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Résumé

L’extraction de modèles de connaissances est l’un des principaux thèmes de recherche du do-
maine de l’Extraction de Connaissances á partir des Données (ECD) et pour l’intégration de
connaissances initiales du domaine. Extraires de tels motifs à partir de grandes bases de don-
nées, entrepôts de données et autres types de répertoires massifs de données est l’une des tâches
les plus ardues du processus global de fouille de données, ou data mining. Parmi les nombreuses
techniques de fouille existantes, l’extraction de règles d’association et le bi-clustering sont les
deux approches descriptives majeures pour la découverte de connaissances pertinentes et utilis-
ables, ainsi que pour l’intégration de connaissances initiales dans le processus de fouille. Même
si ces approches ont fait l’objet de nombreux travaux et ont été appliquées dans de nombreux
domaines, aucune approche permettant de combiner ces deux tâches dans un même processus
n’a été proposée à notre connaissance. Dans cette thèse, nous proposons une approche originale
pour l’extraction de modèles de connaissances de ces deux catégories en minimisant l’utilisation
des ressources. Les modèles extraits, basés sur la théories des itemsets fermés fréquents et des
listes d’objets support, sont utilisés pour construire des représentations conceptuelles minimales
de règles d’association et de classification, et de bi-clusters. Ils étendent les modèles classiques
de règles d’association et classification, ainsi que de bi-clusters, en fournissant à l’utilisateur
davantage d’informations découlant des listes d’objets supportant chaque modèle. Ces modèles
sont générés à partir des ensembles de générateurs, ou itemsets-clé, d’itemsets fermés fréquents
et de la structure hiérarchique conceptuelle induite par les générateurs, les fermés fréquents et
les listes d’objets support.

L’approche proposée, nommée FIST pour Frequent Itemset mining using Suffix-Trees, utilise
une nouvelle structure de données basée sur les arbres suffixés qui permet le stockage efficace
des données et l’extraction de modèles de connaissance pertinents en mémoire primaire. La
stratégie utilisée par FIST est basée sur la fermeture de la connexion de Galois d’une relation
binaire finie qui sert également de fondement théorique en analyse de concepts formels (FCA).
Une caractéristique importante de FIST est qu’un seul balayage de l’ensemble de données est
nécessaire pour en extraire tous les motifs valables. Cette caractéristique est primordiale pour
un traitement efficace de grands ensembles de données stockées en mémoires secondaires, du
fait des temps d’accès à ce type de mémoires qui sont environ un million de fois moins rapi-
des que les accès en mémoire primaire. Nous avons développé deux algorithmes différents de
mise en oeuvre de l’approche FIST, présentés dans ce rapport du point de vue de l’avancement
continuel de mise au point de l’approche. Le premier algorithme utilise des opérations opti-
misées pour l’exploitation de tables et listes extraites de l’arbre suffixé. Le deuxième algorithme
utilise une approche arborescente pure afin d’améliorer l’utilisation des ressources, à la fois
en termes d’espace mémoire et de nombre d’opérations effectuées. Pour les deux algorithmes,
l’utilisation d’une forme généralisée d’arbre suffixé permet de réduire l’utilisation de la mé-
moire et d’améliorer l’efficacité de l’extraction des motifs durant l’analyse de l’ensemble de
données. Cette optimisation repose sur les propriétés de la structure de données qui, conjugué
à un ordonnancement aproprié des données, limite l’espace de recherche des motifs fermés sans
nécessiter de phase de génération de motifs candidats. En outre, les types d’opérations utilisés
pour des motifs d’extraction permettent le traitement en parallèle des branches de l’arbre suffixé
afin d’optimiser les temps d’exécution pour des architectures matérielles multi-processeurs et



multi-coeurs. FIST est une approche intégrée basée sur la théorie de la fermeture de Galois qui
combine l’extraction de générateurs, motifs fermés fréquents, règles d’association, de classifica-
tion, et bi-clusters conceptuels, étendant ainsi les modèles classiques de connaissance pour une
analyse conceptuelle.

Les résultats et analyses expérimentaux montrent les performances des différentes versions
de FIST et leur comparaison avec d’autres algorithmes d’état de l’art pour l’extraction de rè-
gles d’association et itemsets fermés, et le bi-clustering. Aucun autre algorithme publié dans
la littérature ne permet de générer les mêmes motifs que ceux générés par FIST à notre con-
naissance. Trois implémentations des deux différentes versions algorithmiques de FIST ont été
implémentées en langage Java, choisi pour la portabilité. La première implémentation corre-
spond à la première version de FIST utilisant des opérations basées sur des tables et listes.
Les deux dernières implémentations correspondent à la deuxième version de FIST, l’une util-
isant les collections standards de l’API Java et la seconde utilisant les collections de l’API
Java Trove. Des expérimentations ont été menées avec la première implémentation sur di-
verses bases de données synthétiques et opérationnelles afin d’évaluer son applicabilité aux très
grands ensembles de données. Cette implémentation a également été comparée aux algorithmes
d’état de l’art en termes de temps d’exécution et d’utilisation de la mémoire primaire. Les
résultats ont montré que les besoins en mémoire et temps d’exécution sont dans la plupart des
cas équivalents à ceux des algorithmes basés sur les itemsets fermés fréquents et inférieurs à
ceux des algorithmes basés sur les itemsets fréquents. Les résultats détaillés obtenus avec cette
première implémentation nous ont conduit à améliorer l’approche, en transformant les opéra-
tions basées sur des tables et listes par des opérations purement arborescentes, afin de réduire
les besoins en mémoire et temps d’exécution. Ces améliorations ont menés à la seconde version
algorithmique de FIST implémentée en utilisant les collections standards de l’API Java et opti-
misée ensuite avec l’utilisation des collections de l’API Java Trove. Ces trois implémentations
ont été comparées expérimentalement sur diverses configurations matérielles afin d’évaluer avec
précision les gains obtenus par les améliorations successives de l’algorithme et l’utilisation des
collections de l’API Java Trove. Les résultats ont confirmé les améliorations apportées par la
seconde version algorithmique à la fois en termes d’utilisation mémoire et de temps d’exécution.
L’utilisation mémoire et les temps d’exécution de la seconde version ont été ensuite comparés à
ceux des algorithmes d’état de l’art pour l’extraction de règles d’association et itemsets fermés,
et le bi-clustering.

La protéomique concerne l’étude à grande échelle des protéines dans les systèmes biologiques
complexes (fluides, tissus, organes, etc.). Comme l’ensemble des domaines “omiques”, la pro-
téomique fait face à un accroissement exponentiel du volume de bioinformations, ou don-
nées biologiques, générées, tant en terme de valeurs que de variables, mais aussi de méta-
données définissant des structures complexes dans les données. Ces caractéristiques ont en-
traîné l’apparition de nombreuses nouvelles problématiques complexes pour l’extraction de con-
naissances à partir de ces données. L’approche FIST, développée pour répondre à certaines
de ces problématiques, a été appliquées à l’analyse d’interactions protéomiques (PPI) entre les
protéines du virus VIH-1 et de l’organisme humain. L’analyse d’interactions protéomiques
est un domaine récent et complexe d’une importance majeure en bioinformatique. Les résultats
obtenus ont permi de démontrer son rôle capital pour la découverte de nouveaux traitements et la
prévention de diverses types de maladies. L’application aux interactions entre protéines du virus
VIH-1 et de l’organisme humain vise à découvrir les interactions responsables du développement
du virus du SIDA et permettre ainsi la création de traitements de la maladie. Afin d’étendre



les motifs extraits des données originelles d’interactions protéomiques entre VIH-1 et organ-
isme humain, nous avons construits trois nouvelles bases de données intégrant les données,
connaissances biologiques et annotations bibliographiques les plus récentes disponibles sur ce
sujet. Les résultats expérimentaux ainsi que les nouveaux modèles de connaissances extraits par
l’approche FIST pour ces bases de données sont présentées dans ce rapport. Afin de démontrer
la validité de l’approche, les connaissances déjà reportées dans la littérature du domaine qui
ont été extraites avec FIST sont également présentées. Les modèles extraits par FIST pour
ces données sont constitutées des bi-clusters hiérarchiques conceptuels et des couvertures mini-
males conceptuelles de règles d’association contenant à la fois des informations d’interactions
et d’annotations biologiques conernant les protéines.

Mots-clés: Data Mining, Extraction de Connaissances à partir des Données, Bases de Règles
d’Association, Règles de Classification, Règles d’Association Conceptuelles, Bi-clustering, Item-
sets Fermés Fréquents, Treillis des Itemsets Fermés, Connexion de Galois, Analyse de Concepts
Formels, Structures de Données, Arbres Suffixés.





Abstract

Pattern extraction is one of the major topics in the Knowledge Discovery from Data (KDD)
and Background Knowledge Integration (BKI) research domains. Extracting patterns from
databases, data warehouses and other kinds of data repositories is one of the most unyield-
ing tasks. Extensively, it is subsumed as a part of the data mining task. Out of numerous data
mining techniques, association rule mining and bi-clustering are two major complementary data
mining tasks for relevant knowledge extraction and integration. These tasks gained much im-
portance in many research domains in recent years. However, to the best of our knowledge, no
approach was proposed to perform these two tasks in one process. In this thesis work, we propose
an original approach for extracting different categories of knowledge patterns while using mini-
mum number of resources. These patterns, based on frequent closed sets and supporting object
lists, are used to construct conceptual minimal representations of association rules, bi-clusters
and classification rules. They extend the classical frameworks of association and classification
rules, and of bi-clusters, by providing the user with more information using the object lists
associated with these patterns. These patterns are generated from the sets of generators, or
key-patterns, the sets of closed patterns and the hierarchical conceptual structure induced from
generators, closed patterns and supporting object lists.

The proposed approach, named FIST for Frequent Itemset mining using Suffix-Trees, is
based on a new suffix-tree data structure that enables the efficient storage of data and computa-
tion of relevant patterns in primary memory. The strategy used by FIST is based on the closure
of the Galois Connection of a finite binary relation theory used in the Formal Concept Analysis
framework. An important feature of FIST is that it requires only a unique scan of the dataset to
extract all valid patterns. This feature is required for efficient processing of large datasets, stored
on hard drives, as secondary memory accesses are about one million times slower than primary
memory accesses. We developed two different algorithms implementing the FIST approach;
these algorithms are presented in this report as the continual advancement of the FIST appli-
cation development. The first algorithm uses table and list-based optimized operations, where
tables and lists are extracted from the suffix-tree. The second algorithm uses a pure tree-based
approach to improve resource usage, both in terms of memory space and of number of operations
performed. For both algorithms, the use of a generalized form of the suffix-tree data structure
helps to reduce memory usage and improve the pattern extraction efficiency while analyzing the
dataset. This optimization relies on the suffix-tree properties that, combined with item ordering,
limits the search space for closed patterns without candidate generation. Moreover, the types
of operations used for extracting patterns allow the parallel processing of the tree branches in
order to optimize execution times in the case of multiple processors and cores computer archi-
tectures. FIST is an integrated approach based on the Galois closure framework, combining the
searches for generators, frequent closed itemsets, association rules, conceptual bi-clusters and
classification patterns, and extending the generated patterns for conceptual analysis.

Experimental results and analyses show the performances of the different versions of FIST
and compare them to others state-of-the-art algorithms for association rule mining, closed pat-
tern mining and bi-clustering. To the best of our knowledge, no algorithm in the literature
produces the same output patterns as are generated by FIST. Three implementations of the
two different algorithmic versions of FIST were programmed in Java language that was chosen



for portability. The first implementation corresponds to the first version of FIST using tables
and lists-based operations. The two latter implementations correspond to the second version
of FIST, one was achieved using standard Java Collection APIs and the second using Trove
Java APIs. Experiments were conducted with the first version on several synthetic and real life
databases to assess its applicability to very large datasets. This version was also compared to
other pattern mining state-of-the-art algorithms with respect to both execution times and mem-
ory usage. Results showed that memory requirements and execution times are in most cases
equivalent to frequent closed itemsets based algorithms and lower than frequent itemsets based
algorithms. After successful completion of the first version, we improved techniques from ta-
ble and list-based to tree-based operations for reducing memory and time consumption. This
resulted in the second algorithmic version of FIST that was implemented using standard Java
API collections and Java Trove optimized API collections. All three versions were compared
to show the amount of algorithmic improvements between first and second versions, and as-
sess the impact of using Java Trove optimized collections on FIST. Results showed that the
second version outperforms the first version in both execution times and memory usage. The
second version was then separately compared to association rule mining, closed pattern mining
and bi-clustering state-of-the-art algorithms with respect to both execution times and memory
usage.

Proteomics focuses on the large scale study of proteins in complex biological systems (fluid,
tissue, organ, etc.). As most of the high throughput “omics” fields, proteomics is facing a
tremendous increase of the size of datasets to process (number of items as well as number of
variables, but also their meta-data which structure the datasets into complex objects), leading to
challenging knowledge discovery from data problems. The FIST application was applied for the
analysis of a real life dataset of protein-protein interactions (PPI) between HIV-1 and Human
proteins. Discovering protein-protein interactions is a recent major challenge in computational
biology. Identifying interactions among proteins was shown to be useful for finding new drugs
and preventing several kinds of diseases. The identification of interactions between HIV-1 pro-
teins and Human proteins is a particular PPI problem whose study might lead to the discovery
of important interactions responsible for AIDS and help designing drugs and treatments. In
order to improve and extend knowledge patterns extracted from original HIV-1 and Human PPI
data, we constructed three new datasets integrating the most recent biological and bibliographic
annotations on proteins with PPI data. Successive experimental results for these PPI datasets,
and new information discovered using the FIST approach on these datasets, are presented in
this report. As proof of correctness, we have also shown that FIST successfully found the cur-
rently known information in the PPI literature. The experiments on these PPI datasets were
performed by extracting with FIST the conceptual hierarchical bi-clusters and the conceptual
minimal covers of association rules containing both interaction and annotation information on
proteins.

Keywords: Data Mining, Knowledge Discovery in Database, Bases of Association Rules, Clas-
sification Rules, Conceptual Association Rules, Bi-clustering, Frequent Closed Itemsets, Closed
Itemset Lattice, Galois Connection, Formal Concept Analysis, Suffix-Tree Data Structure.
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1.1 Introduction

Data mining, also known as knowledge discovery from database (KDD), is the task of
extracting unknown and potentially important information from large databases. It is
an important research area in Databases, Artificial Intelligence and Machine Learning
[Piatetsky-Shapiro 1991b]. KDD is a combination of four different procedures:

1. Data collection: Involves collecting data from different sources like the web, data ware-
houses or databases. These data comes with several kind of noise in it. Filtering those
noise from the data is an important step before using the data.

2. Preprocessing of collected data: Involves several different tasks, likes feature selection,
feature ranking, sample selection, etc. Its purpose is to select the most important features
or samples from the database needed for the data mining process. The selected features
sometime comes with inappropriate format. Transforming them according to the approach
involved in the data mining task is also part of the preprocessing procedure.

3. Data mining: The main phase of KDD during which data is processed and generates
different kinds of outputs according to the approaches involved. Clustering, classification,
regression, association rule mining, pattern selection, pattern matching are few among
several data mining tasks [Han 2011].

4. Information retrieval: The mined outputs are interpreted by the application expert to get
actual hidden information from the data collected in the first step. Wide acceptance in
numerous application areas, from biology to spacial applications, makes it more popular
for finding hidden knowledge from the dumped data.

Our main concern in this work is to the third step, i.e., data mining, that is considered as the
most important and difficult in the KDD process. Among the most prominent data mining
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tasks, gaining actually much importance in many application domains, are association rule
mining, pattern selection and clustering that are the principle subjects of study in this thesis.
Bi-clustering, that is a special case of clustering, is also gaining much popularity, specially in
bioinformatics [Madeira 2004]. From this viewpoint, the work conducted during the thesis is
related to the hierarchical bi-clustering task.

During this thesis work, we developed a new approach, named FIST for Frequent Itemset
mining using Suffix-Trees, for extracting different types of knowledge patterns while using min-
imum number of resources. These knowledge patterns are conceptual minimal representations
of association rules, bi-clusters and classification rules. They extend the classical frameworks
of association rules, classification rules and bi-clusters by providing the user with additional in-
formation derived from the relationships between these patterns and the relationships between
these patterns and the objects supporting them. They are generated from the hierarchical
conceptual structure defined by generator itemsets, closed patterns and supporting object lists.

Association Rule Mining: Association rule mining (ARM) was first introduced in 1993
by Agrawal et al. in [Agrawal 1993]. It aims at finding significant relationships between data
values, called items, in a database. ARM is a very popular and important, but computationally
expensive, task in data mining. Since the ARM problem definition, several approaches have
been proposed in the literature to improve ARM efficiency. See [Ceglar 2006] for a complete
survey on ARM principles and algorithms. The ARM problem is generally divided into two
sub-problems:

1. Find all frequent itemsets, i.e. itemsets which frequency in the database is at least equal
to a user defined threshold, with their support from the database.

2. Generate all association rules with confidence greater than or equal to the user defined
minimum confidence threshold.

The second sub-problem is straightforward since association rules are generated in a direct way
from the selected frequent itemsets and their support. It thus requires simpler processes and
less resources than the first sub-problem. On the contrary, the first sub-problem is solved using
different processes and involves complex techniques to handle large and dense databases. As
a result, it gives the itemset patterns that are present in a significant number of rows of the
database. The problem of ARM is thus generally reduced to the problem of finding frequent
itemsets. As stated before, ARM requires in most cases two user-defined threshold values: The
first limits the frequent itemsets extracted in the first phase to the significant ones with respect
to their frequency; The second limits the association rules generated in the second phase to the
most informative ones with respect to their precision.

Frequent Itemset Mining: Frequent Itemset Mining (FIM), where frequent itemsets are
defined based on the minimum support threshold, is the most important and difficult part of
the ARM problem. Almost all algorithms based on the frequent itemsets approach use the
subset lattice, or itemset lattice, framework. This approach relies on two following properties:

i. All subsets of a frequent itemset are frequent.

ii. All supersets of an infrequent itemset are infrequent.

Kartick Chandra MONDAL, Laboratoire I3S
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For big databases, the list of all frequent itemsets is most often very large, and even larger in
the case of dense data where transactions are large. So, the reputation of the frequent itemset
approach falls for it’s large memory requirement and execution time to extract and process the
frequent itemsets. Due to these disadvantages of frequent itemsets based approaches, FIM was
extended to the mining of maximal frequent itemsets (MFI). MFI are the maximal itemsets,
with respect to inclusion relation, that are frequent given the minimum support threshold. It
was shown in the literature that all frquent itemsets can be derived from the MFI. However,
the MFI approaches also presents computational problems since from the list of MFI, one can
derived all frequent itemsets but not their support that must be computed from the database.

Closed Itemset Mining: Due to the disadvantages of the FI and MFI approaches men-
tioned above, closed itemsets mining was introduced in 1998 in [Pasquier 1998]. The frequent
closed itemsets (FCI) form a lossless minimal representation of the set of frequent itemsets as
all frequent itemsets and their support can be generated directly from FCI in a straightforward
manner, without database access. More detailed studies of properties of FCI as a condensed
representation of frequent itemsets can be found in [Pasquier 1999b, Zhang 2000]. The fre-
quent closed itemsets, defined using the Galois closure connection [Birkhoff 1995a, Wille 1992,
Davey 1994] used in Formal Concept Analysis [Ganter 1999], form the closed itemset lattice
[Pasquier 1999b] that is a sub-order of the subset lattice. Informally, an itemset is closed if
none of its supersets are contained in exactly the same objects (database rows) as it. Since
the number of FCI is in most cases much lower than the number of FI, their computation is a
solution to the first ARM sub-problem and many applications showed that it clearly improves
execution times and memory usage. ARM extraction using the FCI framework relies on the
three following properties:

i. All subsets of a frequent closed itemset are frequent itemsets.

ii. All supersets of an infrequent closed itemset are infrequent itemsets.

iii. The support of a frequent itemset is equal to the support of the smallest closed itemset
containing it.

Many algorithms have been proposed in the literature in recent years for finding FCIs
[Shekofteh 2010, Yahia 2006]. Almost all of them use either the prefix tree [Agrawal 1994]
or the FP-Tree [Han 2000a] as an internal data structure for compressed representation of the
dataset in main memory. Their efficiency depends mainly on the properties of the database in
terms of number of items, density of the data matrix, length of transactions, etc. In several
cases, such as biological data, FI and MFI mining pose efficiency problems since the number
of FI is very large and the set of MFI does not contain all information required to directly
generate association rules. In such cases, the FCI framework is a sound alternative for the
ARM problem as the set of FCI is sufficient for finding all association rules while being much
smaller than the set of FI.

Bi-clustering: Clustering is the process of grouping elements that are significantly similar
in clusters without advance knowledge of the group definitions. Clusters are constructed and
evaluated to maximize the intra-cluster similarity and minimize the inter-cluster similarity. Bi-
clustering is a special case of clustering that aims at finding sub-matrices associating a set of
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rows and a set of columns such that all these rows have similar values for the corresponding
columns. Bi-clustering has been widely used for genomic analyses in the context of bioinfor-
matics. In gene expression data matrices, it allows to identify sets of genes, represented as rows,
that have the same expression profile, i.e., are over-expressed, under-expressed or unchanged,
with respect to the columns that represent gene expression for different biological conditions.
Formal Concept Analysis can be related to mining bi-clusters [Ganter 1999] where extensions
and intentions of concepts are comparable to row and column sets, respectively, of a bi-cluster.
Bi-clusters extracted by FIST are maximal sets of related rows and columns as defined above,
where maximality is defined according to the inclusion relation. In the context of gene expres-
sion data analysis, each bi-cluster extracted by FIST is a sub-matrix where each row (gene) of
the extension has the same expression profile as all other rows of the extension for all columns
(biological condition) of the intension. These bi-clusters, called conceptual clusters, constitute
a hierarchical lattice structure defined according to the inclusion relation. These bi-clusters can
also overlap with each other: Each row and each column can be member of several bi-clusters.
Contrarily to recent works on gene expression time series [Madeira 2009], where columns repre-
sent the evolution of gene expressions during time for one biological experiment, our approach
does not restrict bi-clusters to contiguous columns. Extracting such bi-clusters is known to be
an NP-Complete problem [Peeters 2003].

Suffix Tree Data Structures: Suffix trees are important data structures for storing pat-
terns of ordered elements and were shown to be very efficient for performing string processing
tasks. A suffix tree based index structure needs O(|s|) time and space resources to compute and
store a string s. Suffix trees have a large number of applications in different areas including
bioinformatics. For processing a set of previously unknown patterns, a suffix tree structure
can be used to decompose and store the useful patterns, and all suffixes of a pattern p in the
suffix tree can be found in O(|p|) steps. Despite these qualities, using suffix tree data structures
presents two difficulties:

• The linear time construction procedure of suffix trees are quite complex to implement.

• Although suffix trees are asymptotically linear, it’s greedy for space.

In the context of frequent closed itemset extraction, the combination of a suffix tree data
structure and the ordering of items according to their support in the dataset permits the FIST
approach to reduce the search space by identifying almost all and only frequent closed itemsets
while reading the dataset and incrementally constructing the suffix tree. For this dataset
processing task, FIST uses a generalized version of the suffix tree structure in which several
strings representing itemsets are composed in a single suffix tree.

HIV-1 and Human Protein-Protein Interaction Data: Acquired Immune Deficiency
Syndrome (AIDS) is the last stage of HIV infection. At this stage, the human immune system
fails to protect the body from infections, and this eventually leads to death. HIV is a member
of the retrovirus family (lentivirus) which infects important cells in the human immune system.
This kind of infection is due to the interaction between proteins of both the virus and the human
host in the human cells. Predicting such interactions is an important goal of PPI research. In
particular, analyzing well-known interactions and finding new interactions can provide useful
information to find new drugs and discover the reasons and mechanisms of this kind of viral
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disease [Arkin 2004]. PPI databases contain information about the fact that proteins can
interact if they come into contact. The absence of such information does not imply that they
cannot interact with each other as there is no information about non-interacting proteins.
The HIV-1–Human PPI dataset is a database containing possible viral and human protein
interactions. As stated above, only positive interactions are depicted in the database used for
experiments.

Several approaches for predicting protein interactions have been studied in the litera-
ture. These approaches are based on Bayesian networks [Jansen 2003], random forest classi-
fiers [Lin 2004], mixture-of-feature-expert classifiers [Qi 2007], kernel methods [Yamanishi 2004,
Ben-Hur 2005a], or decision trees [Zhang 2004]. Most of them have been used to find interac-
tions within a single organism, like yeast or human (intra-species interactions). Recently, two
approaches have been proposed to predict the set of interactions between HIV-1 and human
host cellular proteins [Tastan 2009, Mukhopadhyay 2010]. In particular, in [Tastan 2009] the
authors proposed a supervised learning framework that integrates heterogeneous biological in-
formation to predict inter-species interactions. However, this approach solves the classification
problem using the random forest classifier which, like most of the above mentioned approaches,
needs both positive and negative samples of PPIs. Here negative samples are pairs of human
and HIV proteins known not to interact, but such "negative interactions" (or, better, prove
absence of interactions) are not known in the current state of knowledge in the PPI problem
studied here. Negative samples have then to be prepared, for example by randomly selecting
protein pairs that are not present in the database, thus leading to a high dependency between
the classifier performance and the choice of the negative samples. The approach proposed in
[Mukhopadhyay 2010] uses the well-known Apriori algorithm for mining association rules. The
particularity of such an approach is that only information based on positive samples is used
to predict viral-human interactions (inter-species interactions). This is also the case for the
application presented in this thesis.

1.2 Definitions

In this section, we define the most important terms, related to the problems of association rule
mining and conceptual bi-clustering in a data mining context, used in this report.

Definition 1.1 (Database) A database D is a structured set of data representing binary re-
lationships between elements of two finite sets called O and A corresponding respectively to
objects, or instances, and attributes, or variables. A peculiar representation of the information
in a database D, in a matrix or transactional format, is called a dataset.

Definition 1.2 (Dataset) A binary matrix format dataset M is a triplet (O, L, R) where
O is a finite set of objects (rows), L is a finite set of items (values of attributes or variables)
represented as columns and R is a binary relation showing relationships between rows and
columns: R ⊆ O × L. Every couple (o, i) ∈ R, where o ∈ O and i ∈ L, means that the item i

belongs to the object o: i ∈ o. A transactional format dataset T is a set of instances (rows),
called transactions, T = {t1, t2, · · · , tn} where each transaction ti is a set of items from the
finite list of items L = {i1, i2, · · · , im}, i.e. ti ⊆ L.

Definition 1.3 (Itemsets) A non-empty finite set of items I ⊆ L = {i1, . . . , im} in a database
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D is called an itemset. An itemset containing k items is called a k-itemset. That is, Ik =
i1, i2, · · · , ik and |Ik| = k.

Definition 1.4 (Support) The support of an itemset I in a database D, denoted support(I),
is the frequency of occurrence of I in D, that is the proportion of objects o ∈ O containing I:

support(I) =
|{o ∈ O | I ⊆ o}|
|{o ∈ O}|

(1.1)

Definition 1.5 (Frequent Itemsets) An itemset I with support in database D at least equal
to the minsupport threshold value is called a frequent itemset. Let F be the set of frequent
itemsets. ∀I ⊆ L, we have I ∈ F if and only if support(I) ≥ minsupport.

Definition 1.6 (Maximal Frequent Itemsets) A frequent itemset I ⊆ L is called a maxi-
mal frequent itemset if none of its proper supersets I ′ ⊃ I is frequent, i.e. present in the set
F of frequent itemsets. Let MF be the set of maximal frequent itemsets. ∀I ∈ MF , @I ′ ⊆ L

such that I ′ ∈MF and I ′ ⊃ I.

Definition 1.7 (Galois Connexion Closure Operator [Ganter 1999]) Let ψ be a func-
tion associating to an itemset I ⊆ L the set of objects P ⊆ O such that ∀o ∈ P , I ⊆ o. Let γ
be a function associating to a set of objects P ′ ⊆ O the set of items I ′ ⊆ L such that ∀i ∈ I ′,
i ∈ o for all o ∈ P ′.
The ψ and γ functions are monotonically decreasing: ∀I1, I2 ⊆ L with I1 ⊆ I2 we have
ψ(I1) ⊇ ψ(I2) and ∀P1, P2 ⊆ O with O1 ⊆ O2 we have γ(O1) ⊇ γ(O2).
The Galois closure operator Γ = (ψ ◦ γ) holds the following properties for I, I1, I2 ⊆ L in the
power set of L of size 2L:

• Extension: I ⊆ Γ(I)

• Idempotency: Γ(Γ(I)) = Γ(I)

• Monotonicity: I1 ⊆ I2 ⇒ Γ(I1) ⊆ Γ(I2)

Definition 1.8 (Closed Itemsets) An itemset I ⊆ L is said to be closed in database D if
the application to I of the Galois connexion closure operator Γ gives I: Γ(I) = I. If I is a
closed itemset in D, none of its proper supersets in D has support less than or equal to the
support of I. Let C be the set of closed itemsets. We have: ∀I ∈ C, @I ′ ⊆ L such that I ′ ∈ C
and support(I ′) ≤ support(I).

Definition 1.9 (Frequent Closed Itemsets) A closed itemset I = Γ(I) which support in
database D is greater than or equal to the user defined minsupport threshold value is called a
frequent closed itemset. Let C be the set of closed itemsets and FC ⊆ C be the set of frequent
closed itemsets. ∀I ∈ C, we have I ∈ FC if and only if support(I) ≥ minsupport. Maximal
frequent itemsets were shown to be frequent closed itemsets: MF ⊆ FC [Pasquier 1999b].

Definition 1.10 (Generators) A generator G ⊆ L of a frequent closed itemsets C ⊆ L is a
minimal itemset, regarding inclusion relation, which closure is C: Γ(G) = C and @G′ ⊆ L such
that G′ ⊂ G and Γ(G′) = C. The set of generators GC = {G1, . . . , Gq} of a frequent closed
itemset C contains all minimal itemsets, according to inclusion relation, which closure is C.
Generators are the minimal itemsets with same support as the closed itemset C that is their
closure: ∀Gi ∈ GC , we have support(Gi) = support(C). A generator that is frequent according
to the minsupport value is called a frequent generator.
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Definition 1.11 (Equivalence Classes) An equivalence class EC is a dual set EC =

{GC , C} where GC = {Gi ⊆ L | Γ(Gi) = C} is the set of generators of the frequent closed itemset
C ∈ FC for database D. All itemsets contained, regarding inclusion relation, in an equivalence
class EC have the same support as the closed itemset C: ∀I ⊆ L where I ⊇ Gi | Gi ∈ G and
I ⊆ C we have support(I) = support(C). By extension, we say that itemset I is contained in
the equivalence class EC . The closed itemset C is the maximal itemset of the equivalence class:
@I ∈ EC such that C ⊂ I.

Definition 1.12 (Association Rules) The implication relationship between two itemsets I1
and I2 with the form r : I1 −→ I2 where I1, I2 ⊂ L and I1 ∩ I2 = ∅ is called an association
rule. I1 and I2 are respectively called the antecedent and the consequent of the rule. The
support of an association rule r is the support of the union of its antecedent and consequent:
support(r) = support(I1 ∪ I2).

Definition 1.13 (Confidence) The confidence of an association rule r : I1 −→ I2 is the
ratio of the support of the itemset I1 ∪ I2 to the support of the antecedent of the rule:

confidence(r) =
support(I1 ∪ I2)

support(I1)
=

support(r)

support(I1)
(1.2)

The confidence measures the proportion of database D objects that verify the association rule.
By extension, the proportion of counter-examples of the association rule r in the database D is:
1 - confidence(r).

Definition 1.14 (Valid Association Rules) An association rule r : I1 −→ I2 where I1∪ I2
is a frequent itemset and which confidence confidence(r) is greater than or equal to the min-
confidence threshold value is called a valid association rule. Let R be the set of valid association
rules. ∀r ∈ R we have confidence(r) ≥ minconfidence and support(r) ≥ minsupport.

Definition 1.15 (Exact Association Rules) Valid association rules with confidence equals
to 1 are called exact association rules. Let RE bet the set of exact association rules. ∀r ∈ R
we have r ∈ RE if and only if confidence(r) = 1. Exact association rules are rules verified by
all objects in database D, thus having no counter-examples.

Definition 1.16 (Approximate Association Rules) Association rules with confidence less
than 1 are called approximate association rules. Let RA bet the set of approximate association
rules. ∀r ∈ R we have r ∈ RA if and only if confidence(r) < 1. Approximate association rules
are rules not verified by all objects, and thus having counter-examples, in database D.

Definition 1.17 (Clusters) A cluster is a subset of objects that are similar according to a
distance metric d(oi, oj) which value is computed by comparing variable values of objects oi and
oj. For a database D, clusters are defined as Ck = {o ⊂ O | ∀oi, oj ∈ o, d(oi, oj) ≤ σ} where σ
is a user-defined threshold.

Definition 1.18 (Bi-clusters) A bi-cluster Bk extracted from a matrix representation M of
a database D is a sub-matrix associating a subset of rows and a subset of columns such that all
these rows have a similar value for each of these columns and all other rows have non-similar
values for these columns. Bk = {P, I} with P ⊆ O, I ⊆ L such that:

Kartick Chandra MONDAL, Laboratoire I3S



1.3. Background and Motivation 8

i) ∀op, oq ∈ P we have d∪i∈I(op, oq) < σ.

ii) @or ∈ O, or /∈ P such that ∀os ∈ P we have d∪i∈I(or, os) > σ.

where d∪i∈I(op, oq) is the distance between objects op and oq computed on all items i ∈ I and σ
is a user-defined similarity criterium.

1.3 Background and Motivation

Early approaches to association rule mining showed that the problem can be divided into two
parts: First, find frequent itemsets with their supports, which is the most time-consuming
part, and then generate association rules from these itemsets [Agrawal 1996]. Then, the fre-
quent closed itemsets (FCI) framework was defined to improve the efficiency of the mining in
case of non-sparse data [Pasquier 1999b, Zhang 2000]. The frequent closed itemsets, defined
using the Galois closure [Ganter 1999], are a sub-order of the subset lattice, or itemset lat-
tice. This framework was later used to define minimal covers, or bases, of association rules
[Bastide 2000, Pasquier 2005, Zaki 2004]. The FCI approach relies on the property that the
frequent closed itemsets with supports constitute a non-redundant minimal representation of
the frequent itemsets and their supports. It was experimentally shown that the set of frequent
closed itemsets is on average much smaller for real-life datasets, thus making this process faster
than directly mining frequent itemsets. Association rules, or association rule bases, are then
directly generated from the frequent closed itemsets. See [Ceglar 2006] for a comprehensive
survey on association rule mining.

The FIST approach aims at providing the user with a minimal lossless set of knowledge
patterns representing relationships between data values in the dataset. These compact sets of
patterns can then be searched for specific information such as intra and inter-species protein
interactions, or relationships between protein interactions and features (biological annotations
and characteristics, publications, etc.). Extracted patterns depict relationships between viral
proteins, host proteins and between both of them.

Let V = {v1, . . . , vN} be the set of viral proteins and H = {h1, . . . , hM} the set of human
host proteins. We consider three possible kinds of patterns:

• r1 : v1, v2, . . . , vn ⇐⇒ h1, h2, . . . , hm where vi ∈ V , hj ∈ H;

• r2 : v1, v2, . . . , vn =⇒ vn+1, vn+2, . . . , vn+p where {v1, v2, . . . , vn} ∩
{vn+1, vn+2, . . . , vn+p} = ∅ and vi ∈ V ;

• r3 : h1, h2, . . . , hm =⇒ hm+1, hm+2, . . . , hm+q where {h1, h2, . . . , hm} ∩
{hm+1, hm+2, . . . , hm+q} = ∅ and hj ∈ H.

Type r1 relationships capture interactions between some viral proteins and some host proteins
(inter-species PPI). Identifying such rules is similar to the problem of bi-clustering, that is, in
the context of FIST, finding frequent closed itemsets with related object identifiers. Type r2
and r3 relationships are association rule patterns showing implications among viral proteins and
host proteins respectively (intra-species PPI). Classification methods usually need both positive
and negative examples of the predicted class, e.g., interacting and non-interacting protein pairs,
in order to achieve an optimal supervised classification. However, in the case of HIV-1–Human
PPI, information on non-interacting pairs of proteins is not available [Fu 2009, Ptak 2008].
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9 Chapter 1. Introduction & Scope of the Thesis

Hence, descriptive methods, such as unsupervised classification (clustering) and association
rule extraction, seems better suited to this PPI problem.

FIST was designed both to extract in one process different kinds of knowledge patterns,
bi-clusters and association rules, and to extract additional information for each of these pat-
terns compared to classical approaches. It can process discrete numerical, boolean, textual and
nominal data. As for the majority of similar methods, in the case of continuous numerical data,
a discretization method has to be applied before processing the data with FIST. This is for
example the case for numerical gene expression data where numerical values must be discretized
to identify “up-regulated”, “unchanged” and “down-regulated” genes (rows) for each experimen-
tal biological conditions (columns). See [Yang 2010] for a recent discussion on discretization
methods used in data mining.

Consider the example dataset D1 in Table 1.1 where H1 to H6 are human proteins, V1 to
V5 are viral proteins and Annot columns represent annotations of human proteins extracted
from biological knowledge bases (Gene Ontology, KEGG, etc.) and publication bases (Pubmed,
Reactome pathways, etc.). These annotations, represented as nominal data, describe biological
knowledge on human proteins such as biological functions or characteristics (Fn) or biblio-
graphic citation references (Bm). A "1" in column Vi for row Hj means that there is a positive
(i.e., experimentally verified) interaction between Hj and Vi, while "-" means that no interac-
tion has been reported. For example, we can state that there is a positive interaction between
human protein H1 and viral proteins V1, V3 and V4, while no interaction between H1, V2 and
V5 has been reported. Besides, we can also state that H1 is annotated by biological annotations
F1 and F2 and referenced by bibliographical annotation B1.

Table 1.1: Example Dataset D1

OID V1 V2 V3 V4 V5 Annot Annot Annot

H1 1 - 1 1 - F1 F2 B1

H2 1 - 1 - - F2 B1 B2

H3 - - 1 - 1 B3 - -
H4 1 - 1 1 - F2 F3 B1

H5 - 1 - - - F4 - -
H6 1 - 1 1 1 F2 B1 B3

Conceptual bi-clusters extracted by FIST form a hierarchical structure and both HIV and
Human proteins can participate to several bi-clusters according to their co-occurrences in the
data. In the context of HIV-1-Human PPI, each conceptual cluster associates a list of HIV
proteins and a list of Human proteins that interact. FIST bi-clusters also associate to each
bi-cluster the minimal set of common properties, called generators, required to construct it
[Hamrouni 2008a, Pasquier 1999b]. Moreover, unlike most clustering methods, conceptual clus-
tering does not need to define the number of clusters before the process as data are grouped
according to their co-occurrences in the dataset. The Hasse diagram of the lattice structure of
the four bi-clusters extracted from D1 for minsupport = 2/6 is shown in Figure 1.1. The top
bi-cluster in this figure is irrelevant from the viewpoint of informativeness and is not gener-
ated by FIST; it is represented here for completeness of the lattice. Examining the rightmost
bi-cluster, we can see in this lattice that human proteins H3 and H6 both interact with viral
proteins V3 and V5 and are cited in bibliographical reference B3. The leftmost bi-clusters show
that human proteins H1, H2, H4, and H6 all interact with viral proteins V1 and V3, are all
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annotated with F2, and are cited in bibliographical reference B1 and that human proteins H1,
H4, and H6 all interact with viral proteins V1, V3, and V4, are all annotated with F2, and are
cited in bibliographical reference B1. We can also see that the viral protein that interacts with
the greatest number of human proteins is V3, which interacts with H1, H2, H3, H4, and H6,
and that this interaction is the only property common to these five human proteins. It should
be noted that for this minsupport value, there are 4 frequent closed itemsets, whereas there are
37 frequent itemsets for dataset D1. These frequent closed itemsets are represented in the left
element of the bi-clusters.

Figure 1.1: Hierarchical Conceptual Clusters of the database D1.

Association rules are implication rules of the form: {r: antecedent =⇒ consequent,
support(r), confidence(r)} where antecedent and consequent are sets of data values, support(r)
is the number of objects (rows of the dataset) supporting the rule and confidence(r) is the pro-
portion of rows verifying the rule in the dataset. FIST aims at improving the process compared
to frequent itemsets based approaches. First, the number of extracted rules can be reduced
by a significant proportion as redundant rules can represent the majority of extracted rules
[Bastide 2000, Zhang 2000]. Association rules extracted by FIST are constructed using gen-
erators, as antecedents, and frequent closed itemsets, as consequents. These rules, also called
min-max association rules, constitute the informative base of association rules [Pasquier 2005].
FIST extracts rules in two distinct sets: exact association rules that have confidence = 1, i.e.,
with no counter example in the dataset, and approximate association rules, having confidence
< 1. It also extends the association rules by adding information to each rule: The list of objects
(rows) supporting each one is also generated, allowing the user to see which objects verify this
rule in the dataset as shown in Table 1.2. We can see that for minsupport = 2/6 and mincon-
fidence = 2/6, 6 exact and 6 approximate min-max association rules are generated by FIST
from dataset D1 whereas 192 association rules (117 exact and 75 approximate) are generated
by classical Apriori-like approaches.

The motivation comes from two different works proposed in two different data mining tasks:

• The main motivation came from the work proposed in [Madeira 2009] by Madeira et al.
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11 Chapter 1. Introduction & Scope of the Thesis

Table 1.2: Minimal Non-Redundant Association Rules

Association rule Support Confidence Objects

B1 =⇒ V1, V3, F2 4 1 H1, H2, H4, H6

F2 =⇒ V1, V3, B1 4 1 H1, H2, H4, H6

V1 =⇒ V3, F2, B1 4 1 H1, H2, H4, H6

V4 =⇒ V1, V3, F2, B1 3 1 H1, H4, H6

B3 =⇒ V3, V5 2 1 H3, H6

V5 =⇒ V3, B3 2 1 H3, H6

V3 =⇒ V1, F2, B1 4 0.80 H1, H2, H4, H6

B1 =⇒ V1, V3, V4, F2 3 0.75 H1, H4, H6

F2 =⇒ V1, V3, V4, B1 3 0.75 H1, H4, H6

V1 =⇒ V3, V4, F2, B1 3 0.75 H1, H4, H6

V3 =⇒ V1, V4, F2, B1 3 0.60 H1, H4, H6

V3 =⇒ V5, B3 2 0.40 H3, H6

where a CCC approach (Contiguous Column Coherent clusters) is proposed for extract-
ing bi-clusters. In this work, a classical suffix tree structure is used for finding related
contiguous columns from time series gene expression data, where columns represent the
evolution of the gene expressions during time for one biological experiment.

• Also the use of object lists for pattern mining was introduced with the CHARM algo-
rithm in [Zaki 2002]. In this paper, the authors use an Itemset-Tidset Tree (IT Tree)
and complex mechanisms to handle the tree. However, the CHARM algorithm discards
object lists as soon as they are no more needed whereas FIST keeps them in main memory
for generating the conceptual extensions of association rules and bi-clusters and gener-
ate patterns with explicit names/labels of objects and data values (items). Conceptual
extensions correspond to the lists of supporting objects for each association rule and the
minimal sets of objects for one pattern, i.e., generators. Contrarily to classical ARM
approaches where only support value of association rules are generated, conceptual asso-
ciation rules provide the user with more information as it allows him/her to examine the
list of objects concerned by each rule.

The work presented here is an extension and combination of several ideas pointed out in the
above two works. We extended these works and do not restrict the extraction to contiguous
columns and also keeps track of all the object list till the end of the results. The approach
proposed in [Madeira 2009] can be seen as a donor behind the idea of constructing the data
structure used in FIST and the approach proposed in [Zaki 2002] contributes to the idea of
keeping object id lists and showing it’s importance for association rule mining.

1.4 Contribution

The objective of this thesis work was to integrate two different problems of data mining into
a common paradigm to generate a user-friendly set of knowledge patterns and to apply the
resulting solution to different problems in interaction proteomics. Both association rule mining
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and bi-clustering have shown an important potential to support proteomic analysis. The FIST
approach integrates association rule extraction and bi-clustering using the frequent pattern
mining framework. Most often, these three aspects are applied separately even when used
for the same application and databases. This induce complex tasks to merge and compare
results of these different approaches. Moreover, resulting patterns are usually represented as
lists of row and item sequential numbers, and a resource expensive task must be conducted
to map these identifiers to values that are understandable and exploitable by the user. This
last stage can be particularly important when biological knowledge, such as annotations or
relationships of biological entities, is required to interpret extracted patterns and push the
analysis further. These problems can be a critical limiting factor for using these data mining
tools in an operational context [Hirji 2001].

The FIST approach was proposed to solve these problems simultaneously, in one platform,
to minimize the resources required to produce the final user-friendly knowledge. Knowledge pat-
terns generated by FIST are conceptual minimal representations of association rules, bi-clusters
and classification rules. They extend the classical frameworks of association and classification
rules, and of bi-clusters by providing the user with more information using the object lists
associated with these patterns. This additional information can be particularly useful in a cer-
tain number of applications such as genomics or proteomics where identifying specific genes or
proteins concerned by a profile or a rule is important, particularly if the profile or rule contains
semantic information such as biological annotations. These patterns are generated from the sets
of generators, or key-patterns, and closed itemsets and the hierarchical conceptual structure
induced from generators, closed patterns and supporting object lists. From the viewpoint of
association rules, the size of these object list identifiers, corresponding to the number of oc-
currences of the patterns in the database, gives the support of the FCI. From the viewpoint of
bi-clustering [Madeira 2004], the generated bi-clusters form a hierarchical lattice structure and
can overlap, allowing an object to belong to several bi-clusters, if relevant. This hierarchical
structure of bi-clusters can show important additional information depicted by inclusion and
overlapping relationships between sets of common features and sets of objects supporting these
features.

The FIST approach is based on the FCI framework and an adapted suffix-tree data structure
used for computations in main memory. Informally, a suffix-tree is tree structure that stores
all suffixes of an ordered set of elements. The suffix-tree based data structure used is called
Generalized Suffix-Tree, or Suffix-Forest, and is composed of multiple suffix-trees under a unique
root. Unlike many tree based data structures, this data structure does not require complex
operations, such as maintaining transverse chained lists of items or linking procedure for suffix
relations, and can be readily implemented using standard data structures like standard Java
Collection API. This feature allows the data structure to be easily extended or adapted, for
example to introduce additional background domain knowledge directly in the data and/or in
the process. It also allows to easily reproduce the results of FIST in the cases of implementations
in other applications and/or languages. Using the generalized suffix-tree data structure, FIST
limits to one the number of dataset scans required and the number of data accesses in main
memory. The main steps of the FIST approach are the following:

1. The Frequent Generalized Itemset Suffix Tree (fGIST) is created from the database in
secondary memory and stored in main memory for further processing.

2. Frequent closed patterns are extracted from the fGIST by performing inclusion and in-
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tersection operations.

3. Bases of conceptual association rules, conceptual bi-clusters and generators are generated
in a straightforward manner.

Bases of conceptual association rules are minimal non-redundant covers of association rules
with supporting object sets. Depending on the parameters used, FIST can generate different
bases corresponding to different criteria, e.g., minimal or maximal antecedents, or classification
rules with a class label in the consequent of the rule are some examples.

Two algorithmic versions of the FIST approach were developed and implemented. The first
version makes use of the generalized suffix-tree to efficiently store and process the dataset in
main memory and remaining operations, i.e., inclusion tests and intersection operations, are
performed on ordered tables generated from the tree. These operations are required as some
closed itemsets are not directly inserted in the generalized suffix-tree while creating it and some
non-closed itemsets need to be suppressed from the suffix-tree. The number of such itemsets
is however limited, as their proportion is very low compared to the total number of closed
itemsets, and few operations have to be performed during this phase. In the second version,
inclusion tests and intersections are performed in the generalized suffix-tree directly and the
leaf node data structure of the tree was modified to optimize these treatments. This second
version was implemented using two different standard Java collections, the Java Collections
API and the Trove for Java Collections API, to compare performances in both memory usage
and computational efficiency of these popular data structure collections. The Trove for Java
collections1 was chosen after comparison with the Google Guava collections2, the Javolution
library3, the Apache Commons Collections4 and the SourceForge PCJ Project collections5.
This second algorithmic version of FIST allows parallel processing of the generalized suffix-tree
branches in multi-threated environments, although the current version does not support parallel
processing/multi-threading.

The FIST approach was applied for biological knowledge discovery from different HIV-1
and human protein-protein interaction databases. The Human Immunodeficiency Virus type
1 (HIV-1) is the predominant retrovirus (lentivirus) that causes the last stage of Acquired
Immune Deficiency Syndrome (AIDS). At this stage, the human immune system is unable to
protect the body from infections, and this eventually leads to death. The HIV-1 infection of
human immune system cells is caused by interactions of the virus proteins with the human
host cell proteins. Predicting and analyzing protein-protein interactions (PPI) between HIV-
1 and Human cells is thus a major goal for the development of safe and efficient strategies
to combat AIDS. In particular, analyzing known interactions and identifying new interactions
can provide important information to discover the reasons and mechanisms of this kind of
viral disease and find new medical treatments [Arkin 2004, Brass 2008]. Most existing ap-
proaches applied in the interaction proteomics domain extract relationships within a single
organism [Mukhopadhyay 2010] whereas FIST extracts bi-clusters and association rules show-
ing relationships involving viral proteins, host proteins, or both at the same time. The aim of
applying the FIST approach on these PPI data was to find out interactions between proteins

1http://trove4j.sourceforge.net/
2https://code.google.com/p/guava-libraries/
3http://javolution.org/
4http://commons.apache.org/collections/
5http://pcj.sourceforge.net/
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and features and to extract relationships between annotations (biological and bibliographic)
and interactions. Data used for this application were collected from different knowledge bases
and merged to constitute several databases combining different types of information and data.
The first database constructed integrated human and HIV-1 protein interaction information.
The second database constructed contains human and HIV-1 protein interaction information
and biological annotations from the Gene Ontology bio-ontology [GO 2000] and the Reactome
knowledge base on pathways [Matthews 2008, Matthews 2007, Vastrik 2007, Joshi-Tope 2003]
and bibliographic annotations from the PubMed biomedical bibliographic repository [PubMed ].
The third database constructed contains human and HIV-1 protein interaction information and
interaction types depicting the directed relationships between both organism proteins. Con-
ceptual patterns extracted by FIST on this database showed show that the approach efficiently
identifies interactions previously predicted in the literature and can be used to predict new
interactions based on previous biological knowledge.

1.5 Layout of the Report

This report is organized in 4 parts as follows.
Part I presents a state of the art on topics related to this work. The first chapter in

this part focuses on biological applications of pattern mining in the “omics” fields, i.e., pre-
genomics, genomics and proteomics. The second chapter presents a study on itemset pattern
extraction frameworks, that are divided into three categories: “classical” itemset frameworks,
regular frameworks and evolutionary computation frameworks. A section in this chapter also
presents interestingness measures used in pattern mining to guide the search and select the
most relevant patterns.

Part II focuses on the algorithmic and data structure development works achieved during
the thesis. The first chapter in this part presents the evolutions of the FIST approach, with
the two algorithmic versions, data structures and their major implementation features, chrono-
logically. Examples comparing the two versions and the main properties of the FIST approach
are presented in an extensive way in the second chapter of this part.

Part III presents experimental data and results, the conclusion, and perspectives of future
works. Experiments comparing the two algorithmic versions of FIST and other state of the art
pattern mining algorithms are presented in the first chapter of this part. These experiments
were conducted on genomics and proteomics datasets, that are the main domains of interest
in this work. The three new datasets constructed from different HIV-1 and human protein
interaction data and knowledge bases are presented in the first section of this chapter. These
datasets integrate different representations of protein-protein interactions and, biological and
literature annotations of proteins. Performance and applicability evaluations of the algorithms
are presented in the second section. These experiments were conducted on two different systems,
with different processing power and memory capacities, to assess efficiency and applicability of
the algorithms in different computational contexts. Studies of extracted conceptual knowledge
pattern sets are presented in the third section. A discussion of biological results and the
potential of background knowledge integration to improve the relevance of the results and
generate user-friendly knowledge patterns is also presented in this section. The second chapter
in this part presents the conclusion and some perspectives of future works.

Part IV contains annexes and bibliographical references cited in the thesis report.
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Chapter 2

Frequent Pattern Mining from
Biological Data
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2.1 Introduction

Association rule mining has multifarious applications ranging from market basket data analysis,
customer relationship management, web mining, hardware and network intrusion detection,
finance, telecommunication to biology. Hereabout, we are mainly interested in applications
to biology, or more explicitly in the fields of computational biology, computational genomics,
molecular biology, medical and biological information processing, pharmaceutical and disease
related research, biotechnology and bioinformatics.

Association rule applications in these fields aim at characterizing relationships between sets
of genes, proteins, or other cell members and the participation of different biological processes
to health and diseases of cells. Such information are important for the analysis of diseases and
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Figure 2.1: Categories of Applications in Biology

to help the finding of cures, by the development of new drugs and adapted medical treatments
for instance. This area of biological applications can be divided into three epochs [Kell 2004,
Mondal 2013]:

Pre-genomic era: This involves the highest levels of application in biology, mainly in medical
and biological information processing and pharmaceutical and disease related researches.
The main focus of this study is in characteristic changes in the healthy and diseases
patients in different perspectives.

Genomic era: Genome analysis involves the operations on gene or DNA, i.e., mainly compu-
tational genomics. This also involves the manipulation or functioning related research on
functional RNA, micro-RNA, etc.

Post-genomic and proteomic era: This last era includes the protein components, inter-
mediate biological factor between gene/DNA and protein like different types of Acid,
residues, and other bio-cells related system components in cellular biology. It also in-
cludes the metabolomic reactions in cell.

The most prominent association rule mining applications in biology are presented according to
this classification in the following sections. Figure 2.1, shows a hierarchical classification of the
different areas of data mining applications in biology.

2.2 Applications in Pre-genomics

Pre-genomic researches mainly involve the analysis of medical and environmental behaviour in
the living body. Analysis of behavioural characteristics and socio-demographic data on healthy
and unhealthy patients are important for the analysis of the different diseases, reactions of
miscellaneous drugs, prediction of risk factors, etc [Brisson 2004, Nahar 2008]. Some applica-
tions in this context are performed under specific drugs or environmental conditions. Instead of
using behavioural changes in the cellular components, like genes or proteins, these background
knowledge information, that show relationships between diseases and the circumstances, are
highly important for deciding particular disease, finding disease cures, reducing treatment cost
for high-cost diseases or producing good and improved varieties of categories etc.
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Each of these applications have their own particular database for scrutinization. These
heterogeneous databases are of different type and contains a verity of information according
to the type of research work will done on it. These data usually comprises of vast range
of information about a large number of characteristics, such as historical background of the
patient, addiction of the patient in any individuals, behavioural changes of different parts of
the body for instance. Few example of such kind of databases are:

• Administrative Database

• Pharmaceutical Database

• Clinical Laboratory Database

• Health Care Database

• Historical Medical Database

• Biomedical Concept Database

• Cultivation Survey Database

General approaches for medical data mining are normally mined with classification, regres-
sion or clustering data mining task. A very small number of scattered research analysis was
done with the association rule mining. Here our main aim to focus on this issues for mining
medical data with association rules mining and also rule based classifier (Associative Classifier).
Association rule mining in such research analyses includes different medical, pharmaceutical and
behavioural datasets mentioned above. A classical and evolutionary approach for medical data
investigation was studied in [Kwasnicka 2005]. A small discussion on formal concept analy-
sis in medical data mining domain was presented in [Gupta 2005]. The study in this paper
mainly shows the way of rule mining in classification rule analysis which is very much different
from the classical classification task. The paper indicates some redundant medical tests which
can be avoidable by doing some cheaper medical diagnosis and can reduce the cost of medical
treatments. Another work in [Berardi 2005] shows the association relationship between different
biomedical terms by analysing multi-level association rules or generalised association rules. The
dataset used here are generated by using PUBMED queries in the biomedical sector. A recent
work on similar kind of problem was addressed in [Hu 2010] to find the unknown information
among biomedical motifs using semantic-based association rules.

These application fields of association rule mining can be distinguished in many ways the pre-
genomics domain of research. In this report, these pre-genomic research fields are classified into
four main groups: Adverse Drug Reaction Analysis, Disease Prediction Problem, Health Care
Analysis, Cultivation Analysis. Figure 2.2, shows a hierarchical classification of the different
areas of data mining applications in pre-genomics according to these four groups.

2.2.1 Health Care Analysis.

Association rule mining in health care industries come in the form of regulatory management
of different rules and regulations, disease management for finding the best treatment, health
insurance for finding the better scheme for different peoples. In [Semenova 2001], they showed
a new way for generating rules and finding the relationships by using the classical association
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Figure 2.2: Categories of Pattern Mining Applications in Pre-genomics

rule mining by using a newly proposed "polydict" method. Their new approach "polydict"
avoid the candidate generation of the rule mining problem and used a hash-table database
"Pathol". Another work for analysing the insurance policies using association rules was pro-
posed in [Chae 2001]. The study showed the way to predict the outcomes and policy information
in health and used a database from the Korea Medical Insurance Corporation. They compare
their method’s outcomes with logistic regression and decision tree algorithm, two other ap-
proaches in health care analysis. Their analysis showed that the association rules are also an
effective process as others for the health care analyzation. Positive and negative association
rule generation and creating associative rule based classifier for the prediction analysis in health
care was presented in two very recent article [Ramaraj 2008] and [Soni 2010], respectively. The
paper [Ramaraj 2008] was proposed a new positive and negative rule generation algorithm
and run on a medical survey database for diabetes and hypertension prediction analysis. In
[Soni 2010], authors proposed a association rule based prediction analysis using classifier called
associative classifier (AC). They have used the medical data consisting of personal information,
medical test results etc to predict the probability of occurring a certain disease which may help
for both the insurance company and also to the patients of a probable risk of certain disease.

2.2.2 Adverse Drug Reactions Analysis.

Adverse drug reactions (ADRs) are the reactions happened on body after consuming some
medicines. It shows the correlation between unfortunate affects caused by any drug and the
drugs used for the cure of diseases. Mining drug reactions dataset containing this kind of
information helps to find the probable risk factor for the patients and to help the doctors for
understanding the drugs diagnosis. In a study done in [Jin 2006, Jin 2008], the authors proposed
an association rule mining method to solve this problem by generating unexpected temporal
association rules from the administrative health database. They predict that atorvastatin may
be suggested to tackle the side effects comes during the use of nizatidine or dicloxacillin for the
cure of stomach ulcer or urinary tract infection. The study used the Queensland Linked Data
Set from CSIRO and also predict some of the known adverse drug reactions which were already
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discovered to show it’s accountability. A recent work on ADRs was presented in [Ji 2011] where
the authors used information coming from different datasets like administrative health, clinical
or pharmaceutical data. The experiment results some "potential casual association rules" which
shows the potential and casual relationship between drugs and the ADR symptoms.

2.2.3 Disease Prediction.

A work on association rule mining for medical diagnosis is presented in [Gamberger 1999]
Several studies on medical data interpretation for disease diagnosis and prediction of disease
by association rule mining are presented in [Doddi 2001, Ordonez 2000, Tremeaux 2006]. An
overview of association rule mining particularly on the disease diagnosis in various areas of
biomedical research was presented in [Rajak 2008].

2.2.3.1 Heart Attack Patients.

A major area in medical data analysis is prediction of heart diseases in patients having different
heart problems. A work done in [Ordonez 2001] for mining constrained association rules from
a database contained numeric, categorical, time and image information and finding important
knowledge about coronary heart disease was done. At first they showed how to map medical
data into binary form and find the low minimum support and high minimum confidence con-
strained rules. These rules predicts the presence or absence of a heart disease and find the
correlation between them with the probable patients. Other automatic diagnosis of the heart
disease using association rule mining for different characteristics of the healthy and unhealthy
patient was studied in [Ordonez 2000, Ordonez 2006a, Ordonez 2006b, Patil 2009]. A specific
solution recently proposed by using the association rule mining for the problem of predict-
ing heart attack patients was presented in [Deepika 2011]. The study uses the Pima Indian
Heart Attack Data Warehouse and done some pre-processing to discretize the continuous val-
ued attributes. Then using their association rule generation system, generates the classification
association rules and identify the class label and predict different heart attack systems. Few
recent works on this particular problem of heart attack prediction in data mining was done in
[Naidu 2012].

2.2.3.2 Cancer Patients.

Cancer is one of the major challenges in the health industry due to a major number of death
caused by it. It comes in a several forms in the human body like bladder cancer, breast
cancer, cervical cancer, lung cancer, prostate cancer, skin cancer etc. Insufficient research
finding can’t control the death of human due to cancer. Finding the causes and probable
prevention factor for cancer disease is the beginning to find the cure of the disease. A study on
extracting prevention factors those are most expressive for a specific cancer was recommended
in [Nahar 2008, Nahar 2011]. The first study uses the association rule for this kind of problem
which uses a prevention factor dataset containing related information about different types of
cancer. The experiments shows the importance of this kind of approach for prevention factor
extraction using rule generation. An extensive literature survey on this topic did not find any
further work in this area. This is an important open problem and need much research focus by
the researchers in the domain of predicting different factors for cancer disease.

Kartick Chandra MONDAL, Laboratoire I3S



2.2. Applications in Pre-genomics 22

2.2.3.3 Azoospermia Patients.

Infertility is a major problem in the third world country due to different causes like hypertension,
long work schedule etc. A special group in male infertility called azoospermia where sperm
is completely absent in the ejaculation. A successful data mining approach can classify the
azoospermic patients and build some association between different characteristics similar to
the clinical experimental analysis. A data mining work on the classification of azoospermia
patients was done in [Mikos 2005]. Study shows this kind of data mining task may produce
some clinically significant knowledge from a large set of clinical data for azoospermia patients
which may reduce the cost and time of the experiments to find the disease and it’s cure.

2.2.3.4 Diabetic Patients.

Another major risk in the modern world in health issues is the increasing number of diabetic
patients. Analysis of diabetes using association rule mining of the clinical data of different
diabetic patients was studied in [Stilou 2001]. The study uses the classical association rule
mining algorithm and shows the usefulness of this approach in managing this disease and
relationships among different parameters of diabetic patients.

2.2.3.5 Hemodialysis Patients.

Prediction of hemodialysis patients for the probability of the risk of hospitalization is an im-
portant problem in end stage renal disease (ESRD). The cost for the hemodialysis treatment is
much higher and it includes a lot of measures to take a decision about the patient. Data mining
approaches made it easy to find the relationship between these measures and the survival of the
patients. A study in [Kusiak 2005] shows different mining strategy for this particular problem.
Another recent work using multiple minimum support association rule mining was proposed to
predict the hospitalization of hemodialysis patients in [Yeh 2011].

2.2.4 Agricultural Applications.

In addition to the above problems, an interesting place of research in pre-genomic era is the
study of different applications in agricultural field. A work on developing state-of-art approaches
for the utilisation in agricultural field using different data mining algorithms was presented in
[Cunningham 1999]. This kind of research work helps the farmer to use the more developed,
new and modern seeds and reduce the cost of cultivation. Particularly in the developing country,
the use of this kind of mining on different survey data on soil or the use of other ingredient help
to gain more dipper knowledge on the improvement of their way of cultivation and reducing
the cost and use of insecticides. A work of association rule mining on finding the relation
between different soil properties was done in [Calero 2003] A particular study on olive grove
cultivation on the record collect from the province of Granada in the Mediterranean coastal
border was done in [Delgado 2009]. The study shows how to improve the production of olive
in the Mediterranean region along with the other geographical areas.

These are few studies done using different association rule mining framework. Although a
lot more studies are needed to have an enhance understanding on each topic. Many more areas
are still untouched in this domain for the research using rule mining to have a better insight
and improving the prediction, production, analysis in a better way on this domain.
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2.3 Applications in Genomics

Investigation of genome includes a part of DNA (Deoxyribonucleic Acid) string being able
to coded known as gene and also the non-coding part of DNA along with some viral RNA.
Application of genomic covers perhaps all genes in an organism. These genes contains the
formula for the protein whose application in association rule mining has been discussed in the
next subsection of this section. Genome analysis is important to understanding the behavior
of gene under different biological reactions and aspects. There are many high-throughput
techniques are available for generating information of the gene profile which used to analyze
the function of gene for different kind of applications.

Micro-array is gene profiling technique that generates huge amounts of information called
gene expression data. These data have been intensively used and studied to investigate and
address issues related to genes. Gene expression data contain expression profiles of several genes
under different biological conditions. These expression profiles are generated as continuous
numerical values but, depending on applications and end user requirements, they are usually
discretized into three classes: over expressed, highly repressed and unchanged. Sometimes,
this gene expression data also come-up with certain information based on the applications to
correctly analyze the gene behavior. Genomic databases can have several forms according to
the information they contain:

• Temporal Gene Expression Data (T-GED).

• Spatial Gene Expression Data (S-GED).

• Gene Expression Data with Cellular Environmental Descriptions and Ontological and
Bibliographic Annotations.

• Gene Expression Data with Transcription Factors.

• Gene Mutation Data.

• Gene Sequence Data.

Gene mutation data is a peculiar type of gene related data used to identify the cause of
gene tumors and diseases [Krawczak 2000, Lewis 2000]. There are several application areas
under this genomic topic research. They can be classified into four principal categories: Gene
expression analysis, gene regulatory analysis, functional genomic analysis and row-wise gene
group analysis. Figure 2.3 shows a hierarchical classification of the different areas of association
rule mining applications in genome analyses.

2.3.1 Gene Expression Analysis.

Researches in gene expression analysis mainly include different kinds of micro-array gene expres-
sion data to understand the mechanism of cellular process under different conditions. Advances
in technologies accelerate the growth of huge gene expression datasets that are difficult to man-
age and costly to process for finding interesting information. Association rule mining is an
efficient approach that is well-fitted to the processing of such datasets.

Gene expression analysis can be divided into two parts according to the nature of the gene
expression profiles analyzed. First part includes the analysis of gene expression to understand
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Figure 2.3: Categories of Pattern Mining Applications in Genomics

the times and conditions of expression of genes that are basically not expressed in healthy
samples. This kind of study is known as conditionally expressed gene analysis. Second part
includes analyzes the affect of one gene expression profile over another gene expression profile. In
this case, two situations arises: either both genes are of the same group, for example belonging
to the same gene regulation network, and it is then called intra-expression affect analysis, or
genes belong to two different groups and it is then called inter-expression affect analysis. A
conglomerating research in this field, using different kind of association rule analysis methods,
is presented in [Gauthaman 2008].

2.3.2 Gene Regulatory Analysis.

Gene regulatory analysis involves co-regulated gene analysis where genes are regulated under at-
least one common transcription factor [Allocco 2004, Yeung 2004]. This area of investigation
also concerns gene regulatory network analysis which aim at understanding the underlying
complex genetic regulatory processes [Shang 2009]. These researches are of importance as they
concern several domains, such as pharmaceutical industry or analyzes of complex diseases for
instance, that are essential for public health. Several studies pointed out that association rule
mining is a particularly relevant approach in the field of gene regulatory analysis [Becquet 2002,
Carmona-Saez 2006, Creighton 2003, Huang 2007, Tuzhilin 2002].

2.3.3 Functional Genomic Analysis.

Functional genomic analysis include the analysis of different function related matters inside
a cell, such as sequential analysis of gene, gene mutation analysis or analyzing transcription
factor for example. These analyses use SAGE (Serial Analysis of Gene Expression) data or gene
expression data with different biological sample information. Sometimes, redundant information
can be added to the gene sequence dataset originating from different sources generating DNA
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sequencing information. These redundancies may be due to the absence of cross-referencing of
identical sequential information in different databases, to the presence of multiple instances of
the same sequence in a database, or to the fact that a sequence can be divided into several
parts distributed over the database. Analysis of gene sequence using association rule mining
makes it possible to remove automatically such redundancies in data [Y.Koh 2005].

Gene mutation analysis is another functional genomic problem that aims at identifying the
causes of tumors in genes and the diseases resulting from this kind of abnormal mutations. As-
sociation rule mining was successfully applied to the gene mutation databases containing infor-
mation about mutations, mutagens, diseases, etc. over each gene [Lewis 2000, Krawczak 2000].
Detailed analyses about the process, mechanism and controls for transcription factor can be
found in [Cho 1998, White 2001]. The analysis of transcriptomic data in the context of associ-
ation rule mining is discussed in [Karel 2007].

2.3.4 Row-wise Gene Group Analysis.

A quantitative analysis of relationships between co-regulation, co-expression and functional
genome was conducted in [Allocco 2004]. Another study shows the relationships between co-
expression and co-regulation of gene micro-array data [Yeung 2004]. Usually, gene expression
data are processed in a column-wise manner for extracting association rules from the dataset
and generate the required information for the end user. However, the huge number of attributes
in this kind of data can cause important efficiency problems because of the large search space,
that is proportional to the number of attribute values, and the large number of association rules
generated. To solve this problem, finding association rule groups by analyzing the dataset in a
row-wise manner is a quite recent trend in genomics [Cong 2004, Pan 2003, Xu 2004].

Association rule mining was successfully applied to analyze the relationships between genes
in different expression levels and to find conjunctions between gene expressions and biological
functions. Almost all types of association rule mining methods have been applied or adapted to
discover knowledge from genome related data. Most of these methods are basically application-
type dependent as different techniques are sometimes required for different kinds of applications
or data. Some examples of application dependent works and the different kinds of rule genera-
tion methods adapted for the different data types are:

• Distance-based association rule mining [Icev 2003].

• Heterogeneous association rule mining [Anandhavalli 2010].

• Quantitative association rule mining [Georgii 2005, Karel 2007].

• Dynamic association rule mining [Gauthaman 2008].

• Ant-based association rule mining [He 2009].

• Multi-objective association rule mining [Han 2009].

• Fuzzy association rule mining [Lopez 2007].

• Partition-based association rule mining.

Recent detailed studies on these approaches can be found in [Anandhavilli 2010,
Gauthaman 2008].

Kartick Chandra MONDAL, Laboratoire I3S



2.4. Applications in Proteomics 26

2.4 Applications in Proteomics

Proteins which serve as signals generated from a cell and act as a signaling components for
transmitting information outside of the cell. It performs as a receptor to the signals coming to
the cell and produce from the surrounding or environment of that cell. It also plays a major
role in the DNA and RNA manipulation and determine the portions of gene are expressed and
that mRNAs are translated into proteins. Proteomic is the field of studying protein components
in a complete genome of an organism or in a specific tissue. Proteomic research constitutes
of analysing the structures and functions of biological system by analysing the available and
known proteins. These analysis include comparing protein expression profiles, correlate protein
interaction data, interrogate the protein structures between healthy and disease cells. Moreover,
identifying the unknown proteins, storing the protein information in different kind of databases,
designing intelligent drugs are also covered in the study of the proteomics. Other applications
in proteomic include the analysis of protein sequences, acid sequences and sometimes genomic
related sequences [Marcotte 1999]. Studies in these fields help to understand the protein in-
teractions in metabolic, synthesis of ATP (Adenosine Triphosphate), gene replication, quantify
proteins or peptides etc.

Study of proteomic raised the question of it’s need while several successful studies in genomic
already presented to analyse different cell operations. After the genomic analysis, understanding
the function of protein is a major challenge for the biologists [Tyers 2003]. Proteomics study
taking over the research where genomics and transcriptomics stop explaining what, where
and why different biological functions are happening inside the cells. It was first introduced
in 1994 [Wilkins 1994] to understand and explain the unknown facts about the cells which
was unsolved before the post-genomic era. Studies on correlations between gene expression
information and protein interaction information are described in [Grigoriev 2001, Thorton 2001,
Zhang 2004]. An investigation of the relationship between mRNA and protein are exemplified
in [Anderson 1997, Gygi 1999].

Genetic and biochemical experimentation, such as two-hybrid screenings, generate huge
amount of protein interaction data. Information about the different protein databases can
be found in [Barker 2001, Boeckmann 2003] and a detailed analysis of this field of proteomics
can be found in [Liebler 2002]. A few different types proteomic databases contain proteomic
information and used for proteomic study are as:

• Interaction Data

• Structural Data

• Sequence Data

• Isoforms Data

• Modifications Data

• Localisation Data

• Protein Abundance Data

• Dynamic Protein Data

• Clinical profile data
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• Variant Data

• Disease Data

One can find these above mentioned types of the proteomic databases in the sites: SWISS-
PROT, TrEMBL, PIR-International, NCBInr, ESTdb, MIPS, DIP, BIND, GRID, dbEngine
etc. Some of these sites are cross-referenced and maintain a common standard of nomenclature.
A list of the sites and resources related to proteomic study available in the websites mentioned
at the end of this section. These databases are generated from different proteomic technologies
available in the field. Different technologies used in the proteomic study listed below are used
to generates a verities of information to build these databases:

• Interaction proteomics

– Mass Spectrometry

– Two-hybrid

– Array based proteomics

∗ Antibody Array
∗ Functional Protein Array
∗ Peptide Array
∗ Carbohydrate Array
∗ Flurosence Array
∗ Chemical Array
∗ Small molecule Array

• Structural proteomics

• Amino Acid composition

• 2D Gel Electrophoresis

• Differential Proteomic

– Differential Gel Electrophoresis

– Multiplexed proteomics

– Isotope-coded affinity tagging

– Differential Gel Exposure

Study of proteomics has several difficulties which ranges from the sample being used for
the experiments, technologies being used on the samples or due to the dynamic nature of the
proteins in different environmental conditions. These limitations may include (i) the limited
sample materials for the type of cells or tissues to be examined, (ii) samples are degraded and
perturbed rapidly with the environmental conditions, (iii) post-translational modification and
vast dynamic range of proteins make it more complicated to understand the actual state of
the protein in a specific condition, (iv) limitations in new proteomic technologies like mass
spectrometer, 2D gel electrophoresis etc which generates different protein data. Limitations in
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the very recent analytical methods to analysis the biological information also made the pro-
teomic analysis more difficult. Although some limitations for proteomic analysis have been
reported [Garbis 2005, Lippolis 2010], proteomics and system biology applications help to un-
derstand system level functionality and to analyse the mechanisms behind the working principles
[Giannopoulou 2008, Zhang 2009a].

Several application fields of association rule mining can be distinguished in the proteomic
domain of research. These proteomic research fields can be classified into four main groups:
Structural Proteomic Analysis, Functional Proteomic Analysis, Protein Expression or Differ-
ential Proteomic Analysis and Clinical Proteomic Analysis. Figure 2.4, shows a hierarchical
classification of the different areas of data mining applications in proteomics according to these
four groups.

Figure 2.4: Categories of Pattern Mining Applications in Proteomics

The following paragraphs presents the most prominent applications in each of these areas
using association rule mining approaches. Several interesting results have been produced using
association rule analysis of proteomic data, but more works are required to understand rela-
tionships between the different components and activities of proteins. A wide area of proteomic
research are still has many open problems in the data mining domain.

2.4.1 Structural Protein Analysis.

It has studied and considered that protein sequences are non-random patterns of amino acid
molecules in nature. There are 20 different types of amino acids are available in three di-
mensional protein structure. These amino acid sequences are mainly responsible for different
functions performed by proteins. To understand the multifarious biological operations it is in-
dispensable to understand the protein functions. So as, it is essential to understand the sequence
motif of a protein or the sequence of amino acids in protein. Due to the non-randomness of the
sequences, finding associations and co-occurrences of amino acids using association rule mining
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is efficient, as others data mining methods. Association rules show the relationships between
different residues in the sequence for a particular protein function. Whereas, the co-occurrences
predict the occurrences of a motif if some motifs are known to be present in the amino acid
sequence. Because of these reasons, association rule mining shows it’s importance in protein
sequence analysis. Several protein sequencing methods generate a huge number of protein se-
quences which increases the relationship gap between sequences and structures. Predicting the
protein structure and sequence analysis is one of the most important research activity in system
biology [Thorton 2001, Yang 2011a].

An association rule based sequence searching and interpretation of sequence motif was pre-
sented in [Kam 2003]. They found some association on which basis Ryanodine and IP3 receptor
proteins are could be separated. They have shown the usefulness of the association rule mining
in this particular proteomic problem where they have used IBM intelligent Miner for Data as
a data mining tool and InterPro database of protein motif to find new useful information. A
quantitative association rule mining application to find the global correlations between amino
acids in protein is presented in [Gupta 2006]. Their results discover the associations on the
presence and absence of amino acids in the sequence which is different in case of motif based
approach where only the presence of amino acids are considered. The study shows that the
importance of absences of any residue to the protein structure and function. They have used
the normalized frequencies of amino acid instead of present or absent of it in the protein. The
normalisation is done by diving the frequency of an amino acid with the length of the protein.
The quantitative association rules derived from this experiment uses these frequencies to find
the association between the amino acids. The protein sequences are taken from the SCOP
Astival File with proteins only less than 40% homologous to each other. Finding amino acid
sequences in proteins has an important role in bioinformatics research in association rule mining
[Zhou 2010]. Few recent works were published for protein sequence motif analysis using po-
sitional association rule mining in [Chen 2009, Chen 2010, Chen 2011]. All these experiments
were done on the protein sequence database collected from the Protein Sequence Culling Server
(PISCES) [Wang 2003]. They have introduced a new measure for association rule mining called
"distance assurance" to analyses the distance between two motifs. The positional association
rules generated from these experiments predict the associations between presence of a motif
with respect to other motif which must satisfy one frequent distance measure in the protein
sequence.

2.4.2 Protein Structure Prediction Analysis

Another problem in proteomic analysis is to understand the structure of the proteins based on
the characteristics and functions performed by the protein components. Structural informa-
tion is stored in the amino acids sequences that bind them and form the polypeptide chains in
proteins. Similarly to the amino acid sequence interpretation, understanding the protein struc-
ture is important for pharmaceutical and disease researches. Predicting the protein structure
using different data mining methods like clustering, classification, association rules gain much
importance than the traditional or Ab initio methods in recent years.

Association rules and rule based classifiers proved their efficiency for understanding the
similarities and differences in protein structures. This classification of the protein structure
is very much important to manage the information and finding the relationship between the
proteins. But manual classification of the structure is time consuming and difficult task. Few
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works was proposed to classify the protein structure automatically using association rule min-
ing in [Rattanakronkul 2002, El-Houby 2010]. In [Rattanakronkul 2002], they have collected
different protein information like signature, functions and organisms from heterogeneous online
protein data bank like PDB, PROSITE, CATH etc. The whole data have divided into training
and test set and apply their hybrid method combined with data classification and association
rule mining for structural class prediction problem. Their result shows the better accuracy to
predict different protein classes compared to the classical methods for protein class prediction.
The recent work published in [El-Houby 2010] is a memory and time efficient algorithm called
protein mining algorithm (PMA) is based on the associative classifier. The classifier predicts
the class of a protein based of the protein features presented on the database. It needs only
one scan on the protein data to generate the class association rules. In [Zadzic 2006], they
try to find the sub-structured patterns from the Human Prions Proteins information stored in
the prions database, a rooted ordered labelled sub-trees database. The experiment finds the
frequently occurring subtrees from the prions database and interpreted the results using the
previously found patterns. Frequent sub-trees generated in the form of rules from this experi-
ments predict some association relationship between the sub-structures of the proteins. Study
done in [Zaki 2000] tried to predict the structure of protein molecules by using small local
structure profiles or motif of different proteins stored in a library of sequence structure motif
database. It is basically a combination of hidden markov model and association rule mining
method. At the beginning they have used the hidden markov model to reduce the parameters
to the adjacencies of different motif structures and apply the association rule mining to predict
the local structure of the proteins. Out of different structures of the protein, problem of predict-
ing secondary structures of protein are most important for it importance in biological activity.
The first association analysis method was proposed for this particular predicting problem in
[Yang 2009]. They have build the compound pyramid model where their proposed KAAPRO
method is acts as kernel of the model. The association rules generated from this method can
be interpreted and shows the involvement of the physical-chemical properties to the secondary
structures. In [Zhou 2010], a same compound pyramid model was build using a structural as-
sociation algorithm for predicting the secondary structure of a protein accurately and precisely.
In this experiments, an association rule based classifier was used to analyze secondary structure
sequences for predicting protein secondary structure that is the three-dimensional form of local
segments. The same compound pyramid model was used in [Yang 2011b] with support vector
machine. In [Stelle 2011], an association rule based approach was presented to this protein
structure prediction problem. This method works on two different steps, first to collect the
data from different sources and arrange them. In the second step, the secondary structure
formation rules are generated using the classical apriori association rule algorithm. The study
shows some important relationship between α-helixes and β-sheets with class hydrophobicity
profiles. These profiles are the building block of any proteins and can have the possibility to
act on motif. This also played an important role in tertiary structure prediction that corre-
sponds to specific atomic positions in three-dimensional space. Protein structure prediction,
such as primary and secondary structure prediction, are sequence studies for which association
rule mining and association rules based classification has proved their best. However, very few
studies have conducted in this field of research.
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2.4.3 Protein Sequence Analysis

An important branch of proteomics is the prediction of homologies between protein sequences in
biological information processing. Protein homology prediction is useful for grouping proteins
on the basis of functional and structural similarities. In this context, the main objective of
protein homology prediction is to predict the value of protein sequences. Few works were
done in this field using association rule mining for homology prediction problem [Yin 2003].
In [Tang 2005], a study was conducted by combining an association rule based classifier with
support vector machines. For the experiments, they have used the widely used KDDCUP04
homology prediction dataset. The study showed that the predictions are much improved than
the previously predicted protein homologies found by other methods and this mechanism gives
us a good utility based classification method for complex problem.

Based on structural and functional properties, the protein-DNA bindings are classified into
eight different groups, namely, Helix-Turn-Helix Proteins, Zinc-coordinating Proteins, Zipper-
Type Proteins, Other α-helix Proteins, β-Sheet Proteins, β-hairpin/ribbon Proteins, Other
DNA-binding Proteins and Enzyme. Binding between protein and DNA plays an important
role in transcription, replication, packaging, mutation, etc. [Luscombe 2000, Luscombe 2002].
To know the fundamentals of the binding processes between proteins and DNAs, it is highly
important to understand the nature of the complexes between these two units. Experimenting
on the structure of the complexes and classifying them is the most significant operation to
comprehend the DNA-binding proteins. Association rule mining and association rule based
classifier is one of the most important methods were shown to be very useful for this kind
of operations. The discovery of protein DNA-binding sequence models as the binding uses the
association information between amino acids and nucleotide sequence pairs was studied recently
in [Leung 2010]. In this article, they have focused on the binding between transcription factors
(TFs) and transcription factor binding sites (TFBSs) using the classical Apriori algorithm and
evaluated on the basis of quantitative, empirical, annotation and experimental analysis. The
experimentally found results were validated with the information provided in Protein Data Bank
(PDB), by homology modelling and by a random analysis. A comparative study conducted in
the field of predicting protein-DNA interaction is presented in [Zhou 2008]. No further work
has been found after an extensive search in this binding prediction analysis with the help of
association rule mining or based on associative classifier. So, we can say that it’s a very new
and interesting open problem and still needs much work to solve this protein-DNA binding
prediction problem.

Major Histocompatibility Complex (MHC) molecules are basically a wide range of genes
responsible for the immune system. In human, it calls as Human Leukocyte Antigen (HLA)
and most widely studied HLA are (i) MHC Class I of HLA-A, HLA-B, HLA-C and MHC Class II
of HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1. Class I MHC
molecules are responsible for the cellular immune response when antigen enters into the cell
and Class II MHC molecules are responsible for the humoral immune response [Kloetzel 2004].
Analysing MHC-Peptide binding has a great impact on the reaction of immune system and the
amino acid sequence motif in a peptide give aids to the MHC-Peptide binding. Prediction of
the antigenic peptides or T-cell epitopes of MHC-peptide binding is one of the major study field
in peptide binding domain. T-cell epitopes are the binding between MHC and peptides those
are acknowledged by the T-cells. These peptide binding information has a vital role playing
against designing vaccine. An encyclopedic database for MHC-Peptide binding information is
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available in MHCBN [Bhasin 2003].
A novel association rule mining method for predicting T-cell epitopes of MHC Class I HLA-

A*0201 was first introduced in [Milledge 2004]. The authors uses a combination of association
rule mining and sequence-structure pattern method for the epitopes prediction. The apriori
algorithm first generates the primary association rules and then apply the sequence-structure
pattern method to filter and generates sequence structure patterns (SSPs). A combinatorial
method for predicting the structure and sequence of the peptide binding was presented in
[Zeng 2001] They have tried to predict the characteristics of the type of interaction between T-
cell epitopes bound by HLA-A*0201 in MHC-peptide binding. Here each rule is an association
between the residue and position of the peptide. Then by applying sequence pattern method,
they try to find the group of residues that occur concurrently and thereafter by applying
the structural analysis on all the known HLA-A*0201. Then using a regression model, they
validate their generated outputs against some profile based methods for epitope prediction.
Another work was done in [Ozbek 2005] by using a position specific association rule mining on
apriori method by integrating the position information in the original algorithm. By adding
the positional information, they try to find the sequential patterns of the peptide sequence and
predict the peptide binding with HLA-A*0201. The position information is more important
in this prediction task because position of the amino acids within the peptide have a great
impact on MHC-Peptide binding. Another recent and probably last work on peptide binding
prediction problem using association rule mining was proposed in the article [Yardimci 2006].
In the article, authors are mainly focused on the "antigenic fragments" of the Class I MHCs.
They combine the structural methods and association rule mining techniques to predict the
T-cell epitopes. Association rules find the correspondence between peptide binding positions
for deciding the MHC binding motifs of each type. They mainly did their experiments on
the database of positively binding peptides whereas they have ignored the non-binding peptide
information. To perform the accuracy test and validating the generated rules, they have used
the four fold cross validation methods.

2.4.4 Protein Expression Analysis.

The area of protein expression analysis or mapping between different proteins expression lev-
els are known as differential proteomics. This field of study differentiates the distinct and
related proteomes for identifying bio-markers of different biological states and diagnose the
regulation functions for proteins. Extensive surveys of analyses in the field of differential pro-
teomics are presented in [Monteoliva 2004, Zhang 2009a]. Data mining techniques present
interesting perspectives to get relevant information from the massive databases related to dif-
ferential proteomics. In this field of research, data mining approaches are used for creating
efficient databases for query processing, preliminary data analysis, experimental design etc.
[Zhang 2009a].

2.4.5 Functional Proteomic Analysis.

Functional proteomic comprises the analysis of protein interactions and the prediction of inter-
actions between different proteins [Oyama 2002]. The prediction part involves protein function
prediction, protein-protein interaction prediction, prediction of protein sub-cellular localisation
etc. This field also includes the determination of protein interactions in a proteome for a specific
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protein to ascertain the unknown functions. Protein sub-cellar localisation prediction refers to
the problem of predicting the location of a functional protein within a living cell. A machine
learning classifier based approach was proposed in [Lu 2004] and an association rule mining
based classifier system was proposed in [Liu 2011] for predicting sub-cellular localisation of
proteins.

Understanding the functions of proteins are important to characterise their role in diseases
and to discover efficient treatments for these diseases. The unknown functional activities of
proteins are predicted either from protein-protein interaction data [Deng 2003], from protein
interaction networks [Pandey 2007], via the analysis of interactomes [Nabieva 2008], or by an-
alyzing genome sequences [Marcotte 1999]. The use of association rule mining in the context
of protein function prediction is studied in [Pandey 2007].

Protein-protein interaction network discovery play a major role in the construction of biolog-
ical pathways, protein networks and drug discovery in particular [Segal 2003]. In the molecular
biology field of research, this interaction prediction application is currently the major focus for
data mining applications. Association rule mining methods were successfully applied for dis-
covering and predicting interactions by using association memberships of known and unknown
proteins [Chiu 2008, Mondal 2012a]. Other recent research results on protein-protein interac-
tion prediction based on association rule mining and related associative classification can be
found in [Kotlyar 2006, Mukhopadhyay 2010, Nafar 2006, Oyama 2002]

The analysis of protein interaction networks contributes to the understanding of protein
annotation studies [Schwikowski 2000]. Association rule mining methods play a significant role
to discover and identify protein annotation relationships within or between protein-protein
interaction networks [Oyama 2002]. In [Besemann 2004], the authors show that differential
association rule mining is an efficient solution for the analysis of protein annotations.

2.4.6 Clinical Proteomic Analysis.

Another new research application area in proteomic is the clinical proteomic analysis. Identify-
ing the type and stage of cancer patient at an early age is an important and necessary condition
for the guaranteed recovery of the patient from that disease. Studies show that identifying the
cancer at an early stage have the greater chances to be cure. The absence of the suitable
biomarkers for any cancer disease is an important open problem in the Clinical Proteomic
Analysis. Many biomarkers have already been found but the verification of those markers and
finding new biomarkers are a real challenge in clinical proteomic [Kohn 2007]. Study of these
biomarkers are useful for the management of the disease and finding the right therapy and drug
for the patients. Clinical proteomic is the discipline of the proteomic analysis to the molecular
medicines and clinical observations [Fung 2005]. Study of biomarkers is one of the important
and major task in clinical proteomic. The biomarkers together form a signature called biosig-
nature which is validated by the clinical proteomic study [Rifai 2006]. Different technologies
and strategies in the proteomic are used for the validation of the biosignature of any disease
[Petricoin 2003, Colantonio 2005]. Some of these technologies along with their application in
clinical proteomic was studied in [Latterich 2008, Street 2010].

These technologies reproduce a huge amount of data and it requires an efficient compu-
tational method to analyse them and to find useful information. Mass Spectrometer (MS),
Two dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2D-PAGE), High
Performance Liquid Chromatography (HPLC), Two Dimensional Liquid Chromatography (2D-
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LC) are few of those technologies which are used to generate different profiling data of the
proteins. Serum profile is such kind of data generated from the mass spectrometer and used for
the biomarker discovery. Identifying the serum biomarkers for disease identification is a good
choice for identifying cancers in early stage. A study on identification of serum biomarker using
a combination of feature selection method and association rule mining technique on the mass
spectral serum profile is given in [Ressom 2006].

Another research on the clinical sample for identifying the disease specific biomarker identi-
fication from the data generated by the mass spectrometer of clinical proteomic was presented
in [Gopalakrishnan 2006]. The study successfully found the Amyotrophic Lateral Sclerosis
(ALS) panel biomarkers by using the wrapper based association rule learning method for the
motor neuron disease. The data samples are generated from the cerebrospinal fluid using the
surface-enhanced laser desorption/ionisation time of light (SELDI-TOF-MS) analysis.

A rule based biomarker identification method for classifying metabolic profiles in prostate
cancer by mass spectrometer was discussed in [Osl 2008]. Their proposed method is basically a
associative classification rule based feature selection technique called associative voting which
was used for the prostate cancer management. A 10 fold-cross validation technique for the
better evaluation of the result biomarkers used for the metabolic candidates in cancer patients.
A recent article have published for the identification of the breast cancer biomarker using fuzzy
association rule mining technique in [Lopez 2012]. It’s a new and promising field of research
in clinical proteomic and in fact in proteomic and very few works have found in the literature
with the association rule mining for the biomarker identification.
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3.1 Introduction

Research works in the association rule mining domain can be divided into two main segments:
First, selecting the most relevant sets of items and second, generating the most pertinent
association rules, either directly or indirectly, from these selected sets of items. Works in the
first segment focus on the generation of different categories of sets of items, such as frequent
itemsets, closed itemsets, free itemsets, regular itemsets, etc. with different structural properties
in regard to the dataset. In the second segment, works focus on association rule generation
either indirectly, by using the itemsets previously extracted from the dataset, or directly from
the dataset, for example, when they are based on some kind of evolutionary approaches. In
both segments, some measuring units are used to calculate the importance of these itemsets or
rules generated from the dataset. These measuring units are known as interestingness measures
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and are calculated on the statistical appearances of the items on the database present in the
itemsets or rules.

This chapter describes the above mentioned issues of different frameworks, interestingness
measures for association rule mining. At first, we will present a brief description of different
statistical measures used for association rule mining. Later sections demonstrate heterogeneous
types of rule mining frameworks for finding multifarious number of itemsets and association
rules. According to the notions mentioned above, the frameworks for association rule mining
can be classified into different categories:

• Based on the theoretical framework of the algorithms.

• Based on the search space traversal of the algorithms.

• Based on the data structure used by the algorithms.

• Based on the databases dealing by the algorithms.

• Based on the applications used for the algorithms.

In this chapter, we will describe few frameworks based of different itemsets from the above
mentioned categories available nowadays. The most prominent of these frameworks: Frequent
itemset (or classical) framework, closed itemset framework, free set framework, regular itemset
framework and evolutionary computation framework.

3.2 Dataset Representations

Initially, association rule mining algorithms used an horizontal representation of the dataset,
also called row-mode. In this representation, each data line represents an object and contains a
list of items materialised as an enumeration set, as in table 3.2, or a bit vector, as in table 3.1.
This representation was used by the first level-wise algorithms proposed for mining frequent
itemsets, maximal frequent itemsets and frequent closed itemsets. The vertical representation
of the dataset, as given in table 3.3, also called column-mode, was proposed in [Zaki 1997].
In this representation, each item is associated to the list of objects containing it. These lists
can be materialised as enumeration sets, as in the Clique and Eclat algorithms [Zaki 1997]
or as bit vectors, as in the HBM algorithm [Gardarin 1998]. This data representation allows
to efficiently compute the support of an itemset by intersecting enumeration sets or vectors
representing its items instead of counting the number of objects containing the itemset with the
horizontal layout. However, it increases the number of dataset accesses required and complex
data structures are needed to moderate this problem. The use of the vertical representation
for frequent closed itemset discovery was introduced with the Charm algorithm [Zaki 2002]. A
vertical representation by diffsets was proposed for frequent itemset discovery by [Gouda 2001].
A diffset represents the difference between the list of objects containing a k-itemset and the list
of objects containing one of its (k+1)-supersets. Diffsets can significantly reduce the memory
space required to store the lists of objects for vertical representations of data in the case of
dense datasets. An approach combining vertical and horizontal representations was proposed
by [Shenoy 2000] for frequent itemset discovery.

Data representation has an important impact on the efficiency of any algorithm for extract-
ing association rules. When data are coming from several sources, all approaches require to
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combine them into a unique matrix for processing. Horizontal transactional and binary ma-
trices are the most widely used data representations used by different association rule mining
frameworks. Table 3.1 and table 3.2 give the representations in binary matrix and horizontal
transactional format, respectively, of an example dataset D. This dataset will be used as a
supporting example throughout the chapter for describing different concepts and frameworks.
It contains five objects or rows, identified by their O-id or transaction number ranging from 1
to 5, and each of these object contains a list of at most six items namely A, B, C, D, E and F.
Throughout this chapter, we also use 0.4 (40%) for minimum support and confidence threshold
values unless explicitly stated otherwise.

O-id A B C D E F
1 1 1 1 1 0 0
2 0 1 0 1 0 0
3 1 0 1 0 1 0
4 0 1 1 1 0 0
5 1 1 1 1 0 1

Table 3.1: Binary Matrix Representation of Database D

Transaction Items
1 A B C D
2 B D
3 A C E
4 B C D
5 A B C D F

Table 3.2: Horizontal Transactional Representation of Database D

Transaction Items
A 1 3 5
B 1 2 4 5
C 1 3 4 5
D 1 2 4 5
E 3
F 5

Table 3.3: Vertical Transactional Representation of Database D
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3.3 Interestingness Measures

Several interestingness measures were proposed to assess the usefulness of an association rule
or a group of association rules. These measures aim at filtering extracted association rules
to minimize the size of the rule set and help the end user in the deduction of information
for decision making. In Section 3.3.1, different types of interestingness measures for single
association rules and their properties, along with the criteria used to define them, are studied.
In Section 3.3.2, an overview of interestingness measures for assessing interestingness of groups
of association rules are given.

A hierarchical representation of the different categories of interestingness measures is shown
in Figure 3.1. In this figure, the diagram shows the classification of the different interestingness
measures of association rules according to their domain of application (individual or group of
rules), the type of measures (objective, subjective or semantic) and their structural properties
(symmetric or asymmetric).

Figure 3.1: Categories of Interestingness Measures for Association Rule Mining

These measures follows several criteria for deciding whether a pattern, i.e. a rule or a group
of rules, is really interesting. In [Geng 2006], the following nine such criteria, that are used in
most works on this topic, are studied in details:

Conciseness: Conciseness describes how compact one pattern is.

Generality: Generality is defined in terms of maximal coverage of the items in the dataset.
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Reliability: Characterizes whether a pattern is reliable in terms of occurrences in the appli-
cation areas.

Peculiarity: Depicts how a pattern is different from the others in the generated output.

Diversity: Defined in terms of differences of the item characteristics in an itemset and between
the itemsets in the extracted patterns.

Surprisingness: A pattern is said to be surprising if it is out of the end user’s expectedness.

Novelty: Defines to what extent the patterns mined are novel to the end user’s knowledge.

Utility: Defines the usefulness of a pattern.

Applicability: Characterizes whether extracted patterns are appropriated to the application
or not.

3.3.1 Interestingness Measures for Individual Association Rules

These interestingness measures are used for evaluating the importance of association rules, on
their own, in the dataset. These measures help to reduce the size of the list of extracted rules
by selecting the most interesting ones. A recent overview of such interestingness measures can
be found in [McGarry 2005]. These measures can be divided into three categories: Objectives,
subjectives and semantical.

3.3.1.1 Objective Measures

Measures in this category evaluate the statistical significance of the rule in the dataset. Several
properties were defined to assess the relevance of these interestingness measures. Detailed
reviews of these properties can be found in [Geng 2006, Tan 2002]. Values of objective measures
are calculated under the contingency table, and they can be evaluated according to different
properties:

• Symmetry property: This property refers to the symmetry of measure values under vari-
able permutation. A measure of association rule interestingness which value is not mod-
ified when the antecedent and the consequent are interchanged is called a symmetric
measure. Other measures, whose value changes when interchanging antecedent and con-
sequent, are called asymmetric. A recent review on symmetric interestingness measures
is presented in [Merceron 2007].

• Null-addition property: This property refers to whether the value of the measure remains
constant when the number of objects not covering the rule is increased in the dataset. A
measure with this property is called null-invariant. Cosine and Jaccard measures are null-
invariant but odds ratio, correlation coefficient and interest factor are not for instance.

• Row/column scaling property: This property refers to the constant of the measure value
after rescaling the contingency table with some positive constant. Odd ratio is one ex-
ample of this property.
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• Inversion property: This property, that is a special case of row/column scaling prop-
erty, refers to whether the measure value remains constant after exchanging the fre-
quency counts in the contingency table. Inversion property include the correlation coeffi-
cient, odds ratio, collective strength and kappa symmetric measures and, interest, cosine,
Piatetsky-Shapiro and Jaccard asymmetric measures.

• Piatetsky-Shapiro’s properties: Piatetsky and Shapiro proposed three properties for qual-
ifying relevant measures [Piatetsky-Shapiro 1991a]. These properties are:

i. The value of the measure is 0 when antecedent and consequent parts are statistically
independent.

ii. The value of the measure monotonically increases with the support of the rule when
the individual support of both antecedent and consequent are unchanged.

iii. The value of the measure monotonically decreases with the support of the antecedent
(resp. the consequent) when the supports of the rule and of the consequent (resp.
the antecedent) remain constant.

Added value, two-way support, and Piatetsky-Shapiro’s measures are examples of mea-
sures following these three properties. An extended version of these properties is described
in [Kamber 1996].

• Lenca et al.’s properties: Eight properties for classifying interestingness measures were
proposed in [Lenca 2004]. Among these eight properties, five are normative properties
and three are subjective properties. These five normative properties are:

i. Easiness to define the threshold values.

ii. Ability of the measures to identify asymmetricity of the rule.

iii. Constance of the measure values in the absence of counter examples.

iv. Uniformity of measure values in the case of independent attributes.

v. Decrease of the measure values with the increase in the number of records covering
only the consequent of the rule.

The three subjective properties are based on the multi-criteria decision analysis performed
by the analyst. They assess measure interestingness according to the end user’s viewpoint
and depend on the following criteria:

vi. Increase of the measure values when the size of the database is increased.

vii. Semantics of the measures are easily expressed and are thus relevant.

viii. Without significant loss of measure values to tolerate some counter-examples that
do not notably lessen rule interestingness.

These properties were applied to classify a list of 20 measures in [Lenca 2004].

• Gang and Hamilton’s properties: Gang and Hamilton proposed in [Geng 2006] some prop-
erties of interestingness measures to determine if support and confidence are increasing
functions when contingency tables are definitive or fixed to their margins.
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A critical review of criteria used for the evaluation and classification of objective interestingness
measures is given in [Suzuki 2008].

A list of objective measures following these properties is given, with corresponding refer-
ences, in Table 3.4. Recent overviews on objective measures of association rule interestingness
can be found in [Steinbach 2007, Tan 2004]. Methods for choosing the adequate measures were
also developed to further help the end user [Lenca 2008].

3.3.1.2 Subjective Measures

End user’s view plays a crucial role during the evaluation and the interpretation of the extracted
association rules. The end users are most often application domain experts having their own
views and beliefs that influence their analysis and choice of information. For example, triv-
ial rules or rules depicting well-known relationships are generally uninteresting whereas rules
confirming some hypothetical relationships are very relevant from the end user’s viewpoint.

Incorporating subjective criteria, such as end user’s beliefs and hypotheses or surprisingness
and novelty of the rule for example, to assess the interestingness of extracted association rules
has been the subject of many research works. Figure 3.1 shows 13 subjective interestingness
measures used in many association rule mining applications. Extensive recent reviews of these
subjective interestingness measures can be found in [Geng 2006, Natarajan 2005].

Comparative evaluation of objective and subjective measures of interestingness for associ-
ation rules are presented in [Lenca 2007, McGarry 2005]. A comparison of the strengths and
weaknesses of subjective and objective measures, throughout the analysis of twelve association
rule interestingness measures, is presented in [Zhang 2009b]. A review and practical evalua-
tion of association rule interestingness measures application in the medical domain is given in
[Ohsaki 2004]. These reports conclude that the combination of both types of measures can
optimize interestingness evaluation.

3.3.1.3 Semantical Measures

These interestingness measures aim at describing the importance of semantic behavior and
informativeness of patterns. They are for most application-context dependent. Among such
measures, the utility and the actionability criteria play an important role.

Utility refers to practical measures of rule usefulness in that they can reflect the ac-
tual amount of output achieved by applying each rule. In initial works on this topic, a
particular rule can have a different utility value depending on how well the rule fits the
purpose of the application it was extracted for. Nevertheless, several recent works were
conducted to define a uniform standard for assessing rule interestingness disregarding ap-
plication context [Yao 2006b, Yu 2008]. Several algorithms incorporating utility measures
were proposed, some being dedicated to computational biology applications. For instance,
in [Laxmi 2011, Sandhu 2011], weightage (W-Gain), utility (U-Gain) and diminution (D-
sum) measures are introduced in the association rule mining process to generate a score
assessing utility of each rule. Reviews of association rule utility measures can be found in
[Anandhavalli 2010, Yao 2006a].

Actionability of discovered knowledge patterns aims at evaluating how meaningful are these
patterns to support decision-making actions. A rule is said to be actionable if the end user can
utilize it to make a decision or gain some advantage [Rezende 2009]. Actionability is a major
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Sl. Measure Reference Sl. Measure Reference

1 Accuracy [Spruit 2007] 33 J-Measure [Smyth 1991]

2 Added Value [Sahar 1999] 34 Jaccard [Tan 2002]

3 All-Confidence/H-
Confidence

[Omiecinski 2003, Xion 2006] 35 Kappa [Cohen 1960]

4 Any-confidence [Omiecinski 2003] 36 Klosgen [Klosgen 1996]

5 Asymmetric Tau [Zhou 1991] 37 Laplace [Clark 1991]

6 Bayes Factor [Jefreys 1935] 38 Leverage [Piatetsky-Shapiro 1991a]

7 Bond [Omiecinski 2003] 39 Least Contradiction [Aze 2002]

8 Brin’s Conviction [Brin 1997a] 40 Lift/interest [Brin 1997b]

9 Centered Confidence [Bras 2010] 41 Log-Linear Analysis [Agresti 1996]

10 Certainty Factor [Shortliffe 1975, Klosgen 1996] 42 Loevinger [Loevinger 1947]

11 Chi-square [Brin 1998] 43 Mutual Information [Lallich 2007]

12 Confidence/Precision [Agrawal 1993, Pagallo 1990] 44 Normalize Mutual In-
formation

[Lallich 2007]

13 Collective Strength [Aggarwal 1998] 45 Odds Ratio [Mosteller 1968]

14 Conviction [Brin 1997b] 46 Odd Multiplier [Lallich 2007]

15 Correlation Coeffi-
cient

[Agresti 1990] 47 Piatetsky-Shapiro [Piatetsky-Shapiro 1991a]

16 Cosine/IS Measure [Tan 2000] 48 Prevalence [Lallich 2007]

17 Coverage/True posi-
tive rate

[Spruit 2007] 49 Probabilistic discrim-
inant index

[Lerman 2003]

18 Conditional Influence [Chen 2001] 50 Recall [Yao 1995]

19 Confidence Gain [Tamir 2006] 51 Relative Risk [Lallich 2007]

20 Confidence Fac-
tor/Predictive
Accuracy

[Ghosh 2004] 52 Sebag-Schoenauer [Sebag 1988]

21 Comprehensibility [Ghosh 2004] 53 Specificity [Lallich 2007]

22 Completeness [Spruit 2007] 54 Strength [Fhar 1993, Klosgen 1996]

23 Entropy Intensity of
Implication

[Gras 2001] 55 Support [Agrawal 1993]

24 Example & Counter
example rate

[Lallich 2007] 56 Symmetrical Tau [Zhou 1991]

25 Ganascia [Ganascia 1991] 57 Weighting Depen-
dency

[Gray 1998]

26 Generality [Yao 1999] 58 Yao’s one way Sup-
port

[Yao 1999]

27 Gini Index [Breiman 1984] 59 Yao’s two way Sup-
port

[Yao 1999]

28 Goodman-Kruskal [Goodman 1968] 60 Yao’s two way Sup-
port variance

[Yao 1999]

29 Implication Index [Lerman 1981] 61 Yule’s Q [Yule 1900]

30 Implication Intensity [Gras 1979] 62 Yule’s Y [Yule 1912]

31 Influence [Chen 2001] 63 Zhang [Zhang 2000]

32 Interestingness [Spruit 2007]

Table 3.4: Interestingness Measures for Individual Association Rules
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feature for association rules in most applications since actionable rules are the most useful
to achieve the application objectives [Liu 2000]. A two-way significance framework for evalu-
ating actionability, based on both technical interestingness and domain-specific expectations,
was proposed in [Cao 2007]. A description and formalization of actionability based knowledge
discovery according to four types of generic frameworks, namely post-analysis based, unified
interestingness based, combined mining based and multi-source combined mining based, is pro-
posed in [Cao 2010]. Actionability of association rules can also be characterized using the
closed itemset and the δ-free sets [Boulicaut 2008]. Detailed reviews of actionability measures
and techniques, and descriptions of trends in actionable knowledge discovery, are available in
[Cao 2012, He 2005]. An application perspective on actionable knowledge discovery and its
trends from this viewpoint can be found in [Cao 2006, Li 2010].

A detailed description of utility and actionability based interestingness measures is available
in [Geng 2006].

3.3.2 Interestingness Measures for Association Rule Groups

An association rule group is a set of rules defined on a certain group of itemsets for grouping
rules based on common attributes in the antecedent part [Jimenez 2010]. Let I be a frequent
itemset containing n items I1, I2, · · · , In and G be a group of itemsets on I such that ∀Gi ∈ G,
Gi ⊆ I. The group of association rules defined on group G is denoted as GAR = {

⋃
R :

I1 → I2 | I1 ∈ G}. Grouping association rules in such a way allows both to identify all rules
concerning a particular group of items and to reduce the number of rules concerning a group
of itemsets that have a similar behavior in the dataset.

Few measures have already been proposed to assess the interestingness of such kind of
group rules and the adaptation of standard individual interestingness measures to association
rule groups is studied in [Jimenez 2010]. Table 3.5 summarizes some available measures for
evaluating the interestingness of group association rules.

Sl. Measure Notation Definition

1 Group Support (I) suppG(I) = P (G|I)
P (G) = conf(G→ I)

2 Group Support(I1 → I2) suppG(I1 → I2) = P (G|I1∪I2)
P (G) = conf(G→ I1I2)

3 Group Confidence confG(I1 → I2) = suppG(I1→I2)
suppG(I1)

= conf(G I1 → I2)

4 Group Gain gainG(I1 → I2) = confG(I1 → I2) - suppG(I2)

= conf(GI1 → I2) - conf(G→ I2)

5 Group Gain Factor GGFG(I1 → I2) = gainG(I1→I2)
1−suppG(I2)

if gainG(I1 → I2) ≥ 0

= gainG(I1→I2)
suppG(I2)

if gainG(I1 → I2) < 0

6 Group Variation variationG(I1 → I2) = gainG(I1→I2)
suppG(I2)

= confG(I1→I2)−suppG(I2)
suppG(I2)

7 Group Impact impactG(I1 → I2) = supp(GI1) ∗ gainG(I1 → I2)

8 Group Impact Ratio GIRG(I1 → I2) = impactG(I1→I2)
supp(G)

Table 3.5: Interestingness Measures for Association Rule Groups

The support of frequent itemsets and valid association rules is measured with respect to
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the total number of objects present in the dataset. For these measures, the support of an
itemset in a group or an association rule group is measured with respect to the dataset objects
involved in that particular group. Similarly, all other measures in Table 3.5 are calculated by
considering only the dataset objects containing the group itemsets. Computing group measures
can be less time consuming than classical measures as its need to scan only those transactions
containing the group itemsets instead of the whole dataset. However, because of differences
between the definitions of support and confidence of itemsets and rules, and the group support
and confidence more calculations can be required. For example, some standard measures require
to calculate only one probability where two probabilities must be calculated in the case of group
measures, such as for the gain measure:

gain(I1 → I2) = conf(I1 → I2)− supp(I2)

= P (I1∪I2)
P (I1)

− P (I2)

gainG(I1 → I2) = confG(I1 → I2)− suppG(I2)

= P (G∪I1|I2)
P (G∪I1) −

P (G∪I1)
P (G)

This can make a big difference for measures that require the calculation of a large number of
support and confidence values. However, the concept of association rule groups presents several
advantages:

• The number of items in rules can be reduced, to make easier their interpretation, by
regrouping the common items in their association rule groups.

• The end user’s can more easily apprehend information from these rule groups, as they
define a subspace of the solution space made up of rules with identical properties, and
handle huge sets of rules.

• Group measures can rank the groups according to the end user’s interest and determine
the interestingness of a group of rules instead of each rule independently of others.

Although, quite few measures for association rule groups have been proposed actually, almost
all types of standard association rule measures can be adapted to the concept of groups of
association rules.

3.4 Frequent Itemset Framework

The first theoretical framework for pattern mining, defined in [Agrawal 1993] together with
the association rule mining problem, is the frequent itemset framework. In this work, the
frequent, or large, itemsets were defined as itemsets with support greater than or equal to
the user defined minsup threshold value in the dataset. It was shown that all supersets of an
infrequent itemset, i.e., an itemset with support lower than minsup, are infrequent. Association
rule mining problem is based on the discovery of association relationship between a set of items.
The valid, or strong, association rules were also defined along with their support, that is the
support of the itemset resulting from the union of the antecedent and the consequent of the
rule, and their confidence, that is the ratio between the support of the consequent and the
support of the union of the antecedent and the consequent of the rule. It was also shown that
all valid association rules, i.e., association rules with support and confidence greater than or
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equal to the user defined minsup and minconf threshold values respectively, can be generated
from the frequent itemsets and their support. Considering the properties mentioned above, the
association rule mining problem can be divided into two successive phases:

• Mining frequent itemsets, with their support, in the dataset.

• Generating valid association rules, with their support and confidence, from frequent item-
sets and their support.

Once frequent itemsets and their support are extracted, all valid association rules can be gen-
erated from them in a straightforward manner. Generating these rules is a much less computa-
tionally expensive task compared to the frequent itemset mining process that requires accessing
the dataset. Optimizing the frequent itemset mining process has thus been the subject of in-
tensive research works for nearly two decades and many algorithms and theories have been
proposed for this in the literature.

The difficulties of the frequent itemset extraction lies in two points: First, it requires several
costly scans of the dataset that is usually stored in secondary memory; Second, the size of the
search space is exponential in the number of items in the dataset. If the dataset contains n
items, then the size of the search space is 2n and the frequent itemset mining problem was
shown to be NP-Complete [Angiulli 2001]. This search space constitutes the subset lattice, or
itemset lattice. The itemset lattice for database D that contains six items is given in Figure
3.2. We can see that, for a minimum support threshold of 40%, there are 15 frequent itemsets
and one maximal frequent itemset, all other itemsets being infrequent. Since all supersets of
infrequent itemsets are infrequent, the maximal frequent itemsets, defined according to the
inclusion relation, form a border above which all itemsets are infrequent and below which all
itemsets are frequent.

Several algorithms for traversing the itemset lattice have been proposed in the litera-
ture to optimize this computationally expensive task. The state-of-the-art Apriori algorithm
[Agrawal 1994] introduced the principle of level-wise traversal to improve the efficiency of fre-
quent itemset extraction. Many algorithms derived from Apriori have then been proposed since.
A detail discussion on different approaches for itemset lattice traversal has been given in the
next subsection. However, frequent itemset based approaches suffer from the problem of the
huge number of frequent itemsets and association rules generated in case of dense datasets
[Brin 1997b]. Overviews of algorithms and descriptions of trends in frequent itemset and asso-
ciation rule mining can be found in [Ceglar 2006, Pramod 2010, Zhang 2010].

3.4.1 Search Space Traversals for Itemset Mining

The level-wise breadth-first itemset lattice traversal was introduced with the Apriori algorithm
by [Agrawal 1994] and independently by [Mannila 1996]. In this approach, all items of a "level"
in the search space lattice are considered at once: A set of candidate k-itemsets, that are po-
tentially frequent sets of k items, is constructed and supports are computed from the dataset.
Frequent k-itemsets are then combined to construct candidate (k+1)-itemsets. This approach
was proposed to limit the number of accesses to the disk resident dataset and reduce processing
time. Apriori is a level-wise bottom-up algorithm: levels of the itemset lattice are considered
in increasing size order, starting from 1-itemsets. Additionally, numerous works have been
conducted to optimize algorithm’s efficiency using adapted data representations, data struc-
tures and implementation techniques [Ceglar 2006]. The level-wise bottom-up approach was
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Figure 3.2: Itemset Lattice with Infrequent, Frequent and Maximal Frequent Itemsets (min-
support = 40%)

also applied for discovering frequent closed itemsets in the Close [Pasquier 1999b] and A-Close
[Pasquier 1999a] algorithms, and in several derived algorithms. See [Yahia 2006] for a review
of these algorithms. The simultaneous bottom-up and top-down level-wise approach was in-
troduced in MaxMiner [Bayardo 1998] and simultaneously in PincerSearch [Lin 1998]. In this
approach, levels of the itemset lattice are considered both in increasing size order starting from
1-itemsets and in decreasing size order starting from M-itemsets, where M is the maximal size
of an itemset.

The depth-first traversal of the itemset lattice [Zaki 1997, Agarwal 1999] identifies frequent
itemsets in lexicographic order. Following this order, itemsets in the example dataset D are
considered in the following order: [a, ab, abc, abcd, abcde, abd, abde, abe,..., d, de, e]. This
approach is well suited to frequent itemset mining when data are represented in a vertical layout,
that is a data line represents an item and is constituted of a list of objects containing this item
(TID-list). This is equivalent to accessing the example dataset D in table 1 by columns instead
of rows. Supports of itemsets are then computed by intersecting TID-lists of their subsets. See
[Hipp 2000] for a comparison of breadth-first and depth-first approaches for frequent itemset
discovery. A depth-first approach is used in the well-known FP-Growth algorithm [Han 2000b]
and its extensions. This approach is known as pattern growth and does not require to use
candidate itemsets contrarily to level-wise approaches. In this approach, frequent 1-itemsets

Kartick Chandra MONDAL, Laboratoire I3S



47 Chapter 3. Study of Itemset Pattern Frameworks

are successively extended with other items until their maximal (longest) frequent supersets are
obtained. A top-down pattern growth approach was proposed for frequent itemset discovery
in the TD-FP-Growth algorithm [Wang 2002]. The pattern growth approach was adapted
for frequent closed itemset discovery in the Closet algorithm [Pei 2002] and several derived
algorithms were proposed since.

3.5 Closed Itemset Framework

The closed itemset framework was introduced to address the problem of association rule mining
in dense datasets [Pasquier 1998]. Closed itemsets are defined according to the closure oper-
ator γ of the Galois connection used in Formal Concept Analysis and concept lattice theories
[Birkhoff 1995b, Ganter 2005]. The Galois closure of an itemset is equal to the intersection of
all objects containing it and an itemset I is closed if it is equal to its closure, i.e., if I = γ(I).
Each closed itemset defines a membership class, or equivalence class, that includes all itemsets
contained in the same dataset objects, and consequently have the same support value, as the
closed itemset [Bastide 2000]. By definition, the unique maximal itemset of an equivalence class
is a closed itemset. An itemset that is both frequent, according to the minsup threshold, and
closed is called a frequent closed itemset. The frequent closed itemsets and their equivalence
class in the itemset lattice for dataset D and for a minimum support threshold of 40% are
shown in Figure 3.3.

Since all frequent itemsets and their support can be deduced from the set of frequent closed
itemsets and their support, this set constitutes a lossless condensed representation of all frequent
itemsets. Using this property, the search space of frequent itemset mining can be reduced to
the frequent closed itemsets and the association rule mining problem can be divided into the
two following successive phases:

• Mining frequent closed itemsets, with their support, in the dataset.

• Generating valid association rules, with their support and confidence, from frequent closed
itemsets and their support.

The search space of frequent closed itemsets based algorithms is a sub-order of the itemset
lattice. The reduction of this search space depends on the proportion of frequent itemsets that
are closed since once a frequent closed itemset is identified, all frequent itemsets in its equiva-
lence class can be deduced. In the case of dense datasets, equivalence classes are large as few
frequent itemsets are closed and the first phase execution times are notably improved compared
to frequent itemset mining. However, this approach does not improve association rule mining
for sparse datasets, such as market basket data sets. For such datasets, equivalence classes are
small, as most frequent itemsets are closed, and closure computations increase execution times
compared to frequent itemset mining.

To improve the efficiency of this approach, the minimal itemsets of an equivalence class,
called generators, can be identified in a level-wise manner and used to generate the frequent
closed itemsets [Pasquier 1999b]. This subsequently reduces the computational cost as they are
the smallest itemsets in an equivalence class. The lattice structure of the sub-order defined by
the frequent closed itemsets for example database D and minsup = 40% is depicted in Figure
3.4.
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Figure 3.3: Itemset Lattice with Frequent Closed Itemsets and Equivalence Classes (minsupport
= 40%)

This lattice contains five equivalence classes corresponding to the five frequent closed item-
sets and their seven generators. For the second phase, condensed representations for association
rules can be generated from frequent closed itemsets and generators which further reduces the
processing time of association rule generation. The use of generators in the definition of con-
densed representations is important for association rules generation. Recent surveys on frequent
closed itemset based mining of associating rules can be found in [Shekofteh 2010, Yahia 2006].

3.6 Free Set Framework

Frequent itemset and closed itemset frameworks are sensitive to noise in the data that is common
in some applications and also difficult to mine for the dense dataset. The free set framework
was proposed to overcome this problem in [Boulicaut 2000, Boulicaut 2003]. Free sets are
the concise representations of the entire frequent sets. This framework is based on the ε-
adequate condensed representation presented in [Mannila 1996] and the proposed algorithm is
an illustration of the work on levelwise search and border theory presented in [Mannila 1997].
In this representation, data are used to answer the queries with ε lost of accuracy. Free sets
constitute an approximate representation of the frequent itemsets as an approximation of the
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Figure 3.4: Sub-order of the Itemset Lattice with Frequent Closed Itemsets and their Generators
(minsupport = 40%)

frequent itemset supports can be deduced from their supports [Boulicaut 2003]. This kind of
probabilistic proposition for frequent itemset mining was studied in [Pavlov 2000].

An ε-adequate representation of a class of structure (S) with respect to a class of queries
(Q) is an another representation (C) of the class of structure represented by a mapping function
fs : S → C and a query evaluation function fq : Q × C → [0, 1], such that ∀ structure
∈ S and ∀ queries ∈ Q, ‖Q(structure) − fq(Q, fs(structure))‖ ≤ ε. ε-adequate condensed
representation of a database is much smaller in size than the original size of the data. The
support of any free sets can be used to approximate the support of an itemset found in the
condensed representation of the database. The support of a set is approximated to 0, if any
subset of a set is free but not frequent, otherwise the support of the set is considered as the
smallest support among the frequent free subsets of the set. Error in approximating the support
and confidence value for frequent itemsets and association rules using frequent free sets abide
low in practice [Boulicaut 2003]. A level-wise frequent free set mining algorithm was proposed
in [Boulicaut 2003] with an additional search space reduction for the case where δ 6= 0.

Free sets are also referred to as δ-free sets defined according to δ-strong rules. An itemset
I is a δ-free set if and only if, there is no δ-strong rule I1 → I2 with I1 and I2 ⊂ I and I1 /∈ I2.
An association rule of the form I1 → I2 with I1, I2 ∈ I is a δ-strong if support(I1) - support(I)

≤ δ. The value of δ is inversely proportional to the confidence of the rule, i.e., minimizing δ is
equivalent to maximizing the confidence of rules. δ-strong rules for δ = 0 are exact association
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rules, i.e., rules with confidence equals to 1, and mining δ-free sets for δ = 0 is equivalent to
mining closed itemsets but mining δ-free sets where δ 6= 0 proposed much reduction on search
space with the lost of uncertainty in support threshold. Frequent δ-free sets with respect to
an user defined threshold support value are the free sets which has no δ-strong rules and the
support of the itemset is greater than the support threshold value. Finding the complete set of
δ-free sets of a structure is usually not feasible. This problem can be handled by the negative
border of frequent δ-free sets where the negative border composed by the smallest itemsets
which are non-frequent δ-free sets with respect to set inclusion.

An important property of free sets with respect to inclusion of itemsets is anti-monotonicity
which says, all subsets of a free set are also free. The minimal elements of an equivalence class,
i.e., the generators of the class, are free sets [Calders 2005, Ruggieri 2010]. The frequent δ-free
sets in dataset D for δ > 0 and a minimum support threshold of 40% are shown in Figure 3.5.
A constrained based frequent free set mining algorithm was proposed in [Boulicaut 2001]. A
recent review on free sets based condensed representations can be found in [Calders 2005].

Figure 3.5: Frequent δ-free Sets for δ > 0 and Equivalence Classes (minsupport = 40%)

3.7 Regular Framework

Condensed representations aim at optimizing memory usage and execution time of the extrac-
tion phase of association rule mining while allowing to get the correct complete information
during a post-processing operation. In the regular framework, regular itemsets allow to specify
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which items or itemsets may or may not be present in the itemsets of the condensed representa-
tion. A regular itemset E can be represented by the regular grammar and is called an extended
representation of the itemset, or extended itemset for short:
E ::= X|X?|{X1, · · · , Xi}∗|{X1, · · · , Xj}+
where X is an itemset and Xn are items with i ≥ 0 and j > 0.
In this regular itemset:

• First argument X represents an itemset.

• Second argument X? indicates that the itemset X may or may not be present in the
regular itemsets.

• Third argument {X1, · · · , Xi}∗ means that any subset of the itemset {X1, · · · , Xi}∗,
including null or empty set, participates in the formation of the regular itemsets.

• Last argument {X1, · · · , Xj}+ represents the participation of the non-empty subset of
the itemset {X1, · · · , Xj} to the formation of regular itemsets.

For example, the extended itemset AB{CE}+ represents itemsets containing both A and B, and
possibly C and E. This itemset thus designates the set of itemsets {AB, ABC, ABE, ABCE}.
The semantic of an extended itemset E is represented as S(E) and E is called regular when the
cover(I1) = cover(I2), where cover(I) is the list of dataset objects containing I, which implies
support(I1) = support(I2), for all itemsets I1, I2 ∈ S(E). This representation is a lossless
representation unlike free sets. The set of regular itemsets for dataset D is presented in Table
3.6.

Closed Itemsets 0-Free Sets Regular Itemsets Support Cover
ABCD AB, AD AC?{BD}+ 2 1, 5
BCD BC, BD B{CD}∗ 3 1, 4, 5
AC A AC? 3 1, 3, 5
BD B, D {BD}+ 4 1, 2, 4, 5
C C C 4 1, 3, 4, 5

Table 3.6: Frequent Regular Itemsets for Database D (minsupport = 40%)

The Cover column of the table represents the list of dataset objects containing the corre-
sponding itemset. The RegularMine algorithm for generating a set of regular itemsets as a
concise representation of frequent itemsets and a detailed discussion on semantics and proce-
dural descriptions can be found in [Ruggieri 2010].

3.8 Evolutionary Framework

Evolutionary approaches have been used for association rule mining to overcome some problems
encountered with preceding frameworks in some applications:

• The number of attribute and value pairs, i.e., items, can be huge in some databases
rendering it difficult to handle these data.
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• In the case of continuous valued attributes, making a binary discretization of those at-
tributes, to transform them in discrete values, can be difficult. Hence, choosing the proper
discretization method for making the process lossless can be non trivial.

• Supplying appropriate values for the minimum support and confidence threshold param-
eters is most often application specific and can be difficult.

The evolutionary framework was introduced to address applications where the above mentioned
problems appear. This framework regroups several strategies such as genetic algorithms, genetic
programming, genetic network programming and differential evolution among others. Some ap-
proaches perform the rule mining task as a combination of several of these strategies, such as for
example combining genetic algorithms and genetic network programming as in [Gonzales 2009].
In this framework, the association rule mining process is divided into the two following phases:

Rule generation: During the rule generation process, the rules are encoded in the chromo-
some according to one of the following approaches:

• In the Pittsburg Approach, a set of rules are encoded in a single chromosome and
the length of the chromosome restricts the number of generated association rules
[Dehuri 2004].

• In the Michigan Approach, each rule is encoded in a single chromosome divided into
the antecedent and the consequent parts of the rule [Ghosh 2004].

Rule selection: After the rule set generation, several evolutionary criteria, such as support,
confidence or one of the measures presented in Section 3.3, are used to select the most
pertinent rules. The rule sets generated by this selection process are also known as
Pareto-optimal rules sets.

An interesting feature of evolutionary approaches is that, instead of using only support and
confidence measures, they can extend the problem to the optimization of multiple objective
measures such as those presented in table 3.4. This principle, called multi-objective optimiza-
tion, for generating Pareto-optimal rule sets can notably improve the results. Multi-objective
optimization has been successfully applied to classification association rules and associative rule
mining using support and confidence. For example, the Pareto-optimal associative rules based
on combined support and confidence measure optimization remarkably improved results in some
cases as was demonstrated in [Bayardo 1999]. The most prominent evolutionary strategies used
for association rule mining are described below.

3.8.1 Genetic algorithms.

These algorithms represent rules as individual chromosomes with a fixed population size,
i.e., number of chromosomes, that is a user-defined parameter. This can be a problem in
some applications as interesting rules can be missed if an inadequate population size was de-
fined. Increasing the population size is not a viable solution to this problem as too high
values will lead to important execution times. An interesting review of single objective
and multi-objective optimizations for association rule mining based on genetic algorithms
can be found in [Davis 1991]. Genetic algorithms were used for Pareto-optimal association
rule mining [Ghosh 2004], Pareto-optimal fuzzy association rule mining [Kaya 2006], Pareto-
optimal classification rule mining [Ishibuchi 2005] and multi-objective fuzzy rule based classifier

Kartick Chandra MONDAL, Laboratoire I3S



53 Chapter 3. Study of Itemset Pattern Frameworks

[Ishibuchi 1997, Ishibuchi 2004]. Recent surveys on genetic algorithms based association rule
mining are available in [Fung 2012, Ghosh 2004, Ishibuchi 2006, Zhang 2010].

3.8.2 Genetic programming.

This theory is a biologically inspired evolutionary theory for solving multi-objective optimiza-
tion problems. However, this approach suffers from the drawback of a possible generation of in-
valid itemsets or association rules due to crossover and mutation operations used [Mendes 2001].
Genetic programming was used for mining association rules in temporal data [Hetland 2002]
and an extension called G3P (Grammar Guided Genetic Programming) for solving the problem
of generating invalid individuals was proposed [Couchet 2007, Whigham 1995]. The generation
of valid association rules from continuous valued numerical attributes using the G3P method
was also the subject of research works [Freitas 2001, Luna 2010].

3.8.3 Genetic network programming.

This extension of genetic programming is a graph-based evolutionary approach for optimizing
multi-objective searches. It uses directed graph data structures for solving the problem of
continuous valued attributes in association rule mining. This approach was introduced in the
association rule mining domain in [Shimada 2006] and implemented using genetic algorithms
in [Gonzales 2009]. Recent developments in association rule mining using genetic network
programming are described in [Shimada 2008, Taboada 2007, Yang 2011c]. Few research works
have done in this field and some interesting perspectives on this topics require more attention
by researchers.

3.8.4 Differential evolution.

This evolutionary approach is an adaptation of natural evolution to solve optimization problems.
Algorithms based on this theory were the firsts adapted to association rule mining as they are
well fitted to solve the problem of association rule mining from continuous valued numerical
attributes [Alatas 2008]. Although differential evolution was introduced as a single objective
optimization approach, it was shown to be an effective solution to the multi-objective association
rule mining problem [Alatas 2008]. The use of differential evolution to solve multi-objective
optimization problems is studied in [Abbass 2001, Sarker 2004, Storn 1996].

3.8.5 Hybrid multi-objective

The use of evolutionary approaches for association rule mining presents interesting perspec-
tives for several practical problems encountered in some applications. Their combination with
deterministic symbolic approaches, to benefit from their respective capabilities and strengths,
is a promising field of research.

Kartick Chandra MONDAL, Laboratoire I3S





Part II

The FIST Approach for Data
Mining





Chapter 4

Algorithmic Description

Contents
4.1 FIST Version 1: First Algorithmic Version . . . . . . . . . . . . . . . . 58

4.1.1 Phase 1: Creating Sorted Frequent Database . . . . . . . . . . . . . . . . 58
4.1.2 Phase 2: Mining Frequent Closed Itemsets . . . . . . . . . . . . . . . . . . 64
4.1.3 Phase 3: Generating Knowledge Patterns . . . . . . . . . . . . . . . . . . 70

4.2 FIST Version 2: Second Algorithmic Version . . . . . . . . . . . . . . . 70
4.2.1 Step 1: Generating the Sorted Frequent Dataset . . . . . . . . . . . . . . 71
4.2.2 Step 2: Constructing the Frequent Generalized Itemset Suffix-Tree . . . . 73
4.2.3 Lexicographic Order greaterThan() Function . . . . . . . . . . . . . . . . 74
4.2.4 Step 3: Updating the Frequent Generalized Itemset Suffix-Tree . . . . . . 76
4.2.5 Step 4: Pruning the Frequent Generalized Itemset Suffix-Tree . . . . . . . 79
4.2.6 Step 5: Generating Conceptual Knowledge Pattern Information . . . . . . 82

In this chapter, we present in brief the FIST approach for extracting bases of conceptual
association rules and conceptual clusters in one run, without extra processing time or database
scan. The methodology is based on the frequent generalized suffix-tree data structure and the
concept of closed itemset lattice. Working flow of the FIST approach is based on the three
principal ideas:

1. Preprocessing of the database.

2. Finding frequent closed patterns from the preprocessed data.

3. Generating bases of conceptual association rules and hierarchical conceptual clusters from
the patterns.

The general algorithmic flow of the FIST approach is shown in Algorithm 1. Its input is a
dataset represented as a dataset in which rows represent objects and columns represent variables
(or attributes). Each distinct value of a variable constitutes an item. FIST performs one scan of
the input dataset to generate a compressed database from which are extracted frequent closed
itemsets, generators, bases of conceptual association rules, and bi-clusters.

Two different algorithmic versions of the FIST approach were developed based on the de-
composition given in algorithm 1. The first algorithm is presented in section 4.1. In this
algorithmic version, operations to generate the different outputs use a table representation of
frequent patterns extracted from the frequent generalized suffix-tree. However, theoretical and
experimental studies showed that this pattern generation phase requires important resources.
Consequently, a new algorithmic version of the approach, in which operations to generate the
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Algorithm 1 FIST algorithm.
Input: Dataset, minsupport value, minconfidence value
Output: Frequent closed itemsets, generators, conceptual clusters, association rules

Phase 1: Preprocessing the dataset
1: Phase 1.1: Generate Item Table
2: Phase 1.2: Generate Sorted Frequent Database

Phase 2: Mining frequent closed itemsets
3: Phase 2.1: Create frequent Generalized Itemset Suffix-Tree
4: Phase 2.2: Find frequent closed itemsets

Phase 3: Generating knowledge patterns
5: Phase 3.1: Find generators of each frequent closed itemsets
6: Phase 3.2: Find conceptual bi-clusters
7: Phase 3.3: Generate basis of conceptual exact association rules
8: Phase 3.4: Generate basis of conceptual approximate association rules

different outputs are directly performed on the frequent generalized suffix-tree, was developed.
This second version, named FIST 2.0, is discussed in section 4.2. Experimental evaluations
showed that resource requirements, in memory usage, and efficiency, in execution times, of
this second algorithmic version are considerably improved compared with the first algorithmic
version.

4.1 FIST Version 1: First Algorithmic Version

This section describes in detail the first algorithmic version of the FIST approach for frequent
closed pattern mining and bases of conceptual association rule generation. Section 4.1.1 de-
scribes the first phase of the algorithm for preprocessing the dataset. Section 4.1.2 describes the
second phase for building the frequent generalized suffix-tree from the frequent sorted database
created in the first phase. This section also describes how frequent closed itemsets are collected
from the tree. Section 4.1.3, describes the process for generating the different patterns: frequent
generators, conceptual bi-clusters and bases of conceptual association rules.

4.1.1 Phase 1: Creating Sorted Frequent Database

Before creating the tree, preprocessing operations on the initial data are performed. This pre-
processing phase aims at minimizing execution times and memory usage of the subsequent
phases. The main operations performed consist in deleting infrequent items, given the min-
support threshold parameter, and sorting resulting frequent items in increasing order of their
support in the database. These operations allow to reduce the size of the data and to opti-
mize the size and the construction process of the generalized suffix-tree. The output of this
preprocessing phase is called the Sorted Frequent Database (SFD).

The preprocessing operations performed on the dataset, and the corresponding advantages
gained from these operations, are described below:

• First operation consists to scan the dataset to identify items, count their support in the
dataset and delete infrequent items, i.e., items with support less than the minsupport
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threshold parameter. This deletion operation of infrequent items allows to ignore items
that are considered as irrelevant for the actual result of pattern mining process. This phase
is based on the property that all supersets of an infrequent itemset are also infrequent. It
is a major phase to minimize both execution time and memory usage of the subsequent
phases of the algorithm.

• Second operation consists to sort the frequent items obtained according to their support
in the database. Theoretical and experimental results showed that ordering items in
increasing order of their support minimizes the number of nodes in the generalized suffix-
tree compared to other orderings, such as appearance order or decreasing order of their
support in the dataset. Having Less nodes in the tree implies that both less memory
is needed to store the tree in main memory and that the time required to traverse the
tree during further operations is minimized. The property has been examples in the next
chapter of this part under this thesis.

This preprocessing phase is fast, compared to the other later phases of the algorithm, and
plays an important role for the next two phases in terms of performances and required resources.
Moreover, data resulting from this phase can be stored in secondary memory in order to avoid
repeating it if different minconfidence threshold values are used to generate association rules
for the same minsupport value. However, this phase must be performed for each different
minsupport threshold value used. This preprocessing operation have been done into two steps,
one for creating the numerical table from the original data by considering each attribute value
pair.

The different tasks performed during the preprocessing are described in detail in the follow-
ing subsections. Section 4.1.1.1 describes the one time preprocessing procedure for generating
the Number Table corresponding to the initial dataset and minimizing the physical memory
required to represent the data. The second task is based on the user’s defined minsupport
threshold provided by the user. It consists in the creation of the SFD by deleting infrequent
items and sorting frequent items. This task, described in detail in section 4.1.1.2, outputs the
SFD that is used for creating the frequent generalized suffix-tree from which the frequent closed
itemsets are extracted. For each different support value, the second step of this phase should
perform before going to the next phase of the algorithm. Figure 4.1 shows an organigram type
representation of the preprocessing operations and corresponding outputs of FIST.

4.1.1.1 Preprocessing the Dataset

During this step of the preprocessing phase, dataset values are mapped to discrete numbers and
their number of occurrences in the dataset is counted. As for all itemsets based approaches, if
the initial dataset contains numerical continuous values for the variables, a suitable discretiza-
tion of variables is required before this step is performed. This mapping creates a table called
Item Table (IT) in which all pairs {variable, value} in the dataset, where values can be boolean,
numerical, nominal or textual, are mapped to items represented as discrete numbers. To create
this table, the mapping function associates a unique number to each pair {variable, value}.
Simultaneously with the mapping, the support of each item in the dataset (number of occur-
rences) is counted. The IT table generated during this phase will be used after the frequent
patterns extraction to generate a user understandable result in which interpretable identifier
are used instead of discrete numbers. This process allows FIST to treat datasets where vari-
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Figure 4.1: Database Preprocessing Phase

ables can be represented by more than one column. This feature is important to be able to
process datasets integrating annotations, such as GO or PubMed annotations for instance, that
are represented by several columns since more than one annotation can be associated to each
object (row).

After the IT table was generated using the mapping function, the corresponding represen-
tation, with item discrete numbers, of the original dataset is created. This new representation,
called the Number Table (NT) of the dataset, optimizes the memory space required for stor-
ing itemsets and improves the efficiency of comparison operations used in later phases of the
algorithm. This IT table is a one-time process and its result can be reused for preparing the
different SFD corresponding to different minsupport values, which is the purpose of the next
step.

The detail process of this preprocessing phase is presented for two different example datasets
below. The first is a biological dataset represented in multi-valued data matrix format in table
4.1. The second is a biological dataset represented in binary data matrix format in table 4.2.

First, a mapping of each distinct variable = value pair, where variables are matrix columns
and values are the different values found in rows for the corresponding column, is created. The
result is the IT table in which each pair variable = value is associated to an unique item that
is a discrete number. During this process, the number of occurrences of each distinct item in
the dataset is counted as its support. The IT tables of the two example biological datasets D1

and D2 are shown in table 4.3 and 4.4 respectively.
From the IT table, a new table in which the original data are replaced by item numbers is
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Gene S1 S2 S3 A1 A2 O1 O2

g1 o u n abc xyz ooo oo1
g2 o n o abd wxy oo1 oo2
g3 n u o abc xyz ooo oo2
g4 o o o bca yxz oo1 oo1
g5 n u u bca zxy oo1 oo1

Table 4.1: Multi-valued Data Matrix Representation of the Biological Database D1

OID P1 P2 P3 P4 P5 A1 A2 A3 A4

O1 1 ? 1 ? ? ? 1 ? 1
O2 ? 1 ? ? 1 ? ? 1 ?
O3 1 ? 1 ? ? 1 1 ? ?
O4 ? ? ? 1 ? 1 ? ? ?
O5 ? 1 ? 1 1 1 ? 1 ?
O6 1 ? 1 ? ? ? 1 ? 1
O7 ? 1 ? ? 1 ? ? 1 ?
O8 1 ? 1 1 ? ? 1 ? 1
O9 ? 1 ? ? 1 ? ? 1 ?
O10 1 1 1 ? 1 ? 1 ? 1

Table 4.2: Binary Data Matrix Representation of the Biological Database D2

created as a new compressed representation of the dataset. This table is called Number Table
(NT). The NT tables for the two example datasets D1 and D2 are shown in table 4.5 and 4.6
respectively. These IT and NT tables will be used during the next phases of the approach to
generate the SFD.

4.1.1.2 Preprocessing with minsupport

The last step of the preprocessing phase is the creation of SFD corresponding to the NT for a
given minsupport value. This step aims at creating a dataset containing only frequent items,

Item Attribute : Value Support Item Attribute : Value Support

1 S1 : o 3 11 A2 : wxy 1
2 S2 : u 3 12 O1 : oo1 3
3 S3 : n 1 13 O2 : oo2 2
4 A1 : abc 2 14 S1 : n 2
5 A2 : xyz 2 15 S2 : o 1
6 O1 : ooo 2 16 A1 : bca 2
7 O2 : oo1 3 17 A2 : yxz 1
8 S2 : n 1 18 S3 : u 1
9 S3 : o 3 19 A2 : zxy 1
10 A1 : abd 1

Table 4.3: Item Table for Dataset D1
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Data Support Item

P1 5 1
P3 5 2
A2 5 3
A4 4 4
P2 5 5
P5 5 6
A3 4 7
A1 3 8
P4 3 9

Table 4.4: Item Table for Dataset D2

Object Numbers

g1 1 2 3 4 5 6 7
g2 1 8 9 10 11 12 13
g3 14 2 9 4 5 6 13
g4 1 15 9 16 17 12 7
g5 14 2 18 16 19 12 7

Table 4.5: Number Table for Dataset D1

by eliminating the infrequent items as these don’t play any role in the finding of frequent closed
itemsets, to minimize the size of data processed. This to optimize memory space required
for storing itemsets and improve the efficiency of comparison operations. Unlike NT table
generation, this phase is repeated for each different minsupport value provided by the user.

This preprocessing task is performed into two steps. First, the infrequent items, defined
according to the minsupport threshold, are deleted from the IT table. Second, the remaining
items are sorted in increasing order of their support in the NT and, if more than one item
have the same support value they are sorted in lexicographic order to optimize further com-
parisons. Discrete numbers associated to items in the IT table are then updated, taking into
account the suppressed items, to optimize their numerical representation. The resulting table

Object Numbers

O1 1 2 3 4
O2 5 6 7
O3 1 2 8 3
O4 9 8
O5 5 9 6 8 7
O6 1 2 3 4
O7 5 6 7
O8 1 2 9 3 4
O9 5 6 7
O10 1 5 2 6 3 4

Table 4.6: Number Table for Dataset D2
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is called the Frequent Item Table (FIT). The FIT tables for the two example datasets D1 (for
minsupport=2/5) and D2 (for minsupport=4/10) are given in table 4.7 and 4.8 respectively.

Frequent Item Support New Item Frequent Item Support New Item

4 2 1 1 3 7
5 2 2 2 3 8
6 2 3 7 3 9
13 2 4 9 3 10
14 2 5 12 3 11
16 2 6

Table 4.7: Frequent Item Table for Dataset D1 and minsupport=2/5

Frequent Item Support New Item

4 4 1
7 4 2
1 5 5
2 5 3
3 5 6
5 5 4
6 5 7

Table 4.8: Frequent Item Table for Dataset D2 and minsupport=4/10

Then, the NT table is updated with the updated item numbers to generate the SFD. It
should be noted that if a row in the NT table contains only infrequent items, then it will not
represented in the SFD. Consequently, rows of the initial dataset containing only infrequent
items are not represented in the SFD that can thus contain fewer objects (rows) than the initial
dataset. The sorted frequent databases for the two example datasets D1 (for minsupport=2/5)
and D2 (for minsupport=4/10) are shown in table 4.9 and 4.10, respectively.

Object Items

g1 1 2 3 7 8 9
g2 4 7 10 11
g3 1 2 3 4 5 8 10
g4 1 6 9 10 11
g5 5 6 8 9 11

Table 4.9: Sorted Frequent Database for Dataset D1 and minsupport=2/5

If the itemsets to be considered can appear in only one row of the dataset, then the SFD
creation consists only in the mapping from item numbers in the NT to item numbers in the
FIT. This will be the case if all patterns supported by at least one row are searched for.
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Object Items

O1 1 3 5 6
O2 2 4 7
O3 3 5 6
O5 2 4 7
O6 1 3 5 6
O7 2 4 7
O8 1 3 5 6
O9 2 4 7
O10 1 3 4 5 6 7

Table 4.10: Sorted Frequent Database for Dataset D2 and minsupport=4/10

4.1.2 Phase 2: Mining Frequent Closed Itemsets

This second phase is the core of the FIST approach, where the frequent closed itemsets are mined
from the SFD database, and the most computationally intensive phase of the process. This
phase is carried out in two steps. First step is the generation of the Frequent Generalized Itemset
Suffix-Tree (FGIST) that is a main memory data structure specific to the FIST algorithm. It
can be viewed as the compressed representation of the SFD in primary memory. Each internal
node in the FGIST stores:

• An item number.

• A reference to a list of object identifiers if the path from the root to this node corresponds
to a complete suffix itemset.

• A link to the next node of the branch, except if the node is a leaf.

Each branch from the root to a leaf represents an itemset and the object list contains identifiers
of objects supporting the itemset. The details description of this step is given in section 4.1.2.1.

The second step of this phase is the extraction of the frequent closed itemsets from the
FGIST primary memory structure. This extraction is based on intersection and inclusion
operations performed between the branches, i.e., itemsets collected from the branches, and
between the object lists present in the subsequent leaf nodes, respectively. This step, that is
the most complex task of the process, is detailed in section 4.1.2.2.

4.1.2.1 Building the Frequent Generalized Itemset Suffix-Tree

During this process, the whole SFD database is accessed only once, from the first to the last row,
and stored in primary memory as a FGIST that is a condensed representation of the dataset.
Rows are processed one by one, and the list of item numbers read from the row, constituting
an itemset, is pushed into the tree as a set of suffixes. This data structure is optimized as
almost all frequent itemsets resulting from intersections of the dataset rows are represented as
branches in the FGIST. This relies on the fact that branches of the tree are stored in ascending
order and this property is ensured by the fact that items are ordered in ascending order of their
support in the dataset.

For each itemset read from the dataset, suffixes of the itemset are created by deleting
successively one item of the itemset from the first to the last. Then suffixes, associated to the
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object identifier represented as a sequential order number (OID), are processed to build the
FGIST. The insertion of a suffix in the FGIST is a recursive procedure starting from the root
node and successively descending in the branches corresponding to the consecutive items of
the suffix. If a suffix was already inserted, and is thus already represented as a branch in the
FGIST, then only the object list is updated by adding the object identifier of the suffix. The
pseudo-code of the algorithm for building the FGIST is presented in algorithm 2.

Algorithm 2 Building the FGIST
Input: Sorted Frequent Database (SFD)
Output: Frequent Generalized Itemset Suffix-Tree
1: begin
2: initialize k with |SFD|
3: for i = 1 - k do
4: Si ← φ

5: Si ← D(i,:)
6: s ← φ

7: s = genSuffix(Si, i)
8: for all sj ∈ s do
9: if s(j,1) ∈ ROOT.children then

10: match(node(i), s(j, i))
11: else
12: ROOT.children ← sj,1
13: edge ← (ROOT → ROOT.children)
14: delete(sj,1);
15: buildEdge(ROOT.children, sj)
16: end if
17: end for
18: end for
19: end

The first step in this process is use to count the total number of objects in the database
(step 2). The number of rows will help to create the character terminator for each vector and
determine how many time the whole process for creating and updating the tree will continue.
We can count this number only by using the object id column, no database pass is necessary
for this step. Step 3 will verify which row will process next and each row in the database
passes through the two phases. In the first phase (step 7), generates all the suffixes of the
vector corresponding to object being processed described in the genSuffix function described in
the section 4.1.2.1, which takes the whole object and the terminating symbol as argument and
generates a set of suffixes. For this phase, we need to access one row of the database at a time
and mapped it as a vector of numbers (step 5). The second phase of the process (step 8 to 17)
is applicable for each suffix of the suffix set s generated by the genSuffix function. The very
first step in this phase is to check the ROOT node of the tree to determine whether any edge
has been created previously from the ROOT with the first item of the suffix being process (step
9). If any edge has already been created from ROOT of the tree with the first item of the suffix
then go for the next unmatched position and do the necessary steps in that specific branch of
the tree using the match function (step 10). It passes the current node and the suffix to the
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match function. The description of the match function is given in section 4.1.2.1. If there is
no node present under the root node (step 11), then create a node with the first item of the
suffix and make an edge between root and the new node (step 12-13). After creating the first
node of the branch, delete the first item of the suffix (step 14) and redirect to the buildEdge
function (step 15). It passes two argument to the buildEdge function, the new node created
under the root node and the suffix after deleting the first item from it. The buildEdge function,
described in section 4.1.2.1, is used to build an edge from the node specified in the argument
and using the portion of the suffix passed to the function. In this algorithm, each row read is
represented as a vector Si of numbers and the OID of the row in the SFD is used as a suffix
terminator and passed to the suffix generation function. The suffixes are the subsets of the
itemset Si obtained by deleting successively one item to Si from the first to the penultimate.
The kth item of Si is denoted Ski in the algorithms. During this process, the SFD is accessed
only once. This minimizes disk accesses that are time expensive operations as they are about
of the order of million times longer that primary memory accesses.

genSuffix() Function This function takes one vector (string) at a time, with a suffix termi-
nator, and generates the set of all the suffixes of the vector. The pseudo-code of this function
is given in algorithm 3. It works as follows. First, the function initializes variable k with the
length of the vector (step 2). This value indicates how many suffixes will be generated, or the
number of times the loop will be performed. For each loop, the elements from the vector are
collected and a suffix of the vector is created (step 3-4). To create the mth suffix, the elements
from mth position to the end of the vector are collected (step 5-7). Finally, the suffix termina-
tor, that is the OID of the object considered, is added at the end of the suffix (step 8). After
processing the vector, the function outputs the set of all the suffixes generated (step 10) that
is returned back to the main algorithm as a suffix set (step 11).

Algorithm 3 Function: genSuffix(Si, Ci)
1: begin
2: initialize k with the length of Si
3: for m = 1 - k do
4: sm ← φ

5: for n = m - k do
6: sm ← sm

⋃
Si,[n]

7: end for
8: sm ← sm

⋃
Ci

9: end for
10: s =

⋃
{sm}

11: return(s)
12: end

Structure of FGIST Nodes Nodes in the FGIST data structure will store three different
types of values depending on their position in the tree. The structure of FGIST nodes is given
in table 4.11. When a node is created for the first time, it only stores the item number identifier
in the Item field and other two fields are initialized to null. When one child node is created
under the node then the HashTable field is initialized to store the links to the child nodes.
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When a suffix which last item correspond to this node is inserted in the tree then the ObjectIds
field is initialized with the suffix terminator (OID) of the suffix.

Field Contains Generic Type
Item Identifier of the item Number
ObjectIds Supporting objects (OIDs) List of numbers
HashTable Links to child nodes Hashtable

Table 4.11: Structure of FGIST Nodes

match() Function This function is used when two or more suffixes contain a similar sequence
of items at their beginning. Then, when the second is inserted in the FGIST, it finds the next
unmatched node in the branches of the tree. In such situations, we have to traverse a particular
branch of the tree from its root to the last matching item (node) of the suffix. This recursive
function goes inside the tree recursively to find the first unmatched node present, if any. When
this unmatched node is found, the buildEdge function, described below, is called to insert the
remaining portion of the suffix from the last matched item to the last.

Algorithm 4 Function: match(node(I), sj)
1: begin
2: delete s(j,1)
3: if node(I).children is not empty then
4: for all element J in node(I).children do
5: if s(j,1) = child(J) then
6: match(node(I), sj)
7: else
8: buildEdge(node(i), sj)
9: end if

10: end for
11: end if
12: return
13: end

The first step of this function is to delete the first item of the suffix being passed to it
(step 2). If any children is found under the current node, then for each children it checks the
similarity between the first element of the remaining part of the suffix with the items present
in the child nodes (step 3-4). If any match is present in the children of the node, then it goes
inside the branch following the matched child and checks recursively the remaining items of the
suffix (step 5-6). If no similarity has been found under the children of the current node, then
the buildEdge function is called from the current node to create a sub-branch from the last
matched node with the remaining suffix (step 7-9). After creating the sub-branch it returns
back to the main algorithm (step 10-12).

buildEdge() Function This function receives as its arguments a node of the FGIST and a
suffix (vector of items and suffix terminator). It creates in the FGIST a sub-branch correspond-
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ing to the suffix starting from the node passed as argument. The pseudo-code of the function is
given in algorithm 5. As mentioned previously, the function is called from two different places.
First, from the main algorithm when a particular node is created for the first time from the
root. Second, inside the match function, when an unmatched is found between the children of
the current node and the suffix to be inserted. In the first case, the first item of the suffix is
assigned to the ROOT.item in the main algorithm and the remaining items of the suffix are
added to the successively created child nodes in a recursive manner for instance.

Algorithm 5 Function: buildEdge(node(I), sj)
1: begin
2: l← si.length()
3: if l 6= 1 then
4: node(I).children = sj,1
5: edge ← (node(I) → node(I).children)
6: delete(sj,1)
7: buildEdge(node(I).children, sj)
8: else
9: node(I).object = sj

10: end if
11: return
12: end

This function first initializes the l variable with the length of the suffix received as argument
(step 2). If the length is greater than one, then a node with the first item of the suffix passed
as an argument is created (step 3-4). Then, a link between the current node and the new node
is created and the first item from the suffix is deleted (step 5-6). In a recursive way, it goes
inside the new node to process the remaining part of the suffix (step 7). When the length is
equal to one, this means that the suffix received as argument is the suffix terminator, i.e., OID
(step 8). Then, we add this OID to the ObjectIds field of the current node (step 9).

4.1.2.2 Extracting Frequent Closed Patterns

The second step of the second phase consists in extracting the frequent closed itemsets (FCI),
with the list of dataset objects containing each, from the FGIST tree. Each entry in the FCI
table contains two elements: A list of items and the list of identifiers of objects containing this
itemset (OID). First, each branch of the FGIST tree from the root to a leaf is traversed and
a new entry in the FCI table is created for the itemset corresponding to that branch. The
associated list of OID is initialized with the list in the leaf node of that branch. The size of
this OID list corresponds to the support of the itemset in the dataset. Then, the non-closed
itemsets in the FCI table are identified using associated OID lists as follows. If an itemset is
included in another itemset and both have identical OID lists, then the included itemset is not
closed and then deleted. Finally, the frequent closed itemsets not already found are identified
by performing intersections between two closed itemsets in the FCI table and verifying if
the resulting itemset is not infrequent, using OID lists, and inserted in the table if not already
present. The associated OID list is the result of the union of the OID lists of the two intersected
itemsets. If a new frequent closed itemset is generated, then the process is repeated for the
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new generated itemsets and this iterative process ends when no new frequent closed itemset is
generated. At the end, the FCI table contains all frequent closed itemsets with associated list
of objects containing each of them. The pseudo-code of this step is presented in algorithm 6.

Algorithm 6 Extracting Frequent Closed Patterns
Input: Frequent Generalised Itemset Suffix Tree
Output: FCI_Table containing [Itemset, Object Ids]
1: begin
2: for each itemset Li in fGIST

3: insert pattern {Li, Li.OIDs} into FCP
4: for each itemset Lj successor of Li in fGIST with length(Lj) > length(Li)
5: if Li ⊂ Lj and Li.OIDs = Lj .OIDs then
6: delete pattern {Li, Li.OIDs} from FCP

7: end if
8: end for
9: end for

10: NFCP ← FCP

11: while NFCP 6= ∅ do
12: NFCP ← ∅
13: for each itemset Lk in NFCP

14: for each itemset Li in FCP

15: Lm ← Li ∩ Lk
16: if Lm 6= ∅ and Lm /∈ FCP then
17: Lm.OIDs← Li.OIDs ∪ Lk.OIDs
18: insert pattern {Lm, Lm.OIDs} into FCP
19: NFCP ← NFCP ∪ {Lm, Lm.OIDs}
20: end if
21: end for
22: end for
23: end while
24: end

The output is the FCP set containing the list of FCIs with their associated OID list. During
this step, each itemset corresponding to a branch of the FGIST from root to leaf is traversed
and the algorithm tests if this itemset is closed or not as follows (steps 2-9). Properties of
closed itemsets says that an itemset is not closed if it is included in another itemset and both
have identical OID lists. Using this property, by traversing from root to leaf a new entry is
created in the FCP set for the collected items Li and the corresponding OID list Li.OIDs in
the leaf node (step 3). The non-closed itemsets are then identified and deleted from the FCP
set: If an itemset is included in another itemset and both have identical object lists, then the
included itemset is deleted from, or not added to, FCP set (steps 5-6).

The second operation consists to identify the remaining few frequent closed itemsets not
in the FGIST (steps 10-23). These FCIs are those that can be obtained only by intersecting
two FCIs and that do not corresponds to suffixes of itemsets in the SFD. For this, intersection
operations are performed between each pair of FCIs in the FCP set and if the resulting set is
frequent and not present in the FCP set, a new FCP is generated (steps 16-18). The object
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list of this new FCP is the union of the object lists of the two intersected FCIs (step 14).
This procedure for identifying new FCPs continues till no new FCP is found in this way (step
11-23). However, all pairs of FCIs don’t have to be tested and only newly created FCIs Lk
are intersected with other FCIs in the FCP set. For this, new FCPs are stored in the NFCP
reference set (step 12 and 19). For the first iteration, the NFCP reference set is initialized with
FCP member references (line 10). At the end, the final FCP set contains all frequent closed
itemsets with associated OID list.

4.1.3 Phase 3: Generating Knowledge Patterns

The final phase of the approach is to generate the conceptual patterns from FCI and associated
OID lists in the FCI table. These patterns are the frequent conceptual bi-clusters, generators
and bases of conceptual association rules. Association rule set extracted contains both the
minimal cover for exact association rules and the structural minimal cover for approximate as-
sociation rules. These minimal covers, or bases, contain, respectively, the non-redundant exact
and approximate association rules with minimal antecedent (predictor itemset) and maximal
consequent (predicted items). Minimality and maximality are defined here according to the in-
clusion relation. The pseudo-code of the knowledge pattern generation is given in algorithm 7.

First, rows in the FCI table are sorted in increasing order of the size of FCI (step 2)
and the output sets BIC (for bi-clusters), GEN (for generators), and AR (for all association
rules) are initialized to empty set (step 3). For each entry of the FCI, the table is processed
successively (step 4-26) for creating hierarchical bi-clusters (step 5) and identifying generators
and association rules (step 6-25). All subsets stored in SUB of itemset FCI[i].Itemset are
generated, sorted in increasing order of their sizes (step 8-9) and processed one by one (step
11-23). The algorithm first determines if S is a generator of FCI[i].Itemset (step 12-14). If it
is a generator then stored in the set GEN. Then, all association rules with S as antecedent
are generated if their confidence is greater than or equal to the minconfidence threshold (step
15-22). Finally, knowledge patterns in the BIC, GEN, and AR sets are mapped to the original
data values and object identifiers in order to simplify their interpretation by the end-user using
data structures generated during the preprocessing phase (step 27).

4.2 FIST Version 2: Second Algorithmic Version

In this section, we describe the second algorithmic version of the FIST approach. This version
results from theoretical and experimental studies of the first version to improve both memory
usage and processing time efficiency. In this version, the three main phases of the first version
are divided into five steps. The pseudo-code of the FIST 2.0 algorithm, showing these five
steps, is given in algorithm 8.

The following subsections describe each step of the five steps separately. Section 4.2.1
describes the transformation of the initial algorithm for building the SFD to the second version.
Section 4.2.2 presents the second algorithmic process for building the FGIST from the SFD
that, unlike first algorithmic version where table operations are used, performs all required
operations to represent the frequent closed itemsets in the FGIST. The function testing the
lexicographic order between two itemsets, that is a major feature for optimizing the next two
steps, is presented in the section 4.2.3. The table based operations of the first algorithmic
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Algorithm 7 Generating Knowledge Patterns
Input: FCI table, minconfidence value, IT table
Output: Bi-clusters (BIC), Generators (GEN), Association Rules (AR)
1: begin
2: sort FCI in increasing size of itemsets
3: GEN, BIC, AR ← ∅
4: for all row FCI[i] in FCI do
5: BIC ← {FCI[i].Itemset, FCI[i].Object_list}
6: M ← FCI[i].Itemset.size()
7: if (M ≥ 2) then
8: SUB ← list of subsets of FCI[i].Itemset
9: sort SUB in increasing size of subsets

10: K ← SUB.size()
11: for all subset S in SUB do
12: if (S /∈ GEN) and (S /∈ FCI.Itemset) then
13: GEN[i] ← S
14: end if
15: for j = 1 - K do
16: if (S.size() + SUB[j].size() = M) and (S 6= SUB[j]) then
17: create rule R : {S =⇒ SUB[j]}
18: if (confidence(R) ≥ minconfidence) and (R /∈ AR) then
19: AR ← {R, support(R), confidence(R), FCI[i].Object_list}
20: end if
21: end if
22: end for
23: end for
24: SUB ← ∅
25: end if
26: end for
27: map patterns in BIC, GEN, AR to dataset values in IT
28: end

version correspond to two new steps: Updating the FGIST, presented in section 4.2.4, and then
pruning useless nodes from the FGIST, presented in section 4.2.5. The optimized process for
getting different pattern outputs from the FGIST are presented in section 4.2.6.

4.2.1 Step 1: Generating the Sorted Frequent Dataset

This step, similar to the first phase of the first algorithmic version, generates the SFD from
the initial dataset. Compared to the first version, this creation is straightforward and requires
fewer operations to complete. Unlike the first version, in which the IT, NT and FIT are used,
this version directly computes the SFD via the IT. First, the list of all variable = value pairs is
generated, and the support of each is counted, from the initial dataset. Then, infrequent pairs
are deleted using the minsupport value, the remaining frequent pairs are sorted in increasing
order of their support and a unique numerical value is assigned to each pair. These numerical
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Algorithm 8 FIST 2.0: General Algorithm
Input: Source dataset; minsupport; minconfidence
Output: Frequent conceptual patterns
1: begin
2: build the Sorted Frequent Database from source dataset
3: construct the Frequent Generalized Suffix-Tree from Sorted Frequent Database
4: update object lists in Frequent Generalized Suffix-Tree
5: prune non-closed and infrequent itemsets from Frequent Generalized Suffix-Tree
6: generate conceptual knowledge pattern outputs
7: end

values, representing items, are then used to generate the SFD by replacing frequent attribute-
value pairs in the initial dataset by the corresponding item numbers in appropriate position in
the SFD. The pseudo-code of this function is given in algorithm 9.

Algorithm 9 FIST 2.0: Generate Sorted Frequent Database
Input: Source dataset; minsupport
Output: Sorted Frequent Dataset
1: begin
2: compute support of each source dataset value
3: insert frequent source dataset values in IT
4: sort frequent source dataset values in increasing support order
5: associate successive item numbers to source dataset values
6: for all row R in source dataset do
7: if at least one value in R is frequent then
8: write ordered items corresponding to R values in Sorted Frequent Dataset
9: end if

10: end for
11: end

The support of data values is first computed (step 2) and frequent values are inserted in
the IT table (step 3). These values are then sorted in increasing order of their support (step
4) and a unique sequential number is assigned to each (step 5). Then, the data values in the
initial dataset are replaced by the corresponding item number row by row and sorted in the
row (steps 6-10). Thus, source dataset rows that do not contain at least one frequent item will
not appear in the SFD.

This function improves global efficiency, in time and space, compared to the first version.
However, this process must be repeated for each different minsupport value, whereas in the
first version the one-time preprocessing is done only once for a dataset and the SFD creation
is performed for each different minsupport value.
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4.2.2 Step 2: Constructing the Frequent Generalized Itemset Suffix-
Tree

The second version of algorithm for FGIST creation is given in algorithm 10. Few changes have
been performed for constructing the FGIST compared to the first version of FIST. The main
change is in the processing of suffixes. This version generates only one suffix of a row, and no
suffix terminator is used, at a time, whereas in first version, all suffixes of a row, with suffix
terminator, are generated and passed to the function inserting them in the FGIST at once. This
change saves memory and avoid time bottleneck for very large rows, for which it is possible to
have hundreds of suffixes. Insertion of the suffixes in the FGIST is not discussed in detail here
since it is identical to the first version: It uses the match() and buildEdge() functions presented
in section 4.1.2.1.

Algorithm 10 FIST 2.0: Construct Frequent Generalized Suffix-Tree
Input: Sorted Frequent Database (SFD)
Output: Frequent Generalized Itemset Suffix-Tree (FGIST)
1: begin
2: row_num ← 1

3: for all row R of SFD do
4: for i = 1 to |R| do
5: suffix ← φ

6: for j = i to |R| do
7: suffix ← Rj
8: end for
9: insert suffix, row_num in FGIST

10: end for
11: row_num ← rownum+ 1

12: end for
13: end

First, the row_num variable is initialized to 1 (step 2). This variable is used for counting
the number in the dataset of the row processed and is used as suffix terminator (OID) for the
suffix, and thus inserted in the object_list field of the appropriate FGIST node. Then, for each
row of the SFD (step 3), generate one suffix of the row and send it, along with row_num, for
insertion in the FGIST (step 4-10). Insertion in the FGIST is performed in the same way as
in first algorithmic version using the match() and buildEdge() functions. After inserting all the
suffixes of a given row, the row_num is incremented (step 11).

4.2.2.1 Frequent Generalized Itemset Suffix-Tree Data Structure

The FGIST data structure used for the second algorithmic version shows few differences with
the one used in the first version. First, the root node is represented using a data structure called
HTree that is basically a list of pointers toward other data structures called HNodes represent-
ing nodes. The HNodes contain three fields corresponding to different type of information:
Item, Children, and Object_list. Item stores the item identification number used to represent
itemsets. Children is a list of pointers toward children HNodes of the node. Object_list contain
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the list of OIDs of objects of the dataset containing the item. HNodes are divided into three
categories according to their position in the tree and of the item they represent in the itemset:

Internal HNode: Stores an item identifier and pointers to children nodes. The Object_list
of this node is assign to null.

Internal HNode with Object List: This non-leaf node represents the final item of a suf-
fix. It stores the item identifier, pointers to children nodes and the OID list of objects
containing the suffix.

Leaf HNode: This node represents the final item of a suffix that has no superset in the
FGIST. It stores only the item identifier and the OID list of objects containing the suffix.
Its Children field is assign to null.

The structure of the four different types of elements (root and branch nodes) constituting the
FGIST are represented in figure 4.2.

Figure 4.2: Structure of Nodes in the FGIST

4.2.3 Lexicographic Order greaterThan() Function

The next two steps for FCP generation are updating and pruning the FGIST. These two
steps use a function to determine order between two itemsets and this function is crucial for
the efficiency of these steps. The pseudo-code of this function, called greaterThan(), is given
in algorithm 11. It receives two itemsets I2 and I1 as arguments and determines if I2 is
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lexicographically greater than I1. It corresponds to the Itemset Lexicographic Order Relation,
that is a total order relation between itemsets, given in definition 5.6 in section 5.3.2. Table 4.12
shows nine examples of comparison cases. This function avoids the execution of irrelevant
update and prune operations and thus optimizes the performance.

Itemset I1 {1, 2} {1, 2, 3} {1, 2} {1, 2} {1, 2, 3} {1, 2} {1, 3} {1, 3} {1, 3, 4}
Itemset I2 {1, 2} {1, 2} {1, 2, 3} {1, 3} {1, 3} {1, 3, 4} {1, 2} {1, 2, 3} {1, 2}
I2 >lex I1 False False True True True True False False False

Table 4.12: Output of greaterThan Function for Different Conditions

Algorithm 11 Function: greaterThan(Itemset I2, Itemset I1)
1: begin
2: if I2.equalsTo(I1) then
3: return false
4: end if
5: greater ← true
6: stop ← false
7: i ← 0;
8: while stop = false and i < I2.size and i < I1.size do
9: if I2[i] < I1[i] then

10: stop ← true
11: greater ← false
12: else
13: if I2[i] > I1[i] then
14: stop ← true
15: end if
16: end if
17: i ← i + 1
18: end while
19: if stop = false and I2.size < I1.size then
20: greater ← false
21: end if
22: return greater
23: end

First, the function checks if I2 is equal to I1 and exits if true (step 2-4). If I2 and I1 are
different, the three variables – greater, used to store the boolean result of the call; stop, used to
stop the execution when I1 is found greater than I2; i, indicating the position in the itemsets
– are initialized (step 5-7). Then, each pair of items at the same position in I1 and I2 are
compared successively (steps 8-18). The loop stops and returns false as result when the ith

item of I2 is less than the ith item of I1 (steps 9-11). Else, if ith item of I2 is greater than
ith item of I1, the loop stops and returns true (steps 12-18). If both of the above conditions
are not satisfied, then the loop continues until end of one itemset is reached (step 17). If the
loop terminates and above conditions are not satisfied, then if I2 is smaller than I1 the function
returns false (steps 19-21).
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4.2.4 Step 3: Updating the Frequent Generalized Itemset Suffix-Tree

Since table based operations used in the first algorithmic version are expensive in both time and
memory usage, the second version uses tree-based operations for the FGIST completion after
its construction from the SFD. This process is decomposed into two different phases: First,
update the tree to get the complete set of OID lists for each and all itemset in the FGIST,
and second, prune from the FGIST to non-closed and infrequent itemsets. In this section, we
present the FGIST update step. The general schema of this update is given in algorithm 12.

Algorithm 12 FIST 2.0: Updating the Frequent Generalized Itemset Suffix-Tree
Input: Frequent Generalized Itemset Suffix Tree
Output: Updated Frequent Generalized Itemset Suffix-Tree
1: begin
2: repeat
3: for all itemset I1 with object list O1 6= ∅ in FGIST do
4: for all itemset I2 with object list O2 6= ∅ such as greaterThan(I2, I1) in FGIST do
5: if I1

⋂
I2 6= ∅ then

6: update FGIST with I1
⋂

I2, O1
⋃

O2;
7: end if
8: end for
9: end for

10: until no update
11: end

This function is based on the greaterThan function testing lexicographic order between
itemsets (step 4). If an itemset is greater than another itemset, then their intersection, and
the union of the corresponding OID lists, are used to update the tree (step 5 to 7). The opti-
mized process of the FGIST update is performed through the three functions HTree.Intersect(),
HNode.Intersect() and HNode.Intersect() described in the following paragraphs.

HTree.Intersect() This function, which pseudo-code is given in algorithm 13, is called on
the root of the tree for the first time to update the OID list and stops after completing the
updating operation. For each children under the root, it calls the HNode.Intersect() function
and repeats the process until no changes was performed (step 4-7). These iterations generate
the few frequent closed itemsets missing after FGIST creation form the SFD, and also updates
the OID list in the internal node if required.

HNode.Intersect(Itemset prefix, HNode first) This function is called for the first time
by the HTree.Intersect() function with two arguments: An empty (for initialization) itemset
named prefix and the reference toward the first node of the branch corresponding to the first
item of the processed itemset. Its pseudo-code is given in algorithm 14. First, the Item of the
node is added to the prefix itemset (step 2). Then, for checking the OID list of the node, if
the Object_list field is not empty, the HNode.Intersect2 () function is called (step 3-5). This
call will recursively collect subsequent itemsets, according to lexicographic order, and update
them if required as presented in the next paragraph. After this call, it checks each children of
the current node and goes inside each till a leaf node is reached (step 6-8). When a leaf node
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Algorithm 13 Function: HTree.Intersect()
1: begin
2: boolean change ← true
3: for all child C in ROOT.HashTable do
4: while change = true do
5: change ← false
6: C.Intersect({}, C)
7: end while
8: change ← true
9: end for

10: end

is reached, it returns from the leaf to the root and deletes the item of the node from the prefix
itemset while unstacking items (step 9).

Algorithm 14 Function: HNode.Intersect(Itemset prefix, HNode first)
1: begin
2: add Item to prefix
3: if Object_list 6= ∅ then
4: first.Intersect2({}, prefix, Object_list, first)
5: end if
6: for all child C of prefix do
7: C.Intersect(prefix, first)
8: end for
9: remove last item from prefix

10: return
11: end

HNode.Intersect2(Itemset current, Itemset I, ObjectList O, HNode first) This
recursive function is called for the first time by the HNode.Intersect() function when updating
the FGIST is required. Its pseudo-code is given in algorithm 15. When called, it receives four
values corresponding to the following arguments:

• An itemset named current corresponding to the items gathered by the recursive calls
performed till this node. This itemset is initialized to empty set at first call by the
HNode.Intersect() function.

• An itemset named I corresponding to the itemset for which updates are performed. This
itemset is initialized with prefix itemset at first call.

• An object list named O corresponding to the OID list of the I itemset. This list is
initialized with the object list of the prefix itemset at first call.

• A reference to an HNode named first corresponding to the first node of the branch cur-
rently processed.
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It updates the itemsets in nodes that are subsequent to the first node received as argument
from the HNode.Intersect() function using the I itemsets and O object list also received as
arguments from the HNode.Intersect() function.

First, the item in the Item field of the node is appended to the current itemset (step 2). If
the object list of the current node is not empty and the current itemset is greater than the I
itemsets according to the greaterThan() function, then the intersection between I and current
is stored in J (step 3-4). If the result of the intersection is not empty, the union of the object
list of current and I itemsets is stored in P (step 6). If the intersection J is equal to current,
then update the object list of the current node with the union of P and the object list of the
node (step 5-8). Otherwise, if J is equal to prefix, then update the object list of prefix with
P traversing the tree from the first node (step 9-13). If the J is different from both current
and prefix, then J is inserted in the FGIST, traversing the tree from the first node, with P as
object list (step 14-19). Then, it recursively traverse the child nodes to perform the update
with the I itemset and its O object list (step 20-22). When all itemsets of the branch have
been processed, the function returns to the root of the tree, deleting the Item in the node from
the current itemset (step 23).

Algorithm 15 Function: HNode.Intersect2(Itemset current, Itemset I, ObjectList O, HNode
first)
1: begin
2: add Item to current
3: if Object_list 6= ∅ and greaterThan(current,I) then
4: Itemset J ← current

⋂
I

5: if J 6= ∅ then
6: ObjectList P ← Object_list

⋃
O

7: if J = current then
8: Object_list ← Object_list

⋃
P

9: else
10: if J = I then
11: first.Update(J, P)
12: change ← true
13: end if
14: else
15: first.Insert(J, P)
16: change ← true
17: end if
18: end if
19: end if
20: for all child C of current do
21: C.Intersect(current, I, O, first)
22: end for
23: remove last item from current
24: return
25: end
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4.2.5 Step 4: Pruning the Frequent Generalized Itemset Suffix-Tree

After update phase, the FGIST contains all frequent closed itemsets with supporting object list.
The pruning phase described in this section prunes potential infrequent itemsets, resulting from
intersections of the update phase, and non-closed itemsets in the FGIST using the minsupport
threshold and an optimized closure checking method. The general process of this phase is
described in algorithm 16.

Algorithm 16 FIST 2.0: Delete Non-Closed and Infrequent Itemsets
Input: Frequent Generalized Itemset Suffix Tree, minsupport
Output: Updated Frequent Generalized Suffix-Tree
1: begin
2: for all itemset I1 with object list O1 6= ∅ in FGIST do
3: if size(O1) < minsupport then
4: delete {I1, O1} from FGIST
5: else
6: for all itemset I2 with object list O2 6= ∅ and greaterThan(I2, I1) in FGIST do
7: if I1 ⊂ I2 and O1 = O2 then
8: delete {I1, O1} from FGIST
9: end if

10: end for
11: end if
12: end for
13: end

First, the frequency of itemsets in the FGIST, identified by their non empty object list, is
checked using the minsupport threshold and the object list size, and infrequent itemsets are
pruned from the tree (step 3-4). Itemsets corresponding to internal nodes are pruned by nul-
lifying their object list of the node and itemsets corresponding to leaf nodes are pruned by
suppressing the node (and its ancestors with empty object list). In the itemset is frequent,
its closeness is checked by comparing subsequent itemsets in the FGIST (step 6). If a subse-
quent itemset is a superset of the itemset considered and the object lists of both itemsets are
equal, then the itemset considered is non-closed and thus pruned (step 7 and 8). The detailed
operations of the FGIST pruning is performed through the two functions HTree.Prune() and
HTree.TestInclusion() on the HTree root node, and the three functions HNode.Prune(), HN-
ode.TestInclusion() and HNode.TestInclusion2 () on the HNode nodes described in the following
paragraphs.

HTree.Prune(int minsupport) This function is used to initialize the pruning process
through the FGIST using the minsupport threshold value to check the frequency of itemsets. It
works on the root of the FGIST and calls the HNode.Prune() function on the first node of each
branch (step 2-4). For each node, it gives as arguments of the call an empty set, the reference
to the root node and the minsupport threshold value (step 3).

HNode.Prune(Itemset prefix, HTree ROOT, int minsupport) This prune function is
applied to internal HNode nodes of the FGIST and recursively traverse a branch, checking the
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Algorithm 17 Function: HTree.Prune(int minsupport)
1: begin
2: for all child C in ROOT.HashTable do
3: C.Prune({}, ROOT, minsupport)
4: end for
5: end

frequency and closeness of the itemsets corresponding to traversed nodes with non empty object
lists. Its pseudo-code is given in algorithm 18. It is called by the HNode.Prune() function and
receives three arguments: :

• An itemset named prefix corresponding to the items gathered by the recursive calls per-
formed till this node. This itemset is initialized to empty set at first call by the HN-
ode.Prune() function.

• A reference to the root HTree node of the FGIST.

• The minimum support threshold value.

It first appends the item in Item field of the node to the prefix itemset (step 2). Then, it
tests if the current node represents the last item of an itemset, checking for the presence of
an object list (step 3). If the size of the object list is less than the minimum support value,
the itemset is infrequent and the object list of the node is emptied to prune this itemset (step
4-6). Otherwise, the HTree.TestInclusion() function is called to check the closeness of the prefix
itemset (step 7). Then, the pruning of subsequent itemsets in the branch is performed by a
recursive call of this function on children nodes (step 10-12). After pruning of subsequent nodes
in the branch and if the current node is unnecessary, that is if all its subnodes were pruned and
this node corresponds to an itemset that is infrequent, the current node is deleted (step 13-15).
This situation is identified by the fact that the Object_list and Children fields are empty (step
13). Finally, when all subnodes have been processed, the function returns, unstacking the Item
item of the current node from the prefix itemset (step 9-10).

HTree.TestInclusion(Itemset I, ObjectList O) This function is called by the HN-
ode.Prune() function to check the closeness of an itemset, passed as argument with its object list,
in the FGIST. It makes use of the HNode.TestInclusion() and HNode.TestInclusion2 () functions
described in the following paragraphs. The HNode.TestInclusion() and HNode.TestInclusion2 ()
functions both collect subsequent itemsets of I to check closeness properties against the I item-
set. These two functions are identical except that the first uses the greaterThan() function to
compare itemsets to optimize the search space in the FGIST when possible. Its pseudo-code is
given in algorithm 19. It uses two arguments:

• An itemset named I corresponding to the itemset to check. This itemset is initialized
with the prefix itemset when called by the HNode.Prune() function.

• An object list named O corresponding to the OID list of the I itemset. This list is
initialized with the object list of the prefix itemset when called.
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Algorithm 18 Function: HNode.Prune(Itemset prefix, HTree ROOT, int minsupport)
1: begin
2: add Item to prefix
3: if Object_list 6= ∅ then
4: if size(Object_list) < minsupport then
5: Object_list← ∅
6: else
7: ROOT.TestInclusion(prefix, Object_list)
8: end if
9: end if

10: for all child C of prefix do
11: C.Prune(prefix, ROOT, minsupport);
12: end for
13: if Object_list = ∅ and Children = ∅ then
14: delete this node
15: end if
16: remove last item from prefix
17: return
18: end

Fist, for each branch under the root node of the FGIST, it compares the first item of the
I itemset and the item in the Item field of the first node of the branch (step 2). If they are
identical, then it calls the HNode.TestInclusion() function (step 3-4). In this case, itemsets
represented in this branch of the FGIST begin with the same item as the I itemset. This
means that we must check whether the itemsets represented in this branch of the FGIST are
lexicographically greater than I or not before testing closeness property. Otherwise, if the Item
item is greater than the first item of the I itemset, it calls the HNode.TestInclusion2 () function
(step 5-9). In this case, there is no need to check if the itemsets represented in this branch of
the FGIST are lexicographically greater than I. Branches under the root node of the FGIST
that contain itemsets beginning with an item lower than the first item of the I itemset do not
need to be tested, thanks to their ordering in the FGIST. This is an important optimization
for the efficiency of the pruning phase.

HNode.TestInclusion(Itemset current, Itemset I, ObjectList O) This function, called
by the HTree.TestInclusion() function, is used to check closure property of itemsets in the
branch of the FGIST where represented itemsets begin by the same item as the tested itemset
received as argument. The recursive function, which pseudo-code is given in algorithm 20, uses
three arguments:

• An itemset current corresponding to the items gathered by the recursive calls per-
formed till this node. This itemset is initialized to empty set at first call by the
HTree.TestInclusion() function.

• An itemset I corresponding to the itemset to check. This itemset is initialized with the
prefix itemset at first call.
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Algorithm 19 Function: HTree.TestInclusion(Itemset I, ObjectList O)
1: begin
2: for all child C in ROOT.Hashtable do
3: if C.item = I[1] then
4: C.TestInclusion({}, I, O)
5: else
6: if C.item > I[1] then
7: C.TestInclusion2({}, I, O)
8: end if
9: end if

10: end for
11: return
12: end

• An object list named O corresponding to the OID list of the I itemset. This list is
initialized with the object list of the prefix itemset at first call.

First, it appends the item in the Item field of the node to the current itemset (step 2). Then,
if verifies if the current node corresponds to an itemset for which the closure property checking
is needed, that is, if the object list of the current node is not empty and current is greater than
I (step 3). If true, it checks whether the current itemset is a subset of the I itemset, and if
the object list of the current node is equal to the object list O of I (step 4). In such a case,
the current itemset is not closed and its object list is set to null, which indicates the deletion
of the current itemset from the tree (step 5). After these operations, the function recursively
traverse subnodes in the branch for checking subsequent itemsets (step 8-10). After checking of
subsequent nodes in the branch, if the current node is unnecessary, i.e., if all its subnodes were
pruned and this node corresponds to an itemset that is non-closed, the current node is deleted
(step 11-13). This situation is identified by the fact that the Object_list and Children fields
are empty (step 11). Finally, when all subnodes have been processed, the function returns,
unstacking the Item item of the current node from the current itemset (step 9-10).

HNode.TestInclusion2(Itemset current, Itemset I, ObjectList O) This function,
called by the HTree.TestInclusion() function, is used to check closure property of itemsets
in the branch of the FGIST where represented itemsets begin with a greater item, given lexico-
graphic order on their identifiers, than the first item of the tested itemset received as argument.
This function is identical to the HNode.TestInclusion() function described above except for step
3 that do not use the greaterThan() function. Hence, given the fact that the first item of item-
sets in this branch is greater than the first item of the tested I itemset, this test is not required.
Theoretical and experimental studies have shown that this optimization is important from a
computational efficiency viewpoint. The pseudo-code of this function is given in algorithm 21.

4.2.6 Step 5: Generating Conceptual Knowledge Pattern Information

This is the last phase of the second algorithmic version of the FIST approach. During this
phase, conceptual bi-clusters, generators and bases of conceptual association rules are gen-
erated using the frequent closed patterns (FCP), constituted of frequent closed itemsets and
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Algorithm 20 Function: HNode.TestInclusion(Itemset current, Itemset I, ObjectList O)
1: begin
2: add Item to current
3: if Object_list 6= ∅ and greaterThan(current,I) then
4: if current ⊂ I and Object_list = O then
5: Object_list ← ∅
6: end if
7: end if
8: for all child C of this do
9: C.TestInclusion(current, I, O)

10: end for
11: if Object_list = ∅ and Children = ∅ then
12: delete node current
13: end if
14: remove last item from current
15: return
16: end

associated object lists, in the FGIST. Unlike in first algorithmic version, the different pattern
outputs are extracted from the FGIST in two different steps. The first step, discussed in section
4.2.6.1, directly extract bi-clusters and generators from the FCP. The second step, presented
in section 4.2.6.2, extracts different rule bases from the FCP using both generators and FCP.
This second algorithmic version can extract two bases of approximate conceptual association
rules: The proper base, containing approximate rules between two frequent closed itemsets,
and the structural base, containing the min-max rules between generators and frequent closed
itemsets. Depending on the application context, one or the other base can be generated, in
association with the base of exact conceptual association rules. Compared with traditional
ARM approaches, these association rules provide more information to the end-user as the list
of objects supporting each rule is generated instead of only the support of the rule. Moreover, if
these information are present in the initial dataset, user-understandable identifiers (names, la-
bels, codes, etc.) of objects and variable values can be used to construct user-friendly knowledge
pattern sets.

4.2.6.1 Extracting Conceptual Bi-clusters and Generators

Algorithm 22 gives the pseudo-code of the conceptual bi-cluster creation and generator identi-
fication. These patterns are extracted from the FGIST containing all frequent closed itemsets
with their list of supporting objects in the dataset.

During the process, the frequent closed patterns in the FGIST are considered in increasing
order of their itemset size (step 3-29). For each frequent closed pattern F (step 4-30), a bi-
cluster is created in the BIC set, with the itemset corresponding to the set of items sequentially
collected while traversing the branch from the root to this node as extent and the object list
of the node as intent (step 4). These extent and intent represent a maximal set of related rows
and columns, respectively. Then, generators of each FCI are created in a level-wise manner
(step 7-28). The subsets of the FCIs are created in increasing order of their size (step 8). For
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Algorithm 21 Function: HNode.TestInclusion2(Itemset current, Itemset I, ObjectList O)
1: begin
2: add item to current;
3: if Object_list 6= ∅ then
4: if current ⊂ I and Object_list = O then
5: Object_list ← ∅
6: end if
7: end if
8: for all child C of this do
9: C.TestInclusion(current, I, O)

10: end for
11: if Object_list = ∅ and children = ∅ then
12: delete node current;
13: end if
14: remove last item from current
15: return
16: end

each subset, its presence among the list of generators already found (step 11-13) or among
the FCIs (step 14-18) is tested. If both tests fail, a new entry is created in the GEN set for
generators of the FCI (step 20-24) and the boolean variable found_gen is set to true to avoid
testing subsets of greater size (step 21). This process relies on the property that generators
constitute an ideal of order, and ,consequently, that all generators of a frequent closed itemset
have the same size. If all subsets were proceeded and no generator was found, then the frequent
closed itemset is itself its own only generator (step 26-28). As a final operation (step 31),
items in the generators and bi-clusters are mapped to their original value in the source dataset
to simplify their interpretation by the end-user. To limit the number of extracted patterns,
objective or subjective measures for selecting patterns according to the application objectives
and requirements can easily be integrated in the process.

4.2.6.2 Generating Bases of Association Rules

This section presents the generation of bases of conceptual association rules using the GEN set
of frequent generators and the frequent closed patterns (FCP) in the FGIST. The pseudo-code
description of this step is presented in algorithm 23.

Three sets are generated during this step: The base of min-max exact conceptual association
rules (AR_E) and, either, or both, the structural (AR_SB) and the proper (AR_PB) bases for
approximate conceptual association rules. These bases are minimal, regarding their size, non-
redundant covers defined according to different criteria on the structure of rules. Informally,
these bases are minimal means that if one rule is delete from a base, all classical association
rules cannot be deduced from the base, with support and confidence. They are non-redundant
means that no rule in a base can be deduced, with support and confidence, from the other rules
of the base. The base of min-max exact rules contains rules between a generator (minimal set)
in antecedent and the frequent closed itemsets that is its closure (maximal set) in consequent.
The base of min-max approximate rules contains rules between a generator in antecedent and
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Algorithm 22 FIST 2.0: Finding Conceptual Bi-clusters and Generators
1: begin
2: GEN, BIC ← ∅
3: for all FCP F in increasing order of the itemset sizes in FGIST do
4: insert{F.Itemset, F.Object_List} in BIC
5: found_gen ← false
6: gen_size ← 1
7: while found_gen = false and gen_size < |F.Itemset| do
8: SUB ← subsets of F.Itemset of size gen_size
9: for all subset S in SUB do

10: not_gen ← false
11: for all G.Generator in GEN do
12: if S = G.Generator then not_gen ← true
13: end for
14: if not_gen = false then
15: for all C∈FCP preceding F∈FCP do
16: if S ⊆ C.Itemset then not_gen ← true
17: end for
18: end if
19: if not_gen = false then
20: insert{S, F} in GEN
21: found_gen ← true
22: end if
23: end for
24: gen_size = gen_size + 1
25: end while
26: if found_gen = false then
27: insert{F.Itemset, F.Itemset} in GEN
28: end if
29: end for
30: map items in BIC, GEN to dataset values
31: return(BIC, GEN)
32: end

frequent closed itemsets that are supersets of its closure in consequent. The proper base of
approximate rules contains rules between two frequent closed itemsets related by inclusion. A
detailed discussion on the rule bases is given in the state of the art part of the thesis.

The bases are created by considering each frequent generator in GEN successively (step
3-19). First, the (frequent closed) itemsets of the FCP in the FGIST are compared to the
closure of the generator (step 4-5). If they are identical (step 5), an exact rule is created in
the AR_E set with the generator as antecedent and the difference between the itemset and
the generator as consequent. This rule has a support equals to the size of the Object_list of
the itemset and a confidence equal to 1, and its associated supporting object list is Object_list
(step 8-9). Otherwise, if the closure of the generator is a subset of the itemset (step 13), a min-
max approximate rule is created in the AR_SB set with the generator as antecedent and the
difference between the itemset and the generator as consequent. This rule has a support equals
to the size of the Object_list of the itemset and a confidence equal to the ratio between the
size of the Object_list of the of the generator’s closure and the size of the itemset Object_list,

Kartick Chandra MONDAL, Laboratoire I3S



4.2. FIST Version 2: Second Algorithmic Version 86

Algorithm 23 FIST 2.0: Generating Bases of Conceptual Association Rules
1: begin
2: AR_E, AR_SB, AR_PB ← ∅
3: for all G.Generator in GEN do
4: for all F.Itemset of FCP in FGIST do
5: if G.Closure = F.Itemset then
6: [[ Min-Max Exact Conceptual Rules ]]
7: if G.Generator 6= F.Itemset then
8: create rule r: {G.Generator ⇒ F.Itemset \ G.Generator, sup(r) =

|F.Object_list|, conf(r)=1, F.Object_list}
9: insert r into AR_E

10: end if
11: else
12: [[ Min-Max Approximate Conceptual Rules ]]
13: if G.Closure ⊂ F.Itemset then
14: create rule r: {G.Generator → F.Itemset \ G.Generator, sup(r) =

|F.Object_list|, conf(r)=|F.Object_list|/|G.Object_list|, F.Object_list}
15: insert r into AR_SB
16: end if
17: end if
18: end for
19: end for
20: [[ Proper Approximate Conceptual Rules ]]
21: for all Fi.Itemset in FCP do
22: for all Fj .Itemset in FCP where Fj .Itemset ⊃ Fi.Itemset do
23: create rule r: {Fi.Itemset → Fj .Itemset \ Fi.Itemset, sup(r)=|Fj .Object_list|,

conf(r)=|Fj .Object_list|/|Fi.Object_list|, Fj .Object_list}
24: insert r into AR_PB
25: end for
26: end for
27: map items in AR_E, AR_SB, AR_PB to dataset values
28: return(AR_E, AR_SB, AR_PB)
29: end

and its supporting OID list is the Object_list of the itemset (step 14-15). The generation of
the proper base is performed by comparing pairs of frequent closed itemsets in the FCP of the
FGIST (step 21-26). If one is a subset of the other, a proper approximate rule is created in
the AR_PB set with the subset as antecedent and the difference between the superset and
the subset as consequent. This rule has a support equals to the size of the Object_list of the
superset and a confidence equal to the ratio between the size of the Object_list of the superset
and the size of the Object_list of the subset. Its supporting OID list is equal to the Object_list
of the superset among them (step 23). The last step of the algorithm consists to map the item
identifiers in rules to their original name in the source dataset (step 27).
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In this chapter, we present examples of executions of the two algorithmic versions of FIST
and the properties on which the FIST approach relies. In section 5.1, the trace of the execution
on the example dataset of the first algorithmic version of FIST is detailed. The execution of
the second algorithmic version of FIST for the same dataset and parameters is presented in
section 5.2. The properties of the approach and algorithmic versions of FIST are discussed in
section 5.3.

The example database D1 used for the example executions is given in binary matrix and
transactional formats in table 5.1. It contains six objects identified by their OID: {1, 2, 3,
4, 5, 6} and five binary variables: {A, B, C, D, E}. In binary matrix format, if an object
possesses a variable, the cell corresponding to the object row and the variable column contains
a 1; otherwise it contains a 0. In the transactional formal, if an object possesses a variable, the
identifier of the variable is present in the row corresponding to the object.

5.1 FIST 1.0 Execution

This section depicts the execution of the first algorithmic version of FIST. Each of the following
subsections presents separately one of the three phases of the algorithm.
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Object A B C D E
1 1 0 1 1 0
2 1 1 1 0 1
3 0 1 1 0 1
4 0 1 0 0 1
5 1 1 1 0 1
6 0 1 1 0 1

A. Binary Matrix Representation

Object Items
1 A C D
2 A B C E
3 B C E
4 B E
5 A B C E
6 B C E

B. Transactional Representation

Table 5.1: Example Database D1

5.1.1 Phase 1: Creating Sorted Frequent Database

The first phase is the preprocessing of the dataset to generate a minimal representation of
data, the Sorted Frequent Database. First, the Item Table is created by scanning the dataset
to identify the variable = value pairs while counting their number of appearances (support).
A unique number (item) is then assigned to each pair. The Item Table for database D1 is
presented in table 5.2. The item numbers are then used to generate the Number Table in which
each relation between an object and a variable = value pair is represented by the presence of
the corresponding item on the row representing the object. The Number Table of database D1
is given in table 5.3.

Items Attribute=Value Support
1 A=1 3
2 C=1 5
3 D=1 1
4 B=1 5
5 E=1 5

Table 5.2: Item Table of Database D1

Object Items
1 1 2 3
2 1 4 2 5
3 4 2 5
4 4 5
5 1 4 2 5
6 4 2 5

Table 5.3: Number Table of Database D1

Infrequent items, according to the minsupport value, are then deleted from the Item Table
and the remaining items are sorted in increasing order of their support count and assigned a
new item number according to this ordering. This resulting Frequent Item Table for minsupport
= 2/6 is presented in table 5.4. A mapping between the initial item numbers and these new
item numbers is performed on the Number Table to generate the Sorted Frequent Database.
The Sorted Frequent Database for database D1 and minsupport = 2/6 is presented in table 5.5.

For further comparison operations between itemsets, the lexicographic order on item num-
bers will be used, which is equivalent to comparing items on their support. Hence, amid the
series of item numbers, the smallest values correspond to items with the smallest support counts
in the dataset. By construction, if two data values have the same support, then their order of
appearance in the dataset will determine their item number order.
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Frequent Items Support Sorted Item
1 3 1
2 5 2
4 5 3
5 5 4

Table 5.4: Frequent Item Table of
Database D1 for minsupport = 2/6

Object Items
1 1 2
2 1 2 3 4
3 2 3 4
4 3 4
5 1 2 3 4
6 2 3 4

Table 5.5: Sorted Frequent Database
of Database D1 for minsupport = 2/6

5.1.2 Phase 2: Mining Frequent Closed Itemsets

This section presents examples of the frequent generalized itemset suffix-tree construction from
database D1 and the finding closed itemsets for minsupport = 2/6.

5.1.2.1 Step 1: Building Frequent Generalized Itemset Suffix-Tree

Objects of the Sorted Frequent Database are accessed sequentially to build the FGIST. The
trace of the row-wise development of the tree is depicted in table 5.6. The Step column shows
read operations of rows in the dataset. The Vector column shows the item vector of the rows
read in the dataset. The OID column shows the object identifier (sequential number) of the
row. The Suffixes column shows the list of suffixes generated for the object. The successive
calls of the match() and buildEdge() functions are shown with the suffix passed as argument.
The graphic given for each call shows the edge and node creations and updates in the FGIST.

Table 5.6: Frequent Generalized Itemset Suffix-Tree Creation for Example Database D1

Step Vector OID Suffixes
Create root

Continued on next page. . .
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Table 5.6 – Continued
Step Vector OID Suffixes
Read row 1: 1 2 1 121, 21

Call functions match() and buildEdge() with suffix 121

Call functions match() and buildEdge() with suffix 21

Read row 2: 1 2 3 4 2 12342, 2342, 342, 42
Call functions match() and buildEdge() with suffix 12342

Continued on next page. . .

Kartick Chandra MONDAL, Laboratoire I3S



91 Chapter 5. Examples and Properties

Table 5.6 – Continued
Step Vector OID Suffixes

Call functions match() and buildEdge() with suffix 2342

Call functions match() and buildEdge() with suffix 342

Call functions match() and buildEdge() with suffix 42

Continued on next page. . .
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Table 5.6 – Continued
Step Vector OID Suffixes
Read row 3: 2 3 4 3 2343, 343, 43

Call functions match() and buildEdge() with suffix 2343

Call functions match() and buildEdge() with suffix 343

Call functions match() and buildEdge() with suffix 43

Continued on next page. . .
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Table 5.6 – Continued
Step Vector OID Suffixes
Read row 4: 3 4 4 344, 44

Call functions match() and buildEdge() with suffix 344

Call functions match() and buildEdge() with suffix 44

Read row 5: 1 2 3 4 5 12345, 2345, 345, 45
Call functions match() and buildEdge() with suffix 12345

Continued on next page. . .
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Table 5.6 – Continued
Step Vector OID Suffixes

Call functions match() and buildEdge() with suffix 2345

Call functions match() and buildEdge() with suffix 345

Call functions match() and buildEdge() with suffix 45

Continued on next page. . .
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Table 5.6 – Continued
Step Vector OID Suffixes
Read row 6: 2 3 4 6 2346, 346, 46

Call functions match() and buildEdge() with suffix 2346

Call functions match() and buildEdge() with suffix 346

Call functions match() and buildEdge() with suffix 46
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5.1.2.2 Step 2: Extracting Frequent Closed Patterns

After creating the FGIST, the itemsets are collected from the tree to generate the set of all
frequent closed patterns (FCP). First task of this step consists to collect frequent patterns from
the FGIST. The process starts from the root of the tree and then traverse each branch to a
leaf. The itemsets collected during this traversal, identified by their object list, are stored in
the output FCP set.

The trace of the branch-wise execution of this recursive process is depicted in table 5.7.
The Current Node(I) column shows the value (root or item number) in the node of the tree
presently processed. When a leaf has been reached, and the process starts returning, this
column contains Return. The Child Nodes column shows the list of items in child nodes of the
actual node. When a child node has already been processed, it is marked with a check-mark
in the list. The Object List column shows the list of OIDs of the actual node. The Item List
column shows the itemset corresponding to the path between the root and the actual node.
The Output double column shows the identified frequent patterns. The Itemset sub-column
shows the frequent itemset of the frequent pattern. The Objects sub-column shows the list of
objects supporting the frequent itemset of the frequent pattern.

Table 5.7: Mining Frequent Patterns from FGIST for Example Database D1

Current Child Nodes Object List Item list Output
Node(I) Itemset Objects
Begin
Root 1, 2, 3, 4
1 2 φ 1
2 3 1 12 12 1
3 4 φ 123
4 φ 2, 5 1234 1234 2, 5
Return
3 X4
2 X3
1 X2
Root X1, 2, 3, 4
2 3 1 2 2 1
3 4 φ 23
4 φ 2, 3, 5, 6 234 234 2, 3, 5, 6
Return
3 X4
2 X3
Root X1, X2, 3, 4
3 4 φ 3
4 φ 2, 3, 4, 5, 6 34 34 2, 3, 4, 5, 6
Return
3 X4
Root X1, X2, X3, 4
4 φ 2, 3, 4, 5, 6 4 4 2, 3, 4, 5, 6

Continued on next page. . .
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Table 5.7 – Continued
Current Child Nodes Object List Item list Output
Node(I) Itemset Objects
Return
Root X1, X2, X3, X4
End

12 1
1234 2, 5

Final 2 1
Table 234 2, 3, 5, 6

34 2, 3, 4, 5, 6
4 2, 3, 4, 5, 6

Once frequent patterns have been collected from the FGIST, infrequent and non-closed ones
are first identified. For this checking, the object lists associated to frequent itemsets in frequent
patterns are compared according to inclusion and, if an itemset is a subset of another itemset
and their object lists are identical, then the subset itemset is not closed and suppressed from
the FCP table.

The trace of the execution of this iterative process is shown in table 5.8. The Set column
shows the number of the step in the present iteration that is also the order number of the
frequent pattern in the FCP table processed during this step. The Itemset column shows the
itemset in the frequent pattern processed during the present step. The Object list column shows
the object list supporting the itemset of the frequent pattern processed during the present step.
The Comparison with column shows the order number in FCP (Set value) of the itemset that is
compared with the frequent itemset processed during the present step. The Is subset? column
shows the result of the test checking if the frequent itemset processed during the present step
is a subset of the itemset it is compared with (Comparison with value). The Equal objects?
column shows the result of the test checking if the object list of the frequent itemset processed
during the present step is identical to the one of the itemset it is compared with (Comparison
with value). The Delete pattern? column indicates if the frequent pattern presently processed
is deleted, i.e., if infrequent or non-closed.

Table 5.8: Reduction of Frequent Patterns using Inclusions for Example Database D1

Set Itemset Object Is Comparison Equal Delete
list subset? with objects? pattern?

Begin
First iteration
1 12 1
2 1234 2, 5 No 1 No
3 2 1 Yes 1 Yes Yes
4 234 2, 3, 5, 6 No 1 No
5 34 2, 3, 4, 5, 6 No 1 No
6 4 2, 3, 4, 5, 6 No 1 No

Continued on next page. . .
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Table 5.8 – Continued
Set Itemset Object Is Comparison Equal Delete

list subset? with objects? pattern?
Second iteration
1 12 1 Yes 2 No
2 1234 2, 5
3 2 1 - - - -
4 234 2, 3, 5, 6 Yes 2 No
5 34 2, 3, 4, 5, 6 Yes 2 No
6 4 2, 3, 4, 5, 6 Yes 2 No
Third iteration
1 12 1 No 4 No
2 1234 2, 5 No 4 No
3 2 1 - - - -
4 234 2, 3, 5, 6
5 34 2, 3, 4, 5, 6 Yes 4 No
6 4 2, 3, 4, 5, 6 Yes 4 No
Fourth iteration
1 12 1 No 5 No
2 1234 2, 5 No 5 No
3 2 1 - - - -
4 234 2, 3, 5, 6 No 5 No
5 34 2, 3, 4, 5, 6
6 4 2, 3, 4, 5, 6 Yes 5 Yes
Fifth iteration
1 12 1
2 1234 2, 5
3 2 1 - - - -
4 234 2, 3, 5, 6
5 34 2, 3, 4, 5, 6
6 4 2, 3, 4, 5, 6
End

1 12 1
2 1234 2, 5 Final
3 234 2, 3, 5, 6 Table
4 34 2, 3, 4, 5, 6

The last step of this phase consists to identify the few missing frequent closed patterns,
and when necessary delete infrequent ones, in the FCP table. These patterns are identified by
performing intersection operations between frequent closed itemsets in the FCP table that have
items in common.

The trace of the execution of this process for example database D1 is depicted in table 5.9.
The iterative process performed is stopped when no new closed pattern is generated during
an iteration. A new closed pattern is identified by performing intersection between a pair of
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frequent closed itemsets in the FGIST. The supporting object list of a new closed itemset is
the union of the object lists of the two itemsets involved in the intersection operation. the
final FCP table obtained contains the complete set of frequent patterns that are used in the
next phase to generate conceptual clusters, generators and rules. The Set column shows the
order number of the frequent pattern in the FCP table processed during the actual step. The
Itemset column shows the itemset in the frequent closed pattern processed during the actual
step. The Object list column shows the object list supporting the itemset of the frequent
closed pattern processed during the actual step. The Patterns involved column shows the order
number in FCP (Set column) of the frequent closed patterns compared during the present
step. The Comparison results multi-column shows the results of the comparison of the frequent
closed patterns involved (Patterns involved column) during the present step. The Intersection
column shows the items that itemsets of the frequent closed patterns involved have in common.
The Union column shows the list of objects supporting the intersection between the itemsets
involved. The Add/Replace? column shows the operation performed when a new information
is found. Add means that a new entry in FCP is created and Replace means that the object
list of the itemset resulting from intersection (Intersection column) is replaced by the object
list computed by union (Union column).

Table 5.9: Mining Frequent Closed Patterns from FGIST for Example Database D1

Set Itemset Object Patterns Comparison results
list involved Intersection Union Add/Replace?

Begin
First iteration
First loop
1 12 1
2 1234 2, 5 1, 2 12 1, 2, 5 Replace
3 234 2, 3, 5, 6 1, 3 2 1, 2, 3, 5, 6 Add
4 34 2, 3, 4, 5, 6 1, 4 φ - -
Second loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6 2, 3 234 2, 3, 5, 6 -
4 34 2, 3, 4, 5, 6 2, 4 34 2, 3, 4, 5, 6 -
5 2 1, 2, 3, 5, 6 2, 5 2 1, 2, 3, 5, 6 -
Third loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6
4 34 2, 3, 4, 5, 6 3, 4 34 2, 3, 4, 5, 6 -
5 2 1, 2, 3, 5, 6 3, 5 2 1, 2, 3, 5, 6 -
Fourth loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6

Continued on next page. . .
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Table 5.9 – Continued
Set Itemset Object Patterns Comparison results

list involved Intersection Union Add/Replace?
4 34 2, 3, 4, 5, 6
5 2 1, 2, 3, 5, 6 4, 5 φ

Second iteration
First loop
1 12 1, 2, 5
2 1234 2, 5 1, 2 12 1, 2, 5 -
3 234 2, 3, 5, 6 1, 3 2 1, 2, 3, 5, 6 -
4 34 2, 3, 4, 5, 6 1, 4 φ - -
5 2 1, 2, 3, 5, 6 1, 5 2 1, 2, 3, 5, 6 -
Second loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6 2, 3 234 2, 3, 5, 6 -
4 34 2, 3, 4, 5, 6 2, 4 34 2, 3, 4, 5, 6 -
5 2 1, 2, 3, 5, 6 2, 5 2 1, 2, 3, 5, 6 -
Third loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6
4 34 2, 3, 4, 5, 6 3, 4 3, 4 2, 3, 4, 5, 6 -
5 2 1, 2, 3, 5, 6 3, 5 2 1, 2, 3, 5, 6 -
Fourth loop
1 12 1, 2, 5
2 1234 2, 5
3 234 2, 3, 5, 6
4 34 2, 3, 4, 5, 6
5 2 1, 2, 3, 5, 6 4, 5 φ -
No new closed pattern found
Stop the iterations

5.1.3 Phase 3: Finding Conceptual Bi-clusters, Generators and Rules

The final phase of the approach consists to generate bases of conceptual association rules and
conceptual bi-clusters, along with frequent generators of the closed itemsets, from the frequent
closed patterns in FCP. The fist operation is to sort frequent patterns in increasing order of
the itemset sizes. Then, frequent closed patterns are considered successively to identify bi-
clusters, the generators of its itemset and the rules, from these generators and the frequent
closed itemset, in this order. Conceptual association rules are generated into two distinct sets:
The base for exact rules and the base for approximate rules.

The trace of the execution of this process is depicted in table 5.10. For each frequent
closed pattern in the FCP set, are depicted the bi-cluster creations in the BIC set, generator
identifications in the GEN set and rule generations in the AR_Exact and AR_Approx sets.
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New inserted elements in these sets are depicted in blue color characters. The M variable
shows the size of the frequent closed itemset processed. The SUB set shows the list of subsets
processed for the frequent closed itemset. The K variable shows the total number of subsets.

Table 5.10: Output Patterns for Example Database D1

Begin
Sort on size
Order # Closed set Object Ids
1 2 1, 2, 3, 5, 6
2 12 1, 2, 5
3 34 2, 3, 4, 5, 6
4 234 2, 3, 5, 6
5 1234 2, 5
Initialize output sets BIC, GEN, AR_Exact, AR_Approx to φ

First closed pattern
BIC

Rows Columns
2 1, 2, 3, 5, 6
M = 1

Second closed pattern
BIC

Rows Columns
2 1, 2, 3, 5, 6
12 1, 2, 5
M = 2
SUB = [{1}, {2}]
K = 2

Update generators
GEN

Itemset Object List Closure
1 1, 2, 5 12

Generate rules
Rules set Antecedent Consequent Support Confidence Object list
AR_Exact {1} {2} 3 1 1, 2, 5
AR_Approx {2} {1} 3 0.6 1, 2, 5

Third closed pattern
BIC

Rows Columns
2 1, 2, 3, 5, 6

Continued on next page. . .
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Table 5.10 – Continued
12 1, 2, 5
34 2, 3, 4, 5, 6
M = 2
SUB = [{3}, {4}]
K = 2

Update generators
GEN

Itemset Object List Closure
1 1, 2, 5 12
3 2, 3, 4, 5, 6 34
4 2, 3, 4, 5, 6 34

Generate rules
Rules set Antecedent Consequent Support Confidence Object list
AR_Exact {1} {2} 3 1 1, 2, 5

{3} {4} 5 1 2, 3, 4, 5, 6
{4} {3} 5 1 2, 3, 4, 5, 6

AR_Approx {2} {1} 3 0.6 1, 2, 5

Fourth closed pattern
BIC

Rows Columns
2 1, 2, 3, 5, 6
12 1, 2, 5
34 2, 3, 4, 5, 6
234 2, 3, 5, 6
M = 3
SUB = [{2}, {3}, {4}, {2,3}, {2,4}, {3,4}]
K = 6

Update generators
GEN

Itemset Object List Closure
1 1, 2, 5 12
3 2, 3, 4, 5, 6 34
4 2, 3, 4, 5, 6 34
23 2, 3, 5, 6 234
24 2, 3, 5, 6 234

Generate rules
Rules set Antecedent Consequent Support Confidence Object list
AR_Exact {1} {2} 3 1 1, 2, 5

Continued on next page. . .
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Table 5.10 – Continued
{3} {4} 5 1 2, 3, 4, 5, 6
{4} {3} 5 1 2, 3, 4, 5, 6
{2,4} {3} 4 1 2, 3, 5, 6
{2,3} {4} 4 1 2, 3, 5, 6

AR_Approx {2} {1} 3 0.6 1, 2, 5
{2} {3,4} 4 0.8 2, 3, 5, 6
{3,4} {2} 4 0.8 2, 3, 5, 6
{3} {2,4} 4 0.8 2, 3, 5, 6
{4} {2,3} 4 0.8 2, 3, 5, 6

Fifth closed pattern
BIC

Rows Columns
2 1, 2, 3, 5, 6
12 1, 2, 5
34 2, 3, 4, 5, 6
234 2, 3, 5, 6
1234 2, 5
M = 4
SUB = [{1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3},
{1,2,4}, {1,3,4}, {2,3,4}]
K = 14

Update generators
GEN

Itemset Object List Closure
1 1, 2, 5 12
3 2, 3, 4, 5, 6 34
4 2, 3, 4, 5, 6 34
23 2, 3, 5, 6 234
24 2, 3, 5, 6 234
13 2, 5 1234
14 2, 5 1234

Generate rules
Rules set Antecedent Consequent Support Confidence Object list
AR_Exact {1} {2} 3 1 1, 2, 5

{3} {4} 5 1 2, 3, 4, 5, 6
{4} {3} 5 1 2, 3, 4, 5, 6
{2,4} {3} 4 1 2, 3, 5, 6
{2,3} {4} 4 1 2, 3, 5, 6
{1,3} {2,4} 2 1 2, 5
{1,4} {2,3} 2 1 2, 5

AR_Approx {2} {1} 3 0.6 1, 2, 5
Continued on next page. . .
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Table 5.10 – Continued
{2} {3,4} 4 0.8 2, 3, 5, 6
{3,4} {2} 4 0.8 2, 3, 5, 6
{3} {2,4} 4 0.8 2, 3, 5, 6
{4} {2,3} 4 0.8 2, 3, 5, 6
{1} {2,3,4} 2 0.67 2, 5
{2} {1,3,4} 2 0.4 2, 5
{3} {1,2,4} 2 0.4 2, 5
{4} {1,2,3} 2 0.4 2, 5
{1,2} {3,4} 2 0.67 2, 5
{2,3} {1,4} 2 0.5 2, 5
{2,4} {1,3} 2 0.5 2, 5
{3,4} {1,2} 2 0.4 2, 5

Last step of this phase consists, if required by the user, to map number values of items and
objects in the output sets to explicit values in the original database. This phase is required
to generate user-friendly understandable knowledge patterns. The final outputs obtained after
mapping for the example database D1 are given in table 5.11. It should be note that for this
example database, no object label is present. Also, the pairs variable = value are represented
by the variable term alone for simplicity since only one value is considered (1) for each in this
example. In the case of genomics or proteomics databases for instance, object identifiers in
final patterns could be gene or protein names if these appear in the initial dataset.

Table 5.11: Resulting Outputs After Mapping of Identifiers to Example Database D1 Labels

Frequent Closed Patterns
Order # Closed set Object Ids
1 C 1, 2, 3, 5, 6
2 AC 1, 2, 5
3 BE 2, 3, 4, 5, 6
4 BCE 2, 3, 5, 6
5 ABCE 2, 5

Generators
Itemset Object List Closure
A 1, 2, 5 AC
B 2, 3, 4, 5, 6 BE
E 2, 3, 4, 5, 6 BE
BC 2, 3, 5, 6 BCE
CE 2, 3, 5, 6 BCE
AB 2, 5 ABCE
AE 2, 5 ABCE

Conceptual association rules
Rule set Antecedent Consequents Support Confidence Object List

Continued on next page. . .
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Table 5.11 – Continued
AR_Exact {A} {C} 3 1 1, 2, 5

{B} {E} 5 1 2, 3, 4, 5, 6
{E} {B} 5 1 2, 3, 4, 5, 6
{CE} {B} 4 1 2, 3, 5, 6
{BC} {E} 4 1 2, 3, 5, 6
{AB} {CE} 2 1 2, 5
{AE} {BC} 2 1 2, 5

AR_Approx {C} {A} 3 0.6 1, 2, 5
{C} {BE} 4 0.8 2, 3, 5, 6
{BE} {C} 4 0.8 2, 3, 5, 6
{B} {CE} 4 0.8 2, 3, 5, 6
{E} {BC} 4 0.8 2, 3, 5, 6
{A} {BCE} 2 0.67 2, 5
{C} {ABE} 2 0.4 2, 5
{B} {ACE} 2 0.4 2, 5
{E} {ABC} 2 0.4 2, 5
{AC} {BE} 2 0.67 2, 5
{BC} {AE} 2 0.5 2, 5
{CE} {AB} 2 0.5 2, 5
{BE} {AC} 2 0.4 2, 5

5.2 FIST 2.0 Execution

This section depicts the execution of the second algorithmic version of the FIST approach for
the same example database D1, presented in table 5.1, and for the same parameter values. Each
of the following subsections presents separately one of the five main steps of the algorithm.

5.2.1 Step 1: Generating the Sorted Frequent Database

The first step is the creation of the Sorted Frequent Database from the source dataset. This
step is decomposed in four different tasks. First task is to create the list of distinct attribute
= value pairs, while counting their number of occurrences (support), from the dataset. The
resulting Item Table is given in table 5.12. The second task is to delete infrequent pairs using
the user defined minsupport threshold. The resulting Frequent Item Table is given in table 5.13.

Attribute values Support
A=1 3
C=1 5
D=1 1
B=1 5
E=1 5

Table 5.12: Item Table for Database D1

Attribute values Support
A=1 3
C=1 5
B=1 5
E=1 5

Table 5.13: Frequent Item Table for
Database D1 and minsupport = 2/6

Kartick Chandra MONDAL, Laboratoire I3S



5.2. FIST 2.0 Execution 106

Then, frequent pairs are sorted in increasing order of their support and, to simplify future
textual mapping operations, if two pairs have the same support they are ordered in lexicographic
order. Each pair is then assigned a unique item numeric identifier as shown in the table 5.14.
These item numbers are then used to construct the Sorted Frequent Database by mapping
attribute and value pairs in the dataset to their corresponding item. This mapping gives the
transactional format SFD database in which each row contains a set of items. Items are inserted
in objects of the SFD database in lexicographic order as shown in table 5.15.

Attribute=Value Support Item Number
A=1 3 1
B=1 5 2
C=1 5 3
E=1 5 4

Table 5.14: Item Identifiers for Example
Database D1 and minsupport = 2/6

Object Items
1 1 3
2 1 2 3 4
3 2 3 4
4 2 4
5 1 2 3 4
6 2 3 4

Table 5.15: Sorted Frequent Database for
Database D1 and minsupport = 2/6

5.2.2 Step 2: Constructing Frequent Generalized Itemset Suffix-Tree

The second step consists to create the FGIST from the SFD. This step uses a process similar to
the one of the first algorithmic version with some exceptions. Objects in the SFD are also read
sequentially to insert suffixes in the FGIST. The main difference lies in the fact that suffixes
are passed one at a time to the function updating the tree. At the end of the dataset scan, the
FGIST is created and will be updated and pruned during next steps.

The trace of the row-wise process for building the FGIST for example database D1 is
shown in table 5.16. The Step column represents row reads in the dataset and function call
operations. The Object column represents the vector of items corresponding to the row. The
OID column represents the object identifier (sequential number) corresponding to the row. The
Suffix column represents the suffix created and inserted for the object read.

Table 5.16: FGIST Generation for Example Database D1 with FIST 2.0

Step Object OID Suffix
Create root

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Read row 1 1 3 1
Call match() and buildEdge() 131

Call match() and buildEdge() 31

Read row 2 1 2 3 4 2
Call match() and buildEdge() 12342

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Call match() and buildEdge() 2342

Call match() and buildEdge() 342

Call match() and buildEdge() 42

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Read row 3 2 3 4 3
Call match() and buildEdge() 2343

Call match() and buildEdge() 343

Call match() and buildEdge() 43

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Read row 4 2 4 4
Call match() and buildEdge() 244

Call match() and buildEdge() 44

Read row 5 1 2 3 4 5
Call match() and buildEdge() 12345

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Call match() and buildEdge() 2345

Call match() and buildEdge() 345

Call match() and buildEdge() 45

Continued on next page. . .
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Table 5.16 – Continued
Step Object OID Suffix
Read row 6 2 3 4 6
Call match() and buildEdge() 2346

Call match() and buildEdge() 346

Call match() and buildEdge() 46
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5.2.3 Step 3: Updating Frequent Generalized Itemset Suffix-Tree

After construction of the FGIST from the SFD, update operations of the object lists are per-
formed.

The trace of the execution of this recursive process is presented in table 5.17. It shows
how a Prefix itemset, represented by edges in red color in the FGIST graphics, is compared
with other Current itemsets, represented by edges in green color in the FGIST graphics. Both
itemsets, represented by a path from the root to a node with an object list, are collected by
traversing the FGIST in a depth-first manner while collecting successive items. For pairs of
itemsets considered, the Intersection between the itemsets and the Union between the object
lists are computed. This depth-first process is performed branch by branch and when an update
of the Current itemset node is required it is depicted in red in the FGIST. This update consists
to replace the object list of the Current itemset node by the computed Union object list. The
output is the complete FGIST shown at the end of the table.

Table 5.17: Updating the FGIST for Example Database D1 with FIST 2.0

Prefix Current Union Intersection
Begin

For branch beginning by 1
1234 13

Continued on next page. . .
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Table 5.17 – Continued
Prefix Current Intersection Union
1234 13 13 1,2,5

For branch beginning by 2
234 24

234 24 24 2,3,4,5,6

Continued on next page. . .
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Table 5.17 – Continued
Prefix Current Intersection Union
For branch beginning by 3
34 3

34 3 3 1,2,3,5,6

For branch beginning by 4
4

End
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5.2.4 Step 4: Pruning Frequent Generalized Itemset Suffix-Tree

The penultimate step consists to prune the FGIST by deleting nodes that are unnecessary for
knowledge pattern generation. These nodes represent infrequent and non-closed itemsets. The
frequent patterns in the FGIST which itemset is included in the itemset of another frequent
pattern and which object list is a subset of the object list of the other frequent pattern are
pruned from the tree.

The trace of the execution of this recursive process is presented in table 5.18. Traversing
the FGIST in a depth-first manner, itemsets, identified by the presence of an object list, are
collected in the Prefix and Current itemsets. These Prefix itemsets considered successively are
represented by edges in red color in the FGIST graphics. They are compared to the Current
itemsets represented by edges in green color in the FGIST graphics. The result of the inclusion
test between the Prefix and the Current itemsets is shown in the Prefix ⊃ Current? column.
The result of the equality test between the object lists of the Prefix and the Current itemsets
is shown in the Prefix.OIDs = Current.OIDs? column. In case these two tests are true, the
node representing the Current itemset is pruned from the FGIST. In its final state, depicted
at the end of the table, the FGIST contains all and only frequent closed patterns.

Table 5.18: Pruning FGIST for Example Database D1 with FIST 2.0

Prefix Current Prefix ⊃ Current? Prefix.OIDs =
Current.OIDs?

Begin

Initial FGIST:

Continued on next page. . .

Kartick Chandra MONDAL, Laboratoire I3S



117 Chapter 5. Examples and Properties

Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
1234

1234 13 Yes No

1234 234 Yes No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
1234 24 Yes No

1234 34 Yes No

1234 3 Yes No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
1234 4 Yes No

13

13 234 No No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
13 24 No No

13 34 No No

13 3 Yes No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
13 4 No No

234

234 24 Yes No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
234 34 Yes Yes

234 3 Yes No

234 4 Yes No

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
24

24 3 No No

24 4 Yes Yes

Continued on next page. . .
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Table 5.18 – Continued
Prefix Current Prefix ⊃ Current? Prefix.OIDs =

Current.OIDs?
3

End

5.2.5 Step 5: Generating Conceptual Knowledge Pattern Information

The last step consists to generate the conceptual knowledge patterns from the frequent patterns
in the FGIST. In order to authorize and simplify the extension of this process, by considering
other pattern generation and selection criteria for instance, the output sets are generated into
two distinct tasks.

Table 5.19 shows incremental updates of the BIC and GEN sets of conceptual bi-clusters and
frequent generators respectively. New inserted elements in these sets are depicted in blue color
characters. For this process, frequent patterns are considered in increasing order of the size of
their itemset to minimize the number of pattern comparisons. For each pattern considered, a
bi-clusters associating the itemset and the object list of the pattern is created in BIC. Then, the
SUB list of subsets of its (frequent closed) itemset is created and subsets are tested in increasing
order of their size. The test consists to determine if the subset is a generator of the frequent
closed itemset; the result of this test is shown in variable not_gen. Once the first generator
has been determined, the size of generators of this frequent closed itemset is indicated in the
gen_size variable. Hence, as generators of the frequent closed itemsets constitute an order
ideal, all its generators have the same size. Larger subsets than the gen_size variable will then
not be considered.

Table 5.19: Extracting Bi-clusters and Generators for Example Database D1 with FIST 2.0

Begin
Initialize the output sets BIC and GEN to φ

First closed pattern: {{3}, {1, 2, 3, 5, 6}}
BIC

Continued on next page. . .
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Table 5.19 – Continued
Intent Extent
3 1, 2, 3, 5, 6
SUB = φ

Second closed pattern: {{13}, {1, 2, 5}}
BIC

Intent Extent
3 1, 2, 3, 5, 6
13 1, 2, 5
Initialize found_gen = false and gen_size = 2
SUB = {{1}, {3}, {13}}
subset = {1}
not_gen = false
gen_size = 1

GEN
Itemset Object List Closure
1 1, 2, 5 12
subset = {3}
not_gen = true
Stop on criterium gen_size = 1

Third closed pattern: {{24}, {2, 3, 4, 5, 6}}
BIC

Intent Extent
3 1, 2, 3, 5, 6
13 1, 2, 5
24 2, 3, 4, 5, 6
Initialize found_gen = false and gen_size = 2
SUB = {{2}, {4}, {24}}
subset = {2}
not_gen = false
gen_size = 1

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
subset = {4}
not_gen = false

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
4 2, 3, 4, 5, 6 24

Continued on next page. . .
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Table 5.19 – Continued
Stop on criterium gen_size = 1
Fourth closed pattern: {{234}, {2, 3, 5, 6}}

BIC
Intent Extent
3 1, 2, 3, 5, 6
13 1, 2, 5
24 2, 3, 4, 5, 6
234 2, 3, 5, 6
Initialize found_gen = false and gen_size = 3
SUB = {{2}, {3}, {4}, {23}, {24}, {34}, {234}}
subset = {2}
not_gen = true
subset = {3}
not_gen = true
subset = {4}
not_gen = true
subset = {23}
not_gen = false
gen_size = 2

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
4 2, 3, 4, 5, 6 24
23 2, 3, 5, 6 234
subset {24}
not_gen = true
subset {34}
not_gen = false

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
4 2, 3, 4, 5, 6 24
23 2, 3, 5, 6 234
34 2, 3, 5, 6 234
Stop on criterium gen_size = 2

Fifth closed pattern: {{1234}, {2, 5}}
BIC

Intent Extent
3 1, 2, 3, 5, 6
13 1, 2, 5

Continued on next page. . .
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Table 5.19 – Continued
24 2, 3, 4, 5, 6
234 2, 3, 5, 6
1234 2, 5
Initialize found_gen = false and gen_size = 4
SUB = {{1}, {2}, {3}, {4}, {12}, {13}, {14}, {23}, {24}, {34}, {123}, {124}, {134},
{234}, {234}}
subset = {1}
not_gen = true
subset = {2}
not_gen = true
subset = {3}
not_gen = true
subset = {4}
not_gen = true
subset = {12}
not_gen = false
gen_size = 2

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
4 2, 3, 4, 5, 6 24
23 2, 3, 5, 6 234
34 2, 3, 5, 6 234
12 2, 5 1234
subset = {13}
not_gen = true
subset = {14}
not_gen = false

GEN
Itemset Object List Closure
1 1, 2, 5 13
2 2, 3, 4, 5, 6 24
4 2, 3, 4, 5, 6 24
23 2, 3, 5, 6 234
34 2, 3, 5, 6 234
12 2, 5 1234
14 2, 5 1234
subset = {23}
not_gen = true
subset = {24}
not_gen = true
subset = {34}

Continued on next page. . .
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Table 5.19 – Continued
not_gen = true
Stop on criterium gen_size = 2

Table 5.20 shows the result of the generation of the bases of conceptual association rules
from the GEN set. Depending on the user’s requirements, the AR_E base of min-max exact
conceptual association rules and, either, or both, the AR_PB base of proper approximate con-
ceptual association rules and the AR_SB base of min-max approximate conceptual association
rules can be generated. This generation is straightforward as for each generator, a min-max
exact rule is created between the generator and its closure if they are different. A min-max
approximate rule is created between the generator and the frequent closed itemsets that are
supersets of its closure. The antecedent of such a rule is the generator and its consequent is the
set difference between the frequent closed itemset and the generator. Proper approximate rules
are created between two frequent closed itemsets if one is a subset of the other. The subset
frequent closed itemset is the antecedent and the set difference between the superset and the
subset is the consequent of such a rule.

Table 5.20: Generating Association Rule Bases for Example Database D1 with FIST 2.0

Begin
Sort generators of same size in lexicographic order

GEN
Generator Closure Object list
1 13 1, 2, 5
2 24 2, 3, 4, 5, 6
4 24 2, 3, 4, 5, 6
12 1234 2, 5
14 1234 2, 5
23 234 2, 3, 5, 6
34 234 2, 3, 5, 6
Initialize output sets AR_E, AR_SB and AR_PB to φ

Generating Min-Max Exact Rules in AR_E
Rule # Antecedent Consequent Support Confidence Object List
1 {1} {3} 3 1 1, 2, 5
2 {2} {4} 5 1 2, 3, 4, 5, 6
3 {4} {2} 5 1 2, 3, 4, 5, 6
4 {23} {4} 4 1 2, 3, 5, 6
5 {34} {2} 4 1 2, 3, 5, 6
6 {12} {34} 2 1 2, 5
7 {14} {23} 2 1 2, 5

Generating Proper Approximate Rules in AR_PB
Rule # Antecedent Consequents Support Confidence Object List
1 {3} {1} 3 0.6 1, 2, 5

Continued on next page. . .
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Table 5.20 – Continued
2 {3} {24} 4 0.8 2, 3, 5, 6
3 {3} {124} 2 0.4 2, 5
4 {13} {24} 2 0.67 2, 5
5 {24} {3} 4 0.8 2, 3, 5, 6
6 {24} {13} 2 0.4 2, 5
7 {234} {1} 2 0.5 2, 5

Generating Min-Max Approximate Rules in AR_SB
Rule # Antecedent Consequents Support Confidence Object List
1 {1} {234} 2 0.67 2, 5
2 {2} {34} 4 0.8 2, 3, 5, 6
3 {2} {134} 2 0.4 2, 5
4 {4} {23} 4 0.8 2, 3, 5, 6
5 {4} {123} 2 0.4 2, 5
6 {23} {14} 2 0.5 2, 5
7 {34} {12} 2 0.5 2, 5

The final task consists to map item and object numeric identifiers in patterns to database
values if required. This mapping is inevitable to provide knowledge patterns that are under-
standable by the end-user if he/she must evaluate results. It can be omitted if there is not such
a requirement, for example if resulting patterns will be used only for an automatic processing.
The patterns obtained for the example database D1 after mapping of the item numbers with
attributes values in the initial dataset are given in table 5.21. For this example database, no
mapping is performed for object identifiers in object lists as no label is given for them in the
initial dataset. Since variables in this example are unary variables (one value considered for
each), the pairs variable = value are represented by the variable term alone for simplicity.

Table 5.21: Resulting Patterns After Mapping Values for Example Database D1 with FIST 2.0

Frequent Item Table
Attribute=Value Support Item Number

A=1 3 1
B=1 5 2
C=1 5 3
E=1 5 4

Mapping Conceptual Bi-clusters
Order # Closed set Object Ids
1 C 1, 2, 3, 5, 6
2 AC 1, 2, 5
3 BE 2, 3, 4, 5, 6
4 BCE 2, 3, 5, 6
5 ABCE 2, 5

Continued on next page. . .
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Table 5.21 – Continued

Mapping Generators
Itemset Object List Closure
A 1, 2, 5 AC
B 2, 3, 4, 5, 6 BE
E 2, 3, 4, 5, 6 BE
BC 2, 3, 5, 6 BCE
CE 2, 3, 5, 6 BCE
AB 2, 5 ABCE
AE 2, 5 ABCE

Mapping Min-Max Exact Rules in AR_E
Rule # Antecedent Consequents Support Confidence Object List
1 {A} {C} 3 1 1, 2, 5
2 {B} {E} 5 1 2, 3, 4, 5, 6
3 {E} {B} 5 1 2, 3, 4, 5, 6
4 {BC} {E} 4 1 2, 3, 5, 6
5 {CE} {B} 4 1 2, 3, 5, 6
6 {AB} {CE} 2 1 2, 5
7 {AE} {BC} 2 1 2, 5

Mapping Proper Approximate Rules in AR_PB
Rule # Antecedent Consequents Support Confidence Object List
1 {C} {A} 3 0.6 1, 2, 5
2 {C} {BE} 4 0.8 2, 3, 5, 6
3 {C} {ABE} 2 0.4 2, 5
4 {AC} {BE} 2 0.67 2, 5
5 {BE} {C} 4 0.8 2, 3, 5, 6
6 {BE} {AC} 2 0.4 2, 5
7 {BCE} {A} 2 0.5 2, 5

Mapping Min-Max Approximate Rules in AR_SB
Rule # Antecedent Consequents Support Confidence Object List
1 {A} {BCE} 2 0.67 2, 5
2 {B} {CE} 4 0.8 2, 3, 5, 6
3 {B} {ACE} 2 0.4 2, 5
4 {E} {BC} 4 0.8 2, 3, 5, 6
5 {E} {ABC} 2 0.4 2, 5
6 {BC} {AE} 2 0.5 2, 5
7 {CE} {AB} 2 0.5 2, 5
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5.3 Properties of the FIST Approach

The properties on which relies the FIST approach and the two algorithmic versions presented
are studied in this section. These properties, that allow to minimize resources required for the
extraction of conceptual knowledge patterns, are discusses with their proof.

5.3.1 Search-space and Theoretical Framework

Search-space of association rule mining approaches was initially defined as the itemset lattice
LI , or subset lattice. The size of this search-space is exponential in the number of items in
the database: |LI | = 2|I|. Frequent itemset and maximal frequent itemset based approaches
use different traversals of this lattice to identify frequent itemsets in this lattice, and compute
their support, from the dataset. The Hasse diagram of the itemset lattice LI for the example
database D1, given in table 5.1, is shown in figure 5.1. Frequent itemsets for minsupport = 2/6
are shown in colored rectangles.

The connexion of the Galois closure Γ(ψ, γ) theoretical framework allows to reduce the
search-space for association rule mining to frequent closed itemsets. Using this framework,
equivalence classes, that are sub-orders of the itemset lattice, are defined by frequent generators
and frequent closed itemsets. Each equivalence class regroups a set of itemsets included in the
same objects of the dataset (see Proposition 5.1) and that consequently have the same support.
Frequent equivalence classes for the example database D1 and minsupport = 2/6 are shown in
figure 5.2. The list of dataset objects supporting each frequent equivalence class are depicted
in red characters in the figure.

The frequent closed itemsets theoretical framework was shown to be an optimized framework
for association rule mining as the set of frequent closed itemsets with their support contains
all information necessary to generate all association rules with support and confidence. It is
minimal, as no smaller set contains the same information, and non-redundant since no frequent
closed itemset can be derived from other frequent closed itemsets. The generators, that are
the minimal itemsets, regarding inclusion relation, of an equivalence class, were defined to
optimize the search for frequent closed itemsets and to generate minimal non-redundant covers
of association rules.

The FIST approach first extracts from the dataset all frequent closed itemsets that are
represented together with their supporting object list in the FGIST as frequent closed patterns.
The size of supporting object lists corresponds to the support of the corresponding itemset in
the dataset. From this information, the lattice of frequent conceptual bi-clusters, each bi-cluster
associating a frequent closed itemset as intent and the supporting object list of this itemset as
extent, is extracted.

Definition 5.1 (Frequent Conceptual Bi-clusters) A frequent conceptual bi-cluster is a
sub-matrix of the dataset matrix representation associating a subset of objects and a subset of
items such that all these objects contain all these items and all other objects of the matrix do
not contain all these items. That is, a frequent conceptual bi-cluster Bk in a binary dataset
M = (O,L,R) is a dual set Bk = {I, P} where I ⊆ L is a maximal set of items and P ⊆ O is
a maximal set of objects defined as follows:

i) I ∈ FC.
ii) ∀i ∈ I and ∀o ∈ P , we have i ∈ o and @i′ 6= i such that ∀o ∈ P we have i′ ∈ o.
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Figure 5.1: Itemset Lattice for Example Database D1 and minsupport = 2/6

Figure 5.2: Equivalence Classes for Example Database D1 and minsupport = 2/6

Kartick Chandra MONDAL, Laboratoire I3S



133 Chapter 5. Examples and Properties

iii) @o′ ∈ O with o′ /∈ P such that ∀i ∈ I we have i ∈ o′.

The Hasse diagram of this dual lattice for example database D1 and minsupport = 2/6
is given in figure 5.3. Conceptual bi-clusters are related by the dual order relation R(⊂,⊃)

depicted by edges in the Hasse diagram. The bottom bi-cluster {∅, {1, 2, 3, 4, 5, 6}} is
represented for completeness of the lattice and will not be extracted for this example as its
intension is empty.

Figure 5.3: Hierarchical Conceptual Bi-clusters for Example Database D1.

From this hierarchy of conceptual bi-clusters, frequent generators are identified in level-wise
manner and used to generate minimal covers of conceptual association rules. The correctness of
this level-wise identification process relies on the properties that the set of frequent generators
is an order ideal and that the supporting object list of a frequent generator is identical to the
supporting object list of its closure.

Property 5.1 (Set of Generators is an Order Ideal) Let GC = {G1, . . . , Gn} be the set
of generators Gi ⊆ L of a frequent closed itemset C ⊆ L, C ∈ FC. The set of generators GC of
the partially ordered set (GC ,⊆) is an order ideal defined by the following conditions:

i) For every Gi in GC, Gj ⊆ Gi implies that Gj ∈ GC.
ii) For every Gi, Gj ∈ GC with |Gi| > 1 and |Gj | > 1, there is some element Gk ∈ GC, such

that Gk ⊆ Gi and Gk ⊆ Gj.

Proof 5.1 (Property 5.1) See [Yahia 2006] and [Hamrouni 2008b].

Given property 5.1, the FIST approach optimizes the iterative search for generators of a
frequent closed itemset by considered potential generators in increasing order of their size and
stopping the iterations once the size of generators is identified. This corresponds to the use of
the gen_size variable in algorithm 22 of FIST 2.0.
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Proposition 5.1 (Generator Supporting Object List) The supporting object list of a
generator is identical to the supporting object list of its closure. Let Gi ⊆ L be a generator
of a frequent closed itemset C ⊆ L, C ∈ FC, that is: Gi ∈ GC . The supporting object list of Gi
is equal to the supporting object list of C: ∀Gi ∈ GC we have ψ(Gi) = ψ(C).

Proof 5.2 (Proposition 5.1) Let GC = {Gi ⊆ L | Γ(Gi) = C} be the set of generators of
the frequent closed itemset C ⊆ L, C ∈ FC. Given definition 1.8, we have Γ(C) = C and,
since the Galois closure is monotonically increasing, we deduce that ∀I ⊆ L such that I ⊃ C

we have Γ(I) ⊃ Γ(C). Given definition 1.10, we have ∀Gi ∈ GC , Γ(Gi) = Γ(C) = C and since
∀I ⊃ C we have Γ(I) ⊃ Γ(C), we deduce Gi ⊆ C. Since ψ is monotonically decreasing, we
have ψ(Gi) ⊇ ψ(C).
We first show that all objects in the object list of C are present in the object list of Gi and
second, that all objects in the object list of Gi are present in the object list of C:

(1) Suppose we have ∃o ∈ O such that o ⊇ C and o + Gi. We then have o ∈ ψ(C) and o /∈ ψ(Gi)

=⇒ ψ(Gi) + ψ(C) which is contradictory with ψ(Gi) ⊇ ψ(C). 2

(2) Suppose we have ∃o ∈ O such that o + C and o ⊇ Gi. Then, either we have ∃i ∈ Gi | i /∈ C
=⇒ Γ(Gi) 6= Γ(C), or we have o ⊂ C =⇒ Gi ⊆ o ⊂ C =⇒ Γ(Gi) ⊂ Γ(C) =⇒ Γ(Gi) 6= Γ(C). 2

Corollary 5.1 (Equivalence Class Supporting Object List) The supporting object list
of itemsets in an equivalence class is identical to the supporting object list of the frequent closed
itemset of the class. Let GC =

⋃i=k
i=1 Gi be the set of generators of the frequent closed itemset

C. The supporting object list of all itemsets I such that I ⊇ Gi ∈ GC and I ⊆ C is equal to the
supporting object list of C: ∀I ∈ EC where EC is the equivalence class which frequent closed
itemset is C, we have ψ(I) = ψ(C).

Proof 5.3 (Corollary 5.1) Let GC =
⋃i=k
i=1 Gi be the set of generators of the frequent closed

itemset C and I ∈ EC where EC is the equivalence class which frequent closed itemset is C.
Given definitions 1.8 and 1.11, and proposition 5.1, we have:

P0 : Γ(C) = γ(ψ(C)) = C

P1 : ∃Gi ∈ GC | Gi ⊆ I ⊆ C.
P2 : ψ(Gi) = ψ(C).

We first show that all objects in object list of I belong to the object lists of Gi and C, and
second, that all objects in object lists of Gi and C belong to the object list of I:

(1) Suppose we have ∃o ∈ O such that o ⊇ I and o + Gi =⇒ o + C. Since Gi ⊆ I ⊆ C

we have ψ(Gi) ⊇ ψ(I) ⊇ ψ(C). Since o /∈ ψ(Gi) and o ∈ ψ(I) we have ψ(Gi) + ψ(I) that is
contradictory with ψ(Gi) ⊇ ψ(I) ⊇ ψ(C). 2

(2) Suppose we have ∃o ∈ O such that o + I and o ⊇ Gi =⇒ o ⊇ C. Since o ∈ ψ(C) and
o /∈ ψ(I) we have ψ(I) + ψ(C) that is contradictory with ψ(Gi) ⊇ ψ(I) ⊇ ψ(C). 2

From the frequent generators and the frequent closed patterns, bases of conceptual asso-
ciation rules are generated. The definitions of conceptual association rules and, of min-max
exact and approximate, and proper approximate conceptual association rules are given below.
These rules are defined for a database D = (O,L,R) and, a minsupport and a minconfidence
threshold values.
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Definition 5.2 (Conceptual Association Rules) A conceptual association rule r is an
implication rule between two frequent itemsets I1, I2 ⊂ L in D such that I1 ⊂ I2
and support(I2)/support(I1) ≥ minconfidence, denoted r: {I1 −→ I2 \ I1, support(r),
confidence(r), object_list(r)}. The support of r is support(r) = support(I2), the confidence
of r is confidence(r) = support(I2)/support(I1) and the object list of r is object_list(r) =

{o ∈ O | ∀i ∈ I2, i ⊂ o}.

Definition 5.3 (Min-max Exact Conceptual Association Rules) A min-max exact
conceptual association rule r is an implication rule between a frequent generator Gi ∈ GC and
its closure C ∈ FC in D denoted r: {Gi −→ C \ Gi, support(r), confidence(r), object_list(r)}
with support(r) = support(C), confidence(r) = 1 and object_list(r) = {o ∈ O | ∀i ∈ C,

i ⊂ o}.

Definition 5.4 (Min-max Approximate Conceptual Association Rules) A min-max
approximate conceptual association rule r is an implication rule between a frequent gen-
erator Gi ∈ GC and a frequent closed itemset C ′ ∈ FC in D such that C ⊂ C ′ and
support(Gi)/support(C

′) ≥ minconfidence. Such a rule is denoted r: {Gi −→ C ′ \ Gi,
support(r), confidence(r), object_list(r)} with support(r) = support(C ′), confidence(r) =

support(Gi)/support(C
′) and object_list(r) = {o ∈ O | ∀i ∈ C ′, i ⊂ o}.

Definition 5.5 (Proper Approximate Conceptual Association Rules) A proper ap-
proximate conceptual association rule r is an implication rule between two frequent closed
itemsets C,C ′ ∈ FC in D such that C ⊂ C ′ and support(C)/support(C ′) ≥ minconfidence.
Such a rule is denoted r: {C −→ C ′ \ C, support(r), confidence(r), object_list(r)} with
support(r) = support(C ′), confidence(r) = support(C)/support(C ′) and object_list(r) =

{o ∈ O | ∀i ∈ C ′, i ⊂ o}.

The graphical representation of the min-max exact rules and other valid exact rules, for the
example database D1 andminsupport = 2/6 is shown in figure 5.4. The graphical representation
of the min-max approximate rules, proper approximate rules and other valid approximate rules
for the three equivalence classes with top element {BCE}, {BE} and {C} and minconfidence =
4/5 is shown in figure 5.5. The valid rules depicted in blue color are additional rules, compared
with the min-max bases, extracted by Apriori-like approaches. The proper approximate rules
are depicted in dashed lines. The number of valid rules for this example is more than twice
the number of rules in the bases. The object list associated to a conceptual association rule
corresponds to the object list of the equivalence class of the itemset in the consequent of the
rule.

5.3.2 Impact of Item Ordering on the FGIST

An important optimization of the FIST approach relies on the ordering in increasing support
order of dataset variable values as items. This ordering importantly impacts the structure
and the size, both in number of nodes and of information in their fields, of the FGIST. To
illustrate this optimization, we consider another example database D2 which binary (A) and
transactional (B) format representations are given in table 5.22.

This database is composed of five different variables {A, B, C, D, E} and five objects. We
consider aminsupport value of 1/5, for which all items are frequent, for all examples presented in
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Figure 5.4: Exact Association Rules for Example Database D1

Figure 5.5: Approximate Association Rules for Example Database D1
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Object A B C D E
1 1 1 1 0 0
2 0 1 1 1 0
3 0 1 1 0 1
4 1 1 1 1 0
5 0 1 1 1 1

A. Binary Matrix Representation

Object Items
1 A B C
2 B C D
3 B C E
4 A B C D
5 B C D E

B. Transactional Representation

Table 5.22: Example Database D2

this subsection. The first possible ordering of items is the lexicographic order, which correspond
to the order of columns in the binary format and of values in objects of the transactional format
representations of D2. The corresponding item order (A), represented by the vertical order of
items, and FGIST (B), after the dataset scan, for example database D2 are represented in
figure 5.6. The support count of each item in the dataset is also represented in table (A).

Item Support
A 2
B 5
C 5
D 3
E 2

A. Item Order

B. Frequent Generalized Itemsets Suffix-Tree

Figure 5.6: Lexicographic Ordering of Items for Example Database D2

The second ordering of items considered is the decreasing supports order, that is items
corresponding to dataset values are sorted to have most frequent items firsts and least frequent
items lasts. The corresponding item order (A) and FGIST (B) for example database D2 are
represented in figure 5.7. With this ordering of items, we can see that almost all object lists of
nodes, except for the two last items A and E, contain only one object identifier. This shows
the information is broken-out and distributed among the nodes of the FGIST.

The last ordering of items considered is the increasing supports order, that is items cor-
responding to dataset values are sorted to have least frequent items firsts and most frequent
items lasts. The corresponding item order (A) and FGIST (B) for example database D2 are
represented in figure 5.8. We can see that with this ordering, the number of nodes in the
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Item Support
B 5
C 5
D 3
A 2
E 2

A. Item Order

B. Frequent Generalized Itemsets Suffix-Tree

Figure 5.7: Decreasing Supports Ordering of Items for Example Database D2

FGIST is minimized and that the last itemsets in the FGIST (in the right part of the tree)
have complete lists of supporting objects, contrarily to the two preceding item ordering cases.
These object lists are by definition the largest ones and thus those that require the greatest
number of computations for comparison and union operations.

Item Support
A 2
E 2
D 3
B 5
C 5

A. Item Order

B. Frequent Generalized Itemsets Suffix-Tree

Figure 5.8: Increasing Supports Ordering of Items for Example Database D2

The comparison between the sizes of the three preceding FGISTs are presented in table 5.23.
Sizes are compared in terms of total number of nodes in the tree, number of internal nodes and
number of leaf nodes, representing frequent patterns, that are identified by their non-empty
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supporting object list. The number of closed and non-closed frequent patterns in the FGIST
are also presented in the last two column of the table.

Ordering Number of Nodes Number of Patterns
Total Internal Leaves Closed Non-closed

Lexicographic 29 16 13 6 7
Decreasing supports 33 18 15 5 10
Increasing supports 25 18 7 6 1

Table 5.23: Comparison of Sizes of the FGISTs for Example Database D2

For the considered minsupport value, all closed itemsets in the dataset are frequent and the
six frequent closed itemsets are the following (in lexicographic order): {A,B,C}, {A,B,C,D},
{B,C}, {B,C,D}, {B,C,E} and {B,C,D,E}. These itemsets are all represented in the FGIST
for the lexicographic and increasing supports orderings, and one ({B,C}) is missing for the de-
creasing supports ordering. The FGIST for the lexicographic and decreasing supports orderings
contain respectively seven and ten non-closed patterns, that correspond to non-closed itemsets.
The FGIST for the increasing supports ordering contains one non-closed pattern, corresponding
to the non-closed itemset {C}. This peculiar case is due to the fact that C is present in all data
rows, together with B; the closure of {C} and {B} is thus {B,C}.

Given the ordering of frequent items according to their supports, the sequential numeric
identifiers assigned to items define a total order relation on the itemsets called itemset lexico-
graphic order relation and denoted �L. Tests performed to compare two itemsets according
to the lexicographic order relation during the object lists update and pruning of non-closed
patterns have a major effect on the complexity, and thus the execution times, of the algorithm.

Definition 5.6 (Itemset Lexicographic Order Relation) We say that for two items i and
j, we have i < j if i precedes j in the alphabetical order. Let I = {i1, . . . , ip} and J =

{j1, . . . , jq} be two frequent itemsets I, J ⊆ L. We denote ik and jk the items in the kth

position in I and J . We have I ≺L J if one of the two following conditions is verified:

i) ∃ik ∈ I and jk ∈ J such that ik < jk and ∀m < k we have im ≤ jm.
ii) ∀ik ∈ I and jk ∈ J we have ik = jk and |I| < [J |.

The efficiency of the final FGIST creation depends partly on how many frequent closed
patterns must be generated by intersection operations during the FGIST update step and on
how many patterns must be pruned, using inclusion tests, during the FGIST pruning step.
In order to minimize the number of these operations items are ordered in increasing supports
order. This ordering efficiency is based on the observation that the probability for an itemset
to be closed is proportional to its support in the dataset. This means that itemsets with
higher support value are more likely to be closed. A frequent closed itemset corresponds to one
of the two following categories: Frequent itemsets that are represented in the database as a
complete object, i.e., containing no other item than those in the itemset, and frequent itemsets
corresponding to the intersection of at least two itemsets in the database.

Conjecture 5.1 (Itemset Closure Property) The probability for an itemset to be closed is
proportionally relative to its support in the dataset. Let I1, I2 ⊆ L be two frequent itemsets
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I1, I2 ∈ F in database D. If support(I1) ≤ support(I2) then PD(I1 ∈ FC) ≤ PD(I2 ∈ FC)
where PD(I1 ∈ FC) and PD(I2 ∈ FC) are the probability for I1 and I2, respectively, to be closed
itemsets in database D.

Some partial evidence to support this conjecture is discussed in appendix A.1. It is combined
with the identification of the potential most frequent itemsets to minimize the size of the initial
FGIST. Informally, itemsets with the highest support value for a given set of items are those
containing the most frequent items and having a minimal size. Consider for example, two
itemsets I1 = {i1, . . . , in} and I2 = {i1, . . . , in, in+1} identical except for the last item in+1

of I2 that is absent of I1. Let denote PD(I) and PD(i) the probabilities that itemset I and
item i, respectively, are contained in an object o ∈ O. If we consider a finite set of mutually
independent items L, and since PD(in+1) ≤ 1, we have:

PD(I2) = PD(I1) · PD(in+1) =⇒ PD(I2) ≤ PD(I1)

Consider now two itemsets I1 = {i11, . . . , i1n} and I2 = {i21, . . . , i2n} with PD(i1α) ≥ PD(i2α) for all
α ∈ [1, n] and |I1| = |I2|. Each item i1α in I1 has a probability of occurrence greater than the
item i2α at the same position in I2 and, I1 and I2 are of equal size. We have:

PD(I1) =

α=n∏
α=1

PD(i1α) ≥ PD(I2) =

α=n∏
α=1

PD(i2α)

These elements, associated to the itemset lexicographic order relation, minimize the num-
ber of non-closed itemsets inserted in the FGIST during its initialization, while scanning the
dataset. Given this ordering, items with highest support are last in the objects of the SFD.
Consider for example an object o = {i1, i2, i3} in the SFD with support({i1}) < support({i2})
< support({i3}). From this object, the suffix of size one processed will be {i3} which is the
most frequent 1-itemsets among {i1}, {i2} and {i3}, and thus the one most likely to be closed.
The same reasoning applies for suffixes of size greater than one: For suffixes of size two, the
suffix processed will be {i2, i3} that is the most frequent among the three suffixes. This means
that itemsets corresponding to objects of the Sorted Frequent Database that are inserted in the
FGIST are the most likely to be closed among the possible suffixes.

Experiments were conducted to compare the size of the FGIST for the different item or-
derings and for databases with different properties (number of objects, variables and variable
values, density, co-occurrence frequencies, etc.). Consequently, the FIST approach first order
frequent items in the dataset in increasing supports order to create a transactional format con-
densed representation of the dataset: The Sorted Frequent Database. In case of equal support
counts, the item order is their order of first occurrence in the dataset. This ordering of frequent
items in increasing support values minimizes both the number of nodes in the FGIST and the
number of patterns considered during the extraction process. Consequently, the number of
operations performed, and thus the execution time, of the generation of the frequent closed
patterns from the FGIST, that is strictly proportional to its number of nodes and patterns, is
lessened.

5.3.3 Frequent Generalized Itemset Suffix-Tree Closure Property

The correctness and completeness of the sets of frequent conceptual patterns generated by the
FIST approach relies on the closure property of the FGIST. This property can be divided into
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two sub-properties. These sub-properties are defined according to patterns represented in the
FGIST as branches, i.e. as a path from the root to a leaf node (node with a non empty object
list). The first is that all frequent closed patterns in the dataset D, constituted of a frequent
closed itemset and its supporting object list, are represented by a branch in the final FGIST.
This property is called FGIST Completeness.

Property 5.2 (Frequent Generalized Itemset Suffix-Tree Completeness) The final
FGIST contains all frequent closed patterns in database D, each associating a frequent closed
itemset and its supporting object list: If I is a frequent closed itemset then ∃N ∈ FGIST such
that for node N we have itemset(N) = I, where itemset(N) is the itemset corresponding to the
branch from the root to the N node, and P 6= ∅ is the supporting object list of I.

Proof 5.4 (Property 5.2) We show by construction that ∀I ⊆ L, if I ∈ FC we have
I ∈ FGIST . We distinguish the two categories of frequent closed itemsets defined hereafter:
Those that correspond to complete objects of the database D and those that correspond to the
intersection of objects in D.

• Frequent closed itemsets that are equal to at least one complete object and included in at
least minsupport objects of database D: ∃o ∈ O such that I = o and I ⊆ oi where oi ∈ O for
i = {1, . . . , n} and n ≥ minsupport.
• Frequent closed itemsets corresponding to the frequent intersection of at least two objects of
database D and included in at least minsupport objects of database D: I =

⋂i=n
i=1 oi where oi ∈ O

for i = {1, . . . , n} and n ≥ minsupport.

First category frequent closed itemsets are inserted with their supporting object list in the FGIST
during the scan of the dataset. This is performed by step 9 of algorithm 10 (section 4.2.2).
Second category frequent closed itemsets are created in the FGIST during the FGIST update
step since:

(1) Itemsets corresponding to database objects are inserted in the FGIST during dataset scan:
∀I = o ∈ O, I ∈ FGIST . 2

(2) The intersection between two itemsets in the initial FGIST is inserted in the FGIST:
∀I1, I2 ∈ FGIST , I1∩I2 ∈ FGIST . This insertion is performed by step 6 of algorithm 12 (sec-
tion 4.2.4). 2

(3) All frequent intersections between itemsets in the updated FGIST is inserted in the FGIST:
∀I =

⋂i=n
i=1 Ii ∈ FGIST , I ∈ FGIST . Successive insertions of itemsets resulting of inter-

sections between two itemsets are performed by the HNode.intersect() and HNode.intersect2()
functions given in algorithms 14 and 15 respectively (section 4.2.4). These functions are called
iteratively by the HTree.Intersect() function given in algorithm 13 until no new intersection is
computed as indicated by the change variable. 2

The second property is that each branch from the root to a leaf node in the final FGIST
represents a frequent closed pattern. This property is verified if no branch in the final FGIST
represents an infrequent or non-closed pattern. An infrequent pattern corresponds to an itemset
which supporting object list size is less than the minsupport value. A non-closed pattern
corresponds to an itemset which object list is identical to the object list of another itemset that
is one of its supersets. This property is called FGIST Exactitude.
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Property 5.3 (Frequent Generalized Itemset Suffix-Tree Exactitude) The final
FGIST contains only frequent closed patterns: If I is an infrequent or non-closed itemset then
@N ∈ FGIST such that for node N we have itemset(N) = I, where itemset(N) is the itemset
corresponding to the branch from the root to the N node, and P 6= ∅ is the supporting object
list of I (P = ψ(I)).

Proof 5.5 (Property 5.3) We show by construction this property, by considering the three
different categories of itemsets inserted into the updated FGIST:

• Itemsets I that are exactly equal to at least one object of database D: I = o where o ∈ O.
• Itemsets I corresponding to the intersection of other itemsets in the FGIST: I =

⋂i=m
i=1 Ii

where Ii ∈ FGIST for i = {1, . . . ,m}.
• Itemsets corresponding to suffixes S of an itemset I included in at least one object of database
D: S ⊂ I with I = o where o ∈ O.

The second category corresponds to itemsets resulting of successive intersections between ordered
itemset pairs that are inserted in the FGIST by step 5 of algorithm 12 with the union of the
object lists of the two intersected itemsets. Among itemsets in these three categories, only
frequent closed itemsets are present in the FGIST after the FGIST pruning step:

(1) Itemsets in the first category are closed itemsets. The suffix corresponding to each of these
itemsets is inserted in the FGIST by step 9 of algorithm 10 with the object identifier row_num
for each object of the dataset containing it (section 4.2.2). Such closed itemsets that are infre-
quent are then pruned from the FGIST by steps 3 to 5 of algorithm 16 (section 4.2.5) testing the
size of the object list for all itemsets represented in the updated FGIST. 2

(2) Itemsets in the second category are closed itemsets but can be infrequent. These infrequent
closed itemsets are pruned from the FGIST by steps 3 to 5 of algorithm 16 (section 4.2.5) testing
the size of the object list for all itemsets represented in the updated FGIST. 2

(3) Itemsets in the third category can be non-closed. These non-closed itemsets are pruned from
the FGIST by steps 6 to 10 of algorithm 16 (section 4.2.5): ∀I1, I2 ∈ FGIST with I1 ≺L I2,
if I1 ⊂ I2 and ψ(I1) = ψ(I2) then I1 is non-closed and pruned from the FGIST. Resulting
closed itemsets can be infrequent. These infrequent closed itemsets are pruned from the FGIST
by steps 3 to 5 of algorithm 16 (section 4.2.5) testing the size of the object list for all itemsets
represented in the updated FGIST. 2

Given properties 5.2 and 5.3, the final FGIST contains all and only frequent closed patterns.
These patterns are then used to generate the complete sets of conceptual knowledge patterns
defined in definitions 5.2, 5.3, 5.4 and 5.5. These results have been confirmed by experiments
conducted on several synthetic and benchmark databases with different properties (number of
objects, variables, items, density of the matrix, correlation between co-occurrences of values,
etc.). During these experiments, the completeness and correctness of the sets of patterns
generated by FIST were checked by comparison with results from algorithms for extracting
frequent closed itemsets, generators, classical association rules and bases of association rules,
and automatized checking of supporting object lists of conceptual patterns in the initial dataset.
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This chapter is devoted to the description of databases used for the experiments conducted
and experimental results obtained for these databases. These databases were used to evalu-
ate the performances and applicability of the FIST algorithm, compare them with respect to
other state of the art pattern mining algorithms and evaluate knowledge patterns extracted by
FIST from a biological interpretation viewpoint. The databases used for the experiments are
described in section 6.1. Performance evaluations of the FIST approach algorithmic versions
and comparison with other state of the art algorithms are presented in section 6.2. The eval-
uation and biological interpretation of knowledge patterns extracted by FIST are presented in
section 6.3.

6.1 Experimental Databases

Experiments were conducted on five bioinformatics databases. The two first databases are
related to genomics and Yeast gene expression data and contain gene expression data and, bio-
logical and bibliographic annotations of genes. These databases are presented in section 6.1.1.
The three other databases are related to interaction proteomics and HIV-1 and human protein-
protein interaction. They contain interaction proteomics data and, biological and bibliographic
annotations of proteins. They were constructed by integrating heterogeneous data from differ-
ent proteomic data and knowledge bases. These databases are presented in section 6.1.2.
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The reason for using these databases is that knowledge patterns generated by the FIST
approach are particularly relevant in the field of bioinformatics and biological analysis, as was
shown in the literature, although they can also be relevant for any other application domain.
However, contrarily to the FIST implementations, the format of the dataset needs to be trans-
formed according to the implementation constraints (transactional format only, impossibility
to process variables represented on several columns, representation of items as integer numbers
only, etc.) for most available implementations of algorithms. These problems of applicability
to different data formats render difficult the process of experimentations as time consuming
transformation operations of datasets are required. This can also be a usage limiting factor for
operational applications.

The main characteristics of these databases are summarized in table 6.1. This table show the
number of rows, the number of variables (number of information types), the number of column
(number of different data values, or items), and the maximal size of rows (maximal number
of items on one row) for each of these databases. The number of data values corresponds to
the number of columns in the case of a data matrix representation of the database. These
databases and their detailed descriptions are available at http://keia.i3s.unice.fr.

Table 6.1: Principal Characteristics of Experimental Databases

Database Number Number of Number of Maximal
of rows variables columns row size

Eisen gene expression data 2465 79 237 43

Eisen integrated data 2465 737 9918 354

HIV-1–Human binary interactions 1433 19 19 11

HIV-1–Human integrated data 1433 149 3839 136

HIV-1–Human interaction types 1433 327 327 31

6.1.1 Yeast Gene Expression Databases

One of the main objectives of gene expression analyses is to discover information about biological
processes that command cell behavior. A major task in this goal is the interpretation of
gene expression profiles in the light of biological knowledge represented as gene annotations in
biological data and knowledge bases. This task aims at detecting gene groups that are both
co-expressed, i.e. that share similar expression profiles, and co-annotated, i.e. that share the
same biological annotations such as functions, regulatory mechanisms, etc.

The two Yeast gene expression datasets used for experiments are based on the well known
original Eisen et al. data [Eisen 1998]. These data were intensively studied in the literature, al-
lowing us to compare results obtained with the FIST approach to existing information extracted
from these data that were confirmed and validated by biologists.

Yeast Gene Expression Data The first gene expression database used for the experiments
corresponds to the original Eisen et al. Yeast dataset. This dataset contains expression mea-
sures for 2465 yeast genes under 79 biological conditions extracted from a collection of four
independent microarray studies about the Saccharomyces cerevisiae organism during several
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biological processes: cell cycle experiments, sporulation experiments, temperature shock exper-
iments, and diauxic shift.

The dataset constructed from these data contains discretized gene expression values, in terms
of over-expressed, under-expressed and unchanged expression, for the 2465 yeast genes under
the 79 different biological conditions. The gene expression measures were discretized using
the normalized discretization Nordi algorithm [Martinez 2009]. Implementation of the Nordi
algorithm available at http://keia.i3s.unice.fr/?Logiciels_et_Impl%C3%A9mentations_
__Nordi. It contains 2464 rows corresponding to the yeast genes and 79 variables, represented as
columns of the data matrix, corresponding to the experimental biological conditions. Detailed
description of this dataset and experimental results obtained by application of association rule
mining are available at http://keia.i3s.unice.fr/?Jeux_de_Donn%C3%A9es___Eisen_et_
al._Dataset.

Integrated Yeast Gene Expression Data and Annotations The second dataset results
from the integration with the Eisen Yeast gene expression data of biological and bibliographical
annotations. Each Yeast gene was annotated with the Gene Ontology (GO) identifiers of its
associated terms in Yeast GO Slim 1, that is a yeast-specific cut-down version of Gene Ontology,
the PubMed identifiers representing its associations with research papers, the identifiers of the
KEGG pathways in which it is involved, its phenotypes expressed in plain text and the names
of the transcriptional regulator genes that bind its promoter regions. Overall, the following
gene annotations were included in the data matrix as columns: 76 GO, 97 different pathways,
109 transcriptional regulators, 1776 phenotypes and 7623 PubMed identifiers. For each gene,
up to 25 GO, 14 pathways, 25 transcriptional regulators, 14 phenotypes and 581 PubMed
identifiers are included as annotations. To take into account the hierarchical structure of GO,
each gene is associated with all its annotations, including direct and inherited annotations. The
resulting dataset is a matrix of 2465 lines representing yeast genes and 737 columns representing
discretized gene expression measures and gene annotations.

This dataset was used to assess the scalability of the FIST approach and compare its applica-
bility versus execution times and memory usage with those of other algorithms for datasets with
a large number of columns. Detailed description of this dataset and experimental results ob-
tained by application of association rule mining algorithms are given in [Martinez 2007]. Knowl-
edge patterns extracted from this dataset showed significant co-annotated and co-expressed gene
patterns, depicting important biological relationships between genes and their features. Several
of these relationships are supported by recent biological literature.

6.1.2 HIV-1 and Human Protein-Protein Interaction Databases

Proteomics focuses on the large scale study of proteins in complex biological systems (fluid,
tissue, organ, etc.). As most of the high throughput “omics” fields, proteomics is facing a
tremendous increase of the size of datasets to process (number of items as well as number of
variables, but also their meta-data which structure the datasets into complex objects), leading
to challenging knowledge discovery from data problems. The FIST approach was applied for the
analysis of a real life dataset of protein-protein interactions (PPI) between HIV-1 and Human
proteins. Discovering protein-protein interactions is a recent major challenge in computational

1http://www.geneontology.org/GO.slims.shtml
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biology. Identifying interactions among proteins was shown to be useful for finding new drugs
and preventing several kinds of diseases. The identification of interactions between HIV-1 pro-
teins and Human proteins is a particular PPI problem whose study might lead to the discovery
of important interactions responsible for AIDS and help designing drugs and treatments.

In order to extend knowledge patterns extracted from original HIV-1 and human PPI data,
we constructed three new databases integrating the most recent protein-protein interaction
information and, biological and bibliographical related knowledge. The first is the binary in-
teraction database that was constructed with the most up to date literature knowledge on this
topic. The second database was built by integrating biological and bibliographical protein an-
notations with protein-protein interaction data. The third database contains HIV-1 and human
protein-protein interactions with their types represented as directed relationships between pro-
teins of both organisms. The datasets generated from these three databases, in different data
representation formats, are available at http://keia.i3s.unice.fr/. Experimental results
for these PPI databases, and new information discovered using the FIST approach on these
databases, are presented in the sections 6.2 and 6.3 of this chapter.

Binary Interaction Database Several experimental methods have been developed to
identify protein interactions and different databases were created to classify the large col-
lections of experimental data generated [Jager 2011, Shoemaker 2007a]. The most promi-
nent source of information on HIV-1 and human PPI is the HIV-1, Human Protein In-
teraction Database of the National Institute of Allergy and Infectious Diseases (NIAID)
[Fu 2009, Pinney 2009, Ptak 2008]. This database was developed, starting from year 2000,
from the peer-reviewed scientific literature in collaboration with the Southern Research Insti-
tute and the National Center for Biotechnology Information. It contains information on HIV-1
and human host cell proteins known interactions based on literature reports. This database
contains only previously identified interactions: the absence of an interaction between two spe-
cific HIV-1 and human proteins in the database does not imply that they do not interact but
only that no interaction between them was reported.

The first PPI database used for experiments conducted with the FIST approach was con-
structed from the HIV-1-Human Protein Protein Interaction Database of the NIAID available
at http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/. Several datasets were derived
from this data repository to represent data in both transactional and, binary and unary matrix
formats. These datasets contain 1433 rows corresponding to the human proteins studied and, on
the whole, 2586 interactions between HIV-1 and human proteins as data values. Matrix format
datasets contain 19 columns corresponding to the different HIV-1 proteins: RETROPEPSIN,
TAT, NEF, MATRIX, RT, ENV_GP41, NUCLEOCAPSID, REV, VPR, ENV_GP120, IN-
TEGRASE, GAG_PR55, VPU, ENV_GP160, CAPSID, VIF, POL, P6 and P1. In the binary
matrix format dataset, each cell of the matrix contains a 1 if there is a positive interaction
between the corresponding pair of proteins and a 0 if no interaction was reported in the lit-
erature. In the unary matrix format dataset, each cell of the matrix contains a 1 if there is
a positive interaction between the corresponding pair of proteins and a question mark if no
interaction was reported in the literature. In the transactional format dataset, each of the 1433
row contains the list of HIV-1 protein identifiers, among the 19 HIV-1 proteins, that are known
to interact with the human protein corresponding to the row.
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Integrated Protein Interactions and Annotations Database This database was con-
structed by integrating biological annotations and related publications for human proteins with
the HIV1-Human protein protein interaction network data of the NCBI Reference Sequences
(RefSeq) collection available at http://www.ncbi.nlm.nih.gov/projects/RefSeq/. The Ref-
erence Sequence collection objective is to provide an exhaustive, non-redundant, integrated and
well-annotated set of protein sequences, including DNA, transcripts and proteins.

Annotations were collected from the Gene Ontology, PubMed and Reactome knowledge
bases. Gene Ontology (GO) biological annotations of human proteins from the UniProtKB-
GOA (GO Annotation@EBI) database were collected from the Gene Ontology web site at
http://www.geneontology.org/GO.downloads.annotations.shtml. GO annotations with
TAS evidence code 2 were integrated in the data. Gene Ontology annotations with TAS evi-
dence code are are the most reliable biological annotations as they were manually validated by
biologists and cited in published biological references. Publication annotations were collected
from the NCBI web site at http://www.ncbi.nlm.nih.gov/sites/entrez and PubMed and
Reactome publications related to the GO biological annotations of human proteins were also
integrated in the dataset as new variables. The Reactome knowledge base 3 is a manually
curated and peer-reviewed pathway database. It contains pathway annotations validated by
expert biologists and cross-referenced to several bioinformatics data and knowledge bases.

These data were collected for the 1433 human proteins and the 19 HIV-1 protein. Each of
these 19 HIV-1 proteins is represented by one column in the resulting data matrix. In these
columns, a positive interaction between the HIV-1 protein and the human protein correspond-
ing to the row is represented by a “1” value, and the absence of knowledge of an interaction
is represented by a “?” value. Each type of annotations, i.e., GO, PubMed and Reactome
annotations, is represented by several columns in the resulting data matrix. In these columns,
an annotation of the human protein corresponding to the row is represented by the identifier
of the annotation. Overall, this database contains 1149 distinct GO annotations and 2670 dis-
tinct publication annotations, and up to 40 GO annotations and 88 publication annotations for
each protein. It was used to assess and compare the scalability and applicability of the FIST
approach with those of other state of the art pattern extraction methods for datasets with a
large number of variables.

Interaction Types Database The initial analysis of HIV-1 and human interaction data
show that about one third of these interactions are direct physical interactions, such as “bind-
ing”, and two thirds are indirect interactions, such as up-regulation through “activation of sig-
naling pathways” [Ptak 2008]. The proteins that the HIV-1 virus targets depend on interaction
relationships between human proteins, as the virus makes use of the existing communication
pathways within the cell [Tastan 2009]. A better understanding of the nature of the interaction
relationships between proteins of both organisms can thus contribute to determine how the
virus uses the human proteins and communication pathways to infect the organism. Knowl-
edge patterns taking into account interaction types between the virus and host proteins can
give important insights in regard with this objective.

This database depicts the interactions between 19 HIV-1 proteins and 1433 human pro-
teins with directed interaction types. Directed interaction types show the biological na-

2http://www.geneontology.org/GO.evidence.shtml
3http://www.reactome.org
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ture of the interaction relationship existing between the two types of proteins. An exam-
ple of such interaction types is “TAT activated by IL2” meaning that the interaction re-
lationship between the TAT HIV-1 protein and the IL2 human protein is “activated by”.
Another example is “TAT activates AKT1” means that the TAT HIV-1 protein “activates”
the AKT1 human protein. Overall, this database contains 327 HIV-1 protein interaction
types represented as combinations of an HIV-1 protein identifier, e.g. “TAT”, and an in-
teraction type, e.g. “activated by”. Interaction type data between HIV-1 and human or-
ganisms were collected from the H IV-1, Human Protein Interaction Database of the NI-
AID, provided in collaboration with the Southern Research Institute and NCBI, available at
http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/. The complete list of
interaction types integrated in this database is given in Appendix B.1.

6.2 Performance Evaluations

In this section, we present the performance evaluations of the implementations of the FIST
algorithms and compare them with other state of the art frequent itemset mining, frequent
closed itemset mining and bi-clustering algorithms. These experiments were conducted on the
datasets described in section 6.1.

6.2.1 Experimental Design

The two algorithmic versions of the FIST approach were implemented in Java language for
portability reasons. Java is at present the most predominant and popular language in computer
science applications as shown in numerous studies available on the Internet. For example, it
represents 18.16% of projects actually developed according to the March 2013 study of TIOBE
that checked more than 211 million lines of software code4. It also represents 26% of the
10,000 validated projects gathered since 2008 by QSM5 that is the largest, most complete set of
historically completed software projects. The first version was implemented using standard Java
Collections API (version named FIST 1.0) and the second version was implemented using both
standard Java Collections API (version named FIST 2.0) and the Trove for Java Collections
API (version named FIST 3.0).

Experiments were achieved to compare the different version of FIST to six state of the
art algorithms for frequent itemsets, or frequent closed itemsets, based association rules min-
ing: Apriori, Charm, DCI-Closed, Eclat, JClose and Zart. The Apriori and Zart algorithms
are based on the frequent itemsets framework. The Charm, DCI-Closed and Eclat algo-
rithms are based on the frequent closed itemsets framework. Optimized Java implementa-
tions of Apriori, Charm, DCI-Closed, Eclat and Zart used for these experiments are available
at http://www.philippe-fournier-viger.com/spmf/. The JClose algorithm is a frequent
closed itemsets based algorithm that generates bases of association rules. The Java imple-
mentation of JClose used for these experiments is available at http://keia.i3s.unice.fr/
?Logiciels_et_Impl%C3%A9mentations___JClose. As the statistical measures and minimum
thresholds, only the support and confidence, and the minsupport and minconfidence thresh-
olds, were used for defining and evaluating the outputs. This in order to make possible the

4http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
5http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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comparison with association rule mining algorithms that all have these parameters in common.
Bi-clusters were thus selected according to their support (size of their extent) only, according to
the minsupport threshold, and both support and confidence were used for generating the rules.
Other parameters of FIST for selecting bi-clusters, that is, minimal and maximal sizes of the
intent and the extent, were not tested during these experiments. As a consequence, the most
complete possible result was generated by the FIST implementations for each experiment.

Experiments were run on two different computers to evaluate the applicability of the pro-
posed approach in different contexts. The first, used for the primary evaluation of the approach,
is a Dell portable personal computer with an Intel Core 2 Duo (T5670 Series) processor at 1.80
GHz and 4 GB of DDR2 RAM running under the 32 bits Windows 7 Professional Edition op-
erating system. The results of this first series of experiments are presented in [Mondal 2012b].
The second is a Dell PowerEdge R710 server with 2 Intel Xeon X5675 processors at 3.06 GHz,
each possessing 6 cores, 12 MB cache memory, 24 GB of DDR3 RAM at 1333 MHz and 2 Hot
Plug SAS hard disks of 600 GB at 15000 rnds/min with RAID 0 running under the 64 bits
CentOS Linux operating system. For each experiment, that is the execution of an algorithm
for specific parameter values and a given dataset, ten runs were performed and the measures
given are the averages of these series of runs.

6.2.2 Results for Gene Expression Databases

In this section, we present experimental results in terms of execution times and memory usage
for the two datasets derived from the Eisen et al. yeast data presented in section 6.1.1. The
Eisen Yeast Gene Expression dataset is the matrix of 2465 yeast genes in rows and 79 biological
conditions in columns. The Integrated Gene Expression Data and Annotations dataset is the
matrix of 2465 rows representing yeast genes and 737 columns representing discretized gene
expressions and gene biological and bibliographic annotations.

6.2.2.1 Eisen Yeast Gene Expression Data

The first series of experiments was performed on the Eisen Yeast gene expression dataset.
They show the comparison between the first algorithmic version of the FIST approach and
three other state of the art algorithms for association rule mining: Apriori, Zart and DCI-
Closed. For these experiments, the minconfidence threshold was set to 0.001 (0.1%) and the
minsupport threshold was varied from 0.01 (1%) to 0.05 (5%). These experiments were run, as
a preliminary evaluation of the FIST approach, on the portable personal computer described
above. Execution times (A) and memory usage (B) for the four algorithms for this series of
experiments are presented in Figure 6.1.

We can see that execution times of FIST 1.0 are higher for very low minsupport threshold
values. This is because of the exponential number of bi-clusters generated when minsupport
is lessened. However, execution times remain acceptable in all cases, ranging from seconds to
minutes. Except for these challenging cases, execution times of FIST are equivalent to those
of the three other algorithms, even if it generates much more patterns. We can also see that
memory consumption of FIST 1.0 are lower than those of the Apriori and Zart frequent itemsets
based approaches and are equivalent to those of the DCI-Closed frequent closed itemsets based
approach.
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A. Execution times. B. Memory usage.

Figure 6.1: Experimental Results for the Eisen Yeast Gene Expression Dataset (series 1)

Experiments in the second series for this dataset were run on the PowerEdge server com-
puter. For this series of experiments, we compared the three versions of FIST with the Java
implementation of the Apriori, Charm, DCI-Closed, Eclat, JClose and Zart algorithms. Due
to the difference of performances between the server and the personal computer, we were able
to run experiments for very low minsupport values, with a minimal value of 0.001 (0.1%). Ex-
ecution times for the nine algorithms for this series of experiments are presented in Figure 6.2.
These results show the execution times of the generation of frequent itemsets for Apriori and
Zart, and of frequent closed itemsets for the other seven algorithms, that are the most com-
putationally intensive phases of the frequent pattern extraction. It should be noted that the
minsupport values on the horizontal axis of the curves are not on a linear scale.

Figure 6.2: Experimental Results for the Eisen Yeast Gene Expression Dataset (series 2)

Executions of Apriori for minsupport = 0.001 (0.1%) and of Zart for minsupport = 0.001
(0.1%) and 0.002 (0.2%) were interrupted after several hours of run. The maximal execution
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times obtained for this series of experiments are for the Apriori execution for minsupport =
0.2% with an average measure of ten runs slightly below 1400 seconds. These results show
that the frequent itemsets based approaches can face efficient problems for large datasets which
limit their applicability. On the contrary, frequent closed itemsets based approaches were able
to process this dataset for minsupport = 0.001 (0.1%) with execution times ranging from tens
of seconds to less than 5 minutes for Eclat and FIST 2.0 that are the most time consuming.

6.2.2.2 Integrated Gene Expression Data and Annotations

The first series of experiments on the integrated yeast gene expression data and annotations
dataset was performed on the portable personal computer. They were achieved with the first
version of FIST and the Apriori, Zart and DCI-Closed algorithm implementations. The min-
confidence threshold was set to 0.001 (0.1%) and the minsupport threshold was varied between
0.01 (1%) and 0.5 (50%). Execution times (A) and memory usage (B) for the four algorithms
for this series of experiments are presented in Figure 6.3.

A. Execution times. B. Memory usage.

Figure 6.3: Experimental Results for the Integrated Eisen Yeast Dataset (series 1)

We can see that execution times of FIST 1.0 are important for a minsupport threshold, due
to the large number of additional knowledge patterns extracted by FIST compared to other
algorithms. We can also see that memory usage of FIST 1.0 are equivalent to those of DCI-
Closed and lower than both Apriori and Zart memory usage. One should note the exponential
increase of the Apriori memory usage as the minsupport threshold is lessened.

The second series of experiments for this dataset was run on the PowerEdge server computer.
Execution times for this series of experiments, performed with the three versions of FIST and
the Apriori, Charm, DCI-Closed, Eclat, JClose and Zart algorithms, are presented in Figure 6.4.
In this graphic also, the minsupport values on the horizontal axis are not on a linear scale.

These results show that FIST 1.0 is the worst performer, with a maximal execution time
of about five hours, and the second worst performer is Zart, with a maximal execution time of
about two hours and a half, for a minsupport threshold of 0.001 (0.1%). For this minsupport
threshold, all other algorithms have execution times lower than twenty four minutes, that is
nearly the execution times of Apriori and FIST 2.0, whereas FIST 3.0 required about twelve
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Figure 6.4: Experimental Results for the Integrated Eisen Yeast Dataset (series 2)

minutes to generate frequent patterns. For minsupport threshold values of 0.006 (0.6%) and
higher, execution times of all algorithms are lower than three minutes.

6.2.3 Results for Protein-Protein Interaction Databases

This section presents results, in terms of execution times and memory usage, for the experiments
conducted for two datasets on HIV-1 and human PPI data presented in section 6.1.2. The HIV-1
and Human Protein-Protein Interaction Data dataset corresponds to the matrix of 1433 human
proteins in rows and 19 HIV-1 proteins in columns. The Integrated Protein-Protein Interaction
Data and Annotations dataset corresponds to the matrix of 1433 rows representing human
proteins and 149 columns representing protein interactions and biological and bibliographic
annotations.

6.2.3.1 HIV-1 and Human Protein-Protein Interaction Data

The first series of experiments on this dataset was performed on the portable personal computer
with the first version of the FIST approach and, the Apriori, Zart and DCI-Closed algorithm
implementations. The minconfidence threshold was set to 0.001 (0.1%) and the minsupport
threshold was varied between 0.01 (1%) and 0.5 (50%). Execution times (A) and memory
usage (B) for the four algorithms for this series of experiments are presented in Figure 6.5.

These results show that Apriori has the maximal execution times for all minsupport thresh-
old values tested, with a maximal value of approximately fourteen minutes for the 0.001 (0.1%)
threshold value. They also show that DCI-Closed, Zart and FIST 1.0 have equivalent execu-
tion times except for the 0.001 (0.1%) threshold value for which FIST 1.0 execution times are
about one minute whereas DCI-Closed and Zart have execution times of approximately ten and
twenty seconds respectively. Considering memory usage results, we can see that Apriori and
Zart have the higher requirements, comprised between 350 MB and 550 MB for minsupport
value of 0.001 (0.1%), whereas those of DCI-Closed and FIST 1.0, comprised between 50 MB
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A. Execution times. B. Memory usage.

Figure 6.5: Experimental Results for the HIV-1–Human PPI Dataset (series 1)

and 70 MB for this minsupport value, are much lower when minsupport falls below 0.05 (5%).
The second series of experiments for this dataset were run on the PowerEdge server computer

to compare the three versions of FIST with the Java implementations of Apriori, Charm, DCI-
Closed, Eclat, JClose and Zart. For these experiments, the minsupport threshold values was
varied betwwen 0.001 (0.1%) and 0.5 (50%). Execution times for the nine algorithms are
presented in Figure 6.6 in which the minsupport values on the horizontal axis are not on a
linear scale.

Figure 6.6: Experimental Results for the HIV-1–Human PPI Dataset (series 2)

For this series of experiments, we can see that the FIST implementations have the greatest
execution times, comprised between 0.9 and 1.3 seconds approximately for minsupport equals
to 0.001. This is due to the time required to process textual data as identifiers of objects
and items, to generate user-friendly results, contrarily to other implementations that generate
patterns containing integer value representations of the objects and items. For other algorithms,
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we can see that Zart and Apriori, that are frequent itemsets based approaches, have the maximal
execution times with approximately 0.8 and 0.9 seconds respectively for this minsupport value.
Frequent closed itemsets based approaches have execution times comprised between 0.16 and
0.5 seconds approximately for this minsupport value.

6.2.3.2 Integrated Protein-Protein Interaction Data and Annotations

This dataset was used to compare the applicability and efficiency of the first version of the FIST
approach with those of the Apriori, Zart and DCI-Closed algorithms on the portable personal
computer. For this first series of experiments, the minconfidence threshold was set to 0.001
(0.1%) and the minsupport threshold was varied between 0.05 (5%) and 0.5 (50%). Execution
times (A) and memory usage (B) for this series of experiments are presented in Figure 6.7.

A. Execution times. B. Memory usage.

Figure 6.7: Experimental Results for the Integrated HIV-1–Human PPI Dataset (series 1)

Execution time results show that Apriori gives the highest results, with a maximal execution
time of approximately two minutes and a half, and that DCI-Closed is the most efficient with
execution times of a few seconds for all minsupport values. Execution times of FIST 1.0
are equivalent to those of DCI-Closed, and lower than those of Zart, for minsupport values
between 0.2 (20%) and 0.5 (50%). They become higher than those of Zart for minsupport
values lower than 0.1 (10%). Memory usage results show that approaches in the two groups,
i.e., Apriori and Zart for frequent itemsets based approaches and DCI-Closed and FIST for
frequent closed itemsets based approaches, give identical results. The difference between the
two groups become visible when the minsupport value is less than 0.06 (6%) with a maximal
memory usage of approximately 75 MB for frequent itemsets based approaches and 45 MB for
frequent closed itemsets based approaches.

As for other datasets, a second series of experiments was run on this dataset to compare
efficiency of the three versions of FIST with those of Apriori, Charm, DCI-Closed, Eclat, JClose
and Zart on the PowerEdge server. For this first series of experiments, the minconfidence
threshold was set to 0.001 (0.1%) and the minsupport threshold was varied between 0.01 (1%)
and 0.5 (50%). Execution times are given in Figure 6.8 withminsupport values on the horizontal
axis on a non-linear scale.

For this series, several experiments were stopped after twenty four hours of execution. These
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Figure 6.8: Experimental Results for the Integrated HIV-1–Human PPI Dataset (series 2)

are the executions of Apriori for minsupport = 0.01 and 0.02, Zart for minsupport = 0.01 and
0.02, and Eclat for minsupport = 0.01. All other algorithms were able to process this dataset for
all minsupport values. The maximal execution time obtained was for Zart, with approximately
twenty one minutes for minsupport = 0.02. All other algorithms have execution times less than
fifteen seconds, that is the execution time of FIST 1.0 for the lowest minsupport value. The
most efficient algorithms are DCI-Closed and Charm with execution times less than one seconds
for all minsupport values. We can also see that the successive versions of FIST have decreasing
execution times, the maximal execution time for FIST 2.0 and FIST 3.0 being of thirteen and
ten seconds respectively for minsupport = 0.01.

6.2.4 Discussion on Results

The first series of experiments were run to validate the FIST approach and to evaluate the
relevance of the conceptual patterns extracted from the end-user’s viewpoint. They were run
on a portable personal computer with limited capabilities to evaluate the applicability, in term of
resource usages, and the efficiency, in term of acceptable execution times, of the approach in this
context. Experimental results showed that the FIST approach is relevant, considering the fact
that much more patterns are generated than by classical association rule mining approaches, and
has limited resource usages that make possible its application to datasets with large numbers
of items, even if in some cases execution times can be important. Detailed experimental results
for the different phases (not given in this report) showed that important improvements can be
achieved considering the method for generating patterns from the generalized suffix-tree data
structure.

The second series of experiments were run to compare the efficiency of the three versions
of FIST and six other state of the art algorithms for mining association rules. Differences
between the results of the first and the second versions of FIST show that the improvements in
both memory usage and execution times, resulting from the successive optimizations developed
during this work, are important. The first version of FIST was implemented using a table
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and index based representation to extract patterns from the generalized suffix-tree constructed
while reading the dataset. This method poses efficiency problems in the case of a very large
number of items as shown in experimental results for the integrated Eisen yeast dataset. The
second algorithmic version of FIST uses the generalized suffix-tree data structure to perform
all required operations to generate knowledge patterns. It was implemented with the standard
Java Collections API in FIST 2.0 and with the Trove for Java Collections API in FIST 3.0.
Comparing results for FIST 2.0 and FIST 3.0 shows important improvements in execution times
due to the difference between Trove and standard Java collections API. Overall, experimental
results show that the second algorithmic version of FIST has resource usages comparable to
those of frequent closed itemsets based approaches for mining association rules, even if somewhat
higher due to the generation of larger resulting sets.

From a theoretical framework viewpoint, experimental results confirm that frequent itemsets
based approaches are the less efficient, and pose applicability problems, compared to the fre-
quent closed itemsets based approaches. These lasts were all applicable for all the experiments
conducted, except the Eclat algorithm for the integrated HIV-1–Human PPI dataset and min-
support = 0.01 (1%). Among the frequent closed itemsets based approaches, the DCI-Closed
and Charm approaches are the most efficient and have globally the least resource requirements.
As shown in the literature, to the best of our knowledge, DCI-Closed is actually the most
efficient frequent closed itemsets based algorithm for mining association rules with resources
usage slightly lower than those of Charm. Results for FIST 3.0 confirm that this approach can
be applied to problems in the “omics” field even for datasets with a large number of items and
very low minsupport values.

6.3 Extracted Knowledge Pattern Evaluations

This section presents studies on the extracted knowledge patterns and the interpretation of
these patterns from a biological viewpoint. The prediction and analysis of interactions between
proteins has been the subject of several studies in the literature [Shoemaker 2007b]. Most
of these studies concern intra-species interactions, i.e., the analysis of interactions between
proteins of a single organism like yeast or human. The approaches used for these studies are
based on Bayesian networks [Jansen 2003], decision trees [Zhang 2004], random forest classifiers
[Lin 2004, Qi 2005], kernel methods [Ben-Hur 2005b, Martin 2005, Yamanishi 2004], mixture-
of-feature-expert classifiers [Qi 2007] and genetic algorithms [Singhal 2007]. The accuracy of
predictions and analyses is improved when several sources of information are integrated and
integrative approaches can also provide means to justify the confidence of inferred interactions
[Dhanapalan 2007, Shoemaker 2007b]. Support Vector Machines [Qiu 2008] and Bayesian net-
works [Lee 2006] based approaches integrating protein interaction data with biological anno-
tations have been proposed. These studies showed that association rule mining, classifications
and bi-clustering can provide new important knowledge and relevant patterns to support pro-
tein interaction analyses. However, a limitation in these studies is that the extracted patterns
contain a limited number of different types of information. The study of conceptual patterns
extracted by FIST on the protein interaction datasets presented below show that integrating
domain knowledge with human and HIV-1 protein interaction data, and generating data min-
ing patterns containing all possible combination of these types of information can improve the
relevance of the results.
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6.3.1 Number of Knowledge Patterns Generated

We study in this section experimental results on the number of patterns (generators, rules and
bi-clusters) generated by FIST and other approaches for different datasets and while varying
the minsupport and minconfidence thresholds.

6.3.1.1 Comparison of Apriori-like and FIST Approaches Association Rules

We first compare the number of classical association rules, such as generated by the Apriori
approach, and the number of association rules in the conceptual bases generated by the FIST
approach. These experiments were conducted on the PowerEdge server computer as memory
requirements to generate classical association rules are important for low minsupport values,
for which the number of rules can be important. In the following three graphics, showing
the number of association rules generated by Apriori and FIST, the blue curves correspond to
Apriori results and the red curves correspond to FIST results.

Figure 6.9 shows results for the HIV-1–Human binary interactions database for minsup-
port =0.001 (0.1%) and minsupport =0.002 (0.1%), and minconfidence varied between 0.001
(0.1%) and 0.5 (50%). Complete and detailed results of this series of experiments are given in
tables B.2 and B.3 of Annex B.2.

Figure 6.9: Comparing Number of Association Rules Extracted from HIV-1–Human Binary
Interactions Database

We can see that the number of rules in the bases generated by FIST is reduced by a factor
up to several tens compared with rules generated using the classical Apriori-like approach. As
redundant rules are removed from the results, we obtain a compact set of rules, easy to manage
and explore, allowing the end-user to concentrate on the most relevant rules.

Results for the HIV-1–Human interaction types database are depicted in figure 6.10 for
minsupport =0.002 (0.2%) and minsupport =0.003 (0.3%), and minconfidence varied between
0.001 (0.1%) and 0.5 (50%). Up to 18 GB of primary memory were required to generate
classical association rules for minsupport = 0.002 (0.2%). It was not possible to generate
classical association rules for minsupport = 0.001 (0.1%) as the primary memory space required
is greater than the 23 GB available. Complete and detailed results of this series of experiments
are given in tables B.4 and B.5 of Annex B.2.
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Figure 6.10: Comparing Number of Association Rules Extracted from HIV-1–Human Interac-
tion Types Database

The number of extracted classical association rules is for both minsupport values and for all
minconfidence values greater than one million. This poses the problem of the usability of the
result as it is difficult to manage and explore such a huge amount of rules, even with dedicated
tools. For the same minsupport and minconfidence values, the number of rules in the conceptual
bases varies between 1734 and 15104. The reduction factor is thus for these experiments from
the order of one hundred to one thousand, depending on the threshold values.

In figure 6.11, results for the HIV-1–Human integrated database for minsupport =0.035
(3.5%) and minsupport =0.04 (4%), and minconfidence varied between 0.001 (0.1%) and 0.5
(50%) are presented. Complete and detailed results of this series of experiments are given in
tables B.6 and B.7 of Annex B.2.

Figure 6.11: Comparing Number of Association Rules Extracted from HIV-1–Human Integrated
Database

It was not possible for this database to generate Apriori association rules for minsupport
values less than 0.035 (3.5%). This is due to the memory required during the process that
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exceeds the 23 GB available for minsupport values of 0.03 (3%). Due to this limitation, we
were not able to extract classical association rules depicting relationships supported by less
than 50 proteins.

These experiments show that, even if considered as trivial from an algorithmic viewpoint,
the second phase of ARM, that consists in generating association rules from frequent or frequent
closed itemsets, can require important resources. This can be a major limitation in terms of
applicability and usability for pattern mining implementations in an application context.

6.3.1.2 Comparison of Bases of Association Rules Extracted by FIST

The number of proper approximate association rules and min-max approximate association
rules extracted by FIST for the HIV-1–Human PPI binary interactions, interaction types and,
integrated interactions and annotations databases are shown in figure 6.12, figure 6.13 and
figure 6.14 respectively. In these figures, the horizontal x-axis and z-axis show variations in
the minsupport and minconfidence threshold values, in percentages, respectively. The vertical
y-axis shows the number of association rules generated. For these experiments, the minsupport
threshold was varied between 0.002 (0.2%) and 0.3 (30%) and the minconfidence threshold
was varied between 0.001 (0.1%) and 0.5 (50%). The resulting patterns obtained during this
experiments are the most general possible for these datasets, as for minsupport = 2%, extracted
patterns show relationships between items that are supported by as few as two proteins.

A. Proper base. B. Structural base.

Figure 6.12: Size of Approximate Rule Bases for HIV-1–Human Binary Interactions Database

We can see differences in the sizes of the proper base of approximate rules and the structural
base of min-max (minimal antecedent and maximal consequent) approximate rules. This is
related to the fact that the proper base contains one rule for each pair of frequent closed itemsets
related by inclusion whereas there can be several min-max approximate rules for the same pair,
one rule for each generator of the frequent closed itemsets included in the other. For the two first
databases, the sizes of the proper base and the base of min-max approximate rules are nearly
identical. These results show that approximately 3.2% of the frequent closed itemsets have more
than one generator for the HIV-1–Human PPI binary interactions database, and approximately
8% for the HIV-1–Human PPI interaction types database. Larger differences can be seen for the
HIV-1–Human PPI integrated database, for which this proportion is approximately of 18.9%.
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A. Proper base. B. Structural base.

Figure 6.13: Size of Approximate Rule Bases for HIV-1–Human Interaction Types Database

A. Proper base. B. Structural base.

Figure 6.14: Size of Approximate Rule Bases for HIV-1–Human Integrated Database

The number of frequent generators extracted by FIST for the three HIV-1–Human PPI
databases is shown in figure 6.15. It should be noted that the values for the number of frequent
generators, corresponding to the vertical y-axis of the graphic, are on a logarithmic scale.

The frequent generators represent the minimal sets of features, i.e., HIV-1 interacting pro-
teins, HIV-1 protein interaction types or protein annotations, that are common to a set of
human proteins. For each frequent generator extracted by FIST, an exact association rule is
generated between the generator (antecedent of the rule) and the frequent closed itemset that
is its closure (consequent of the rule) if they are not identical.

The number of min-max exact association rules extracted by FIST for the three HIV-1–
Human PPI databases are shown in figure 6.16. The number of min-max exact association
rules, depicted by the vertical y-axis of the graphic, are on a logarithmic scale.

For each minsupport threshold value, the number of min-max exact rules shows the number
of generators that are different from their closure. Hence, only generators that are different from
their closure produce a min-max exact rule, with the generator in antecedent and the closed
itemset that is its closure in the consequent. Experimental results showed that this number is
in most cases equal to zero for market basket data for instance [Brin 1997b, Pasquier 1999b].
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Figure 6.15: Number of Generators for HIV-1–Human PPI Databases

Figure 6.16: Number of Exact Rules for HIV-1–Human PPI Databases

This is related to the fact that in these data, the number of strong relationships between items
is low, due to the weakly correlated and sparse nature of these data. We can see here that for
the HIV-1–Human PPI data this number is high as the number and proportion of correlated
items, i.e., features common to several proteins, is important.

The difference between the number of generators, given in table 6.15, and the number of
min-max exact rules shows the number of generators that have an identical closure. Differences
between these numbers means that for some frequent closed itemsets (consequent of rules),
more than one rule is generated, each with a different generator in the antecedent of the rule.
For the HIV-1–Human PPI binary interactions database, the frequent closed itemsets have on
average 2.81 generators, for the HIV-1–Human PPI interaction types database, 1.72 generators,
and for the HIV-1–Human PPI integrated database, 1.08 generators.
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6.3.1.3 Number of Bi-clusters Extracted by the FIST Approach

The number of bi-clusters generated by FIST for the three HIV-1–Human PPI databases is
shown in table 6.2. The only parameter used for determining extracted bi-clusters during these
experiments is the minsupport threshold that was varied between 0.001 (0.1%) and 0.3 (30%).

Table 6.2: Number of Bi-clusters Extracted from HIV-1–Human PPI Databases

HIV–Human Minsupport (%)
PPI Database 0.1% 0.3% 0.5% 0.7% 1% 2% 5% 7% 10% 15% 20% 30%

Interaction data 340 256 186 141 104 49 22 12 7 3 2 2
Integrated data 9872 5361 2837 1748 1097 386 61 29 15 4 2 2
Interaction types 1736 840 417 269 146 50 9 8 5 0 0 0

We can see that the maximal numbers of bi-clusters were obtained for the integrated inter-
action and annotation dataset (row 2), the minimal results for the binary interaction dataset
(row 1), and results for the interaction type dataset (row 3) are intermediate. These results
are proportional to the size, i.e., the number of items, of the three databases. This series of
experiments confirms that the number of bi-clusters grows exponentially when the value of the
minsupport threshold is lessened. However, we can see that for the three datasets the num-
ber of bi-clusters can be efficiently managed by exploration, selection and visualization tools,
even for minsupport values as low as 0.1% which is the least possible value for these datasets.
This enables to identify for each human protein all other proteins that have at least one com-
mon property (HIV-1 interacting protein, type of interaction or, biological or bibliographical
annotation) and to identify all these common properties.

The number of bi-clusters generated from the two Eisen et al. databases are shown in
table 6.3. During these experiments, the minsupport threshold was varied between 0.005 (0.5%)
and 0.3 (30%).

Table 6.3: Number of Bi-clusters Extracted from Eisen Yeast Gene Expression Databases

Eisen Minsupport (%)
Database 0.3% 0.5% 0.7% 1% 2% 5% 7% 10% 15% 20% 25% 30%

Expression data 7284 2393 1002 477 147 2 0 0 0 0 0 0
Integrated data 80384 29396 14116 6780 1508 198 98 43 20 10 4 2

We can see that for the second dataset, integrating expression data and gene annotations,
the number of bi-clusters increases in an important manner when the minsupport threshold is
lessened, with several thousands of bi-clusters for threshold values less than 1%. The use of other
parameters than the minsupport threshold can reduce this number of bi-clusters by deleting
from the results the less relevant bi-clusters, from an interpretability viewpoint, regarding the
size of their intent and extent.

6.3.2 Biological Interpretation of Extracted Knowledge Patterns

Using bi-clustering and association rule mining can help to identify significant sets of host pro-
teins that undergo the same types of interactions. The functional cohesiveness of the protein sets
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described by the extracted knowledge patterns can be validated using human protein-protein
interaction networks, gene ontology annotations and sequence similarities [MacPherson 2010].

Results obtained with the FIST approach were compared to those obtained by Tastan et
al. [Tastan 2009] which are the most comprehensive HIV-Human PPI results available to date.
These experimental results on the different PPI databases are presented in [Mondal 2012a]. We
focused on the results generated for minsupport =0.1% and minconfidence =0.1%, which are
the least threshold values tested and thus, which resulting patterns contain maximal informa-
tion. For each protein pair interaction predicted in [Tastan 2009], the number of bi-clusters
and the numbers of antecedent and of consequent of association rules generated covering it
were determined. Among the 3372 interactions predicted in [Tastan 2009] using random forest
classifiers, 895 are covered by at least one bi-cluster generated by FIST. This is 26.5% of their
predicted pairs. The HIV-1 proteins associated in bi-clusters, and the frequency of the associa-
tions in the database, generated by FIST during these experiments are given in Appendix B.3.

Now, the random forest classifier is reported to achieve a mean average precision (MAP)
of 0.23 on this problem, meaning that around 23% of the predicted interacting pairs should be
expected to be true positives. This is just a little below the percentage of predicted pairs that
are "confirmed" by FIST. Since the random forest classifier has little in common with FIST,
we believe the two techniques should be regarded as complementary to one another. By the
same argument, there are good chances that the interacting pairs predicted by [Tastan 2009]
and confirmed by FIST are indeed true interactions.

In general, it appears that proteins pairs predicted by the random forest classifier with a
high score are mostly confirmed by a large number of bi-clusters, although exceptions exist,
like the novel high-score predicted pair 〈ENV_GP120,CALM1〉, which is not covered by any
bi-cluster, indicating perhaps that it is a false positive. Likewise, most low-score predictions
are not confirmed by FIST with some exceptions, like 〈ENV_GP120,EP300〉 which, however,
were known to be indirectly interacting (the human gene is reported in the siRNA screen in
[Konig 2008]). All in all, exceedingly few (28) of the 2100 novel predictions by [Tastan 2009],
or 1.3%, are confirmed by FIST. An exhaustive list thereof is given in Table 6.4, along with the
number of covering bi-clusters, approximate, and exact rules. For rules, two separate counts
are provided for rules that have the viral protein in the antecedent (LHS part) and in the
consequent (RHS part).

On the other hand, FIST finds 451 protein pairs that are covered by at least one bi-cluster
among those not included in [Tastan 2009], i.e., for which no explicit indication of possible
interaction was pointed out. This is 2.2% of the pairs not included in [Tastan 2009].

The most covered of these protein pairs is 〈NEF, IFNG〉, covered by 70 bi-clusters. The NEF
protein occurs in the antecedent of 755 approximate rules, in the consequent of 779 approximate
rules, in the antecedent of 28 exact rules and in the consequent of 30 exact rules. Lagging far
behind this pair, we find the four pairs 〈TAT,ACTG1〉, covered by 45 bi-clusters. 〈NEF, IL6〉,
covered by 45 bi-clusters, 〈TAT, IL2〉, covered by 44 bi-clusters, and 〈TAT, IL6〉, covered by 44
bi-clusters. There are a number of other pairs covered by 35 or fewer bi-clusters.

The 〈NEF, IFNG〉 pair, to begin by the most covered novel suggestion, although not pre-
viously signaled, looks like a promising candidate for further investigation: NEF is the viral
negative regulatory factor, associated with the early stages of HIV infection, and the IFNG
gene encodes for the interferon-γ protein, an important immune response stimulator and mod-
ulator. Interferon proteins are produced and released by host cells in response to the presence
of pathogens (viruses, bacteria, parasites or tumor cells). They allow the cell to warn neigh-
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HIV-1 Human # bi-clusters # approximate rules # exact rules
LHS RHS LHS RHS

ENV_GP160 APOBEC3G 1 0 0 0 0
REV CXCR4 4 5 5 0 0
ENV_GP120 FURIN 1 0 0 0 0
VPR MAPK3 34 186 197 7 0
ENV_GP120 PAK1 1 0 0 0 0
TAT PAK2 2 1 1 0 0
NEF PIK3R2 8 19 19 0 0
TAT PPARG 1 0 0 0 0
NEF PRKCD 34 275 300 17 5
NEF PRKCG 34 275 300 17 5
NEF PRKCZ 18 77 83 4 0
TAT RAF1 3 2 2 0 0
VPR RAF1 3 2 2 0 0
ENV_GP120 RAN 2 1 1 0 0
TAT RPA2 4 5 5 0 0
TAT SDCBP 2 1 1 0 0
GAG_PR55 SHC1 1 0 0 0 0
ENV_GP120 SLC3A2 1 0 0 0 0
TAT SREBF2 2 1 1 0 0
NEF STAT5A 4 5 5 0 0
NEF SUMO1 1 0 0 0 0
TAT TCEB1 1 0 0 0 0
ENV_GP120 TUBB1 1 0 0 0 0
ENV_GP120 UBB 2 1 1 0 0
NEF UBB 2 1 1 0 0
TAT UBE2I 1 0 0 0 0
TAT WT1 1 0 0 0 0
REV XRCC5 3 2 2 0 0

Table 6.4: New Predicted Interacting Pairs Confirmed by FIST

boring cells to trigger the immune system protective defenses that eradicate pathogens. The
suggestion of some kind of relationships between NEF and IFNG proteins may be corrobo-
rated by recent research on HIV vaccines [Gahery 2007]. Examining bi-clusters extracted from
the interaction types database, we found 194 bi-clusters involving both the NEF and IFNG
proteins; these bi-clusters contain both the “NEF downregulates” and “NEF upregulates” in-
teraction types. Conceptual pattern extracted from the integrated database reinforce this view
as the selection of bi-clusters containing the NEF and IFNG proteins also contain annotations
on the functions associated to the proteins. For instance, the GO:0060333, REACT:25078
and REACT:25229 annotations are involved in the bi-cluster associating the {GO:0060333,
REACT:25078, REACT:25229, GO:0019221, NEF} itemset and the {FCGR1A, HLA-A, HLA-
B, HLA-C, HLA-DRA, HLA-DRB1, HLA-E, HLA-F, HLA-G, ICAM1, IFNG, IRF1, IRF2,
IRF3, STAT1, SOCS1} human proteins. The GO:0060333 annotation is reported as “interferon-
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gamma-mediated signaling pathway” in the AmiGO advance search engine for biological anno-
tations6. The REACT:25078 and REACT:25229 are reported to belong to “interferon gamma
signaling” and “interferon signaling” pathways in the Reactome knowledge base. These path-
ways are related to interferon-γ that are cytokines secreted by activated immune cells, and also
B-cells and APC, that play a central role in initiating immune responses, especially antiviral
and anti-tumor effects [Gough 2008]. The NEF HIV-1 protein might then be responsible of reg-
ulating IFNG, thus inhibiting one of the natural immune defenses of the host cell. A possible
publication corroborating this hypothesis, that needs further investigation, is [Gahery 2007].

The same negative regulatory factor is involved in the 〈NEF, IL6〉 pair: IL6 is the gene
encoding for interleukin-6, a pro-inflammatory cytokine secreted by T-cells and macrophages
to stimulate immune response. Indeed, the interaction between NEF and interleukin-6 has
been recognized quite early in the study of AIDS [Chirmule 1994]. This relationship is sup-
ported by 25 bi-clusters extracted from the interaction types database that involve the “NEF
downregulates” interaction type and IL6 human protein.

Other two novel pairs suggested by FIST, namely 〈TAT, IL2〉 and 〈TAT, IL6〉, involve inter-
leukins. The TAT and IL2 pair is supported by 187 bi-clusters extracted from the interaction
types database that involve the “TAT activated by”, “TAT downregulates” and “TAT upreg-
ulates” interaction type. The TAT and IL6 pair is supported by 32 bi-clusters involving the
“TAT activated by” and “TAT upregulates” interaction type. IL2 is the gene of interleukin-2,
a signaling molecule normally produced during an immune response: an antigen binding to a
T-cell receptor stimulates the secretion of interleukin-2, which in turn stimulates the growth of
antigen-selected cytotoxic T-cells. TAT, for trans-activator of transcription, is a key protein of
HIV-1, the first to be transcribed, causing the subsequent massive increase in the transcription
levels of the HIV dsRNA. Both interactions are mentioned in the literature: The interaction
between TAT and interleukin-6 in [Scala 1994] and the one between TAT and interleukin-2 in
[Westendorp 1994].

As for pair 〈TAT,ACTG1〉 suggested by FIST, we are not aware of any work in the literature
mentioning it. However, the suggestion does not look completely implausible, for TAT functions
also as a cell-penetrating peptide that acts as a toxine, causing the apoptosis of uninfected T-
cells, and the γ-actin 1, encoded for by gene ACTG1, is a component of the cytoskeleton of
T-cells. The TAT and ACTG1 pair is present in 4 bi-clusters extracted from the interaction
types database that involve the “TAT induces rearrangement of” and “TAT downregulates”
interaction type.

6http://amigo.geneontology.org/
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In this chapter, we present the conclusion of the report, summarizing the work conducted
during the thesis and presenting a critical analysis of this work, in section 7.1. Perspectives of
future research works and open research problems on related topics are presented in section 7.2.

7.1 Conclusion

We present in the two first subsections conclusions drawn from the work from: First, a theoret-
ical and technical viewpoint; Second, an application and experimental viewpoint. These con-
clusions are based on the algorithmic and experimental results obtained, including both perfor-
mance evaluation tasks and biological knowledge discovery from protein interaction databases.
Limitations of the actual FIST algorithm are also mentioned in the third subsection, as well as
possible solutions as open problems.

7.1.1 Extraction of Frequent Conceptual Patterns

We propose a new integrated approach for finding bases of conceptual association rules and
bi-clusters together. This approach, named FIST, is based on the frequent closed itemsets
theoretical framework. It extracts frequent closed itemsets, with the generators and the sup-
porting object list of each. These are the minimal sets of information required to construct the
conceptual frequent patterns conjointly, without extra database access. For simplicity, repro-
ducibility and extensibility, the FIST approach uses a suffix-tree based data structure instead of
the traditional FP-Tree or Prefix-Tree used in most approaches, which is new in frequent closed
pattern mining to the best of our knowledge. This data structure is called frequent generalized
suffix-tree. It does not require complex procedures, like maintaining a transverse chained list of
items or suffix links, and allows the parallel processing of the tree branches in multi-threaded
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environments. This data structure used in combination with the ordering of items according to
their support optimizes the extraction of the frequent closed itemsets and limits memory usage
of the data processing. Contrarily to most existing implementations of frequent pattern ex-
tractions, FIST can generate a user-friendly result in which information on elements (variables,
objects, items, etc.) in extracted patterns are semantic descriptors (names, labels, etc.) that
can be directly used by the end-user without requirement for other post-processing operations.
As shown in the experiments, the generation of user-friendly patterns can be a major limiting
factor for the applicability of methods because of the resources required for this post-processing
phase of patterns.

Another important feature of FIST is that it extends the classical association rules by
associating with each the lists of objects supporting the rule. This extra information provides
a more detailed knowledge on the relationship depicted by the rule and can be used to relate
the rules with bi-clusters concerning the same elements. The bases of rules generated by FIST
are small sets of rules, called minimal non-redundant cover of association rules, from which
all classical association rules, such as generated by Apriori, can be deduced if required. Two
bases of approximate association rules can be generated by FIST. The first is the proper base,
containing rules between two frequent closed itemsets in antecedent and consequent, that are
the maximal antecedent and consequent (max-max) rules. The second is the structural base,
containing rules between a generator in antecedent and its closure in consequent, that are the
minimal antecedent and maximal consequent (min-max) rules. From these rules, conceptual
classification rules, containing a class value in the consequent and associated with the list of
objects supporting the rule, can also be generated.

The bi-clusters generated by FIST are hierarchical conceptual bi-clusters. They are repre-
sented as concepts, i.e., intension and extension, and they form a dual lattice structure defined
by the inclusion relation. In these bi-clusters, the intension represents a maximal set of items
(data values) that are common to some objects (rows) and the extension represents the maximal
set of objects that have the items in common. The hierarchical lattice structure can provide
the user with a bi-clustering result at different level of precision. The highest bi-clusters in the
lattice show the largest sets of items shared by some objects and the lowest bi-clusters show
the largest sets of objects that have some common items.

Two algorithmic versions of the FIST approach were developed and implemented in Java
language. Java was chosen for its portability and accessibility on all computers. The second
algorithmic version was implemented with the Standard Java Collections API and the Trove for
Java Collections. Experiments were conducted on four bioinformatics datasets to evaluate the
efficiency and applicability of the approach and compare them with state of the art algorithms.
Experimental results showed that FIST clearly outperforms frequent itemsets based approaches,
like Apriori and Zart, in both execution times and memory usage. They also showed that FIST
gives results that are comparable to those of frequent closed itemsets based approaches in
execution times and memory usage. From these results, we also deduced that Trove for Java
Collections improves the efficiency compared with the Standard Java Collections API.

7.1.2 Application to Interaction Proteomics

Bioinformatics presents important challenges for knowledge extraction and data mining, and
association rule mining, bi-clustering and classification have been used for several genomics and
proteomics problems. Interaction proteomics is a recent new bioinformatics problem that aims
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at discovering and analyzing interactions between proteins to understand underlying biologi-
cal processes. This understanding can help in the design of medical protocols and cures for
diseases such as the AIDS syndrome that is one of the major world-wide health problems actu-
ally. For an application purpose of the FIST approach, three databases were constructed from
HIV-1 and human protein protein interaction data and knowledge bases. The first database
contains protein-protein interaction binary data, the second database integrates biological and
bibliographic annotations of proteins with these interaction data, and the third contains protein-
protein interaction types data.

The FIST approach was validated by its application for the analysis of HIV-1 and human
protein interactions. The results obtained for the binary interaction database confirmed and
improved the predictions made by existing methods, and suggested new possible interactions
to be further investigated. Additional background knowledge integrated in the second database
are Gene Ontology biological annotations, phenotype annotations and PubMed and Reactome
publication annotations. Extracting conceptual patterns with FIST from this database, in-
tegrating protein interaction data with corresponding protein annotations, demonstrated its
capability to extract meaningful relationships between protein interactions and annotations.
The patterns extracted from this database can help the user to understand the nature of rela-
tionships between interacting proteins by using background biological knowledge represented as
annotations. Furthermore, it showed the potential of integrating several heterogeneous sources
of biological information. The analysis of the third database, containing interactions described
as directed relationships with type, enabled to further precise the relationships between inter-
acting proteins. Compared with results for the first database, groups of interacting proteins are
partitioned into subgroups of proteins with identical influential relationships that are described
by interaction types. The next step in this study is to integrate interaction types with protein
annotations to precise the nature of relationships between interacting proteins.

These experiments showed that FIST can efficiently extracts bases of conceptual association
rules and bi-clusters even for a very large number of items such as the integrated database that
contains several thousands of variables (data matrix columns). These performance results
were confirmed by experiments conducted on two other datasets on yeast gene expression data
from Eisen et al. [Eisen 1998]. The first contains gene expression levels after normalized
discretization of numerical expression values. The second integrates biological annotations on
genes, from the popular GO, KEGG and PubMed knowledge bases, with these expression data.
This last data matrix is a challenge for pattern extraction, as it contains more than 2 400
rows and more than 9 900 columns. FIST was shown to be able to efficiently process all these
datasets.

7.1.3 Limitations of the FIST Approach

According to the conclusions drawn from the experimental results, we point out here some
limitations of the approach.

Even if the FIST application was conceived to process a large panel of data representations
(unary, binary, multi-valued, transactional, matrix, duplicated variables, etc.), considering all
application areas and all data formats is nearly infeasible. Processing multimedia or text data
for instance requires the application of methods from other domains, such as signal or language
processing. As for all itemset based pattern mining methods, the FIST approach cannot be
directly applied to databases containing numerical continuous values, if close values need to be
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considered as similar. Such variables need to be discretized, by regrouping sufficiently closed
values considered as similar, to convert numerical continuous values to discrete values. This
discretization phase can also improve the relevance of extracted patterns as the regrouping
of numerical continuous values can take into account the semantic of the application. This
is for instance the case when numerical gene expression values are discretized into “under-
expressed”, “unchanged” and “over-expressed” values depicting different significant expression
levels of genes. Fuzziness based approaches can also be integrated in the FIST approach to
define the items. These approaches allow to consider several grouping of numerical data values
at the same time and, thus, improve the discretization results in application domains where the
criteria for grouping values are not formally defined or are previously unknown [Hong 2008].

Implementations of the second algorithmic version of the FIST approach have shown to be
much more efficient than frequent itemsets based approaches and to have performances close
to those of state-of-art frequent closed itemsets based approaches. However, the amount of
information generated by FIST, i.e., bi-clusters and conceptual association rules, can induce
large memory requirements for the generation of the user-friendly resulting patterns when very
large datasets, such as image data descriptors for example, are processed. Memory usage
efficiency can be improved by applying algorithmic procedures for regrouping similar subtrees
in the frequent generalized suffix-tree and for on the fly generation of searched patterns from
the generalized frequent suffix-tree. This on the fly generation can be combined with the use
of user-defined templates determining which elements (variables, items or objects) are searched
for and in which part of the pattern.

7.2 Perspectives

This work can be extended in several ways and the perspective of future research works lie in
two directions. The first is the extension of the work done from technical and theoretical view-
points. The second concerns experiments and analysis of resulting patterns from an application
viewpoint. These two perspectives are presented in the next two subsections.

7.2.1 Scope of Technical Enhancement

Different extensions and improvements of the FIST approach and implementations can be
achieved. These can improve the efficiency and applicability of FIST, and the usefulness of
extracted sets, and adapt the approach to other domains of application with specific require-
ments.

A first improvement is the one cited at the end of section 8.1.3 for reducing memory usage
and improving efficiency of the generalized frequent suffix-tree processing and on the fly gen-
eration of patterns. This on the fly generation can be combined with the integration of other
objective and subjective measures of interestingness to select and filter mined patterns accord-
ing to the end-user’s interests. This can improve the relevance and usefulness of extracted
patterns. From an executional context viewpoint, implementing a multi-threaded version can
improve in an important manner performances as branches of the generalized suffix-tree can be
processed separately and in parallel. This simple extension can be a major enhancement of the
implementation, particularly for processing very large datasets such as image data descriptors.

The FIST approach parameters allow to generate conceptual classification association rules
that are rules with values of a class variable in the consequence. However, the application
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context of this work did not allow us to test intensively this feature and, further studies and
experiments must be conducted to evaluate these patterns and compare the obtained classifier
to state of the art classification methods. A theoretical analysis and the development of an
associative conceptual classifier based on the generalized suffix-tree approach can be a promising
path to extend the possibilities of the FIST approach. Interesting results on association rule
based classification were obtained in the literature, particularly with non-redundant bases of
association rules that can limit the impact of over-fitting, i.e., obtaining rules too specific to a
particular dataset, the training set [Ras 2010].

Another scope of enhancement is to extend FIST for the generation of conceptual sequential
patterns from time series data. The suffix-tree data structure was shown to be able to efficiently
process such data with for example the CCC approach (Contiguous Column Coherent clusters)
proposed for extracting bi-clusters in [Madeira 2009]. The hierarchical structure of conceptual
bi-clusters extracted by FIST can improve the relevance of such results as different levels of
abstraction of bi-clusters can be studied.

These are some hints of enhancement and other possible further optimizations can be devised
as FIST was implemented in a straightforward way to be easily reproducible, adapted and
extended for other programming languages or contexts of application, with different constraints
for instance.

7.2.2 Scope of Application Enhancement

The full exploitation of the numerous conceptual patterns extracted from the HIV-1 and human
PPI databases requires further investigations. The analysis of patterns containing interaction
data and protein annotations, and of patterns containing interaction types, is a long task that
can provide detailed knowledge on protein interactions. Indeed, the integration of different
kinds of biological information is an essential consideration to fully understand the underlying
biological processes [Bell 2011]. In near future, we also plan to integrate additional information
about proteins, like structural and sequence similarities, with protein-protein interactions and
annotations to improve the results.

In the future, we also plan to apply the actual version of FIST to other domains of application
and different kinds of datasets. An interesting perspective of application is the experimenta-
tion on image data descriptors, such as SIFT (Scale-Invariant Feature Transform), in order
to identify relevant criteria required to classify images. The conceptual patterns extracted by
FIST were shown to be well adapted to this task in preliminary theoretical studies. Identifying
frequent conceptual patterns in image descriptors such as the standard SIFT can improve the
image classification process. But this is a difficult case from a performance viewpoint because
of the data scale, as an image descriptor data file usually contains several tens of thousands
of descriptors (rows) with for each several hundred of values (columns). This application is an
ongoing work in the image domain. Another ongoing application of the FIST approach con-
cerns the biodiversity domain, that aims at analyzing biological diversity. Preliminary results
on a new botanical database constructed by integrating phenotypic, biological and medical
features of plants showed that conceptual patterns extracted by FIST can help the process of
identification of families, genius and species. Further investigations of these results are actually
conducted.

All these results and promising perspectives of research works confirm that lattice and formal
concept analysis based bi-clustering, itemset search and association or classification rule extrac-
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tion are suitable paradigms for knowledge pattern extraction that may be used for real-sized ap-
plications integrating domain knowledge for improving the data mining process [Lieber 2008].
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Dans ce chapitre, nous présentons la conclusion du rapport, résumant les travaux réalisés
au cours de la thèse et présentant une analyse critique du travail mené, et des perspectives de
travaux ultérieurs ainsi que les problèmes de recherche ouverts concernant les sujets connexes.

8.1 Conclusion

Nous présentons tout d’abord les conclusions tirés des travaux mené, premièrement d’un point
de vue théorique et technique, et deuxième d’un point de vue expérimental et applicatif. Ces
conclusions sont basées sur les résultats algorithmiques et expérimentaux obtenus, incluant
les évaluations des performances et des modèles de connaissances biologiques extraits à partir
des bases de données d’interactions protéomiques. Les limitations de l’approche FIST sont
également mentionnées, ainsi que leurs solutions possibles et problèmes restant ouverts.

8.1.1 Extraction de Motifs Conceptuels Fréquents

Nous proposons une nouvelle approche intégrée pour l’extraction simultanée de bases de règles
d’association conceptuelles et bi-clusters conceptuels. Cette approche, nommée FIST, se base
sur la théorie des motifs fermés fréquents pour extraire les itemsets fermés fréquents, avec
leurs générateurs les listes d’objets support de chacun. Ces ensembles constituent l’information
minimale nécessaire pour construire ces motifs fréquents conceptuels conjointement, sans accès
supplémentaire à l’ensemble de données. Pour des raisons de simplicité, reproductibilité et
extensibilité, l’approche FIST utilise une structure de données basée sur les arbres suffixés au
lieu des FP-Tree ou arbre préfixé utilisés par la plupart des approches existantes. L’utilisation
d’une telle structure de données, appelée arbre suffixé généralisé, est nouveau dans le domaine
de l’extraction de motifs fréquents. Elle ne nécessite pas de procédures complexes, telle que le
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maintien d’une liste chaînée transversale d’items ou de liens de préfixes, et permet le traitement
en parallèle des branches de l’arbre dans des environnements multi-tâches. Cette structure de
données utilisée en combinaison avec l’ordonnancement des items en fonction de leur support
permet d’optimiser l’extraction des motifs fermés fréquents en limitant l’utilisation mémoire
durant le traitement des données. Contrairement à la plupart des implémentations existantes
d’extraction de motifs fréquents, FIST peut générer un résultat complet et interprétable dans
lequel les informations sur les éléments (variables, objets, items, etc.) dans les motifs extraits
sont des descripteurs sémantiques (noms, libellés, etc.) qui peuvent être directement utilisé par
l’utilisateur final, sans nécessiter d’autres opérations de post-traitement. Comme le montrent
les expériences, la génération de modèles complets et interprétables peut être un facteur limitant
important pour l’applicabilité de ces méthodes en raison de la nécessité de post-traitements des
motifs extraits.

Une autre caractéristique importante de l’approche FIST est qu’elle étend les règles
d’association classiques en leur associant les listes d’objets supportant la règle. Cette infor-
mation supplémentaire apporte une connaissance plus détaillée de la relation représentée par
la règle et peut être utilisée pour relier les règles et bi-clusters portant sur les mêmes éléments.
Les bases de règles générées par FIST sont des ensembles condensés de règles, appelées cou-
vertures minimales non-redondantes de règles d’association, à partir desquelles toutes les règles
d’association classiques, telles que générées par Apriori, peuvent être déduites si nécessaire.
Deux bases de règles approximatives association peuvent être générées par FIST. La première
est la base propre, contenant les règles valides entre deux itemsets fermés fréquents, en an-
técédent et en conséquence, qui sont les règles d’antécédent et conséquence maximaux (règles
“max-max”). La seconde est la base structurelle, contenant les règles valides entre un généra-
teur, en antécédent, et sa fermeture, en conséquence, qui sont les règles d’antécédents minimaux
et conséquences maximales (règles “min-max”). A partir de ces règles, les règles de classification
conceptuelle, contenant une valeur de classe dans la conséquence et associées chacune à la liste
des objets support, peuvent également être générés.

Les bi-clusters conceptuels hiérarchiques générés par FIST sont représentés comme des con-
cepts, définis par une intention et une extension, et forment une hiérarchie duale en treillis
définie par la relation d’inclusion. Dans ces bi-clusters, l’intention représente un ensemble max-
imal d’items (valeurs des données) qui sont communs à certains objets (lignes des données) et
l’extension représente l’ensemble maximal d’objets qui ont des éléments en commun. La struc-
ture hiérarchique de treillis peut fournir à l’utilisateur un résultat de bi-clustering à différents
niveaux de précision. Les bi-clusters les plus hauts dans le treillis décrivent les plus grands
ensembles de valeurs partagés par certains objets et les bi-clusters les plus bas affichent les plus
grands ensembles d’objets qui ont des valeurs communes.

Deux versions algorithmiques de l’approche FIST ont été développées et implémentées en
langage Java choisi pour sa portabilité et sa disponibilité sur tous systèmes. La deuxième version
algorithmique a été implémentée avec les collections standards de l’API Java et les collections
de l’API Trove. Les expérimentations ont été menées sur quatre ensembles de données bio-
informatiques pour évaluer l’efficacité et l’applicabilité de l’approche et de les comparer avec
l’état des algorithmes d’art. Les résultats montrent que l’approche FIST est plus performante
que les approches basées sur l’extraction des itemsets fréquents, telles que Apriori et Zart,
tant en termes de temps d’exécution que d’utilisation mémoire. Ils montent également que
ses performances sont comparables à celles des approches basées l’extraction d’itemsets fermés
fréquents en temps d’exécution et utilisation mémoire, et que l’utilisation des collections de
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l’API Trove améliorent l’efficacité par rapport aux collections standards de l’API Java.

8.1.2 Application aux Interactions Protéomiques

La bio-informatique présente des défis importants pour l’extraction de connaissances à partir
des données et la fouille de données, et l’extraction de règles d’association, le bi-clustering et la
classification supervisée ont été largement appliqués en génomique et protéomique. L’analyse
d’interactions protéomiques est un problème récent en bio-informatique qui vise à découvrir et
analyser les interactions entre protéines afin de comprendre les processus biologiques sous-
jacents. Cette compréhension peut contribuer à la conception de protocoles médicaux et
remèdes pour le traitement de maladies telles que, par exemple, le virus du SIDA qui est l’un des
principaux problèmes mondial de santé actuel. Afin de valider expérimentalement l’approche
FIST, trois bases de données ont été construites à partir de diverses données d’interactions pro-
téomiques et bases de connaissances sur les protéines du virus VIH-1 et de l’organisme humain.
La première base de données contient des données binaires d’interactions protéomiques, la sec-
onde intègre annotations biologiques et bibliographiques des protéines avec les données binaires
d’interactions, et la troisième contient des données sur les types d’interactions protéomiques.

Les deux versions algorithmiques de l’approche FIST ont été appliquées à l’analyse des
interactions entre protéines du VIH-1 et de l’organisme humain. Les résultats obtenus pour
la base de données d’interactions binaires a permis de confirmer et étendre les prédictions
faites lors des précédentes analyses, et de suggérer de nouvelles interactions potentielles. Les
motifs conceptuels extrait pour la seconde base de données, intégrant données d’interactions
protéomiques et annotations des protéines correspondantes, ont démontré la capacité de FIST
à extraire des relations significatives entre les interactions et les annotations. Les annotations
intégrées dans cette base de données sont issues des annotations biologiques de Gene Ontology et
des annotations phénotypiques et bibliographiques des bases PubMed et Reactome. Ces motifs
extraits peuvent contribuer à la compréhension de la nature des relations entre les protéines qui
interagissent en utilisant les connaissances biologiques initiales représentées par les annotations.
En outre, ces expérimentations ont démontré le potentiel important de l’intégration de plusieurs
sources d’informations biologiques hétérogènes. L’analyse de la troisième base de données,
contenant des interactions décrites par des relations typées et orientées, a permis de préciser
les relations entre les protéines interagissant. Comparativement aux résultats obtenus pour
la première base de données, les groupes de protéines interagissant sont partitionnés en sous-
groupes de protéines d’influences identiques décrites par les types d’interactions. La prochaine
étape de cette étude est l’intégration des types d’interactions et des annotations des protéines
afin de préciser la nature des relations et les propriétés communes aux protéines des sous-
groupes.

Ces expérimentations ont démontré la capacité de l’approche FIST à extraire les bases
de règles d’association conceptuelles et bi-clusters conceptuels à partir d’ensembles de don-
nées contenant un grand nombre d’items et de variables. Elles ont été confirmées par les
expérimentations menées sur deux autres ensembles de données génomiques construits à partir
des données de Eisen et al. [Eisen 1998]. Le premier de ces ensembles contient les niveaux
d’expression des gènes de Saccharomyces cerevisiae obtenus par la discrétisation normalisée
des valeurs numériques d’expression. Le second intègre avec ces données d’expression les anno-
tations biologiques et bibliographiques des gènes concernés issues des bases de référence GO,
KEGG et PubMed. Même si ce dernier ensemble de données constitue un cas difficile pour
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l’extraction de motifs fréquents, du fait de la grande taille de l’espace de recherche induite par
les plus de 2 400 objets et plus de 9 900 variables contenus, l’approche FIST a été capable de
traiter efficacement tous ces ensembles de données.

8.1.3 Limitations de l’Approche FIST

Selon les conclusions tirées des expérimentations, nous pointons ici certaines limitation de
l’approche.

Même si l’approche FIST a été conï¿½ue pour traiter un large panel de formats de représen-
tation des données (unaires, binaires, multi-valuées, transactionnelles, matrices, variables du-
pliqués, etc.), il est impossible de prendre en considération l’ensemble des domaines applicatifs
et formats de données potentiels. Le traitement de données multimédia ou données textuelles
par exemple nécessite l’application de méthodes d’autres domaines, telles que le traitement du
signal ou du langage naturel. Comme toutes les méthodes d’extraction de connaissances basées
sur les itemsets, l’approche FIST ne peut être appliquée directement aux données constituées
de valeurs numériques continues si les valeurs proches doivent être considérés comme similaires.
Dans ce contexte, les variables doivent être discrétisées, en regroupant les valeurs suffisamment
proches pour être considérées comme similaire, afin de convertir les valeurs numériques contin-
ues en valeurs discrètes. Cette phase de discrétisation peut également améliorer la pertinence
des motifs extraits par la prise en compte de la sémantique de l’application dans le regroupe-
ment des valeurs numériques continues. C’est par exemple le cas lorsque les valeurs numériques
d’expression génomiques sont discrétisées en valeurs “sous-exprimé”, “inchangé” et “sur-exprimé”
qui représentent les différents niveaux d’expression de gènes significatifs. Les méthodes basées
sur les ensembles flous peuvent également être intégrés dans l’approche FIST afin de définir les
items considérés. Ces approches permettent de considérer plusieurs groupements de valeurs des
données numériques simultanément et, par conséquent, d’améliorer les résultats de la discréti-
sation dans des domaines d’application oï¿½ les critères de regroupement de valeurs ne sont pas
formellement définies ou sont inconnues [Hong 2008].

Les implémentations de la deuxième version algorithmique de l’approche FIST se sont
avérées être beaucoup plus efficaces que les approches basées sur les itemsets fréquents et avoir
des performances proches de celles des approches basées sur les itemsets fermés fréquents d’état
de l’art. Toutefois, la quantité d’informations générées par FIST, soit les bi-clusters conceptuel
et les règles d’association conceptuelles, peut induire d’importants besoins en mémoire pour
la génération de motifs complets et interprétables lorsque de très grands ensembles de don-
nées, tels que les descripteurs d’images par exemple, sont traités. L’efficacité d’utilisation de la
mémoire peut être améliorée par l’application de procédures algorithmiques afin de regrouper
les sous-arbres semblables dans l’arbre suffixé généralisé et pour la génération à la volée des
motifs recherchés à partir de l’arbre suffixé généralisé. Cette génération à la volée peut être
combinée avec l’utilisation de templates, ou patrons, définis par l’utilisateur pour déterminer
quels éléments (variables, items ou objets) sont recherchés dans quelle partie du motif.

8.2 Perspectives

Ce travail peut être étendu de plusieurs manières et les perspectives de travaux de recherche
ultérieurs se situent dans deux directions. La première est le prolongement du travail effec-
tué, des points de vue techniques et théoriques. La seconde concerne les expérimentations

Kartick Chandra MONDAL, Laboratoire I3S



179 Chapter 8. Conclusion et Perspectives

et l’analyse des motifs extraits du point de vue de l’application. Ces deux perspectives sont
présentées dans les deux sections suivantes.

8.2.1 Perspectives d’Extensions Techniques

Différentes extensions et améliorations de l’approche FIST et des implémentations peuvent être
réalisées. Celles-ci peuvent améliorer l’efficacité et l’applicabilité de l’approche, et l’utilité des
ensembles extraits, et adapter l’approche à d’autres domaines d’application ayant des besoins
spécifiques.

La première amélioration, évoquée dans la section 8.1.3, a pour objet la réduction de la con-
sommation mémoire et l’amélioration de l’efficacité du traitement de l’arbre suffixé généralisé
ainsi que la génération à la volée des motifs. Cette phase de génération à la volée peut être com-
binée avec l’intégration d’autres mesures d’intérêt objectives et subjectives afin de sélectionner
et filtrer les motifs extraits en fonction des intérêts de l’utilisateur final afin d’en améliorer
la pertinence et l’utilité. D’un point de vue du contexte d’exécution, l’implémentation d’une
version multi-tâches peut améliorer de manière importante les performances, les branches de
l’arbre suffixé généralisé pouvant être traitées séparément en parallèle. Cette extension simple
peut être une amélioration majeure de l’implémentation, en particulier pour le traitement de
très grands ensembles de données tels que les descripteurs d’images.

Les paramètres de l’approche FIST permettent de générer des règles d’association con-
ceptuelles contenant les valeurs d’une variable de classe en conséquence pour la classification.
Cependant, le contexte d’application de ce travail ne nous a pas permis de tester intensive-
ment cette fonction et d’autres études et expérimentations doivent être menées afin d’évaluer
ces règles et comparer le classifieur obtenu aux méthodes de classification de l’état de l’art.
Une analyse théorique et l’élaboration d’un classifieur conceptuel associatif basé sur l’approche
par arbre suffixé généralisé peut constituer une voie prometteuse pour étendre les possibil-
ités de l’approche FIST. Des résultats intéressants sur la classification basée sur des règles
d’association ont été obtenus et présentés dans la littérature du domaine, en particulier concer-
nant les bases non-redondantes de règles d’association qui peuvent permettre de limiter l’impact
du sur-apprentissage, c’est à dire l’obtention de règles trop spécifiques à un ensemble de données
particulier [Ras 2010].

Un autre champ d’amélioration possible concerne l’extension de FIST pour la génération
de motifs séquentiels conceptuels à partir de données de séries chronologiques. Les structures
de données à base d’arbres de suffixes ont montré leur capacité à traiter efficacement ces don-
nées, avec par exemple l’approche CCC (Contiguous Column Coherent clusters) proposée pour
l’extraction de bi-clusters de valeurs contigües dans [Madeira 2009]. La structure hiérarchique
des bi-clusters conceptuels extraits par FIST peut améliorer la pertinence de ces résultats en
permettant l’étude des bi-clusters à différents niveaux d’abstraction.

De nombreuses autres optimisations et extensions de l’approche FIST sont possibles du fait
de la simplicité de sa mise en oeuvre et sa reproductibilité aisée. Elle peut facilement être
adaptée et étendue à d’autres langages de programmation ou contextes d’application, avec des
contraintes différentes, par exemple.
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8.2.2 Perspectives d’Extensions Applicatives

La pleine exploitation des nombreux motifs conceptuels extraits des bases de données
d’interactions protéomiques du VIH-1 et de l’organisme humain nécessite des investigations
complémentaires. L’analyse des motifs contenant des données sur les interactions et les an-
notations de protéines et des motifs contenant les types d’interaction, est une tâche longue
qui peut apporter des connaissances détaillées sur les interactions entre protéines. En effet,
l’intégration des différents types d’informations biologiques est un élément essentiel pour une
bonne compréhension des processus biologiques sous-jacents [Bell 2011]. Dans un futur proche,
nous prévoyons également d’intégrer des informations supplémentaires concernant les protéines,
telles que les similarités structurelles et de séquences, avec les interactions et annotations pro-
téomiques afin d’améliorer les résultats.

A l’avenir, nous prévoyons également d’appliquer l’approche FIST à d’autres domaines
d’application et différents types de jeux de données. Une perspective intéressante d’application
est l’expérimentation sur les descripteurs de données d’images, tels que les SIFT (Scale-Invariant
Feature Transform), afin d’identifier les critères pertinents requis pour classifier ces images. Les
modèles conceptuels extraites par FIST se sont avérés particulièrement adaptés à cette tâche
dans les études théoriques préliminaires. L’identification des motifs conceptuels fréquents dans
les descripteurs d’images tels que les SIFT peut améliorer le processus de classification des
images. Il s’agit toutefois d’un cas applicatif complexe du point de vue des performances en
raison des volumes de données, les matrices de données de description d’une image contenant
généralement plusieurs dizaines de milliers de descripteurs (lignes) avec pour chacun plusieurs
centaines de valeurs (colonnes). En sus de cette application en cours dans le domaine de
l’imagerie, une autre application en cours concerne le domaine de la biodiversité et vise à
l’analyse de la diversité biologique. Les résultats préliminaires obtenu avec une nouvelle base
de données botaniques construite en intégrant des caractéristiques phénotypiques, biologiques
et médicales de plantes ont montré que les motifs conceptuels extraits par FIST peuvent aider
le processus d’identification des familles, groupes et espèces de plantes.

Ces résultats et ces perspectives prometteuses de travaux de recherche confirment que le
bi-clustering, la recherche d’itemsets fréquents et l’extraction de règles d’association et de classi-
fication basés sur les théories des treillis et de l’analyse de concepts formels sont des paradigmes
adaptés à l’extraction de connaissances qui peuvent être utilisés pour des applications de taille
importante intégrant des connaissances initiales du domaine afin d’améliorer le processus de
fouille [Lieber 2008].
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Appendix A

Theoretical Considerations

A.1 Discussion on Itemset Closure Property

Let I = {i1, . . . , in} be a frequent itemset I ⊆ L and I ∈ F . I is a frequent closed itemset if
one of the two following conditions is verified:

1. I corresponds exactly to at least one object in database D: ∃o ∈ O such as ∀i ∈ I we have
i ∈ o and @j ∈ o such that j /∈ I. The probability for this event is denoted PD(I = o).

2. I corresponds to the intersection of at least two objects of the database D: I =
⋂k=N
k=1 ok

with N ≥ 2. That means the intersection of objects ok contains all and only the items
contained in I: @i ∈ L such as i ∈

⋂k=N
k=1 ok. The probability for this event is denoted

PD(I u S) where S =
⋃k=N
k=1 ok.

Consider a discrete uniform distribution of occurrence probabilities of independent items in L
in objects of O over database D. We then have a probability distribution whereby the finite
number of objects are equally likely to contain an item i: All items i ∈ L have an identical
probability, denoted PD(i ∈ o) or PD(i) for short, equals to support(i) to be contained in an
object o for all o ∈ O. Conversely, all items i ∈ L have an identical probability, denoted
PD(i /∈ o) or PD( i ) for short, equals to 1 - support(i) not to be contained in an object o for all
o ∈ O. The probability for itemset I = {i1, . . . , in} to be contained in an object o is then:

PD(I ⊆ o) =

α=n∏
α=1

PD(iα) =

α=n∏
α=1

support(iα)

and the probability for itemset I = {i1, . . . , in} with L \ I = {ip, . . . , iq} to be equal to an
object o is:

PD(I = o) =

α=n∏
α=1

PD(iα) ·
β=q∏
β=p

PD(iβ) =

α=n∏
α=1

support(iα) ·
β=q∏
β=p

(1− support(iβ))

Now, consider two frequent itemsets I1 = {i11, . . . , i1n} and I2 = {i21, . . . , i2n} such that
support(I1) ≥ support(I2) ⇐⇒

∏α=n
α=1 PD(i1α) ≥

∏β=n
β=1 PD(i2β). Let denote I3 = L \ I1 =

{i31, . . . , i3p} the set of items not contained in I1 and, I4 = L \ I1 = {i41, . . . , i4p} the set of items
not contained in I2 We have:

α=n∏
α=1

PD(i1α) ≥
β=n∏
β=1

PD(i2β) =⇒
α=n∏
α=1

PD(i1α) ·
µ=p∏
µ=1

(1− PD(i3µ)) ≥
β=n∏
β=1

PD(i2β) ·
ν=p∏
ν=n

(1− PD(i4ν))

=⇒ PD(I1 = o) ≥ PD(I2 = o)



A.1. Discussion on Itemset Closure Property 184

The probability that I1 is equal to an object in D is greater than or equal to the probability
that I2 is equal to an object in D. We also have PD(I1 ⊆ o) ≥ PD(I2 ⊆ o) and by extension to
all objects in S ⊆ O, S =

⋃k=N
k=1 ok we have:

k=N∏
k=1

PD(I1 ⊆ ok) ≥
k=N∏
k=1

PD(I2 ⊆ ok)

Let denote PD(iβ ∈ S) the probability that item iβ is contained in all object ok ∈ S, that is
∀ok ∈ S we have iβ ∈ ok. Let denote PD(I1 v S) the probability that I1 is contained in all
object ok ∈ S. We deduce:

PD(I1 v S)−
µ=p∏
µ=1

PD(i3µ ∈ S) ≥ PD(I2 v S)−
ν=p∏
ν=1

PD(i4ν ∈ S) =⇒ PD(I1 u S) ≥ PD(I2 u S)

The probability that I1 is equal to the intersection of objects in S is greater than or equal to
the probability that I2 is equal to the intersection of objects in S.
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Appendix B

Experimental Results

B.1 HIV-1 and Human Protein Interaction Types

Table B.1: List of HIV-1 and Human Protein Protein Interaction Types.

Interaction Type Interaction Type Interaction Type
CAPSID binds INTEGRASE binds RT enhanced by
CAPSID co-localizes with INTEGRASE co-localizes with RT fractionates with
CAPSID complexes with INTEGRASE degraded by RT imported by
CAPSID degraded by INTEGRASE imported by RT inhibited by
CAPSID downregulates INTEGRASE incorporates RT interacts with
CAPSID induces release of INTEGRASE inhibited by RT phosphorylated by
CAPSID inhibited by INTEGRASE interacts with RT stimulated by
CAPSID inhibits INTEGRASE recruits TAT acetylated by
CAPSID interacts with INTEGRASE regulated by TAT acetylates
CAPSID isomerized by INTEGRASE requires TAT activated by
CAPSID modulates INTEGRASE stimulated by TAT activates
CAPSID phosphorylated by INTEGRASE stimulates TAT associates with
CAPSID stabilizes MATRIX activates TAT binds
CAPSID ubiquitinated by MATRIX associates with TAT cleaved by
CAPSID upregulates MATRIX binds TAT competes with
ENV_GP120 activated by MATRIX co-localizes with TAT complexes with
ENV_GP120 activates MATRIX complexes with TAT cooperates with
ENV_GP120 associates with MATRIX downregulates TAT decreases phosphorylation of
ENV_GP120 binds MATRIX enhances TAT degraded by
ENV_GP120 cleavage induced by MATRIX exported by TAT degrades
ENV_GP120 cleaved by MATRIX fractionates with TAT disrupts
ENV_GP120 cleaves MATRIX imported by TAT downregulates
ENV_GP120 competes with MATRIX incorporates TAT enhanced by
ENV_GP120 complexes with MATRIX inhibits TAT enhances
ENV_GP120 cooperates with MATRIX interacts with TAT enhances polymerization of
ENV_GP120 decreases phosphorylation of MATRIX myristoylated by TAT imported by
ENV_GP120 deglycosylates MATRIX phosphorylated by TAT inactivates
ENV_GP120 degrades MATRIX regulated by TAT induces cleavage of
ENV_GP120 downregulated by MATRIX stimulated by TAT induces complex with
ENV_GP120 downregulates MATRIX ubiquitinated by TAT induces phosphorylation of
ENV_GP120 enhanced by MATRIX upregulates TAT induces rearrangement of
ENV_GP120 enhances NEF Co-localizes with TAT induces release of
ENV_GP120 glycosylated by NEF Induces release of TAT inhibited by
ENV_GP120 inactivates NEF Inhibits TAT inhibits
ENV_GP120 incorporates NEF Interacts with TAT inhibits acetylation of
ENV_GP120 induces accumulation of NEF Modulates TAT interacts with
ENV_GP120 induces acetylation of NEF Requires TAT methylated by
ENV_GP120 induces cleavage of NEF Upregulates TAT modified by

Continued on next page . . .
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Interaction Type Interaction Type Interaction Type
ENV_GP120 induces phosphorylation of NEF activates TAT modulated by
ENV_GP120 induces release of NEF associates with TAT modulates
ENV_GP120 inhibited by NEF binds TAT phosphorylated by
ENV_GP120 inhibits NEF co-localizes with TAT phosphorylates
ENV_GP120 interacts with NEF degrades TAT recruited by
ENV_GP120 mediated by NEF downregulates TAT recruits
ENV_GP120 modified by NEF inactivates TAT regulated by
ENV_GP120 modulated by NEF induces cleavage of TAT regulates
ENV_GP120 modulates NEF induces complex with TAT requires
ENV_GP120 processed by NEF induces phosphorylation of TAT stabilizes
ENV_GP120 regulated by NEF induces rearrangement of TAT stimulated by
ENV_GP120 relocalizes NEF inhibits TAT stimulates
ENV_GP120 requires NEF interacts with TAT synergizes with
ENV_GP120 sensitizes NEF modulates TAT ubiquitinated by
ENV_GP120 stimulates NEF myristoylated by TAT upregulated by
ENV_GP120 upregulates NEF phosphorylated by TAT upregulates
ENV_GP160 activates NEF polarizes VIF associates with
ENV_GP160 associates with NEF regulated by VIF binds
ENV_GP160 binds NEF relocalizes VIF co-localizes with
ENV_GP160 cleaved by NEF requires VIF complexes with
ENV_GP160 co-localizes with NEF stabilizes VIF degrades
ENV_GP160 complexes with NEF synergizes with VIF inhibited by
ENV_GP160 decreases phosphorylation of NEF upregulates VIF inhibits
ENV_GP160 downregulated by NUCLEOCAPSID activates VIF interacts with
ENV_GP160 downregulates NUCLEOCAPSID binds VIF modulates
ENV_GP160 inactivates NUCLEOCAPSID enhances VIF phosphorylated by
ENV_GP160 induces phosphorylation of NUCLEOCAPSID imported by VIF relocalizes
ENV_GP160 induces release of NUCLEOCAPSID incorporates VPR activates
ENV_GP160 inhibited by NUCLEOCAPSID interacts with VPR binds
ENV_GP160 inhibits NUCLEOCAPSID ubiquitinated by VPR co-localizes with
ENV_GP160 interacts with P1 ubiquitinated by VPR competes with
ENV_GP160 methylated by P6 binds VPR complexes with
ENV_GP160 palmitoylated by P6 incorporates VPR cooperates with
ENV_GP160 processed by P6 inhibited by VPR decreases phosphorylation of
ENV_GP160 regulated by P6 interacts with VPR downregulates
ENV_GP160 relocalizes P6 phosphorylated by VPR enhanced by
ENV_GP160 upregulated by P6 ubiquitinated by VPR enhances
ENV_GP160 upregulates POL binds VPR enhances polymerization of
ENV_GP41 activates RETROPEPSIN activated by VPR exported by
ENV_GP41 binds RETROPEPSIN activates VPR imported by
ENV_GP41 complexes with RETROPEPSIN cleaves VPR inactivates
ENV_GP41 decreases phosphorylation of RETROPEPSIN degrades VPR incorporates
ENV_GP41 downregulated by RETROPEPSIN downregulates VPR induces accumulation of
ENV_GP41 downregulates RETROPEPSIN induces cleavage of VPR induces cleavage of
ENV_GP41 inactivates RETROPEPSIN induces release of VPR induces phosphorylation of
ENV_GP41 incorporates RETROPEPSIN inhibited by VPR induces release of
ENV_GP41 induces phosphorylation of RETROPEPSIN phosphorylated by VPR inhibited by
ENV_GP41 induces release of REV activates VPR inhibits
ENV_GP41 inhibited by REV associates with VPR interacts with
ENV_GP41 inhibits REV binds VPR isomerized by
ENV_GP41 interacts with REV co-localizes with VPR mediated by
ENV_GP41 modified by REV competes with VPR modulates
ENV_GP41 processed by REV depolymerizes VPR recruits
ENV_GP41 upregulates REV enhanced by VPR regulated by
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Interaction Type Interaction Type Interaction Type
GAG_PR55 associates with REV exported by VPR regulates
GAG_PR55 binds REV inhibited by VPR relocalizes
GAG_PR55 co-localizes with REV inhibits VPR requires
GAG_PR55 downregulated by REV interacts with VPR stimulates
GAG_PR55 incorporates REV methylated by VPR upregulates
GAG_PR55 inhibited by REV modulated by VPU activates
GAG_PR55 inhibits REV phosphorylated by VPU binds
GAG_PR55 interacts with REV recruits VPU degrades
GAG_PR55 modulated by REV relocalized by VPU downregulates
GAG_PR55 regulated by REV requires VPU inhibited by
GAG_PR55 relocalized by REV stimulated by VPU inhibits
GAG_PR55 relocalizes REV stimulates VPU interacts with
GAG_PR55 upregulated by REV synergizes with VPU phosphorylated by
GAG_PR55 upregulates REV ubiquitinated by VPU recruits
INTEGRASE acetylated by RT binds VPU regulates
INTEGRASE activated by RT co-localizes with VPU stabilizes
INTEGRASE associates with RT degraded by VPU upregulates
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B.2 Number of Association Rules Extracted from HIV-1
and Human PPI Databases

Table B.2: Apriori Association Rules for HIV-1–Human PPI Binary Interactions Database.

Table B.3: FIST Association Rules for HIV-1–Human PPI Binary Interactions Database.
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Table B.4: Apriori Association Rules for HIV-1–Human PPI Interaction Types Database.

Table B.5: FIST Association Rules for HIV-1–Human PPI Interaction Types Database.
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Table B.6: Apriori Association Rules for HIV-1–Human PPI Integrated Database.

Table B.7: FIST Association Rules for HIV-1–Human PPI Integrated Database.
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B.3 HIV-1 and Human Protein Interaction Bi-clusters

Table B.8: Bi-clusters Extracted from the HIV-1 and Human Protein Binary Interactions
Database.

HIV-1 Proteins Support
Minsupport=0.20%

TAT 774
ENV_GP120 532

Minsupport=0.15%
TAT 774
ENV_GP120 532
ENV_GP120, TAT 234

Minsupport=0.10%
TAT 774
ENV_GP120 532
ENV_GP120, TAT 234
NEF 200
VPR 179
ENV_GP160 176
ENV_GP41 156

Minsupport=0.05%
TAT 774
ENV_GP120 532
ENV_GP120, TAT 234
NEF 200
NEF, TAT 101
NEF, ENV_GP120 101
NEF, ENV_GP120, TAT 79
VPR 179
VPR, TAT 108
VPR, ENV_GP120 73
ENV_GP160 176
ENV_GP160, TAT 81
ENV_GP160, ENV_GP120 106
ENV_GP160, ENV_GP120, TAT 72
ENV_GP41 156
ENV_GP41, TAT 89
ENV_GP41, ENV_GP120 117
ENV_GP41, ENV_GP120, TAT 76
ENV_GP41, ENV_GP160 71
RETROPEPSIN 83
INTEGRASE 80
MATRIX 78

Minsupport=0.01%
TAT 774
VPU 22
P6 14
ENV_GP120 532
NEF 200
VPR 179
ENV_GP160 176
ENV_GP41 156
RETROPEPSIN 83
CAPSID 33
NUCLEOCAPSID 25

Continued on next page . . .

Kartick Chandra MONDAL, Laboratoire I3S



B.3. HIV-1 and Human Protein Interaction Bi-clusters 192

HIV-1 Proteins Support
REV 65
RT 42
GAG_PR55 55
INTEGRASE 80
MATRIX 78
VIF 68
CAPSID, ENV_GP120 18
CAPSID, TAT 17
NUCLEOCAPSID, VPR 19
NUCLEOCAPSID, TAT 22
ENV_GP41, TAT 89
ENV_GP41, ENV_GP120 117
VPR, TAT 108
ENV_GP120, TAT 234
NEF, TAT 101
NEF, ENV_GP120 101
VPR, ENV_GP120 73
VPR, NEF 36
ENV_GP160, TAT 81
ENV_GP160, ENV_GP120 106
ENV_GP160, NEF 48
ENV_GP160, VPR 19
RT, TAT 28
RT, RETROPEPSIN 17
RT, MATRIX 15
RT, ENV_GP41 21
VIF, TAT 48
MATRIX, ENV_GP120 28
RETROPEPSIN, ENV_GP41 20
INTEGRASE, TAT 53
MATRIX, TAT 42
MATRIX, NEF 24
MATRIX, VPR 26
MATRIX, ENV_GP160 15
MATRIX, ENV_GP41 18
MATRIX, INTEGRASE 15
REV, TAT 33
GAG_PR55, ENV_GP41 16
REV, MATRIX 15
GAG_PR55, TAT 25
GAG_PR55, ENV_GP120 22
RT, ENV_GP120 24
ENV_GP41, NEF 57
ENV_GP41, ENV_GP160 71
RETROPEPSIN, NEF 16
RETROPEPSIN, ENV_GP160 15
RETROPEPSIN, TAT 29
RETROPEPSIN, ENV_GP120 22
RETROPEPSIN, ENV_GP120, TAT 19
RETROPEPSIN, NEF, TAT 14
RETROPEPSIN, ENV_GP41, TAT 19
ENV_GP41, ENV_GP120, TAT 76
ENV_GP41, NEF, TAT 48
ENV_GP41, ENV_GP160, NEF 26
ENV_GP41, NEF, ENV_GP120 45
ENV_GP41, ENV_GP160, ENV_GP120 63

Continued on next page . . .
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HIV-1 Proteins Support
GAG_PR55, ENV_GP120, TAT 17
MATRIX, ENV_GP120, TAT 25
MATRIX, NEF, ENV_GP120 14
MATRIX, NEF, TAT 14
MATRIX, VPR, ENV_GP120 17
MATRIX, VPR, TAT 20
VIF, INTEGRASE, TAT 42
GAG_PR55, ENV_GP41, TAT 14
RT, ENV_GP120, TAT 20
RT, ENV_GP160, ENV_GP120 17
NUCLEOCAPSID, VPR, TAT 18
RT, ENV_GP41, TAT 18
RT, ENV_GP41, ENV_GP120 15
ENV_GP160, VPR, TAT 17
ENV_GP160, VPR, ENV_GP120 17
ENV_GP160, NEF, TAT 38
ENV_GP160, ENV_GP120, TAT 72
VPR, NEF, TAT 32
VPR, ENV_GP120, TAT 63
NEF, ENV_GP120, TAT 79
VPR, NEF, ENV_GP120 30
ENV_GP160, VPR, NEF 17
ENV_GP160, NEF, ENV_GP120 40
VPR, NEF, ENV_GP120, TAT 27
ENV_GP160, NEF, ENV_GP120, TAT 35
ENV_GP160, VPR, ENV_GP120, TAT 16
ENV_GP160, VPR, NEF, TAT 15
ENV_GP160, VPR, NEF, ENV_GP120 15
ENV_GP41, NEF, ENV_GP120, TAT 44
ENV_GP41, ENV_GP160, ENV_GP120, TAT 42
ENV_GP41, ENV_GP160, NEF, ENV_GP120 23
MATRIX, VPR, ENV_GP120, TAT 16
RT, ENV_GP160, ENV_GP120, TAT 14
RT, RETROPEPSIN, ENV_GP41, TAT 15
RT, ENV_GP41, ENV_GP160, ENV_GP120 14
ENV_GP160, VPR, NEF, ENV_GP120, TAT 14
ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 22

Minsupport=0.005%
TAT 774
ENV_GP120 532
NEF 200
VPR 179
ENV_GP160 176
ENV_GP41 156
RETROPEPSIN 83
INTEGRASE 80
MATRIX 78
GAG_PR55 55
VIF 68
REV 65
NUCLEOCAPSID 25
VPU 22
CAPSID 33
P6 14
RT 42
MATRIX, TAT 42

Continued on next page . . .
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HIV-1 Proteins Support
MATRIX, ENV_GP120 28
INTEGRASE, TAT 53
INTEGRASE, VPR 12
ENV_GP41, TAT 89
ENV_GP41, ENV_GP120 117
ENV_GP160, TAT 81
ENV_GP160, ENV_GP120 106
VPR, TAT 108
VPR, ENV_GP120 73
ENV_GP120, TAT 234
NEF, TAT 101
NEF, ENV_GP120 101
VPR, NEF 36
ENV_GP160, NEF 48
ENV_GP160, VPR 19
ENV_GP41, NEF 57
ENV_GP41, ENV_GP160 71
RETROPEPSIN, TAT 29
RETROPEPSIN, ENV_GP120 22
RETROPEPSIN, NEF 16
RETROPEPSIN, VPR 9
RETROPEPSIN, ENV_GP160 15
RETROPEPSIN, ENV_GP41 20
MATRIX, NEF 24
MATRIX, VPR 26
MATRIX, ENV_GP160 15
MATRIX, ENV_GP41 18
MATRIX, RETROPEPSIN 11
MATRIX, INTEGRASE 15
VIF, ENV_GP120 9
VIF, TAT 48
REV, TAT 33
REV, ENV_GP120 12
REV, VPR 10
REV, MATRIX 15
GAG_PR55, TAT 25
GAG_PR55, ENV_GP120 22
GAG_PR55, NEF 9
GAG_PR55, VPR 12
GAG_PR55, ENV_GP41 16
RT, ENV_GP120 24
GAG_PR55, MATRIX 11
RT, TAT 28
RT, VPR 11
RT, RETROPEPSIN 17
RT, MATRIX 15
RT, ENV_GP41 21
RT, VIF 8
CAPSID, ENV_GP120 18
CAPSID, TAT 17
CAPSID, NEF 10
CAPSID, MATRIX 8
CAPSID, GAG_PR55 7
NUCLEOCAPSID, VPR 19
NUCLEOCAPSID, TAT 22
VPU, TAT 11
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HIV-1 Proteins Support
MATRIX, ENV_GP41, TAT 13
MATRIX, ENV_GP41, ENV_GP120 8
MATRIX, ENV_GP41, NEF 12
ENV_GP41, ENV_GP160, ENV_GP120 63
ENV_GP41, NEF, TAT 48
ENV_GP160, VPR, TAT 17
ENV_GP160, VPR, ENV_GP120 17
ENV_GP160, NEF, TAT 38
ENV_GP160, NEF, ENV_GP120 40
VPR, NEF, TAT 32
VPR, NEF, ENV_GP120 30
NEF, ENV_GP120, TAT 79
ENV_GP160, ENV_GP120, TAT 72
VPR, ENV_GP120, TAT 63
ENV_GP160, VPR, NEF 17
ENV_GP41, ENV_GP120, TAT 76
ENV_GP41, NEF, ENV_GP120 45
ENV_GP41, ENV_GP160, NEF 26
RETROPEPSIN, ENV_GP120, TAT 19
RETROPEPSIN, NEF, TAT 14
RETROPEPSIN, NEF, ENV_GP120 12
RETROPEPSIN, VPR, NEF 7
RETROPEPSIN, VPR, TAT 7
RETROPEPSIN, ENV_GP160, NEF 8
RETROPEPSIN, ENV_GP41, TAT 19
RETROPEPSIN, ENV_GP41, NEF 10
RETROPEPSIN, ENV_GP41, ENV_GP160 12
MATRIX, ENV_GP120, TAT 25
MATRIX, NEF, ENV_GP120 14
MATRIX, NEF, TAT 14
MATRIX, VPR, TAT 20
MATRIX, VPR, NEF 10
MATRIX, VPR, ENV_GP120 17
MATRIX, ENV_GP160, NEF 13
REV, VPR, TAT 7
REV, ENV_GP120, TAT 11
MATRIX, RETROPEPSIN, ENV_GP41 8
MATRIX, INTEGRASE, VPR 7
VIF, ENV_GP160, ENV_GP120 7
VIF, INTEGRASE, TAT 42
REV, MATRIX, TAT 10
GAG_PR55, ENV_GP120, TAT 17
GAG_PR55, VPR, ENV_GP120 10
GAG_PR55, ENV_GP41, TAT 14
RT, ENV_GP120, TAT 20
RT, NEF, TAT 13
RT, VPR, TAT 8
RT, ENV_GP160, ENV_GP120 17
RT, MATRIX, RETROPEPSIN 9
RT, ENV_GP41, TAT 18
RT, MATRIX, TAT 10
RT, ENV_GP41, ENV_GP120 15
CAPSID, ENV_GP120, TAT 13
CAPSID, MATRIX, TAT 7
CAPSID, NEF, TAT 9
CAPSID, NEF, ENV_GP120 9
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HIV-1 Proteins Support
CAPSID, ENV_GP41, ENV_GP120 11
NUCLEOCAPSID, VPR, TAT 18
VPU, ENV_GP120, TAT 10
VPU, NEF, TAT 9
ENV_GP41, VPR, NEF, TAT 13
VPR, NEF, ENV_GP120, TAT 27
ENV_GP160, NEF, ENV_GP120, TAT 35
ENV_GP160, VPR, ENV_GP120, TAT 16
ENV_GP160, VPR, NEF, TAT 15
ENV_GP41, NEF, ENV_GP120, TAT 44
ENV_GP160, VPR, NEF, ENV_GP120 15
ENV_GP41, ENV_GP160, ENV_GP120, TAT 42
ENV_GP41, ENV_GP160, NEF, ENV_GP120 23
RETROPEPSIN, NEF, ENV_GP120, TAT 11
RETROPEPSIN, ENV_GP160, ENV_GP120, TAT 13
RETROPEPSIN, ENV_GP41, ENV_GP120, TAT 13
RETROPEPSIN, ENV_GP41, NEF, TAT 9
RETROPEPSIN, ENV_GP41, ENV_GP160, NEF 7
MATRIX, NEF, ENV_GP120, TAT 12
MATRIX, VPR, ENV_GP120, TAT 16
MATRIX, VPR, NEF, ENV_GP120 9
MATRIX, ENV_GP160, ENV_GP120, TAT 12
MATRIX, VPR, NEF, TAT 9
MATRIX, ENV_GP41, NEF, TAT 9
MATRIX, ENV_GP41, ENV_GP160, NEF 9
MATRIX, RETROPEPSIN, ENV_GP41, TAT 7
GAG_PR55, MATRIX, VPR, ENV_GP120 9
GAG_PR55, ENV_GP160, ENV_GP120, TAT 9
RT, NEF, ENV_GP120, TAT 11
RT, ENV_GP160, ENV_GP120, TAT 14
RT, RETROPEPSIN, ENV_GP41, TAT 15
RT, ENV_GP41, ENV_GP160, ENV_GP120 14
RT, ENV_GP41, ENV_GP120, TAT 12
RT, MATRIX, ENV_GP41, TAT 8
RT, ENV_GP41, NEF, TAT 8
CAPSID, NEF, ENV_GP120, TAT 8
CAPSID, ENV_GP41, ENV_GP120, TAT 10
VPU, ENV_GP160, NEF, TAT 7
VPU, NEF, ENV_GP120, TAT 8
ENV_GP160, VPR, NEF, ENV_GP120, TAT 14
ENV_GP41, VPR, NEF, ENV_GP120, TAT 12
ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 22
RETROPEPSIN, ENV_GP160, NEF, ENV_GP120, TAT 7
RETROPEPSIN, ENV_GP41, ENV_GP160, ENV_GP120, TAT 11
RETROPEPSIN, ENV_GP41, NEF, ENV_GP120, TAT 7
MATRIX, ENV_GP160, NEF, ENV_GP120, TAT 10
MATRIX, ENV_GP160, VPR, ENV_GP120, TAT 8
MATRIX, VPR, NEF, ENV_GP120, TAT 8
MATRIX, ENV_GP41, NEF, ENV_GP120, TAT 7
GAG_PR55, ENV_GP41, ENV_GP160, ENV_GP120, TAT 8
GAG_PR55, MATRIX, VPR, ENV_GP120, TAT 8
RT, ENV_GP41, ENV_GP160, ENV_GP120, TAT 11
RT, ENV_GP160, NEF, ENV_GP120, TAT 7
RT, MATRIX, RETROPEPSIN, ENV_GP41, TAT 7
CAPSID, ENV_GP41, NEF, ENV_GP120, TAT 7
MATRIX, ENV_GP160, VPR, NEF, ENV_GP120, TAT 7
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HIV-1 Proteins Support
RT, RETROPEPSIN, ENV_GP41, ENV_GP160, ENV_GP120, TAT 9

Minsupport=0.001%
TAT 774
ENV_GP120 532
ENV_GP120, TAT 234
NEF 200
NEF, TAT 101
NEF, ENV_GP120 101
NEF, ENV_GP120, TAT 79
VPR 179
VPR, TAT 108
VPR, ENV_GP120 73
VPR, ENV_GP120, TAT 63
VPR, NEF 36
VPR, NEF, TAT 32
VPR, NEF, ENV_GP120 30
VPR, NEF, ENV_GP120, TAT 27
ENV_GP160 176
ENV_GP160, TAT 81
ENV_GP160, ENV_GP120 106
ENV_GP160, ENV_GP120, TAT 72
ENV_GP160, NEF 48
ENV_GP160, NEF, TAT 38
ENV_GP160, NEF, ENV_GP120 40
ENV_GP160, NEF, ENV_GP120, TAT 35
ENV_GP160, VPR 19
ENV_GP160, VPR, TAT 17
ENV_GP160, VPR, ENV_GP120 17
ENV_GP160, VPR, ENV_GP120, TAT 16
ENV_GP160, VPR, NEF 17
ENV_GP160, VPR, NEF, TAT 15
ENV_GP160, VPR, NEF, ENV_GP120 15
ENV_GP160, VPR, NEF, ENV_GP120, TAT 14
ENV_GP41 156
ENV_GP41, TAT 89
ENV_GP41, ENV_GP120 117
ENV_GP41, ENV_GP120, TAT 76
ENV_GP41, NEF 57
ENV_GP41, NEF, TAT 48
ENV_GP41, NEF, ENV_GP120, TAT 44
ENV_GP41, NEF, ENV_GP120 45
ENV_GP41, VPR, NEF, TAT 13
ENV_GP41, VPR, NEF, ENV_GP120, TAT 12
ENV_GP41, ENV_GP160 71
ENV_GP41, ENV_GP160, ENV_GP120 63
ENV_GP41, ENV_GP160, ENV_GP120, TAT 42
ENV_GP41, ENV_GP160, NEF 26
ENV_GP41, ENV_GP160, NEF, ENV_GP120 23
ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 22
ENV_GP41, ENV_GP160, VPR, NEF, ENV_GP120, TAT 6
RETROPEPSIN 83
RETROPEPSIN, TAT 29
RETROPEPSIN, ENV_GP120 22
RETROPEPSIN, ENV_GP120, TAT 19
RETROPEPSIN, NEF, TAT 14
RETROPEPSIN, NEF, ENV_GP120 12
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HIV-1 Proteins Support
RETROPEPSIN, NEF, ENV_GP120, TAT 11
RETROPEPSIN, NEF 16
RETROPEPSIN, VPR 9
RETROPEPSIN, VPR, NEF 7
RETROPEPSIN, VPR, NEF, TAT 6
RETROPEPSIN, VPR, TAT 7
RETROPEPSIN, VPR, NEF, ENV_GP120 5
RETROPEPSIN, VPR, ENV_GP120 6
RETROPEPSIN, VPR, ENV_GP120, TAT 5
RETROPEPSIN, VPR, NEF, ENV_GP120, TAT 4
RETROPEPSIN, ENV_GP160 15
RETROPEPSIN, ENV_GP160, VPR, ENV_GP120, TAT 2
RETROPEPSIN, ENV_GP160, ENV_GP120, TAT 13
RETROPEPSIN, ENV_GP160, NEF 8
RETROPEPSIN, ENV_GP160, NEF, ENV_GP120, TAT 7
RETROPEPSIN, ENV_GP41, TAT 19
RETROPEPSIN, ENV_GP41 20
RETROPEPSIN, ENV_GP41, ENV_GP120, TAT 13
RETROPEPSIN, ENV_GP41, NEF, TAT 9
RETROPEPSIN, ENV_GP41, NEF 10
RETROPEPSIN, ENV_GP41, VPR, NEF, TAT 2
RETROPEPSIN, ENV_GP41, ENV_GP160 12
RETROPEPSIN, ENV_GP41, ENV_GP160, ENV_GP120, TAT 11
RETROPEPSIN, ENV_GP41, ENV_GP160, NEF 7
RETROPEPSIN, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 6
RETROPEPSIN, ENV_GP41, NEF, ENV_GP120, TAT 7
INTEGRASE 80
INTEGRASE, TAT 53
INTEGRASE, NEF 3
INTEGRASE, NEF, TAT 2
INTEGRASE, VPR 12
INTEGRASE, VPR, TAT 5
MATRIX 78
MATRIX, TAT 42
MATRIX, ENV_GP120 28
MATRIX, ENV_GP120, TAT 25
MATRIX, NEF 24
MATRIX, NEF, ENV_GP120 14
MATRIX, NEF, ENV_GP120, TAT 12
MATRIX, NEF, TAT 14
MATRIX, VPR 26
MATRIX, VPR, ENV_GP120 17
MATRIX, VPR, ENV_GP120, TAT 16
MATRIX, VPR, TAT 20
MATRIX, VPR, NEF, ENV_GP120 9
MATRIX, VPR, NEF 10
MATRIX, ENV_GP160, ENV_GP120, TAT 12
MATRIX, ENV_GP160 15
MATRIX, ENV_GP160, NEF, ENV_GP120, TAT 10
MATRIX, ENV_GP160, NEF 13
MATRIX, ENV_GP160, VPR, ENV_GP120, TAT 8
MATRIX, VPR, NEF, ENV_GP120, TAT 8
MATRIX, ENV_GP160, VPR, NEF, ENV_GP120, TAT 7
MATRIX, VPR, NEF, TAT 9
MATRIX, ENV_GP41 18
MATRIX, ENV_GP41, ENV_GP120 8
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HIV-1 Proteins Support
MATRIX, ENV_GP41, NEF 12
MATRIX, ENV_GP41, NEF, ENV_GP120, TAT 7
MATRIX, ENV_GP41, VPR, NEF, ENV_GP120, TAT 5
MATRIX, ENV_GP41, NEF, TAT 9
MATRIX, ENV_GP41, TAT 13
MATRIX, ENV_GP41, VPR, NEF, TAT 6
MATRIX, ENV_GP41, ENV_GP160, NEF 9
MATRIX, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 6
MATRIX, ENV_GP41, ENV_GP160, VPR, NEF, ENV_GP120, TAT 4
MATRIX, RETROPEPSIN 11
MATRIX, RETROPEPSIN, ENV_GP41, NEF 4
MATRIX, RETROPEPSIN, ENV_GP41, TAT 7
MATRIX, RETROPEPSIN, ENV_GP41, NEF, TAT 3
MATRIX, RETROPEPSIN, ENV_GP41 8
MATRIX, RETROPEPSIN, ENV_GP41, ENV_GP160, NEF 2
MATRIX, INTEGRASE 15
MATRIX, INTEGRASE, TAT 4
MATRIX, INTEGRASE, VPR 7
VIF 68
VIF, TAT 48
VIF, NEF 6
VIF, ENV_GP41, ENV_GP160, ENV_GP120 5
VIF, ENV_GP120 9
VIF, ENV_GP160, ENV_GP120 7
VIF, ENV_GP41, ENV_GP160, ENV_GP120, TAT 2
VIF, ENV_GP160, ENV_GP120, TAT 4
VIF, INTEGRASE, TAT 42
VIF, NEF, TAT 4
VIF, MATRIX, VPR, NEF, ENV_GP120 2
VIF, VPR, NEF, ENV_GP120 3
VIF, MATRIX, NEF, ENV_GP120 3
REV 65
REV, TAT 33
REV, ENV_GP120, TAT 11
REV, ENV_GP120 12
REV, VPR 10
REV, VPR, TAT 7
REV, VPR, ENV_GP120, TAT 3
REV, ENV_GP160, TAT 5
REV, NEF, TAT 5
REV, ENV_GP160, NEF, ENV_GP120, TAT 4
REV, ENV_GP160, VPR, NEF, ENV_GP120, TAT 2
REV, ENV_GP41 3
REV, ENV_GP41, ENV_GP120 2
REV, RETROPEPSIN 6
REV, INTEGRASE, VPR 4
REV, MATRIX 15
REV, MATRIX, TAT 10
REV, MATRIX, VPR 5
REV, MATRIX, RETROPEPSIN 5
REV, MATRIX, VPR, TAT 4
GAG_PR55 55
GAG_PR55, TAT 25
GAG_PR55, ENV_GP120 22
GAG_PR55, ENV_GP120, TAT 17
GAG_PR55, NEF 9

Continued on next page . . .

Kartick Chandra MONDAL, Laboratoire I3S



B.3. HIV-1 and Human Protein Interaction Bi-clusters 200

HIV-1 Proteins Support
GAG_PR55, VPR 12
GAG_PR55, VPR, ENV_GP120 10
GAG_PR55, ENV_GP41, TAT 14
GAG_PR55, ENV_GP41 16
GAG_PR55, ENV_GP41, NEF, TAT 6
GAG_PR55, ENV_GP41, ENV_GP160, ENV_GP120, TAT 8
GAG_PR55, ENV_GP160, ENV_GP120, TAT 9
GAG_PR55, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 4
GAG_PR55, NEF, ENV_GP120 5
GAG_PR55, RETROPEPSIN 2
GAG_PR55, INTEGRASE 2
GAG_PR55, MATRIX, VPR, ENV_GP120, TAT 8
GAG_PR55, MATRIX 11
GAG_PR55, MATRIX, VPR, ENV_GP120 9
GAG_PR55, VIF 4
RT 42
RT, ENV_GP120 24
RT, ENV_GP120, TAT 20
RT, TAT 28
RT, NEF, ENV_GP120, TAT 11
RT, NEF, TAT 13
RT, VPR 11
RT, VPR, TAT 8
RT, VPR, ENV_GP120, TAT 6
RT, VPR, NEF, ENV_GP120, TAT 5
RT, VPR, NEF, TAT 6
RT, ENV_GP160, ENV_GP120, TAT 14
RT, ENV_GP160, ENV_GP120 17
RT, RETROPEPSIN, ENV_GP41, ENV_GP160, ENV_GP120, TAT 9
RT, RETROPEPSIN, ENV_GP41, TAT 15
RT, ENV_GP41, ENV_GP160, ENV_GP120 14
RT, RETROPEPSIN 17
RT, ENV_GP41, ENV_GP160, ENV_GP120, TAT 11
RT, ENV_GP41, ENV_GP120, TAT 12
RT, RETROPEPSIN, ENV_GP41, NEF, TAT 6
RT, RETROPEPSIN, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 4
RT, ENV_GP41, NEF, ENV_GP120, TAT 6
RT, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 5
RT, ENV_GP160, NEF, ENV_GP120, TAT 7
RT, MATRIX 15
RT, ENV_GP41 21
RT, MATRIX, RETROPEPSIN 9
RT, MATRIX, RETROPEPSIN, ENV_GP41, TAT 7
RT, ENV_GP41, TAT 18
RT, MATRIX, ENV_GP41, TAT 8
RT, MATRIX, TAT 10
RT, INTEGRASE 3
RT, MATRIX, VPR 5
RT, MATRIX, INTEGRASE, VPR 2
RT, VIF 8
RT, VIF, ENV_GP41, ENV_GP160, ENV_GP120 4
RT, ENV_GP41, ENV_GP120 15
RT, VIF, ENV_GP160, ENV_GP120 6
RT, VIF, TAT 4
RT, REV, MATRIX, RETROPEPSIN 4
RT, REV, MATRIX 6
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RT, REV, MATRIX, RETROPEPSIN, ENV_GP41, NEF, TAT 2
RT, ENV_GP41, NEF, TAT 8
RT, MATRIX, ENV_GP41, NEF, TAT 4
RT, MATRIX, RETROPEPSIN, ENV_GP41, NEF, TAT 3
RT, REV, MATRIX, NEF, TAT 4
RT, MATRIX, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 2
RT, REV, MATRIX, ENV_GP160, NEF, ENV_GP120, TAT 3
GAG_PR55, VIF, ENV_GP120 2
RT, VIF, ENV_GP160, ENV_GP120, TAT 3
CAPSID 33
CAPSID, ENV_GP120 18
CAPSID, GAG_PR55, ENV_GP41, ENV_GP160, ENV_GP120, TAT 5
CAPSID, GAG_PR55 7
CAPSID, GAG_PR55, ENV_GP120 6
CAPSID, ENV_GP41, ENV_GP120, TAT 10
CAPSID, ENV_GP41, ENV_GP160, ENV_GP120, TAT 6
CAPSID, TAT 17
CAPSID, ENV_GP41, ENV_GP120 11
CAPSID, ENV_GP120, TAT 13
CAPSID, GAG_PR55, NEF, ENV_GP120 3
CAPSID, ENV_GP41, NEF, ENV_GP120, TAT 7
CAPSID, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 3
CAPSID, NEF, TAT 9
CAPSID, NEF, ENV_GP120, TAT 8
CAPSID, GAG_PR55, VPR 2
CAPSID, VPR 4
CAPSID, VPR, NEF, ENV_GP120 3
CAPSID, MATRIX, VPR, NEF, ENV_GP120 2
CAPSID, NEF 10
CAPSID, NEF, ENV_GP120 9
CAPSID, MATRIX, ENV_GP120 5
CAPSID, MATRIX, NEF, ENV_GP120 3
CAPSID, MATRIX 8
CAPSID, RT, ENV_GP41, VPR, NEF, ENV_GP120, TAT 2
RT, ENV_GP41, VPR, NEF, TAT 3
CAPSID, MATRIX, ENV_GP120, TAT 4
CAPSID, MATRIX, NEF, ENV_GP120, TAT 2
RT, MATRIX, ENV_GP41, VPR, NEF, TAT 2
RT, MATRIX, ENV_GP160, NEF, ENV_GP120, TAT 4
RT, MATRIX, ENV_GP160, VPR, NEF, ENV_GP120, TAT 2
CAPSID, MATRIX, TAT 7
NUCLEOCAPSID, RT 5
NUCLEOCAPSID 25
NUCLEOCAPSID, RT, MATRIX, RETROPEPSIN, ENV_GP41, NEF, TAT 2
NUCLEOCAPSID, RT, MATRIX 3
NUCLEOCAPSID, TAT 22
NUCLEOCAPSID, RETROPEPSIN, NEF, TAT 3
NUCLEOCAPSID, REV, MATRIX, TAT 4
NUCLEOCAPSID, RT, MATRIX, VPR 2
NUCLEOCAPSID, VPR, TAT 18
NUCLEOCAPSID, RETROPEPSIN, VPR, NEF, TAT 2
RT, MATRIX, NEF, TAT 6
RT, MATRIX, VPR, NEF, TAT 3
NUCLEOCAPSID, MATRIX, TAT 5
NUCLEOCAPSID, VPR 19
NUCLEOCAPSID, MATRIX 6
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NUCLEOCAPSID, VPR, ENV_GP120, TAT 2
VPU 22
VPU, ENV_GP120, TAT 10
VPU, TAT 11
VPU, VPR, TAT 6
VPU, VPR, ENV_GP120, TAT 5
VPU, ENV_GP160, NEF, TAT 7
VPU, ENV_GP160, NEF, ENV_GP120, TAT 6
VPU, NEF, ENV_GP120, TAT 8
VPU, VPR, NEF, TAT 5
VPU, ENV_GP160, VPR, NEF, TAT 3
VPU, ENV_GP41, NEF, ENV_GP120, TAT 5
VPU, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 4
VPU, ENV_GP41, VPR, NEF, ENV_GP120, TAT 2
VPU, VPR, NEF, ENV_GP120, TAT 4
VPU, RETROPEPSIN 5
VPU, RETROPEPSIN, VPR, NEF, ENV_GP120, TAT 2
VPU, ENV_GP160, VPR, NEF, ENV_GP120, TAT 2
VIF, ENV_GP160, NEF, ENV_GP120, TAT 3
VIF, ENV_GP160, VPR, NEF, ENV_GP120, TAT 2
VPU, REV 4
VPU, REV, MATRIX, RETROPEPSIN 3
VPU, GAG_PR55 2
P6 14
P6, NEF 3
P6, RT, REV, VIF, MATRIX, ENV_GP160, NEF, ENV_GP120, TAT 2
P6, RT, VIF 3
P6, VIF 4
P6, REV, MATRIX, TAT 5
P6, NUCLEOCAPSID 4
RETROPEPSIN, ENV_GP160, VPR, NEF, ENV_GP120, TAT 1
INTEGRASE, RETROPEPSIN, VPR, NEF, ENV_GP120, TAT 1
MATRIX, INTEGRASE, NEF 1
VIF, RETROPEPSIN, ENV_GP120 1
VIF, INTEGRASE, NEF, TAT 1
REV, MATRIX, INTEGRASE, VPR, TAT 3
GAG_PR55, RETROPEPSIN, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 1
GAG_PR55, INTEGRASE, ENV_GP41 1
GAG_PR55, MATRIX, ENV_GP160, VPR, ENV_GP120, TAT 1
GAG_PR55, MATRIX, ENV_GP41 1
GAG_PR55, MATRIX, INTEGRASE 1
GAG_PR55, REV 1
RT, VIF, INTEGRASE, TAT 1
RT, REV, MATRIX, RETROPEPSIN, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 1
RT, GAG_PR55, VIF, ENV_GP41, ENV_GP160, ENV_GP120, TAT 1
CAPSID, GAG_PR55, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 2
CAPSID, GAG_PR55, RETROPEPSIN, VPR 1
CAPSID, GAG_PR55, VIF, MATRIX, VPR, NEF, ENV_GP120 1
CAPSID, RT, MATRIX, ENV_GP41, ENV_GP160, VPR, NEF, ENV_GP120, TAT 1
NUCLEOCAPSID, RT, REV, MATRIX, RETROPEPSIN, ENV_GP41, NEF, TAT 1
NUCLEOCAPSID, RT, MATRIX, RETROPEPSIN, ENV_GP41, VPR, NEF, TAT 1
NUCLEOCAPSID, RT, MATRIX, INTEGRASE, VPR 1
VPU, RETROPEPSIN, ENV_GP41, VPR, NEF, ENV_GP120, TAT 1
VPU, VIF, ENV_GP41, ENV_GP160, VPR, NEF, ENV_GP120, TAT 1
VPU, REV, ENV_GP160, VPR, NEF, ENV_GP120, TAT 1
VPU, RT, REV, MATRIX, RETROPEPSIN 2
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VPU, NUCLEOCAPSID, RETROPEPSIN, VPR, NEF, ENV_GP120, TAT 1
P6, GAG_PR55, NEF 1
P6, RT, REV, VIF, MATRIX, ENV_GP160, VPR, NEF, ENV_GP120, TAT 1
P6, NUCLEOCAPSID, RT, VIF 1
p1, P6, NUCLEOCAPSID, CAPSID, REV, MATRIX, TAT 3
Pol, VPU, GAG_PR55, ENV_GP41, ENV_GP160, NEF, ENV_GP120, TAT 1
VIF, NEF, ENV_GP120 4
VPU, NEF, TAT 9
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