in general. However, these naive at-
tacks can be detected easily even by traditional anomaly detectors. Stealthy/deception attacks,
on the other hand, have been demonstrated to be more difficult to detect. The replay attack
strategy is stealthy to several detection schemes in particular scenarios. Well-designed detection
schemes can detect the replay attack (see also [120, 122]). The covert attack strategy has been
shown to be completely stealthy to traditional anomaly detectors if the attackers are able to
compromise all sensors. In order to render stealthy attacks (i.e., replay attack, covert attack,
and others) detectable, it is suggested to utilize the hardware redundancy approach for providing
the detection-isolation algorithms with trusted measurements which contain information about
the attacks.
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6.3 Detection Algorithms Applied to Simple Water Network

In this section, the detection algorithms proposed in chapter 3 are applied to the detection of
cyber-physical attacks on the simple SCADA water distribution network described in chapter 5.

6.3.1 Simulation parameters

Let us consider the simple SCADA water distribution network as shown in figure 5.5. Under
normal operation, the linearized model of the water network is expressed in the discrete-time
state space form (5.54). In this model, xk ∈ R is the pressure head h1 at the reservoir with initial
value x0, uk ∈ R is the control signals transmitted from the control center to the local controller
for regulating the flow rate Q01 through the pump, dk ∈ R2 is the disturbances corresponding
to the consumption of customers at nodes N3 and N4, yk ∈ R2 is the measurements of sensors
S1 and S2. The process noises wk ∼ N (0, Q) and the sensor noises vk ∼ N (0, R); the matrices
A ∈ R1×1, B ∈ R1×1, F ∈ R1×2, C ∈ R2×1, D ∈ R2×1, G ∈ R2×2, Q ∈ R1×1, and R ∈ R2×2

(corresponding to n = 1, m = 1, p = 2, q = 2).
Under cyber-physical attacks, the system model can be described in (5.59) (resp. in (5.60)),
where the attack vectors axk and ayk (resp. ak) and the attack matrices K, H and M (resp. Ba
and Da) are determined by the capabilities of the adversary to disrupt the system. For the
purpose of demonstration, let us consider an attack scenario where the attacker performs a
coordinated attack by stealing water from the reservoir with a constant flow rate Q0, turning
off the pump P1 and compromising the measurements of sensors S1 and S2 during the attack
period τa = [k0, k0 + L− 1], where k0 is the unknown attack instant and L is the known attack
duration. This attack scenario is motivated by a real attack on city water utility where the
pump was burned out after being turned on and off, as reported in [213]. Hence, the attack
vectors axk ∈ R2 and ayk ∈ R2 (resp. ak ∈ R4) are designed by the adversary and the attack
matrices K ∈ R1×2, H ∈ R2×2 and M ∈ R2×2 (resp. Ba ∈ R1×4 and Da ∈ R2×4) are decided by
system operators (corresponding to r = 2 and s = r + p = 4).
The linearized parameters are chosen as follows. The sample time TS = 100s and the initial

pressure head x0 = 100m. The system matrices A = 1, B = 0.5, F =
[
−0.5 −0.5

]
, C =

[
1
1

]
,

D =
[

0
0

]
, G =

[
0 0
−10 −10

]
. The attack matrices K =

[
0.5 0.5

]
, H =

[
0 0
0 0

]
and M =[

0 0
0 1

]
, leading to Ba =

[
0.5 0.5 0 0

]
and Da =

[
0 0 0 0
0 0 0 1

]
. The sensor noise covariance

matrix R =
[

1 0
0 1

]
and the process noise covariance matrix Q = 0.02 and Q = 0.2. Without

loss of generality, it is assumed that the control signal uk = u0 = 1 for supplying the reservoir
with Q01 = 1m3/s and the customer’s demands fluctuate around the value d1,k ≈ d2,k ≈ 0.5m3/s.

Remark 6.1. It has been discussed that the covert attack is completely stealthy to traditional
anomaly detectors if the attacker is able to compromise all sensors. Therefore, we propose in
this numerical example a countermeasure for rendering the covert attack detectable. This method
consists of protecting sensor S1 so that its measurements can not be modified by the attacker.
This sensor protection scheme is reflected in the matrix M , where M (1, 1) = 0 means that
sensor S1 is secure and M (2, 2) = 1 signifies that sensor S2 is vulnerable.
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The attack parameters are chosen as follows. The stolen flow rate is Q0 = 0.2m3/s. The attack
duration is L = 8 observations, corresponding to a period of 13.3min. The false alarm rate
is measured by the time window of length mα = 3L = 24 observations, being equivalent to a
duration of 40min. The attack vector ak ∈ R4 is designed by the covert attack model (3.3),
which was first introduced in [169], as follows:

ak =



[0] if k < k0
−0.2
−1

0.6 (k − k0)
0.6 (k − k0)

 if k0 ≤ k < k0 + L,

[0] if k ≥ k0 + L

(6.1)

where [0] is the null vector. The attack profiles θ1, θ2, · · · , θL ∈ R4 can be calculated from the
attack vector ak from (6.1) as θj = [−0.2, −1, 0.6 (j − 1) , 0.6 (j − 1)]T , for 1 ≤ j ≤ L = 8.

Remark 6.2. The information about the attack is contained in the attack vector ak (i.e., the
attack profiles θ1, θ2, · · · , θL). The first element reflects the physical attack to withdraw water
from the reservoir with the flow rate Q0 = 0.2m3/s. The second element reflects the cyber attack
on the control signals for turning off the pump. The modification of the sensor measurements is
reflected by the two last elements.

The simulation results are organized as follows. The statistical performance of the FMA tests
(i.e., for both the Kalman filter approach and the parity space approach) will be investigated
in subsection 6.3.2, by the Monte Carlo simulation as well as the proposed numerical method.
In subsection 6.3.3, we study the robustness of the FMA test with respect to (w.r.t.) several
operational parameters, including the attack duration, the attack profiles, the process and sensor
noise covariance matrices by both numerical method and Monte Carlo simulation. Simulation
results for the partially known transient change parameters are given in subsection 6.3.4 for
demonstrating the superiority of our proposed detection rules in comparison with traditional
detection algorithms.

6.3.2 Completely known transient change parameters

This subsection is dedicated to investigating the statistical performance of the proposed detection
algorithms under the perfect conditions where system parameters are exactly known. In other
words, true parameters are equal to putative parameters. Various simulation results are given
and compared for demonstrating theoretical findings.

Upper bound on the worst-case probability of missed detection

In figure 6.9, we demonstrate the sharpness of the upper bound P̃md on the worst-case probability
of missed detection Pmd of the FMA detector. The analytical calculation of the upper bound
P̃md is compared with the numerical method for Pmd with the precision of 10−5. The change-
point is chosen as k0 = L + 1 = 9. We compare the analytical upper bound to the numerical
method instead of the Monte Carlo simulation since the Monte Carlo simulation requires a large
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10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

(b) Process noise variance Q = 0.2.

Figure 6.9 – Upper bound P̃md for the worst-case probability of missed detection Pmd of the FMA
detector. The simulation has been performed with the process noise variances Q = 0.02 and
Q = 0.2, respectively. The change-point for the numerical method is chosen as k0 = L+ 1 = 9.

amount of time for obtaining the precision of 10−5. The comparison between the numerical
method and the Monte Carlo simulation method will be investigated later. It can be seen from
the figure 6.9 that the proposed upper bound P̃md, for both steady-state Kalman filter approach
and the fixed-size parity space approach, are quite closed to the numerical values of Pmd.

Comparison between FMA test and traditional tests
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(a) Process noise variance Q = 0.02.
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(b) Process noise variance Q = 0.2.

Figure 6.10 – Comparison between the steady-state Kalman filter-based detectors (i.e., KF-based
χ2 detector, KF-based CUSUM detector, KF-based WL CUSUM detector and KF-based FMA
detector) and the fixed-size parity space-based detectors (i.e., PS-based WL CUSUM detector
and PS-based FMA detector).

The statistical performance of several detection rules by the Monte Carlo simulation of 106

repetitions are shown in figure 6.10. The WL CUSUM test is, in fact, the VTWL CUSUM test
with equal thresholds (i.e., h1 = h2 = · · · = hL). The following remarks can be drawn from
the simulation results. Firstly, the proposed algorithms (i.e., the CUSUM test, WL CUSUM
test, and FMA test) are much better than the traditional non-parametric χ2 detector. This
phenomenon can be explained from the fact that the χ2 test does not exploit the information
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about the transient change profiles while the others utilize this essential information. Secondly,
given an acceptable level on the probability of false alarm, the probability of missed detection
of the FMA tests is much smaller than that of both CUSUM and WL CUSUM tests. In
other words, the proposed FMA tests perform better than the traditional tests, for both the
steady-state Kalman filter approach and the fixed-size parity space approach. These simulation
results are due to the fact that the optimization of the WL CUSUM algorithm leads to the
FMA detection rule. Finally, the statistical performance of the Kalman filter-based algorithms
are much better than those of the parity space-based tests when the process noises are small
(i.e., process noise variance Q = 0.02 in our example). On the other hand, two approaches
are comparable in such scenarios that the process noises are large (i.e., process noise variance
Q = 0.2). The comparison between the Kalman filter approach and the parity space approach
is shown in the following sub-subsection.

Comparison between Kalman filter approach and parity space approach

The comparison between the steady-state Kalman filter approach and the fixed-size parity space
approach is shown in figure 6.11 by the Monte Carlo simulation with 106 repetitions.
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(a) The putative process noise variance Q is equal to
the true process noise variance Q, both varying from
Q = Q = 0.02 to Q = Q = 0.4.

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
10
−3

10
−2

(b) The putative process noise variance is fixed at Q =
0.1 and the true process noise variance varies from Q =
0.02 to Q = 0.4.

Figure 6.11 – Statistical performance comparison between the steady-state Kalman filter-based
FMA test and the fixed-size parity space-based FMA test. The worst-case probability of false
alarm Pfa and the probability of missed detection Pmd are described as a function of the true
process noise variance Q which varies from Q = 0.02 to Q = 0.4 with the step of δQ = 0.02.

Let us discuss the perfect condition where the process noise variance is exactly known (i.e.,
Q = Q). It can be seen clearly from the sub-figure 6.11a that the steady-state Kalman filter
approach performs better than the fixed-size parity space approach, especially when the process
noises are small. This phenomenon is explained in figure 6.12, where the Kullback-Leibler (K-
L) distances of the residuals generated by two approaches are computed and compared. The
steady-state Kalman filter generates the residuals with higher K-L distance than the fixed-sized
parity space does. The difference becomes significant in such scenarios that the process noises are
extremely small. In contrast, when the process noises are large, the difference is negligible. This
phenomenon is explained by the approximation of the Bayesian approach (i.e., the steady-state
Kalman filter) by the minimax approach (i.e., the fixed-size parity space) produces a significant
error only if the process noise is small and, hence, the a priori information plays an important
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role.

It can be seen from figure 6.12 that the K-L distance of the residuals generated by the general
fixed-size parity space approach is equal to the K-L distance of the residuals generated by
the least-square estimation method proposed by Gustafsson [72, 73]. This simulation is also
consistent with the theoretical results obtained in section (3.3) and previous findings derived
in [51], i.e., the statistical performance of a likelihood ratio-based detection procedure on the
basis of parity space approach is independent from the choice of the rejection matrix W.
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Figure 6.12 – Kullback-Leibler distance of the residuals generated by the steady-state Kalman
filter and the fixed-size parity space as a function of true process noise variance Q.

Let us consider an imperfect scenario where the true process noise variance matrix Q is different
from the putative value Q. The putative process noise variance is chosen as Q = 0.1 and the true
value varies from Q = 0.02 to Q = 0.4 with a step of δQ = 0.02. The statistical performance of
the steady-state Kalman filter-based FMA test and the fixed-size parity space-based FMA test is
shown and compared in sub-figure 6.11b. It can be seen that the Kalman filter-based FMA test
is more sensitive to the true process noises than the parity space-based FMA test. The statistical
performance of the Kalman filter-based algorithm reduce significantly with large values of Q.
From some values of Q (i.e., when Q ≥ 0.2 in our numerical example), the steady-state Kalman
filter-based FMA test performs worse than the fixed-size parity space-based FMA test. This
phenomenon can be explained by the fact that the Kalman filter with incorrect process noise
information may produce an accumulated state estimation error, especially when the true process
noises are larger than their putative value. The statistical performance of Kalman filter-based
detection schemes reduces accordingly.

Numerical calculation of error probabilities

The comparison between the proposed numerical method and the Monte Carlo simulation is
given in figure 6.13. The Monte Carlo simulation is executed with 106 repetitions while the
numerical method is performed with the precision of 10−5. This simulation study is executed
for both steady-state Kalman filter approach (i.e., sub-figure 6.13a and sub-figure 6.13b) and
fixed-size parity space approach (i.e., sub-figure 6.13c and sub-figure 6.13d), and for two values
of process noise variance (i.e., Q = 0.02 and Q = 0.2, respectively).

It follows from sub-figures 6.13a, 6.13b, 6.13c and 6.13d that the numerical curves perfectly
coincide with the Monte Carlo curves, thus proving the correctness of the proposed numerical
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(a) Steady-state Kalman filter approach with process
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(b) Steady-state Kalman filter approach with process
noise variance Q = 0.2.
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(c) Fixed-size parity space approach with process noise
variance Q = 0.02.
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(d) Fixed-size parity space approach with process
noise variance Q = 0.2.

Figure 6.13 – Comparison between the numerical method and the Monte Carlo simulation, for
both Kalman filter approach and parity space approach.

method. In addition, the numerical method requires smaller amount of time for obtaining the
same precision as the Monte Carlo simulation, especial for the FMA test.

6.3.3 Sensitivity analysis of the FMA test

In subsection 3.4.4, we have proposed a numerical method for evaluating the robustness of the
FMA test with respect to (w.r.t.) several operational parameters, including the attack duration,
the attack profiles, the process noise covariances and the sensor noise covariances. In this
subsection, the results in subsection 3.4.4 are applied to investigate the sensitivity of the FMA
test w.r.t. these parameters, for both steady-state Kalman filter approach and fixed-size parity
space approach. The comparison between the proposed numerical method and the Monte Carlo
simulation is also performed.

Robustness of the FMA test w.r.t. the attack duration

The sensitivity of the FMA test w.r.t. the attack duration is shown in figure 6.14, for both
steady-state Kalman filter approach (i.e., sub-figure 6.14a) and fixed-size parity space approach
(i.e., sub-figure 6.14b). In this simulation study, the putative attack duration and the true
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attack duration are chosen as L = 8 and L = {6, 7, 8}, respectively. The process noise variance
is Q = 0.02. The probability of missed detection Pmd is described as a function of the worst-case
probability of false alarm Pfa w.r.t. different values of the true attack duration L = {6, 7, 8} ≤ L.
Each curve corresponds to one specific value of L. Some conclusions are drawn as follows.
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.14 – Sensitivity of the FMA test with respect to the attack duration. The probability
of missed detection Pmd is described as a function of the worst-case probability of false alarm
Pfa for different values of the true attack duration L = {6, 7, 8} ≤ L = 8.

If the true attack duration is greater than the putative value (i.e., L ≥ L), the probability of
missed detection Pmd remains unchanged since any detection with the detection delay greater
than L is considered as missed. For L = {6, 7, 8} ≤ L, the probability of missed detection
Pmd depends heavily on the true attack duration L. The smaller the true attack duration L,
the higher the probability of missed detection Pmd. This phenomenon is explained by the fact
that small attack duration L causes little changes in the distribution of the observations, thus
increasing the probability of missed detection Pmd. On the other hand, the worst-case probability
of false alarm Pfa is insensitive to the true attack duration L. This phenomenon can be seen
clearly that, for the false alarm case, all the observations are generated from the pre-change
distribution.
The interpretation of figure 6.14 is very simple: each value of the probability of false alarm
Pfa corresponds to a certain value of the threshold h̃L, which is the tuning parameter of the
FMA test. By drawing a vertical line, we can estimate the variation of the probability of missed
detection Pmd due to a true attack duration smaller than its putative value for a given tuning
of the FMA test.
The comparison between the numerical method and the Monte Carlo simulation is also shown
in figure 6.15. The precision of the numerical method is chosen as 10−5 and the Monte Carlo
simulation is of 2.105 repetitions. Clearly, the numerical method gives almost the same results
as the Monte Carlo simulation does, for both the steady-state Kalman filter-based FMA test
(i.e., sub-figure 6.15a) and the fixed-size parity space-based FMA test (i.e., sub-figure 6.15b),
thus proving the correctness of the proposed numerical method.

Robustness of the FMA test w.r.t. the attack profiles

The sensitivity of the FMA test w.r.t. the attack profiles is shown in figure 6.16, for both steady-
state Kalman filter approach (i.e., sub-figure 6.16a) and fixed-size parity space approach (i.e.,
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.15 – Comparison between the numerical method and Monte Carlo simulation. The
probability of missed detection Pmd is described as a function of the true attack duration L =
{6, 7, 8, 9, 10, 11}, for both the Kalman filter approach (left) and the parity space approach
(right).
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.16 – Sensitivity of the FMA test with respect to the attack profiles. The probability
of missed detection Pmd is described as a function of the worst-case probability of false alarm
Pfa for different values of η = {0.90, 0.95, 1.00, 1.05, 1.10}. The true attack profiles are related
to the putative attack profiles by θj = ηθj , for 1 ≤ j ≤ L.

sub-figure 6.16b). The true attack profiles θ1, θ2, · · · , θL are chosen such as θj = ηθj for 1 ≤ j ≤
L, where the coefficient η = {0.90, 0.95, 1.00, 1.05, 1.10}. In other words, the “magnitude” of
the change varies from 90% to 110% but the “shape” of the change remains unchanged. Similar
to the attack duration case, the probability of false alarm Pfa is insensitive to the true attack
profiles since all the observations are generated from the pre-change distribution. In contrast,
the probability of missed detection Pmd depends heavily on the true attack profiles θ1, θ2, · · · , θL.
The smaller the true attack profiles θ1, θ2, · · · , θL, the higher the probability of missed detection
Pmd. This phenomenon can be explained by the fact that small true attack profiles lead to
little changes in the distribution of the observations, thus augmenting the probability of missed
detection Pmd and vice versa. The variation of the probability of missed detection Pmd due
to the difference between the true attack profiles and their putative values w.r.t. the tuning
parameter h̃L can be determined exactly in the same manner as in the attack duration case.

The comparison between the numerical method and the Monte Carlo simulation is given in
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.17 – Comparison between the numerical method and the Monte Carlo simulation. The
probability of missed detection Pmd is described as a function of the coefficient η, where θj = ηθj
for 1 ≤ j ≤ L.

figure 6.17. The probability of missed detection Pmd is described as a function of the coefficient
η which varies from η = 0.8 to η = 1.2 with the step of 0.04. Clearly, the numerical curves
perfectly coincide with the Monte Carlo curves, for both steady-state Kalman filter approach
(i.e., sub-figure 6.17a) and fixed-size parity space approach (i.e., sub-figure 6.17b), thus verifying
the precision of the proposed numerical method.

Robustness of the FMA test w.r.t. the process noises
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.18 – Sensibility of the FMA test with respect to the process noises. The probability of
missed detection Pmd is described as a function of the worst-case probability of false alarm Pfa
for different values of η = {0.6, 0.8, 1.0, 1.2, 1, 4}. The true process noise variance is related to
its putative value by Q = ηQ.

The sensitivity of the FMA test w.r.t. the process noises is described in figure 6.18, for both
steady-state Kalman filter approach (i.e., sub-figure 6.18a) and fixed-size parity space approach
(i.e., sub-figure 6.18b). In these sub-figures, the probability of missed detection Pmd is described
as a function of the worst-case probability of false alarm Pfa for different values of the true
process noise variance Q = ηQ, where the putative process noise variance is chosen as Q = 0.1
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and the coefficient η = {0.6, 0.8, 1.0, 1.2, 1.4}. In this case, the difference Q−Q impacts both the
worst-case probability of false alarm Pfa and the probability of missed detection Pmd. Roughly
speaking, the bigger the sensor noises, the higher the error probabilities, i.e, Pfa and Pmd. For
this reason, the interpretation of figure 6.18 w.r.t. the tuning parameter h̃L is more complicated.

For simplifying the explanation, three isolines of constant threshold h̃L are added to sub-
figure 6.18a and sub-figure 6.18b, respectively, for the steady-state Kalman filter approach and
fixed-size parity space approach. The tuning parameter h̃L is fixed by selecting a point in the
curve corresponding to η = 1.0. The worst-case probability of false alarm Pfa and the probability
of missed detection Pmd are determined by drawing, respectively, vertical and horizontal dotted
lines from the selected point. The variation of the error probabilities, i.e., Pfa and Pmd, due
to the difference between the true process noise variance Q and the its putative value Q can
be estimated by utilizing the isoline intersecting the selected point. For example, the isoline of
h̃L = 20.07 in sub-figure 6.18a and the isoline of h̃L = 18.35 in sub-figure 6.18b are utilized for
determining the variation of Pfa and Pmd for the steady-state Kalman filter approach and the
fixed-size parity space approach, respectively. It can be seen clearly from sub-figure 6.18a and
sub-figure 6.18b that the Kalman filter-based FMA test is much more sensitive to the process
noises than the parity space-based FMA test. This sensitivity analysis is useful in choosing
between the Kalman filter approach and the parity space approach in such situations that the
process noises are large.
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.19 – Comparison between the numerical method and the Monte Carlo simulation. The
error probabilities (Pfa and Pmd) are described as a function of the coefficient η where Q = ηQ.

The comparison between the numerical method and the Monte Carlo simulation is shown in
figure 6.19, for both steady-state Kalman filter approach (i.e., sub-figure 6.19a) and fixed-size
parity space approach (i.e., sub-figure 6.19b). The error probabilities, i.e., Pfa and Pmd, are
described as a function of the coefficient η which varies from η = 0.6 to η = 1.4 for the step
of 0.04. The true process noise covariance is related to its putative value by Q = ηQ, where
Q = 0.1. It can be seen clearly from the figure that two curves (numerical and Monte Carlo)
perfectly coincide, thus proving the correctness of the proposed numerical method. In addition,
the coincidence between the numerical curve and the Monte Carlo curve in sub-figure 6.19a
validates also the recursive algorithm 2 proposed for calculating the covariance between two
residuals generated from the steady-state Kalman filter under imperfect condition, i.e., the true
process noise covariance is different from the putative one.
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Robustness of the FMA test w.r.t. sensor noises
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.20 – Sensitivity of the FMA test with respect to the sensor noises. The probability of
missed detection Pmd is described as a function of the worst-case probability of false alarm Pfa
for different values of η = {0.8, 0.9, 1.0, 1.1, 1.2}. The true sensor noise covariance R is related
to its putative value by R = ηR.

The sensitivity of the FMA test w.r.t. the sensor noises is described in figure 6.20, for both
steady-state Kalman filter approach (i.e., sub-figure 6.20a) and fixed-size parity space approach
(i.e., sub-figure 6.20b). Similar to the process noise case, the probability of missed detection
Pmd is described as a function of the worst-case probability of false alarm Pfa for different values
of true sensor noise covariance R = ηR, where the coefficient η = {0.8, 0.9, 1.0, 1.1, 1.2}. Similar
to the process noise case, the variation in the true sensor noise covariance matrix R leads to a
substantial change in both the worst-case probability of false alarm Pfa and the probability of
missed detection Pmd. The smaller the true sensor noise covariance matrix R, the better the
statistical performance of the FMA test (i.e., the smaller Pfa and Pmd). The variation of the error
probabilities due to the difference between the true sensor noise covariance R and its putative
value R can be analyzed in exactly the same manner as in the case of process noises. This
analysis could help in finding a tradeoff between the performance of the detection algorithms
and the price of high-precision sensors.
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(a) Steady-state Kalman filter-based FMA test.
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(b) Fixed-size parity space-based FMA test.

Figure 6.21 – Comparison between the numerical method and the Monte Carlo simulation. The
error probabilities (Pfa and Pmd) are described as a function of the coefficient η, where R = ηR.
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The comparison between the numerical method and the Monte Carlo simulation is shown in
figure 6.21, for both steady-state Kalman filter approach (i.e., sub-figure 6.21a) and fixed-size
parity space approach (i.e., sub-figure 6.21b). The error probabilities, i.e., Pfa and Pmd, are
described as a function of the coefficient η which varies from η = 0.8 to η = 1.2 for the step
of 0.02. Again, the numerical curves perfectly coincide with the Monte Carlo curves, for both
residual-generation methods, thus showing the correctness of our proposed numerical method.
Similar to the process noise case, the coincidence between two curves (numerical and Monte
Carlo) also validates the recursive algorithm 2 proposed for calculating the covariance between
two residuals generated from the steady-state Kalman filter under imperfect conditions, i.e., the
true sensor noise covariance is different from the putative one.

6.3.4 Partially known transient change parameters

This subsection is dedicated to investigating the statistical performance of the FMA GLR test
(3.65) and the FMA WLR test (3.66) by the Monte Carlo simulation. In order to demonstrate
the theoretical results obtained in subsection 3.5, we compare the FMA GLR test (resp. FMA
WLR test) with the WL GLR test (resp. WL WLR test). It is worth noting that the WL GLR
test (resp. WL WLR test) is the special case of the VTWL GLR test (resp. VTWL WLR test)
with equal thresholds (i.e., h1 = h2 = · · · = hL = h). The comparison between the FMA GLR
test and the FMA WLR test is also performed.

Comparison between the FMA GLR test and the WL GLR test

The performance comparison between the FMA GLR test (3.65) and the WL GLR test (3.51)
is shown in figure 6.22, for both steady-state Kalman filter approach and fixed-size parity space
approach. The simulation parameters remain unchanged. Two values of process noise variance
are considered: Q = 0.02 (i.e., sub-figure 6.22a) and Q = 0.2 (i.e., sub-figure 6.22b). In each
sub-figure, the probability of missed detection Pmd is described as a function of the worst-case
probability of false alarm Pfa.
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(a) Process noise variance Q = 0.02.
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(b) Process noise variance Q = 0.2.

Figure 6.22 – Comparison between the FMA GLR test and the WL GLR test. The probability
of missed detection Pmd is described as a function of the worst-case probability of false alarm
Pfa.

It can be seen clearly that, for a given value on the worst-case probability of false alarm Pfa,
the probability of missed detection Pmd of the FMA GLR test is smaller than that of the WL
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GLR test, for both steady-state Kalman filter approach and fixed-size parity space approach.
In other words, the FMA GLR test performs much better than the WL GLR test w.r.t. the
transient detection criterion. Moreover, similar to the completely known transient parameters,
the steady-state Kalman filter approach gives better statistical performance than the fixed-size
parity space approach, especially for small values of process noises (see the difference between
sub-figure 6.22a for Q = 0.02 and sub-figure 6.22b for Q = 0.2).

Comparison between the FMA WLR test and the WL WLR test

The performance comparison between the FMA WLR test and the WL WLR test is described in
figure 6.22. The simulation parameters remain unchanged in comparison to the GLR approach.
The a priori distribution of the parameter γ is chosen as γ ∼ U (γ0, γ1), where γ0 = 0.5 and
γ1 = 1.5. The simulation is performed by the following manner. For each Monte Carlo run, the
parameter γ is generated from the uniform distribution U (γ0, γ1). The true attack profiles are
then calculated from their putative values as θj = γθj , for 1 ≤ j ≤ L. Finally, the WLR-based
detection rules are executed obtaining false alarm and missed detection rates.
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(a) Process noise variance Q = 0.02.
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(b) Process noise variance Q = 0.2.

Figure 6.23 – Comparison between the FMA WLR test and the WL WLR test. The probability
of missed detection Pmd is described as a function of the worst-case probability of false alarm
Pfa. The a priori distribution of the parameter γ is chosen as γ ∼ U (0.5, 1.5).

It can be concluded from figure 6.22 that the FMA WLR detectors perform much better than
the WL WLR detectors, for both steady-state Kalman filter approach and fixed-size parity space
approach. As usual, the steady-state Kalman filter approach offers better statistical performance
than the fixed-size parity space approach, especially for small process noises. This phenomenon
can be seen from sub-figure 6.23a (i.e, for Q = 0.02) and sub-figure 6.23b (i.e., for Q = 0.2).

Comparison between the FMA GLR test and the FMA WLR test

It is worth noting that the detection rates are strongly dependent on the parameters γ0 and γ1
since the true attack profiles θj = γθj , for 1 ≤ j ≤ L. For fixed putative profiles θ1, θ2, · · · , θL,
the higher the parameters γ0 and γ1, the better the statistical performance of the WLR-based
detectors. In order to compare the GLR-based approach to the WLR approach, the parameter
γ is fixed at γ = 1, i.e., the true attack profiles are equal to the putative attack profiles. The
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(a) Process noise variance Q = 0.02.
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(b) Process noise variance Q = 0.2.

Figure 6.24 – Comparison between the FMA GLR test and the FMA WLR test for Q = 0.02
and Q = 0.2. The parameter γ is fixed at value γ = 1 for the WLR-based detectors.

FMA GLR detector (3.65) and the FMA WLR detector (3.66) are tested with 2.105 Monte Carlo
repetitions and the false alarm and missed detection rates are computed.

The performance comparison between the FMA GLR detectors and the FMA WLR detectors is
shown in figure 6.24, for both steady-state Kalman filter approach and fixed-size parity space ap-
proach. The WLR-based detectors have been shown to perform much better than the GLR-based
detectors for both values of process noise variance Q = 0.02 and Q = 0.2. This phenomenon can
be explained from the fact the WLR approach exploits the a priori information about change
magnitude while the GLR approach does not utilize this essential information.

6.4 Detection-Isolation Algorithms Applied to Complex Water
Networks

In this section, the detection-isolation schemes proposed in chapter 4 are applied to the joint
detection and isolation of cyber-physical attacks on a more complex water distribution network.

6.4.1 Simulation parameters

Consider a more complex SCADA water network as shown in figure 6.25. The water network is
comprised of two treatment plants W1 and W2, two reservoirs R1 and R2, a tank T3, two pumps
P1 and P2, two consumers d1 and d2, and several nodes and pipelines. Four pressure sensors S1,
S2, S3 and S4 are equipped for measuring pressure heads h1 at the reservoir, h2 at the reservoir
R2, h3 at the tank T3 and h4 at the node N4, respectively.

The linearized model of the water network can be described in the discrete-time state space
model (4.1), where xk = [h1, h2, h3]T ∈ R3 is vector of system states; uk ∈ R2 are the control
signals sent to local controllers for regulating the flow rates Q01 and Q02 through the pump
P1 and P2, respectively; dk ∈ R2 represent the consumption by customers; yk ∈ R4 are the
measurements of four sensors S1, S2, S3 and S4; the process noises wk ∼ N (0, Q) and the
sensor noises vk ∼ N (0, R); the matrices A ∈ R3×3, B ∈ R3×2, F ∈ R3×2, C ∈ R4×3, D ∈ R4×2,
G ∈ R4×2, Q ∈ R3×3, and R ∈ R4×4 (corresponding to n = 3, m = 2, p = 4, q = 2).
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Figure 6.25 – A complex SCADA water distribution network.

Suppose that the attacker has the capabilities to withdraw water from the reservoirs R1 and/or
R2, to modify the control signals of the pumps P1 and/or P2 and to compromise the measure-
ments of sensors S3 and S4. It is assumed that trusted measurements are transmitted successfully
to the detection-isolation schemes. There may be several attack scenarios that can be launched
to the system. For the sake of simplicity, let us assume that the attacker can perform only one
of two hypotheses H1 and H2. The problem is then to determine whether the system is under
attack (i.e., between H0 and H1, H2) and then to identify the attack type (i.e., between H1 or
H2).

(a) Scenario 1: ρ12 > max {ρ01, ρ02}. (b) Scenario 2: ρ12 < min {ρ01, ρ02}.

Figure 6.26 – Two scenarios in the change detection-isolation problem.

For the joint detection-isolation problem, it is essential to consider two scenarios (see also fig-
ure 6.26):

• Scenario 1 : The K-L distance between two alternative hypotheses is higher than K-L
distance between an alternative hypothesis and the null hypothesis (i.e., sub-figure 6.26a).
In other words, we have ρ12 > max {ρ10, ρ20}. In this case, the alternative hypotheses H1
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and H2 are “scattered”, resulting in small probability of false isolation. In this scenario,
we consider the following hypotheses:

– Hypothesis H0: There is no attack on the system.
– Hypothesis H1: The attacker performs a coordinated attack by stealing water from

the reservoir R1 with a constant flow rate δQ01, turning off the pump P1 and com-
promising the measurements of sensors S3 and S4 by the covert attack strategy.

– Hypothesis H2: The attacker performs a coordinated attack by stealing water from
the reservoir R2 with a constant flow rate δQ02, turning off the pump P2 and com-
promising the measurements of sensors S3 and S4 by the covert attack strategy.

• Scenario 2 : The K-L distance between two alternative hypotheses is smaller than K-L
distance between an alternative hypothesis and the null hypothesis (i.e., sub-figure 6.26b).
In other words, we have ρ12 < min {ρ10, ρ20}. In this case, the alternative hypotheses H1
and H2 are quite “closed”, resulting in high probability of false isolation. In this scenario,
we consider the following hypotheses:

– Hypothesis H0: There is no attack on the system.
– Hypothesis H1: The attacker performs a coordinated attack by stealing water from

the reservoir R1 with a constant flow rate δQ01, turning off the pump P1 and com-
promising the measurements of sensors S3 and S4 by the covert attack strategy.

– Hypothesis H2: The attacker aims at turning off the pumps P1 and P2 and compro-
mising the measurements of sensors S3 and S4 by the covert attack strategy.

The system matrices are chosen as:

A =

 0.9951 0.0009 0.0040
0.0012 0.9922 0.0066
0.0162 0.0198 0.9964

 , B =

 0.6250 0
0 0.8333
0 0

 , F =

 −0.2293 −0.0540
−0.0959 −0.3657
−1.2950 −1.1871

 ,

C =


1 0 0
0 1 0
0 0 1

0.3669 0.1151 0.5180

 , D =


0 0
0 0
0 0
0 0

 , G =


0 0
0 0
0 0

−29.3525 −6.9065

 ,
and the initial state x1 = [100, 80, 30]T . The noise covariance matrices are

Q =

 0.2 0 0
0 0.2 0
0 0 0.2

 , R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
The attack matrices Ba and Da are

Ba =

 0.6250 0 0.6250 0 0 0 0 0
0 0.8333 0 0.8333 0 0 0 0
0 0 0 0 0 0 0 0

 , Da =


0 0 0 0 γ1 0 0 0
0 0 0 0 0 γ2 0 0
0 0 0 0 0 0 γ3 0
0 0 0 0 0 0 0 γ4

 ,
where γ1 = γ2 = 0 (i.e., sensors S1 and S2 are secure) and γ3 = γ4 = 1 (i.e., sensors S3 and
S4 are vulnerable). The simulation parameters: the attack duration L = 8 observations, the
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attack instant k0 = 9, the false alarm time window mα = 24 observations. The attack profiles
θ1, θ2, · · · , θL are composed of the state attack vector axk and the sensor attack vector ayk. The
former depends on the attack scenario and the latter is calculated by the covert attack strategy.
It is assumed that the stolen flow rates δQ01 = δQ02 = 0.5 m3/s.

• Scenario 1 : The state attack vector axk is chosen by

axk =




0
0
0
0


︸ ︷︷ ︸
H0

,


−0.5

0
−1
0


︸ ︷︷ ︸

H1

,


0
−0.5

0
−1


︸ ︷︷ ︸

H2


, ∀k0 ≤ k < k0 + L,

and the sensor attack vector ayk is calculated by the covert attack strategy (1.9). The K-L
distances of the residuals generated by the steady-state Kalman filter approach and the
fixed-size parity space approach are computed as follows:

– Kalman filter approach: ρ01 = 13.9316, ρ02 = 17.6794 and ρ12 = 27.5977.
– Parity space approach: ρ01 = 12.8467, ρ02 = 15.3698 and ρ12 = 24.0241.

• Scenario 2 : The state attack vector axk is designed as follows:

axk =




0
0
0
0


︸ ︷︷ ︸
H0

,


−0.5

0
−1
0


︸ ︷︷ ︸

H1

,


0
0
−1
−1


︸ ︷︷ ︸
H2


, ∀k0 ≤ k < k0 + L,

and the sensor attack vector ayk is calculated by the covert attack strategy (3.3). The K-L
distances of the residuals generated by the steady-state Kalman filter approach and the
fixed-size parity space approach are computed as follows:

– Kalman filter approach: ρ01 = 13.9316, ρ02 = 15.8330 and ρ12 = 8.5136.
– Parity space approach: ρ01 = 12.8467, ρ02 = 14.4040 and ρ12 = 7.3268.

6.4.2 Comparison between FMA test and WL CUSUM-based tests

This subsection is dedicated to investigating the statistical performance of several detection-
isolation schemes, including the generalized WL CUSUM test, the matrix WL CUSUM test,
the vector WL CUSUM test and the proposed FMA detection rule. The simulation results
are obtained by 2.105 Monte Carlo repetitions. Two aforementioned scenarios are considered:
ρ12 ≥ max {ρ01, ρ02} and ρ12 ≤ min {ρ01, ρ02}.
Figure 6.27 shows the comparison between the FMA detection-isolation rule and the classical
WL CUSUM-based algorithms for the scenario 1 where ρ12 ≥ max {ρ01, ρ02}. The results are
obtained by the 2.105 Monte Carlo simulation. In sub-figure 6.27a and sub-figure 6.27b, the
worst-case probability of false alarm Pfa is described as a function of the probability of missed
detection Pmd for the steady-state Kalman filter approach and the fixed-size parity approach,
respectively. The worst-case probability of false isolation Pfi is drawn as a function of the
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(a) Steady-state Kalman filter approach, Pfa vs Pmd.
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(b) Fixed-size parity space approach, Pfa vs Pmd.
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(c) Steady-state Kalman filter approach, Pfi vs Pmd.
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(d) Fixed-size parity space approach, Pfi vs Pmd.

Figure 6.27 – Comparison between the proposed FMA detection rule and the WL CUSUM-
based schemes for the scenario 1, i.e., ρ12 ≥ max {ρ01, ρ02}. The worst-case probability of false
alarm Pfa and the worst-case probability of false isolation Pfi are described as a function of the
probability of missed detection Pmd. The change-point k0 is chosen as k0 = L+ 1 = 9.

probability of missed detection Pmd, respectively, in sub-figure 6.27c for the steady-state Kalman
filter approach and in sub-figure 6.27d for the fixed-size parity approach.

It can be noticed from those figures that for a given value on the probability of missed detection
Pmd, the worst-case probability of false alarm Pfa and the worst-case probability of false isolation
Pfi of the FMA detection-isolation rule are smaller than those of the classical WL CUSUM-based
procedures. In other words, the proposed FMA test performs better than classical tests. In
addition, the worst-case probability of false isolation Pfi is much smaller than the worst-case
probability of false alarm Pfa since ρ12 ≥ max {ρ01, ρ02}.

In figure 6.28, the FMA detection-isolation rule is compared with classical WL CUSUM-based
algorithms for scenario 2 where ρ12 ≤ min {ρ01, ρ02}. In this case, the worst-case probability of
false isolation Pfi is much higher than the worst-case probability of false alarm Pfa. In addition,
the proposed FMA test performs better than the traditional tests, for both residual-generation
methods.
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(a) Steady-state Kalman filter approach, Pfa vs Pmd.
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(b) Fixed-size parity space approach, Pfa vs Pmd.
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(c) Steady-state Kalman filter approach, Pfi vs Pmd.

10
−2

10
−1

10
−1

(d) Fixed-size parity space approach, Pfi vs Pmd.

Figure 6.28 – Comparison between the proposed FMA detection rule and the WL CUSUM-
based schemes for the scenario 2, i.e., ρ12 ≤ min {ρ01, ρ02}, by 2.105 Monte Carlo simulation.
The worst-case probability of false alarm Pfa and the worst-case probability of false isolation Pfi
are described as a function of the probability of missed detection Pmd. The change-point k0 is
chosen as k0 = L+ 1 = 9.

6.4.3 Comparison between steady-state Kalman filter and fixed-size parity
space

The Monte Carlo simulation technique is utilized for comparing two residual-generation methods,
i.e., the steady-state Kalman filter approach with the fixed-size parity space approach. The
simulation results are obtained by 2.105 Monte Carlo repetitions and the change-point k0 =
L+ 1 = 9.

The simulation results are described in figure 6.29 for both scenarios (i.e., ρ12 ≥ max {ρ01, ρ02}
and ρ12 ≤ min {ρ01, ρ02}). In sub-figure 6.29a, the worst-case probability of false isolation Pfi is
smaller than the worst-case probability of false alarm Pfa since the K-L distance between two
alternative hypotheses is higher than both K-L distances between the null hypothesis and either
alternative hypothesis (i.e., ρ12 ≥ max {ρ01, ρ02}). In contrast, sub-figure 6.29b shows that the
worst-case probability of false isolation Pfi is higher than the worst-case probability of false alarm
Pfa since ρ12 ≤ min {ρ01, ρ02}. It follows from both sub-figures that the FMA detector based
on the steady-state Kalman filter approach performs much better than the FMA detector based
on the fixed-size parity space approach, for both scenarios. This phenomenon can be explained
from the fact that the Kalman filter approach generates residuals with higher K-L distances
than the parity space approach does (see also subsection 6.4.1).
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(a) Scenario 1: ρ12 ≥ max {ρ01, ρ02}.
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(b) Scenario 2: ρ12 ≤ min {ρ01, ρ02}.

Figure 6.29 – Comparison between the steady-state Kalman filter approach and the fixed-size
parity space approach when using in the proposed FMA detector. The worst-case probability
of false alarm Pfa and the worst-case probability of false isolation Pfi are drawn as a function of
the probability of missed detection Pmd. The change-point is chosen as k0 = L + 1 = 9. Both
scenarios are considered: ρ12 ≥ max {ρ01, ρ02} and ρ12 ≤ min {ρ01, ρ02}.

6.4.4 Evaluation of upper bounds for error probabilities of FMA detection
rule

This subsection is dedicated to evaluating the sharpness of the proposed upper bounds for the
error probabilities of the FMA detection rule, including the upper bound for the worst-case
probability of false alarm, the upper bound for the worst-case probability of false isolation and
the upper bound for the probability of missed detection.

The comparison between the proposed upper bounds and the 2.105 Monte Carlo simulation
for the error probabilities is shown in figure 6.30. It can be seen that the upper bound for
the worst-case probability of false alarm Pfa is extremely tight, for both residual-generation
methods, especially for the case of ρ12 ≥ max {ρ01, ρ02}. In contrast, the upper bound for the
worst-case probability of false isolation Pfi is not very sharp at all. Finally, the upper bound for
the probability of missed detection Pmd seems to be acceptable.

6.5 Conclusion

Several sub-optimal algorithms have been proposed in chapter 3 and chapter 4 for detecting
and identifying transient changes in stochastic-dynamical systems. The models of two SCADA
systems, including the simple SCADA gas pipeline and the simple SCADA water distribution
network, have been developed in chapter 5. In this chapter, we have applied the theoretical
results obtained in chapter 3 and chapter 4 to the detection and isolation of several types of
cyber-physical attacks on both the SCADA gas pipeline and the SCADA water network, whose
models have been developed in chapter 5.

In the first place, we have studied the reaction of the SCADA gas pipeline under several types of
cyber-physical attacks (i.e., DoS attacks, simple integrity attacks and stealthy integrity attacks)
on the command signals, the control signals and the feedback signals, respectively. The simu-
lation results show that each attack scenario leads to a specific attack signature (i.e., an attack
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(a) Steady-state Kalman filter approach, scenario 1:
ρ12 ≥ max {ρ01, ρ02}.
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(b) Fixed-size parity space approach, scenario 1: ρ12 ≥
max {ρ01, ρ02}.
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(c) Steady-state Kalman filter approach, scenario 2:
ρ12 ≤ min {ρ01, ρ02}.
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(d) Fixed-size parity space approach, scenario 2: ρ12 ≤
min {ρ01, ρ02}.

Figure 6.30 – Evaluation of the sharpness of the upper bounds for the error probabilities of the
FMA detection rule. The error probabilities Pfa, Pfi and Pmd are drawn as a function of the
threshold h. The change-point is chosen as k0 = L + 1 = 9. Both steady-state Kalman filter
and fixed-size parity space approaches associated with two scenarios ρ12 ≥ max {ρ01, ρ02} and
ρ12 ≤ min {ρ01, ρ02} are considered.

profile) which is essential in designing detection-isolation schemes. In certain circumstances, if
the information about the attack (i.e., the attack scenario and attack parameters) is known a
priori, the attack profile may be available. This essential information helps in improving the
statistical performance of the detection-isolation schemes.

Secondly, the statistical performance of the FMA test proposed in chapter 3 has been investi-
gated thoughtfully. The comparison between the proposed FMA detection rule with traditional
detection algorithms (i.e., χ2 test, CUSUM test and WL CUSUM test) has been performed
by both Monte Carlo simulation and numerical method. It has been shown that the proposed
FMA test performs much better than traditional test w.r.t. the transient change detection crite-
rion. Moreover, the comparison between two residual-generation methods, i.e., the steady-state
Kalman filter and the fixed-size parity space, has been also carried out by both Monte Carlo sim-
ulation and numerical method. The simulation results have pointed out that Kalman filter-based
FMA test outperforms the parity space-based FMA test when the noise covariance matrices are
exactly known. On the other hand, when the process noise covariance matrix is unknown, the
Kalman filter-based FMA test may perform worse than the parity-space based FMA test.
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Furthermore, the robustness of the FMA test w.r.t. several operational parameters has been
tested with both Monte Carlo simulation and numerical method. The operational parameters
include the attack duration, the attack profiles, the process and sensor noise covariance matrices.
It can be noticed that the worst-case probability of false alarm Pfa is insensitive to the attack
duration and the attack profiles. The probability of missed detection Pmd depends heavily
on these parameters. The probability of missed detection increases significantly when the true
attack duration is smaller than the putative value. When the true attack duration is higher than
the putative value, however, the probability of missed detection remains unchanged since any
detection with the detection delay greater than L is considered as missed. Also, the probability
of missed detection Pmd is inversely proportional to the true attack profiles since higher attack
profiles lead to higher K-L distances, thus reducing the probability of missed detection. It is
intuitively obvious that both probability of false alarm and probability of missed detection are
inversely proportional to the true values of noise covariances. In other words, the augmentation
in the true values of process and sensor noise covariances leads to higher error probabilities.

In practice, the post-change parameters are rarely known. For this reason, we have been con-
sidered a more practical scenario where the post-change profiles are partially known. More
precisely, the shape of the attack signature is assumed to be known but the magnitude (i.e.,
or the power) of the attack is unknown. Two standard approaches, the generalized likelihood
ratio approach and the weighted likelihood ratio approach, have been considered. It has been
shown by Monte Carlo simulation that the FMA GLR test (resp. the FMA WLR) performs
much better than the window limited (WL) GLR test (resp. WL WLR test) w.r.t. the transient
change detection criterion. The simulation results have also pointed out that the FMA WLR
test performs better than the FMA GLR test under the same condition. This phenomenon may
be explained by the fact that the WLR approach utilizes the a priori information about the
power of the attack.

Finally, the comparison between several detection-isolation schemes (i.e., FMA test, generalized
WL CUSUM test, matrix WL CUSUM test and vector WL CUSUM test) has been performed
by Monte Carlo simulation. It has been shown that the FMA test performs better than the
others w.r.t. the transient change detection-isolation criterion. More precisely, for a given value
on the probability of missed detection, the probability of false isolation and the probability of
false alarm of the proposed FMA test are smaller than those of traditional tests. In addition,
the sharpness of the proposed upper bounds on the worst-case probability of false alarm, false
isolation and missed detection has also been investigated. It can be seen that the bounds for the
false alarm and missed detection rates are quite closed while the bound for the false isolation
rate needs to be improved.
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General Conclusion

Conclusions

This PhD thesis has addressed the problem of detecting and isolating cyber-physical attacks
on Supervisory Control And Data Acquisition (SCADA) systems by statistical methods. The
state-of-the-art of the problem treated in this thesis has been introduced in chapter 1 and chap-
ter 2. The security of SCADA systems against cyber-physical attacks has been examined in
chapter 1. In this chapter, we investigated a large number of cyber incidents involving safety-
critical infrastructures as well as the vulnerabilities of SCADA systems. It has been shown
that these susceptible points can be exploited by adversaries for performing malicious attacks
on SCADA systems. The design of several attack strategies, including DoS attack, simple in-
tegrity attack and stealthy integrity attack, has been also presented. Methods proposed for
improving the security of SCADA systems could be broadly classified into three classes: in-
formation security approach, secure control theory approach and fault detection and isolation
(FDI) approach. The information security approach is concerned with protection methods such
as authentication, access control or data integrity. The secure control approach, on the other
hand, focuses mainly on investigating the vulnerabilities of networked control systems, design-
ing different stealthy/deception attack strategies and proposing countermeasures against these
malicious attacks. In contrast, the FDI approach deals with the detection and isolation of ab-
normal behaviors in stochastic-dynamical systems, thus being suitable to the on-line monitoring
of large-scale industrial control systems against cyber-physical attacks. Generally, the statisti-
cal FDI problem has been solved by the classical two-step approach: residual generation and
residual evaluation. The fault diagnosis community has concentrated mainly on the generation
of robust residuals regardless of unknown disturbances and modeling errors. However, process
noises and sensor noises are inevitable in almost all technological processes and measurement
systems. Hence, the decision-making must take into consideration the negative impact of such
random noises. Fortunately, the statistical decision theory, which has been summarized in chap-
ter 2, is equipped with methodologies for dealing with random noises in stochastic systems.
The statistical decision theory can be broadly classified into four categories: the non-sequential
hypothesis testing, sequential hypothesis testing, sequential detection and isolation of abrupt
changes and sequential detection and isolation of transient changes. The sequential detection
and isolation of transient changes has been shown to be the most suitable approach to the on-line
monitoring of SCADA systems against cyber-physical attacks.

The attack detection and isolation problem has been formulated as the sequential detection
and isolation of transient signals on stochastic-dynamical systems. The SCADA systems are
described as the discrete-time state space model driven by random noises with unknown system
states. The cyber-physical attacks are modeled as additive signals of short duration on both state
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evolution and sensor measurement equations. The criteria of optimality for the classical quickest
change detection-isolation problem appear inadequate for the security of SCADA systems against
cyber-physical attacks. For the transient change detection-isolation problem, the optimality
criterion should be in favor of minimizing the worst-case probability of missed detection subject
to acceptable levels on the rates of false alarm and false isolation. Sub-optimal detection and
isolation algorithms with respect to the transient change detection and isolation criteria have
been designed in chapter 3 and chapter 4, respectively. The main contributions of the thesis are
as follows:

• For the detection problem. Firstly, the detection of cyber-physical attacks has been for-
mulated as the sequential detection of transient signals in stochastic-dynamical systems.
The transient change detection criterion, minimizing the worst-case probability of missed
detection subject to an acceptable level on the worst-case probability of false alarm within
any time window of predefined length, has been utilized throughout this thesis. Secondly,
the unified statistical model of the residuals generated from both steady-state Kalman
filter and the fixed-size parity space has been developed. This unified statistical model
has been utilized for designing the Variable Threshold Window Limited (VTWL) CUSUM
algorithm. Thirdly, the optimal choice of thresholds of the VTWL CUSUM algorithm
with respect to (w.r.t.) the transient change detection criterion has been solved and it
has been shown that the optimized VTWL CUSUM algorithm is equivalent to the sim-
ple Finite Moving Average (FMA) detection rule. Fourthly, a numerical method, which
is much more efficient than the classical Monte Carlo simulation, has been proposed for
estimating the probability of false alarm and the probability of missed detection. Fifthly,
the proposed numerical method has been exploited for investigating the robustness of the
FMA test w.r.t. several operational parameters, including the attack duration, the attack
profiles, the covariance matrices of process noises and sensor noises. Finally, we have con-
sidered also a more practical scenario where the attack profiles are partially known, i.e.,
the “shape” of change is known but the “magnitude” of the change is unknown. Both
the generalized likelihood ratio (GLR) approach and the weighted likelihood ratio (WLR)
approach have been considered. It has been shown that the optimal choice of thresholds
in such cases turned out to be also the FMA version.

• For the isolation problem. The isolation problem is much more difficult than the detection
counterpart. Few theoretical results have been obtained. Firstly, the unified statisti-
cal model of residuals generated by both aforementioned residual-generation methods has
been adapted to the detection and isolation of transient changes in discrete-time state
space model. There have been multiple change types (i.e., multiple transient change hy-
potheses). Secondly, a novel criterion of optimality for the transient change detection and
isolation has been introduced. The criterion involves the minimization of the worst-case
probability of missed detection subject to acceptable levels on the worst-case probability
of false alarm within any time window of given length and on the worst-case probability of
false isolation during the transient change window regardless of the change-point. Finally,
several quickest change detection-isolation algorithms have been considered for detecting
the transient changes, including the generalized WL CUSUM test, the matrix WL CUSUM
test and the vector CUSUM test. The FMA version for the detection-isolation problem
has been proposed. The upper bounds on the error probabilities of the FMA test have
been also obtained.

In order to demonstrate the statistical performance of the proposed algorithms, we have de-
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veloped in chapter 5 two simulation models, i.e., a simple SCADA gas pipeline and a simple
SCADA water distribution network. The physical layer of almost SCADA systems, including
the gas pipeline and the water network considered in this manuscript, can be described in the
discrete-time state space model by linearizing the partial differential equations around the oper-
ating point. The cyber-physical attacks on boh physical layer (i.e., attacks on physical processes
directly) and cyber layer (i.e., attacks on command signals, control signals, sensor measure-
ments) have been modeled as additive signals of short duration on both state evolution and
sensor measurement equations.

The theoretical results obtained in chapter 3 and chapter 4 have been applied to the detection
and isolation of cyber-physical attacks on the SCADA gas pipeline and the SCADA water in
chapter 5. The numerical examples have been shown in chapter 6. The following conclusions
can be drawn from the simulation results.

• Firstly, the negative impact of cyber-physical attacks has been investigated by performing
several scenarios on the SCADA gas pipeline. Simple attack strategies such as DoS attacks
and simple integrity attacks (min attack, max attack, scaling attack or additive attack) can
be detected easily by classical anomaly detectors. On the other hand, stealthy integrity
attacks such as replay attack or covert attack are much more difficult to detect. For this
reason, it is required to implement some a priori countermeasures for rendering these
deception attacks detectable before applying any detection schemes. Particular methods
for revealing several types of undetectable attacks have been considered in literature. This
manuscript have not focused on revealing stealthy attacks but on proposing algorithms for
detecting and isolating any detectable and identifiable attacks. For this reason, we have
proposed a simple sensor protection scheme based on hardware redundancy for rendering
stealthy attacks detectable and identifiable.

• Secondly, the statistical performance of the several detection algorithms has been investi-
gated and compared by performing the covert attack on the simple SCADA water network.
It has been noticed that the proposed FMA detection rule performs much better than clas-
sical algorithms, including the non-parametric χ2 detector, CUSUM detector, WL CUSUM
detector, for both residual-generation methods. The simulation results based on both nu-
merical method and Monte Carlo method have shown that the steady-state Kalman filter
approach offers better statistical performance than the fixed-size parity space approach
when system parameters are completely known. However, the sensitivity analysis of the
FMA test has also proved that the former is much more sensitive than the process noises
than the latter. In such scenarios that the true value of process noise covariance is larger
than its putative value, the Kalman filter-based FMA test may perform worse than the
parity space-based FMA test. Finally, the simulation results about the partially known
transient parameters have indicated that the FMA version of both GLR and WLR ap-
proaches offers better statistical performance than the window limited counterpart.

• Thirdly, preliminary results on the isolation problem have been demonstrated by perform-
ing different attack scenarios on a more complex water network. Simulation results have
shown that the proposed FMA test, in general, performs better than classical detection-
isolation algorithm, including the generalized WL CUSUM test, the matrix WL CUSUM
test and the vector WL CUSUM test w.r.t. the transient change detection-isolation crite-
rion. The proposed upper bounds for the error probabilities of the FMA detection-isolation
rule have been also compared with the true error probabilities by Monte Carlo simulation.
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It has been shown that the upper bound for the worst-case probability of false alarm is
extremely tight, the upper bound for the worst-case probability of missed detection is ac-
ceptable but the upper bound for the worst-case probability of false isolation is not really
sharp.

Perspectives

Before finishing this manuscript, we would like to suggest several points for future research.

For the sequential detection of transient signals

The following points should be taken into consideration for sequential detection of transient
signals in stochastic systems in general and in stochastic-dynamical systems in particular:

• Design of optimal or asymptotically optimal detection rules. Only sub-optimal algorithms
have been designed in this manuscript. It is proposed to minimize the upper bound
on the worst-case probability of missed detection in the class of all repeated one-sided
truncated sequential tests (i.e., the class of VTWL CUSUM tests) satisfying an acceptable
level on the worst-case probability of false alarm within any time window of predefined
length. Future work should concentrate on the design of asymptotically optimal (i.e., when
the probability of false alarm tends to zero) or exactly optimal tests w.r.t. the transient
change detection criterion (3.6)–(3.7). As has been suggested in [67], the preliminary
task should focus on calculating the lower bound for the worst-case probability of missed
detection in the class Cα defined in (3.7). This lower bound is then compared to the
probability of missed detection of the FMA test in order to verify whether the FMA test
is (asymptotically) optimal or not. This comparison may suggest some ideas about how
to design the (asymptotically) optimal test.

• Detection of transient signals with variable profiles. In this manuscript, we consider only
the case of fixed transient change profiles θ1, θ2, · · · , θL, i.e., they are independent from
the change-point k0. For some applications, however, the transient change profiles may be
varying according to the change-point k0. The future work should also consider this aspect.
In our opinion, the detection of variable transient change profiles can be generalized on
the basis of this work without much difficulty.

• Detection of transient signals with completely unknown parameters. In this manuscript,
we consider only two scenarios where the transient profiles are exactly known and the
transient profiles are partially known (i.e., the shape of the changes is known but the mag-
nitude of the changes is unknown). The completely unknown transient change parameters,
including the change-point, the transient length and the transient change profiles, should
be considered in the future.

For the sequential isolation of transient signals

The following problems remain unsolved when dealing with the joint detection-isolation of tran-
sient changes:
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• Calculation of upper bounds for the error probabilities. In this manuscript, we have tried to
propose the upper bounds for the error probabilities. The upper bound for the worst-case
probability of missed detection is given in an analytical formula. On the other hands, the
upper bounds for the worst-case probability of false alarm and false isolation have been
calculated by the numerical method. In addition, the upper bound for the worst-case
probability of false isolation is not quite sharp. For these reasons, it is suggested to find
“better” and “analytical” bounds for the error probabilities.

• Distinguish between the false alarm and false isolation rates. For some situations, it is
interesting to differentiate between the false alarm rate and false isolation rate by utilizing
different thresholds. This problem has been considered in [129,132,175] for the sequential
quickest change detection-isolation problem. In the literature, the complete decoupling
between the false alarm rate and false isolation rate has not been achieved. Some ideas
have been suggested in [175] where the authors proposed to utilize the two step approach:
(1) detection and (2) isolation.

• Design of sub-optimal or asymptotically optimal tests. Asymptotically optimal detection-
isolation rules have been proposed in the quickest change detection-isolation framework.
Up to our best knowledge, the problem of jointly detecting and isolating transient sig-
nals has not been considered. This problem would be an interesting direction for future
research.

For the security of SCADA systems against cyber-physical attacks

The security of SCADA systems against cyber-physical attacks can be improved by investigating
the following points:

• Surveillance of SCADA systems. This manuscript has focused mainly on the detection
and isolation of cyber-physical attacks on physical processes, control signals and sensor
measurements. Future work should focus on cyber attacks on the supervisory control
layer, on the command signals or even on the control algorithms. For example, the on-line
monitoring of network traffic [182] may be useful in detecting DoS attacks on computer
networks.

• Revelation of stealthy attacks. This manuscript has suggested a simple method for revealing
several types of stealthy attacks, including the replay attack, the zero-dynamics attack or
the covert attack. The proposed method is based on hardware redundancy approach,
consisting in protecting some “important” sensors or equipping more secure sensors in
such a way that essential information about the attacks is transmitted into monitoring
schemes. It is interesting to consider, in the near future, the problem of how many and
which sensors should protected and/or equipped. The trade-off between the performance
of the algorithms and the equipment costs should be also treated. Moreover, other methods
for revealing particular types of stealthy attacks are also welcome.

For the modeling problem

In this manuscript, we have modeled SCADA systems as the discrete-time state space model
driven by Gaussian noises by linearizing the partial differential equations around the operating
points. For practical purpose, following points should be considered:
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• Discrete-time time-variant state space model. The discrete-time time-variant state space
model should be considered in place of the time-invariant counterpart treated in this
thesis. The discrete-time Kalman filter approach may be used for generating the sequence
of residuals. In contrast, it is questionable whether the parity space approach is applicable
or not.

• Modeling errors. It is of practical interest to take into consideration the modeling errors
in diagnosis schemes. Various techniques for eliminating the modeling errors have been
proposed in the fault diagnosis community. For this reason, the integration of advanced
residual generation techniques in the FDI community into the statistical framework should
be a good research direction.

• Non-linear systems. The FDI techniques for non-linear systems should be also considered
in future for the detection and isolation of cyber-physical attacks on SCADA systems.

For long-term perspectives

In the far future, the following approaches may be useful:

• On-line monitoring of complex systems. Generally, practical SCADA systems contain
up to thousands or even millions of state variables. The surveillance of such large-scale
industrial control systems encounters many problems, especially for the centralized data
processing algorithms. Therefore, the decentralized or distributed mechanisms should be
considered in future work, see for example in [141,178,179].

• Non-parametric approach. The parametric model of SCADA systems may be difficult
to achieve in many practical situations. The imprecision of system models may lead to
an extreme degradation of the statistical performance of detection-isolation schemes. The
non-parametric approach, on the other hand, does not require the system and attack mod-
els. The machine learning and kernel methods are some examples of the non-parametric
approach. These techniques are based on the analysis of the relationship of observed data
under the normal operation of the systems. The detection problem can be solved by ap-
plying mono-class classification techniques while multi-class classification methods can be
employed for the isolation problem.

• Semi-parametric approach. The parametric approach utilized in this manuscript depends
heavily on the model of SCADA systems and cyber-physical attacks. Sometimes, these
models are difficult to obtain. In addition, mathematical models can not describe all real-
world phenomena. The non-parametric approach, on the other hand, does not understand
the operation of SCADA systems, i.e., the interaction between the physical processes and
the cyber layer. The semi-parametric approach is, therefore, the natural integration of the
parametric approach and non-parametric approach. Generally, the semi-parametric model
consists of two parts: parametric one and non-parametric one. The parametric statistic
contains such phenomena that can be described mathematically while the non-parametric
statistic consists of the information about non-modeled phenomena.
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Appendix A. Proofs of Lemmas, Theorems and Propositions

A.1 Discrete-time Kalman filter

In this section, we introduce some precious properties of the discrete-time Kalman filter. Two
essential results include the calculation of innovation signatures and the computation of the
covariance matrix between two innovations when noise covariances are not exactly known.

A.1.1 System model and assumptions

Suppose that the system operates from time instant k ≥ 1 with initial state x1 ∼ N
(
x1, P1|0

)
,

where the mean value x1 and the covariance matrix P1|0 are assumed to be known. The discrete-
time state space model (3.4) can be rewritten as follows:{

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
, x1 ∼ N

(
x1, P1|0

)
, (A.1)

where xk ∈ Rn is the vector of system states, uk ∈ Rm is the vector of control signals, dk ∈ Rq
is the vector of disturbances, yk ∈ Rp is the vector of sensor measurements, ak ∈ Rs is the
vector of attack signals, wk ∈ Rn is the vector of process noises and vk ∈ Rp is the vector of
sensor noises; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, G ∈ Rp×q,
Ba ∈ Rn×s and Da ∈ Rp×s are assumed to be exactly known. The control signals uk and the
disturbances dk are also assumed to be known. The process noises wk and sensor noises vk are
assumed to be independent identically distributed (i.i.d.) zero-mean Gaussian random vectors,
i.e., wk ∼ N (0, Q) and vk ∼ N (0, R). It is well known that under aforementioned conditions,
the Kalman filter is an optimal estimator in the sense that it minimizes the mean-square of the
a posteriori state estimation error.

A.1.2 Discrete-time Kalman filter implementation

Let E0 [(·)] denote the expectation of a random vector (·) under normal operation (i.e., the attack
vector ak = 0). The discrete-time Kalman filter designed for the discrete-time state space model
(A.1) under normal operation is implemented by following steps:

1. Initialization step:

x̂1|0 = E0 [x1] = x1, (A.2)

P1|0 = cov
(
x1 − x̂1|0

)
= E0

[(
x1 − x̂1|0

) (
x1 − x̂1|0

)T ]
, (A.3)

where x̂1|0 is the initial state estimate and P1|0 is the initial covariance of state estimation
error x1 − x̂1|0.

2. Measurement update step:

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1 −Duk −Gdk

)
, (A.4)

Pk|k = Pk|k−1 −KkCPk|k−1, (A.5)

where the optimal Kalman gain Kk is calculated by

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

. (A.6)
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3. Time update step:

x̂k+1|k = Ax̂k|k +Buk + Fdk, (A.7)
Pk+1|k = APk|kA

T +Q. (A.8)

The discrete-time Kalman filter can be also described shortly as follows:x̂k+1|k = Ax̂k|k−1 +Buk + Fdk +AKk

(
yk − ŷk|k−1

)
ŷk|k−1 = Cx̂k|k−1 +Duk +Gdk

; x̂1|0 = x1, (A.9)

where the optimal Kalman gain is calculated as

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (A.10)

Pk+1|k = APk|k−1A
T −APk|k−1C

T
(
CPk|k−1C

T +R
)−1

CPk|k−1A
T +Q, (A.11)

with the initial covariance matrix P1|0.

A.1.3 Calculation of innovation signatures

Let ek = xk − x̂k|k−1 be the state estimation error and rk = yk − ŷk|k−1 be the measurement
estimation error (i.e., the residuals or the innovations). The measurement estimation error is
calculated as

rk = yk − ŷk|k−1

= (Cxk +Duk +Gdk +Daak + vk)︸ ︷︷ ︸
yk

−
(
Cx̂k|k−1 +Duk +Gdk

)
︸ ︷︷ ︸

ŷk|k−1

= C
(
xk − x̂k|k−1

)
︸ ︷︷ ︸

ek

+Daak + vk

= Cek +Daak + vk.

Similarly, the state estimation error is described as

ek+1 = xk+1 − x̂k+1|k

= (Axk +Buk + Fdk +Baak + wk)︸ ︷︷ ︸
xk+1

−
(
Ax̂k|k−1 +Buk + Fdk +AKkrk

)
︸ ︷︷ ︸

x̂k+1|k

= A
(
xk − x̂k|k−1

)
︸ ︷︷ ︸

ek

+Baak + wk −AKkrk

= Aek −AKk (Cek +Daak + vk) +Baak + wk

= (A−AKkC) ek + (Ba −AKkDa) ak + wk −AKkvk.

Finally, the innovation model is described as{
ek+1 = (A−AKkC) ek + (Ba −AKkDa) ak + wk −AKkvk

rk = Cek +Daak + vk
; e1 = 0. (A.12)
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In the following, we calculate the innovation signatures (i.e., the profiles of the innovations). The
innovation signatures ψ1, ψ2, · · · , ψL of the transient changes are defined as the expectation of
the innovation vectors during the change period τa = [k0, k0 + L− 1]. Without loss of generality,
let us suppose that the change-point k0 = 1 since the innovation signatures are independent from
position of the attack duration. It follows from (3.5) that the attack profiles {θk}1≤k≤L are equal
to the attack vectors {ak}1≤k≤L. The innovation signatures ψ1, ψ2, · · ·ψL can be calculated from
the attack profiles θ1, θ2, · · · , θL as follows:

ψk = Cεk +Daθk, (A.13)

where the dynamic profiles εk are computed by

εk+1 = (A−AKkC) εk + (Ba −AKkDa) θk; ε1 = 0. (A.14)

A.1.4 Calculation of innovation covariance matrices

It has been shown in literature [10, 103, 107, 116] that under perfect conditions (i.e., the sys-
tem model perfectly matches the real system, the process noises and sensor noises are white,
the noise covariances are exactly known, and the initial conditions are Gaussian), the innova-
tions generated by the Kalman filter are independent random vectors with covariance matrix
CPk|k−1C

T+R. Especially, the innovations rk ∼ N
(
0, CPk|k−1C

T +R
)
under normal operation

and rk ∼ N
(
ψk−k0+1, CPk|k−1C

T +R
)
under the abnormal behavior.

In practical situations, however, the noise covariance matrices are generally unknown. Though
there are several methods for estimating noise covariances, they are often associated with some
levels of deterministic or stochastic uncertainty. For this reason, it is necessary to investigate the
property of innovations generated from the discrete-time Kalman filter when noise covariances
are not exactly known.

In this subsection, we calculate the covariance between two innovations cov (rk+l, rk) =
E0
[
rk+lr

T
k

]
, for any l ≥ 0, when the true values of process and sensor noise covariances (i.e., Q

and R) are different from their putative values (i.e., Q and R), respectively. In this case, the
value Pk|k−1 given in (A.11) no longer reflects the true covariance of state estimation error (i.e.,
Pk|k−1 6= cov

(
xk − x̂k|k−1

)
). Let P k|k−1 be the true covariance of state estimate error, then it

can be calculated recursively as

P k+1|k = cov
(
xk+1 − x̂k+1|k

)
= cov (ek+1) = E0

[
ek+1e

T
k+1

]
, (A.15)

where the state estimation error evolves by the first equation in (A.12) with ak = 0. Then, we
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have

P k+1|k = E0


{

(A−AKkC) ek + wk −AKkvk
}

︸ ︷︷ ︸
ek+1

{
(A−AKkC) ek + wk −AKkvk

}T
︸ ︷︷ ︸

eT
k+1


= (A−AKkC)E0

[
eke

T
k

]
︸ ︷︷ ︸
Pk|k−1

(A−AKkC)T + (A−AKkC)E0
[
ek (wk −AKkvk)T

]
︸ ︷︷ ︸

0

+

E0
[
(wk −AKkvk) eTk

]
︸ ︷︷ ︸

0

(A−AKkC)T + E0
[
(wk −AKkvk) (wk −AKkvk)T

]

= (A−AKkC)P k|k−1 (A−AKkC)T +Q+ (AKk)R (AKk)T .

We calculate in the following the covariance cov (rk+l, rk) = E0
[
rk+lr

T
k

]
between two innovation

vectors rk+l and rk, for any k ≥ 1 and l ≥ 0. For l = 0, it is clear that

E0
[
rkr

T
k

]
= E0

[
(Cek + vk) (Cek + vk)T

]
= C E0

[
eke

T
k

]
︸ ︷︷ ︸
Pk|k−1

CT + C E0
[
ekv

T
k

]
︸ ︷︷ ︸

0

+E0
[
vke

T
k

]
︸ ︷︷ ︸

0

CT + E0
[
vkv

T
k

]
︸ ︷︷ ︸

R

= CP k|k−1C
T +R,

where P k|k−1 is the covariance matrix of the state estimation error which can be calculated
recursively by (A.16) with the initial value P 1|0 = P1|0.

For l > 0, we have

E0
[
rk+lr

T
k

]
= E0

[
(Cek+l + vk+l) (Cek + vk)T

]
= CE0

[
ek+le

T
k

]
CT + CE0

[
ek+lv

T
k

]
+ E0

[
vk+le

T
k

]
︸ ︷︷ ︸

0

CT + E0
[
vk+lv

T
k

]
︸ ︷︷ ︸

0

= CE0
[
ek+l (Cek + vk)T

]
= CE0

[
ek+lr

T
k

]
,

where the covariance matrix E0
[
ek+lr

T
k

]
is calculated as follows:
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• For l = 1, we have

E0
[
ek+1r

T
k

]
= E0

{(A−AKkC) ek + wk −AKkvk
}

︸ ︷︷ ︸
ek+1

rTk


= (A−AKkC)E0

[
ekr

T
k

]
+ E0

[
wkr

T
k

]
︸ ︷︷ ︸

0

−AKk E0
[
vkr

T
k

]
︸ ︷︷ ︸

R

= (A−AKkC)E0
[
eke

T
k

]
︸ ︷︷ ︸
Pk|k−1

CT −AKkR

= AP k|k−1C
T −AKkCP k|k−1C

T −AKkR

= AP k|k−1C
T −AKk

(
CP k|k−1C

T +R
)

= AP k|k−1C
T −APk|k−1C

T
(
CPk|k−1C

T +R
)−1 (

CP k|k−1C
T +R

)
,

since the optimal Kalman gain is calculated by (A.10).

• For l > 1, we have

E0
[
ek+lr

T
k

]
= E0

{(A−AKk+l−1C) ek+l−1 + wk+l−1 −AKk+l−1vk+l−1
}

︸ ︷︷ ︸
ek+l−1

rTk


= (A−AKk+l−1C)E0

[
ek+l−1r

T
k

]
+ E0

[
wk+l−1r

T
k

]
︸ ︷︷ ︸

0

−AKk+l−1 E0
[
vk+l−1r

T
k

]
︸ ︷︷ ︸

0

= (A−AKk+l−1C)E0
[
ek+l−1r

T
k

]
. (A.16)

It follows from above analysis that the covariance matrix cov (rk+l, rk) = E0
[
rk+lr

T
k

]
between

two innovations rk+l and rk, for k ≥ 1 and l ≥ 0, when the true noise covariance matrices are
different from their putative values can be synthesized into the following algorithm.

A.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is inspired by [69] and [67, pages 51-54] for the independent Gaussian
random observations. In this proof, we generalize the results in [67,69] to the unified statistical
model (3.25). The proof is divided into two parts. In the first part, we investigate the worst-case
probability of false alarm Pfa given in (3.35). In the second part, we introduce the upper bound
P̃md for the worst-case probability of missed detection Pmd given in (3.36).

A.2.1 Proof of part 1

For the probability of false alarm, let us assume the pre-change mode (i.e., k0 → ∞). Under
the pre-change probability measure P0, it follows from the unified statistical model (3.25) that

194



A.2. Proof of Theorem 3.1

Algorithm 1 Recursive calculation of covariance matrix cov (rk+l, rk) when true noise covari-
ances (i.e., Q and R) are different from putative noise covariances (i.e., Q and R).

1. Initialization of the covariance matrix of state estimation error P1|0 = cov
(
x1 − x̂1|0

)
and

P 1|0 = P1|0.

2. Calculation of the putative values of the optimal Kalman gain Kk and the covariance
matrix of state estimation error Pk|k−1:

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (A.17)

Pk+1|k = APk|k−1A
T −APk|k−1C

T
(
CPk|k−1C

T +R
)−1

CPk|k−1A
T +Q, (A.18)

3. Calculation of the covariance matrix of true state estimation error P k+1|k:

P k+1|k = (A−AKkC)P k|k−1 (A−AKkC)T +Q+ (AKk)R (AKk)T . (A.19)

4. Calculation of the covariance matrix cov (rk+l, rk) = E0
[
rk+lr

T
k

]
:

• If l = 0, then
E0
[
rkr

T
k

]
= CP k|k−1C

T +R. (A.20)

• Else if l > 0, then
E0
[
rk+lr

T
k

]
= CE0

[
ek+lr

T
k

]
, (A.21)

where the matrix E0
[
ek+lr

T
k

]
is computed recursively as

– If l = 1, then

E0
[
ek+1r

T
k

]
= AP k|k−1C

T −AKk

(
CP k|k−1C

T +R
)
. (A.22)

– Else if l > 1, then

E0
[
ek+lr

T
k

]
= (A−AKkC)E0

[
ek+l−1r

T
k

]
. (A.23)

rkk−L+1 = ξkk−L+1, for both the steady-state Kalman filter approach and the fixed-size parity
space approach, since the vector of transient signals φkk−L+1 (k0) is null. Moreover, it has been
discussed in subsection 3.3.4 that the random noises

{
ξkk−L+1

}
k≥L

follow the same distribution
(i.e., ξkk−L+1 ∼ N (0,Σ)) and that the vector of transient profiles φkk−L+1 (i) depends only on the
relative position of index i within the window [k − L+ 1, k]. Putting together with (3.34), we
obtain that the random variables

(
Skk−L+1, · · · , Skk

)
follow the same distribution as the random

variables
(
Sk+j
k−L+1+j , · · · , S

k+j
k+j

)
, for all j ≥ 1.

Let ul = P0 (TVTWL = l), we show in the following that ul+1 ≤ ul for all l ≥ L. For l = L, we

195



Appendix A. Proofs of Lemmas, Theorems and Propositions

have

uL+1 = P0 (TVTWL = L+ 1)

= P0

({
max

1≤i≤L

(
SLi − hL−i+1

)
< 0

}⋂{
max

2≤i≤L+1

(
SL+1
i − hL−i+2

)
≥ 0

})
≤ P0

(
max

2≤i≤L+1

(
SL+1
i − hL−i+2

)
≥ 0

)
≤ P0

(
max

1≤i≤L

(
SLi − hL−i+1

)
≥ 0

)
= uL, (A.24)

where the last inequality comes from the above analysis that
(
SL1 , · · · , SLL

)
and(

SL+1
2 , · · · , SL+1

L+1

)
follow the same distribution, leading to uL+1 ≤ uL. By the same argument,

we obtain for the case l > L that

ul+1 = P0 (TVTWL = l + 1)

= P0

(
l⋂

k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}⋂{
max

l−L+2≤i≤l+1

(
Sl+1
i − hl−i+2

)
≥ 0

})

≤ P0

 l⋂
k=L+1

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}⋂{
max

l−L+2≤i≤l+1

(
Sl+1
i − hl−i+2

)
≥ 0

}
≤ P0

(
l−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}⋂{
max

l−L+1≤i≤l

(
Sli − hl−i+1

)
≥ 0

})
≤ P0 (TVTWL = l) = ul, (A.25)

leading to ul+1 ≤ ul. Let Ul = P0 (l ≤ TV TWL ≤ l +mα − 1), then

Ul − Ul+1 =

l+mα−1∑
k=l

uk

−
 l+mα∑
k=l+1

uk

 = ul − ul+mα ≥ 0. (A.26)

Hence, {Ul}l≥L is a non-increasing sequence, leading to

Pfa (TVTWL;mα;h1, h2, · · · , hL) = UL = P0 (L ≤ TVTWL ≤ L+mα − 1) . (A.27)

The proof of part 1 is completed. �.

A.2.2 Proof of part 2

The worst-case probability of missed detection of the VTWL CUSUM test (3.33)–(3.34) is
described as

Pmd (TVTWL;L;h1, h2, · · · , hL) = sup
k0≥L

Pk0 (TVTWL ≥ k0 + L|TVTWL ≥ k0)

= sup
k0≥L

Pk0 (TVTWL ≥ k0 + L)
Pk0 (TVTWL ≥ k0) , (A.28)
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where it is assumed that PL (TVTWL ≥ L) = 1 (i.e., corresponding to the change-point k0 = L).
The worst-case probability of missed detection is expressed by

Pmd (TVTWL;L;h1, h2, · · · , hL) = sup
k0≥L

Pk0

k0+L−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}
Pk0

k0−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

} , (A.29)

where the LLR Ski , for k − L+ 1 ≤ i ≤ k, is rewritten as

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
ξkk−L+1

]
+ Ek0

[
Ski

]
, (A.30)

where Ek0

[
Ski

]
is the mathematical expectation of the LLR Ski under the probability measure

Pk0 , which is calculated as

Ek0

[
Ski

]
=
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (k0)− 1

2φ
k
k−L+1 (i)

]
(A.31)

Let us define three events A1, A2 and A3 as follows:

A1 =
k0−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}
,

A2 =
k0+L−2⋂
k=k0

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}
,

A3 =
{

max
k0≤i≤k0+L−1

(
Sk0+L−1
i − hk0+L−i

)
< 0

}
.

It follows from (A.30) that the event A1 depends on the random vectors ξL1 , · · · , ξk0−1
k0−L, the

event A2 depends on the random vectors ξk0
k0−L+1, · · · , ξ

k0+L−2
k0−1 and the event A3 depends on

only the random vector ξk0+L−1
k0

. Moreover, there is no common element between ξL1 , · · · , ξk0−1
k0−L

and ξk0+L−1
k0

. Hence, the events A1 and A3 are independent, leading to

Pmd (TVTWL;L;h1, h2, · · · , hL) = sup
k0≥L

Pk0 (A1 ∩A2 ∩A3)
Pk0 (A1) ≤ sup

k0≥L

Pk0 (A1 ∩A3)
Pk0 (A1) ≤ sup

k0≥L
Pk0 (A3) .

(A.32)
By replacing the event A3 with its definition, we obtain that

Pmd (TVTWL;L;h1, h2, · · · , hL) ≤ sup
k0≥L

Pk0

k0+L−1⋂
i=k0

{
Sk0+L−1
i < hk0+L−i

}
≤ sup

k0≥L
Pk0

(
Sk0+L−1
k0

< hL
)

= P1
(
SL1 < hL

)
. (A.33)

Let P̃md (TVTWL;hL) , P1
(
SL1 < hL

)
be the upper bound for the worst-case probability of

missed detection Pmd, then

Pmd (TVTWL;L;h1, h2, · · · , hL) ≤ P̃md (TVTWL;hL) , Φ
(
hL − µSL1
σSL1

)
, (A.34)
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where the parameters µSL1 and σSL1 are calculated as

µSL1
= 1

2
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
, (A.35)

σ2
SL1

=
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
. (A.36)

The proof of Theorem 3.1 is completed. �.

A.3 Proof of Lemma 3.2

Let us suppose that Assumption 3.2 is satisfied. We prove in this section that the covariance
matrix ΣS of the Gaussian random vector S =

[
SL1 , · · · , SL+mα−1

mα

]T
∈ Rmα is positive-definite.

It follows from (3.34) that the LLR Ski , for k − L+ 1 ≤ i ≤ k, is rewritten as

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
ξkk−L+1

]
+ E0

[
Ski

]
, (A.37)

where E0
[
Ski

]
is the mathematical expectation of the LLR Ski under the pre-change probability

measure P0 and it is calculated as

E0
[
Ski

]
= −1

2
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (i)

]
(A.38)

A.3.1 Steady-state Kalman filter approach

For the steady-state Kalman filter approach, the transient profiles φL1 (1) = ψL1 (1) and the
random noises ξkk−L+1 = %kk−L+1 with the covariance matrix Σ = Σ% is symmetric and positive-
definite. The LLR Ski can be rewritten for the steady-state Kalman filter approach as

Ski =
[
ψkk−L+1 (i)

]T [
Σ−1
%

] [
%kk−L+1

]
+ E0

[
Ski

]
, (A.39)

where the vector of transient profiles ψkk−L+1 (i) is given by (3.13) and the vector of random
noises %kk−L+1 =

[
%Tk−L+1, · · · , %Tk

]T
, where %k−L+1, · · · , %k ∈ Rp are i.i.d. zero-mean Gaussian

random vectors. Let the coefficient vector λL1 ∈ RLp be defined as

λL1 =
[
λT1 , · · · , λTL

]T
=
[
Σ−1
%

] [
ψL1 (1)

]
, (A.40)

where the elements λ1, · · · , λL ∈ Rp are known. The LLR Skk−L+1 is then described as

Skk−L+1 =
[
λL1

]T [
%kk−L+1

]
+ E0

[
Skk−L+1

]
=
[
λT1 , · · · , λTL

]  %k−L+1
...
%k

+ E0
[
Skk−L+1

]
. (A.41)

Then, the LLRs SL1 , SL+1
2 , · · · , SL+mα−1

mα can be rewritten as

SL1 = λT1 %1 + λT2 %2 + · · ·+ λTL%L + E0
[
SL1

]
,

SL+1
2 = λT1 %2 + λT2 %3 + · · ·+ λTL%L+1 + E0

[
SL+1

2

]
,

...
...

...
SL+mα−1
mα = λT1 %mα + λT2 %mα+1 + · · ·+ λTL%L+mα−1 + E0

[
SL+mα−1
mα

]
.
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By rewriting the above equations in matrix form, we obtain


SL1
SL+1

2
...

SL+mα−1
mα


︸ ︷︷ ︸

S∈Rmα

=


λT1 λT2 · · · λTL 0 · · · 0
0 λT1 · · · λTL−1 λTL · · · 0
...

... . . . ...
... . . . ...

0 0 · · · · · · · · · · · · λTL


︸ ︷︷ ︸

T%∈Rmα×(L+mα−1)p



%1
%2
...
%L
%L+1
...

%L+mα−1


︸ ︷︷ ︸

%L+mα−1
1 ∈R(L+mα−1)p

+


E0
[
SL1

]
E0
[
SL+1

2

]
...

E0
[
SL+mα−1
mα

]


︸ ︷︷ ︸

µS∈Rmα

.

(A.42)
It is worth noting that %L+mα−1

1 ∼ N
(
0, Σ̃%

)
, where Σ̃% ∈ R(L+mα−1)p×(L+mα−1)p is a positive-

definite matrix since %1, %2, · · · , %L+mα−1 are i.i.d. zero-mean Gaussian random vectors (see
subsection 3.3.1). The covariance matrix ΣS is then calculated as

ΣS = T%Σ̃%T T% . (A.43)

Let the coefficient vector λj ∈ Rp be described as λj =
[
λ1
j , λ

2
j , · · · , λ

p
j

]T
, where the element

λij ∈ R, for 1 ≤ i ≤ p and 1 ≤ j ≤ L. If Assumption 3.1 is satisfied, the transient profiles
ψL1 (1) is non-null. It follows from (A.40) that the coefficient vector λL1 6= 0. For this reason,
there exists at least one element λij 6= 0. Let T ∈ Rmα×mα be a square matrix formulated by
mα columns containing the non-zero element λij 6= 0 extracted from the matrix T%. Then, the
matrix T is described as

T =


λij − · · · −
0 λij · · · −
...

... . . . ...
0 0 · · · λij

 , (A.44)

where the notation “−” stands for any real numbers. The matrix T is an upper triangular one
with non-zero elements in the diagonal (i.e., λij 6= 0), then rank (T ) = mα. Since the columns
of T are contained in matrix T% and matrix T% has mα rows, we have rank (T%) = mα. In other
words, the matrix T% is full row rank if Assumption 3.1 is satisfied. As it follows from [91, page
47] that, if matrix T% is full row rank and matrix Σ̃% is non-singular, then the covariance matrix
ΣS = T%Σ̃%T T% is positive-definite. �.

A.3.2 Fixed-size parity space approach

For the fixed-size parity space approach, the transient profiles φL1 (1) = ϕL1 (1) and the random
noises ξkk−L+1 = ςkk−L+1 (see subsection 3.3.2). The LLR Ski is described as

Ski =
[
ϕkk−L+1 (i)

]T [
Σ−1
ς

] [
ςkk−L+1

]
+ E0

[
Ski

]
, (A.45)

where ϕkk−L+1 (i) =WMθkk−L+1 (i) and ςkk−L+1 =W
(
Hwkk−L+1 + vkk−L+1

)
. Hence, the LLR Ski

can be rewritten as

Ski =
[
ϕkk−L+1 (i)

]T [
Σ−1
ς

] [
WHwkk−L+1 +Wvkk−L+1

]
+ E0

[
Ski

]
. (A.46)
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Let us define coefficient vectors βL1 ∈ RLn and γL1 ∈ RLp be defined as follows:

βL1 =
[
βT1 , · · · , βTL

]T
=
[(
ϕL1 (1)

)T
Σ−1
ς WH

]T
= HTWTΣ−1

ς ϕL1 (1) , (A.47)

γL1 =
[
γT1 , · · · , γTL

]T
=
[(
ϕL1 (1)

)T
Σ−1
ς W

]T
=WTΣ−1

ς ϕL1 (1) , (A.48)

where β1, · · · , βL ∈ Rn and γ1, · · · , γL ∈ Rp are known. The LLR Skk−L+1 can be described in
terms of wkk−L+1 and vkk−L+1 as follows:

Skk−L+1 =
[
βL1

]T
wkk−L+1 +

[
γL1

]T
vkk−L+1 + E0

[
Skk−L+1

]
. (A.49)

Similar to the Kalman filter approach, the Gaussian random vector S ∈ Rmα formed by the
LLRs SL1 , SL2 , · · · , SL+mα−1

mα can be described as

S = TwwL+mα−1
1 + TvvL+mα−1

1 + µS , (A.50)

where µS ∈ Rmα is non-random mean vector, the random vectors wL+mα−1
1 =[

wT1 , · · · , wTL+mα−1

]T
and vL+mα−1

1 =
[
vT1 , · · · , vTL+mα−1

]T
, the matrices Tw ∈ Rmα×(L+mα−1)n

and Tv ∈ Rmα×(L+mα−1)p are described, respectively, as

Tw =


βT1 βT2 · · · βTL 0 · · · 0
0 βT1 · · · βTL−1 βTL · · · 0
...

... . . . ...
... . . . ...

0 0 · · · · · · · · · · · · βTL

 , (A.51)

Tv =


γT1 γT2 · · · γTL 0 · · · 0
0 γT1 · · · γTL−1 γTL · · · 0
...

... . . . ...
... . . . ...

0 0 · · · · · · · · · · · · γTL

 . (A.52)

If Assumption 3.1 is satisfied, i.e., ϕL1 (1) 6= 0, then γL1 = WTΣ−1
ς ϕL1 (1) 6= 0 since matrix Σς

is non-singular and matrix WT is full column rank. The coefficient vector βL1 may be null or
non-null. Similar to the steady-state Kalman filter approach, it can be shown that if γL1 6= 0, the
matrix Tv is full row rank (rank (Tv) = mα). Let Q̃ and R̃ be the covariance matrices of random
noises wL+mα−1

1 and vL+mα−1
1 , then Q̃ is positive-semidefinite and R̃ is positive-definite. Hence,

the covariance matrix
ΣS = TwQ̃T Tw︸ ︷︷ ︸

positive-semidefinite

+ TvR̃T Tv︸ ︷︷ ︸
positive-definite

(A.53)

is positive-definite. The proof of Lemma 3.2 is completed. �.

A.4 Proof of Theorem 3.2

The proof of Theorem 3.2 consists of two parts. The optimization problem is formulated and
solved in the first part. It is shown in the second part that the optimized VTWL CUSUM test
is equivalent to the FMA test.
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A.4.1 Proof of part 1

Since we wish to minimize the upper bound P̃md (TVTWL;hL) subject to an acceptable level
α ∈ (0, 1) on the worst-case probability of false alarm Pfa, the optimization problem can be
defined as {

infh1,h2,··· ,hL P̃md (TVTWL;hL)
subject to Pfa (TVTWL;mα;h1, · · · , hL) ≤ α

, (A.54)

where the worst-case probability of false alarm is calculated from (3.35) as
Pfa (TVTWL;mα;h1, · · · , hL) = P0 (L ≤ TVTWL ≤ L+mα − 1)

= 1− P0 (TVTWL ≥ L+mα)

= 1− P0

(
L+mα−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

})

= 1− P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} . (A.55)

Let us define a function F0 (h1, h2, · · · , hL) depending on the thresholds h1, h2, · · · , hL as

F0 (h1, h2, · · · , hL) , P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} . (A.56)

The optimization problem (A.54) is equivalent to{
infh1,h2,··· ,hL P̃md (TVTWL;hL)
subject to F0 (h1, h2, · · · , hL) ≥ 1− α

, (A.57)

where the objective function P̃md (TVTWL;hL) = Φ
(
hL−µSL1
σ
SL1

)
is monotonically non-decreasing

w.r.t. the threshold hL. Let us investigate now the property of the function F0 (h1, h2, · · · , hL).
Let {δhj}1≤j≤L be positive real numbers, then

F0 (h1, · · · , hj + δhj , · · · , hL) = P0

L+mα−1⋂
k=L

 k⋂
i=k−L+1
i 6=k−j+1

{
Ski < hk−i+1

}
and

{
Skk−j+1 < hj + δhj

}


= P0

L+mα−1⋂
k=L




k⋂
i=k−L+1
i 6=k−j+1

{
Ski < hk−i+1

}
and

{
Skk−j+1 < hj

}
⋃


k⋂

i=k−L+1
i 6=k−j+1

{
Ski < hk−i+1

}
and

{
hj ≤ Skk−j+1 < hj + δhj

}



≥ P0

L+mα−1⋂
k=L

 k⋂
i=k−L+1
i 6=k−j+1

{
Ski < hk−i+1

}
and

{
Skk−j+1 < hj

}


≥ P0

L+mα−1⋂
k=L

 k⋂
i=k−L+1

{
Ski < hk−i+1

} , F0 (h1, · · · , hj , · · · , hL) .

(A.58)
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It follows from (A.58) that the function F0 (h1, h2, · · · , hL) is monotonically non-decreasing
w.r.t. each threshold h1, h2, · · · , hL. By utilizing this property of F0 (·), we prove in the following
that the thresholds h∗1, h∗2, · · · , h∗L−1 → +∞ and the threshold h∗L satisfying

F0 (+∞, · · · ,+∞, h∗L) = P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < h∗L

})
= 1− α (A.59)

are the solution to the optimization problem (A.57). The proof consists of two following steps:

• It follows from Lemma 3.2 that the covariance matrix ΣS of the Gaussian random variables
SL1 , S

L+1
2 , · · · , SL+mα−1

mα is positive-definite, for both steady-state Kalman filter approach
and fixed-size parity space approach. The function F0 (+∞, · · · ,+∞, h∗L) is monotonically
non-decreasing w.r.t. the threshold h∗L. Its co-domain is [0, 1]. Hence, the equation (A.59)
has a unique solution h∗L for a given value α ∈ (0, 1).

• Let us suppose that a set of thresholds h1, · · · , hL−1, hL satisfying the constraint

F0 (h1, · · · , hL−1, hL) ≥ 1− α, (A.60)

defines any alternative solution of the optimization problem (A.57). The goal is to
show that P̃md (TVTWL;hL) ≥ P̃md (TVTWL;h∗L). It follows from the monotonically non-
decreasing property of the function F0 (·) that

1− α = F0 (+∞, · · · ,+∞, h∗L) ≥ F0 (h1, · · · , hL−1, h
∗
L) . (A.61)

Putting together (A.60) and (A.61), we obtain that

F0 (h1, · · · , hL−1, hL) ≥ F0 (h1, · · · , hL−1, h
∗
L) , (A.62)

resulting in hL ≥ h∗L since the function F0 (·) is monotonically non-decreasing w.r.t. each
threshold. It follows from (3.36) that the objective function hL 7→ P̃md (TVTWL;hL) ,

Φ
(
hL−µSL1
σ
SL1

)
is monotonically non-decreasing w.r.t. the threshold hL, leading to

P̃md (TVTWL;hL) ≥ P̃md (TVTWL;h∗L). �.

A.4.2 Proof of part 2

The VTWL CUSUM algorithm with optimal thresholds h∗1, h∗2, · · · , h∗L can be described as

T ∗VTWL = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ski − h∗k−i+1

)
≥ 0

}
= inf

{
k ≥ L : Skk−L+1 ≥ h∗L

}
, (A.63)

since the optimal thresholds h∗1, h∗2, · · · , h∗L−1 → +∞. In addition, the LLR Skk−L+1 can be
re-written as

Skk−L+1 =
[
φL1 (1)

]T [
Σ−1

] [
rkk−L+1 −

1
2φ

L
1 (1)

]
. (A.64)

Hence, the optimized VTWL CUSUM algorithm is equivalent to the following simple FMA
detection rule

TFMA
(
h̃L
)

= inf
{
k ≥ L :

[
φL1 (1)

]T [
Σ−1

]
rkk−L+1 ≥ h̃L

}
, (A.65)
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where the threshold h̃L = h∗L + µSL1
. The upper bound for the worst-case probability of missed

detection for the FMA detection rule as a function of the threshold h̃L is calculated as

P̃md
(
TFMA; h̃L

)
= P̃md (T ∗VTWL;h∗L) = P̃md

(
T ∗VTWL; h̃L − µSL1

)
= Φ

 h̃L − 2µSL1
σSL1

 . (A.66)

The proof of Theorem 3.2 is completed. �.

A.5 Proof of Proposition 3.1

The proof of Proposition 3.1 consists of two parts. In the first part, we formulate the threshold
vector, the mean vector and the covariance matrix for calculating the worst-case probability
of false alarm Pfa and the worst-case probability of missed detection Pmd for both the VTWL
CUSUM algorithm and the FMA detection rule. The detailed calculation of the elements in
vectors and matrices is given in the second part.

A.5.1 Formulas for calculating error probabilities

The formulas for the numerical calculation of the worst-case probability of false alarm and the
worst-case probability of missed detection for both VTWL CUSUM and FMA procedures are
given in this part.

Worst-case probability of false alarm for VTWL CUSUM algorithm

It follows from (A.55) in the proof of Theorem 3.2 that the worst-case probability of false alarm
of the VTWL CUSUM algorithm can be rewritten as

Pfa (TVTWL;mα;h1, h2, · · · , hL) = 1− P0


L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

}
︸ ︷︷ ︸

E1

 , (A.67)

where the event E1 can be re-written as follows:

E1 =



{
SL1 < hL

} ⋂ {
SL2 < hL−1

} ⋂
· · ·

⋂ {
SLL < h1

} ⋂{
SL+1

2 < hL
} ⋂ {

SL+1
3 < hL−1

} ⋂
· · ·

⋂ {
SL+1
L+1 < h1

} ⋂
...

...
...

... . . . ...
...

...{
SL+mα−1
mα < hL

} ⋂ {
SL+mα−1
mα+1 < hL−1

} ⋂
· · ·

⋂ {
SL+mα−1
L+mα−1 < h1

}

 .

It is worth noting that the event E1 is comprised of mα rows and L columns. By organizing
the event E1 in column-by-column manner, the multivariate Gaussian random variable S1 ∈
RmαL with the mean vector µS1 ∈ RmαL and the covariance matrix ΣS1 ∈ RmαL×mαL and the
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corresponding threshold vector hS1 ∈ RmαL are described as follows:

S1 =


SL1
SL+1

2
...

SL+mα−1
L+mα−1

 ; hS1 =


hL
hL
...
h1

 ; µS1 =


E0
[
SL1

]
E0
[
SL+1

2

]
...

E0
[
SL+mα−1
L+mα−1

]

 ,

ΣS1 =


cov

(
SL1 , S

L
1

)
cov

(
SL1 , S

L+1
2

)
· · · cov

(
SL1 , S

L+mα−1
L+mα−1

)
cov

(
SL+1

2 , SL1

)
cov

(
SL+1

2 , SL+1
2

)
· · · cov

(
SL+1

2 , SL+mα−1
L+mα−1

)
...

... . . . ...
cov

(
SL+mα−1
L+mα−1 , S

L
1

)
cov

(
SL+mα−1
L+mα−1 , S

L+1
2

)
· · · cov

(
SL+mα−1
L+mα−1 , S

L+mα−1
L+mα−1

)

 ,

where the elements of the threshold vector hS1 , the mean vector µS1 and the covariance matrix
ΣS1 can be obtained by calculating the expectation E0

[
Ski

]
of the LLR Ski under probability

measure P0 and the covariance cov
(
Sk1
i1
, Sk2

i2

)
between two LLRs Sk1

i1
and Sk2

i2
. This calculation

is performed in the second part of this proof. Finally, the formula for the numerical calculation
of the worst-case probability of false alarm Pfa of the VTWL CUSUM algorithm is given by

Pfa (TVTWL;mα;h1, h2, · · · , hL) = P

mαL⋂
j=1

{
S1 (j) < hS1 (j)

} . (A.68)

Worst-case probability of false alarm for FMA detection rule

Similar to the VTWL CUSUM algorithm, the worst-case probability of false alarm of the FMA
detection rule is given by

Pfa
(
TFMA;mα; h̃L

)
= 1− P0


L+mα−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

}
︸ ︷︷ ︸

E2

 , (A.69)

where the event E2 is defined by mα Gaussian random variables SL1 , SL+1
2 , · · · , SL+mα−1

mα . Let
S2 ∈ Rmα be a multivariate Gaussian random vector with the mean vector µS2 ∈ Rmα and the
covariance matrix ΣS2 ∈ Rmα×mα and hS2 ∈ Rmα be the corresponding threshold vector. It is
worth noting that the random vector S2 defined here coincides with the random vector S defined
in Lemma 3.2. However, we prefer using the notation S2 for distinguishing from the random
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vectors S1, S3 and S4 employed in this proof. Then, we get

S2 =


SL1
SL+1

2
...

SL+mα−1
mα

 ; hS2 =


h̃L − µSL1
h̃L − µSL1...
h̃L − µSL1

 ; µS2 =


E0
[
SL1

]
E0
[
SL+1

2

]
...

E0
[
SL+mα−1
mα

]

 ,

ΣS2 =


cov

(
SL1 , S

L
1

)
cov

(
SL1 , S

L+1
2

)
· · · cov

(
SL1 , S

L+mα−1
mα

)
cov

(
SL+1

2 , SL1

)
cov

(
SL+1

2 , SL+1
2

)
· · · cov

(
SL+1

2 , SL+mα−1
mα

)
...

... . . . ...
cov

(
SL+mα−1
mα , SL1

)
cov

(
SL+mα−1
mα , SL+1

2

)
· · · cov

(
SL+mα−1
mα , SL+mα−1

mα

)

 ,

where the elements of the threshold vector hS2 , the mean vector µS2 and the covariance matrix
ΣS2 are elaborated in the second part of this proof. Finally, the worst-case probability of false
alarm Pfa of the FMA test is calculated numerically as

Pfa
(
TFMA;mα; h̃L

)
= P

mα⋂
j=1

{
S2 (j) < hS2 (j)

} . (A.70)

Worst-case probability of missed detection for VTWL CUSUM algorithm

The worst-case probability of missed detection of the VTWL CUSUM algorithm can be described
as

Pmd (TVTWL;h1, h2, · · · , hL) = sup
k0≥L

Pk0 (TVTWL (h1, h2, · · · , hL) ≥ k0 + L)
Pk0 (TVTWL (h1, h2, · · · , hL) ≥ k0)

= sup
k0≥L

Pk0

k0+L−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}
Pk0

k0−1⋂
k=L

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

}

= sup
k0≥L

Pk0

k0+L−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

}
Pk0

k0+L−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} . (A.71)

Let us define the following function Fk0 (a; b;h1, h2, · · · , hL) with b ≥ a ≥ L, for a, b ∈ N+ as
follows:

Fk0 (a; b;h1, h2, · · · , hL) = Pk0

(
b⋂

k=a

{
max

k−L+1≤i≤k

(
Ski − hk−i+1

)
< 0

})

= Pk0


b⋂

k=a

k⋂
i=k−L+1

{
Ski < hk−i+1

}
︸ ︷︷ ︸

E3

 , (A.72)

205



Appendix A. Proofs of Lemmas, Theorems and Propositions

where the event E3, which is comprised of b − a + 1 rows and L columns, can be re-written as
follows:

E3 =



{
Saa−L+1 < hL

} ⋂ {
Saa−L+2 < hL−1

} ⋂
· · ·

⋂
{Saa < h1}

⋂{
Sa+1
a−L+2 < hL

} ⋂ {
Sa+1
a−L+3 < hL−1

} ⋂
· · ·

⋂ {
Sa+1
a+1 < h1

} ⋂
...

...
...

... . . . ...
...

...{
Sbb−L+1 < hL

} ⋂ {
Sbb−L+2 < hL−1

} ⋂
· · ·

⋂ {
Sbb < h1

}

 .

The multivariate Gaussian random variable S3 ∈ R(b−a+1)L with the mean vector µS3 ∈
R(b−a+1)L and the covariance matrix ΣS3 ∈ R(b−a+1)L×(b−a+1)L and the corresponding threshold
vector hS3 can be described as

S3 =


Saa−L+1
Sa+1
a−L+2
...
Sbb

 ; hS3 =


hL
hL
...
h1

 ; µS3 =


Ek0

[
Saa−L+1

]
Ek0

[
Sa+1
a−L+2

]
...

Ek0

[
Sbb

]

 ,

ΣS3 =


cov

(
Saa−L+1, S

a
a−L+1

)
cov

(
Saa−L+1, S

a+1
a−L+2

)
· · · cov

(
Saa−L+1, S

b
b

)
cov

(
Sa+1
a−L+2, S

a
a−L+1

)
cov

(
Sa+1
a−L+2, S

a+1
a−L+2

)
· · · cov

(
Sa+2
a−L+2, S

b
b

)
...

... . . . ...
cov

(
Sbb , S

a
a−L+1

)
cov

(
Sbb , S

a+1
a−L+2

)
· · · cov

(
Sbb , S

b
b

)

 .

The function Fk0 (a; b;h1, h2, · · · , hL) can be evaluated numerically as

Fk0 (a; b;h1, h2, · · · , hL) = Pk0

(b−a+1)L⋂
j=1

{
S3 (j) < hS3 (j)

} . (A.73)

The worst-case probability of missed detection for the VTWL CUSUM algorithm is then calcu-
lated by utilizing the function Fk0 (·) as follows:

Pmd (TVTWL;h1, h2, · · · , hL) = sup
k0≥L

Fk0 (L; k0 + L− 1;h1, h2, · · · , hL)
Fk0 (L; k0 − 1;h1, h2, · · · , hL) , (A.74)

where Fk0 (L; k0 − 1;h1, h2, · · · , hL) , 1 for k0 = L.

Worst-case probability of missed detection for FMA detection rule

Similar to the VTWL CUSUM algorithm, the worst-case probability of missed detection for the
FMA detection rule is derived as

Pmd
(
TFMA; h̃L

)
= sup

k0≥L

Pk0

k0+L−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

}
Pk0

k0−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

} , (A.75)
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since the threshold h̃L of the FMA test is related to the optimal threshold of the VTWL CUSUM
test by h̃L = h∗L + µSL1

. Let us define also the function F̃k0

(
a; b; h̃L − µSL1

)
can be re-written as

F̃k0

(
a; b; h̃L − µSL1

)
= Pk0

(
b⋂

k=a

{
Skk−L+1 < h̃L − µSL1

})
. (A.76)

The multivariate Gaussian random variable S4 ∈ R(b−a+1), the mean vector µS4 ∈ R(b−a+1), the
covariance matrix ΣS4 ∈ R(b−a+1)×(b−a+1) and the threshold vector hS4 ∈ R(b−a+1) are defined
as

S4 =


Saa−L+1
Sa+1
a−L+2
...

Sbb−L+1

 ; µS4 =


Ek0

[
Saa−L+1

]
Ek0

[
Sa+1
a−L+2

]
...

Ek0

[
Sbb−L+1

]

 ; hS4 =


h̃L − µSL1
h̃L − µSL1...
h̃L − µSL1

 ,

ΣS4 =


cov

(
Saa−L+1, S

a
a−L+1

)
cov

(
Saa−L+1, S

a+1
a−L+2

)
· · · cov

(
Saa−L+1, S

b
b−L+1

)
cov

(
Sa+1
a−L+2, S

a
a−L+1

)
cov

(
Sa+1
a−L+2, S

a+1
a−L+2

)
· · · cov

(
Sa+1
a−L+2, S

b
b−L+1

)
...

... . . . ...
cov

(
Sbb−L+1, S

a
a−L+1

)
cov

(
Sbb−L+1, S

a+1
a−L+2

)
· · · cov

(
Sbb−L+1, S

b
b−L+1

)

 .

The function F̃k0

(
a; b; h̃L

)
is calculated numerically as

F̃k0

(
a; b; h̃L − µSL1

)
= Pk0

(b−a+1)⋂
j=1

{
S4 (j) < hS4 (j)

} . (A.77)

Finally, the worst-case probability of missed detection for the FMA detection rule is calculated
numerically as

Pmd
(
TFMA; h̃L

)
= sup

k0≥L

F̃k0

(
L; k0 + L− 1; h̃L − µSL1

)
F̃k0

(
L; k0 − 1; h̃L − µSL1

) , (A.78)

where F̃k0

(
L; k0 − 1; h̃L − µSL1

)
, 1 for k0 = L.

A.5.2 Calculation of expectations and covariances

In this part, we calculate the mathematical expectations E0
[
Ski

]
and Ek0

[
Ski

]
of the LLR Ski

under the pre-change probability measure P0 and the probability measure Pk0 , respectively. We
compute also the covariance cov

(
Sk1
i1
, Sk2

i2

)
between two LLRs Sk1

i1
and Sk2

i2
, for k1 − L + 1 ≤

i1 ≤ k1 and k2 − L+ 1 ≤ i2 ≤ k2.

Calculation of mathematical expectations

In this subsection, we calculate the mathematical expectations E0
[
Ski

]
and Ek0

[
Ski

]
for both

steady-state Kalman filter approach and the fixed-size parity space approach. By replacing the
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residual vector rkk−L+1 in the unified statistical model (3.25) into the LLR Ski defined in (3.34),
we get

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
ξkk−L+1 + φkk−L+1 (k0)− 1

2φ
k
k−L+1 (i)

]
. (A.79)

Under the pre-change probability measure P0, the transient profiles φkk−L+1 (k0) = 0, leading to

E0
[
Ski

]
= −1

2
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (i)

]
. (A.80)

Under the probability measure Pk0 , the mathematical expectation of the LLR Ski is calculated
by

Ek0

[
Ski

]
=
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (k0)− 1

2φ
k
k−L+1 (i)

]
. (A.81)

Calculation of covariance

We calculate in the following the covariance between two Gaussian random vectors Sk1
i1

and Sk2
i2
,

for both the steady-state Kalman filter approach and the fixed-size parity space approach. It
follows from (A.79) that the LLR Ski can be described as

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
ξkk−L+1

]
+ Ek0

[
Ski

]
. (A.82)

Steady-state Kalman filter approach By this approach, the LLRs Sk1
i1

and Sk2
i2

can be
described as

Sk1
i1

=
[
ψk1
k1−L+1 (i1)

]T [
Σ−1
%

] [
%k1
k1−L+1

]
+ Ek0

[
Sk1
i1

]
, (A.83)

Sk2
i2

=
[
ψk2
k2−L+1 (i2)

]T [
Σ−1
%

] [
%k2
k2−L+1

]
+ Ek0

[
Sk2
i2

]
. (A.84)

Hence, the covariance between these random variables is calculated as

cov
(
Sk1
i1
, Sk2

i2

)
=
[
ψk1
k1−L+1 (i1)

]T [
Σ−1
%

]
[S%]

[
Σ−1
%

] [
ψk2
k2−L+1 (i2)

]
, (A.85)

where S% ∈ RLp×Lp is the covariance matrix between the random vectors %k1
k1−L+1 and %k2

k2−L+1,
which is calculated as

S% = E0


 %k1−L+1

...
%k1

( %Tk2−L+1 · · · %Tk2

) , (A.86)

where E0
[
%t1%

T
t2

]
= CP∞C

T +R if t1 = t2 and E0
[
%t1%

T
t2

]
= 0 otherwise.

Fixed-size parity space approach By this approach, the transient profiles φkk−L+1 (i) =
ϕkk−L+1 (i) and the random noises ςkk−L+1 = W

(
Hwkk−L+1 + vkk−L+1

)
. The LLRs Sk1

i1
and Sk2

i2

can be decomposed as

Sk1
i1

=
[
ϕk1
k1−L+1 (i1)

]T [
Σ−1
ς

] [
ςk1
k1−L+1

]
+ Ek0

[
Sk1
i1

]
, (A.87)

Sk2
i2

=
[
ϕk2
k2−L+1 (i2)

]T [
Σ−1
ς

] [
ςk2
k2−L+1

]
+ Ek0

[
Sk2
i2

]
. (A.88)

208



A.6. Sensibility analysis of FMA test

Hence, the covariance between these random variables is calculated as

cov
(
Sk1
i1
, Sk2

i2

)
=
[
ϕk1
k1−L+1 (i1)

]T [
Σ−1
ς

]
[Sς ]

[
Σ−1
ς

] [
ϕk2
k2−L+1 (i2)

]
, (A.89)

where the covariance matrix Sς ∈ RLp×Lp between the random vectors ςk1
k1−L+1 and ςk1

k2−L+1 is
calculated as

Sς = E0

[(
WHwk1

k1−L+1 +Wvk1
k1−L+1

) (
WHwk2

k2−L+1 +Wvk2
k2−L+1

)T ]
=W

(
HSwHT + Sv

)
WT ,

(A.90)
where Sw ∈ RLn×Ln is the covariance matrix between two random vectors wk1

k1−L+1 and wk2
k2−L+1,

and Sv ∈ RLp×Lp is the covariance matrix between two random vectors vk1
k1−L+1 and vk2

k2−L+1,
which are calculated as follows:

Sw = E0


 wk1−L+1

...
wk1

( wTk2−L+1 · · · wTk2

) , (A.91)

Sv = E0


 vk1−L+1

...
vk1

( vTk2−L+1 · · · vTk2

) , (A.92)

where E0
[
wt1w

T
t2

]
= Q and E0

[
vt1v

T
t2

]
= R if t1 = t2 and E0

[
wt1w

T
t2

]
= 0 and E0

[
vt1v

T
t2

]
= 0

otherwise.

Remark A.1. Let us discuss now the positive definiteness of the covariance matrices ΣS1,
ΣS2, ΣS3 and ΣS4. First of all, the random vector S2 ≡ S, where the last vector is defined
in Lemma 3.2. It follows from Lemma 3.2 that the covariance matrices ΣS2 ≡ ΣS , which
correspond to the FMA test (3.41), are positive-definite if Assumption 3.1 is satisfied. Second,
the covariance matrix ΣS4 is also positive-definite if Assumption 3.1 is satisfied. The proof of
this fact is completely analogous to that of Lemma 3.2 in Appendix A.3. Finally, the covariance
matrices ΣS1 and ΣS3, which correspond to the VTWL CUSUM test (3.33), are positive-definite
in some scenarios. Nevertheless, there are also scenarios where the determinants of ΣS1 and ΣS3

are close to zero, especially with large value of L and mα. Therefore, it is necessary to verify
the positive definiteness before executing the numerical computation. The following heuristic
solution is proposed in such cases: to use the matrix ΣS1 + δI (resp. ΣS3 + δI) instead of
covariance matrix ΣS1(resp. ΣS3), where I is the identity matrix of appropriate size and δ > 0
is a small quantity.

The proof of Proposition 3.1 is completed. �.

A.6 Sensibility analysis of FMA test

In this section, we re-calculate the mathematical expectations E0
[
Ski

]
and Ek0

[
Ski

]
and the

covariance cov
(
Sk1
i1
, Sk2

i2

)
when the true values of operational parameters are different from

their putative values (i.e., L 6= L, θ1, θ2, · · · , θL 6= θ1, θ2, · · · , θL, Q 6= Q and R 6= R).
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A.6.1 Calculation of true mathematical expectations

Let φkk−L+1 (k0) be the vector of true transient profiles formulated in the same manner as the pu-
tative transient profiles φkk−L+1 (k0) in (3.25), with the putative parameters L and θ1, θ2, · · · , θL
replaced by the true parameters L, θ1, θ2, · · · , θL, respectively. It is worth noting that the vec-
tor φkk−L+1 (k0) depends also on either the steady-state Kalman filter or the fixed-size parity
space is employed. The mathematical expectations E0

[
Ski

]
and Ek0

[
Ski

]
can be re-calculated,

respectively, as

E0
[
Ski

]
= −1

2
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (i)

]
, (A.93)

Ek0

[
Ski

]
=
[
φkk−L+1 (i)

]T [
Σ−1

] [
φ
k
k−L+1 (k0)− 1

2φ
k
k−L+1 (i)

]
. (A.94)

It can be noticed that under pre-change mode (i.e., k0 → ∞), the mathematical expectation
E0
[
Ski

]
given in (A.93) remained unchanged in comparison with E0

[
Ski

]
calculated in (A.80)

when the true parameters are the same as the putative parameters. The quantity Ek0

[
Ski

]
, on

the other hand, depends on the true transient profiles φkk−L+1 (k0) which are calculated from
true parameters L and θ1, θ2, · · · , θL.

A.6.2 Calculation of true covariance

The covariance cov
(
Sk1
i1
, Sk2

i2

)
between two LLRs Sk1

i1
and Sk2

i2
can be calculated in the same

manner as in Appendix A.5. More precisely, the covariance cov
(
Sk1
i1
, Sk2

i2

)
can be computed by

(A.85) for the steady-state Kalman filter approach and by (A.89) for the fixed-size parity space
approach. Since the true values of random noises are different from their putative values, the
covariance matrices S% defined in (A.86) and Sς defined in (A.90) must be recalculated.
The covariance matrix Sς can be calculated by (A.90) in terms of Sw in (A.91) and Sv in (A.92),
respectively. The elements of Sw and Sv are revised by E

[
wt1w

T
t2

]
= Q and E

[
vt1v

T
t2

]
= R if

t1 = t2 and E
[
wt1w

T
t2

]
= 0 and E

[
vt1v

T
t2

]
= 0 otherwise.

The covariance matrix S% can be calculated by (A.86), where its elements E
[
%t1%

T
t2

]
= E0

[
rt1r

T
t2

]
need to be re-computed. In such situations that Q 6= Q and/or R 6= R, the Kalman filter is no
longer optimal and the residuals are no longer independent. Hence, it is required to calculate
E0
[
rt1r

T
t2

]
, for k1 − L+ 1 ≤ t1 ≤ k1 and k2 − L+ 1 ≤ t2 ≤ k2.

The calculation of E0
[
rkr

T
k+l

]
, for l ≥ 0, is given Algorithm 2. The idea behind the Algorithm 2

is described in Appendix A.1.

A.7 Proof of Theorem 3.4

In the following, the optimization problem is formulated and solved for the VTWL GLR test
defined in (3.51). However, similar results can be obtained for the VTWL WLR test defined in
(3.56). The proof consists of two parts. The optimization problem is formulated and solved in
the first part. It is shown in the second part that the optimal choice of thresholds leads to FMA
GLR detection rule.
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Algorithm 2 Calculation of the covariance cov (rk+l, rk) between two innovations rk+l and rk
generated by the steady-state Kalman filter when the true noise covariances are different from
their putative values (i.e., Q 6= Q and/or R 6= R).

1. Initialization: P 1|0 = P∞ and K = AK∞, where K∞ and P∞ are given in (3.8)–(3.9).

2. Calculation of the real covariance P k+1|k:

P k+1|k = (A−KC)P k|k−1 (A−KC)T +Q+KRKT .

3. If (l = 0) then
E0
[
rkr

T
k

]
= CP k|k−1C

T +R, (A.95)

4. Else if (l ≥ 1) then
E0
[
rk+lr

T
k

]
= CE0

[
ek+lr

T
k

]
, (A.96)

where the matrix E0
[
ek+lr

T
k

]
is computed recursively as

E0
[
ek+lr

T
k

]
= (A−KC)E0

[
ek+l−1r

T
k

]
, (A.97)

with initial value (i.e., l = 1)

E0
[
ek+1r

T
k

]
= AP k|k−1C

T −K
(
CP k|k−1C

T +R
)
. (A.98)

A.7.1 Proof of part 1

Since we wish to minimize the upper bound P̂∗md (hL) on the worst-case probability of missed
detection Pmd

(
T̂GLR

)
subject to an acceptable level α ∈ (0, 1) on the worst-case probability of

false alarm Pfa
(
T̂GLR

)
, the optimization problem can be defined asinfh1,h2,··· ,hL P̂∗md (hL)
subject to Pfa

(
T̂GLR;mα;h1, h2, · · · , hL

)
≤ α

, (A.99)

where the worst-case probability of false alarm Pfa
(
T̂GLR;mα;h1, h2, · · · , hL

)
is calculated by

Pfa
(
T̂GLR;mα;h1, h2, · · · , hL

)
= 1− P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ŝki < hk−i+1

} . (A.100)

Seeking for simplifying the proof, let us define two functions F̂0 (h1, h2, · · · , hL) and Ĝ0 (hL) as
follows:

F̂0 (h1, h2, · · · , hL) , P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ŝki < hk−i+1

} , (A.101)

Ĝ0 (hL) , P0

(
L+mα−1⋂
k=L

{
Ŝkk−L+1 < hL

})
, (A.102)
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where the function F̂0 (h1, h2, · · · , hL) is monotonically non-decreasing w.r.t. each thresh-
old and the function Ĝ0 (hL) is also monotonically w.r.t. threshold hL. It is clear that
F̂0 (+∞, · · · ,+∞, hL) = Ĝ0 (hL). The optimization problem (A.99) is reduced to{

infh1,h2,··· ,hL P̂∗md (hL)
subject to F̂0 (h1, h2, · · · , hL) ≥ 1− α

. (A.103)

Let Kα be the set of real numbers satisfying Ĝ0 (hL) ≥ 1 − α for a given value α ∈ (0, 1). It
follows from the property of the probability measure that Ĝ0 (hL) is a right-continuous function
and that limhL→−∞ Ĝ0 (hL) = 0 and limhL→+∞ Ĝ0 (hL) = 1. For these reasons, the set Kα is
non-null. Let ĥ∗L = min {hL : hL ∈ Kα} be the minimum value of hL in the set Kα.

(a) Function Ĝ0 (hL) is continuous. (b) Function Ĝ0 (hL) is right-continuous.

Figure A.1 – Function Ĝ0 (hL) and optimal solution ĥ∗L in two scenarios.

See figure A.1 for the demonstration in two scenarios: (a) the function hL 7→ Ĝ0 (hL) is con-
tinuous from R to R and (b) the function hL 7→ Ĝ0 (hL) is right-continuous from R to R. It is
clear that if the function hL 7→ Ĝ0 (hL) is continuous, then the threshold ĥ∗L is the solution of
the equation

P0

(
L+mα−1⋂
k=L

{
Ŝkk−L+1 < h∗L

})
= 1− α. (A.104)

In the following, we show that the thresholds h∗1, · · · , h∗L−1 → +∞ and ĥ∗L are the solution to the
optimization problem (A.103). Let us suppose that a set of thresholds h1, h2, · · · , hL satisfying
the constraint

F̂0 (h1, h2, · · · , hL) ≥ 1− α, (A.105)
defines any alternative solution of the optimization problem (A.103). The goal is to show that
P̂∗md (hL) ≥ P̂∗md

(
ĥ∗L

)
. It is worth noting that the function F̂0 (h1, h2, · · · , hL) is monotonically

non-decreasing w.r.t. each threshold h1, h2, · · · , hL. Hence, we get
F̂0 (+∞, · · · ,+∞, hL) ≥ F̂0 (h1, · · · , hL−1, hL) . (A.106)

Putting together (A.105) and (A.106), we obtain that

F̂0 (+∞, · · · ,+∞, hL) = P0

(
L+mα−1⋂
k=L

{
Ŝkk−L+1 < hL

})
≥ 1− α, (A.107)

leading to hL ≥ ĥ∗L since ĥ∗L is the minimum value in the class Kα. Moreover, the objective
function hL 7→ P̂∗md (hL) is monotonically non-decreasing. Therefore, P̂∗md (hL) ≥ P̂∗md

(
ĥ∗L

)
,

thus proving that h∗1, · · · , h∗L−1 → +∞ and h∗L = min {hL : hL ∈ Kα} are the optimal thresholds
which minimize the upper bound P̂∗md (hL) on the worst-case probability of missed detection
Pmd

(
T̂GLR;h1, h2, · · · , hL

)
of the VTWL GLR algorithm defined in (3.51).
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A.7.2 Proof of part 2

The VTWL GLR algorithm with optimal thresholds ĥ∗1, ĥ∗2, · · · , ĥ∗L can be described as

T̂ ∗GLR = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ŝki − ĥ∗k−i+1

)
≥ 0

}

= inf

k ≥ L :
k⋃

i=k−L+1

{
Ŝki ≥ ĥ∗k−i+1

}
= inf

{
k ≥ L : Ŝkk−L+1 ≥ ĥ∗L

}
, (A.108)

since the optimal thresholds ĥ∗1, · · · , ĥ∗L−1 → +∞. As a result, the optimized VTWL GLR test
T̂ ∗GLR is equivalent to the following simple FMA GLR test:

T̂FMA = inf
{
k ≥ L : Ŝkk−L+1 ≥ ĥ∗L

}
, (A.109)

where the threshold ĥ∗L is chosen for satisfying some levels of false alarms. The proof of Theo-
rem 3.4 is completed. �.

A.8 Proof of Theorem 4.1

The proof of Theorem 4.1 consists of three parts. Firstly, it is shown that the worst-case proba-
bility of false alarm Pfa (δFMA) of the FMA detection-isolation rule (4.31)–(4.32) corresponds to
the first time window [L;L+mα − 1]. In addition, the upper bound P̃fa (δFMA) for the worst-
case probability of false alarm Pfa (δFMA) is obtained. Secondly, it is proved that the worst-case
probability of false isolation Pfi (δFMA) corresponds to the first time window [L; 2L− 1] and
its upper bound P̃fi (δFMA) is derived. Finally, the upper bound P̃md (δFMA) for the worst-case
probability of missed detection Pmd (δFMA) is calculated analytically.

A.8.1 Proof of part 1

In this subsection, we show that the worst-case probability of false alarm Pfa (TFMA) of the FMA
detection-isolation rule (4.31)–(4.32) corresponds to the first time window [L;L+mα − 1]. The
FMA algorithm δFMA = (TFMA, νFMA) can be rewritten as follows:

TFMA = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
≥ 0

}
, (A.110)

νFMA = arg max
1≤l≤K

min
0≤j 6=l≤K

STFMA
TFMA−L+1 (l, j) . (A.111)

Let Ul0 = P0 (l0 ≤ TFMA < l0 +mα), for l0 ≥ L, be the probability of false alarm within the time
window [l0, l0 +mα − 1]. Our purpose is to show that {Ul0}l0≥L is a non-increasing sequence
w.r.t. the window position l0. Let also ul0 = P0 (TFMA = l0) be the probability of false alarm at
time instant l0. We will show in the following that {ul0}l0≥L is a non-increasing sequence w.r.t.
time instant l0, i.e., ul0+1 ≤ ul0 for all l0 ≥ L, in considering two scenarios: l0 = L and l0 > L.
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For l0 = L, we have

uL+1 = P0 (TFMA = L+ 1)

= P0

([
max

1≤l≤K
min

0≤j 6=l≤K

(
SL1 (l, j)− h

)
< 0

]⋂
=

[
max

1≤l≤K
min

0≤j 6=l≤K

(
SL+1

2 (l, j)− h
)
≥ 0

])

≤ P0

(
max

1≤l≤K
min

0≤j 6=l≤K

(
SL+1

2 (l, j)− h
)
≥ 0

)
. (A.112)

Similar to the detection problem, the random variables SL1 (l, j) and SL+1
2 (l, j), for any 1 ≤

l ≤ K and 0 ≤ j 6= l ≤ K, have the same distributions. Hence, replace the random variables
SL+1

2 (l, j) in (A.112) by the random variables SL1 (l, j), we obtain that

uL+1 ≤ P0

(
max

1≤l≤K
min

0≤j 6=l≤K

(
SL1 (l, j)− h

)
≥ 0

)
= uL. (A.113)

For l0 > L, we obtain by the same argument that

ul0+1 = P0 (TFMA = l0 + 1)

= P0

(
l0⋂
k=L

[
max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
< 0

]⋂
[

max
1≤l≤K

min
0≤j 6=l≤K

(
Sl0+1
l0−L+2 (l, j)− h

)
≥ 0

])

≤ P0

(
l0⋂

k=L+1

[
max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
< 0

]⋂
[

max
1≤l≤K

min
0≤j 6=l≤K

(
Sl0+1
l0−L+2 (l, j)− h

)
≥ 0

])

≤ P0

(
l0−1⋂
k=L

[
max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
< 0

]⋂
[

max
1≤l≤K

min
0≤j 6=l≤K

(
Sl0l0−L+1 (l, j)− h

)
≥ 0

])
= ul0 , (A.114)

where the last inequality comes from the fact that the random variables
SL1 (l, j) , · · · , Sl0l0−L+1 (l, j) and SL+1

2 (l, j) , · · · , Sl0+1
l0−L+2 (l, j) have the same distributions,

for any l0 ≥ L, 1 ≤ l ≤ K and 0 ≤ j 6= l ≤ K. From the above analysis, we have proved that
ul0 ≥ ul0+1 for all l0 ≥ L. Moreover, we have from the definition of Ul0 that

Ul0 − Ul0+1 = P0 (l0 ≤ TFMA < l0 +mα)− P0 (l0 + 1 ≤ TFMA < l0 +mα + 1)

=

l0+mα−1∑
k=l0

P0 (TFMA = k)

−
 l0+mα∑
k=l0+1

P0 (TFMA = k)


= ul0 − ul0+mα ≥ 0. (A.115)
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In other words, the worst-case probability of false alarm of the FMA test corresponds to the
first time window, i.e.,

Pfa (δFMA;mα) = P0 (L ≤ TFMA < L+mα) . (A.116)

Let us calculate now the upper bound on the worst-case probability of false alarm. It follows
from (A.116) that

Pfa (δFMA;mα;h) = P0 (L ≤ TFMA < L+mα)

= P0

(
L+mα−1⋃
k=L

{
max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
≥ 0

})

= 1− P0

(
L+ma−1⋂
k=L

{
max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
< 0

})

= 1− P0

(
L+ma−1⋂
k=L

K⋂
l=1

{
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
< 0

})

= 1− P0

L+ma−1⋂
k=L

K⋂
l=1

K⋃
j=0
j 6=l

{
Skk−L+1 (l, j) < h

}
≤ 1− P0

(
L+mα−1⋂
k=L

K⋂
l=1

{
Skk−L+1 (l, 0) < h

})
.

The worst-case probability of false alarm of the FMA detection rule is upper bounded as

Pfa (δFMA;mα;h) ≤ P̃fa (δFMA;mα;h) , 1− P0

(
L+mα−1⋂
k=L

K⋂
l=1

{
Skk−L+1 (l, 0) < h

})
,

where P̃fa (δFMA;mα;h) is the upper bound on the worst-case probability of false alarm
Pfa (δFMA;mα;h). This upper bound can be estimated by utilizing the numerical method intro-
duced in Proposition 3.1. The proof of part 1 is finished. �.

A.8.2 Proof of part 2

In the following, we show that the probability of false isolation of the FMA algorithm corresponds
to the first time window [L; 2L− 1] and its upper bound is obtained for the case of threshold
h ≥ 0. Let vlk0,k

= Plk0
(TFMA = k; νFMA 6= l) be the probability of false isolation at time instant

k under the probability measures P lk0
, for k0 ≤ k ≤ k0 + L− 1 and 1 ≤ l ≤ K. We show in the

following that vlk0+1,k+1 ≤ vlk0,k
, for all L ≤ k0 ≤ k ≤ k0 + L− 1 and 1 ≤ l ≤ K, in considering

two scenarios: k = k0 = L and L ≤ k0 < k ≤ k0 + L− 1. In the first scenario, i.e., k = k0 = L,
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it is clear that

vlL+1,L+1 = PlL
({

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

(
SL1

(
l̃, j̃
)
− h

)
< 0

}
︸ ︷︷ ︸

non-detection at time instant k=L

⋂
{

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

(
SL+1

2

(
l̃, j̃
)
− h

)
≥ 0

}
︸ ︷︷ ︸

detection at time instant k=L+1

⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
SL+1

2

(
l̃, j̃
)
6= l

}
︸ ︷︷ ︸

false isolation at time instant k=L+1

)

≤ PlL

({
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K

(
SL+1

2

(
l̃, j̃
)
− h

)
≥ 0

}⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
SL+1

2

(
l̃, j̃
)
6= l

})
·

It can be seen that the random variables SL1
(
l̃, j̃
)
, · · · , SLL

(
l̃, j̃
)
under the probability measure

P lL have the same distributions as the random variables SL+1
2

(
l̃, j̃
)
, · · · , SL+1

L+1

(
l̃, j̃
)
under the

probability measure P lL+1, for all 1 ≤ l ≤ K, 1 ≤ l̃ 6= l ≤ K and 0 ≤ j̃ 6= l̃ ≤ K. Then,
by substituting the random variables SL+1

2

(
l̃, j̃
)
, · · · , SL+1

L+1

(
l̃, j̃
)
under P lL+1 by the random

variables SL1
(
l̃, j̃
)
, · · · , SLL

(
l̃, j̃
)
under P lL, we obtain

vlL+1,L+1 ≤ PlL

({
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
SL1

(
l̃, j̃
)
≥ h

}⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
SL1

(
l̃, j̃
)
6= l

})
= vlL,L.

In the second scenario, i.e., L ≤ k0 < k ≤ k0 + L− 1, we obtain by the same argument that

vlk0+1,k+1 = Plk0+1 (TFMA = k + 1; νFMA 6= l)

= Plk0+1

(
k⋂

k̃=L

{
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk̃
k̃−L+1

(
l̃, j̃
)
< h

}
︸ ︷︷ ︸

non-detection until time instant k

⋂
{

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

Sk+1
k−L+2

(
l̃, j̃
)
≥ h

}
︸ ︷︷ ︸

detection at time instant k+1

⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk+1
k−L+2

(
l̃, j̃
)
6= l

}
︸ ︷︷ ︸

false isolation at time instant k+1

)

≤ Plk0+1

(
k⋂

k̃=L+1

{
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk̃
k̃−L+1

(
l̃, j̃
)
< h

}⋂
{

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

Sk+1
k−L+2

(
l̃, j̃
)
≥ h

}⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk+1
k−L+2

(
l̃, j̃
)
6= l

})

≤ Plk0

(
k−1⋂
k̃=L

{
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk̃
k̃−L+1

(
l̃, j̃
)
< h

}⋂
{

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

Skk−L+1

(
l̃, j̃
)
≥ h

}⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
6= l

})
≤ Plk0 (TFMA = k; νFMA 6= l) = vlk0,k. (A.117)

Secondly, we show that the probability of false isolation of the FMA test corresponds to the first
time window [L; 2L− 1]. Let V l

k0
= Plk0

(k0 ≤ TFMA ≤ k0 + L− 1; νFMA 6= l) be the probability
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of false isolation of type l under the probability measure P lk0
, for 1 ≤ l ≤ K. Then,

V l
k0 − V

l
k0+1 =

k0+L−1∑
k=k0

Plk0 (TFMA = k; νFMA 6= l)

−
 k0+L∑
k=k0+1

Plk0+1 (TFMA = k; νFMA 6= l)


=

k0+L−1∑
k=k0

[
Plk0 (TFMA = k; νFMA 6= l)− Plk0+1 (TFMA = k + 1; νFMA 6= l)

]

=
k0+L−1∑
k=k0

[
vlk0,k − v

l
k0+1,k+1

]
≥ 0. (A.118)

Consequently,
{
V l
k0

}
k0≥L

is a non-increasing sequence w.r.t. the change-point k0, leading to

Pfi (δFMA;L;h) = max
1≤l≤K

V l
L = max

1≤l≤K
PlL (L ≤ TFMA < 2L; νFMA 6= l) . (A.119)

In the following, we obtain the upper bound for the worst-case probability of false isolation given
in (A.119) for the case of threshold h ≥ 0. Seeking for simplicity, let us define following event

Ak1 ,
k−1⋂
k̃=L

{
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Sk̃
k̃−L+1

(
l̃, j̃
)
< h

}
,

Ak2 ,

{
max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
≥ h

}
,

Ak3 ,

{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
6= l

}
,

where the event Ak1 corresponds to the non-detection until time instant k − 1, the event Ak2
denotes the detection at time instant k and the event Ak3 stands for the false isolation at time
instant k.

By assuming that PlL
(
AL1

)
= 1, the probability of false isolation of type l can be rewritten as

V l
L = PlL

(2L−1⋃
k=L

{
Ak1 ∩Ak2 ∩Ak3

})
≤ PlL

(2L−1⋃
k=L

{
Ak2 ∩Ak3

})
. (A.120)

Let us consider the event
{
Ak2 ∩Ak3

}
. It is clear that

Ak2 ∩Ak3 =
{

max
1≤l̃≤K

min
0≤j̃ 6=l̃≤K

Skk−L+1

(
l̃, j̃
)
≥ h

}⋂{
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
6= l

}

=
{[

max
1≤l̃ 6=l≤K

min
0≤j̃ 6=l̃≤K

Skk−L+1

(
l̃, j̃
)
≥ h

]⋂[
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
6= l

]}
︸ ︷︷ ︸

B1

⋃

=
{[

min
0≤j̃ 6=l≤K

Skk−L+1

(
l, j̃
)
≥ h

]⋂[
arg max

1≤l̃≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
6= l

]}
︸ ︷︷ ︸

B2

· (A.121)
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Consider now the event B1. Let us assume that there exists an index j, for 1 ≤ j 6= l ≤ K,
satisfying min0≤j̃ 6=j≤K S

k
k−L+1

(
j, j̃
)
≥ h. In other words, Skk−L+1

(
j, j̃
)
≥ h for all 0 ≤ j̃ 6= j ≤

K, leading to Skk−L+1 (j, l) ≥ h. For threshold h ≥ 0, we obtain that Skk−L+1 (l, j) ≤ 0, leading
to the fact that arg max1≤l̃≤K min0≤j̃ 6=l̃≤K S

k
k−L+1

(
l̃, j̃
)
6= l. In other words, the event B1 is

reduced to

B1 =
{

max
1≤l̃ 6=l≤K

min
0≤j̃ 6=l̃≤K

Skk−L+1

(
l̃, j̃
)
≥ h

}
.

Consider now the event B2. Let us assume that min0≤j̃ 6=l≤K S
k
k−L+1

(
l, j̃
)
≥ h. Then,

Skk−L+1

(
j̃, l
)
≤ 0 for 0 ≤ j̃ 6= l ≤ K since h ≥ 0, leading to min0≤j̃ 6=l̃≤K S

k
k−L+1

(
l̃, j̃
)
≤ 0

for all 1 ≤ l̃ 6= l ≤ K. As a result, we obtain that arg max1≤l̃≤K min0≤j̃ 6=l̃≤K S
k
k−L+1

(
l̃, j̃
)

= l

and that B2 = ∅.

The event
{
Ak2 ∩Ak3

}
is then reduced to

Ak2 ∩Ak3 =
{

max
1≤l̃ 6=l≤K

min
0≤j̃ 6=l̃≤K

Skk−L+1

(
l̃, j̃
)
≥ h

}
, ∀L ≤ k ≤ 2L− 1, (A.122)

and the probability of false isolation of the type l is upper bounded as

V l
L ≤ PlL

(2L−1⋃
k=L

{
max

1≤l̃ 6=l≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
≥ h

})

≤ 1− PlL

(2L−1⋂
k=L

{
max

1≤l̃ 6=l≤K
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
< h

})

≤ 1− PlL

2L−1⋂
k=L

K⋂
l̃=1
l̃ 6=l

{
min

0≤j̃ 6=l̃≤K
Skk−L+1

(
l̃, j̃
)
< h

}

≤ 1− PlL

2L−1⋂
k=L

K⋂
l̃=1
l̃ 6=l

K⋃
j̃=0
j̃ 6=l̃

{
Skk−L+1

(
l̃, j̃
)
< h

}

≤ 1− max
0≤j̃≤K

PlL

2L−1⋂
k=L

K⋂
l̃=1
l̃ 6=j̃,l

{
Skk−L+1

(
l̃, j̃
)
< h

} · (A.123)

In other words, the worst-case probability of false isolation is upper bounded by

Pfi (δFMA;L;h) ≤ P̃fi (δFMA;L;h) , max
1≤l≤K

1− max
0≤j̃≤K

PlL

2L−1⋂
k=L

K⋂
l̃=1
l̃6=j̃,l

{
Skk−L+1

(
l̃, j̃
)
< h

}
 .

(A.124)
The upper bound P̃fi (δFMA;L;h) can be evaluated numerically by exploiting the numerical
method suggested in Proposition 3.1. The proof of part 2 is finished. �.

218



A.8. Proof of Theorem 4.1

A.8.3 Proof of part 3

The worst-case probability of missed detection is described as

Pmd (δFMA;L) = sup
k0≥L

max
1≤l≤K

Plk0 (TFMA ≥ k0 + L|TFMA ≥ k0)

= sup
k0≥L

max
1≤l≤K

Plk0
(TFMA ≥ k0 + L)

Plk0
(TFMA ≥ k0)

. (A.125)

For k0 > L, we have

Plk0 (TFMA ≥ k0 + L) = Plk0

k0+L−1⋂
k=L

[
max

1≤l̃≤K
min

0≤j 6=l̃≤K

(
Skk−L+1

(
l̃, j
)
− h

)
< 0

] ,
Plk0 (TFMA ≥ k0) = Plk0

k0−1⋂
k=L

[
max

1≤l̃≤K
min

0≤j 6=l̃≤K

(
Skk−L+1

(
l̃, j
)
− h

)
< 0

] .
Let us define the events A1, A2 and A3 as follows:

A1 =
k0−1⋂
k=L

[
max

1≤l̃≤K
min

0≤j 6=l̃≤K

(
Skk−L+1

(
l̃, j
)
− h

)
< 0

]
,

A2 =
k0+L−2⋂
k=k0

[
max

1≤l̃≤K
min

0≤j 6=l̃≤K

(
Skk−L+1

(
l̃, j
)
− h

)
< 0

]
,

A3 =
[

max
1≤l̃≤K

min
0≤j 6=l̃≤K

(
Sk0+L−1
k0

(
l̃, j
)
− h

)
< 0

]
.

It is worth noting that the event A1 depends on the random vectors ξL1 , · · · , ξk0−1
k0−L, the event

A2 depends on the random vectors ξk0
k0−L+1, · · · , ξ

k0+L−2
k0−1 , and the event A3 depends on the

random vector ξk0+L−1
k0

. Moreover, there is no common element between the random vectors
ξL1 , · · · , ξ

k0−1
k0−L and the random vector ξk0+L−1

k0
. Therefore, the events A1 and A3 are independent,

leading to

Plk0 (TFMA ≥ k0 + L|TFMA ≥ k0) =
Plk0

(A1 ∩A2 ∩A3)
Plk0

(A1)

≤
Plk0

(A1 ∩A3)
Plk0

(A1)
=

Plk0
(A1) · Plk0

(A3)
Plk0

(A1)
= Plk0 (A3) . (A.126)

For k0 = L, we have

Plk0 (TFMA ≥ k0 + L|TFMA ≥ k0) = Plk0 (TFMA ≥ k0 + L) = Plk0 (A2 ∩A3) ≤ Plk0 (A3) . (A.127)
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Then, by replacing the event A3 by its definition, we obtain that

Plk0 (TFMA ≥ k0 + L|TFMA ≥ k0) ≤ Plk0

(
max

1≤l̃≤K
min

0≤j 6=l̃≤K

(
Sk0+L−1
k0

(
l̃, j
)
− h

)
< 0

)

≤ Plk0

 K⋂
l̃=1

[
min

0≤j 6=l̃≤K

(
Sk0+L−1
k0

(
l̃, j
)
− h

)
< 0

]
≤ Plk0

(
min

0≤j 6=l≤K

(
Sk0+L−1
k0

(l, j)− h
)
< 0

)

≤ Plk0

 K⋃
j=0
j 6=l

{
Sk0+L−1
k0

(l, j) < h
}

≤
K∑
j=0
j 6=l

Plk0

(
Sk0+L−1
k0

(l, j) < h
)

(A.128)

≤
K∑
j=0
j 6=l

Pl1
(
SL1 (l, j) < h

)
, (A.129)

Moreover, under the probability measure P l1, the LLR SL1 (l, j) ∼ N
(
µSL1 (l,j), σ

2
SL1 (l,j)

)
, where

the mean µSL1 (l,j) and the variance σ2
SL1 (l,j) are calculated as follows:

µSL1 (l,j) = 1
2
[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
, (A.130)

σ2
SL1 (l,j) =

[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
. (A.131)

Finally, the worst-case probability of missed detection is upper bounded by

Pmd (δFMA;L;h) ≤ P̃md (δFMA;L;h) , max
1≤l≤K

K∑
j=0
j 6=l

Φ
(
h− µSL1 (l,j)

σSL1 (l,j)

)
, (A.132)

where P̃md (δFMA;L;h) is the upper bound on the worst-case probability of missed detection
Pmd (δFMA;L;h). It can be seen that the upper bound P̃md (δFMA;L;h) can be computed ana-
lytically. The proof of part 3 is finished. �.
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B.1 Introduction

Le système de contrôle et d’acquisition de données (Supervisory Control And Data Acquisition -
SCADA) est un système de télégestion à grande échelle permettant de traiter en temps réel un
grand nombre de télémesures et de contrôler à distance des installations techniques. Les systèmes
SCADA sont utilisés dans de nombreux secteurs tels que les systèmes de transports, les réseaux
de télécommunications, les réseaux électriques, ou les réseaux de distribution de gaz et d’eau.
À cause de leur architecture distribuée, les systèmes SCADA sont de plus en plus vulnérables
aux cyber-attaques, non seulement au niveau de leurs infrastructures physiques, mais aussi au
niveau de leurs réseaux de communication et de leur centre de contrôle. Ayant pénétrés dans un
système SCADA, les attaquants peuvent effectuer des activités malveillantes leur permettant
de contrôler, au moins partiellement, les processus physiques supervisés. Il est donc nécessaire
de mettre en oeuvre des algorithmes de surveillance pour protéger les infrastructures critiques
contre des dégâts, des pertes économiques, ou même des pertes humaines.

B.1.1 Sécurité du système SCADA contre les cyber-attaques

L’architecture typique d’un système SCADA se compose de trois couches principales : la couche
de contrôle et de surveillance, la couche de contrôle automatique et la couche physique. La
première couche est responsable de contrôler et de surveiller le fonctionnement d’un système
SCADA en recueillant des données à partir des appareils de terrain, en effectuant des tâches
de surveillance, et en transmettant des commandes de contrôle aux contrôleurs de terrain. La
deuxième couche est responsable de réguler le fonctionnement des processus physiques en se
basant sur des commandes de contrôle envoyées à partir du centre de contrôle, sur des algorithmes
de contrôle, et sur des mesures de capteurs. Finalement, les processus physiques sont équipés
d’actionneurs (e.g., des moteurs, des pompes, des vannes), de capteurs (e.g., des capteurs de
pression, des capteurs de débit, des capteurs de niveau), et d’autres éléments de protection (e.g.,
des disjoncteurs, des relais) pour réaliser des procédés technologiques. L’échange de données
parmi les composantes du système est réalisé par l’intermédiaire du réseau de communication.

Les systèmes industriels modernes sont devenus vulnérables aux cyber-attaques en raison de
l’évolution des technologies d’information et de communication. Plusieurs vulnérabilités d’un
système SCADA peuvent être trouvées dans [53]. En exploitant ces vulnérabilités, les attaquants
peuvent lancer des actes malveillants sur plusieurs points faibles du système SCADA. Les points
d’attaque potentiels peuvent être classifiés en trois catégories [7] : des attaques sur le centre de
contrôle, des attaques sur le réseau de communication et des attaques sur les processus physiques.
Au cours de ces dernières années, il y a eu de nombreux incidents cyber-physiques survenus dans
des infrastructures à sécurité critique telles que la rupture d’eau à Maroochy (2000) [168], l’arrêt
d’une centrale nucléaire (2008) [97], le malware Stuxnet (2010) [20], ou la violation d’un site de
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traitement d’eau (2011) [213]. Pour ces raisons, une plus grande attention devrait être accordée
à la résilience des systèmes SCADA contre des actes malveillants.

B.1.2 Méthodes de détection et de localisation

De nombreux travaux s’intéressent à l’étude de la sécurité des systèmes SCADA contre des cyber-
attaques. Les approches considérées peuvent être classifiées en trois catégories principales [99] :
l’approche basée sur la sécurité de l’information, l’approche basée sur la théorie du contrôle
sécurisé, et l’approche basée sur la détection et la localisation de défauts. Les méthodes de
sécurité de l’information se concentrent principalement sur l’authentification, le contrôle d’accès
ou l’intégrité des messages pour assurer la transmission sécurisée de données (e.g., signaux
de commande, signaux de contrôle, ou mesures de capteurs) parmi les composantes du réseau.
Plusieurs méthodes ont été proposées dans [98] afin d’améliorer la sécurité des systèmes SCADA.
Ces méthodes consistent à concevoir des pare-feus spécifiques entre les réseaux de processus et les
réseaux d’entreprise, à utiliser des zones démilitarisées pour isoler les réseaux de processus et les
réseaux d’entreprise, et à développer des réseaux privés virtuels pour transmettre des données sur
des réseaux publics. Cependant, les techniques basées sur la sécurité de l’information semblent
insuffisante pour la défense en profondeur des systèmes SCADA [25, 26, 28], notamment contre
des attaques internes ciblant la dynamique du système [141].

L’approche de la théorie du contrôle sécurisé, de l’autre côté, est consacrée principalement à
l’étude de la la sécurité des systèmes de contrôle en réseau contre plusieurs types d’attaques. Plus
précisément, ces méthodes consistent à examiner des vulnérabilités des systèmes de contrôle en
réseau, à concevoir des attaques furtives qui peuvent partiellement ou complètement contourner
des détecteurs d’anomalies traditionnels, et à proposer des contre-mesures pour révéler de telles
attaques. Les cyber-attaques sur les systèmes SCADA peuvent être classifiées en deux catégories
principales [99,141] : l’attaque par déni de service (DoS) et l’attaque sur l’intégrité des données.
Les attaques DoS visent à perturber temporairement ou indéfiniment l’échange de données parmi
les composantes du réseau, par exemple, par le brouillage des canaux de communication ou des
protocoles de routage [99]. Les attaques d’intégrité, d’autre part, visent à modifier l’intégrité des
paquets de données (signaux de commande, signaux de contrôle ou mesures de capteurs). Elles
sont effectuées en modifiant le comportement des actionneurs et des capteurs ou en pénétrant aux
réseaux de communication entre la couche physique et le centre de contrôle [141]. Les stratégies
d’attaque d’intégrité peuvent être divisées encore en deux sous-catégories : l’attaque d’intégrité
simple et l’attaque d’intégrité furtive. Les attaques d’intégrité simples [80] peuvent être conçues
sans connaissance sur le modèle du système. Au contraire, les attaques d’intégrité furtives exigent
la connaissance sur le modèle du système et les capacités de perturbation pour contourner des
algorithmes de détection classiques. Quelques exemples d’attaques d’intégrité furtives sont la
stratégie de rediffusion de données [120], la stratégie d’injection de fausses données [121], la
stratégie d’attaque zéro-dynamique [186], et la stratégie d’attaque secrète [169].

Il a été montré que la détection et l’identification d’attaques sont étroitement liées au problème
de détection et de localisation de défauts (FDI) [30, 35]. Pour cette raison, les techniques de
FDI ont été utilisées pour détecter et identifier des cyber-attaques sur les systèmes SCADA.
Par exemple, les auteurs de [27] ont formulé le problème de détection des cyber-attaques sur
les systèmes de contrôle de procédé comme un problème de diagnostic de défauts. L’algorithme
de la Somme Cumulée (CUSUM) non-paramétrique a été utilisé pour détecter les attaques. En
outre, la sécurité des systèmes d’irrigation d’eau a été considérée dans [6,7]. Dans ce travail, les
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auteurs ont démontré que le problème de détection et de localisation de cyber-attaques pourrait
être résolu en utilisant une banque d’observateurs d’entrées inconnus [30]. De plus, un traitement
global du problème de détection et d’identification d’attaques sur les systèmes cyber-physiques a
été donné dans [140,141]. Le modèle d’espace d’état est utilisé pour décrire les systèmes SCADA
et les cyber-attaques sont modélisées par des changements additifs de l’équation d’états ainsi
que l’équation de mesures. Plusieurs algorithmes centralisés et distribués sont proposés pour
détecter et localiser les attaques. Cependant, les travaux mentionnés ont été formulés dans le
carde déterministe (sans bruit aléatoire).

La première tâche d’un problème de FDI consiste à déterminer un ensemble d’équations ma-
thématiques qui régissent le système. Le modèle paramétrique du système en régime nominal
ainsi qu’en régime anormal est extrêmement important lors de la conception des algorithmes
de diagnostic. La deuxième tâche consiste à proposer des algorithmes de détection et de locali-
sation en s’appuyant sur les modèles développés. La conception des algorithmes de diagnostic
est, généralement, résolue par l’approche des redondances analytiques qui se compose de deux
étapes : la génération de résidus et l’évaluation de résidus. Les résidus sont d’abord générés en
exploitant des techniques développées par la communauté de diagnostic de défauts (e.g., le filtre
de Kalman ou l’espace de parité) et ils sont ensuite évalués en utilisant des méthodes introduites
dans la théorie de la décision statistique (e.g., des tests non-séquentiels, des tests séquentiels, la
détection séquentielle de changements brusques) [10,30,35,54,81,206].

Cette thèse se concentre sur la surveillance des systèmes SCADA contre des cyber-attaques.
Il est donc nécessaire de proposer des algorithmes de surveillance qui sont capable de détecter
et de localiser des actes malveillantes en temps réel. En outre, la conception des algorithmes
de surveillance devrait être prise en compte des états inconnus (les paramètres de nuisance)
ainsi que des bruits stochastiques. Afin d’éliminer l’impact négatif des paramètres de nuisance
pendant la la prise de décision, nous utilisons dans cette thèse l’approche du filtre de Kalman
en régime permanent et l’approche par projection dans l’espace de parité de taille fixe. Les
résidus générés par les techniques mentionnées contiennent toujours des bruits aléatoires. Donc,
ils doivent être évalués en utilisant les résultats de la théorie de la détection séquentielle de
changements brusques (ou « ruptures ») [10,175].

La théorie de la détection séquentielle de changements brusques s’intéresse à la détection d’un
changement (ou rupture) dans une séquence d’observations qui contiennent des transitions ra-
pides et éventuellement d’identifier le type de ces transitions. Pour le problème classique, la
période après le changement est supposée être infiniment longue (voir [105] et aussi [147, 175]
pour plus de détails). Le problème de détection (pure) de changements brusques entre deux
lois de probabilité (une hypothèse de base et une hypothèse concurrente) consiste à calculer
l’instant d’arrêt T auquel la présence de la rupture est déclarée. Cet instant de changement doit
respecter certains critères d’optimalité. Par exemple, le retard moyen de détection devrait être
aussi faible que possible pour une valeur donnée de fausses alarmes. Plusieurs algorithmes opti-
maux par rapport à différents critères d’optimalité dans le cadre de l’approche non-bayésienne
(où l’instant de rupture est inconnu mais non-aléatoire) sont introduits dans [103,113,146]. Les
résultats essentiels dans le cadre de l’approche bayésienne (où l’instant de rupture est inconnu
et aléatoire) peuvent être trouvés dans [142,158,166,177].

Le problème d’identification (détection-localisation) de changements brusques dans un système
stochastique est la généralisation du problème de détection de rupture pour des hypothèses
multiples (une hypothèse de base et plusieurs hypothèses concurrentes). Le problème consiste à
calculer un couple (T, ν), où T est l’instant d’arrêt auquel la décision finale ν est décidée. Les
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critères d’optimalité devraient favoriser la rapidité de détection et de localisation avec des taux
acceptables de fausses alarmes et de fausses localisations. Plusieurs procédures de détection-
localisation asymptotiquement optimales par rapport aux différents critères d’optimalité (pour
l’approche non-bayésienne ainsi que l’approche bayésienne) ont été proposées dans [104, 128–
130,132,138,175].

Malheureusement, les critères d’optimalité classiques ne sont pas appropriés au problème de
détection et de localisation d’attaques dans des systèmes SCADA à cause des raisons suivantes.
Tout d’abord, l’adversaire préfère effectuer ses actes malveillants pendant une période finie en
raison de ses ressources limitées [6,7,25,80]. De telles attaques entraînent des changements tran-
sitoires (c-à-d des signaux de durée finie) dans le système attaqué. En outre, pour les systèmes
à sécurité critique, il convient de détecter et de localiser les attaques avec un retard inférieur
à une constante fixée a priori [9, 67, 69, 70]. Donc, il est pertinent de considérer le problème de
surveillance des systèmes SCADA contre des actes malveillants comme un problème de détection
et de localisation de changements transitoires dans des systèmes stochastiques et dynamiques.
Dans cette thèse, nous utilisons le modèle d’espace d’état à temps discret pour décrire les sys-
tèmes SCADA. Les bruits gaussiens sont ajoutés à l’équation d’état ainsi qu’à l’équation de
mesure afin de modéliser, respectivement, l’incertitude des processus et l’imprécision des ap-
pareils de mesure. Les attaques sont modélisées par des signaux additifs de durée finie dans
les deux équations. Le problème consiste à détecter l’instant inconnu où surviennent les actes
malveillants, et éventuellement à déterminer le type d’attaque en présence des états inconnus
(souvent considérés comme des paramètres de nuisance) et des bruits stochastiques.

Le problème de détection de changements transitoires dans un système stochastique avec des me-
sures indépendantes a été considéré dans [67–70]. Le critère d’optimalité vise à minimiser la pire
probabilité de détection manquée sous la contrainte que la pire probabilité de fausse alarme pour
une fenêtre de taille donnée est inférieure à une valeur prescrite. Un algorithme sous-optimal
par rapport au critère d’optimalité a été proposé pour le cas d’observations gaussiennes indé-
pendantes. L’idée est la suivante. Tout d’abord, un algorithme de la Somme Cumulée à Fenêtre
Limitée des Seuils Variables (VTWL CUSUM) a été considéré pour détecter des changements
transitoires. Les bornes supérieures pour la pire probabilité de détection manqué ainsi que pour
la pire probabilité de fausse alarme pour une fenêtre de taille donnée ont été calculées. Par la
suite, le problème d’optimisation a été formulé comme un choix optimal, basé sur une fonction
de détection et des seuils variables, visant à minimiser la borne supérieure pour la pire proba-
bilité de détection manquée sous la contrainte que la borne supérieure pour la pire probabilité
de fausse alarme soit inférieure à une valeur prescrite. Le choix optimal des seuils conduit au
test de la Moyenne Glissante Finie (Finite Moving Average ou FMA). À notre connaissance, le
problème de détection-localisation conjointe de changements transitoires n’est pas encore abordé
dans la littérature.

B.1.3 Contribution et organisation

L’objectif finale de cette thèse est de proposer des algorithmes de détection et de localisation d’at-
taques cyber-physiques dans des systèmes industriels SCADA. À partir des analyses ci-dessus,
il convient d’étudier la surveillance en-ligne des infrastructures à sécurité critique par le biais
de la détection et la localisation de changements transitoires dans des systèmes stochastiques et
dynamiques. En suivant l’approche par redondance analytique classique, le problème est résolu
en deux étapes : la génération de résidus et l’évaluation de résidus. Les résidus sont tout d’abord
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générés en utilisant deux méthodes conventionnelles : le filtre de Kalman en régime permanent
et la projection sur l’espace de parité de taille fixe. Ils sont ensuite évalués en exploitant des
techniques de surveillance des systèmes stochastiques afin de détecter l’instant d’attaque, et
éventuellement de classifier le type d’attaque (ou scénario d’attaque). Cette thèse se concentre
particulièrement sur l’évaluation de résidus.
Pour le problème de détection, nous généralisons les travaux initiés par Guépié [67–70] à la détec-
tion des signaux additifs de durée finie au modèle d’espace d’état en présence d’états inconnus et
de bruits stochastiques. Le critère d’optimalité pour la détection de changements transitoires, qui
a été proposé par Guépié [67–70], est utilisé dans cette thèse afin d’évaluer les performances sta-
tistiques des algorithmes de détection. Il est à noter que les résultats obtenus par Guépié [67–70]
dépendent fortement du concept des variables associées [46, 110] qui permet d’établir la borne
supérieure de la pire probabilité de fausse alarme. Malheureusement, les résidus générés par
les deux méthodes mentionnées ne permettent pas d’utiliser cette propriété. Pour cette raison,
nous formulons dans cette thèse le problème d’optimisation d’une manière légèrement différent
que celle proposée par Guépié [67–70]. La contribution au problème de détection se décompose
comme suit :

• Le développement d’un modèle statistique unifié de résidus. Les modèles statistiques de
résidus générés par l’approche du filtre de Kalman en régime permanent et par la projection
sur l’espace de parité de taille fixe sont calculés. Plus particulièrement, nous intégrons les
deux modèles statistiques dans un modèle statistique unifié des résidus.

• La formulation et la solution du problème d’optimisation. D’abord, l’algorithme de la
Somme Cumulée à Fenêtre Limitée des Seuils Variables (VTWL CUSUM) est considéré
pour détecter des changements transitoires dans une séquence des résidus en s’appuyant
sur le modèle statistique unifié. De façon similaire aux travaux de Guépié [67–70], nous
calculons une borne supérieure pour la pire probabilité de détection manquée du test
VTWL CUSUM. Ensuite, le problème d’optimisation est formulé comme le choix optimal
des seuils variables dans la classe des tests VTWL CUSUM. Au contraire des travaux de
Guépié [67–70], nous proposons dans cette thèse de minimiser la borne supérieure pour la
pire probabilité de détection manquée sous la contrainte que la pire probabilité de fausse
alarme pour une fenêtre de taille donnée soit inférieure à une valeur prescrite. Finalement,
nous démontrons que l’algorithme VTWL CUSUM optimisé est équivalent à la règle de
décision de la Moyenne Glissante Finie (FMA).

• Le calcul numérique des probabilités d’erreurs. Une méthode numérique est proposée afin
d’estimer la probabilité de fausse alarme et la probabilité de détection manqué du test FMA
et du test VTWL CUSUM. Cette méthode numérique est plus efficace que l’approche de
Monte Carlo conventionnelle en terme de temps de calcul.

• L’analyse de sensibilité du test FMA. En utilisant le méthode numérique mentionnée,
nous effectuons l’analyse de robustesse du test FMA par rapport à plusieurs paramètres
opérationnels, e.g., la durée d’attaque, les profils d’attaque, les covariances des bruits de
processus et des bruits de capteurs.

• L’extension au scénario où les profils de changements transitoires sont partiellement
connus. En supposant que la « forme » des profils est parfaitement connue mais leur « am-
plitude » est inconnue, l’approche du rapport de vraisemblance généralisé (GLR) et l’ap-
proche de rapport de vraisemblance pondéré (WLR) sont considérées. Le test VTWL GLR
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et le test VTWL WLR sont proposés. Le problème d’optimisation est établi et résolu. Il est
montré que le test VTWL GLR optimisé et le test VTWL WLR optimisé correspondent
au test FMA GLR et au test FMA WLR, respectivement.

Le problème de localisation est beaucoup plus difficile que le problème de détection. Pour cette
raison, peu de résultats théoriques sont obtenus. La contribution de cette partie se décompose
comme suit :

• Premièrement, le modèle statistique unifié des résidus générés par les deux méthodes sus-
mentionnées est généralisé à la détection-localisation conjointe de changements transitoires
au modèle d’espace d’état à temps discret.

• Deuxièmement, un nouveau critère d’optimalité pour la détection-localisation conjointe
de changements transitoires est introduit. Le critère vise à minimiser la pire probabilité
de détection manquée soumis à des niveaux acceptables pour la pire probabilité de fausse
alarme dans une fenêtre de taille donnée et pour la pire probabilité de fausse localisation
pendant la fenêtre de changements transitoires.

• Troisièmement, plusieurs algorithmes de détection-localisation conjointe de changements
brusques, e.g., le test WL CUSUM généralisé, le test WL CUSUM par matrice et le test WL
CUSUM par vecteur, sont considérés pour détecter et localiser des changements transitoires
en s’appuyant sur le modèle statistique unifié des résidus. Notamment, la règle de détection-
localisation FMA est proposée.

• Finalement, nous calculons des bornes supérieures pour les pires probabilités d’erreurs,
c-à-d pour la pire probabilité de détection manquée, pour la pire probabilité de fausse
alarme et pour la pire probabilité de fausse localisation.

Ce résumé est organisé comme suit. La formulation du problème est donnée dans section B.2. La
génération de résidus par l’approche de filtre de Kalman et par l’approche d’espace de parité est
présentée dans la section B.3. Notamment, le modèle statistique unifié des résidus générés par les
deux méthodes est développé. En s’appuyant sur ce modèle, nous proposons dans la section B.4
et la section B.5, respectivement, les algorithmes de détection de signaux transitoires exacte-
ment connus ou partiellement connus. La conception des algorithmes de détection-localisation
conjointe est considérée dans section B.6. Dans la section B.7, nous appliquons les algorithmes
de détection et de localisation à la surveillance d’un réseau de distribution d’eau potable. Fina-
lement, quelques conclusions et perspectives sont données dans la section B.8.

B.2 Formulation du problème

Dans cette section, nous formulons la détection d’attaques aux systèmes SCADA comme un pro-
blème de détection de changements transitoires dans des systèmes stochastiques et dynamiques.

B.2.1 Modèles du système et des attaques cyber-physiques

Le modèle d’espace d’état à temps discret est utilisé pour décrire des systèmes industriels atta-
qués : {

xk+1 = Axk +Buk + Fdk +Kaxk + wk

yk = Cxk +Duk +Gdk +Haxk +Mayk + vk
; x1 = x1, (B.1)
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où xk ∈ Rn est le vecteur d’états, uk ∈ Rm est le vecteur de signaux de contrôle, dk ∈ Rq est le
vecteur de perturbations, yk ∈ Rp est le vecteur de mesures, axk ∈ Rr est le vecteur d’attaque sur
les états, ayk ∈ Rp est le vecteur d’attaque sur les mesures de capteurs, wk ∈ Rn est le vecteur
de bruits de processus, vk ∈ Rp est le vecteur de bruits de capteurs ; les matrices A ∈ Rn×n,
B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, G ∈ Rp×q, K ∈ Rn×r, H ∈ Rp×r et M ∈ Rp×p
sont connues. Les vecteurs wk et vk sont des vecteurs gaussiens indépendants et identiquement
distribués, c-à-d E

[
wkw

T
l

]
= Qδkl, E

[
vkv

T
l

]
= Rδkl et E

[
wkv

T
l

]
= 0, où δkl = 1 si k = l et

δkl = 0 autrement, les matrices Q ∈ Rn×n et R ∈ Rp×p sont connues et R est définie-positive.

Remarque B.1. Les attaquants peuvent construire les vecteurs d’attaque axk et ayk pour réaliser
leur objectif malveillant. Il a été démontré que les vecteurs d’attaque axk et ayk pourraient être
coordonnés pour perturber le système tout en contournant les détecteurs d’anomalies traditionnels
[141]. Ces attaques furtives peuvent être conçues par la stratégie de rediffusion de données [120],
par la stratégie d’injection de fausses données [121], par la stratégie d’attaque zéro-dynamique
[186], ou par la stratégie d’attaque secrète [169]. L’analyse de sécurité du système est requise
pour révéler ces attaques furtives (voir, par exemple, [121], [186] ou [99]). Pour cette raison,
nous considérons dans ce manuscrit seulement des attaques détectables.

B.2.2 Modèle des changements transitoires

Pour simplifier les notations, le vecteur d’attaque sur les états axk et le vecteur d’attaque sur
les capteurs ayk sont regroupés dans un seul vecteur d’attaque ak =

[
(axk)T ,

(
ayk
)T ]T ∈ Rs, où

s = r+p. Posons Ba = [K, 0] ∈ Rn×s et Da = [H,M ] ∈ Rp×s. Donc, le modèle (B.1) est simplifié
par : {

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x1 = x1, (B.2)

où les matrices d’attaque Ba etDa dépendent de l’architecture du système et le vecteur d’attaque
ak est conçu par l’attaquant pour réaliser son objectif malveillant. Supposons que les attaques
cyber-physiques sont effectuées pendant une période finie τa = [k0, k0 + L− 1], où k0 est l’instant
d’attaque inconnu et L est la durée d’attaque présumée connue. Le vecteur d’attaque ak est décrit
par :

ak =


0 si k < k0

θk−k0+1 si k0 ≤ k < k0 + L

0 si k ≥ k0 + L

, (B.3)

où θ1, θ2, · · · , θL ∈ Rs sont des profils d’attaque. Il est à noter que les informations des profils
θ1, θ2, · · · , θL jouent un rôle important dans la performance statistique des algorithmes de dé-
tection. Nous considérons dans cette thèse deux scénarios : les profils sont parfaitement connus
et les profils sont partiellement connus.

B.2.3 Critère d’optimalité

Le critère d’optimalité la détection de changements transitoires, introduit la première fois dans
[67, 69], est utilisé dans cette thèse afin d’évaluer les performances statistiques des algorithmes
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de détection. Le critère vise à minimiser la pire probabilité de détection manquée :

inf
T∈Cα

{
Pmd (T ;L) = sup

k0≥L
Pk0 (T − k0 + 1 > L|T ≥ k0)

}
, (B.4)

parmi tous les instants d’arrêt T ∈ Cα satisfaisant :

Cα =
{
T : Pfa (T ;mα) = sup

l≥L
P0 {l ≤ T < l +mα} ≤ α

}
, (B.5)

où Pmd est la pire probabilité détection manquée et Pfa est la pire probabilité de fausse alarme
pour une fenêtre de taille mα.

B.3 Méthodes de génération des résidus

Dans cette section, nous considérons deux approches de génération des résidus : le filtre de Kal-
man en régime permanent et la projection sur l’espace de parité de taille fixe. Nous développons
également le modèle statistique unifié de résidus générés par les deux méthodes.

B.3.1 Approche avec filtre de Kalman en régime permanent

Supposons que le filtre de Kalman est utilisé pour générer une séquence d’innovations. Le gain
de Kalman en régime permanent K∞ est calculé par :

K∞ = P∞C
T
(
CP∞C

T +R
)−1

, (B.6)

où la matrice de covariance de l’erreur d’estimation d’états P∞ peut être calculée en résolvant
l’équation algébrique de Riccati à temps discret suivante :

P∞ = AP∞A
T −AP∞CT

(
CP∞C

T +R
)−1

CP∞A
T +Q. (B.7)

Donc, l’opération du filtre de Kalman en régime permanent est décrite comme :x̂k+1|k = Ax̂k|k−1 +Buk + Fdk +AK∞
(
yk − ŷk|k−1

)
ŷk|k−1 = Cx̂k|k−1 +Duk +Gdk

, x̂1|0 = x1, (B.8)

où x̂k|k−1 ∈ Rn est l’estimation des états et ŷk|k−1 ∈ Rp l’estimation des sorties.

Soit rk = yk−ŷk|k−1 ∈ Rp un vecteur d’innovations. Il a été démontré [10,116] que les innovations
{rk}k≥1 sont des vecteurs gaussiens indépendants de matrice de covariance J , CP∞C

T + R.
Soit %1, %2, · · · ∈ Rp la séquence des vecteurs aléatoires indépendants et identiquement distribués
(i.i.d.) suivant une loi normale multidimensionnelle de covariance J , c-à-d %k ∼ N (0, J). Donc,
le modèle statistique des innovations est décrit par :

rk =


%k si k < k0

ψk−k0+1 + %k si k0 ≤ k < k0 + L

ψ̃k + %k si k ≥ k0 + L

, (B.9)
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où ψ1, ψ2, · · · , ψL sont des profils de changements transitoires, étant calculés à partir des profils
d’attaque θ1, θ2, · · · , θL par l’équation suivante :{

εk+1 = (A−AK∞C) εk + (Ba −AK∞Da) θk
ψk = Cεk +Daθk

; ε1 = 0, (B.10)

et les profils après les changements ψ̃k (pour k ≥ k0 + L) ne présentent aucun intérêt.

Soit rkk−L+1 =
[
rTk−L+1, · · · , rTk

]T
∈ RLp le vecteur concaténé des résidus, %kk−L+1 =[

%Tk−L+1, · · · , %Tk
]T
∈ RLp le vecteur concaténé des bruits, et ψkk−L+1 (k0) ∈ RLp le vecteur

des signaux transitoires. Le vecteur ψkk−L+1 (k0) dépend de la position relative de l’instant de
rupture k0 dans la fenêtre [k − L+ 1, k] via l’équation suivante :

ψkk−L+1 (k0) =



[0] si k < k0
[0]
ψ1
...

ψk−k0+1

 si k0 ≤ k < k0 + L

ψ̃kk−L+1 (k0) si k ≥ L

, (B.11)

où [0] est un vecteur nul de dimension appropriée et les profils après les changements
ψ̃kk−L+1 (k0) ∈ RLp ne présentent pas d’intérêt.
En regroupant (B.9)–(B.11), le modèle statistique des innovations rkk−L+1 générées par le filtre
de Kalman est exprimé par :

rkk−L+1 = ψkk−L+1 (k0) + %kk−L+1, (B.12)

où %kk−L+1 ∼ N (0,Σ%) et Σ% = diag (J) ∈ RLp×Lp est la matrice diagonale par blocs J .

B.3.2 Approche par projection sur un espace de parité de taille fixe

Dans cette section, nous développons le modèle statistique des résidus générés par projection sur
un espace de parité de taille fixe. Les vecteurs uk et dk sont éliminés du modèle (B.2) puisqu’ils
sont connus. En regroupant les dernières L observations, le modèle d’observation se simplifie :

zk−L+1
zk−L+2

...
zk


︸ ︷︷ ︸

zk
k−L+1

=


C
CA
...

CAL−1


︸ ︷︷ ︸

C

xk−L+1 +


0 0 · · · 0
C 0 · · · 0
...

... . . . ...
CAL−2 CAL−3 · · · 0


︸ ︷︷ ︸

H


wk−L+1
wk−L+2

...
wk


︸ ︷︷ ︸

wk
k−L+1

+


Da 0 · · · 0
CBa Da · · · 0
...

... . . . ...
CAL−2Ba CAL−3Ba · · · Da


︸ ︷︷ ︸

M


ak−L+1
ak−L+2

...
ak


︸ ︷︷ ︸
θk
k−L+1(k0)

+


vk−L+1
vk−L+2

...
vk


︸ ︷︷ ︸

vk
k−L+1

, (B.13)
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ou dans une forme plus simple :

zkk−L+1 = Cxk−L+1 +Mθkk−L+1 (k0) +Hwkk−L+1 + vkk−L+1, (B.14)

où zkk−L+1 ∈ RLp est le vecteur concaténé d’observations simplifiées, wkk−L+1 ∈ RLn est le
vecteur concaténé de bruits de processus, vkk−L+1 ∈ RLp le vecteur concaténé de bruits de
capteurs, θkk−L+1 (k0) ∈ RLs le vecteur concaténé de profils d’attaque ; les matrices C ∈ RLp×n,
M ∈ RLp×Ls et H ∈ RLp×Ln. Les bruits de processus wkk−L+1 ∼ N (0,Q) et les bruits de
capteurs vkk−L+1 ∼ N (0,R), où Q = diag (Q) ∈ RLn×Ln et R = diag (R) ∈ RLp×Lp sont des
matrices diagonales par blocs Q et R, respectivement.

De façon similaire à la définition du vecteur ψkk−L+1 (k0) dans (B.11) par l’approche de filtre de
Kalman, le vecteur θkk−L+1 (k0) est exprimé par :

θkk−L+1 (k0) =



[0] si k < k0
[0]
θ1
...

θk−k0+1

 si k0 ≤ k < k0 + L

[
θ̃kk−L+1 (k0)

]
si k ≥ k0 + L

, (B.15)

où [0] est un vecteur nul de dimension appropriée et les profils après des changements
θ̃kk−L+1 (k0) ∈ RLs ne présentent pas d’intérêt.

Il est à noter que le paramètre de nuisance xk−L+1 doit être éliminé de (B.14) afin d’éviter son
impact négatif lors de la prise de décision. La réjection du paramètre de nuisance a été discutée
dans [52] en appliquant la théorie des tests invariants. La méthode considérée dans [52] coïncide
avec l’approche par espace de parité dans la communauté du diagnostic de défauts [30, 35].
L’idée est comme la suivante. Le vecteur zkk−L+1 dans (B.14) est projeté sur le complément
orthogonal R (C)⊥ de l’espace engendré par les colonnes R (C) de la matrice C qui est supposé de
rang plein. Le vecteur de résidus est calculé par rkk−L+1 =Wzkk−L+1, où les rangs de la matrice
W ∈ R(Lp−n)×Lp se composent des vecteurs propres de la matrice de projection P⊥C = I −
C
(
CTC

)−1
CT correspondants aux valeurs propres 1, où I est la matrice d’identité de dimension

appropriée. La matrice de réjection W satisfait des propriétés suivantes : WC = 0, WTW = P⊥C
et WWT = I. Le modèle de résidus générés par l’approche d’espace de parité est donné par :

rkk−L+1 =Wzkk−L+1 =WMθkk−L+1 (k0) +W
(
Hwkk−L+1 + vkk−L+1

)
. (B.16)

Afin de développer le modèle statistique ressemblant à celui de (B.12), définissons le vec-
teur de profils transitoires ϕkk−L+1 (k0) = WMθkk−L+1 (k0) ∈ RLp−n et le vecteur de bruits
ςkk−L+1 = W

(
Hwkk−L+1 + vkk−L+1

)
∈ R(Lp−n)×(Lp−n), respectivement. Le modèle statistique

(B.16) se réduit à
rkk−L+1 = ϕkk−L+1 (k0) + ςkk−L+1, (B.17)

où le vecteur ςkk−L+1 ∼ N (0,Σς), où la matrice de covariance Σς =W
(
HQHT +R

)
WT .
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B.3.3 Modèle statistique unifié des résidus

Dans cette section, nous développons le modèle statistique unifié de résidus générés par l’ap-
proche de filtre de Kalman et par l’approche par projection sur ’espace de parité. En intégrant
(B.12)–(B.17), nous obtenons le modèle statistique unifié des résidus suivant :

rkk−L+1 = φkk−L+1 (k0) + ξkk−L+1, (B.18)

où φkk−L+1 (k0) est le vecteur de signaux transitoires et ξkk−L+1 ∼ N (0,Σ) est le vecteur de
bruits aléatoires. Pour l’approche du filtre de Kalman, les profils transitoires sont φkk−L+1 (k0) =
ψkk−L+1 (k0) et les bruits aléatoires sont ξkk−L+1 = %kk−L+1 avec la matrice de covariance Σ = Σ%.
Pour l’approche avec l’espace de parité, les profils transitoires sont φkk−L+1 (k0) = ϕkk−L+1 (k0)
et les bruits aléatoires sont ξkk−L+1 = ςkk−L+1 avec la matrice de covariance Σ = Σς .

Dans ce manuscrit, nous proposons d’utiliser la distance de Kullback-Leibler (K-L) pour com-
parer les deux approches de génération des résidus. Il est bien connu [10] que les résidus avec la
plus grande distance de K-L offrait de meilleures performances statistiques que ceux avec une
plus petite distance de K-L.

Désignons par Pk0 (resp. P0 , P∞) la distribution conjointe des résidus rL1 , rL+1
2 , · · · , rkk−L+1, · · ·

lorsqu’ils suivent le modèle statistique unifié (B.18). Désignons aussi par Ek0 (resp. E0 , E∞)
l’espérance mathématique correspondante. Dans le cas gaussien, les distances de K-L sont cal-
culées par [10] :

ρKF = 1
2
[
ψL1 (1)

]T [
Σ−1
%

] [
ψL1 (1)

]
, (B.19)

ρPS = 1
2
[
ϕL1 (1)

]T [
Σ−1
ς

] [
ϕL1 (1)

]
, (B.20)

où ρKF et ρPS sont des distances de K-L des résidus générés, respectivement, par l’approche du
filtre de Kalman et par l’approche avec l’espace de parité.

Nous considérons maintenant le problème de choix de la matrice de réjection W pour l’espace
de parité. Les résultats principaux sont donnés dans Lemme (B.1).

Lemme B.1. (Choix de la matrice de réjection). Soit W ∈ R(Lp−n)×n la matrice de réjection
telle que ses colonnes constituent une base (non nécessairement une base orthonormale) pour
l’espace nul à gauche R (C)⊥ de la matrice C, satisfaisant ainsi WC = 0. La distance de K-L

ρPS = 1
2
[
MθL1 (1)

]T [
WT

(
WSWT

)−1
W
] [
MθL1 (1)

]
(B.21)

ne dépend pas du choix de la matrice de réjection W.

Démonstration. La preuve de ce lemme peut être trouvée dans la version anglaise du manuscrit.

Dans [72, 73], Gustafsson a proposé de rejeter les états inconnus du système par la méthode
d’estimation des moindres carrés. La matrice de réjection W est choisie en tenant compte des
matrices de covariance des bruits (de processus et de capteurs). Il a été discuté dans [72, 73]
que cette méthode offrait des résidus avec une covariance minimale. Cependant, la covariance
minimale ne garantit pas les performances statistiques de la procédure de détection en raison de
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la projection. Les résultats du Lemme B.1 montrent que la méthode d’estimation des moindres
carrés est autant efficace que l’approche par projection sur l’espace de parité proposée dans cette
thèse.

Dans le cadre des tests statistiques, un problème analogue de détection optimale de défauts a été
traité dans [51]. Un modèle linéaire avec des paramètres de nuisance et une matrice de covariance
générale (pas nécessairement diagonale) a été considéré dans le contexte des paramètres de
nuisance inconnus mais non-aléatoires. Deux tests invariants différents ont été conçus dans un tel
cas. Le premier invariant statistique a été basé sur la connaissance de la matrice d’observation
et de la matrice de covariance. Par contre, le deuxième invariant statistique a été conçu en
considérant la matrice d’observation seulement. Il a été démontré dans [51] que les deux méthodes
sont égales. Cette conclusion est cohérente avec les résultats du Lemme B.1.

B.4 Algorithmes de détection pour des paramètres complète-
ment connus

Cette section est organisée comme suit. L’algorithme de la Somme Cumulée à Fenêtre Limitée
et Seuils Variables (VTWL CUSUM) est conçu dans la sous-section B.4.1. Ensuite, le problème
d’optimisation est formulé et résolu dans la sous-section B.4.2. Il est démontré que le choix
optimal des seuils conduit à la règle de détection de la Moyenne Glissante Finie (Finite Moving
Average ou FMA). En outre, une méthode numérique est proposée dans la sous-section B.4.3
pour estimer la pire probabilité de fausse alarme et la pire probabilité de détection manquée.
Finalement, la robustesse du test FMA par rapport à quelques paramètres est examinée dans la
sous-section B.4.4.

B.4.1 Algorithme de Somme Cumulée à Fenêtre Limitée et Seuils Variables

Dans cette sous-section, nous adaptons l’algorithme VTWL CUSUM, qui a été proposé par
Guépié [67, 69] pour détecter des changements transitoires dans une séquence des variables
gaussiennes indépendantes, au modèle statistique unifié (B.18). L’instant d’arrêt TVTWL du test
VTWL CUSUM est défini directement comme suit :

TVTWL = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ski − hk−i+1

)
≥ 0

}
, (B.22)

où h1, h2, · · · , hL sont des seuils variables et Ski est le logarithme du rapport de vraisemblance
(LLR) qui est calculé dans le cas gaussien par :

Ski =
[
φkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1 −

1
2φ

k
k−L+1 (i)

]
. (B.23)

L’algorithme VTWL CUSUM se déroule comme suit. Pour chaque instant k ≥ L, l’algorithme
utilise les dernières mesures yk−L+1, · · · , yk pour la prise de décision. Tout d’abord, les LLRs
Ski sont calculés à partir de (B.23) pour chaque indice i de k − L+ 1 à k. Ensuite, chaque LLR
Ski est comparé au seuil hk−i+1 et l’instant d’alarme TVTWL est déclaré si l’un des LLRs est
supérieur ou égal à son seuil correspondant. Les seuils variables h1, h2, · · · , hL sont considérés
comme les paramètres de réglage pour optimiser l’algorithme VTWL CUSUM par rapport au
critère d’optimalité (B.4)–(B.5).
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B.4.2 Étude des performances statistiques du VTWL CUSUM

Cette sous-section est consacrée à l’étude des propriétés statistiques de l’algorithme VTWL
CUSUM (B.22)–(B.23). Les propriétés de la pire probabilité de fausse alarme Pfa et de la pire
probabilité de détection manquée Pmd sont résumées dans le Théorème B.1.

Théorème B.1. Considérons l’algorithme VTWL CUSUM défini par (B.22)–(B.23). Alors,
1. La pire probabilité de fausse alarme pour une fenêtre de taille donnée mα correspond à la
première fenêtre [L;L+mα − 1], c-à-d

Pfa (TVTWL;mα;h1, h2, · · · , hL) = P0 (L ≤ TVTWL ≤ L+mα − 1) . (B.24)

2. La pire probabilité de détection manquée est bornée supérieurement par

Pmd (TVTWL;h1, h2, · · · , hL) ≤ P̃md (TVTWL;hL) , Φ
(
hL − µSL1
σSL1

)
, (B.25)

où Φ (x) =
∫ x
−∞

1√
2π exp

{
−1

2 t
2
}
dt est la fonction de répartition de la loi normale centrée réduite,

P̃md (TVTWL;hL) est la borne supérieure proposée pour la pire probabilité de détection manquée
Pmd, et les paramètres µSL1 et σSL1 sont calculés par :

µSL1
= 1

2
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
, (B.26)

σ2
SL1

=
[
φL1 (1)

]T [
Σ−1

] [
φL1 (1)

]
. (B.27)

Démonstration. La preuve de ce théorème peut être trouvée dans la version anglaise.

Il est à noter que la minimisation simultanée de la pire probabilité de détection manquée Pmd et
de la pire probabilité de fausse alarme Pfa est contradictoire. En outre, leur expression analytique
n’est pas disponible en raison de la complexité mathématique. Pour ces raisons, nous proposons
de minimiser la borne supérieure P̃md (TVTWL;hL) sous la contrainte que la pire probabilité de
fausse alarme de taille mα soit bornée par une valeur prescrite α ∈ (0, 1). Avant d’examiner
le problème d’optimisation, nous imposons l’hypothèse suivante sur les profils de changement
transitoire φL1 (1) qui sont définis dans (B.18).

Hypothèse B.1. Supposons que le vecteur des profils φL1 (1) défini dans (B.18) est non-nul
(c-à-d ψL1 (1) 6= 0 pour l’approche avec le filtre de Kalman et ϕL1 (1) 6= 0 pour l’approche avec
projection sur l’espace de parité).

L’hypothèse B.1 joue un rôle essentiel dans le choix des seuils de l’algorithme VTWL CUSUM.
Cette hypothèse fournit la condition suffisante pour le lemme suivant.

Lemme B.2. Soit S ∈ Rmα le vecteur gaussien multidimensionnel qui se compose de mα LLRs
SL1 , S

L+1
2 , · · · , SL+mα−1

mα . Si l’hypothèse B.1 est satisfaite, la matrice de covariance ΣS ∈ Rmα×mα
du vecteur aléatoire S est définie positive.

Démonstration. La preuve de ce lemme peut être trouvée dans la version anglaise du manuscrit.
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En exploitant les résultats du Lemme B.2, le choix optimal des seuils variables par rapport au
critère d’optimalité (B.4)–(B.5) est formulé et résolu dans le Théorème B.2.

Théorème B.2. Considérons l’algorithme VTWL CUSUM défini par (B.22)–(B.23). Alors,
1. Le choix optimal des seuils variables h1, h2, · · · , hL conduit au problème d’optimisation sui-
vant : {

infh1,h2,··· ,hL P̃md (TVTWL;hL)
subject to Pfa (TVTWL;mα;h1, h2, · · · , hL) ≤ α

, (B.28)

où α ∈ (0, 1) est une valeur prescrite pour la pire probabilité de fausse alarme dans une durée
de taille mα. Le problème d’optimisation (B.28) possède la solution unique (h∗1, h∗2, · · · , h∗L) pour
une valeur donnée α ∈ (0, 1), où h∗1, h∗2, · · · , h∗L →∞ et h∗L est calculé par l’équation suivante :

P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < h∗L

})
= 1− α. (B.29)

2. L’algorithme VTWL CUSUM optimisé est équivalent au test de la Moyenne Glissante Finie
(FMA) suivante :

TFMA
(
h̃L
)

= inf
{
k ≥ L :

[
φL1 (1)

]T [
Σ−1

]
rkk−L+1 ≥ h̃L

}
, (B.30)

avec le seuil h̃L = h∗L + µSL1
. La borne supérieure pour la pire probabilité de détection manquée

du test FMA (B.30) est calculée par :

Pmd
(
TFMA; h̃L

)
≤ P̃md

(
TFMA; h̃L

)
, Φ

 h̃L − 2µSL1
σSL1

 . (B.31)

Démonstration. La preuve de ce théorème peut être trouvée dans la version anglaise du manus-
crit.

B.4.3 Calcul numérique des probabilités d’erreurs

Dans cette sous-section, nous proposons une méthode numérique pour estimer la pire probabilité
de fausse alarme Pfa et la pire probabilité de détection manquée Pmd du test FMA et du test
VTWL CUSUM. La méthode proposée est basée sur le calcul numérique de la fonction de répar-
tition d’une distribution multidimensionnelle introduite dans [63]. Notamment, cet algorithme
a été mis en oeuvre dans « Matlab Statistics Toolbox » par la fonction mvncdf.

Proposition B.1. La pire probabilité de fausse alarme Pfa et la pire probabilité de détection
manquée Pmd du test VTWL CUSUM (B.22)–(B.23) et du test FMA (B.30) sont calculées
numériquement par les formules suivantes :
1. La pire probabilité de fausse alarme pour une fenêtre de taille mα est calculée par :

Pfa (TVTWL;mα;h1, h2, · · · , hL) = 1− P0

L+mα−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} , (B.32)

Pfa
(
TFMA;mα; h̃L

)
= 1− P0

(
L+mα−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

})
. (B.33)
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2. La pire probabilité de détection manquée est calculée par :

Pmd (TVTWL;h1, h2, · · · , hL) = sup
k0≥L

Pk0

k0+L−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

}
Pk0

k0−1⋂
k=L

k⋂
i=k−L+1

{
Ski < hk−i+1

} , (B.34)

Pmd
(
TFMA; h̃L

)
= sup

k0≥L

Pk0

k0+L−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

}
Pk0

k0−1⋂
k=L

{
Skk−L+1 < h̃L − µSL1

} . (B.35)

Démonstration. La preuve de cette proposition peut être trouvée dans la version anglaise du
manuscrit.

Remarque B.2. Les vecteurs des seuils, les vecteurs des moyennes et les matrices de cova-
riance sont formulés dans la Proposition B.1 pour le calcul numérique des probabilités d’erreurs.
Afin d’utiliser la fonction mvncdf de Matlab, il est nécessaire de calculer les espérances mathé-
matiques E0

[
Ski

]
et Ek0

[
Ski

]
et les covariances cov

(
Sk1
i1
, Sk2

i2

)
. En outre, la méthode numérique

nous permet d’estimer les probabilités d’erreurs au lieu de la méthode de simulation de Monte
Carlo traditionnelle. Il est à noter que la méthode proposée est plus efficace que la simulation de
Monte Carlo concernant le temps de calcul. En outre, cette méthode numérique sera exploitée
pour étudier la robustesse du test FMA dans la sous-section B.4.4.

Remarque B.3. Le Théorème B.1 a montré que la pire probabilité de fausse alarme Pfa pour
une durée donnée de taille mα correspond exactement à la première fenêtre [L;L+mα − 1].
Donc, la pire probabilité de fausse alarme Pfa du test VTWL CUSUM (B.22)–(B.23) et du test
FMA (B.30) peut être calculé en utilisant les équations (B.32)–(B.33). En revanche, la pire
probabilité de détection manquée Pmd concerne l’opération « supremum » sur tous les points de
changement k0 ≥ L. Autrement dit, la pire probabilité de détection manquée ne correspond pas à
la première fenêtre [L; 2L− 1]. Heureusement, les résultats des simulation montrent que la pire
probabilité de détection manquée Pk0 (T ≥ k0 + L|T ≥ k0) tend vers les premières fenêtres, où T
est l’instant d’arrêt du test VTWL CUSUM et du test FMA. Pour cette raison, nous remplaçons
l’opération « supremum » dans les équations (B.34)–(B.35) par l’operation « maximum » sur
quelques premiers instants de changement k0 ∈ [L,L+ δL], où δL ∈ N+, pour estimer la pire
probabilité de détection manquée Pmd.

B.4.4 Analyse de sensibilité du test FMA

Dans cette sous-section, nous effectuons l’analyse de la sensibilité du test FMA (B.30) afin
d’évaluer sa robustesse par rapport à plusieurs paramètres opérationnels : la durée d’attaque
L, les profils d’attaque θ1, θ2, · · · , θL, la matrice de covariance Q et la matrice de covariance
R. Cette analyse de sensibilité est extrêmement importante dans des circonstances pratiques
puisque ces paramètres opérationnels ne sont pas exactement connus.
Soient L, θ1, θ2, · · · , θL, Q et R, respectivement, les vraies valeurs de la durée d’attaque, des
profils d’attaque, de la covariance des bruits du processus et de la covariance des bruits de
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capteurs. Il est à noter que les paramètres putatifs correspondants L, θ1, θ2, · · · , θL, Q et R
restent intactes. La différence entre les vrais paramètres et les paramètres putatifs entraîne
un changement dans le modèle statistique unifié (B.18). Heureusement, la méthode numérique
proposée dans la sous-section B.4.3 peut être utilisée pour examiner la robustesse du test FMA
par rapport aux paramètres opérationnels.

La pire probabilité de fausse alarme Pfa
(
TFMA;mα; h̃L

)
et la pire probabilité de détection man-

quée Pmd
(
TFMA; h̃L

)
peuvent être estimées par les formules (B.33) et (B.35), respectivement.

À cause de la différence entre les vrais paramètres et les paramètres putatifs (c-à-d L 6= L,
θ1, θ2, · · · , θL 6= θ1, θ2, · · · , θL, Q 6= Q et R 6= R), les espérances mathématiques E0

[
Ski

]
et

Ek0

[
Ski

]
et les covariances cov

(
Sk1
i1
, Sk2

i2

)
doivent être recalculées. Les espérances mathéma-

tiques E0
[
Ski

]
et Ek0

[
Ski

]
ne dépendent que des vraies valeurs de la durée d’attaque L et des

profils d’attaque θ1, θ2, · · · , θL. En revanche, les covariances cov
(
Sk1
i1
, Sk2

i2

)
dépendent seulement

des matrices Q et R. Ces calculs sont détaillés dans la version anglaise du manuscrit.

Remarque B.4. Pour les scénarios où les vraies covariances des bruits sont différentes de leurs
valeurs putatives, les innovations générées par le filtre de Kalman ne sont plus indépendantes. Le
modèle statistique des résidus n’est plus valable. Pour cette raison, il est nécessaire de recalculer
la covariance entre deux innovations dans tels scénarios que Q 6= Q et/ou R 6= R. Cette tâche
est réalisée par un algorithme récursif détaillé dans la version anglaise du manuscrit.

B.5 Algorithmes de détection pour des paramètres partielle-
ment connus

Dans cette section, nous considérons un scénario plus réaliste où les profils d’attaque sont par-
tiellement connus. Plus précisément, la « forme » des profils est connue mais la « magnitude »
des profils est inconnue. Soient θ1, θ2, · · · , θL les profils putatifs et θ1, θ2, · · · , θL les vrais profils.
Ces derniers peuvent être exprimés en fonction des premiers par θj = γθj , où les profils putatifs
sont connus mais le coefficient γ est inconnu. L’approche du rapport de vraisemblance généralisé
(GLR) et l’approche du rapport de vraisemblance pondéré (WLR) sont envisagées pour résoudre
le problème.

B.5.1 Approche du Rapport de Vraisemblance Généralisé

L’approche du rapport de vraisemblance généralisé (GLR) consiste à remplacer le paramètre
inconnu γ par son estimation du maximum de vraisemblance. Le logarithme du rapport de
vraisemblance (LLR) généralisé Ŝki est calculé par :

Ŝki = sup
γ

[
γφkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1 −

1
2γφ

k
k−L+1 (i)

]
. (B.36)

Le LLR généralisé Ŝki peut être calculé, après quelques transformations simples, comme suit :

Ŝki =
[
rkk−L+1

]T [
Σ (i)

] [
rkk−L+1

]
, (B.37)
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où la matrice Σ (i), qui dépend de l’indice i, est calculée par :

Σ (i) =
[
Σ−1] [φkk−L+1 (i)

] [
φkk−L+1 (i)

]T [
Σ−1]

2
[
φkk−L+1 (i)

]T
[Σ−1]

[
φkk−L+1 (i)

] . (B.38)

L’algorithme VTWL GLR, qui utilise le LLR généralisé Ŝki , est décrit par :

T̂GLR = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ŝki − hk−i+1

)
≥ 0

}
, (B.39)

où les seuils variables h1, h2, · · · , hL sont considérés comme les paramètres de réglage pour
optimiser l’algorithme VTWL GLR.

B.5.2 Approche du Rapport de Vraisemblance Pondéré

L’approche du rapport de vraisemblance pondéré (WLR) s’appuie sur l’hypothèse que le pa-
ramètre inconnu γ est aléatoire et suit une distribution a priori. Le logarithme du rapport de
vraisemblance (LLR) pondérée Ški est calculé par :

Ški = log

∫ [
pφk

k−L+1(i)

(
rkk−L+1

)]
pγdγ

p0
(
rkk−L+1

) , (B.40)

où pγ est la fonction de densité de paramètre inconnu γ.

Dans un souci de simplicité, supposons que le paramètre inconnu γ suit la distribution uniforme
U (γ0, γ1), où les bornes 0 < γ0 < γ1 sont connues. Donc, la fonction de densité est donnée par
pγ = 1/(γ1−γ0). D’après quelques transformations, le LLR pondéré Ški est donné par :

Ški =
[
rkk−L+1

]T [
Σ (i)

] [
rkk−L+1

]
+ log

[ √
2π

b (i) (γ1 − γ0)

]
+

log
[
Φ
(
b (i) γ1 −

a (i)
b (i)

)
− Φ

(
b (i) γ0 −

a (i)
b (i)

)]
, (B.41)

où les coefficients a (i) et b (i) sont calculés par :

a (i) =
[
φkk−L+1 (i)

]T [
Σ−1

] [
rkk−L+1

]
, (B.42)

b (i)2 =
[
φkk−L+1 (i)

]T [
Σ−1

] [
φkk−L+1 (i)

]
. (B.43)

La règle de détection VTWL WLR, qui utilise le LLR pondéré Ški , est décrite par :

ŤWLR = inf
{
k ≥ L : max

k−L+1≤i≤k

(
Ški − hk−i+1

)
≥ 0

}
, (B.44)

où les seuils variables h1, h2, · · · , hL sont considérés comme les paramètres de réglage pour
optimiser l’algorithme VTWL WLR.
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B.5.3 Étude des performances statistiques du VTWL GLR et du VTWL
WLR

Dans cette sous-section, nous examinons les performances statistiques du test VTWL GLR
(B.39) et du test VTWL WLR (B.39). Les résultats principaux sont présentés dans le Théo-
rème B.3 et le Théorème B.4.

Théorème B.3. Considérons le test VTWL GLR défini dans (B.39) et le test VTWL WLR
défini dans (B.44), respectivement. Alors,

1. La pire probabilité de fausse alarme pour une durée de taille mα dépend de la première fenêtre
[L;L+mα − 1], c-à-d

Pfa
(
T̂GLR

)
= P0

(
L ≤ T̂GLR ≤ L+mα − 1

)
, (B.45)

Pfa
(
ŤWLR

)
= P0

(
L ≤ ŤWLR ≤ L+mα − 1

)
. (B.46)

2. La pire probabilité de détection manquée est bornée supérieurement par :

Pmd
(
T̂GLR

)
≤ P̃md

(
T̂GLR;hL

)
= P1

(
ŜL1 < hL

)
, (B.47)

Pmd
(
ŤWLR

)
≤ P̃md

(
ŤWLR;hL

)
= P1

(
ŠL1 < hL

)
, (B.48)

où P̃md
(
T̂GLR;hL

)
et P̃md

(
ŤWLR;hL

)
sont les bornes supérieures pour la pire probabilité de

détection manquée du test VTWL GLR et du test VTWL WLR, respectivement.

Démonstration. La preuve de ce théorème peut être trouvée dans la version anglaise du manus-
crit.

Nous souhaitons minimiser la borne supérieure P̃md
(
T̂GLR;hL

)
(resp. P̃md

(
ŤWLR;hL

)
) sous la

contrainte que la pire probabilité de fausse alarme Pfa
(
T̂GLR

)
(resp. Pfa

(
ŤWLR

)
) est bornée par

une valeur prescrite α ∈ (0, 1).

Théorème B.4. Considérons le test VTWL GLR défini dans (B.39) et le test VTWL WLR
défini dans (B.44), respectivement. Alors,

1. Le choix optimal des seuils h1, h2, · · · , hL se produit au problème d’optimisation suivant :

inf
h1,··· ,hL

P̃md
(
T̂GLR;hL

)
soumis à Pfa

(
T̂GLR;mα;h1, h2, · · · , hL

)
≤ α, (B.49)

inf
h1,··· ,hL

P̃md
(
ŤWLR;hL

)
soumis à Pfa

(
ŤWLR;mα;h1, h2, · · · , hL

)
≤ α, (B.50)

où α ∈ (0, 1) est une valeur prescrite pour le taux de fausse alarme. Soient ĥ∗L et ȟ∗L, respecti-
vement, les numéros réels minimum satisfaisant les inégalités suivantes :

P0

(
L+mα−1⋂
k=L

{
Ŝkk−L+1 < ĥ∗L

})
≥ 1− α, (B.51)

P0

(
L+mα−1⋂
k=L

{
Škk−L+1 < ȟ∗L

})
≥ 1− α. (B.52)
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Donc, les seuils optimaux du problème d’optimisation (B.49) (resp. (B.50)) sont ĥ∗1, · · · , ĥ∗L−1 →
+∞ (resp. ȟ, · · · , ȟ∗L−1 → +∞) et ĥ∗L (resp. ȟ∗L).

2. Le test VTWL GLR et le test VTWL WLR optimaux conduisent aux règles de décision FMA
correspondantes :

T̂FMA = inf
{
k ≥ L : Ŝkk−L+1 ≥ ĥ∗L

}
, (B.53)

ŤFMA = inf
{
k ≥ L : Škk−L+1 ≥ ȟ∗L

}
, (B.54)

où T̂FMA est l’instant d’arrêt du test FMA GLR et ŤFMA l’instant d’arrêt du test FMA WLR,
et les seuils ĥ∗L et ȟ∗L sont choisis pour assurer des niveaux acceptables de fausses alarmes.

Démonstration. La preuve de ce théorème peut être trouvée dans la version anglaise du manus-
crit.

Remarque B.5. Permettons-nous d’ajouter quelques commentaires sur les résultats du Théo-
rème B.3 et du Théorème B.4. L’estimation numérique de la probabilité de fausse alarme et de
la probabilité de détection manquée du test FMA GLR donnée dans (B.53) et du test FMA WLR
donnée dans (B.54) sont difficilement calculables sous forme analytiques. Pour cette raison, nous
examinons les performances statistiques du test FMA GLR et du test FMA WLR, en se basant
sur une simulation de Monte Carlo, dans la section B.7.

B.6 Extension au problème de localisation

Dans cette section, nous formulons le problème d’identification d’attaques cyber-physiques
dans les systèmes SCADA comme un problème de détection-localisation conjointe de chan-
gements transitoires dans des systèmes stochastiques et dynamiques. Cette section est organi-
sée comme suit. La formulation du problème est présentée dans la sous-section B.6.1. Dans la
sous-section B.6.2, nous développons le modèle statistique unifié pour le problème de détection-
localisation conjointe de changements transitoires. En s’appuyant sur ce modèle, quelques al-
gorithmes de détection-localisation sont proposés dans la sous-section B.6.3. Finalement, nous
étudions dans la sous-section B.6.4 les performances statistiques du test FMA.

B.6.1 Formulation du problème

De façon similaire au problème de détection, le modèle d’espace d’état à temps discret suivant
est employé pour décrire les systèmes SCADA attaqués :{

xk+1 = Axk +Buk + Fdk +Baak + wk

yk = Cxk +Duk +Gdk +Daak + vk
; x1 = x1, (B.55)

où xk ∈ Rn est le vecteur d’états, uk ∈ Rm est le vecteur de signaux de contrôle, dk ∈ Rq est
le vecteur des perturbations, yk ∈ Rp est le vecteur des mesures des capteurs, ak ∈ Rs est le
vecteur d’attaque, wk ∈ Rn est le vecteur des bruits de processus, et vk ∈ Rp est le vecteur
des bruits des capteurs ; les matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m,
G ∈ Rp×q, Ba ∈ Rn×s et Da ∈ Rp×s sont connues. Les signaux de contrôle uk et les perturbations
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dk sont connus également. Les bruits des processus wk et les bruits des capteurs vk sont des
vecteurs gaussiens multidimensionnels centrés réduits indépendants, c-à-d cov (wk, wl) = Qδkl,
cov (vk, vl) = Rδkl et cov (wk, vl) = 0, où δkl = 1 si k = l et δkl = 0 autrement.
Supposons que les actes malveillants sont effectuées pendant une période finie τa =
[k0, k0 + L− 1], où k0 est l’instant d’attaque inconnu et L est la durée d’attaque connue. Pour
le problème de détection et de localisation, nous avons K profils d’attaque différents où chaque
profil d’attaque est associé à un scénario d’attaque spécifique. Donc, le vecteur d’attaque ak
s’écrit :

ak =


0 si k < k0

θk−k0+1 (l) si k0 ≤ k < k0 + L

0 si k ≥ k0 + L

, (B.56)

où l, for 1 ≤ l ≤ K, est le type d’attaque et K est le nombre d’hypothèses. Les profils d’attaque
θ1 (l) , θ2 (l) , · · · , θL (l) du type l, pour 1 ≤ l ≤ K, sont connus.
Définition B.1. Un algorithme de détection et de localisation de changements doit calculer un
couple (T, ν) en s’appuyant sur des observations y1, y2, · · · , où T > 0 est l’instant d’arrêt auquel
la décision finale ν, pour 1 ≤ ν ≤ K, est décidée.

Le problème est de proposer des algorithmes pour détecter et localiser un changement transi-
toire dans le modèle (B.55)–(B.56) en satisfaisant certains critères d’optimalité. Plusieurs cri-
tères d’optimalité ont été proposés pour évaluer la performance statistique d’un algorithme
de détection-localisation de changements brusques dans un système stochastique. Les critères
classiques visent à minimiser le retard moyen pour détection-localisation soumis aux niveaux
acceptables de fausses alarmes et de fausses localisations (voir, par exemple, [104,128–130,132]).
Pour les infrastructures à sécurité critique [127], il est essentiel de minimiser la pire probabilité
de détection-localisation manquée pour des valeurs acceptables de fausse alarmes/localisations.
Dans ce manuscrit, nous proposons un nouveau critère d’optimalité pour le problème de dé-
tection et de localisation de changements transitoires ainsi que pour la surveillance en-ligne de
infrastructures à sécurité critique. Le critère d’optimalité consiste à minimiser la pire probabilité
de détection-isolation manquée soumis à des niveaux acceptables sur la pire probabilité de fausse
alarme pour une fenêtre de taille donnée et sur la pire probabilité de fausse localisation pour la
fenêtre transitoire. Ce critère d’optimalité est parfaitement approprié au problème de détection
et de localisation d’actes malveillantes dans des systèmes SCADA.
Soient Pmd (T ;L) la pire probabilité de détection manquée, Pfa (T ;mα) la pire probabilité de
fausse alarme pour une fenêtre de taille mα et Pfi (T ;L) la pire probabilité de fausse localisa-
tion pendant la durée transitoire. La probabilité de fausse alarme et la probabilité de fausse
localisation sont définies, respectivement, par :

Pfa (T ;mα) = sup
l0≥L

P0 (l0 ≤ T < l0 +mα) , (B.57)

Pfi (T ;L) = sup
k0≥L

max
1≤l≤K

Plk0 (k0 ≤ T < k0 + L; ν 6= l) , (B.58)

où P0 est la probabilité correspondante au mode de fonctionnement normal du système et Plk0
représente la probabilité correspondante à l’instant de changement k0 et au type de changement
l. Le critère d’optimalité vise à minimiser la pire probabilité de détection manquée :

inf
T∈Cα

{
Pmd (T ;L) = sup

k0≥L
max

1≤l≤K
Plk0 (T − k0 + 1 > L|T ≥ k0)

}
(B.59)
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parmi tous les instants d’arrêt T dans la classe Cα satisfaisant :

Cα =
{
T : Pfa (T ;mα) ≤ α;Pfi (T ;L) ≤ α

}
, (B.60)

où α ∈ (0, 1) est une valeur prescrite.

B.6.2 Modèle statistique unifié pour le problème de localisation

Dans cette sous-section, nous développons le modèle statistique unifié des résidus générés avec
l’approche de filtre de Kalman et avec l’approche par projection sur l’espace de parité pour le
problème de détection et de localisation.

Approche avec le filtre de Kalman en régime permanent

Considérons le filtre de Kalman en régime permanent pour générer une séquence des résidus.
Le filtre de Kalman est présenté dans (B.6)–(B.8). Soit {%k}k≥1 ∈ Rp une séquence des vecteurs
gaussiens multidimensionnels centrés réduits indépendants avec la matrice de covariance J ,
CP∞C

T +R. Le modèle statistique de résidus est donc décrit par :

rk =


%k si k < k0

ψk−k0+1 (l) + %k si k0 ≤ k < k0 + L

ψ̃k (l) + %k si k ≥ k0 + L

, (B.61)

où les profils transitoires ψ1 (l) , ψ2 (l) , · · · , ψL (l) ∈ Rp sont calculés à partir des profils d’attaque
θ1 (l) , θ2 (l) , · · · , θL (l) du type l avec l’équation suivante :{

εk+1 = (A−AK∞C) εk + (Ba −AK∞Da) θk (l)
ψk (l) = Cεk +Daθk (l)

; ε1 = 0, (B.62)

et les profils après les changements ψ̃k (l) (c-à-d pour k ≥ k0 + L) ne présentent pas d’intérêt.

De façon similaire au problème de détection, soit rkk−L+1 =
[
rTk−L+1, · · · , rTk

]T
∈ RLp le vec-

teur concaténé des innovations, %kk−L+1 =
[
%Tk−L+1, · · · , %Tk

]
∈ RLp le vecteur concaténé des

bruits aléatoires, et ψkk−L+1 (k0, l) ∈ RLp le vecteur des changements transitoires. Le vecteur
ψkk−L+1 (k0, l) dépend de la position relative entre l’instant de changement k0 dans la fenêtre
[k − L+ 1, k] et du type de changement l par la relation suivante :

ψkk−L+1 (k0, l) =



[0] si k < k0
[0]
ψ1 (l)

...
ψk−k0+1 (l)

 si k0 ≤ k < k0 + L

[
ψ̃kk−L+1 (k0, l)

]
si k ≥ L

, (B.63)

où les profils après les changements ψ̃kk−L+1 (k0, l) ∈ RLp ne présentent aucun intérêt. Le modèle
statistique de résidus est décrit par :

rkk−L+1 = ψkk−L+1 (k0, l) + %kk−L+1, (B.64)
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où les bruits %kk−L+1 ∼ N (0,Σ%), où Σ% = diag (J) ∈ RLp×Lp est la matrice diagonale par blocs
J .

Approche par projection sur l’espace de parité de taille fixe

Considérons maintenant l’approche basée sur l’espace de parité pour générer une séquence des
résidus. De façon similaire au problème de détection, le modèle statistique d’observations sim-
plifiées est donné par :

zkk−L+1 = Cxk−L+1 +Mθkk−L+1 (k0, l) +Hwkk−L+1 + vkk−L+1, (B.65)

où zkk−L+1 ∈ RLp est le vecteur concaténé des mesures de capteurs, wkk−L+1 ∈ RLn est le vecteur
concaténé des bruits de processus, vkk−L+1 ∈ RLp est le vecteur concaténé des bruits de capteurs,
θkk−L+1 (k0, l) ∈ RLs est le vecteur concaténé des signaux transitoires ; les matrices C ∈ RLp×n,
M ∈ RLp×Ls et H ∈ RLp×Ln. Les bruits des processus wkk−L+1 ∼ N (0,Q) et les bruits des
capteurs vkk−L+1 ∼ N (0,R), où Q = diag (Q) ∈ RLn×Ln et R = diag (R) ∈ RLp×Lp sont les
matrices diagonales par blocs Q et R, respectivement.

Pareillement au vecteur ψkk−L+1 (k0, l) défini dans (B.64), le vecteur de profils transitoires
θkk−L+1 (k0, l) dépend de la position relative de l’instant de rupture k0 dans la fenêtre
[k − L+ 1, k] et du type de changement l par la relation suivante :

θkk−L+1 (k0, l) =



[0] si k < k0
[0]
θ1 (l)
...

θk−k0+1 (l)

 si k0 ≤ k < k0 + L

[
θ̃kk−L+1 (k0, l)

]
si k ≥ k0 + L

, (B.66)

où les profils après les changements θ̃kk−L+1 (k0, l) ∈ RLs ne présentent aucun intérêt.

Pareillement au problème de détection, le vecteur de résidus est obtenu par projection du vecteur
d’observations simplifiées zkk−L+1 sur l’espace orthogonal R (C)⊥ aux colonnes R (C) de la matrice
C. Le modèle statistique des résidus est :

rkk−L+1 = ϕkk−L+1 (k0, l) + ςkk−L+1, (B.67)

avec les profils transitoires ϕkk−L+1 (k0, l) = WMθkk−L+1 (k0, l), les bruits aléatoires ςkk−L+1 =
W
(
Hwkk−L+1 + vkk−L+1

)
avec la matrice Σς =W

(
HQHT +R

)
WT . La matrice de réjectionW

satisfait les conditions suivantes : WC = 0, WTW = P⊥C et WWT = I.

Modèle statistique unifié des résidus

En combinant (B.64) et (B.67), nous obtenons le modèle statistique unifié des résidus générés
par les deux approches, c-à-d l’approche de filtre de Kalman et l’approche d’espace de parité,
comme suit :

rkk−L+1 = φkk−L+1 (k0, l) + ξkk−L+1, (B.68)
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où φkk−L+1 (k0, l) est le vecteur des profils transitoires, et ξkk−L+1 ∼ N (0,Σ) est le vecteur
des bruits aléatoires. Pour l’approche avec le filtre de Kalman, les profils transitoires sont
φkk−L+1 (k0, l) = ψkk−L+1 (k0, l) et les bruits aléatoires sont ξkk−L+1 = %kk−L+1 avec Σ = Σ%.
En revanche, les profils transitoires sont φkk−L+1 (k0, l) = ϕkk−L+1 (k0, l) et les bruits aléatoires
sont ξkk−L+1 = ςkk−L+1 avec Σ = Σς pour l’approche par projection sur l’espace de parité.

Nous utilisons la distance de Kullback-Leibler (K-L) pour comparer les méthodes de géné-
ration de résidus. Soient P lk0

(resp. P0 , P∞ , P0
k0
) la distribution conjointe des résidus

rL1 , r
L+1
2 , · · · , rkk−L+1, · · · lorsqu’ils suivent le modèle statistique unifié (B.68), et Elk0

(resp.
E0 , E∞ , E0

k0
) l’espérance mathématique correspondante. Dans le cas gaussien, les distances

de K-L sont calculées, respectivement, pour l’approche avec le filtre de Kalman et pour l’ap-
proche basée sur l’espace de parité :

ρKF (j, l) = 1
2
[
ψL1 (1, l)− ψL1 (1, j)

]T [
Σ−1
%

] [
ψL1 (1, l)− ψL1 (1, j)

]
, (B.69)

ρPS (j, l) = 1
2
[
ϕL1 (1, l)− ϕL1 (1, j)

]T [
Σ−1
ς

] [
ϕL1 (1, l)− ϕL1 (1, j)

]
, (B.70)

où ρKF (j, l) et ρPS (j, l) sont les distances de K-L entre Pj1 et P l1 des résidus générés par l’ap-
proche avec le filtre de Kalman et l’approche basée sur l’espace de parité, respectivement.

B.6.3 Algorithmes de détection-localisation conjointe

Dans cette section, nous considérons plusieurs procédures pour la détection-localisation conjointe
des changements transitoires en nous basant sur modèle statistique unifié (B.68).

Algorithme WL CUSUM généralisé

Pour le problème de détection et de localisation de changements brusques dans un système
stochastique, Nikiforov [130] et Lai [104] ont proposés, respectivement, l’algorithme CUSUM gé-
néralisé et l’algorithme WL CUSUM généralisé. Pour la surveillance en-ligne, l’algorithme WL
CUSUM peut être adapté au modèle statistique unifié (B.68). Définissons directement l’algo-
rithme WL CUSUM généralisé δGWL = (TGWL, νGWL), qui utilise les dernières L observations à
chaque instant k ≥ L, comme suit :

TGWL = inf
{
k ≥ L : max

1≤l≤K
max

k−L+1≤i≤k
min

0≤j 6=l≤K

(
Ski (l, j)− h

)
≥ 0

}
, (B.71)

νGWL = arg max
1≤l≤K

max
TGWL−L+1≤i≤TGWL

min
0≤j 6=l≤K

STGWL
i (l, j) , (B.72)

où h est le seuil et Ski (l, j), pour k − L + 1 ≤ i ≤ k, 1 ≤ l ≤ K et 0 ≤ j 6= l ≤ K, est le
logarithme du rapport de vraisemblance (LLR), qui est calculé dans le cas gaussien par :

Ski (l, j) =
[(
φkk−L+1 (i, l)− φkk−L+1 (i, j)

)]T [
Σ−1

] [
rkk−L+1 −

φkk−L+1 (i, l) + φkk−L+1 (i, j)
2

]
.

(B.73)
Le test WL CUSUM généralisé (B.71)–(B.72) fonctionne de la façon suivante. À chaque instant
k ≥ L, le test WL CUSUM généralisé (B.71)–(B.72) utilise les dernières L observations pour la
prise de décision. Tout d’abord, le modèle statistique unifié (B.68) est développé en s’appuyant
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sur la génération des résidus. Ensuite, pour chaque indice i de k −L+ 1 à k, les LLRs Ski (l, j),
pour 1 ≤ l ≤ K et 0 ≤ j 6= l ≤ K, sont calculés. L’instant d’arrêt TGWL est déclaré s’il existe
l, pour 1 ≤ l ≤ K, et qu’il existe au moins un indice i ∈ [k − L+ 1, k] tel que tous les LLRs
Ski (l, j), pour 0 ≤ j 6= l ≤ K, sont supérieurs ou égaux au seuil h.

Algorithme WL CUSUM par matrice

L’algorithme CUSUM par matrice a été proposé dans [138] en modifiant l’algorithme CUSUM
généralisé pour obtenir une forme récursive. L’algorithme WL CUSUM par matrice δMWL =
(TMWL, νMWL), qui utilise les dernières L observations à chaque instant k ≥ L, est défini par :

TMWL = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K
max

k−L+1≤i≤k

(
Ski (l, j)− h

)
≥ 0

}
, (B.74)

νMWL = arg max
1≤l≤K

min
0≤j 6=l≤K

max
TMWL−L+1≤i≤TMWL

STMWL
i (l, j) , (B.75)

où h est le seuil et les LLRs Ski (l, j), pour k − L+ 1 ≤ i ≤ k, 1 ≤ l ≤ K et 0 ≤ j 6= l ≤ K, sont
calculés dans (B.73).
Remarque B.6. L’algorithme WL CUSUM par matrice (B.74)–(B.75) fonctionne de la même
façon que l’algorithme WL CUSUM généralisé (B.71)–(B.72) à l’exception du remplacement de
l’opération « max-min » dans (B.71)–(B.72) par l’opération « min-max » dans (B.74)–(B.75).

Algorithme WL CUSUM par vecteur

L’algorithme WL CUSUM par vecteur est obtenu en remplaçant la statistique
maxk−L+1≤i≤k S

k
i (l, j) dans l’algorithme WL CUSUM par matrice (B.74)–(B.75) par la

statistique suivante :

gk (l, j) = max
k−L+1≤i≤k

Ski (l, 0)− max
k−L+1≤i≤k

Ski (j, 0) . (B.76)

L’algorithme WL CUSUM par vecteur δVWL = (TVWL, νVWL) est donc défini comme suit :

TVWL = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K
(gk (l, j)− h) ≥ 0

}
, (B.77)

νVWL = arg max
1≤l≤K

min
0≤j 6=l≤K

gTVWL (l, j) , (B.78)

où h est le seuil et les LLRs Ski (l, j), pour k − L+ 1 ≤ i ≤ k, 1 ≤ l ≤ K et 0 ≤ j 6= l ≤ K, sont
calculés dans (B.73).

Algorithme à Moyenne Glissante Finie (FMA)

La version FMA du test WL CUSUM généralisé, du test WL CUSUM par matrice et du test
WL CUSUM par vecteur, est décrite par :

TFMA = inf
{
k ≥ L : max

1≤l≤K
min

0≤j 6=l≤K

(
Skk−L+1 (l, j)− h

)
≥ 0

}
, (B.79)

νFMA = arg max
1≤l≤K

min
0≤j 6=l≤K

STFMA
TFMA−L+1 (l, j) , (B.80)

où h est le seuil et les LLRs Skk−L+1 (l, j), pour 1 ≤ l ≤ K et 0 ≤ j 6= l ≤ K, sont calculés dans
(B.73).
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Remarque B.7. Il est à noter que la règle de décision FMA (B.79)–(B.80) est la généralisation
du test FMA (B.30) pour le problème de détection. Elle est également la version FMA du test WL
CUSUM généralisé (B.71)–(B.72), du test WL CUSUM par matrice (B.74)–(B.75) et du test WL
CUSUM par vecteur (B.77)–(B.78). Les performances statistiques du test FMA (B.79)–(B.80)
seront examinées dans la sous-section suivante.

B.6.4 Étude des performances statistiques du FMA

Dans cette sous-section, nous étudions les performances statistiques de la règle de détection
FMA (B.79)–(B.80). Surtout, nous calculons les bornes supérieures pour la pire probabilité
de fausse alarme, pour la pire probabilité de fausse localisation et pour la pire probabilité de
détection-localisation manquée. Les résultats principaux sont présentés dans le Théorème B.5.

Théorème B.5. Considérons le test FMA (B.79)–(B.80). Soient P̃fa (δFMA), P̃fi (δFMA), et
P̃md (δFMA), respectivement, les bornes supérieures pour Pfa (δFMA), Pfi (δFMA), et Pmd (δFMA).
Alors,

1. La pire probabilité de fausse alarme pour une fenêtre de taille mα dépend de la première
fenêtre [L;L+mα − 1], c-à-d

Pfa (δFMA;mα;h) = P0 (L ≤ TFMA ≤ L+mα − 1) , (B.81)

et elle est bornée supérieurement par :

Pfa (δFMA;mα;h) ≤ P̃fa (δFMA;mα;h) , 1− P0

(
L+mα−1⋂
k=L

K⋂
l=1

{
Skk−L+1 (l, 0) < h

})
. (B.82)

2. La pire probabilité de localisation pendant la fenêtre de changement dépend de la première
fenêtre [L; 2L− 1], c-à-d

Pfi (δFMA;L;h) = max
1≤l≤K

PlL (L ≤ TFMA < 2L; νFMA 6= l) , (B.83)

et elle est bornée supérieurement dans le cas du seuil h ≥ 0 par :

Pfi (δFMA;L;h) ≤ P̃fi (δFMA;L;h) , max
1≤l≤K

1− max
0≤j̃≤K

PlL

2L−1⋂
k=L

K⋂
j=1
j 6=j̃,l

{
Skk−L+1

(
j, j̃
)
< h

}
 .

(B.84)
3. La pire probabilité de détection-localisation manquée est bornée supérieurement par :

Pmd (δFMA;L;h) ≤ P̃md (TFMA;L;h) , max
1≤l≤K

K∑
j=0
j 6=l

Φ
(
h− µSL1 (l,j)

σSL1 (l,j)

)
, (B.85)

où µSL1 (l,j) et σSL1 (l,j) sont calculés par :

µSL1 (l,j) = 1
2
[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
, (B.86)

σ2
SL1 (l,j) =

[
φL1 (1, l)− φL1 (1, j)

]T [
Σ−1

] [
φL1 (1, l)− φL1 (1, j)

]
. (B.87)
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Démonstration. La preuve de ce théorème peut être trouvée dans la version anglaise du manus-
crit.

Remarque B.8. Ajoutons quelques commentaires sur les résultats du Théorème B.5. La borne
supérieure P̃md pour la pire probabilité de détection-localisation manquée peut être calculée analy-
tiquement. En revanche, la borne supérieure pour la pire probabilité de fausse alarme et la borne
supérieure pour la pire probabilité de fausse localisation peuvent être estimées numériquement
en utilisant la méthode numérique proposée dans la Proposition B.1.

B.7 Exemples numériques

Dans cette section, nous appliquons les algorithmes développés dans les sections ci-dessus au
problème de détection et de localisation des attaques cyber-physiques dans un réseau de dis-
tribution d’eau potable simple. Les lecteurs intéressés peuvent consulter la version anglaise du
manuscrit pour l’architecture du réseau d’eau et les paramètres de simulation. Nous présentons
dans cette section seulement les principaux résultats de simulation. Les résultats de simula-
tion pour les paramètres parfaitement connus sont donnés dans la sous-section B.7.1. Dans
la sous-section B.7.2, nous effectuons l’analyse de sensibilité du test FMA par rapport à plu-
sieurs paramètres. Les performances statistiques des algorithmes de détection pour le cas où les
paramètres sont partiellement connus sont présentées dans la section B.7.3. Finalement, nous
comparons dans la sous-section B.7.4 les performances statistiques de quelques algorithmes de
localisation.

B.7.1 Résultats de simulation pour des paramètres parfaitement connus

Dans cette sous-section, nous présentons les résultats de simulation dans un contexte idéale où
les paramètres sont parfaitement connus.

Comparaison entre le test FMA et des tests classiques
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(a) Variance des bruits des processus Q = 0.02.
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(b) Variance des bruits des processus Q = 0.2.

Figure B.1 – Comparaison des performances statistiques de plusieurs détecteurs. La probabilité
de détection manquée Pmd est décrite comme la fonction de la pire probabilité de fausse alarme
Pfa.
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Dans la figure B.1, nous comparons les performances statistiques de plusieurs règles de détection
avec la simulation de Monte Carlo de 106 répétitions. La probabilité de détection manquée Pmd
est décrite comme la fonction de la pire probabilité de fausse alarme Pfa. L’instant de rupture
est k0 = L + 1 = 9. Le test WL CUSUM est un cas spécial du test VTWL CUSUM avec
les seuils égaux, c-à-d h1 = h2 = · · · = hL. Les remarques suivantes peuvent être déduites des
résultats de simulation. Tout d’abord, les algorithmes proposés (test CUSUM, test WL CUSUM,
et test FMA) sont meilleurs que le test χ2 qui s’appuie sur une statistique non-paramétrique.
Ce phénomène peut être expliqué par le fait que le test χ2 n’exploite pas les informations sur
les profils de changements transitoires. Deuxièmement, étant donné un niveau acceptable sur la
probabilité de fausse alarme, la probabilité de détection manquée des tests FMA proposés est
beaucoup plus petite que celle des tests CUSUM et WL CUSUM, pour l’approche avec le filtre
de Kalman et l’approche basée sur l’espace de parité. En d’autres termes, les tests FMA sont
meilleurs que les tests traditionnels par rapport au critère d’optimalité adapté à la détection
de signaux transitoires. Ces résultats de simulation sont obtenus du fait que l’optimisation de
l’algorithme VTWL CUSUM conduit à la règle de détection FMA. Enfin, les performances
statistiques des algorithmes basés sur l’approche avec le filtre de Kalman sont meilleures que
celles des algorithmes basés sur l’approche par projection sur l’espace de parité lorsque les bruits
des processus sont petits (voir la différence dans la sous-figure B.1a pour Q = 0.02 et la sous-
figure B.1b pour Q = 0.2).

Comparaison entre l’approche avec le filtre de Kalman et l’approche avec l’espace
de parité
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(a) Condition parfaite : Q = Q. La vraie valeur Q
et la valeur putative Q varient de Q = Q = 0.02 à
Q = Q = 0.4.
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(b) Condition imparfaite : Q 6= Q. La valeur putative
est fixée à Q = 0.1 tandis que la vraie valeur varie de
Q = 0.02 à Q = 0.4.

Figure B.2 – Comparaison entre deux méthodes de génération de résidus : approche avec le
filtre de Kalman et approche avec l’espace de parité. La probabilité de détection manquée Pmd
et la pire probabilité de fausse alarme Pfa sont décrites comme la fonction de la vraie variance
des bruits des processus Q.

La comparaison entre les méthodes de génération de résidus, l’approche avec le filtre de Kalman
en régime permanent et l’approche par projection sur l’espace de parité de taille fixe, est montrée
dans la figure B.2. La probabilité de détection manquée Pmd et la pire probabilité de fausse
alarme Pfa sont affichées en fonction de la vraie variance des bruits des processus Q qui varie de
Q = 0.02 à Q = 0.4. Deux scénarios sont considérés : Q = Q et Q 6= Q.
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Figure B.3 – Distance de K-L des résidus par rapport à la vraie variance des bruits des processus
Q.

Considérons maintenant la condition parfaite où la variance des bruits des processus est connue
exactement (c-à-d Q = Q). À partir de la figure B.2a, nous pouvons constater que l’approche
avec le filtre de Kalman en régime permanent est plus performante que l’approche avec l’espace
de parité de taille fixe, en particulier lorsque les bruits de processus sont faibles. Ce phénomène
est expliqué dans la figure B.3 où les distances de Kullback-Leibler (K-L) des résidus générés
par les deux approches sont calculées et comparées. Le filtre de Kalman génère des résidus avec
une distance de K-L plus grande que celle obtenue avec l’espace de parité. La différence devient
significative dans de tels scénarios quand les bruits des processus sont extrêmement petites.
En revanche, la différence est négligeable lorsque les bruits des processus sont importants. Ce
phénomène est expliqué par le rapprochement de l’approche bayésienne (e.g., le filtre de Kalman)
avec l’approche minimax (e.g., l’espace de parité) qui produit une erreur significative seulement
si les bruits de processus sont faibles et que, par conséquent, l’information a priori joue un rôle
important.

Considérons maintenant le scénario pratique où la vraie valeur de la variance des bruits de pro-
cessus est différente de sa valeur putative (c-à-d Q 6= Q). La valeur putative est choisie telle
que Q = 0.1 et la vraie valeur varie de Q = 0.02 à Q = 0.4. Les performances statistiques du
test FMA en se basant sur l’approche avec le filtre de Kalman et avec l’approche par projection
sur l’espace de parité sont données dans la figure B.2b. Nous pouvons constater que l’approche
avec le filtre de Kalman est plus sensitive aux bruits que processus que l’approche avec l’espace
de parité. Ce phénomène peut être expliqué par le fait que le filtre de Kalman, lorsqu’il dispose
d’informations erronées sur des bruits de processus, peut produire une erreur cumulée sur l’es-
timation des états, notamment dans des scénarios où la vraie matrice de covariance des bruits
des processus est plus grande que sa valeur putative. Par conséquent, la performance statistique
d’un algorithme basé sur cette approche se réduit significativement.

Comparaison entre la méthode numérique et la simulation de Monte Carlo

La comparaison entre la méthode numérique proposée et la simulation Monte Carlo est donnée
dans la figure B.4.

La simulation de Monte Carlo est réalisée avec 106 répétitions tandis que la méthode numérique
est effectuée avec une précision de 10−5. La probabilité de détection manquée Pmd est décrite en
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(b) Approche par projection sur l’espace de parité de
taille fixe.

Figure B.4 – Comparaison entre la méthode numérique et la simulation de Monte Carlo.

fonction de la pire probabilité de fausse alarme Pfa, pour les deux méthodes de génération des ré-
sidus (le filtre de Kalman dans la sous-figure B.4a et l’espace de parité dans la sous-figure B.4b).
À partir des résultats de simulation, nous pouvons constater que les courbes numériques coïn-
cident parfaitement avec les courbes de Monte Carlo, ce qui confirme la qualité de la méthode
numérique proposée.

B.7.2 Analyse de sensibilité du test FMA

Cette sous-section est consacrée à l’analyse de robustesse du test FMA par rapport à plusieurs
paramètres opérationnels tels que la durée d’attaque, les profils d’attaque, la covariance des
bruits des processus et la covariance des bruits des capteurs.

Sensibilité du FMA par rapport à la durée d’attaque
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(b) Approche avec l’espace de parité de taille fixe.

Figure B.5 – Sensibilité du test FMA par rapport à la durée d’attaque.

La sensibilité du test FMA par rapport à la durée d’attaque est illustrée dans la figure B.5,
pour l’approche de filtre de Kalman (sous-figure B.5a) et l’approche d’espace de parité (sous-
figure B.5b). La probabilité de détection manquée Pmd est tracée en fonction de la pire probabilité
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de fausse alarme Pfa pour différentes valeurs de la vraie durée d’attaque L = {6, 7, 8} ≤ L = 8.
Si la vraie durée d’attaque L est supérieure à sa valeur putative L, la probabilité de détection
manquée Pmd reste intacte puisque toutes les détections avec un retard supérieur à L sont
considérées comme manquées. En revanche, pour L ≤ L, la probabilité de détection manquée
Pmd dépend fortement de la vraie durée d’attaque L. Ce phénomène est expliqué par le fait qu’une
petite durée d’attaque L entraîne un petit changement dans la distribution des observations,
augmentant ainsi la probabilité de détection manquée. D’autre part, la pire probabilité de fausse
alarme Pfa est insensible à la vraie durée d’attaque L. Ce phénomène est due au fait que, dans le
cas d’une fausse alarme, toutes les observations sont générées à partir du mode de fonctionnement
normal du système.

Sensibilité du FMA par rapport aux profils d’attaque
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(b) Approche avec l’espace de parité de taille fixe.

Figure B.6 – Sensibilité du test FMA par rapport aux profils d’attaque. La probabilité de
détection manquée Pmd est tracée comme fonction de la pire probabilité de fausse alarme Pfa
pour différentes valeurs de η = {0.90, 0.95, 1.00, 1.05, 1.10}. Les vrais profils d’attaque sont liés
aux profils putatifs par θj = ηθj , pour 1 ≤ j ≤ L.

La sensibilité du test FMA par rapport aux profils d’attaque est illustrée dans la figure B.6,
pour l’approche avec le filtre de Kalman (sous-figure B.6a) et l’approche avec l’espace de parité
(sous-figure B.6b). Les vrais profils d’attaque sont choisis tels que θj = ηθj , pour 1 ≤ j ≤ L,
où η = {0.90, 0.95, 1.00, 1.05, 1.10}. En d’autres termes, l’amplitude des profils varie de 90%
à 110%, mais la « forme » des profils reste inchangé. De façon similaire au cas précédant, la
pire probabilité de fausse alarme Pfa est insensible aux vrais profils d’attaque puisque toutes
les observations sont générées à partir du mode de fonctionnement normal du système. En
revanche, la probabilité de détection manquée Pmd dépend fortement des vrais profils d’attaque
θj , pour 1 ≤ j ≤ L. Plus petits sont les vrais profils θ1, θ2, · · · , θL, plus grande est la probabilité
de détection manquée Pmd. Ce phénomène peut être expliqué par le fait que les petits profils
d’attaque conduisent à des petits changements dans la distribution des observations, augmentant
ainsi la probabilité de détection manquée Pmd.
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Figure B.7 – Sensibilité du test FMA par rapport aux bruits des processus. La probabilité de
détection manquée Pmd est tracée en fonction de la pire probabilité de fausse alarme Pfa pour
différentes valeurs de η = {0.90, 0.95, 1.00, 1.05, 1.10}. La vraie variance des bruits de processus
est liée à sa valeur putative par Q = ηQ.

Sensibilité du FMA par rapport aux bruits des processus

La sensibilité du test FMA par rapport aux bruits de processus est tracée dans la figure B.7, pour
l’approche avec le filtre de Kalman (sous-figure B.7a) et l’approche avec l’espace de parité (sous-
figure B.7b). Dans chaque sous-figure, la probabilité de détection manquée Pmd est exprimée
comme une fonction de la pire probabilité de fausse alarme Pfa pour différentes valeurs du
coefficient η = {0.6, 0.8, 1.0, 1.2, 1.4}. La vraie variance des bruits de processus est reliée à sa
valeur putative par Q = ηQ. Dans ce cas, la différence Q − Q influe toutes les probabilités
de fausse alarme Pfa et de détection manquée Pmd. Nous pouvons constater, à partir des sous-
figures B.7a et B.7b, que l’approche basée sur le filtre de Kalman est beaucoup plus sensible
aux bruits des processus que l’approche basée sur l’espace parité. Cette conclusion est cohérente
avec celle tirée dans la sous-section B.7.1.

Pour simplifier l’explication, trois isolignes de seuil constant h̃L sont ajoutés à la sous-figure B.7a
(pour le filtre de Kalman) et à la sous-figure B.7b (pour l’espace de parité). Le paramètre de
réglage h̃L est fixé par la sélection d’un point de la courbe correspondant à η = 1.0. La pire
probabilité de fausse alarme Pfa et la probabilité de détection manquée Pmd sont déterminés
en dessinant, respectivement, des lignes pointillées verticales et horizontales à partir du point
sélectionné. Les variations des probabilités d’erreurs (Pfa et Pmd) en raison de la différence
entre la vraie covariance des bruits de processus et sa valeur putative peuvent être estimées en
utilisant l’isoligne croisant le point sélectionné. Par exemple, deux isolignes pour h̃L = 20.7 dans
la sous-figure B.7a et pour h̃L = 18.35 dans la sous-figure B.7b sont utilisées pour déterminer
les variations des probabilités d’erreurs.

Sensibilité du FMA par rapport aux bruits de capteurs

La sensibilité du test FMA par rapport aux bruits de capteurs est illustrée dans la figure B.8,
pour l’approche avec le filtre de Kalman (sous-figure B.8a) et l’approche avec l’espace de parité
(sous-figure B.8b). Dans chaque sous-figure, la probabilité de détection manquée Pmd est décrite
comme une fonction de la pire probabilité de fausse alarme Pfa pour différentes valeurs du
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Figure B.8 – Sensibilité du test FMA par rapport aux bruits de capteurs. La probabilité de
détection manquée Pmd est tracée en fonction de la pire probabilité de fausse alarme Pfa pour
différentes valeurs de η = {0.90, 0.95, 1.00, 1.05, 1.10}. La vraie variance des bruits de capteurs
est liée à sa valeur putative par R = ηR.

coefficient η = {0.8, 0.9, 1.0, 1.1, 1.2}. La vraie covariance des bruits de capteurs est reliée à sa
valeur putative par R = ηR. Il est à noter que la performance statistique du test FMA est
inversement proportionnelle aux bruits des capteurs. Les variations des probabilités d’erreurs
en raison de la différence entre la vraie covariance des bruits de capteurs et sa valeur putative
(R 6= R) peuvent être traiter de la même façon que dans la cas précédent.

B.7.3 Résultats de simulation pour les paramètres partiellement connus

Dans cette sous-section, nous examinons les performances statistiques de plusieurs algorithmes
de détection dans le scénario ou les paramètres sont partiellement connus. Plus précisément, la
« forme » des profils est connue mais leur amplitude est inconnue.

Comparaison entre le test FMA GLR et le test WL GLR

La comparaison entre le test FMA GLR et le test WL GLR, pour l’approche avec le filtre de
Kalman et l’approche avec l’espace de parité, est représenté dans la figure B.9. Deux valeurs de
variance des bruits de processus sont considérées : Q = 0.02 (dans la sous-figure B.9a) et Q = 0.2
(dans la sous-figure B.9b). Dans chaque sous-figure, la probabilité de détection manquée Pmd
est décrite comme une fonction de la pire probabilité de fausse alarme Pfa.

À partir des résultats de simulation, nous pouvons constater que, pour une valeur donnée sur
la pire probabilité de fausse alarme Pfa, la probabilité de détection manquée Pmd du test FMA
GLR est inférieure à celle du test WL GLR, pour l’approche avec le filtre de Kalman ainsi que
pour l’approche basée sur l’espace de parité. En d’autres termes, le test FMA GLR donne des
meilleures performances statistiques que le test WL GLR par rapport au critère de détection
des signaux transitoires. En outre, l’approche avec le filtre de Kalman est plus efficace que
l’approche avec l’espace de parité, particulièrement lorsque les bruits de processus sont petits
(voir la différence dans la sous-figure B.9a et dans la sous-figure B.9b).
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Figure B.9 – Comparaison entre le test FMA GLR et le test WL GLR. La probabilité de
détection manquée Pmd est exprimée comme une fonction de la pire probabilité de fausse alarme
Pfa. Deux valeurs de la variance des bruits de processus sont considérées : Q = 0.02 et Q = 0.2.

Comparaison entre le test FMA WLR et le test WL WLR
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Figure B.10 – Comparaison entre le test FMA WLR et le test WL WLR. La probabilité de
détection manquée Pmd est exprimée en fonction de la pire probabilité de fausse alarme Pfa.
Deux valeurs de la variance des bruits de processus sont considérées : Q = 0.02 et Q = 0.2.

La comparaison entre le tes FMA WLR et le test WL WLR, pour l’approche avec le filtre de
Kalman et l’approche avec l’espace de parité, est représentée dans la figure B.10. Deux valeurs
de la variance des bruits de processus sont considérées : Q = 0.02 (dans la sous-figure B.10a)
et Q = 0.2 (dans la sous-figure B.10b). Dans chaque sous-figure, la probabilité de détection
manquée Pmd est décrite comme une fonction de la pire probabilité de fausse alarme Pfa.
La distribution a priori du paramètre γ est choisie par γ ∼ U (γ0, γ1), où γ0 = 0.5 et γ1 = 1.5.
La simulation est effectuée de la manière suivante. Pour chaque exécution de Monte Carlo, le
paramètre γ est généré à partir de la distribution uniforme γ ∼ U (0.5, 1.5). Les vrais profils
d’attaque sont ensuite calculés à partir de leurs valeurs putatives par θj = γθj , pour 1 ≤ j ≤ L.
Finalement, les algorithmes qui se basent sur l’approche de WLR sont exécutés afin d’obtenir
la probabilité de détection manquée Pmd et la pire probabilité de fausse alarme Pfa.
À partir des résultats donnés dans la figure B.10, nous pouvons conclure que le test FMA WLR
fonctionne beaucoup mieux que le test WL WLR pour les deux approches de génération de
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résidus. Comme précédemment, l’approche avec le filtre de Kalman offre des meilleures perfor-
mances statistiques que l’approche avec l’espace de parité, en particulier pour des petits bruits
des processus. Ce phénomène peut être constaté dans la sous-figure B.10a (pour Q = 0.02) et
dans la sous-figure B.10b (pour Q = 0.2).

Comparaison entre le test FMA GLR et le test FMA WLR
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Figure B.11 – Comparaison entre le test FMA GLR et le test FMA WLR. La probabilité de
détection manquée Pmd est exprimée en fonction de la pire probabilité de fausse alarme Pfa.
Deux valeurs de la variance des bruits de processus sont considérées : Q = 0.02 et Q = 0.2.

La comparaison entre l’approche GLR et l’approche WLR est illustrée dans la figure B.11 où les
performances statistiques du test FMA GLR et celles du test FMA WLR sont présentées. Il est
à noter que les performances statistiques du test FMA WLR dépendent fortement du paramètre
γ puisque les vrais profils d’attaque sont définis par θj = γθj , pour 1 ≤ j ≤ L. Afin de comparer
les deux approches, nous fixons le paramètre γ = 1 pour l’approche WLR. Les paramètres γ0 et
γ1 prennent les valeurs γ0 = 0.5 et γ1 = 1.5, respectivement. À partir des résultats donnés dans
la sous-figure B.11a (Q = 0.02) et dans la sous-figure B.11b (Q = 0.2), nous pouvons constater
que le test FMA WLR offre de meilleures performances statistiques que le test FMA GLR pour
tous les deux méthodes de génération de résidus. Cette phénomène peut être expliqué par le
fait que l’approche WLR utilise l’information a priori sur l’amplitude des profils tandis que
l’approche GLR n’exploite pas cette information essentielle.

B.7.4 Résultats de simulation pour des algorithmes de localisation

Cette sous-section est consacrée à la comparaison des performances statistiques de plusieurs
algorithmes de localisation de signaux transitoires. Nous donnons des résultats de simulation
seulement dans le scénario où ρ12 ≥ max {ρ01, ρ02}. Les lecteurs intéressés peuvent consulter la
version anglaise du manuscrit pour l’autre scénario où ρ12 ≤ min {ρ01, ρ02}. L’instant de rupture
k0 est fixé à k0 = L+ 1 = 9 dans toutes les simulations suivantes.

Comparaison entre le test FMA et les tests classiques

La comparaison entre le test FMA proposé et les tests classiques (WL CUSUM généralisé, WL
CUSUM par matrice et WL CUSUM par vecteur) est présentée dans la figure B.12. Les résultats
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Figure B.12 – Comparaison entre le test FMA proposé et les tests classiques (WL CUSUM
généralisé, WL CUSUM par matrice et WL CUSUM par vecteur). La pire probabilité de fausse
alarme Pfa et la pire probabilité de fausse localisation Pfi sont tracées en fonction de la probabilité
de détection manquée Pmd.

sont obtenus à l’aide de la simulation de Monte Carlo de 2.105 répétitions. La pire probabilité
de fausse alarme Pfa et la pire probabilité de fausse localisation Pfi sont tracées en fonction
de la probabilité de détection manquée Pmd. Les deux méthodes de génération de résidus sont
considérées.
Il peut être remarqué, à partir des résultats de simulation, que pour une valeur donnée sur
la probabilité de détection manquée Pmd, la pire probabilité de fausse alarme Pfa et la pire
probabilité de fausse localisation Pfi du test FMA sont inférieures à celles des tests WL CUSUM.
Autrement dit, le test FMA proposé est plus performant que les tests classiques par rapport au
critère d’optimalité de détection-localisation des signaux transitoires.

Comparaison entre l’approche avec le filtre de Kalman et l’approche avec l’espace
de parité

La comparaison entre l’approche avec le filtre de Kalman et l’approche avec l’espace de parité
est présentée dans la figure B.13. Les probabilités d’erreurs (Pfa et Pfi) sont tracées en fonc-
tion de la probabilité de détection manquée Pmd. À partir des résultats de simulation, nous
pouvons constater que l’approche avec le filtre de Kalman donne des meilleures performances
statistiques que l’approche avec l’espace de parité. Ce phénomène peut être expliqué par le fait
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Figure B.13 – Comparaison entre l’approche avec le filtre de Kalman et l’approche avec l’espace
de parité en utilisant les détecteurs FMA. La pire probabilité de fausse alarme Pfa et la pire
probabilité de fausse localisation Pfi sont tracées en fonction de la probabilité de détection
manquée Pmd.

que la première approche génère des résidus avec les distances de K-L plus élevés que la seconde
approche.

Évaluation des bornes supérieurs du test FMA

Les bornes supérieures des probabilités d’erreurs sont évaluées dans la figure B.14, pour l’ap-
proche avec le filtre de Kalman (sous-figure B.14a) et l’approche avec l’espace de parité (sous-
figure B.14b).
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(b) Approche avec l’espace de parité de taille fixe.

Figure B.14 – Évaluation des bornes supérieures pour les probabilités d’erreurs du test FMA.
Les bornes supérieures pour Pfa, Pfi et Pmd sont tracées en fonction du seuil h.

Les bornes proposées sont comparées avec les probabilités d’erreurs correspondantes qui sont
obtenues par la simulation de Monte Carlo avec 2.105 répétitions. Nous pouvons constater que
la borne supérieure P̃fa pour la pire probabilité de fausse alarme Pfa est extrêmement précise.
En revanche, la borne supérieure P̃fi pour la pire probabilité de fausse localisation Pfi n’est pas
très précise. Enfin, la borne supérieure pour la probabilité de détection manquée P̃md semble
acceptable.
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B.8 Conclusions et perspectives

Cette thèse s’est intéressée au problème de détection et de localisation d’attaques cyber-
physiques sur des systèmes SCADA. Un modèle d’espace d’état à temps discret a été employé
pour décrire les processus physiques. Les actes malveillants ont été modélisées comme des si-
gnaux additifs de durée finie qui agissent sur les deux équations du système, à savoir l’équation
d’état et l’équation d’observations. La prise de décision devait tenir compte des états inconnus
(considérés comme des paramètres de nuisance) et des bruits des processus et des capteurs.
L’approche traditionnelle FDI (Fault Detection and Isolation) a été utilisée pour résoudre ce
problème. Cette approche est composée de deux étapes : la génération des résidus et l’évalua-
tion des résidus. La première étape a pour but de générer une séquence de résidus qui sont
indépendants des paramètres de nuisance. Ensuite, la deuxième étape consiste à déterminer une
rupture dans la séquence des résidus, et éventuellement à identifier le type de changements.

Dans cette thèse, nous avons utilisé deux méthodes classiques pour générer les résidus : le filtre
de Kalman en régime permanent et la projection sur l’espace de parité de taille fixe. Nous avons
proposé un modèle statistique unifié des résidus générés par les deux approches mentionnées.
Cette thèse s’est particulièrement concentrée sur l’évaluation des résidus en se basant sur le
modèle statistique unifié. Nous avons proposé des algorithmes de détection et de localisation des
changements transitoires.

Pour le problème de détection, l’algorithme VTWL CUSUM a été adapté au modèle statistique
unifié pour détecter une rupture dans la séquence des résidus. Le critère d’optimalité vise à
minimiser la pire probabilité de détection manquée sous la contrainte que la pire probabilité de
fausse alarme pour une fenêtre de taille donnée soit inférieure à une valeur prescrite. Comme il
est difficile de résoudre le problème d’optimisation exact, nous avons minimisé la borne supé-
rieure de la pire probabilité de détection manquée pour une valeur donné de la pire probabilité
de fausse alarme dans la classe des tests VTWL CUSUM. Il a été démontré que le test VTWL
CUSUM optimisé était équivalent à l’algorithme de la Moyenne Glissante Finie (Finite Moving
Average ou FMA). De plus, nous avons proposé une méthode numérique pour estimer les pro-
babilités d’erreurs du test FMA et du test VTWL CUSUM. Surtout, cette méthode numérique
a été exploitée pour examiner la robustesse du test FMA par rapport à plusieurs paramètres
opérationnels. Finalement, nous avons considéré aussi un scénario plus réaliste où la « forme »
des profils est connue exactement mais leur amplitude est inconnue. L’approche du rapport de
vraisemblance généralisé (GLR) et l’approche du rapport de vraisemblance pondérée (WLR) ont
été envisagées pour résoudre le problème, ce qui a conduit au test VTWL GLR et au test VTWL
WLR. Il a été démontré que le test VTWL GLR optimisé et le test VTWL WLR optimisé sont
équivalent au test FMA GLR et au test FMA WLR, respectivement.

Pour le problème de détection-localisation conjointe de changements transitoires, un modèle
statistique unifié a été développé et un nouveau critère d’optimalité a été proposé. Plusieurs
algorithmes classiques de détection-localisation ont été considérés pour détecter l’instant de
rupture et identifier le type du changement transitoire. Notamment, nous avons proposé un
algorithme basé sur la Moyenne Glissante Finie (FMA) adaptée au problème de localisation de
signaux transitoires. Les bornes supérieures pour des probabilités d’erreurs du test FMA ont été
obtenues.

Les résultats théoriques sont appliqués à la détection et à la localisation des attaques cyber-
physiques dans un réseau SCADA de distribution d’eau potable. Les conclusions suivantes
peuvent être déduites des résultats de simulation. Premièrement, les tests FMA (pour le pro-
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blème de détection et également celui de localisation) sont nettement plus performants que
les tests classiques par rapport au critère d’optimalité de détection des signaux transitoires.
Deuxièmement, l’approche avec le filtre de Kalman en régime permanent offre de meilleures per-
formances statistiques que l’approche par projection sur l’espace de parité de taille fixe lorsque
les paramètres sont parfaitement connus. Cependant, le filtre de Kalman est plus sensible aux
bruits des processus que la projection sur l’espace de parité. Dans les scénarios où la vraie valeur
de la covariance des bruits des processus est plus grande que sa valeur putative, la projection
sur l’espace de parité peut offrir de meilleurs résultats que le filtre de Kalman. Finalement, une
méthode numérique est proposée pour estimer les probabilités d’erreurs ainsi que pour examiner
la robustesse du test FMA par rapport aux paramètres opérationnels.

Avant de clore ce manuscrit, nous aimerions suggérer plusieurs points d’approfondissement, pour
les perspectives à court terme ainsi que pour celles à long terme. Dans un premier temps, nous
pouvons envisager les travaux suivants :

• Problème de détection : Le problème de détection de changements transitoires peut être
approfondi de la façon suivante. La première tâche consisterait à rechercher le test optimal
(ou le test asymptotiquement optimal) par rapport au critère d’optimalité pour la détection
de changements transitoires. La deuxième tâche devrait se concentrer sur la détection des
signaux transitoires avec des profils variables. La tâche finale consisterait à détecter des
changements transitoires complètement inconnus.

• Problème de localisation : Nous pouvons poursuivre le problème de localisation de change-
ments transitoires par les travaux suivants. Premièrement, il serait intéressant de recher-
cher un test sous-optimal ou asymptotiquement optimal par rapport au critère d’optimalité
proposé. Deuxièmement, il serait utile d’évaluer la probabilité de fausse alarme et la pro-
babilité de fausse détection séparément. Finalement, un calcul plus précis de la borne
supérieure pour la pire probabilité de fausse localisation serait très pertinent.

Dans un deuxième temps, nous pouvons envisager les approches suivantes :

• Approche non-paramétrique : Le modèle paramétrique peut être difficile à obtenir dans de
nombreuses situations. L’incertitude du modèle peut conduire à une dégradation extrême
de la performance statistique des algorithmes de détection et de localisation. Par contre,
l’approche non-paramétrique ne nécessite pas de connaître les modèles du système et des
attaques. Les méthodes non-paramétriques sont basées sur l’analyse des données observées.
Le problème de détection peut être résolu en appliquant des techniques de classification
mono-classe alors que les méthodes de classification multi-classes peuvent être utilisées
pour le problème de localisation.

• Approche semi-paramétrique : L’approche paramétrique utilisée dans ce manuscrit dé-
pend fortement des modèles des systèmes SCADA et des attaques cyber-physiques. Par-
fois, ces modèles paramétriques sont difficiles à obtenir. D’un autre côté, l’approche non-
paramétrique ne s’intéresse pas véritablement au fonctionnement des systèmes SCADA,
c-à-d à l’interaction entre les processus physiques et le centre de contrôle via les cyber-
composants. Par conséquent, l’approche semi-paramétrique serait une combinaison natu-
relle de l’approche paramétrique et de l’approche non-paramétrique. En général, un modèle
semi-paramétrique se compose de deux parties : une partie paramétrique et une autre par-
tie non-paramétrique. La partie paramétrique contient les phénomènes qui peuvent être
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Appendix B. Résumé en Français

décrits avec un modèle ayant un nombre limité de paramètres inconnus tandis que la partie
non-paramétrique comprend les informations sur les phénomènes non-modélisés.
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Détection et localisation séquentielle 
d’attaques cyber-physiques aux sys-
tèmes SCADA 
 
Cette thèse s’inscrit dans le cadre du projet « SCALA 
» financé par l’ANR à travers le programme ANR-11-
SECU-0005. Son objectif consiste à surveiller des 
systèmes de contrôle et d’acquisition de données 
(SCADA) contre des attaques cyber-physiques. Il 
s'agit de résoudre un problème de détection-
localisation séquentielle de signaux transitoires 
dans des systèmes stochastiques et dynamiques en 
présence d'états inconnus et de bruits aléatoires. La 
solution proposée s'appuie sur une approche par 
redondance analytique composée de deux étapes : la 
génération de résidus, puis leur évaluation. Les 
résidus sont générés de deux façons distinctes, avec 
le filtre de Kalman ou par projection sur l’espace de 
parité. Ils sont ensuite évalués par des méthodes 
d’analyse séquentielle de rupture selon de nouveaux 
critères d’optimalité adaptés à la surveillance des 
systèmes à sécurité critique. Il s'agit donc de mini-
miser la pire probabilité de détection manquée sous 
la contrainte de niveaux acceptables pour la pire 
probabilité de fausse alarme et la pire probabilité de 
fausse localisation. Pour la tâche de détection, le 
problème d’optimisation est résolu dans deux cas : 
les paramètres du signal transitoire sont complète-
ment connus ou seulement partiellement connus. 
Les propriétés statistiques des tests sous-optimaux 
obtenus sont analysées. Des résultats préliminaires 
pour la tâche de localisation sont également propo-
sés. Les algorithmes développés sont appliqués à la 
détection et à la localisation d'actes malveillants 
dans un réseau d’eau potable. 
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Sequential Detection and Isolation of 
Cyber-physical  Attacks  on  SCADA  
Systems  
 
This PhD thesis is registered in the framework of the 
project “SCALA” which received financial support 
through the program ANR-11-SECU-0005. Its ulti-
mate objective involves the on-line monitoring of 
Supervisory Control And Data Acquisition (SCADA) 
systems against cyber-physical attacks. The prob-
lem is formulated as the sequential detection and 
isolation of transient signals in stochastic-
dynamical systems in the presence of unknown 
system states and random noises. It is solved by 
using the analytical redundancy approach consisting 
of two steps: residual generation and residual eval-
uation. The residuals are firstly generated by both 
Kalman filter and parity space approaches. They are 
then evaluated by using sequential analysis tech-
niques taking into account certain criteria of opti-
mality. However, these classical criteria are not 
adequate for the surveillance of safety-critical infra-
structures. For such applications, it is suggested to 
minimize the worst-case probability of missed de-
tection subject to acceptable levels on the worst-
case probability of false alarm and false isolation. 
For the detection task, the optimization problem is 
formulated and solved in both scenarios: exactly and 
partially known parameters. The sub-optimal tests 
are obtained and their statistical properties are 
investigated. Preliminary results for the isolation 
task are also obtained. The proposed algorithms are 
applied to the detection and isolation of malicious 
attacks on a simple SCADA water network. 
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