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Chapter 1

Introduction

1.1 General element of introduction

Network control systems constitute an active field of study, where interacting components
spatially distributed try to achieve a global goal [54].

Teleoperation, the internet of things, the increasing demand of electronics in the
automotive industry are relevant examples for a theoretical investigation of this field.

Network control systems constitute an essential subject in the general field of the
Cyber–Physical Systems [75], [66], where systems with embedded computational capa-
bilities interact with the physical world.

The rapidly growing demand for decentralised and communicating control systems has
an important economical impact in areas as diverse as smart grids, electronic in trans-
portation systems, healthcare devices. The economical interests coupled to challenging
theoretical and technical problems call for a great activities with respect to CPS in re-
search and development. This new paradigm introduces both new opportunities and new
challenge in term of control synthesis, and requires adaptation of the existing embedded
computing methods where real time and communication constraints are a crucial matter.

To model and study such complex systems, the hybrids dynamical systems (HDS)
paradigm is well suited, since it provides a powerful modelling framework of systems
involving both discrete and continuous dynamics. Notably, the HDS framework allows
dealing with continuous systems (e.g. physical processes) which undergo transitions due
to discrete events (e.g. computer decisions or external events).

Although networked control systems constitute a powerful tool to study large scale
of communicating systems. In several domain as for exemple teleoperation via internet,
they raise theoretical problems that need to be addressed, such as their technical limits in
terms of time delays, packet drops, and limited bandwidth available for communication
and real time scheduling. Classical methodologies of automatic control, used in the
context of network control systems, need to take these constraints into consideration.

In this thesis, one focus on the classical problems of observation and estimation [73],
[18], [49].This problems are reconsidered in the light of the network characteristics and
constraint, investigating some of the cases where these constraints of real time and limited
communication capabilities due to the network call for adapted observation and estima-
tion schemes. General observation problematic arises from limitations in the number
of sensors, due to several reasons such as cost reduction and technological constraints,
therefore not all the variables of interest (state variables and system parameters) are
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measured. Then the observability of the system accounts for the ability to determine
their values from measurements. Clearly, Network Control Systems and observability
are two vast fields, and the aim of this thesis is not to cover in detail all the aspects of
interaction between them. For this reason, hereafter the attention is focused on some
cases that appeared more meaningful.

Nevertheless linear and nonlinear systems are considered. Whereas the observability
property for a linear system is global (i.e. if a system is observable, then it is observable for
all states and all inputs), this is not the case for nonlinear system, where singularities of
observation could emerge, meaning that a nonlinear system could be observable locally
for some inputs and outputs and not for others. Moreover, even in the linear case, it
should be distinguished the notion of observability from that of detectability. Avoiding
for the moment the precise definition, the paradigm of observability used here is, roughly
speaking, the ability to reconstruct the system state. In the body of the thesis, where
needed, the notion of observability used will be precisely defined.

The contributions presented in the next chapters will be divided into three indepen-
dent parts.

In Chapter 2 the problem of observation and observer–based feedback stabilization
of linear systems by event–triggered sampling is considered. The event triggering is a
recent sampling paradigm, arising from the development of networked systems. Concepts
relevant to event–triggered systems will be recalled for both sensors and actuators. The
fundamental idea of event triggered sampling is to use information on the state to sample
only when ”needed” while using an appropriate criterion to specify what ”needed” means.
It will be shown that under some sufficient conditions the event triggering policy can be
used for linear systems with time–varying uncertainties. In the last part of Chapter 2,
an impulsive observer will be designed along with a triggering condition to observe and
stabilize the system. A notable feature of this impulsive observer is its ability to estimate
the state even in the absence of a stabilizing control, which can be interpreted as a
separation principle.

In Chapter 3 the problem of observation and observer–based feedback stabilization
are considered for a class of nonlinear systems, under the paradigm of the event triggered
sampling policy. Sufficient conditions in term of input–to–state stability will be given,
and from those conditions an event–triggered sampling mechanism will be derived for the
observation and stabilization of the class of nonlinear systems under consideration. In the
second part of Chapter 3, an impulsive observer will be designed which has the ability to
estimate the state with or without a stabilizing control. Furthermore, an observer–based
event–triggered control stabilizing the nonlinear system will be proposed.

In Chapter 4 the problem of average consensus where a set of agents try find their
barycentre, without absolute knowledge of their position, will be considered. It will be
shown how a decentralised observer can be used to solve the average consensus problem,
in the presence of range connectivity constraints for the communicating mobile agents.

This result demonstrates that using communication in a decentralised fashion allows
new and simpler way to solve a range of problems with respect to multi-agents systems.

Finally, considering a more accurate vehicle modelling, and in view of the future
trend towards networks of collaborative vehicles (agents), in Chapter 5 it is presented
an estimation procedure for the tire–road friction coefficient, making use of a high order
sliding–mode observer. In order to asses the relevance of the proposed estimators and
highlight their performance, the results are verified and compared with classical estima-
tors in CarSim, which gives a high fidelity simulation scenario.
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Chapter 2

Event triggering policy for observa-
tion and output based feedback for
linear systems

2.1 General elements on event trigger for linear sys-

tems

Digital technology is commonly used in modern control systems, where the control task
consists of sampling the outputs of the plant, computing the control law, and implement-
ing the actuators signals. The classic way to proceed is to use a periodic sampling, thus
allowing the closed–loop system to be analyzed on the basis of sampled–data formalism,
see e.g. [12]. In such time–triggered control the sensing, control, and actuation are driven
by a clock, and it can be seen as an “open–loop” sampling. Recent years have seen the
development of a different technique [11], where the periodic sampling is substituted by
an event–triggered policy, see for instance [53] for an introduction to the topic and [13],
[95], [101], [74], [52] for further details. In this case the sampling is performed in order to
ensure that some desired properties established in the control design, primarily stability,
can be maintained under sampling. Conceptually this means to introduce a feedback in
the sampling process, since an event–triggered control requires the constant monitoring
of the system state to determine if the desired properties is ensured.

Event–triggered techniques allow the execution of control tasks as rarely as possible,
so minimizing energy consumption and load in network control system, and/or leaving
the digital processor available for other tasks. To analyse the stability properties of a
system the sampling induced error can be seen as a delay [42][47], via impulsive modelling
[53] or as a perturbation acting on a system with continuous feedback [95]. This later
case will be considered throughout our work.

However some issues appear naturally, such as that of the implementation of dy-
namical feedbacks. Indeed introducing a feedback in the sampling mechanism introduce
a coupling between the dynamic of the plant and the sampling instant, therefore it is
important to know under what condition a pathological sampling could arise.

In this chapter we will introduce some classic notion and results of event triggering
policy for control then we will present the problem of observer synthesis for different class
of systems. We first show some robustness properties of a classic Luenberger like observer
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subject to event triggering sampling policy then we establish a weak separation principle
for linear system where observation can be performed with or without control.

Notation: � · � denotes the euclidean norm when applied to a vector, and the norm
induced by the euclidean norm when applied to a matrix; �·�∞ is the component with the
biggest absolute value. Moreover, λP

min,λ
P
max are the smallest and the biggest eigenvalue

of a square matrix P , respectively. Furthermore, R+, R+
0 will denote respectively the

set of positive real numbers and the set of positive real numbers including zero, and
N = {0, 1, 2, · · · } the set of natural numbers including zero. With Ip×p we denote the
p × p identity matrix. When there is no ambiguity, x, xtsk

, ytsk will denote x(t), x(tsk),
y(tsk). Finally, t

+
k = lim

|h|→0
(tk + |h|), k ∈ N.

2.1.1 Event trigger with full state information

A growing amount of result is available to achieve desired performance in terms of sta-
bility while reducing in average the total amount of communication we will now recall
important results when considering full state feedback. In [13] a one dimensional process
is considered consisting of a stochastic drift and a control action

dx = udt+ dv

where v is a Brownian motion and u is an impulsive controller triggered each time the x
cross a specified threshold. As a consequence the control impulse restarts x at the origin.
In this simple case it is shown that event trigger control allows better performance in
terms of number of sampling and variance if the threshold is not too small. This simple
case already exhibits intrinsic features of event triggering sampling. Namely by definition
of Brownian motion it is not possible to ensure a minimum time between two samplings.
However the event triggered sampling (also called Lebesgue sampling) performs better in
term of stability and average communication.

A bad event trigger sampling policy could lead to something worst than absence of
minimum inter–event time, the Zeno behaviour where an infinite number of sampling
occur on a finite time interval. The simple model of a bouncing ball is classic example of
Zeno behaviour when the transition between bouncing and steady state occur.

Another example of Zeno behaviour occurs considering a simple dynamical system

ẋ(t) = u(t)

u(t) = −sign(x(tk)), ∀t ∈ [tk, tk+1[

tk+1 = min
t
{t > tk, |x− x(tk)| ≥

|x(t)|
2

}

The sampling sequence is tk+1 =
2k − 1

2k
therefore in the time interval [0, 1] there is an

infinite number of samples.
This example highlights the need of two definitions

Definition 2.1.1 (Zeno behaviour) [61] Considering (tk)k∈N the series of sampling in-
stant. The system exhibits Zeno behaviour if there exists a finite a > 0 such that
∀k ∈ N, tk < a (i.e. there is an infinite number of sampling on some finite time in-
terval
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Figure 2.1: Control scheme with sampled output and zero order holder.

Definition 2.1.2 (Minimum inter–event time) [53] The difference δk := tk+1− tk is usu-
ally called the inter–event time, or sampling interval, if there exist τmin > 0 such that for
all k ∈ N, δk ≥ τmin then the system is said to posses a minimum inter–event time

In the scope of Event–trigger control, to avoid Zeno behaviours [61][8], it is important
that the chosen sampling policy ensures that limk→∞ tk = ∞ for all k ∈ N, possibly under
additional conditions.

2.1.2 Event Triggering Policies for linear system

We will first recall some known facts and terminologies about event–triggered systems.
Consider a system

ẋ = Ax+ Bu

y = x
(2.1)

where x ∈ Rn is the state, u ∈ Rm is the control, and A ∈ Rn×n, B ∈ Rm×n. Due to the
communication constraints, there is no continuous communication between the controller
and the plant. The value utk is applied to the system, through a classic zero order holder
H0. The transmissions are assumed instantaneous. The transmission instants between
the controller and the plant are denoted by tk, k ∈ N.

Let us consider first a simple case in which the state x is available for measuring,
and let us assume that there exists a state–feedback u = Kx, K ∈ Rm×n, rendering sys-
tem (2.1) asymptotically stable at the origin, i.e. A+BK Hurwitz. When the controller
is implemented making use of the sampled value xtk of the state,

tk+1 = min
t

�
t | t > tk + δ

�
.

This is clearly a time–triggered policy. The event–triggered paradigm replaces this condi-
tion with one on the state values x(t), xtk . A simple condition of this kind is, for instance,
the ε–crossing policy, which is of the form

tk+1 = min
t

�
t > tk | �x(t)− xtk� > ε

�

viz. x(t) is sampled when �x(t) − xtk� is greater then a certain threshold value ε ∈ R+.
When this condition is verified, an event is triggered, which determines the sampling time
tk+1.
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Alternatively more complex sampling policies can be found for instance

tk+1 = min
t

�
t > tk | �x(t)− xtk� > γ�x�+ ε

�

with , γ ∈ R+, or a mixed triggering policy

tk+1 = min
t

�
t > tk + δmin | �x(t)− xtk� > ε

�

with ε, δmin ∈ R+. Different triggering policy can be considered depending on different
choice of convergence or robustness [95][?]

using a Lyapunov argument we will show different properties of convergence of the
triggering policy.

Practical stability

Definition 2.1.3 (Practical stability) [64] The origin of a system

ξ̇ = f(ξ, u, d), ξ ∈ Rn̄, u ∈ Rp̄ d ∈ Rm̄ (2.2)

is globally ultimately bounded if there is a time Tξ(0),ε such that

�ξ(t)� ≤ ε ∀t > Tξ(0),ε, ∀ξ(0) (2.3)

for some ε > 0. The origin of (2.2) is practically stable if there is a time Tξ(0),ε such
that (2.3) holds for any ε > 0. �

Given the event trigger policy

tk+1 = min
t

�
t > tk | �x(t)− xtk� > ε

�
(2.4)

And assuming A + BK is Hurwitz then there exist P a positive symmetric matrix
such that (A + BK)TP (A + BK) = −I and for all t ∈ [tk, tk+1[ u = Bx(tk) therefore
ẋ = Ax+BKx(tk) = Ax+BKx−BKx+BKx(tk) with ||−BKx+BKx(tk)|| ≤ ||BK||ε
denoting e = x(tk)− x(t) therefore considering the candidate Lyapunov function V (x) =
xTPx one has

V̇ (x) = ((A+BK)x+ BKe)TP ((A+ BK)x+BKe)

V̇ (x) = xT [(A+ BK)TP + P (A+ BK)]x+ 2xTPBKe

∀t,
V̇ (x) ≤ −||x||2 + 2||x||||PBK||ε

considering ε as a non vanishing perturbation it is known that x will converge to the ball
B(0, ||PBK||ε) To show that for each initial condition there exist a minimal inter-event
time (i.e. a semi global inter-event time) it is sufficient to see that because e(tk) = 0
with ė = −ẋ and since given the initial conditions ẋ is always bounded this imply the
existence of a semi global minimal inter-event time
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Asymptotic stability

Given the same candidate Lyapunov function as before

tk+1 = min
t

�
t > tk | 2xTPBKe > σxT Ix

�
(2.5)

with σ ∈]0, 1[
since V (x) = xTPx one has

V̇ (x) = ((A+BK)x+ BKe)TP ((A+ BK)x+BKe)

V̇ (x) = xT [(A+ BK)TP + P (A+ BK)]x+ 2xTPBKe

∀t,
V̇ (x) ≤ −||x||2 + σ||x||2

Therefore asymptotic (exponential) stability is preserved
To show that there exist a minimal inter-event time a bit more demanding. Since

e(tk) = 0 and ė = −ẋ
clearly ||e|| ≤ σ||PBK||−1||x|| implies 2xTPBKe ≤ σxT Ix.

We want to show that there exist a minimal time for which ||e|| ≤ σ||PBK||−1||x|| holds.
Therefore we compute

d(
||e||2
||x||2 )

dt
=

2eT ėxTx− 2xT ẋeT e

xTxxTx

d(
||e||2
||x||2 )

dt
≤ −2eT ((A+ BK)x+ BKe)xTx− 2xT ((A+ BK)x+ BKe)eT e

xTxxTx

d(
||e||2
||x||2 )

dt
≤ a

||e||
||x|| + b

||e||2
||x||2 + c

||e||3
||x||3

using the comparison lemma with ˙(y2) = ay + by2 + cy3, y(0) = 0 the existence of a
minimal time between sampling is ensured. Note that asymptotic stability can be ensure
by a more conservative version of (2.5) that is

tk+1 = min
t

�
t > tk | ||e|| > γ||x||

�

Example

Considering a linear plant with full state measurement

ẋ = Ax+ Bu

with u = Kx and the triggering policy tk+1 = min
�
t > tk | ||e|| > γ||x||

�
.

A =




0 1 0 0
0 −0.179 7.73 0
0 0 0 1
0 −0.52 51.57 0



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,

B =




0
1.79
0

5.26


 , K = (0.3102, 0.7204,−14.4655,−1.7309)
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Figure 2.2: State of the plant with γ = 0.3
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Figure 2.3: input of of the plant with γ = 0.3
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Figure 2.4: Sampling instant of the input

The system is asymptotically stabilised while the triggering instants are not periodic.
One can see more frequent sampling at the during the transient.
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2.1.3 Observation and control using event triggering

Observer-based control of linear systems submitted to event–triggered transmission has
been a recent and growing fields of research [35],[67],[97]. We will now briefly introduce
generic ideas of output based event triggered observation and control.

������
��������

��

���������������
����������������

������

�� �

���� �

���

���

���

���

Figure 2.5: The communications of the output and of the input are performed in an event
triggered manner. The command delivered by the computer is assumed to be continuous
(i.e. its period and small delays are neglected)

Consider a linear system
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2.6)

where x ∈ Rn is the state, u ∈ Rm is the control, y ∈ Rp is the output, A ∈ Rn×n,
B ∈ Rm×n, C ∈ Rp×n. We assume that the pair (A,B) is stabilizable and that the pair
(A,C) is detectable. The natural question occurring is: Is it possible to apply the event–
trigger methodology in order to reduce the communication between sensor and controller
and between controller and the plant ?

Considering the following classic Luenberger observer

˙̂x(t) = Ax̂(t) + Bu(t) + LC(x(tk)− x̂(tk)). (2.7)

A key difference when considering partial knowledge of the state is the fact that the
output can tend to (or cross) 0 when the state is not zero. Therefore a triggering condition
of the form

tsk+1 = min
t

�
t > tk | ||y(tk)− y|| > γ||y||

�

can lead to Zeno behaviour. A simple way to prevent those Zeno behaviour from hap-
pening is to enforce a minimal inter-event time leading to

tsk+1 = min
t

�
t > tk + τ | ||y(tk)− y|| > γ||y||

�

tak+1 = min
t

�
t > tk + τ | ||x̂(tk)− x̂|| > γ||x||

� (2.8)
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where τ is the built-in minimum inter-event time. Clearly there exists by construction
a minimal inter-event time, the following question is then whether this τ can provoke a
loss of stability.
We will next for simplicity consider synchronous sampling of the input and the output
meaning tk+1 = min(tak+1, t

s
k+1).

Considering z = x− x̂ the closed loop system is

ẋ(t) = Ax(t) + Bu(t)

˙̂x(t) = Ax̂(t) + Bu(t) + LC(x(tk)− x̂(tk))

u =Kx̂(tk)

(2.9)

writing the system in terms of x and z gives

ẋ(t) = (A+BK)x+ BKz + BK(x̂(tk)− x̂)

ż(t) = (A− LC)z + LC(x− x(tk))
(2.10)

When considering synchronous sampling of the output and the controller, the extended
state X = (x̂T , zT )T is of the following form

Ẋ = MX +WX̄

˙̄X = M �X +W �X̄

X̄+ = 0

(2.11)

With X̄ = X −X(tk)

M =

�
A+ BK LC

0 A− LC

�
,W =

�
−BK 0
LC LC

�

From the previous result on Event triggering control for system with full state measure-
ment ( it is possible to select τ such that ∀t < τ ||X̄|| < γ�||X||. Since X̄ is not known
we introduce an over estimation. We have that

||y(tk)− y|| ≤ γ||y||
and ||x̂(tk)− x̂|| ≤ γ||x|| imply ||X̄|| ≤ γ�||X||.

therefore the triggering condition (2.8) leads to asymptotic stability with minimum
inter-event time.

Remark 2.1.4 For γ ∈ (0, γmax) the system will converge (2.11) will converge asymp-
totically, and the value gamma represents a trade off between sampling frequency and
convergence rate, however for γ ≥ γmax the system is potentially unstable.

2.2 Observation and control of uncertain linear sys-

tems using event triggered sampling policy

2.2.1 Problem Formulation

Now, we want to consider the robustness issues of the event triggered observation and
control with respect to time varying modeling uncertainties. The results obtained subse-
quently allow us to state that if the continuous closed loop system is robust with respect

22



to parameter uncertainties, then the uncertain system is stabilizable with the event trig-
gered policy. Moreover, asymptotic stabilization of an uncertain system using an adapted
event triggered policy can be obtained.

Consider a linear system subject to time varying uncertainties

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(2.12)

where x ∈ Rn is the state, u ∈ Rm is the control, y ∈ Rp is the output, ∀t A(t) ∈
Rn×n, B(t) ∈ Rm×n, C(t) ∈ Rp×n, and where (A(t), B(t), C(t)) are subject to parametric
uncertainties.

Considering A0, B0, C0 the nominal matrices, and Δ(t) = (Δ1(t),Δ2(t),Δ3(t)) repre-
sent the time varying uncertainty

System (2.12) can be rewritten in the following form

ẋ(t) = (A0 +Δ1(t))x(t) + (B0 +Δ2(t))u(t)

y(t) = (C0 +Δ3(t))x(t)
(2.13)

. The pair (A0, B0) is stabilizable, and the pair (A0, C0) is detectable. In the following,
the indication of the time instant t is dropped if there are no ambiguities.

The control scheme is shown in Fig. 2.1. Due to the communication constraints, there
is no continuous communication either between the sensor and the controller, or between
the controller and the plant. The value y(tk) = Cx(tk) is available for the controller to
implement the control, and the value u(tk) is applied to the system, through a classic
zero order holder H0. It is worth noting that this means that the output y and the input
u are sampled synchronously, as assumed in this section for the sake of simplicity, even
though generalizations can be done in the case of asynchronous sampling.

Let us consider the linear system (2.12). When the state x is not measurable, under
the condition of detectability of the pair (A0, C0) it is possible to build a state observer [73]
of the following form. In view of an implementation with a triggered policy, the observer
will have the structure

˙̂x = A0x̂+ B0u+GCx(tk)−GC0x̂. (2.14)

A feedback controller based on x̂ will be used in the following to stabilize the sys-
tem (2.12). The input applied to the system, after sampling, is

u(t) = Kx̂(tk), ∀ t ∈ [tk, tk+1) (2.15)

so obtaining the controlled dynamics

ẋ = (A0 +Δ1(t))x+ (B0 +Δ2(t))Kx̂(tk). (2.16)

Moreover, considering the sampled value of the output, one gets the following closed–
loop system

ẋ = (A0 +Δ1(t))x+ (B0 +Δ2(t))Kx̂(tk)

˙̂x = A0x̂+ B0Kx̂(tk) +G(C0 +Δ)x(tk)−GC0x̂.
(2.17)

In the following sections we will address the problems of output–based practical and
asymptotic stabilization, namely the problem of practical/asymptotic stabilization of the
origin of (2.13) by means of an observed–based controller (2.14), (2.15), when appropriate
event triggered policies are adopted.
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2.2.2 Event Triggered Policies
for Output–Based Stabilization

When the state x of (2.1) is not available, the triggered policies reviewed in Section 2.1.2
cannot be implemented directly. In the following, we introduce the triggered policy that
will be used when the system state is not available. The following definition of mixed
triggering for practical stabilization of an observer–based controllers will be used.

Lets introduce the following triggering policies

Definition 2.2.1 (Mixed Triggering for Practical Stability) The next sampling time for
the control is

tc,k+1 = max{tk + τmin,min
t
{t > tk | �x̂− x̂(tk)� ≥ ε1

�
} (2.18)

and for the observation is

to,k+1 = max{tk + τmin,min
t
{t > tk | �y − y(tk)� ≥ ε2}} (2.19)

where ε1, ε2, τmin > 0, and
tk+1 = min{tc,k+1, to,k+1} (2.20)

is the next sampling time for the closed–loop system, with t0 = 0 and k ∈ N. �

The proposed triggering condition prevents pathological sampling to appear. In par-
ticular, the condition t ≥ tk + τmin in (2.18), (2.19) will ensure the absence of Zeno be-
haviour. The triggered policy (2.20) has obviously a global minimum inter–event time. In
the following it will be shown that implementing (2.20) will ensure the practical solution
of the observed–based control problem. However, this condition cannot in general lead
to asymptotic stability. For, the following definition of mixed triggering for asymptotic
stabilization of an observer–based controller has to be considered.

In order to achieve asymptotic stability we introduce the following triggering policies

Definition 2.2.2 (Mixed Triggering for Asymptotic Stability) The next sampling time for
the control is

tc,k+1 = max{tk + τmin,min
t
{t > tk | �x̂− x̂(tk)� ≥ σ1�x̂�

�
} (2.21)

and for the observation is

to,k+1 = max{tk + τmin,min
t
{t > tk | �y − y(tk)� ≥ σ2�y�}} (2.22)

where σ1, σ2, τmin > 0, and
tk+1 = min{tc,k+1, to,k+1} (2.23)

is the next sampling time for the closed–loop system, with t0 = 0 and k ∈ N. �

Remark 2.2.3 The existence of τmin > 0 can be seen both as a physical constraint and
as a requirement in the triggering condition. �

Remark 2.2.4 The synchronization of the triggering condition on the observer and on
the output are, a priori, not required in order to demonstrate the proposed result. However
they allow a much simpler analysis. �

24



Assumption on the Parameter Uncertainties Δ(t)

Introducing the estimation error e = x− x̂, from (2.17) we obtain the following

ẋ = (A0 +Δ1(t))x+ BK(x(tk)− e(tk))

ė = (A0 −GC0)e−GC0(x(tk)− x) +Δ1(t)x

+Δ2(t)K(x(tk)− e(tk))−GΔ3(t)x(tk).

(2.24)

Hence, introducing x̄ = x−x(tk), ē = e−e(tk), we can rewrite the system in the following
form �

ẋ

ė

�
= H(Δ)

�
x

e

�
+ wp (2.25)

where

H(Δ(t)) =

�
H11 H12

H21 H22

�

H11 = A0 +Δ1(t) + (B0 +Δ2(t))K

H12 = −(B0 +Δ2(t))K

H21 = Δ1(t) +Δ2(t)K −GΔ3(t)

H22 = A0 −GC0 −Δ2(t)K

wp =

� −(B0 +Δ2(t))K
�
x̄− ē

�

−Δ2(t)K(x̄− ē) +G(C0 +Δ3(t))x̄

�
.

We denote hij(t) the elements of H(Δ(t)).
Since Δ(t) represents the parametric uncertainty, it is natural to assume that it is

small in a certain sense. K,G are chosen to render H(0) Hurwitz. We make the following
hypothesis on H(Δ(t)).

Assumption 2.2.5 H(Δ(t)) ∈ D, a convex compact set given by hmin
ij ≤ hij(t) ≤ hmax

ij ,
∀ i, j, ∀ t, and there exist P = P T > 0, γ > 0 such that

H(Δ(t))TP + PH(Δ(t)) + γId < 0. �

Remark 2.2.6 Given D, the hypothesis of a common quadratic Lyapunov function can
be checked by a finite set of Linear Matrix Inequality. Using the convexity principle [23],
checking the infinite LMIs in Assumption 2.2.5 reduces to check the LMI on the extremal
point of D.

Remark 2.2.7 By a continuity argument around Δ(t) = 0, If H(0) is detectable there
exist a D is small enough (i.e. for the chosen K,G) then Assumption 2.2.5 is verified. �

Remark 2.2.8 Assumption 2.2.5 implies a bound on Δ1, Δ2K,GΔ3. This assumption
is less restrictive than a bound on Δ.

According to Remark 2.2.7, one can get sufficient conditions for the stability of the
perturbed system from the properties of the nominal system and of the perturbation size.
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Practical Stability

In this section we show that if assumption 2.2.5, is verified then we can stabilize the
system in an arbitrary small (dependant on the triggering parameters) neighbourhood of
the origin. We show that the triggering paradigm can be applied to a system subject to
the considered time varying parametric uncertainties.

Theorem 2.2.9 Under Assumption 2.2.5, it is possible to choose ε1, ε2, τmin > 0 so that
the observed–based controller (2.14), (2.15), with the triggering condition (2.20), solves
the output–based stabilization problem for system (2.6). �

Proof 2.2.10 We show that, for any ε > 0, it is possible to choose ε1, ε2 > 0 in (2.18),
(2.19), respectively, such that the triggering condition (2.20) implies the asymptotic sta-
bility toward the ball of radius ε. The triggering condition ensures that tk+1 ≥ tk + τmin.

From assumption 2.2.5 it is possible to determine K,G such that, system (2.25) is
an asymptotically stable system forced by a non vanishing perturbation wp due to the
difference between y and its sampled value y(tk), and between x̂ and its sampled value
x̂(tk).

First case tk+1 > tk + τmin. Since condition (2.20) ensures �x̄ − ē� < ε1 and �(C0 +
Δ3(t))x̄� < ε2, therefore

�wp� ≤ �(B0 + 2Δ2(t))K�ε1 + �G�ε2.

Since wp is non–vanishing, the trajectories of (2.25) converge in finite time, depending
on the initial condition (x(0), e(0)), to a ball of the origin bounded by

b =

�
λP
max

λP
min

�P�
ϑγ

�
(�B0�+ 2Γ )�K�ε1 + �G�ε2

�

(see[64]) where P = P T > 0, γ are defined in assumption 2.2.5 and Γ is an upper–bound
of Δ2. It is clear that it is always possible to choose ε1, ε2 such that b ≤ ε.

Second case tk+1 = tk + τmin, let us consider the system




ẋ

ė
˙̄x
˙̄e


 = Ā(t)




x

e

x̄

ē


 =

�
H(Δ)(t) Ā12

H(Δ)(t) Ā12

��
X

X̄

�
(2.26)

with X = (xT , eT )T , X̄ = (x̄T , ēT )T , x̄ = x− x(tk), ē = e− e(tk), and

Ā12 =

� −(B0 +Δ2)K +(B0 +Δ2)K

−G(C0 +Δ3)−Δ2K Δ2K

�
.

Setting z = (XT , X̄T )T , At the sampling instants we have z(tk) = (XT (tk), 0
T )T . Let T

be the projection of z on X̄ so that T z = X̄. Introducing the Φ(t, t0) resolvent of (2.26)
we denote �Φ(t, t0)�sup = max�x�sup=1 �Φ(t, t0)x�sup.

We can write

z(t) = Φ(t, tk)z(tk) = Φ(t, tk)

�
X(tk)

0

�
, t ∈ [tk, tk+1)
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Between two sampling instants we have

X̄(t−k+1) = X̄(t−k+1)− X̄(t+k )

= T
�
Φ(t, tk)− Id

��X(tk)

0

�
.

Furthermore Φ(t0, t0) = Id and from assumption 2.2.5 where D is a compact set,
between two sampling

e−MΦ(t2−t1) ≤ �Φ(t2, t1)�sup ≤ eMΦ(t2−t1) (2.27)

with MΦ a positive constant. Hence,

�X̄(t)�sup ≤ �T ��Φ(t, tk)− Id�sup�X(tk)�sup, t ∈ [tk, tk+1).

then (2.27) implies

�X̄(t)�sup ≤ �T �sup(eMΦ(t−tk) − 1)�X(tk)�sup

with �T �sup = 1 since it is a projection. Furthermore from (2.27)

�X(tk)�sup ≤ �X(t)�supeMΦ(t−tk).

Therefore, for all t ∈ [tk, tk+1)

�X̄(t)�sup ≤ (eMΦ(t−tk) − 1)eMΦ(t−tk)�X(t)�sup

and hence

�X̄(t)�sup ≤ (eMΦτmin − 1)eMΦ(τmin)�X(t)�sup, t ∈ [tk, tk+1).

Considering

ρ(τmin) = (eMΦτmin − 1)eMΦτmin

for any � > 0 there exists τmin small enough so that ρ(τmin) ≤ �, since between two
sampling instants �X̄�sup ≤ ρ�X�sup and (2.2.5) is verified. From norm equivalence we
have ρ� = Cρ such that �X̄� ≤ ρ�X� In conclusion, considering the Lyapunov candidate
V = XTPX, with

V̇ ≤ −γ�X�2 + ρ�(τmin)�PĀ12��X�2

One can always choose τmin such that

−γ + ρ�(τmin)�PĀ12� ≤ −σ

for any σ < γ implying that (xT , eT )T converges to zero. i.e. X̄ can be seen as a vanishing
perturbation affecting X.

So as long as tk+1 − tk = τmin, (x
T , eT )T converges to zero exponentially, and when

tk+1−tk > τmin the system goes toward a ball of radius ε. Therefore the proposed triggering
condition leads to practical stability.
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Asymptotic Stability

Theorem 2.2.9 ensures only practical stability, despite the fact that asymptotic stability of
the continuous closed loop system is assumed. Nevertheless, asymptotic stability can be
recovered changing the triggering condition (2.20) with (2.23), as stated by the following.

Theorem 2.2.11 Under assumption 2.2.5, it is possible to choose σ1, σ2, τmin > 0 so that
the observed–based controller (2.14), (2.15), with the triggering condition (2.23), solves
the output–based asymptotic stabilization problem for system (2.6). �

Proof 2.2.12 It was shown in the proof of Theorem 2.2.9 the existence of a τmin ensuring
the asymptotic stability of (2.17) as long as tk+1−tk = τmin. Know assume tk+1−tk > τmin,
where tk is the last triggering time, and let us introduce the extended state X = (xT , eT )T .
One writes

Ẋ = H(Δ(t))X +

� −(B0 +Δ2(t))K
�
x̄− ē

�

−Δ2(t)K(x̄− ē)−G(C0 +Δ3(t))x̄

�

where the definitions of x̄, ē are as in the proof of Theorem 2.2.9. There exists P = P T >
0 such that = H(Δ(t))TP + PH(Δ(t)) + γId < 0, ∀ t. Considering V = XTPX

V̇ = XT
�
H(Δ(t))TP + PH(Δ(t))

�
X

+ 2XTP

� −(B0Δ2)K(x̄− ē)

−Δ2K(x̄− ē)−G(C0 +Δ3)x̄

�

≤ −γ�X�2

+ 2�X��P�
����
� −(B +Δ2(t))K(x̄− ē)

−Δ2(t)K(x̄− ē)−G(C0 +Δ3(t)x̄

����� .

The triggering condition (2.23) implies that

�x̄− ē� ≤ σ1�x− e�, �Cx̄� ≤ σ2�(C0 +Δ3(t))x�.
Since ����

� −(B +Δ2(t))K(x̄− ē)

Δ2(t)K(x̄− ē)−G(C0 +Δ3(t)(x̄)

����� ≤ 2max{a1, a2}

a1 = σ1�(B +Δ2(t))K��x− e�
a2 = σ2�G��e�+Δ2(t)K��x− e�

and �e� ≤ �X�, �x− e� ≤ 2�X�, one finally works out

V̇ ≤ �X�2
�
− γ + 4�P�s(σ1, σ2)

�

with
s(σ1, σ2) = max

�
�(B +Δ2(t))K�σ1, 2�G�σ2 +Δ2(t)K�σ1

�
.

It is always possible to choose σ1, σ2 such that

−γ + 4�P�s(σ1, σ2) < 0.

This guarantees the exponential stability of the extended system.

Remark 2.2.13 The proof of Theorem 2.2.11 shows that the triggered policy (2.23),
while enforcing asymptotic stability, can ensure slower convergence rates. �

28



2.2.3 Simulation and comments

Let us consider system (2.6), with

A =




0 1 0 0

0 −(I +ml2)b
p

m2gl2

p 0

0 0 0 1

0 −mlb
p

mgl(M +m)
p 0




B =
�
0 I +ml2

p 0 ml
p

�T

, C =

�
1 0 0 0

0 0 1 0

�

representing by the linearization of the inverted pendulum on a cart, with x1 the cart
position, x2 its velocity, x3 the pendulum angle, and x4 its angular velocity. Clearly,
Δ3 = 0. The nominal parameter values are

l0 = 0.3 m, m0 = 0.5 Kg, M0 = 0.5 Kg

I0 = 0.006 Kgm2, b0 = 0.1 Kg/s, g0 = 9.8 m/s2

and p0 = I0(M0 +m0) +M0m0l
2
0, while the real parameters are

l ∈ [0.27, 0.33] m m ∈ [0.45, 0.55] Kg
M ∈ [0.45, 0.55] Kg I ∈ [0.0056, 0.0064] Kgm2

b = b0 Kg/s, g = 9.8m/s2

and p = I(M + m) + Mml2. The matrices K and L are chosen such that the nominal
system has its biggest eigenvalue equal to −2.
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Figure 2.6: Euclidean norm of the state vs
time.
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Figure 2.7: Inter–event time tk+1−tk vs time.

The simulations results are shown in Fig. 2.6. The initial conditions are x(0) =
(0.1, 0, 0.2, 0), and x̂(0) = 0. Fig. 2.6, 2.7 refers to a simulation in which the triggering
condition (2.20) is used, with τmin = 10−3 s, ε1 = ε2 = 10−3. The practical stability can be
observed in Fig. 2.6 and the inter–event time is shown in Fig. 2.7 while during the transient
phase the inter–event times are τmin, the successive inter–event times are determined
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Figure 2.8: Euclidean norm of the state vs
time.
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Figure 2.9: Inter–event time tk+1−tk vs time.

by ε1, ε2. Fig. 2.8, 2.9 refers with the triggering condition (2.23), with τmin = 10−3 s,
σ1 = σ2 = 0.05. This time, one observes asymptotic stability (Fig. 2.8, with a shorter
average inter–event time (Fig. 2.9). The imposed minimum inter-event time does not
turn to be useful in this instance of the problem since the output norm and the observer
norm never cross 0.

2.2.4 Conclusions on uncertain linear systems using event trig-
gered observation and control

For linear systems with time varying parametric uncertainties, and in the case of partial
state knowledge, the event triggered paradigm can successfully be applied for stabiliza-
tion via observer–based controllers. Practical and asymptotic stability are shown when
considering model uncertainties. The proposed results recover full state feedback as a
special case. The applicability of the proposed approach considering the linearized dy-
namics of the inverted pendulum on a cart as been considered. Further studies should
include practical method of calculating an optimal choice of the triggering parameters,
robustness with respect to disturbance and measurement noise.

2.3 Impulsive observer for Event triggered observa-

tion and control

In the previous section we described a classic Luenberger observer with a linear output
based feedback the proposed methodology enables the observation and control of linear
system while implementing event trigger sampling policy. It is shown under some con-
dition that the control and observation gains can be computed offline and provided that
the matrix of the extended linear system is Hurwitz, then the resulting closed loop sys-
tem with event triggered sampling is stable (practically or asymptotically). This recovers
somehow the classic idea of the separation principle. However the separation principle is
somewhat stronger in stating the observation is possible without control. The classical
Luenberger observer with event triggered sampling policy is able to conduct successful ob-
servation only when introducing a stabilizing dynamic controller. In the next section we
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design an impulsive observer in order to recover the separation principle (i.e. Observation
in absence of control).

2.3.1 Problem Formulation

Let us consider the linear system (2.6). When the state x is not measurable, under the
condition of detectability of the pair (A,C) it is possible to build a Luenberger observer.
In view of an implementation with a triggering policy, generically the observer has the
structure

˙̂x = F
�
x̂, ytsk , u

�
(2.28)

with possibly non smooth F : Rn × Rp × Rm → Rn. A feedback controller based on
x̂ will be used in the following in order to stabilize the system (2.6). After the input
transmission at time taj , the input applied to the system is

u(t) = Kx̂taj
, t ∈ [taj , t

a
j+1) (2.29)

with K ∈ Rm×n such that A+BK is Hurwitz, and the controlled dynamics are

ẋ = Ax+ BKx̂taj
, t ∈ [taj , t

a
j+1). (2.30)

Therefore, between two sampling instants, the closed–loop system dynamics are

ẋ = Ax+ BKx̂taj

˙̂x = F
�
x̂, Cxtsk

, Kx̂taj

� (2.31)

for t ∈ [taj , t
a
j+1) ∩ [tsk, t

s
k+1) �= ø. And the observer can have jumps at specific times

x̂(t+) = G(x̂(t), Cxtsk
, u) These observer jumping times are to be determined later.

The following definition will be used.

Definition 2.3.1 Given the controlled system (2.30), the Practical Observer Design Prob-
lem (PODP) consists of finding an observer (2.28) and an event triggering policy such
that the origin of the dynamics of the estimation error e = x− x̂ is practically stable,

ė = Ax+Bu− F
�
x̂, Cxtsk

, u
�

e+ = x−G(x̂, Cxtsk
, u)

and there exists a minimal inter–event time δs,min > 0 such that δs,k := tsk+1 − tsk >
δs,min, ∀ k ∈ N.

Remark 2.3.2 Note that in general the PODP does not required that u stabilizes the
system. In fact, the PODP aims at designing an observer for the system (2.6) even if
x(t) becomes unbounded. �
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Definition 2.3.3 Given the system (2.31), the Practical Observer–Based Control Prob-
lem (POBCP) consists of finding an observer–based controller (2.28), (2.29) such that
(i)the origin of the dynamics

ẋ = Ax+ BK(xtaj
− etaj )

ė = Ax+ BKx̂taj
− F

�
x̂, Cxtsk

, Kx̂taj

� (2.32)

with t ∈ [taj , t
a
j+1)∩ [tsk, t

s
k+1) �= ø and e = x− x̂ the estimation error, is practically stable,

and (ii) there exists a minimal inter–event time δmin > 0 such that δs,k = tsk+1− tsk > δmin

and δa,j = taj+1 − taj > δmin, ∀ k, j ∈ N.

Definition 2.3.4 (Weak Separation Principle) Given system (2.31), the so called weak
separation principle is verified if the PODP can be solved independently from the POBCP
(i.e. it is possible to observe the system is without stabilising it.

Remark 2.3.5 The weak separation principle recovers the classic notion of separation
principle, where the error dynamics do not depend on the system state, and the observer
trajectories converge to those of the system state with no assumptions on the properties of
the system dynamics. On the contrary, to the best of the authors’ knowledge, the available
results in the literature deal only with POBCP, and its resolution allows determining
independently the dynamics of the first and of the second of (2.31), but nothing can
be ensured for the observer convergence when the state x does not converge towards a
compact containing the origin. �

Event Triggering Policies for the resolution of the PODP and the POBCP

In the following, we introduce a triggering policy which can be used when the system
state is not available, and which takes into account the communication constraints for
the output and the input over the network.

Definition 2.3.6 (Mixed Triggering for Observer–Based Controllers) In the so called
mixed triggering policy, the next sampling time for the actuation updating is

taj+1 = min
�
max

�
ta1j+1, t

a2
j+1

�
, ta3j+1

�

ta1j+1 = min
t

�
t > taj | �x̂(t)− x̂(taj )� ≥ εa

�

ta2j+1 = min
t

�
t | t ≥ taj + τamin

�

ta3j+1 = min
t

�
t | t ≥ taj + τamax

�

(2.33)

and for the sensor sampling is

tsk+1 = min
�
max

�
ts1k+1, t

s2
k+1

�
, ts3k+1

�

ts1k+1 = min
t

�
t > tsk | �y(t)− y(tsk)� ≥ εs

�

ts2k+1 = min
t

�
t | t ≥ tsk + τ smin

�

ts3k+1 = min
t

�
t | t ≥ tsk + τ smax

�

(2.34)

where εa, εs, τ
a
min, τ

s
min ∈ R+, τ smax, τ

a
max ∈ R+ are parameters, and τ smax > τ smin, τ

a
max > τamin.
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Remark 2.3.7 For the sensor (resp the actuator) , tsk+1 − tsk ∈ [taus
min, tau

s
max],(resp

tak+1 − tak ∈ [taua
min, tau

a
max]) in this time interval the sampling time is given by the trig-

gering policy.

Remark 2.3.8 The values ta2j+1 in (2.33) and ts2j+1 in (2.34) will ensure the existence of
a global minimum inter–event time, and this avoids Zeno phenomena. The saturation
parameters τ smax, τ

a
max are used to impose a maximum value to the inter–event time. This

is a quite natural condition, imposed in practical cases. When τ smax = τamax = ∞, no
saturation is applied to the maximal inter–event time. In the next section it will be shown
that (2.34) solves the PODP, and that (2.33), combined with (2.34), solves the POBCP.

Remark 2.3.9 Note that (2.33) and (2.34) allow independent sampling of the output
and of the controller, while ensuring minimum inter–event times for both the controller
and the output samplings. �

2.3.2 Impulsive Observers and Impulsive Observer–Based Con-
trollers

The use of the sampled state, changing impulsively the information the observer possesses
at the sampling instants, suggests the use of an observer in which the estimated state
is changed impulsively. We will refer to such observers as impulsive observers [63]. To
introduce such observers, we first recall that, as well known, it is possible to consider an
appropriate state change T such that system (2.6) is rewritten in the form [62]

ẋ1 = A11x1 + A12x2 + B1u

ẋ2 = A21x1 + A22x2 + B2u

y = x1

(2.35)

with x1 ∈ Rp, x2 ∈ Rn−p,
�
xT
1 xT

2

�T
= Tx, and

TAT−1 =

�
A11 A12

A21 A22

�
, TB =

�
B1

B2

�

CT−1 = (Ip×p 0).

For system (2.35), we can consider the following impulsive observer for [tsk, t
s
k+1)

˙̂x1 = A11x̂1 + A12x̂2 + B1u

˙̂x2 = A21x̂1 + A22x̂2 +G0(x̂2 − z2) + B2u

ż1 = A11z1 + A12z2 +G1(x̂1 − z1) + B1u

ż2 = A21z1 + A22z2 +G2(x̂1 − z1) + B2u

(2.36a)

with x̂1, z1 ∈ Rp, x̂2, z2 ∈ Rn−p, G0 ∈ R(n−p)×(n−p), G1 ∈ Rp×p, G2 ∈ R(n−p)×p, and

x̂1(t
s+
k ) = y(tsk) whenever �x̂1(t)− y(tsk)� ≥ εo

and t ≥ tsk + τ smin.
(2.36b)
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for a εo > 0.
The dynamics (2.36a) are discontinuous, due to the reset conditions (2.36b), where

one needs to consider the right–value of x̂1 at t = tsk. Note that y(tsk) = x1(t
s
k) is a

continuous signal.
The dynamic controller is given by (2.29), (2.36) for t ∈ [taj , t

a
j+1) ∩ [tsk, t

s
k+1) �= ø.

It is worth noticing that the reset x̂1(t
s+
k ) = x1(t

s
k) = y(tsk) in (2.36b) occurs when the

triggering condition occurs, while the reset x̂1(t) = x1(t
s
k) = y(tsk) is internal to the

observer dynamics, and is imposed to bound the transient estimation error.
It is clear that (2.36) contains two coupled observers. In particular, that described by

the variables z1, z2 is a Luenberger observer, forcing the dynamics of x̂2.
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Figure 2.10: Structure of the impulsive observer.

Theorem 2.3.10 Let (A,C) be detectable for system (2.6). Then, using the triggering
condition (2.34) and the impulsive observer (2.36), it is possible to choose τ smin, εs > 0
such that the PODP is solved.

Proof 2.3.11 Considering the appropriate state change T such that system (2.6) is trans-
formed into system (2.35), for t ∈ [tsk, t

s
k+1) the dynamics of the errors e1 = x1 − x̂1,

e2 = x2 − x̂2, ē1 = x1 − z1, ē2 = x2 − z2 are

�
ė1
η̇

�
=

�
A11 Ā12

Ā21 Ā22

��
e1
η

�
= Ā

�
e1
η

�
(2.37)

with η =
�
eT2 , ē

T
1 , ē

T
2

�T
, and the reset conditions are

e1(t
s+
k ) = x1(t

s
k)− x̂1(t

s+
k ) = y(tsk)− y(tsk) = 0

x̂1(t) = y(tsk) whenever �x̂1(t)− x1(t
s
k)� ≥ εo

and t ≥ tsk + τ smin

(2.38)
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where

Ā12 = (A12 0 0 ), Ā21 =




A21

G1

G2




Ā22 =




A22 +G0 0 −G0

0 A11 −G1 A12

0 A21 −G2 A22


 .

The matrix G0 can be chosen so that the matrix A22+G0 is Hurwitz. Moreover, since
(A,C) is detectable, it is possible to determine G1, G2 such that the matrix

�
A11 −G1 A12

A21 −G2 A22

�
=

�
A11 A12

A21 A22

�
−
�
G1

G2

��
I 0)

is Hurwitz as well. Therefore, Ā22 can be rendered Hurwitz, so that there exists P =
P T > 0, solution of PĀ22 + ĀT

22P = −2Q for any fixed Q = QT > 0. We can distinguish
two cases.

a) If tsk+1 = ts1k+1 > ts2k+1 = tsk + τ smin, the triggering condition (2.34) and the reset
condition (2.36b) ensure that

�e1� ≤ �y − ytsk�+ �x̂1 − ytsk� ≤ εs + εo = ε1.

As far as η is concerned, considering the Lyapunov candidate V = ηTPη/2, one
gets

V̇ = ηTPĀ21e1 − ηTQη ≤ −λQ
min

�
�η� −Δ2

�
�η�

Δ2 =
�PĀ21�
λQ
min

ε1
(2.39)

so that, for any initial conditions η(0), the ball Bε2, with

ε2 =

�
λP
max

λP
min

�PĀ21�
λQ
min

ε1

centred in the origin is attractive for η, i.e. the trajectories of η converge inside
Bε2 in finite time. Therefore, one can conclude that the ball B�, � =

�
ε21 + ε22, is

attractive for (eT1 , η
T )T .

b) If tsk+1 = ts2k+1 = tsk+τ smin ≥ ts1k+1 in (2.34), the solution of (2.37) over [ts+k , t) = [tsk, t)
is �

e1(t)

η(t)

�
= eĀ(t−tsk)

�
e1(t

s+
k )

η(tsk)

�
(2.40)

since η(ts+k ) = η(tsk) (the discontinuity is only on x̂1 due to the reset), so that
�
e1(t)− e1(t

s+
k )

η(t)− η(tsk)

�
=
�
eĀ(t−tsk) − I2n×2n

�� e1(t
s+
k )

η(tsk)

�
.

Considering (2.38), and premultiplying by
�
Ip×p 0

�
, one gets

e1(t) =
�
Ip×p 0

��
eĀ(t−tsk) − I2n×2n

�� 0

η(tsk)

�
.
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Therefore,

�e1(t)� ≤
���eĀ(t−tsk) − I2n×2n

���
����
�

0

η(tsk)

�����
and since ���eĀ(t−tsk) − I2n×2n

��� =

�����
∞�

j=1

(tsk)
j

j!
Āj

�����

≤
∞�

j=1

(tsk)
j

j!
�Ā�j = e�Ā�(t−tsk) − 1

one finally gets

�e1(t)� ≤
�
e�Ā�(t−tk) − 1

�
�η(tsk)�. (2.41)

Considering again (2.40) and the first of (2.38),
�
e1(t

s+
k )

η(tsk)

�
=

�
0

η(tsk)

�
= e−Ā(t−tsk)

�
e1(t)

η(t)

�

so that

�η(tsk)� ≤ e�Ā�(t−tsk)

����
�
e1(t)

η(t)

�����

since �e−Ā(t−tsk)� ≤ e�Ā�(t−tsk), and

�η(tsk)�2 ≤ e2�Ā�(t−tsk)
�
�e1(t)�2 + �η(t)�2

�
. (2.42)

Therefore, from (2.41), (2.42), one works out

�e1(t)�2 ≤
�
e�Ā�(t−tsk) − 1

�2

�η(tsk)�2

≤
�
e�Ā�(t−tsk) − 1

�2

e2�Ā�(t−tsk)
�
�e1(t)�2

+ �η(t)�2
�

and finally
�e1(t)� ≤ �(�Ā�τ)�η(t)� < �(�Ā�τ smin)�η(t)� (2.43)

with τ = t− tsk ∈ [0, τ smin), and

�(s) =
��
es − 1

�−2
e−2s − 1

�−1/2

which is such that �(0) = 0, is strictly increasing and goes to infinity as s tends
to s̄ = (1 +

√
5)/2. Hence, � is uniquely invertible for s ∈ [0, s̄). Considering

the Lyapunov candidate V = ηTPη/2, as in the case a), and repeating the same
passages, one gets

V̇ < −
�
λQ
min − �PĀ21��(�Ā�τ smin)

�
�η�2.

Hence, V̇ < 0 choosing Q and τ smin so that

λQ
min

�PĀ21�
< s̄, τ smin <

1

�Ā��
−1

�
λQ
min

�PĀ21�

�
.

Therefore, η will converge asymptotically to zero, as well as e1 thanks to (2.43).
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Considering the cases a) (practical stability) and b) (asymptotic stability), and since
the triggering condition (2.34) considers the maximum between τ s1k+1 and τ s2k+1, one con-
cludes that the origin of the dynamics of (e1, e2) is practically stable. Moreover, the
inter-event time is at least τ smin > 0. Therefore, one can can conclude that the PODP is
solved.

Theorem 2.3.12 Let (A,B), (A,C) be stabilizable and detectable, respectively, for sys-
tem (2.6). Then, using the triggering conditions (2.33), (2.34) and the observed–based
controller (2.29), (2.36), it is possible to choose τ smin, εs, τ

a
min, εa > 0 such that the POBCP

is solved.

Proof 2.3.13 Denoting x̄ = x − xtaj
and w = xtaj

− x̂taj
From (2.3.12) ∀ε there exist εs

and T such that ∀t > T, �w� < ε�
ẋ
˙̄x

�
=

�
A+ BK −BK

A+ BK −BK

��
x

x̄

�
−
�
BKw

BKw

�

a) If taj+1 = ta1j+1 ≥ ta2j+1 = taj +τamin, the triggering condition (2.33) ensures �x−xtaj
� ≤

εa Therefore choosing the dynamic of ẋ is just linear convergent dynamic given by
A+ BK perturbed with non vanishing perturbation.

Therefore there is a quadratic Lyapunov function V = xtP̄ x ensuring practical
stability in a ball Bb.

b) If taj+1 = ta2j+1 = taj + τamin > ta1j+1 in (2.33), let us denote X = (xT , x̄T )T and

Ā =

�
A+ BK −BK

A+ BK −BK

�
.

Since x̄(ta+j ) = 0, if we consider T the projection of (xT , x̄T )T on x̄ ( T X = x̄),
one has

X(t) = eĀ(t−taj ) Xtaj
+

� t

taj

eĀ(τ−t)

�
BKw(τ)

BKw(τ)

�
dτ

= eĀ(t−taj )

�
xtaj

0

�
+

� t

taj

eĀ(τ−t)

�
BKw(τ)

BKw(τ)

�
dτ

and since between two samplings the system is linear, on obtain

x̄(ta−j+1) = x̄(ta−j+1)− x̄(ta+j )

= T
�
eĀ(t−taj ) −I2n×2n

��xtaj

0

�

+ T
� t

taj

eĀ(τ−t)

�
BKw(τ)

BKw(τ)

�
dτ.

So for each t ∈ [taj , t
a
j+1) the inequality �BKw� < �BK�ε gives

�x̄(t)� ≤ �T �
�
� eĀ(t−taj ) −I2n×2n��Xtaj

�

+ 2�BK�ε
� taj+1

taj

e�Ā�∞(taj+1−τ)dτ
� .
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So
�x̄(t)� ≤ �T �(e�Ā�∞(t−taj ) − 1)�x(taj )�

+
2�BK�ε(e�Ā�∞τamin − 1)

�Ā�∞
where �T �=1. Since the system is affine, the following inequality also holds.

�x(taj )� ≤ �X(t)�e�Ā�∞(t−taj )

+
2�BK�ε(e�Ā�∞(t−taj ) − 1)

�Ā�∞
.

we have �X� ≤ �x�+ �x̄� Therefore, for all t ∈ [taj , t
a
j+1)

�x̄(t)� ≤ 2�BK�ε(e�Ā�∞τamin − 1)

�Ā�∞
(e�Ā�∞τamin − 1)

+ e�Ā�∞τamin(e�Ā�∞τamin − 1)
�
(�x̄(t)�+ �x(t)�)

+
2�BK�ε(e�Ā�∞τamin − 1)

�Ā�∞

�x̄(t)� ≤ ρ(�Ā�∞τamin)�x�+
2�BK�ε
�Ā�∞

θ(�Ā�∞τamin) (2.44)

where

ρ(s) =
(es − 1)es

1− (es − 1)es

θ(s) =
(es − 1)

(1− (es − 1)es)
.

For any � > 0 and any �Ā�∞ there exists a τamin small enough so that ρ(�Ā�∞τamin) ≤
�. We define V = xT P̄ x the same candidate Lyapunov function as in the case
taj+1 > taj + τamin from (2.44) and �w� < ε we have the following inequality

V̇ ≤
�
− λmax

�
(A+ BK)T P̄ + P̄ (A+ BK)

�

+ 2ρ(τ amin)�P̄BK�
�
�x�2

+ 2�P̄BK�ε
�
θ(τamin)

�BK�
�Ā�∞

+ 1
�
�x�.

Since A+BK is Hurwitz we can consider the term ρ(τamin) as a vanishing perturbation
and θ a non vanishing one. We can choose τamin such that −λmax(A

TP + PA) +
2ρ�PBK� < 0. From known result on vanishing perturbations [?], the ball Br

r =
2�P̄BK�ε

�
θ(τamin)�BK�+ 1

�

λmax(ATP + PA)− 2ρ(τamin)�PBK�
is attractive,

In conclusion, for both cases the same lyapunov function decrease as long as it is not
in a neighbourhood of zero. Therefore, the proposed triggering condition leads to practical
stability to a ball and the ultimate bound is given by {||x|| ≤ b+ r}.
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2.3.3 Simulation and comments

In this section the proposed impulsive observer is used for the stabilization of the lin-
earized model of an inverted pendulum on a cart. To better show the advantages of
the impulsive observer, a comparison is presented with the case in which the following
observer

˙̂x = Ax+ BKx̂taj
+ LC(xtsk

− x̂) (2.45)

is considered, which represents the obvious implementation of the classic Luenberger
observer in the event–triggering setting.

The dynamics of a linearized inverted pendulum on a cart are in the form (2.6), with

z =
�
z1 z2 z3 z4

�T
and z1 the cart position, z2 the cart velocity, z3 the pendulum

angle with respect to the vertical, z4 the pendulum angular velocity. Introducing a

coordinate change : x =
�
x1 x2 x3 x4

�T
=
�
z1 z3 z2 z4

�T
The system is in the

form (2.35), with the position x1 and the angle x2 measured variables, and

A11 =

�
0 1

0 −(J +Ml2)b
p

�
, A12 =

�
0 0

M2gl2

p 0

�

A21 =

�
0 0

0 −Mlb
p

�
, A22 =

�
0 1

Mgl(m+M)
p 0

�

B1 =

�
0

J +Ml2
p

�
, B2 =

�
0
Ml
p

�

where the parameters have the following values

l = 0.3 m, m = 0.5 Kg, M = 0.5 Kg

J = 0.006 Kgm2, b = 0.1 Kg/s, g = 9.8 m/s2

and p = J(M +m) +Mml2. The observer (2.36a) is given by

G0 =

�
−119.8211 0.5263

0 −80.0000

�

G1 =

�−22.8712 1.0085

1.6639 −20.9498

�

G2 =

�−126.1812 2.6591

24.0036 −160.3360

�

corresponding to fix the spectrum σ(A22) in {−119.9931,−80.0069,−13.5,−9,−10,−11.5},
while the applied control (2.29) is given by

K =
�
0.3102 − 14.4655 0.7204 − 1.7309

�

and corresponds to fix all the eigenvalues of A+ BK in −2.
In Fig. 3.3 the performance of the controllers based on the impulsive observer (2.36)

and on the Luenberger–like observer (2.45) is shown, where the values

εa = 0.01, εs = 0.01, τamin = τ smin = 10−3 s

τamax = τa� = τ smax = τ s� = ∞
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have been used in (2.33), (2.34). The initial conditions are chosen randomly in the unit
hypercube.

To show the controller performance for different values of εa, εs, these parameters are
let to vary.The values of εa, εs are varied to change the radius of the ball where the error
variables converge.

Choosing randomly the initial conditions in the unit hypercube, and then taking
the mean value of the communication and stabilization errors, one gets the graphics of
Figs. 2.12, 2.13. Considering the maximal stabilization error norm �x�ss during the steady
state, defined as

�x�ss := max
t∈Tss

�x(t)�

with Tss = [10, 15] s in the case considered, in these figures the number of sensor and ac-
tuator communications Ns, Na are given as function of �x�ss, to provide the stabilization
performance obtained with a certain number of communications. Either in the case of
the Luenberger–like observer (2.45), or in the case of the impulsive observer (2.36), the
simulations show good results in term of observation and control performance, during
both the transient and the steady state. However, these two observers have different be-
haviours in terms of samplings. In fact, Fig. 2.12 shows that, for comparable performance
in terms of stabilization, the impulsive observer (2.36) needs more sensors communica-
tions (Fig. 2.12.a), but provides a state estimation which determines less updates of the
control value (Fig. 2.12.b). Moreover, the sum of the number Ns + Na of sensor and
controller communications is smaller for the impulsive observer–based controller, i.e. it
is less demanding in terms of communication resources (Fig. 2.12.c).

A quite interesting property shown by the simulations is the following. If a saturation
function is used in (2.34), with τ smax = τ s� = 0.3 s, i.e. if a maximum inter–event time
τ smax is imposed, as in [11], the performance of the impulsive observer–based controller
improves sensibly, surprisingly not generating more communications from the sensor. On
the contrary, the introduction of a maximum inter–event time τamax does not influence
sensibly the performance of the controller. Note that a periodic sampling of 0.3 s would
lead to instability. Hence, while the triggering parameters τ smax, τ

a
max in (2.33), (2.34)

should (intuitively) induce a more frequent sampling, in practice they determine a reduc-
tion of the number of samplings. Intuitively, this is due to the fact that they ensure that
the system trajectory does not diverge abruptly, in which case a faster sampling should
be necessary to force it again close to the origin. The comparison of the performance
shown in Fig. 2.13 with that of Fig. 2.12, shows that τ smax (but also τamax) can be used
as control parameter. For instance, for �x�ss = 10−4, for the impulsive observer (2.36)
the total number of sampling is 3500 when τamax = τ smax = ∞, while it drops to 2400
when τ smax = 0.3 s. On the contrary, τ smax has no visible impact on the Luenberger–like
observer (2.45), with which the number of sampling remains always about 3900.

Figure 2.14 shows that when no saturation is implemented on the maximal inter-
sampling time instability close to zero can occur. While this instability is benign in term
of observation and control it has an impact on sampling. Namely they will occur later to
correct the instability.
Figure 2.15 highlight the fact that a saturation on the maximal inter-sampling time can
prevent this phenomenon. There is a trade off since a saturation on maximal inter-event
time could also lead to more communication. This saturation must not be seen as a
periodic sampling since this maximum time alone would lead to instability if used as
the period of a periodic sampling. Comparing Figure 2.12 and Figure 2.13 along with
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Figure 2.11: Controller based on the impulsive observer (2.36) (circle) and Luenberger–
like observer (2.45) (star) with τamax = τa� = τ smax = τ s� = ∞: a) x1 [m vs s]; b) x2 [m/s vs
s]; c) x3 [rad vs s]; d) x4 [rad/s vs s]; e) �x� [dimensionless vs s]; f) u [N vs s].

Figure 2.14 and Figure 2.15 show that on average the overall communication load is not
increased with a saturation on the maximum inter-event time.

2.3.4 Conclusions on impulsive observer for event-triggered lin-
ear systems

In this section a weak separation principle has been introduced for linear systems stabi-
lized by observer–based controllers, making use of an event–triggered technique.

An impulsive observer has been designed along with the event–triggered policy, to
ensure practical convergence of the estimate to the system state, and nonzero inter–
event times, avoiding Zeno behaviors. The motivation of the impulsive observer (as
opposed to a discrete time Luenberger observer) in this context being to make the most
of the information transmitted at the moment where it is most relevant. The practical
stability of the observation error can be achieved without stability assumptions on the
system dynamics, which can be stable or unstable. The proposed event–triggered policy
allows asynchronous communications sensor–controller and controller–actuator. Finally,
it has been shown in the case of a linearized inverted pendulum that it is possible to
tune the various parameters of the event–triggered control scheme in order to reduce
the overall communications among the different components. The proposed observer has
been compared to a classical Luenberger observer, subject to the same triggering policy.
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Figure 2.12: Controller based on the impulsive observer (2.36) (circle) and Luenberger–
like observer (2.45) (star) with τamax = τa� = τ smax = τ s� = ∞: a) Number Ns of sensor
communications versus stabilization error norm �x�ss; b) Number Na of controller com-
munications versus stabilization error norm �x�ss; c) Number Ns + Na of sensor and
controller communications versus stabilization error norm �x�ss.

The simulation results suggest the implementation of a maximum inter–event time may
bring some benefit in terms of the reduction of the communications.

2.4 Conclusion on event triggering policy for obser-

vation and output based feedback of linear sys-

tems

In this chapter we introduced key concepts of event triggered sampling for observation
and control of linear systems. We demonstrated that for some classes of systems (Linear
Systems, Uncertain Linear Systems) it is possible to adapt classic observer to allow dy-
namic feedback under event triggered sampling. The main objective of event triggering
being the reduction of the communication among node in a network control systems. To
this end special problems were adressed (i.e adaptated event triggered sampling policy,
Special observer structure). However some issues remain open and will be investigate in
future work. In this chapter only linear systems have been considered and allow global
features such as global stability and global obsrvability. It as been shown that under
the assumption of detectability and stabilisability one can always derive adaptated event
triggered policy that allows (practical)convergence of the state to 0

A natural question arising is the extension of the results for linear systems to the case
of non linear systems. This will be the object of the next chapter
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Figure 2.13: Controller based on the impulsive observer (2.36) (circle) and Luenberger–
like observer (2.45) (star) with τ smax = τ s� = 0.3 s and τamax = τa� = ∞: a) Number Ns of
sensor communications versus stabilization error norm �x�ss; b) Number Na of controller
communications versus stabilization error norm �x�ss; c) Number Ns +Na of sensor and
controller communications versus stabilization error norm �x�ss.
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Figure 2.14: τ smax = τ� = ∞: a) Observation error; b) Sensor sampling instants tsk (305
samplings).
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Figure 2.15: τ smax = τ� = 0.3 s: a) Observation error; b) Sensor sampling instants tsk (293
samplings).
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Chapter 3

Event triggering policy for observa-
tion and output based feedback for
some classes of non linear systems

In the previous chapter we considered event triggering observation and control of Lin-
ear systems, in this second chapter we will extend our previous results to non linear
systems subject to communication constraints. Observability/observation and controlla-
bility/control of non linear systems can be a challenging task especially when considering
communication constraints, however throughout this chapter systems under considera-
tion possesses some features that make them tractable. The details of those features
will be stated in the problem formulation, however since they might appear as embedded
in the hypothesis we want to state some generic properties. The systems we consider
are Lipschitz. Furthermore embedded in the observability assumption is the notion of
instantaneous observability (i.e. knowing an arbitrary small time interval of the output
allow reconstruction of the initial condition of the system). Those properties hold for
linear system however they restrict the classes of non linear system under consideration.

3.1 General elements on event triggering for non lin-

ear systems

In order to established necessary condition for observer based stabilisation of a non linear
system subject to some event triggered mechanism, we will first recall some useful result
of event triggering for non linear systems when the full state is available and no observer
is needed.

It is remarkable that, when considering non linear systems with full state available for
control results similar to those established for linear systems hold (see for instance [95]).
This results can be established, provided hypothesis on the stability of the system when
there exists a robust continuous feedback with respect to sampling error are verified. A
key notion when considering event trigger policy for non linear system is the notion of
input to state stability. Considering

ẋ(t) = g(x(t), u(t))

u(t) = ρ(x(tk))
(3.1)
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Definition 3.1.1 (Input–to–state stability–ISS [93]) System (3.1) is said to be locally ISS
if there exist a class KL function β, a K function α, and some constants k1, k2 > 0 such
that

|x(t)| ≤ β(|x0|, t) + α(|u|), ∀ t ≥ 0

for all x0 ∈ D, u ∈ Du satisfying |x0| < k1, |u| < k2. System (3.1) is said (globally)
input–to–state stable if D = Rn, Du = Rm, and the above inequalities are satisfied for
any initial state and any bounded input.

Definition 3.1.2 (ISS Lyapunov function) A continuous function V : D → R is an ISS
Lyapunov function on D for system (3.1) if there exist class K functions α1,α2,α3, β
such that the following two conditions are satisfied

α1(|x|) ≤ V (x(t)) ≤ α2(|x|) ∀ x ∈ D, t ≥ 0

∂V (x)

∂x
g(x, u) ≤ −α3(|x|) + β(|u|) ∀ x ∈ D, u ∈ Du.

Moreover, V is a global ISS Lyapunov function if D = Rn, Du = Rm, and α1,α2,α3, β,∈
K∞.

Consider the closed loop system (3.1) with e = x(tk)− x(t) and write

ẋ = g(x, γ(x+ e))

we write a new system

ẋ = f(x, e)

Making the assumption that there exists an ISS Lyapunov function with e as the new
input

,
∃V,α1(|x|) ≤ V (x(t)) ≤ α2(|x|) ∀ x ∈ D, t ≥ 0

∂V (x)

∂x
f(x, ρ(x+ e)) ≤ −α3(|x|) + β(|e|) ∀ x ∈ D, u ∈ Du.

Then it is possible to choose an event trigger mechanism rendering the closed loop
system stable.

tk+1 = min
t
{t > tk | −α3(|x|) + β(|e|) < 0} (3.2)

To ensure a minimal inter-event time hypothesise on α3, β, f and γ are sufficient. Assume
f ,γ, β and α−1

3 are Lipschitz with for simplicity the same Lipschitz constant L Assuming

||e|| ≤ 1
L2 ||x|| then

L2||e|| ≥ Lβ(||e||) ≥ α−1
3 (β(||e||))

α−1
3 (β(||e||)) ≤ L2||e|| ≤ ||x||
(β(||e||)− α3(||x||) ≤ 0

therefore for all time where ||e|| ≤ 1
L2 ||x|| holds −α3(|x|) + β(|e|) < 0 holds as well.

Furthermore |f(x, γ(x+ e)| < L(||x|+ |e||) As in the linear case we have
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d(
||e||2
||x||2 )

dt
=

2eT ėxTx− 2xT ẋeT e

xTxxTx

d(
||e||2
||x||2 )

dt
≤ L(||x|+ |e||)||e||||x||2 + L(||x|+ |e||)||e|2|||x||

xTxxTx

d(
||e||2
||x||2 )

dt
≤ L

||x||
||e|| + 2L

||x||2
||e||2 + L

||x||3
||e||3

Since

d(
||e||2
||x||2 )

dt
= 2

||e||
||x||

d(
||e||
||x||)
dt

then
d(

||e||
||x||)
dt

≤ L
2 (1 +

||e||
||x||)

2 Therefore using a comparison lemma with ẏ = L
2 (1 +

y)2, y(0) = 0 There is a minimum inter event time.

3.2 Observation and control of decentralized Non Lin-

ear systems

The main objective of this section is to address the problem of the event–triggered
Observer–based feedback for non linear systems. That is to say when full state is not
available for measurement but is needed for stabilization, giving sufficient conditions for
the dynamic feedback control of non linear plants to converge when subject to network
constraints, using an event–triggered strategy.

3.2.1 Problem formulation and definitions

Consider the system
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
(3.3)

where x ∈ Rn is the state, u ∈ Rm is the control, y ∈ Rp is the output. The time
instant t is omitted if there are no ambiguities. The functions f and h are assumed
sufficiently smooth. We also assume the existence of a continuous state-based controller
which renders the origin asymptotically stable.

The control scheme is shown in Fig. 3.1. Due to the communication constraints, there
is no continuous communication either between sensors and observer, or between observer
and actuators. The inputs and the outputs are partitioned into actuator/sensor nodes
u = (uT

1 , · · · , uT
q )

T , y = (yT1 , · · · , yTr )T = (hT
1 (x), · · · , hT

r (x))
T , with u1, · · · , uq, y1, · · · , yr,

not necessarily scalars.
The value yi(tki) = hi(x(tki)), i = 1, · · · , r, is the last sampled value at the ith

sensor node, available for the controller to implement the control, while the value ui(tji),
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i = 1, · · · , q, is applied to the system at the ith actuator node, through a classic zero–
order holder H0. It is worth noting that this means that the different outputs {yi}i=1,··· ,r
and the different inputs {ui}i=1,··· ,q are not sampled synchronously. For this reason, at
time t the latest output available is

ȳ(t) =
�
yT1 (tk1), y

T
2 (tk2) · · · , yTp (tkp)

�T

while the control is

ū(t) =
�
uT
1 (tj1), u

T
2 (tj2) · · · , uT

q (tjq)
�T

.

Denoting by eu = u− ū and ey = y− ȳ the difference vectors between the continuous and
sampled values, one considers the vector E = (eTu , e

T
y )

T of the error due to the sampling.
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Figure 3.1: Control scheme with sampled output and zero order holder

When the state x of (3.3) is not measurable, classical event triggering policies cannot
be implemented. In the following, we will introduce the triggering policy that will be used
in this case, taking into account the constraints on the communication of outputs and
inputs. A natural assumption is that it is possible to design an observer that converges
asymptotically to x, of the form

˙̂x = fo(x̂, y, u),

where fo : Rn × Rp × Rm → Rn is not smooth, in general. In view of an implementation
via a triggering policy, and since the observer has no continuous access to y(t), one can
use the vector ȳ, so considering the observer

˙̂x = fo(x̂, u, ȳ). (3.4)

A feedback controller based on x̂ given by (3.4) will be used in the following to stabilize
the system (3.3) at the origin. The input applied to the system, due to the communication
channel, is ū = γ̄(x̂), so obtaining the controlled dynamics

ẋ = f(x, γ̄(x̂)).

Eventually, one gets the following closed–loop system

ẋ = f(x, γ̄(x̂))

˙̂x = fo(x̂, γ̄(x̂), ȳ).

The observation error is z =: x− x̂. We assume that the observation error dynamics
can be written in the form

ż := f(x, γ̄(x̂))− fo(x̂, γ̄(x̂), ȳ) = g(z, θ1(eu), θ2(ey), x̂)

where θ1, θ2 give the dependence on the input and the output errors eu, ey, due to the
sampling.

48



3.2.2 Hypothesis on the Dynamics of the State Observer and
of the Observation Error

Since the observer state is available, in the following we consider the observer dynam-
ics, along with the observation error dynamics, allowing us to impose on x̂ a triggering
condition.

˙̂x = fo(x̂, γ̄(x̂), h̄(x̂+ z)) (3.5a)

ż = g(z, θ1(eu), θ2(ey), x̂) (3.5b)

where y = h(x̂+ z) and ȳ = h̄(x̂+ z), or equivalently

Ẋ = G(X,E) (3.6)

where X = (x̂T , zT )T is an extended state vector,E = (eTu , e
T
y )

T is the total error induced
by the triggering policies and G = (fT

o , g
T )T . In the following we consider the following

assumptions.

(A1) There exists an ISS Lyapunov Vc function for (3.5a) such that ∀ x̂, z ∈ Rn, E ∈
Rm+p, ∀ t ≥ 0

αc,1(|x̂|) ≤ Vc(x̂(t)) ≤ αc,2(|x̂|)
∂Vc(x̂)

∂x̂
fo(x̂, γ̄(x̂), h̄(x̂+ z)) ≤ −αc,3(|x̂|) + βc(|(z, E)|)

with αc,1,αc,2,αc,3, βc ∈ K, and βc,α
−1
c,3 Lipschitz;

(A2) There is an ISS Lyapunov Vo function for (3.5b) such that ∀ z ∈ Rn, E ∈ Rm+p,
∀ t ≥ 0

αo,1(|z|) ≤ Vo(z(t)) ≤ αo,2(|z|)
∂Vo(z)

∂z
g(z, θ1(eu), θ2(ey), x̂) ≤ −αo,3(|z|) + βo(|E|)

with αo,1,αo,2,αo,3, βo ∈ K, and βo,α
−1
o,3 Lipschitz;

(A3) fo, h and γ are Lipschitz;

(A4) g is Lipschitz with respect to (z, θ1(eu), θ2(ey)), uniformly in x̂, and θ1, θ2 are Lips-
chitz.

Remark 3.2.1 (A1) ensures the asymptotic convergence to the origin of the observer,
in absence of sampling errors and observation error, and an ISS property with respect to
z, eu, ey.

(A2) ensures the asymptotic convergence to zero of the observation error in absence
of sampling errors, and an ISS property with respect to eu, ey. Those two assumptions
suppose a separation principle between state estimation and control.

Since we are interested in the stabilisation of the observer state x̂ and of the observa-
tion error z, in the following we will assume that X(0) �= 0.
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Lemma 3.2.2 Under the Assumptions (A1), (A2), (A3), (A4), the extended system X =
(x̂T , zT )T admits an ISS Lyapunov function V (X) such that ∀X ∈ R2n, ∀E ∈ Rn+p,
∀ t ≥ 0

a1(|X|) ≤ V (X) ≤ a2(|X|)
∂V (X)

∂X
G(X,E) ≤ −a3(|X|) + b(|E|)

with a1, a2, a3, b ∈ K, b, a−1
3 , G Lipschitz.

Proof 3.2.3 Let us consider the candidate ISS Lyapunov function

V (X) = λcVc(x̂) + Vo(z).

From (A1), (A2),
a1(|X|) = min

|(x̂,z)|=|X|
λcαc,1(|x̂|) + αo,1(|z|)

≤ λcαc,1(|x̂|) + αo,1(|z|)
a2(|X|) = max

|(x̂T ,zT )|=|X|
λcαc,2(|x̂|) + αo,2(|z|)

≥ λcαc,2(|x̂|) + αo,2(|z|)
with a1, a2 ∈ K. Furthermore,

∂V (X)

∂X
G(X,E) =

�
∂V (X)

∂x̂

∂V (X)

∂z

��
fo
g

�

≤ λc

�
− αc,3(|x̂|) + βc(|(zT , ET )T |)

�

− αo,3(|z|) + βo(|ET |)
≤ −

�
λcαc,3(|x̂|) + αo,3(|z|)− λcLβc |z|

�

+ λcLβc |E|+ βo(|E|),

where we have used the fact that

βc(|(zT , ET )T |) ≤ Lβc |(zT , ET )T | ≤ Lβc |E|+ Lβc |z|.

It is always possible to choose λc sufficiently small such that αo,3(|z|)−λcLβc |z| is a class
K function. Therefore

a3(|X|) = min
|X|

�
λcαc,3(|X|),αo,3(X)− λcLβc |X|

�
.

is a class Kfunction To show that a−1
3 is Lipschitz, note first that since α−1

o,3 is Lipschitz

αo,3(|z|) ≥
1

Lα−1
o,3

|z|.

Moreover, one can compute an upper bound of the derivative of (αo,3(| · |)− λcLβc | · |)−1,
since

d

d|z|(αo,3(|z|)− λcLβc |z|)−1 ≤
Lα−1

o,3

1− λcLα−1
o,3
Lβc
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Hence it is always possible to choose λc sufficiently small such that (αo,3(| · |)−λcLβc | · |)−1

is a class K function with the Lipschitz constant

La−1
3

= max

�
λc

Lαc,3

,
Lα−1

o,3

1− λcLα−1
o,3
Lβc

�
.

Furthermore,
b(|E|) = Lβc |E|+ βo(|E|)

which is Lipschitz with constant Lb = Lβc + Lβo. Finally, thanks to (A3), (A4), G(X,E)
is Lipschitz.

In the following, we are interested in providing sufficient conditions on the stabilisation
of a non linear system using the event trigger paradigm. The key concept will be the
ISS of both the closed–loop system and of the observer dynamics. For, we introduce the
following lemmas.

Lemma 3.2.4 If the observer and the error dynamics verify (A1), (A2), (A3), (A4), then
there exist a σ > 0 such that any sampling policy ensuring |E| ≤ σ|X|, leads to asymptotic
convergence of the overall system to the origin.

Proof 3.2.5 From Lemma 3.2.2, the existence of an ISS Lyapunov function V is ensured.

Since a−1
3 and b are Lipschitz, a3(|X|) ≥ 1

La−1
3

|X| and

−a3(|X|) + b(σ|X|) ≤ −
�

1

La−1
3

− Lbσ

�
|X|.

Therefore for all σ ∈
�
0,

1

La−1
3
Lb

�
the system (3.5) converges asymptotically to the origin.

Remark 3.2.6 Under the hypothesis that a2, a
−1
1 are Lipschitz, one can prove exponential

convergence of (3.5). In fact, since

1

La−1
1

|X| < a1(|X|) < V (|X|),

one has that

V̇ (|X|) ≤ −
�

1

La−1
3

− Lbσ

�
|X|.

Therefore,

V̇ (|X|) ≤ −
�

1

La−1
3

− Lbσ

�
La−1

1
V (|X|).
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Remark 3.2.7 The choice σ ∈
�
0,

1

La−1
3
Lb

�
represents a trade–off between the sampling

rate and the convergence rate.

Since |E| < σ|X|, using the norm equivalence in Rn there exists a σ� > 0 such that
�E� < σ��X� implies |E| < σ|X|.

Lemma 3.2.8 For every κi > 0 there is a minimal time τmin > 0 such that if |E| ≤ σ|X|,
then ∀ tk, ∀ t ∈ [tk, tk + τmin) the following inequalities are verified

�γi(x̂(t))− γi(x̂(tk))� ≤ κi�X�
�hj(x̂(t) + z(t))− hj(x̂(tk) + z(tk)� ≤ κj�X�.

Proof 3.2.9 In the following we assume X �= 0. The argument follows the proof of
Theorem 1 in [95]. Denoting eui

= γi(x̂(t))− γi(x̂(tk)), one works out

d

dt

�eui
�

�X� =
eTui

ėui

�eui
��X� − XT Ẋ�ei�

�X�3

≤ �eui
��ėui

�
�eui

��X� +
�Ẋ��ei�
�X�2 .

Since �ėui
� ≤ Lγi� ˙̂x� ≤ Lγi�Ẋ�,

d

dt

�eui
�

�X� ≤ �Ẋ�
�X�

�
Lγi +

�ei�
�X�

�
.

Moreover, G is Lipschitz, so that

d

dt

�eui
�

�X� ≤ LG(�X�+ �E�)
�X�

�
Lγi +

�ei�
�X�

�

Since �E� < σ��X�,
d

dt

�eui
�

�X� ≤ LG(1 + σ�)

�
Lγi +

�ei�
�X�

�
.

At each reset time one has eui
= 0. Using the comparison lemma with the differential

equation
ẏ = LG(1 + σ�)

�
Lγi + y

�
, y(0) = 0

one has
�eui

(t)�
�X(t)� ≤

�
eLG(1+σ�(t−tk) − 1

�
Lγi .

Therefore the inequality
�γi(x̂(t))− γi(x̂(tk))� > κi�X�

can not be true before time

τ imin =
1

LG(1 + σ�)
ln
�
1 +

κi

Lγi

�
.
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Analogously, the inequality

�hj(x̂(t) + z(t))− hj(x̂(tk) + z(tk)� > κj�X�
gives for the sensors

τ jmin =
1

LG(1 + σ�)
ln
�
1 +

κj

Lhi

�
.

Let us define the triggering function at each node

tik+1 = min
t
{t ≥ tik + τ imin, | �ui(t)− ui(t

i
k)� > κi�X�} (3.7)

tjk+1 = min
t
{t ≥ tjk + τ jmin, | �yj(t)− yj(t

i
k)� > κj�X�}. (3.8)

Remark 3.2.10 From Lemma 3.2.8, tik+1 = mint{t ≥ tik + τ imin, | �ui(t) − ui(t
i
k)� >

κi�X�} = tik+1 = mint{t ≥ tik, | �ui(t)− ui(t
i
k)� > κi�X�}.

Lemma 3.2.11 If
�

{1,··· ,r}∪{1,··· ,q} κi ≤ σ� then (3.7) and (3.8) ensure �E� ≤ σ�X�.

Proof 3.2.12 from (3.7) and (3.8)

�E� ≤
�

{1,··· ,r}∪{1,··· ,q}
κi�X� ≤ σ��X�.

The proposed triggering conditions allow asymptotic convergence with a nonzero min-
imum inter–event time. Unfortunately, they are not implementable on a network for two
reasons. The first is that X is not available, since the observation error is not known.
The second is that sensors do not communicate among them nor receive information from
the observer–based controller. Nevertheless, considering the following modified triggering
conditions

tik+1 = min
t
{t ≥ tik + τ imin, | �ui(t)− ui(t

i
k)� >

κi

Lγi

�γi(x̂)�} (3.9)

tjk+1 = min
t
{t ≥ tjk + τ jmin, | �yj(t)− yj(t

i
k)� >

κj

2Lh

�yj�} (3.10)

this approach can be used on a network, allowing asymptotic convergence and a nonzero
minimal inter–event time, using only information available at each node.

Theorem 3.2.13 If (A1), (A2), (A3), (A4) are verified, and the sampling instants are de-
fined by (3.9), (3.10), then the origin of the closed–loop system (3.5) is asymptotically
stable and there exists a nonzero minimum inter–event time for each node.

Proof 3.2.14 Under the hypotheses of the theorem, Lemma 3.2.2 holds. Since
�yj�
2Lh

<

�X� and
�ui�
Lγi

< �X� and ∀i ∈ {1, · · · , r} from Lemma 3.2.8 one can state that between

tki and tki+τ imin, �ui(t)−ui(t
i
k)� > κi�X�, while ∀j ∈ {1, · · · , q} between tkj and tkj+τ jmin,

one has �yj(t)− yj(tkj)� > κj�X�.
Therefore, �E� < σ��X�. Using Lemma 3.2.4, there is asymptotic convergence

of (3.5) to the origin.
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3.2.3 Examples of Systems Fitting into the Proposed Frame-
work

The proposed results are quit generic in the sense that they give necessary conditions
in term of input to state stability for non linear systems that allow an event triggered
sampling policy. In the next sections we will give example of system verifying assumptions
(A1), (A2), (A3), (A4).

Linear Systems

Let us consider a detectable and stabilizable linear system

ẋ = Ax+ Bu

y = x
(3.11)

with
˙̂x = Ax̂+ Bu+ LC(x̄− x̂) (3.12)

a Luenberger observer where Cx̄ = ȳ(t) =
�
yT1 (tk1), y

T
2 (tk2) · · · , yTp (tkp)

�T

, with control

K ¯̂x, with triggering conditions (3.7) (3.8) one gets

˙̂x = (A+ BK)x̂+ BK(¯̂x− x̂) + LCz − LC(x− x̄)

ż = (A− LC)z + LC(x− x̄).

Since A+BK and A− LC are Hurwitz, it is possible to find an ISS Lyapunov function
for the extended system.

Non linear Lipschitz Systems

Let us consider a non linear Lipschitz system

ẋ = Ax+ Bu+ φ(x, u)

y = Cx.
(3.13)

Several results are available for the observer synthesis of non linear Lipschitz systems
when the control and the output are implemented in a continuous fashion. We consider
an observer of the form

˙̂x = Ax+ BK ¯̂x+ φ(x̄, K ¯̂x). (3.14)

Hence, the extended closed–loop system is

˙̂x = Ax̂+ BK ¯̂x+ φ(x̂, K ¯̂x) + LCz (3.15a)

ż = (A− LC)z + φ(x,Kx̂)− φ(x̂, K ¯̂x). (3.15b)

To implement an event–triggered control strategy, we need to consider the following
structural properties.

(H1) �φ(x1, u)− φ(x2, u)� ≤ ρ�x1 − x2� , ∀u ∈ Rp, x1, x2 ∈ Rn;

(H2) �φ(x, u)� ≤ ρ�x�, ∀u ∈ Rp;
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(H3) There exists a gain K such that u = Kx for the system (3.14) and there exist a
quadratic Lyapunov function

Vc(x) = xTPcx, V̇c(x) ≤ −ηcx
Tx (3.16)

with Pc = P T
c > 0, ηc > 0;

(H4) There exists a gain L such that for (3.15b) there exist quadratic Lyapunov function
for the z dynamics

Vo(z) = zTPoz, V̇o(z) ≤ −ηoz
T z (3.17)

with Po = P T
o > 0, ηo > 0.

In (H2), for ρ = 0 we have a linear system, and the existence of Vc, Vo derive from
the stabilizability and the detectability. Moreover, there always exists a ρmax > 0
small enough such that the proposed Lyapunov function exist forall ρ ∈ [0, ρmax]. For
other (more complex) conditions of existence of Vc, Vo verifying (3.16), (3.17), see for
instance [80].

Lemma 3.2.15 If (H1), (H2), (H3), (H4) are verified, then the proposed observer and the
observation error verify (A1), (A2), (A3), (A4) .

Proof 3.2.16 When subject to the trigger conditions, the observer has the following dy-
namics

˙̂x = (A+ BK)x̂+ φ(x̂, K ¯̂x) + BK(¯̂x− x̂) + LCz + LC(z̄ − z).

Let us consider the candidate ISS Lyapunov function 2
√
Vc which verifies

2
�

λmin(Pc)�x̂� ≤ 2
�
Vc(x̂) ≤ 2

�
λmax(Pc)�x̂�

and having derivative

d

dt
2
�
x̂TPcx̂ =

1√
x̂TPcx̂

�
− x̂TQx̂+ 2x̂TPφ(x̂, u)

�

+
1√

x̂TPcx̂
(2x̂TPc

�
BK(x− x̄) + LCz − LC(z − z̄)

�

where Q = −(A+ BK)TP + P (A+ BK). In virtue of (H1), one can write

d

dt
2
�
x̂TPcx̂ ≤ − ηc�x̂�2�

x̂TPcx̂

+
1�

x̂TPcx̂

�
�P��x̂�

�
�BK��(x− x̄)�

+ �LC��z�+ �LC��(z − z̄)�
�
�

≤ −ηc�
λmax(Pc)

�x̂�

+

�
�BK��(x− x̄)�+ �LC��z�+ �LC��(z − z̄)�

�
�
λmin(Pc)
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which verifies assumption (A1). Analogously, using the candidate ISS Lyapunov function
2
√
Vo, one can prove that (A2) holds. Furthermore, it is trivial to show that (H1), (H2)

imply (A3), (A4).

Therefore, applying Lemma 3.2.2 to the system (3.13), and using Theorem 3.2.13,
on the event–triggered observer–based controller ensures asymptotic convergence to the
origin.

Corollary 3.2.17 If (H1), (H2), (H3), (H4) are verified, the event–triggered control pol-
icy (3.9), (3.10) and the control u = K ¯̂x ensure the asymptotic stability of the closed–loop
system (3.15).

Remark 3.2.18 This corollary of Theorem 3.2.13 uses assumption that are easier to
verify in the specific context of Lipschitz systems ([80]). Therefore as a practical con-
tribution it is more useful than Theorem 3.2.13 This class of systems will be tested in
simulation.

Proof 3.2.19 Lemma 3.2.15 ensures that (A1), (A2), (A3), (A4) are verified. Then one
applies Theorem 3.2.13 to the system (3.15).

3.2.4 Simulations and comments

The proposed methodology will be applied to a robot with a flexible link, used as a
benchmark example in several papers dealing with Lipschitz observers (see for instance
[86], [4], [80]). The dynamics are in the form (3.13), with

ẋ = Ax+ φ(x, u) + BK ¯̂x

˙̂x = Ax̂+ φ(x̂, u) + BK ¯̂x+ LCz̄

y = Cx

where

A =




0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −19.5 0


 , B =

�
0 21.6 0 0

�T

C =

�
1 0 0 0

0 1 0 0

�
, φ =

�
0 0 0 3.3 sin x3

�T

.

One considers the control u = K ¯̂x, with

K =
�
7.8428 1.1212 −4.3666 1.1243

�

and the observer (3.14), with

L =




9.3334 1.0001
−48.7804 22.3665
−0.0524 3.3194
19.4066 −0.3167


 .
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The closed–loop equations are in the form (3.15). The simulations have been performed
considering the initial states

x(0) =
�
1 1 1 1

�T

, x̂(0) =
�
0 0 0 0

�T

.

The theoretical values obtained on the triggering policy can be used but are too restrictive,
due to the over–approximation on the convergence rate of the non linear observer and
on the triggering parameter estimations. Via simulations it is possible to better tune
the triggering parameters. It is worth noting that there is an order of magnitude of 100
between the theoretical value and the practical ones. We compared the result of a system
controlled using triggering policy

tki+1 = min
t
{t ≥ tki + 0.01, | �ui(t)− ui(tki)� > 0.2�ui(t)�}

tkj+1 = min
t
{t ≥ tkj + 0.01, | �yj(t)− yj(tkj)� > 0.2�yj(t)�}

with the case in which tki+1 = tki + 0.05. The simulations show that for t ∈ [0, 2] second
the system and observer are closed to the equilibrium, while at t = 2 s an impulse drives
the system away from equilibrium. Then, for t ∈ [2, 15] s, the system is stabilized at the
origin by the proposed observer–based controller.
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Figure 3.2: System and observer state with the event–triggering: a) x1, x̂1 ; b) x2, x̂2; c)
x3, x̂3; d) x4, x̂4; e) �x�; f) u.

Figs. 3.2 and 3.3 show the convergence of the observer and the stabilization at the
origin of the overall system. We can note that the event triggering is relatively slower with
respect to the periodic sampling, but introduces a lower peaking. When confronting the
number of triggers in Fig.s 3.4.a, 3.4.b, it is clear that the number of communications is
greater when considering the periodic sampling, so justifying the interest of the proposed
event–triggering scheme. It is worth noting that the advantage of the method appears
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Figure 3.3: System and observer state with periodic sampling: a) x1, x̂1 ; b) x2, x̂2; c)
x3, x̂3; d) x4, x̂4; e) �x�; f) u.
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Figure 3.4: Number of triggers with the a) Proposed event triggered policy; b) Periodic
sampling. u1 (solid), y1 (dashed), y2 (dotted).

more clearly for output communications. As already noted, this is due to the fact that
the observation and the control communications are done only when it is necessary. The
comparison of Figs. 3.4.a and
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3.2.5 Conclusions

In this first part we presented necessary conditions for networked non linear system to be
observed and stabilised using event triggering sampling mechanism. The result proposed
are based on input to state stability properties of the observation error and the observer
dynamic. We discussed the generality of our result by giving example of class of system
encompassed by our theorem. We illustrated our result on simulation of a flexible link.

The proposed observation and control scheme require the control of the system to
achieve observation. In the next section and following the spirit of chapter one, we design
an impulsive observer along with an adapted triggering policy to ensure observation of
a system in absence of a stabilising control action. A major difference to our previous
result we adopt for the next section the ”periodic” event trigger paradigm.

3.3 Asynchronous Event–Triggered Observation and

Control of Non Linear Lipschitz Systems via Im-

pulsive Observers

Revoir la redaction de ce paragraphe In the previous chapter we defined an impulsive
observer for linear systems , we also gave necessary condition in terms of input to state
stability for a non linear systems to be observed and controlled in an event triggered
manner next we will introduce an impulsive observer for Lipschitz non linear system
with a periodic event triggering scheme. In the following both the sensors and actuators
sample periodically, not necessarily at the same period and decide whether or not to send
the information based on an event triggered sampling policy.

The proposed methodology aims at practically observe a non linear system using
event triggered sampling policy at the level of the sensors in order to reduce the amount
of communication between sensor and plant. And to subsequently use an observer based
control scheme to stabilize the plant, under communication constraints. The proposed
observer does not require stabilisation of the plant in order to converge and the size of
the attractive set around the real state is not dependant on the actual state. The fact
that the observer does not require the system to be stable reminds the definition of the
separation principle made in section (Impulsive observer).

The novelty of this section resides in the extension of the event trigger paradigm to
some class of non linear systems. Results of periodic sampling are used to generate an pe-
riodic event triggered sampling policy, furthermore we show in this work that an observer
based stabilizing control policy can be implemented using event triggered sampling at
the level of both the observer and of the actuators. The communication does not need to
be synchronous, the fact that observation can be performed independently of observation
ensures a separation principle.

3.4 Problem Statement

The class of systems under study is characterized by the following equation

ẋ = Ax+ Bu+Dφ(Hx)

y = Cx
(3.18)
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with x ∈ Dx ⊆ Rn the state, u ∈ Du ⊆ Rm the input, y ∈ Dy ⊆ Rq the output, and Dx,
Du, Dy the domains. Moreover, A ∈ Rn×n, B ∈ Rm×n, C ∈ Rq×n, D ∈ Rn×ν , H ∈ Rp×n

are constant matrices. In (3.18), Dφ(Hx) gives the structure of the nonlinearity acting
on the system, with φ : Rp → Rν a nonlinear function satisfying the following condition

��φ(χ1)− φ(χ2)
�� ≤ γ�χ1 − χ2�, ∀(χ1,χ2) ∈ Dχ ×Dχ (3.19)

with Dχ = {χ : χ = Hx | x ∈ Dx}, for some γ > 0. It is clear that (3.19) implies
that (3.18) is Lipschitz with respect to x.

In what follows we will state global result, so that Dx = Rn, Du = Rm, Dy = Rq. The
pair (A,B) is assumed controllable, while the pair (A,C) is assumed observable. Note
that milder results could be easily expressed in terms of stabilizability and detectability.

Both sensors and actuator are sampled periodically, not necessarily synchronously,
but the transmission instants are a subset of these sampling instants. More precisely,
while Ss = {tk = kδ}k∈N is the periodic sampling sequence for the sensor, with δ =
tk+1 − tk > 0 the sensor sampling period, the sensor transmission sequence is {ts�}�∈N ⊆
Ss. Analogously, while the actuator sampling sequence is Sa = {tj = jτ}j∈N, with
τ = tj+1 − tj > 0 the actuator sampling period, the sensor transmission sequence is
{tan}n∈N ⊂ Sa. The situation is depicted in Fig. 3.5. The data communications between
the plant and the controller, assumed instantaneous, take place only at the discrete time
instants ts� (from the system to the controller) and tan (from the controller to the system).
The value u(tan) is applied to the system, through a classic zero-order holder.

������

���������������
����������

��

����

�����

����

�����

Figure 3.5: Sampling and transmission time instants for sensor and controller.

3.5 An Event–Triggered State Feedback Controller

In this section we first introduce a controller, assuming piecewise constant values over
the actuator sampling period. This controller ensures the exponential stabilization of the
system to the origin, under the assumption of full state information and further sufficient
conditions expressed in terms of sampling period. Then, we prove the robustness of this
controller with respect to bounded perturbations, and finally we establish a practical
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stability result, showing that the event–triggered transmission mechanisms of both the
sampled output and the calculated input can be be considered as bounded perturbations.

We assume that the system state is available for feedback, and we consider the con-
troller

u = Kx(jτ), ∀t ∈ [jτ, (j + 1)τ) (3.20)

piecewise constant over the actuator sampling period τ > 0.

Theorem 3.5.1 Let us consider the system (3.18), with (A,B) controllable, φ satis-
fying (3.19), and a matrix K such that A + BK is Hurwitz. If there exist a matrix
Pc = P T

c > 0, an εc > 0, and a sampling period τ such that

M =

�
(A+ BK)TPc + Pc(A+ BK) + εcPc + γ2HTH PcD

DTPc −I

�
≤ 0

τ < τmax =
1

max{�A+ BK�+ γ�D��H�, �BK�}
1

1 + 2
�BK�
εc

λPc
max

λPc
min

(3.21)

then the feedback system (3.18), (3.20) is exponentially stable to the origin.

Proof 3.5.2 The dynamics of the feedback system (3.18), (3.20) can be written

ẋ = (A+ BK)x+Dφ(Hx) + BKd1

where d1 = x(t)− x(tj), tj = jτ , j ∈ N. Note that, tanks to (3.19),

�ẋ� ≤ �(A+BK)x+Dφ(Hx)�+�BKd1� ≤ �A+BK�γ�D��H��x�+�BK��d1� ≤ L(�x�+�d1�)

with L = max{�A + BK� + γ�D��H�, �BK�} Hence, considering V (x) = xTPcx as
Lyapunov candidate, one gets

V̇ (x) = xT
�
(A+ BK)TPc + Pc(A+ BK)

�
x+ 2φTDTPcx+ 2xTPcBKd1

≤ −εcV (x)− xTS2x+ 2xTPcBKd1

Since

2φTDTPcx ≤ φTφ+ xTPcDDTPcx ≤ γ2xTHTHx+ xTPcDDTPcx

we have S2 = (A+BK)TPc +Pc(A+BK) + εcPc + γ2HTH +PcDDTPc is the Schur
complement of the element (2,2) of the matrix −M of (3.21). Since −M ≥ 0 and I > 0,
then S2 ≥ 0

V̇ (x) ≤ −εcV (x) + 2xTPcBKd1

now, considering a θ ∈ (0, 1),

V̇ (x) ≤ −εc(1− θ)V (x) + 2�x�λPc
max�BK��d1� − εcθV (x)

≤ −εc(1− θ)V (x) + �x�
�
2λPc

max�BK��d1� − εcθλ
Pc
min�x�

�
≤ −εc(1− θ)V (x)

61



for

� =
�d1�
�x� ≤ �max =

θλPc
min

2�BK�λPc
max

εc.

Following [95], let us determine a bound for the minimal time for �, starting from zero,
to reach the value �max. ḋ1 = ẋ

�̇ =

�x� d
T
1 ẋ

�d1�
− �d1�

xT ẋ

�x�
�x�2 ≤ 1 + �

�x� �ẋ� ≤ L(1 + �)2

with �(tj) = 0, for all j ∈ N, since d1(tj) = 0. Using the comparison lemma [64], and
considering �̇a = L(1 + �a)

2, with �a(tj) = 0, j ∈ N, one obtains

�(t) ≤ �a(t) =
1

1− L(t− tj)
− 1.

Therefore, the bound for the minimal time is obtained imposing

�a(t) =
1

1− L(t− tj)
− 1 =

θλPc
min

2�BK�λPc
max

εc <
λPc
min

2�BK�λPc
max

εc

obtaining the time instant t = tj + τmax. Since the sampling period is chosen such that
τ < τmax, then V̇ (x) ≤ −εc(1 − θ)V (x) and (3.18), (3.20) is exponentially stable to the
origin.

When the controller (3.20) is implemented via an event–triggered mechanism, one
obtains an event–triggered controller

u = Kx(tan) (3.22)

where the triggering mechanism is given by

tan+1 = min
j

�
jδ ≥ tan | �u(jδ)− u(tan)� ≥ εa

�
. (3.23)

Treating the event–triggering mechanism as a perturbation, and using the fact that,
as well–known, a system exponentially stable at the origin has the property of robustness
with respect to bonded perturbations, which can be interpreted in term of input–to–state
stability [64], one can show the practical stability of (3.18), and (3.22) with (3.23). This
result can be considered as the first step towards the statement of a separation principle for
the class of nonlinear system considered, namely of the possibility of designing controller
and state observer independently.

Theorem 3.5.3 Let us consider the system (3.18), with (A,B) controllable, φ satis-
fying (3.19), and a matrix K such that A + BK is Hurwitz. If there exist a matrix
Pc = P T

c > 0, an εc > 0, and a sampling time τ such that (3.21) are verified, the feedback
system (3.18), (3.23) with the event–triggering condition (3.23) is practically exponen-
tially stable, with attractive set

Iεa =
�
�x� ≤ ρa

�
, ρa = 2

�
λPc
max

λPc
min

�3/2
�B�

(1− θ)θ1

εa
εc

where θ, θ1 ∈ (0, 1).
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Proof 3.5.4 Using the control (3.23) one obtains the following feedback system dynamics

ẋ = Ax+ BKx(tan) +Dφ(Hx) = Ax+ BKx(jδ) + BK
�
x(tan)− x(jδ)

�
+Dφ(Hx).

Considering V (x) = xTPcx as Lyapunov candidate and the event–triggering policy (3.23),
one has

V̇ (x) ≤ −εc(1− θ)V (x) + 2xTPcBK
�
x(tan)− x(jδ)

�

≤ −εc(1− θ)λPc
min�x�2 + 2λPc

max�B��x�εa
≤ −εc(1− θ)(1− θ1)λ

Pc
min�x�2

for �x� ≥ 2
�B�

(1− θ)θ1

λPc
max

λPc
min

εa
εc . This implies that [64]

�x� ≤
�

λPc
max

λPc
min

�x0�e−λt + ρa, λ =
εc(1− θ)(1− θ1)λ

Pc
min

2λPc
max

> 0

so that the attractive set is Iεa.

3.6 An Event–Triggered Impulsive Observer

In order to reconstruct the state vector, in the following an impulsive observer will be
considered, having the following structure

˙̂x = Ax̂+ Bu+Dφ(Hx̂)

x̂(kδ+) = x̂(kδ) + δG
�
y(ts�)− ŷ(kδ)

�
= (I − δGC)x̂(kδ) + δGCx(ts�)

(3.24)

where x̂(kδ+) is the left limit of x̂(t), and G ∈ Rn×q is the observer gain matrix. Note
that the right limit is x̂(kδ−) = x̂(kδ). The observer dynamics correspond to a copy of
the system dynamics between sampling instants kδ, (k + 1)δ, while it undergoes a jump
in the state at the sampling instants.

The impulsive observer (3.24) will be implemented making use of a triggering mech-
anism, determining when the sensor transmits the sampled data to the plant. More
precisely, these data are sent to the plant at the time instants t = ts�, � ∈ N, such that
the following event–triggering condition is satisfied

ts�+1 = min
k

�
kδ > ts� | �y(kδ)− y(ts�)� ≥ εs

�
(3.25)

where εs > 0 is a threshold value on the output error y(kδ)− y(ts�).
Given the system and observer dynamics (3.18), (3.24), one has to consider either the

continuous dynamics of the observation error e(t) = x(t)− x̂(t), given by

ė = Ae+D
�
φ(Hx)− φ(Hx̂)

�
(3.26)

or the error discrete dynamics, due to the impulses on the observer state. These latter
have the expression

e(kδ+) = x(kδ+)− x̂(kδ+) = (I − δGC)e(kδ) + δGC
�
x(kδ)− x(ts�)

�
(3.27)
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since x(kδ+) = x(kδ−) = x(kδ). It is worth noting that, at the triggering instants ts�
in which (3.25) is satisfied and the system output sensor sends the sampled data to the
controller, this expression reduces to

e(ts�
+) = e(kδ+) = (I − δGC)e(kδ) = (I − δGC)e(ts�)

since x(kδ) = x(ts�). In all the other discrete time instants, the term δGC
�
x(kδ)−x(ts�)

�
=

δG
�
y(kδ)− y(ts�)

�
appears, which can be seen as a perturbation induced by the absence

of communications from the sensor.
As stated by the following result, the event triggering condition (3.25) along with an

appropriate choice of the observer gain ensure the exponential practical stability of the
observation error [65]. It is worth noting that this is true also when the system dynam-
ics (3.18) are not stable. This result represents the second step towards the separation
principle for the class of non linear systems taken into account.

Theorem 3.6.1 Let us consider the system (3.18), with (A,C) observable and φ satis-
fying (3.19). If, for a fixed sampling time δ > 0, the following LMIs

N1 =

�
P1A+ ATP1 + γ2HTH +

P2 − P1

δ
P1D

P1D −I

�
≤ −εI (3.28a)

N2 =

�
P2A+ ATP2 + γ2HTH +

P2 − P1

δ
P2D

P2D −I

�
≤ −εI (3.28b)

N3 =

� −P2 P1 − δP3C

(P1 − δP3C)T −P1

�
≤ 0 (3.28c)

have solutions P1, P2, P3, with Pi = P T
i > 0, i = 1, 2, for an ε > 0, then the ob-

server (3.24), with the event–triggering condition (3.25), and the gain G = P−1
1 P3, en-

sures that the origin of error dynamics (3.26), (3.27) is globally practically exponentially
stable, with attractive set

Iεs =
�
�e� ≤ ρs

�
, ρs =

�
λmax

λmin

δ�G�
1− e−δε̄/2

εs (3.29)

where ε̄ = ε/λmax, and λmin = min
�
λP1
min,λ

P2
min

�
, λmax = max

�
λP1
max,λ

P2
max

�
.

Proof 3.6.2 The error dynamics can be rewritten as follows

ė = Ae+Dd2

e(kδ+) = (I − δGC)e(kδ) + δGCd3
(3.30)

with d2 = φ(Hx) − φ(Hx̂) and d3 = x(kδ) − x(ts�). Following, [84], let us consider
the Lyapunov candidate Vo = �e�2P (t), where P (t) is a time–varying matrix given by the
convex combination of the matrices P1, P2

P (t) = P1 +
t− kδ

δ
(P2 − P1) = λP1 + (1− λ)P2, λ =

(k + 1)δ − t

δ
∈ [0, 1)
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defined for t ∈ (kδ, (k+1)δ]. Note that P (kδ+) = P1 and P ((k+1)δ) = P2. As explained
in Remark 3.6.6, one considers P (t) since ...... Considering that P (t) is periodic with
period δ, its definition can be extended for all t ≥ 0. Note that λmin�e�2 ≤ Vo ≤ λmax�e�2.
Using (3.30), one works out

V̇o = eT
�
PA+ ATP +

P2 − P1

δ

�
e+ eTPDd2 + dT2D

TPe+ dT2 d2 − dT2 d2

where Ṗ = (P2 − P1)/δ has been taken into account. Using (3.19), �d2�2 ≤ γ2eTHTHe
and the definition of P (t), one gets

V̇o ≤ eT
�
PA+ ATP +

P2 − P1

δ
+ γ2HTH

�
e+ eTPDd2 + dT2D

TPe− dT2 d2

= ξTN1ξ +
t− kδ

δ
ξT N̄ξ =

(k + 1)δ − t

δ
ξTN1ξ +

t− kδ

δ
ξTN2ξ

for t ∈ (kδ, (k+1)δ], where ξ =
�
eT dT2

�T
and N̄ = (N2 −N1)/δ. Hence, using (3.28a),

(3.28b), one finally obtains

V̇o ≤ −ε
(k + 1)δ − t

δ
�ξ�2 − ε

t− kδ

δ
�ξ�2 = −ε�ξ�2 ≤ −ε�e�2 ≤ −ε̄Vo

i.e. V̇o is bounded by a negative definite function for all t ∈ (kδ, (k + 1)δ]. Therefore,

Vo(t) = e−ε̄(t−t0)Vo(t0), ∀ t0, t ∈ (kδ, (k + 1)δ], t0 ≤ t (3.31)

and, in particular,

Vo

�
(k + 1)δ

�
≤ e−δε̄Vo(kδ

+). (3.32)

Note also that in the intersampling

�e(t)� = e−ε̄(t−t0)/2

�
λmax

λmin

�e(t0)�, ∀ t0, t ∈ (kδ, (k + 1)δ], t0 ≤ t. (3.33)

Let us now analyze the stability of the discrete error dynamics, i.e. the error dynamics
in the discontinuity, considering the same Lyapunov candidate Vo(t) = �e(t)�2P (t) and

recalling that P (kδ+) = P1 and P (kδ) = P ((k+1)δ) = P2, as already noted. Using (3.30),
one gets

ΔVo = Vo(kδ
+)− Vo(kδ)

=
�
(I − δGC)e(kδ) + δGCd3

�T

P1

�
(I − δGC)e(kδ) + δGCd3

�
− eT (kδ)P2e(kδ)

= −eT (kδ)S2e(kδ) + 2δζT (P1 − δP3C)e(kδ) + δ2ζTP1ζ

with G = P−1
1 P3, ζ = GCd3 = G

�
y(kδ)− y(ts�)

�
, and S2 = P2 − (P1 − δP3C)TP−1

1 (P1 −
δP3C) the Schur complement of the element (2,2) of the matrix −N3. It is well–known
that for Hermitian matrices, −N3 ≥ 0 is equivalent to P2 > 0 and S2 ≥ 0 . Hence, since
−N3 ≥ 0 and P2 > 0, then S2 ≥ 0. Therefore,

−eT (kδ)S2e(kδ) ≤ 0.
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Furthermore, note that

eT (kδ)(I − δGC)TP1(I − δGC)e(kδ) = eT (kδ)(P1 − δP3C)TP−1
1 (P1 − δP3C)e(kδ)

= eT (kδ)(P2 − S2)e(kδ) ≤ eT (kδ)P2e(kδ) = Vo(kδ)

This last observation allows writing

ζT (P1 − δP3C)e(kδ) = ζTP1(I − δGC)e(kδ) ≤
�

ζTP1ζ
�
eT (kδ)(I − δGC)TP1(I − δGC)e(kδ)

≤
�

λP1
max�ζ�

�
Vo(kδ) ≤

�
λmax�G�εs

�
Vo(kδ)

where (3.25) has been used. Finally,

ζTP1ζ = �G
�
y(kδ)− y(ts�)

�
�2P1

≤ λP1
max�G�2ε2s ≤ λmax�G�2ε2s.

Therefore,

Vo(kδ
+) ≤ Vo(kδ) + 2δ

�
λmax�G�εs

�
Vo(kδ) + δ2λmax�G�2ε2s =

��
Vo(kδ) + c

�2

≤
�
a
�

Vo((k − 1)δ+) + c
�2

a = e−δε̄/2, c =
√
λmax δ�G�εs, where (3.32) has been used, so that

�
Vo(kδ+) ≤ a

�
Vo((k − 1)δ+) + c.

This linear discrete–time dynamics is exponentially stable to the origin since the dynamic
matrix is Schur. Moreover, its solution is given by

�
Vo(kδ+) ≤ a

�
Vo(0+) + c

k−1�

j=0

ak−j−1 (3.34)

and for k → ∞

lim
k→∞

�
λmin�e(kδ+)� ≤ lim

k→∞

�
Vo(kδ+) ≤

c

1− a
=

c

1− e−δε̄/2
=
�
λmax

δ�G�
1− e−δε̄/2

εs

where the series sum exists since a < 1. Hence, lim
k→∞

�e(kδ+)� ≤ ρs. Considering

that (3.33) ensures that �e(t)� decreases exponentially between kδ+ and (k + 1)δ, one
can conclude that the error dynamics (3.26), (3.27) converges exponentially to the attrac-
tive set Iεs. The convergence is global since all the passages do not depend on the initial
state.

Remark 3.6.3 One can also interpret the result of Theorem 3.6.1 as an input–to–state
stability property of the observer with respect to a bounded perturbation, due to the event–
triggered transmission mechanism.

The convergence ensured by Theorem 3.6.1 to Iεs is asymptotic. If one requires a
finite–time convergence one needs to enlarge Iεs . This is stated in the following result.
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Corollary 3.6.4 Let us consider the system (3.18), with (A,C) observable and φ sat-
isfying (3.19). Under the same hypotheses and notations of Theorem 3.6.1, the ob-
server (3.24), with the event–triggering condition (3.25), and the gain G = P−1

1 P3, en-
sures that the origin of error dynamics (3.26), (3.27) globally practically converge to the
set

Iεb =
�
�e� ≤ (1 + εb)ρs

�

ρs given by (3.29), in a time

T ≤ T�,εb =
2

ε̄
ln

d− (1 + d)e−δε̄/2

εb
, d =

1

δ�G�εs
�

for any fixed εb, � > 0, and for any observer initial condition such that �e(0)� ≤ �.

Proof 3.6.5 Since
Vo(0) = �e(0)�2P2

≤ λP2
max �

2 ≤ λmax �
2

one has �
Vo(0+) ≤

�
Vo(0) + c ≤

�
λmax �+ c

and, from (3.34),

�
λmin�e(kδ+)� ≤

�
Vo(kδ+) ≤ a

�
Vo(0+) + c

k−1�

i=0

ai ≤ ak
��

λmax �+ c
�
+ c

1− ak

1− a

a = e−δε̄/2, c =
√
λmax δ�G�εs. Dividing by

√
λmin and imposing

�e(kδ+)� ≤ ak

��
λmax

λmin

�+
c�
λmin

�
+ (1− ak)ρs = (1 + εb)ρs,

c�
λmin

1

1− a
= ρs

one gets the bound of kδ for the time T in which the error trajectory enters Iεb.

Remark 3.6.6 It is interesting to note the use of a periodic time varying Lyapunov
function combination of quadratic Lyapunov function such a choice is technical. An
interesting question would be to know whether or not it is possible to find a quadratic
Lyapunov function as a simple condition to solve this problem. As a contribution to this
question we want to breafly discuss the result on theorem 1 of [84].

3.6.1 Problem arising when considering discrete and continuous
dynamics independently

The paradigm used for the event trigger observation is based on previous results on
impulsive observer. However we want to demonstrate that some results cannot be used
even in a periodic paradigm namely the theorem One of [84] (even in the linear case)

Considering
ẋ = Ax

y = Cx
(3.35)

˙̂x = Ax̂+GC(x− x̂)

x̂(kδ+) = x̂(kδ) + δKC(x(ts�)− x̂(kδ))
(3.36)
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according to [84] if there exist P > 0 symmetric ,τ > 0,�1, �2 > 0, �3 > 0 such that

P (A−GC) + (A−GC)TP − �1 ≤ 0

(I −KC)TP (I −KC)− �2P ≤ 0

�1τ + ln�2 + �3 ≤ 0

(3.37)

Then the observation error converge exponentially to zero. This theorem is true however it
successfully apply to very restricted classes of systems. Considering the second inequality
(I −KC)TP (I −KC)− �2 ≤ 0

and 0 ≤ �2 ≤ 1 is equivalent to find a gain K such that the discrete time system
z̃k+1 = z̃k − KCz̃k is exponentially stable. the pole placement is possible if the system
zk+1 = zk, yk = Czk is observable (or detectable) , in this case that means rank(C) = n
i.e. The entire system is measured. If rank(C) ≤ n it is not possible to render the discrete
time observation error stable and P does not exist. If �2 ≥ 1 the LMI can be solver. but
it implies that the impulsive part of the observer cannot ensure any improvement over
purely continuous observation.

From the previous argument and assuming G = 0 (i.e. purely impulsive observation)
then if rank(C) ≤ n then the LMI is never feasible. If rankC = n a trivial observer can
be designed (i.e. x̂(t+k ) = C−1y(tk) which trivially converge after one impulse).

The question of the existence of a Quadratic common Lyapunov function allowing the
computation of matrix gain for Liepschitz non linear system is not negatively answered
by the limitation of this theorem. However implicitly in its methodology a separation
has been made between continuous dynamics and impulse at the level of the observer.
If such a separation is made in the analysis then it is not possible to have an observer
using only smpled measurement by solving LMI (3.37) and one need to take into account
the interplay of continuous and discrete dynamics. If want to compute the flow between
sampling it is possible to find a quadratic (common) Lyapunov function as it has been
proposed in [9] but other computational difficulties arise.

3.7 An Event–Triggered Observer–Based Controller

In this section we study the conditions under which the event–triggered observer (3.24)
and the event–triggered controller (3.22), with the triggering mechanisms (3.25), (3.23),
can ensure practical exponential stability to the origin of the closed–loop system (3.18),
(3.24), (3.22). This is the last step towards the statement of a separation principle for
the class of non linear system under study.

Theorem 3.7.1 Let us consider the system (3.18), with (A,B) controllable, (A,C) ob-
servable, φ satisfying (3.19), and a matrix K such that A + BK is Hurwitz. Under the
following conditions

1. There exist a matrix Pc = P T
c > 0, an εc > 0, and a sampling time τ such that (3.21)

are verified;

2. For a fixed sampling time δ > 0, the LMIs (3.28) have solutions P1, P2, P3, with
Pi = P T

i > 0, i = 1, 2, for an ε > 0;
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then the feedback system (3.18), (3.24), with

u = Kx̂(tan) (3.38)

and with the triggering conditions (3.23), (3.25), is practically exponentially stable, with
attractive set

Iεd =
�
�x� ≤ ρd

�
, ρd =

2

(1− θ)θ1

�
λPc
max

λPc
min

�3/2
εd
εc
, εd = �BK�(1+εb)ρs+�B�εa (3.39)

where ρs is given by (3.29), for θ, θ1 ∈ (0, 1), and for any fixed εb, � > 0, and for any
observer initial condition such that �e(0)� ≤ �.

Proof 3.7.2 Using (3.38) in (3.18) one has

ẋ = Ax+ BKx̂(tan) +Dφ(Hx) = Ax+ BKx(jδ) +Dφ(Hx) + BKd4

where
d4 = x̂(tan)− x(jδ) =

�
x̂(jδ)− x(jδ)

�
+
�
x̂(tan)− x̂(jδ)

�

can be treated as a perturbation acting on the feedback system. From Corollary 3.6.4, for
any fixed εb, � > 0, and for any observer initial condition such that �e(0)� ≤ �, there
exist a finite time T�,εb such that �e(t)� ≤ (1 + εb)ρs for all t ≥ T�,εb. Hence,

�x̂(jδ)− x(jδ)� ≤ (1 + εb)ρs

while, due to the event–triggering policy
���K

�
x̂(tan)− x̂(jδ)

���� ≤ εa.

Proceeding as in the proof of Theorem 3.5.3, one obtains the dynamics

ẋ = (A+ BK)x+Dφ(Hx) + BK(d1 + d4)

which are practically stable, with practical stability region given by the set Iεd. In fact,
considering as in the proof of Theorem 3.5.3 V (x) = xTPcx as Lyapunov candidate, for
�x� ≥ b one has

V̇ (x) ≤ −εc(1− θ)V (x) + 2xTPcBKd4 ≤ −εc(1− θ)λPc
min�x�2 + 2λPc

max�x�εd
≤ −εc(1− θ)(1− θ1)λ

Pc
min�x�2

for �x� ≥ 2

(1− θ)θ1

λPc
max

λPc
min

εd
εc . This implies that [64]

�x� ≤
�

λPc
max

λPc
min

�x0�e−λt + ρd, λ =
εc(1− θ)(1− θ1)λ

Pc
min

2λPc
max

> 0

so that the attractive set is Iεd.

The results proposed in this second section can be seen as continuation of the results
exposed at the beginning of the chapter. Indeed we have provided an observer able to
estimate the state of the system that is input to state stable with respect to sampling
error , and used an observer based controller that is also input to state stable with respect
to disturbances. We want to point out a few difference between the two part. First we
are able to state a form of separation principle, that is the event triggered observer can
perform his task in the absence of control action whereas in
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3.7.1 Simulations and comments

Considering
ẋ = Ax+Gφ(Hx) + BKx̂(tcn)

˙̂x = Ax̂+Gφ(Hx̂) + BKx̂(tcn)

x̂(δk+) = x̂(δk−) + δLC(x̂(δk−)− x(ts�))

y(δk) = Cx(δk)

where

A =




0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −19.5 0


 , B =

�
0 21.6 0 0

�T

C =

�
1 0 0 0

0 1 0 0

�
, φ =

�
0 0 0 3.3 sin(x3)

�T

.

One considers the control u = K ¯̂x, with

K =
�
7.8428 1.1212 −4.3666 1.1243

�

and the observer gain is

L =




9.3334 1.0001
−48.7804 22.3665
−0.0524 3.3194
19.4066 −0.3167


 .

with δ = .15s �s = 10−7s, h = 8 ∗ 10−6s; �c = 10−4 The following parameter guaranty
that the observation error ||e|| will be smaller than 0.001 after convergence and that ||x||
will be smaller than 0.05

Pc =




0.1592 −0.3627 0.0807 −0.4019
−0.3627 3.7540 0.1179 0.0810
0.0807 0.1179 0.0993 −0.2477
−0.4019 0.0810 −0.2477 1.6406




P1 =




28.6269 −0.3675 −11.6820 1.0816
−0.3675 0.5296 −1.5176 0.0455
−11.6820 −1.5176 18.8721 −1.7201
1.0816 0.0455 −1.7201 0.7153




P2 =




22.9349 −0.5313 −11.6047 1.0195
−0.5313 0.4136 −1.9257 0.0810
−11.6047 −1.9257 20.9671 −1.8715
1.0195 0.0810 −1.8715 0.7393




In figure 3.7.1 the practical stability of the considered system is shown. The parameter
εs, εo where chosen very small, this show that the bound given on the observation and
control error is not thight since the attractive set (of both the observer and the controller)
is smaller than the worst case predicted.
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Figure 3.6: Observation error and state of the system.
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Figure 3.7: Transmission instant of the sensors (left) transmission instant of the actuator

whereas in figure 3.7.1 one see that close to equilibrium the sampling frequency is
substantially reduced for the controller, the sampling frequency for the sensor is always
given by the sampling period, since the sampling period is very large with respect to the
parameter εs.

Since a practical separation principle as been introduce one can consider the system
without control (i.e. u(t) = 0).

3.7.2 Conclusion on the impulsive observer for Lipschitz non
linear systems

In this section we presented an impulsive observer coupled with a control aiming at stabil-
ising a Lipschitz non linear system with periodic even triggered sensor and control action.
In the proposed scheme control and observation gain can be computed independently, the
observer converge whether or not the system is stable furthermore the sampling instant of
the controller and of the sensor do not need to be synchronous (or at the same frequency),
thus ensuring a week separation principle . The triggering parameters of both the sensor
and the actuator can be computed in order the ensure an upper bound on the size of the
attractive set of the observer and of the plant.

Simulation results suggest however that the upper bound is not tight, ways to cir-
cumvent this over-approximation should be the object of future research.
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3.8 Conclusion on observation and control for some

classes of non linear systems

In this chapter we presented result on observer synthesis adapted to observation of non
linear plant subject to event triggered sampling. We first gave necessary condition in term
of input to state stability of the observation error in order to be robustly observable then
we gave conditions for a stabilizing controller to asymptotically stabilize a system subject
to output feedback in the presence of communication constraints however the results
holds when a control action stabilize the system. So an impulsive non linear observer was
introduce to solve the observation problem without requirement of stabilization, as for the
linear case when no stabilization controller is introduce, asymptotic stability is switched
for practical stability. Then output feedback is still possible. In the light of the work
presented in this chapter and as for system without communication constraint the linear
systems can be recovered as special instance of non linear systems however a drawback of
considering non linear (i.e. a more general classes of system than linear systems) is that
the tightness of the triggering parameter is worst than the one obtain for linear system. It
is a general features of the work presented in the last two chapter than the bound on the
triggering parameter is not tight. This fact can be understood as a consequences of the
nature observation based event trigger paradigm. Indeed the fundamental motivation of
event triggering sampling is the use of the knowledge of additional information (namely
knowledge of the state) in order to reduce the number of communication. In the case
of observer based event trigger. The state is not known but only a sub part of it, this
in return imply some conservatism with respect to better performance in terms of event
triggered sampling with full state. Therefore while it has been shown that the results and
insights of even trigger with full state information can be extended (at least qualitatively)
to systems with partial measurement of the state, the quantitative effectiveness of the
proposed paradigm require further investigations.
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Chapter 4

Decentralised estimator for consensus

In the previous section we investigated several problems of observation and control when
considering event triggered sampling policy. Such a scheme is relevant to network control
system when aiming at reducing the communication burden a problem naturally arising
in the framework of Cyber-physical systems. In this chapter we will consider a different
kind of networked system: Multi agent system trying to reach consensus. Consensus
for multi agent systems appears in a broad variety of application ranging from robotic
to wireless sensor network and is relevant to many kind of networked and decentralysed
system.

In this chapter we will focus on a particular class of consensus problems for multi
agents systems: the problem of consensus while maintaining range connectivity. A key
underlying assumption of this chapter is that agents are assumed to be able to commu-
nicate with each other. This communication capacity is used to estimate the consensus.
An interesting fact to notice is that communication among agent make the system under
consideration cyber-physical. To make this statement clear We will first recall some clas-
sic result on consensus among multi-agent system and present notion of graph theory, we
will then introduce a new decentralized consensus estimation scheme making use of the
aforementioned ability to communicate and show some tracking policy in order to solve
the problem under consideration.

4.1 Generality on consensus among multi-agent

The problem of consensus where a set of communicating agents needs to reach an agree-
ment (i.e. converging to a given point or a final formation) while not possessing the ability
to communicate to every agent of the set has been studied intensively in the recent past.
An important part of this problem is that none of the agents posses a common global
positioning system or a centralized controller. Therefore the control strategy needs to
take into account this information constraint using a decentralized controller.

The classes of systems under consideration as well as the range of application (infor-
matics robotics , synchronization) has given rise to a considerable amount of result exist
on consensus both in the continuous and discrete cases. [77] provides a general presen-
tation with an extensive bibliography, in [29] a more recent overview is provided on the
subject of consensus.
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A key idea when considering a set of communicating agent with whether fixed or
dynamic communication topologies is the notion of Graph [76]. In the existing literature
both event trigger sampling (see for instance )[91] and observer for consensus [72][103]
are considered.

In the mentioned work on observation for consensus the observation scheme is per-
formed via single agent to reconstruct local informations in our work estimation is done
by information exchange to reconstruct the Average Consensus (AC).

In the following we will introduce necessary concept on Graph theory in order to
formulate our control problem

4.1.1 Graph theoretic notion

The aim of this sub-part is to introduce only the necessary concept of graph theory.
The static communication graph is given by the undirected graph: G(V,E), where V

denotes the set of M agents, E denotes the set of (undirected) edges. (i, j) ∈ E means
agent i and j are able to communicate information. In particular i can send information
to j and j can send information to i. For convenience we assume (i, i) /∈ E and denote
the set of neighbourhood of i is Ni := {j ∈ V |(i, j) ∈ E}.

We now want to introduce some important Graph related matrix.
Δ(G) = diag(|Ni|)i∈V is the degree matrix.

A(G)ij =

�
1 if eij ∈ E
0 if eij /∈ E

is the adjacency matrix.

L(G) = Δ(G)− A(G) is the Laplacian matrix
Furthermore building any orientation on the graph G(V,E) giving rise toG(V,E�) (i.e.
giving an arbitrary direction to any edge in E)

I(G)ij =





1 if eij ∈ E �

−1 if eji ∈ E �

0

The value of I(G) is orientation independent and IT I = L
with Δ(G),A(G),L(G) ∈ RM×M . The Laplacian is positive semi-definite and hence

we consider the ordering of his eigenvalues

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ . . . ≤ λM(L(G)).

We want to recall a classical theorem of spectral graph theory

Theorem 4.1.1 G is connected if and only if λ2(L(G)) > 0

Furthermore from the construction of L one has L(1, . . . , 1)T = 0

4.1.2 Definition and classic results

Considering that each agent is modelled as of simple integrator we have the following:

Ẋi = Ui, i ∈ V,Xi ∈ R (4.1)

|V | is equal to M .
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Definition 4.1.2 ( Consensus of a multi agent system) A control U is said to solve the
Consensus problem if U controlling the process Ẋ = U leads to

∀(i, j) ∈ V × V, lim
t→∞

�Xi(t)−Xj(t)� = 0

By this previous definition it is not required that the agent meet at a special point.
A stronger requirement in terms of consensus would be for the agent to meet at the

barycentre of their initial coordinate. That is the object of the following definition.

Definition 4.1.3 (AC of a multi agent system) A control U is said to solve the AC prob-
lem if U controlling the process Ẋ = U leads to

∀i ∈ V, lim
t→∞

Xi(t) = Xeq

In the following Xeq :=
1

M

�
i∈V Xi(0).

Since we will later consider communication it is interesting to consider the exact
discretization of the previous model

In the next part the constant sampling period will be noted

h := tk+1 − tk, ∀k ∈ N

Ui(t) = Ui(tk), ∀t ∈ [tk, tk+1[

Xk
i = Xi(tk)

X i
k+1 = X i

k + h ∗ U i
k

A classic control to solve the average consensus is

U i
k = �/h

�

j∈Ni

(Xk
j −Xk

i )

where �/h is a control gain

Xk+1
i = Xk

i + �
�

j∈Ni

(Xk
j −Xk

i ) (4.2)

It is clear that
X̂k+1 = PX̂k

where P is the Perron matrix of graph G with parameter �.

Theorem 4.1.4 if G is connected and if 0 < � <
1

maxi∈V |Ni|
and X dynamic’s is given

by (4.2) then X converge exponentially to the AC.

Since G is a connected symmetric graph P is a Perron matrix and since 0 < � <
1

maxi∈V Ni

then

�

i∈V
|X̂k

i − (
1

M

�

i∈V
X̂0

i )| ≤
�

i∈V
|X̂0

i − (
1

M

�

i∈V
X̂0

i )|(1− �λ2(L))k
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by assumption of connectedness of the original graph. Furthermore

�

i∈V
Xk+1

i =
�

i∈V
Xk

i

Therefore (4.2) Solve the AC problem.
However the control policy can lead to an overshoot in the transient leading to increase

of the distance between two neighbouring agents. In the next section we will precisely
define this problem and propose some new solutions to it.

4.2 Average consensus among agent with decentralised

estimators using a waiting time

In the following chapter we want to address the problem of average consensus (AC) while
preserving connectivity for a set of agent i.e. the agents will reach a common point that is
the barycentre of their initial position and the distance between two neighbouring agents
do not at any time cross a given threshold. The problem of connectivity preserving
consensus has been solved using nonlinear decentralized controller at the level of each
agent [34],[94],[59] in the continuous case. And in [6] when considering discrete time.

However for the control strategy proposed in [34],[94],[59][6] the consensus reached is
not the average of the vehicle initial position.

In [44] the problem of average consensus with constrained range connectivity is solved
using model predictive control however the result is valid for scalar agent however the
tools used in this work don’t allow for extension to non scalar agent.

First we introduce an estimation scheme for the AC and a reference tracking allowing
to solve the problem of AC while preserving connectivity when inter agents and control
actualisation are discrete with a guaranteed convergence rate. The second result is an
estimation scheme to solve the formation problem (i.e. each agent reach a desired po-
sition with respect to the average consensus) provided the formation respect the range
connectivity constrain.

The problem of estimators/observers for consensus has been considered for instance
in [28]. Estimators for consensus allow in general to perform a task not possible for a
direct control scheme.

The decentralised estimator use only locally available information and is then used to
solve the problem of average consensus with range connectivity constrain. For simplicity
of notation the case of scalar agent is considered but the methodology is valid for any
finite dimensional single integrator1.

In this estimator based controller the communication enables each vehicle to find the
AC and the controller (and sensors) ensure that connectivity is preserved at all time.
Thus the Multi-agent system shall be seen as a cyber-physical system.

4.2.1 Problem statement and definition

Due to constrain in term of sensor range as well as communication devices another prob-
lem to be considered is the following: Is it possible to achieve consensus when considering

1The choice of dim(Xi) = 1 is motivated only for simplicity of notation. The extension only need to
perform the consensus estimation for each component
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a supplementary constraint on the distance between mobile agent i.e.

∀t ≥ 0, ∀i ∈ V, ∀j ∈ Ni, �Xi(t)−Xj(t)� ≤ Δ

provided
∀i ∈ V, ∀j ∈ Ni�Xi(0)−Xj(0)� ≤ Δ.

This constraint give rise to the following definition.

Definition 4.2.1 (Δ-Connectivity Preserving AC of a multi agent system):
A control U is said to solve the AC problem if U controlling the process Ẋ = U leads to

∀i ∈ V, lim
t→∞

Xi(t) = Xeq

and
∀t ≥ 0, ∀(i, j) ∈ E, �Xi(t)−Xj(t)� ≤ Δ

provided �Xi(0)−Xj(0)� ≤ Δ.

In this next section we will give our communication/control scheme to AC problem
while maintaining connectivity. To do so, we want to explicitly mention our structural
hypothesis:

H1 At the initial time each vehicle is in a radius Δ of his neighbour.

H2 the communication graph is static, undirected, and connected.

H3 The sample time for control actualisation, state measurement and communication
among agent is synchronized. and the sampling period h is fixed.

Next we will give our control scheme end prove that it will lead to AC while main-
taining Δ-connectivity.

From the previous assumptions each vehicle is able by communicating with his neigh-
bour to make an estimation of the AC. Therefore the extended dynamic of vehicle i is
given by the following state:

We will first give our control algorithm to be implemented in a vehicle and we will
show next that the dynamical system resulting from the proposed algorithm leads to
average consensus while maintaining range connectivity.

where uk
i is the effective control applied to vehicle i and �ki and � will be defined later.

This algorithm use only locally available data since X0
j −X0

i is known to each agent. To
perform the analysis of his property we will rewrite it in an equivalent way.

Since X̂i = X̃i +X0
i and Xk

i = X0
i +

�k−1
l=0 ul

i

X̂k+1
i = X̂k

i + �
�

j∈Ni

(X̂k
j − X̂k

i ) (4.3a)

Xk+1
i = Xk

i + �(X̂k
i −Xk

i ) if k > F (G) (4.3b)

Xk+1
i = Xk+1

i if k ≤ F (G)

In the following X̂ = (X̂T , · · · , X̂T
M)T and X̂0 = X0
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Algorithm 1 Observation and control scheme for agent i

1: Initialization of estimator
2: k = 0
3: X̃0

i = 0
4: Initialization of the control
5: u0

i = 0
6: End of initialization
7: while 1=1 do
8: Dynamic of estimator
9: X̃k+1

i = X̃k
i + �(

�
j∈Ni

X̃k
j − X̃k

i +X0
j −X0

i )
10: Dynamic of Control

11: uk
i = �(X̃k

i −�k−1
l=0 ul

i) ifk >
−ln(2M)

ln(1− �λ2(L))
12: uk

i = 0ifk <
−ln(2M)

ln(1− �λ2(L))
13: k = k + 1

Remark 4.2.2 In the previous algorithm we present the discrete version of the control
input. In continuous time the dynamics is given by: Ẋi = α(X̂i −Xi) with � = αh when
t > (k + 1)hF (G) and Ẋi = 0 when t ≤ (k + 1)hF (G)

Remark 4.2.3 The relation � = αh highlight a trade-off between sampling rates and
maximal acceptable control. Indeed in the following it is needed to have � bounded by a
given constant therefore for fixed sampling period the control action cannot be arbitrary
high. Furthermore the waiting time F (G) is given by a discrete number of communication
exchange, an increasing communication rate leads in continuous time to a shorter wait.

It is clear that
X̂k+1 = PX̂k

where P is the Perron matrix of graph G with parameter �. and F (G) is given by

F (G) :=
−ln(2M)

ln(1− �λ2(L))
.

The observation and control scheme can be decomposed in two parts. The first part
(k ≤ F (G)) correspond to a mode where all agents are immobile and wait for the esti-
mators to have a sufficiently good estimation of the average consensus while the second
part (k > F (G)) correspond to a mode where every vehicle converge to their consen-
sus estimate. The connectivity is not lost due to the fact that the difference of average
consensus estimation for each agent is small.

It will be shown in the following section waiting for the agents to have a good estimate
of the consensus allow for a simple control to maintain connectivity even if the control is
piecewise continuous and the observation of the state is sampled.

4.3 Average consensus using varying control gain

In this section we propose a second method to solve the problem of average consensus
using decentralised observer. In the previous section we used a waiting time to ensure
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Figure 4.1: After convergence of the estimator in a neighbourhood of the average con-
sensus the agents converge

convergence of the average consensus estimator , the waiting time require information
on the multi agent system (namely an lower bound on λ2(G) the algebraic connectivity
of the graph G and on M the number of agents. In order to mitigate this problem
of information we will introduce in the next section non linear control gain taking into
account the estimator state at the level of each agent, the proposed scheme only use
locally available information.

4.3.1 Problem statement

As in the previous section each agent is modelled as a continuous-time integrator of the
form:

Ẋi = Ui, i ∈ V,Xi ∈ Rd, (4.4)

where V denotes the agent’s index set with M elements. The agents’ controls are updated
discretely at sampling times tk := kh, ∀k ∈ N, where h denotes the sampling period, and
the control inputs are kept constant between sampling times, i.e., Ui(t) = Ui(tk), ∀t ∈
[tk, tk+1[.

4.3.2 Average Consensus

Next we describe the control scheme end prove that it will lead to AC while Preserving
Δ-connectivity.

From the previous assumptions each vehicle is able by communicating with his neigh-
bour to make an estimation of the AC. Therefore the extended dynamic of vehicle i is
given by the following state. Therefore the observation and control algorithm at each
vehicle is

where uk
i is the effective control applied to vehicle i and �ki and � will be defined later.

This algorithm use only locally available data since X0
j −X0

i is known to each agent. To
perform the analysis of his property we will rewrite it in an equivalent way.
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Algorithm 2 Observation and control scheme for agent i

1: Initialization of estimator
2: k = 0
3: X̃0

i = 0
4: Initialization of the control
5: u0

i = 0
6: End of initialization
7: while 1=1 do
8: Dynamic of estimator
9: X̃k+1

i = X̃k
i + �(

�
j∈Ni

X̃k
j − X̃k

i +X0
j −X0

i )
10: Dynamic of Control
11: µk

i,j = |Xk
i −Xk

j |2

12: if (Xk
i −Xk

j )
T (X̂k

i −Xk
i ) > − |Xk

i −Xk
j |2

4
then µk

i,j = 0

13: ρkij = Δ− |Xk
i −Xk

j |
14: �ki =

1

(2MΔ2)2
minj∈Ni

{max(µk
i,j, ρ

k
ij)}

15: uk
i =

�ki
h
(X̃k

i −�k−1
l=0 ul

i)

16: k = k + 1

Since X̂i = X̃i +X0
i and Xk

i = X0
i +

�k−1
l=0 ul

i we have the following dynamic:

X̂k+1
i = X̂k

i + �
�

j∈Ni

(X̂k
j − X̂k

i ) (4.5a)

Xk+1
i = Xk

i + �ki (X̂
k
i −Xk

i ) (4.5b)

�ki =
1

(2MΔ2)2
min
j∈Ni

{max(µk
i,j, ρ

k
ij)} (4.5c)

ρkij = Δ− |Xk
i −Xk

j | (4.6)

µk
i,j =





|Xk
i −Xk

j |2 if (Xk
i −Xk

j )
T (X̂k

i −Xk
i ) ≤ −

|Xk
i −Xk

j |2
4

0 if (Xk
i −Xk

j )
T (X̂k

i −Xk
i ) > −

|Xk
i −Xk

j |2
4

(4.7)

In the following X̂ = (X̂T
1 , · · · , X̂T

M)T and X̂0 = X0 X̂ = (X̂11, . . . , X̂1d, . . . X̂M1, . . . , X̂Md)
T

For convenience we reorder X̂ Z = (X̂11, . . . , X̂M1, . . . X̂1d, . . . , X̂Md)
T

The Gain � will be selected below.
In (4.5c) µk

i,j and ρkij account for two different possibility. When the average consensus
can cause loss of connectivity ρkij = 0 we choose a gain (µk

i,j) that goes to zero when
|Xk

i − Xk
j | goes to Δ. It will be showed that by appropriately choosing connectivity is

maintained. But When the direction given by the estimate consensus is good (i.e reduce
inter vehicular distance) the gain does not consider Δ− |Xk

i −Xk
j |

Theorem 4.3.1 if 0 < � <
1

maxi∈V |Ni|
, X̂0 = X0 and maxi∈V,j∈Ni

||X0
i − X0

j || ≤ Δ

then (4.3a) converge to the AC while preserving Δ-connectivity. Furthermore for all
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k >
−2ln(4M)

ln(1− �λ2(G))
the convergence speed is exponential.

In order to prove 4.3.1 we introduce two lemmas.

Lemma 4.3.2 choosing 0 < � <
1

maxi∈V |Ni|
then (4.5a) leads to

∀i ∈ V lim
k→∞

X̂k
i =

1

M

�

i∈V
X0

i

and
max

i∈V,j∈Ni

|X̂k
i − X̂k

j | ≤ (1− �λ2(L))k4M2Δ

Proof 4.3.3 Since G is a connected symmetric the matrix P is a Perron matrix and

since 0 < � <
1

maxi∈V Ni

then

�

i∈V
|X̂k

i − (
1

M

�

i∈V
X̂0

i )| ≤
�

i∈V
|X̂0

i − (
1

M

�

i∈V
X̂0

i )|(1− �λ2(L))k

see [77] for more details. By assumption of connectedness of the original graph and by
definition of X̂, X̂0 := X0 it holds ∀i ∈ V that |X̂0

i | < MΔ Considering that

A :=
�

i∈V
|X̂0

i − (
1

M

�

i∈V
X̂0

i )| < 2M2Δ

we have maxi∈V,j∈Ni
|X̂k

i − X̂k
j | = maxi∈V,j∈Ni

|X̂k
i − (

1

M

�
i∈V X̂0

i )+ (
1

M

�
i∈V X̂0

i )− X̂k
j |

Therefore

max
i∈V,j∈Ni

|X̂k
i − X̂k

j | ≤ 2
�

i∈V
|X̂k

i − (
1

M

�

i∈V
X̂0

i )|

since 2
�

i∈V |X̂k
i − (

1

M

�
i∈V X̂0

i )| ≤ 2A(1− �λ2(L))k So

max
i∈V,j∈Ni

|X̂k
i − X̂k

j | ≤ (1− �λ2(L))k4M2Δ

This conclude the lemma.

Lemma 4.3.4 for all i∗ ∈ argmax|Xk
i −Xeq| ∀k, ∀j ∈ Ni∗,

(Xk
i∗ −Xk

j )
T (X̂k

i∗ −Xk
i∗) ≤ −|Xk

i∗ − Xk
j |(

|Xk
i∗ −Xk

j |
2

− |X̂k
i∗ −Xk

eq|)

This lemma ensure that a subset of agent will have ”good” control law.

Proof 4.3.5 Considering (4.5a) for agent in the set i∗ we are interested in (Xk
i∗ −

Xk
j )

T (X̂k
i∗ −Xk

i∗).

(Xk
i∗ −Xk

j )
T (X̂k

i∗ −Xk
i∗) = (Xk

i∗ −Xk
j )

T (Xk
eq −Xk

i∗) + (Xk
i∗ −Xk

j )
T (X̂k

i∗ −Xk
eq)
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(Xk
i∗ −Xk

j )
T (Xk

eq −Xk
i∗) = −|Xk

i∗ − Xk
j ||Xk

i∗ − Xk
eq|cos(θ)

with θ = �XeqXk
i∗X

k
j

From hypothesis on i∗ cos(θ) ∈ [
|Xk

i∗ −Xk
j |

2|Xk
i∗ −Xk

eq|
, 1] And

|Xk
i∗ −Xk

j |
2|Xk

i∗ −Xk
eq|

≤ 1 since |Xk
i∗−Xk

j | ≤

|Xk
i∗ −Xk

eq|+ |Xk
j −Xk

eq| so |Xk
i∗ −Xk

j | < 2|Xk
i∗ −Xk

eq| This conclude the lemma

We can now prove the Theorem 4.3.1.

Proof 4.3.6 We subdivide the proof in two parts. The first part will deal with connectiv-
ity preservation and the second part with convergences.

1) Connectivity preservation

Considering two neighbour agent i and j. Assume for all i ∈ V, j ∈ Ni |Xk
i −Xk

j | < Δ

|Xk+1
i −Xk+1

j |2 = |Xk
i −Xk

j |2

+ 2(Xk
i −Xk

j )[�
k
i (X̂i −Xi) + �ki (X̂j −Xj)]

+ |�ki (X̂i −Xi)− �ki (X̂j −Xj)|2

Assume
ρki,j

(2MΔ2)2
< �ki ≤ µk

i,j

(2MΔ2)2
,

ρkj,i
(2MΔ2)2

< �kj ≤ µk
j,i

(2MΔ2)2
from definition of µk

i,j

it follows That the distance between agent i and j decrease.
Considering Q := |Xk+1

i −Xk+1
j |2 − |Xk

i −Xk
j |2

Q = 2(Xk
i −Xk

j )
T [�ki (X̂i −Xi) + �kj (X̂j −Xj)]

+ |�ki (X̂i −Xi)− �kj (X̂j −Xj))|2

By construction of µi,j, −2(Xk
i − Xk

j )
T [�ki (X̂i − Xi) + �kj (X̂j − Xj)] ≥ |�ki (X̂i − Xi) −

�kj (X̂j −Xj))|2

Now �ki ≤
µk
i,j

Δ
,�kj ≤

ρkj,i
Δ

|Xk+1
i −Xk+1

j | = |Xk
i −Xk

j + �ki (X̂
k
i −Xk

i )|
+ �kj |X̂k

j −Xk
j |

from (4.7) we have |Xk
i −Xk

j | ≥ |Xk
i −Xk

j + �ki (X̂
k
i −Xk

i )| and from (4.6)

|Xk+1
i −Xk+1

j | ≤ |Xk
i −Xk

j |+ (Δ− |Xk
i −Xk

j |)

|Xk+1
i −Xk+1

j | ≤ Δ

The same apply assuming �ki ≤ ρki,j
Δ

�kj ≤ ρkj,i
Δ

Furthermore during between sampling

instants ∀i, Xi(t) = λXk
i + (1− λ)Xk+1

i with λ ∈ [0, 1] Therefore

|Xi(t)−Xj(t)|2 − |Xk
i −Xk

j |2 ≤ (λ2 − 1)|Xk
i −Xk

j |2 + (1− λ)2|Xk+1
i −Xk+1

j |2

|Xi(t)−Xj(t)|2 − |Xk
i −Xk

j |2 ≤ (1− λ)|Xk+1
i −Xk+1

j |2 − |Xk
i −Xk

j |2

Thus the range connectivity is not lost between sampling instant.
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2) Convergence to average consensus

We consider the subset of the agents

i∗ = argmaxi∈V |Xk
i −Xeq|

that are the farthest from the average consensus at time k For those agents from 4.3.4

(Xk
i∗ −Xk

j )
T (X̂k

i∗ −Xk
i∗) ≤ −|Xk

i∗ − Xk
j |(

|Xk
i∗ −Xk

j |
2

− |X̂k
i∗ −Xk

eq|).

Using lemma 4.3.2 it is clear that |X̂k
i∗ −Xk

eq| goes to 0 and there is k∗ ≥ −2ln(4M)

ln(1− �λ2(G))
such that

∀k > k∗; ∀j ∈ Ni∗ |X̂k
i∗ −Xk

eq| < Δ/4

So considering 2(|Xk
i − X̂k

i |+ 1) < 2(MΔ+ 1)

if |Xk
i∗ −Xk

j | < Δ/2 then ρki∗,j ≥
Δ

2
, ∀j ∈ Ni∗ if |Xk

i∗ −Xk
j | ≥ Δ/2 then µk

i∗,j ≥
Δ2

4
, ∀j ∈

Ni∗

�ki∗ =
1

(2MΔ)2
min
j∈Ni∗

{max(µk
i∗,j, ρ

k
i∗j)}.

Therefore
1

2
≥ �ki∗ ≥ c

with c = min
1

(2MΔ)2
{Δ
2
,
Δ2

4
} Since for all agents

|Xk+1
i −Xeq| < |Xk

i −Xeq|(1− �ki ) + εki |Xeq − X̂k
i |

and for agents i∗, �i is lower bounded since the subset of the agents

i∗ = argmaxi∈V |Xk
i −Xeq|

is never empty convergence follows. Furthermore for all k > k∗

Considering the worst case (i.e. agent i∗ is active at time k and does not move for M−1
time steps)

|Xk+M
i −Xeq| < |Xk

i −Xeq|(1− c) + 2M2Δ(1− �λ2(L))k (4.12)

denoting µ = max(1− �λ2(L)M , 1− c)
From (4.12) one has an upper bound on

||(Xk∗+M
i −Xeq, X̂

k∗+M
i −Xeq|| ≤ ||(Xk∗+jM

i −Xeq, X̂
k∗+jM
i − X̂eq||Cµj

leading to |Xk∗+jM
i −Xeq| < 2CMΔ(1− µ)j

Theorem 4.3.7 if 0 < � <
1

maxi∈V |Ni|
, X̂0 = X0 and maxi∈V,j∈Ni

||X0
i − X0

j || ≤ Δ

then (4.3a) converge to the AC while preserving Δ-connectivity. Furthermore for all

k >
−2ln(4M)

ln(1− �λ2(G))
the convergence speed is exponential
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4.3.3 Control formation

The proposed scheme where a consensus is reached on consensus estimator serve as a
reference trajectory for agents in the network can be adapted to reach a final formation
were at equilibrium limk→∞ Xk

i = Xeq + δi Therefore in order to have a feasible final
configuration one require that

We also require global knowledge on the minimal margin between final distance and
loss of range connectivity

∀i ∈ V, ∀ j ∈ Ni : Δ− |δi − δj| > βij > 0 (4.13)

with
δ = max

i∈V
|δi|; β = min

i∈V, j∈Ni

βij

known.

Definition 4.3.8 (Δ-Connectivity Preserving Formation of a multi agent system):
Given a formation vector δ = (δ1 . . . δM)T a control U is said to solve the formation
problem if U controlling the process Ẋ = U leads to

∀i ∈ V, lim
t→∞

Xi(t) = Xeq + δi

and
∀t ≥ 0, ∀(i, j) ∈ E, �Xi(t)−Xj(t)� ≤ Δ

provided �Xi(0)−Xj(0)� ≤ Δ, ∀(i, j) ∈ E.

∀i ∈ V, ∀ j ∈ NiΔ− |δi − δj| > βij > 0 (4.14)

with
δ = max

i∈V
|δi|; β = min

i∈V, j∈Ni

βij

known.

Modifying the previous observation and control scheme to take into account the final
position requirement we have the following discrete dynamical system

X̂k+1
i = X̂k

i + �
�

j∈Ni

(X̂k
j − X̂k

i ) (4.15a)

Xk+1
i = Xk

i + �ki (X̂
k
i −Xk

i + δi) (4.15b)

�ki = min
j∈Ni

{ρkij} (4.15c)

ρkij =
Δ− |Xk

i −Xk
j |

4(MΔ+ 1 + δ)

In the following X̂ = (X̂T , · · · , X̂T
M)T and X̂0 = X0

Theorem 4.3.9 if 0 < � <
1

maxi∈V |Ni|
, and ∃γ > 0,maxi∈V,j∈Ni

||X0
i − X0

j || ≤ Δ − γ

then (4.15a) ensure that limk→∞ Xi = Xeq + δi while preserving Δ-connectivity
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From lemma 4.3.2 limk→∞ X̂k
i = Xeq

We can then prove theorem 4.3.9.

Proof 4.3.10 The proof of connectedness is identical as the previous one.

|Xk+1
i −Xk+1

j | < |Xk
i −Xk

j |+2Δ/4− |Xk
i −Xk

j |
2

|Xk+1
i −Xk+1

j | < Δ/2+ |Xk
i −Xk

j |/2
This prove connectedness and imply the relation εk+1

i > εki /2
To prove the convergence we first note that there is k∗. such that ∀k > k∗ given than

for all
∀i ∈ V, ∀ j ∈ NiΔ− |X̂k

i − X̂k
j + δi − δj| > ρ > 0

we also have the following relation

(Xk+1
i − δi −Xeq) =(Xk+1

i − δi −Xeq)(1− �ki ) (4.16a)

+ �ki (X̂i −Xeq)

We need to prove that �i does not converge to zero.
To do so let’s consider
Xk+1

i −Xk+1
j = Xk

i −Xk
j + εki (X̂

k
i −Xk

i + δi)− εkj (X̂
k
j −Xk

j + δj)

Xk+1
i −Xk+1

j = (Xk
i −Xk

j )(1− εi) + εki (X̂
k
i − X̂k

j + δi − δj)− (εkj − εki )(X̂
k
j −Xk

j + δj)

Considering Δ−maxl∈Ni
|Xk

i −Xk
l | = ε̄ki

Δ−maxl∈Nj
|Xk

j −Xk
l | = ε̄kj Without loss of generality assume ε̄ki ≤ ε̄kj

For k > k∗ combining the previous equations we have |Xk+1
i −Xk+1

j | ≤ |Xk
i −Xk

j |(1−
εi) + εki (Δ− ρ) + ε̄ki − ε̄kj

|Xk+1
i −Xk+1

j | ≤ (Δ− ε̄ki )(1− εi) + εki (Δ− ρ)− ε̄ki + ε̄kj

|Xk+1
i −Xk+1

j | ≤ Δ− ε̄kj + ε̄ki ε
k
i − εki ρ

Then considering εk = mini∈V εki
if ε̄ki < ρ then ε̄k+1

j > ε̄ki and εk+1
j > εki or ε̄kj ≥ ρ and then ε̄k+1

j ≥ ε̄kj/2 then εk+1
j >

ρ

2 ∗ (4M(Δ+ 1))
Therefore for all k > k∗, ∀i ∈ V εk+1 ≥ min(εk∗,

ρ

2 ∗ (4M(Δ+ 1))
)

It follows from (4.16a) the convergence of the control formation

4.3.4 Simulation

In this section we will present simulation results of the proposed controller and compare
it with two different control protocols. For all the controller the agreement protocol
is decentralized. The proof we provide were made considering one dimension point for
ease of notation however, we show our result for simple integrator of dimension 2. The
classical linear control protocol [77] in discrete time and the Δ-connectivity preserving
control protocol from [34] (continuous time)

The communication topology is given on Fig 4.2 The initial conditions are the follow-
ingX1 = (−31, 1)T , X2 = (30, 5)T , X3 = (−31, 2.2)T ,X4 = (−17, 0)T , X5 = (−3, 0)T , X6 =
(10,−2)T , X7 = (11, 0)T , X8 = (8, 2)T The barycentre is b = (−10.375, 1.025)T . Δ = 15,
the simulation stop at time 25
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Figure 4.2: Communication topology and sensing radius.The lines represent the commu-
nication graph of the simulation and we represent the sensing/communication range of
agent 4 and 5.

The Laplacian matrix of the example is :

L(G) =




2 −1 0 −1 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
−1 0 −1 3 −1 0 0 0
0 0 0 −1 3 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 −1 0 −1 2




with eigenvalues algebraic multiplicity λ2(G) = 0.29

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Figure 4.3: Evolution of distance between agent with controller [77]. Blue curve distance
between agent 4 and agent 1, 2 and 3. Green distance between agent 4 and agent 5. Red
distance between agent 5 and agent 6, 7 and 8
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0

5
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15

Figure 4.4: Evolution of distance between agent with controller [34] with K = 100. Blue
curve distance between agent 4 and agent 1,2 and 3. Green distance between agent 4 and
agent 5. Red distance between agent 5 and agent 6, 7 and 8

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Figure 4.5: Evolution of distance between agent with the proposed controller . Blue curve
distance between agent 4 and agent 1,2 and 3. Green distance between agent 4 and agent
5. Red distance between agent 5 and agent 6, 7 and 8

The graphic Fig 4.3 shows classical linear controller [77], the convergence rate is
exponential but Δ-connectivity is not maintained as the first curve cross Δ = 15.

We can see on Fig 4.4 applying the controller described in [34] that the connectivity is
preserved. For a chosen gain the convergence rate is smaller Furthermore the convergence
to a consensus is obtained, it is however not the AC.

Fig 4.5 shows the proposed control given by (4.3). The connectivity is preserved.
Defining the control effort of each controller defined as

� 25

0

�

i∈V
u2
i (τ)dτ

The following chart will present the properties of the different control law tested in
simulation. The proposed controller exhibit good properties in term of velocity and
control effort, however there is a need of communication among agents that is not required
for the other controllers.
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[77] [34] Our Controller
AC Yes No Yes

Δ Connectivity No Yes Yes
Need of communication No No Yes

Controle effort 670 800 450
Error 0.01 2 0.03

We can simulate the formation of the multi-agents system following the algorithm we
describe with δi = (0, 20) for i = 1, 2, 3, δ4 = (010], δ5 = (00) δj = (0− 10) for j = 6, 7, 8
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0
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20
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40

Figure 4.6: Initial and final configuration

4.3.5 Conclusions

We introduced a control policy based on an estimate of the AC performed online by
agents able to communicate with their neighbours. The control action is designed to
track this estimate. To ensure range connectivity the tracking policy tack into account
either the distance to loss of range connectivity or the direction given by the tracking
policy. The control input is piecewise constant and allows the agent to reach the consensus
while preserving connectivity. The proposed method is easily implementable for single
integrator of any finite dimension. Simulation are presented that illustrate our results,
furthermore they suggest improvement in term of convergence speed and control effort
when compared to existing policy. The method can also be applied to the problem
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Figure 4.7: Evolution of distance between agent with the proposed controller for the
formation with. Blue curve distance between agent 4 and agent 1,2 and 3. Green distance
between agent 4 and agent 5. Red distance between agent 5 and agent 6, 7 and 8

of formation control provided agents have knowledge of the final position they want
to achieve with respect to the consensus. An important fact is that even thought the
proposed scheme was used to maintain Δ-conectivity it could be used to generate better
trajectory in terms of control effort or robustness to perturbation. However the proposed
protocol do not take into account network uncertainties and future work should focus on
a protocol robustness with respect to such network imperfections.
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Chapter 5

Active vehicle control

5.1 Introduction

In modern automobiles, the wide use of electronics allows the control of a number of
functions. When considering safety, one of the aims is the reduction of the number
of accidents. Active control actions represent an important tool for increasing safety.
These actions impose forces/torques to the vehicle in order to track a (feasible and safe)
reference behavior. These forces/torques have to be applied by means of tires, and the
friction coefficient represents a crucial parameter in this respect. In fact, road condition
is one of the most relevant parameter causing losses of driving control.

A precise evaluation of the tire–road friction coefficient would increase considerably
the efficiency of control systems. There is a wide literature regarding either modeling [27]–
[98] or estimation [15]–[89] of the tire–road friction coefficient. In particular, [16] proposes
an estimation procedure to calculate lateral tire forces, vehicle sideslip angle, and road
friction. In [20], an adaptive control is presented. In [81], an estimation scheme of the
coefficient of road surface adhesion is presented, and a sliding mode observer driven by
wheel speed measurements is proposed. A comparative study of a sliding–mode observer–
based scheme and an adaptive observer–based scheme is presented in [83], where the effect
of imperfect measurements are also taken into account.

To the best of our knowledge, High Order Sliding Mode (HOSM) was introduced
in [39]. Since this seminal work, many papers have dealt with such technique [38]–[71].
HOSM techniques have been used first for smooth control systems and, more recently, for
finite time differentiators. In [7] an interesting comparison of HOSM differentiators and
high gain observers, with respect to measurement noise, has been done. Finally, in [58]
HOSM is used to solve vehicle control problems. The main object of this section is to show
that high order sliding mode methods can be successfully applied to a relevant industrial
applications, in order to propose an improved solution to the estimation problem of the
tire–road friction coefficient.

To this aim, in this work a rear–wheel drive vehicle equipped with Active Front Steer-
ing (AFS) and Rear Torque Vectoring (RTV) devices is considered. The AFS provides an
additional steering angle over the driver steering angle, while the RTV gives an asymmet-
ric left/right wheel torque on the rear axle. First, the estimation of the tire–road friction
coefficient and the tire stiffness is addressed: A second order sliding mode algorithm, the
well–known super–twisting algorithm, is proposed for estimating the tire–road friction
coefficient in finite time as well as to track a desired trajectory for the vehicle. This esti-
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mation technique does not depend on the type of model used to simulate the lateral force,
and the parameter estimations will be used either in the reference generator, and in the
control law. Then, a high order sliding mode controller is designed, in order to achieve the
tracking of the desired lateral and yaw velocity references. This controller provides both
good estimations and good tracking. The robustness properties of the controller with
respect to model uncertainties is finally tested with simulations, making use of CarSim
and a double steer maneuver. CarSim provides a vehicle dynamic behavior very close to a
real automobile, and it is proved to represent accurately the vehicle dynamics. Moreover,
CarSim is extensively validated with experimental testing and supported by automotive
enterprises such as Ford, Chrysler, etc. The simplicity and the tested robustness render
the proposed solution a good alternative for tire–road friction estimation in automotive
applications, where the success of a control strategy has also to be judged on the basis of
the feasibility and simplicity of its onboard implementation.

5.2 Mathematical model of a ground vehicle and prob-

lem formulation

We consider a vehicle equipped with AFS, which add an incremental steer angle δc on top
of the driver’s input δd, and RTV, which imposes a torque Mz by means of the rear axle.
Since we consider a rear–wheel drive vehicle, these two actions are decoupled. In fact,
the AFS control is actuated through the front tires, while the RTV is actuated through
the rear tires.

The vehicle dynamics is very complex. A resulting model, having 6 degrees of freedom,
is not suitable for designing a control action. Hence, it is usual to consider a simpler
model, to be used to design the controller, whose validity and performance have to be
then checked on more accurate models. For, the single track model is considered, which
represents the essential dynamics of interest [56],

m(v̇x − vyωz) = 0

m(v̇y + vxωz) = µ(Fyf + Fyr)

Jzω̇z = µ(Fyf lf − Fyrlr) +Mz

(5.1)

where m, Jz are the vehicle mass and inertia momentum, lf , lr are the front and rear
vehicle length, vx, vy are the longitudinal, lateral velocities of the vehicle center of mass,
and ωz is the yaw rate. Moreover, µ is the maximum tire–road friction coefficient, Mz

is the RTV moment, Fyf , Fyr are the tire front and rear lateral forces, normalized with
respect to µ. This model, nonlinear due to the forces Fyf , Fyr, is very used in the literature
and in applications since, despite its simplicity, it well captures the major characteristics
of a real vehicle, such as the steady state and dynamic responses of the yaw rate, lateral
acceleration, lateral velocity [56]. The validity of this model, used to design the control
law, is shown by the simulation results of the resulting controller to CarSim, which
provides a vehicle dynamic behavior very close to a real automobile.

The front/rear lateral forces

Fyf = Fyf (αf ), Fyr = Fyr(αr)
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depend on the front/rear tire slip angles (rad)

αf = δ − vy + lfωz

vx
, αr = −vy − lrωz

vx

with δ = δd+ δc the road wheel angle (rad), sum of the driver angle δd (rad) and the AFS
angle δc (rad). The drive angle δd is assumed at least continuously differentiable with
respect to time.

Popular tire models considered in the literature is the Pacejka’s model [78], in which
some experimental parameters appear. Also interesting is the Burckardt model [27], which
presents less parameters, and hence it is appealing when parameter estimation algorithms
in the controller are considered. In this section we will not consider any particular tire
model, since the same approach can be adapted to models in which the lateral tire forces
can be written as

Fyf (αf ) = Dfϕf (αf ), Fyr(αr) = Drϕr(αr) (5.2)

with Df , Dr the tire stiffness coefficients, and where ϕf , ϕr are the normalized tire
characteristics, which usually increase linearly with the slip angles αf , αr until a maximum
value, and then decrease reaching asymptotic values for high slip angles, as shown in
Fig. 5.1.a. They are odd functions, namely ϕf , ϕr are symmetric with respect to the
origin. Hence, ϕf , ϕr reach a minimum for negative values of αf , αr, and then increase
to an asymptotic value for high negative slip angles.

Since between the minimum and the maximum, the functions ϕf describing the au-
tomobile tire lateral force as function of the slip angle are invertible (see Fig. 5.1.a), and
to avoid mathematical difficulties arising from the fact that the input δc appears inside a
(possibly) quite complicated function, it is usual to consider as AFS control the difference

Δc = ϕf (αf )− ϕf (αf0), αf0 = δd −
vy + lfωz

vx
. (5.3)

For a given value ϕ◦, the real input δc can be determined as follows

δc =




−δd +

vy + lfωz
vx + ϕ−1

f (Δ̄c) if |Δ̄c| ≤ ϕf,max

−δd +
vy + lfωz

vx + αf,max otherwise
(5.4)

namely inverting the function ϕf up to the tire maximum point αf,max, and saturating
the inverse function elsewhere.

With the convention (5.4), equations (5.1) can be rewritten in the form

v̇x = vyωz

v̇y = −vxωz +
1

m

�
θfϕf (αf0) + θrϕr(αr)

�
+

θf
m
Δc

ω̇z =
1

Jz

�
θfϕf (αf0)lf − θrϕr(αr)lr

�
+

θf lf
Jz

Δc +
1

Jz
Mz

(5.5)

where
θf = µDf , θr = µDr (5.6)

are the products of the tire–road friction coefficient with the tire stiffness coefficients.
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The control aim is to track some physically acceptable signals vy,ref , ωz,ref of lateral and
yaw velocities. Hence, the control problem is to determine Δc,Mz so that the tracking
errors

evy = vy − vy,ref , eωz = ωz − ωz,ref (5.7)

tend to zero asymptotically and uniformly.
In the following, we will assume that vy,ref , ωz,ref are bounded signals with bounded

derivatives v̇y,ref , ω̇z,ref . To this aim, it is possible to introduce the dynamics of a “reference
vehicle”, with vx,ref = vx and [21], [22]

v̇y,ref = −vxωz,ref +
µ

m

�
Fyf,ref(αf0,ref) + Fyr,ref(αr,ref)

�

ω̇z,ref =
µ

Jz

�
Fyf,ref(αf0,ref)lf − Fyr,ref(αr,ref)lr

�

αf0,ref = δd −
vy,ref + lfωz,ref

vx

αr,ref = −vy,ref − lrωz,ref

vx
.

Usually Fyf,ref , Fyr,ref can be taken to resemble the real characteristics, “shaping” the
curves to avoid unwanted behaviors of the reference vehicle, e.g. a spin. This is essen-
tial, since otherwise the controller would impose an unwanted behavior, which is clearly
undesirable for the driver. Hence, they can be chosen as

Fyf,ref(αf0,ref) = Djϕf,ref(αf0,ref)

Fyr,ref(αr,ref) = Drϕr,ref(αr,ref)

with ϕj,ref strictly increasing functions. Therefore, the reference generator is given by

v̇y,ref = −vxωz,ref +
1

m

�
θfϕf,ref(αf0,ref) + θrϕr,ref(αr,ref)

�

ω̇z,ref =
1

Jz

�
θfϕf,ref(αf0,ref)lf − θrϕr,ref(αr,ref)lr

� (5.8)

with initial values vy,ref(0) = 0, ωz,ref(0) = 0, corresponding to the case of a reference
vehicle going straight at the initial time, i.e. when the maneuver has not started yet.
Note that the approach presented hereinafter can be used also with different reference
generators, e.g. static reference generators. Note also in (5.8) the presence of the tire–
road friction coefficient µ, through θf , θr, also used in (5.5). In fact, to avoid to impose
behaviors which could results to be impossible to track, due to the finite lateral force
that can be exerted by the tires, the “reference” coefficients θf , θr should be equal to the
real one. This poses the problem of their estimation.

5.3 A Super–Twisting Controller for Active Control

of a Ground Vehicle

The Super–Twisting Controller (STC) introduced in [70] is widely used for control, ob-
servation and robust exact differentiation. The STC represents a second order sliding
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mode controller. To briefly recall the basic aspects of STC, let us consider the system
ẋ1 = u, x1, u ∈ R. One can consider the following dynamic feedback

u = −λ1|x1|1/2 sign(x1) + x2

ẋ2 = −λ2 sign(x1)
(5.9)

where x2 ∈ R is the controller state, and λ1,λ2 > 0 are gains. The feedback system is
eventually given by

ẋ1 = −λ1|x1|1/2 sign(x1) + x2

ẋ2 = −λ2 sign(x1).
(5.10)

An important property of (5.10), proved in [70], is that the origin (x1, x2) = (0, 0) is
finite–time stable, namely it is reached in finite time.

5.3.1 The Case of Perfect Parameter Knowledge

In the following we will use the STC (5.9) to solve the control problem, under the hypoth-
esis of perfect knowledge of the parameters appearing in the vehicle model. From (5.7),
(5.5), (5.8) the tracking error dynamics are

ėvy = −vxeωz +
1

m
(θfef + θrer) +

θf
m
Δc

ėωz =
1

Jz
(θf lfef − θrlrer) +

θf lf
Jz

Δc +
1

Jz
Mz

(5.11)

with
ef (αf0,αf0,ref) = ϕyf (αf0)− ϕyf,ref(αf0,ref)

er(αr,αr,ref) = ϕyr(αr)− ϕyr,ref(αr,ref).
(5.12)

Making use of (5.9), one can consider the following STC

Δc =
m

θf

�
− λ11|evy |1/2 sign(evy) + χ1

�
+

mvx
θf

eωz − ef −
θr
θf

er

χ̇1 = −λ12 sign(evy)

Mz = Jz

�
− λ21|eωz |1/2 sign(eωz) + χ2

�
− (θf lfef − θrlrer)− θf lfΔc

= Jz

�
− λ21|eωz |1/2 sign(eωz) + χ2

�
−mlf

�
− λ11|evy |1/2 sign(evy) + χ1

�

−mvxlfeωz + θr(lf + lr)er

χ̇2 = −λ22 sign(eωz)

(5.13)

with λ11,λ12,λ21,λ22 > 0 chosen to ensure finite time convergence to the origin of the
resulting closed–loop error vehicle dynamics (5.11), (5.13)

ėvy = −λ11|evy |1/2 sign(evy) + χ1

χ̇1 = −λ12 sign(evy)

ėωz = −λ21|eωz |1/2 sign(eωz) + χ2

χ̇2 = −λ22 sign(eωz).

Note that its structure is that of equations (5.10). This ensures that the error is finite–
time stable [70].
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Remark 5.3.1 The terms in (5.13)

χ̇1 = −λ12 sign(evy), χ̇2 = −λ22 sign(eωz)

are the integral actions on the sign of the errors evy , eωz , respectively. �

Remark 5.3.2 The performance offered by the STC (5.13) can be compared with the
following PI–like controller

İv = evy İω = eωz

Δ◦
c = −m

θf
(k11evy + k10Iv) +

mvx
θf

eωz − ef −
θr
θf

er

M◦
z = −Jz(k21eωz+ k20Iω)−(θf lfef − θrlrer)−θf lfΔ

◦
c

= mlf (k11evy + k10Iv)− Jz(k21eωz + k20Iω)−mvxlfeωz + θr(lf + lr)er

(5.14)

θf �= 0, where positive gains k10, k11, k20, k21 ensure the global exponential closed–loop
stability of the error dynamics

ëvy + k11ėvy + k10evy = 0

ëωz + k21ėωz + k20eωz = 0.
(5.15)

Note that (5.14) has the same dimension of the STC (5.13). PI controllers are usually
preferred in industrial applications due to theirs good performances in terms of asymp-
totic stability and precision in steady–state. They are also easier to tune with respect to
a PIDs. In the present case, it is easy to see that derivative actions k12ėvy , k22ėωz for evy
and eωz would not change the result, since one would get again the error dynamics (5.15)
with gains k̄10 = k10/(1+k12), k̄11 = k11/(1+k12), k̄20 = k20/(1+k22) k̄21 = k21/(1+k22),
at the place of k10, k11, k20, k21. �

5.3.2 The Case of Parameter Uncertainties

In this section one considers the fact that, in practice, the model parameters are known up
to a certain precision. In particular, the tire–road friction coefficient may vary suddenly
due to a change of road conditions. More in general, also the stiffness coefficients Df , Dr

in (5.6) may vary, due to changes in the tire conditions, as well as the mass m and the
inertia Jz with respect to nominal design values. Finally, parameters appearing in the
expressions of the normalized tire characteristics ϕf , ϕr may vary as well.

In order to estimate the parameters θf , θr in (5.6) a super–twisting estimator [45] is
used hereinafter, while the perturbations induced by the variations of the further param-
eters will be dominated by the robustness characteristic of the STC (5.13). As already
pointed out for the STC (5.13), the main advantage of the super–twisting technique is
that it ensures finite time convergence.

To illustrate the basic aspects of the sliding super–twisting sliding mode estimator,
let us consider the system

ẋ1 = f(x1) + θ

y = x1
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with x1 the state, f(x1) and ḟ(x1) bounded, θ the unknown parameter [70], [7]. One
assumes that θ and θ̇ are bounded. Under these hypotheses, it is possible to design an
estimator of θ using the super–twisting estimator

ξ̇1 = f(y)− γ1|ξ1 − y|1/2 sign(ξ1 − y) + ξ2

ξ̇2 = −γ2 sign(ξ1 − y)
(5.16)

with ξ1, ξ2 the estimates of x1, θ, and γ1, γ2 > 0. Let us define the observation errors
e = ξ1−y and eθ = ξ2−θ. The observer gains γ1, γ2 are defined in function of the bounds
for f(x), ḟ(x), θ and θ̇. Note that, since f(x) is function of measured state only, which
will be ensured bounded by the control, the hypothesis of boundedness of f(x) could be
removed. The observation error dynamics are given by

ė = −γ1|e|1/2 sign(e) + eθ

ėθ = −γ2 sign(e)− θ̇

so that ξ2 is equal to θ after a finite times. It is worth noticing that in (5.16) the cancel-
lation of f(y) is performed. Hence, (5.16) is not a simple differentiator, and consequently
the gains γ1, γ2 can be sensibly lower that in the case of simple differentiator.

In the present case, assuming ωz measurable, a finite–time estimate of ω̇z is given by

ξ̇1 = −γ1|ξ1 − ωz|1/2 sign(ξ1 − ωz) + ξ2

ξ̇2 = −γ2 sign(ξ1 − ωz)

�̇ωz = ξ2.

(5.17)

The estimate �̇ωz = ξ2 in (5.17) can be used along with the measurement of the lateral
acceleration ay, commonly available for in modern automobiles, to obtain the desired
parameter estimation. Since ay = v̇y + vxωz, from (5.5) one gets

may = θfϕf (αf ) + θrϕr(αr)

Jzω̇z −Mz = θfϕf (αf )lf − θrϕr(αr)lr
(5.18)

with ϕf (αf ) = ϕf (αf0) +Δc, from (5.3). Making use of the estimate (5.17), converging
to ω̇z in finite time, one finally obtains the parameter estimation

�
θ̂f

θ̂r

�
=

1

D

�
ϕf (αf ) ϕr(αr)

lfϕf (αf ) −lrϕr(αr)

��
may,m

Jzξ2 −Mz

�
(5.19)

where D = (lf+lr)ϕf (αf )ϕr(αr) is nonzero for ϕf (αf ),ϕr(αr) �= 0. Physically, this means
that the estimate can be carried out only when the (front, rear) lateral forces excerpted
by the tires are nonzero. This is typically satisfied (except in some time instants, i.e. in
zero measure time sets) during a maneuver. The analysis of these special cases will be the
object of future work, while here an approximated solution with a threshold on |D| has
been used. Hence, this threshold determines when (5.19) is applied, avoiding excessively
high peaks on the estimates. Finally, due to the possible measurement noise on the
measurements of ay,ωz, in practice it is convenient to filter θ̂f , θ̂r obtained with (5.19),
by means of a low pass filter. The introduction of low–pass filters cancels the finite–time
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convergence because the output information arrives through the filter, which introduces
some delays. Hence, as common trade–off, the filter bandwidth must be chosen small
enough to ensure noise attenuation, and large enough to ensure the closed loop stability.
The reader is referred to [7] for a useful discussion about the relation between gains and
noise in the context of high order differentiators.

The estimations θ̂f , θ̂r can be used, along with the nominal parameters of the other pa-
rameters (denoted with a “zero” as inm0, Jz0, etc), either in the reference generator (5.8),
so obtaining

v̇y,ref = −vxωz,ref +
1

m0

�
θ̂fϕf,ref(αf0,ref) + θ̂rϕr,ref(αr,ref)

�

ω̇z,ref =
1

Jz0

�
θ̂fϕf,ref(αf0,ref)lf − θ̂rϕr,ref(αr,ref)lr

� (5.20)

or in the control law (5.13) yielding, along with (5.16), to the STC with estimated pa-
rameters

ξ̇1 = −γ1|ξ1 − ωz|1/2 sign(ξ1 − ωz) + ξ2

ξ̇2 = −γ2 sign(ξ1 − ωz)

χ̇1 = −λ12 sign(evy)

χ̇2 = −λ22 sign(eωz)

Δ̂c =
m0

θ̂f

�
− λ11|evy |1/2 sign(evy) + χ1

�
+

m0vx

θ̂f
eωz − ef0 −

θ̂r

θ̂f
er0

M̂z = Jz0

�
− λ21|eωz |1/2 sign(eωz) + χ2

�
−m0lf

�
− λ11|evy |1/2 sign(evy) + χ1

�

−m0vxlfeωz + θ̂r(lf + lr)er

(5.21)

with evy , eωz as in (5.7), and ef0, er0 defined as

ef0 = ϕf0(αf0)− ϕf,ref(αf0,ref)

er0 = ϕr0(αr)− ϕr,ref(αr,ref)
(5.22)

where ϕf0,ϕr0 are the normalized tire characteristic with nominal parameters, namely the
same functions ϕf ,ϕr considered in (5.2) but with the nominal values of the parameters
appearing in them.

Remark 5.3.3 The STC (5.21) can be compared with the PI–based controller (5.14),
with the estimates (5.19) and the constraint θ̂f �= 0

İv = evy İω = eωz

Δ̂◦
c = −m0

θ̂f
(k11evy + k10Iv) +

m0vx

θ̂f
eωz − ef0 −

θ̂r

θ̂f
er0

M̂◦
z = m0lf (k11evy + k10Iv)− Jz0(k21eωz + k20Iω)−m0vxlfeωz + θ̂r(lf + lr)er0

(5.23)

with ef0, er0 as in (5.22). �
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The remaining of this section will be devoted to highlight some difficulties that could
arise during the transient, due to the fact that the estimation of θf , θr can not be instan-
taneous and/or perfect. For, let us rewrite the error dynamics considering (5.5), (5.20)
and the control (5.21)

ėvy =
θf

θf − θ̃f

m0

m

�
− λ11|evy |1/2 sign(evy) + χ1

�
+ E1

χ̇1 = −λ12 sign(evy)

ėωz =
Jz0
Jz

�
− λ21|eωz |1/2 sign(eωz) + χ2

�
+ E2

χ̇2 = −λ22 sign(eωz)

E1 = −vxeωz +
1

m

�
θfϕf (αf0) + θrϕr(αr)

�
+

θf
m

�
m0vx

θf − θ̃f
eωz − ef0 −

θr − θ̃r

θf − θ̃f
er0

�

− 1

m0

�
(θf − θ̃f )ϕf,ref(αf0,ref) + (θr − θ̃r)ϕr,ref(αr,ref)

�

E2 =
1

Jz

�
θfϕf (αf0)lf − θrϕr(αr)lr

�
− 1

Jz

�
(θf − θ̃f )lfef0 − (θr − θ̃r)lrer0

�

+
θ̃f lf
Jz

Δ̂c −
1

Jz0

�
(θf − θ̃f )ϕf,ref(αf0,ref)lf − (θr − θ̃r)ϕr,ref(αr,ref)lr

�

where θ̃f = θf − θ̂f , θ̃r = θr− θ̂r. A sufficient condition ensuring a finite time convergence
of the error dynamics is the existence of b11, b12, b21, b22, c1, c2 > 0 such that [45]

0 < b11 ≤
θf

θf − θ̃f

m0

m
≤ b12

0 < b21 ≤
Jz0
Jz

m0

m
≤ b22

|Ė1| < c1, |Ė2| < c2.

(5.24)

Assuming that the model parameters have bounded variations, with bounded derivatives,
conditions (5.24) are clearly verified.

Since E1, E2 depend on θ̃f , θ̃r, it is clear that the errors E1, E2 influence the vehicle’s

controlled dynamics. As already noted, in practice the signals θ̂f , θ̂r are filtered in order
to obtain smoother signals. This smoothing introduces a delay in the estimation. Since
the controller gains could be high, this estimation could determine a deterioration of the
transient in the tracking. Therefore, attention has to be posed for the correct choice of
these gains and those used in the filter.

5.4 Simulation results

The control law (5.21), (5.20), (5.19) has been applied to a vehicle characterized by
m = 1480 kg, Jz = 2386 kg m2, lf = 1.17 m, lr = 1.43 m. A challenging test maneuvers
has been considered, given by a step steer of δd,sw = +100◦ of the steering wheel at t = 1
s, followed by a step steer of δd,sw = −100◦ at t = 3 s, and finally δd,sw = 0 at t = 5 s (see
Fig. 5.1.b). The ratio between the steering wheel angle δd,sw and δd is 16.
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Figure 5.1: a) Typical characteristic of the lateral force Fy as function of the slip angle [N
vs s]; b) Steering wheel angle δd in the double lane change maneuver [deg vs s]; c) CarSim
Simulator.

This maneuver has been performed with an initial longitudinal velocity vx(0) = 28
m/s. To make the maneuver more challenging, at t = 3.5 s there a change of the friction
from µ = 0.9 (dry road) to µ = 0.4 (wet road) has been considered. A random variation
has been superimposed to these values. The simulation has been performed using the
CarSim software, with a nonlinear car model C–Class Hatchback provided by CarSim (see
Fig. 5.1.c). The tire selected in CarSim has been the 245/40–R17, with a normal force of
1725 N. Independent suspensions on both axles have been used. The variables measured
from CarSim were vx, vy, αz, ωz, ax, and ay. As far as the actuators are concerned, to
have a more realistic situation, a saturation of 3◦ for δc, and a saturation of 8000 Nm for
Mz have been considered.

5.4.1 Super–Twisting Controller with Estimated Parameters

The controller gains have been set equal to λ11 = λ12 = λ21 = λ22 = 250. A threshold
b = 0.1 is considered for ϕf ,ϕr to apply (5.19). A simple filter with G(s) = 1/(1 + 10s)

has been used to filter θ̂f , θ̂r.

Figs. 5.2–5.6 show the importance of parametric estimation. In fact, in the case of
controller (5.13) with nominal parameter values (obtained from CarSim) Df0 = Df =
1904.02 N, Dr0 = Dr = 1904.02 N, µ0 = 0.9 the reference trajectories can not be
correctly tracked (Figs. 5.2.a, 5.2.b, 5.3.a, 5.3.b). On the contrary, in the case of the
controller (5.13) with parametric estimation (5.19) one obtains a satisfactory tracking,
see Figs. 5.2.c, 5.2.d, 5.3.c, 5.3.d. Fig. 5.4 shows the parameters θf , θr, varying abruptly

at t = 3.5 s, along with their estimation θ̂f , θ̂r.

5.4.2 STC versus PI–based Controller

In this section we compare the STC (5.13) with the PI–based controller (5.14). In order
to have a good comparison, the control gains of the STC (5.13) have been fixed equal to
λ11 = λ12 = λ21 = λ22 = 250, while the controller gains for the PI–based controller (5.14)
have been chosen equal to k10 = k20 = 22.5, k11 = k21 = 18. These values ensure
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Figure 5.2: STC (5.13) with nominal parameters: a) vy (solid) and reference vy,ref (dashed)
[m/s vs s]; b) Tracking error e = vy−vy,ref . STC (5.13) with parametric estimation (5.19):
c) vy (solid) and reference vy,ref (dashed) [m/s vs s]; d) Tracking error e = vy − vy,ref .
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Figure 5.3: STC (5.13) with nominal parameters: a) ωz (solid) and ωz,ref (dashed) [rad/s
vs s]; b) Tracking error e = ωz −ωz,ref . STC (5.13) with parametric estimation (5.19): c)
ωz [rad/s vs s]; d) Tracking error e = ωz − ωz,ref .
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Figure 5.4: Vehicle parameters: a) Real θf (back) and estimated θ̂f (gray) [N vs s]; b)

Real θr (black) and estimated θ̂r (gray) [N vs s].
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comparable results for the ST and PI–based controllers in the case of absence of parameter
variations.

First, we consider the case in which m, Jz are equal to the nominal values, while
θf = θf0 = µ0Df0, θr = θr0 = µ0Dr0. With both the ST controller (5.13) and the PI–
based controller (5.14) the references are well tracked, see Figs. 5.5.a, 5.5.b and 5.6.a,
5.6.b. As can be noted, the tracking errors are small for both the controllers.

To test the robustness properties of these controllers, we consider a parameter vari-
ation with respect to the nominal ones, setting m0 = 0.81 m, Jz0 = 0.92 Jz, θf = µDf ,
θr = µDr, Df = 0.95 Df0, Dr = 0.97 Dr0. Moreover, since the function sign(·) is
discontinuous in zero, and therefore very sensible to noise and quantization errors, the
approximation sign(x) ≈ 2 arctan(100x)/π has been considered. It is worth noticing that
a consequence of this approximation is the loss of the finite time convergence property.
In fact, the approximation of the sign function by an arctan function replaces locally
(i.e. around the sliding surface) the sliding mode behaviour by a high gain behaviour.
However, this doesn’t change the stability domain.

When dealing with parameter variations, the tracking behavior is better with the STC,
due to its robustness with respect to matching perturbations. As shown in Figs. 5.5.c,
5.5.d and 5.6.c, 5.6.d, both controllers show good results but, nevertheless, we can note
that the STC ensures a smaller tracking error.
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Figure 5.5: Case of nominal parameters in the controllers: a) vy with the STC (5.13)
(solid black) and with the PI–based controller (5.14) (solid gray), and reference vy,ref
(dashed) [m/s vs s]; b) Tracking error e = vy − vy,ref with the STC (5.13) (black) and
with the PI–based controller (5.14) (gray). Case of real parameters in the controllers:
c) vy with the STC (5.13) (solid black) and with the PI–based controller (5.14) (solid
gray), and reference vy,ref (dashed) [m/s vs s]; d) Tracking error e = vy − vy,ref with the
STC (5.13) (black) and with the PI–based controller (5.14) (gray).

5.5 Conclusions

In this chapter a nonlinear control law using estimated parameters has been designed.
The parameter estimation and the controller design problems have been solved using the

102



0 5

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
(a)

0 5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
(b)

0 5

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
(c)

0 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
(d)

Figure 5.6: Case of nominal parameters in the controllers: a) ωz with the STC (5.13)
(solid black) and with the PI–based controller (5.14) (solid gray), and ωz,ref (dashed)
[rad/s vs s]; b) Tracking error e = ωz − ωz,ref with the STC (5.13) (black) and with the
PI–based controller (5.14) (gray). Case of real parameters in the controllers: c) ωz with
the STC (5.13) (solid black) and with the PI–based controller (5.14) (solid gray), and
ωz,ref (dashed) [rad/s vs s]; d) Tracking error e = ωz − ωz,ref with the STC (5.13) (black)
and with the PI–based controller (5.14) (gray).

high order sliding mode technique. The simulation results highlight the efficiency of the
proposed approach. In particular, the control scheme takes particular advantage of the
finite time parameter estimation. It is worth noting that simulation shows the robustness
of the controller with respect to measurement noise and parameter uncertainties. In the
future, the real time implementation of this controller will be investigated.
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Chapter 6

Conclusions

6.1 General element of conclusion

In this work we have investigated various aspects regarding observation and estimation
applied to Network Control Systems. The observation and estimation schemes are then
used for control. Motivated by the ever greater integration of physical and computer
process introducing both new opportunities and constraints. Those considerations has
led us to study three related topics. First, an event–triggering scheme, for both sensors
and actuators, has been considered for the observation and control of linear systems.
The results show that event–triggering schemes are robust with respect to time–varying
uncertainties. Moreover An impulsive observer has been designed, and a ”separation
principle” has been proved, stating that one can design separately an event–triggered
impulsive observer, even for unstable systems, and an event–triggered controller relying
on the availability of the full state. The resulting observer–based controller guarantees
practical stability to the origin.

The observer–based stabilization of a class of non linear systems has also been stud-
ied. Sufficient conditions have been determined in terms of input–to–state stability, in
order the ensure the existence of an event–triggering policy. It has been shown how to
design an impulsive observer along with an event–triggering sampling policy to ensure
the stabilization of the given class of non linear systems, and the validity of a separation
principle.

In the second part of this thesis we have considered a network of autonomous agents,
and we have showed how a decentralized estimator can solve the coordination problems.
These results assumes communication among agents. The results exposed could be the
object of further studies considering more complex class of systems and more challenging
control and estimation task.

Considering a complex vehicle model, the tire–road friction coefficient is estimated
using a super–twisting observer. The control action, for tracking of a given signal, is
given by a super–twisting controller, and a comparison between the proposed control
scheme and a classical PI controller is made using CarSim, a high–fidelity simulation
environment. This work results could be extended to a network of collaborative agents
exchanging information.

The topics considered here are relevant in the framework of Cyber-Physical Systems
and it could be interesting to consider their junction as future work, where vehicles with
complex dynamics and complex tasks would have to exchange information to enhance
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their performance while minimizing the communication load. Indeed intelligent cars, eco-
driving and platooning are already being consider by the industry yet many problems of
theoretical nature remains.

6.2 Broader research direction

In a more general setting, the investigation effectuated and the ideas developed during this
thesis could be useful in considering other classes of systems. Indeed, both network control
systems and observation are ubiquitous. In neural network where massively parallel
computation is performed a huge amount of resources is devoted to information exchange
and event triggered paradigm could be a way of reducing this burden. Another interesting
perspective is the application of the concept developed for network control systems in the
area of biology, either for modelling or for estimation and control. In the automatic control
community a growing amount of work is dedicated to biological system, to both observe
and control biological systems and to design bio-inspired controller. An interesting area of
investigation would then be event triggered modelling and control for biological systems.
Finally, another very ambitious topic is the synthesis of bio-inspired even triggered policies
for network control systems.
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