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2 Chapter I. General introduction

I.1 Fundamental Science with nano-mechanical devices

Fundamental physics is a challenging field of investigation, the study of a spe-
cific system requiring dedicated detectors/probes whose design and development are
topics of research on their own. In astrophysics, the latest discoveries on the Uni-
verse arose from telescopes and satellites. In nuclear physics, detectors and counters
are essential for the comprehension of elementary particles. In condensed matter,
SQUIDs (Superconducting QUantum Interference Devices) give access to electric
signals almost down to the quantum limit (about tens of ~ energy resolution), SEM
(Scanning Electron Microscopes) permit to observe matter at the nanometre scale
and LASER (Light Amplification by Stimulated Emission of Radiation) are at the
core of many detection techniques, like the Raman spectroscopy.

Micro-Electro-Mechanical Systems (MEMS) are also extremely valuable sen-
sors for condensed matter physics. They are small (at least one of their dimen-
sion being in the µm range), light (and thus very sensitive) and they are able
to transduce an electric signal into a mechanical deformation (and vice-versa).
As foreseen by R. P. Feynman’s lecture There’s Plenty of Room at the Bottom
[Feynman 1993], the development of MEMS increased with the expansion of their
possible applications, and a large contribution to this field came from the Industry.
While those micro-technologies are employed in everyday life for example in smart-
phones, watches or cars, they are also implemented in applied science as electronic
switches [Rebeiz & Muldavin 2001], for frequency control [Nguyen 2007] or in Lab-
on-a-chip technologies using bio-MEMS [Verpoorte & de Rooij 2003], the list being
non-exhaustive. Furthermore, fundamental research also benefits from the sensitiv-
ity of such devices, for instance with the search for deviations in the law of gravity
at small lengthscales (as predicted from some extensions of the Standard Model)
[Chiaverini et al. 2003], with the study of the Casimir force (the attraction between
two closeby metallic plates) [Chan et al. 2001] or as a thermometers for superfluid
3He experiments at ultra-low temperatures (below 1 mK) [Triqueneaux et al. 2000].

As the fabrication process improved, the dimensions of the devices could get
reduced, enabling the fabrication of NEMS (Nano-Electro-Mechanical Systems).
Vibrating from hundreds of kHz to the GHz range [Island et al. 2012], they can
be made of silicon [Cleland & Roukes 1996], diamond [Espinosa et al. 2003] or car-
bon nano-tubes [Bachtold et al. 1999], with geometries such as drums, cantilevers or
doubly clamped beams, driven through capacitive, magnetomotive
[Cleland & Roukes 1999] or self-oscillating schemes [Barois et al. 2013], the list be-
ing non-exhaustive. Following on the path of MEMS, these nano-resonators demon-
strate a very high mass sensitivity [Hanay et al. 2012], although it is not their only
interesting feature: they are actual model systems for numerable degree of freedom
physics [Jacobs 2012]. The NEMS is thus not only a probe for condensed matter,
but also the system under study itself, investigating fundamental areas of Science.
Both aspects will be discussed in this thesis, although the focus will be essentially
on the latter. Among the different kinds of NEMS existing in the literature, the
structures at the core of this thesis are simple beam-based resonators.
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A NEMS resonator can be thought of as an almost ideal 1D harmonic oscillator
which makes it very convenient when it comes to test fundamental theories: its
basic dynamic properties are rather simple to express from (rather simple) theories.
However, in order to use this device for such an ambitious purpose, a cryogenic
environment is required for two distinct practical reasons.

On one hand, a low temperature environment reduces electrical noise, enabling
to perform more sensitive measurements. It permits to handle high currents using
superconducting lines and thus to work with large magnetic fields. With the NEMS
confined in a leak-tight experimental cell, the Kelvin temperature range leads to
cryogenic vacuum which contributes to cleaner acquisitions of mechanical vibrations,
free from spurious outgassing and environmental fluid friction.

On the other hand, the temperature is a key parameter in condensed matter, as
the phenomena involved in a system change with the energy scale that is probed.
Working at cryogenic temperatures hence enables to prevent undesired physical ef-
fects that could spoil our measurements, like the thermal contractions in materials
which are frozen typically below 50 K. Last but not least, thanks to their high res-
onance frequency NEMS can probe quantum physics at low enough temperatures
(with respect to the oscillator’s fundamental state energy).

Reaching the quantum ground state in a mechanical macro-system is one of
the most challenging motivations in the field of NEMS, where the resonator it-
self becomes the quantum object under study, typically in the millikelvin tempera-
ture range [Regal et al. 2008, O’Connell et al. 2010]. Furthermore, quantum matter
can be studied through its interactions with a nano-mechanical device: this re-
search can be focused on quantum solids with the constitutive materials of the
NEMS (so-called two level systems present in amorphous materials like silicon ni-
tride [Southworth et al. 2009]), or on quantum fluids with the immersion of the
probe in a quantum fluid like 3He or 4He [Kraus et al. 2000]. However, the present
manuscript does not focus on the quantum aspects, and our experiments are mostly
performed around the kelvin which already gives access to complex and elegant (yet
classical) physics. Indeed, making use of the non-linearities, it is possible to build
systems of ubiquitous interest, and one rising utilisation of NEMS is to create anal-
ogous systems, implementing fundamental non-linear phenomena or even creating
classical analogues of quantum effects. For instance, using two degenerate flexural
modes of a nano-beam (experiencing in-plane and out-of-plane motion), a classi-
cal two level system has been realised displaying the equivalent of Rabi oscillations
[Faust et al. 2013]. The phenomenon is based on a non-linear interaction between
those two modes, and poses the challenging question: what is really quantum in a
Rabi-type measurement. In a more general view, any coupling behaviour between
distinct modes emerges from non-linearities, which is at the core of this thesis. The
first step before using NEMS as probes for fundamental physics is thus to under-
stand the nano-resonators’ behaviour itself, which implies a thorough study of the
nano-structure on its own.
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I.2 Positioning of realised research

In Chap. II we describe the experimental set-up and characterise the nano-
structures we manipulated. The peculiarity of our layout is to be optimised for fine
measurements of the devices’ mechanical properties (high-impedance environment).
We demonstrate that these measurements are thoroughly calibrated, which is essen-
tial in order to use the NEMS as a model system, and we present in real units the
resonators’ parameters (motion in meters, force applied in Newtons).

By using the intrinsic non-linearity of the devices, we show in Chap. III our
findings on the coupling between modes within a single resonator. Taking the par-
ticular case of coupling one mode with itself through a two-tone drive, we develop
both theoretically and experimentally a new scheme of high precision measurement
which transduces motion into frequency.

By controlling the non-linearity of an intrinsically highly linear NEMS, we inves-
tigate in Chap. IV the bifurcation process which is known to exhibit universal scaling
laws. Making use of the control of the non-linearity, the phenomenon which is at the
heart of the bifurcation phenomenon, we could explore a wide range of parameters
up to the region where no analytical theory predicts its behaviour. After a descrip-
tion of the model’s limit, we demonstrate both experimentally and numerically that
the scalings hold in a range beyond the analytical predictions. We also discuss and
show preliminary results on an application of the bifurcation process: the detection
and characterisation of low frequency intrinsic two-level systems (TLS) present in
the resonator itself.

We present in Chap. V actual implementations of the NEMS as sensors for
condensed matter physics. Various schemes are developed to enhance the probing
capabilities of nano-resonators, and the non-linear schemes of Chap. III are some of
them. In the first section of the present chapter we describe an audio-mixing tech-
nique that enables to imprint a low-frequency (audio) signal into the motion of the
high-frequency (r.f.) nano-mechanical mode. Cooling down the NEMS to tens of
millikelvin, we used the standard magnetomotive scheme to probe the mechanisms
at the essence of the dissipation in our structures, namely the intrinsic TLS present
within the constitutive materials. Immersing our structures in a rarefied gas, we ex-
plored the interactions with a benchmark fluid (4He gas at 4.2 K) and demonstrated
our ability to access unique microscopic physical properties: here studying slippage
and the boundary layer in the molecular regime.

To finish with, we conclude with a brief summary of the manuscript in Chap. VI,
highlighting the contributions of this work to the field of NEMS and the associated
perspectives.
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I.3 Résumé

La physique fondamentale est un domaine d’investigation ambitieux, l’étude d’un
système spécifique exigeant des détecteurs/sondes dédiés, dont la conception et le
développement est un sujet de recherche en soi. En physique de la matière con-
densée, de tels outils ont été mis au point suivant les exigences de cette spécialité,
tel que les SQUIDs (Superconducting Quantum Interference Devices) ou les SEMs
(Scanning Electron Microscopes). Les MEMS (Micro-Electro-Mechanical Systems)
bientôt suivi par les NEMS (Nano-Electro-Mechanical Systems), ont aussi leur place
dans cette liste de part leur petite taille, leur faible masse, et leur capacité à trans-
férer un signal électrique en un signal mécanique, et inversement. Leur nature et leur
utilisation sont très variés, et dans cette thèse nous nous concentrerons uniquement
sur des nano-résonateurs de géométrie assez simple. On dissocie principalement deux
utilisations de ces nano-structures : comme sonde en physique de la matière conden-
sée et comme système modèle où le NEMS lui-même devient le système à l’étude.
Même si ces deux aspects seront étudié dans ce manuscrit, cette dernière facette sera
la plus détaillée. Afin de mener à bien ce projet, nous utilisons un environnement
sous vide et à basse température (essentiellement un cryostat à 4.2 K) pour obtenir
des mesures précises tout en ayant un contrôle sur les paramètres physiques ressentis
par le NEMS (la pression et la température). Plusieurs sujets de physique fonda-
mentale ont mis à contribution l’aspect de système modèle du NEMS, en particulier
en physique quantique. Il existe cependant d’autres domaines accessibles, comme
la mise au point de systèmes analogues entre la physique quantique et la physique
classique, ou encore l’étude des systèmes non-linéaires qui est la thématique au cœur
de ce manuscrit.

Dans le Chap. II, nous présentons le dispositif expérimental mis en place pour
étudier nos échantillons. Après une calibration détaillée de nos lignes, nous étudions
les propriétés physiques élémentaires de nos nano-résonateurs sur une large gamme
de différents paramètres. En utilisant la non-linéarité intrinsèque de nos poutres
doublement encastrées, nous présentons dans le Chap. III le couplage entre deux
modes d’un seul résonateur. Nous nous intéressons ensuite au cas particulier d’un
dispositif à deux tons, excitant un seul mode. En contrôlant la non-linéarité induite
dans un NEMS initialement linéaire, nous étudions dans le Chap. IV le phénomène
de bifurcation entre deux états de notre structure, dont le comportement au sein
d’une hysteresis est prédit comme étant universel. Nous verrons alors comment
ce phénomène peut être utilisé pour détecter du bruit basse fréquence dans nos
nano-résonateurs. Nous présentons dans le Chap. V quelques exemples développés
durant cette thèse sur l’utilisation des NEMS comme sonde en matière condensée.
Nous y verrons leurs applications dans un dispositif de mélange de fréquences, de
caractérisation des systèmes à deux niveaux présents dans le matériau constituant
nos nano-structures, et de détecteur de pression dans un gaz raréfié au bord d’une
surface. Pour finir, nous concluons sur l’ensemble de ce manuscrit et du travail
effectué durant cette thèse dans le Chap. VI.
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II.1 Introduction

Nano-mechanical resonators are continuously attracting more and more interest
with the advance of technologies (fabrication, detection, sensitivity) and modeling.
The richness and complexity emerging from these devices contribute to many fields
which spread from applied to fundamental physics, involving for example micro-
fluidics, non-linear phenomena or condensed matter properties. However, in order
to use NEMS as tools or probes, it is essential to thoroughly understand their basic
properties in the first place. We present in this chapter the experimental techniques
that we used in the whole thesis to characterise our resonators.

First of all, we will shortly describe the nano-fabrication processes we use to
make silicon and silicon nitride NEMS. To study those devices, we cool them down to
temperatures around 1 K in a Helium cryostat and measure them through electrical
bond contacts which connect the 4.2 K to the 300 K environment. Using the so-
called magnetomotive scheme, we both actuate and detect the NEMS vibration by
means of an A.C. applied current and a static magnetic field. By having a side gate
electrode close to our resonators, we can tune mechanical mode properties which
enables complex dynamics to be generated. Kelvin temperatures are low enough for
most of the issues we deal with. However some NEMS research areas require much
lower temperatures to be reached (millikelvin, and even sub-millikelvin). This shall
be discussed in Chap. V.

The electrical measurement needs then to be calibrated in order to extract in real
units (meters, newton) the dynamical properties of the NEMS. We will present the
general idea enabling the definition of the injection, the capacitive and the detection
lines, using the Joule effect to obtain an in-situ calibration of our resonators.

Last but not least, we present the characteristics of different NEMS we made and
compare them with one another. In order to do so, we introduce the concept and
the issues of measuring higher modes, and their behaviour as we increase the mode
number or the beam length. We then show the dependence of the dissipation and
the resonance frequency of the NEMS with respect to the temperature. Finally, we
present the displacement response of the resonator from the linear to the anelastic
regime, and introduce the so-called Duffing non-linearity which eventually leads to
new emerging phenomena and rich physics.
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Note on the definition of experimental/theoretical parameters:

Experimentalists and theoreticians often use different notations when it comes to
define oscillating frequencies : f (in Hertz) and ω (in rad.s−1), such that ω = 2π f .
Since they are relevant either for experimental results or for mathematical expres-
sions, we use in this manuscript both notations depending on the context. Hence for
clarity, the definition of a frequency in this thesis always applies for both notations.
For instance, defining the loaded linewidth of a resonance ∆fload automatically im-
plies the definition of ∆ωload = 2π∆fload.

Along the same lines, experimentalists are used to measure amplitudes in RMS
(root mean square) units, while theoreticians use peak. For consistency we present
data expressed only in peak units.
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II.2 Fabrication of NEMS

In this thesis, we mainly focus on non-linear dynamics of NEMS. Hence we will
not particularly require extremely high resonance frequencies (as opposed to the
GHz range used for quantum experiments). On the other hand, we need a high
enough quality factor to be in the Lorentzian approximation, but the linewidth ∆f

should be large enough to guarantee a fast enough measurement time τ =
1

π∆f
(mainly for practical reasons).

Silicon (Si) and silicon nitride (SiN) vibrating nano-structures are well-known
to be robust and the SiN has an in-built tensile stress. Thus the frequency, non-
linearity and quality factor can be controlled beforehand essentially on demand,
which makes those structures appropriate for our objectives. We present in the
following two fabrication techniques used for the two kinds of devices investigated
in Chap. III and Chap. IV: doubly-clamped SiN nano-beams and goalpost shaped
Si nano-resonators. We relied only on those fabrication techniques.

II.2.1 Silicon goalpost structure

We start from a thick SOI (Silicon On Insulator) wafer with a radius of 20 cm
composed of a 150 nm silicon layer over a 1 µm sacrificial silicon oxide layer on top
of a silicon under layer (of about 300 µm). After cutting a chip of 1 cm2, we clean
it with both acetone and isopropanol (IPA) and then dry it with nitrogen gas. We
bake resist (PMMA 4%) on top of it (about 1 µm thick), print the pattern of the
structure we want on it with e-beam lithography and finally develop the resist with
a MIBK solution. We evaporate at room temperature an aluminium (Al) layer and
using an acetone solution we lift-off both the resist and the Al wherever the e-beam
lithography did not flash the resist, leading to an Al mask only where the structure
is supposed to be. By means of Reactive Ion Etching with sulfur hexafluoride gas
(SF6) we anisotropically etch the Si overlayer on the whole chip except where the Al
is present, patterning the structure. The 1 µm oxide is then removed by a chemical
vapour hydrofluoric (HF) etching. This step etches also away the oxide underneath
the Al mask, which releases the vibrating structure and creates an undercut on the
connecting pads. We then remove the Al mask and evaporate a new 30 nm thick
aluminium layer on the whole chip. We end up with a 150 nm thick silicon nano-
structure covered by an aluminium layer of 30 nm, released from the bulk by a 1 µm
gap. All those steps are presented in Fig. II.1a. In Fig. II.2a we show a Scaning
Electron Microscope (SEM) picture of the goalpost we use in the following, made
by our colleague Jean-Savin Heron [Collin et al. 2011b].
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Figure II.1: Schematic of the side view of nano-fabrication processes used for the Si
goalpost (a) and the SiN doubly-clamped beam (b). Each step is described in the
text.
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(a)

2 µm

(b)

Figure II.2: Scanning Electron Microscope (SEM) pictures of typical nano-structures.
a: goalpost with paddle of 7 µm and feet of 3 µm long, for a Si thickness of 150 nm
with an Al thickness of 30 nm on top of it, and an overall width of 280 nm. b: 15 µm
long doubly-clamped beam, for a SiN thickness of 100 nm and an Al thickness of
30 nm, and an overall width of 250 nm. Note the presence of a gate electrode close
to the nano-devices (with a gap of 100 nm from the resonators). In our experiments,
the NEMS are vibrating out-of-plane.

II.2.2 Silicon nitride doubly-clamped beam

The wafer we used for this nano-wire is made of silicon of about 300 µm thickness
coated with a silicon nitride layer of 100 nm on both faces. The fabrication tech-
nique is then similar to the one used for the goalpost structure, except that we etch
the silicon using XeF2 to release the beam. We obtain a 100 nm thick silicon nitride
beam with a 30 nm thick aluminium layer which is released from the bulk silicon by
a gap which size depends on the XeF2 final etching exposure time. The aluminium
mask can be kept as conducting layer or equivalently can be removed in a wet etch
and replaced by a full field evaporation of metal. Again, we present the different
steps in Fig. II.1b. In Fig. II.2b we show an example of the resulting NEMS. We
used this fabrication technique to obtain doubly-clamped beams of lengths ranging
from 10 µm to 300 µm. Most of the doubly-clamped beams we used were made by
our collaborators Kunal Lulla and Thierry Crozes.

When the fabrication process is validated by our SEM observation, the devices
are electrically tested and finally mounted onto the sample holder. We glue them
using GE-Varnish, and bond the NEMS contacts to the electrical tracks of the
sample holder using 30 µm diameter aluminium wires. The metallic experimental
cell is then hermetically sealed using an indium ring.
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II.3 General set-up

II.3.1 Cooling down to Kelvin temperatures

In the experiments presented in the next chapters, cryogenic temperatures are
used in order to ensure optimal operating condition: we benefit from cryogenic
vacuum, less electrical and mechanical noise, and an overall better NEMS quality
(high quality factors, smaller thermal contraction, less degassing).

Detection

Cell

Pt

Injection

N2He
4

Pumping line

(a)

RAllen-Bradley

R
Heater

Cell

Injection Detection

Coil

B

(b)

Figure II.3: Schematic of our 4.2 K cryostat (a) and the experimental cell (b). The
cryostat consists of two baths (liquid N2 and 4He) separated by a vacuum chamber,
to cool down the experimental cell at 4.2 K. This cell is connected to the 300 K
environment through electrical wires, with injection and detection lines, surrounded
by a coil. The goalpost picture is taken as an example.

As presented in Fig. II.3a, our cryostat consists of two baths. The first one is
filled by liquid nitrogen (N2) and is separated from the second bath by vacuum.
The second bath is filled with liquid Helium and cools down to 4.2 K the outside of
our experimental cell. Prior to cooling, the cell is pumped to about 10−4 mbar, and
the remaining gas is then adsorbed (cryo-pumped) on the inner surfaces leading to
a vacuum < 10−6 mbar at low temperatures. A pumping line connected to the 4He

bath enables to reach temperatures down to 1.5 K.
The cell (Fig. II.4) is soldered to a pump line at the bottom of a stick. A few

copper disks are fixed along it to reduce thermal radiation from outside and electri-
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cal lines link the 4.2 K to the 300 K environment. Beside the NEMS there were two
thermometers, a heater and a coil connected within the cryostat with twisted (con-
stantan and copper) wires. The first thermometer is a platinum resistor bolted on
the first copper screen and is useful for temperatures above 50 K typically, verifying
thermalisation at nitrogen temperatures, while the second one is an Allen-Bradley
carbon resistance appropriate for liquid Helium temperatures. This last thermome-
ter is mounted directly on the sample holder, and defines the NEMS temperature.
The heater, also fixed to the sample holder, is a 100 Ω resistance and enables to
regulate the sample temperature while the cell remains at Helium bath temperature.
The coil is made of superconducting niobium-titanium wires enabling to reach fields
up to 1.2 T. We used an HP 34401A voltmeter to measure the resistance of the plat-
inum thermometer and a Kepco current generator to drive the coil. The sample’s
thermometer and heater are connected to a Barras-Provence resistance bridge. The
sample holder temperature can then be regulated from 1.5 K to 30 K.

bonding
wires

chip

tracks
electrical

pump
line

injection/detection and
gate connectors

thermometer

heater

Figure II.4: Picture of the inner cell in which we glue the chip, as described in the
text. Heater and thermometers are fixed on the back of the copper sample holder.

II.3.2 Actuation and detection of NEMS

As shown in Fig. II.3b and in the schematic of Fig. II.5, we use three electrical
lines to actuate and detect the NEMS: an injection line, a detection line and a line
connected to a gate electrode. In the electrical language, the NEMS resonance is
equivalent to a r ` c circuit which equivalent parameters can be computed from the
mechanical ones [Cleland & Roukes 1999].

Since we are dealing with vibrating nano-structures we need a way to drive them
resonantly. One standard method of exciting the NEMS is to use the magnetomotive
scheme [Cleland & Roukes 1999]. We apply an A.C. current Ii = I0 cos (ω t) at
frequency ω through the NEMS using an A.C. voltage generator at 300 K biasing a
1 kΩ drive resistance kept at 4.2 K. The voltage generator is a Tektronix AFG 3252
which can deliver a voltage drive Vi from DC up to 240 MHz over about two orders
of magnitude in amplitude (tens of mV to V). We used 20 and 40 dB attenuators to
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Figure II.5: Schematic of the electrical circuit in our experiment. We drive the NEMS
with a voltage Vi, measure an output voltage Vd and modulate a gate electrode Vg
capacitively coupled to the NEMS.

reach the µV range needed for our experiments. In order to electrically protect the
devices, we added a grounding box which connects/grounds the cryostat lines from
the 300 K electric circuit. A static magnetic field

−→
B = B ~y perpendicular to the

NEMS length and which is assumed to be constant and unidirectional on the whole
chip is also present. Using both inputs, an infinitesimal Laplace force is generated
on each beam sub-element

−→
dz′:

d
−→
FL = Ii

−→
dz′ ×

−→
B = IiB dz

(
~z′ × ~y

)
, (II.1)

with
−→
dz′ = dz ~z′ the path followed by the drive current along the NEMS of length

l, as presented in Fig. II.6. Since the element
−→
dz′ moves in the ~x direction under

this excitation with an amplitude Ψn (z)xn (t), the power associated to the mode n
motion is:

Pn =

∫
l
Ψn (z) ẋn (t) IiB cos [θ (z)] dz, (II.2)

with cos [θ (z)] = 1√
1+(Ψ′n x)2

, Ψn is the mode shape and xn its amplitude. The

cosine term can always be very well approximated by 1 in all our experiments, and
Pn can be written:

Pn = Ii l B gn ẋn (t) , (II.3)

with gn = 1
l

∫
l Ψn dz a mode-dependent parameter. From Eq. (II.3) , the effective

force acting on mode n is immediately defined as:

−−→
FL,n (t) = gn Ii (t) l B ~x. (II.4)

For a doubly-clamped beam in its first flexure, defining xn (t) as the amplitude
of the mid-point motion one calculates g0, h ≈ 0.637 (high stress) and g0, l ≈ 0.523
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Figure II.6: Schematic of a top view and of a side view of the first flexural mode of
a doubly-clamped beam and of a goalpost structure (respectively top and bottom,
left and right). The path followed by the current is represented on the side view by
the ~z′ axis and is slightly misaligned from the fixed ~z axis by the NEMS motion,
represented by the mode shape Ψn of the driven mode n (doubly-clamped) or the
paddle distortion (goalpost, almost straight).

(low stress). For a goalpost structure, one simply has g0 ≈ 1 (the paddle bar remains
essentially straight).

The mechanical susceptibility of the beam transduces the force
−−→
FL,n into a dis-

placement xn ~x, and solving the second law of Newton we can deduce the displace-
ment amplitude of the NEMS for mode n, in the linear regime limit:

ẍ+ ∆ωn ẋ+ ω2
0,n x =

FL,n
mn

, (II.5)

with ∆ωn quantifying the dissipation experienced by the motion and ω0,n =
√

kn
mn

the resonance frequency. The mass mn and spring constant kn associated to the
mode n can be defined from the kinetic and flexural/tensioning energies involved in
the motion:

Em =
1

2
ẋ2
n

∫
l
ρ ewΨ2

n (z) dz =
1

2
mn ẋ

2, (II.6)

Ek =
1

2
x2
n

∫
l

[
E I

(
∂2Ψn (z)

∂z2

)2

+ T
∂2Ψn (z)

∂z2
Ψn (z)

]
dz =

1

2
kn x

2, (II.7)

with ρ the mass density of the beam and E its Young’s modulus. The second
moment of inertia is defined as I = 1

12 w e
3, with w the width and e the thickness.
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Depending on the in-built stress T
w e in the material, one of the two terms in the

integral of Eq. (II.7) can be neglected. Thus in our devices, the spring constant kn
is defined either by the Young’s modulus for the low stressed goalpost structures or
by the stress for the high stressed doubly-clamped ones.

From now on, we shall drop the index n for simplicity. In the limit of high quality
factor Q = ω0

∆ω , the displacement x is described by a Lorentzian in the frequency
domain:

x (ω) =
FL

2mω0

1

(ω0 − ω) + i ∆ω
2

= χ (ω)FL, (II.8)

where χ (ω) is called the mechanical susceptibility. Now that the NEMS can be
excited, the next step is to measure its oscillation through the detection line.

Since the NEMS oscillates perpendicular to
−→
B , it cuts the field lines by spanning

an effective surface S, and the corresponding magnetic flux is written:

dΦ =

∫
l

−→
B · ~y d2S = B

∫
l
Ψ dz′. dx (II.9)

which produces a voltage source due to the Lenz induction law:

VL = −Φ̇, (II.10a)

VL = −g B l ẋ, (II.10b)

with g the mode parameter already introduced. For goalpost devices, the area
spanned is an arc of circle which brings a cosine term in the scalar product

(
~y′. ~y

)
.

However, for our experiments this cosine can always be approximated to 1 (Fig. II.7).
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Figure II.7: Schematic of the surface S (in light green) cutting the field lines, leading
to an electromotive voltage VL for (a) a doubly-clamped beam and (b) a goalpost
device (only the paddle is represented in the main figure, while only one foot is
represented in the inset). Note in the latter case that the surface is patterned onto
an arc of circle (inset of b), due to the nature of the mode’s motion. However, for
our small displacement, we can approximate it to a plane surface.

By measuring this voltage we can deduce the displacement amplitude. The
NEMS is connected through a four point measurement scheme to a lock-in detec-
tion enabling the direct measure of the NEMS response. Nevertheless, the voltage



18 Chapter II. Experimental techniques

measured Vd does not directly correspond to the NEMS amplitude, one should first
subtract the ohmic voltage Ii r0 due to the metallic conductor: indeed the alu-
minium layer of the NEMS is not superconducting above 1.5 K. We used a SR844
Lock-in amplifier with a 1 MΩ detection input referenced on the drive current fre-
quency, which enables to extract the in-phase VX and out-of-phase VY components
of the motion contained within VL, such that |VL| = VR =

√
V 2
X + V 2

Y . Our phase
reference thus directly comes from the Tektronix voltage generator Vi, and gives:

VX =
g B l FL

2m

∆ω
2

(ω0 − ω)2 +
(

∆ω
2

)2 , VY =
g B l FL

2m

ω0 − ω
(ω0 − ω)2 +

(
∆ω
2

)2 . (II.11)

Note that while the displacement amplitude is linear with the magnetic field, the
measured voltage depends quadratically on it (since FL ∝ B). Moreover, the de-
tected voltage is simply proportional to the motion, and one verifies the conservation
of injected energy: |VL| Ii = FL |ẋ|.

From Eq. (II.1) and Eq. (II.11) we can now measure the motion of our NEMS in
one of its out-of-plane flexural modes, as seen in Fig. II.8, from which we see that
∆ω defines the full width at half maximum of the Lorentzian peak (called simply
the linewidth) and ω0 is its position. Vmax is the height of the peak at resonance
(VX component), where the VY component is zero.
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Figure II.8: Resonance line of the goalpost first flexural mode measured at 4.2 K
with the lock-in amplifier. The in-phase (black) and quadrature (red) components
of the signal are presented in volt units. Lines are fits, using Eq. (II.11), from which
we can extract both resonance frequency and linewidth (here f0 = 7.07 MHz and
∆f = 1500 Hz). Vmax is the height on resonance of the peak.
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II.3.3 Driving higher harmonics

Ideal oscillating systems have an infinite number of modes which differ by their
resonance frequency and characteristics. The first flexural modes Ψn (x) (with
n = 0, 1, 2) are represented in Fig. II.9.

f
0

f  =  2 f
01

f  =  3 f
02

Figure II.9: Schematic of the flexural mode shapes Ψn of an ideal string with perfect
clamps. We represent here the three first modes along the x axis. In this ideal high
stress picture, the scaling of the resonance frequency for each mode is fn = (n+ 1) f0.
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Figure II.10: Schematic of our actuation (a) and detection (b) technique on a beam,
affecting the capability of measuring different modes. a: only an asymmetric force Fa

could drive an odd mode, which cannot be created with our symmetric Laplace Force
FL. b: with an odd mode, the Lenz law would generate an average zero electromotive
voltage VL.

With our real resonators and high impedance set-up, we are able to detect some
of these higher harmonic flexural modes. However the magnetomotive scheme limits
us to modes with an even number of nodes because of both the actuation and
detection set-up symmetry (the gn factor introduced in Sec. II.3.2 is otherwise zero).
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On one hand the Laplace force we create cannot generate an asymmetric excitation
(Fig. II.10a) and on the other hand the electro-motive voltage we measure from the
flux cut by the NEMS should not be cancelled by its own mode shape (Fig. II.10b).
Hence we have only access to half of the flexural modes of our beams (fundamental
mode n = 0, second harmonic n = 2, fourth harmonic n = 4, ...).

n = 2 n = 4 n = 6n = 0

Figure II.11: Top: schematic of the distortion of the goalpost as we drive it. Three
effects, each one acting on the other, are involved: the feet bend (blue), a torsion is
applied on each foot (green) and hence the paddle bends (purple). Bottom: ANSYS
(finite element analysis software) simulations of the four first symmetric modes of
our goalpost, exhibiting exotic shapes, generated by our co-worker Jean Guidi.

However the modes of the goalpost structure have a different behaviour due
to their more complex geometry. While the first mode bends in a rather intuitive
way, the higher mode shapes result from an intrinsic geometrical coupling between
the feet and the paddle (Fig. II.11) [Collin et al. 2014]. Due to this coupling, the
magnetomotive scheme will again reduce the number of modes we have access to:
antisymmetric modes cannot be detected by our scheme (one foot bending one way
and the other foot bending the other way, the paddle experiencing a node in the
center, see Fig. II.12). Furthermore, the detection of some symetric modes can be
rather difficult because of a particularly low gn parameter, caused by the strong
bending experienced by the paddle (see Fig. II.12).
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Figure II.12: Schematic of our actuation (a) and detection (b) technique on a goalpost
device. a: side view of the structure. Only modes with symmetric feet oscillation
can be actuated. b: front view (only the paddle is represented). As for the beams,
the modes we cannot drive are also impossible to detect. However, for the symmetric
ones, the electromotive voltage VL measured might be considerably reduced due to
the distortion of the paddle, to the point we might not have the resolution to detect
it.

II.3.4 The gate electrode

The magnetomotive scheme is a robust technique used to drive the NEMS, but
implementing an extra coupling with a gate electrode gives access to additional
capabilities (Fig. II.2a and Fig. II.2b). In most samples this gate is at 100 nm
away from the NEMS and will be controlled by a voltage generator through the
capacitive line. By biasing the gate, an electric field is generated which affects the
NEMS dynamics through a force:

−→
Fg =

1

2

∂Cg
∂x

V 2
g ~x, (II.12)

with Cg the capacitance between the gate and the NEMS and Vg the voltage applied
onto the gate. Obviously, the electric field also couples to the in-plane motion
through a similar expression to Eq. (II.12) but since these modes are never resonant,
this degree of freedom can be safely neglected (as well the ~z gradient which couples
to the longitudinal modes is irrelevant). For small NEMS’ displacements (typically
x ≤ 100 nm), we can use the Taylor expansion approximation:

∂Cg (x)

∂x
=
∂Cg (0)

∂x
+
∂2Cg (0)

∂x2
x+

1

2

∂3Cg (0)

∂x3
x2 +

1

6

∂4Cg (0)

∂x4
x3 + ... (II.13)
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For doubly-clamped structures, the motion generates also a tension in the beam
described by:

δT =E w e

∫
l

√
1 + (Ψ′(z)x+ Ψ′s(z)xs)

2

l
dz − l


≈ E w e

2

[
x2

∫
l

Ψ′ 2(z)

l
dz + x2

s

∫
l

Ψ′ 2s (z)

l
dz + 2xxs

∫
l

Ψ′(z) Ψ′s(z)

l
dz

]
, (II.14)

with Ψ′s(z)xs the static (or non-resonant) distortion generated by the voltage applied
onto the gate through ∂Cg(0)

∂x . The first term in the bracket generates a non-linear
spring constant ∝ x3 (Sec. II.3.5) while the second one is a static modification of the
in-built tension T [Eq. (II.7)]. The last one modulates the stress in the beam ∝ x,
which in turn generates an effective non-linear term ∝ x2 in the dynamics. This is
essentially what is described in Ref. [Kozinsky et al. 2006]. For cantilevers in the
first flexure, only the main x-dependent expansion of ∂Cg(x)

∂x is relevant (there is no
δT ).

Introducing this force in Eq. (II.5), we obtain:

ẍ+ ∆ω ẋ+

(
ω2

0 −
1

2m

∂2Cg (0)

∂x2
V 2
g

)
x

− 1

4m

∂3Cg (0)

∂x3
V 2
g x

2 − 1

12m

∂4Cg (0)

∂x4
V 2
g x

3 =
FL
m

+
1

2m

∂Cg (0)

∂x
V 2
g . (II.15)

We see that each order of the expansion acts on the NEMS in a different way
[Collin et al. 2012]:

• The first order
∂Cg
∂x

can be used as a driving force. By applying an A.C.
voltage on the gate at half the resonance frequency ω0 we excite the NEMS
without the magnetomotive actuation. Note that applying a D.C. voltage
on the gate will only slightly bend the NEMS to a fixed intrinsic distortion
(negligible in all experiments).

• The second order
∂2Cg
∂x2

enables to tune the spring constant k, which allows
to statically shift the resonance frequency (see Sec. II.4.3 and Fig. II.20) or to
drive the NEMS in a parametric regime (modulating at twice the resonance
frequency) [Collin et al. 2011b].

• The third and fourth order terms are non-linear parameters that transform the
Lorentzian shape of the resonance into a "Duffing-type" lineshape, leading to
new physics. The non-linear description of the resonance is presented below
in Sec. II.3.5.

Using each of these effects, we can measure in-situ the actual values of the
coefficients entering in Ref. Eq. (II.13), as described in [Collin et al. 2012]. For
the ones of importance to our work (the static shift of the resonance frequency
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and the fourth order non-linear term), see Fig. II.21 and Fig. II.35 below in this
chapter. It is important to note that, while this voltage biasing is a powerful way of
attaining new physics, it is limited. Above a NEMS displacement of about 100 nm
(typically the gap between the gate and the resonator), not only the Taylor expansion
loses meaning, but also the capacitive coupling smoothly vanishes. For this reason,
we paid attention not to use the gate with such amplitudes, keeping the Taylor
expansion meaningful.

II.3.5 Non-linearities in nano-resonators

The NEMS dynamics described in the section above (Sec. II.3.2) corresponds to
the response of an ideal linear resonator. For large displacement amplitudes and
due to constraints in the materials or in the geometry, the dynamics becomes more
complex and we need to introduce non-linearities in Eq. (II.5). The most well-known
non-linear model reads:

ẍ+ ∆ω ẋ+ ω2
0 x+ γ x3 =

FL
m
, (II.16)

with γ the so-called "Duffing" non-linear coefficient. This non-linear equation mod-
ifies the Lorentzian linear mechanical susceptibility given in Eq. (II.8) into:

χDuff (ω) =
1

2mω0

1

(ω0 + β x2 − ω) + i ∆ω
2

, (II.17)

with β = 3 γ
8ω0

which shifts the resonance frequency quadratically with respect to the
displacement amplitude x. This results in a bending of the resonance line upwards
for β > 0 and downwards for β < 0. Moreover, a characteristic feature of this
equation is that two motional states exist for x > xc with:

x2
c =

√
3

2

∆ω

β
, (II.18)

from which arises new phenomena like bistability (see Sec. II.5.3).

However, on basic grounds the Duffing term is not the only source of non-
linearities that comes into play. Materials features outside of the linear (elastic)
range are discussed in Sec. II.5.4. Here, we consider only non-linear effects of geo-
metric origin, namely the curvature of strongly deflected cantilevers or the elongation
of doubly-clamped beams. One way of defining the most generic 1D non-linear equa-
tion is to expand to third order the energy balance in terms of a non-linear Taylor
series of the mode shape. Rewriting the dynamics equation [Collin et al. 2010a] we
obtain:

ẍ
(
1 + α1 x+ α2 x

2
)

+ ẋ2
(α1

2
+ α2 x

)
+∆ω ẋ

(
1 + ᾱ1 x+ ᾱ2 x

2
)

+ ω2
0 x+ κx2 + γ x3 =

FL
m
, (II.19)
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with αi, ᾱi, κ and γ parameters defined from the integrated non-linear distortion of
the mode over the structure. The αi parameters can be called inertial non-linear
coefficients, while the ᾱi impact the damping term ∆ω ẋ. The parameters κ and γ
are restoring force non-linear coefficients.

In our case of a sinusoidal driving force, we can use an extended version of the
Landau-Lifshitz method to solve Eq. (II.19) (see [Collin et al. 2010a]). This leads
to a modification of the linear mechanical susceptibility which reads exactly like
Eq. (II.17), but with an effective Duffing coefficient:

βeff =
3 γ

8ω0
+ ω0

(
α2

1

16
+
α1 κ

4
− 5κ2

12
− 1

4
α2

)
, (II.20)

written here in the high-Q limit (Q = ω0
∆ω � 1). This neglects an extra ∝ x2 cor-

rection on the linewidth parameter in Eq. (II.17) which is proven to be irrelevant
experimentally. This in turn implies that the ᾱi terms do not play any role in the
dynamics we study and can be dropped already from Eq. (II.19). While Eq. (II.19)
involves different non-linear terms from different orders, their overall signature on
the resonance line reduces to a quadratic shift of the resonance frequency, just as in
a Duffing oscillator where the only non-zero non-linear coefficient is γ. Note that we
stopped the expansion to the third order in Eq. (II.19), since all higher order terms
do not contribute to the ∝x2 correction in the lineshape.

As a result, measuring such a shift in the resonance frequency does not directly
imply that we are dealing with a strict Duffing oscillator. For a doubly-clamped
beam (or a string in the high stress limit), the main source of non-linearity is stretch-
ing which brings a γ x3 into the equation [first term in Eq. (II.14)]. All the other
terms are much smaller and can thus be neglected: such NEMS can thus be consid-
ered as proper implementations of Duffing resonators [Nayfeh & Mook 1995]. On
the other hand, for a cantilever (or a goalpost) structure, all the terms are sup-
posedly of the same order. Moreover, in the case of nanomechanical devices, they
somehow cancel in Eq. (II.20) leading to particularly small experimentally reported
βeff coefficients [Villanueva et al. 2013]. Since we generate the non-linearity in our
goalpost devices through the gate electrode with the additional terms γ ∝ V 2

g (κ
being much smaller than γ [Collin et al. 2012]), we can again consider that the
voltage-biased goalpost NEMS is an excellent implementation of the Duffing oscil-
lator. While being our basis for the analysis in Chap. III and Chap. IV, non-linear
terms beyond the Duffing model could be the cause of deviations between modeling
and experimental results. Indeed, the way these coefficients combine within βeff in
a frequency-sweep measurement (or equivalently a time decay, [Collin et al. 2010a])
has no reason to be identical to the one leading to the effective barrier height in the
bifurcation process, Chap. IV, or mode-coupling strength, Chap. III.

Considering the non-linearity of the devices we measured in this thesis, the
Duffing equation Eq. (II.16) shall be sufficient to describe all the complex dynamics
we studied, and we assume from now on (αi, ᾱi, κ) = 0.
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II.4 Calibration

The calibration of the experimental set-up is of crucial importance for the ex-
periment presented in the next chapters, especially for the bifurcation phenomenon
(Chap. IV), since we want to quantitatively understand the physics in those ex-
periments. In a standard R.F. set-up, the line impedance matches 50 Ω. With
this technique, the transmission is optimal (no reflection) but the NEMS device is
strongly loaded by its electric environment, (see Sec. II.4.1).

Contrarily in our experiments (Fig. II.13), while the voltage generators are 50 Ω

we chose to measure the NEMS in a high impedance environment. The drawback
of this set-up is that it generates lossy and uncontrolled transmission characteris-
tics that require a thorough in-situ calibration. Those losses change with the end
impedance mismatch, which itself depends on the resistance of the device (which
scales as we change the length of the beams, from 10 µm to 300 µm). We hence
need to perform this calibration essentially for each sample. As an example, we
present in the following the calibration of a goalpost resonator, the technique being
the same for the other NEMS.

Dual channel

voltage

generator

CH1

CH2
Adder dB Ground

   Box

Cryostat

RefLock-in

detector

 

Vd

Gate voltage

   generator

Figure II.13: Experimental set-up for the calibration procedure. Two channels (CH1
and CH2) of the generator are combined in the injection line through an adder. The
driving force channel is split to be used as a reference for the lock-in. To prevent any
electrical shocks while changing the set-up configuration, we added a grounding box
just before the cryostat. We measure the output signal with the lock-in amplifier, as
described in Sec. II.3.2.
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II.4.1 The loading correction

First of all, we need to take into account the environment’s finite impedance
effect on the measured resonance frequency ω0 and linewidth ∆ω. Indeed, the
magnetomotive scheme we use affects the measurement of the NEMS properties due
to the presence of the magnetic field, as presented in Ref. [Cleland & Roukes 1999].
The resonator can be modeled as an electrical component with an inductor l, a
capacitor c and a resistance r in parallel (Fig. II.5). Since the impedance seen by
the NEMS (Zext = Rext+ iXext) is non-zero, it loads in parallel the r l c component
which shifts up the resonance frequency and broadens the linewidth:

ωloaded = ω0

√
1 +

Xext

|Zext|2
g2 l2

ω0m
B2 (II.21a)

∆ωloaded = ∆ω

(
1 +

Rext

|Zext|2
g2 l2

∆ωm
B2

)
. (II.21b)

In our set-up configuration, the dissipative real part of the external impedance has
always been the major contribution in this correction, such that Rext � Xext

and ωloaded ≈ ω0. Even though the aim is to maximise Rext, the correction to the
linewidth can never be neglected completely: a quadratic magnetic field dependence
in the linewidth is always detected. For most experiments, we need fields of about
1 T, which alters the linewidth measured from as little as a few percent up to a
factor of 200 depending on the NEMS structures (Fig. II.14).
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Figure II.14: Loading effect of the magnetic field on the linewidth measured for
(a) a 3 µm x 7 µm goalpost and (b) a 300 µm doubly-clamped beam. Note the
logarithmic scale in the latter. The blue lines are quadratic fits to the data, which
enable to extrapolate the intrinsic linewidth of the NEMS to (a) 1440±70 Hz and
(b) 1±0.3 Hz.

Let us point out that the linewidth ∆ω of the NEMS does not change, it is just
our measurement technique that depends on the field and requires a B2 correction
to extract ∆ω from ∆ωloaded. Furthermore, the applied current splits in the same
proportion between environment and NEMS; thus the actual drive current has to
be calculated properly for quantitative characterisations.
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II.4.2 The injection line

The basic idea of the calibration technique of the lines is to heat the NEMS by
means of the Joule effect, scaling onto one another the thermal drifts measured for
different excitation frequencies [Collin et al. 2012]. The phenomenon is genuinely
local, and relies only on the NEMS thermal properties: we achieve an in-situ cali-
bration, which does not require any extra electric connections.

Because the current needed to heat the NEMS is orders of magnitude above the
current needed to drive it, we used a home-made adder (made by our electronic shop
colleague Julien Minet) to add both heating and driving signals in the injection line
(Fig. II.15). This adder has two 50 Ω inputs and a high impedance output, with a
bandwidth of 100 MHz, a maximum input voltage of about 1 Vrms and which has a
constant gain of 1.9 over the frequency range we explored (always below 10 MHz for
the fundamental harmonic). We used both outputs of the Tektronix voltage genera-
tor, one to inject a drive current to the NEMS of about 100 nA enabling the measure-
ment of a linear mechanical resonance, and the other one to inject a heating current
Ih = Ih,0 cos (ωh t) ramping from typically 10 µA to 100 µA (device resistance r0

from 100 Ω to about 3 kΩ).
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Figure II.15: Transmission of the active adder as a function of the driving frequency
for a drive amplitude of 300 mVrms. The small fluctuation between 10 MHz and
100 MHz is due to the finite length of our cables.

The losses in the lines due to the impedance mismatch are frequency dependent.
To detect them we need a frequency independent technique which will not alter
our calibration: the Joule effect. The applied current Ih leads to a heating power
∝ I2

h,0
1+cos(2ωh t)

2 of which only the static component will be relevant. By heating
the nano-resonator, its metallic layer properties also change (the spring constant
and the dissipation), which shift down the NEMS’ resonance frequency and increase
its linewidth (see Sec. II.5.2). We hence measure those shifts and broadening for
different applied current oscillation frequencies.
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Figure II.16: Shift of the resonance frequency f0 as a function of the heating current
at different frequencies (from D.C. to 20 MHz - from light to dark blue). As Ih
increases, f0 shifts down with a different scaling for each heating frequency (inset).
By renormalizing the current for each frequency to the D.C. regime, we can recover a
single scaling (main). Those rescaling factors represent the transmission factor in the
lines. The black line is a calculation based on the thermal modeling of the goalpost
[Collin et al. 2012].
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Figure II.17: Broadening of the linewidth ∆f as a function of the heating current at
different frequencies (from D.C. to 20 MHz). Inset and main follow the same logic
as presented in Fig. II.16. The dashed black line is a guide for the eyes reproducing
the temperature dependence of ∆f . The rescaling factors are identical to the ones
in Fig. II.16.

By construction the D.C. regime corresponds to perfect transmission and we thus
use it as a reference. Measuring at different powers (different temperatures for the
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Figure II.18: Transmission of the injection line deduced from the rescaling factors
used in Fig. II.16 and Fig. II.17. For our goalpost, we obtain a loss factor of 1.49 on
resonance (7 MHz).

nano-structure) both resonance frequency and linewidth, we can rescale the result-
ing curve onto the DC one for each heating frequency ωh (Fig. II.16 and Fig. II.17).
The scaling factors involved for this correction directly correspond to the loss factor
at that frequency (Fig. II.18).

By doing so, one should be careful about not applying the heating current at ωh
too close to a frequency where mechanical dynamics could be excited, like another
mode or even the same one used for the calibration protocol. For the first flexure,
about a few hundred linewidths away from the resonance frequency are required,
depending on the heating current amplitude and on the NEMS non-linear coefficient
γ. Indeed, as far as the first mode is concerned, exciting at few linewidths from the
resonance frequency basically means driving the NEMS at the tail of the Lorentzian
line in Fig. II.8. But if the drive is large enough, this small tail might become
comparable to the maximum amplitude of the Lorentzian response at the driving
current Ii (Fig. II.19). If the non-linear coefficient of the NEMS is large (even
though the NEMS is driven in the linear regime) then the NEMS excitation at
both drive and heating current frequencies couple, which will produce an extra shift
in the resonance frequency of the NEMS. This "self-coupling" (coupling together
two different exciting frequencies through the same mechanical mode) is explained
in more detail in Chap. III. The main idea here being that if the heating current
frequency ωh is too close to the resonance frequency ω0, then the shift in frequency
might not come from the Joule effect but from the self-coupling which would lead
to wrong extracted calibration factors.

Unfortunately, the doubly-clamped beams’ non-linear coefficients are so large
that we do see self-coupling up to a thousand linewidths from the resonance fre-
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Figure II.19: Representation of the self-coupling issue in the calibration procedure.
There is about a factor of hundred between the amplitude of the driving and the heat-
ing currents in the calibration scheme. The black curve represents the displacement
induced by the driving force, while the red curve is the hypothetical displacement due
to the heating current relative to the former one (main). In practice, we heat only at
a fixed frequency fh far from the resonance frequency f0. But for such a large Ih the
resulting displacement of the NEMS can be comparable to the one due to the initial
driving force, even at ten linewidths away from f0 (inset). If the non-linear terms in
the dynamics equation are large enough, those two amplitudes might couple, which
will shift the measured resonance frequency f0 (Chap. III).

quency. One way to bypass this issue is to use the magnetic field. While the NEMS
amplitude (and thus the self-coupling) depends on the magnetic field due to the
magnetomotive scheme [Eq. (II.10) and Eq. (II.1)], the Joule effect does not. Mea-
suring the calibration factor for various fields B and extrapolating the resonance
frequency shift at B = 0, we are left with the component solely due to the Joule
effect, extracting then the right loss factors. In the example presented here (the
goalpost structure), the intrinsic non-linearity is small enough not to observe any
self-coupling effect on the frequency shift, which enables to measure the loss factor
of the lines very close to the resonance frequency and hence very close to the working
point.
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II.4.3 The capacitive line

The line used to control the gate voltage should also be calibrated. Around the
D.C. regime the calibration factor will obviously be 1, but when it comes to excite
the NEMS, to mix frequencies or to drive the NEMS with a parametric scheme,
then it is essential to know what voltage the NEMS really sees from the gate at a
given frequency ω. The general technique is the same as presented above, but since
the gate is capacitively coupled to the NEMS, the heating current of the Joule effect
will now have the form Ig = −Vg C0 ω sin (ω t). Similarly to the injection line, not
all frequencies are usable: one should avoid being too close to ω = 0 (because of
mechanical mixing, see Chap. V) or to a parametrically excited resonance (at 2ωn

p

for mode n, p being an integer).
The analysis for the gate is slightly more complex since, as seen in Eq. (II.15),

applying a voltage Vg intrinsically affects the mechanical properties of the NEMS.
While we track the resonance frequency as a function of the heating current (thus
the voltage Vg), an additional frequency shift arises from the non-linear capacitance:

ω0,g = ω0

√
1− 1

2 k

∂2Cg (0)

∂x2
V 2
g ≈ ω0 −

(
ω0

4 k

∂2Cg (0)

∂x2

)
V 2
g . (II.22)
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Figure II.20: Main: quadratic shift of the resonance frequency f0 as a function of
applied D.C. gate voltage Vg. We fit f0,g = f0 + 1770V 2

g . Inset: substracting the
fit to the data, a linear component emerges. Since no linear shift is expected from
the model, this component is interpreted as a residual offset voltage on the gate. We
finally obtain f0,g = f0 + 1770 (Vg + 0.12)

2. This residual voltage of 120 mV changes
with devices and cryo-cycles, thus this calibration has to be done carefully.

We see in Fig. II.20 the expected quadratic shift of the resonance frequency with
a D.C. applied gate voltage, and thus we obtain the second derivative capacitance

term
∂2Cg (0)

∂x2
. If we now subtract this non-Joule effect from the calibration data,
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we can recover the capacitance (Cg = 0.3 pF at low frequency) and the loss factor
in Fig. II.21 as for the injection line. Performing the same technique as described
in Sec. II.4, we can then obtain the capacitive line transmission factor (Fig. II.22).
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Figure II.21: Main: rescaling of the resonance frequency shift due to the heating
current induced by the capacitance at frequencies from 50 kHz to 20 MHz (from
light to dark green). Inset: rescaling of the linewidth’s increase with respect to the
frequency of the heating current from the capacitive coupling with the gate. As for
the injection line, from the rescaling factors we can deduce the transmission of the
capacitive line.
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Figure II.22: Transmission of the capacitive line, extracted from the rescaling of the
heating current in Fig. II.18. For our goalpost device, the transmission at resonance
is about 1.
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II.4.4 The detection line

With both the injection and the capacitive lines calibrated, we now need to know
the losses in the detection line.

0.1 1 10

1

10
f0

D
et

ec
tio

n 
tra

ns
m

is
si

on

Driving frequency (MHz)

0.01 0.1 1 10
0.1

1

10

G
lo

ba
l t

ra
ns

m
is

si
on

Driving frequency (MHz)

Figure II.23: Inset: transmission through the combination of the injection and detec-
tion lines (blue) and the capacitive and detection lines (green). Main: transmission
through the detection line deduced from the global transmission of the injection
(blue) and capacitive (green) lines. The loss factor in the detection line for our
goalpost is here 2.39 at resonance.

One way of deducing the detection losses is to use the calibration of the injec-
tion/capacitive lines together with the global transmission from the voltage genera-
tor to the lock-in amplifier detector. The NEMS has a resistance r0 and Ohm’s law
leads to a voltage (at non resonant frequencies) which can be measured as a func-
tion of the applied current (on the injection or capacitive lines). We calculate the
deviation of the measured output voltage from an ideal circuit as a function of the
frequency and obtain the overall transmission of the circuit which integrates both
injection/capacitive lines and detection line calibrations (inset of Fig. II.23). Know-
ing the losses of the injection/capacitive lines we deduce those of the detection line
alone (Fig. II.23). We can see that measuring the detection line from the injection or
the capacitive port results in the same transmission factor, validating the technique.

Now that our set-up is thoroughly calibrated, we can measure and convert in
real units the NEMS’ properties (displacement in meters, forces in newtons).
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II.5 Quantitative characterisations

Depending on the geometry, the size or the materials (with their different amounts
of stored stress), the NEMS’ properties might change by orders of magnitude. In
the following sections, we present the general behaviour of our NEMS as we drive
different modes, as a function of temperature and increasing the driving force from
the linear up to the anelastic regime. Making use of the calibration techniques
described in the previous section (Sec. II.4), we reach a quantitative characterisa-
tion of our devices. A typical Si goalpost device is shown in Fig. II.1a, while SiN
doubly-clamped beams are presented in Fig. II.24.

1 µm

(a)

2 µm

(b)

2 µm

(c)
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(d)

Figure II.24: SEM pictures of different NEMS we characterised, in addition to the
goalpost and the 15 µm long low stress beam already presented (with the fabrication
technique presented in Sec. II.2). a: Slightly tilted top view of a 10 µm long reduced
high stress structure (about 600 MPa [Defoort et al. 2013b]). b: Top view of a 15 µm
long high stress (850 MPa) SiN doubly-clamped beam. c: Top view of a 50 µm long
SiN nano-string. d : Side view of a 100 µm long SiN nano-string, with an angle from
top view of 89o (note that for this last one, the scale only defines the horizontal axis).
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II.5.1 Linear response of NEMS

We measured the resonance frequencies and the dissipation in the linear regime
(at small driving forces) for different flexural modes n for various devices: goal-
post Si structures and doubly-clamped SiN beams. The characteristics of a goal-
post NEMS are presented in Chap. II, and here we essentially discuss our stressed
doubly-clamped beam structures, the data being taken at 4.2 K.

From the Euler-Bernoulli equation we know that the resonance frequency for
any mode of an ideal resonator, in the tension (or string) limit follows:

ω0,n =
(n+ 1)π

l

√
T

ρw e

(
1 + 2

√
E I

T l2

)
, (II.23)

implementing a first order correction due to bending. However as explained in
Sec. II.3.3 our experimental measurement scheme enables to access only even modes.
Thus, in Fig. II.25 we present our results for ω0,0, ω0,2 and ω0,4 which scale with
the length as described in Eq. (II.23). If we take ρ = 3 g.cm−3, we obtain an
estimate of the tensile stress T

w e = 850±80 MPa (high stress) and 120±50 MPa
(low stress). Note however the deviation from the calculation without correction
as we enter in the flexural limit which enables an estimate of the Young modulus
E = 200±150 GPa, compatible with the manufacturer data. In this limit of short
beams, the contribution of the undercut could also renormalise our frequencies from
Eq. (II.23) due to underetch in the fabrication process [Gavan et al. 2009]. Note
that a large undercut can also relax part of the stress [Defoort et al. 2013b], which
could explain the deviation for longer beams (experiencing the biggest undercut).
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Figure II.25: Resonance frequencies of high (main) and low (inset) stress doubly-
clamped beams as a function of the length (a) and the mode (b). The green line is
the full calculation from Eq. (II.23) while the dashed black line does not take into
account the bending correction. The size of the symbols is about the reproducibility
of the devices, ±5%. Note that as we measure longer beams, we are able to detect
higher modes because of lower frequencies and better quality factors.
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On the other hand, the comprehension of the dissipation mechanisms in nanome-
chanical resonators is still a challenging puzzle. While experimental findings over
the years show that the damping (measured linewidth at the resonance of a given
mode) decreases as the volume of the devices increases [Carr et al. 1999]
[Mohanty et al. 2002], the intrinsic mechanism is unclear. What has been exper-
imentally demonstrated is that for most nano-devices, the clamping losses are com-
pletely negligible [Photiadis & Judge 2004, Judge et al. 2007] as well as thermoelas-
tic damping [Lifshitz & Roukes 2000]. In particular, the measured damping is in-
dependent of the width of the structure [Verbridge et al. 2008, Schmid et al. 2011],
while it does depend on temperature (see Sec. II.5.2). Some theoretical models at-
tempt to describe the damping, in particular in Refs. [Unterreithmeier et al. 2010]
[Schmid et al. 2011]. In these approaches, the microscopic origin of the energy re-
laxation is not discussed, but is simply assumed to be proportional to the stored
bending energy Ebend: we write these bending losses ∆Ebend. The actual mecha-
nisms behind this term shall be discussed in Chap. V.

Some approximative alternative versions of this model propose to locate most
of the bending energy near the clamping points, where presumably the distortion
is the biggest [Schmid et al. 2011, Suhel et al. 2012]. In the expressions below, we
give the simple bulk version of the theory, where the quality factor Qn =

ω0,n

∆ωn
for

mode n writes:

Qn =
Etens + Ebend

∆Ebend
≈ Qbend

Etens
Ebend

, (II.24)

with Etens the tensile stored energy and Qbend the bending related quality factor.
We obtain, again in the string limit with the lowest order bending correction:

Etens ∝
T

l

(n+ 1)2 π2

2
,

Ebend ∝
T

l

√
E I

T l2
(n+ 1)2 π2 +

E I

T l2

(
4 (n+ 1)2 π2 +

(n+ 1)4 π4

2

)
,

Qn ≈ Qbend
1

2

√
E I

T l2

[
1 +

√
E I

T l2

(
4 + (n+1)2 π2

2

)] . (II.25)

It is important to note that we only have here one fitting parameter Qbend (which
is independent of mode or geometry) to explain any dissipation in the string limit,
for a given material. We show in Fig. II.26 our experimental quality factors together
with the calculation from Eq. (II.25), and find a good agreement for most Qs, varying
both lengths and mode number. Nevertheless, we see for the shortest ones that the
dissipation of the second harmonic flexural mode (n = 2) seems larger, as if some
extra damping alters the predicted one. The flexural dissipation model thus seems
to be a good starting point, but is clearly not enough to encompass all experimental
results. For instance, while all published data present quality factors that essentially
scale with the length of the beams [Carr et al. 1999, Unterreithmeier et al. 2010],
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Figure II.26: Quality factors deduced from the measured resonance frequencies and
their respective linewidth of high (a) and low (b) stress doubly-clamped beams as a
function of the mode number for different lengths (black and purple: 15 µm, dark red:
50 µm, red: 100 µm, pink: 300 µm). The full green lines correspond to the calculation
from Eq. (II.25) with Qbend = 1900 for high stress and 3400 for low stress beams. The
dashed lines follow the phenomenological approach of Ref. [Suhel et al. 2012] where
the authors assume that the dissipation mainly comes from the beam distortion at
the clamping points, which is nonetheless compatible with our findings. The error
bars is the reproducibility of the devices, typically about 10%.

this feature cannot be reproduced by Eq. (II.24) in the unstressed limit: Qn is then
independent of mode number, and length. The only way to reconcile the modeling
with these experimental facts is to postulate a further dependence in-built in the
Qbend term characteristic of the microscopic friction mechanisms (see Chap. V).

II.5.2 The temperature dependence

As described in the calibration technique in Sec. II.4, the NEMS properties
change with temperature. While the shift in frequency is measured with a better
accuracy, the variation of the linewidth has a bigger impact on the NEMS dy-
namics. Indeed the resonance frequency shifts less than a percent from tens of
K to mK while the linewidth might get reduced by orders of magnitude, and as
the linewidth gets narrower the displacement amplitude gets bigger at fixed force
amplitude [Eq. (II.30)], leading to easier and more accurate measurements.

We present in this section the temperature dependencies of our samples from
1.5 K to 30 K. Theoretical models of mechanical dissipation shall be discussed in
Chap. V. The experimental setup is described in Sec. II.3.1. After a small thermali-
sation time (at worse few minutes) the NEMS thermalises to the desired temperature
which is regulated from the resistance bridge. On the other hand the current in the
structure is kept small enough to avoid extra heating, as opposed to the technique
described in Sec. II.4.

Furthermore, in the calibration procedure the Joule heating generates a non-
uniform temperature along the structure while in the present section the whole
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Figure II.27: Increase of the linewidth of the 15 µm long doubly-clamped high stress
(a, black) and low stress (b, purple) beams. Both qualitatively show the same be-
haviour, with an almost linear dependency above a threshold temperature T ? (verti-
cal blue dashed line), and a power law dependence below (dashed lines, see Chap. V).
Note that the "kink" between the two fitting functions arising at T ? is only due to
the mathematical display.

sample holder is kept at uniform temperature. Note that in the present discussion
the metal (aluminium) is kept in the normal state and never becomes superconduct-
ing.
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Figure II.28: Shift of the resonance frequency of the 15 µm long doubly-clamped
high stress (a, black) and low stress (b, purple) beams. The dashed lines are guide
for the eyes, of the form a T + b T 3.

In Fig. II.27 and Fig. II.28 we show two examples of frequency shifts and dissipa-
tion variation (linewidth) with temperature, in low and high stress doubly-clamped
beams. As explained in Sec. II.4.1, one should never forget to remove any loading
effect in order to measure the real intrinsic frequency and linewidth of the NEMS.
As far as dissipation is concerned, the variations in both devices behave in the
same way: above a threshold temperature T ? the dissipation slightly increases al-
most linearly with temperature (of the order of the percent per kelvin). Below
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Figure II.29: Linewidth (main) and resonance frequency (inset) variation with respect
to the temperature for the goalpost (a) and the third mode of the 15 µm low stress
doubly-clamped beam (b). Again, the same tendencies as on Fig. II.27 and Fig. II.28
are seen.

T ?, the dissipation falls with a power law which requires millikelvin temperatures
to be properly defined. For the frequency shifts, essentially all data can be fit to
a T + b T 3. Depending on the device, the former (linear) or latter (cubic) term can
dominate. Comparing our different devices, presumably the linear term arises from
the Young’s modulus temperature dependence while the cubic one corresponds to
the thermal stress stored in the structures (bimetallic strip effect arising from the
thermal contraction coefficients mismatch).

In Fig. II.29 we present the temperature dependencies of the goalpost structure
and of the third mode of the low stress doubly-clamped beam. Again, we see the
same behaviours as for the other devices presented within the same orders of mag-
nitude. Since the geometry, the mode shape and even the mechanical material are
varied, we have to conclude that to some extent these features are linked to the only
common feature between these devices: the Al metallic layer. The same argument
applies to anelastic features (see Sec. II.5.4) and has been demonstrated by changing
the overlayer [Collin et al. 2010b]. A more comprehensive discussion on the role of
the metallic layer shall be given in Chap. V.

II.5.3 The Duffing non-linearity

As explained in Sec. II.3.5, our NEMS devices can essentially be considered as
Duffing resonators when driven at large amplitudes. We recall the expression of the
displacement:

x =
FL

2mω0

1

(ω0 + β x2 − ω) + i ∆ω
2

, (II.26)

with β =
3 γ

8ω0
and γ the non-linear coefficient. Basically this quadratic correction to

Eq. (II.8) bends the initial Lorentzian lineshape into a so-called "Duffing" resonance
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with the opening of an hysteresis in frequency for x > xc defined in Eq. (II.18), see
Fig. II.30.
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Figure II.30: In-phase (black/blue) and quadrature (red/magenta) components of
a Duffing resonance with a positive non-linearity (here of a 15 µm long high stress
doubly-clamped beam). The dashed region represents the hysteresis where two physi-
cal solutions coexist. At the edge of the hysteresis (fbif↑ and fbif↓), the system might
switch by itself to the other solution (see Chap. IV).

In this region, two of the three solutions of Eq. (II.26) are (meta-)stable (the
small and the large oscillation amplitudes) and one is unstable (the intermediate
amplitude). The actual chosen amplitude of the system’s motion is then determined
by the NEMS’ frequency sweeping history.

As we get closer to the edges of the hysteresis, the system might bifurcate to
the other stable solution, a phenomenon which is described in Chap. IV, and we
call ωbif↓ and ωbif↑ the frequencies delimiting those edges. As we increase the drive,
the hysteresis gets bigger and thus the resonance frequency shifts. For a large non-
linear term, the resonance frequency ωres (frequency at which the mechanical mode
reaches its maximal motion amplitude) almost merges with ωbif↓ and shifts as:

ωres = ω0 + β x2
max, (II.27)

as shown in Fig. II.31.
The non-linear coefficient γ is of geometrical origin, as already explained in

Sec. II.3.5. Non-linear extensions of beam theories can be used to quantify γ

[Lifshitz & Cross 2008, Nayfeh & Mook 1995]. The expression reads:

γ =
1

2

E

l4 ρ

(∫
l
Ψ′ 2 (z) dz

)2

. (II.28)
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Figure II.31: Shift of the resonance frequency as we increase the excitation, and thus
the motion amplitude (same device as Fig. II.30). From a quadratic fit we can extract
the Duffing coefficient (here β = 22 Hz/nm2). Note that with the lock-in technique,
the signal in-phase is maximum at resonance while the out-of-phase one crosses zero.
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Figure II.32: Main: non-linear coefficient of the fundamental mode as a function
of the length of the high stress doubly-clamped beams. The black dashed line is a
calculation of the non-linear coefficient from Eq. (II.29), which follows the inverse of
a cubic power law with respect to the length of the beam, while the green full line
takes into account a correction due to a small flexural contribution (as in Fig. II.25).
Inset : β as a function of the stress stored for the 15 µm long beams. We observe
that the data follows the expected square-root power law (green line). Note that all
error bars are of the order of 20 %, which is the reproducibility between our devices.

In the high stress limit, this leads to:

β =
3

16π

E

l3
√
ρ T
ew

(∫
l
Ψ′ 2 (z) dz

)2

. (II.29)
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In Fig. II.32 we plot our experimental findings together with this expression, as
a function of the length and the stress of the beams. Some devices’ calibrations
were deduced from the one of the 15 µm long structure presented in Fig. II.30. For
these NEMS the tedious calibration procedure of Sec. II.4 had not been preformed,
but the deduced coefficients are consistent with the measured ones. This procedure
could be the cause of the reproducibility error bars in Fig. II.32. The power law
dependencies are verified [Defoort et al. 2013b], and the quantitative agreement is
quite good, in accordance with Ref. [Matheny et al. 2013].

However in the case of the goalpost device, its geometry is such that the non-
linear coefficient is intrinsically nearly non-existent, making it extremely linear even
in the 100 nm motion amplitude range. As described in Eq. (II.15) in Sec. II.3.4,
the gate electrode can be used to change the non-linearity of the NEMS. With this
coupling, it is possible to tune on demand the non-linear term for a fixed drive
amplitude (Fig. II.33). The non-linear behaviour can be augmented by increasing
either the displacement (Fig. II.34), or the voltage (Fig. II.35), and we extract the
voltage-dependent Duffing coefficient β = −0.0467 V 2

g Hz/nm2 from these two plots.
Note that when x is about the size of the gap between the gate electrode and the
resonator, |γ| starts to decrease because the Taylor series approach of Sec. II.3.4
loses its validity.
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Figure II.33: Non-linearity induced by the gate voltage (here Vg = 4.7 V) on the
goalpost device. We show here the magnitude of the displacement VR =

√
V 2
X + V 2

X .
While the hysteresis is large (bue data points and black line fit), the displacement
amplitude remains the same as for the linear regime (green dashed line, Vg = 0 V).
Note that the non-linear line is also shifted by a term ∝ ∂C

∂x V
2
g [see Eq. (II.15)],

which has been subtracted for readability.

From the coupling nature of the gate, the non-linearity created for out-of-plane
motion is negative [Kozinsky et al. 2006], and as seen in Fig. II.30 the intrinsic non-
linearity of beams is positive. By fine tuning the voltage on the gate, one could think
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Figure II.34: Frequency shift due to the induced non-linearity (here Vg = 4 V)
as a function of the displacement amplitude. The shift from the spring constant
alteration is already taken into account. We see a deviation from the quadratic law for
displacements above 100 nm, where the Taylor expansion breaks down [Eq. (II.22)].
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Figure II.35: Extracting the non-linear coefficient at different gate voltages as pre-
sented in Fig. II.34, we can recover the dependence of γ with respect to Vg.

of suppressing most of the intrinsic β. Unfortunately, the distance from the gate
to the NEMS and the applied voltages have to be such that we could not achieve
it in our experiments. On the other hand, the non-linear coefficient β (intrinsic
or voltage-created) can be used to implement interesting non-linear schemes, as
presented in Chaps. III and IV.
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II.5.4 From the linear response to the anelastic regime

In the linear regime described by Eq. (II.8), an applied force on the NEMS
results in a displacement which reaches its maximum when the oscillating force
frequency is at the resonance frequency ω0 of the NEMS’ studied mode. Plotting
the displacement x as a function of the force FL on the mode (Fig. II.36), we can
extract the associated spring constant k through:

x =
FLQ

k
, (II.30)

which is obtained by solving Eq. (II.10) at ω = ω0.
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Figure II.36: Displacement amplitude as a function of the driving force for the goal-
post device. With the dashed line we fit a linear response from which we extract a
spring constant k = 2.34 N.m−1. At large displacements, we need to incorporate a
small deviation to this linear behaviour, as presented with the full blue line.

With x and FL properly calibrated (see Sec. II.4) and Q = ω0
∆ω , we obtain the

mode’s spring constant k and then deduce the associated mass m from its resonance
frequency (Sec. II.5.1). Extracted values are compatible with calculations within
±5% approximately. Note that for a Duffing resonance (Sec. II.5.3), Eq. (II.30) is
still valid if the amplitude x is measured on the upper branch of the bistable solution,
sweeping the frequency in the direction defined by the sign of β (i.e. upward for
β > 0).

However for large applied forces, we see in Fig. II.36 a deviation from the lin-
ear expression Eq. (II.30). One can phenomenologically fit the deviation replacing
Eq. (II.30) by:

x =
FL ω0

k∆ω (1 + αx)
for x > xthr, (II.31)

x =
FL ω0

k∆ω
for x < xthr. (II.32)



II.5. Quantitative characterisations 45

These expressions are interpreted as a signature of the anelasticity of the metallic
layer [Collin et al. 2010b, Collin et al. 2011a]. Above an amplitude threshold xthr,
the damping starts to increase roughly linearly with the motion amplitude. When
xthr is particularly small the linear linewidth dependence on x seems to start from
x = 0, while sometimes a linear frequency shift can be resolved as well on top of
the Duffing dependence [Collin et al. 2008]. The actual microscopic origin behind
the phenomenon is still unclear, but the phenomenological approach is sufficient to
characterise thoroughly the dynamics of all our devices from the linear up to the
strongly non-linear range.
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II.6 Conclusion

In this chapter we presented the basics of the NEMS characterisation, which
is the first step before actually using them to investigate any physical phenomena.
After describing the fabrication process involved to make our devices, we presented
the experiment in which the NEMS are measured. We use an electric set-up, the
devices being kept under vacuum in a cryogenic environment. Using the magneto-
motive scheme we excite and detect our NEMS motion. Their mechanical resonances
follow a Lorentzian law at small excitations, and they are fully characterised in the
linear regime by their resonance frequency, their linewidth and their maximum dis-
placement amplitude. Using the capacitive coupling created by a gate electrode, we
can change those properties: tune the resonance frequency, or modify the non-linear
Duffing behaviour.

We then explained in detail the calibration procedure used to obtain the NEMS
resonance in real units, using the shift of the resonance frequency and the linewidth
broadening as an in-situ measurement of the actual current seen by the NEMS. Our
high impedance set-up is unique in the literature, and enables high precision mea-
surements of mechanical dissipation [Collin et al. 2012]. Through this technique, we
detected the actual displacement of our resonators, for different modes and different
nano-beams’ properties. We measured the scaling laws of the resonance frequencies,
the quality factor and non-linear coefficients as a function of the length of our nano-
wires and for different in-built stresses. We also measured the evolution of both ω0

and ∆ω as a function of the temperature of the devices. To finish with, we presented
the implications of the Duffing non-linearity in the measurement of the resonance
line, and how the gate electrode non-linear tuning affects the measurements.

This non-linear parameter is the essence of new complex physics and will be at
the core of the Chaps. III and IV.
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II.7 Perspectives

The investigation of new physical phenomena using NEMS resonators increased
since the last decade, and their characterisation with respect to the geometries or
the materials gets continuously updated as projects evolve. Thus, developing new
schemes of actuation/detection and being sensitive to different NEMS properties to
improve the presented characterisation might be more important than getting more
samples with different sizes or stresses. Indeed, only symmetric out-of-plane flexural
modes have been addressed in this thesis, and new capacitive/magnetomotive set-
ups could be extremely valuable: with asymmetric electrode patterns, or two-axes
coils enabling to drive/detect odd and in-plane modes. Compared to other schemes
aiming at the same possibilities (acoustic or dielectric drives), this would enable to
build on the capabilities of the combined electro-magnetomotive layout.

As far as calibration is concerned, the presented magnetomotive scheme suffers
from its own advantage. Since the NEMS sees a high impedance environment its
loading is hence relatively small, which is essential when it comes to measure the
very small linewidth of the long doubly-clamped beams. On the other hand the
end impedance mismatch to the 50 Ω lines induces the necessity of a thorough
calibration in order to measure the NEMS parameters in proper units. To bypass
this procedure, one could think of implementing a cryogenic voltage follower (which
has a high impedance input and a low impedance output) working in the MHz-
GHz range. However, such a voltage follower is not a trivial electronics component
and essentially a devoted HEMT first-stage transistor would need to be developed
specifically for this purpose.
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II.8 Résumé

Les résonateurs nano-mécaniques offrent aujourd’hui de nouvelles possibilités en
physique de la matière condensée. Cependant, avant de les utiliser comme sondes ou
comme système modèle, il est important de maitriser quelques étapes préliminaires:
la fabrication, la mise en place du dispositif expérimental, la calibration et la carac-
térisation des différents NEMS utilisés. Dans le cadre de cette thèse, on distingue
deux types de résonateurs. D’une part, grâce à Jean-Savin Heron, nous avons utiliser
des NEMS en forme de portique, en Silicium. D’autre part, grâce à Kunal Lulla
et Thierry Crozes, nous avons obtenu une large gamme de nano-fils en Nitrure de
Silicium, de différentes tailles et avec un matériau plus ou moins contraint. Tous nos
échantillons sont ensuite couvert d’Aluminium (Fig. II.2) afin d’obtenir un contact
électrique avec notre NEMS.

L’échantillon est alors collé au sein d’une cellule expérimentale pompée à
10−4 mbar que nous plongeons dans un cryostat à 4.2 K, relié à l’environnement
300 K par un dispositif électrique haute impédance (Fig. II.3). A l’aide du champ
magnétique produit par une bobine entourant la cellule, nous pouvons exciter nos
NEMS grâce à la force de Laplace et détecter sa résonance en utilisant la loi de Lenz.
L’oscillation du NEMS, décrite en régime linéaire par une résonance Lorentzienne,
est caractérisée par une fréquence de résonance ω0, une amplitude de résonance x, et
une largeur de raie à mi-hauteur ∆ω (Fig. II.8). De part la nature de ce dispositif ex-
périmental, nous n’étudierons uniquement que les modes de résonance dont la forme
est décrite par un nombre pair de nœud. Afin d’en avoir un contrôle plus approfondi,
nos NEMS font face à une électrode de grille. Grâce à ce dispositif supplémentaire,
nous pouvons exciter nos nano-résonateurs, contrôler leur fréquence de résonance et
leur non-linéarité. Sujet au cœur de cette thèse, les phénomènes non-linéaires sont à
l’origine d’une physique riche qui sera plus détaillée dans les chapitres suivants. Is-
sue de la tension engendrée par le déplacement du nano-résonateur, la non-linéarité
de Duffing a pour principale effet de transformer la résonance Lorentzienne en une
résonance bistable.

Afin que toutes nos mesures soient effectuées en vraies unités (mètres, Newton)
et afin de comparer quantitativement nos résultats théoriques et expérimentaux, le
dispositif expérimental doit être entièrement calibré [Collin et al. 2012]. D’une part,
dû à la nature de l’excitation et de la détection du NEMS, le champ magnétique
appliqué par la bobine affecte la largeur de raie ∆ω mesurée, qu’il faut corriger
pour obtenir la largeur réelle (Fig. II.14). D’autre part, l’ensemble du dispositif
électrique étant désadapté du générateur au NEMS, le courant haute fréquence
perçu par ce dernier diffère de celui imposé à la sortie du générateur. Afin d’effectuer
une calibration in situ de nos nano-résonateurs, nous avons utilisé l’effet Joule sur le
NEMS. En plus d’un premier courant permettant de mesurer l’oscillation du NEMS,
un second est appliqué hors-résonance pour chauffer ce dernier. Ce chauffage local
altère les propriétés mécaniques du matériau, modifiant la fréquence de résonance
(Fig. II.16) et la largeur de raie (Fig. II.17). En contrôlant la fréquence à laquelle
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le second courant est appliqué et en observant les variations des paramètres du
NEMS, on extrait la transmission des lignes à cette fréquence, ce qui nous permet
de connaitre la réelle puissance fournie à la structure, calibrant ainsi nos lignes
d’injection (Fig. II.18). Il est ensuite possible de remonter à la transmission de
notre ligne de détection afin de mesurer en mètre le déplacement du nano-résonateur
(Fig. II.23).

Suivant la nature du matériau, de la géométrie et de la taille de la structure, les
propriétés des NEMS peuvent varier de plusieurs ordres de grandeur. Nous rassem-
blons dans cette section les résultats obtenus sur plus d’une dizaine d’échantillons
avec des tailles allant de 10 µm à 300 µm et des contraintes internes (en tension)
de 100 MPa à 850 MPa (Fig. II.24) [Defoort et al. 2013b]. Prédit par les équa-
tions d’Euler-Bernoulli, nous avons vérifié la dépendance de la fréquence de réso-
nance en fonction de la taille et de la tension de nos poutres doublement encastrées
(Fig. II.25). La dissipation de ces échantillons, sujet beaucoup plus difficile à étudier
d’un point de vue théorique, a pu être comparé aux derniers modèles proposé avec
un accord qualitatif (Fig. II.26). Contrôlant la température du NEMS à l’aide d’un
thermomètre résistif (Allen-Bradley), nous avons étudié l’évolution de la fréquence
de résonance ω0 et de la dissipation ∆ω de nos NEMS (Fig. II.28). Nous avons ob-
servé en particulier un changement de régime de la dissipation à basse température,
que l’on suspecte provenir des systèmes à deux niveaux présent dans nos structures.
Mesurant l’amplitude de résonance de nos NEMS, nous avons pu étudier, en fonction
de la taille et de la tension, la non-linéarité β de nos résonateurs de Duffing, corre-
spondant quantitativement aux prédictions de la mécanique du solide (Fig. II.32).
Nous exposons enfin le déplacement de nos NEMS en réponse à une force excitatrice,
du régime linéaire au régime anélastique où la déformation des matériaux altère la
dissipation mécanique (Fig. II.36).
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III.1 Introduction

Non-linearities are at the heart of rich and complex phenomena. For instance, it
enables to couple two degrees of freedom (modes of the same device, or even of dif-
ferent ones) so that one affects the other. In the framework of quantum mechanics,
non-linearities provide quantum information read-out schemes, and it is now usual
to couple a quantum bit (a spin 1

2 quantum state) to a micro-wave cavity in order
to measure its state [Regal et al. 2008, Palomaki et al. 2013]. As far as nanome-
chanics is concerned, recent works show that it is possible to cool down a NEMS
in its ground state and to control its quantum dynamics [O’Connell et al. 2010,
Chan et al. 2011]. Moreover, it has been suggested that one could use the non-
linear coupling between different modes of the same resonator in order to measure
the quantum state of the fundamental one [Mahboob et al. 2012]. This interest in
mode-coupling has been continuously increasing since the revealing of such features
in NEMS [Westra et al. 2010]. Recent works even address the issue of coupling
different mechanical devices, with emerging features like frequency synchronisation
[Cross et al. 2004, Matheny et al. 2014]. In this chapter, while we do not focus on
quantum information or multiple systems, we present how mode-coupling on its own
can induce very particular properties within a single resonator’s dynamics.

In a first part, we describe the mode-coupling scheme in the case of NEMS, with
a state-of-the-art section and our measurements of this effect. In this technique, the
structure is driven at two frequencies corresponding to two modes of the resonator.
Then we describe a new scheme which follows on from the mode-coupling: the "self-
coupling", or how to couple one mode with itself. In this case the frequency of
the two drives are only slightly detuned and excite one single mode. We present
experimental results and calculations which describe the NEMS behaviour. The last
section of this chapter is confidential.
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III.2 Non-linear coupling between modes

III.2.1 Coupling two modes

As described in Sec. II.3.3, the resonators that we characterised can be driven
at different modes. These modes, which are independent in the linear response
limit get coupled all together as soon as non-linearities come into play. Through
the canonical Duffing non-linearity (see Sec. II.5.3), it is then possible to couple
them within the same mechanical resonator in a dispersive way [Westra et al. 2010,
Dunn et al. 2010]. The general idea can be described and explained easily for
doubly-clamped beams with the tensile non-linear effect generating the Duffing be-
haviour. Driving an ideal device at its resonance frequency will make it vibrate at a
given oscillation amplitude. Expanding the calculation for large enough amplitudes,
this oscillation will generate a stress in the material, and as the drive amplitude in-
creases the resonance line experiences a shift in frequency (through the tensioning),
modifying the Lorentzian shape to a Duffing one (as explained in Sec. II.5.3). This
property exists for any mode, each one having a different non-linear coefficient γn,
n being the mode number.

If we now drive two modes simultaneously at large enough amplitude, a similar
behaviour is observed. Since the stress generated by the oscillation amplitude of one
mode affects the material properties of the whole beam, it thus affects the second
driven mode, and vice versa (Fig. III.1).
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Figure III.1: Schematic of the shape of a mechanical motion induced by two drives,
each one exciting a different flexural mode (here the fundamental at f0 with motion
amplitude x0 and the second harmonic at f2 with x2). In a time-resolved picture, the
shape of the resonator’s motion is imprinted by both excitations, which are coupled
through the tension terms δT0 (∝ x20) and δT2 (∝ x22).

This mode-coupling behaviour can be derived theoretically from beam theory
[Lulla et al. 2012] and the solution resulting from the calculation describes the dis-
persive coupling between the two modes as:

ωn = ω0, n + βn x
2
n + βn,m x

2
m, (III.1)

with ωn the resonance frequency of mode n entering in its lineshape Lorentzian
expression, and containing a Duffing βn x2

n component as well (see Sec. II.5.3, where
the n index was dropped). The coupling with the mode m is produced through
the quadratic term βn,m x

2
m (xm being the motion amplitude of mode m). The
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non-linear coefficient βn,m reads:

βn,m =
1

4π

E

l3
√
ρ T
ew

×


∫
l
Ψ′ 2n (z) dz

∫
l
Ψ′ 2m (z) dz

2
+

(∫
l
Ψ′n (z) Ψ′m (z) dz

)2

 . (III.2)

Note the similarities with Eq. (II.29). Also, it is important to stress the fact that
while the non-linear term γ x3 in the dynamics equation is the essence of this cou-
pling, none of the two modes needs to be in the non-linear regime. The strong im-
plication of Eq. (III.1) is that one mode can be used to detect another one through
its resonance position (Fig. III.2): we can transduce a displacement amplitude (of
mode m) into a frequency shift (of mode n) [Matheny et al. 2013].
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Figure III.2: Schematic representation of the mode coupling effect (plot of the ampli-
tude R in normalised units). As we drive another mode (here the second harmonic),
the first one (here the fundamental flexure) is altered and its resonance frequency
shifts quadratically with the amplitude of the former one while remaining perfectly
linear. We can thus detect a high-order mode by looking at the frequency shifts of
another of lower frequency, and vice-versa.

This scheme is particularly efficient in the case of large enough non-linear co-
efficients, since it enables more accurate measurements than with a direct voltage
detection technique. Indeed, as far as the electric set-up is concerned, the standard
detection is limited by the voltage noise of the experiment while the mode-coupling
scheme is only limited by the (small) phase noise in the circuit: for very high fre-
quency resonances, the voltage to be detected resulting from the motion may be
vanishingly small, while the frequency shift can be perfectly measurable.
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Using this technique on the 15 µm low stress doubly-clamped beam (on which
we found the larger Duffing non-linear coefficient, see Fig. II.32), we could measure
many higher modes while a direct magnetomotive read-out only detected noise (see
Fig. III.3).
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Figure III.3: mode-coupling between the fundamental mode an the 8th harmonic.
As explained in Fig. III.2, a shift in the resonance frequency is generated from this
coupling, and by tracking f0 we can recover both f8 and ∆f8. Note that in a direct
measurement technique we could only measure noise when sweeping in the same
frequency region.

From the mode-coupling scheme, we could then extract resonance frequency and
linewidth of each of these high order modes. In practice, the set-up is the same as
the one used for the calibration technique, or the bifurcation experiment (Fig. II.13).
With an adder, we send the two oscillating current components (one around ωn, the
other one around ωm) down the cryostat to the NEMS, generating thus the two
Laplace forces (Sec. II.3), one on each mode. Every single data point in Fig. III.3
involved the measurement of a full first mode resonance line to extract the frequency
shift (for each high-frequency drive chosen, for a fixed excitation amplitude), hence
the detection of the coupled mode takes few minutes. However, one could easily
think of an algorithm tracking the resonance frequency of mode n as we sweep
mode m, which measurement is then about as long as a standard sweep of mode
m. In order to optimise this technique, the tracking of mode n should be performed
where the variation of the amplitude is the steepest with respect to frequency: a
tiny frequency shift is then easily detected [Venstra et al. 2012]. For a homodyne
measurement set-up, this occurs at the resonance frequency but tracking the out-
of-phase signal, as presented in Fig. III.4.



56 Chapter III. From coupling modes to cancelling non-linearities

6.975 6.976 6.977 6.978 6.979
0

5x10-3

1x10-2

Am
pl

itu
de

 (a
.u

.)

 D
er

iv
at

iv
e 

am
pl

itu
de

 (a
.u

.)

Frequency (MHz)

-1.0

-0.5

0.0

0.5

1.0

Figure III.4: Representation of Eq. (II.11) and their first derivative for the fundamen-
tal harmonic of the 15 µm long doubly-clamped beam (respectively dashed lines and
full lines, with in-phase in black and quadrature in red), showing a maximal slope on
the quadrature signal at resonance frequency. Hence, tracking the quadrature signal
on resonance is the most sensitive way of measuring mode-coupling.

III.2.2 The "self-coupling" limit

A very important and interesting point in Eq. (III.1) is that no assumption
was made on the couple of values (n,m). Hence this property should still be valid
for n = m, the physical interpretation of which is to couple one mode with itself.
Note that this is however different from the basic Duffing non-linear effect, since we
assume that two distinct excitation tones are present for the same mode n. What is
actually studied is the coupling between the two tones. This idea of "self-coupling"
has already been mentioned in Sec. II.4, and we present here the detailed analysis
of this effect for n = m = 0 without losses of generality (dropping the indexes when
possible).

As for the mode-coupling scheme, we use two driving forces but exciting the
same mode at slightly detuned frequencies. Note that this phenomenon has been
introduced by the group of E. Buks in Refs. [Almog et al. 2006, Almog 2007], where
theoretical calculations are developed. However, since our work is performed in a
different limit, leading to different results, we briefly expose in the following the
basics of the self-coupling theory for our schemes obtained with the help of Andrew
Armour, and we will compare our findings with those of Refs. [Almog et al. 2007]
in the next section.

Starting from the second law of Newton, we have:

ẍ+ ∆ω ẋ+ ω0 x+ γ x3 = fL, p cos (ωp t) + fL, s cos (ωs t+ δφ) , (III.3)

with fL, s and fL, p the "sweep" and "pump" forces (normalised to the mode mass)
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driving the NEMS respectively at ωs and ωp, with fL, s < fL, p, ωs 6= ωf and δφ the
phase difference between the two signals. The experimental set-up is again the same
as presented in Sec. II.4, with an adder which combines both signals at ωs and ωp.

Since we work close to the resonance frequency of the NEMS, we define for
clarity:

ωp = ω0 + δp ωs = ωp + δs, (III.4)

where δp and δs are the new sweeping parameters relative to ω0. By construction,
we have δs 6= 0.

Writing x0 the general solution of Eq. (III.3) we assume that it has the form:

x0 =
X0 e

i ωp t +X?
0 e
−i ωp t

2
. (III.5)

Replacing in Eq. (III.3) with β = 3 γ
8ω0

, we obtain:

Ẋ0 = −
(

∆ω

2
+ i δp

)
X0 + i β X2

0 X
?
0 +

1

2 i ω0

(
fL, p + fL, s e

i δs t+δφ
)
, (III.6)

where we assumed that X0 is a slow variable (Ẋ0 � ω0X0), that we are in the
high quality factor limit (∆ω � ω0), and working close to the resonance frequency(
ω2
p − ω2

0

2ωp
≈ δp ,

β

ωp
≈ β

ω0

)
. At first order, we can solve Eq. (III.6) by writing:

X0 = ap + as e
i δs t + ai e

−iδs t, (III.7)

with ap, as, ai the complex variable amplitudes of the NEMS respectively at ωp, ωp+
δs, ωp − δs, with ap the leading term governed by fL, p (the "pump", resonating at
ω0 + δp,max), as mostly controlled by fL, s (the "sweep", resonating at ωp + δs,max)
and ai its symmetric image through ap (the "idler", resonating at ωp + δi,max). We
thus have |as|, |ai| < |ap|, and we will assume that as and ai are small enough not
to induce any non-linear terms.

Replacing Eq. (III.7) in Eq. (III.6) and using again the rotating wave approxi-
mation, we obtain the following system of equations for the different components of
angular frequency relative to ωp:

ei 0 : ap =
fL, p
2ω0

1

β |ap|2 − δp + i ∆ω
2

, (III.8a)

ei δs : as =

fL, s e
i δφ

2ω0
− β a2

p a
?
i

2β |ap|2 − δp − δs + i ∆ω
2

, (III.8b)

e−i δs : ai =
−β a2

p a
?
s

2β |ap|2 − δp + δs + i ∆ω
2

. (III.8c)
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Isolating each variable and expressing them as a function of ap, we finally have:

ap =
fL, p
2ω0

1

β |ap|2 − δp + i ∆ω
2

, (III.9a)

as =
fL, s e

i δφ

2ω0

1

2β |ap|2 − δp − δs + i ∆ω
2 −

β2 |ap|4

2β |ap|2 − δp + δs − i ∆ω
2

, (III.9b)

ai =
fL, s e

−i δφ

2ω0

1

2β |ap|2 − δp + δs + i ∆ω
2 −

β2 |ap|4

2β |ap|2 − δp − δs − i ∆ω
2

×
β a2

p

2β |ap|2 − δp − δs − i ∆ω
2

. (III.9c)

We observe that Eq. (III.9a) is exactly the same as Eq. (II.26), remembering that
δp = ωp − ω0 is the frequency sweep variable for the component ap. We thus have a
single Duffing resonance at ωp. However, while Eq. (III.9a) is a non-linear equation
in ap, both Eq. (III.9b) and Eq. (III.9c) are linear with respect to as and ai.
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Figure III.5: Overall schematic of the resonances around δp,max (shifted from ω0) in
the limit of small displacements (normalised amplitude R), with a leading term |ap|
at δp,max, a small term |as| at δp + δs,max which shifts with respect to |ap (δp) | and
its symmetric |ai| at δp + δi,max which is extremely small.

To better understand Eq. (III.9b) and Eq. (III.9c), let us first consider the simple
case where ap is linear (β |ap|2 � ∆ω

2 , but still |as|, |ai| < |ap|). At lowest order in
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ap we have:

ap =
fL, p
2ω0

1

−δp + i ∆ω
2

, (III.10a)

as =
fL, s e

i δφ

2ω0

1

2β |ap|2 − δp − δs + i ∆ω
2

, (III.10b)

ai =
fL, s e

−i δφ

2ω0

1

2β |ap|2 − δp + δs + i ∆ω
2

β a2
p

2β |ap|2 − δp − δs − i ∆ω
2

. (III.10c)

In this configuration we observe that as and ai, where the sweeping parameters are
δs and −δs, behave like shifted linear Lorentzian resonance lines (see Fig. III.5).
Note that in Eq. (III.10c) the last term of the right hand side can be approximated
to 2 i β a2p

∆ω when as is close to resonance, reducing ai to almost zero.
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Figure III.6: Frequency shift of the as component as a function of the amplitude
of ap, with the data points in black and the analytical calculation from Eq. (III.9b)
in blue. At small amplitudes, the shift of as follows the 2β |ap|2 dependence, as
expected from Eq. (III.10b), and should reach β |ap|2 at very large ones (dashed
lines).

The important feature in Eq. (III.10b) is that the shift of as scales as 2β |ap|2
(Fig. III.6): we can deduce the amplitude of ap by measuring the shift of as (lighter
data in Fig. III.7). We thus transduce a displacement into a frequency shift, just
as in the mode-coupling scheme, but using one single mode driven with two tones.
Note that the shift goes as 2β, as we have indeed βn,m=n = 2βn in Eq. (III.2) with
βn the standard Duffing parameter of mode n. For our low stress 15 µm long doubly-
clamped beam, it represents a shift of 2β ≈ 90 Hz.nm−2. However, as we increase
ap eventually the pump component reaches the non-linear regime (2β |ap|2 ≈ ∆ω

2 ),
Eq. (III.10) looses validity, and the frequency shift in the expression of as tends
towards β |ap|2 in a non-trivial way (Fig. III.6 and darker data in Fig. III.7). The
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amplitude ai approaches the one of as, being its exact symmetric with respect to
ωp.
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Figure III.7: Shift of the resonance frequency of as (linear resonance of amplitude
1 nm) as we sweep through ap for different excitation amplitudes (inset). At small
amplitudes, the shift of as follows the resonance shape of |ap|, but as ap starts to be
non-linear new features emerge (see "spiky" zones).

Transducing motion (meters) into frequency (hertz), our measurement only suf-
fers from our ability to define the position of the as resonance (see scatter in Fig. III.6
and Fig. III.7). Ultimately, this is limited by the phase noise of the whole circuit,
electronics and NEMS included. Optimising the technique, it becomes possible to
measure the ap resonance line (Fig. III.7) at various excitation amplitudes with a
very good precision [Defoort et al. 2013a].



III.3. Confidential 61

III.3 Confidential

This section is confidential.
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III.4 Conclusion

New features emerge from non-linearities, and we saw in this chapter that in
particular we can use them as a way to couple mechanical modes in NEMS. In a
first section we exposed how the modes of a resonator may affect each other within
the same device. Through this dispersive coupling deriving from the Duffing term
γ x3 in the dynamics equation, a driven mode alters another one by shifting its
resonance frequency with the square of the former’s amplitude of motion. This
technique enables the measurement of the resonance frequency and the linewidth
of a mode by looking at another one’s position: we transduce the displacement
(meters) into a shift in frequency (hertz). Applying this property for a single mode,
we then show both analytically and experimentally that it is possible to couple one
mode with itself in a so-called "self-coupling" scheme, and to reproduce in a similar
manner at first order the features observed in mode-coupling. It is thus possible
to measure precisely one mode by looking at its own resonance frequency with a
two-tone drive scheme [Defoort et al. 2013a].
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III.5 Perspectives

This section is confidential.
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III.6 Résumé

Une des implications directe des phénomènes non-linéaires dans un système est
la possibilité de le coupler avec son environnement. En particulier, deux modes
de résonance d’un même NEMS peuvent être couplés entre eux. Dû à la tension
présente dans l’ensemble de la structure lors de l’excitation d’un mode n, la forme
d’un autre mode m en est altérée, ce qui a pour effet de décaler sa fréquence de ré-
sonance ω0 en fonction du couplage non-linéaire βn,m entre les modes n et m, et du
carré de l’amplitude de déplacement x du mode n (Fig. III.2). Le dispositif expéri-
mental à double-ton permettant d’exciter le NEMS simultanément aux dréquences
de résonance des modes n et m peut alors être considéré comme une nouvelle tech-
nique de détection précise d’un mode en en observant un autre. Cette technique
nous a permis de mesurer des modes jusque là inaccessibles dans notre configuration
expérimentale (Fig. III.3).

Dans le cadre de notre travail, nous avons également mis à profit la non-linéarité
de nos résonateurs pour coupler un mode avec lui-même. Pour cette configuration, le
dispositif expérimental est similaire à celui du couplage standard. Un premier signal
est envoyé sur le NEMS pour scanner la résonance d’un mode n tandis qu’un second
signal excite le même mode n, mais à fréquence fixe et très légèrement décalé de la
fréquence de la première excitation, si bien que ce signal n’a pour effet que de décaler
la raie de résonance perçu par la première excitation (Fig. III.5). Les deux excita-
tions sont couplées dispersivement dans la structure. A l’aide de notre collaborateur
Andrew Armour, nous avons développé le modèle théorique analytique permettant
de prédire le décalage de la raie de résonance perçu à la fréquence d’excitation du
premier signal, en fonction de la fréquence et de l’amplitude d’excitation du deux-
ième signal. Comparant cela avec nos résultats, nous observons un accord quantitatif
entre le modèle analytique et nos mesures (Fig. III.7). Notons que, pour des ex-
citations suffisamment faibles, le paramètre de couplage entre ces deux excitations
correspond précisément au double du coefficient non-linéaire β de ce même mode
(Fig. III.6). Dans le régime linéaire, ce dispositif expérimental permet donc de
traduire une raie de résonance initialement mesurée avec la loi de Lenz en Volt, en
une résonance déduite de ses mesures en décalage en fréquence en Hertz, dont la
précision est alors idéalement limitée uniquement par le bruit en phase du circuit
[Defoort et al. 2013a].

La dernière section de ce chapitre est confidentielle.
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IV.1 Introduction

The bifurcation process is of ubiquitous importance in Science in both static
and dynamical systems. This effect has been studied over the years in differ-
ent fields: transitions in Josephson junctions [Turlot et al. 1989], fluctuations in
SQUIDs [Kurkijärvi 1972], magnetisation reversal in molecular magnets
[Novak et al. 1995], switches in cells [Ozbudak et al. 2004], stochastic switching in
micro-cantilevers [Venstra et al. 2013], the list being non-exhaustive. This non-
linear phenomenon can be described at first order by a particle evolving in a pseudo-
potential escaping with a sort of attempt frequency Γ from a metastable state to
a stable one separated by the analogue of an activation energy Ea. While being
present in various disciplines, the analytical scalings of Ea and Γ are supposed to be
universal with the detuning from the bifurcation point, at least when very close to it.

Measuring those two parameters (Γ and Ea) in a wide range requires specific
and demanding properties of the measuring tool. In the case of dynamical systems,
the resonating period needs to be high enough to decorrelate the oscillation and the
bifurcation frequency, while the dissipation needs to be high enough to guarantee
immediate relaxation in the time-scale of the bifurcation process. Nano-mechanical
resonators can be made in order to satisfy those two requirements, while still having
a good quality factor for accurate measurements. They are thus perfect candidates
to probe the bifurcation phenomenon. In the case of our goalpost, another feature
makes it ideal for this study: it is intrinsically highly linear. By means of the
capacitive gate voltage, we can thus control the non-linearity at a fixed driving
amplitude (Chap. II), opening a new dimension of investigation: the non-linear
coefficient itself, which is at the core of the phenomenon, is here a control parameter.

In this chapter we first present in a brief section different bifurcation phenomena
and some of the work done to understand their behaviour, both theoretically and
experimentally. In a second step we introduce the basics of the analytical theory
which leads to the universal scaling laws and present the numerical calculation that
will be compared to the experimental results. We then explain the experimental
procedure used to measure the relaxation process and we show that the resonance
frequency presents an intrinsic noise that needs to be carefully characterised. We
will finish by presenting the measurement of the scaling laws obtained with our
NEMS as a function of both detuning and non-linearity, from the analytical range
up to two orders of magnitude beyond its limit. The results will also be compared
to exact numerical calculations, and their implication will be discussed.
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IV.2 State-of-the-art

IV.2.1 Hysteresis and bifurcation process

Non-linearities are the essence of complex systems, and new physics emerge
from them with interesting new behaviours. The hysteresis is a perfect example of
the richness and the complexity of non-linear dynamics. A hysteresis can be de-
fined by the following: a system in which different states exist at a given working
point with the actual steady state depending on the system’s history. Hysteresis is
not just a mathematical concept, it is expressed in physics, in biology, in finance
[Blanchard & Summers 1986] and even in social science (Fig. IV.1). Nevertheless,
this concept is of crucial importance in experimental physics, and in many mecha-
nisms one has to be careful about the dynamical path followed by the system.

Relationship

Effort

Single

In couple

e e

(a)

Magnetisation

Magnetic field

(b)

Figure IV.1: Examples of a hysteresis in different fields. a: In social science, when
a single person tries to be in a relationship, he/she will make some efforts until
reaching this status (here at e↑). If now this person decreases its amount of efforts,
a strange phenomenon appears: the couple might still exist even below e↑. It’s
only when the person reduces its efforts below e↓ that he/she will go back to the
single status. In-between e↓ and e↑, we observe a hysteresis: for the same amount of
efforts, depending on its history, the person might be either single or in a relationship.
b: In physics, example of a ferromagnetic polarisation hysteresis. As the magnetic
field increases/decreases, the magnetisation of the magnet can be smoothly oriented
upwards/downwards with respect to the field axis. While due to microscopic domain
reorientation, the curve is continuous on a macroscopic level.

Note that in physics there are commonly two types of hysteretic behaviours:
the one originating from a first order transition, and the others. As such, the first
derivative of a hysteresis as a function of the sweeping axis can be either discontin-
uous or continuous in the transition range. The transition from liquid to gas with
the nucleation of bubbles as a function of temperature is abrupt, similarly to the
process shown in Fig. IV.1a. On the other hand, the ferromagnetic polarisation in
a soft ferromagnet occurs smoothly along the magnetic field’s axis (Fig. IV.1b). In
this chapter, we will only focus on the former kind of hysteresis, encountered in first
order transitions.
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This emergent phenomenon can be described through a tilted double well po-
tential (typically by a polynomial equation of the 4th order, with respect to some
configuration parameter X), with a particle in one of those wells (Fig. IV.2).

E

Ea

Γ 

M U S
X

Figure IV.2: Particle evolving in a double well potential (energy as a function of
a configuration parameter X). If the particle has enough energy, it can cross the
unstable state U of energy barrier Ea with an attempt frequency Γ and switch from
the metastable M to the stable state S.

If this particle has enough energy to overcome the barrier that separates the two
wells, it has a probability to switch to the deeper well: the particle relaxes from
the metastable state M to the stable state S, crossing the unstable one U . This
transition between two states is called the bifurcation process. The phenomenon
is stochastic with a Poissonian distribution of events, leading to an exponential
distribution of escape times:

Pbif (t) = Γesc e
−Γesc t, (IV.1)

with Γesc the rate of the transition and P the probability to bifurcate from one state
to the other. This principle is exactly what is behind the transitions in chemical
reactions [Kramers 1940] - transition from the reactants (state M) to the products
(state S), which is described by the Arrhenius law:

Γesc = Γ e
− Ea
kB T (IV.2)

with Γ the attempt frequency, Ea the activation energy needed to switch, and kBT
the thermal fluctuations’ energy of the system (Fig. IV.2). When the energy barrier
Ea vanishes to zero, metastable and unstable states merge: we call this limit the
bifurcation point. However, if the energy barrier is non-zero, thermal noise would
eventually make the system relax to the stable state.

This equation describes the transition rate for any bifurcation phenomena, even
though the dynamics differs. In the case of the transition from liquid to gas of a
droplet, the system is static, while the fluctuations in SQUIDs are dynamic: the
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system is oscillating at some high frequency ω. But in the latter case, the bifurca-
tion is studied within this oscillation, such that in the SQUID’s dynamics referential
the phenomenon is similar to the static case.

In the 80’s analytical calculations demonstrated remarkable universal features
behind this transition process (mostly Refs. [Dykman & Krivoglaz 1979] and
[Dykman & Krivoglaz 1980]). These theoretical results state that, under restric-
tive conditions, any hysteretical system has the same dependency on the distance
to the bifurcation point, and shall be described as:

Γ = Γ0 δ
ζ Ea = E0 δ

ξ (IV.3)

with Γ0 and E0 the prefactors of Γ and Ea, δ the distance to the bifurcation point
and ζ and ξ the exponents predicted to be universal with values ζ = 1

2 and ξ = 3
2 .

IV.2.2 Investigation with MEMS/NEMS

Recently, the accuracy and the versatility of MEMS and NEMS have been used
to probe these dependencies. Indeed those oscillators eventually become "Duffing"
non-linear when driven at high enough amplitude (Sec. II.5).

X (a.u.)

(Hz)

E

X

E

X

Figure IV.3: Resonance line of a Duffing oscillator presenting a large hysteresis (here
for β > 0). As we reduce the detuning δω from the edges of the hysteresis the
energy barrier in the pseudo-potential also reduces, until vanishing at the bifurcation
frequencies as shown in the insets.
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In this regime, an hysteresis opens within the resonance line, leading to two dy-
namic states: one with large and the other one with small amplitude, see Fig. IV.3.
In the metastable state, the energy barrier Ea vanishes as we get closer to the edges
of the hysteresis (which are the bifurcation points), until the system relaxes to the
low energy state. The distance to the bifurcation point δ is then directly linked to
the detuning to the edge of the hysteresis δω ∝ δ. The control of this detuning is
thus an open window to probe the universal exponents ζ and ξ. By measuring an
appropriate amount of relaxation [Eq. (IV.1)], one can extract Γesc and investigate
the bifurcation phenomenon.

J.S. Aldridge and A.N. Cleland worked on extracting both ξ and Ea using an
aluminium nitride beam at cryogenic temperature with a magnetomotive scheme
[Aldridge & Cleland 2005].

a

Figure IV.4: Figure adapted from Ref. [Aldridge & Cleland 2005]. a Switching
histograms for different noise intensities at the right-side bifurcation frequency: from
high to low amplitude state. Noise intensity is increased from bottom to top. b
Transition rates extracted from switching histograms. c Calculated activation energy
Ea extracted from transition rates and variation in noise intensity.

They drove the NEMS in the Duffing regime (positive stretching non-linearity)
and measured the saddle-node bifurcation phenomenon. The experimental proce-
dure was to sweep the frequency through the bifurcation point in the presence of
noise at a low enough rate to be in the adiabatic regime, and to record the exact
frequency at which the system relaxes to the stable state. Since the bifurcation
process is of statistical origin, the experiment has to be repeated enough times to
extract relevant parameters. For a given set of parameters, they could obtain a
histogram of relaxation frequencies (Fig. IV.4) and extract Γesc from it. Changing
the noise level IN (analogue of kB T in Eq. [IV.2]), they could separate Γ from
Ea, and then E0 from δ with the histograms of the relaxation frequencies. They
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hence measured quantitatively the activation energy Ea and the universal exponent
ξ for both edges of the hysteresis. They obtained an agreement between numerical
calculations and the experiment within a factor 2, and found ξ = 2, which they
compared to the configuration where the activation energies between the two states
are the same, as presented in Ref. [Dykman & Krivoglaz 1979]. The factor of 2 off
on Ea (quite large considering the exponential dependency) was attributed to the
noise calibration, which appears to be a parameter difficult to measure accurately.
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44

Figure IV.5: Representation of the pitchfork (red) and the saddle-node Duffing (blue)
bifurcation processes. The sketches at the top represent the transition from a single
position state x to a multi-state configuration while tuning an arbitrary parameter
(here the drive frequency ω). The sketches at the bottom show the energy of the
system as a function of the displacement amplitude at the given configuration (rep-
resented by the numbers). For the pitchfork process the bifurcation occurs when
entering in the multi-stable states regime, while the system is kept in the stable state
for the Duffing process. In the Duffing regime, the bifurcation only appears close
to the opposite edge of the hysteresis. Note that in this regime the hysteresis ends
by a single-state solution while the pitchfork’ hysteresis continues by a triple-state
solution.

H.B. Chan and co-workers studied the phenomenon through a different proce-
dure. Using a torsional MEMS, they measured the relaxations in a passive way:
in the non-linear regime and close to the bifurcation point, they let the driving
frequency fixed and waited for the MEMS to relax due to injected noise. This pro-
cedure, much more adiabatic than the first one, was experimented with two drive
amplitude methods. With a standard capacitive drive leading at high amplitudes to
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a Duffing oscillator behaviour (with negative non-linearity), they could extract the
power scaling law ξ of two similar samples measured at different temperatures: at
liquid nitrogen and helium [Stambaugh & Chan 2006]. They measured power laws
of respectively 1.38±0.15 and 1.4±0.15, which is in good agreement with the theory
[Eq. (IV.3)].

The other method was to drive the resonator in a parametric regime, where
motion is induced at half the modulation frequency [Chan & Stambaugh 2007]. In
this regime the two bifurcation points have a different potential behaviour. At the
entrance of the multi-stable regime, the monostable state splits in two symmetric
stable states separated by the unstable one at zero-motion amplitude (Fig. IV.5).
The new stable states, having the same motion amplitude, differ by a π phase. As
the driving frequency crosses the second bifurcation point, the zero-motion state be-
comes stable again and the system is now composed of three states, with a switch in
both amplitude and phase. This is typical of the pitchfork bifurcation process, and
in this specific case the potential is symmetric and the universal scaling law is ξ = 2
for both bifurcation points [Dykman et al. 1998]. In Ref. [Chan & Stambaugh 2007]
the authors experimentally find 2.0±0.1 for the first bifurcation point and 2.0±0.03
for the second one. Note that for large detunings, they measured a deviation from
the universal behaviour.

A

ω 

Figure IV.6: Figures extracted from Ref. [Kozinsky et al. 2007]. The top figure
shows the experimental process, as explained in the text, with A the amplitude of
oscillation and ω the drive frequency. The six circles are the results for different
final drive amplitudes. Each circle shows whether the NEMS moves to the high
(blue) or to the low (yellow) amplitude as a function of the initial drive and the
phase difference with the final drive (represented here by X and Y , the in-phase and
quadrature signals).
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Another experimental set-up was presented from the group of M.L. Roukes using
a doubly-clamped platinum nano-wire [Kozinsky et al. 2007]. They experimentally
defined the two basins of attraction of a positive non-linear Duffing resonator -
around the high amplitude state and the low one. Initiating the NEMS at a given
amplitude (in the bistable regime or not), they switched the initial drive to the final
one, tuning both phase and amplitude, and measured whether the NEMS finished
in the high or in the low amplitude state (Fig. IV.6). According to those results
they could map out the bifurcation process as a function of the two variables of the
problem: phase and amplitude.

Those works are not the only ones existing, but they introduce different ways
of analysing the bifurcation process in MEMS/NEMS. In our experiment, we chose
to excite a NEMS with a standard drive in the bistable regime close to one of the
bifurcation points and to wait for the NEMS to relax in presence of noise, performing
the so-called "saddle-node bifurcation process" (essentially the same technique as the
one presented for a MEMS in Ref. [Stambaugh & Chan 2006]). Our first motivation
is to understand how the bifurcation process evolves as we tune the parameter at the
core of the phenomenon: the non-linearity itself. Using this new free parameter, it is
possible to explore the range where the approximated analytical theory supposedly
breaks down [Eq. (IV.3)] and to probe the behaviour and the universal exponents
ζ and ξ of the bifurcation in this region. To achieve such an experiment, it is first
important to understand the non-linear dependency and the limit of applicability
of Eq. (IV.3).



74 Chapter IV. Dynamical bifurcation

IV.3 Theory

IV.3.1 The approximated 1D theory

Some of the works presented here are inspired by the papers of M.I. Dykman and
M.A. Krivoglaz [Dykman & Krivoglaz 1979, Dykman & Krivoglaz 1980]. However
in these cited papers, the experiment proposed to test the theory consisted in fixing
the driving frequency and tuning the driving amplitude, while we are willing to do
the opposite. It is essentially a question of renormalisation, but since the essence of
the experiment is to compare measured results with theory, it is convenient to sum-
marise here the ideas of the saddle-node bifurcation process and rewrite the relevant
expressions. In the following we present the work done by Vadim Puller and Fabio
Pistolesi, our collaborators.

Starting from the Duffing oscillator equation Eq. (II.5), we have to take into
account the noise injected in the system:

ẍ+ ∆ω ẋ+ ω0
2 x+ γ x3 = f0 cos(ω t) + fN (t) (IV.4)

with f0 and fN the drive and noise forces normalised to the massm. In the following,
we will assume that the NEMS is bistable, which is expressed in non-linear terms
by Eq. (II.18). The noise is characterised by the correlation function:〈

fN (t) fN (t′)
〉

= 2 IN δ
(
t− t′

)
(IV.5)

with IN the force noise spectral power intensity, an analogous (within a factor ∆ω)
to the thermal noise energy kB T in Eq. (IV.2). We can then write the system of
equations:

ẋ = y (IV.6a)

ẏ = −∆ω y − ω0
2x− γ x3 + f0 cos(ω t) + fN (t). (IV.6b)

We introduce the new motion variable z such that:

x(t) = z(t) ei ω t + z(t)∗ e−i ω t (IV.7a)

y(t) = i ω z(t) ei ω t − i ω z(t)∗ e−i ω t (IV.7b)

assuming z is a slow variable: ż � ωz. We then obtain from Eq. (IV.6b) the
equation for the new variable in the rotating wave approximation:

ż = −
[
i (ω − ω0) +

∆ω

2

]
z + i

3γ

2ω
|z|2 z − i f0

4ω
− i fN (t) e−i ω t

2ω
(IV.8)

in the limit where ω ≈ ω0. It is convenient to define the new time variable τ = ∆ω t
2

and to normalise the motion variable z:

Z(τ) =

√
3 γ

ω∆ω
z

(
2 τ

∆ω

)
. (IV.9)
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Note that until the end of this section, the "dot" notation will now refer to the
derivative with respect to τ . From Eq. (IV.8) we now have:

Ż(τ) = − (iΩ + 1) Z(τ) + i |Z(τ)|2 Z(τ)− i F0 − i FN (t), (IV.10)

with

Ω =
2 (ω − ω0)

∆ω
, F0 =

√
3 γ f0

2 (ω∆ω)3/2
, FN (t) =

√
3 γ fN (t) e−iω t

(ω∆ω)3/2
, (IV.11)

respectively the relative normalised driving frequency and the renormalised drive
and noise forces. Without noise we obtain the stationary solution:

Z0 =
F0

|Z0|2 − Ω + i
= |Z0| ei φ0 , (IV.12)

with

|Z0| =
F0√(

|Z0|2 − Ω
)2

+ 1

, (IV.13a)

sin (φ0) =
−1√(

|Z0|2 − Ω
)2

+ 1

, cos (φ0) =
|Z0|2 − Ω√(
|Z0|2 − Ω

)2
+ 1

. (IV.13b)

To simplify the calculations, we turn the phase of our variable Z to fix the stationary
solution real with Z̃(τ) = Z (τ) e−i φ0 .

If we now look separately at both real and imaginary parts of Eq. (IV.10) using
Z̃(τ) = Z̃R (τ) + i Z̃I (τ) [with Z̃R, Z̃I ∈ R], we write:

˙̃
ZR = −Z̃R + Ω Z̃I −

(
Z̃2
R + Z̃2

I

)
Z̃I − F0 sin (φ0)−<

[
i FN (t) e−i φ0

]
, (IV.14a)

˙̃
ZI = −Z̃I − Ω Z̃R +

(
Z̃2
R + Z̃2

I

)
Z̃R − F0 cos (φ0)−=

[
i FN (t) e−i φ0

]
. (IV.14b)

With the new definitions, the stationary point verifies Z̃0R = |Z0| and Z̃0 I = 0,
leading to:

−Z̃0R − F0 sin (φ0) = 0,
(
Z̃2

0R − Ω
)
Z̃0R − F0 cos (φ0) = 0. (IV.15)

Linearising near the stationary point, Z̃R = Z̃0R + δ̃ZR, Z̃I = Z̃0 I + δ̃ZI, we obtain:

˙̃
δZR = −δ̃ZR +

(
Ω− Z̃2

0R

)
δ̃ZI, (IV.16a)

˙̃
δZI =

(
3 Z̃2

0R − Ω
)
δ̃ZR − δ̃ZI, (IV.16b)

with the associated eigenvalues:

λ1,2 = −1±
√(

Ω− Z̃2
0R

) (
3 Z̃2

0R − Ω
)
. (IV.17)
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In the region we will explore (in the hysteresis of the NEMS), three solutions coexist:
two stable states (small and large amplitude oscillation, one being metastable) and
an unstable state (the saddle point). At the bifurcation point (ω = ωbif ), the
unstable state merges with the metastable one and one of the eigenvalue is zero,

λ1 = 0, λ2 = −2. (IV.18)

We then have at the bifurcation point:

Z̃2
bif =

2 Ωbif ±
√

Ω2
bif − 3

3
, Ωbif =

2 (ωbif − ω0)

∆ω
(IV.19)

with Z̃bif and Ωbif the normalised amplitudes and frequencies at the bifurcation
points. Near these points, Eq. (IV.16) takes the form:

˙̃
δZR = −δ̃ZR +

(
Ω− Z̃2

bif

)
δ̃ZI = −δ̃ZR + cot (φbif ) δ̃ZI, (IV.20a)

˙̃
δZI =

(
3 Z̃2

bif − Ω
)
δ̃ZR − δ̃ZI = tan (φbif ) δ̃ZR − δ̃ZI, (IV.20b)

with

sin (φbif ) =
−1√(

Z̃2
bif − Ωbif

)
+ 1

, cos (φbif ) =
Z̃2
bif − Ωbif√(

Z̃2
bif − Ωbif

)
+ 1

. (IV.21a)

We can now introduce the variables corresponding to the eigenvalues calculated
above:

Z̃1,2 = δ̃ZR sin (φbif )± δ̃ZI cos (φbif ) , (IV.22)

which leads to:

Ż1 = 0, (IV.23a)

Ż2 = −2Z2. (IV.23b)

From this set of equations, we see that at first order Z2 relaxes much faster than
Z1. This means that as far as the relaxation times measured are larger than 1

∆ω ,
the fast variable Z2 already relaxed to zero and is stable, and only the slow variable
Z1 matters in the evolution process. We thus conclude that in this configuration
the initially 2D theory reduces to a rather convenient 1D analytical problem.

It is important to note that this approximation is possible only close to the
bifurcation point ωbif . Indeed, if we now look at the frequency where the NEMS’
amplitude reaches its maximum ωmax, both eigenvalues at this stable point are
equal: λ1,2 = −1. Hence at ωmax the separation between fast and slow variables
loses meaning. Thus the driving frequency ω needs to be in between ωbif and ωmax,
which also writes:

4 Ωbif |Ω− Ωbif | � 1. (IV.24)
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Note also that in most of the relaxation configurations we will present in the follow-
ing, the NEMS will relax from the upper branch with a large hysteresis (Ωbif � 1).
In this limit, we have:

sin (φbif ) ≈ 1, cos (φbif ) ≈ −1

2 Ωbif
, Z̃bif ≈

√
Ωbif (IV.25)

If we now get to the second order in Eq. (IV.16) including the noise and still using
the eigenvectors Z1,2, we obtain a single equation for the slow variable Z1:

Ż1 = g + aZ1 − b Z2
1 + η, (IV.26)

which can be reduced to:
˙̃
Z1 = g̃ − b Z̃2

1 + η, (IV.27)

with:

Z̃1 = Z1 −
a

2b
, g̃ = g +

a2

4b
, (IV.28a)

g =
|Ω− Ωbif |
2
√

Ωbif

, a = |Ω− Ωbif |Ωbif , b =
Ω

3/2
bif

2
, (IV.28b)

η = −< [FN (t)] ,
〈
η (τ) η

(
τ ′
)〉

= 2 ĨN δ
(
τ − τ ′

)
, ĨN =

3 γ IN
4ω3 ∆ω2

, (IV.28c)

and from Eq. (IV.24), we have g̃ ≈ g. Eq. (IV.27) can be described by the Langevin
process:

dZ̃1

dτ
=

dU

dZ̃1

+ η, U
(
Z̃1

)
= g̃ Z̃1 −

b

3
Z̃3

1 , (IV.29)

where U is the effective cubic potential in which the NEMS evolves (an approxi-
mation at small detunings of the 4th order potential represented in Fig. IV.2). As
described in Ref. [Dykman & Krivoglaz 1980], from this one-dimensional problem
one can have access to the average escape rate Γesc needed for the system to relax
for the first time from the metastable state to the stable one:

Γesc =
∆ω
√
bg

2π
e−E , E =

4 g3/2

3 ĨN b1/2
. (IV.30)

Using the parameters in Eq. (IV.29), we obtain:

Γesc =
∆ω

√
|Ωbif − Ω| Ωbif

4π
e−E , E =

8ω3 ∆ω2 |Ω− Ωbif |3/2

9 γ Ω
3/2
bif IN

. (IV.31)

If we now re-write the expression using the experimentally defined parameters, and
if we compare with Eq. (IV.3) we finally obtain:

Γesc = Γ e
−Ea
IN , (IV.32a)

Γ = Γ0 |δω|1/2, Ea = E0 |δω|3/2 (IV.32b)

Γ0 =
x2

2π
|β|1/2, E0 =

ω2 ∆ω2

3x3
|β|−5/2, (IV.32c)
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with x the peak amplitude of motion at the working point (frequency ω) and β =
3 γ
8ω0

. From those equations we can effectively extract the universal exponents in
Eq. (IV.3): ζ = 1/2 and ξ = 3/2 given that δω = ωbif−ω is our detuning parameter.
The other remarkable exponents come from the non-linear dependency. As discussed
before, the non-linearity is at the core of the Duffing oscillator, and Eq. (IV.32c)
shows also standard power law dependencies on β for both the attempt frequency
and the activation energy.

Yet, those analytical results suffer from a very narrow range of applicability.
One should always satisfy Eq. (IV.24) while Ωbif � 1. But the larger Ωbif is, the
narrower the detuning δω can be (see Fig. IV.7).
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Figure IV.7: Visual representation of the condition Eq. (IV.24). The bottom left plot
shows in arbitrary units three resonance lines, with a Duffing non-linear coefficient β
varying from simple to triple. At the top we see an identical zoom of each line close to
the bifurcation point, and observe that the maximum detuning available ωbif −ωmax

decreases as the non-linearity increases. A global view is represented at the bottom
right of the figure.

If on one hand it is difficult to achieve those conditions while we want to map out
the non-linear dependency, on the other hand it is both interesting and challenging
to investigate what is beyond the analytical theory. However, in order to check the
validity of our measurements in this region, we need a theoretical support. While no
work has been successful to our knowledge on the 2D analytical theory, comparing
our experimental results with numerical calculations is already an achievement.
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IV.3.2 Solving the Fokker-Planck equation

Since those 1D results are only an approximation of the full 2D theory and no
other valuable analytic approximations has been reached up to now, our collabora-
tors worked on numerical simulations to test the exactness and the limits of these
expressions, with the final aim of comparing theory with our experimental results.

The calculation starts from the separation between real and imaginary parts in
Eq. (IV.14), taking Z instead of Z̃ as the stationary solution:

ŻR = f (ZR, ZI)−< [i FN (t)] , (IV.33a)

ŻI = g (ZR, ZI)−= [i FN (t)] . (IV.33b)

where

f (ZR, ZI) = −ZR −
(
Z2
R + Z2

I − Ω
)
ZI, (IV.34a)

g (ZR, ZI) = −ZI +
(
Z2
R + Z2

I − Ω
)
ZR − F0. (IV.34b)

A description equivalent to that provided by Eq. (IV.33) is obtained by means of a
Fokker-Planck equation, which in this case takes the form:

∂tP (ZR, ZI, t|ZR0, ZI0) = L̂FP P (ZR, ZI, t|ZR0, ZI0) , (IV.35)

where P (ZR, ZI, t|ZR0, ZI0) is the conditional probability density for the system to
be found at the point ZR, ZI at time t given that it started from ZR0, ZI0 at t = 0.
The Fokker-Planck operator is defined here as:

L̂FP W (ZR, ZI) =− ∂ZR [f (ZR, ZI) W (ZR, ZI)]− ∂ZI [g (ZR, ZI) W (ZR, ZI)]

+
ĨN
2
∂2
ZR W (ZR, ZI) +

ĨN
2
∂2
ZI W (ZR, ZI) , (IV.36)

for an arbitrary probability densityW . It can be shown further that when the finite
mean escape time exists, it obeys the equation:

L̂†FP τesc (ZR, ZI) = −1, (IV.37)

where the adjoint operator to the Fokker-Planck operator is:

L̂†FP W (ZR, ZI) =− f (ZR, ZI) ∂ZRW (ZR, ZI)− g (ZR, ZI) ∂ZIW (ZR, ZI)

+
ĨN
2
∂2
ZR W (ZR, ZI) +

ĨN
2
∂2
ZI W (ZR, ZI) . (IV.38)

The solution τesc (ZR, ZI) then provides the mean time that it takes for the system
to escape this region, if it starts its motion at the point ZR, ZI [Pistolesi et al. 2008].

Applying our different sets of experimental parameters to the Fokker-Planck
equation, it is thus possible to produce theoretically what we should measure in
our experiments, as far as the Langevin process is valid. One can verify that in-
deed within the experimental range explored, the relaxation probability is expo-
nential versus time. It also enables to have theoretically access to the universal
exponents and to the dependence of the bifurcation process on the non-linearity
beyond the limit where the 1D theory breaks down, as was also investigated in Ref.
[Kogan 2008].
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IV.4 Experiment

IV.4.1 Motivations and experimental set-up

Investigating both ζ and ξ is challenging since Γ has a logarithmic precision over
Γ0. Extracting the different power scaling laws requires thus accurate measurements

of the average escape time tesc =
1

Γesc
.

As described in Chap. II, we first need a low temperature environment to pre-
vent noise on the measured signal, but also to "freeze" intrinsic materials dynamics
as much as possible. Experiments show that if the set-up warms up to liquid ni-
trogen temperature (typically above 50 K), previous measurements will not be per-
fectly compatible with the new ones even though the NEMS is cooled down again
to Helium temperatures. This mismatch is due to all sorts of non-reproducible
thermally-activated alterations of the NEMS, like the exact atomic configuration
due to dilation/compression or the intrinsic two-level systems (TLS) dynamics (see
Sec. IV.4.3 and Chap. V). While the parameters of the oscillator shift at worse by a
few percents, the exponential dependencies on Ea in Γesc [Eq. (IV.2)] and Γesc in P
[Eq. (IV.1)] make the experiment sensitive to such small deviations. Nevertheless,
only the NEMS’ parameters are expected to change with temperature while the
general behaviour of the bifurcation process should not be affected. To confirm the
reproducibility of the phenomenon we did two thermal cycles above 50 K, leading
to three different sets of data. For clarity, we will mainly focus on one of them and
compare with the others only when necessary.

One of the main objectives of this experiment is to understand the behaviour of
the bifurcation phenomenon as a function of the non-linearity generating the bistable
regime (Chap. II). This regime, as presented earlier, depends on both the non-linear
parameter γ and the displacement amplitude x through β x2. In most experiments
γ is of geometrical origin (hence fixed) and the non-linearity is induced by increasing
the displacement. While this would be enough for an ideal Duffing oscillator, it is
no longer true if extra non-linear terms exist (see Sec. II.3.5). Indeed, depending on
the material, the geometry or the type of excitation, new non-linearities can emerge
from the standard equation with terms like α1 x ẍ or α2 x ẍ, and even anelastic effects
may appear (see Sec. II.5.4). Tuning the displacement might then affect those extra
terms and completely change the physics studied. Furthermore, the dependence on
x in the activation energy Ea does not reduce to the standard Duffing term β x2,
see Eq. (IV.32). As a result, tuning independently the non-linear coefficient and
the displacement amplitude is required for a better understanding of the relaxation
process since β and x are not interchangeable quantities.

In our case we use an intrinsicaly highly linear resonator: the goalpost presented
in Chap. II, which geometrical non-linearity is almost inexistent even for large dis-
placements. By means of a D.C. gate voltage (Sec. II.3.4), we tune in-situ the
Duffing non-linear parameter such that γ ∝ −Vg2 [Eq. (II.15)]. Note that our γ is
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hence negative unlike most NEMS’ Duffing coefficients which are usually positive.
The polarity is irrelevant as far as the formulae quoted in Sec. IV.3.1 are concerned
(they involve absolute values of β).

This distinctive tunability feature enables to control the non-linearity at a fixed
displacement amplitude, but one first needs to take into account side effects of this
capacitive coupling, i.e. the contribution of the other orders in the Taylor expansion
[Eq. (II.13)]. In the D.C. range we are going to explore (up to 10 V), the gate
voltage will also shift the resonance frequency ω0 as described in Eq. (II.22). For
clarity, in the whole chapter ω0 will always refer to the resonance frequency shifted
by the applied D.C. gate voltage (written ω0,g in Sec. II.4.3).

The principle of the experiment is to detect transitions from a metastable state
to a stable one for different NEMS’ parameters. By doing so we will tune both the
activation energy and the attempt frequency, which will change the escape time by
orders of magnitude. Controlling the noise level IN we can catch up this modification
to keep overall measurement times in a convenient range. This control can be
achieved by changing the temperature or using a noise source generator. Since the
effective temperatures involved in the bifurcation process for our NEMS’ parameters
are of the order of 104 K, the latter option is clearly more appropriate.
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Figure IV.8: Normalised response of the passive filter in log scale. The inset highlights
the flatness around the resonance frequency ω0. The loss factor due to the filter is
about 1.65.

Through the magnetomotive set-up described in Chap. II, a voltage noise source
generator added to the actual harmonic drive is used to produce the noise force
acting on the NEMS (Fig. II.13). In practice, we used the second channel of our
Tektronix generator which has a noise function (white, Gaussian, distributed from
D.C. to 240 MHz). Since we do not want to warm up the sample, we reduce its
frequency range using a passive filter with a bandwith of 1 MHz around 7 MHz.
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The characteristics of this filter is presented in Fig. IV.8. We then use the active
adder presented in Chap. II to combine the harmonic drive with the noise voltage.
As pointed out in Ref. [Aldridge & Cleland 2005], it is rather delicate to appreciate
the exact amplitude of the noise experienced by the NEMS. We took extreme care
in its calibration, measuring the noise spectrum at room temperature with a spec-
trum analyser on both the input signal (after the adder) and on the Ohmic voltage
(at the level of the lock-in detector). Nevertheless, this parameter is certainly the
less accurately known in absolute units (arguably up to ±20% here), and we shall
comment this point at the end of the Chapter.

To detect the metastable/stable state transitions, as described in Sec. IV.3,
we need to be close to one of the two bifurcation points of the Duffing oscillator
(Fig. IV.9). The relaxation occurs either close to the linear resonance frequency
ω0, from the small amplitude state (metastable) to the large one (stable) at the
frequency ωbif ↑, or close to the maximum displacement’s frequency ω0 + βx2, from
the large amplitude state (metastable) to the small one (stable) at the frequency
ωbif ↓. The latest is the most experimentally studied one and the most theoretically
described, thus the biggest part of our experiment is done close to ωbif ↓.
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Figure IV.9: Duffing response of the NEMS at Vg = 9.4 V. Two bifurcation points
delimit the hysteresis: transition from the high to low amplitude at fbif↓ and the
opposite at fbif↑. The blue line is a fit to the data. In the experimental scheme, we
start from an arbitrary position 1©, sweep upward through fbif↑ until 2© and turn
the noise on, sweep downward until the detuning δf is reached 3©, wait for the NEMS
to relax 4©, and restart all over again.

The basic idea of the experiment is to measure the time needed for the NEMS
to relax to its stable state for a given set of parameters. First of all, we need
to initiate the NEMS in the metastable state in the upper branch. We fix our
harmonic drive and apply a reasonable D.C. gate voltage to open the hysteresis up
to the desired value. Since our non-linearity is negative, we sweep the frequency
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upwards through the hysteresis, up to a few linewidths after the bifurcation point
ωbif ↑. We then turn the noise on and we sweep backwards until reaching the desired
detuning δω = ω − ωbif from the bifurcation point ωbif ↓.

One crucial parameter in this procedure is the rate at which the sweep is done.
Indeed, sweeping too fast makes the system non-adiabatic and relaxes the NEMS to
the low amplitude state before reaching δω. On the other hand, sweeping too slow
leads to an undefined relaxation time. The first condition only matters when the
driving frequency ω is close to the bifurcation point, thus we use two sweeping rates:
we first sweep fast (typically hundreds to kHz/sec), and as we get closer to ωbif↓
we reduce the rate (typically few Hz/sec) until reaching the right detuning. Those
two rates change with the size of the hysteresis defined by the applied voltage Vg,
as it will be described in Sec. IV.4.3. Thanks to the exponential dependence of the
escape time to the detuning parameter, the time needed to park at δω essentially
does not affect the measurements.

When the NEMS is properly initiated at a fixed driving force, noise IN , detuning
δω and non-linear Duffing coefficient γ, we measure the relaxation time to switch
from the high amplitude branch to the low one, and start over again the measurement
procedure. Since the phenomenon is of statistical origin, the most straightforward
way of analysing the relaxation times is by creating histograms. A large amount
of data is needed to have a consistent histogram, we thus have measured about a
thousand relaxations for each set of parameters.

Figure IV.10: Bifurcation parameter space (normalised non-linearity as a function
of normalised frequency, as defined in Sec. IV.3.1). The grey area is the bistability
regime of the NEMS where the right edge is the transition from a high amplitude
oscillation to a low one at ωbif↓, (the left edge is the opposite, at ωbif↑) and K is the
spinode point where hysteresis starts to open. We show within the bistability the
data points at different voltages Vg.
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For our sets of parameters, the force is fixed to 65 pN, leading to a displacement
amplitude of about 100 nm, which is the reasonable limit before deviations on the
Taylor expansion of the capacitance (Sec. II.3.4). At this displacement, no distortion
of the Lorentzian resonance curve due to intrinsic non-linearities can be seen, and
the hysteresis only starts to open for an applied D.C. gate voltage of about 2.1 V,
which is called the spinode point K in Fig. IV.10. To explore a wide range of
the bifurcation parameter space we used five different non-linearities, from small
hysteresis (3.1 V) to hysteresis of about ten linewidths (9.4 V) as seen in Fig. IV.10.
For each non-linearity we measured at least three detunings, from tens of Hz at the
smallest hysteresis, up to hundreds of Hz for the largest. In order to extract with
a good accuracy Ea and Γ in P (t), we measured three different noises for each of
these δω and γ, leading to average escape times tesc from about 0.5 to 50 sec.

The main interest in this experiment is to investigate both the region were
the analytical results apply and what happens beyond this limit. As described by
Eq. (IV.24), this limit depends on the working point ω with respect to the frequency
position at which the NEMS reaches its maximal amplitude ωmax (Fig. IV.7). If
the driving frequency ω is in between ωbif and ωmax then the analytical calculations
apply. Beyond ωmax, no present analytical prediction exists, although some numer-
ical calculation was done in the case where the driving amplitude was the sweeping
parameter [Ryvkine et al. 2004, Kogan 2008]. While the injected noise needed to
bifurcate beyond ωmax seems quite high for small hysteresis, this is no longer true
for large non-linearities, and for Vg = 6.25V we can already overcome the limit. In
total, we explored a range such that 0.13 < 4 Ωbif |Ω−Ωbif | < 71. Let us note that
we also measured the relaxation times at ωbif ↑ from the small amplitude branch to
the large one, and at ωbif ↓ but reducing the maximal displacement amplitude by
a factor

√
2 and 2. While those extra-configurations could not be studied in the

framework of the bifurcation process itself, their implications for our results will be
discussed in the next sections.

IV.4.2 Measurements and analysis techniques

The measurement of the relaxation time starts right after δω is reached and ends
when the measured oscillation amplitude passes below a threshold value, arbitrarily
fixed to half of the maximum amplitude. When enough relaxation times have been
recorded for each set of data (a thousand typically takes about a day), a pre-analysis
is done to prevent experimental artefacts to be kept in the final histograms.

Indeed, a few undesired features have to be removed from the analysis:

• From an instrumental point of view, it is important to note that the GPIB
acquisition process takes about 40 ms to measure one point, which means we
cannot measure too short escape times. It is also important to check that
this acquisition time does not vary too much within one histogram (because
of computer’s extra processes), in order to guarantee the acquisition stability
in terms of sweep rate.
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Figure IV.11: Typical output of the Python routine (here Vg = 4.7 V, δf = 100 Hz,
IN = 32 fN2/Hz), presenting the results of the pre-analysis as described in the text.
The dashed lines are the analysis thresholds detailed below. Top left : histogram of
the relaxations after analysis. Top right : shift in frequency as the relaxations occur.
Any too large shift in frequency (typically five standard deviations) is removed from
the analysis (dashed line). Here, none occured as opposed to Fig. IV.14. Center Left :
averaged measurement time between each data point. If the measurement time is
shorter or faster for one relaxation, we remove it. Center right : standard deviation of
measurement time for each relaxation. If the measurement time fluctuates too much,
we also remove the point. Bottom left : averaged jump amplitude of the relaxation
for the in-phase component. This jump represents the amplitude difference between
the high and the low state, and should remain the same for a fixed set of parameters.
Bottom right : standard deviation of the amplitude before relaxation. If the amplitude
fluctuates too much before the relaxation occurs, we remove the point as well.
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• The amplitude of the jumps from one branch to the other is also carefully
measured to check that the NEMS is stable during the whole acquisition at
the desired working point.

• As described above, the materials of the NEMS may have defects inducing
additional features such as two level systems (TLS), which change the reso-
nance frequency of the NEMS and thus the working point δω. Tracking ωbif
is hence of crucial importance in order to exactly know the detuning at which
the relaxation takes place. Fortunately, the activation of single and large TLS
is a rare (and probabilistic) event, but each time it permanently shifts ωbif
until it kicks back in after an unknown amount of time (Fig. IV.14). By mea-
suring the bifurcation frequency without injected noise before each relaxation
time acquisition, we can recover these rare global shifts. However, since we do
not know whether the TLS was activated during the measurement of ωbif or
during the previous escape time measurement, both data points are excluded
from the final analysis. The overall measured bifurcation frequency displays
also a slow random drift which can be attributed e.g. to the thermal stabil-
ity of the room (typically about 10

◦C). Note that, as presented in Fig. IV.11
(top right), a small low frequency noise remains which shall be described in
Sec. IV.4.3.

• To finish with, the relaxation time measurement has two cutoffs: a minimum
value of about 40 ms due to the GPIB and a maximum value of about 40 sec.
Some relaxations might occur before 40 ms, but we observe that their contri-
bution is negligible compared to the total number of relaxations. These data
points are disregarded as being "early" switchings. However, the number of
relaxations after 40 sec might be quite large depending on the set of parame-
ters. While we obviously cannot determine the histogram of those relaxations,
we can know the total amount of relaxations that were not measured. This is
required for a proper normalisation of the relaxation histograms. Note that

1
∆ω < 40 ms, hence the relaxation occurs within one amplitude point measure-
ment and we automatically satisfy the condition of being resolving only the
slow variable evolution [Eq. (IV.23)].

Those different experimental issues were taken care of using a Python written rou-
tine, and a typical result of this pre-analysis is presented in Fig. IV.11.

From those relaxation times left after filtering, we compute histograms from
which we can obtain the average escape time tesc (Fig. IV.12). Plotting them as a
function of the noise intensity IN with an exponential law [Eq. (IV.32a)], we should
be able to extract both activation energy and attempt frequency, and finally their
detunings and non-linear dependencies. Nevertheless, only few histograms are as
good-looking as the ones in Fig. IV.12: when the detuning is too small a "curved"
histogram is obtained, even in log-scale (Fig. IV.13).

Fitting an exponential does not seem to be appropriate, something is missing ei-
ther in the theory or in the analysis. From the "curved" behaviour of the histogram,
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Figure IV.12: Typical histograms at large detuning. The figures a) and b) differ by
the set of parameters used (respectively Vg = 9.4 V, δf = 400 Hz, IN = 10 fN2/Hz

and Vg = 6.25 V, δf = 170 Hz, IN = 15.7 fN2/Hz), leading to different escape times.
The black lines are exponential fits. In b) case, the histogram is cut at the end
due to the measurement procedure as explained above (dashed line). However, we
know the total number of relaxations that should be present in the histogram, and
hence the fitting procedure does not have any free parameter except from the average
relaxation time.
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Figure IV.13: Unusual histograms at small detuning (a: Vg = 7.8 V, δf = 30 Hz,
IN = 0.32 fN2/Hz, b: Vg = 4.7 V, δf = 30 Hz, IN = 5.1 fN2/Hz). Note the curved
aspect compared to Fig. IV.12. The lines are just guides for the eyes.

one can deduce that a parameter is not fixed during a single set of measurements,
leading to a dynamical average of the relaxation times.

Regarding stability, the bifurcation process is indeed extremely demanding due
to the exponential/power law dependencies. The key is in the frequency stability, the
requirements are less stringent on the other parameters. The question is what could
experimentally limit our precision. As a matter of fact, it appears that the biggest
uncertainties seem to come from the NEMS itself with the remaining low-frequency
fluctuation of ωbif (see Fig. IV.11, top right). Indeed, in a standard measurement



88 Chapter IV. Dynamical bifurcation

0 200 400 600 800 1000
0

50

100

150

R
es

on
an

ce
 fr

eq
ue

nc
y 

(H
z)

Relaxation measured

+ 7.08072 MHz

0 500 1000
-8

-4

0

4

8

Fr
eq

ue
nc

y 
no

is
e 

(H
z)

Relaxation measured

Figure IV.14: Bifurcation frequency shift as a function of the relaxation number
during the same set of parameters (Vg = 3.1 V, δf = 30 Hz, IN = 25.9 fN2/Hz). Each
relaxation takes about 2 minutes. Three different fluctuations are observed: the rare
large frequency jump, the slow fluctuation during the day and the faster fluctuation
making fbif non-reproducible between each relaxation measurement. Inset: "fast"
frequency fluctuation extracted after filtering the slow one and the jumps.

the resonance frequency of an oscillator is known within its linewidth. With the
bifurcation process, this precision is highly improved [Aldridge & Cleland 2005].

As described above, for each relaxation time measured, we look for the actual
bifurcation frequency. It hence takes about two minutes to acquire one relaxation
time, since we need to be careful about the sweeping procedure. Plotting the time
ordered measured ωbif , we show the evolution of two bifurcation frequency sets
during the day in Fig. IV.11 (top right) and Fig. IV.14. Three major features
emerge from these graphs as already pointed out: a very slow drift of the resonance
frequency over the day, the presence of large frequency jumps, and a slow but faster
fluctuation around the (local) mean.

While important, the global drift over the day is recovered by the bifurcation
frequency tracking method since the fluctuation is over tens of relaxation records.
However the large frequency jumps represent rare TLS events, which are well-known
to affect measurements in mechanical resonators. Over the months of acquisition,
we observed a general behaviour emerging from this characteristic feature. Among
the parameters we control for the bifurcation process, only the gate electrode and
the drive amplitude are relevant for this specific study, the noise power IN being
negligible compared to the energy released during the relaxation process itself (the
noise generator is always off). As one could suspect from TLS, most of the "up"
jumps are followed with "down" jumps of the same amplitude (as presented in
Fig. IV.14), with an effective "life time" of the activated TLS which varies from the
minimum measurement time (about one minute) to hours.

We show in Fig. IV.15 the dependency of the amplitude of these jumps. While
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Figure IV.15: Main: frequency jump amplitudes as a function of the applied voltage
Vg on the gate electrode for x = 100 nm. The green surface is a guide for the eyes,
delimited by a quadratic dependency on both sides. Note that the data from three
different cryo-cycles are all present in this graph. Top inset : jump amplitudes as a
function of the displacement amplitude x for Vg = 7 V. The blue surface follows the
same definition as in the main graph. Bottom inset : histogram of the jump sizes for
Vg = 9 V, which is similar for the other voltages.
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Figure IV.16: Example of histograms characterizing the zero-averaged frequency
fluctuations of the bifurcation point. The black lines are Gaussian fit. a) Histogram
obtained at Vg = 3.1 V, for a velocity of 1 Hz/sec, with a mean standard deviation
of σmes = 1.4 Hz. b) Histogram obtained at Vg = 9.4 V, for a velocity of 5 Hz/sec,
with a mean standard deviation of σmes = 11.2 Hz.

the data are scattered, we see in this log-log plot an overall square tendency of the
amplitude as a function of both the gate electrode applied voltage Vg and the NEMS
displacement x, which seems to be reproducible over cryo-cycles. Unfortunately, the
probability of measuring a TLS being very small (in our case we see on average 1
TLS every 103 relaxations), the amount of measured jumps is not enough to extract
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more information (like the correlation between jumps or between their size and time
duration before return). But as far as bifurcation is concerned, it is fortunate that
those experimental issues are rare events: we can easily take their effect into account
in the analysis to study solely the bifurcation process.

However, after filtering the slow fluctuation process and the TLS jumps, we
still see a (small) noise on ωbif between each measurements (inset of Fig. IV.14).
Creating a histogram out of this "faster" fluctuation data, we see that this noise
is Gaussian with a standard deviation σ of a few Hertz for small hysteresis up to
around ten Hertz for the largest one (Fig. IV.16). This means that, while we drive
the NEMS at a fixed frequency ω, the bifurcation frequency ωbif of the NEMS
itself is fluctuating. Each relaxation time measurement is hence performed with an
uncertainty on the detuning δω of up to 15%, which is dramatic since tesc depends
both exponentially and in power laws on δω, and leads to a dynamical tesc that
explains the curved histograms we measured.

In order to analyse the bifurcation process with high precision we thus need to
characterise and understand these frequency fluctuations, and then take them into
account.

IV.4.3 The Gaussian distribution of the resonance frequency

A proper characterisation of the noise generating σ is not a trivial task. Indeed,
the method used by sweeping through ωbif with no injected noise is just a first
indicator if one needs to extract and characterise the frequency noise out of it. The
first matter one would need to take care of is to determine whether this noise is low
or high frequency - that is if within one relaxation time measurement the bifurcation
frequency shifts. To resolve the frequency of the noise, we need our measurement
technique to be faster than this noise. Nevertheless, even by just sweeping through
the bifurcation point over and over (which takes each time about a minute), we
cannot measure ωbif fast enough.

However, assuming the frequency of the noise is too high would mean that the
relaxation times measurement at a detuning δω close to σ is impossible: the NEMS
would almost instantly relax because the actual driving frequency would have a high
probability to be out of the hysteresis (that is for our case ω < ωbif ). But Fig. IV.17
clearly shows a reasonable average escape time while |δω| < σ for no injected noise.
From this result we can deduce that the frequency noise is too fast to be properly
defined but still slow enough so that we can measure tesc in a meaningful way.

Another important issue is to be able to measure the real σ: indeed the measured
sigma σmes is different from the actual one we want to characterise. This comes
from both the sweeping rate and the bifurcation process itself. If we sweep too
slowly we might relax before ωbif because of a bifurcation process occurring in the
meantime (even for no injected noise, the system still has some intrinsic noise). Thus
sweeping at a high rate seems the appropriate method to obtain almost instantly
the bifurcation frequency, but again the bifurcation process might make the NEMS
relax before ωbif due to the high energy and non-adiabaticity involved in a fast
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Figure IV.17: Main: Relaxation histogram without injected noise IN for δf = 2 Hz
at Vg = 3 V (with a Gaussian frequency fluctuation of σ∞ = 3 Hz as defined in the
following). Since the detuning is small, the histogram is curved, but we can clearly
measure long escape times while the measurement is done within σ∞. Inset : typical
Fourier transform of the autocorrelation of the frequency noise. Note the 1/f fitted
law in dashed line.

sweep. The most reasonable way is hence to measure σmes at different sweeping
rates, not too slow and not too fast, and then to extrapolate to σ∞ what would be
the fluctuations in an ideal adiabatic but ultra-fast sweep (Fig. IV.18).
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Figure IV.18: Typical example of the extrapolation of σ∞ at infinite rate (note the
inverse x-axis), for Vg = 3.1 V. The blue line is a guide for the eyes. This extrapolation
keeps σ∞ within the same order of magnitude than σmes (variation up to a factor of
2).

Doing this extrapolation for different gate electrode voltages Vg and different
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NEMS amplitudes, we observe a quadratic dependence of the fluctuations on both
parameters, as presented in Fig. IV.19, which seems to be robust even after different
cryo-cycles. One could suspect that this frequency noise comes from the bifurcation
phenomenon itself (ramping through ωbif with a small but non-zero intrinsic noise
remaining at ω0 [Aldridge & Cleland 2005]). We show in dark cyan in the inset of
Fig. IV.19 a fluctuation measurement taken on the other edge of the hysteresis at
fbif↑, where the energies Ea involved scale in a completely different way from the
bifurcation at fbif↓ [Dykman & Krivoglaz 1979, Kogan 2008]. We see however that
the σ still scales with the same quadratic law with respect to motion amplitude.
Thus it cannot be linked to scatter due to the bifurcation process, and fluctuations
have to be genuinely coming from the resonance frequency itself.

From these analyses, we can phenomenologically construct a biquadratic equa-
tion that captures the dependencies of the fluctuations:

σ∞ = σ0 + Σ1 V
2
g + Σ′1 x

2 + Σ2 V
2
g x

2, (IV.39)

with σ0 the intrinsic fluctuation of the resonance frequency and Σ1 (in Hz.V−2), Σ′1
(in Hz.nm−2) and Σ2 (in Hz.V−2.nm−2) the prefactors describing the effect of the
gate electrode and the displacement of the NEMS.

From the quadratic fits in Fig. IV.19 we extract σ0 + Σ′1 x
2 = 1±0.2 Hz and

Σ1 + Σ2 x
2 = 0.2 ± 0.03 Hz.V−2, and incorporating these results in the fits of the

inset which depend on x, we find the general equation:

σ∞ = (1± 0.2) + (0.037± 0.01)V 2
g

+ (0± 0.5)×10−4 x2 + (0.163± 0.02)×10−4 V 2
g x

2. (IV.40)

We thus see three components inducing those small fluctuations in the resonance
frequency: an intrinsic term σ0 which presumably is due to the distribution of the
"faster" TLS, the contribution of an electrostatic term Σ1 V

2
g and a mechanical

energy-like contribution scaling with x2. On one hand, the electrostatic term could
be attributed to the imprecision of our voltage generator (error δV

V of the order
of 10−6 while the resonance frequency mainly shifts as 1770 V 2

g , see Sec. II.4.3).
On the other hand, no experimental limitation that we know of could explain a
Σ2 V

2
g x

2 component, which origin can only be speculated. We could suspect that
it might be the signature of a coupling between the mechanical energy of the mode
and low-energy TLS [Fong et al. 2012]. For instance, we can propose that TLS can
be statically biased by the voltage term Σ1 V

2
g , and also mechanically activated

with a released energy (or more accurately power) ∝ x2. The variation with Σ2 V
2
g

would then be interpreted as a voltage-dependence in the TLS-energy coupling term.

While we cannot be sure of this "fast" frequency-noise origin, let us note that we
also saw it in intrinsically non-linear NEMS without any voltage bias. Measuring in
the same way as described before, this other device (the 15 µm low stress SiN doubly-
clamped beam, resonating at 7 MHz like the goalpost) shows an intrinsic frequency
fluctuation which is represented by the purple star in Fig. IV.19. Remarkably, the
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Figure IV.19: Main: variation of the bifurcation frequency fluctuation with respect
to the applied voltage Vg. We present in black and grey the fluctuations measured
for the set of data introduced in Fig. IV.10 (the grey ones being estimations from
the extrapolation of the black ones), and in orange and green the two other sets of
data after different cryo-cycles. However, all points were taken for a displacement
x of 100 nm. Note the purple star which is the extrapolated σ of the low stress
SiN doubly-clamped beam (zero voltage, same resonance frequency and extrapolated
at zero motion to σ0 = 1 ± 1 Hz). The blue curve is a quadratic fit, as explained
in the text. Inset : variation of the fluctuation with respect to the goalpost NEMS
displacement. The colors respect the cryo-cycles defined in the main graph. The
green data are at Vg = 7 V while the orange are at Vg = 6 V. Note the dark
cyan lowest displacement point, which belongs to the same set of data as the green
points, but was taken at the other bifurcation frequency fbif↑. Again, the curves are
quadratic fits as explained in the text.

values of σ0 for both goalpost and low stress doubly-clamped beam are almost equal.
However, for the SiN device, the parameter Σ′1 appears to be clearly non-zero. The
reason is unknown, but one could speculate that the coupling strength between TLS
and mechanical energy depends on the stored stress in the structure.

To finish with, two high stress SiN doubly-clamped beams (resonating at 14 MHz
for the 15 µm long and 21 MHz for the 10 µm long) also show intrinsic "fast"
fluctuations of respectively 3 Hz and 15 Hz, which increases with the frequency
rather than with the resonator’s volume. These intrinsic fluctuations are hence
present whatever the geometry/material and grow with f0.
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Figure IV.20: Schematic overview of the TLS signatures measured in our goalpost
device, from Fig. IV.15 and Fig. IV.19 (here for Vg = 6.25 V and x = 100 nm). The
"faster" but "smaller" frequency jumps probability density, which standard deviation
increases as V 2

g and x2, is represented in blue (left axis). The "slower" but "larger"
frequency jumps probability density is represented in green, which averaged value
and width at half maximum increase with both V 2

g and x2 (right axis). The dashed
lines are the Python routine thresholds, as described in the text. Note that in the
TLS model the two levels are symmetric in energy, hence their repercussion on f0 is
symmetric in sign: to a positive jump necessarily corresponds a negative one of same
amplitude.

If we now synthesise our understanding on the observed TLS, we list two kinds of
frequency jumps after filtering the slow drift over the day: the "faster" but "smaller"
ones and the "slower" but "larger" ones (Fig. IV.20). Note that in the analysis pro-
cedure, the Python routine considers any jump larger than 5 σmes as a "large" jump,
which enables to clearly distinguish the two kinds of TLS. In the case of the "faster"
jumps, we see a zero-centred Gaussian distribution which linewidth increases with
both the applied gate voltage V 2

g and the NEMS displacement x2. For the "slower"
jumps we also notice a peaked distribution (histogram inset of Fig. IV.15) which
seems to broaden as V 2

g and x2 as well, but the amount of data we have is not
enough to determine the distribution function. However, the average value of the
large jumps is non-zero and increases with V 2

g and x2. This surprising result is
counter-intuitive from the TLS model, which considers a zero-centred distribution
uniformly spread. We can interpret our findings as a polarization effect on a portion
of the intrinsic TLS of our device, dividing them from the "mother" distribution
which remains centred. However, we would obviously need more data to construct
a physical concept out of this large jumps which could explain these features, and
the bifurcation scheme seems to be a good and accurate tool for measuring them.
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IV.4.4 Implementing the frequency fluctuation issue

Now that the Gaussian frequency noise is characterised, we need to integrate it
in the analysing method of the bifurcation phenomenon. For clarity, we now replace
σ∞ by σ. Since σ

ωbif
< 10−5 but 1 % < σ

δω < 15 %, at first approximation the
frequency noise only affects the detuning. Because the distribution is Gaussian, we
can then write:

Pexp (t) =

∫∞
−δω e

− ε2

2σ2 Γesc (δω + ε) e−Γesc(δω+ε) t dε∫∞
−δω e

− ε2

2σ2 dε

, (IV.41)

with ε the continuous frequency noise fluctuation. We integrate over the noisy
detuning δω + ε assuming it is fixed within one measurement. For δω + ε < 0 the
NEMS relaxes before the timer starts because of a non-bifurcation process, this case
is hence analytically removed from the integration and is experimentally already
accounted for in the Python pre-analysis through the 40 ms cut-off.
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Figure IV.21: Histograms at small detunings for different non-linearities (a: Vg =
7.8 V, δf = 30 Hz, IN = 0.8 fN2/Hz, b: Vg = 7.8 V, δf = 100 Hz, IN = 2.5 fN2/Hz,
c: Vg = 6.25 V, δf = 30 Hz, IN = 1.3 fN2/Hz, d : Vg = 4.7 V, δf = 30 Hz,
IN = 8 fN2/Hz). The blue lines are fits according to Eq. (IV.41), which recovers the
curved aspect of the histograms within the statistical error bar

√
N (in dashed blue).
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Unfortunately, Eq. (IV.41) is not solvable analytically and one needs to inte-
grate numerically for each set of parameters to fit the histograms. However we see
in Fig. IV.21 that we can now recover the curved histogram shape using the exper-
imentally defined σ and still fit the straight ones.

One last important point to note about the frequency noise implementation in
the fitting procedure is that there is always a non-zero probability to relax because
of fluctuations of f0 occurring during an escape time measurement: while we stay
parked, a (large) frequency fluctuation can still eventually bring the system below
the bifurcation point. In this case, the event should be removed from the analysis
since it does not come from the physics of the bifurcation process, but is only due to
the frequency-noise. While we cannot determine when those events occur, we can
try to estimate their average probability. If we note PTLS the probability for the
NEMS to relax due to the frequency-noise, then the overall probability to relax in
a measurement is:

Ptot = Pbif + (1− Pbif )PTLS . (IV.42)

This probability PTLS can be approximated from the "stopping time theory" in
statistics. The idea is to split the process in time steps tε (separated by ∆t) during
which the frequency can jump in discrete steps δε. During the time interval, we need
to know the average number of (discrete) frequency jumps ∆N = fε ∆t (at frequency
fε) that occurred and the probability p (δε) of jumping below the frequency threshold
δω. The result is a Pascal law:

PTLS (tε) = [1− p (δε)]
n(tε) p (δε) , (IV.43)

with n (tε) = tε fε the number of attempts to jump. Assuming we can take the
problem to the continuous limit (∆t → 0, which is not a trivial assumption) we
write:

PTLS (t) = p (δε) e
−fε ln [1− p (δε)] t, (IV.44)

fε being here the "attempt frequency" for the noise process. For our Gaussian
distributed noise with 1/f spectrum, we can estimate p and fε by introducing cutoffs
(ωlow and ωhigh, defined by the experimental procedure) in the noise spectrum of
amplitude A:

STLS (ω) =
A

ω
. (IV.45)

We then have the standard deviation σ and the "attempt frequency" ωε of the
frequency noise (both in Rad.s−1), with the induced probability of jumping p (δε)
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defined as:

σ2 =
1

2π

∫
STLS (ω) dω =

A

2π
log

(
ωhigh
ωlow

)
, (IV.46)

ωε =

∫
STLS (ω)ω dω∫
STLS (ω) dω

=
ωhigh − ωlow

log

(
ωhigh
ωlow

) , (IV.47)

p (δε) = 1−

∫ +∞

−δω+δε

e−
ε2

2σ2 dε∫ +∞

−∞
e−

ε2

2σ2 dε

. (IV.48)

If we now measure a relaxation histogram with no noise injected (hence no
bifurcation process enabled), the relaxations shall be due solely to the frequency
noise process described here. We were able to obtain decent average relaxation
times of that sort, and we could fit these histograms to the continuous Pascal law
[Eq. (IV.44)], as presented in Fig. IV.22.
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Figure IV.22: Histogram of relaxations due to the Gaussian frequency-noise with no
injected noise IN (Vg = 9.4 V and δf = 30 Hz). The line is a fit using the Pascal
law, with the standard

√
N error bar displayed (dashes).

Note that this kind of histogram (with no injected noise) can only be measured
very close to the bifurcation point, far from the detunings at which we characterised
the bifurcation process. Injecting in Eq. (IV.42) the Pascal law, we could calculate
the impact of PTLS on our results with the actual detunings we used for the bifur-
cation measurements, and found that the fluctuation contribution in the number of
relaxations is only of a few events over the thousands we measure for each set of pa-
rameters. Clearly, the present modeling is far too simplistic to be quantitative, but
this conclusion should be robust. This demonstrates that in our experiments relax-
ing because ωbif might cross the driving frequency should not be relevant compared
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to the bifurcation process itself. As a first approximation, we can hence remove this
feature from the analysis and declare that the frequency noise mostly affects the
uncertainty of δω between each relaxation time measurement.

The frequency noise thus seems to be the main reason for the curved histogram,
but since the fit is done numerically through the bifurcation equation itself, we can-
not extract directly activation energy, attempt frequency, and detuning dependencies
one after the other like in Ref. [Stambaugh & Chan 2006]: all the histograms need
to be fit at once with one set of fitting parameters. All together, it is a 4 param-
eters fit (E0, Γ0, ζ and ξ) on about 9 histograms for each non-linearity. Thanks
to the different scale dependencies, the uncertainty on each parameter should re-
main acceptable, but any extra parameter already present in the analysis alters
the extraction of the fitting parameters. We shall thus be extremely careful in the
numerical techniques used for the actual data fitting.

IV.4.5 Fitting procedure and results

The histogram is a graphic way of analysing large statistical data to give ten-
dencies of a phenomenon. When it comes to have a complex quantitative fit, the bin
size becomes a non-trivial parameter. Many different laws predict how one should
tune the size of a bin as a function of the number of events and their distribution
in the histogram. Since the statistical error on the number of events N in one bin
is
√
N , with a bin of 10 events we already have more than 30% of uncertainty. In

our case, those bins are mostly on the tail of curvature which contains a lot of in-
formation for the fitting procedure. For such a highly demanding experiment, we
cannot afford extra-adjustable parameters which can change the values of the fitting
parameters. We hence fit our data through another analysing method: integrating
over the relaxations left to occur, the inverse of a so-called S-curve.

This procedure, essentially studied by Vadim Puller and Fabio Pistolesi, enabled
to prevent the bin size issue. But their work also enabled to analyse the data with
more rigour. Indeed, using Eq. (IV.41) to fit our results already assumes that Γesc
depends on the detuning δω with a power scaling law, while this is part of what
we would like to find out. For δω � σ, one can expand the escape exponential
distribution: Γesc (δω + ε) = Γesc + εΓ′esc. This gives the following distribution for
the escape times:

PKS(t) = Γesc e
−Γesc t

∫
e−

ε2

2σ2

√
2πσ2

e−εΓ′esc t dε . (IV.49)

From this equation, no assumption was made regarding the detuning dependency
in Γesc. Furthermore, only two parameters are extracted from this fit: Γesc and the
product Γ′esc σ. Fitting Eq. (IV.49) to the data using the method of Kolmogorov-
Smirnov [Eadie et al. 1971] and letting σ as a free parameter (see Fig. IV.23), our
theoretical partners found the same behaviour for the frequency fluctuation and
could extract tesc as a function of the injected noise IN (Fig. IV.24).
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Figure IV.23: Normalised inverse integration of the relaxations through the escape
time. The black points are the data, the dashed green line is an attempted fit
without fluctuations on ωbif↓ while the blue line takes σ into account as presented
in Eq. (IV.49).
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Figure IV.24: Average escape times for the set of parameters at Vg = 9.4 V in log-log
scale. The X axis is also in log scale for display, due to the orders of magnitude in
noise intensity between each detuning. The blue lines are exponential fits while the
black points are data at different detunings, as specified in the legend.

The only drawback is that Eq. (IV.49) is only an approximation: for too large σ
with respect to δω this fitting procedure cannot be used, which removes 4 detunings
out of the 15 that we initially measured.

From the fitted average escape times, we can extract attempt frequencies Γ

and activation energies Ea as a function of the detuning δω and the non-linear
Duffing coefficient γ. Let us recall that the range we explore in the bifurcation
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Figure IV.25: Attempt frequency Γ (a) and energy barrier Ea (b) dependencies as
a function of the normalised detuning in log scales. The black circles represent the
experimental data, the red squares show the numerical results of the Fokker-Planck
equation, the dashed green line is the analytical result. The blue line is the fit on
the data, with a slope of 0.55±0.2 for Γ and 1.53±0.04 for Ea.
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Figure IV.26: Normalised non-linearity dependencies for both attempt frequency and
activation energy. The definitions follow the one in Fig. IV.25. The slope of the blue
fits are +0.6±0.1 for Γ and -2.43±0.05 for Ea.
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process starts within the analytical solutions, about an order of magnitude before
the approximation breaks down, and ends far beyond the validity of this regime, by
about 2 orders of magnitude.

If we incorporate all data points taken at different non-linearities in a single plot
for both Γ and Ea, we can see the general tendency of the bifurcation process with
respect to the detuning (Fig. IV.25). The precision is clearly better for Ea than
for Γ, due to the logarithmic sensitivity in Eq. (IV.3), and leads to large error bars
for Γ. While this might affect the uncertainty we have on a single point for Γ, the
overall tendencies can be extracted with a decent precision. A remarkable scaling is
observed in all the experimental range, with a fitted power law of 0.55±0.2 for the
attempt frequency and 1.53±0.04 for the activation energy as a function of detun-
ing, which have to be compared to ζ = 0.5 and ξ = 1.5 from Eq. (IV.3). As for the
non-linear parameter (Fig. IV.26), we see respectively power laws of 0.6±0.1 and
-2.43±0.05, which have to be compared respectively to 0.5 and -2.5 [Eq. (IV.32c)],
which have never been reported to our knowledge.

In parallel to this fitting procedure and as described in Sec. IV.3, our collabo-
rators could simulate the bifurcation phenomenon using exact 2D numerical calcu-
lations based on the Fokker-Planck equation. Implementing the exact same set of
parameters we did experimentally, they could numerically obtain average relaxation
rates directly from the general equation Eq. (IV.37). Comparing those numerical
results to the measured data (Fig. IV.25 and Fig. IV.26), we observe for both Ea
and Γ the same general behaviour, validating the whole analysis.

For the attempt frequency, we found Γ within a factor of 4 which is nonetheless
remarkable considering the logarithmic precision, and no other measurement of this
kind has been published to our knowledge. However, the numerical results also indi-
cate that the exact scaling is expected to be slightly different from the analytical one.
Indeed, it seems the behaviour of Γ cannot be described exactly by a simple scaling
law at large detunings/non-linearities (Fig. IV.25a and Fig. IV.26a). Nevertheless
the experimental precision is not high enough to probe this deviation. Moreover,
changing the way of extracting Γ and Ea seems to slightly alter the tendencies: it
is not really clear if this deviation in Γ comes from the actual bifurcation process or
from the analysing method. The factor of 4 mismatch between theory and experi-
ments could thus be due to the fit procedure, but no conclusive explanation could
be obtained.

As far as activation energy is concerned, the scaling power laws are undistin-
guishable between numerical and experimental data. The quantitative match is also
very good: the experimentally defined noise calibration factor has been renormalised
by 15 % only in amplitude in order to match theory and experiment, all other pa-
rameters being known within a sufficient precision. Such an agreement is a large
improvement on bifurcation phenomenon experimental results.

Those unprecedented results are the first attempts to measure the universal
power law ζ of Γ and to investigate the general behaviour of the saddle-node bifur-
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cation process as a function of its intrinsic fundamental parameter, the non-linear
Duffing coefficient γ. Furthermore, the graphs in Fig. IV.25 and Fig. IV.26 demon-
strate that all those scalings predicted in the analytical theory hold far beyond its
validity. Hence the range where the universal scaling laws apply is much larger than
the one restricted by the analytical approximations, as numerically predicted for
force sweeps [Kogan 2008].
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IV.5 Conclusion

The work presented here demonstrates the robustness of the universal power
laws in the saddle-node bifurcation phenomenon. After an overview of the 1D ana-
lytical theory of the bifurcation process, we investigated the universal scalings of the
activation energy Ea and the attempt frequency Γ as a function of the detuning from
the bifurcation point and we described their non-linear dependencies. Furthermore,
we delimited the region of applicability of this analytical theory, which decreases
as the non-linearity increases to the extent that experimental measurements might
be well outside this region. We presented an introduction of the simulations done
by our collaborators to numerically understand the behaviour of the system beyond
the analytical limit.

We finally present the experiment and the first results on the measurement of
the average escape time tesc, which cannot be described with the analytic theoreti-
cal background of the bifurcation process. By analysing in details the experimental
evolution of the bifurcation frequency ωbif ↓, we observe a small "fast" fluctuation
which affects the detuning δω for each relaxation measurement. After a thorough
study of this Gaussian 1/f noise affecting f0 we managed to take it into account
in the analysing procedure and to consistently describe the differences observed in
the measurements between small and large detunings with respect to the bifurca-
tion point. This extensive characterisation of the frequency noise is unique to our
knowledge, while recent works focus on this issue [Fong et al. 2012].

Plotting the results as a function of both detuning and non-linearity, we could
extract power laws in very good agreement with the 1D theory in the whole ex-
perimental range while most of those data where beyond the analytical limit. The
numerical simulations corroborate our results within a rescaling of 15 % on the noise
calibration and we have about a factor of 4 discrepancy on the attempt frequency
(i.e. 20 % on the logarithm of Γ) [Defoort et al. 2014b]. This is remarkable, given
the dificulty in calibrating the injected noise and the logarithmic sensitivity on Γ.
The present study is the most quantitative one that we are aware of in the literature
(see e.g. Refs. [Chan & Stambaugh 2007, Aldridge & Cleland 2005]). The scalings
of the bifurcation phenomenon are thus still valid about two orders of magnitude
beyond the analytical results, which is a remarkable and unexpected fact. Indeed, in
the case of parametrically induced bifurcation (the so-called pitchfork), the scalings
have been experimentally demonstrated to change as they get away from the bifur-
cation point. At the moment we write these lines, we do not know if this result if a
property of the Duffing oscillator, or if it has a deeper origin within all saddle-node
bifurcation phenomena.
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IV.6 Perspectives

While the range of parameters studied in the present chapter explores the bifur-
cation process beyond the analytical 1D limit, an investigation of this phenomenon
at even larger detunings might bring new physics. Indeed the power law depen-
dencies for both Ea and Γ eventually change far enough from the bifurcation point
[Ryvkine et al. 2004, Kogan 2008].

There are also three preliminary sets of data that we used for the frequency
fluctuation characterization from which we could still get some information, and
which would require further measurements:

• We measured for Vg = 7 V three different maximum displacement amplitudes,
namely 100 nm, 71 nm and 50 nm. We described theoretically in Eq. (IV.32b)
how the bifurcation process should be affected by the displacement amplitude,
this kind of data would enable to test this dependency.

• The reverse bifurcation process (at ωbif↑ instead of ωbif↓) has been investigat-
ing at Vg = 6.25 V for three different detunings. Our collaborators started to
work on it and found that the behaviour seems indeed to scale differently than
the presented study. A more complete analysis of the other bifurcation point
might thus reveal new interesting features.

• We performed the relaxation process over two cryo-cycles, between which the
NEMS parameters slightly drifted. Using Eq. (IV.41), we found a good quali-
tative agreement with the activation energy and the attempt frequency power
law dependencies of the presented cryo-cycle, but the same analysing method
(i.e. with the Kolmogorov-Smirnov technique) should be done on those other
data too. This would give an idea of the reproducibility of the phenomenon
even though the NEMS parameters changed. Furthermore, we performed the
same experiment on a standard doubly-clamped beam (on which the non-
linearity cannot be tuned) to verify qualitatively that our findings are indeed
robust. Again, a full analysis would be required. More experiments could be
performed on different types of nano-devices as well to reinforce the statistics.

This experiment shows how the bifurcation process is sensitive to its environ-
ment. It is also clear that theoretical results are robust, even more than the analyti-
cal model in the 1D limit seemed to claim in the first place. On the other hand, two
level systems in constitutive materials are of big interest for many physical systems.
Both the "fast" frequency noise and the rare large frequency jumps were probed
with a good precision in this experiment, while this investigation was not the aim of
the study and the set-up not designed for it. If this noise has been an issue for the
comprehension and the analysis of the relaxation process, using now a bifurcation
set-up as a tool to better understand the physics describing these TLS might be a
very promising method.
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IV.7 Résumé

Le phénomène de bifurcation suscite un intérêt général en Science, de part son
large domaine d’applications et des questions fondamentales qu’il pose. Le concept
de bifurcation émerge des systèmes bistables comportant une hystéresis, présent
dans de nombreuses disciplines (Fig. IV.1) et qui a été introduit dans le cadre des
NEMS au travers du Chap. II. La non-linéarité de notre système est au cœur de
cette bistabilité, ce qui en fait un paramètre essentiel dans l’étude de la bifurcation.

D’un point de vue théorique, le phénomène de bifurcation peut se ramener à un
double puits de potentiel asymétrique avec un point métastable séparé par une bar-
rière de potentiel Ea du point stable (Fig. IV.2). Lorsque cette barrière disparait,
l’état métastable devient instable et seul l’état de plus basse énergie devient stable,
cette limite s’appelle le point de bifurcation. Dans le cas où la barrière de potentiel
est présente, l’étude de la relaxation du système de l’état métastable vers l’état stable
est régit par une loi de type Arrhénius, avec un taux d’échappement Γesc. L’énergie
d’activation nécessaire Ea pour cette relaxation, introduite par Kramers, ainsi que
sa fréquence d’essai Γ, ont été particulièrement étudié dans les travaux théorique
de Mark Dykman. Ces deux paramètres, décrivant l’ensemble du phénomène de
bifurcation, dépendraient de la distance au point de bifurcation en loi de puissance
[Eq. (IV.3)] quelque soit le phénomène de bifurcation étudié: il s’agirait d’une de-
scription universelle.

Expérimentalement, les NEMS ont souvent été un outil de choix pour l’étude
de ce phénomène. La bistabilité est définie par l’amplitude de vibration du NEMS
dans le régime non-linéaire: dans le régime de Duffing, à une fréquence donnée, le
NEMS peut osciller avec une forte ou une faible amplitude pour une même fréquence
d’excitation (Fig. II.33). Initialisé à une distance δω du point de bifurcation ωbif et
en présence de bruit IN , le système a alors une probabilité non-nulle de bifurquer
d’un état à l’autre. Ce phénomène, de nature probabiliste, est régit par la loi de Pois-
son et la distribution des temps de relaxation est alors exponentielle. En réitérant
le processus de relaxation et à travers l’histogramme des temps de relaxation, on
obtient alors le temps moyen de relaxation pour une configuration donnée, directe-
ment lié au taux d’échappement Γesc. Dans le cas de nombreux travaux, seule la loi
de puissance dans l’énergie d’activation Ea a fait l’objet d’une étude qualitative, dé-
montrant la justesse des prédictions théoriques. Cependant, plusieurs aspects n’ont
jamais été testé, comme la fréquence d’essai Γ, une comparaison quantitative entre la
théorie et l’expérience, la dépendance à la non-linéarité du phénomène de bifurcation
ou encore la zone de validité des formules universelles proposée par Mark Dykman.
Ce sont principalement ces quatre aspects qui on été étudiés en détails dans ce
chapitre, avec une approche théorique (résultats analytiques), numérique (résolu-
tion de l’équation de Fokker-Planck) et expérimentale (à l’aide de notre NEMS en
portique introduit Chap. II). Les résultats théoriques et numériques ont été obtenus
avec la collaboration de Vadim Puller et Fabio Pistolesi, et ce sont principalement
les résultats expérimentaux qui sont décris dans ce chapitre.
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Un aspect essentiel de ce travail expérimental est de pouvoir contrôler un maxi-
mum de paramètres indépendamment les uns des autres. Entre autre, il est possible
de contrôler l’amplitude de notre système x, le bruit injecté IN , et la distance
au point de bifurcation δω à laquelle on souhaite faire relaxer notre résonateur.
L’originalité de ce travail (et les résultats qui en découlent) sont principalement dûs
à la possibilité de manipuler le paramètre non-linéaire β de notre système sans af-
fecter l’amplitude de résonance de notre NEMS, mais en utilisant l’électrode de grille
qui lui fait face. On peut alors, à une amplitude fixe, ajuster la taille de l’hystéresis et
étudier l’évolution de la bifurcation pour différentes non-linéarités. Dans le cadre de
ce travail et afin de satisfaire tous nos objectifs, nous avons exploré une large gamme
de non-linéarités afin d’observer le comportement de la bifurcation, du régime où la
théorie universelle s’applique jusqu’au régime où aucune prédiction analytique n’a
été suggérée à ce jour (Fig. IV.10). L’objet de cette étude étant de nature proba-
biliste, une procédure systématique doit alors être mise en place pour mesurer les
taux d’échappements moyens pour une configuration voulue (Fig. IV.9). De même,
l’analyse systématique des données doit être en mesure de pouvoir faire le tri entre
les résultats physiques et les erreurs dues aux aléas expérimentaux (Fig. IV.11).
Cependant les premiers résultats d’expériences présentent des histogrammes inhab-
ituellement courbés (non-exponentiels, voir Fig. IV.13), empêchant l’extraction du
taux d’échappement Γesc.

Une étude approfondie sur la fréquence de bifurcation ωbif révèle que la dis-
tance expérimentale au point de bifurcation δω elle-même présente des fluctuations
(Fig. IV.14). Loin d’être un simple problème de dispositif expérimental, cette in-
certitude témoigne de la richesse du système étudié: ce bruit en fréquence provient
de systèmes à deux niveaux (TLS) présents au sein du matériaux de nos NEMS.
Grâce à la précision du processus de bifurcation, il est alors possible avec ce disposi-
tif expérimental d’étudier ces TLS (Fig. IV.15 et Fig. IV.19), domaine de recherche
important entre autre dans la communauté des NEMS/MEMS, mais dont la nature
reste un sujet à débat.

En étudiant cette fluctuation en fréquence, l’aspect "courbé" des histogrammes
a pu être pris en compte et les taux d’échappements Γesc pour chaque configuration
ont pu être extraits. En traçant la fréquence d’essai Γ et l’énergie d’activation Ea en
fonction de la distance au point de bifurcation δω et du paramètre de non-linéarité
β du système, nous avons comparé nos résultats expérimentaux avec les résultats
numériques (Fig. IV.25 et Fig. IV.26). Nous avons pu vérifié l’exactitude des lois de
puissance prévu dans les développements analytiques du phénomène de bifurcation
avec un accord entre théorie, résultats numériques et expérience de 15 % sur Ea
et de 20 % sur le logarithme de Γ. Grâce à la large gamme de paramètres étudiés,
nous avons aussi pu conclure que ces lois de puissance universelles sont valables dans
une gamme bien plus importante que celle restreinte par les hypothèses analytiques
[Defoort et al. 2014b].
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V.1 Introduction

In the previous chapters we explored how NEMS can be used as model systems
to investigate fundamental issues of (non-linear) physics. But just like MEMS, they
also have a broad field of applications for both industries and research laboratories.
They can be viewed as sensors, taking benefits from their small sizes for the next
generation of nanotechnology tools impacting applied science or exploring new areas
in fundamental physics. In this chapter, we focus on this aspect which is unavoidable
when one is dealing with nano-resonators. While these two facets are rather distinct,
the use of NEMS as model systems or probes are intimately related.

In a first section we demonstrate how the high-frequency dynamics of a NEMS
can be used to detect a low frequency modulation. We develop an audio-mixing
technique that imprints a low frequency signal into the high frequency resonance line,
thanks to its non-linear coupling with a gate. After introducing the experimental set-
up in which the mixing has been done, we present the theory explaining how satellite
peaks emerge from the described coupling. We then expose our experimental results
together with the calculations from the theory, reproducing without free parameters
our findings. Finally, we describe the limit of applicability of the phenomenon for
very low frequency signals both analytically and experimentally.

Using a different set-up configuration, we then present how NEMS can be used
to study two-level systems (TLS) in disordered materials. In particular, we demon-
strate that the state of the conductive electrons in the overlayer of the structure
(normal or superconducting) impacts crucially the measured mechanical damping.
We then discuss on the origin of this effect within the framework of the latest theories
derived from the standard tunneling model of TLS.

To finish with, we implement a high aspect ratio doubly-clamped beam in a low
pressure - yet not completely under vacuum - experiment. Measuring the broad-
ening of the linewidth of two different NEMS, we investigate the properties of the
boundary, the so-called Knudsen layer. After a brief state-of-the-art introduction,
we expose our experimental set-up and how we performed our measurements. We
describe analytically the different regimes the NEMS is sensing as the pressure in its
cell is reduced, and demonstrate a good agreement with our data. We show that in
the molecular limit, for a sufficiently large mean-free-path, a large deviation is seen
between the standard bulk theory and experiment. We propose a phenomenologi-
cal formula to describe our results and demonstrate that those measurements are
qualitatively in agreement with the latest theory on the boundary layer.
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V.2 The audio-mixing scheme

V.2.1 Experimental and theoretical basics

Signal mixing is a very useful technique in both applied and fundamental physics.
In everyday life, radio sets are the perfect examples of the application of such a tool:
they detect high frequency signals (typically 100 MHz) in which smaller frequency
ones (typically 1 kHz) were previously imprint. After processing, only the audio-
signal is sent to the speakers which then transduce it into air vibration, that is sound.
In nanotechnologies, this scheme has already been implemented in a so-called "nano-
radio" [Jensen et al. 2007, Vincent et al. 2011]. As a detection technique in more
fundamental research, signal mixing also enables to measure very high resonance
frequencies of nanotube devices [Witkamp et al. 2006].

In this section, we present experimentally and analytically how to mix a low
frequency signal (of about 1 kHz) into a high frequency one (about 10 MHz)
[Defoort et al. 2011], which is basically what is then detected by a radio set. Unlike
most mixing techniques using NEMS, the set-up configuration used here enables to
keep the resonance line of the structure in the linear non-Duffing regime, by using
the coupling with the gate electrode presented in Chap. II. Driving the goalpost
structure with small forces, around its resonance frequency (ω ≈ ω0,g with ω0,g the
resonance frequency of the nano-resonator shifted by the gate, see Sec. II.4.3), and
exciting the gate at a very low frequency ωg � ω0,g, the only relevant terms of the
Taylor expansion in Sec. II.3.4 is the second derivative, such that we are left with
the equation of motion:

ẍ+ ∆ω ẋ+
k + δk (1 + cos (2ωg t))

m
x =

FL
m

cos (ω t) , (V.1)

with δk =
1

4
V 2
g

∂2Cg
∂x2

, Vg the A.C. gate voltage amplitude and we recall ω0,g =√
k + δk

m
. Eq. (V.1) is a modified version of a Mathieu equation, with an added

dissipation and applied force. To find its stationary solution, we introduce an ansatz
for the solution x (t):

x (t) =

+∞∑
n=−∞

|Xn| cos [ω t+ 2nωg t+ arg (Xn)] , (V.2)

where Xn are complex coefficients, n referring to the sum indentation (not the mode
number, we will only use the fundamental mode in this section). Implementing
Eq. (V.1) into Eq. (V.2), we obtain the following recurrence equation:

anXn +Xn+1 +Xn−1 = 2 δn,0
FL
δk
, (V.3)

with:

an = 2
ω2

0,g − (ω + 2nωg)
2 − i (ω + 2nωg) ∆ω

ω2
0,g

k + δk

δk
, (V.4)
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and δi,j is the Kronecker’s symbol.
It is clear from Eq. (V.3) that the structure of the NEMS frequency response

is composed of many sub-harmonics. However, we will only consider the X0 one in
the following, which just corresponds to locking on the initial reference harmonic
one would measure without mixing. The explicit expression of X0 is given by the
continued fraction:

X0 =
2FL/δk

a0 −
1

a1 −
1

a2 −
1

a3 − ...

− 1

a−1 −
1

a−2 −
1

a−3 − ...

. (V.5)

Let us note that without mixing (δk → 0), Eq. (V.5) reduces to the simple Lorentzian
form.

V.2.2 Results

It is clear from Eq. (V.5) that both in-phase VX and out-of-phase VY components
of the signal are affected by the mixing process. We present in Fig. V.1 the measured
resonance line of the goalpost mixed with a relatively low frequency signal on the
gate.
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Figure V.1: The goalpost structure resonance line mixed with an A.C. gate signal.
The force applied on the NEMS is FL = 3.9 pN, the gate voltage is Vg = 1.4 V
at the frequency fg = 2 kHz (a) and Vg = 2.5 V at fg = 3 kHz (b). We observe
satellite peaks around the initial resonance frequency f0,g, with their mirror image
on the other side. Note that in the peculiar configuration of (a), the amplitude of
the first satellite peaks are larger than the central one, but still smaller than the
initial resonance line without mixing, such that the energy is preserved. The peaks
are equally separated by 2 fg. The full lines are calculations from Eq. (V.5) with no
free parameters.

We clearly observe multiple additional peaks on both sides of the initial resonance
line position, while still being in the linear regime. As predicted by Eq. (V.5), each
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Figure V.2: In-phase amplitude of the three closest peaks from the initial resonance
frequency f0,g with respect to the gate voltage Vg for fg = 1.5 kHz. The error bars
are within the points size. We show in black the peak at f0,g, in dark green the first
satellite one and in light green the second, where the lines are the calculations from
Eq. (V.5) for each peak respectively. As Vg increases, the number of measurable
satellite peaks also increases, but the average amplitude of each peak decreases, until
vanishing to zero.
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Figure V.3: In-phase amplitude of the three closest peaks from the initial resonance
frequency f0,g with respect to the gate excitation frequency fg for Vg = 1.4 V. The
overall graphic style follows the one in Fig. V.2. As fg decreases, the average peak
amplitude decreases, but never falls down to zero.

peaks are separated by the excitation frequency of the gate experienced by the
NEMS, which is 2ωg. We also show in Fig. V.1 the numerical calculation from
Eq. (V.5) with no free parameters, where we took into account 50 nested fractions
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in the recursion for both configurations presented, although 5 would already be in
very good agreement with Fig. V.1a (each fraction adds one peak in the shape of the
resonance). Note that the slight asymmetry appearing on Fig. V.1b is due to the
small D.C. offset on the gate voltage that is not taken into account here. Depending
on the voltage applied on the gate and its excitation frequency, the amplitude of
each peak changes in a non-trivial way, and we present in Fig. V.2 and Fig. V.3 the
evolution of the central peak and the two first additional satellite ones with respect
to both Vg and fg. We see that as the voltage increases or the mixing frequency
decreases, the additional peaks number increases but the amplitude of each peak
decreases to satisfy the energy balance. The technique is thus not usable for too
high modulation frequencies. In addition, as we get closer to the D.C. regime on
the gate excitation one would assume that, following continuously from the actual
D.C. regime (that is without mixing), all peaks would merge together leading to the
initial Lorentzian line. However, a new regime occurs when ωg < 2 ∆ω, as presented
in Fig. V.4.
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Figure V.4: Resonance line of the NEMS for a mixing frequency fg = 5 Hz, at Vg =

1.4 V. We observe that the resonance shape is not a Lorentzian, even though fg is
close to the D.C. limit. The lines are calculations from Eq. (V.5), implementing 50
nested fractions in the recursion, with no free parameters.

As expected, all peaks merge together, but they form a hat shape characteristic
structure. This is explained by the fact that the gate is modulating the resonance line
so slowly that the oscillator reaches the stationary oscillation state before the gate
voltage changes by an appreciable quantity. As long as our measurement technique
averages over a time longer than 1

ωg
, we only measure the averaged position of the

Lorentzian line. In this limit, we can calculate the exact lineshape by averaging the
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quasi-stationary value of X0 over the period
2π

2ωg
, giving:
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])√(
a0
2

)2 − 1
. (V.6)

This expression coincides with Eq. (V.5) for very low modulation frequencies. Note
that the distance between two peaks is here related to the modulation amplitude
(and not to ωg). In this configuration, we loose the information on the value of
the mixing frequency. Thus, in order to perform this mixing scheme, one should
be careful to work with frequencies such that ωg > 2 ∆ω. Again, in Fig. V.4 the
calculation matches the experiment without free parameters.
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V.3 Damping mechanisms down to the millikelvin regime

V.3.1 Introduction to the Standard Tunneling Model

The low temperature dissipation in nanomechanics is a fundamental topic of re-
search with a broad impact field, although its microscopic origin is still an open ques-
tion. Indeed, there is at the moment no consensus on the nature and dependencies of
the damping in nanoresonators, see Sec. II.5.1. As far as temperature is concerned,
while the results in the literature quantitatively differ, the qualitative interpretation
of the characteristics of dissipation in NEMS is mostly based on a theory of the early
70’s: the Standard Tunneling Model (STM) [Anderson et al. 1972, Phillips 1972]. It
is assumed that the low energy properties of the constitutive solids are dominated by
entities tunneling between two essentially equivalent equilibrium states, which are
commonly known as tunneling two level systems (TLS, see Fig V.5). Those states
correspond to different configurations, which modify the properties of the material.
While dedicated to amorphous solids, this theory phenomenologically also applies
to crystalline materials based NEMS since they always suffer from defects thermally
activated which relax their energy to the outside world. Those phenomena occur
by absorbing or emitting phonons, which results in a variation of the dissipation
and a shift in the resonance frequency of the resonator, enabling to probe the TLS
behaviour.

d
0

Δ

Δ
0

H

E

X

Figure V.5: Schematic of the double well potential energy experienced by two-level
systems in some configuration space X, with d0 the distance between the two wells
and in the most general case a well have an asymmetry ∆. In the low temperature
regime, the system does not have enough thermal energy to overcome the barrier
height H and TLS only switch through tunneling, with characteristic amplitude ∆0

(defined from the other parameters).
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The STM predicts that the resonance frequency should decrease logarithmically
as the resonator’s temperature is decreased below a threshold T ?, while the dis-
sipation is supposed to decrease as a power law of temperature. Above T ? the
dissipation saturates to an almost constant value (see Sec. II.5.2) while the fre-
quency again shifts down logarithmically. The threshold temperature T ? is sup-
posed to increase weakly with the resonance frequency. Many experiments validated
qualitatively this theory, but depending on the materials and the sizes, the power
laws found for the evolution of the dissipation as a function of the temperature
are not consistent [Lulla 2011, Zolfagharkhani et al. 2005, Venkatesan et al. 2010,
Hoehne et al. 2010]. This lack of "universality" in the experimental findings is in
contradiction with the bulk situation for which almost all materials remarkably dis-
play similar properties [Southworth et al. 2009]. Beyond the fundamental issues at
hand, understanding this phenomenon is a major issue for the implementation of
high quality factor NEMS at low temperatures. In particular, this Chapter focuses
on an aspect of the dissipation process which has been set aside, questioning on the
importance of the electronic state of the metallic layer of the nanoresonators used
in almost all the literature studying damping at low temperatures.

V.3.2 The electronic state contribution

To study such a phenomenon, we cooled the goalpost structure presented in
Chap. II down to 35 mK using a pulse-tube dilution cryostat with the help of our
post-doctoral fellow Kunal Lulla. At such small temperatures, the aluminium layer
might be in the superconducting state S, while all previous measurements in this
thesis were done at high enough temperatures to remain in the normal state N
whatever the driving current or the magnetic field. Characterising and calibrating
our device in its new environment, we found a superconducting critical temperature
Tc = 1.6 K, a critical current of about 40 µA, an upper critical fieldHc,N = 0.5 T and
a lower critical field Hc,S = 0.4 T in between which the electronic state is not clearly
defined, see Fig. V.6. It is important to note that the Al is a Type I superconducting
material, with an abrupt transition from normal to superconducting states in the
bulk. However, since the Al layer of the goalpost device is in the thin film limit, the
mechanisms describing the superconducting transition is much more sophisticated:
the Tc is relatively high (in the bulk it is about 1.2 K) and an intermediate state I
appears [Cohen & Abeles 1968].

Depending on the state of the aluminum, the line termination is either super-
conducting (0 Ω) or normal (about 100 Ω here) which changes drastically the trans-
mission. In the normal state, we could perform the same calibration of the injection
and detection lines as described in Sec. II.4 in order to measure all parameters in
real units. However, in the superconducting state the metallic layer is by defini-
tion non-resistive, thus no Joule effect is present: the calibration of the lines seem
compromised. However, using a reasonably large D.C. voltage on the gate electrode
coupled to the NEMS, it is possible to enter in the Duffing regime, as described in
Sec. II.5.3. Having characterized this effect in the normal state, this coupling can
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Figure V.6: Superconducting phase diagram of the aluminium layer in the resonator.
Due to the reduced dimension of the system, an intermediate regime appears between
fully normal or superconducting states. Below the critical temperature Tc = 1.6 K,
the aluminium is in the superconducting state S between 0 T and 0.4 T (dashed pink
region), in an intermediate state I between 0.4 T and 0.5 T (dashed purple region)
and in the normal stateN above 0.5 T (dashed dark blue region). All the data points
have been taken well below the critical current of 40 µA.

be used as a calibration tool on its own: knowing the frequency shift per meters
squared induced by the motion in the non-linear range (the β parameter), we can
infer the displacement amplitude in the superconducting state from the position of
the resonance line.

Beyond the tunable non-linear properties, both intrinsic Duffing non-linearity
and measured damping may depend on the excitation (current drive and magnetic
field), with different characteristics depending on the state of the metal. Thus a
careful definition of the intrinsic measured damping does require a thorough study
with respect to both field and current. Note that in the following results, the
magnetomotive loading (see Sec. II.4.1) has already been subtracted. While it is
measurable in the normal state (about 70 Hz/T2) this field-dependent broadening
is negligible in the superconducting state.

In the normal state, the intrinsic Duffing behaviour is very small but we observe
in the superconducting state that the Duffing coefficient β increases as we reduce the
current or the field (Fig. V.7), such that for low drive configurations in S state the
resonance line is always in the Duffing regime. However, as explained in Sec. II.5.3,
this effect does not affect the value of the maximal displacement amplitude xmax,
from which it is still possible to extract the damping. Alternatively, a full fit can also
be used (full lines in Fig. V.7). This drive-dependent non-linearity is puzzling and
unexpected. One could argue that it is generated by complex non-linear dynamics
of vortices within the superconducting layer [König et al. 1993]. Furthermore, the
linewidth parameter ∆ω needs a careful extraction since the dissipation itself ap-



V.3. Damping mechanisms down to the millikelvin regime 119

7.073 7.074 7.075

-0.2

0.0

0.2

0.4

Am
pl

itu
de

 (µ
V)

Frequency (MHz)

S

(a)

7.073 7.074 7.075

-0.5

0.0

0.5

1.0

N

Am
pl

itu
de

 (µ
V)

Frequency (MHz)

(b)

7.0740 7.0745 7.0750
-0.04

-0.02

0.00

0.02

0.04

0.06

S

Am
pl

itu
de

 (µ
V)

Frequency (MHz)

(c)

7.074 7.075
-0.05

0.00

0.05

0.10

N

Am
pl

itu
de

 (µ
V)

Frequency (MHz)

(d)

Figure V.7: Resonance lines of the NEMS for different current/magnetic field am-
plitudes at 95 mK (a: (S) 850 nA with 100 mT, b: (N) 330 nA with 600 mT, c:
(S) 50 nA with 100 mT, d : (N) 20 nA with 600 mT). As we reduce either of the
two driving parameters, we observe an increase of the non-linearity for the S state.
However, by fitting the lines to the non-linear equation in Sec. II.5.3 (full lines) or
by extracting the linewidth parameter from the maximum amplitude (Sec. II.5.4),
one can recover the dissipation coefficient (presented lines measured by sweeping
downwards).

pears to be non-linear with respect to the driving parameters. In Sec. II.5.4, for the
N state we introduced that the intrinsic dissipation of the nano-structure increases
linearly with x above a displacement threshold xth. This effect has been attributed
to anelastic properties of the coating materials (here, the Al layer). In the S state
we observe a similar feature as a function of the applied current, but the linewidth
seems to increase as a square root of the current, as presented in Fig. V.8. Hence, to
extract the intrinsic dissipation of the NEMS we need to perform our measurement
below this threshold, where the damping is roughly independent of injected current.

But as the magnetic field is varied, the dissipation is also affected, even below the
apparent threshold (Fig. V.9). It is thus clear that these features cannot be related
to the same anelastic properties as in the N state, and some other mechanisms
intrinsic to the S state has to be invoked. Again we need to extrapolate at zero field
to obtain the actual intrinsic dissipation of the NEMS. The interaction of vortices
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Figure V.8: Dissipation as a function of the driving current in log-log scale at 95 mK,
in both N (upper panel, blue at 650 mT) and S (lower panel, magenta at 300 mT
and dark red at 100 mT) states. In the N state the dissipation increases linearly
with the current after crossing a threshold xth (dashed vertical line), while in the S
state the increase seems to follow a square root. Note that the threshold positions
are not the same since the magnetic fields (thus the displacement) are not the same.
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Figure V.9: Evolution of the linewidth as we increase the magnetic field at 95 mK,
crossing the S, I and N states for three different applied currents (from bottom to
top 50, 210 and 850 nA in the S and 20, 80 and 330 nA in the N state). We observe
a clear difference between the three regions which demonstrates that one needs to
extrapolate at zero field in order to know the intrinsic dissipation in the S state. In
the S and I states, the lines are guides for the eye.

present in the Al layer might be the reason of such a variation. Note that this
magnetic field dependence looks almost linear while a trivial loading effect would be
quadratic.
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Figure V.10: Main: Evolution of the extrapolated linewidth (down to zero field and
zero current) with respect to the temperature. We show in pink and dark blue the
S and N states, with a vertical dashed line at the critical temperature Tc (which
happens to be roughly equal to T ? as well). The lines on the data are guides for
the eyes, showing a standard linear dependency for T > Tc (orange line) and power
law scalings at the lowest temperatures, of T 0.65 for the N state (dark blue line) and
T 1.5 for the S state (pink line). The dashed horizontal line in the N state seems
characteristic of a thermal decoupling (see text). Inset : Evolution of the resonance
frequency of the NEMS as a function of the temperature. The graphic style is similar
to the main graph. The parallel straight lines on the data at low temperature are
logarithmic fits, as predicted by the STM model.

After taking care of those non-linear effects impacting the dissipation measure-
ment at each temperature, we recover both frequency and linewidth variation from
30 K (N state, see Sec. II.5.2) down to 35 mK (N and S states), as presented in
Fig. V.10. As predicted by the STM model, the resonance frequency shifts logarith-
mically at low temperatures, and the dissipation scales as a power law. However, we
see a clear difference between the N and S states: the power law of the former with
respect to the temperature is T 0.65 while the one of the latter is T 1.5, reaching a
quality factor of about 1 million around 30 mK. While other experiments highlighted
different power laws for the normal state, this result is a clear demonstration that
the electronic state in the metallic layer of nano-electro-mechanical resonators plays
a crucial role in the dissipation processes. Let us note that the separation between
the two states occurs around Tc/2, which is the temperature from which the den-
sity of normal electrons starts to be reasonably low. Also, the normal state seems
to saturate at the lowest temperature, which is attributed to the radio-frequency
overheating present in the cell, maintaining the goalpost structure at an effective
temperature of about 80 mK while the environment is colder. To make sure the
set-up configuration has nothing to do with those results, we perform this experi-
ment over two thermal cycles on two devices of the same chip, driving the NEMS
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with the gate electrode as well instead of the magnetomotive I×B. The exact same
linewidth behaviours in both N and S states are obtained.

On one hand, this promising result can be seen as an oportunity to use the
measurement of the linewidth as a thermometer at low temperatures, since in the
S state it varies quite abruptly (with a T 1.5 law) without showing any sign of sat-
uration down to 35 mK (due to clamping losses for example). In this case, the
thermometer is measuring the temperature of phonons, and not electrons as in most
devices. On the other hand, it leads to fundamental questions on the nature of the
dissipation in nanomechanical devices at very low temperature. In the STM, the
TLS present in the device absorb energy from the mode, which is then released to
the outside world through their coupling to phonons and/or electrons. Depending
on the dispersion relation of phonons confined in the mechanical mode, the vari-
ation with the temperature of the resulting dissipation is different: in the string
regime, it was found to go as T 1 [Hoehne et al. 2010] while in the flexure regime it
is supposed to go as T 0.5 [Seoánez et al. 2008]. However those works involve solely
a coupling to phonons, whereas the electronic origin here is clear. Some papers are
dealing with a discrepancy in the damping of normal and superconducting states
in micromechanical devices [Haust et al. 2004, Weiss et al. 1981], but it does not
reproduce our finding of the power scaling law T 1.5. Those new results are clearly
calling for further experiments and new theoretical developments, taking into ac-
count the electronic degree of freedom, the reduced dimensionality and finally the
order of the phononic dispersion law within the device (string or beam).
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V.4 Slippage features in a rarefied gas

V.4.1 Probing gas properties with a NEMS

In the past few years, micro/nano-fluidics became of intense interest with the
emergence of Lab-on-a-chip technologies and their applications in chemistry, biology
and medicine [Terry et al. 1979, Manz et al. 1992]. Both MEMS and NEMS can
contribute to a better understanding of the features at the heart of these fields
[Karniadakis et al. 2005, Burg et al. 2007]. Indeed, their small but various sizes
enable to investigate different fluid regimes while being genuinely local probes, and
their high quality factors make them intrinsically very sensitive [Bullard et al. 2014].

Recently, a specific regime demonstrated a high potential for applications but
which comprehension is very challenging: the flow within the boundary layer of a
fluid, where the interaction between its constitutive particles and immersed surfaces
are the strongest. In this regime, gigantic slippage has been observed leading to
extremely efficient flows through extremely small apertures, which could lead to a
technological revolution in nanoscale filtration [Holt et al. 2006, Siria et al. 2013].
In the high pressure limit the tangential velocity of a gas is assumed to vanish close
enough to a surface: the fluid is supposed to be clamped on the irregularities of this
wall, what is (conventionally) called the no-slip condition [Landau & Lifshitz 1987,
Atta 1965]. However in a rarefied gas this boundary condition does not hold any
more: the parallel velocity of the gas is non-zero even at the surfaces it is inter-
acting with [Patterson 1956, Siria et al. 2009]. This boundary - so-called Knudsen
- layer can be efficiently studied in a gas. Despite intensive numerical simulations
[Bird 1994] the behaviour of this phenomenon is still not clear. As far as numer-
ics are concerned, solving the full Boltzmann equation of a gas interacting with a
wall is too demanding for nowadays computers [Reese et al. 2003], and the assump-
tions to simplify the calculations lead to different findings [Lilley & Sader 2007,
Lockerby et al. 2005]. On the other hand investigating experimentally the Knudsen
layer requires a sensor specifically designed for this purpose, presenting the proper-
ties of nanomechanical probes mentioned above: high Q and small sizes.

In this section, we present the theoretical background and the experimental sig-
nature of the Knudsen layer measured in 4He gas at 4.2 K with two different NEMS
already characterised in Chap. II: a 100 µm and a 300 µm high-stress SiN beams,
which aspect ratios between length and cross-section are of the order of a thousand
[Defoort et al. 2014a]. Furthermore, 4He gas is an almost-ideal inert, mono-atomic
gas which properties are tabulated [Arp et al. 1989], which makes it the best fluid
available for our purpose. The 100 µm device has a gap g with the bottom of the
chip of order 4 µm while the gap of the 300 µm one is of about 50 µm. While the
different sizes of the beams just involve renormalisation in the formulae, the order
of magnitude difference between the two gaps will demonstrate the robustness of
our results, as it will be explained in the following. However, those large lengths
lead to a high loading correction with the magnetic field, changing the measured
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vacuum linewidth of our NEMS up to a factor 230 from 0 to 1 T for the 300 µm
sample (Fig. II.14b). The dissipation, which is the essential information for this
experiment, would have been even more affected with a 50 Ω loaded environment,
and we see here how crucial the high impedance set-up can be (see Sec. II.4.1). The
data presented here are free from loading, taken at the lowest magnetic field reach-
able for a decent measurement, but the extrapolation to the zero-field value is not
trivial and the error bars of the extrapolated linewidth can reach 100 % of the bare
value for the smallest dampings resolved. The experimental cell is the same one as
presented in Chap. II and we fill it with regulated gas volumes to create a fluidic
environment at different pressures. Our 4He gas source is supposed to be pure (pu-
rity > 99%) and the remaining impurities should be adsorbed on cell walls for our
temperature of 4.2 K, making the gas even cleaner. Only a few ppm concentration
of 3He may remain in the actual gas present in the cell. To measure the pressure,
we used a Baratron pressure gauge connected to the pipes at the 300 K environment
for pressures < 100 Torr. We made sure that the thermomolecular pressure correc-
tions are negligible in the whole pressure range by measuring our NEMS with both
a full and nearly empty Helium bath. Estimating them from length and diameters
of the tubes leads to the same conclusions [Chernyak et al. 1973]. For pressures
exceeding 100 Torr, we used a pre-calibrated Blondelle mechanical manometer. As
we increase the pressure in the cell, the gas affects both the resonance frequency
and the linewidth of the NEMS (Fig. V.11). For all measurements, we made sure to
remain in the linear regime by using two different drives leading to the same (when
rescaled) resonance peaks. This also confirms that the injected current does not
heat the structure.
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Figure V.11: Resonance lines of the first mode of the 100 µm doubly-clamped beam
at two gas pressures (1 Torr in blue and magenta, 80 mTorr in black and red). As the
pressure increases, the linewidth gets broadened and the resonance frequency shifts
down. The measurements have been performed in the linear regime.
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Two distinct effects explain the shift in frequency: at low pressures (< 2 Torr)
4He atoms are being adsorbed onto the NEMS surface up to three atomic layers,
increasing the effective mass and thus shifting down the initial resonance frequency,
while at high pressure the shift follows the standard Navier-Stokes equation, and
gas is dragged around the beam which increases the dynamic mass (Fig. V.12).
This work does not pretend to study in details the adsorbed layers, but a quite
convincing fit of the data can be produced from simple arguments (orange lines
Fig. V.12). A first strongly bound monolayer is essentially always present for the
range of pressures investigated, and on top of it two disordered layers are growing
with characteristic isoterms of the Dubinin-Raduskevich type [Dash 1975]. We find
a typical adsorption potential for the first layer of order 70 K, while the helium
over-layer potential is around 29 K, with a spread due to the heterogeneous NEMS
surface of order 10 K. These numbers are consistent with what can be expected from
the literature [Goellner et al. 1975].
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Figure V.12: Frequency shift of the resonance line of the measured mechanical modes.
We present here the data of the fundamental mode (black points), the second har-
monic (red points) and the fourth harmonic (blue points). In the low pressure regime,
the adsorbed 4He layers on the NEMS are the main cause of the frequency shift (or-
ange lines, see text). The lines are extrapolated with the expected multi-layer con-
densation expression 1

1− p
p0

with p0 the saturated vapour pressure (dashed lines). We

present in comparison the Navier-Stokes dispersive components for each mode (with
their respective colors), which contribute only at high pressures within its validity
range (typically 10 Torr here, corresponding to a mean-free-path lmfp comparable to
the width w of the NEMS; below this limit the lines are dashed).

Essentially, the damping in a gas varies with pressure because of the variation of
density. Two regimes can be distinguished, which will be described in the following:
the low pressure, or molecular limit where particles have a very large mean-free-path,
and the high pressure, or laminar limit where the gas is essentially a conventional
viscous fluid.
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V.4.2 The high pressure limit and the slippage correction

Before probing complex properties in a low pressure environment, we need to
make sure we understand quantitatively our system in a more trivial regime: the high
pressure (laminar) limit. When the mean-free-path of the 4He molecules is small
compared to any experimental dimensions, the Navier-Stokes equation enables to
describe the fluid dynamics [Landau & Lifshitz 1987]. The local interaction force
per unit length between the fluid and the NEMS is then [Sader 1998]:

∂Fg (ω, z)

∂z
= ρg ω

2 Sc Λ (ω) Ψn (z)xn (ω) , (V.7)

with ρg the 4He gas density, Sc the cross section of the structure and Λ (ω) the com-
plex damping coefficient. Integrating the power ẋn Ψn

∂ Fg
∂z resulting from Eq. (V.7)

over the length of the probe and normalising to the mode mass (∝
∫

Ψ2
n (z) dz, see

Eq. [II.6]) the associated dissipative and reactive parts (i.e. imaginary and real
respectively) are obtained and the effective viscous forces can be injected in the dy-
namics equation, Eq. (II.5) [Defoort et al. 2014a]. As a result the effective friction
force is independent of the mode shape and length, but does depend on frequency.
The remaining unknown is Λ (ω), which we define as:

Λ (ω) = Γ (ω) Ω (ω) , (V.8)

with Γ (ω) the Navier-Stokes solution for a cylinder [Stokes 1851] and Ω (ω) a cor-
rection fraction introduced to match the rectangular cross section case (we use the
expression given for the thin plaque e� w which should be accurate enough, since
it renormalises at most by 15 % the original Γ (ω) term) [Sader 1998]. We have:

Γ (ω) =
4

1 + i

u

J1

(
1 + i

u

)
+ i Y1

(
1 + i

u

)
J0

(
1 + i

u

)
+ i Y0

(
1 + i

u

) , (V.9)

where u =
√

2λp
w , λp = 2

√
η

ρg ω
being the viscous penetration depth (with η the

viscosity) and w the width of the NEMS, J and Y are the Bessel functions of first
and second kind.

As the 4He gas pressure is reduced, the damping coefficient needs to be corrected
due to slippage on the device. When the mean-free-path lmfp of the gas particles
becomes comparable to the NEMS width, the tangential velocity does not reduce to
a zero value on the surface. At first order, this effect is taken into account through
the introduction of a slip length lslip which corresponds to the distance behind the
surface at which the velocity would have eventually reached zero if extrapolated
[Lilley & Sader 2008]. This length depends on the surface aspect which is charac-
terised by a number s ranging from 0 (completely diffusive surface) to 1 (perfectly
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Figure V.13: Evolution of the linewidth of the 100 µm nano-resonator in the high
pressure limit. In this regime we could only probe the fundamental mode (black
data points), and the full line represents the Navier-Stokes calculation done with a
slippage correction of s = 0.5 taking into account the finite mean-free-path lmfp (or
finite width w). When lmfp becomes too large compared to w (as we reduce the
pressure), the Navier-Stokes equation is not relevant any more (dashed line). In the
shaded region, we represent the transition range between the two regimes.

specular surface) [Jensen et al. 1980], and we have:

lslip ≈ 1.15
1 + s

1− s
lmfp. (V.10)

Implementing this new feature in the damping coefficient, we renormalise it such
that [Carless et al. 1983]:

Λ (ω)− 1→ 1

(Λ (ω)− 1)−1 − i 1

2u2

lslip
lslip + w

2

. (V.11)

From the SEM pictures of our devices Fig. II.24, we see that the surface is neither
completely diffusive nor perfectly specular, and we present in Fig. V.13 the calcula-
tions above for the reasonable value of s = 0.5. The fit is indeed rather good up to
lmfp ≈ w.

V.4.3 From the molecular regime to the Knudsen layer investiga-
tion

When the gas pressure is reduced further, lmfp is so large compared to the
structure cross-dimensions that the NEMS is not sensing the gas as a fluid but as
a molecular flow, probing the microscopic mechanisms of each particle bouncing off
the device: the Navier-Stokes equation is not valid any more. The different regimes
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can be discriminated by the Knudsen number Kn =
lmfp
w . For Kn < 0.1, continuum

fluid mechanics applies, for 0.1 < Kn < 10 we observe a transition regime (shaded
region in Fig. V.13 and Fig. V.14) and for Kn > 10, the fluid is in the molecular
regime. In this low-pressure range, the interaction between the gas and the NEMS
should be calculated from the transfer of momentum of each gas particle hitting the
structure. The statistical velocity distribution fv of particles from the equilibrium
Maxwell-Boltzmann law writes [Patterson 1956]:

fv (vx, vy, vz) =

(
β0

π

) 3
2

e−β [(vx−vx,0)2+(vy−vy,0)2+(vz−vz,0)2], (V.12)

with β0 = mHe
2 kB T0

and vi the 4He atoms velocity in the i = x, y, z direction. The
index 0 refers to global flow properties, defined over a small volume in the vicinity
of the probe. The intrinsic statistical average velocity is then defined by:

vg =
2√
π β0

. (V.13)

Since ~x is the only relevant direction considering the symmetry of the problem, we
only consider vx terms from now on. Depending on the nature of the interaction with
the surface, the equation describing the damping force is different. In the perfectly
specular case and developing at first order in vx,0, the force exerted on both front
and back sides of the NEMS by the 4He particles transferring momentum is:

∂ Fg
∂z

= 2 ρg w vg i ωΨn (z)xn (ω) , (V.14)

where i ωΨn (z) xn (ω) represents the NEMS velocity at position z and frequency
ω in the complex form. For the completely diffusive case, either the surface has
irregularities which imply that the momentum of a particle before and after bouncing
off the NEMS are not correlated, or the incoming particle sticks on the surface and
another one previously stuck leaves it. Considering the high-sticking properties of
4He [Sinvani et al. 1983], we describe the diffusive case using the latter mechanism.
The major difference with the specular case is that the particles from the gas at
temperature T will thermalise with the NEMS at temperature Tr before leaving the
structure. Defining the corresponding βr from Tr, we obtain for the diffusive case:

∂ Fg
∂z

= 2 ρg w vg
1 + π

4

√
β0
βr

2
i ωΨn (z)xn (ω) . (V.15)

In the more general case, combining both specular and diffusive forces, we have:

∂ Fg
∂z

= 2αρg w vg i ωΨn (z)xn (ω) , (V.16)

with α = s+ (1− s)
1 + π

4

√
β0
βr

2
. Considering that our NEMS is thermalised to the

Helium bath at 4.2 K and that the heat from the current can be neglected, we have
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β0 ≈ βr. Since
1 + π

4

2
≈ 0.89, we see that α is almost independent of the surface

aspect parameter s. However to follow on from the high pressure regime we keep
s = 0.5 and we have α ≈ 0.95. We show in Fig. V.14 the molecular regime effect
on the dissipation, both experimentally and calculated from Eq. (V.16): the expres-
sion is proportional to P with no free parameters. Note that following the same
calculation procedure as in the laminar case, the resulting linewidth broadening is
independent of frequency.
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Figure V.14: Evolution of the linewidth for the 100 µm device modes as a function
of the pressure in the cell. We focus here on the low pressure data, where the mean-
free-path becomes larger than the width of the beam, which is then described as
the molecular regime (purple line). We could measure in this range the three modes
introduced in Fig. V.12 (same conventions), and observe a similar behaviour for each
of them. However, when lmfp is larger than the gap g between the bottom of the
chip and the beam, we observe a clear deviation between the experimental data and
the calculation. The dashed horizontal lines represent the linewidth of each mode in
vacuum, which gives an idea of the subtractions involved to capture the broadening
of the linewidths and which cannot explain the deviation.

Theory and experiments do agree slightly below the transition regime, which
itself is very difficult to capture [Bullard et al. 2014, Yamamoto & Sera 1985]. How-
ever, as we reduce the pressure (increasing the mean-free-path) the measured damp-
ing falls below the molecular calculation. As a matter of fact, one could first suspect
that the NEMS itself is perturbing the gas and that the device is no longer a non-
invasive probe. Indeed, close to the surface of the beam (within one mean-free-path),
the particles of the gas will hit the NEMS more frequently than themselves, so that
we are no longer sensing the truly bulk properties. As a consequence, the veloc-
ities of the 4He atoms near the device should be slightly different than the ones
predicted by the Boltzmann distribution function. The simplest way of describing
such deviations to study molecular dynamics is to implement a first order correc-
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tion in Eq. (V.12) [Patterson 1956]. This affects the calculations of the interaction
force between the gas and the solid, and using conservation relations it is possi-
ble to estimate these corrections. They are proportional to velocity gradients near
the surface, or temperature gradients, and as such will depend on the NEMS ex-
citation amplitude. However, for the 100 µm structure and the drives we use, the
correction should be of only 5% maximum for a mean-free-path of 40 µm, while
the measured discrepancy between theory and experiment for these settings is more
than a factor of two [Defoort et al. 2014a]. Hence, the presence of the NEMS itself
cannot explain our experimental observations. Furthermore, the discrepancy on the
linewidth appears for mean-free-paths of the order of the gap between the NEMS
and the bottom of the chip (for both 100 µm and 300 µm beams, with gaps g of
respectively 4 µm and 50 µm): we are left with the fact that we are probing fea-
tures from the Knudsen layer attached to the bottom surface underneath the NEMS.

Extensive work has been done on this boundary layer problem, mostly
theoretical with both analytical and numerical calculations [Lilley & Sader 2007,
Lockerby et al. 2005, Bird 1994]. One main issue is the computer time needed to
model a realistic system while solving the Boltzmann equation. Indeed, using di-
rect simulation Monte Carlo, just solving the two-dimensional problem for a micro-
cantilever interacting with a rarefied flow would involve hours of supercomputers
calculations [Reese et al. 2003]. Solving such a problem is thus not a trivial task,
and due to the different approaches (the linearised Boltzmann equation, the Monte
Carlo simulations, using hard sphere or variable soft sphere assumptions) the re-
sults differ. The last theories lead to the fact that the velocity of the particles
decreases as a power law d ≈ 0.8 as we enter in the Knudsen layer until reaching
the non-zero velocity at the bottom of the surface (related to the associated slip
length) [Lilley & Sader 2007], but the actual effect on the effective viscosity within
this layer is still an open question. Two main ideas are discussed: the viscosity of
the gas decreases until reaching half of the bulk value [Lockerby et al. 2005], or the
viscosity vanishes to zero with a power law of 1− d ≈ 0.2 [Lilley & Sader 2008].

In our system, the measured extra dissipation felt by the NEMS is directly
linked to the effective viscosity of the surrounding flow. Since the viscosity

decreases with
lmfp
g

, we propose the following phenomenological renormalisation

[Defoort et al. 2014a]:

∆ω ∝ 1

1 + b

(
lmfp
g

)a , (V.17)

with a and b the fitting parameters. We show in Fig. V.15 the damping measured
normalised to 2 ρg w vg (prefactor of Eq. [V.16]) together with Eq. (V.17). While
the formula do fit the data, the two fitting parameters need to be adjusted for each
NEMS, and the exponent a does not match with the theoretical predictions: we
observe a faster decrease of the effective viscosity.
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Figure V.15: Broadening of the linewidth of the first mode normalised to 2 ρg w vg
as a function of the pressure. This normalisation highlights the deviation due to the
entrance in the Knudsen layer, for lmfp > g (g = 4 µm for the 100 µm beam [a]
and g = 50 µm for the 300 µm beam [b]). The purple lines are molecular calcula-
tions incorporating the cross-over description [Yamamoto & Sera 1985] and match-
ing Eq. (V.16) at low pressures. Following Eq. (V.17), we used the fitting parameter
a = 0.8± 0.1 and b = 0.18± 0.05 (a) and a = 1.15± 0.1 and b = 0.65± 0.1 (b) which
reproduce (green lines) the measured data points.

While we clearly see an effect due to the Knudsen layer, we cannot explain
quantitatively its behaviour with the actual experimental and theoretical results.
However, our results clearly demonstrate that the viscosity does not decrease just
to half of its bulk value, but seems to vanish to zero following qualitatively the
latest numerical simulations: the lowest pressure data points in Fig. V.15 present a
reduction of the damping of about a factor of 10, which is an unprecedented result
to our knowledge.
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V.5 Conclusion

In this Chapter, we focused on another use of NEMS, namely using them as
probes instead of model systems. We presented different configurations involving
various NEMS with distinct objectives. While more suited to applied physics issues,
we nonetheless demonstrated here the potential of NEMS implemented as probes
for many fields of fundamental physics.

In a first section, we took benefit of the non-linear coupling between the goalpost
structure and the gate electrode to imprint in the resonance line of the resonator a
low frequency signal from the electrode. We could compare our results with theory,
which perfectly matches to the data without free parameter. Our measurements
demonstrate that from the resonance shapes (in the multi-peaks configuration) it
should be possible to deconvolute the mixing frequency and thus detect a small low-
frequency signal from its impact on the high-frequency motion. While frequency-
mixing has already been observed at the nano-scale using intrinsic non-linearities,
we were able here to perform audio-mixing while remaining in the (non-Duffing)
linear regime [Defoort et al. 2011].

In a completely different field, we could use the same goalpost structure to probe
mechanisms at the core of the mechanical dissipation of the structure itself, namely
the Two Level Systems (TLS). Recent work has been focused on determining the
power law with which the dissipation in micro/nano-resonators decreases with tem-
perature. In this second section we investigated another aspect: how the electronic
state of the metal, covering almost all nano-devices used for the low-temperature
study of TLS in the literature, affects the dissipation in the whole structure. Using
a 20 mK based temperature pulse-tube dilution cryostat, we measured the damping
of the goalpost at different temperatures in both normal N and superconducting
S states of the aluminium layer. The latter one demonstrates exotic behaviour on
the resonance line of the NEMS, which appears to be highly non-linear. After a
thorough study of this feature, we could extrapolate to zero field and derive the
resonator’s dissipation. Comparing those results with the N state ones, we show
an unprecedented difference on the power laws versus temperature between N and
S states. No present model can explain those results, which are calling for new
theories [Lulla et al. 2013].

Finally, thanks to their small intrinsic linewidths resonance, we presented how
very long beams (with high aspects ratios) can be used in microfluidics. Close to a
surface, the tangential velocity of a fluid is supposed to vanish, the fluid being stuck
by the surface. However, when the mean-free-path of a gas becomes large enough
(for small enough pressures), the gas experiences slippage, a new feature occurring
within the boundary layer of order one mean-free-path next to the wall. In this
last section we expose an unprecedented experimental investigation of this so-called
Knudsen layer, probing the effective viscosity of the gas describing the slippage prop-
erty. Comparing the results with the most recent theories, we obtain a qualitative
agreement with a power law decrease of the effective viscosity towards zero as we get
closer to the surface from which the boundary layer is defined [Defoort et al. 2014a].
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V.6 Perspectives

Applications of NEMS as probes in condensed matter physics is a very broad
field of research, which perspectives are continuously expanding. In this Chapter,
we have been dealing in particular with the use of NEMS as probes for fundamental
issues of physics.

As far as Two Level Systems (TLS) are concerned, the results we presented are
just the first observation of a phenomenon of high impact in the study of TLS with
NEMS: the importance of the electronic degree of freedom in dissipation mecha-
nisms. While our measurements are reproducible over two devices of the same chip
after several cooling cycles, a very interesting test would be to change the material
or the shape of the structure, moving from a cantilever to a doubly clamped beam
or changing the metallic layer. Since the TLS affect the dissipation in the NEMS,
comparing low-stress and high-stress SiN devices could bring new information. No
theoretical model encompasses all experimental results so far, and more statistics
is clearly required. On the other hand, while the fast decrease of the dissipation
with the temperature brings new questions on the origin of the mechanisms, it could
also have a big impact in low temperature technologies. Indeed, if the properties
observed can be engineered to match technical demand, superconducting mechani-
cal structures would be low temperature phononic thermometers of high precision,
down to at least 20 mK (temperature at which still no saturation has been seen in
our experiment).

NEMS are also promising structures to probe micro-fluidics. In the particular
case of the fundamental investigation of the Knudsen layer, the study of two dif-
ferent gaps between probe and boundary surface (differing by more than an order
of magnitude) with two different resonator’s size (differing in length by a factor of
3) demonstrated that the characterisation of this phenomenon needs very different
length-scales to observe any change. Fabricating an even longer beam (for example
500 µm) would enable a very small intrinsic linewidth and thus a better precision on
the viscosity variation. We also showed that the analytical description of the extra
decrease of the damping needs both more theory and experiments (with for example
a full statistics including larger gaps) to understand the tendency of this reduction,
and thus the behaviour of the Knudsen layer. Finally, as far as low temperature
physics is concerned, this results definitely validate the use of NEMS for the study of
quantum fluids (3He and 4He) with new probes sensing the elementary excitations
of the liquid down to the nanometer scale.
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V.7 Résumé

Dans ce chapitre, nous nous sommes concentrés sur une autre application des
NEMS, en les utilisant comme sondes plutôt que comme systèmes modèles. Nous y
présentons différentes configurations impliquant différents NEMS avec des objectifs
distincts. Bien que plus adapté aux questions de physique appliquée, nous démon-
trons ici le potentiel des NEMS comme sondes pour de nombreux domaines de la
physique fondamentale.

Dans une première section, nous avons mis à profit le couplage non linéaire
entre notre NEMS en fome de portique et l’électrode de grille qui lui fait face afin
d’imprimer dans la raie de résonance du nano-résonateur un signal à basse fréquence,
lui-même contrôlé à partir de l’électrode (Fig. V.1). Nous avons observé une corre-
spondance parfaite (sans paramètre libre) en comparant nos résultats expérimentaux
et théoriques. Nos mesures montrent qu’à partir de la forme des résonances (dans
la configuration multi-pics), il devrait être possible de déconvoluer les fréquences
des différents signaux, et donc de détecter un petit signal à basse fréquence à partir
de son impact sur le mouvement à haute fréquence. Bien que le fait de mélanger
des fréquences ait déjà été observé à l’échelle nanométrique en utilisant des non-
linéarités intrinsèques aux structures, nous avons pu ici le réaliser tout en restant
dans le régime linéaire (non-Duffing) [Defoort et al. 2011].

Dans un tout autre domaine, nous avons pu utiliser le même résonateur pour
sonder les mécanismes à la base de la dissipation mécanique de la structure elle-
même, à savoir les systèmes à deux niveaux (TLS). Des travaux récents, utilisant
les micro/nano-résonateurs, ont permis d’étudier la loi de puissance avec laquelle la
dissipation diminue avec la température. Dans cette deuxième partie, nous avons
étudié un aspect différent de ce domaine : la façon dont l’état électronique du
métal, couvrant presque tous les nano-dispositifs utilisés dans la littérature pour
l’étude des TLS à basse température, affecte la dissipation dans l’ensemble de la
structure. Utilisant un cryostat à dilution pulse-tube ayant une température de
base de 20 mK, nous avons mesuré l’amortissement de la résonance de notre NEMS
à différentes températures dans l’état normal N et l’état supraconducteur S de la
couche d’aluminium (Fig. V.6). Dans ce dernier cas, on observe un comportement
exotique de la résonance du NEMS, qui semble être fortement non-linéaire (Fig. V.7).
Après une étude approfondie de cet aspect, nous avons pu extrapoler nos résultats
à champ magnétique nul et extraire la dissipation du résonateur. En comparant
ces résultats avec ceux de l’état N, nous avons mis en évidence une différence sans
précédent sur les lois de puissance en fonction de la température entre les états N
et S (Fig. V.10). Cependant, aucun modèle actuel ne peut expliquer ces résultats,
qui réclament de nouvelles théories [Lulla et al. 2013].

Enfin, grâce à leurs fines largeurs de raie intrinsèques, nous avons présenté
la façon dont de très longues poutres doublements encastrées (avec des facteurs
d’aspects élevés) peuvent être utilisées en microfluidique. A proximité d’une sur-
face, la vitesse tangentielle d’un fluide est censée être nulle, le fluide étant bloqué par
la surface. Toutefois, lorsque le libre-parcours-moyen d’un gaz devient suffisamment
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grand (pour des pressions suffisamment faibles), le gaz est sujet au glissement, un
nouveau phénomène exercé au sein de la couche limite, distante d’environ un libre-
parcours-moyen de la paroi. Dans cette dernière section, nous exposons une étude
expérimentale sans précédent de cette couche dite de Knudsen, sondant la viscosité
effective du gaz décrivant les propriétés de glissement qu’il subit (Fig. V.14). En
comparant ces résultats avec les plus récentes théories, nous obtenons un accord
qualitatif avec une diminution en loi de puissance de la viscosité effective vers zéro
tandis que nous nous rapprochons de la surface à partir de laquelle la couche limite
est définie (Fig. V.15) [Defoort et al. 2014a].
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VI.1 Achievements of the presented work

In this thesis we demonstrated how a Nano-Electro-Mechanical System can be
used to probe fundamental phenomena arising from its non-linear behaviour. After a
thorough calibration of our magnetomotive experimental set-up [Collin et al. 2012],
we characterised the dynamics of our nano-resonators from the linear
[Collin et al. 2014] all the way up to the highly non-linear regime, leading to an
exhaustive comprehension of the Duffing oscillator [Defoort et al. 2013b]. This non-
linear system, at the core of the present manuscript, enables to investigate different
aspects of fundamental physics, some of them involving non-linear couplings between
distinct degrees of freedom.

In the framework of nano-resonators, the coupling between their own vibrating
modes is a study with promising benefits. Making use of the mode-coupling tech-
nique, we developed a new scheme to improve the measurement precision of the
NEMS’ resonance, coupling the actual mode with itself thanks to a two-tone drive
set-up [Defoort et al. 2013a].

NEMS can also be thought of as model systems, and the transitions between
the two states within the hysteresis emerging from the Duffing oscillator brings
information on a general physical phenomenon: the bifurcation process, which is
at the core of any first order transition phenomenon. Predicted to be universal
within a narrow region, the power law dependencies of the hysteresis’ sweeping
parameter were investigated beyond the applicability limit of the analytical theory,
together with the dependency to the non-linearity which is the essence of the bistable
regime. We found both experimentally and numerically that the exponents hold
in a range orders of magnitude larger than the one calculated from the theory
[Defoort et al. 2014b], as previous numerical calculation suggested. While being of
fundamental origin, we present how the bifurcation scheme in NEMS can be used
to detect the behaviours of low-frequency two-level systems within the resonator’s
material.

As detectors, nano-resonators are very highly sensitive structures using numerous
detection techniques. In this case, these objects are not themselves model systems
but probes for condensed matter physics. We presented an audio-mixing scheme
in which a low frequency signal can be imprint within the NEMS’ resonance fre-
quency [Defoort et al. 2011]. We could probe at very low temperatures the me-
chanical damping resulting from the two level systems present within the device
[Lulla et al. 2013]. We also described the measurement of fluid friction obtained
with a nano-string used as a detector in a low pressure gas in the molecular regime
[Defoort et al. 2014a].
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NEMS’ implementation techniques are in constant improvement, and the non-
linear properties of those nano-resonators enable new drive and detection schemes
to be used. By means of all of these various approaches, those nano-structures are
key devices in both applied physics and fundamental research. The present work is
a new and original step towards the use of nano-resonators as model systems and
probes for condensed matter physics.
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VI.2 Résumé général et conclusion

Dans cette thèse, nous avons démontré comment un Système Nano-Électro-
Mécanique peut être utilisé pour sonder les phénomènes fondamentaux découlant
de son comportement non-linéaire. Après une calibration approfondie de notre dis-
positif expérimental [Collin et al. 2012], nous avons caractérisé la dynamique de nos
nano-résonateurs du régime linéaire [Collin et al. 2014] jusqu’au régime fortement
non linéaire, conduisant à une compréhension exhaustive de l’oscillateur de Duff-
ing [Defoort et al. 2013b]. Ce système non-linéaire, qui est le thème au cœur de ce
manuscrit, permet d’étudier différents aspects de la physique fondamentale, certains
impliquant des couplages non-linéaires entre différents degrés de liberté.

Dans le cadre des nano-résonateurs, l’étude du couplage entre leurs propres
modes de vibration est un sujet aux avantages prometteurs. Utilisant la technique de
couplage entre modes, nous avons développé une nouvelle technique pour améliorer
la précision de la mesure de la résonance du NEMS, couplant ledit mode avec lui-
même grâce à un dispositif d’excitation à double-ton [Defoort et al. 2013a].

Les NEMS peuvent également être considérés comme des systèmes modèles, et
la transition entre les deux états de l’hystérésis émergeant de l’oscillateur de Duff-
ing apporte des informations sur un phénomène général en physique : le processus
de bifurcation, qui est au cœur de tout phénomène de transition de premier ordre.
Prévues pour être universelles dans une région étroite, les dépendances en loi de
puissance des paramètres caractéristiques de la bifurcation en fonction du point de
fonctionnement ont été étudiées au-delà de la limite d’applicabilité de la théorie an-
alytique, ainsi que la dépendance à la non-linéarité qui est l’essence même du régime
bistable. Nous avons trouvé à la fois expérimentalement et numériquement que les
exposants restent valables dans une gamme qui est des ordres de grandeur plus
grande que celle proposée à partir de la théorie analytique [Defoort et al. 2014b],
comme l’avait suggéré des calcul numériques antérieurs. Bien qu’étant d’origine
fondamentale, nous présentons comment le phénomène de bifurcation peut être util-
isé pour détecter les comportements basse-fréquence des systèmes à deux niveaux
présents au sein du matériau du résonateur étudié.

En tant que détecteurs, les nano-résonateurs sont des structures très sensibles
pouvant être utilisé dans de nombreuses techniques de détection. Dans ce cas,
ces objets ne sont plus eux-mêmes des systèmes modèles, mais des sondes pour
la physique de la matière condensée. Nous avons présenté un système de mix-
age audio dans lequel un signal de basse fréquence peut être imprimé dans la
fréquence de résonance du NEMS [Defoort et al. 2011]. Nous avons pu sonder à
très basses températures la dissipation mécanique résultant des systèmes à deux
niveaux présents dans le dispositif [Lulla et al. 2013]. Nous avons également décrit
une technique de mesure pour la viscosité des fluides obtenue avec une nano-corde
utilisée en tant que détecteur dans un gaz à basse pression dans le régime molécu-
laire [Defoort et al. 2014a].
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Les techniques de mise en œuvre des NEMS sont en constantes amélioration,
et les propriétés non-linéaires de ces nano-résonateurs permettent la réalisation de
nouvelles techniques d’excitation et de détection. De part l’ensemble de ces dif-
férentes approches, ces nano-structures sont des dispositifs clés à la fois en physique
appliquée et en recherche fondamentale. Le travail présenté dans cette thèse est une
étape nouvelle et originale vers l’utilisation des nano-résonateurs comme systèmes
modèles et sondes pour la physique de la matière condensée.
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Abstract

The investigation of non-linear dynamics intrinsically opens access to a broad
field of researches, and Nano-Electro-Mechanical Systems (NEMS) are valuable tools
for this purpose. In the present manuscript, we emphasize the fundamental applica-
tions of non-linear nano-resonators for condensed matter. After a careful calibration
of our peculiar experimental set-up, we characterise the relevant parameters associ-
ated to the resonance of our devices, notably the Duffing non-linearity which is the
essence of coupling mechanisms between distinct modes of the system. We present
a new scheme emerging from the mode-coupling technique, using a two-tone drive
but actuating a single flexural mode: a high detection precision procedure. The
Duffing regime also opens an hysteresis within the resonance line of the NEMS, and
the device is then employed as a model system for the associated bifurcation pro-
cess. We explored numerically and experimentally this physical phenomenon and
found that both the non-linear behaviour and the universal power laws described in
the general theory are still valid far beyond any analytical predictions. We finally
describe different techniques using NEMS as sensors to measure fundamental fea-
tures of condensed matter physics, like signatures of two level systems within the
resonator’s material or slippage in a rarefied gas.

Résumé

L’étude des systèmes non-linéaires ouvre un large champ d’investigation en
recherche fondamentale, dans cette optique les Systèmes Nano-Electro-Mécanique
(NEMS) sont des outils de premier choix. Ce manuscrit met en avant l’utilisation
des propriétés non-linéaires de nano-résonateurs pour la physique fondamentale. À
la suite d’une calibration rigoureuse de notre dispositif expérimental, nous avons
caractérisé les principaux paramètres associés à la résonance de nos structures avec,
en particulier, la non-linéarité de Duffing qui est à la source des mécanismes de
couplage entre les différents modes de notre système. Un nouveaux procédé expéri-
mental utilisant une excitation à deux tons est présenté, émergeant du couplage
entre modes mais en stimulant un seul mode résonant : un système de détection à
haute précision. Le régime de Duffing engendre également l’ouverture d’une hys-
térésis au sein de la courbe de résonance du NEMS, configuration qui est alors util-
isée comme système modèle pour le phénomène de bifurcation. Nous démontrons,
numériquement et expérimentalement, que le comportement non-linéaire et les lois
de puissances universelles décrites par la théorie sont valides au-delà des prédictions
attendues. Différentes techniques expérimentales sont finalement présentées, util-
isant les NEMS afin de détecter des caractéristiques fondamentales de la matière
condensée, comme les signatures des systèmes à deux niveaux présents au sein des
nano-résonateurs ou les propriétés de glissement dans un gaz raréfié.


	General introduction
	Fundamental Science with nano-mechanical devices
	Positioning of realised research
	Résumé

	Experimental techniques
	Introduction
	Fabrication of NEMS
	Silicon goalpost structure
	Silicon nitride doubly-clamped beam

	General set-up
	Cooling down to Kelvin temperatures
	Actuation and detection of NEMS
	Driving higher harmonics
	The gate electrode
	Non-linearities in nano-resonators

	Calibration
	The loading correction
	The injection line
	The capacitive line
	The detection line

	Quantitative characterisations
	Linear response of NEMS
	The temperature dependence
	The Duffing non-linearity
	From the linear response to the anelastic regime

	Conclusion
	Perspectives
	Résumé

	From coupling modes to cancelling non-linearities
	Introduction
	Non-linear coupling between modes
	Coupling two modes
	The "self-coupling" limit

	Confidential
	Conclusion
	Perspectives
	Résumé

	Dynamical bifurcation
	Introduction
	State-of-the-art
	Hysteresis and bifurcation process
	Investigation with MEMS/NEMS

	Theory
	The approximated 1D theory
	Solving the Fokker-Planck equation

	Experiment
	Motivations and experimental set-up
	Measurements and analysis techniques
	The Gaussian distribution of the resonance frequency
	Implementing the frequency fluctuation issue
	Fitting procedure and results

	Conclusion
	Perspectives
	Résumé

	NEMS as probes in condensed matter physics
	Introduction
	The audio-mixing scheme
	Experimental and theoretical basics
	Results

	Damping mechanisms down to the millikelvin regime
	Introduction to the Standard Tunneling Model
	The electronic state contribution

	Slippage features in a rarefied gas
	Probing gas properties with a NEMS
	The high pressure limit and the slippage correction
	From the molecular regime to the Knudsen layer investigation

	Conclusion
	Perspectives
	Résumé

	Overview and conclusion
	Achievements of the presented work
	Résumé général et conclusion

	Bibliography

