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Abstract

In this Thesis, we propose a statistical framework to analyse morphological and
organisational anomalies altering the anatomy of the neural circuits of the brain in
neurodevelopmental disorders. We evaluate it on a disease model about Gilles de la
Tourette syndrome (GTS). Every circuit is composed of white matter projections
and grey matter structures which are all virtually represented as 3D meshes. All
components of the neural circuits are then integrated into a single complex. This
makes possible to study their organisation, namely their relative position, and in
particular the structural connectivity (i.e. the areas of the grey matter structures
integrated by white matter �bers). Moreover, the use of meshes facilitates the
visualisation of the circuits and the interpretation of their pathological alterations.

The proposed methodology is based on a generative model. Given a population,
the neural circuits of each subject are modelled as a deformed template complex
plus a residuals noise. The template complex captures the common morphological
characteristics within the population and it can be thought as an average. The
deformations, usually de�ned as di�eomorphisms of the entire ambient space, model
instead the morphological variability of the population. The joint estimate of the
template complex and deformations is called atlas construction.

In the �rst part of this Thesis, we propose a Bayesian framework to embed the
aforementioned generative model. It is general and it can be applied to any para-
metric deformation framework and to all shape models with which is possible to
de�ne probability density functions. Using this framework, we can automatically
estimate important balancing parameters which were �xed by the user in previous
methods not based on a statistical setting, namely the trade-o� between data-terms
and deformation regularity. Moreover, it is also possible to estimate from the data
a well-conditioned covariance matrix of the deformation parameters which can be
directly employed in statistical analysis such as Principal Component Analysis. Fur-
thermore, we propose to model both curve and surface meshes as Gaussian random
varifolds for which we de�ne �nite-dimensional approximation spaces where it is
possible to de�ne probability density functions. This computational model does not
need point-correspondences and it has a closed-form metric easily derivable.

In the second part, we de�ne a computational model for white matter �ber
bundles called weighted currents. Similarly to currents, it does not need point
correspondences or �ber correspondences and it augments its de�nition taking into
consideration not only the pathway of the �bers but also the locations of their
extremities. This makes thus possible to correctly register also the extremities
of the bundles in the template-to-subjects deformations and not only the most
dense parts of the bundles as in currents. This is fundamental to retrieve the
variations in structural connectivity. Moreover, we also propose an approximation
scheme for �ber bundles based on the framework of weighted currents. It results
in a parsimonious representation which preserves both the shape and the structural
connectivity of the original bundles. It facilitates the visualisation and interpretation
and it makes it computationally possible to consider at the same time multiple �ber



bundles and grey matter structures in an atlas construction.
In the last part, we describe a new deformation scheme based on a cascade of

two di�eomorphisms. It allows us to locate variations in structural connectivity
and at the same time to capture global anatomical changes. This was not possible
with previous single-di�eomorphic deformations. The proposed deformation setting
is integrated into the Bayesian atlas construction previously presented. We show
its e�ectiveness by comparing the cortico-putamen circuits of a group of GTS pa-
tients with the ones of a group of controls. Preliminary results highlight di�erences
about both the shape of the grey matter structures and the structural connectivity.
Moreover, we also show that the proposed approach leads to better classi�cation
scores than a single di�eomorphic method. This suggests that it might better char-
acterise the anatomical alterations associated to GTS and therefore also improve
our understanding of the pathophysiological mechanisms underlying this syndrome.
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1.1 Atypical brain con�guration in neurodevelop-

mental disorders

Neurodevelopmental disorders such as autism (Belger et al., 2011; Tye and Bolton,
2013), attention de�cit-hyperactivity disorder (ADHD) (Konrad et al., 2010; Xia
et al., 2012) or Gilles de la Tourette syndrome (GTS) (Liu et al., 2013; Worbe
et al., 2015) are characterised by an atypical brain development which is thought
to be associated to a di�erent �wiring� architecture of the white matter with re-
spect to healthy subjects. This would involve dysfunctions of the cortico-striato-
thalamo-cortical (CSTC) circuits of the brain which could underlie the pathological
symptoms.

The CSTC neural loops, schematically represented in Fig.1.1, are topographi-
cally and functionally well separated into sensorimotor, associative and limbic cir-
cuits which are implicated in motor, cognitive and motivational aspect of behaviour
respectively (Alexander et al., 1986). Every circuit is composed of neural projections
from several functionally related cortical areas which are sent to restricted portion
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Chapter 1. Introduction

of the striatum (caudate nucleus and putamen). These striatal regions send further
projections to the globus pallidus and substantia nigra, which in turn project to
a speci�c region of the thalamus. Each thalamic region projects back to one (or
more) cortical areas. The role of the basal ganglia and thalamus is to integrate
the information coming from di�erent inputs of the entire cerebral cortex and to
"funnel" back these in�uences again to particular areas of the cortex.

Figure 1.1: Schematic diagram illustrating the three main cortico-striato-thalamo-
cortical circuits. Figure taken from (Krack et al., 2010).

Dysfunctions in these circuits are thought to be associated with organisational
and morphological alterations of their anatomical components. The analysis of the
con�guration of these structures, namely their relative position, implies a systemic
approach. All the components of the circuits, from both white and grey matter,
need to be studied as a whole and not as a set of independent components.

Moreover, neurodevelopmental disorders are characterised by an important clin-
ical heterogeneity. Each symptom is thought to be related to a speci�c pattern of
anatomical alterations (Tuite and Dagher, 2013). Thus, it seems more likely that a
syndrome would present a range of abnormalities rather than a single speci�c one.
This pathological variability would be added to the normal variability presents in
the healthy population.

The analysis of neurodevelopmental disorders need therefore holistic and statis-
tical approaches to estimate the typical brain con�guration associated to a disorder
and its variability. This should then be compared with the characteristic organisa-
tion of a population of healthy controls in order to distinguish the normal variations

2



1.2. Gilles de la Tourette syndrome

from the pathological ones. Alterations should be clearly localised, quanti�ed and
characterised in order to be easily interpreted by clinicians and permit to better
characterise the pathophysiological mechanisms underlying the disorder.

Furthermore, the estimated typical organisations of both patients and healthy
controls, together with their variability, could be employed to classify the con�gu-
ration of a new patient in order to improve the diagnostic accuracy.

To this end, we propose in this thesis a computational and statistical framework
to analyse morphological and organisational anomalies altering the anatomy of the
neural circuits in neurodevelopmental disorders and we evaluate it on a disease
model about Gilles de la Tourette syndrome.

1.2 Gilles de la Tourette syndrome

Gilles de la Tourette syndrome (GTS) is a heritable, childhood onset, neuropsychi-
atric disorder characterized by the presence of sudden, rapid, recurrent and non-
rhythmic movements (motor tics) or vocalisations (phonic tics) (Hallett, 2015). In
more than 80-90% of patients, tics are accompanied by psychiatric comorbidities
such as obsessive-compulsive disorder (OCD) (Kimber, 2010). Typically the disor-
ders begin in early childhood (6-7 years) with transient bouts of simple motor tics
which are usually followed several years later by phonic tics. Tics may initially wax
and wane but eventually they become persistent reaching the maximum severity at
an age around 10-12 years. After that there is usually a steady decline in symptoms
(Leckman, 2002; Jankovic and Kurlan, 2011). Once thought to be rare, current
estimates change this view. GTS occurs in all countries, ethnic groups and social
classes and epidemiological studies suggest that its overall prevalence could be as
high as 1% of the general paediatric population in most countries (Leckman, 2002;
Stern et al., 2005; Jankovic and Kurlan, 2011).

The exact aetiology of GTS is still unclear as well as its underlying pathophys-
iological mechanisms (Worbe and Hartmann, 2013). Di�erent living environment
and lifestyle factors are thought to be implicated in the development of GTS (Mc-
Naught and Mink, 2011). Genetic factors have also a major role and the clinical
heterogeneity of this syndrome suggests that it might be related to di�erent genes
and to several genetic variants. Unfortunately, at present the genes that predispose
individuals to develop the disorder are unknown (Leckman, 2002).

1.3 Driving hypothesis about GTS pathophysiology

In the last years, there has been an increasing interest for the neuroanatomical
causes of this syndrome due also to the arrival of new high-resolution imaging tools.
Di�erent hypotheses have been proposed. Among them, inference from various
approaches support that GTS is associated with dysfunctions of the cortico-striato-
thalamo-cortical (CSTC) circuits (Worbe et al., 2015; Singer, 2013; Ganos et al.,
2013; McNaught and Mink, 2011). According to that, GTS symptoms would arise
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Chapter 1. Introduction

due to an atypical integration of information which would be associated to anatom-
ical and functional abnormalities in the CSTC circuits. Alterations could be the
result of a di�erent brain maturation in GTS patients. In a typical brain develop-
ment there is an initial increase in the number of neural connections which is followed
by a selective pruning during brain maturation which optimizes the e�ciency of the
neural connections. An erroneous pruning in GTS, together with defects in the
axonal myelinization, could lead to less e�cient CSTC circuits and consequently
also to the development of the symptoms. The heterogeneous clinical expression
of GTS could be explained by dysfunctions impairing di�erent CSTC circuits. For
instance, simple tics are thought to be associated with abnormalities in the motor
circuit (Worbe et al., 2010; Fahim et al., 2010; Sowell et al., 2008) whereas complex
tics could be linked to dysfunctions of the associative circuit (Worbe et al., 2010;
Neuner et al., 2010) and the presence of psychiatric co-morbidities, such as OCD
and ADHD, could instead be associated with abnormalities in the limbic circuit
(Peterson et al., 2007; Worbe et al., 2010).

These hypotheses were corroborated by experiments based on primate models
(Worbe et al., 2009, 2013). Micro-injections of bicuculline, a γ-aminobutyric acid
(GABA)ergic antagonist, were performed in di�erent locations of the CSTC circuits
to a group of 8 monkeys. These injections induced neuronal perturbations similar
to three GTS symptoms, namely tic-like movements, hyperactivity and stereotyped
behaviours. To localize the neurons perturbed by the bicuculline, the authors per-
formed injections of axonal tracers followed by an histological analysis. It was shown
that animals with abnormal movements resembling to simple motor tics had dys-
functions in the premotor and sensorimotor circuits. Instead, monkeys presenting
behavioural disorders resembling to complex tics and compulsions had dysfunctions
in the associative and limbic circuits.

These results were consistent with the aforementioned hypothesis but, as pointed
out by the authors, they can not be directly translated to humans. Post-mortem
studies in humans, like in (Kataoka et al., 2010), have also corroborated this hy-
pothesis. Unfortunately, the small sample size of brain specimens, the large clinical
heterogeneity of GTS, the presence of comorbidities and its evolution with age can
confound the clinical conclusions. Nowadays, the precise mechanisms of the dys-
functions acting on the CSTC circuits are still poorly understood.

For this reason, the role of neuroimaging has already become fundamental since
it is a non-invasive and painless technique which could help answering fundamental
questions such as �Which are the anatomical abnormalities associated to the dys-
function of the CSTC circuits?� and more importantly �Where are they located and
which is their extent?�

1.4 The role of structural and di�usion imaging

Structural and di�usion imaging studies seek to characterise the anatomy of the
brain and the abnormalities associated to a pathology.
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1.4. The role of structural and di�usion imaging

Magnetic Resonance Imaging (MRI) is a radiologist technique used to visualize
internal structures of the body in detail. It makes use of the property of nuclear
magnetic resonance (NMR) to produce high quality two- or three-dimensional im-
ages. Di�erent modalities exist and two of the most employed are the T1-weighted
(T1-w) and the di�usion MRI (dMRI). The �rst one provides an excellent soft tissue
contrast which is especially useful for characterising the anatomy of both grey and
white matter in the brain. The second one provides instead images whose contrast
is in�uenced by the di�erences in water molecule di�usivity and it is used to study
the micro-structure and the organisation of the white matter axons.

Di�erent studies based on these two modalities have already produced a reason-
able body of evidence consistent with the aforementioned hypothesis about GTS.
For instance, morphometric studies on T1-w scans have shown a volume reduction
in the caudate and in the sensorimotor, parietal, orbitofrontal and anterior cingulate
cortical areas. Moreover, it was also reported an enlarged hippocampus, amygdala,
putamen and corpus callosum in GTS patients (Felling and Singer, 2011). These
results were obtained by comparing scans of healthy subjects (controls) with GTS
patients using mainly two techniques. The �rst one is based on the comparison of
morphometric measurements, such as the volume, of single and clearly de�ned grey
matter structures of the circuits (i.e. caudate and putamen) which are manually or
automatically segmented (Felling and Singer, 2011; Peterson BS et al., 2003). This
technique produces results which are rather easy to interpret but they give just an
overall insight on the pathological anatomical e�ects of GTS without being able to
reveal the exact location of the abnormalities and whether inter-linked neighbour
components are also a�ected.

The second technique is called Voxel-Based Morphometry (VBM) (Ashburner
and Friston, 2000) and it is based on non-rigid registrations of the structural scans
of both controls and patients to a reference scan called template. This permits to
bring all the scans in the same reference frame allowing a voxel-wise comparison
between the deformed images. After segmenting every subject scan into di�erent
tissue types and smoothing the resulting segmentations, mass-univariate statistics
are used to detect statistically signi�cant di�erences in the local concentration of
grey matter between the two groups. A similar approach, called Tensor-Based
Morphometry (TBM) (Davatzikos et al., 1996), uses instead the deformations to
quantify and model the anatomical di�erences between subjects. It is based on the
comparison of the Jacobian matrix �elds of the deformations (or their determinants)
using multi-variate (or mass univariate) statistics. These two techniques can also
be combined in an augmented version of VBM where every voxel of the deformed
image is multiplied by its volume change which is encoded in the Jacobian deter-
minant of the deformation �eld (Ashburner and Friston, 2000). In this way it is
possible to compare the absolute amount of gray matter instead than the relative
concentration of grey matter with respect to the other tissues like white matter.
These methods do not focus on single structures and they result in a comprehen-
sive evaluation of anatomical alterations across the whole brain. However, they can
investigate only focal di�erences at each voxel without taking into consideration
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Chapter 1. Introduction

the organisation of the di�erent components. Moreover, these techniques are highly
sensitive to misalignement and misclassi�cation errors which can bring to erroneous
interpretations. Their target is usually the grey matter but they could be used to
examine also the volume variations in the white matter. However, white matter in
T1-w scans is usually characterized by large homogeneous regions with only subtle
changes in intensity.

For this reason, white matter is predominantly analysed with dMRI scans where
the di�usion at each voxel is modelled as a tensor (Di�usion Tensor Imaging -
DTI) or using more accurate model-free approaches such as Q-Ball Imaging (QBI)
(Tuch, 2004) which can resolve intra-voxel �ber crossing, contrarily to DTI. White
matter microstructure is then characterised by scalar quantities such as fractional
anisotropy (FA) (Pierpaoli and Basser, 1996) or generalized fractional anisotropy
(GFA) (Tuch, 2004; Cohen-Adad et al., 2008) which are based on DTI and QBI re-
spectively. They de�ne the anisotropy level of di�usion at each voxel and they can
be interpreted as measures of the structural integrity of the �ber bundles. These
quantities can be compared voxel-wise across groups of subjects using VBM or
TBSS (Tract-based spatial statistics) (Smith et al., 2006). The latter method, sim-
ilarly to VBM, starts by aligning all FA (or GFA) images to a template using a
cascade of a�ne and non-linear registration. These images are then projected to a
�skeletonised� mean FA (or GFA) image, which represents the centres of all tracts
common to the group of subjects, where mass-univariate statistics are carried out.
Di�erently from VBM, this technique permits to avoid the image smoothing step,
where it is still unclear how to �x the optimal smoothing parameter, and it is sup-
posed to reduce the registration errors thanks to the projection to the mean FA
(or GFA) image. Both techniques have been employed for studying GTS and with
VBM it was shown a decrease in FA in the corticospinal tract, internal capsule and
corpus callosum as well as an increase in the white matter underlying the ventral
and posteriolateral part of the thalamus in patients subject to GTS (Thomalla et al.,
2009; Neuner et al., 2010) whereas it was shown no di�erences in FA using TBSS
(Govindan et al., 2010). However, in another study based on TBSS (Liu et al.,
2013), the authors found a signi�cant axial di�usivity (AD) and mean di�usivity
(MD) increases in the right anterior thalamic radiation.

1.5 A holistic approach

Grey and white matter are thus usually studied separately and independently using
either T1-w or dMRI scans respectively. However, due to the interwoven nature of
the brain, the syndrome of Gilles de la Tourette is supposed to a�ect all the compo-
nents of the circuits, namely both grey matter structures such as sub-cortical nuclei
and cortical surface as well as their inter-linking white matter tracts. Associated
abnormalities could alter the shape of each one of these components as well as their
relative position. Following Dryden and Mardia (1998), we de�ne the shape of a
structure as the geometrical information invariant to the Euclidean similarity trans-
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formations. This implies that two structures have the same shape if the �rst one can
be transformed into the second one using only translations, scaling and rotations.
When analysing an anatomical complex, such as the CSTC circuits, abnormalities
can a�ect also the position of a structure with respect to the other ones, namely
their relative position. For instance, a dysfunction of the �ux of information in the
CSTC circuits can modify the location where white matter tracts integrate grey
matter structures, namely the structural connectivity, as well as the spatial organ-
isation of the sub-cortical nuclei. These anatomical alterations could be captured
only analysing the CSTC circuits as a whole, that is studying both grey and white
matter structures simultaneously.

As previously seen, this would imply that the information about the grey mat-
ter structures captured from T1-w scans should be combined with the information
about white matter from dMRI scans. However, it is still unclear how to consis-
tently integrate these two di�erent imaging modalities into a single computational
framework. Few integrative multi-modal approaches have been proposed. Two ex-
amples are (Avants et al., 2010) and (Savadjiev et al., 2014) where the authors
proposed to investigate the relationship between geometrical characteristics of grey
and white matter using correlation analysis and mutual information respectively.
These approaches can show statistically related abnormalities in grey and white
matter which can help to clarify how a certain syndrome acts on the whole brain.
However, these methods independently extract only speci�c morphological charac-
teristics from each scan which are then statistically related. This does not permit
to take into consideration the organisation of the circuits and the conclusions that
can be drawn are limited to the morphological characteristics chosen (i.e. volume,
grey matter concentration, FA).

In this thesis, we follow a di�erent strategy which allows us to integrate the
information of di�erent modalities into a single virtual representation of the brain
anatomy. We propose to shift the morphological analysis from images to complexes
of 3D meshes segmented from the di�erent structural scans. In the case of CSTC cir-
cuits, cortical surface and sub-cortical nuclei are segmented from T1-weighted scans
and they are modelled as 3D surfaces. Estimates of the trajectories of large groups
of white matter neural axons are instead traced from dMRI scans using tractography
algorithms and they are modelled as bundles of 3D curves called streamlines. An
example of anatomical complex of 3D meshes is shown in Fig.1.2. Tractography is
the only non invasive way to model the white matter architecture and therefore it is
also the only technique capable to capture the information about structural connec-
tivity. Studying how and where neural �bers integrate the grey matter structures is
essential in order to understand which are the functional areas implicated in the ab-
normal brain development of GTS and how this syndrome modify the organisation
of the CSTC circuits.

The proposed approach permits to visualise and analyse all the components of
the CSTC circuits as a single complex. Our goal is to verify and, if con�rmed,
even localize and describe the presence of anatomical abnormalities associated to
GTS within the CSTC circuits. This can be achieved by comparing two groups
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of anatomical complexes representing the CSTC circuits of controls and patients
respectively. The �rst step is to de�ne a computational model and metric for both
3D curve and surface meshes to compare the representations of the circuits across
individuals. This model should then be integrated into a statistical framework to
characterise the invariants and the organisational and morphological variability of
each clinical group. Eventually, we should be able to compare these statistics in
order to localize and quantify the potential abnormalities a�ecting the GTS group.
Furthermore, the use of a statistical method also increases the robustness of the
results with respect to possible imperfections due to segmentation or tractography
errors. Since these errors should not be systematic, they should not in�uence (or at
least to a smaller extent) the estimate of the common morphological and organisa-
tional characteristics as well as their variability.

It is important to say that another possible strategy would be to use an iconic-
geometric approach using both images and meshes like in Siless et al. (2012); Gra-
ciano Fouquier et al. (2014). However, these strategies have been used so far just to
improve the accuracy of image-based registrations. Moreover, results based on im-
ages and meshes would be more di�cult to visualise, and therefore also to interpret,
than using only meshes as proposed in this thesis.

Figure 1.2: Two views of the same anatomical complex of 3D meshes representing
the caudate, putamen and thalamus of the left hemisphere of the cortex in red,
yellow and blue respectively. Streamlines connecting these three sub-cortical nuclei
to the left hemisphere of the cortex are also shown with darker colours. Fibers stem
from a deterministic tractography and they have been uniformly downsampled for
visualisation purpose. B=back of the head, F= front of the head.

1.6 Mesh-based morphometry

A 3-dimensional surface mesh is composed of connected polygonal faces (usually
triangles) which recreate the 3D shape of the grey matter objects. Meshes are built

8
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starting from the outlines of the structures on each MRI scan, namely the segmen-
tation results, using algorithms such as marching cubes (Lorensen and Cline, 1987).
Curve meshes resulting from tractography algorithms are called streamlines, they
link two areas of the dMRI scans and they are constituted of segments connecting
neighbouring voxels. In this thesis we will consider only streamlines connecting two
grey-matter structures of the CSTC circuits.

1.6.1 Computational models for complexes of 3D meshes

Di�erent computational models for both surface and curve meshes have been pro-
posed and probably the most well known is the point distribution model (Cootes
et al., 1995). It relies on the de�nition of consistent point correspondences (land-
marks) between meshes of di�erent subjects. They can be either manually identi-
�ed by an expert (Bookstein, 1997) or automatically estimated using, for instance,
dynamic particles (Cates et al., 2008) or by propagating the landmarks of an at-
las through an a�ne (Brett and Taylor, 1998) or non-rigid transformation (Frangi
et al., 2002). Landmarks have been used mainly for 3D surface meshes since �nding
point-correspondences between white matter �ber bundles composed of hundreds of
thousands of streamlines is a di�cult, if not impossible, task especially when the
streamlines do not share a similar length and starting/ending anatomical locations.

Several extensions of this method have been proposed and they are based on
correspondences de�ned using other shape parametrisations such as spherical har-
monics (Brechbühler et al., 1995), minimum-description length (Davies et al., 2002),
skeleton-based representations (Golland et al., 1999), m-reps (Yushkevich et al.,
2001), cubic B-splines (Corouge et al., 2006) and Fourier descriptors (Székely et al.,
1996; Batchelor et al., 2006). These shape descriptors have been broadly and success-
fully employed to analyse several brain structures in both single- and multi-object
studies. However, most of them are conceived for only a particular kind of mesh,
i.e. genus-zero surfaces (Lu et al., 2007; Gorczowski et al., 2010) or streamlines
(O'Donnell et al., 2012), which prevents the integration of all the components of the
CSTC circuits in a uni�ed framework.

In contrast to previous shape parametrisations, the frameworks of currents
(Glaunès, 2005; Vaillant and Glaunès, 2005; Durrleman, 2010) and varifolds (Charon
and Trouvé, 2013b) are not limited to a speci�c kind of mesh and they do not need
point-correspondences or streamline-correspondences when dealing with white mat-
ter �ber bundles. The framework of varifolds can be seen as the non-oriented version
of the one of currents, in the sense that meshes do not need a consistent orientation
among subjects. These models can thus provide a unifying framework to process
all the components of the CSTC circuits. Moreover, they embed all structures in
a Hilbert space which means that, for instance, the union of di�erent streamlines
forming a �ber bundle is modelled as a sum of vectors. This simpli�es standard
computations such as norms, distances and calculus making these frameworks two
valid candidates on which ground the subsequent statistical shape analysis.

Eventually, an important characteristic of shape descriptors is their computa-
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tional e�ciency, namely the computational load required to process the modelled
meshes. In the case of white matter �ber bundles this is fundamental since the
huge number of streamlines resulting from tractography algorithms can make any
analysis infeasible. To this end, di�erent parsimonious representations have been
proposed (see Chapter 3 for a small review) such as the one in Durrleman et al.
(2011a) based on a matching-pursuit algorithm for currents. This approximation
is very concise but it has the drawback to accurately approximate only the areas
of the bundle characterised by a high density of streamlines, like the central mass,
almost ignoring the external smaller fascicles. Moreover, this approximation does
not conserve the topology of streamlines since it can be seen as a set of disconnected
points. This prevents the study of structural connectivity and therefore it can not
be used to test the aforementioned hypothesis about GTS.

1.6.2 Statistical shape analysis of complexes of 3D meshes

Once described how to mathematically represent the structures of an anatomical
complex and how to measure a distance between them, one needs to de�ne how to
statistically analyse their morphological and organisational variability within each
clinical group. Di�erences between the two groups will characterise the abnormali-
ties related to GTS.

The �rst step of a statistical shape analysis is to globally align all the com-
plexes using rigid or a�ne transformations in order to �lter out the uninformative
shape variability1. Transformations are applied to all the structures of the complex
at the same time and the remaining di�erences regard the local relative position
between components and their individual shape. The alignment can be obtained
using, for instance, Procrustes analysis (Dryden and Mardia, 1998) which is based
on the minimisation of the sum-of-squared distances between the structures with
respect to the similarity transforms chosen. Distances are de�ned as the standard
Euclidean metrics when dealing with landmarks and as geodesic distances based on
appropriate Riemannian metrics when dealing with other shape descriptors such as
m-reps (Gorczowski et al., 2010).

Once all complexes are in the same reference frame it is possible to compute the
mean con�guration and the main morphological variations of the population based
on a Principal Component Analysis (PCA) when working with Euclidean vector
spaces (i.e. landmarks) or Principal Geodesic Analysis (PGA) when complexes lie
on nonlinear Riemannian spaces (Fletcher et al., 2004). Average con�gurations and
main modes of variations of the two clinical groups can be compared in order to lo-
calize and quantify the abnormalities. Otherwise, di�erences can also be visualised
by deforming the average con�guration of one clinical group towards the orthog-
onal direction to the most discriminative hyperplane in the feature space, namely
the direction that best separates the two clinical groups. The feature space can
be composed by the parameters describing the shape of each individual component

1Depending on the hypothesis of the study, scaling can be an important feature.
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and/or their relative position, depending on the hypothesis to test. This strategy
is not computationally intensive and the results are easy to interpret but it has
the drawback that it does not take into consideration the fact that the anatomical
organisation of the circuits should not change, namely that separated structures
should not intersect, when computing the average, the main morphological varia-
tions or when deforming the average con�guration towards the most discriminative
direction.

From a di�erent perspective, rooted in the seminal book of D'Arcy Wentworth
Thompson (D'Arcy Wentworth, 1917), Grenander proposed to quantify the mor-
phological di�erences between two anatomical complexes as the �amount� of defor-
mation needed to warp the �rst one to the second one. Moreover, he proposed also
a generative statistical model where every complex of a population is modelled as a
deformation of a common anatomical complex called template complex (Grenand-
ner, 1993; Miller et al., 1993; Christensen et al., 1996; Grenander and Miller, 1998;
Allassonnière et al., 2007). Deformations act on the entire ambient space and they
modify the template complex such that it resembles to the subject complexes putting
into correspondence the components of the template complex with the homologous
ones of the subjects. Similarity between correspondent structures is de�ned by the
metric of the computational models previously described. First examples used a
�xed template chosen a priori like the Talairach atlas (Davatzikos et al., 1996) or
a randomly-selected subject (Csernansky et al., 1998). However, this kind of tem-
plates might have imperfections due to segmentation errors and they might not
be �centred� with respect to the population under study, biasing consequently the
whole analysis. Later works have thus proposed to automatically estimate the tem-
plate without imposing it at the beginning (Joshi and Miller, 2000; Qiu et al., 2010;
Durrleman et al., 2014). The joint estimate of the template complex and the defor-
mations has been called: atlas construction.

In this setting, the template complex captures the common morphological char-
acteristics of the population, and it can be thought as an average. The deformations
model instead how each subject varies with respect to this average and they rep-
resent therefore the morphological variability of the population. It is important
to highlight that this framework is generic and it can be applied with any kind of
mesh and shape parametrisation, on condition that they are compatible with the
type of deformation employed, and even with T1-w images like in Joshi and Miller
(2000); Avants and Gee (2004); Bhatia et al. (2004); Zhang et al. (2013). This avoids
the use of segmentation and tractography algorithms but it prevents the analysis
of structural connectivity since it is impossible to understand where white matter
�bers integrate grey matter structures from T1-w scans. Furthermore, in the case of
3D surfaces and 2D/3D curves (open and closed) other authors have also proposed
to de�ne the deformations directly on the meshes rather than assuming an underly-
ing deformation of the whole space (Joshi et al., 2007; Michor and Mumford, 2007;
Younes et al., 2008; Kurtek et al., 2011; Bauer and Bruveris, 2011; Bauer et al.,
2014; Gutman et al., 2015). However, these methods have been usually designed for
single-object studies and only for one speci�c kind of mesh. Thus, they can not be
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employed for the analysis of the entire CSTC network.
In order to preserve the anatomical organisation of the template complex, de-

formations are usually de�ned as di�eomorphisms, namely smooth bijective defor-
mations with smooth inverse2. This kind of deformation prevents the structures to
intersect, fold, torn or collapse to single points. This is very important in order to
obtain an anatomically relevant analysis.

The group of di�eomorphisms constitutes a non-linear curved manifold which is
not a vector space. Statistics such as average or principal modes need to be de�ned
in the tangent space of this manifold (Vaillant et al., 2004; Pennec, 2006). In the
framework known as large deformation di�eomorphic metric mapping (LDDMM)
(Dupuis et al., 1998; Trouvé, 1998; Beg et al., 2005), di�eomorphic deformations are
de�ned as the last ones of a �ow produced by integrating a time-varying vector �eld
which is constrained to be smooth. Based on the metric for such a group of di�eo-
morphisms de�ned in Trouvé (1995), the �ow that warps the template complex to
every subject complex is chosen as the geodesic path between the identity transform
and the last deformation of the �ow (i.e. the path with the minimal cost required
to make the template similar to the subject complex). In Miller et al. (2006) it is
shown that the (�nal) deformation of the template complex depends only on the
dual of the initial time-varying vector �eld, called initial momentum, which belongs
to a vector space. In this space, it is therefore possible to use linear statistical anal-
ysis such as PCA (Principal Component Analysis) to study the non-linear shape
space de�ned as the orbit of the template complex under the action of the group of
di�eomorphisms (Vaillant et al., 2004). Moreover, it o�ers also a computationally
e�cient way to compute the deformations, called geodesic shooting (Miller et al.,
2006). Di�erent algorithms have been proposed based on this principle such as in
Cotter and Holm (2006); Marsland and McLachlan (2007); Avants et al. (2008);
Ashburner and Friston (2011); Vialard et al. (2011).

In this thesis, we will use the one proposed in Durrleman et al. (2011b) where the
time-varying vector �elds are de�ned with a small set of control points. The number
of control points, chosen by the user, determines the number of initial momenta and
it does not increase with the number of analysed structures in the complex. This
makes such a model well suited for the statistical analysis of anatomical complexes
like the CSTC circuits. Moreover, it has already been used with both the framework
of currents (Durrleman et al., 2011a) and varifolds (Durrleman et al., 2014) on which
we will ground our analysis in the following chapters. Nevertheless, it is important
to notice that for the scope of this thesis any parametric di�eomorphic deformation
model could have been used (provided that it allows to compute statistics).

For instance, another powerful setting which allows to compute statistics on
groups of di�eomorphisms is the one proposed in Arsigny et al. (2006) where the
authors parametrised di�eomorphic deformations with smooth stationary velocity
�elds (SVF). They presented a Log-Euclidean framework which permits to com-

2Topology preservation is assured even by a homeomorphism (that is a continuous deformation
with a continuous inverse). Every di�eomorphism is a homeomorphism but with an addition
constraint on the regularity (smoothness) of both the transformation and its inverse.
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pute the exponential map and the logarithm map on the manifold of the group
of di�eomorphisms using the scaling-and-squaring method. In this setting the sta-
tistical analysis is performed in the vector space given by the logarithms of the
di�eomorphisms. Several extension and applications have been proposed like in
Ashburner (2007); Vercauteren et al. (2008); Modat et al. (2012); Lombaert et al.
(2012); Lorenzi et al. (2013).

Other di�eomorphic registration algorithms exist such as the one in Christensen
et al. (1996) which models the template as a viscous �uid whose deformations are
based on the Navier-Stokes equations (non-linear partial di�erential equations) or
the one in Rueckert et al. (2006) based on Free-Form deformations. For a more ex-
haustive description about di�eomorphic registration algorithms the user is referred
to Sotiras et al. (2013).

All the previous di�eomorphic models provide dense deformations which vary
locally across the ambient space permitting to capture the variations in the relative
position between separated structures such as the sub-cortical nuclei (Wang et al.,
2007). However, using a single di�eomorphism we implicitly assume that the rela-
tive position between structures in contact with each other does not change across
subjects. This implies that every white matter �ber tract of the CSTC circuits
should link the same areas of the cortical surface and basal ganglia across the whole
population. This assumption is in contradiction with the aforementioned hypothesis
about GTS and it precludes the study of abnormalities in structural connectivity
which could be caused by an abnormal brain development.

GTS should be studied with an holistic approach where morphometry and struc-
tural connectivity analysis are uni�ed into a single computational framework. How-
ever, structural connectivity is usually studied independently of the integrated grey
matter structures without considering neither their morphology nor their organisa-
tion.

1.6.3 Structural connectivity analysis

Structural connectivity refers to the density of connections resulting from a trac-
tography method and integrating grey matter structures.

The most popular strategy to study di�erences in structural connectivity be-
tween two clinical groups is based on the subdivision of the cortical surface and
sometimes even sub-cortical nuclei in parcels which are reproducible across the sub-
jects of both groups. This step is usually based on the registration of all subject
T1-w scans to a common atlas (i.e. the MNI-space, Montreal Neurological Institute)
which is already parcelled. After that, the spatial location of the parcels in the T1-w
scan is transferred to the DWI scan of the same subject through registration. Then,
it is used a tractography algorithm on the parcelled DWI scans to trace streamlines
from speci�c ROI (Region of Interest) or throughout the whole brain. Eventually,
one counts the number of streamlines connecting two ROIs, two parcels or a deter-
mined ensemble of parcels of the cortical surface (i.e. motor area) to a sub-cortical
nucleus. The density of streamlines quanti�es the structural connectivity. Multi-
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variable or uni-variate statistics can then be used to �nd the most discriminating
parcels between the two groups. Discordant results exist about GTS. For instance
in Makki et al. (2009); Cheng et al. (2014) the authors have found that in patients
both caudate and thalamus have a reduced connectivity with the anterior dorsolat-
eral frontal cortex and that the frontal cortical areas have a lower connectivity with
the basal ganglia. On the other hand, in Worbe et al. (2015) the authors pointed
out that both the motor circuit (primary motor and sensory cortical areas) and the
associative circuit (lateral orbitofrontal cortex) presented an abnormally enhanced
structural connectivity with the striatum and thalamus in patients subject to GTS.
The discrepancy between these studies could be due to methodological di�erences
or to the small size of the data samples in the �rst two studies (15 and 18 subjects
respectively with respect to 77 in Worbe et al. (2015)). Nevertheless, this also indi-
cates that there is a need of new, rigorous and robust statistical methods to brighten
the GTS mechanism a�ecting structural connectivity.

The �eld of complex networks (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010), based on graph theory, proposes innovative solutions to study structural con-
nectivity as a network where the nodes are the parcels and the edges are constituted
by the number of streamlines (or other indices) linking two nodes. Di�erent mea-
sures characterising a network exist such as the degree distribution, small-world
topology, highly connected hubs and modularity. They usually have a physical
meaning which makes them easily interpretable. There are already some works
about GTS which make use of these graph measures (Worbe et al., 2012) but most
of them are about functional networks and not about structural connectivity net-
works. Moreover, to the best of our knowledge, there are no methods based on the
complex network theory which integrate morphology and structural connectivity
analysis.

1.7 Contributions and Manuscript Overview

The purpose of this thesis is to provide a methodology which is able to discover
and characterise morphological and organisational abnormalities in anatomical com-
plexes composed of both grey and white matter structures. To this end, the com-
plexes must be studied as a whole and not as a set of independent components.
The proposed method should be able to discover both local and distributed shape
alterations across the whole anatomical complex. Moreover, it should unveil also
pathological changes altering the relative position of both separated components
(i.e. sub-cortical nuclei) as well as connected structures (i.e. structural connectiv-
ity). All these abnormalities should be quanti�ed, accurately localised and easily
visualised in order to be useful in the clinical domain. The proposed method has
been driven by the will to test the aforementioned hypothesis about GTS. Neverthe-
less, it could also be applied to the study of other neurodevelopmental syndromes
which are thought to be associated with alterations of the CSTC circuits or other
neural networks.
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We propose to ground our method on the generative model of the previously
described Grenander's atlas construction procedure. This allows us to estimate the
common features of a population of anatomical complexes, represented by the tem-
plate complex, and at the same time the morphological variability described by the
set of di�eomorphisms, one for each subject. These characteristics can then be com-
pared between a group of healthy subjects and one of GTS patients in order to local-
ize the possible abnormalities due to the syndrome. This strategy has been mainly
employed for studying single structures or complexes composed of separated struc-
tures. Here we propose to extend this method to anatomical complexes composed of
grey matter structures interconnected by white matter tracts. This kind of anatom-
ical complexes can not be studied with previous deterministic, single-di�eomorphic
atlas procedures based on computationally expensive or topology-neglecting white
matter shape models.

To this end, we propose to embed the atlas construction in a Bayesian frame-
work which permits to automatically estimate important balancing parameters, one
for each structure of the complex, which were �xed by the user in previous meth-
ods and which highly in�uenced the results. Moreover, this statistical setting also
permits to directly estimate a consistent and well-conditioned covariance matrix,
which is fundamental for the statistical analysis of the morphological and organisa-
tional variability. In order to capture the variations in the relative position of both
separated and attached structures, making thus possible the analysis of structural
connectivity, we propose also an innovative deformation setting called double dif-
feomorphism. It is a cascade of two di�eomorphisms which can model the variation
in relative position between white and grey matter structures and at the same time
correctly warp the template complex to every subject complex. Eventually, to re-
duce the computational resources required to work with white matter �ber bundles,
we also propose to approximate them with a parsimonius representation based on
weighted prototypes. This makes feasible the computation of a Bayesian double
di�eomorphic atlas.

These contributions are thoroughly explained in the following chapters. It follows
a brief description of each one of them.

1. Chapter 2: The estimate of the atlas is usually based on a deterministic
approach where a gradient descent scheme is used to minimize a cost function
constituted of M data-terms, one for each structure of the complex, and a
regularity term on the di�eomorphisms. The in�uence of the data-terms is
balanced by M trade-o� parameters which are �xed at the beginning. The
choice of these values is crucial since they in�uence the results. A value too
small might weight too much the data term leading to a situation of over-
�tting. On the contrary, a value too large might penalize the deformations
reducing the accuracy of the matching. Moreover, the number of deformation
parameters (initial momenta) is usually much higher than the number of sub-
jects which makes the atlas construction a high-dimensional low samples size
(HDLSS) problem. The study of the morphological variability of a population
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is often based on a Principal Component Analysis (PCA) which needs the
computation of the covariance matrix of the deformation parameters. In a
HDLSS setting one needs to regularize this estimate at the end of the atlas
construction making therefore the computed covariance matrix inconsistent
with the optimal deformations resulting from the atlas procedure. To this
end, we propose to embed the atlas construction in a Bayesian framework
taking advantage of the prior distributions introduced in (Allassonnière et al.,
2007). This allows us to estimate both the trade-o� parameters and a well-
conditioned covariance matrix of the deformation parameters which can be
directly employed in statistical analysis such as PCA. Furthermore, we pro-
pose to model all meshes as Gaussian random varifolds. Since the space of
varifolds is of in�nite dimension, we de�ne a grid for every structure, simi-
larly to (Durrleman, 2010), on which both shapes and template are projected
to. This determines a �nite-dimensional approximation space on which it is
possible to de�ne probability density functions. Eventually, we extend also
the proposed Bayesian framework to a multi-population atlas construction.
We take advantage of the clinical diagnosis of the subjects to divide them
into di�erent groups (i.e. controls and patients). The groups share the same
template and their deformation parameters are modelled with di�erent distri-
butions which are de�ned on the same space. This allows us to compare them
and to test hypothesis of equality between the moments of their distributions
such as their covariance matrices.

2. Chapter 3: Fiber bundles stemming from tractography algorithms contain
many streamlines, from few thousands up to millions. They require there-
fore a great amount of computer memory and computational resources to be
stored, visualised and processed. This can limit their use in computationally-
intensive processes such as the atlas construction. To this end, we propose
to approximate a �ber bundle with a parsimonious representation of weighted
prototypes. Prototypes are chosen among the streamlines and they represent
groups of similar streamlines. Their weight is related to the number of stream-
lines approximated. Both streamlines and prototypes are modelled with a new
extension of the framework of currents, which we have called weighted cur-
rents. This computational model inherits all the qualities of usual currents,
such that it does not need point-to-point correspondences, and it augments
its geometry-based metric with information about structural connectivity in
the spirit of functional currents (Charon and Trouvé, 2013a). Two streamlines
are considered similar if their endpoints are close to each other and if their
pathways are similar. Moreover, the space of weighted currents is also a vector
space with a closed-form metric. This permits to easily compute the approx-
imation error and to select the prototypes based on the minimisation of this
error. We propose an iterative algorithm which approximates independently
and simultaneously all the fascicles of the bundle. This allows us to approxi-
mate the whole bundle in a fast and accurate way. We evaluate our algorithm
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on bundles resulting from both deterministic and probabilistic tractography
algorithms. We show that this approximations use on average only 2% of the
original streamlines as prototypes. This drastically reduces the computational
burden required for any processing such as atlas construction while preserv-
ing both the geometry and the structural connectivity of the original bundles.
The latter quality is fundamental for the scope of this thesis.

3. Chapter 4: Single-di�eomorphic deformations can correctly put into cor-
respondence anatomical complexes composed of separated structures. Since
they preserve topology, they do not alter the organisation of the anatomical
complexes preventing structures to fold, intersect or shear. However, this also
implies that the relative position between structures in contact with each other
should not change across subjects. This means, for instance, that white mat-
ter �ber bundles should link the same functional areas of the cortical surface
and basal ganglia across the whole population. This assumption precludes
the study of changes in structural connectivity and therefore it also impedes
to test the aforementioned hypothesis about GTS. We propose to tackle this
problem with a new deformation setting called double di�eomorphism. The
template complex is warped towards every shape complex of the population
using a cascade of two di�eomorphisms. The �rst one acts only on the white
matter of the template complex, keeping �xed the grey matter. It can be
seen as a relative change of coordinates within the gray matter considered as
a �xed reference frame. During this transformation the �ber bundles slide on
the �xed gray matter structures, capturing the variation in structural con-
nectivity. These variations can be compared among subjects since they are
all computed with respect to the same reference frame, namely the �xed gray
matter of the template complex. The second di�eomorphism acts on the whole
template complex, namely on both the resulting white matter and on the gray
matter. This is a global change of coordinates which has the role to put
into correspondence both gray and white matter structures of the template
complex with the homologous ones of the subject's shape complex. The �rst
di�eomorphism re-positions the white matter tracts within the gray matter
such that all the components of the template complex can be correctly put
into correspondence by the second di�eomorphism. The two di�eomorphisms
are optimised together minimising a single cost function and using a gradient
descent scheme. This new deformation setting is combined with the Bayesian
framework presented in Chapter 2 into a Bayesian double di�eomorphic atlas
construction. We use this framework to study the morphological and organ-
isational variations of the cortico-putamen circuit in both controls and GTS
patients. By comparing these results we are able to visualise and quantify
the di�erences between the two clinical groups both in terms of shape and
structural connectivity. The feasibility of this study is due to the parsimo-
nious representation for white matter �ber bundles proposed in Chapter 3.
Eventually, we also show that a double di�eomorphic approach leads to better
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classi�cation scores than using the single di�eomorphic deformation presented
in Chapter 2. We use 49 GTS patients and 27 healthy controls with a Linear
Discriminant Analysis (LDA) and a leave-one-out cross-validation strategy.
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Chapter 2

A Bayesian framework for

multi-object atlas construction

This chapter has been submitted to Medical Image Analysis and it has been partly
published in Gori et al. (2013a). The C++/CUDA code of the described Bayesian
framework will be soon available at www.deformetrica.org
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2.1 Introduction

Morphological analysis of human organs based on Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) scans is an important �eld in medical imag-
ing. An example of clinical application is the identi�cation and quanti�cation of the
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e�ect of a pathology on the anatomy of the brain (i.e. hippocampal atrophy in the
Alzheimer's disease (Gerardin et al., 2009)) or of the heart (i.e. Tetralogy of Fallot
(Mansi et al., 2011), stroke or myocardial ischemia). This provides precious insights
into the pathological development giving the possibility to identify biomarkers of
disease progression or quantitative rules for disease evaluation, therapy planning
and monitoring.

The analysis can be carried out either directly on images or on selected struc-
tures which are previously segmented as 3D meshes. The second strategy has the
drawback that it depends on an accurate segmentation, which can be challenging
in some cases, but it has also some advantages. First, it permits to focus only on
certain structures belonging to a particular area of an organ (i.e. basal ganglia
in patients subject to Gilles de la Tourette syndrome). Second, it allows to visu-
alise and directly analyse the entire 3D geometry of a structure without scrolling
through a stack of images. And third, it gives the possibility to combine di�erent
imaging modalities since one can analyse together meshes obtained from structural
MRI images, CT scans and di�usion MRI images. Furthermore, the two strate-
gies can be combined together in an iconic-geometric setting (Siless et al., 2012;
Graciano Fouquier et al., 2014).

The structures of an organ can be modelled as 3D surfaces or 3D curves. In the
brain, surfaces are used as models of sub-cortical nuclei or cortical surface (Dur-
rleman et al., 2009; Auzias et al., 2011). In the heart they are used as models of
the left, right ventricle or of the entire myocardium (Mansi et al., 2011; Palit et al.,
2015; Lombaert and Peyrat, 2013). Lungs and liver can also be modelled as 3D
surfaces (Gorbunova et al., 2010). 3D curves are employed in the brain to model
trajectories of ensembles of neural tracts (O'Donnell et al., 2009; Durrleman et al.,
2011a) which are commonly called �ber bundles. In the heart they can be used as
models of cardiac myo�bers (Palit et al., 2015) whereas in the lungs or liver they
may be employed to model blood vessels (Gorbunova et al., 2010). The geometrical
representation of an entire organ may thus combine both surface and curve meshes
into a single multi-object complex, which we call shape complex.

There are several examples of mesh based morphometry in the literature. Most
of them use a single-object approach since they select and analyse only one partic-
ular structure of an organ (Golland et al., 2005; Niethammer et al., 2007; Davies
et al., 2010; Hufnagel et al., 2009; Kurtek et al., 2011; Savadjiev et al., 2012; Cury
et al., 2015). This strategy limits the extent of the clinical conclusion to the chosen
object, thus neglecting the information given by the surrounding structures. This
approach does not seem appropriate to study intricate and complex systems of inter-
connected objects such as the human organs. There is a growing awareness that
multi-object studies could be more be�tting. Some examples are Gorczowski et al.
(2010); Cates et al. (2008); Bossa et al. (2011); Qiu et al. (2010); Durrleman et al.
(2014) where the authors have shown the importance of the information about the
relative position between separated structures to discriminate controls from patients
using sub-cortical nuclei of the brain.

In this chapter, we focus on a general morphometric approach called atlas con-
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struction. It consists of estimating an average shape complex of a population called
template complex and the deformations of the embedding space which warp the
template complex to the shape complexes of every subject. Deformations put into
correspondence the template with every shape complex. The template captures the
common morphological characteristics of the population and the deformations cap-
ture the variations in shape across the population. Every deformation is a single
3D di�eomorphism (a smooth deformation with smooth inverse) which transforms
the entire 3D space. All meshes are therefore deformed together whatever their
number or kind. This kind of deformation preserves the spatial organization of the
structures since neither intersection, folding or shearing may occur. This makes
thus possible to study a human organ as a whole and not as a set of independent
components, analysing not only the shape of each structure, but also their relative
position.

The deformations transform the template complex so that each one of its struc-
tures superimposes with the homologous one of the subject shape complex. To this
end, one needs to de�ne a similarity measure for every structure. Di�erent metrics
have been proposed for surfaces and curves. Some of them assume that it is possible
to �nd correspondences between points of homologous structures, called landmarks.
This is usually hard (or even impossible) especially when working with groups of
curves. This is why we have opted for a metric based on the framework of varifold
(Charon and Trouvé, 2013b) which can be applied to both surfaces and curves. It
does not require point-correspondence between structures or curve-correspondence
between ensemble of curves. Moreover, surfaces and curves are treated as instances
of the same mathematical object. This simpli�es the atlas construction and the
following statistical analysis.

A standard procedure to estimate a multi-object atlas (Durrleman et al., 2014;
Avants and Gee, 2004; Ma et al., 2010) involves an optimization scheme where all
template structures and deformations are optimised together by minimizing a single
cost function. Every structure is weighted by a scalar value which balances the
importance of the structure with respect to the others and to a regularity term on
the deformations. These weights are �xed by the user and the results are rather
sensitive to them. Optimal values should be determined by cross-validation which is
time consuming and computationally intensive. Moreover, the computational load
increases with the number of structures and subjects under study, making sometimes
unfeasible the automatic estimate of the weights via cross-validation.

Another strategy adopted by di�erent authors is to embed the atlas procedure
into a statistical setting. Using a generative model, every shape can be interpreted
as the sum between a deformation of the template and a noise (Allassonnière et al.,
2007). Moreover, one considers the deformation parameters, template and noise
as random variables. This makes possible to use Maximum Likelihood (ML) or
Maximum A Posteriori (MAP) estimations to infer the atlas. If the noise is modelled
as a Gaussian distribution, it turns out that the weight of a structure in the standard
optimisation procedure can be interpreted as the variance of the noise (Allassonnière
et al., 2007; Zhang et al., 2013; Simpson et al., 2012; Folgoc et al., 2014). This can be
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automatically estimated with ML or MAP techniques. Other authors also proposed
to infer from the data also the level of regularisation by modelling it as the variance
of the deformation parameters or deformation �eld (Simpson et al., 2012; Folgoc
et al., 2014; Risholm et al., 2013; Wassermann et al., 2014). However, most of these
works are about registration and atlas construction of images. Few of them focus
on shapes and they are usually based on single-object complexes and the variance
of the data noise as well as the regularity level are usually �xed by the user. Three
examples are Ma et al. (2010) where the authors introduced a surface single-object
di�eomorphic atlas procedure using a hyper-template and Durrleman et al. (2014,
2011a) where the authors employed a generative model adapted for complexes of
only surfaces or only curves respectively.

Here we propose to embed a di�eomorphic multi-object atlas construction into
a Bayesian framework. Shape complexes can be composed of curves and surfaces
and they are both modelled as varifolds. The noise of each structure is assumed to
be a random Gaussian varifold which belongs to an in�nite dimensional space. We
de�ne a �nite-dimensional approximation space where the noise is projected to and
where it is possible to de�ne probability distributions. Furthermore, we use a prior
distribution on the variance of the noise as in Allassonnière et al. (2007) adapted
for shape complexes modelled as varifolds. This allows us to automatically estimate
the balancing weights in one single atlas construction. Moreover, we assume that
also the deformation parameters follow a Gaussian distribution. We use a prior
distribution on their covariance matrix similarly to Allassonnière et al. (2007) which
allows us to estimate it automatically even with a small sample size. Furthermore,
the estimated covariance matrix is always well-conditioned whatever the number of
subjects and it can be directly employed to compute statistics about the population
under study.

In addition to that, we also take advantage of the proposed Bayesian framework
to de�ne a multi-population atlas construction. We use the information given by
the clinical diagnosis of the subjects to subdivide the data-set in di�erent groups.
Their deformation parameters are then modelled as di�erent Gaussian distributions.
Since all sets of deformation parameters are de�ned on the same space, we can
quantitatively compare them and the moments of their distributions such as the
covariance matrices. The proposed Bayesian framework permits us to perform this
multi-population analysis at no additional cost, namely without tuning any new
balancing weight.

The chapter is organised as follows. In Section 2.2, we �rst formulate the pro-
posed Bayesian framework in a rather general way, showing that it could be em-
ployed with di�erent shape models and deformation settings. We then present how
to model multi-object shape complexes with varifolds and how to de�ne a varifold
random variable. Afterwards, we show the di�eomorphic framework used in the
experiments and how to integrate it in our statistical setting. Then, we present
the gradient-descent scheme used to optimise the cost function and how to initialise
the template of both surfaces and curves. In the last part of Section 2.2, we de-
scribe how to compute a multi-population atlas construction. Eventually, we test
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the robustness of our algorithm with respect to the hyperparameters of the prior
distributions and we show also how the proposed method can be employed to assess
morphological di�erences between two groups of subjects.

2.2 Methods

2.2.1 Bayesian atlas construction

We de�ne the mesh of structure j belonging to subject i as Sij. The total number
of subjects is N and the number of analysed structures is M . Every subject shape
complex Si, de�ned for the moment in a generic way as the ensemble of all the
meshes Sij of subject i, is modelled as a deformed template complex φi(T ) plus
a residual εi. Both T and εi are also de�ned as the ensembles of the templates
Tj and residuals εij. This formulation is also known as forward model where we
assume that all elements belong to an algebraic structure where addition is de�ned
(Durrleman et al., 2011b; Allassonnière et al., 2007; Ma et al., 2008). It writes:

Si = φi(T ) + εi (2.1)

The deformation φi, proper to subject i, can belong to any di�eomorphic frame-
work present in the literature. The only requirement, for the scope of this chapter,
is that it deforms the entire ambient space, namely all the structures of the tem-
plate simultaneously. The goal of the atlas construction is to estimate the template
and its morphological variations within the population of shape complexes. The
variations are described by the ensemble of deformations {φi} and each one of them
is parametrised by a set of parameters αi ∈ Rq. We assume that these parameters
follow a Gaussian distribution with zero mean and covariance matrix Γα:

αi ∼ N(0,Γα) p(αi|Γα) ∝ 1

|Γα|1/2
exp

[
−1

2
αTi Γ−1

α αi

]
(2.2)

From Eq.2.2 we can notice that the distribution of each set of deformation pa-
rameters αi is completely described by Γα and therefore we can rephrase our goal
as estimating the template T and the covariance matrix Γα knowing the shape com-
plexes of the population {Si}, or more formally maximizing their joint posterior
distribution:

{T ∗,Γ∗α} = arg max
T ,Γα

p(T ,Γα|{Si}) (2.3)

This maximization is constrained by the fact that the deformed template φi(T )
should resemble to the shape complex Si or, in other words, that the residual εi
should be small. This is a common problem in statistical learning and it is usually
tackled by assuming that the residual follows a Gaussian distribution centred at 0.
The maximization of its likelihood is equivalent to minimize its squared norm. We
will start by modelling the structures of the shape complexes Si and of the template
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complex T with landmarks. Every structure j has a number of landmarks equal
to Λj and the norm of the di�erence between two meshes of the same structure
is de�ned as the square root of the sum of squared di�erences between pair of
landmarks (L2-norm, || · ||2). The likelihood of the residuals modelled as landmarks
is thus de�ned as:

εij ∼ N(0, σ2
j IdΛj) p(εij|σ2

j ) ∝
1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φi(Tj)||22
]

(2.4)

In section 2.2.2 we will make clear how to adapt this equation to varifolds by
changing only the norm || · || and the de�nition of the parameter Λj. The variance
of the noise of structure j depends only on the parameter σ2

j which is structure-
dependent and it can also be modelled as a random variable.

It is important to notice that in Eq.2.1 a value of αi equal to zero means no
deformation. The mean of αi is set to zero because the template is supposed to
represent the average of the shape complexes (i.e. Sij ∼ N(φi(Tj), σ

2
j IdΛj)). In

other words, using the terminology of mixed models, the deformation parameters
αi are the random e�ects associated to the �xed e�ect T which is therefore the
expected value of the shape complexes.

Assuming independence between all random variables and considering αi as an
unobserved nuisance variable we can rewrite Eq.2.3 as:

{T ∗,Γ∗α, σ2∗
j } = arg max

T ,Γα,σ2
j

[
N∏
i

M∏
j

∫
p(Tj,Γα, σ

2
j ,αi, Sij)dαi

]
(2.5)

The maximization of Eq.2.5 is not tractable analytically. A possible solution is
to employ an iterative algorithm like the EM (Expectation Maximization) and to
approximate the conditional distribution of the E step with a Dirac distribution at
its mode. Let Θ = {Γα,T , {σ2

j}} be the parameters of interest and Z = {{αi}} the
unobserved nuisance variables, it results:

{Θ∗,Z∗} = arg min
Θ,Z

− log [p({Si}/Z,Θ)]− log [p(Z/Θ)]− log [p(Θ)] (2.6)

This algorithm is an approximation of the MAP estimator which does not con-
verge when applied to a dataset with low signal-to-noise ratio (SNR), as demon-
strated in Allassonnière et al. (2007). In order to ensure the convergence of the
iterative estimation scheme one may use sampling algorithms like MCMC (Markov
Chain Monte Carlo) (Allassonnière et al., 2010). Unfortunately, these methods
require a great computational load and execution time.

Not using priors for σ2
j and Γα is equivalent to a ML estimation and it can pro-

duce degenerate estimates. Instead, as demonstrated in Allassonnière et al. (2007),
the introduction of inverse Wishart distributions makes possible to obtain good es-
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timates even when the number of subjects is small. They regularize the estimates
of σ2

j and Γα. As in Allassonnière et al. (2007), the probability density functions
employed here are adapted versions of the standard inverse Wishart distributions:

σ2
j ∼ W−1(Pj, wj) p(σ2

j ;Pj, wj) ∝ (σ2
j )
−
wj
2 exp

[
−1

2

wjPj
σ2
j

]
(2.7)

Γα ∼ W−1(Pα, wα) p(Γα;Pα, wα) ∝ |Γα|−
wα
2 exp

[
−1

2
wαTr(P

T
α Γ−1

α )

]
(2.8)

The scalars wj, Pj and wα are strictly positive and Pα is a positive symmetric
matrix. Using these priors for σ2

j and Γα and assuming that the template T has a
non-informative prior distribution, Eq.2.6 becomes:

M∑
j=1

N∑
i=1

1

2σ2
j

(
||Sij − φi(Tj)||22 +

Pjwj
N

)
+

M∑
j=1

1

2
(wj + ΛjN) log(σ2

j )+

1

2

N∑
i=1

(αi)
T (Γα)−1αi +

1

2
(wα +N) log(|Γα|) +

wα
2
tr((Γα)−1Pα)

(2.9)

The framed terms refer respectively to the data-terms and to the regularity
of the deformations. If we �x both σ2

j and Γα and we set wj = 0, their sum is
the cost function minimised in standard atlas construction procedures (Avants and
Gee, 2004; Durrleman et al., 2014) where it is not employed a statistical setting.
This minimisation is often referred to as the computation of the Fréchet mean. It
can be noticed that σ2

j weights the contribution of structure j as mentioned in the
Introduction.

The proposed statistical framework is general and it could be applied to any
shape model and di�eomorphic setting provided that one de�nes a probability den-
sity function for the noise and a parametric deformation model. Modelling shapes
with landmarks simpli�es the computation of the metric and of the gradient and
it eases also the de�nition of random variables. Unfortunately, the choice of corre-
sponding points between homologous structures of di�erent subjects is not always
an easy task and in some cases, like for �ber bundles in the brain, it is almost im-
possible. It is better to opt for a correspondence-free metric like the one based on
the framework of varifolds (Charon and Trouvé, 2013b).

2.2.2 Varifolds

The framework of varifolds is an extension of the one of currents (Vaillant and
Glaunès, 2005) and it can be used for both surfaces and curves. It does not require
point-correspondence between structures or curve-correspondence between ensemble
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of tracts. This means that the same structure may have a di�erent number of
vertices among subjects. It is robust to mesh imperfections such as holes, spikes
or tract interruptions. Moreover, it does not require a consistent orientation of the
normal or tangent vectors among the population since the distance is invariant to
a change of orientation of some normals or tangent vectors. Another important
characteristic is that varifolds prevent what is known as the �currents cancelling
e�ect�. This happens when two surface/curve elements with opposite orientation
cancel reciprocally their e�ect on the estimation of the template. For a more detailed
discussion about varifolds the user is referred to Durrleman et al. (2014); Charon
and Trouvé (2013b).

Let X and Y be two curves (oriented or unoriented recti�able curves), they can
be modelled as varifolds based on:

VX(ω) =

∫
X

ω(x,
←−→
β(x))|β(x)|2dx VY (ω) =

∫
Y

ω(y,
←−→
γ(y))|γ(y)|2dy (2.10)

where VX(ω) and VY (ω) are scalars, β(p) and γ(y) are the tangents of X and
Y at the point x and y respectively and

←→
βp is the unoriented unit vector with the

same direction of βp (respectively ←→γq for γq). The set of unoriented unit vectors
←→
β ∈

←→
S can be formally de�ned as the quotient of the unit sphere in R3 by the

two elements group {±Id3}. Instead, the test �eld ω ∈ W is a function of both the
points in the ambient space R3 and the unoriented unit tangent vectors in

←→
S .

The curves X and Y can be seen as polygonal lines of P and Q segments respec-
tively. Every segment of X is completely described by its center point xp ∈ R3 and
tangent vector βp ∈ R3 centred at xp (respectively yq ∈ R3 and γq ∈ R3 for Y ). Let
cp be the length of the tangent vector βp (respectively dq for γq), one can approxi-
mate Eq.2.10 with: VX(ω) ≈

∑P
p=1 ω(xp,

←→
βp )cp and VY (ω) ≈

∑Q
q=1 ω(yq,

←→γq )dq. It
is important to notice that, even if this approximation seems reasonable, it is still
an open question how to ensure its convergence when the number of segments tends
to in�nite, i.e. with a more accurate sampling of the curve (Charlier et al., 2014).

Furthermore, Eq.2.10 shows that the space of varifolds W ∗ is a linear functional
from W to R. This makes W ∗ a vector space and therefore the union of meshes
is equal to a sum in the space of varifolds. But, contrary to currents, inverting
the orientation of a mesh does not change the varifold representation. One chooses
W to be a separable RKHS on R3x

←→
S in order to have an explicit de�nition of

distance between two meshes modelled as varifolds. More precisely, since W is a
product space, one de�nes its kernel KW as the tensor product between two kernels
kx, Gaussian, and kβ, Cauchy-Binet, de�ned on R3 and on

←→
S respectively. Thus,

the inner product between X and Y modelled as varidolds is de�ned as:
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2.2. Methods

< VX , VY >W ∗=
P∑
p=1

Q∑
q=1

kx(xp, yq)kβ(
←→
βp ,
←→γq )cpdq

=
P∑
p=1

Q∑
q=1

exp

(
−||xp − yq||2

λ2
W

)(
βTp γq

cpdq

)2

cpdq (2.11)

The distance between VX and VY is therefore: ||VX − VY ||2W ∗ = < VX , VX >W ∗

+ < VY , VY >W ∗ -2 < VX , VY >W ∗ . This metric is completely parametrized by the
standard deviation λW of the Gaussian kernel kX which is �xed by the user. This
framework can be easily extended also to surfaces by replacing xp (yq) and βp (γq)
with the centres and normals of the faces of the surface, as shown in Chapter 4
and in Charon and Trouvé (2013b). The computation of the gradient with respect
to the points of the mesh can be found in Charon and Trouvé (2013b); Durrleman
et al. (2014).

Varifolds random variable In Eq.2.4 we de�ned the residual ε as a multivariate
Gaussian random variable on the �nite-dimensional Euclidean space of landmarks.
Here we extend this de�nition to the framework of varifolds following the same line
of reasoning presented in Durrleman (2010) for the framework of currents. We de�ne
a random Gaussian varifold as a linear map between every vector �eld ω ∈ W to a
real random Gaussian variable G(ω) such that, given two vector �elds ω1 and ω2,
E[G(ω1)] = 0 and E[G(ω1), G(ω2)] =< ω1, ω2 >W . This shows that the kernel KW

of the space W completely de�nes the covariance matrix of the Gaussian varifold.
However, since it is in�nite-dimensional, it has no probability density function and
therefore we can not simulate instances of it. To tackle this problem, we de�ne for
each structure j a �nite-dimensional spaceW ∗

Λj
on which we project the template Tj

and all the shapes {Sij}i=1...N modelled as varifolds. This �nite dimensional space
W ∗

Λj
is de�ned as the span of a set of delta Dirac varifolds: Span{δ

(xu,
←→
βk )
} where

both the points {xu} and the unoriented unit vectors {
←→
βk } are constrained to belong

to two prede�ned grids, respectively Υx and Υβ. The �rst one is a linearly spaced
grid in the ambient space and Υβ is a regular sampling of the half unit sphere in
R3. The number of points of the two grids is respectively Λj

x and Λβ and Λj is their
product where the index j refers to the j-th structure.

For every �nite-dimensional space W ∗
Λj
, it is possible to de�ne a block matrix

KW,Λj whose blocks are the RKHS kernel KW,Λj

(
(xu,
←→
βk ), (·, ·)

)
u=1,...,Λjx
k=1,...,Λβ

between

every possible combination of the couples {xu,
←→
βk }. The matrix KW,Λj has a di-

mension of [ΛjxΛj]. To project a delta Dirac varifold δ(y,←→α )|α| onto W ∗
Λj
, using

for instance the closest neighbour projection, we look for the closest point to y of
the grid Υx and for the closest direction to ←→α among the ones given by Υβ and
we assign the scalar |α| to that particular couple of grid points. The projection is
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Chapter 2. A Bayesian framework for multi-object atlas construction

therefore completely parametrised by the vector {|α|} of size Λj. Using this scheme,
the squared norm of a projected varifold ||

∑L
l=1 δ(yl,

←→αl |αl|)||2W ∗Λj is equal to
∑

u∈Υx∑
p∈Υx

∑
k∈Υβ

∑
q∈Υβ

cukKW,Λj

(
(xu,
←→
βk ), (xp,

←→
βq )
)
cpq where the scalars cuk and cpq

refer to the values obtained at the end of the projection of the varifold in {xu,
←→
βk }

and {xp,
←→
βq } respectively.

Scaling the kernel KW,Λj with a scalar σ2
j , we can de�ne the likelihood of the

residuals modelled as varifolds in the following way:

p(εij|σ2
j ) ∝

1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φi(Tj)||2W ∗Λj

]
(2.12)

where it is important to notice thatKW,Λj is a constant matrix that is computed
only once at the beginning of the atlas construction. This equation has the same
formulation of the likelihood of the residuals modelled as landmarks in Eq.2.4. The
only two di�erences are the de�nitions of the norm and of the parameter Λj. These
are also the only changes to apply to the cost function in Eq.2.9 when using the
framework of varifolds instead than landmarks.

In practice, due to the important computational load and time required to cal-
culate || · ||2W ∗Λj , we choose to directly compute the exact expression of the norm
||(·)||2W ∗ using a fast GPU (CUDA) implementation. Moreover, we de�ne Υj

x as a
regular linearly-spaced grid containing both shapes and template of structure j and
where the distance between every couple of points is given by λW . The resulting
number of points Λj

x is used to compute Λj=Λj
x. In this way Λj depends only on

λW which is �xed by the user and it is related to the distance at which two shapes
can be compared and at the same time to the degree of detail of the anatomical
features one wants to detect. In Sec.2.3.3 we show that the number of grid points
does not a�ect the results above a certain threshold and that the proposed choice
seems a good one.

2.2.3 Di�eomorphic Transformations

We de�ne here how to compute the di�eomorphic deformations of the template com-
plex. Our approach relies on the Large Deformation Di�eomorphic Metric Mapping
(LDDMM) framework based on the control point formulation presented in Durrle-
man et al. (2011b). Template transformations are built by integrating a time-varying
vector �eld vt(x) over t ∈ [0, 1] where vt(x) represents the instantaneous velocity
of every point x belonging to the ambient space at time t. Calling φt(x) the po-
sition of a point at time t which was located in x at time t = 0, its evolution is
given by: ∂φt(x)

∂t
= vt(φt(x)) with φ0(x) = x, which produces a �ow of deformations

{φt}t∈[0,1]. Furthermore, vt belongs to a Reproducible Kernel Hilbert Space (RKHS)
with Gaussian kernel KV . In Glaunès (2005) it is shown that if such a vector �eld is
square integrable in the interval [0,1] then every deformation of the �ow {φt}t∈[0,1] is
a di�eomorphism. Here we de�ne vt using a dynamical system of Cp control points
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c={ck ∈ R3} scattered in the ambient space and a set of time-varying vectors called
momenta α={αk ∈ R3} linked to each control point. This means that the velocity
of every point of the space is given by:

ẋ(t) = vt(φt(x)) =

Cp∑
p=1

KV (x(t), cp(t))αp(t) φ0(x) = x(0) = x (2.13)

where φt(x)=x(t). With this de�nition every φt is a di�eomorphism provided
that all α(t) are square integrable for every t. The evolution of a point x depends
only on its initial position x(0) = x0 and on the evolution of the system L(t) =
{c(t),α(t)}. In an atlas construction, the deformations of the template complex
are the last ones (φ1) of a �ow of di�eomorphisms. Among all the possible paths
connecting φ0 to φ1 we use the geodesic one, which means the one that minimizes
the total kinetic energy along the path:∫ 1

0

||vt||2V dt =

∫ 1

0

Cp∑
k=1

Cp∑
p=1

αk(t)
TKV (ck(t), cp(t))αp(t)dt (2.14)

It has been demonstrated in Durrleman et al. (2014) that the extremal paths
are such that the system L(t) satis�es:

{
ċk(t) =

∑Cp
p=1K(ck(t), cp(t))αp(t)

α̇k(t) = −
∑Cp

p=1 αk(t)
Tαp(t)∇1K(ck(t), cp(t))

(2.15)

Denoting L(0)=L0={c(0),α(0)} the initial condition of the system, the previous
set of ODEs can be rewritten as: L̇(t) = F [L(t)] with L(0) = L0. This equation
shows that the entire �ow of di�eomorphisms, and more precisely the last one, is
completely determined by the initial state of the system L0. Thus, given c(0) and
α(0), one �rst integrates Eq.2.15 obtaining the values of c(t) and α(t) at any time
t. Then, every point x in the ambient space is deformed by integrating Eq. 2.13.

In geometrical term, the value L0 de�nes the initial velocity of the geodesic path
in the tangent space of our group of di�eomorphisms at identity. The parameters
{c(0),α(0)} can be used to perform the so-called tangent-space statistics (Vaillant
et al., 2004).

2.2.4 Optimization procedure

This di�eomorphic setting can be easily included into the proposed Bayesian frame-
work. We choose to employ a unique set of control points c for the whole population
and N subject-speci�c sets of momenta {αi}i=1,...,N . The set of initial control points
and momenta {c(0), {αi(0)}i=1,...,N} = {c0, {αi0}i=1,...,N} represents the deforma-
tion parameters to warp the template complex towards the shape complex of subject
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Chapter 2. A Bayesian framework for multi-object atlas construction

i. Thus, the hidden variables in Eq.2.6 become: Z = {{αi0}i=1,...,N , c0}. Assuming
that all random variables are independent and that the control points c0 have a non-
informative prior distribution, the expression of the cost function in Eq.2.9 does not
change except for the second framed term which becomes 1

2

∑N
i=1(αi0)T (Γα)−1αi0.

The parameters T , {αi0} and c0 are minimised using an accelerated version of
the line search gradient descent method based on the Nesterov's scheme (Nesterov,
1983). Instead, the use of conjugate priors makes possible to compute the optimal
values for {σ2

j} and Γα in a closed form:

Γ̂α =

∑N
i=1

[
(αi0)(αi0)T

]
+ wαP

T
α

(wα +N)
σ̂2
j =

∑N
i=1 ||Sij − φi(Tj)||2W ∗Λj + wjPj

(wj +NΛj)
(2.16)

The �rst parameter Γ̂α is equal to a weighted sum between the sample covariance
matrix of the initial momenta αi0 and the prior Pα. A good choice for the prior
seems to be: Pα = K−1

V , where KV is a block matrix whose blocks are 3D Gaussian
kernels between two di�erent control points. It is exactly the kernel of the RKHS
to which belongs the velocity �eld vt building the di�eomorphism φ1. If the number
of subjects N is small with respect to wα then Γ̂α ∝ K−1

V and this means that the
deformation regularity part in Eq.2.9 becomes

∑N
i=1(αi0)TKVαi0, which is the sum

of the geodesic distances between the template complex and all its transformations.
This is exactly the deformation regularity term used in previous atlas constructions
not based on a statistical setting (Durrleman et al., 2014). Moreover, the use of
this prior makes possible the inversion of Γα even when the number of subjects N
is smaller than the number of deformation parameters.

The second parameter σ̂2
j is equal to a weighted sum between the data-term of

the j-th structure and the prior. This term balances the contribution of the di�erent
structures to the cost function (Eq.2.9) and at the same time it is a trade-o� between
the data-terms and the the other parts of the cost function. The automatic estimate
of this parameter is rather important as shown in Sec.2.3.2. The use of an inverse
Wishart prior helps to avoid over-�tting. In fact, using a maximum likelihood
estimator, the minimization process might focus only on a structure k reducing its
residuals almost to zero and consequently log(σ2

k) →-∞. This could also result in
almost ignoring all the other structures. The role played by the prior is to impose
a minimum value to σ2

k in order to avoid such a situation.

It is important to notice that the closed-form solutions for both Γ̂α and σ̂2
j

in Eq.2.16 would be di�erent if using the standard Inverse Wishart distributions
instead than the ones proposed in Eq.2.7 and Eq.2.8. They would not be equal to
a weighted average between prior and empirical estimates, making therefore more
di�cult their interpretation and use.

The gradients of the cost function E (Eq.2.9) with respect to T ,{αi0} and c0 are
respectively equal to:
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∇TkE =
N∑
i=1

1

2σ2
k

∇Tk [Dik]

∇αs0E =
M∑
j=1

1

2σ2
j

∇αs0 [Dsj] + Γ−1
α αs0 (2.17)

∇c0E =
N∑
i=1

M∑
j=1

1

2σ2
j

∇c0 [Dij] +
wα
2
∇c0

[
tr((Γα)−1Pα)

]
where Dij=||Sij − φi(Tj))||2W ∗Λj . The di�erentiation of the prior Pα with respect

to c0 is not taken into account since its norm is negligible with respect to the one
of the data term.

In order to compute the three derivatives of the data-terms Dij, we need �rst to
compute the deformed template complex φi(T ) where the deformation φi is the �nal
di�eomorphism of the �ow generated by integrating forward in time Eq.2.15 and
then Eq.2.13 which can be rewritten in matrix notation as: Ṫ i(t)=G[T i(t),Li(t)]
with T i(0)=T (0)=T . After that, we can compute the gradient ofDij with respect to
the deformed template complex T i(1) = φi(T ) and then bring back this information
to t = 0 in order to update the initial template points T , control points c0 and
momenta αi0. This is done by integrating backward in time from t=1 to t=0 a
set of linearised ODEs called adjoint equations like in Durrleman et al. (2014). It
results:

∇TE =
N∑
i=1

θi(0)

∇αi0E = ξαi (0) + Γ−1
α αi0 (2.18)

∇c0E =
N∑
i=1

ξci (0)

where the auxiliary variables ξi(t) = {ξαi (t), ξci (t)} and θi(t) satisfy the linearised
ODEs:

θ̇i(t) = − (∂T iG[T i(t),Li(t)])
T θi(t) θi(1) =

1

2σ2
∇T i(1)[Di] (2.19)

ξ̇i(t) = − (∂LiG[T i(t),Li(t)])
T θi(t) + dLiF [Li(t)]

Tξi(t) ξi(1) = 0 (2.20)

ODEs are integrated with the Euler's method using 10 steps. More details can
be found in the Appendix of Durrleman et al. (2014).
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2.2.5 Template initialisation

Since we use a gradient descent scheme to minimize the cost function, we need an
initial template. This should not be the mesh of a subject otherwise it would inherit
all the imperfections due to segmentation errors and data noise, biasing consequently
the atlas construction.

For surfaces, we use a regular sphere which is �rst centred in the middle of the
population and then it is scaled to an ellipsoid by using the three main modes of
variability of the surfaces of the population considered as a points cloud.

For bundles of curves, we propose instead to initialise the template as the �most
relevant� curves in the population.

We �rst gather the curves F of every subject bundle into a raw initial template
T = ∪Ph=1Fh, where P is the total number of curves. Then we select the set of H
curves which resembles the most to the raw template T . Calling {F}k one of the
possible

(
P
H

)
combinations of H curves out of P , it results:

arg min
k
||T − {F}k||2W ∗ k = 1, ...,

(
P

H

)
(2.21)

which means that we choose the best combination of H curves from T . In many
applications the number of curves of the raw template can be huge, thus we have
developed a greedy algorithm which does not test all the possible combinations of
curves but it is based on an iterative scheme. At each step, we divide T in subsets of
Z curves, we look for the best one and we remove it from the raw template T saving
it in a new template. This process is repeated until the new template has H curves,
where H is the average number of curves in the population and Z is a submultiple
of H. At each iteration, the best subset of Z curves is selected minimising:

arg min
k
||T −

(k+1)Z∑
h=(kZ)+1

Fh||2W ∗ k = 0, ..., (H/Z)− 1 (2.22)

after having randomized the order of the curves in T . The new template is the
initial template used in the atlas construction.

Since the number of points per curve and the number of curves in the bundles
can be di�erent among the population, we have implemented this algorithm with
the metric of varifolds, but any metric could be used.

An example of template initialisation applied to three brain �ber bundles is
shown in Fig.2.1. The last row represents the initial templates used in the following
experiments.

2.2.6 Multi-population atlas construction

In the previous subsections we assumed that all subjects belonged to the same
group. In a clinical application, a subject can be characterised by a label which
can be for instance his/her clinical status. Depending on this label, subjects can be
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Figure 2.1: Template initialisation for three brain �ber bundles: left caudate, left
putamen and left thalamus bundle. The top row contains the three raw initial
templates where the �bers of every subject present in the population have been
gathered together (see 2.3.1). The second row presents the initial templates obtained
at the end of the proposed initialisation process cut at the intersection with their
respective sub-cortical initial templates, transparent and coloured in red.

divided into di�erent groups. Here we propose to take advantage of this information
computing a multi-population atlas construction.

Let L be the set of labels that can be given to a subject shape complex Si. We
assume that L has only two elements for simplicity purpose: L = {c, p}, they can
be interpreted as �control� and �patient�. The extension to more than two labels is
straightforward but we will not consider it here. With this notation, we can rewrite
Eq.2.1 for both groups as:

Sci = φci(T ) + εci Spi = φpi (T ) + εpi (2.23)

where we assume that the control points c and the template T are shared between
the two populations. Instead, the initial momenta α0i are divided into two classes
which can be modelled as distinct Gaussian distributions:

αci0 ∼ N(µc,Γcα) αpi0 ∼ N(µp,Γpα) (2.24)

We can quantitatively compare αci0 with α
p
i0 since they are de�ned on the same set of

control points and the groups share the same template. Moreover, in order to avoid
identi�ability issues about the template, we impose that the sum of their means µc
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and µp is equal to zero obtaining: µc=µ and µp=-µ. This constraint forces the
estimated template complex to be in between the two groups at the end of the atlas
construction. Or, in other words, it pushes the estimated template complex to be
at equal distance from the averages of the shapes of the two groups.

We can then assume either that the two groups share the same variability
(Γcα=Γpα=Γα) or that their within-group variations are di�erent (Γcα 6= Γpα). The
computations for both cases can be found in 2.A.1. Using the second assumption,
we could test the hypothesis of equality between the two covariance matrices or
quantitatively compare their respective modes. On the contrary, if we ignored the
information of the label computing a single-population atlas, we would implicitly
assume that the two di�erent groups belong to the same population and that they
share the same variability. Furthermore, we could also adopt another strategy by
constructing an atlas for each group and obtaining therefore two di�erent template
complexes and sets of control points. However, in this case, we could neither quan-
titatively compare the related populations of initial momenta nor directly compare
the resulting template complexes.

The multi-population extension is computationally feasible only when using the
proposed Bayesian framework. As previously shown, we use the log-likelihood of
the initial momenta as regularity term of the deformations. Dividing the initial
momenta into two di�erent groups entails the addition of another regularity term
into the cost function (see 2.A.1). This new term should be balanced by a trade-o�
parameter tuned using cross-validation. Increasing the number of groups would also
augment the number of regularity terms and balancing values to tune. With the
proposed statistical setting, there is no need to tune these weights since they are
automatically taken into account in the estimates of the covariance matrices.

2.3 Experiments

In this section, we �rst present the dataset used in the following experiments. Then,
we evaluate the robustness of our Bayesian framework with respect to the hyper-
parameters, and we compare it with the robustness of a previous atlas procedure
without automatic estimates with respect to σ2

j . Furthermore, we also analyse
how stable are the results of the Bayesian atlas construction when varying the
number of points of the varifold grid Λj. Eventually, we present how the proposed
multi-population atlas construction approach can be used to highlight morphological
di�erences between two groups.

2.3.1 Materials

The dataset used throughout this chapter contains 40 subjects: 20 controls and 20
patients subject to Gilles de la Tourette syndrome. This neuropsychiatric disorder
is thought to be associated with dysfunctions of the cortico-striato-pallido-thalamic
circuits which are composed of sub-cortical structures linked to the cortical surface
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by �ber bundles. We will investigate the morphological characteristics of these
structures which distinguish the group of patients from the one of controls and
which might be due to the Gilles de la Tourette syndrome.

For each subject, we consider three sub-cortical structures (left caudate, left
putamen and left thalamus) and the �ber bundles connecting them to the left hemi-
sphere of the cortical surface. The three sub-cortical structures are segmented with
FSL (Patenaude et al., 2011) from T1-weighted images (3T). Since we want to anal-
yse as a single structure nucleus accumbens and caudate, we merge these two seg-
mentations together. We use the marching cubes algorithm to create the 3D meshes
for all structures (AimsMesh function of Brainvisa 4.3.0). Fiber bundles come from
a probabilistic tractography method using 8 seeds (Perrin et al., 2005) applied to
di�usion-weighted images (50 directions, B-factor=1000) using an analytical Q-Ball
model to estimate the local underlying orientation distribution function (ODF) (De-
scoteaux et al., 2007). Every subject bundle is downsampled by randomly selecting
10% of its �bers and it is then approximated as proposed in Durrleman et al. (2009)
using a Matching Pursuit Algorithm. For more details about the acquisition or the
tractography, the reader is referred to Worbe et al. (2015).

2.3.2 Robustness with respect to the hyperparameters

We evaluate here the robustness of the proposed algorithm with respect to the
hyperparameter values {wj, Pj, wα}. We do not consider Pα since, as explained in
Sec.2.2.4, we �x it to Pα = K−1

V . We compute 18 di�erent atlases changing every
time only one of the hyperparameters and keeping �xed the others at a certain value.
Both wj and wα are previously normalised in order to use the same range of values,
this means: wε = w′εNΛ and wα = w′αN giving as result:

Γ̂α =
1
N

∑N
i=1

[
(αi0)(αi0)T

]
+ w′αP

T
α

(1 + w′α)
σ̂2
j =

1
NΛj

∑N
i=1 ||Sij − φi(Tj)||2W ∗ + w′jPj

(1 + w′j)
(2.25)

In order to understand a plausible range of testing values, we compute the resid-
uals 1

NΛj

∑N
i=1 ||Sij − φi(Tj)||2W ∗ using the aforementioned dataset and initial tem-

plates and we notice that the maximum value considering either only the sub-cortical
structures or only the �ber bundles is never above 10 and 100 respectively. This
means that the product w′jPj should not surpass this limit, otherwise a reduction
of the data-term would impact very little the estimate of σ̂2

j and consequently the
minimization of the cost function. Noting that, we choose as �xed value 10−2 and
as testing range for all hyperparameters the interval [10−2 - 103] for the sub-cortical
structures and [10−2 - 104] for the �ber bundles.

In order to test the robustness of the results we compute the norm of the dif-
ference between the resulting template complex of all 18 atlases and a reference
template complex. Moreover, we analyse also the norm of the residuals obtained at
the end of the atlas constructions.
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To show the importance of an automatic estimate of σ2
j and Γα, we compare our

results with the ones obtained using a previous atlas procedure (Fixed) where both
σ2
j and Γα are �xed. In order to be coherent with the proposed Bayesian algorithm

we set Γα = K−1
V , which is the value of our prior Pα and we let σ2

j change along the
same range of values of the hyperparameters. This means building 6 other atlases
changing only the value of σ2

j . In all 24 atlas procedures, the other parameters, like
λW and λV , are kept equal. Results using only left caudates or left caudate bundles
of the 20 controls are shown in Fig.2.2 where we have used as reference template
the one obtained using the Fixed method with σ2

j=10−1.
In Fig.2.3 we compare the robustness of the results optimizing simultaneously

two structures in each atlas construction: left caudate and left caudate bundle.
This means that we need to �x two σ2

j values with the Fixed method and 5 hyper-
parameters in the Bayesian framework (wα, two wj and two Pj). Using as range of
values [10−2 - 103], the number of possible combinations of the values of the param-
eters for the Fixed technique is 36 whereas for the hyperparameters of the Bayesian
framework is 7776. This makes infeasible an extensive and complete analysis of the
robustness of the results. Nevertheless, we have decided to compute 30 atlases (15
Fixed + 15 Bayesian) picking randomly the values of the hyperparameters in the
range [10−2 - 102]. The used hyperparameter and σ2

j values are listed in Table 2.2.
The reference template is the one obtained at the end of the 9-th case using the
Fixed method.

It is possible to conclude that the Fixed method leads to much more vari-
able results than using Bayesian priors. The choice of the hyperparameters in our
Bayesian framework is therefore easier than the one of σ2

j . We decide to set them

at: ωj=0.01ΛjN and Pj=
0.05R0

j

ωj
where R0

j is the initial data-term of structure j.

This brings to σ2
j=

Rj+0.05R0
j

NΛj(1+0.01)
which means that the minimum value of σ2

j is equal

to about 5% of
R0
j

NΛj
. This choice reduces the risk of over-�tting since a value of Rj

smaller than
0.05R0

j

NΛj
would almost not a�ect the estimate of σ2

j . We also �x ωα to

10−2. This makes negligible the contribution of Pα to the estimate of Γ̂α, especially
when N is big, but it still permits to invert Γ̂α.

2.3.3 Robustness with respect to the number of points Λ of

the varifold grid

Another parameter of our algorithm is the number of points Λ of the varifold grid
where template and shape complexes are projected to. We decided to make it
dependent on λW which is the bandwidth of the varifold kernel, as explained in
Sec.2.2.2. In Fig.2.4 we show that the results are not so sensitive to a change of the
number of grid points and that our choice seems a good one. We compute 9 di�erent
atlases using the left-caudate surfaces of the 20 controls. All atlas constructions
share the same set of parameters except for Λ which is tested in the range: [1-105].

38



2.3. Experiments

As before we analyse the norm of the di�erence between a reference template (Λ=1)
and the estimated templates at the end of the atlas procedures. We also show the
norm of the residuals and the logarithm of the determinant of the covariance matrix
of the initial momenta (log(|Γα|)). As it is possible to notice there is a minimum
value of the number of grid points ('1000) above which the results are very similar
and also more satisfactory.

In order to explain these results, it can be noticed that replacing σ2
j with σ̂

2
j into

Eq.2.9 one obtains a new data-term which is equal to (w+ ΛN) log(σ̂2). When Λ is
small, the reduction of the residual, and consequently of log(σ̂2), is not enough am-
pli�ed by the multiplication with Λ to compensate a great increase in the regularity
term. Thus, the estimated initial momenta keep a norm close to zero throughout the
atlas construction. The deformations of the template are therefore insigni�cant and
the covariance matrix Γα depends only on the prior which explains why log(|Γα|)
does not vary. The number of grid points obtained with the proposed method is
equal to: 3456.
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Figure 2.2: Comparison between the robustness of the proposed algorithm
(Bayesian) when varying the hyper-parameters and the robustness of a previous
algorithm without automatic estimates (Fixed) with respect to σ2

j . In all atlas
estimations based on the Bayesian method, it has been changed only one of the
hyperparameters �xing the others to 0.01. �Surfaces� are the left caudates and
�Bundles� are the �bers connecting them to the left hemisphere of the cortical sur-
face. Figures on the left represent the norm of the di�erence between the template
obtained at the end of the atlas constructions and a reference template, which is
the one obtained using the Fixed method with σ2

j=0.01. Figures on the right refer
to the norm of the residuals obtained at the end of the atlas procedures.

40



2.3. Experiments

Figure 2.3: Comparison between the robustness of the proposed algorithm
(Bayesian) when varying the hyper-parameters and the robustness of a previous
algorithm without automatic estimates (Fixed) with respect to σ2

j . The template
complex in every atlas construction is composed of both the left caudate and the left
caudate bundle. The values of the hyperparameters for the Bayesian estimation and
the values of the two σ2

j with the Fixed method are listed in Table 2.2. Figures on
the left represent the norm of the di�erence between the template obtained at the
end of the atlas constructions and a reference template, which is the one obtained
in the 9-th case using the Fixed method. Figures on the right refer to the norm of
the residuals obtained at the end of the atlas procedures.
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Figure 2.4: Robustness with respect to the number of points Λ of the varifold grid.
We compute 9 atlases using 20 left-caudate surfaces and changing only Λ within
the range [1-105]. Top-left �gure represents the norm of the di�erence between
a reference template (Λ=1) and the templates obtained at the end of the atlas
constructions. Top-right �gure shows the norm of the residuals during the atlas
constructions. Bottom �gure is about the evolution of log(|Γα|) during the atlas
procedures. The maximum number of iterations in every atlas procedure is 150.
Colors refer to the di�erent number of grid points.

42



2.3. Experiments

2.3.4 Population di�erences

In all the following atlas constructions we use the same parameters. All structures,
except for the caudate, have a varifold parameter λW equal to 2mm. For the caudate
we choose a value of 3mm. About the bandwidth of the di�eomorphic kernel KV ,
we use a value of 7mm with a consequent number of control points equal to 1080.
The maximum number of iterations is 120 and all the computations are performed
on a Intel Xeon, 32 cores, CPU E5-2650, 2.60GHz with a graphic card NVIDIA
Quadro 5000. All shape complexes are previously rigidly registered to a reference
shape complex.

Multi-population Atlas (Γcα=Γpα=Γα) We compute a multi-population atlas us-
ing the two groups of controls and patients. The template complex and control
points are shared between the two groups. Initial momenta are assumed to follow
two Gaussian distributions with opposite mean and equal covariance matrix. The
overall processing time is about 100 hours based on a single-CUDA implementation.

In Fig.2.5 we show a scheme of the process. On the left there are the initial
template complex and the initial set of control points which is initialised as an
equally-distanced grid covering the entire ambient space. The distance is the band-
width of the di�eomorphic kernel: λV . Momenta αi0 are initially all set to zero.
At the end of the atlas construction we obtain the �nal template, the updated set
of control points, the subject-speci�c sets of initial momenta, the average µ and
the covariance matrix Γα. The template shows the common shape features of both
groups. At the top and at the bottom we present the average initial momenta for
each group: µ and −µ. Then, on the right, we show the �nal common template
deformed using µ and −µ. The two complexes represent the anatomical con�gu-
rations typical of each group and they can be directly compared since they both
stem from the �nal template complex. We take advantage of that by computing the
absolute value of the di�erence between the displacements from the �nal template
along the two average directions. This is shown in Fig.2.6 for sub-cortical structures
and in Fig.2.7 for �ber bundles. From the �rst �gure it is clear that the main dif-
ferences are in the dorso-lateral part of the three sub-cortical structures, especially
for the caudate. About the bundles, the di�erences are mainly in the central part
of the caudate-cortico and putamen-cortico bundles.
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Figure 2.5: Atlas construction process. From left to right, we present �rst the
initial template complex and the initial set of control points. Then, we show the
�nal template obtained at the end of the atlas construction. The top and bottom
arrows point to the �nal template deformed accordingly to the averages of initial
momenta of controls µ (top) and patients -µ (bottom). The averages of initial
momenta (µ and -µ) are shown respectively above and below the two arrows.
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Figure 2.6: Shape dissimilarities about the sub-cortical structures between the two
groups. The colors refer to the absolute value of the di�erence between the displace-
ments from the �nal template to the average con�gurations of patients and controls.
The two average con�gurations are obtained by deforming the �nal template along
the directions given by µ and -µ. The four frames represent the same three struc-
tures from di�erent points of view. Letters {c, p, t} refer to caudate, putamen and
thalamus respectively.

Figure 2.7: Shape dissimilarities about the �ber bundles between the two groups.
The colors refer to the absolute value of the di�erence between the displacements
from the �nal template to the average con�gurations of patients and controls. The
two average con�gurations are obtained by deforming the �nal template with µ and
-µ.
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Multi-population Atlas (Γcα 6= Γpα) Here we assume that the two groups of pa-
tients and controls do not share the same covariance matrix. To test this assumption,
we use the test proposed in Srivastava and Yanagihara (2010). The p-value (0.3461)
is too big to reject the null hypothesis: Γcα = Γpα. This might be due to the fact
that the sample size (20 subjects per group) is too small with respect to the number
of deformation parameters (3240). Another possible explication could be that the
two groups share most of their morphological variability which means that the �rst
modes of variation of both covariance matrices are similar. To test this hypothesis,
we compute a Principal Component Analysis (PCA) for both covariance matrices
and we calculate the angles between the modes of variation of the group of controls
with the ones of the group of patients. The results for the �rst 5 modes are shown
in Table 2.1. As it is possible to notice, the �rst mode of the group of controls
is almost parallel to the �rst one of the group of patients. This means that they
produce similar morphological changes of the template complex. Moreover, they
explain almost 35% and 45% respectively of the total variability of their groups, see
Fig.2.8. This might explain why the previous test fails in rejecting the hypothesis
of equality between the two covariance matrices.

The �rst modes of both groups indicate the shared morphological variability
between controls and patients. The second modes should instead produce shape
variations which are more characteristic of each group (angle ∼ 60◦) and which
contribute also substantially (∼ 10%) to the total variability. In Fig.2.9 we show
the second mode of variation of both groups. Colors refer to the displacement from
the �nal common template shown in gray in the middle of the �gure. It is possible
to notice that the dorso-lateral part of the putamen varies almost in the same way
between the two groups. Instead, the posterior-lateral part of the caudate and the
ventral part of the thalamus present morphological variations which are di�erent
between the two groups.

Patients

1 2 3 4 5

Controls

1 25.71 82.49 87.10 87.77 83.32
2 87.70 60.39 72.57 83.62 80.30
3 80.60 62.59 67.17 84.39 79.76
4 86.74 75.15 82.60 88.98 77.35
5 83.70 81.24 89.51 85.39 83.80

Table 2.1: Angles in degrees between the �rst 5 modes of variations of the group of
controls and the �rst �ve of the group of patients. The average angle between all
modes is 85.39◦.
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Figure 2.8: PCA of the two covariance matrices of the initial momenta based on
the assumption Γcα 6= Γpα. The magenta line represents the percentage of variability
explained by the �rst mode. The red line shows the number of components needed
to explain 90% of the total variability. The green line indicates the magnitude of the
eigenvalues and the blue line shows the explained variability using all the previous
components.

Figure 2.9: Second mode of variation at ± 1.5 standard deviation (σ) of two PCAs
based on the two estimated covariance matrices of the initial momenta Γcα and Γpα.
Colors refer to the displacement from the �nal common template shown in the
middle of the �gure in gray. Arrows indicate the areas of the template complex
which vary in a di�erent way between the two groups.
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2.4 Discussion and Conclusion

This work provides a Bayesian framework to embed a multi-object atlas construc-
tion into a statistical setting. It is general and it can be applied to any parametric
deformation framework and to all shape models with which is possible to de�ne
probability density functions. It allows to automatically estimate important bal-
ancing parameters which were �xed by the user in previous methods, namely the
noise variances of every structure. We have demonstrated that these parameters
in�uence much more the results than the hyper-parameters introduced with the
proposed Bayesian priors. This statistical setting makes therefore multi-object at-
las constructions more feasible and reproducible since the user is not obliged to tune
or �x balancing weights which grow with the number of analysed structures.

The proposed method also allows us to estimate the covariance matrix of the
deformation parameters. It is used for the statistical analysis of the morphological
variability of the template complex within the population under study. In previous
works (Durrleman et al., 2014; Avants and Gee, 2004; Ma et al., 2010), the authors
proposed to use the sample covariance matrix computed at the end of the atlas
procedure. Since the number of subjects is usually smaller than the number of
deformation parameters, the sample covariance matrix might be ill-conditioned. A
standard solution is to regularize it a posteriori using an identity matrix multiplied
by a small scalar. This strategy is not satisfactory since it means that the estimate of
the deformation parameters is based on a degenerate sample covariance matrix or on
a wrong covariance matrix. Moreover, the regularization seems also too simplistic.
In our approach, we directly estimate a well-conditioned covariance matrix using a
more natural and coherent regularisation term given by the kernel of the RKHS to
which belongs the vector �eld used to compute the di�eomorphisms. Furthermore,
the estimate of the covariance matrix does not change if the regularity term with
its related prior terms are multiplied by a scalar. This means that we automatically
take into account also the estimate of the so-called regularity level.

We have also extended the proposed statistical setting to a multi-population
strategy where we take into consideration the a�liation of a subject to a certain
group de�ned, for instance, by its clinical diagnosis. This allows us to employ
more complicated but also more pertinent models at no additional cost, meaning
without �xing or tuning new parameters. One of the main advantages is to estimate
di�erent populations of initial momenta and not only one. Moreover, we can also
quantitatively compare them since they are de�ned on the same set of control points
and the groups share the same template. Furthermore, this extension also allows
us to estimate a di�erent covariance matrix for every group. We can therefore
quantitatively compare them and their modes. It is interesting to notice that one
could also compute the sample covariance matrices of di�erent groups at the end
of a single-population atlas and then compare their modes. But this would not
be consistent with the fact that in a single-population atlas the initial momenta of
di�erent groups are estimated as belonging to the same Gaussian distribution.

We propose to model both curve and surface meshes as Gaussian random var-
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ifolds. They can be seen therefore as instances of the same mathematical object.
Since the space of varifolds is of in�nite dimension, we create a grid for every struc-
ture j on which we project both shapes and template. We decide to make the
number of grid points Λj dependent on the varifold bandwidth λjW . This choice
does not in�uence the results in a single-object atlas as demonstrated in Sec.2.3.3.
In a multi-object analysis, it makes the contribution to the cost function (Eq.2.9)
of structure j even more dependent on λjW . In fact, the contribution of structure j
depends mainly on the residual and on the value of Λj which are both de�ned by
λjW . On the one hand, this choice simpli�es the atlas construction since the user has
to �x only one parameter, on the other hand it makes the choice of λjW even more
crucial. In future works, we will investigate how to automatically estimate λjW .

Another important parameter �xed by the user is the di�eomorphic bandwidth
λV . It is chosen based on the desired registration accuracy and it de�nes the num-
ber of control points. Its estimate, together with the one of λjW , would make the
atlas construction completely automatic whatever the number or kind of meshes. A
possible strategy could be to select a range of suitable values of λV and then use
sparse multi-scale methods (Sommer et al., 2012). Otherwise, one could estimate
the best deformation modules from a dictionary using sparse techniques in order
to disentangle the single complicated di�eomorphism into interpretable transforma-
tions (Gris et al., 2015). This would augment the computational load and execution
time but it would also make the analysis more objective.

Another improvement for our method would be the employment of sampling
algorithms like MCMC to ensure the convergence of the EM scheme whatever the
quality of the data. As already said, these methods require a great computational
burden. A possible solution would be to use a GPU implementation based on Multi-
Graphics Processing Units (Multi-GPU) as in Ha et al. (2009). The authors showed
that a Multi-GPU implementation gives a computational gain up to sixty times
faster than a single CPU implementation.

We tested the proposed algorithm by comparing two populations of shape com-
plexes, one of controls and one of Gilles de la Tourette patients, obtained from MR
images of the brain and consisting of three sub-cortical structures and the �ber bun-
dles connecting them to the cortical surface. Results proved the e�ectiveness of our
method in detecting morphological di�erences between the two populations. They
could indicate atypical connections resulting from abnormal brain development due
to Gilles de la Tourette syndrome. Future works will aim to con�rm this study by
adding more structures as the cortical surface and possibly more subjects. More-
over, we plan to apply our algorithm to other human organs such as the heart or
the liver.
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2.A Appendix

2.A.1 Multi-population atlas construction

Here we derive the changes of the cost function (Eq.2.9) and relative gradients for
the multi-population extension of the atlas construction.

2.A.1.1 Γcα=Γpα=Γα

Let Nc and Np be the number of subjects of the two groups and N=Nc+Np. More-
over, we de�ne αci0 ∼ N(µ,Γα) and αpi0 ∼ N(−µ,Γα). Thus, Eq.2.9 becomes:

M∑
j=1

Nc∑
i=1

1

2σ2
j

(
||Scij − φci(Tj)||2 +

Pjwj
N

)
+

1

2

Nc∑
i=1

(αci0 − µ)T (Γα)−1(αci0 − µ) +

M∑
j=1

Np∑
i=1

1

2σ2
j

(
||Spij − φ

p
i (Tj)||2 +

Pjwj
N

)
+

1

2

Np∑
i=1

(αpi0 + µ)T (Γα)−1(αpi0 − µ) +

M∑
j=1

1

2
(wj + ΛjN) log(σ2

j ) +
1

2
(wα +N) log(|Γα|) +

wα
2
tr((Γα)−1Pα)

(2.26)
where the norm ||·|| can be both the L2-norm and the varifold one. The gradients

with respect to T , c0 and {σ2
j} are exactly the same as in Eq.2.17 and Eq.2.16. The

one with respect to αi0 depends on the group and it is equal to:

∇αcs0E =
M∑
j=1

1

2σ2
j

∇αcs0D
c
sj+Γ−1

α (αcs0−µ) ∇αps0E =
M∑
j=1

1

2σ2
j

∇αps0D
p
sj+Γ−1

α (αps0+µ)

(2.27)
There is a closed form solution for both µ and Γα which is equal to:

Γ̂α =

∑Nc
i=1

[
(αci0 − µ)(αci0 − µ)T

]
+
∑Np

i=1

[
(αpi0 + µ)(αpi0 + µ)T

]
+ wαP

T
α

(N + wα)

µ̂ =

∑Nc
i=1α

c
i0 −

∑Np
i=1α

p
i0

N
(2.28)

2.A.1.2 Γcα 6= Γpα

As before, letNc andNp be the number of subjects of the two groups andN=Nc+Np.
Moreover, we de�ne αci0 ∼ N(µ,Γcα) and αpi0 ∼ N(−µ,Γpα). The priors on Γpα and
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Γpα are both equal to W−1(Pα, wα). Thus, Eq.2.9 becomes:

M∑
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1
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j
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2
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2
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(2.29)
where the norm ||·|| can be both the L2-norm and the varifold one. The gradients

with respect to T , c0 and {σ2
j} are exactly the same as in Eq.2.17 and Eq.2.16.

The one with respect αi0 depends on the covariance matrix of the group and its
formulation is equal to the one in Eq.2.27. Furthermore, there is a closed form
solution for both µ, Γcα and Γpα. The last two have the same expression of Eq.2.16
with a sum over Nc and Np. Instead, the optimal value for the average momenta is
:

µ̂ =

∑Nc
i=1(Γcα)−1αci0 −

∑Np
i=1(Γpα)−1αpi0

Nc(Γcα)−1 +Np(Γ
p
α)−1

(2.30)

2.A.2 Robustness Analysis

We present in Table 2.2 the values of the �xed parameters and hyperparameters
used in the experiments shown in Fig.2.3.
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Case Fixed Bayesian

σ2
surface σ2

bundle wα w′
surface Psurface w′

bundle Pbundle
1 0.01 0.01 1 10 0.1 10 0.1

2 0.01 0.1 0.01 0.01 0.01 0.01 0.01

3 0.01 1 0.1 0.1 0.1 0.1 0.1

4 0.01 10 1 1 1 1 1

5 0.01 100 10 10 10 10 10

6 100 0.01 100 100 100 100 100

7 100 0.1 10 1 0.1 0.01 100

8 100 1 0.1 10 1 10 0.1

9 100 10 0.01 100 10 1 0.01

10 100 100 100 0.1 0.1 10 1

11 1 0.01 0.1 0.1 100 1 10

12 1 0.1 0.1 10 10 1 1

13 1 1 0.01 1 10 0.1 100

14 1 10 10 10 0.1 100 1

15 1 100 10 1 0.01 0.1 1

Table 2.2: Values of the two σ2 for the Fixed method and values of the hyper-
parameters for the Bayesian estimation used in the robustness analysis shown in
Fig.2.3.
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Chapter 3

Parsimonious approximation for

white matter �ber bundles based on

weighted currents

This chapter has been submitted to IEEE Transactions on Medical Imaging and it
has been partly published in Gori et al. (2014). The C++ code about the
computational model of weighted currents will be soon integrated to the software
Deformetrica.
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Chapter 3. Parsimonious approximation for white matter �ber bundles
based on weighted currents

3.1 Introduction

Tractography (Conturo et al., 1999; Mori and van Zijl, 2002) from di�usion-weighted
magnetic resonance imaging (DW-MRI) (Basser et al., 1994) is the only non-invasive
technique capable to trace in vivo the wiring architecture of the human brain white
matter. It is widely employed for both clinical (i.e. stroke (Mukherjee, 2005), sur-
gical procedures (Ciccarelli et al., 2008)) and research purposes (i.e. Alzheimer's
disease, schizophrenia (Kubicki et al., 2007)). The 3D polylines stemming from
tractography algorithms, called streamlines or �bers, are only estimates of the tra-
jectories of large groups of neural axons. Streamlines are traced from points in-
side a starting voxel, called seeds, and they are constituted of segments connecting
neighbouring voxels. The direction of these segments is de�ned by a local di�usion
model (i.e. tensor, Q-ball (Fillard et al., 2011)) computed at each voxel and by a
tractography method: deterministic or probabilistic (Fillard et al., 2011). Deter-
ministic algorithms produce segments which follow the principal direction of the
local di�usion model whereas probabilistic ones use randomly perturbed versions
of the main direction. Seeds are usually placed in every voxel of the white matter
(whole-brain tractography) and the resulting streamlines can then be divided into
di�erent �ber bundles based on clustering algorithms or starting/ending Regions
of Interest (ROI). Fiber bundles may be then decomposed into fascicles which are
groups of �bers with a similar pathway and whose extremities are close to each
other, connecting therefore the same functional territories.

Fiber bundles are di�cult to analyse both qualitatively and quantitatively due
to their considerable number of streamlines. The size of a bundle can make in-
tractable processes such as clustering (O'Donnell and Westin, 2007), registration
(Siless et al., 2012), atlas construction (Durrleman et al., 2011a) or shape analy-
sis (Corouge et al., 2004) due to the great computational load and execution time.
It can also complicate the rendering and the visualisation, thus limiting possible
clinical applications. Moreover, the great quantity of streamlines might impede
understanding the pattern of a bundle making therefore di�cult its interpretation.

In this chapter, we propose to approximate a �ber bundle with a parsimonious
representation of weighted streamline prototypes. We exploit the fact that many
streamlines starting from seeds in the same voxel or in neighbour voxels share the
same pathway and ending area. We approximate these streamlines with one of
them, called prototype. We use a computational model for both streamlines and
prototypes characterised by an explicit and easily computable metric. This allows
us to control the approximation error and to select the streamlines which minimize
it as prototypes.

3.2 Related Work

In the last years, there has been a great e�ort to compactly represent a �ber bun-
dle. A pragmatic strategy is to randomly choose a subset of the streamlines. The

54



3.2. Related Work

sampling is not driven by the minimisation of an approximation error and it is not
possible to control the selection of the streamlines. This can cause the loss of the
smallest fascicles of the bundle which might be important for the purpose of the
study. More sophisticated solutions have been proposed and they can be separated
into two categories. The �rst group gathers the computational methods which com-
pactly parametrise the single streamlines. The second category pools instead the
strategies focused on concisely representing the entire �ber bundle.

3.2.1 Compact representation of streamlines

Streamlines are composed of contiguous variable-length segments whose number
might also vary among �bers. Di�erent computational models have been proposed
whose goal is to concisely parametrise a streamline. A widely employed method
consists of de�ning point-to-point correspondence among streamlines parametrising
them as sets of points (O'Donnell et al., 2012) or with cubic B-splines (Corouge
et al., 2006) for instance. This technique eases the computations but it can be ap-
plied only if streamlines have a similar length and the de�nition of corresponding
points can be very challenging. Other authors proposed to characterise a streamline
using only its extremities (Brun et al., 2003) or its connectivity signature (Tunç
et al., 2013), namely the probabilities to be linked to a de�ned set of ROIs. These
methods have been used for clustering, visualisation and interpretation purposes
but they do not take into consideration the shape of the streamlines which is impor-
tant for registration and morphometry. Conversely, di�erent authors proposed to
evaluate only the local pathway of the �bers without taking into consideration their
extremities. A �rst example is given by the methods based on Fourier descriptors
(Batchelor et al., 2006; Chung et al., 2010), which result in a concise parametrisation
useful for clustering and shape analysis. In these models the number of descriptors
needs to be �xed though and the optimal number depends on the length and shape
of the streamlines which might vary even within a single bundle. Lately, other au-
thors proposed to represent a streamline as a blurred indicator function modelled as
a Gaussian process (Wassermann et al., 2010; Liu et al., 2012). This representation
permits to easily compare and average streamlines but it is not a geometric primi-
tive and it is therefore di�cult to employ in multi-object registrations together with
other geometric primitives such as 3D surface meshes.

3.2.2 Compact representation of the whole bundle

The second category is composed of methods which approximate the entire �ber
bundle. The most common strategy is to divide the �ber bundle into subsets, usu-
ally called clusters, which are then characterised by representative �bers (Zvitia
et al., 2010) or centroids (O'Donnell et al., 2009; Guevara et al., 2011; Garyfallidis
et al., 2012). Other authors have also employed isosurfaces to represent the spatial
variation of the centroid within the bundle (Maddah et al., 2007). This representa-
tion can be used only for tubular-shaped bundles that can be modelled as convex
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envelopes. Other bundles, such as the corpus callosum and the rostral part of the
corticospinal, have a di�erent topology and they are de�ned as sheet-like bundles.
In Maddah et al. (2011) the authors proposed to represent those bundles as 3D sur-
face meshes whereas in Yushkevich et al. (2008) it was suggested to use deformable
medial models (cm-reps). In both cases, the medial surface representations are em-
ployed only for visualisation and clustering and to provide statistics about di�usion
coe�cients. A di�erent representation, which can be employed for any kind of bun-
dle, is the tract probability map (Hua et al., 2008; Bürgel et al., 2006; Wassermann
et al., 2010). It indicates the probability of a voxel to belong to a given bundle.
This method is very concise but it is not based on a geometrical primitive and
it has been used for visualisation, interpretation and clustering. A last example
is the sparse representation based on the matching pursuit algorithm for currents
presented in Durrleman et al. (2011a). In the framework of currents (Vaillant and
Glaunès, 2005) a bundle is considered as a single mathematical object composed of
disconnected oriented points which model the local orientation of the streamlines.
The approximation presented in Durrleman et al. (2011a) represents a bundle with
a sparse set of oriented points. This representation is very concise but it has the
drawback to approximate accurately only the areas of the bundle characterised by
a high density of streamlines, like the central mass of the bundle. Thus, the small
fascicles may not be well approximated. Moreover, the framework of currents does
not take into account the extremities of the streamlines. This prevents the analysis
of the structural connectivity, namely the areas of the gray matter connected by the
bundle.

3.3 Our contribution

In this chapter, we propose to approximate any �ber bundle with a set of weighted
prototypes. Prototypes are chosen among the streamlines and they represent en-
sembles of similar �bers. Their weights are related to the number of streamlines
approximated. Both prototypes and streamlines are modelled as weighted currents,
an extension of the framework of currents. This computational model takes into
consideration both the pathway of the �ber/prototype and the anatomical location
of its extremities. Two �bers/prototypes are therefore considered similar if their
endpoints are close to each other and if their trajectories are similar. The space of
weighted currents is a vector space with an explicit and easily computable metric.
This permits to approximate a bundle of streamlines controlling the approximation
error. The resulting parsimonious representation, up to a reasonable approxima-
tion level, preserves both the shape and the structural connectivity (computed as
streamline density) of the original bundle. Moreover, the framework of weighted
currents inherits from the one of usual currents (Vaillant and Glaunès, 2005) the
fact that it does not need either point-to-point or streamline-to-streamline corre-
spondences. Nevertheless, it requires to de�ne the starting and ending point of each
streamline. The uncertainty of tractography algorithms near the grey/white matter
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boundaries is taken into account by a Gaussian smoothing kernel. Prototypes are
visualised as tubes whose constant radii are proportional to their weights. This
concise representation can be easily combined in multi-object studies with other
geometric primitives such as surface meshes modelled as landmarks, currents or
varifolds (Gori et al., 2013a; Durrleman et al., 2014).

The chapter is organised as follows. In Section 3.4 we �rst present the frame-
work of weighted currents and then the di�erent steps of the proposed approximation
scheme. After that, we demonstrate the e�ectiveness of our algorithm on determin-
istic and probabilistic �ber bundles from both a qualitative and quantitative point of
view. The last two sections are about the discussion of the results and conclusions.

3.4 Method

3.4.1 Terminology

The proposed approximation scheme is conceived for �ber bundles resulting from
both deterministic and probabilistic streamline tractography algorithms. The de�-
nitions of streamline, fascicle and bundle, as employed throughout this chapter, are
as follows. A streamline is a curve composed of a �nite, ordered and connected
sequence of 3D points. The distance between connected points is not assumed to
be constant. The number of points may vary between two di�erent streamlines.
A fascicle is an ensemble of streamlines with similar pathway and whose extremi-
ties are close to each other. A bundle is a group of streamlines with a consistent
orientation and connecting two speci�c ROIs de�ned by the user. Every bundle is
composed of one or more fascicles.

3.4.2 Weighted currents

The framework of weighted currents is an extension of the one of currents (Vaillant
and Glaunès, 2005). A streamline is considered as a set of disconnected oriented
points which are weighted by the spatial coordinates of the streamline extremities. In
this way, every oriented point encodes not only the local orientation of a streamline,
as in usual currents, but also its connectivity. It is an adaptation of the framework
of functional currents (Charon and Trouvé, 2013a).

A streamline X is a polygonal line of N segments which is assumed to be an
oriented and recti�able curve in R3. The coordinates of the two extremities fa and
f b are two 3D vectors de�ned in the space Q=R3xR3. The �ber X is modelled as
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a 1-weighted current CX via a line integral of a vector �eld ω:

CX(ω) =

∫
X

w(x, fa, f b)Tα(x)dx ≈
N∑
i=1

ωT(xi,fa,fb)(αi)

≈
N∑
i=1

δαi
(xi,fa,fb)

(ω)

(3.1)

where xi and αi are respectively the center and the tangent vector of segment i
which is approximated by a Dirac delta weighted current δ. We take advantage of
the fact that the tangent vectors α(x) are constant over every segment and it can
be shown that the approximation error tends to zero as the sampling becomes more
accurate i.e. the length of the segments decreases (Glaunès, 2005). The vector �eld
ω belongs to a reproducing kernel Hilbert space (RKHS) W de�ned on the product
space R3xQ. The space of weighted currents is a continuous linear form on W and
every weighted current CX belongs to its dual space W ∗. A natural way to build
a kernel K associated to the product space W is as tensor product of two kernels
de�ned separately in R3 (Kg) and in Q (Kf ): K=Kg⊗Kf . Since even Q is a prod-
uct space, Kf is also de�ned as a tensor product between two kernels Ka and Kb.
Thus, the kernel K results: K((x, fa, f b), (y, ta, tb))=Kg(x, y)Ka(f

a, ta)Kb(f
b, tb).

All kernels Kg, Ka and Kb are de�ned as Gaussian and they are parametrised by
their bandwidths λg, λa and λb. Using these kernels, the inner product in the frame-
work of weighted currents between two Diracs is de�ned as: 〈δα

(x,fa,fb)
, δβ

(y,ta,tb)
〉W∗

= Ka(f
a, ta) Kb(f

b, tb) (αTKg(x, y)β). By linearity, the inner product between two
streamlines X and Y (CY (ω) ≈

∑M
j=1 ω(yj ,ta,tb)(βj)) is:

〈CX , CY 〉W∗ = Ka(f
a, ta)Kb(f

b, tb)
N∑
i=1

M∑
j=1

αTi Kg(xi, yj)βj

= exp

(
−||fa − ta||2

λ2
a

)
exp

(
−||f b − tb||2

λ2
b

)
(3.2)

N∑
i=1

M∑
j=1

exp

(
−||xi − yj||2

λ2
g

)
αTi βj

The framed part would be the inner product between X and Y if modelled as
usual currents. It measures overall di�erences between the geometry of their trajec-
tories. The two other terms take into account the di�erences in the location of the
streamline extremities. As shown in Fig.3.1, the framework of currents is almost
�blind� to a change of the positions of the end-points. Even if the extremities of
the two streamlines are far from each other, with respect to the kernel bandwidth
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Figure 3.1: Two 2D streamlines X and Y are compared using both the framework of
currents and the one of weighted currents. In the three �gures only the position of
the extremities change, the overall pathway remains almost unchanged. The frame-
work of weighted currents is more sensitive to the distance between the extremities
which explains why the two streamlines X and Y are almost orthogonal in the last
�gure on the right. The bandwidths of all kernels employed in both frameworks are
equal to 5.

λg, the angle (cos−1 〈CX ,CY 〉W∗
|CX |W∗|CY |W∗

) between the two streamlines varies by only few
degrees. On the contrary, the streamlines become almost orthogonal in the frame-
work of weighted currents when the extremities are apart. This makes the de�nition
of similarity twofold in the framework of weighted currents. Two streamlines are
considered similar if their pathways are alike, as in usual currents, but also if their
endpoints are close to each other. In Fig.3.2 we show the most similar �bers to
the red streamline in the framework of currents (green) and in the one of weighted
currents (blue). The green �bers share a similar pathway with the red one but some
of them connect di�erent anatomical areas. On the contrary, the blue �bers are
similar to the red streamline both in terms of geometry and connectivity.

As usual currents, the framework of weighted currents does not need point-to-
point correspondence, except for the extremities. This can be obtained, for instance,
by tracing all the streamlines of a bundle from one ROI to another one, as it is done
for the bundles considered in this chapter and throughout the Thesis. Moreover,
every streamline Si is considered as a vector in a Hilbert space. Thus, a �ber
bundle, which is the union of many �bers B = ∪iSi, is represented as a sum in
this framework: CB =

∑N
i CSi . The di�erence between two streamlines is de�ned

as their sum with the orientation of the second �ber inverted. If two �bers are
equal, their di�erence cancels out. Furthermore, it is also possible to compute
the average weighted current S̄ of a �ber bundle as: CS̄ = 1

N

∑N
i CSi . Given

the inner product de�ned in Eq.3.2, the squared norm of the di�erence between
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Figure 3.2: Streamlines that have an angle smaller than 45 degrees with the red one
using currents (green, #118) and weighted currents (blue, #8). Green streamlines
are more spread than the blue ones, connecting anatomical locations far from the
ones of the red �ber. The concept of similarity in the framework of weighted currents
is more stringent than using usual currents.

two bundles CB =
∑N

i=1CSi and CB′ =
∑M

p=1CS′p is equal to: ||CB − CB′||2W ∗ =∑N
i=1

∑N
j=1〈CSi , CSj〉W∗ +

∑M
p=1

∑M
q=1〈CS′p , CS′q〉W∗ - 2

∑N
i=1

∑M
p=1〈CSi , CS′p〉W∗.

A bundle B composed of two streamlines X and Y is modelled as CB = CX+CY
in the framework of weighted currents. If the two streamlines X and Y are similar
in this framework, their sum can be well approximated by CB=2CX or CB=2CY .
This is crucial for the scope of this chapter since an ensemble of streamlines can thus
be represented with a single weighted prototype where the weight is related to the
number of streamlines approximated. In the previous example both X and Y could
be chosen as prototype and the weight would be 2. A weighted prototype can be
visualised as a tube where the streamline chosen as prototype is the central axis and
the constant radius is proportional to the weight (see Fig.3.3). In the following, we
will describe how to use this idea to approximate a complex bundle stemming from
a tractography algorithm. We will also assume that both streamlines and bundles
are modelled as weighted currents writing simply S (resp. B) instead than CS (resp.
CB).

3.4.3 Approximation scheme

The goal of the proposed approximation scheme is to represent a �ber bundle B
with a set of weighted prototypes {τkPk}. The resulting parsimonious representa-
tion should preserve both the shape and the structural connectivity of the original
bundle. It is based on a greedy approach where we �rst subdivide the bundle into
fascicles and then select the prototypes in each fascicle independently.
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Fascicles detection A fascicle is a group of streamlines which are considered
similar in the framework of weighted currents, namely they have a similar pathway
and end-points close to each other. The subdivision of a bundle into fascicles is based
on the maximization of a quality function called modularity, a concept borrowed
from network theory (Blondel et al., 2008):

Q =

NF∑
F=1

‖∑
i∈F

Si‖2
W ∗‖

∑
j /∈F

Sj‖2
W ∗ − (

∑
i∈F

∑
j /∈F

〈Si, Sj〉W ∗)
2

 (3.3)

where F is a fascicle, NF is the number of fascicles and it is constrained by∑NF
F=1

∑
i∈F Si = B. In the simple case of NF=2, Eq.3.3 can be rewritten as:

Q = ‖S̄1‖2
W ∗‖S̄2‖2

W ∗ −
〈
S̄1, S̄2

〉2

W ∗
where S̄1 and S̄2 are the averages of the two

fascicles. Maximizing Q means therefore dividing the bundle into two fascicles which
tend to be orthogonal to each other and such that their averages have a similar norm.
In the general form of Eq.3.3, one looks for NF fascicles with balanced norms and
which tend to have streamlines orthogonal to the streamlines of the other fascicles
and parallel to the streamlines of their own fascicle.

Modularity is often employed in the �eld of complex networks to detect densely
connected communities of nodes within a network (Blondel et al., 2008). It has been
demonstrated that exact modularity optimization is strongly NP-complete (Brandes
et al., 2006). Several approximation schemes exist in the literature and one of the
state-of-the-art methods is the �Louvain� algorithm (Blondel et al., 2008). It is
a greedy solution where every fascicle is considered as a vertex of a graph. Two
vertices F1 and F2 have a weighted edge equal to the sum of the inner products
between the streamlines of the fascicles

∑
i∈F1

∑
j∈F2
〈Si, Sj〉W ∗ . At the beginning,

every streamline is considered as an independent fascicle. The algorithm is divided
into two parts which are repeated iteratively. The �rst part consists of moving all
the streamlines of a vertex to its neighbour vertices �nding the relocation that leads
to the greatest increase in modularity. If none movement produces a positive gain in
modularity, the streamlines remain in their initial vertex. This part is repeated until
no change would produce an increase in the modularity. In the second part, one
rede�nes the graph by discarding the empty vertices and recomputing the weighted
edges between the new vertices. The two steps are repeated until no change would
produce an increase in modularity. At the end of this algorithm the �ber bundle
is separated into di�erent fascicles without �xing in advance neither the number of
fascicles nor the number of streamlines in each fascicle.

Prototypes Streamline Selection (PSS) Once de�ned the fascicles, a PSS is
performed in each fascicle independently. We propose an iterative algorithm in
the spirit of orthogonal matching pursuit (Tropp and Gilbert, 2007). Let F be a
fascicle with L streamlines modelled as weighted currents, the �rst prototype P1

is chosen as the streamline minimising the residual squared error, namely: P1 =
arg minSi ||F − τ1Si||2W ∗ . Since the space of weighted currents is a vector space, we
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Figure 3.3: Example of weighted prototype visualised as a red tube. It approximates
the fascicle of streamlines coloured in green. The streamline chosen as prototype
is the central axis of the tube and it is coloured in black. The radius of the tube
is proportional to the weight of the prototype and it does not represent the spatial
coverage of the prototype. The spatial coverage is the same for all prototypes and
it depends on the three bandwidths λg, λa and λb.

can easily minimize it. The optimal weight is: τ1 = 〈F,P1〉W∗
||P1||2W∗

and the prototype

is: P1 = arg maxSi〈F,
Si

||Si||W∗
〉2W ∗ = arg maxSi L

2〈S̄, Si
||Si||W∗

〉2W ∗ with i=1,...,L. The
prototype is therefore the most parallel streamline to the average S̄ of the fascicle.

Once the �rst prototype is selected, we remove from each streamline Si its or-
thogonal projection onto the prototype, resulting in the residual: r(Si) = Si−π(Si)

= Si − 〈Si,P1〉W∗P1

||P1||2W∗
. We keep therefore only the components of the streamlines

orthogonal to the prototype P1. In this new space, we select the second pro-
totype as: P2 = arg maxr(Si)〈r(F ), r(Si)

‖r(Si)‖W∗
〉2W∗ . We iterate this process until:

||F −
∑K

k=1 τkPk||W∗ ≤ γ||F ||W∗ where ||F ||W∗ is the norm of the fascicle, K is
the number of prototypes and γ indicates the required approximation level. At each
iteration t, the set of weights {τk}k=1,...,t is computed as the orthogonal projection
of all the streamlines of F to the space spanned by the selected set of prototypes
{Pk}k=1,...,t.

It is important to notice that all these computations are based on the Gram
matrix Γ of the fascicle F which has size [LxL]. Thus, instead of computing directly
r(Si), we simply update Γ as: 〈r(Si), r(Sj)〉W∗ = 〈Si, Sj〉W∗ −

〈Si,P 〉W∗ 〈Sj ,P 〉W∗
||P ||2W∗

=

Γ(i,j) −
Γ(i,P )Γ(j,P )

||Γ(P,P )||22
. A sketch of the algorithm can be found in Algorithm 1 where

Γ(i,j) indicates the value of the matrix Γ at row i and column j, Γ(K,L) refers to
the submatrix of Γ containing the K rows of the prototypes and all the L columns,
Γ(K,K) is the square submatrix with the rows and columns of the K prototypes and
1(L,1) is a L-dimensional column vector of ones.

After selecting the prototypes of each fascicle independently, they are all gath-
ered into a single bundle of prototypes BP . The weights are then recomputed as
the orthogonal projection of the whole bundle B to the entire set of prototypes BP

in order to retrieve the correct values also for the weights of the prototypes close to
the boundary between two di�erent fascicles. Moreover, before the PSS algorithm,
we also perform an outlier detection step in every fascicle. The streamlines char-
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Algorithm 1 Prototype Fiber Selection

Input: Fascicle F with L streamlines Si: F =
∑L

i=1 Si ;
threshold γ ; pre-computed matrix Γ ; K=1

1: P1 ← arg maxSi〈F,
Si

||Si||W∗
〉2W ∗

2: τ1 ← 〈F,P1〉W∗
||P1||2W∗

3: for i = 1 to L do
4: for j = 1 to L do
5: 〈Si, Sj〉W ∗ ← 〈Si, Sj〉W ∗ − 〈Si,P1〉W∗ 〈Sj ,P1〉W∗

||P1||2W∗
6: end for
7: end for
8: while ||F −

∑K
k=1 τkPk||W∗ ≤ γ||F ||W∗ do

9: K ← K + 1

10: PK ← arg maxi
(Γ(i,L)1(L,1))

2

Γ(i,i)

11: {τk}k=1,...,K ←
Γ(K,L)1(L,1)

Γ(K,K)

12: for i = 1 to L do
13: for j = 1 to L do

14: Γ(i,j) ← Γ(i,j) −
Γ(i,PK )Γ(j,PK )

||Γ(PK,PK )||22
15: end for
16: end for
17: end while
Output: {τk}, {Pk} k=1,...,K
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Figure 3.4: Visual explanation of the bundle subdivision into fascicles (modes).
Dots and crosses represent the streamlines of a �ber bundle in the space of weighted
currents. The green cross is the most similar streamline to the average of the bundle.
It is far from almost all the other streamlines and it could be considered as an outlier.
The three circles represent the fascicles (modes) composed by similar �bers. The
red crosses are the prototypes of the fascicles considered independently. These �bers
are more representative than the green cross and they better approximate the �ber
bundle.

acterised by an average angle with the other streamlines between 88◦ and 90◦ are
considered as outliers and discarded from the analysis.

Remark Performing the PSS in each fascicle independently allows us to distribute
the computations to di�erent processors, reducing therefore the computational time.
Moreover, it also decreases the chance to select as prototype a streamline which
might be considered an outlier. This is explained in Fig.3.4 where every dot rep-
resents a streamline of a bundle modelled as weighted current. We oversimplify
this space assuming it is simply R2. In this space, it is likely that a tractography
bundle has a multi-modal distribution, where every mode is a fascicle. If we wanted
to approximate the whole bundle with a single prototype, it would be the most
parallel streamline to the average of the bundle. In Fig.3.4 we would choose the
streamline represented by the green cross. This �ber is far from almost all the other
streamlines and it could be considered as an outlier. Instead, if we apply the same
selection process in each fascicle independently we would obtain the three proto-
types highlighted in red. These streamlines are more representative than the green
�ber and they better approximate the bundle. Obviously, an actual fascicle does
not lie in a 2D space and therefore we may need more than one prototype to explain
its variability.
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3.5 Experiments and Results

In this section, we �rst describe the dataset used in the following experiments and
some technical details about the implementation of the proposed algorithm. Then,
we present the approximation of two probabilistic bundles and we show that their
structural connectivity is similar to the one of the original bundles. Furthermore,
we qualitatively evaluate the e�ect of the parameters on the approximation of a
deterministic bundle. Eventually, we assess quantitatively the performance of our
algorithm showing that the registration between two approximated �ber bundles is
de�nitely faster than using the original bundles for the same registration accuracy.

3.5.1 Materials

We test the proposed approximation scheme on 25 subjects. Di�usion weighted
scans are acquired with sequences of 50 directions with a B-factor of 1000 and a voxel
size of 2x2x2 mm3. We use the Spherical Deconvolution Transform (SDT) model
(Descoteaux et al., 2009) to estimate the local underlying orientation distribution
function (ODF). Whole brain connectivity is then inferred within an anatomy-based
tractography mask (Guevara et al., 2011) using both a deterministic (1 seed per
voxel) and a probabilistic (8 seeds per voxel) tractography algorithm available in
BrainVISA/Connectomist-2.0 (Perrin et al., 2005). In this chapter, we consider
three distinct �ber bundles connecting the left hemisphere of the cortical surface to
the left thalamus, putamen and caudate respectively. We extract them from both
the deterministic and probabilistic whole brain tractography as explained in Worbe
et al. (2015). All bundles also include the commisural �bers which are truncated
at the inter-hemispheric plane. All the other �bers are cut at the intersection with
their respective sub-cortical structure and at the border between white and gray
matter of the cortex. Sub-cortical structures are segmented with FSL (Patenaude
et al., 2011) from 3D T1-weighted images (voxel size: 1x1x1 mm3) and we merge
the segmentations of nucleus accumbens and caudate in order to consider them as a
single structure. The 3D meshes are created using the marching cubes algorithm of
BrainVISA v4.4.0. The cortical surface is segmented using FreeSurfer v5.3 (Fischl
et al., 2004). More information about the acquisition and the preprocessing of both
T1-weighted and di�usion-weighted images can be found in Worbe et al. (2015).

3.5.2 Numerical aspects

The parameters needed to be �xed by the user are the bandwidths of the three
kernels of weighted currents λg, λa and λb and the approximation level γ. In the
following, λg refers to the kernel of usual currents, λa to the end-point on the nuclei
and λb to the end-point on the cortical surface.
All experiments shown in this chapter are computed on a Intel Xeon, 8 cores, CPU
E5-1620, 3.60 GHz with a memory of 16Gb and a graphic card NVIDIA Quadro
K4000.
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Figure 3.5: Weighted prototype approximations of two probabilistic bundles: a
cortico-putamen and a cortico-thalamus. As it is possible to notice, our approxima-
tion alters neither the global shape of the bundle nor the densities of the endpoints
onto the cortical surface. We use: γ=0.13, λg=7mm, λa=5mm and λb=10mm.

The computational times for the approximations of the �ber bundles shown in
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Deterministic

Bundle Cortex-caudate Cortex-putamen Cortex-thalamus
N Streamlines 17079±4881 28056±5247 28371±6806
N Prototypes 344±58 409±55 341±87
Compression 97.85 % 98.49 % 98,77 %

Table 3.1: Average compression ratio (%) of all the bundles obtained from the
deterministic tractography algorithm

Probabilistic

Bundle Cortex-caudate Cortex-putamen Cortex-thalamus
N Streamlines 75389±4646 78125±2223 68640±8568
N Prototypes 1182±358 1411±393 1000±319
Compression 98,41 % 98,19 % 98,54 %

Table 3.2: Average compression ratio (%) of all the bundles obtained from the
probabilistic tractography algorithm

Fig.3.5 and in Fig.3.6 composed of 80.000 and 35.674 were of 150 and 19 minutes
respectively.

3.5.3 Weighted prototypes representation

We present in Fig.3.5 the weighted prototype approximations of two probabilistic
bundles using γ= 0.13, λg=7mm, λa=5mm and λb=10mm. The proposed represen-
tation preserves the global shape of the bundle and it approximates thoroughly all
the fascicles. We also show the probability densities of the endpoints (i.e. structural
connectivity) on the cortical surface computed using either the streamlines of the
original bundles or the weighted prototypes. The two densities are very similar from
a qualitative point of view and the Kolmogorov-Smirnov test fails to show statis-
tically signi�cant di�erences between them at the 5% level. Probability densities
are computed using Gaussian kernels, taking into account the weights of the proto-
types for the proposed approximation. Furthermore, we use the same parameters
to approximate all the bundles of our data-set (75 deterministic and 75 probabilis-
tic) and in no case the density of the endpoints is statistically signi�cantly di�erent
from the one of the original bundle. The average compression ratios, 100(1- K/N)
where N is the number of streamlines of the original bundles and K is the number
of prototypes, are shown in Table 3.5.3 and 3.5.3 for the deterministic and proba-
bilistic bundles respectively. These results show that our algorithm leads to a much
more compact representation of the bundle while preserving the overall structural
connectivity, which may be used for further analysis.
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Figure 3.6: Weighted prototype representations (in red) at di�erent approximation
levels of a deterministic cortico-putamen bundle (in blue). Each row is based on
a di�erent set of kernel bandwidths. The letters N and K refer respectively to
the number of streamlines of the bundle and to the number of prototypes. The
compression ratios are indicated in brackets.

3.5.4 Qualitative evaluation of the parameters in�uence

In Fig.3.6 we evaluate the in�uence of the parameters of our algorithm on a deter-
ministic cortico-putamen bundle. In the �rst row we employ λg=5mm, λa=4mm,
λb=6mm and in the second row λg=7mm, λa=5mm, λb=10mm. Every column
corresponds to a di�erent approximation level. It can be noticed that at γ=0.05
and γ=0.13 all fascicles are well approximated, whatever the set of parameters. At
γ=0.25 and higher values of γ (not shown here) only the denser parts of the fascicles
are kept. Moreover, the results based on the �rst row use almost twice the proto-
types than in the second row. This is expected since the values of the kernels are
smaller and therefore the de�nition of similarity between two streamlines is more
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Figure 3.7: Results of the fascicles detection step applied to the bundle shown
in Fig.3.6 using the two sets of kernels' bandwidths. The number of fascicles are
respectively: 65 (left) and 35 (right). Colours are chosen randomly.

stringent. Thus, for a given γ, one needs more prototypes to approximate the same
number of streamlines. Furthermore, this also in�uences the number/size of the
fascicles, as shown in Fig.3.7. The fascicles obtained with the �rst set of parameters
are smaller in size and greater in number than the ones obtained using the second
set of parameters.

3.5.5 Registration-based evaluation of the algorithm

Here we evaluate the impact of the proposed approximation scheme on the quality
of a registration between two deterministic cortico-putamen bundles of di�erent
subjects. We use the di�eomorphic transformation implemented in the software
Deformetrica (www.deformetrica.org) with a kernel bandwidth equal to 10mm
and 1309 control points. The source bundle BS is the one shown in Fig.3.6. First,
we approximate both BS and the target bundle BT , composed of 25916 streamlines,
at di�erent approximation levels using λg=7mm, λa=5mm, λb=10mm. Then, for
each level, we register the approximation of BS onto the one of BT . We apply then
the obtained deformation to the original bundle BS and we measure the residual
error between the transformed original source bundle φ(BS) and the original target
bundle BT : ||φ(BS) − BT ||2W∗ in the framework of weighted currents. Ideally, we
would compare the obtained residual errors with the one of the registration between
the original �ber bundles. Unfortunately, the computational time would be too long
(see Table 3.5.5) and therefore we decide to use the registrations between smaller
sub-samples of the original �ber bundles for comparison. In Fig.3.8 we show the
deformations of the original �ber bundles using the transformations obtained with
the approximation at γ=0.13 and with the sub-sample of 5000 streamlines. It is
possible to notice that the results look very similar. This is con�rmed in Table
3.5.5 where we show that the di�erence between their residual errors is very small.
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Registration Error Computational Time

γ=0.40 1.75e+09 2h 39min
γ=0.25 1.42e+09 4h 34min
γ=0.13 9.88e+08 5h 51min
γ=0.05 9.79e+08 18h 35min

1000 streamlines 9.96e+08 23h 12min
5000 streamlines 9.94e+08 547h 32min
8000 streamlines - ∼ 1120h
15000 streamlines - ∼ 4484h
30000 streamlines - ∞

Table 3.3: Registration error and computational time using di�erent approximation
levels and samples of the original bundles.

Figure 3.8: On the left: registration between the green source bundle and the red
target bundle approximated with weighted prototypes. On the right: original �ber
bundles and the transformations based on the approximation at γ=0.13 and with
the sub-sample of 5000 streamlines. Black arrows highlight the areas where the
alignment is more noticeable.

We can conclude that the registration based on the approximation at γ=0.13 is as
accurate as using the sub-sample of 5000 streamlines but 93 times faster! We also
present the results for other approximation levels. Compared to γ=0.13, the other
registrations are either less accurate or slower and with a similar accuracy.
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3.6 Discussion and Conclusions

We presented an algorithm to approximate a �ber bundle with a small and scat-
tered set of weighted streamlines prototypes. We tested it on 150 bundles resulting
from both deterministic and probabilistic tractography algorithms. The number of
prototypes was on average 2% of the number of streamlines of the original bundles.
We showed that such a parsimonious representation preserves both the shape and
the structural connectivity of the bundles.

The streamlines considered in this chapter have been truncated at the intersec-
tion between gray and white matter which is an area usually characterised by a
low Signal to Noise Ratio. This means that the estimates of the end-points of the
streamlines are not very robust. To account for this uncertainty, we use Gaussian
kernels for measuring the dissimilarity between two streamlines. Theoretically, the
greater the uncertainty, the greater the bandwidths of the kernels. In the proposed
algorithm, these bandwidths (i.e. λa and λb) are considered as parameters �xed
by the user. Their values are chosen by looking at how much the streamlines fan
out when approaching to the boundary between white and grey matter. Stream-
lines deviate more when they are close to the cortex than to the sub-cortical nuclei,
which explains why λb is always greater than λa in our experiments. It would be
of interest to automatically estimate these parameters taking into consideration the
type of bundle, the SNR of the di�usion image, the tractography algorithm and the
di�usion model.

Another parameter �xed at the beginning of the algorithm is the approximation
level γ. It de�nes the stopping criteria and the value (1−γ) is the minimal percentage
of the norm of the fascicle explained by the prototypes. In fact, thanks to the
triangle inequality, we can rewrite the stopping criteria obtaining (1− γ)||F ||W∗ ≤
||
∑K

k=1 τkPk||W∗ ≤ (1 + γ)||F ||W∗ . This means that, using γ=0.13, the norm of
the prototypes will be at least 87% of the norm of the fascicle at the end of the
algorithm. Furthermore, we noticed that between γ=0.5 and γ=0.01 the number
of prototypes grows exponentially. For instance, using the set of parameters of
Fig.3.5, the number of prototypes is 70 at γ=0.5, 367 at γ=0.13 and 2307 at γ=0.01.
This means that we need less prototypes to reduce γ from 0.5 to 0.13 than from
0.13 to 0.01. This is because the �rst prototypes approximate the parts of the
fascicle with an higher density of streamlines (i.e. greater redundancy). Thus,
their weights have a great value and few prototypes can explain a considerable
percentage of the norm of the fascicle. Instead, between γ=0.1 and γ=0.01, most
of the streamlines have already been approximated and every new prototype can
explain only a few of the remaining �bers. We found that a value of γ=0.13 results in
a parsimonious representation which exhaustively approximates all the fascicles. An
interesting improvement would be to automatically estimate the value of γ taking
into consideration both the approximation error and the number of prototypes.

We showed also that our representation can approximate not only the central
and more dense mass of a bundle, as usual currents, but also its smaller fascicles
and extremities. We demonstrated its usefulness in the registration between two
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approximated bundles where we correctly match the whole pathway of the weighted
prototypes, including their extremities (see Fig.3.8). Furthermore, bundle regis-
trations based on our approximation scheme present a lower computational time
and memory footprint than using the original �ber bundles. This makes thus pos-
sible population studies, like the atlas construction, based on multiple template-
to-subject non-linear registrations, which would be very time-consuming - or even
infeasible - with the original �ber bundles.

3.A Appendix

3.A.1 Interpretation of τ

We show here that the weight τ of a prototype P is related to the number of �bers
approximated by P . Given a bundle B composed of 3 �bers: B =

∑3
i=1 Si we want

to approximate it with one prototype P . Let assume that S1 is the prototype P
(the reasoning does not change modifying the prototype), the value of its weight τ
is 1 +

||S2||2W∗
||P ||2

W∗
cos(P, S2)W ∗ +

||S3||2W∗
‖P‖2

W∗
cos(P, S3)W ∗ . This means that if S1 is parallel to

the other �bers and their norms are similar, the value of τ will be about 3. Instead,
if either S2 or S3 is orthogonal to S1, the prototype will not approximate that �ber
and the weight will be smaller than 3. This shows that τ is related to the number
of �bers approximated by the prototype or, more precisely, to how much similar is
the prototype with respect to the other �bers of the bundle. When dealing with
more prototypes, every τ also depends on the inner product between the prototypes.
Since we project at each iteration all the streamlines onto the orthogonal space of
the last estimated prototype, the inner product between prototypes should be small.

3.A.2 Modularity based on weighted currents

The de�nition of modularity in Blondel et al. (2008) is:

Q =

NC∑
c=1

[
Wc

m
−
(
Sc
2m

)2
]

(3.4)

where NC is the number of modules (fascicles), Wc=1/2‖
∑

i∈c Si‖2
W ∗ is the

sum of the weights of all the edges joining only the vertices of module c,
Sc=

∑
i∈c
∑N

j=1 〈Si, Sj〉W ∗ is the sum of the weights of the edges between the ver-
tices in c and all the N vertices in the graph and m=1/2‖

∑N
i=1 Si‖2

W ∗ is the
sum of the weights of all edges in the graph. Substituting these equations in
Eq.3.4 and noting that m is a constant term and that it can be rewritten as
2m=‖

∑
i∈c Si‖2

W ∗+‖
∑

j /∈c Sj‖2
W ∗+2

∑
i∈c
∑

j /∈c 〈Si, Sj〉W ∗ , one obtains Eq.3.3.
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This chapter will be submitted to NeuroImage and it has been partly published in
Gori et al. (2015a). The C++/CUDA code of the described double di�eomorphic
deformation will be soon integrated to the software Deformetrica.
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4.1 Introduction

The pathophysiology of neurodevelopmental disorders such as autism, attention
de�cit-hyperactivity disorder (ADHD) and Gilles de la Tourette syndrome (GTS)
involves morphological alterations of the cortico-basal ganglia and cortico-thalamus
neural circuits (Tye and Bolton, 2013; Konrad et al., 2010; Worbe et al., 2015).
These networks are composed of neural projections linking particular areas of the
cortical surface to speci�c parts of the sub-cortical nuclei. Abnormalities can a�ect:
i) the shape of the single components of the circuits, including both gray matter
structures and white matter tracts, ii) the relative position among gray matter
structures and iii) the structural connectivity, namely the areas where gray matter
integrate white matter tracts. Most of the studies present in the literature focus
only on the �rst or last point. Few of them propose to analyse the �rst two points
together and, to the best of our knowledge, no method has been proposed to tackle
the three points in a uni�ed framework.

In order to analyse the relative position between di�erent structures, one needs
to study the neural circuits as a whole. This requires a single framework where
both grey and white matter components are studied together and at the same time.
Grey matter structures are usually analysed with T1-w scans whereas white matter
tracts using dMRI scans. As already explained in the Introduction, we integrate the
information from these two modalities by shifting the morphological analysis from
images to complexes of 3D meshes, called shape complexes, representing the di�erent
components of the neural circuits. Structures of the gray matter such as cortical
surface and basal ganglia are represented as closed surfaces segmented from T1-w
scans whereas the neural projections of the white matter are modelled as bundles of
3D streamlines, called �ber bundles, resulting from tractography algorithms applied
on di�usion scans.

Di�erent strategies exist for the statistical shape analysis of a population of shape
complexes, representing each one the structures of a subject. One which naturally
allows the combination of di�erent mesh types is based on the Grenander's pattern
theory (Grenandner, 1993). Every shape complex is modelled as a deformation of
a reference complex called template complex. The deformations are de�ned on the
whole ambient space where the template complex lies and they put into correspon-
dence the template complex with the homologous structures of the subjects. First
examples used a �xed template chosen a priori like the Talairach atlas (Davatzikos
et al., 1996) or a randomly-selected subject (Csernansky et al., 1998). However,
this kind of templates might have imperfections due to segmentation errors and
they might not be �centred� with respect to the population under study, biasing
consequently the whole analysis. Later works have thus proposed to automatically
estimate the template (Joshi and Miller, 2000; Durrleman et al., 2014; Qiu et al.,
2010). The joint estimate of the template complex and the deformations has been
called atlas construction. The template complex captures the common morphologi-
cal characteristics of the population. The set of deformations explain the variations
in shape across the population.
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Deformations are de�ned as di�eomorphisms of the whole ambient space which
are smooth invertible transformations with smooth inverse. This kind of deformation
preserves the anatomical organisation of the components of the template complex,
namely they can not intersect, fold or shear. Moreover, since the transformations
are de�ned locally and they can vary across di�erent areas in the ambient space,
it is also possible to capture the variations in relative position between separated
structures. However, using a single di�eomorphism we implicitly assume that the
relative position between structures in contact with each other or close to each other
does not change across subjects. This implies that a particular �ber bundle should
link the same areas of the cortical surface and basal ganglia in each subject within
the population. This assumption precludes the study of changes in structural con-
nectivity which could be caused by an abnormal brain development. In Fig.4.1 we
present a toy example composed of a template complex and a subject shape com-
plex characterised by a di�erent structural connectivity. A single di�eomorphism
could not put into correspondence all the structures and capture the di�erences in
structural connectivity.

Structural connectivity analysis is usually tackled by dividing the cortical surface
and the sub-cortical nuclei in parcels based on anatomical, histological or functional
schemes reproducible across subjects (Craddock et al., 2013). Every parcel is then
considered as a node of a graph and the number of streamlines connecting two
nodes represents their weighted edge. Variability in structural connectivity across
subjects can be de�ned by simply analysing independently the variations in each
parcel or by using indexes and methods from the complex network theory (Bullmore
and Sporns, 2009; Worbe et al., 2015). In both cases, the analysis depends on the
chosen parcelling scheme and it does not take into consideration the morphological
variability of the gray matter structures and the trajectories of the streamlines.

Here, we propose to join shape and structural connectivity analysis in a uni�ed
framework based on a double di�eomorphic atlas construction. The template com-
plex is warped towards every shape complex of the population using a cascade of
two di�eomorphisms. The �rst di�eomorphism acts only on the white matter of the
template complex keeping �xed the gray matter. It can be seen as a relative change
of coordinates within the gray matter which is considered as a �xed reference frame.
During this deformation the �ber bundles are �detached� from the �xed gray matter
structures and �re-attached� in another location, capturing the variation in struc-
tural connectivity. These variations can be compared among subjects since they
are all computed with respect to the same reference frame, namely the �xed gray
matter of the template complex. The second di�eomorphism acts on the whole tem-
plate complex, namely on both the resulting white matter and on the gray matter.
This is a global change of coordinates which has the role to put into correspondence
both gray and white matter structures of the template complex with the homol-
ogous ones of the subject's shape complex. The �rst di�eomorphism re-positions
the white matter tracts within the gray matter such that all the components of
the template complex can be correctly put into correspondence by the second dif-
feomorphism. The two di�eomorphisms are optimised together minimising a single
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cost function and using a gradient descent scheme. The data-term depends only on
the deformed template complex obtained at the end of the second di�eomorphism.
Looking again at the example in Fig.4.1, the �rst di�eomorphism would make the
�ber bundle slide from the left gyrus to the right gyrus. The second di�eomorphism
would then modify the shape of all structures producing an accurate matching. The
�rst di�eomorphism would capture therefore the changes in structural connectivity
whereas the second one would recover the global morphological di�erences.

Figure 4.1: A template and a subject shape complex composed by a pseudo cortex,
divided into a black and green gyrus, a blue pseudo sub-cortical nucleus and a red
pseudo �ber bundle. A single di�eomorphism could not put into correspondence
all the structures and capture the di�erences in structural connectivity. The points
within the violet circle in the template complex would be matched either to the
black gyrus of the subject shape complex or to its �ber bundle. A double di�eomor-
phism would �rst move the �ber bundle from the left to the right gyrus and then it
would change the shape of all the structures, producing an accurate matching and
capturing also the variation in structural connectivity.

It is important to remark that our approach is di�erent from other multi-
di�eomorphic methods with sliding conditions such as Risser et al. (2013); Pace
et al. (2013); Arguillère et al. (2015). These methods aim to correctly register longi-
tudinal scans or anatomical complexes characterised by sliding regions/components.
This is achieved by ensuring that the components of the displacement �eld orthog-
onal to the motion boundaries vanish at the boundaries. In this way, every region
deforms smoothly and independently from the others and discontinuities are allowed
only at the boundaries. In our case, we are interested in studying the relative vari-
ation of one region, white matter, with respect to another one, gray matter. The
aforementioned sliding registrations, if applied to the template complex shown in
Fig.4.1, would result in two independent deformations, one for the white matter
and one for the grey matter, and it would be impossible to understand whether the
changes of the white matter depend on a di�erence in gray matter or in structural
connectivity. Moreover, due to the sliding conditions, �ber bundles should always
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stay in contact with the grey matter surface during deformation. This would re-
quire a lot of �deformation energy� to move the �ber bundle from the left gyrus
to the right one and it would produce a very complicated deformation. Instead,
with the proposed method the �ber bundle is not constrained to slide on the cortex
and therefore the resulting deformation would be �simpler�. Note that, we enforce
that the template �ber bundle will be near the grey matter at the end of the dou-
ble di�eomorphic deformation by modelling streamlines as weighted currents. As
explained in Chapter 3, this is an extension of the framework of currents and two
streamlines are considered similar not only if their pathways are alike but also if
their endpoints are close to each other. This makes possible to match correctly
also the extremities of two �ber bundles and not only their central part as in usual
currents. The template �ber bundle is thus deformed in such a way that at the end
of the second di�eomorphism its extremities match the ones of the subject bundle
and therefore they are also close to the grey matter structures.

In the proposed method, both di�eomorphisms are parametrized using control
points as presented in Durrleman et al. (2011b). The number of control points is
�xed by the user and their positions are automatically adjusted close to the most
variable parts of the template complex during the atlas construction.

In order to deal with the considerable amount of streamlines resulting from trac-
tography algorithms, we rely on the approximation scheme introduced in Chapter
3. Fiber bundles are approximated with a parsimonious representation of weighted
streamlines prototypes. Prototypes are chosen among the streamlines of the �ber
bundle and they represent groups of similar streamlines. This approximation is
controlled by the metric of weighted currents.

We propose to model gray matter structures as varifolds (Charon and Trouvé,
2013b) or landmarks if correspondences across subjects are available. The frame-
work of varifolds is the non-oriented extension of the one of currents. It does not
require neither point-correspondence nor a consistent orientation of the normal vec-
tors among the population. Moreover, it prevents the �currents cancelling e�ect�
which happens when two surface cells modelled as usual currents and with opposite
orientation (i.e. a bump) cancel reciprocally their e�ect on the estimation of the
template. A structure which is typically a�ected by this e�ect is the thin tail of the
caudate nucleus.

The atlas is estimated within a Bayesian framework based on a generative statis-
tical model similar to the one presented in Chapter 2 (Gori et al., 2013a; Allasson-
nière et al., 2007) and adapted to double di�eomorphisms. Every shape is modelled
as a sum between a double di�eomorphism of the template complex and a noise.
The noise and the deformation parameters of both di�eomorphisms are modelled
as Gaussian random variables centred at zero. We use priors similar to the ones in
Allassonnière et al. (2007) which enable us to automatically estimate the noise vari-
ance of each structure and a well-conditioned covariance matrix of the deformation
parameters for both di�eomorphisms. The noise variances balance the importance
of the structures in the cost function with respect to the other structures and with
respect to the regularity terms of the deformations. As demonstrated in Chapter 2
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the results are rather sensitive to their values and their automatic estimate becomes
even more important increasing the number of structures.

This chapter is organised as follows. In Section 4.2, we �rst present a double
di�eomorphic generative model which is integrated into a Bayesia framework for
atlas construction. Afterwards, we recapitulate how to model surface meshes as
varifolds (Charon and Trouvé, 2013b) and streamlines as weighted currents (Chap-
ter 3) and how to de�ne probability densities in these in�nite-dimensional spaces.
Then, we present how to compute double di�eomorphic deformations based on a
control-points formulation of the LDDMM framework and how to integrate them in
the proposed statistical setting. Furthermore, we use this method to compare the
organisation and morphology of the cortico-putamen neural circuit of a population
of healthy controls with the ones of GTS patients. Eventually, we show that the
proposed double di�eomorphic scheme discriminates better between controls and
GTS patients than using a single di�eomorphism.

4.2 Methods

4.2.1 Double Di�eomorphic Generative Model

The proposed atlas construction is based on a generative statistical model. We
assume that the population under study is composed of N subjects. Every subject
i is characterised of M structures segmented from both structural and di�usion
images. We de�ne the mesh of structure j belonging to subject i as Sij. Every
subject shape complex Si, de�ned for the moment in a generic way as the ensemble
of all the meshes Sij of subject i, is modelled as a double deformation of a common
template complex T plus a residual noise εi. Both T and εi are also de�ned as
the ensembles of the templates Tj and residuals εij. The �rst deformation φW acts
only on the white matter of the template complex: TW . The second deformation
φAll deforms both the resulting white matter φW (TW ) and the gray matter of the
template complex TG. This formulation derives from the forward model where
we assume that all elements belong to an algebraic structure where addition is
de�ned(Allassonnière et al., 2007; Ma et al., 2008; Durrleman et al., 2008, 2009)
and it results:

Si = φAlli

(
φWi (TW ) ∪ TG

)
+ εi (4.1)

The two deformations φWi and φAlli , proper to subject i, are two di�eomorphisms
of the entire ambient space. They follow one another creating a cascade of di�eo-
morphisms. The �rst one φWi , called also white di�eomorphism, acts only on the
white matter of the template complex. It represents a relative change of coordi-
nates with respect to the gray matter of the template complex which is kept �xed.
The second (or global) di�eomorphism φAlli transforms the whole template complex,
both white and gray matter, and it is a global change of coordinates which brings
the template complex to the subject space.
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The �rst deformation φWi makes the �ber bundles slide onto the gray matter
structures. The streamlines are detached and re-attached in another area such that
the whole template complex, both gray and white matter, can be well matched to the
subject shape complex by the second di�eomorphism φAlli . The �rst di�eomorphism
φWi captures the di�erence in structural connectivity, namely the variations in the
connected areas of the gray matter. The second di�eomorphism φAlli describes the
global morphological changes of both white and gray matter.

It is important to notice that it is fundamental to �rst deform the white matter
of the template complex and then the gray matter in order to retrieve the main
variations in structural connectivity within the population. In fact, the transforma-
tions due to the �rst di�eomorphisms {φWi } are comparable across subjects since
they are all computed with respect to the same reference frame, namely the �xed
gray matter of the template complex. If we changed the order, deforming �rst the
gray matter and then the white one, we would not be able to compare the variations
in structural connectivity since the reference frame given by the gray matter would
be speci�c to each subject.

Furthermore, a question that naturally arises using the proposed method is about
the uniqueness of the decomposition into two di�eomorphisms in the regions con-
taining only white matter structures. In these areas, the white matter could be
deformed in two di�erent but equivalent ways. A possible solution to obtain a
unique decomposition is to choose a scale of deformation so that white matter ob-
jects are deformed by the second di�eomorphism in a correlated way with respect
to at least one gray matter structure.

4.2.2 Bayesian Atlas Construction

The goal of the atlas construction is to estimate the template complex T = TW∪TG,
the variations in structural connectivity within the population described by the
ensemble of white di�eomorphisms {φWi } and the global morphological variations
captured by the set of global di�eomorphisms {φAlli }. Both di�eomorphisms are
parametrised by a set of parameters called respectively αWi and αAlli speci�c to
each subject i. We assume that these parameters follow a Gaussian distribution
with zero mean and covariance matrix equal to ΓWα and ΓAllα respectively:

αWi ∼ N(0,ΓWα ) p(αWi |ΓWα ) ∝ 1

|ΓWα |1/2
exp

[
−1

2
(αWi )T (ΓWα )−1αWi

]
(4.2)

αAlli ∼ N(0,ΓAllα ) p(αAlli |ΓAllα ) ∝ 1

|ΓAllα |1/2
exp

[
−1

2
(αAlli )T (ΓAllα )−1αAlli

]
Both distributions are completely described by their covariance matrix. More-

over, as usual in statistical learning, we assume that the residuals εi follow a Gaus-
sian distribution centred at 0. For now, we model all structures of the shape com-
plexes Si and of the template complex T with landmarks. Every structure j has a
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number of landmarks equal to Λj and the norm of the di�erence between two meshes
of the same structure is de�ned as the square root of the sum of squared di�erences
between pair of landmarks (L2-norm, || · ||2). Thus, the likelihoods of the residuals
of white and gray matter structures modelled as landmarks are respectively:

εWij ∼ N(0, σ2
j IdΛj) p(εij|σ2

j ) ∝
1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φAlli

(
φWi (TWj )

)
||22
]

(4.3)

εGij ∼ N(0, σ2
j IdΛj) p(εij|σ2

j ) ∝
1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φAlli

(
TGj
)
||22
]

In Sec.4.2.3 we will make clear how to adapt these equations when a mesh
is modelled as varifold or weighted current. Whatever the model employed, the
variance depends exclusively on the structure-dependent parameter σ2

j which is also
assumed to be a random variable. Moreover, from Eq.4.1 and Eq.4.3 it follows that
all shapes {Sij} follow a Gaussian distribution:

SWij ∼ N(φAlli

(
φWi (TWj )

)
, σ2

j IdΛj) SGij ∼ N(φAlli

(
TGj
)
, σ2

j IdΛj) (4.4)

We can thus reformulate the goal of the atlas construction as estimating the
template complex T , the two covariance matrices of the deformation parameters
ΓWα and ΓAllα and σ2

j , knowing the shape complexes of the population {Sij} and
assuming they follow a Gaussian distribution as in Eq.4.4. This can be achieved
by maximizing the joint posterior distribution of T , σ2

j , ΓWα and ΓAllα , which are
also modelled as random variables. Assuming independence between all random
variables and considering {αWi }i=1,...,N and {αAlli }i=1,...,N as hidden variables, it
results:

{T ∗,ΓW∗α ,ΓAll∗α , σ2∗
j } = arg max

T ,ΓWα ,ΓAllα ,σ2
j

[
N∏
i

M∏
j

∫ ∫
p(Tj,Γ

W
α ,Γ

All
α , σ2

j ,α
W
i ,α

All
i , Sij)dα

All
i dαWi

]
(4.5)

Not using priors for σ2
j , ΓWα and ΓAllα can produce degenerate estimates. Instead,

as demonstrated in (Allassonnière et al., 2007), the introduction of inverse Wishart
distributions makes possible to obtain good estimates even when the number of
subjects is small. Their probability density functions are:
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σ2
j ∼ W−1(Pj, wj) p(σ2

j ;Pj, wj) ∝ (σ2
j )
−
wj
2 exp

[
−1

2

wjPj
σ2
j

]
(4.6)

ΓWα ∼ W−1(PW
α , wWα ) p(ΓWα ;PW

α , wWα ) ∝ |ΓWα |−
wWα

2 exp

[
−1

2
wWα Tr((P

W
α )T (ΓWα )−1)

]
(4.7)

ΓAllα ∼ W−1(PAll
α , wAllα ) p(ΓAllα ;PAll

α , wAllα ) ∝ |ΓAllα |−
wAllα

2 exp

[
−1

2
wAllα Tr((PAll

α )T (ΓAllα )−1)

]
(4.8)

The scalars wj, Pj, wWα and wAllα are strictly positive and PW
α and PAll

α are
positive symmetric matrices. Since the maximization of Eq.4.5 is not tractable
analytically, we use the EM (Expectation Maximization) algorithm where we ap-
proximate the conditional distribution of the E step with a Dirac distribution at its
mode. Assuming that the template T has a non-informative prior distribution, it
results:

M∑
j=1

N∑
i=1

1

2σ2
j

(
||Sij − φAlli

(
φWi (TWj )

∣∣ |22 +
Pjwj
N

)
+

M∑
j=1

N∑
i=1

1

2σ2
j

(
||Sij − φAlli

(
TGj
)
||22 +

Pjwj
N

)
+

M∑
j=1

1

2
(wj + ΛjN) log(σ2

j )+

1

2

N∑
i=1

(αAlli )T (ΓAllα )−1αAlli +
(wAllα +N)

2
log(|ΓAllα |) +

wAllα

2
tr((ΓAllα )−1PAll

α )+

1

2

N∑
i=1

(αWi )T (ΓWα )−1αWi +
(wWα +N)

2
log(|ΓWα |) +

wWα
2
tr((ΓWα )−1PW

α )

(4.9)

This equation represents the cost function of our algorithm. We use a gradient
descent scheme to minimize it. The framed terms refer respectively to the data-
terms and to the regularity terms of both di�eomorphisms. The other terms are
due to the use of the inverse Wishart prior distributions. The proposed statistical
framework is general since it can be employed with any shape model, provided it is
possible to de�ne probability density functions, and any parametric di�eomorphic
model.
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4.2.3 Shape models

The framework of landmarks has been extensively used to model shapes since the
metric and its gradients are easy to compute and it is also simple to de�ne random
variables. However, the de�nition of correspondences between 3D meshes is a tedious
and di�cult task which might also be impossible when dealing with �ber bundles.
To this end, it is better to opt for correspondence-free shape models such as the
framework of varifolds or currents. We propose to model gray matter structures as
varifolds and white matter streamlines as weighted currents. Moreover, since �ber
bundles resulting from tractography algorithms might have a number of streamlines
so big to make infeasible the atlas construction, we propose to approximate them
with the parsimonious representation of weighted streamlines prototypes presented
in Chapter 3.

In the following, we will �rst recapitulate the framework of varifolds and weighted
currents, then we will explain how to de�ne random variables based on these two
shape models.

4.2.3.1 Varifolds

The framework of varifolds is the non-oriented extension of the one of currents
(Vaillant and Glaunès, 2005). It can be used to model both surfaces and curves as
in Chapter 2 but here we will use it only for surfaces. The de�nition of varifold for
a 3D recti�able surface X is :

VX(ω) =

∫
X

ω(p,
←−→
n(p))|n(p)|2dp ≈

L∑
l=1

ω(pl,
←→nl )|nl|2 (4.10)

where n(p) ∈ R3 is the normal of X at the point p ∈ R3. Since the surfaces used
throughout this chapter are meshes composed of a �nite number of faces, it seems
reasonable to approximate the integral in Eq.4.10 as a sum over the centres {pl} of
the L faces of the surface as in Chapter 2. However, it is still an open problem the
demonstration of the convergence of this approximation when the area of the faces
decreases, i.e. the sampling becomes more accurate (Charlier et al., 2014). The
test �eld ω ∈ W is function of both the position p and the unoriented unit normal
vector

←−→
n(p). The set of unoriented unit vectors ←→n ∈

←→
S can be formally de�ned

as the quotient of the unit sphere in R3 by the two elements group {±Id3}. This
means that two unoriented unit vectors which are superimposed (and thus parallel)
but with a di�erent orientation are considered equivalent. Eq.4.10 shows that the
space of varifolds W ∗ is a linear functional from W to R. This makes W ∗ a vector
space and therefore the union of meshes is equal to a sum in the space of varifolds.
But, contrary to currents, inverting the orientation of a mesh does not change the
varifold representation.

The test space W is de�ned as a product space between the ambient space
R3 and the space of unoriented unit normal vectors

←→
S , W : (R3x

←→
S ). More
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precisely, as proposed in (Charon and Trouvé, 2013b), one chooses W to be
a Reproducible Kernel Hilbert Space (RKHS) whose kernel KW is de�ned as
the tensor product between two kernels kg, Gaussian (continuous red line), and
kn, Cauchy-Binet (dashed blue line), de�ned on R3 and on

←→
S respectively:

KW ((p,
←−→
n(p)), (q,

←−→
u(q))) = kg(p, q)kn(

←−→
n(p),

←−→
u(q)). Thanks to the reproducing prop-

erty of the RKHS, the inner product between X and another surface Y modelled as
varifold (VY ≈

∑H
h=1 ω(qh,

←→uh )|uh|2) results:

〈VX , VY 〉W ∗ =
L∑
l=1

H∑
h=1

exp

(
−||pl − qh||22

λ2
W

)(
nTl uh
|nl|2|uh|2

)2

|nl|2|uh|2 (4.11)

The only parameter is the standard deviation λW of the Gaussian kernel.
The distance between VX and VY is: ||VX − VY ||2W ∗=〈VX , VX〉W ∗+〈VY , VY 〉W ∗-
2〈VX , VY 〉W ∗ . An important characteristic of this metric is the absence of corre-
spondences: every normal of the �rst surface is compared with all the normals of
the other surface (Cauchy-Binet kernel) and their contribution is weighted by the
distance between the centres (Gaussian kernel). Moreover, it is interesting to notice
that the Cauchy-Binet kernel is equal to the squared cosine of the angle between
the normals (i.e. 〈nl, uh〉2=nTl uh=|nl|2|uh|2cos(·)). This makes the metric invariant
to a change of orientation of some normals of the surfaces. Moreover, this property
is particularly important in the estimation of the template since it permits to pre-
vent the so called �currents cancelling e�ect�. This happens in surfaces modelled as
currents when two faces with opposite orientation, like in a thin protrusion, can-
cel reciprocally their e�ect on the estimate of the template. For a more detailed
discussion about varifolds the user is referred to Charon and Trouvé (2013b).

4.2.3.2 Weighted currents

The framework of weighted currents, presented in Chapter 3, is also an extension
of the one of currents. It has been conceived for curves and particularly to model
the streamlines resulting from tractography algorithms. An oriented 3D polygonal
curve A composed of G segments is modelled as a 1-weighted current CA via a line
integral of a square-integrable vector �eld ω:

CA(ω) =

∫
A

w(x, fa, fb)
Tα(x)dx ≈

G∑
g=1

w(xg, fa, fb)
Tαg (4.12)

where xg ∈ R3 and αg ∈ R3 are respectively the centre and the tangent vector
of segment g and, as previously for varifolds, we approximate the integral with a
sum over the segments of A. The two 3D vectors fa and fb are the coordinates of
the end-points of the curve and they are de�ned in the space Ψ = R3xR3. Similarly
to varifolds, the vector �eld ω belongs to a RKHS Q de�ned on the product space
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R3xΨ and the space of weighted currents Q∗ is a continuous linear form on Q. Thus,
even in this case, every curve is considered as a vector in a Hilbert space and the
union of several curves, such as a white matter �ber bundle, is represented as a sum.
The kernel KQ associated to the RKHS Q is de�ned as: KQ((x, fa, f b), (y, ta, tb)) =
kg(x, y)ka(f

a, ta)kb(f
b, tb) where the three kernels kg, ka, kb are Gaussian and de�ned

in R3. As explained in Chapter 3, the inner product between A and another curve
B modelled as weighted current (CB(ω) ≈

∑F
f=1w(yf , ta, tb)

Tβf ) results in:

〈CA, CB〉Q∗ =
G∑
g=1

F∑
f=1

exp

(
−||xg − yf ||22

λ2
g

)
αTg βf (4.13)

exp

(
−||fa − ta||22

λ2
a

)
exp

(
−||f b − tb||22

λ2
b

)

The continuous red line highlights the inner product between A and B if mod-
elled as usual currents. It measures overall geometrical di�erences between their
pathways. The two other terms, underlined with dashed lines, constrain the de�-
nition of similarity. Two curves are considered similar if their pathways are alike,
as usual currents, but also if their endpoints are close to each other. The inner
product is parametrised by the three bandwidths: λg, λa, λb. The distance between
two curves is de�ned as: ||CA −CB||2Q∗=〈CA −CB, CA −CB〉Q∗ . As usual currents,
this framework does not need point-to-point correspondences, except for the end-
points. This means that curves need to have a consistent orientation. This can be
complicated when comparing whole-brain tractograms but here we need to compare
only �ber bundles extracted using two speci�c ROIs (Region Of Interest) de�ning
the initial and last point respectively. This permits to easily ensure a consistent
orientation between the streamlines of the same bundle and also among bundles
of di�erent subjects. Furthermore, the use of Gaussian kernels on the extremities
of the streamlines permits to be more robust towards tractography errors at the
boundary between grey and white matter which is an area usually characterised by
a low SNR (Signal to Noise Ratio).

4.2.3.3 Varifolds and Currents random variables

In order to integrate the models of varifolds and weighted currents to the statisti-
cal framework previously presented, we need to de�ne random Gaussian variables
in these two spaces. In both cases, they are de�ned as a linear map between ev-
ery vector �eld ω ∈ W (or ω ∈ Q) to a real random Gaussian variable G(ω)
such that E[G(ω)] = 0 and, given two vector �elds ω1 and ω2, E[G(ω1), G(ω2)] =
〈ω1, ω2〉W (orQ). This means that the kernels KW and KQ de�ne the covariance struc-
tures of the Gaussian varifolds and weighted currents respectively. Since both of
them are in�nite-dimensional, we de�ne for each structure j a �nite dimensional
space on which we project both the template Tj and the shapes {Sij}i=1...N mod-
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elled as varifolds or weighted currents. We follow the line of reasoning presented in
Durrleman (2010) for the framework of currents.

Varifolds The �nite dimensional spaceW ∗
Λj

for varifolds is de�ned as the span of a
set of delta Dirac varifolds: Span{δ

(xu,
←→
βk )
} where the points {xu} and the unoriented

unit vectors {
←→
βk } are constrained to belong to two prede�ned grids, respectively

Υj
x and Υβ. The �rst one is a linearly spaced grid in the ambient space and Υβ is

a regular sampling of the half unit sphere in R3. The number of points of the two
grids is respectively Λj

x and Λβ and Λj is their product. For every �nite-dimensional
space W ∗

Λj
, it is possible to de�ne a block matrix KW,Λj whose blocks are the

RKHS kernel KW,Λj

(
(xu,
←→
βk ), (·, ·)

)
u=1,...,Λjx
k=1,...,Λβ

between every possible combination of

the couples {xu,
←→
βk }. The matrix KW,Λj has a dimension of [ΛjxΛj]. We can then

use the closest neighbour projection as explained in Sec.2.2.2 to project a varifold
on this grid. The squared norm of the projection of the varifold de�ned in Eq.4.10
results:

||
∑
l

δ(pl,
←→nl )|nl|2||

2
W ∗Λj

=
∑
u∈Υx

∑
p∈Υx

∑
k∈Υβ

∑
q∈Υβ

cukKW,Λj

(
(xu,
←→
βk ), (xp,

←→
βq )
)
cpq (4.14)

where the scalars cuk and cpq refer to the values resulting from the projection in
(xu,
←→
βk ) and (xp,

←→
βq ) respectively.

Weighted currents The �nite dimensional space Q∗Λj for weighted currents is
also de�ned as the span of a set of delta Dirac weighted currents: Span{δα

(yl,fam,f
b
n)
}

where α ∈ R3 and both the points {yl} and the endpoints {fam}, {f bn} are constrained
to belong to prede�ned grids: yl ∈ Υj

y, f
a
m ∈ Υj

a and f bn ∈ Υj
b. The three grids

are composed of points linearly spaced in the ambient space and their sizes are
equal to Λj

y, Λj
a, Λj

b respectively. The product of their sizes is equal to Λj. As for
varifolds, we can de�ne a block matrixKQ,Λj for every �nite-dimensional space Q∗Λj ,

whose blocks are the RKHS kernel KQ,Λj

(
(yl, f

a
m, f

b
n), (·, ·, ·)

)l=1,...,Λjy

m=1,...,Λja
n=1,...,Λjb

between every

possible combination of the triples {yl, fam, f bn}. The matrix KQ,Λj has a dimension
of [ΛjxΛj]. The squared norm of the projection of the weighted current de�ned in
Eq.4.12 is:

||
G∑
g=1

w(xg, fa, fb)
Tαg||2Q∗Λj =

∑
l∈Υjy

∑
m∈Υja

∑
n∈Υjb

∑
p∈Υjy

∑
q∈Υja

∑
r∈Υjb

αlmnKQ,Λj

(
(yl, f

a
m, f

b
n), (yp, f

a
q , f

b
r )
)
αpqr

(4.15)
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where the 3D vectors αlmn and αpqr refer to the values resulting from the projec-
tion in (yl, f

a
m, f

b
n) and (yp, f

a
q , f

b
r ) respectively. The projected norm in Eq.4.15 can

be computed using, for instance, the numerical scheme p3m proposed in Durrleman
(2010) and based on FFT (Fast Fourier Transform).

Likelihood Once all shapes {Sij}i=1...N and the template Tj are projected onto
a �nite dimensional space (W ∗

Λj
or Q∗Λj) it is possible to compute the norm of the

projected residuals and the likelihood of the noise. The latter is de�ned for white
and gray matter structures respectively as:

p(εWij |σ2
j ) ∝

1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φAlli

(
φWi (TWj )

)
||2Q∗Λj

]
(4.16)

p(εGij|σ2
j ) ∝

1

|σ2
j |Λj/2

exp

[
− 1

2σ2
j

||Sij − φAlli (TGj )||2W ∗Λj

]
where we have scaled the kernels KW,Λj and KQ,Λj with the scalar σ2

j . As it is
possible to notice, these equations are very similar to the ones in Eq.4.3 where we
modelled the structures as landmarks. The only di�erences concern the metric and
the de�nition of the parameter Λj. These are also the only changes to take into
consideration in Eq.4.9 when modelling the structures as varifolds and weighted
currents.

In practice, due to the important computational load and time required to cal-
culate both || · ||2Q∗Λj and || · ||

2
W ∗Λj

, we choose to compute directly ||(·)||2Q∗ and ||(·)||2W ∗
with a fast GPU (CUDA) implementation. Moreover, choosing the number of points
for each grid is a tricky task. This becomes even harder when mixing di�erent com-
putational models such as varifolds and weighted currents. Here, we propose to
select Λj as the number of points required to build a regular linearly-spaced grid
covering the ambient space where the shapes and the template of structure j lie.
The distance between every couple of points is equal to λW or λg for varifolds and
weighted currents respectively. In Sec.4.3.2 we will show that results are stable vary-
ing the size of the grids and that we obtain reasonable results with the proposed
heuristic rule.

4.2.4 Di�eomorphic deformations

We de�ne here how to compute the di�eomorphic deformations of the template com-
plex. Our approach relies on the Large Deformation Di�eomorphic Metric Mapping
(LDDMM) framework based on the control point formulation presented in Durrle-
man et al. (2011b). For every subject i, both φWi and φAlli are de�ned as the last
deformations of two �ows of di�eomorphisms {φWit }t∈[0,1] and {φAllit }t∈[0,1]. Calling
φi(x, t) = φit(x) = xi(t) the position of a point at time t which was located in x
at time t = 0, each �ow is built by integrating: ∂φi(x,t)

∂t
= vi(φi(x, t), t) = vi(xi(t), t)
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over t ∈ [0, 1] where vi(xi(t), t) is a time-varying vector �eld representing the instan-
taneous velocity of a point located in xi(t) at time t. Both vector �elds vAlli and vWi
belong to the same RKHS D with Gaussian kernel KD. They are de�ned by two
di�erent sets of 3D control points, cAll and cW , shared among all subjects, and by
two distinct sets of 3D vectors, called momenta, αAlli and αWi linked to the control
points and speci�c to each subject i: vAlli (xi(t), t) = KD(xi(t), c

All(t))αAlli (t) and
vWit (xi(t)) = KD(xi(t), c

W (t))αWi (t), where xi(0) = x and KD(xi(t), c(t)) repre-
sents a block matrix of Gaussian kernels with an equal �xed bandwidth for both vAlli

and vWi . The deformation of every point x in the ambient space depends on its ini-
tial position at t = 0 and on the evolution of the system LAlli (t) = {cAll(t),αAlli (t)} if
the point belongs to the grey matter and on both systems LWi (t) = {cW (t),αWi (t)}
and LAlli (t) if the point belongs to the white matter. At t = 0 the deformations φWi0
and φAlli0 are equal to the identity transformations. For both systems, the path from
φAlli0 (resp. φWi0 ) to φ

All
i1 (resp. φWi1 ), the latter being the deformation of interest, is

chosen as the geodesic one, which means the one that minimizes the total kinetic
energy along the path:

∫ 1

0
||vAllit ||2D (resp.

∫ 1

0
||vWit ||2D). It has been shown in Durrle-

man et al. (2014) that the extremal paths are such that both systems LWi (t) and
LAlli (t) satisfy:

ċi(t) = K(ci(t), ci(t))αi(t) = F c(ci(t),αi(t)) ci(0) = c(0) = c0

α̇i(t) = −αi(t)Tαi(t)∇1K(ci(t), ci(t)) = Fα(ci(t),αi(t)) αi(0) = αi0 (4.17)

which can be summarized as L̇
All

i (t) = F (LAlli (t)) (resp. L̇
W

i (t) = F (LWi (t))).
The last di�eomorphisms φAlli1 and φWi1 are completely parametrized by the initial
conditions of the systems: LAlli (0) = LAlli0 = {cAll0 ,αAlli0 } (resp. LWi (0) = LWi0 =
{cW0 ,αWi0 }). Thus, in order to put into correspondence the template complex T
with the subject shape complex Si, we �rst integrate forward in time L̇

W

i (t) starting
from LWi0 and we use these values to deform only the white matter structures of the
template complex TW integrating forward in time:

Ṫ
W

i (t) = K(TW
i (t), cWi (t))αWi (t) = G[TW

i (t),LWi (t)] TW
i (0) = TW

i0 = TW

(4.18)

The deformed white matter template φWi1 (TW ) = TW
i1 , together with the un-

deformed gray matter template TG = TG
i0 are then transformed by the second

di�eomorphism φAlli1 integrating �rst forward in time L̇
All

i (t) and then:

Ṫ
All

i (t) = K(T All
i (t), cAlli (t))αAlli (t) = G[T All

i (t),LAlli (t)] T All
i (0) = T All

i0 = TW
i1 ∪TG

i0

(4.19)

A sketch of the cascade of di�eomorphisms is shown in Fig.4.2.
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Figure 4.2: Sketch of the deformation of the template complex based on the proposed
cascade of two di�eomorphisms φW and φAll. We omit the subject index i for clarity
purpose.

4.2.5 Optimization procedure

The double di�eomorphic framework presented in the previous sub-section can
be easily integrated in the Bayesian setting for atlas construction explained in
Sec.4.2.2. The two sets of initial control points and momenta {cAll0 , {αAlli0 }i=1,...,N}
and {cW0 , {αWi0 }i=1,...,N} represent the deformation parameters to warp the tem-
plate complex T towards the subject shape complex Si. The initial control points
cAll0 and cW0 are shared among the whole population and we assume they follow
a non-informative prior distribution. The initial momenta αAlli and αWi are spe-
ci�c to each subject i and they follow a Gaussian distribution exactly as in Eq.4.2.
Modelling the grey matter structures as varifolds and the white matter bundles as
weighted currents, assuming that all random variables are independent and consid-
ering {αWi0 }i=1,...,N , {αAlli0 }i=1,...,N , cAll0 and cW0 as hidden variables, we can rewrite
the cost function in Eq.4.9 as:

MW∑
j=1

N∑
i=1

1

2σ2
j

(
||Π(Sij − φAlli1

(
φWi1 (TWj )

)
)||2Q∗Λj +

Pjwj
N

)
+

MW∑
j=1

1

2
(wj + ΛjN) log(σ2

j )+

MG∑
j=1

N∑
i=1

1

2σ2
j

(
||Π(Sij − φAlli1 (TGj ))||2W ∗Λj +

Pjwj
N

)
+

MG∑
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wAllα
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(4.20)
whereMW andMG are the numbers of white matter and grey matter structures

respectively. The EM algorithm employed here is an approximation of the Maximum
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a Posterior (MAP) estimator where the hidden variables are actually considered
as parameters to be optimised. The whole set of parameters is therefore: {T ,
ΓAllα , ΓWα , {σ2

j}j=1,...,M , {αAlli0 }i=1,...,N , {αWi0 }i=1,...,N , cAll0 , cW0 }. We use a gradient
descent scheme for {T , {αAlli0 }i=1,...,N , {αWi0 }i=1,...,N , cAll0 , cW0 }. Instead the other
parameters, namely ΓAllα , ΓWα , {σ2

j}j=1,...,M , have closed form solutions thanks to the
use of conjugate priors. They result:

Γ̂Allα =

∑N
i=1

[
(αAlli0 )(αAlli0 )T

]
+ wAllα (PAll

α )T

(wAllα +N)
(σ̂2

j )
G =

∑N
i=1 ||Π(Sij − φAlli1 (TGj ))||2W ∗Λj + wjPj

(wj +NΛj)

Γ̂Wα =

∑N
i=1

[
(αWi0 )(αWi0 )T

]
+ wWα (PW

α )T

(wWα +N)
(σ̂2

j )
W =

∑N
i=1 ||Π(Sij − φAlli1

(
φWi1 (TWj )

)
)||2Q∗Λj + wjPj

(wj +NΛj)

where (σ̂2
j )
G and (σ̂2

j )
W refer to the grey and white matter structures respectively.

The two covariance matrices Γ̂Allα and Γ̂Wα are equal to a weighted sum between
the sample covariance matrix of the initial momenta and the prior. We choose
PAll
α =K−1

D (cAll0 , cAll0 ) and PW
α =K−1

D (cW0 , c
W
0 ) which are block matrices of Gaussian

kernels between the initial control points. The matrix KD is the kernel of the
RKHS to which belong both vector �elds vAlli and vWi . This choice is motivated by
the fact that if the number of subjects N is de�nitely smaller than wAllα and wWα
then Γ̂Allα ∝ K−1

D (cAll0 , cAll0 ) and Γ̂Wα ∝ K−1
D (cW0 , c

W
0 ). This means that the framed

regularity terms in Eq.4.20 become
∑N

i=1(αAlli0 )TKD(cAll0 , cAll0 )αAlli0 =
∑N

i=1 ||vAlli0 ||2D
and

∑N
i=1(αWi0 )TKD(cW0 , c

W
0 )αWi0 =

∑N
i=1 ||vWi0 ||2D which are the sums of the energies

of the geodesic paths of all subjects for both di�eomorphisms. This kind of regularity
term is often employed in deterministic atlas constructions, namely not based on
a statistical setting (Joshi and Miller, 2000; Beg et al., 2005; Durrleman et al.,
2012). Furthermore, the use of these priors regularises the estimate of the covariance
matrices since it makes possible their inversion even when the number of subjects
N is smaller than three times the number of controls points (i.e. size of αAlli0 and
αWi0 ). This also implies that they can be directly employed in linear statistical
analyses such as PCA at the end of the atlas construction without being regularised
a posteriori.

The two other parameters, (σ̂2
j )
G and (σ̂2

j )
W , are equal to a weighted sum between

the data-term of the j-th structure and the prior Pj. Every parameter balances the
importance of structure j with respect to the other structures and with respect to
the regularity terms of both di�eomorphisms. The chosen prior imposes a minimum
value to σ̂2

j which is useful to avoid over�tting. In fact, without a prior, the min-
imisation process might focus only on a structure k reducing its residuals almost to
zero and ignoring the other structures. This would result in σ̂2

k → 0 and therefore
also in log(σ̂2

k)→-∞.

The gradients of the cost function E in Eq.4.20 with respect to the other pa-
rameters are equal to:
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(4.21)

where DG
ij = ||Π(Sij − φAlli1 (TGj ))||2W ∗Λj and D

W
ij = ||Π(Sij − φAlli1

(
φWi1 (TWj )

)
)||2Q∗Λj

refer to the data terms of the grey and white matter structures respectively whereas
Dij refers to the data-term of any structure. Moreover, we have not taken into
account the di�erentiation of the prior Pα with respect to the control points since
its norm is negligible with respect to the one of the data term.

To calculate the gradients of the data terms {Dij} we need to compute the de-
formed template complex obtained at the end of the second di�eomorphism for every
subject i and for all structures, namely φAlli1 (TG) and φAlli1

(
φWi1 (TW )

)
. First, we inte-

grate forward in time L̇
W

i (t) = F (LWi (t)) (Eq.4.17) and Ṫ
W

i (t) = G[TW
i (t),LWi (t)]

(Eq.4.18). Then, we integrate L̇
All

i (t) = F (LAlli (t)) (Eq.4.17) and, using as initial
value T All

i (0) = TW
i1 ∪ TG

i0, we integrate also Ṫ
All

i (t) = G[T All
i (t),LAlli (t)] (Eq.4.19).

After that, we can compute the data term Dij and its gradient with respect to the
vertices of T All

i (1) = T All
i1 . The computations of the gradient for surfaces mod-

elled as varifolds are shown in the Appendix of Durrleman et al. (2014) whereas
the calculations about the gradient for �ber bundles modelled as weighted proto-
types are presented in Sec.4.A.1. Using the calculus of variations (see Sec.4.A.2),
the information about the gradient is brought back from t = 1 to t = 0 to update
�rst LAlli (0) = {cAll0 ,αAlli0 } and TG and then LWi (0) = {cW0 ,αWi0 } and TW . The
optimisation is based on a set of linearised ODEs describing the evolution of four
auxiliary variables θAlli , ξAlli = {ξAllαi , ξ

All
ci }, θWi , ξWi = {ξWαi , ξWci }:

θ̇Alli (t) = −(∂TAlli
GAll
i (t))T θAlli (t) θAlli (1) = ∇TAlli (1)Di

(4.22)

ξ̇Alli (t) = −(∂LAlli
GAll
i (t))T θAlli (t) + (dLAlli

FAll
i (t))T ξAlli (t) ξAlli (1) = 0 (4.23)

θ̇Wi (t) = −(∂TWi G
W
i (t))T θWi (t) θWi (1) = θAll,Wi (0)

(4.24)

ξ̇Wi (t) = −(∂LWi G
W
i (t))T θWi (t) + (dLWi F

W
i (t))T ξWi (t) ξWi (1) = 0 (4.25)
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The size of θAlli and ξAlli are the same as the ones of T and LAlli respectively.
Instead, the size of θWi and ξWi are equal to the ones of TW and LWi respectively.
We �rst integrate backward Eq.4.22 and Eq.4.23 obtaining θAlli (0) and ξAlli (0) =
{ξAllαi (0), ξAllci (0)}. Then, we use θAll,Wi (0), which are the initial values of θAlli relative
to the white matter structures, as �nal values for θWi and we integrate backward
Eq.4.24 and Eq.4.25 obtaining θWi (0) and ξWi (0) = {ξWαi (0), ξWci (0)}. From this set of
equations, we can notice that the optimisation of the two di�eomorphisms is linked
by the constraint θWi (1) = θAll,Wi (0) and that the information given by ∇TAlli (1)Di

where Di = {Dij}j=1,...,M �ows �rst through the second di�eomorphism All and
then through the �rst one W and eventually it is used to update all the parameters
in the following way:

∇TGE =
N∑
i=1

θAll,Gi (0) ∇TWE =
N∑
i=1

θWi (0)

∇αAlls0
E = ξAllαs (0) + (ΓAllα )−1αAlls0 ∇αWs0E = ξWαs(0) + (ΓWα )−1αWs0

∇cAll0
E =

N∑
i=1

ξAllci (0) ∇cW0 E =
N∑
i=1

ξWci (0) (4.26)

where θAll,Gi refers to the values of θAlli relative to the grey matter structures. A
sketch of the optimisation procedure to update all parameters is shown in Fig.4.3.
It should be noted that the �ow of information goes in the opposite sense, namely
from the second global di�eomorphism All to the �rst white one W , with respect
to the one shown in Fig.4.2 to deform the template complex T . More details about
the computations can be found in Sec.4.A.2.

Figure 4.3: Sketch of the optimisation procedure for the template complex and the
deformation parameters. We omit the subject index i for clarity purpose.
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4.2.6 Initialisation of the parameters

The use of a gradient descent scheme to optimise the atlas parameters requires an
initialisation. Control points of both di�eomorphisms are initialised as a regular
lattice covering the entire ambient space with a inter-points distance equal to the
bandwidth of the di�eomorphic kernelKD. Momenta are initialised to zero, namely
no deformations. The third parameter is the template complex which is composed
of two kinds of meshes: 3D surfaces and bundles of streamlines approximated as
weighted prototypes. The initial template should not be chosen among the meshes
of the subjects since it would inherit all the imperfections due to segmentation errors
or data noise, biasing consequently the atlas estimation.

For surfaces, we use the average of the population when it is available a vertex-
correspondence, otherwise we use a regular sphere which is �rst centred with respect
to the ensemble of subject meshes and then it is scaled to an ellipsoid using the three
main modes of variations of the meshes considered as points cloud.

For bundles of weighted prototypes, we propose to gather all the original stream-
lines of the subjects into a single bundle which is then approximated as a set of
weighted prototypes. The weights of the prototypes are then scaled so that the
norm of the template is equal to the average norm of the population.

4.3 Experiments and Results

The dataset used in this chapter contains 76 subjects: 27 controls and 49 patients
subject to Gilles de la Tourette syndrome (GTS) and divided in three sub-groups
based on their symptoms: G1=simple-tics, G2=complex-tics, G3=complex tics with
obsessive compulsive disorders (OCD).

In this section, we will �rst evaluate the robustness of the proposed framework
with respect to the size of both the varifold and weighted current grid using left
caudate and the bundle of prototypes connecting it to the left hemisphere of the
cortical surface. Then, we will take advantage of the proposed atlas construction
procedure to investigate morphological and organisational abnormalities of the left
cortico-putamen circuit in the population of GTS patients. These alterations are
likely to be associated to a pathological development of the brain. The employed
neural circuit is composed of left putamen, left hemisphere of the cortical surface
and the streamlines (prototypes) connecting them.

In the following experiments, we �rst compute an atlas of 50 iterations using
only the sub-cortical structures employed. This permits to transform the ellipsoid
in a structure more similar to the sub-cortical nucleus. After that, we cut the
prototypes of the template bundle at the intersection with the inter-linked grey
matter structures.
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4.3.1 Materials

Anatomical scans of all subjects were acquired using 3D T1-weighted sequences with
a voxel size of 1x1x1 mm3. Di�usion weighted scans were acquired with sequences
of 50 directions with a B-factor of 1000 and a voxel size of 2x2x2 mm3. For each
subject, we consider the left hemisphere of the cortical surface, left putamen, left
caudate and the �ber bundles connecting these sub-cortical nuclei to the left hemi-
sphere of the cortex. The cortical surface is segmented using FreeSurfer v5.3 (Fischl
et al., 2004) from the T1-weighted images followed by a pipeline of BrainVisa 4.3.0
which allows to have vertex-correspondence between subjects. The putamen and
caudate are segmented with FSL (Patenaude et al., 2011) from the T1-weighted
images. Since we want to analyse as a single structure nucleus accumbens and
caudate, we merge these two segmentations together. We use the marching cubes
algorithm to create the 3D mesh (AimsMesh function of Brainvisa 4.3.0). The �ber
bundles result from a deterministic tractography algorithm (1 seed per voxel) avail-
able in BrainVISA/Connectomist-2.0 (Perrin et al., 2005). We use the Spherical
Deconvolution Transform (SDT) model (Descoteaux et al., 2009) to estimate the
local underlying orientation distribution function (ODF). Whole brain connectiv-
ity is then inferred within an anatomy-based tractography mask (Guevara et al.,
2011) from which the �ber bundles are extracted as explained in (Worbe et al.,
2015). The bundles include also the commisural �bers which are truncated at the
interhemispheric �ssure. All the other �bers are cut at the intersection with their
respective sub-cortical structure and at the border between white and gray matter
of the cortex. For more details about the acquisition, preprocessing of both T1-
weighted and di�usion-weighted images or the tractography, the reader is referred
to (Worbe et al., 2015).

4.3.2 Robustness with respect to the grid size Λj

We evaluate here the robustness of the proposed method with respect to the number
of points of the grids (Λj) where both the structures and the template modelled as
varifolds or weighted currents are projected to. We estimate 16 atlases using a group
of 8 anatomical complexes composed of left caudate and left caudate bundle. The
left caudate is modelled as varifold using λW=3mm and the left caudate bundle
as weighted currents with λg=7mm, λa=10mm (cortex) and λb=5mm (caudate).
Atlases share the same parameters except for the grid size of both structures. In
Fig.4.4 we show the results where V and WC indicate the number of points of
the Varifold and Weighted Currents grid respectively. The �rst row represents the
evolution of the residuals of both structures during the atlas construction. Similarly,
the second row represents the evolution of the logarithm of the determinant of the
two covariance matrices, namely log(|ΓWα |) and log(|ΓAllα |). The last row describes
instead the point-wise Euclidean di�erence || · ||2 between the estimated template
and the initial one.

It is possible to notice that when the grid size of the bundle is greater than

93



Chapter 4. A deformation framework to unify morphometry and
structural connectivity analysis

the one of the nucleus (WC > V ), results are very stable and satisfactory. The
only exception is when the di�erence is too great, namely with V = 1000 and
WC = 500.000. In such a case, the residuals of the caudate are higher than in the
other examples and the template does not evolve since its data-term is too small
with respect to the one of the bundle (see Fig.4.5 top-left). On the contrary, when
V > WC like with V = 100.000 and WC = 1.000, we have the opposite e�ect
since the residuals of the bundle are higher and its template does not converge (see
Fig.4.5 top-right).

In the following experiments, we propose to use an heuristic to de�ne V and
WC. They are selected as the number of points required to build a regular linearly-
spaced grid covering only the subject shapes and the template of each structure and
the distance between every couple of points is given by the smallest value between
λW and λg among all structures. In this example, the smallest value is the one of
the caudate, namely 3mm, and the grid sizes result V ≈ 5.000 and WC ≈ 110.000.
Results based on this choice are satisfactory and as it is possible to see from Fig.4.5
at the bottom, both templates are updated during the atlas construction.
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Figure 4.4: Evaluation of the robustness of the results with respect to the number
of points of the varifold (V) and weighted current (WC) grids. Colours refer to
16 atlases computed using di�erent values of grid sizes. Each atlas is based on
8 anatomical complexes composed of left caudate, modelled as varifold, and left
caudate bundle, modelled as weighted current. The maximum number of iterations
for all atlases is 100.
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Figure 4.5: Comparison of three estimated template complexes (in red) with respect
to the initial template complex (in blue and black). The left caudate is modelled
as varifold and the bundle as weighted current. Atlases share the same parameters
except for the number of points of the grid, V for varifolds and WC for weighted
currents. Black arrows indicate the areas where the initial template complex has
evolved during the atlas construction.
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4.3.3 Group di�erences

In all the following experiments we use the cortico-putamen neural circuit. The cor-
tical surface is modelled with landmarks, the putamen as varifold with λW=3mm
and the �ber bundle connecting them as weighted currents with λg=7mm, λa=10mm
(cortex) and λb=5mm (putamen). All bundles are approximated as weighted pro-
totypes. The bandwidths of both di�eomorphic kernels is equal to 11mm and the
number of control points is 816 for both di�eomorphisms. The maximum number of
iterations is 120 and all the computations are performed on a Intel Xeon, 32 cores,
CPU E5-2650, 2.60GHz with a graphic card NVIDIA Quadro 5000. The code is
written in C++ and CUDA and it is an extension of the freely available software
deformetrica (www.deformetrica.org). The computational time for an atlas of 30
subjects is equal to 144 hours for 120 iterations. All shape complexes are previously
rigidly registered to a reference shape complex.

It is important to notice that a bandwidth of 11mm permits to deform all white
matter �ber bundles in a correlated way with at least one grey matter mesh. This
permits to have an identi�able model with a unique decomposition of the two dif-
feomorphisms all over the ambient space.

4.3.3.1 Atlas with pooled subjects

Toy example We start this section with an explanatory example based on a
toy data-set constituted of 6 pseudo shape complexes belonging to two di�erent
populations (i.e. controls and GTS patients). Each complex is composed of a pseudo
cortical surface, a pseudo sub-cortical structure and a pseudo �ber bundle linking
them. They are shown in Fig.4.6 where it is possible to notice that the complexes
of population A have a di�er organisation and shape with respect to the ones of
population B. Indeed, subjects from A have a bigger cortex and their sub-cortical
structure have a bump on the right whereas in population B it is on the left and
the �ber bundles of the two populations integrate completely di�erent grey matter
areas. In population A �bers go from the right area of the sub-cortical structure to
the left area of the cortex whereas in population B it is exactly the contrary.

We estimate an atlas considering both populations together as if they were from
a single group. We start with a simple and unbiased initial template complex and
we obtain a �nal template complex and the covariance matrices of the momenta of
both di�eomorphisms. The template shows the features common to both popula-
tions. The two covariance matrices describe the morphological and organisational
variability within the 6 subjects. We compute a Principal Component Analysis
(PCA) for each covariance matrix and we deform the �nal template complex at ±σ
(standard deviation) along the �rst modes of both PCAs.

Since the intra-group variations are de�nitely smaller than the inter-group ones,
the main variations among the 6 subjects captured by the white di�eomorphisms
{φWi }, which a�ect only the �ber bundles, explain the principal di�erences in struc-
tural connectivity between the two populations. The positions of the �ber bundle
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at −σ and +σ are the ones of population A and B respectively. Moreover, even the
�rst mode of the global PCA describes the main global morphological variations
between the two populations. As previously, we can notice that both grey matter
structures at −σ and +σ reproduce the morphological characteristics of population
A and B respectively.

This example shows the exploratory potential of the proposed algorithm even if
it is based on a simple toy data-set where the inter-group di�erences are probably
exaggerate compared to a real-data example. Nevertheless, given the important
structural changes that are likely to occur in syndromes such as GTS, we may assume
that controls and patients create separate clusters. The �rst modes of variations
of the two di�eomorphisms should therefore describe the main di�erences between
these two clusters highlighting the e�ects of the pathology on both the anatomy and
structural connectivity.

This could not be achieved using a single di�eomorphic atlas since the template-
to-subject registrations would not be able to put into correspondence all the struc-
tures of the complex. An example of registration is shown in Fig.4.7, where it is
possible to notice that the matching using a single di�eomorphism is not accurate.
Instead, a double di�eomorphic registration makes �rst the �ber bundle sliding onto
the grey matter structures and then it accurately aligns with the second (global)
di�eomorphism all structures of the template complex to the homologous ones of the
subject complex. This permits to disentangle the di�erences in structural connec-
tivity, captured by the �rst di�eomorphism, from the global morphological changes,
captured by the second di�eomorphism.

Cortico-putamen circuit Following the same strategy we also build an atlas
with pooled subjects based on real data. We use the cortico-putamen circuits of 10
controls and 10 patients subject to GTS. In Fig.4.8 we show the estimated template
complex and its deformations along the �rst mode at ±3 std of a PCA based on the
initial momenta of the white di�eomorphisms. The �rst and last column present
the densities of the endpoints of the template bundle onto the �xed grey matter
structures. Colours in the middle column highlight the displacement of the deformed
template bundle along the �rst mode. The two arrows point to the most variable
areas. The �rst one, at the top, is in the superior-frontal area of the cortical surface.
As it is possible to notice from the densities on the cortex, �bers tend to concentrate
in a speci�c area in the �rst row which is then left almost empty in the bottom row.
The second arrow points to the lateral part of the putamen where �bers move from
the bottom to the central part in the �rst and last row respectively. This movement
is clearly visible in the right column.

In Fig.4.9 we present the main global morphological variations of both the cor-
tical surface and the putamen. We compute the �rst two modes of a PCA based on
the initial momenta of the global di�eomorphisms. Then, we deform the estimated
template (shown in the middle in gray) along the two modes at ±3 std. Colours
highlight the displacement of the deformed template cortex. The �rst mode cap-
tures changes mainly in the parietal area of the cortex whereas the second mode
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Figure 4.6: Toy example of double di�eomorphic atlas construction. At the top
we present the shape complexes of two di�erent populations. The intra-variability
of each group is smaller than the inter-variability. Subjects of A have a bigger
cortex than subjects in B and both the shape of the sub-cortical nucleus and the
structural connectivity are di�erent. In the middle we show the initial template
which is updated during the atlas construction. The �nal template is presented
at the bottom and it is deformed at ±σ along the �rst modes of two Principal
Component Analysis (PCA) computed with the covariance matrices of the momenta
of the two di�eomorphisms. Due to the great inter-variability between the two
groups, the �rst mode of the white PCA (�rst di�eomorphism) presents the main
di�erences in structural connectivity between the two populations. The �rst mode
of the global PCA (second di�eomorphism) shows instead the global morphological
variations between the two groups.

in the middle and superior frontal areas. The variations in the putamen concern
principally its relative position with respect the other structures. The �rst and sec-
ond modes present almost a rigid movement along the horizontal and vertical axis
respectively. The second mode presents also a global expansion/shrinking.

The changes presented in these two �gures could highlight the main variations
between the two groups or they could show their common main variability. In the
next sub-section we will compare these results with the ones obtained by analysing
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Figure 4.7: Example of template-to-subject registration using both a single and a
double di�eomorphism. Due to the variation in structural connectivity between the
template complex (blue, green and red) and the subject complex (violet), a single
di�eomorphism can not put into correspondence all structures. Instead, a double
di�eomorphism can �rst make sliding the �bers onto the grey matter structures,
showing the variation in structural connectivity, and then it can correctly register
all structures. Orange arrows indicate the changes in structural connectivity.

each group independently.
We also computed the average of the initial momenta of each population and

we deformed the template complex along these two directions. This gave us a
quantitative way to compare the average con�gurations of both groups. Results
(not shown) were quite similar and no di�erences stood out.
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Figure 4.8: Main variations in structural connectivity of an atlas composed of 10
controls and 10 patients. The �nal template bundle, shown in the middle, is de-
formed at ±3 std along the �rst mode of a PCA based on the initial momenta of
the white di�eomorphisms. Colours of the left and right columns indicate the den-
sities of the endpoints of the template bundle onto the �xed grey matter structures.
Colours in the middle column highlight instead the displacement of the template
bundle at the end of the deformations. Arrows point to the most variable areas.
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Figure 4.9: Main global morphological variations of an atlas composed of 10 controls
and 10 patients. The �nal templates of the grey matter, shown in grey in the middle
row, are deformed at ±3 std along the �rst and second mode of a PCA based on
the initial momenta of the global di�eomorphisms. Colours on the left highlight the
displacement of the template cortex at the end of the deformations.
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4.3.4 Separated Atlases

We compute here two di�erent atlases using 30 patients (10G1 + 10G2 +10G3)
and 27 controls respectively. We use the same initial template complex as in the
previous sub-section. We compute the �rst three modes of a PCA based on the
initial momenta of the white di�eomorphisms for both groups. Then, we deform
the �nal template complex along every mode at ±3 std. Deformations are shown
in Fig.4.10 for controls and in Fig.4.11 for patients. These two �gures present the
main variability in structural connectivity within each group.

By comparing them, we can notice that the �rst mode of each group captures
variations relative to the commisural �bers passing through the corpus callosum.
This means that variations in this area are probably common to both groups. The
other two modes show instead changes a�ecting di�erent areas. In particular, in con-
trols the most variable area is the superior-frontal instead in patients the variations
are more heterogeneous. Interestingly, the changes of the second mode in patients
regard almost the same areas as in Fig.4.8. This might signify that the group of
patients, due to the vast clinical heterogeneity of GTS, might create a large cluster
in the shape space which might even intersect the one of controls creating a kind
of continuum from the group of controls to the most severe patients. If we suppose
then that the intra-variability of the group of patients is greater than the one of
controls we could explain why the main variations found considering controls and
patients together are very similar to the greatest changes estimated among only
patients.
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Figure 4.10: Main variations in structural connectivity of an atlas estimated using
27 healthy controls. Each row shows the �nal template bundle deformed at ±3 std
along the �rst three modes of a PCA based on the initial momenta of the white
di�eomorphisms. Colours refer to the displacement (in mm) of the template bundle
at the end of the deformations.
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Figure 4.11: Main variations in structural connectivity of an atlas estimated using
30 GTS patients. Each row shows the �nal template bundle deformed at ±3 std
along the �rst three modes of a PCA based on the initial momenta of the white
di�eomorphisms. Colours refer to the displacement (in mm) of the template bundle
at the end of the deformations.
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4.3.5 Classi�cation

Eventually, we use the initial momenta of the proposed double di�eomorphic defor-
mation to discriminate between controls and patients and we compare the classi�-
cation scores with the ones obtained using the initial momenta of a single di�eo-
morphism.

First of all, we build an atlas with 10 subjects (5 controls and 5 patients) which
results in a template, two sets of control points and two well-conditioned covariance
matrices of deformation parameters of the white (ΓWα ) and global (ΓAllα ) di�eomor-
phism respectively. Since we use subjects from both clinical groups, the template
should be positioned in between them in the shape space. The template is succes-
sively warped to all the remaining J subjects �xing the control points equal to the
estimated ones and using the two covariance matrices as regularity terms, namely
minimising for each subject:

MW∑
j=1

1

2σ2
j

||Π(Sj − φAll1

(
φW1 (TWj )

)
)||2Q∗Λj + (αAll0 )T (ΓAllα )−1αAll0

MG∑
j=1

1

2σ2
j

||Π(Sj − φAll1 (TGj ))||2W ∗Λj + (αW0 )T (ΓWα )−1αW0

(4.27)

which is equal to Eq.4.20 but with only one subject (index i disappears) and
with a constant σ2

j which is �xed to the value estimated in the atlas. The resulting
initial momenta {αAlli0 }1...J and {αWi0 }1...J represent the features used as input in the
classi�er. We employ Linear Discriminant Analysis (LDA) with a leave-one-out cross
validation strategy. We test the discriminative power of the two di�eomorphisms
separately by using either only {αAlli0 }1...J or only {αWi0 }1...J . In each experiment, we
suppose that the class-conditional densities of the initial momenta for both clinical
groups are Gaussian, namely fc(αi0) = N(µc,Γc) and fp(αi0) = N(µp,Γp), and that
they have priors equal to their relative number, namely πc = Jc/J and πp = Jp/J
where the indices c and p refer to controls and patients respectively, πc and πp are
the prior distributions, Jc = 22 is the number of controls and Jp = 44 is the number
of patients.

In LDA the feature space is divided into two parts by a decision boundary which
is based on the Bayes factor B de�ned as:

B(αt) = log

(
fc(αt)

fp(αt)

)
+ log

(
πc
πp

)
=− 1

2
(αt − µc)TΓ−1

c (αt − µc)−
1

2
log |Γc|

+
1

2
(αt − µp)TΓ−1

p (αt − µp) +
1

2
log |Γp|+ log(

Jc
J

)− log(
Jp
J

)

(4.28)

where αt is the initial momenta of the test subject t and we omitted the index
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0 for clarity purpose. If B is smaller than a threshold τ the subject is classi�ed as
patient otherwise as control. Moreover, in LDA the covariance matrices of the two
groups are assumed to be equal and with full rank (i.e. Γc = Γp = Γ) which means
that Eq.4.28 becomes:

B(αt) = αTt Γ−1(µc − µp)︸ ︷︷ ︸
w

−
(

1

2
µTc Γ−1µc −

1

2
µTp Γ−1µp − log(

Jc
J

) + log(
Jp
J

)

)
︸ ︷︷ ︸

b

(4.29)
The decision boundary is therefore linear, namely it is the hyperplane in the

feature space: αTt w − b − τ = 0. Depending on the side where the αt lies, the
correspondent test subject t is classi�ed as patient < 0 or control > 0.

To estimate the accuracy of our model without incurring in over-�tting, we
use a leave-one-out cross validations technique. At each iteration, we estimate the
best hyperplane using J-1 subjects and we test it on the left out subject t. First,
we compute the averages of both controls and patients within the J-1 subjects.
Assuming that the test subject t is a control, it results:

µc =
1

Jc − 1

Jc−1∑
i=1

αic µp =
1

Jp

Jp∑
i=1

αip (4.30)

After that, using the covariance matrix estimated in the initial atlas as Γ in
Eq.4.29, we compute the best threshold τ as the one which gives the highest balanced
accuracy BA, namely the average between speci�city and sensitivity. When there
is a continuous range of values at which BA is maximal, we choose the middle one.
Once estimated the best hyperplane in the training set, we use it to test the left-out
subject t. We iterate this process for all the J subjects of the data-set. Resulting
sensibility, sensitivity and balanced accuracy are shown in Table 4.1.

Since the group of patients is composed of three sub-groups, namely G1=simple-
tics (17 patients), G2=complex tics (15) and G3=OCD (12), we test our classi�ca-
tion algorithm using these sub-groups separately or together. Moreover, we compare
these results with the ones obtained using the initial momenta of a single di�eom-
rphism. Following the same strategy, we �rst estimate a single-di�eomorphic atlas
(like in Chapter 2) using the same 10 subjects as before. Then, the estimated
template is warped with a single-di�emorphic deformation towards the remaining J
subjects. Even in this case we �x the control points and we use the estimated covari-
ance matrix as regularity term. Eventually, we employ LDA with a leave-one-out
cross validation technique to classify the initial momenta exactly as before.

As it is possible to notice from Table 4.1, the classi�cation scores based on a
single di�eomorphism are worse than using the proposed double di�eomorphism
especially when using the most severe groups of patients (G2 and G3).

Due to the variability of the results in Table 4.1, we also investigate their distri-
butions within the group of patients with a bootstrap analysis. More precisely, we
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perform it on the top of the previous leave-one-out cross validation classi�cation.
At each iteration of the bootstrap, we pick a random sample (with replacement)
of the 44 patients which is classi�ed, together with the (un-modi�ed) 22 controls,
using LDA. We repeat this process 1000 times. Each bootstrap sample gives as
result an estimate of sensitivity, sensibility and balanced accuracy. The histograms
of balanced accuracy for both the double di�eomorphism and the single di�eo-
morphism are shown in Fig.4.12. The averages for sensitivity and speci�city are
respectively: 74% and 51% for the global di�eomorphism and 73% and 64% for the
white di�eomorphism. Instead, the averages sensitivity and speci�city for the single
di�eomorphism are 64% and 48% respectively.

The results obtained with the double di�eomorphism are, even in this case,
better than using a single di�eomorphism. This demonstrates that the proposed
double di�eomorphic approach captures important and relevant information which
better characterise the pathological anomalies of GTS. Moreover, looking at Table
4.1, we can see that there is a general trend in the classi�cation scores. Whatever
the di�eomorphic scheme employed, we always classify the most severe patients,
namely groups G2 and G3, better than the ones with only simple tics (G1). This
con�rms the hypothesis that there might be a continuum in the shape space between
healthy controls and GTS patients where the subgroup G1 would be �closer� to
the healthy group than the subgroup G3. Furthermore, it also con�rms that the
atlas construction technique might be a good model to investigate GTS and more
generally neurodevelopmental syndromes.
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Single Di�eo
Sensitivity [%] Speci�city [%] Balanced Accuracy [%]

G1 12 36 24
G2 33 64 48
G3 58 59 59

G2+G3 52 64 58
G1+G2+G3 54 41 48

Double Di�eo - White
Sensitivity [%] Speci�city [%] Balanced Accuracy [%]

G1 47 59 53
G2 67 77 72
G3 50 82 66

G2+G3 74 64 69
G1+G2+G3 73 41 57

Double Di�eo - Global
Sensitivity [%] Speci�city [%] Balanced Accuracy [%]

G1 29 50 40
G2 40 45 43
G3 50 68 59

G2+G3 52 68 60
G1+G2+G3 70 50 60

Table 4.1: Classi�cations scores using LDA and based on the deformation parame-
ters of a single (top) and double di�eomorphism (middle and bottom) respectively.
We show sensitivity, speci�city and balanced accuracy using always 22 controls and
either one of the patient sub-groups (G1,G2,G3) or combinations of them.
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Figure 4.12: Bootstrap analysis of 1000 iterations performed on the top of a LDA
with a leave-one-out cross validation. Each sample of the histogram represents the
classi�cation score obtained using 44 patients chosen randomly (with replacement)
among all the sub-groups and 22 �xed controls. Red and green lines show the
average and the 95% con�dence interval respectively.
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4.4 Discussion and Conclusion

We presented a method to analyse the organisational and morphological variability
of a population of anatomical complexes composed of grey matter surfaces inter-
connected by white matter �ber bundles. It is built on a double-di�eomorphic
mesh-based atlas construction embedded in a Bayesian framework. The resulting
atlas consists of a template complex, showing the common characteristics of the pop-
ulation, and two well-conditioned covariance matrices describing the distributions of
the deformation parameters, namely the initial momenta, of both di�eomorphisms.

The cascade of two di�eomorphisms permits to put into correspondence anatom-
ical complexes characterised by �ber bundles connecting di�erent areas of the grey
matter, namely with a di�erent structural connectivity. The �rst (white) di�eomor-
phism modi�es the relative position of the �ber bundles with respect to the �xed grey
matter structures in such a way that it is possible to correctly align the entire brain,
both grey and white matter structures, with the second (global) di�eomorphism. In
this way, we can disentangle the morphological variations into two categories: the
ones related to the structural connectivity are captured by the �rst di�eomorphism
and the ones about global morphological di�erences, a�ecting both white and grey
matter structures, are instead described by the second di�eomorphism. The defor-
mations obtained with the white di�eomorphisms can be compared across subjects
since they are computed with respect to the same reference frame, that it the �xed
grey matter. On the contrary, it should be noted that the deformations of the �ber
bundles obtained with the global di�eomorphisms can not be compared across sub-
jects. Global di�eomorphisms can be used to study the morphological variability
of the grey matter structures. Both white and global changes can be visualised as
a continuous deformation of the template complex. This permits to easily char-
acterise, localise and quantify both organisational and morphological pathological
anomalies altering grey and white matter structures.

Furthermore, our algorithm is limited for now to cases in which we can assume
that there is a point-correspondence among the cortical surfaces in the population.
In future works, we will try to adapt our technique for considering also subjects
showing di�erent cortical gyri�cations. Another possible extension would be the
use of a probabilistic tractography instead than the deterministic one employed
here. This would make the analysis computationally more demanding but thanks
to the approximation scheme presented in Chapter 3 it should still be feasible.

Both di�eomorphisms are parametrised by a di�erent set of control points. The
number of control points de�nes the dimension of the initial momenta. These are
the features used in statistical analysis such as PCA or classi�cation. It would be of
interest investigating how a reduction of the number of control points would in�uence
both the atlas construction and the statistical analysis. In Durrleman et al. (2014),
the authors used a single-di�eomorphic atlas construction method similar to the one
we proposed. They demonstrated that the statical performance in a classi�cation
augments by decreasing the number of control points until a certain threshold. It
seems therefore reasonable to expect the same behaviour for the proposed method.
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This brings to another question which is how to choose the position and the number
of control points. A possible solution was presented in Allassonnière et al. (2015) by
integrating the selection of the best control points in the minimisation process. The
authors proposed to start from a regular grid which is trimmed by keeping only the
control points that participate to the template-to-subject deformations of the whole
population. The idea is brought from the Group LASSO Literature and it seems to
work well in practice. It would be of interest to integrate it to the proposed model.

In this chapter, like in Chapter 2, we approximate the conditional distribution
of the E step in the optimisation procedure with a Dirac distribution at its mode.
It was demonstrated in Allassonnière et al. (2007) that this algorithm might not
converge when the SNR (Signal to Noise Ratio) is low. A possible solution would
be to employ sampling techniques such as Markov Chain Monte Carlo (MCMC)
methods (i.e. SAEM-MCMC) which would converge whatever the quality of the
data. Moreover, this would also permit to estimate the entire posterior distribution
of the deformations, and not only its mode, which contains important information
such as the registration uncertainty (Risholm et al., 2013; Simpson et al., 2012).

Another perspective regards the initialisation of the template of �ber bundles. In
Chapter 2 and in this chapter we proposed two di�erent methods. In both cases, we
�rst combined the original streamlines of the bundles of the subjects in a single raw
template. Then, we approximated it either by looking for the most representative
streamlines (Sec.2.2.5) or by representing it with few scattered weighted prototypes
(Sec.4.2.6). These methods can be considered as data-driven and they seem to work
well in practice. However, due to the importance of the initialisation in gradient-
descent algorithms, we think that it would be relevant to investigate the robustness
of the results with respect to a change in the initial template. For instance, we could
randomly divide a group of subjects into di�erent sub-groups. Then, we could create
the initial template and estimate the atlas in each sub-group separately. Results
could then be compared across sub-groups giving an estimate of the robustness.
However, this would require a considerable computational time.

All experiments shown in this chapter were about one neural circuit. To ful�l
the goal of this thesis, namely an holistic approach integrating the whole CSTC
network in a single framework, we should use the proposed method with all the
neural circuits at the same time. However, this might not work well since every
circuit might be a�ected by di�erent pathological alterations. This means that
every bundle should be deformed in a di�erent and independent way with respect
to the others. Thus, we should not use a single di�eomorphism to deform the entire
white matter when composed by multiple bundles. A possible solution would be
to use N+1 di�eomorphisms. Every bundle would be independently deformed by a
white di�eomorphism. Then, all bundles would be deformed, together with the grey
matter structures, by another global di�eomorphism. In this way, we could capture
the di�erent variations in structural connectivity proper to each bundle and also the
global morphological changes associated to all structures of the CSTC circuits.

In this chapter, we used three di�erent computational models: landmarks, var-
ifolds and weighted currents. When using the last two in�nite-dimensional spaces,
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we need to project both the subject shapes and the template to a �nite-dimensional
space where probability density functions can be computed. We assumed that the
noise of each structure j follows a Gaussian distribution whose covariance matrix
has the size of the �nite-dimensional approximation space for weighted currents and
varifolds and it is equal to the number of point-correspondences when working with
landmarks. In both cases we de�ne it as Λj.

Using ωj=0.01ΛjN and Pj=
0.05R0

j

ωj
with R0

j equal to the initial residual of struc-
ture j, as proposed in Sec.2.3.2, we can notice that the data-terms of the cost
function of the atlas construction (Eq.4.20) can be approximated by:

≈
M∑
j=1

NΛj

2
log

(
Rj + 0.05R0

j

NΛj

)
(4.31)

after removing the constant terms, with Rj equal to the residual of structure j
and where N and M are the number of subjects and structures respectively. This
shows that the data-term of each structure j depends on the metric of the computa-
tional model chosen and on the value of Λj. If all structures are modelled with the
same computational model, like in Chapter 2, the data-terms are commensurable
since we use the same rule to compute both Rj and Λj but if the structures are mod-
elled with di�erent computational models, like in this chapter, nothing guarantees
that the data-terms are commensurable. Depending on the number of landmarks
chosen or on the size of the grid where a varifold or weighted current is projected to,
a structure could be over-weighted with respect to the others (or the contrary). In
this chapter, we used some heuristics to �nd a good balance between the di�erent
data-terms which gave reasonable results but future works will have to �nd a way
to �harmonize� the choice of Λj among the di�erent computational models.

In the proposed method, we assumed that the initial momenta of the two di�eo-
morphisms are independent, that is to say that p(αAlli ,αWi ) = p(αAlli )p(αWi ), even if
the update rule for αAlli and αWi are related as explained in Sec.4.2.5. It would seem
more reasonable to take that into account by modelling directly p(αAlli ,αWi ) without
the assumption of independence. We could model, for instance, their joint distribu-
tion as a single Gaussian distribution. However, the statistical relationship between
αAlli and αWi is highly complex since they are related by the linearised ODEs shown
in Sec.4.2.5 and we have not found yet a satisfactory solution to model their joint
distribution. This is left as future work.

Nevertheless, we demonstrated that the proposed double di�eomorphic approach
can detect some useful and relevant information since it leads to better classi�cation
scores than a single di�eomorphism. This means that the information about struc-
tural connectivity might play an important role in the characterisation of GTS and
that the proposed method can bring an important contribution in the description
of the pathophysiological mechanisms underlying GTS.
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4.A Appendix

4.A.1 Data-term and gradient of weighted prototypes

Given two sets of weighted prototypes:
∑N

i=1 τiFi and
∑M

p=1wpTp where Fi =∑Li
n=1 δ

αin
(xin,fi,ti)

and Tp =
∑Zp

l=1 δ
βpl
(ypl,vp,up) we �rst present how to compute the squared

norm of their di�erence ||
∑N

i=1 τiFi −
∑M

p=1wpTp||2Q∗ and then its gradient with
respect to every point of the �ber Fk =

∑Lk
n=1 δ

αkn
(xkn,fk,tk) where xkn is the cen-

ter of segment n of �ber k and αkn is its tangent vector. They are de�ned as
xkn = (pkn + mkn)/2 and αkn = pkn − mkn, where pkn and mkn are the �rst and
the last point of segment n of �ber k respectively. This means that every couple of
neighbour segments n and n + 1 has one point in common: pn = mn+1 (except for
the extremities). We assume also that all �bers are oriented from the extremity fi
(vp) towards ti (up) and we call ka the kernel related to the �rst extremity (fi) and
kb the kernel for the second extremity (ti). Since weighted currents are de�ned with
respect to the center and tangent vectors, we need to use the chain rule. Moreover,
every point (except for the extremities) depends on two segments since it can be
seen as pn but also as mn+1 which means that its update rule will depend on the
center and tangent vectors of both segments n and n+ 1.

The data-term is de�ned as:

||
N∑
i=1

τiFi −
M∑
p=1

wpTp||2Q∗ = ||
N∑
i=1

τiFi||2Q∗︸ ︷︷ ︸
A

+ ||
M∑
p=1

wpTp||2Q∗︸ ︷︷ ︸
B

−2

〈
N∑
i=1

τiFi,
M∑
p=1

wpTp

〉
Q∗︸ ︷︷ ︸

C

A :
N∑
i=1

N∑
j=1

τiτjka(fi, fj)kb(ti, tj) 〈Fi, Fj〉U∗

B :
M∑
p=1

M∑
d=1

wpwdka(vp, vd)kb(up, ud) 〈Tp, Td〉U∗

C :
N∑
i=1

M∑
p=1

τiwpka(fi, vp)kb(ti, up) 〈Fi, Tp〉U∗

(4.32)

where U∗ is the space of usual currents, namely 〈Fi, Fj〉U∗ =(∑Li
n=1

∑Lj
m=1 α

T
inkg(xin, xjm)αjm

)
, 〈Tp, Td〉U∗ =

(∑Zp
l=1

∑Zd
o=1 β

T
plkg(ypl, ydo)βdo

)
,

〈Fi, Tp〉U∗ =
(∑Li

n=1

∑Zp
l=1 α

T
inkg(xin, ypl)βpl

)
.

The derivative with respect to the point pks (resp. mks), that is
∂||

∑N
i=1 τiFi−

∑M
p=1 wpTp||2Q∗

∂pks
(resp.

∂||·||2
Q∗

∂mks
), if it is not the extremity (pks 6= tk, resp.
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mks 6= fk), results:

2τk

N∑
i=1

τika(fi, fk)kb(ti, tk)

Li∑
n=1

[
±αin exp(−||xks − xin||

2

λ2
g

)− αTksαin(
xks − xin

λ2
g

) exp(−||xks − xin||
2

λ2
g

)

]
−

2τk

M∑
p=1

wpka(vp, fk)kb(up, tk)

Zp∑
l=1

[
±βpl exp(−||xks − ypl||

2

λ2
g

)− αTksβpl(
xks − ypl

λ2
g

) exp(−||xks − ypl||
2

λ2
g

)

]
(4.33)

If pks = tk one needs to add the following to the previous result:

2τk

N∑
i=1
i 6=k

[
τika(fi, fk)(

−2(tk − ti)
λ2
b

)kb(ti, tk) 〈Fk, Fi〉U∗
]
−

2τk

M∑
p=1

[
wpka(vp, fk)(

−2(tk − up)
λ2
b

)kb(tk, up) 〈Fk, Tp〉U∗
]

Instead when computing the derivative with respect to mks and mks = fk one
needs to add:

2τk

N∑
i=1
i 6=k

[
τika(fi, fk)(

−2(fk − fi)
λ2
a

)kb(ti, tk) 〈Fk, Fi〉U∗
]
−

2τk

M∑
p=1

[
wpka(vp, fk)(

−2(fk − vp)
λ2
a

)kb(tk, up) 〈Fk, Tp〉U∗
]

If pks 6= tk, the update rule of the point pks is thus equal to
∂||

∑N
i=1 τiFi−

∑M
p=1 wpTp||2Q∗

∂pks
+

∂||
∑N
i=1 τiFi−

∑M
p=1 wpTp||2Q∗

∂mks+1
otherwise if pks = tk it is sim-

ply
∂||

∑N
i=1 τiFi−

∑M
p=1 wpTp||2Q∗

∂pks
. The update rule of the �rst point mks = fk is instead

equal to
∂||

∑N
i=1 τiFi−

∑M
p=1 wpTp||2Q∗

∂mks
.

4.A.2 Gradient of the Atlas construction procedure

We compute here the gradients of the atlas construction as explained in Sec.4.2.5.
A variation of the initial control points and momenta of the �rst di�eomorphism
δLWi0 produces a variation in their evolution δLWi (t) and consequently a variation of
the path of the �ow of the �rst di�eomorphism δTW

i (t). In parallel, δLAlli0 produces
a variation in δLAlli (t) which , together with δTW

i1 , induces a variation in the path of
the �ow of the second di�eomorphism δT All

i (t) and consequently also in the criterion
δE. Here we consider only the variations related to the data term Di[T

All
i1 ]. The
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variations of the regularity terms can be found in Sec.4.2.5. It results:

δE =
N∑
i=1

∇TAll,Gi1
(Di[T

All,G
i1 ])T δT All,G

i1 +∇TAll,Wi1
(Di[T

All,W
i1 ])T δT All,W

i1

δL̇
All

i (t) = (dLAllit
FAll
i (t))T δLAllit δLAlli (0) = δLAlli0

δL̇
W

i (t) = (dLWit F
W
i (t))T δLWit δLWi (0) = δLWi0

δṪ
W

i (t) = (∂TWit G
W
i (t))T δTW

it + (∂LWit G
W
i (t))T δLWit δTW (0) = δTW

0

δṪ
All

i (t) = (∂TAllit
GAll
i (t))T δT All

it + (∂LAllit
GAll
i (t)])T δLAllit δT All

i (0) = δTW
i1 ∪ δTG

0

The two �rst ODEs are linear and their solution is given by:

δL(t) = exp

(∫ t

0

dL(u)F (u)du

)
δL0 = R0tδL0 (4.34)

The last two ODEs are instead linear with source term and their solution is given
by:

δT (t) =

∫ t

0

exp

(∫ t

u

∂T (u)G(u)du

)
∂L(u)G(u)δL(u)du+ exp

(∫ t

0

∂T (s)G(s)ds

)
δT 0

=

∫ t

0

Vut∂L(u)G(u)δL(u)du+ V0tδT 0

(4.35)

where, as in (Durrleman et al., 2014), we denote: Rst = exp(
∫ t
s
dL(u)F (u)du) and

Vst = exp(
∫ t
s
∂T (u)G(u)du). We omit the upper indices W and All and the index i

for clarity purpose. Substituting Eq.4.34 into Eq.4.35 and noting that δT All,W (0) =
δTW (1), we obtain:

δT All,W (t) =

(∫ t

0

V All
ut ∂LAll(u)G

All(u)RAll
0u du

)
δLAll0 + V All

0t δT
W
0 + (4.36)

V All
0t

∫ 1

0

∂TW (s)G
W (s)δTW (s)ds+ V All

0t

∫ 1

0

∂LW (s)G
W (s)δLW (s)ds (4.37)
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Using the Fubini's theorem we can rewrite the 3rd term as:

V All
0t

∫ 1

0

∂TW (s)G
W (s)δTW (s)ds =

(
V All

0t

∫ 1

0

V W
u1 ∂LW (u)G

W (u)RW
0udu

)
δLW0 − V All

0t δT
W
0

−
(
V All

0t

∫ 1

0

∂LW (u)G
W (u)RW

0udu

)
δLW0 + (V All

0t V
W

01 )δTW
0

(4.38)

Instead the 4th term becomes:

V All
0t

∫ 1

0

∂LW (s)G
W (s)δLW (s)ds =

(
V All

0t

∫ 1

0

∂LW (s)G
W (s)RW

0sds

)
δLW0 (4.39)

Plugging them with Eq.4.35 for δT All,G(t) into δE we obtain:

∇LAll0
E =

(∫ 1

0

(RAll
0u )T (∂LAllG

All(u))T (V All
u1 )Tdu

)
∇TAll(1)D[T All(1)]

∇LW0 E =

(∫ 1

0

(RW
0u)T (∂LWG

W (u))T (V W
u1 )Tdu

)
(V All

01 )T∇TAll,W (1)D[T All,W (1)]

∇TW0 E = (V W
01 )T (V All

01 )T∇TAll,W (1)D[T All,W (1)]

∇TG0 E = (V All
01 )T∇TAll,G(1)D[T All,G(1)]

Calling θAll,G(t) = (V All
t1 )T∇TAll,G1

D and θAll,Wt = (V All
t1 )T∇TAll,W1

D

which together form θAll(t) = {θAll,G(t), θAll,W (t)} and ξAll(t) =∫ 1

t
(RAll

tu )T (∂LAllG
All(u))T θAll(u)du for the second di�eomorphism and

θW (t) = (V W
t1 )T θAll,W0 with ξW (t) =

∫ 1

t
(RW

tu )T (∂LWG
W (u))T θW (u)du for the

�rst di�eomorphism, we obtain the results in Eq.4.26.
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5.1 Conclusive summary

In this thesis, we proposed a new approach to localise, characterise and visualise the
anatomical abnormalities associated to a neurodevelopental disorder and a�ecting
both the structural organisation and shape of neural circuits. This methodology is
based on the Grenander's atlas construction procedure which permits to analyse the
neural circuits as a single interwoven complex where every component is virtually
represented as a 3D mesh. This makes possible the integration of white matter
�ber bundles and grey matter structures in a single framework. Moreover, the use
of meshes facilitates the visualisation of the complex and the interpretation of its
pathological alterations.

In Chapter 2 we proposed a Bayesian framework in which embed the generative
model of the atlas construction procedure. It allows to automatically estimate the
noise variance of each component of the neural circuits which should otherwise be
�xed by the user. We showed that these values can highly in�uence the results
and their automatic estimate becomes even more crucial if the number of analysed
structures increases. This is therefore essential to perform an holistic analysis of
the entire neural circuits. Moreover, the proposed statistical setting also permits to
estimate a well-conditioned covariance matrix of the deformation parameters. This
makes thus possible to directly use it for statistical analysis, such as PCA, without
regularising it a posteriori.

Furthermore, we proposed to model every surface of the grey matter as a Gaus-
sian random varifold for which we de�ne �nite-dimensional approximation spaces
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similarly to Durrleman (2010) where it is possible to de�ne probability density func-
tions. This computational model does not need point-correspondences and it has
a closed-form metric which is easily derivable. Moreover, it can be used for any
kind of shape, including 3D curves such as the white matter �bers. However, this
framework takes into consideration only the geometry (pathway) of the �bers. This
makes the template-to-subject registrations accurate only in the most dense parts
of the bundles and it almost ignores the extremities, namely where the streamlines
integrate grey matter structures. Thus, it hampers the study of variations in struc-
tural connectivity. In addition to that, �ber bundles resulting from tractography
algorithms would require an enormous computational load and time to be directly
used in the atlas construction procedure due to their huge number of streamlines.

To this end, we proposed in Chapter 3 an approximation scheme for �ber bundles.
The resulting parsimonious and computationally-e�cient representation makes fea-
sible the integration of �ber bundles in the atlas procedure together with the other
components of the neural circuits. Moreover, it is visualised as a scattered set of
tubes whose radii are proportional to the number of streamlines approximated. The
smaller number of tubes, with respect to the original amount of streamlines, eases
the visualisation and interpretation of the bundles since it allows to clearly iden-
tify and analyse all its fascicles. Moreover, it drastically reduces the computational
load for visualisation software thus accelerating any kind of manipulation. The pro-
posed approximation is based on the computational model of weighted currents, an
adaptation of the one of functional currents (Charon and Trouvé, 2013a). Similarly
to currents, it does not need point correspondences or streamlines correspondences
and it augments its de�nition taking into consideration not only the pathway of the
streamlines but also the locations of their extremities. This makes thus possible
to correctly register also the extremities of the bundles in the template-to-subjects
deformations and, theoretically, to capture the variations in structural connectivity.

However, the deformations of the template complex in standard atlas construc-
tion procedures are de�ned as single di�eomorphisms of the entire ambient space.
This precludes the study of variations in topology such as the changes in structural
connectivity. To this end, we proposed in Chapter 4 a new di�eomorphic scheme
based on a cascade of two di�eomorphisms. This permits to model variations in
structural connectivity with the �rst di�eomorphism and global anatomical changes
with the second one. The parameters of each di�eomorphism are assumed to fol-
low a di�erent and independent Gaussian distribution centred at zero. A double
di�eomorphic atlas construction embedded in the Bayesian framework presented in
Chapter 2 results in a template complex, showing the common anatomical char-
acteristics of the population under analysis, and two well-conditioned covariance
matrices, describing the organisational and morphological variability captured by
the double di�eomorphisms.

The proposed method describes the organisation and morphology of a group
of anatomical complexes composed of both grey matter surfaces and white matter
tracts. We showed its e�ectiveness by comparing the cortico-putamen circuits of a
group of patients subject to Gilles de la Tourette syndrome and a control group.
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Preliminary results highlight abnormal di�erences about both the shape of the grey
matter structures and the structural connectivity. These alterations are in line
with the hypothesis put forth in Worbe et al. (2010, 2015). Moreover, we also
showed that the proposed approach leads to better classi�cation scores than the
single di�eomorphic method described in Chapter 2. This suggests that it might
better characterise the anatomical alterations associated to GTS and therefore that
it could bring an important contribution in the description of the pathophysiological
mechanisms underlying GTS.

The algorithms presented in this thesis have been coded mostly in C++ and
some parts also in CUDA. The code of the proposed Bayesian framework (Chapter
2) and of the double di�eomorphic deformation (Chapter 4) will be integrated to
the software deformetrica www.deformetrica.org.

5.2 Limitations and Perspectives

The proposed methodology o�ers a mathematical tool which can help understand-
ing the pathophysiology of neurodevelopmental syndromes. This opens a wide spec-
trum of possible future clinical applications such as autism and attention de�cit-
hyperactivity disorders.

Moreover, to fully characterise the vast clinical heterogeneity and complexity of
neurodevelopmental disorders we still need to extend the proposed method. This
o�ers a challenging opportunity for further methodological improvements. In the
following, we present perspectives and possible solutions to some of the limitations
highlighted in the previous chapters.

5.2.1 Mixture of templates

A possible extension would be to use a mixture of templates instead than a single
one as proposed in Allassonnière et al. (2007). Statistical learning techniques could
be used to automatically estimate the number of templates. Each template would
characterise a sub-group of the population. This could then be used to cluster the
patients in smaller groups which would be (hopefully) clinically more homogeneous.
The analysis of the templates and their variability could help understanding whether
these sub-groups share anatomical alterations, distinctive therefore of the disorder,
or if they are characterised by speci�c abnormalities. Eventually, this could help
clarifying the pathophysiological mechanisms related to the di�erent symptoms.

5.2.2 Cortical surface

In this thesis, we modelled the cortical surface with landmarks which is a com-
putationally convenient solution but it is based on a strong hypothesis of point-
correspondence which might not be correct. A di�erent strategy would be mod-
elling it as a varifold with explicit sulcal constraints given, for instance, by the 120
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BrainVisa sulci (Perrot et al., 2011; Auzias et al., 2011), the 56 major sulci of MNI
Display (Holmes et al., 1996; Joshi et al., 2012) or the so called �sulcal pits�, namely
the deepest points of the folding pattern (Auzias et al., 2015). In this way, we would
account for the cortical shape variation and at the same time we would be able to
align the cortical folding architecture.

However, we should also take into consideration the fact that patients with Gilles
de la Tourette syndrome might have an abnormal structural pattern of cortical sulci,
as it was demonstrated in (Muellner et al., 2015).

5.2.3 Integrating functional information

Another possible extension would be to perform an even more holistic approach by
adding a functional signal to the anatomical complexes. This could be easily taken
into account by augmenting the framework of varifolds and weighted currents as
in functional currents (Charon and Trouvé, 2013a). The functional signal could be
represented, for instance, by functional MRI or EEG. The functional information
would be directly taken into account by augmenting the dimensionality of the space
where shapes lie. It would change from a shape space to a functional-shape space
where the deformation of the template complex towards a subject complex would
be driven by a similarity measure which considers both shape and functional signal.
This approach would be in contrast with most of the works present in the literature
which either study functional and structural imaging separately or use the latter
to restrain the functional analysis to speci�c areas (Schumann et al., 2011; Vaidya,
2012; Singh et al., 2015).

The framework of functional currents could also be used to augment the approx-
imation scheme proposed in Chapter 3 with information about the white matter
microstructure. Every streamline could be characterised by a vector of scalar quan-
tities, such as FA or GFA, describing the white matter structural integrity of the
voxels through which the �ber has been traced. A similarity measure between two
streamlines would then take into account their pathways, connectivity and also the
local white matter microstructure. This could be combined with a new deformation
setting always in the spirit of the Grenander's approach like in Charlier et al. (2014).
The di�erences between two streamlines would always be described by warping the
�rst one onto the other. However, in this case the deformation would change not
only the pathway of the source streamline but also the scalar values attached to it
such as FA or GFA. This would permit to discover di�erences related to both the
geometry of the streamlines and to their microstructure.

5.2.4 Topological changes in �ber bundles

The double di�eomorphic scheme presented in Chapter 4 can not take into account
all the topological variations of the white matter. For instance, it can not put
into correspondence circuits with intersecting or shrinking �bers. In Fig.5.1 we
show on the left a template with parallel streamlines connecting homogeneously

122



5.2. Limitations and Perspectives

two toy grey matter structures and on the right a subject complex with intersecting
streamlines connecting only speci�c grey matter areas. The only way to attain a
correct matching would be to use a di�eomorphism for each streamline. Instead, in
Fig.5.2 we show an example of shrinking �bers. This happens when the �bers of the
template, shown on the left, do not have correspondent �bers on the subject bundle,
shown on the right, within an area equal to the di�eomorphic kernel bandwidth.
This produces a data-term which depends entirely on the norm of the template and
therefore the only way to decrease it is shrinking the template �bers.

The �rst problem would happen mainly when considering several �ber bundles at
the same time, like all the bundles of the CSTC circuits, instead the second one when
there are important di�erences in structural connectivity among the population
under study or between the chosen initial template and the subjects bundles.

We envisage here two possible solutions to solve these problems. The �rst
one would be to use a di�erent deformation framework: the one of metamorpho-
sis (Trouvé and Younes, 2005; Holm et al., 2009; Younes and Richardson, 2013).
It combines a di�eomorphic mapping with a topological change of the template.
This would permit to make disappear the shrinking �bers from the template or to
change the arrangement of its streamlines in order to take into account the intersect-
ing streamlines. Moreover, in this framework it is possible to compute population
statistics based on the initial momenta parametrising the deformations, as shown
in Richardson and Younes (2015).

A second (and more radical) solution would be to discard the pathway of the
streamlines keeping only the information about the structural connectivity. Given
two ROIs (Region Of Interest), which could be the entire putamen and the entire
left hemisphere of the cortex as in Chapter 4, we would compute a probability map
at each vertex of the �rst ROI indicating the probability to be linked with any vertex
of the second ROI. This probability map would describe the structural connectivity.
Then we could use functional currents (or functional varifolds) (Charon and Trouvé,
2013a) to model the grey matter surfaces where the functional signal would be the
probability map. Eventually, one could use a kind of double deformation to modify
�rst the probability maps and then both the shape of the structures and their
functional signal. This would avoid all topological problems about �ber bundles
but it would discard the information about the pathway of the streamlines, which
might be important, and it would depend on the choice of the ROIs.

5.2.5 Clinical variables

A last perspective is about the integration of clinical variables in the proposed frame-
work. A clinical variable is a scalar value which quanti�es a speci�c characteristic
of a pathology a�ecting a patient like the severity of the symptoms. An example is
the scalar YTGTSS/50 which quanti�es tic severity.

Clinical variables could be used in di�erent ways. We could estimate the PCA
modes that best explain the clinical variables with linear regression analysis and
model reduction methods such as Akaike information criterion (AIC). Furthermore,
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Figure 5.1: Example of subject complex with intersecting �bers.

Figure 5.2: Example of deformed template complex with shrinking �bers.

we could also use Partial Least Squares (PLS) regression to automatically extract
the modes that are relevant to both the shape variability and the clinical variables.
Such an approach may be useful to investigate whether an increase in the severity
of tics is correlated with more pronounced atypical connectivity patterns or shape
alterations in grey matter structures.

Another interesting extension would be to estimate the relationship between the
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template and the clinical variables, which means understanding how the template
changes as the clinical variable varies. A similar approach was proposed for the
quanti�cation and prediction of cardiac remodelling in Mansi et al. (2011).

Eventually, we could also integrate shape and clinical information into a single
framework by using manifold learning techniques (Aljabar et al., 2011). Pairwise
distances between couples of subjects could be de�ned by the amount of deformation
needed to warp the �rst one onto the second one, i.e. the norm of the initial
velocity �eld parametrising the deformation. In our case, we could use the two
di�eomorphisms together or separately. These distances could then be used as input
of a manifold learning algorithm together with the clinical information like in Wolz
et al. (2011) or Fiot et al. (2012). In the resulting low-dimensional representation of
the data we could then use classi�cation algorithms such as Support Vector Machine
(SVM).
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